

Expert Python Programming
Fourth Edition

Master Python by learning the best coding practices
and advanced programming concepts

Michał Jaworski

Tarek Ziadé

BIRMINGHAM—MUMBAI

Expert Python Programming
Fourth Edition
Copyright © 2021 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of the
publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing or its
dealers and distributors, will be held liable for any damages caused or alleged to have
been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

Producer: Shailesh Jain
Acquisition Editor – Peer Reviews: Saby D'silva
Project Editor: Rianna Rodrigues
Content Development Editor: Edward Doxey
Copy Editor: Safis Editor
Technical Editor: Aditya Sawant
Proofreader: Safis Editor
Indexer: Pratik Shirodkar
Presentation Designer: Pranit Padwal

First published: September 2008
Second edition: May 2016
Third edition: April 2019
Fourth edition: May 2021

Production reference: 1260521

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-80107-110-9

www.packt.com

http://www.packt.com

Contributors

About the authors
Michał Jaworski has more than 10 years of professional experience in writing
software using various programming languages. Michał has spent most of his career
writing high-performance and distributed backend services for web applications.
He has served in various roles at multiple companies: from an ordinary software
engineer to lead software architect. His beloved language of choice has always
been Python.

I want to thank my wife for giving me constant support. Oliwia, you're the
only person who knew from the very beginning that I was lying to myself
when I said that this will be a light project that won't take much of my (our)
time. I don't know why, but you encouraged me to do it anyway.

Tarek Ziadé is a software engineer, located in Burgundy, France. He works at
Elastic, building tools for developers. Before Elastic, he worked at Mozilla for 10
years, and he founded a French Python User group, called AFPy. Tarek has also
written several articles about Python for various magazines, and a few books in
French and English.

I would like to thank Freya, Suki, Milo, and Amina for being so supportive
of all my book projects.

About the reviewer
Tal Einat has been developing software for nearly 20 years, of which Python has
always been a major element. He's been a core developer of the Python language
since 2010. Tal holds a B.Sc. in Math & Physics from Tel Aviv University. He likes
hiking, computer games, philosophical sci-fi, and spending time with his family.

For the past eight years, Tal has been developing educational technology, first at
Compedia where he built a group developing VR and AR education apps, and later
at the startup FullProof of which he was a co-founder.

Tal currently works at Rhino Health, a startup working to the enable development
and use of medical AI models with patient data from across the globe while
preserving patient privacy.

I dedicate my part of the work on this book to my grandfather Jacob "Yanek"
Friedman who passed away recently — you live on in our thoughts, making
us strong and putting a smile on our faces. I'd like to thank my wife,
children, brother, parents and extended family, for being ever supportive
and filling my life with so much joy.

[i]

Table of Contents
Preface ix
Chapter 1: Current Status of Python 1

Where are we now and where are we going? 2
What to do with Python 2 3
Keeping up to date 5

PEP documents 6
Active communities 8
Other resources 11

Summary 12
Chapter 2: Modern Python Development Environments 15

Technical requirements 16
Python's packaging ecosystem 17

Installing Python packages using pip 17
Isolating the runtime environment 19

Application-level isolation versus system-level isolation 23
Application-level environment isolation 24

Poetry as a dependency management system 27
System-level environment isolation 32

Containerization versus virtualization 34
Virtual environments using Docker 36

Writing your first Dockerfile 37
Running containers 41
Setting up complex environments 43
Useful Docker and Docker Compose recipes for Python 46

Virtual development environments using Vagrant 56
Popular productivity tools 59

Custom Python shells 59

Table of Contents

[ii]

Using IPython 61
Incorporating shells in your own scripts and programs 65
Interactive debuggers 66
Other productivity tools 68

Summary 70
Chapter 3: New Things in Python 71

Technical requirements 72
Recent language additions 72

Dictionary merge and update operators 73
Alternative – Dictionary unpacking 76
Alternative – ChainMap from the collections module 76

Assignment expressions 79
Type-hinting generics 83
Positional-only parameters 84
zoneinfo module 87
graphlib module 88

Not that new, but still shiny 93
breakpoint() function 93
Development mode 94
Module-level __getattr__() and __dir__() functions 97
Formatting strings with f-strings 98
Underscores in numeric literals 100
secrets module 100

What may come in the future? 101
Union types with the | operator 102
Structural pattern matching 103

Summary 108
Chapter 4: Python in Comparison with Other Languages 109

Technical requirements 110
Class model and object-oriented programming 110

Accessing super-classes 112
Multiple inheritance and Method Resolution Order 114
Class instance initialization 120
Attribute access patterns 124
Descriptors 125

Real-life example – lazily evaluated attributes 128
Properties 132

Dynamic polymorphism 138
Operator overloading 140

Dunder methods (language protocols) 141
Comparison to C++ 145

Table of Contents

[iii]

Function and method overloading 147
Single-dispatch functions 149

Data classes 151
Functional programming 155

Lambda functions 157
The map(), filter(), and reduce() functions 159
Partial objects and partial functions 162
Generators 163
Generator expressions 165
Decorators 166

Enumerations 168
Summary 171

Chapter 5: Interfaces, Patterns, and Modularity 173
Technical requirements 174
Interfaces 175

A bit of history: zope.interface 177
Using function annotations and abstract base classes 186

Using collections.abc 191
Interfaces through type annotations 192

Inversion of control and dependency injection 195
Inversion of control in applications 197
Using dependency injection frameworks 206

Summary 212
Chapter 6: Concurrency 213

Technical requirements 214
What is concurrency? 214
Multithreading 216

What is multithreading? 217
How Python deals with threads 221
When should we use multithreading? 223

Application responsiveness 223
Multiuser applications 224
Work delegation and background processing 225

An example of a multithreaded application 226
Using one thread per item 229
Using a thread pool 231
Using two-way queues 236
Dealing with errors in threads 238
Throttling 241

Multiprocessing 245
The built-in multiprocessing module 247
Using process pools 251

Table of Contents

[iv]

Using multiprocessing.dummy as the multithreading interface 254
Asynchronous programming 255

Cooperative multitasking and asynchronous I/O 256
Python async and await keywords 257
A practical example of asynchronous programming 262
Integrating non-asynchronous code with async using futures 265

Executors and futures 267
Using executors in an event loop 268

Summary 269
Chapter 7: Event-Driven Programming 271

Technical requirements 272
What exactly is event-driven programming? 272

Event-driven != asynchronous 273
Event-driven programming in GUIs 274
Event-driven communication 277

Various styles of event-driven programming 279
Callback-based style 280
Subject-based style 281
Topic-based style 286

Event-driven architectures 288
Event and message queues 290

Summary 293
Chapter 8: Elements of Metaprogramming 295

Technical requirements 296
What is metaprogramming? 296
Using decorators to modify function behavior before use 297

One step deeper: class decorators 299
Intercepting the class instance creation process 304
Metaclasses 307

The general syntax 309
Metaclass usage 312
Metaclass pitfalls 315
Using the __init__subclass__() method as an alternative to metaclasses 317

Code generation 319
exec, eval, and compile 319
The abstract syntax tree 321
Import hooks 323
Notable examples of code generation in Python 323

Falcon's compiled router 324
Hy 325

Summary 326

Table of Contents

[v]

Chapter 9: Bridging Python with C and C++ 327
Technical requirements 329
C and C++ as the core of Python extensibility 329
Compiling and loading Python C extensions 330
The need to use extensions 332

Improving performance in critical code sections 333
Integrating existing code written in different languages 334
Integrating third-party dynamic libraries 335
Creating efficient custom datatypes 335

Writing extensions 336
Pure C extensions 337

A closer look at the Python/C API 341
Calling and binding conventions 345
Exception handling 349
Releasing GIL 351
Reference counting 353

Writing extensions with Cython 356
Cython as a source-to-source compiler 356
Cython as a language 360

Downsides of using extensions 362
Additional complexity 363
Harder debugging 364

Interfacing with dynamic libraries without extensions 365
The ctypes module 365

Loading libraries 365
Calling C functions using ctypes 367
Passing Python functions as C callbacks 369

CFFI 372
Summary 374

Chapter 10: Testing and Quality Automation 377
Technical requirements 378
The principles of test-driven development 379
Writing tests with pytest 381

Test parameterization 389
pytest's fixtures 392
Using fakes 402
Mocks and the unittest.mock module 405

Quality automation 410
Test coverage 411
Style fixers and code linters 415
Static type analysis 419

Mutation testing 420

Table of Contents

[vi]

Useful testing utilities 427
Faking realistic data values 427
Faking time values 429

Summary 430
Chapter 11: Packaging and Distributing Python Code 433

Technical requirements 434
Packaging and distributing libraries 434

The anatomy of a Python package 435
setup.py 438
setup.cfg 440
MANIFEST.in 440
Essential package metadata 442
Trove classifiers 443

Types of package distributions 445
sdist distributions 445
bdist and wheel distributions 447

Registering and publishing packages 450
Package versioning and dependency management 453

The SemVer standard for semantic versioning 455
CalVer for calendar versioning 456

Installing your own packages 457
Installing packages directly from sources 457
Installing packages in editable mode 458

Namespace packages 459
Package scripts and entry points 461

Packaging applications and services for the web 465
The Twelve-Factor App manifesto 466
Leveraging Docker 467
Handling environment variables 470
The role of environment variables in application frameworks 475

Creating standalone executables 480
When standalone executables are useful 481
Popular tools 481

PyInstaller 482
cx_Freeze 486
py2exe and py2app 488

Security of Python code in executable packages 490
Summary 491

Chapter 12: Observing Application Behavior and Performance 493
Technical requirements 494
Capturing errors and logs 494

Python logging essentials 495
Logging system components 497

Table of Contents

[vii]

Logging configuration 505
Good logging practices 509
Distributed logging 511
Capturing errors for later review 514

Instrumenting code with custom metrics 518
Using Prometheus 520

Distributed application tracing 530
Distributed tracing with Jaeger 534

Summary 540
Chapter 13: Code Optimization 541

Technical requirements 542
Common culprits for bad performance 542

Code complexity 543
Cyclomatic complexity 544
The big O notation 545

Excessive resource allocation and leaks 548
Excessive I/O and blocking operations 549

Code profiling 549
Profiling CPU usage 551

Macro-profiling 551
Micro-profiling 557

Profiling memory usage 560
Using the objgraph module 562
C code memory leaks 570

Reducing complexity by choosing appropriate data structures 571
Searching in a list 571
Using sets 573
Using the collections module 574

deque 574
defaultdict 576
namedtuple 578

Leveraging architectural trade-offs 580
Using heuristics and approximation algorithms 580
Using task queues and delayed processing 581
Using probabilistic data structures 585
Caching 586

Deterministic caching 587
Non-deterministic caching 590

Summary 595
Why subscribe? 597

Other Books You May Enjoy 599
Index 601

[ix]

Preface
Python rocks!

From the earliest version in the late 1980s to the current 3.9 version, Python has
evolved with the same philosophy: providing a multi-paradigm programming
language with readability and productivity in mind.

Initially, people used to see Python as yet another scripting language. Many of them
didn't believe it could be used to build large and complex systems. But over the
years, and thanks to some pioneer companies, it became obvious that Python could
be used to build almost any kind of a software.

Although writing Python code is easy, making it readable, reusable, and easy to
maintain is challenging. You can achieve those qualities only through good software
artistry and technique, which you will build gradually by constantly learning and
gaining experience.

This book was written to express many years of professional experience in building
all kinds of applications with Python, from small system scripts done in a couple of
hours to very large applications written by dozens of developers over several years.

This book is divided into three parts:

1. Knowing your tools: Chapters 1 to 4 focus on basic elements of Python
programmer's toolbelt. From productivity tools, through modern
environments, to the newest syntax elements introduced in the latest Python
releases. It also offers a safe landing zone for programmers who have
experience with other programming languages and are just starting to learn
more advanced Python.

2. Building applications with Python: Chapters 5 to 9 are all about design
patterns, programming paradigms, and metaprogramming techniques. We
will try to build some small but useful programs and will be often taking
a deeper look into application architecture. We will also go a bit beyond
Python and see how we can integrate code written using other programming
languages.

Preface

[x]

3. Maintaining Python applications: Chapters 10 to 13 will be discussing all the
things that usually happen after the application "goes live". We will showcase
tools and techniques that help to keep applications easily maintainable and
show how to approach common problems with packaging, deployment,
monitoring, and performance optimization.

Who this book is for
The Python programming book is intended for expert programmers who want to
learn about Python's advanced-level concepts and latest features.

This book is written for Python developers who wish to go further in mastering
Python. And by developers, I mean mostly professional programmers who write
Python software for a living. This is because it focuses mostly on tools and practices
that are crucial for creating performant, reliable, and maintainable software in
Python.

However, this does not mean that hobbyists won't find anything interesting. This
book is great for anyone who is interested in learning advanced-level concepts with
Python. Anyone who has basic Python skills should be able to follow the content
of the book, although it might require some additional effort from less experienced
programmers. It should also be a good introduction to the newest releases of Python
for those who are still a bit behind and continue to use older versions of Python.

What this book covers
Chapter 1, Current Status of Python, showcases the current state of the Python
language and its community. We will see how Python is constantly changing and
why it is changing. We will learn what to do with old Python 2 code and how to be
constantly up to date with what is currently happening in the Python community.

Chapter 2, Modern Python Development Environments, describes modern ways
of setting up repeatable and consistent development environments for Python
programmers. We will learn differences between application-level and system-
level isolation. We will concentrate on two popular tools for environment isolation,
virtualenv-type environments and Docker containers, but will also review other
alternatives. At the end of the chapter, we will discuss common productivity tools
that are extremely useful during development.

Chapter 3, New Things in Python, showcases recent Python language additions. We
will review the most important Python syntax changes that happened in the last four
releases of Python. We will also take a look at exciting changes that are scheduled
for the next major Python release—Python 3.10.

Preface

[xi]

Chapter 4, Python in Comparison with Other Languages, shows how Python compares
to other languages. We will learn what programming idioms are and how to
recognize them in code. We will take a deeper look into key elements of Python's
object-oriented programming model and how it is different from other object-
oriented programming languages but will also discuss other popular programming
language features like descriptors, decorators, and dataclasses. This chapter should
allow programmers with experience in other languages to safely land in the Python
ecosystem.

Chapter 5, Interfaces, Patterns, and Modularity, discusses elements of Python that allow
for implementing various reusable design patterns. If focuses on the concept of class
interfaces and how they can be implemented in Python. It also discusses inversion of
control and dependency injection—two extremely useful but not necessarily popular
programming techniques.

Chapter 6, Concurrency, explains how to implement concurrency in Python using
different approaches and libraries. It features three major concurrency models:
multithreading, multiprocessing and asynchronous programming. In this chapter we
will learn key differences between those models and how to use them effectively.

Chapter 7, Event-Driven Programming, describes what event-driven programming is
and how it relates to asynchronous programming and different concurrency models.
We will present various approaches to event-driven programming along with useful
libraries.

Chapter 8, Elements of Metaprogramming, presents an overview of common approaches
to metaprogramming available to Python programmers. We will learn about
common metaprogramming techniques like decorators, as well as metaclasses and
code generation patterns.

Chapter 9, Bridging Python with C and C++, explains how to integrate code written in
different languages in your Python application. We will learn when extensions in C
can be useful and how to create them.

Chapter 10, Testing and Quality Automation, is about providing automated testing and
quality processes. We will learn about a popular testing framework—Pytest—and
many useful testing techniques. We will also cover tools that can be used to assess
code quality metrics and improve code style in fully automated way.

Chapter 11, Packaging and Distributing Python Code, describes the current state of
Python packaging and best practices for creating packages that are to be distributed
as open source code in the Python Package Index (PyPI). We will also cover the
topics of packaging applications for web development and creating standalone
Python executables for desktop applications.

Preface

[xii]

Chapter 12, Observing Application Behavior and Performance, discusses the topic of
application observability. We will learn about Python logging systems, how to
monitor application metrics and perform distributed transaction tracing. We will
also learn how to scale simple observability practices to large-scale distributed
systems.

Chapter 13, Code Optimization, discusses the basic rules of optimization that
every developer should be aware of. We will learn how to identify application
performance bottlenecks and how to use common profiling tools. We will also learn
common optimization techniques and strategies that can be easily applied in many
situations once you know where the bottleneck is.

To get the most out of this book
This book is written for developers who work under any operating system for which
Python 3 is available.

This is not a book for beginners, so I assume you have Python installed in your
environment or know how to install it. Anyway, this book takes into account the fact
that not everyone needs to be fully aware of the latest Python features or officially
recommended tools. This is why Chapter 2, Modern Python Development Environments
provides an overview of recommended techniques and tools (such as virtual
environments and pip) for setting up development environments.

