Problem sheet 13

Due date: Jan. 22, 2018.

Problem 53

Let Y be a scheme, and let $i: Z \subseteq Y$ be a subscheme. Prove that the associated sheaf homomorphism $\mathscr{O}_Y \to i_* \mathscr{O}_Z$ is surjective.

Problem 54

Let Y be a scheme, and let $i: Z \subseteq Y$ be a subscheme. Prove that a morphism $f: X \to Y$ of schemes factors through the subscheme Z if and only if the following conditions are satisfied:

- (i) $f(X) \subseteq Z$ (set-theoretically),
- (ii) $f^{\flat} \colon \mathscr{O}_Y \to f_* \mathscr{O}_X$ factors through the surjective homomorphism $\mathscr{O}_Y \to i_* \mathscr{O}_Z$.

Prove that (i) implies (ii) if Z is an open subscheme, or if X is reduced.

Problem 55

Let $n \ge 1$ be an integer and set $X = \operatorname{Spec} \mathbb{Q}[S,T]/(S^n + T^n - 1)$. Translate the condition that there exist nonzero integers $x, y, z \in \mathbb{Z}$ with $x^n + y^n = z^n$ into a statement about $X(\mathbb{Q})$.

Problem 56

Let k be a field, k^{sep} a separable closure, $\Gamma := \text{Gal}(k^{\text{sep}}/k)$ the group of all kautomorphisms of k^{sep} , and let X be a k-scheme locally of finite type. Show that for all $x \in X(k^{\text{sep}})$ the Γ -orbit of x in $X(k^{\text{sep}})$ is finite.