Download the example code files
The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Expert-Python-Programming-Fourth-Edition. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images
We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801071109_ColorImages.pdf.

https://github.com/PacktPublishing/Expert-Python-Programming-Fourth-Edition
https://github.com/PacktPublishing/Expert-Python-Programming-Fourth-Edition
https://github.com/PacktPublishing/
https://static.packt-cdn.com/downloads/9781801071109_ColorImages.pdf
https://static.packt-cdn.com/downloads/9781801071109_ColorImages.pdf

Preface

[xiii]

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, and user input. Here is an
example: "Any attempt to run the code that has such issues will immediately cause
the interpreter to fail, raising a SyntaxError exception."

A block of code is set as follows:

print("hello world")

Any command-line input or output is written as follows:

$ python3 script.py

Some code examples will be representing input of shells. You can recognize them by
specific prompt characters:

• >>> for interactive Python shell
• $ for Bash shell (macOS and Linux)
• > for CMD or PowerShell (Windows)

Some code or command-line examples will require providing your own name or
values in provided placeholders. Placeholders will be surrounded with <> characters
as in following example:

$ python <my-module-name>

Warnings or important notes appear like this.

Tips and tricks appear like this.

Preface

[xiv]

Get in touch
Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the
book title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful
if you would report this to us. Please visit www.packt.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address or
website name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please visit authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and
use your unbiased opinion to make purchase decisions, we at Packt can understand
what you think about our products, and our authors can see your feedback on their
book. Thank you!

For more information about Packt, please visit packt.com.

mailto:customercare@packtpub.com
http://www.packt.com/submit-errata
mailto:copyright@packt.com
http://authors.packtpub.com
http://packt.com

[1]

1
Current Status of Python

Python is amazing. It is amazing because it has managed to stay relevant and keep
growing for so many years.

For a very long time, one of the most important virtues of Python was
interoperability. Thanks to that feature it didn't matter what operating system
you or your customers were using. If the Python interpreter was available for a
given operating system, your software written in Python would work there. And,
most importantly, your software would always work the same way regardless
of that operating system. However, this is now a common trait. Many modern
programming languages provide similar interoperability capabilities. Also, with
the advent of cloud computing, web-based applications, and reliable virtualization
software, it isn't that important to have a programming language that works in
many operating systems.

What seems to be increasingly more important for programmers nowadays
is productivity. With a constant search for innovation, it is often important to
build something that you can test in the field with real users and then iterate
quickly from that point until you build a really valuable product. And Python
allows programmers to iterate really fast. The Official Python Package Index is a
tremendous library of software libraries and frameworks that can be easily reused
in your software. It greatly reduces the amount of time and effort required to get
your job done. This vast availability of community libraries together with clear and
concise syntax that favors readability greatly limits the time and effort that has to be
spent on creating and maintaining the software. That makes Python really shine in
the area of programming productivity.

Current Status of Python

[2]

Python stayed relevant for so long because it was constantly evolving. And it still
keeps evolving. That's why in this chapter we will take a brief look at the current
status of Python and learn how to stay up to date with changes happening in the
Python ecosystem and community.

In this chapter, we will cover the following topics:

• Where are we now and where are we going?
• What to do with Python 2
• Keeping up to date

Let's start by considering the history and development of Python, and where we're
currently at.

Where are we now and where are we
going?
Python isn't a young language. Its history starts somewhere in the late 1980s and
the official 1.0 release happened in year 1994. We could discuss the whole timeline
of major Python releases mentioned here, but we really only need to be concerned
about a few dates:

• October 16, 2000: official release of Python 2.0
• December 3, 2008: official release of Python 3.0
• November 9, 2011: announcement of Python 2.8 release un-schedule
• January 1, 2020: official sunsetting of Python 2

So, at the time of writing, Python 3 is almost half as old as Python itself. It has also
been active for longer than Python 2 was when it comes to active development of
new language features.

Although Python 3 has been around for quite some time, its adoption was so slow
that the initial end of life for Python 2 was postponed by 5 years. It was mostly
due to a lot of backward compatibility issues that didn't always allow an easy and
straightforward transition. A big part of Python's greatness comes from the vast
number of freely available libraries. So, it was even harder to make the Python 3
transition if your software critically relied on a third-party Python package that
wasn't compatible with Python 3 yet.

Chapter 1

[3]

Fortunately, Python 2 is finally behind us and the Python community can finally
breathe a sigh of relief. Many developers of open-source Python libraries stopped
providing compatibility with Python 2 already a long time ago. Also, the official
sunsetting of Python 2 provided an incentive to strategically prioritize transitions to
Python 3 in corporate environments, where there is usually limited desire to do so.
That incentive can be attributed mainly to the fact that there is absolutely no chance
of security patches for Python 2 being delivered anymore.

What to do with Python 2
We know that Python 2 is no longer officially supported by language developers.
Due to the lack of security patches, it should be considered unsafe. But is it dead yet?

Probably not. Even relatively popular open-source libraries can lose the interest
of their authors and contributors over time. It also happens that some better
alternatives appear, and there's simply no point in developing the original library
anymore. Such libraries are often left unmaintained, so no one could update them for
compatibility with Python 3.

One of the important reasons why Python 3 couldn't take off for a long time was the
sluggish release processes of many Linux distributions. Distribution maintainers
often aren't inclined toward the fast adoption of new language versions, especially if
these versions break backward compatibility and require patches of other software.
Many Python programmers are Linux users, and if they don't have access to the
latest version of the language through the system package repository they are less
likely to upgrade it on their own.

But the place where Python 2 will definitely linger for a few more years is
corporate environments. When money is at stake, it is usually hard to convince the
stakeholders that something that's already been done needs to be revisited just for
the sake of being up to date with upstream changes, especially if the software works.

Python 2 code probably won't be that common for the core components of actively
developed software, but it can still be found quite often in utility scripts, internal
tools, or services that haven't seen active development for a long time.

If you're in a situation where you still need to maintain bits of software written in
Python 2 you would be better off migrating to Python 3 soon. This often can't be
done overnight, and sometimes you'll have to convince others first before you're
ready to proceed.

Current Status of Python

[4]

If you're in such a situation, consider the following strategy:

1. Identify what you need to migrate and why: Depending on the situation,
you'll be dealing with various pieces of code that have different uses. Not
everything may need migration after all. If code isn't actually used by
anyone, there is no value in keeping it updated.

2. Identify what is holding you back: Sometimes you'll be working with
code that has dependencies that cannot be easily migrated. This will make
the process a bit harder, so you'll have to know this in advance in order to
create a good migration plan.

3. Convince the stakeholders: If you're developing an open-source library,
you'll have to convince fellow contributors that will help you make this
migration; if you're working at a software company, you'll have to convince
the stakeholders who are paying for the job to be done that this is more
important than, for instance, working on a new feature.

Usually the hardest thing to do is to get buy-in from stakeholders, especially if
you're writing code professionally and need to find a way to squeeze such a project
into the day-to-day development of new features. You'll need to be well prepared
before raising such an issue. That's why the first two steps are essential. They allow
you to estimate the amount of work required to make the change and construct
a convincing reason for doing so. After all, the best way to convince someone is
by presenting the list of benefits of doing a migration. The following are common
positive reasons for doing a migration:

• Ability to use newer and better libraries: After the official sunsetting of
Python 2 there is a very low chance that new (and possibly better) libraries
will be compatible with Python 2.

• Reduced cost of ownership: If the team is using the latest version of Python
in other projects/components, it will be cheaper to converge multiple
projects to a single version as this will reduce the overall complexity.

• Simpler maintenance and operations: Different runtime environments and
operating systems will gradually lose default built-in support for Python 2.
Using a newer version of Python will limit the operational costs required to
deploy software.

• Easier new hire onboarding: Sticking to a single version of Python makes
it easier to onboard new team members as it will be easier for them to work
with the whole codebase from the very beginning

Chapter 1

[5]

Another tool for convincing stakeholders is explaining the risks related to not
migrating to a newer version of Python:

• Big security risk: After the official end of life, there's no guarantee of any
official security fixes. This risk is, of course, only speculative until real
vulnerabilities are discovered. Still, by using Python 2 you're already limiting
your ability to accept updates to third-party libraries and many open-source
projects that dropped support for Python 2 a few years ago.

• High security-related cost: Although it is possible to fork open-source code
and do security fixes on your own, the cost of doing this continuously is
usually much bigger than the overall cost of migrating to a newer version of
the language.

• Troubles in hiring new people: This is problematic regardless of target
programmer seniority. Younger developers may not be as familiar with
Python 2 as they are with Python 3. This will make their onboarding harder
and also increase the risk of making rookie mistakes with potentially
disastrous outcomes. Senior engineers on the other hand may not want to
work in an environment that relies on outdated technology.

Regardless of your communication strategy, you'll have to create a reasonable
tactical plan that carefully balances the promise of positive outcomes, risks, and the
ability to reach team goals at a sustainable pace. For instance, investing in reducing
future maintenance costs usually pays for itself only after a longer period of time.
That's why it makes sense to also spread such investment over time. Known and
exploitable security vulnerabilities, on the other hand, should always be prioritized.

Keeping up to date
Technology evolves constantly. People are constantly looking for tools that will
allow them to solve their problems more easily than before. Every few months,
either a completely new language pops up almost out of nowhere, or one of the
well-established languages introduces a completely new syntax feature. This also
happens to Python. We will briefly consider a few of the most important recent
additions to the Python language in Chapter 3, New Things in Python.

New languages or language features drive the creation of novel libraries and
frameworks. These in turn open the way for new programming paradigms and
new design patterns. The success of one such pattern or paradigm in one language
ecosystem often encourages programmers to adopt them in other languages. That's
how new ideas spread from language to language.

Current Status of Python

[6]

We see that happening to Python too. We will be able to see how seemingly different
programming languages share similar features or concepts in Chapter 4, Python in
Comparison with Other Languages.

This process of language evolution is constant, inevitable, and seems to be only
speeding up. Starting from Python 3.9 (released October 5, 2020), new major releases
of Python will be happening annually. These releases more often than not lead
to explosions of new libraries and frameworks that are trying to test and explore
new tools. It's great for the Python community because it gives it constant fuel to
innovate. But it can be overwhelming for anyone that wants to keep an eye on what's
happening in Python. And being up to date is extremely important for every Python
professional.

In the following few sections, we will discuss a few ways in which you can source
information on what is happening in Python. It will allow you to better anticipate
changes happening to the language and the community around it. This will keep you
up to date with the latest best practices, and new tools that are worth investing in.

PEP documents
The Python community has a well-established way of dealing with changes. While
speculative Python language ideas are mostly discussed on a specific mailing
list (python-ideas@python.org), nothing major ever gets changed without the
existence of a new document, called a Python Enhancement Proposal (PEP).

A PEP is a formalized document that describes, in detail, the proposal of change to
be made in Python. It is also the starting point for the community discussion. A few
of the topics covered in this chapter were in fact already extensively described in
their dedicated PEP documents:

• PEP 373—Python 2.7 Release Schedule
• PEP 404—Python 2.8 Un-release Schedule
• PEP 602—Annual Release Cycle for Python

You can subscribe to python-ideas@python.org and other
mailing lists at https://mail.python.org/mailman3/lists/.

https://mail.python.org/mailman3/lists/

Chapter 1

[7]

The whole purpose, format, and workflow of these documents is also standardized
in the form of a standalone PEP—the PEP 1 document.

PEP documentation is very important for Python, and, depending on the topic, it
serves different purposes:

• Informing: They summarize the information needed by core Python
developers, and notify about Python release schedules

• Standardizing: They provide code style, documentation, or other guidelines
• Designing: They describe the proposed features

A list of all proposed PEPs is available in a living (by which we mean continuously
updated) PEP 0 document. It is a great source of information for those who are
wondering what direction Python is heading in but do not have time to track every
discussion on Python mailing lists. It shows which ideas have been accepted, which
ideas have been implemented, and also which ideas are still under consideration.

The index of all officially discussed proposals serves an additional purpose. Very
often, people ask questions like the following:

• Why does feature A work that way?
• Why does Python not have feature B?

In most such cases, the answer is already available in the specific PEP where the
feature was discussed. Instead of having the same conversation about adding some
language feature over and over again, people can be redirected to a specific PEP.
And there are a lot of PEPs describing Python language features that have been
proposed but not accepted.

Online URLs for PEP documents take the following form:

http://www.python.org/dev/peps/pep-XXXX

XXXX is a 4-digit PEP number with leading zeros. It should also be
easy to find them through web search engines using the Python
PEP XXX search term.

The PEP 0 document is available at https://www.python.org/
dev/peps/.

https://www.python.org/dev/peps/
https://www.python.org/dev/peps/

Current Status of Python

[8]

When it comes to being up to date, the most important section of the PEP index is
definitely open PEPs, which describes ideas that are still under active consideration.
For instance, the following are selected interesting PEPs that were still open at the
time of writing:

• PEP 603—Adding a frozenmap type to collections
• PEP 634—Structural Pattern Matching: Specification
• PEP 638—Syntactic Macros
• PEP 640—Unused variable syntax

These proposals vary from relatively small extensions of the existing standard library
(such as PEP 603) to completely new and complex syntax features (such as PEP 638).
If you wonder what the Python community is considering including in future Python
releases, then open PEPs are the best source of such information.

Active communities
The non-profit organization behind Python is Python Software Foundation (PSF).
It holds intellectual property rights for Python and manages its licensing. A brief
excerpt from its mission statement is as follows:

The mission of the Python Software Foundation is to promote, protect, and advance
the Python programming language, and to support and facilitate the growth of a
diverse and international community of Python programmers.

Support for the community of Python programmers is important to the PSF mission
because it is, after all, the community that drives the development of Python.
The community does that by extending the language transparently and openly
(as explained in the PEP documents section), but also through expanding and
maintaining a rich ecosystem of third-party packages and frameworks. So, one of the
best ways to know what's happening in Python is to get in touch with its community.

Like any other programming language, there are a lot of independent online
communities dedicated to Python. They are usually focused on specific frameworks
or software development areas, like web development, data science, machine
learning, and so on.

You can find the full PSF mission statement text at https://www.
python.org/psf/mission/.

https://www.python.org/psf/mission/
https://www.python.org/psf/mission/

Chapter 1

[9]

One could assume that there is at least a single place online where all important
discussions about the core of the language and its interpreter happen. Unfortunately,
it's not that simple.

Due to many reasons, some of which are historic, the landscape of official Python
mailing lists and discussion boards can be very confusing. There are numerous
official and semi-official mailing lists and discussion boards where Python
developers hang out. It is especially confusing when it comes to mailing lists because
official mailing lists are spread over two different mailing list managers and thus
have two separate sets of list archives. Those archives are:

• Mailman 2: This is an older and smaller archive available at https://mail.
python.org/mailman/listinfo. Historically all python.org mailing list
archives could be accessed through the Mailman 2 archive but most of them
have been migrated to the Mailman 3 archive. Anyway, there are still some
mailing lists with active discussions that are managed through Mailman 2.

• Mailman 3: This is a younger archive available at https://mail.python.org/
archives. It is currently a primary archive of python.org mailing lists and is
the home for more active mailing lists. It has a more modern and convenient
interface, but it doesn't include mailing lists that have not been migrated
from Mailman 2 yet.

When it comes to actual mailing lists, there's plenty of them, but sadly the majority
of them aren't active anymore. Some mailing lists are dedicated to specific projects
(like scikit-image@python.org) or focus on specific areas of interest of their
members (like code-quality@python.org). Besides lists with very specific themes,
there are few general mailing lists that should be very interesting for every Python
programmer. These are:

• python-ideas@python.org: This is a staple when it comes to Python
mailing lists. It is a place for discussing a wide variety of ideas regarding
Python. Most PEPs start as a speculative idea discussion on this mailing list.
It is a great place for discussing potential "what ifs" and finding out what
features people would like to see in the near future.

• python-dev@python.org: This is a mailing list specifically for the purpose
of core Python development (mainly CPython interpreter). It is also a
place where first drafts of new PEPs are discussed before being officially
announced through other channels. It isn't a place where you should be
asking for general Python help, but it is an essential resource if you would
like to try your hand at fixing known bugs in the CPython interpreter or the
Python standard library.

https://mail.python.org/mailman/listinfo
https://mail.python.org/mailman/listinfo
http://python.org
https://mail.python.org/archives
https://mail.python.org/archives
http://python.org

Current Status of Python

[10]

• python-announce-list@python.org: This is a mailing list for various
announcements. You can find announcements of conferences and meetups
here, as well as notifications about new releases of your favorite packages
and frameworks or new PEPs. It is also great for discovering new and
exciting projects.

Besides classic mailing lists, there is an official internet forum on the Discourse
platform that is available at https://discuss.python.org/. It is a relatively new
addition to the Python official discussion landscape and its purpose overlaps with
many of the pre-existing mailing lists as it has dedicated categories for discussing
new ideas, PEPs, and topics of core Python development. It has a lower entry barrier
for those unfamiliar with the concept of mailing lists, and a much more modern user
experience.

Unfortunately, not every new discussion happens on discuss.python.org, so if you
want to know about everything that happens at the heart of Python development
you will have to keep track of discussion both on the forum and mailing lists.
Hopefully, these will eventually converge in a single place.

Besides the official message boards and mailing lists, there are a couple of open
Python communities based on popular discussion and messaging platforms. The
most notable ones are:

• PySlackers Slack workspace (pyslackers.com): A large community of
Python enthusiasts using the Slack messaging platform to discuss anything
Python-related

• Python Discord server (pythondiscord.com): Another open Python
community but using Discord as their messaging platform

• /r/python subreddit (www.reddit.com/r/Python/): A single subreddit on the
Reddit platform dedicated to Python

These three communities are open in the sense that you can freely join them as long
as you are a user of their underlying platforms (which are, of course, free). Whatever
you choose will probably be dictated by your preference for the specific messaging
or discussion platform. The chances are high that you or one of your friends is
already using one of these platforms.

The unquestionable advantage of such open communities is that they gather a very
large number of members, and you can almost always find someone online that you
can talk to. This provides the opportunity for ad hoc and loose discussions about
various Python-related topics and allows you to seek quick help in case of simple
programming problems.

https://discuss.python.org/
http://discuss.python.org
http://pyslackers.com
http://pythondiscord.com
http://www.reddit.com/r/Python/

Chapter 1

[11]

The downside is that it is impossible to keep track of every discussion happening
there. Fortunately, these communities often create systems of separate subchannels
or tags that you can subscribe to if you want to be notified about the content of your
specific interest. Also, these communities aren't officially endorsed and curated by
the PSF. As a result, information found on Reddit or other online communities may
sometimes be biased or inaccurate.

Other resources
Reading all the new PEPs, following mailing lists, and joining communities are
the best ways to know what is happening at the moment. Unfortunately, doing
this consistently requires a lot of time and effort as you will have to filter through
huge amounts of information. Also, sources like mailing lists, message boards, and
messaging platforms can be full of emotions because discussion is essentially a
human interaction. And surprisingly, some tech discussions on contentious topics
can be so heated that they are almost indistinguishable from social network drama.

If you are really busy or quickly get overloaded with social interactions between
online strangers, there is another way. Instead of filtering online information all
by yourself, you can turn to curated content like blogs, newsletters, and so-called
"awesome lists."

Newsletters are especially good if you want to be up to date. These are some
interesting newsletters that are worth subscribing to:

• Python Weekly (http://www.pythonweekly.com/) is a popular newsletter
that delivers to its subscribers dozens of new, interesting Python packages
and resources every week

• PyCoder's Weekly (https://pycoders.com) is another popular weekly
newsletter with a digest of new packages and interesting articles

These newsletters will keep you informed about the most important Python
announcements. They will also help you discover new blogs or especially interesting
discussions from other discussion platforms, like Reddit or Hacker News. Keep
in mind that the content of many general Python newsletters often overlaps, so
probably there is no need to subscribe to all of them.

A completely different way to source information is via awesome lists. These are
curated lists of links to valuable or important resources on specific topics maintained
usually as Git repositories on GitHub. These lists are often very long and split into
several categories.

http://www.pythonweekly.com/
https://pycoders.com

Current Status of Python

[12]

These are examples of popular Python-related awesome lists curated by various
GitHub users:

• awesome-python by vinta (https://github.com/vinta/awesome-python):
This contains numerous references to interesting projects (mostly hosted
on GitHub) and standard library modules divided into over 80 thematic
categories. Categories range from basic programming concepts—like
caching, authentication, and debugging—to whole engineering areas where
Python is often used, like web development, data science, robotics, and
penetration testing. The list of projects is supplemented with a collection of
links to newsletters, podcasts, books, and tutorials.

• pycrumbs by kirang89 (https://github.com/kirang89/pycrumbs): This is
focused on interesting and valuable articles. Articles are divided into over
100 categories dedicated to specific Python features, general programming
techniques, and self-development topics.

• pythonidae by svaksha (https://github.com/svaksha/pythonidae): This
is focused on specific fields of science and technology where Python is
frequently used, like mathematics, biology, chemistry, web development,
physics, image processing, and many more. It has a tree-like structure. The
main page contains a list of over 20 main category pages. These categories
contain more granular subcategories listing useful libraries and resources.

Awesome lists usually grow over time to enormous sizes. This means they are
not a good resource for keeping yourself constantly updated. This is because
they are simply snapshots of what the curators considered awesome at the time.
Nevertheless, if you need to jump into a completely new area, let's say artificial
intelligence, they serve as a good starting point for further research.

Summary
In this chapter, we've discussed the current status of Python and the process of
change that is visible throughout the history of that language. We've learned why
Python is changing and why it is important to follow that change.

Staying relevant is one of the biggest and most stressful challenges that professional
programmers face regardless of the programming language they choose. Due to over
30 years of Python history and the ever-growing Python community, it isn't always
clear how to efficiently stay up to date with the changes in the Python ecosystem.
That's why we've looked into all the places where you can follow important
discussions about Python's future.

https://github.com/vinta/awesome-python
https://github.com/kirang89/pycrumbs
https://github.com/svaksha/pythonidae

Chapter 1

[13]

What also changes together with the language are development tools that aim to
ease and improve the software development processes. In the next chapter, we
will continue with the topic of change and take a look at modern development
environments. We will learn how to create repeatable and consistent runtime
environments both for production and development use. We will also get familiar
with various productivity tools provided by the Python community.

[15]

2
Modern Python

Development Environments
A deep understanding of the programming language of choice is the most important
part of being a programming expert. Still, it is really hard to develop good software
efficiently without knowing the best tools and practices that are common within the
given language community. Python has no single feature that cannot be found in some
other language. So, when comparing the syntax, expressiveness, or performance, there
will always be a solution that is better in one or more fields. But the area in which
Python really stands out from the crowd is the whole ecosystem built around the
language. The Python community has spent many years polishing standard practices
and libraries that help to create high-quality software in a shorter time.

Writing new software is always an expensive and time-consuming process. However,
being able to reuse existing code instead of reinventing the wheel greatly reduces
development times and costs. For some companies, it is the only reason why
their projects are economically feasible. That's why the most important part of the
ecosystem is a huge collection of reusable packages that solve a multitude of problems.
A tremendous number of these packages are available as open-source through the
Python Package Index (PyPI).

Because of the importance of Python's open-source community, Python developers
put a lot of effort into creating tools and standards to work with Python packages that
have been created by others—starting from virtual isolated environments, improved
interactive shells, and debuggers, to utilities that help you to discover, search, and
analyze the huge collection of packages that are available on PyPI.

Modern Python Development Environments

[16]

In this chapter, we will cover the following topics:

• Overview of the Python packaging ecosystem
• Isolating the runtime environment
• Using Python's venv
• System-level environment isolation
• Popular productivity tools

Before we get into some specific elements of the Python ecosystem, let's begin by
considering the technical requirements.

Technical requirements
You can install the free system virtualization tools that are mentioned in this chapter
from the following sites:

• Vagrant: https://www.vagrantup.com
• Docker: https://www.docker.com
• VirtualBox: https://www.virtualbox.org/

The following are the Python packages that are mentioned in this chapter that you
can download from PyPI:

• poetry

• flask

• wait-for-it

• watchdog

• ipython

• ipdb

Information on how to install packages is included in the Installing Python packages
using pip section.

The code files for this chapter can be found at https://github.com/PacktPublishing/
Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%202.

https://www.vagrantup.com
https://www.docker.com
https://www.virtualbox.org/
https://github.com/PacktPublishing/Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%202
https://github.com/PacktPublishing/Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%202

Chapter 2

[17]

Python's packaging ecosystem
The core of Python's packaging ecosystem is the Python Packaging Index. PyPI is
a vast public repository of (mostly) free-to-use Python projects that at the time of
writing hosts almost three and a half million distributions of more than 250,000
packages. That's not the biggest number among all package repositories (npm
surpassed a million packages in 2019) but it still places Python among the leaders
of packaging ecosystems.

Such a large ecosystem of packages doesn't come without a price. Modern
applications are often built using multiple packages from PyPI that often have their
own dependencies. Those dependencies can also have their own dependencies.
In large applications, such dependency chains can go on and on. Add the fact that
some packages may require specific versions of other packages and you may quickly
run into dependency hell—a situation where it is almost impossible to resolve
conflicting version requirements manually.

That's why it is crucial to know the tools that can help you work with packages
available on PyPI.

Installing Python packages using pip
Nowadays, a lot of operating systems come with Python as a standard component.
Most Linux distributions and UNIX-like systems (such as FreeBSD, NetBSD,
OpenBSD, and macOS) come with Python either installed by default or available
through system package repositories. Many of them even use it as part of some core
components—Python powers the installers of Ubuntu (Ubiquity), Red Hat Linux
(Anaconda), and Fedora (Anaconda again). Unfortunately, the Python version
preinstalled with operating systems is often older than the latest Python release.

Due to Python's popularity as an operating system component, a lot of packages
from PyPI are also available as native packages managed by the system's package
management tools, such as apt-get (Debian, Ubuntu), rpm (Red Hat Linux),
or emerge (Gentoo). It should be remembered, however, that the list of available
libraries is often very limited, and they are mostly outdated compared to PyPI.
Sometimes they may be evenly distributed with platform-specific patches to make
sure that they will properly support other system components.

Modern Python Development Environments

[18]

Due to these facts, when building your own applications, you should always
rely on package distributions available on PyPI. The Python Packaging
Authority (PyPA)—a group of maintainers of standard Python packaging tools—
recommends pip for installing packages. This command-line tool allows you
to install packages directly from PyPI. Although it is an independent project,
starting from versions 2.7.9 and 3.4 of CPython, every Python release comes with
an ensurepip module. This simple utility module ensures pip installation in your
environment, regardless of whether release maintainers decided to bundle pip. The
pip installation can be bootstrapped using the ensurepip module as in the following
example:

$ python3 -m ensurepip

Looking in links: /var/folders/t6/n6lw_s3j4nsd8qhsl1jhgd4w0000gn/T/
tmpouvorgu0
Requirement already satisfied: setuptools in ./.venv/lib/python3.9/
site-packages (49.2.1)
Processing /private/var/folders/t6/n6lw_s3j4nsd8qhsl1jhgd4w0000gn/T/
tmpouvorgu0/pip-20.2.3-py2.py3-none-any.whl
Installing collected packages: pip
Successfully installed pip-20.2.3

When you have pip available, installing a new package is as simple as this:

$ pip install <package-name>

So, if you want to install a package named django, you simply run:

$ pip install django

Among other features, pip allows specific versions of packages to be installed (using
pip install <package-name>==<version>) or upgraded to the latest version available
(using pip install -–upgrade <package-name>).

pip is not just a package installer. Besides the install command, it offers additional
commands that allow you to inspect packages, search through PyPI, or build your
own package distributions. The list of all available commands can be obtained by pip
--help as in the following command:

$ pip --help

Chapter 2

[19]

And it will produce the following output:

Usage:
 pip <command> [options]

Commands:
 install Install packages.
 download Download packages.
 uninstall Uninstall packages.
 freeze Output installed packages in requirements
format.
 list List installed packages.
 show Show information about installed
packages.
 check Verify installed packages have compatible
dependencies.
 config Manage local and global configuration.
 search Search PyPI for packages.
 cache Inspect and manage pip's wheel cache.
 wheel Build wheels from your requirements.
 hash Compute hashes of package archives.
 completion A helper command used for command
completion.
 debug Show information useful for debugging.
 help Show help for commands.
(...)

The most up-to-date information on how to install pip for older Python versions is
available on the project's documentation page at https://pip.pypa.io/en/stable/
installing/.

Isolating the runtime environment
When you use pip to install a new package from PyPI, it will be installed into
one of the available site-packages directories. The exact location of site-packages
directories is specific to the operating system. You can inspect paths where Python
will be searching for modules and packages by using the site module as a command
as follows:

$ python3 -m site

https://pip.pypa.io/en/stable/installing/
https://pip.pypa.io/en/stable/installing/

Modern Python Development Environments

[20]

The following is an example output of running python3 -m site on macOS:

sys.path = [
 '/Users/swistakm',
 '/Library/Frameworks/Python.framework/Versions/3.9/lib/python39.
zip',
 '/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9',
 '/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/
lib-dynload',
 '/Users/swistakm/Library/Python/3.9/lib/python/site-packages',
 '/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/
site-packages',
]
USER_BASE: '/Users/swistakm/Library/Python/3.9' (exists)
USER_SITE: '/Users/swistakm/Library/Python/3.9/lib/python/site-
packages' (exists)
ENABLE_USER_SITE: True

The sys.path variable in the preceding output is a list of module search locations.
These are locations that Python will attempt to load modules from. The first entry is
always the current working directory (in this case, /users/swistakm) and the last is
the global site-packages directory, often referred to as the dist-packages directory.

The USER_SITE in the preceding output describes the location of the user site-
packages directory, which is always specific to the user that is currently invoking
the Python interpreter. Packages installed in a local site-packages directory will take
precedence over packages installed in the global site-packages directory.

An alternative way to obtain the site-packages is by invoking sys.
getsitepackages(). The following is an example of using that function in an
interactive shell:

>>> import site
>>> site.getsitepackages()
['/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-
packages']

You can also obtain user site-packages directories by invoking the
sys.getusersitepackages() function like so:

>>> import site
>>> site.getusersitepackages()
/Users/swistakm/Library/Python/3.9/lib/python/site-packages

Chapter 2

[21]

When running pip install, packages will be installed in either the user or the global
site-packages directory depending on several conditions evaluated in the following
order:

1. user site-packages if the --user switch is specified
2. global site-packages if the global site-packages directory is writable to the

user invoking pip
3. user site-packages otherwise

The preceding conditions simply mean that without the --user switch, pip will
always attempt to install packages to a global site-packages directory and only fall
back to user site-packages if that is not possible. On most operating systems where
Python is available by default (many Linux distributions, macOS), the global site-
packages directory of the system's Python distribution is protected from writes from
non-privileged users. This means that in order to install a package in the global
site-packages directory using a system's Python distributions, you will have to use a
command that grants you superuser privileges, like sudo. On UNIX-like and Linux
systems, such superuser invocation of pip will be as follows:

$ sudo -H pip install <package-name>

Although installing packages directly from PyPI into the global site-packages
directory is possible and in certain environments will be happening by default, it
is usually not recommended and should be avoided. Bear in mind that pip will
only install a single version of a package in the site-packages directory. If an older
version is already available, the new installation will overwrite it. This may be
problematic, especially if you are planning to build different applications with
Python. Recommending not to install anything in the global site-packages directory
may sound confusing because this is the semi-default behavior of pip, but there are
some serious reasons for that.

As we mentioned earlier, Python is often an important part of many packages that
are available through operating system package repositories and may power a lot of
important services. System distribution maintainers put in a lot of effort to select the
correct versions of packages to match various package dependencies.

Superuser privileges for installing system-wide Python packages
are not required on Windows since it does not provide the Python
interpreter by default. Also, for some other operating systems
(like macOS) if you install Python from the installer available on
the python.org website, it will be installed in such a way that the
global site-packages directory will be writable to normal users.

http://python.org

Modern Python Development Environments

[22]

Very often, Python packages that are available from a system's package repositories
(like apt, yum, or rpm) contain custom patches or are purposely kept outdated to
ensure compatibility with some other system components. Forcing an update of such
a package, using pip, to a version that breaks some backward compatibility might
cause bugs in some crucial system service.

Last but not least, if you're working on multiple projects in parallel, you'll notice
that maintaining a single list of package versions that works for all of your projects
is practically impossible. Packages evolve fast and not every change is backward
compatible. You will eventually run into a situation where one of your new projects
desperately needs the latest version of some library, but some other project cannot
use it because there is some backward-incompatible change. If you install a package
into global site-packages you will be able to use only one version of that package.

Fortunately, there is an easy solution to this problem: environment isolation.
There are various tools that allow the isolation of the Python runtime environment
at different levels of system abstraction. The main idea is to isolate project
dependencies from packages that are required by different projects and/or system
services. The benefits of this approach are as follows:

• It solves the project X depends on package 1.x but project Y needs package
4.x dilemma. The developer can work on multiple projects with different
dependencies that may even collide without the risk of affecting each other.

• The project is no longer constrained by versions of packages that are
provided in the developer's system distribution repositories (like apt, yum,
rpm, and so on).

• There is no risk of breaking other system services that depend on certain
package versions, because new package versions are only available inside
such an environment.

• A list of packages that are project dependencies can be easily locked. Locking
usually captures exact versions of all packages within all dependency chains
so it is very easy to reproduce such an environment on another computer.

If you're working on multiple projects in parallel, you'll quickly find that it is
impossible to maintain their dependencies without some kind of isolation.

Let's discuss the difference between application-level isolation and system-level
isolation in the next section.

Chapter 2

[23]

Application-level isolation versus system-
level isolation
The easiest and most lightweight approach to isolation is to use application-level
isolation through virtual environments. Python has a built-in venv module that
greatly simplifies the usage and creation of such virtual environments.

Virtual environments focus on isolating the Python interpreter and the packages
available within it. Such environments are very easy to set up but aren't portable,
mostly because they rely on absolute system paths. This means that they cannot be
easily copied between computers and operating systems without breaking things.
They cannot even be moved between directories on the same filesystem. Still, they
are robust enough to ensure proper isolation during the development of small
projects and packages. Thanks to built-in support within Python distributions, they
can also be easily replicated by your peers.

Virtual environments are usually sufficient for writing focused libraries that are
independent of the operating system or projects of low complexity that don't
have too many external dependencies. Also, if you write software that is to be run
only on your own computer, virtual environments should be enough to provide
sufficient isolation and reproducibility.

Unfortunately, in some cases, this may not be enough to ensure enough consistency
and reproducibility. Despite the fact that software written in Python is usually
considered very portable, not every package will behave the same on every
operating system. This is especially true for packages that rely on third-party shared
libraries (DLL on Windows, .so on Linux, .dylib on macOS) or make heavy use of
compiled Python extensions written in either C or C++, but can also happen for pure
Python libraries that use APIs that are specific to a given operating system.

In such cases, system-level isolation is a good addition to the workflow. This kind
of approach usually tries to replicate and isolate complete operating systems with
all of their libraries and crucial system components, either with classical operating
system virtualization tools (for example, VMware, Parallels, and VirtualBox) or
container systems (for example, Docker and Rocket). Some of the available solutions
that provide this kind of isolation are detailed later in the System-level environment
isolation section.

Modern Python Development Environments

[24]

System-level isolation should be your preferred option for the development
environment if you're writing software on a different computer than the one you'll
be executing it on. If you are running your software on remote servers, you should
definitely consider system-level isolation from the very beginning as it may save you
from portability issues in the future. And you should do that regardless of whether
your application relies on compiled code (shared libraries, compiled extensions)
or not. Using system-level isolation is also worth considering if your application
makes heavy use of external services like databases, caches, search engines, and so
on. That's because many system-level isolation solutions allow you to easily isolate
those dependencies too.

Since both approaches to environment isolation have their place in modern Python
development, we will discuss them both in detail. Let's start with the simpler one—
virtual environments using Python's venv module.

Application-level environment isolation
Python has built-in support for creating virtual environments. It comes in the form
of a venv module that can be invoked directly from your system shell. To create a
new virtual environment, simply use the following command:

$ python3.9 -m venv <env-name>

Here, env-name should be replaced with the desired name for the new environment
(it can also be an absolute path). Note how we used the python3.9 command instead
of plain python3. That's because depending on the environment, python3 may be
linked to different interpreter versions and it is always better to be very explicit
about the Python version when creating new virtual environments. The python3.9
-m venv commands will create a new env-name directory in the current working
directory path. Inside, it will contain a few sub-directories:

• bin/: This is where the new Python executable and scripts/executables
provided by other packages are stored.

Note for Windows users

The venv module under Windows uses a different naming
convention for its internal structure of directories. You need
to use Scripts/, Libs/, and Include/, instead of bin/,
lib/, and include/, to match the development conventions
commonly used on that operating system. The commands that
are used for activating/deactivating the environment are also
different; you need to use ENV-NAME/Scripts/activate.bat
and ENV-NAME/Scripts/deactivate.bat instead of using
source on activate and deactivate scripts.

Chapter 2

[25]

• lib/ and include/: These directories contain the supporting library files for
the new Python interpreter inside the virtual environment. New packages
will be installed in ENV-NAME/lib/pythonX.Y/site-packages/.

Once the new environment has been created, it needs to be activated in the current
shell session. If you're using Bash as a shell, you can activate the virtual environment
using the source command:

$ source env-name/bin/activate

There's also a shorter version that should work under any POSIX-compatible system
regardless of the shell:

$. env-name/bin/activate

This changes the state of the current shell session by affecting its environment
variables. In order to make the user aware that they have activated the virtual
environment, it will change the shell prompt by appending the (ENV-NAME) string
at its beginning. To illustrate this, here is an example session that creates a new
environment and activates it:

$ python3 -m venv example
$ source example/bin/activate
(example) $ which python
/home/swistakm/example/bin/python
(example) $ deactivate
$ which python
/usr/local/bin/python

The important thing to note about venv is that it does not provide any additional
abilities to track what packages should be installed in it. Virtual environments are
also not portable and should not be moved to another system/machine or even a
different filesystem path. This means that a new virtual environment needs to be
created every time you want to install your application on a new host.

Many developers keep their virtual environments together with the
source code and pick a generic path name like .venv or venv. Many
Python Integrated Development Environments (IDEs) are able to
recognize that convention and automatically load the libraries for
syntax completion. Generic names also allow you to automatically
exclude virtual environment directories from code versioning,
which is generally a good idea. Git users can, for instance, add this
path name to their global .gitgnore file, which lists path patterns
that should be ignored when versioning the source code.

Modern Python Development Environments

[26]

Because of this, there is a best practice that's used by pip users to store the definition
of all project dependencies in a single place. The easiest way to do this is by creating
a requirements.txt file (this is the naming convention), with contents as shown in
the following code:

lines followed by hash (#) are treated as a comment.

pinned version specifiers are best for reproducibility
eventlet==0.17.4
graceful==0.1.1

for projects that are well tested with different
dependency versions the version ranges are acceptable
falcon>=0.3.0,<0.5.0

packages without versions should be avoided unless
latest release is always required/desired
pytz

With such a file, all dependencies can be easily installed in a single step. The pip
install command understands the format of such requirements files. You can
specify the path to a requirements file using the -r flag as in the following example:

$ pip install -r requirements.txt

Remember that requirements files specify only packages to be installed and not
packages that are currently in your environment. If you install something manually
in your environment, it won't be reflected in your requirements file automatically.
So, great care needs to be taken to keep your requirements file up to date, especially
for large and complex projects.

There is the pip freeze command, which prints all packages in the current
environment together with their versions, but it should be used carefully. This
list will also include dependencies of your dependencies, so for large projects, it
will quickly become very large. You will have to carefully inspect whether the list
contains anything installed accidentally or by mistake.

For projects that require better reproductivity of virtual environments and strict
control of installed dependencies, you may need a more sophisticated tool. We will
discuss such a tool—Poetry—in the following section.

Chapter 2

[27]

Poetry as a dependency management system
Poetry is quite a novel approach to dependency and virtual environment
management in Python. It is an open-source project that aims to provide a more
predictable and convenient environment for working with the Python packaging
ecosystem.

As Poetry is a package on PyPI, you can install it using pip:

$ pip install --user poetry

As already highlighted in the Installing Python packages using pip section, the above
command will install the poetry package in your site-packages directory. Depending
on your system configuration it will be either the global site-packages directory or
the user site-packages directory. To avoid this ambiguity, the Poetry project creators
recommend using an alternative bootstrapping method.

On macOS, Linux, and other POSIX-compatible systems Poetry can be installed
using the curl utility:

$ curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/
master/get-poetry.py | python

On Windows it can be installed using PowerShell:

> (Invoke-WebRequest -Uri https://raw.githubusercontent.com/python-
poetry/poetry/master/get-poetry.py -UseBasicParsing).Content | python -

Once installed, Poetry can be used to:

• Create new Python projects together with virtual environments
• Initialize existing projects with a virtual environment
• Manage project dependencies
• Package libraries

Be aware that Poetry takes care of creating Python virtual
environments so it should not be installed inside of a virtual
environment itself. You can install it in either user site-packages
or global site-packages although user site-packages is the
recommended option (see the Isolating the runtime environment
section).

Modern Python Development Environments

[28]

To create a completely new project with Poetry, you can use the poetry new
command as in the following example:

$ poetry new my-project

The above command will create a new my-project directory with some initial files in
it. The structure of that directory will be roughly as follows:

my-project/
├── README.rst
├── my_project
│ └── __init__.py
├── pyproject.toml
└── tests
 ├── __init__.py
 └── test_my_project.py

As you can see, it creates some files that can be used as stubs for further
development. If you have a preexisting project, you can initialize Poetry within it
using the poetry init command inside of your project directory. The difference is
that it won't create any new project files except the pyproject.toml configuration file.

The core of Poetry is the pyproject.toml file, which stores the project configuration.
For the my-project example it may have the following content:

[tool.poetry]
name = "my-project"
version = "0.1.0"
description = ""
authors = ["Michał Jaworski <swistakm@gmail.com>"]

[tool.poetry.dependencies]
python = "^3.9"

[tool.poetry.dev-dependencies]
pytest = "^5.2"

[build-system]
requires = ["poetry-core>=1.0.0"]
build-backend = "poetry.core.masonry.api"

Chapter 2

[29]

As you can see, the pyproject.toml file is divided into four sections. Those are:

• [tool.poetry]: This is a set of basic project metadata like name, version
description, and author. This information is necessary if you would like to
publish your project as a package on PyPI.

• [tool.poetry.dependencies]: This is a list of project dependencies. On fresh
projects, it lists only the Python version but can also include all package
versions that normally would be described in the requirements.txt file.

• [tool.poetry.dev-dependencies]: This is a list of dependencies that require
local development, like testing frameworks or productivity tools. It is
common practice to have a separate list of such dependencies as they are
usually not required in production environments.

• [build-system]: Describes Poetry as a build system used to manage the
project.

If you create a new project or initialize an existing one using Poetry, it will be able
to create a new virtual environment in a shared location whenever you need it. You
can activate it using Poetry instead of "sourcing" the activate scripts. That's more
convenient than using the plain venv module because you don't need to remember
where the actual virtual environment is stored. The only thing you need to do is to
move your shell to any place in your project source tree and use the poetry shell
command as in the following example:

$ cd my-project
$ poetry shell

From that moment on, the current shell will have Poetry's virtual environment
activated. You can verify it with either the which python or python -m site
command.

Another thing that Poetry changes is how you manage dependencies. As we already
mentioned, requirements.txt files are a very basic way of managing dependencies.
They describe what packages to install but do not automatically track what has been
installed in the environment through the development. If you install something with
pip but forget to reflect that change in the requirements.txt file, other programmers
may have a problem recreating your environment.

The pyproject.toml file is part of the official Python standard
described in the PEP 518 document. You can read more
information about its structure at https://www.python.org/dev/
peps/pep-0518/.

https://www.python.org/dev/peps/pep-0518/
https://www.python.org/dev/peps/pep-0518/

Modern Python Development Environments

[30]

With Poetry, that problem is gone. There's only one way of adding dependencies to
your project and it is with the poetry add <package-name> command. It will:

• Resolve whole dependency trees if other packages share dependencies
• Install all packages from the dependency tree in the virtual environment

associated with your project
• Reflect the change in the pyproject.toml file

The following transcript presents the process of installation of the Flask framework
within the my-project environment:

$ poetry add flask

This will produce an output like the following:

Using version ^1.1.2 for Flask

Updating dependencies
Resolving dependencies... (38.9s)

Writing lock file

Package operations: 15 installs, 0 updates, 0 removals

 • Installing markupsafe (1.1.1)
 • Installing pyparsing (2.4.7)
 • Installing six (1.15.0)
 • Installing attrs (20.3.0)
 • Installing click (7.1.2)
 • Installing itsdangerous (1.1.0)
 • Installing jinja2 (2.11.2)
 • Installing more-itertools (8.6.0)
 • Installing packaging (20.4)
 • Installing pluggy (0.13.1)
 • Installing py (1.9.0)
 • Installing wcwidth (0.2.5)
 • Installing werkzeug (1.0.1)
 • Installing flask (1.1.2)
 • Installing pytest (5.4.3)

Chapter 2

[31]

And the following is the resulting pyproject.toml file with highlighted changes to
the project dependencies:

[tool.poetry]
name = "my-project"
version = "0.1.0"
description = ""
authors = ["Michał Jaworski <swistakm@gmail.com>"]

[tool.poetry.dependencies]
python = "^3.9"
Flask = "^1.1.2"

[tool.poetry.dev-dependencies]
pytest = "^5.2"

[build-system]
requires = ["poetry-core>=1.0.0"]

The preceding transcript shows that Poetry has installed 15 packages when we asked
for only one dependency. That's because Flask has its own dependencies and those
dependencies have their own dependencies. Such dependencies of dependencies
are called transitive dependencies. Libraries often have lax version specifiers like
six >=1.0.0 to denote that they are able to accept a wide range of versions. Poetry
implements a dependency resolution algorithm to find out which set of versions
can satisfy all dependency transitive dependency constraints.

The problem with transitive dependencies is their ability to change over time.
Remember that libraries can have lax version specifiers for their dependencies. It is
thus possible that two environments created on different dates will have different
final versions of packages installed. The inability to reproduce exact versions of
all transitive dependencies can be a big problem for large projects and manually
tracking them in requirements.txt files is usually a big challenge.

Poetry solves the problem of transitive dependencies by using so-called dependency
lock files. Whenever you are sure that your environment has a working and tested
set of package versions, you can issue the following command:

$ poetry lock

This will create a really verbose poetry.lock file that is a complete snapshot of the
dependency resolution process. That file will be then used to determine versions of
transitive dependencies instead of the ordinary dependency process.

Modern Python Development Environments

[32]

Whenever new packages are added with the poetry add command, Poetry will
evaluate the dependency tree and update the poetry.lock file. The lock file approach
is so far the best and most reliable way of handling transitive dependencies in your
project.

System-level environment isolation
The key enabler to the rapid iteration of software implementation is the reuse of
existing software components. Don't repeat yourself—this is a common mantra
of many programmers. Using other packages and modules to include them in the
codebase is only a part of that mindset. What can also be considered as reused
components are binary libraries, databases, system services, third-party APIs, and
so on. Even whole operating systems should be considered as a component that is
being reused.

The backend services of web-based applications are a great example of how complex
such applications can be. The simplest software stack usually consists of a few layers.
Consider some imaginary application that allows you to store some information of
its users and exposes it to the internet over the HTTP protocol. It could have at least
the three following layers (starting from the lowest):

• A database or other kind of storage engine
• The application code implemented in Python
• An HTTP server working in reverse proxy mode, such as Apache or NGINX

Although very simple applications can be single-layered, it rarely happens for
complex applications or applications that are designed to handle very large traffic.
In fact, big applications are sometimes so complex that they cannot be represented
as a stack of layers but rather as a patchwork or mesh of interconnected services.
Both small and big applications can use many different databases, be divided into
multiple independent processes, and use many other system services for caching,
queuing, logging, service discovery, and so on. Sadly, there are no limits to this
complexity.

You can find more information about advanced usage of Poetry in
the official documentation under https://python-poetry.org.

https://python-poetry.org

Chapter 2

[33]

What is really important is that not all software stack elements can be isolated
on the level of Python runtime environments. No matter whether it is an HTTP
server, such as NGINX, or an RDBMS, such as PostgreSQL, or a shared library,
those elements are usually not part of the Python distribution or Python package
ecosystem and can't be encapsulated within Python's virtual environments. That's
why they are considered external dependencies of your software.

What is very important is that external dependencies are usually available in
different versions and flavors on different operating systems. For instance, if two
developers are using completely different Linux distributions, let's say Debian
and Gentoo, it is really unlikely that at any given time they will have access to the
same version of software like NGINX through their system's package repositories.
Moreover, they can be compiled using different compile-time flags (for instance,
enabling specific settings), or be provided with custom extensions or distribution-
specific patches.

So, making sure that everyone in a development team uses the same versions of
every component is very hard without the proper tools. It is theoretically possible
that all developers in a team working on a single project will be able to get the same
versions of services on their development boxes. But all this effort is futile if they
do not use the same operating system as they do in their production environment.
Forcing a programmer to work on something else rather than their beloved system
of choice is also not always possible.

The problem lies in the fact that portability is still a big challenge. Not all services
will work exactly the same in the production environments as they do on the
developer's machines. And this is unlikely to change. Even Python can behave
differently on different systems, despite how much work is put into making it cross-
platform. Usually, for Python, this is well-documented and happens only in places
that interact directly with the operating system. Still, relying on the programmer's
ability to remember a long list of compatibility quirks is quite an error-prone
strategy.

The production environment, or production for short, is the actual
environment where your application is installed and running to
serve its very purpose. For instance, the production environment
for a desktop application would be the actual desktop computer
on which your users install their applications. The production
environment of a backend server for a web application available
through the internet is usually a remote server (sometimes virtual)
operating in some sort of datacenter.

Modern Python Development Environments

[34]

A popular solution to this problem is isolating whole systems as the application
environment. This is usually achieved by leveraging different types of system
virtualization tools. Virtualization, of course, may have an impact on performance;
but with modern CPUs that have hardware support for virtualization, the
performance loss is greatly reduced. On the other hand, the list of possible gains is
very long:

• The development environment can exactly match the system version,
services, and shared libraries used in production, which helps to solve
compatibility issues.

• Definitions for system configuration tools, such as Puppet, Chef, or Ansible
(if used), can be reused to configure both the production and development
environments.

• The newly hired team members can easily hop into the project if the creation
of such environments is automated.

• The developers can work directly with low-level system features that
may not be available on operating systems they use for work. For
example, Filesystem in Userspace (FUSE) is a feature of Linux operating
systems that you could not work with on Windows without virtualization.

In the next section, we'll take a look at two different approaches to achieving the
system-level isolation of development environments.

Containerization versus virtualization
There are two main ways that system-level isolation techniques can be used for
development purposes:

• Machine virtualization, which emulates the whole computer system
• Operating system-level virtualization, known also as containerization,

which isolates complete user spaces within a single operating system

Machine virtualization techniques concentrate on emulating whole computer
systems within other computer systems. Think of it as providing virtual hardware
that can be run as a piece of software on your own computer. As this is full hardware
emulation, it gives you the possibility to run any operating system within your host
environments. This is the technology that drives the infrastructure of Virtual Private
Server (VPS) and cloud computing providers, as it allows you to run multiple
independent and isolated operating systems within a single host computer.

Chapter 2

[35]

This is also a convenient method of running many operating systems for
development purposes, as starting a new operating system does not require
rebooting your computer. You can also easily dispose of virtual machines when not
needed. That's something that cannot be done easily with typical multi-boot system
installation.

Operating system-level virtualization, on the other hand, does not rely on emulating
the hardware. It encapsulates a user-space environment (shared libraries, resource
constraints, filesystem volumes, code, and so on) in the form of containers that
cannot operate outside the strictly defined container environment. All containers are
running on the same operating system kernel but cannot interfere with each other
unless you explicitly allow them to.

Operating system-level virtualization does not require emulation of the hardware.
Still, it can set specific constraints on the use of system resources like storage
space, CPU time, RAM, or network. These constraints are managed only by the
system kernel, so the performance overhead is usually smaller than in machine
virtualization. That's why operating system-level virtualization is often called
lightweight virtualization.

Usually, a container contains only application code and its system-level
dependencies, mostly shared libraries or runtime binaries like the Python interpreter,
but can be as large as you want. Images for Linux containers are often based on
whole system distributions like Debian, Ubuntu, or Fedora. From the perspective
of processes running inside a container, it looks like a completely isolated system
environment.

When it comes to system-level isolation for development purposes, both methods
provide a similarly sufficient level of isolation and reproducibility. Nevertheless,
due to its more lightweight nature, operating system-level virtualization seems to be
more favored by developers as it allows cheaper, faster, and more streamlined usage
of such environments together with convenient packaging and portability. This is
especially useful for programmers that work on multiple projects in parallel or need
to share their environments with other programmers.

There are two leading tools for providing system-level isolation of development
environments:

• Docker for operating system-level virtualization
• Vagrant for machine virtualization

Modern Python Development Environments

[36]

Docker and Vagrant seem to overlap in features. The main difference between
them is the reason why they were built. Vagrant was built primarily as a tool for
development. It allows you to bootstrap the whole virtual machine with a single
command but is rarely used to simply pack such an environment as a complete
artifact that could be easily delivered to a production environment and executed as
is. Docker, on the other hand, is built exactly for that purpose—preparing complete
containers that can be sent and deployed to production as a complete package. If
implemented well, this can greatly improve the process of product deployment.

Due to some implementation nuances, the environments that are based on containers
may sometimes behave differently than environments based on virtual machines.
They also do not package the operating system kernel, so for code that is highly
operating system-specific, they may not always behave the same on every host.
Also, if you decide to use containers for development, but don't decide to use them
on target production environments, you'll lose some of the consistency guarantees
that were the main reason for environment isolation.

But, if you already use containers in your target production environments, then you
should always replicate production conditions in the development stage using the
same technique. Fortunately, Docker, which is currently the most popular container
solution, provides an amazing docker-compose tool that makes the management of
local containerized environments extremely easy.

Containers are a great alternative to full machine virtualization. It is a lightweight
method of virtualization, where the kernel and operating system allow multiple
isolated user-space instances to be run. If your operating system supports containers
natively, this method of virtualization will require less overhead than full machine
virtualization.

Virtual environments using Docker
Software containers got their popularity mostly thanks to Docker, which is one of
the available implementations for the Linux operating system.

Docker allows you to describe an image of the container in the form of a simple
text document called a Dockerfile. Images from such definitions can be built and
stored in image repositories. Image repositories allow multiple programmers to
reuse existing images without the need to build them all by themselves. Docker also
supports incremental changes, so if new things are added to the container then it
does not need to be recreated from scratch.

Chapter 2

[37]

Docker is an operating system virtualization method for Linux operating systems,
so it isn't natively supported by kernels of Windows and macOS. Still, this doesn't
mean that you can't use Docker on Windows or macOS. On those operating systems,
Docker becomes kind of a hybrid between machine virtualization and operating
system-level virtualization. Docker installation on those two systems will create an
intermediary virtual machine with the Linux operating system that will act as a host
for your containers. The Docker daemon and command-line utilities will take care of
proxying any traffic and images between your own operating system and containers
running on that virtual machine seamlessly.

The existence of an intermediary virtual machine means that Docker on Windows
or macOS isn't as lightweight as it is on Linux. Still, the performance overhead
shouldn't be noticeably higher than the performance overhead of other development
environments based strictly on machine virtualization.

Writing your first Dockerfile
Every Docker-based environment starts with a Dockerfile. A Dockerfile is a
description of how to create a Docker image. You can think about the Docker images
in a similar way to how you would think about images of virtual machines. It is a
single file (composed of many layers) that encapsulates all system libraries, files,
source code, and other dependencies that are required to execute your application.

Every layer of a Docker image is described in the Dockerfile by a single instruction
in the following format:

INSTRUCTION arguments

Docker supports plenty of instructions, but the most basic ones that you need to
know in order to get started are as follows:

• FROM <image-name>: This describes the base image that your image will be
based on. They are often based on common Linux system distributions and
usually come with additional libraries and software installed. The default
Docker images repository is called Docker Hub. It can be accessed for free
and browsed at https://hub.docker.com/.

You can find Docker installation instructions on https://www.
docker.com/get-started.

https://hub.docker.com/
https://www.docker.com/get-started
https://www.docker.com/get-started

Modern Python Development Environments

[38]

• COPY <src>... <dst>: This copies files from the local build context (usually
project files) and adds them to the container's filesystem.

• ADD <src>... <dst>: This works similarly to COPY but automatically unpacks
archives and allows <src> to be URLs.

• RUN <command>: This runs a specified command on top of previous layers.
After execution, it commits changes that this command made to the
filesystem as a new image layer.

• ENTRYPOINT ["<executable>", "<param>", ...]: This configures the default
command to be run as your container starts. If no entry point is specified
anywhere in the image layers, then Docker defaults to /bin/sh -c, which is
the default shell of a given image (usually Bash but can also be another shell).

• CMD ["<param>", ...]: This specifies the default parameters for image
entry points. Knowing that the default entry point for Docker is /bin/
sh -c, this instruction can also take the form of CMD ["<executable>",
"<param>", ...]. It is recommended to define the target executable directly
in the ENTRYPOINT instruction and use CMD only for default arguments.

• WORKDIR <dir>: This sets the current working directory for any of the
following RUN, CMD, ENTRYPOINT, COPY, and ADD instructions.

To properly illustrate the typical structure of a Dockerfile, we will try to dockerize a
simple Python application. Let's imagine we want to create an HTTP echo web server
that replies back with details of the HTTP request it received. We will use Flask,
which is a very popular Python web microframework.

The code of our application, which would be saved in a Python script, echo.py, could
be as follows:

Flask isn't a part of the Python standard library. You can install it
in your environment using pip as follows:

$ pip install flask

You can find more information about the Flask framework at
https://flask.palletsprojects.com/.

https://flask.palletsprojects.com/

Chapter 2

[39]

from flask import Flask, request
app = Flask(__name__)

@app.route('/')
def echo():
 return (
 f"METHOD: {request.method}\n"
 f"HEADERS:\n{request.headers}"
 f"BODY:\n{request.data.decode()}"
)

if __name__ == '__main__':
 app.run(host="0.0.0.0")

Our script starts with the import of the Flask class and the request object. The
instance of the Flask class represents our web application. The request object is a
special global object that always represents the context of the currently processed
HTTP request.

echo() is a so-called view function, which is responsible for handling incoming
requests. @app.route('/') registers the echo() view function under the / path.
This means that only requests that match the / path will be dispatched to this view
function. Inside of our view, we read incoming request details (method, headers, and
body) and return them in text form. Flask will include that text output in the request
response body.

Our script ends with the call to the app.run() method. It starts the local development
server of our application. This development server is not intended for production
environment use but is good enough for development purposes and greatly
simplifies our example.

If you have the Flask package installed, you can run your application using the
following command:

$ python3 echo.py

The above command will start the Flask development server on port 5000. You can
either visit the http://localhost:5000 address in your browser or use the command-
line utility.

Modern Python Development Environments

[40]

The following is an example of invoking a GET request using curl:

$ curl localhost:5000
METHOD: GET
HEADERS:
Host: localhost:5000
User-Agent: curl/7.64.1
Accept: */*

BODY:

As we confirmed that our application returned the HTTP details of the request it
received, we're almost ready to dockerize it. The structure of our project files could
be as follows:

.
├── Dockerfile
├── echo.py
└── requirements.txt

The requirements.txt file will contain only one entry, flask==1.1.2, to make
sure our image will always use the same version of Flask. Before we jump to the
Dockerfile, let's decide how we want our image to work. What we want to achieve
is the following:

• Hide some complexity from the user—especially the fact that we use Python
and Flask

• Package the Python 3.9 executable with all its dependencies
• Package all project dependencies defined in the requirements.txt file

Knowing the above requirements, we are ready to write our first Dockerfile. It will
take the following form:

FROM python:3.9-slim
WORKDIR /app/

COPY requirements.txt .
RUN pip install -r requirements.txt

COPY echo.py .
ENTRYPOINT ["python", "echo.py"]

Chapter 2

[41]

FROM python:3.9-slim defines the base image for our custom container image.
Python has a collection of official images on Docker Hub and python:3.9-slim is one
of them. 3.9-slim is the tag of the image including Python 3.9 with only a minimal
set of system packages needed to run Python. It is usually a sensible starting point
for Python-based application images.

In the next section, we will learn how to build a Docker image from the above
Dockerfile and how to run our container.

Running containers
Before your container can be started, you'll first need to build an image defined in
the Dockerfile. You can build the image using the following command:

$ docker build -t <name> <path>

The -t <name> argument allows us to name the image with a readable identifier.
It is totally optional, but without it, you won't be able to easily reference a newly
created image. The <path> argument specifies the path to the directory where your
Dockerfile is located. Let's assume that we were already running the command
from the root of the project presented in the previous section. We also want to tag
our image with the name echo. The docker build command invocation will be the
following:

$ docker build -t echo .

Its output may be as follows:

Sending build context to Docker daemon 16.8MB
Step 1/6 : FROM python:3.9-slim
3.9-slim: Pulling from library/python
bb79b6b2107f: Pull complete
35e30c3f3e2b: Pull complete
b13c2c0e2577: Pull complete
263be93302fa: Pull complete
30e7021a7001: Pull complete
Digest: sha256:c13fda093489a1b699ee84240df4f5d0880112b9e09ac21c5d687500
3d1aa927
Status: Downloaded newer image for python:3.9-slim
 ---> a90139e6bc2f
Step 2/6 : WORKDIR /app/
 ---> Running in fd85d9ac44a6
Removing intermediate container fd85d9ac44a6
 ---> b781318cdec7

Modern Python Development Environments

[42]

Step 3/6 : COPY requirements.txt .
 ---> 6d56980fedf6
Step 4/6 : RUN pip install -r requirements.txt
 ---> Running in 5cd9b86ac454
(...)
Successfully installed Jinja2-2.11.2 MarkupSafe-1.1.1 Werkzeug-1.0.1
click-7.1.2 flask-1.1.2 itsdangerous-1.1.0
Removing intermediate container 5cd9b86ac454
 ---> 0fbf85e8f6da
Step 5/6 : COPY echo.py .
 ---> a546d22e8c98
Step 6/6 : ENTRYPOINT ["python", "echo.py"]
 ---> Running in 0b4e57680ac4
Removing intermediate container 0b4e57680ac4
 ---> 0549d15959ef
Successfully built 0549d15959ef
Successfully tagged echo:latest

Once created, you can inspect the list of available images using the docker images
command:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
echo latest 0549d15959ef About a minute ago 126MB
python 3.9-slim a90139e6bc2f 10 days ago 115MB

The shocking size of container images

Our image has a size of 126 MB because it actually captures the
whole Linux system distribution needed for running our Python
application. It may sound like a lot, but it isn't really anything to
worry about. For the sake of brevity, we have used a base image
that is simple to use. There are other images that have been crafted
specially to minimize this size, but these are usually dedicated
to more experienced Docker users. Also, thanks to the layered
structure of Docker images, if you're using many containers,
the base layers can be cached and reused, so an eventual space
overhead is rarely an issue. In the preceding example, the total size
of storage used for both images will be only 126 MB because the
echo:latest image only adds 11 MB on top of the python:3.9-
slim image.

Chapter 2

[43]

Once your image is built and tagged, you can run a container using the docker
run command. Our container is an example of a web service, so we will have to
additionally tell Docker that we want to publish the container's ports by binding
them locally:

docker run -it --rm --publish 5000:5000 echo

Here is an explanation of the specific arguments of the preceding command:

• -it: These are actually two concatenated options: -i and -t. The
-i (for interactive) keeps STDIN open, even if the container process is
detached, and -t (for tty) allocates pseudo-TTY for the container. TTY
stands for teletypewriter and on Linux and UNIX-like operating systems
represents the terminal connected to a program's standard input and output.
In short, thanks to these two options, we will be able to see live logs from our
application and ensure that the keyboard interrupt will cause the process to
exit. It will simply behave the same way as we would start Python, straight
from the command line.

• --rm: Tells Docker to automatically remove the container when it exits.
Without this option, the container will be kept so you can reattach to it in
order to diagnose its state. By default, Docker does not remove containers
just to make debugging easier. They can quickly pile up on your disk so
good practice is to use --rm by default unless you really need to keep the
exited container for later review.

• --publish 5000:5000: Tells Docker to publish the container's port 5000 by
binding port 5000 on the host's interface. You can use this option to also
remap application ports. If you would like, for instance, to expose the echo
application on port 8080 locally, you could use the --publish 8080:5000
argument.

Building and running your own images using the docker command is quite simple
and straightforward but can become cumbersome after a while. It requires using
quite long command invocations and remembering a lot of custom identifiers. It can
be quite inconvenient for more complex environments. In the next section, we will
see how a Docker workflow can be simplified with the Docker Compose utility.

Setting up complex environments
While the basic usage of Docker is pretty straightforward for basic setups, it can be
a bit overwhelming once you start to use it in multiple projects. It is really easy to
forget about specific command-line options, or which ports should be published on
which images.

Modern Python Development Environments

[44]

But things start to get really complicated when you have one service that needs
to communicate with others. A single Docker container should only contain one
running process.

This means that you really shouldn't put any additional process supervision tools,
such as Supervisor and Circus, into the container image, and instead set up multiple
containers that communicate with each other. Each service may use a completely
different image, provide different configuration options, and expose ports that may
or may not overlap. If you want to run multiple different processes, each process
should be a separate container.

Large production deployments of containers use dedicated container
orchestration systems like Kubernetes, Nomad, or Docker Swarm to keep track
of all containers and their execution details like images, ports, volumes, ports,
configuration, and so on. You could use one of those tools locally, but that would be
overkill for development purposes.

The best container development tool that you can use on your computer that works
well for both simple and complex scenarios is Docker Compose. Docker Compose
is usually distributed with Docker, but in some Linux distributions (for example,
Ubuntu), it may not be available by default. In such a case, it must be installed as a
separate package from the system package repository. Docker Compose provides a
powerful command-line utility named docker-compose and allows you to describe
multi-container applications using the YAML syntax.

Compose expects the specially named docker-compose.yml file to be in your project
root directory. An example of such a file for our previous project could be as follows:

version: '3.8'

services:
 echo-server:
 # this tell Docker Compose to build image from
 # local (.) directory
 build: .

 # this is equivalent to "-p" option of
 # the "docker run" command
 ports:
 - "5000:5000"

 # this is equivalent to "-t" option of
 # the "docker run" command
 tty: true

Chapter 2

[45]

If you create such a docker-compose.yml file in your project, then your whole
application environment can be started and stopped with two simple commands:

• docker-compose up: This starts all containers defined in the docker-compose.
yml file and actively prints their standard output

• docker-compose down: This stops all containers started by docker-compose in
the current project directory

Docker Compose will automatically build your image if it hasn't been built yet.
That's a great way of encoding the development environment in the configuration
file. If you work with other programmers, you can provide one docker-compose.
yml file for your project. This way, setting up a fully working local development
environment will be a matter of one docker-compose up command. The docker-
compose.yml file should definitely be versioned together with the rest of your code if
you use the code versioning tools.

Moreover, if your application requires additional external services, you can easily
add them to your Docker Compose environment instead of installing them on your
host system. Consider the following example that adds one instance of a PostgreSQL
database and Redis memory storage using official Docker Hub images:

version: '3.8'

services:
 echo-server:
 build: .
 ports:
 - "5000:5000"
 tty: true

 database:
 image: postgres

 cache:
 image: redis

Docker Hub is the official repository of Docker images. Many
open-source developers host their official project images there. You
can find more info about Docker Hub at https://hub.docker.
com.

https://hub.docker.com
https://hub.docker.com

Modern Python Development Environments

[46]

It is as simple as that. To ensure better reproducibility, you should always specify
version tags of external images (like postgres:13.1 and redis:6.0.9). That way you
will ensure everyone using your docker-compose.yml file will be using exactly the
same versions of external services. Thanks to Docker Compose you can use multiple
versions of the same service simultaneously without any interference. That's because
different Docker Compose environments are by default isolated on the network level.

Useful Docker and Docker Compose recipes for
Python
Docker and containers in general are such a vast topic that it is impossible to cover
them in one short section of this book. Thanks to Docker Compose, it is really easy
to start working with Docker without knowing a lot about how it works internally.
If you're new to Docker, you'll have to eventually slow down a bit, take the Docker
documentation, and read it thoroughly.

The following are some quick tips and recipes that allow you to defer that moment
and solve most of the common problems that you may have to deal with sooner
or later.

Reducing the size of containers
A common concern of new Docker users is the size of their container images. It's true
that containers provide a lot of space overhead compared to plain Python packages,
but it is usually nothing if we compare this to the size of images for virtual machines.
However, it is still very common to host many services on a single virtual machine,
but with a container-based approach, you should definitely have a separate image
for every service. This means that with a lot of services, the overhead may become
noticeable.

If you want to limit the size of your images, you can use two complementary
techniques:

• Use a base image that is designed specifically for that purpose: Alpine
Linux is an example of a compact Linux distribution that is specifically
tailored to provide very small and lightweight Docker images. The base
image is around 5 MB in size and provides an elegant package manager that
allows you to keep your images compact.

The official Docker documentation can be found at https://docs.
docker.com/.

https://docs.docker.com/
https://docs.docker.com/

Chapter 2

[47]

• Take into consideration the characteristics of the Docker overlay
filesystem: Docker images consist of layers where each layer encapsulates the
difference in the root filesystem between itself and the previous layer. Once
the layer is committed, the size of the image cannot be reduced. This means
that if you need a system package as a build dependency, and it may be later
discarded from the image, then instead of using multiple RUN instructions, it
may be better to do everything in a single RUN instruction with chained shell
commands to avoid excessive layer commits.

These two techniques can be illustrated by the following Dockerfile:

FROM alpine:3.13
WORKDIR /app/

RUN apk add --no-cache python3

COPY requirements.txt .
RUN apk add --no-cache py3-pip && \
 pip3 install -r requirements.txt && \
 apk del py3-pip

COPY echo.py .
CMD ["python", "echo.py"]

The --no-cache flag of apk (Alpine's package manager) has two effects. First, it will
cause apk to ignore the existing cache of package lists so it will install the latest
package version that is available officially in the package repository. Second, it won't
update the existing package lists cache, so the layer created with this instruction will
be slightly smaller than using the --update-cache flag that is otherwise necessary
to install the package in its latest version. The difference is not that big (probably
around 2 MB) but those small chunks of cache can add up in bigger images that
have many layers of apk add invocations. Package managers of different Linux
distributions usually offer a similar way of disabling their package list caches.

The above example uses the alpine:3.12 base image to illustrate
the technique of cleaning up needless dependencies before
committing the layer. Unfortunately, the apk manager in the
Alpine distribution doesn't give proper control of which version
of Python will be installed. That's why recommended Alpine
base images for Python projects come from the official Python
repository. For Python 3.9 that would be the python:3.9-alpine
base image.

Modern Python Development Environments

[48]

The second RUN instruction is an example of taking into account the way Docker
image layers work. On Alpine, the Python package doesn't come with pip installed
so we need to install it on our own. Generally, after all the required Python packages
have been installed, pip is no longer required and can be removed. We could use the
ensurepip module to bootstrap pip but then we wouldn't have an obvious way of
removing it. Instead, we use a long-chained instruction that relies on apk to install
the py3-pip package and remove it after installing the other Python packages. This
trick on Alpine 3.13 may even save us up to 16 MB.

If you run the Docker images command, you will see that there is a substantial size
difference between images based on Alpine and python:slim base images:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
echo-alpine latest e7e3a2bc7b71 About a minute ago 53.7MB
echo latest 6b036d212e8f 40 minutes ago 126MB

The resulting image is now more than two times smaller than the one based on the
python:3.9-slim image. That's mostly due to a streamlined Alpine distribution
that is around 5 MB in total. Without our trick of deleting pip and using the --no-
cache flag, the image size would probably be around 72 MB (package lists caches
are around 2 MB, py3-pip around 16 MB). In total it allowed us to save almost 25%
of the size. Such a size reduction will not be that meaningful for larger applications
with more dependencies where 18 MB doesn't make that much of a difference. Still,
this technique can be used for other build-time dependencies. Some packages, for
instance, require additional compilers like gcc (GNU Compiler Collection) and extra
header files at the time of installation. In such a situation, you could use the same
pattern to avoid having the full GNU Compiler Collection in the final image. And
that actually can have quite a big impact on the image size.

Addressing services inside of a Docker Compose
environment
Complex applications often consist of multiple services that communicate with each
other. Compose allows us to define such applications with ease. The following is an
example docker-compose.yml file that defines the application as a composition of two
services:

version: '3.8'

services:
 echo-server:
 build: .
 ports:

Chapter 2

[49]

 - "5000:5000"
 tty: true

 database:
 image: postgres
 restart: always

The preceding configuration defines two services:

• echo-server: This is our echo application service container with the image
built from the local Dockerfile

• database: This is a PostgreSQL database container from an
official postgres Docker image

We assume that the echo-server service wants to communicate with
the database service over the network. In order to set up such communications,
we need to know the service IP address or hostname so that it can be used as an
application configuration. Thankfully, Docker Compose is a tool that was designed
exactly for such scenarios, so it will make it a lot easier for us.

Whenever you start your environment with the docker-compose up command,
Docker Compose will create a dedicated Docker network by default and will register
all services in that network using their names as their hostnames. This means that
the echo-server service can use the database:5432 address to communicate with
the database (5432 is the default PostgreSQL port), and any other service in that
Docker Compose environment will be able to access the HTTP endpoint of the echo-
server service under the http://echo-server:80 address.

Even though the service hostnames in Docker Compose are easily predictable, it isn't
good practice to hardcode any addresses in your application code. The best approach
would be to provide them as environment variables that can be read by your
application on startup. The following example shows how arbitrary environment
variables can be defined for each service in a docker-compose.yml file:

version: '3.8'

services:
 echo-server:
 build: .
 ports:
 - "5000:5000"
 tty: true
 environment:
 - DATABASE_HOSTNAME=database

Modern Python Development Environments

[50]

 - DATABASE_PORT=5432
 - DATABASE_PASSWORD=password

 database:
 image: postgres
 restart: always
 environment:
 POSTGRES_PASSWORD: password

The highlighted lines provide environment variables that tell our echo server what
the hostname and port of the database are. Environment variables are the most
recommended way of providing configuration parameters for containers.

Communicating between Docker Compose environments
If you build a system composed of multiple independent services and/or
applications, you will very likely want to keep their code in multiple independent
code repositories (projects). The docker-compose.yml files for every Docker Compose
application are usually kept in the same code repository as the application code. The
default network that was created by Compose for a single application is isolated
from the networks of other applications. So, what can you do if you suddenly want
your multiple independent applications to communicate with each other?

Fortunately, this is another thing that is extremely easy with Compose. The syntax of
the docker-compose.yml file allows you to define a named external Docker network
as the default network for all services defined in that configuration.

Docker containers are ephemeral. This means that once the
container is removed (usually on exit), its internal filesystem
changes are lost. For databases, this means that if you don't want
to lose data in the database running in the container, you should
mount a volume inside a container under the directory where
the data is supposed to be stored. Maintainers of Docker images
for databases usually document how to mount such volumes, so
always refer to the documentation of the Docker image you are
using if you want to keep database data safe. An example of using
Docker volumes for slightly different purposes is shown in the
Adding live reload for absolutely any code section.

Chapter 2

[51]

The following is an example configuration that defines an external network
named my-interservice-network:

version: '3.8'

networks:
 default:
 external:
 name: my-interservice-network

services:
 webserver:
 build: .
 ports:
 - "80:80"
 tty: true
 environment:
 - DATABASE_HOSTNAME=database
 - DATABASE_PORT=5432
 - DATABASE_PASSWORD=password

 database:
 image: postgres
 restart: always
 environment:
 POSTGRES_PASSWORD: password

Such external networks are not managed by Docker Compose, so you'll have to
create it manually with the docker network create command, as follows:

$ docker network create my-interservice-network

Once you have done this, you can use this external network in other docker-
compose.yml files for all applications that should have their services registered in the
same network. The following is an example configuration for other applications that
will be able to communicate with both database and webserver services over my-
interservice-network, even though they are not defined in the same docker-
compose.yml file:

version: '3.8'

networks:
 default:

Modern Python Development Environments

[52]

 external:
 name: my-interservice-network

services:
 other-service:
 build: .
 ports:
 - "80:80"
 tty: true
 environment:
 - DATABASE_HOSTNAME=database
 - DATABASE_PORT=5432
 - ECHO_SERVER_ADDRESS=http://echo-server:80

The above approach allows you to start two independent Docker Compose
environments in separate shells. All services will be able to communicate with each
other through a shared Docker network.

Delaying code startup until service ports are open
If you run docker-compose up, all services will be started at the same time. You can
control to some extent the service startup using the depends_on key in the service
definition as in the following example:

version: '3.8'

services:
 echo-server:
 build: .
 ports:
 - "5000:5000"
 tty: true
 depends_on:
 - database

 database:
 image: postgres
 environment:
 POSTGRES_PASSWORD: password

The preceding setup will make sure that our echo server will be started after the
database service. Unfortunately, it is not always enough to ensure proper startup
ordering of services within the development environment.

Chapter 2

[53]

Consider a situation where echo-server would have to read something from the
database immediately after starting. Docker Compose will make sure that services
will be started in order but will not make sure that PostgreSQL will be ready
to actually accept connections from the echo server. That's because PostgreSQL
initialization can take a couple of seconds.

The solution for this is pretty simple. There are numerous scripting utilities that
allow you to test if a specific network port is open before proceeding with the
execution of a command. One such utility is named wait-for-it and is actually
written in Python so you can easily install it with pip.

You can invoke wait-for-it using the following syntax:

$ wait-for-it --service <service-address> -- command [...]

The -- command [...] usage pattern is a common pattern for utilities that wrap
different command execution where [...] represents any set of arguments for
command. The wait-for-it process will try to create a TCP connection and when it
succeeds, it will execute command [...]. For instance, if we would like to wait for
localhost connection on port 2000 before starting the python echo.py command we
would simply execute:

$ wait-for-it --service localhost:2000 -- python echo.py

The following is an example of a modified docker-compose.yml file that elegantly
overrides the default Docker image command and decorates it with the call to the
wait-for-it utility to ensure our echo server starts only when it would be able to
connect to the database:

version: '3.8'

services:
 echo-server:
 build: .
 ports:
 - "5000:5000"
 tty: true
 depends_on:
 - database
 command:
 wait-for-it --service database:5432 --
 python echo.py

 database:

Modern Python Development Environments

[54]

 image: postgres
 environment:
 POSTGRES_PASSWORD: password

wait-for-it by default times out after 15 seconds. After that timeout, it will start
the process after the -- mark regardless of whether it succeeded in connecting or
not. You can disable timeout using the --timeout 0 argument. Without the timeout,
wait-for-it will wait indefinitely.

Adding live reload for absolutely any code
When developing a new application, we usually work with code iteratively. We
implement changes and see results. We either verify the code manually or run the
tests. There is a constant feedback loop.

With Docker, we need to enclose our code in the container image to make it work.
But running docker build or docker-compose build every time you make a change
in your host system would be highly counterproductive.

That's why the best way to provide code to the container while working with Docker
in the development stage is through Docker volumes. The idea is to bind your local
filesystem directory to the container's internal filesystem path. That way any changes
made to the files in the host's filesystem will be automatically reflected inside of
the container. With Docker Compose, it is extremely easy as it allows you to define
volumes in the service configuration. The following is a modified version of our
docker-compose.yml file for the echo service that mounts the project's root directory
under the /app/ path:

version: '3.8'

services:
 echo-server:
 build: .
 ports:
 - "5000:5000"
 tty: true
 volumes:
 - .:/app/

Changes happening on mounted Docker volumes are actively propagated on both
sides. Many Python frameworks or servers support active hot reloading whenever
they notice that your code has changed. This dramatically improves the development
experience because you can see how the behavior of your application changes as you
write it and without the need for manual restarts.

Chapter 2

[55]

Probably not every piece of code you write will be built using a framework that
supports active reloading. Fortunately, there is a great Python package named
watchdog that allows you to reload any application watching code changes. This
package provides a handful watchmedo utility that similarly to wait-for-it can wrap
any process execution.

The following is the basic usage format for reloading specified processes whenever
there is a change to any Python file in the current working directory:

$ watchmedo auto-restart --patterns "*.py" --recursive -- command [...]

The --patterns "*.py" options indicate which files the watchmedo process should
monitor for changes. The --recursive flag makes it traverse the current working
directory recursively so it will be able to pick up changes made even if they are
nested deep down in the directory tree. The -- command [...] usage pattern is the
same as the wait-for-it command mentioned in Delaying code startup until service
ports are open. It simply means that everything after the -- mark will be treated as
a single command with (optional) arguments. watchmedo starts that command and
restarts it whenever it discovers a change in the monitored files.

If you install the watchdog package in your Docker image, you will be able to
elegantly include it in your docker-compose.yml as in the following example:

version: '3.8'

services:
 echo-server:
 build: .
 ports:
 - "5000:5000"
 tty: true
 depends_on:
 - database
 command:
 watchmedo auto-restart --patterns "*.py" --recursive --
 python echo.py
 volumes:
 - .:/app/

The watchmedo utility from the watchdog package requires some
additional dependencies in order to execute. To install that package
with extra dependencies use the following pip install syntax:

pip install watchdog[watchmedo]

Modern Python Development Environments

[56]

The above Docker Compose setup will restart the process inside of a container
every time there is a change to your Python code. In our example, this will be any
file with the .py extension that lives under the /app/ path. Thanks to mounting the
source directory as a Docker volume, the watchmedo utility will be able to pick up any
change made on the host filesystem and restart as soon as you save changes in your
editor.

Development environments with Docker and Docker Compose are extremely useful
and convenient but have their limitations. The obvious one is that they only allow
you to run your code under the Linux operating system. Even though Docker is
available for macOS and Windows, it still relies on a Linux virtual machine as an
intermediary layer, so your Docker containers will still be running under Linux.
If you need to develop your application as if it were running exactly on a specific
system that is different from Linux, you need a completely different approach to
environment isolation. In the next section, we will learn about one such tool.

Virtual development environments using
Vagrant
Although Docker together with Docker Compose provides a very good foundation
for creating reproducible and isolated development environments, there are cases
where a real virtual machine will simply be a better (or only) choice. An example of
such a situation may be a need to do some system programming for an operating
system different than Linux.

Vagrant currently seems to be one of the most popular tools for developers to
manage virtual machines for the purpose of local development. It provides a
simple and convenient way to describe development environments with all system
dependencies in a way that is directly tied to the source code of your project. It
is available for Windows, macOS, and a few popular Linux distributions (refer
to https://www.vagrantup.com).

It does not have any additional dependencies. Vagrant creates new development
environments in the form of virtual machines or containers. The exact
implementation depends on a choice of virtualization providers. VirtualBox
is the default provider, and it is bundled with the Vagrant installer, but
additional providers are available as well. The most notable choices are VMware,
Docker, Linux Containers (LXC), and Hyper-V.

The most important configuration is provided to Vagrant in a single file named
a Vagrantfile. It should be independent for every project. The following are the
most important things it provides:

https://www.vagrantup.com

Chapter 2

[57]

• Choice of virtualization provider
• A box, which is used as a virtual machine image
• Choice of provisioning method
• Shared storage between the virtual machine and the virtual machine's host
• Ports that need to be forwarded between the virtual machine and its host

The syntax language for a Vagrantfile is Ruby. The example configuration file
provides a good template to start the project and has excellent documentation,
so knowledge of this language is not required. The template configuration can be
created using a single command:

$ vagrant init

This will create a new file named Vagrantfile in the current working directory.
The best place to store this file is usually the root of the related project sources. This
file is already a valid configuration that will create a new virtual machine using the
VirtualBox provider and box image based on an Ubuntu Linux distribution. The
default Vagrantfile content that's created with the vagrant init command contains
a lot of comments that will guide you through the complete configuration process.

The following is a minimal example of a Vagrantfile for the Python 3.9 development
environment based on the Ubuntu operating system, with some sensible defaults
that, among others, enable port 80 forwarding in case you want to do some web
development with Python:

Vagrant.configure("2") do |config|
 # Every Vagrant development environment requires a box.
 # You can search for boxes at https://vagrantcloud.com/search.
 # Here we use Bionic version Ubuntu system for x64 architecture.
 config.vm.box = "ubuntu/bionic64"

 # Create a forwarded port mapping which allows access to a specific
 # port within the machine from a port on the host machine and only
 # allow access via 127.0.0.1 to disable public access
 config.vm.network "forwarded_port", guest: 80, host: 8080, host_ip:
"127.0.0.1"

 config.vm.provider "virtualbox" do |vb|
 vb.gui = false
 # Customize the amount of memory on the VM:
 vb.memory = "1024"
 end

Modern Python Development Environments

[58]

 # Enable provisioning with a shell script.
 config.vm.provision "shell", inline: <<-SHELL
 apt-get update
 apt-get install python3.9 -y
 SHELL
end

In the preceding example, we have set the additional provisioning of system
packages with a simple shell script inside of the config.vm.provision section. The
default virtual machine image provided by the ubuntu/bionic64 "box" does not
include the Python 3.9 version, so we need to install it using the apt-get package
manager.

When you feel that the Vagrantfile is ready, you can run your virtual machine
using the following command:

$ vagrant up

The initial startup can take a few minutes, because the actual box image must be
downloaded from the web. There are also some initialization processes that may
take a while every time the existing virtual machine is brought up, and the amount
of time depends on the choice of provider, image, and your system's performance.
Usually, once the image has been downloaded, this takes only a couple of seconds.
When the Vagrant environment is up and running, you can connect to it through
SSH using the following shell shorthand:

$ vagrant ssh

This can be done anywhere in the project source tree below the location of
the Vagrantfile. For the developers' convenience, Vagrant will traverse
all directories above the user's current working directory in the filesystem tree,
looking for the configuration file and matching it with the related virtual machine
instance. Then, it establishes the secure shell connection, so the development
environment can be interacted with just like an ordinary remote machine. The
only difference is that the whole project source tree (root defined as the location of
the Vagrantfile) is available on the virtual machine's filesystem under /vagrant/.
This directory is automatically synchronized with your host filesystem, so you can
normally use an IDE or code editor of your choice on the host and simply treat the
SSH session to your Vagrant virtual machine just like a normal local shell session.

Chapter 2

[59]

Popular productivity tools
Almost every open-source Python package that has been released on PyPI is a kind
of productivity booster—it provides ready-to-use solutions to some problem. That
way we don't have to reinvent the wheel all the time. Some could also say that
Python itself is all about productivity. Almost everything in this language and the
community surrounding it seems to be designed to make software development as
productive as possible.

This creates a positive feedback loop. Since writing code with Python is fun and
easy, a lot of programmers use their free time to create tools that make it even
easier and more fun. And this fact will be used here as a basis for a very subjective
and non-scientific definition of a productivity tool—a piece of software that makes
development easier and more fun.

By nature, productivity tools focus mainly on certain elements of the development
process, such as testing, debugging, and managing packages, and are not core parts
of the products that they help to build. In some cases, they may not even be referred
to anywhere in the project's codebase, despite being used on a daily basis.

We've already discussed tools revolving around package management and the
isolation of virtual environments. These are undoubtedly productivity tools as their
aim is to simplify and ease the tedious processes of setting up your local working
environment. Later in the book, we will discuss more productivity tools that help
to solve specific problems, such as profiling and testing. This section is dedicated to
other tools that are really worth mentioning but have no specific chapter in this book
where they could be introduced.

Custom Python shells
Python programmers spend a lot of time in interactive interpreter sessions. These
sessions are very good for testing small code snippets, accessing documentation,
or even debugging code at runtime. The default interactive Python session is
very simple and does not provide many features, such as tab completion or code
introspection helpers. Fortunately, the default Python shell can be easily extended
and customized.

If you use an interactive shell very often, you can easily modify the behavior of its
prompt. Python at startup reads the PYTHONSTARTUP environment variable, looking
for the path of the custom initializations script. Some operating system distributions
where Python is a common system component (for example, Linux or macOS) may
already be preconfigured to provide a default startup script. It is commonly found in
the user's home directory under the .pythonstartup name.

Modern Python Development Environments

[60]

These scripts often use the readline module (based on the GNU readline library)
together with rlcompleter in order to provide interactive tab completion and
command history. Both modules are part of the Python standard library.

If you don't have a default Python startup script, you can easily build your own.
A basic script for command history and tab completion can be as simple as the
following:

python startup file

import atexit
import os

try:
 import readline
except ImportError:
 print("Completion unavailable: readline module not available")
else:
 import rlcompleter
 # tab completion
 readline.parse_and_bind('tab: complete')

 # Path to history file in user's home directory.
 # Can use your own path.
 history_file = os.path.expanduser('~/.python_shell_history')
 try:
 readline.read_history_file(history_file)
 except IOError:
 pass

 atexit.register(readline.write_history_file, history_file)
 del os, history_file, readline, rlcompleter

The readline module is not available on Windows. Windows
users often use the pyreadline package available on PyPI as a
substitution for the missing module.

Chapter 2

[61]

Create this file in your home directory and call it .pythonstartup. Then, add
a PYTHONSTARTUP variable in your environment using the path of your file.

If you are running Linux or macOS, you can create the Python startup script in your
home folder. Then, link it with a PYTHONSTARTUP environment variable that's been
set in the system shell startup script. For example, the Bash and Korn shells use
the .profile file, where you can insert a line, as follows:

export PYTHONSTARTUP=~/.pythonstartup

If you are running Windows, it is easy to set a new environment variable as an
administrator in the system preferences and save the script in a common place
instead of using a specific user location.

Writing on the PYTHONSTARTUP script may be a good exercise but creating a good
custom shell all alone is a challenge that few can find time for. Fortunately, there are
a few custom Python shell implementations that immensely improve the experience
of interactive sessions in Python. In the next section, we will take a closer look at one
that is particularly popular—IPython.

Using IPython
IPython provides an extended Python command shell. It is available as a package on
PyPI so you can easily install it with either pip or poetry. Among all the features it
provides, some interesting ones are as follows:

• Dynamic object introspection
• System shell access from the prompt
• Multiline code editing
• Syntax highlighting
• Copy-paste helpers
• Direct profiling support
• Debugging facilities

Modern Python Development Environments

[62]

Now, IPython is a part of a larger project called Jupyter, which provides interactive
notebooks with live code that can be written in many different languages. Jupyter
notebooks are really popular within the data science community where Python really
shines. So it is good to know their shell sibling.

The IPython shell is invoked through the ipython command. After starting IPython
you will immediately notice that the standard Python prompt is replaced by a
colorful number of execution cells:

$ ipython
Python 3.9.0 (v3.9.0:9cf6752276, Oct 5 2020, 11:29:23)
Type 'copyright', 'credits' or 'license' for more information
IPython 7.19.0 -- An enhanced Interactive Python. Type '?' for help.
In [1]:

There are two really handy properties of an IPython shell:

• It allows you to easily work with multiline code including one that has been
pasted from the clipboard

• Provides shortcuts for inspecting docstrings, module documentation, and
code of imported modules

These two features alone make IPython great for learning purposes. First, if you find
any useful snippets of code (including ones in this book), you can easily paste them
from system's clipboard and modify them as if the Python interpreter were a code
editor. The following is a screenshot of a terminal with an interactive IPython session
that the source code of the echo application was pasted into:

Chapter 2

[63]

Figure 2.1: Pasting code into IPython

Modern Python Development Environments

[64]

When it comes to code introspection, IPython provides a really quick way of looking
into the documentation and source code of imported modules, functions, and classes.
Simply type a name you want to inspect and follow it with ? to see the docstring.
The following terminal transcript presents an example exploration session of the
urlunparse() function from the urllib.parse module:

In [1]: urllib.parse.urlunparse?
Signature: urllib.parse.urlunparse(components)
Docstring:
Put a parsed URL back together again. This may result in a
slightly different, but equivalent URL, if the URL that was parsed
originally had redundant delimiters, e.g. a ? with an empty query
(the draft states that these are equivalent).
File: /Library/Frameworks/Python.framework/Versions/3.9/lib/
python3.9/urllib/parse.py
Type: function

Use ?? after the function name instead and you'll see the whole source code:

In [2]: urllib.parse.urlunparse??
Signature: urllib.parse.urlunparse(components)
Source:
def urlunparse(components):
 """Put a parsed URL back together again. This may result in a
 slightly different, but equivalent URL, if the URL that was parsed
 originally had redundant delimiters, e.g. a ? with an empty query
 (the draft states that these are equivalent)."""
 scheme, netloc, url, params, query, fragment, _coerce_result = (
 coerce
args(*components))
 if params:
 url = "%s;%s" % (url, params)
 return _coerce_result(urlunsplit((scheme, netloc, url, query,
fragment)))
File: /Library/Frameworks/Python.framework/Versions/3.9/lib/
python3.9/urllib/parse.py
Type: function

Chapter 2

[65]

Interactive sessions are great for experimentation and module exploration but
sometimes can also be useful in final applications. In the next section, you will learn
how to embed them inside of your own code.

Incorporating shells in your own scripts and
programs
Sometimes, there is a need to incorporate a read-eval-print loop (REPL), similar
to Python's interactive session, inside of your own software. This allows easier
experimentation with your code and inspection of its internal state. Sometimes it
is simply easier to embed an interactive terminal instead of designing a custom
Command-Line Interface (CLI) for your application (especially if it has to be used
on rare occasions). Interactive interpreters are often embedded in web application
frameworks to allow developers to interact with data stored within applications
using Python REPL instead of database-specific terminal utilities.

The simplest module that allows emulating Python's interactive interpreter already
comes with the standard library and is named code.

The script that starts interactive sessions consists of one import and a single function
call:

import code
code.interact()

You can easily do some minor tuning, such as modify a prompt value or add banner
and exit messages, but anything fancier will require a lot more work. If you want
to have more features, such as code highlighting, completion, or direct access to the
system shell, it is always better to use something that was already built by someone.
Fortunately, the IPython shell mentioned in the previous section can be embedded in
your own program as easily as the code module.

IPython is not the only enhanced Python shell at your disposal.
You may want to look at the btpython and ptpython projects,
which have similar capabilities but a slightly different user
experience.

Modern Python Development Environments

[66]

The following are examples of how to invoke all of the previously mentioned shells
inside of your code:

Example for IPython
import IPython
IPython.embed()

Example for bpython
import bpython
bpython.embed()

Example for ptpython
from ptpython.repl import embed
embed(globals(), locals())

The first two arguments to the embed() function are dictionaries of objects that will
be available as global and local namespaces during the interactive session. This can
be used to prepopulate the interactive session with modules, variables, functions, or
classes that are likely to be used during that session.

Interactive sessions are great for providing a low-level interface of an application
directly to the user. Sometimes they can be used to manually inspect the internal
state of an application by providing access to either local or global variables. Still,
if you want to interactively trace how your application executes the code, you
will probably need to use a debugger. Fortunately, Python comes with a built-in
debugger that offers such a possibility in the form of an interactive session.

Interactive debuggers
Code debugging is an integral element of the software development process.
Many programmers can spend most of their life using only extensive logging
and print() functions as their primary debugging tools, but most professional
developers prefer to rely on some kind of debugger.

Python already ships with a built-in interactive debugger called pdb. It can be
invoked from the command line on the existing script, so Python will enter post-
mortem debugging if the program exits abnormally:

$ python3 -m pdb -c continue script.py

Another way to achieve similar behavior is running the interpreter with the -i flag:

$ python3 -i script.py

Chapter 2

[67]

The preceding code will open an interactive session at the moment where Python
would normally exit. From there, you can start a post-mortem debugging session
by importing the pdb module and using the pdb.pm() function as in the following
example:

>>> import pdb
>>> pdb.pm()

Post-mortem debugging, while useful, does not cover every scenario. It is useful
only when the application exits with some exception if the bug occurs. In many
cases, faulty code behaves abnormally but does not exit unexpectedly. In such cases,
custom breakpoints can be set on a specific line of code using the breakpoint()
function. The following is an example of setting a breakpoint inside of a simple
function:

import math

def circumference(r: float):
 breakpoint()
 return 2 * math.pi * r

The pdb module is very useful for tracing issues, and at first glance, it may look very
similar to the well-known GNU Debugger (GDB). Because Python is a dynamic
language, the pdb session is very similar to an ordinary interpreter session. This
means that the developer is not limited to tracing code execution but can call any
code and even perform module imports.

Sadly, because of its roots (gdb), your first experience with pdb can be a bit
overwhelming due to the existence of cryptic short-letter debugger commands such
as h, b, s, n, j, and r. When in doubt, the help pdb command, which can be typed
during the debugger session, will provide extensive usage information. You can also
use the h shortcut.

The breakpoint() function was not available prior to Python 3.7
so you may see some older Python developers using the following
idiom:

import pdb; pdb.set_trace()

This will cause the Python interpreter to start the debugger session
on this line during runtime.

Modern Python Development Environments

[68]

The debugger session in pdb is very simple and does not provide additional features
such as tab completion or code highlighting. Fortunately, same as with enhanced
Python shells, there are a couple of enhanced debugging shells available on PyPI.
There is even one based on IPython. Its name is ipdb.

If you want to use ipdb instead of plain pdb, you can either use a modified debugging
idiom (import ipdb; ipdb.set_trace()) or set the PYTHONBREAKPOINT environment
variable to the ipdb.set_trace value.

Last but not least, many IDEs offer visual debuggers and some developers find them
extremely useful. These debuggers allow you to set breakpoints in multiple places of
your application without the need for modifying the code with manual breakpoint()
calls. They also often allow adding variable watches that stop program execution
when the selected variable has a specific value.

Other productivity tools
We've concentrated so far on the productivity tools that are specific to Python. But
the real truth is that programming in different languages is not that different. It
doesn't matter what languages programmers use, they often face the same problems
and tedious tasks like massaging the data in various formats, downloading network
artifacts, searching through filesystems, and navigating projects.

Probably the most flexible productivity tool of all time will be Bash together with
common standard utilities found in every POSIX and UNIX-like operating system.
Knowing them all thoroughly is probably impossible for an ordinary human. But
knowing a few well is something that will make you really productive.

Simply put, sometimes there's no need to write a sophisticated Python script for a
one-off job if you can quickly wire and pipe together a few invocations of the curl,
grep, sed, and sort commands. Sometimes, there is already a specialized tool for a
specific and non-trivial job (counting lines of code, for instance) that would take a lot
of time to implement from scratch.

The following table gives a short list of such useful utilities that I find invaluable
when working with any code. Think of it as a mini awesome list of programming
productivity tools:

Chapter 2

[69]

Utility Description
jq

https://stedolan.github.io/jq/

Utility for manipulating data in the form of JSON
documents. Extremely useful for manipulating
the output of web APIs directly in the shell.
Data is read from standard input and results
are printed on standard output. Manipulation
is described through a custom domain-specific
language that is very easy to learn.

yq

https://pypi.org/project/yq/

Sibling of jq that uses the same syntax for
manipulating YAML documents.

curl

https://curl.se

Old-fashioned classic for transferring data
through URLs. Most often used for interfacing
with HTTP but actually supports over 20
protocols.

HTTPie

https://httpie.io

Python-based utility for interfacing with
HTTP servers. Many developers find it more
convenient to use than curl.

autojump

https://github.com/wting/
autojump

Shell utility that allows users to quickly
navigate to most recently visited directories.
Indispensable for programmers working on
dozens of projects in parallel. Simply type j and
a few characters of the desired directory name
and you will probably land in the right place.
Plays nicely with Poetry workflows.

cloc

https://github.com/AlDanial/
cloc

One of the best and most complete utilities for
counting lines of code. Sometimes you need
to see how big a project is and how many
programming or markup languages it uses. cloc
will give you the right answer quickly.

ack-grep

https://beyondgrep.com

grep on steroids. Allows you to quickly search
through large codebases looking for a specific
string. Allows filtering by programming
language and often is simply faster and better
than opening a project in an IDE.

GNU parallel

https://www.gnu.org/software/
parallel/

Enhanced replacement of xargs. Really
invaluable if you want to do many things
in parallel inside of in a shell or Bash script,
especially if you want to do it reliably and
efficiently.

https://stedolan.github.io/jq/
https://pypi.org/project/yq/
https://curl.se
https://httpie.io
https://github.com/wting/autojump
https://github.com/wting/autojump
https://github.com/AlDanial/cloc
https://github.com/AlDanial/cloc
https://beyondgrep.com
https://www.gnu.org/software/parallel/
https://www.gnu.org/software/parallel/

Modern Python Development Environments

[70]

Summary
This chapter was all about development environments for Python programmers.
We've discussed the importance of environment isolation for Python projects.
You've learned two different levels of environment isolation (application-level and
system-level), and multiple tools that allow you to create them in a consistent and
repeatable manner. We've also discussed some essential topics for managing Python
dependencies in your projects. This chapter ended with a review of a few tools
that improve the ways in which you can experiment with Python or debug your
programs and work effectively.

Once you have all of these tools in your tool belt, you are well-prepared for the next
few chapters, where we will discuss multiple features of modern Python syntax.
You're probably already hungry for Python code so we will start with a quick
overview of the new things that were included in Python over the last few releases.

If you're quite up to date with what's happening in Python, you can probably skip
the next chapter. Still, take a quick look at the headings—it is possible that you have
missed something, as Python evolves really fast.

[71]

3
New Things in Python

One of the most important steps in the history of Python was probably the release
of Python 3.0. The most notable changes that happened in that release were:

• Resolving multiple issues regarding text, data, and Unicode handling
• Getting rid of old-style classes
• Starting standard library reorganizations
• Introducing function annotations
• Introducing new syntax for exception handling

As we know from Chapter 1, Current Status of Python, Python 3 isn't backward-
incompatible with Python 2. This is the main reason why it took so many years for
the Python community to fully embrace it. That was a tough, albeit necessary, lesson
for Python core developers and the Python community.

Fortunately, problems associated with the adoption of Python 3 didn't stop the
process of language evolution. Since December 3, 2008 (the official release of Python
3.0), we've seen a stable inflow of new major Python updates. Every new release
brought new improvements to the language, its standard library, and its interpreter.
Moreover, beginning with version 3.9, Python has adopted an annual release cycle.
This means we will have access to new features and improvements every year.

If you want to learn more about the Python release cycle, read the
PEP 602—Annual Release Cycle for Python document, available at
https://www.python.org/dev/peps/pep-0602/.

https://www.python.org/dev/peps/pep-0602/

New Things in Python

[72]

In this chapter, we will take a closer look at the recent Python evolution. We will
review a number of important additions across the latest few releases. We will
also take a speculative look into the future and present a few features that have
been accepted in the PEP process and will become an official part of the Python
programming language in the very near future. Along the way, we'll cover the
following topics:

• Recent language additions
• Not that new, but still shiny
• What may come in the future?

But before we review those features, let's begin by considering the technical
requirements.

Technical requirements
The following are the Python packages that are mentioned in this chapter that you
can download from PyPI:

• mypy

• pyright

Information on how to install packages is included in Chapter 2, Modern Python
Development Environments.

The code files for this chapter can be found at https://github.com/PacktPublishing/
Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%203.

Recent language additions
Every release of Python comes with it a lot of changes of different types. Almost
every release of Python brings some new syntax elements. However, the majority
of the changes are related to Python's standard library, the CPython interpreter, the
Python API, and CPython's C API. Due to space limitations, it is impossible to cover
all of these in this book. That is why we will focus just on new syntax features and
new additions to the standard library.

In terms of the two latest versions of Python, we can distinguish four main syntax
updates:

• Dictionary and merge update operators (added in Python 3.9)
• Assignment expressions (added in Python 3.8)

https://github.com/PacktPublishing/Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%203
https://github.com/PacktPublishing/Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%203

Chapter 3

[73]

• Type hinting generics (added in Python 3.9)
• Positional-only arguments (added in Python 3.8)

These four features would best be described as quality-of-life improvements. They
do not introduce any new programming paradigms, nor drastically change the way
your code can be written. They simply allow for better coding patterns or enable
stricter API definition.

In recent years, Python core developers have been primarily focused on removing
dead or redundant modules from the standard library rather than adding anything
new. Still, from time to time, we see some standard library additions. In the last two
releases, we have been the beneficiaries of two completely new modules:

• The zoneinfo module for supporting the IANA (Internet Assigned Numbers
Authority) time zone database (added in Python 3.9)

• The graphlib module for operating with graph-like structures (added in
Python 3.8)

Both modules are fairly small with regards to their API size. Later, we will discuss
some example areas where you could apply them. But first, let's zoom into the
syntax updates incorporated in Python 3.8 and Python 3.9.

Dictionary merge and update operators
Python allows the use of a number of selected arithmetic operators to manipulate
the built-in container types, including lists, tuples, sets, and dictionaries.

For lists and tuples, you can use the + (addition) operator to concatenate two
variables as long as they are the same type. There is also the += operator, which
allows for the in-place modification of existing variables. The following transcript
presents examples of the concatenation of lists and tuples in an interactive session:

>>> [1, 2, 3] + [4, 5, 6]
[1, 2, 3, 4, 5, 6]
>>> (1, 2, 3) + (4, 5, 6)
(1, 2, 3, 4, 5, 6)
>>> value = [1, 2, 3]
>>> value += [4, 5, 6]
>>> value
[1, 2, 3, 4, 5, 6]
>>> value = (1, 2, 3)
>>> value += (4, 5, 6)
>>> value
(1, 2, 3, 4, 5, 6)

New Things in Python

[74]

When it comes to sets, there are exactly four binary operators (having two operands)
that produce a new set:

• Intersection operator: Represented by & (bitwise OR). This produces a set
with elements common to both sets.

• Union operator: Represented by | (bitwise OR). This produces a set of all
elements in both sets.

• Difference operator: Represented by - (subtraction). This produces a set with
elements in the left-hand set that are not in the right-hand set.

• Symmetric difference: Represented by ^ (bitwise XOR). This produces a set
with elements of both sets that are in either of the sets but not both.

The following transcript presents examples of intersection and union operations on
sets in an interactive session:

>>> {1, 2, 3} & {1, 4}
{1}
>>> {1, 2, 3} | {1, 4}
{1, 2, 3, 4}
>>> {1, 2, 3} - {1, 4}
{2, 3}
>>> {1, 2, 3} ^ {1, 4}
{2, 3, 4}

For a very long time, Python didn't have a dedicated binary operator that would
permit the production of a new dictionary from two existing dictionaries. Starting
with Python 3.9, we can use the | (bitwise OR) and |= (in-place bitwise OR)
operators to perform a dictionary merge and update operations on dictionaries. That
should be the idiomatic way of producing a union of two dictionaries. The reasoning
behind adding new operators was outlined in the PEP 584—Add Union Operators To
Dict document.

A programming idiom is the common and most preferable way
of performing specific tasks in a given programming language.
Writing idiomatic code is an important part of Python culture. The
Zen of Python says: "There should be one—and preferably only one—
obvious way to do it."

We will discuss more idioms in Chapter 4, Python in Comparison with
Other Languages.

Chapter 3

[75]

In order to merge two dictionaries into a new dictionary, use the following
expression:

dictionary_1 | dictionary_2

The resulting dictionary will be a completely new object that will have all the keys
of both source dictionaries. If both dictionaries have overlapping keys, the resulting
object will receive values from the rightmost object.

Following is an example of using this syntax on two dictionary literals, where the
dictionary on the left is updated with values from the dictionary on the right:

>>> {'a': 1} | {'a': 3, 'b': 2}
{'a': 3, 'b': 2}

If you prefer to update the dictionary variable with the keys coming from a different
dictionary, you can use the following in-place operator:

existing_dictionary |= other_dictionary

The following is an example of usage with a real variable:

>>> mydict = {'a': 1}
>>> mydict |= {'a': 3, 'b': 2}
>>> mydict
{'a': 3, 'b': 2}

In older versions of Python, the simplest way to update an existing dictionary
with the contents of another dictionary was to use the update() method, as in the
following example:

existing_dictionary.update(other_dictionary)

This method modifies existing_dictionary in place and returns no value. This
means that it does not allow the straightforward production of a merged dictionary
as an expression and is always used as a statement.

The difference between expressions and statements will be
explained in the Assignment expressions section.

New Things in Python

[76]

Alternative – Dictionary unpacking
It is a little-known fact that Python already supported a fairly concise way to
merge two dictionaries before version 3.9 through a feature known as dictionary
unpacking. Support for dictionary unpacking in dict literals was introduced
in Python 3.5 with PEP 448 Additional Unpacking Generalizations. The syntax for
unpacking two (or more) dictionaries into a new object is as follows:

{**dictionary_1, **dictionary_2}

The example involving real literals is as follows:

>>> a = {'a': 1}; b = {'a':3, 'b': 2}
>>> {**a, **b}
{'a': 3, 'b': 2}

This feature, together with list unpacking (with *value syntax), may be familiar for
those who have experience of writing functions that can accept an undefined set
of arguments and keyword arguments, also known as variadic functions. This is
especially useful when writing decorators.

You should remember that dictionary unpacking, while extremely popular in
function definitions, is an especially rare method of merging dictionaries. It may
confuse less experienced programmers who are reading your code. That is why you
should prefer the new merge operator over dictionary unpacking in code that runs in
Python 3.9 and newer versions. For older versions of Python, it is sometimes better to
use a temporary dictionary and a simple update() method.

Alternative – ChainMap from the collections module
Yet another way to create an object that is, functionally speaking, a merge of two
dictionaries is through the ChainMap class from the collections module. This is a
wrapper class that takes multiple mapping objects (dictionaries in this instance) and
acts as if it was a single mapping object.

The syntax for merging two dictionaries with ChainMap is as follows:

new_map = ChainMap(dictionary_2, dictionary_1)

We will discuss the topic of variadic functions and decorators in
detail in Chapter 4, Python in Comparison with Other Languages.

Chapter 3

[77]

Note that the order of dictionaries is reversed compared to the | operator. This
means that if you try to access a specific key of the new_map object, it will perform
lookups over wrapped objects in a left-to-right order. Consider the following
transcript, which illustrates examples of operations using the ChainMap class:

>>> from collections import ChainMap
>>> user_account = {"iban": "GB71BARC20031885581746", "type":
"account"}
>>> user_profile = {"display_name": "John Doe", "type": "profile"}
>>> user = ChainMap(user_account, user_profile)
>>> user["iban"]
'GB71BARC20031885581746'
>>> user["display_name"]
'John Doe'
>>> user["type"]
'account'

In the preceding example, we can clearly see that the resulting user object of
the ChainMap type contains keys from both the user_account and user_profile
dictionaries. If any of the keys overlap, the ChainMap instance will return the value of
the leftmost mapping that has the specific key. That is the complete opposite of the
dictionary merge operator.

ChainMap is a wrapper object. This means that it doesn't copy the contents of the
source mappings provided, but stores them as a reference. This means that if
underlying objects change, ChainMap will be able to return modified data. Consider
the following continuation of the previous interactive session:

>>> user["display_name"]
'John Doe'
>>> user_profile["display_name"] = "Abraham Lincoln"
>>> user["display_name"]
'Abraham Lincoln'

Moreover, ChainMap is writable and populates changes back to the underlying
mapping. What you need to remember is that writes, updates, and deletes only affect
the leftmost mapping. If used without proper care, this can lead to some confusing
situations, as in the following continuation of the previous session:

>>> user["display_name"] = "John Doe"
>>> user["age"] = 33
>>> user["type"] = "extension"
>>> user_profile
{'display_name': 'Abraham Lincoln', 'type': 'profile'}

New Things in Python

[78]

>>> user_account
{'iban': 'GB71BARC20031885581746', 'type': 'extension', 'display_name':
'John Doe', 'age': 33}

In the preceding example, we can see that the'display_name' key was populated
back to the user_account dictionary, where user_profile was the initial source
dictionary holding such a key. In many contexts, such backpropagating behavior of
ChainMap is undesirable. That's why the common idiom for using it for the purpose
of merging two dictionaries actually involves explicit conversion to a new dictionary.
The following is an example that uses previously defined input dictionaries:

>>> dict(ChainMap(user_account, user_profile))
{'display_name': 'John Doe', 'type': 'account', 'iban':
'GB71BARC20031885581746'}

If you want to simply merge two dictionaries, you should prefer a new merge
operator over ChainMap. However, this doesn't mean that ChainMap is completely
useless. If the back and forth propagation of changes is your desired behavior,
ChainMap will be the class to use. Also, ChainMap works with any mapping type.
So, if you need to provide unified access to multiple objects that act as if they were
dictionaries, ChainMap will enable the provision of a single merge-like unit to do so.

Usually, the most important reason for using ChainMap over dictionary unpacking
or the union operator is backward compatibility. On Python versions older than 3.9,
you won't be able to use the new dictionary merge operator syntax. So, if you have to
write code for older versions of Python, use ChainMap. If you don't, it is better to use
the merge operator.

Another syntax change that has a big impact on backward compatibility is
assignment expressions.

If you have a custom dict-like class, you can always extend it with
the special __or__() method to provide compatibility with the |
operator instead of using ChainMap. Overriding special methods
will be covered in Chapter 4, Python in Comparison with Other
Languages. Anyway, using ChainMap is usually easier than writing
a custom __or__() method and will allow you to work with pre-
existing object instances of classes that you cannot modify.

Chapter 3

[79]

Assignment expressions
Assignment expressions are a fairly interesting feature because their introduction
affected the fundamental part of Python syntax: the distinction between expressions
and statements. Expressions and statements are the key building blocks of almost
every programming language. The difference between them is really simple:
expressions have a value, while statements do not.

Think of statements as consecutive actions or instructions that your program
executes. So, value assignments, if clauses, together with for and while loops, are all
statements. Function and class definitions are statements, too.

Think of expressions as anything that can be put into an if clause. Typical examples
of expressions are literals, values returned by operators (excluding in-place
operators), and comprehensions, such as list, dictionary, and set comprehensions.
Function calls and method calls are expressions, too.

There are some elements of the many programming languages that are often
inseparably bound to statements. These are often:

• Functions and class definitions
• Loops
• if...else clauses
• Variable assignments

Python was able to break that barrier by providing syntax features that were
expression counterparts of such language elements, namely:

• Lambda expressions for anonymous functions as a counterpart for function
definitions:

lambda x: x**2

• Type object instantiation as a counterpart for class definition:
type("MyClass", (), {})

• Various comprehensions as a counterpart for loops:
squares_of_2 = [x**2 for x in range(10)]

• Compound expressions as a counterpart for if … else statements:

"odd" if number % 2 else "even"

New Things in Python

[80]

For many years, however, we haven't had access to syntax that would convey the
semantics of assigning a value to a variable in the form of an expression, and this
was undoubtedly a conscious design choice on the part of Python's creators. In
languages such as C, where variable assignment can be used both as an expression
and as a statement, this often leads to situations where the assignment operator is
confused by the equality comparison. Anyone who has programmed in C can attest
to the fact that this is a really annoying source of errors. Consider the following
example of C code:

 int err = 0;
 if (err = 1) {
 printf("Error occured");
 }

And compare it with the following:

 int err = 0;
 if (err == 1) {
 printf("Error occured");
 }

Both are syntactically valid in C because err = 1 is an expression in C that will
evaluate to the value 1. Compare this with Python, where the following code will
result in a syntax error:

err = 0
if err = 1:
 printf("Error occured")

On rare occasions, however, it may be really handy to have a variable assignment
operation that would evaluate to a value. Luckily, Python 3.8 introduced the
dedicated := operator, which assigns a value to the variable but acts as an expression
instead of a statement. Due to its visual appearance, it was quickly nicknamed the
walrus operator.

The use cases for this operator are, quite frankly, limited. They help to make
code more concise. And often, more concise code is easier to understand because
it improves the signal-to-noise ratio. The most common scenario for the walrus
operator is when a complex value needs to be evaluated and then immediately used
in the statements that follow.

A commonly referenced example is working with regular expressions. Let's imagine
a simple application that reads source code written in Python and scans it with
regular expressions looking for imported modules.

Chapter 3

[81]

Without the use of assignment expressions, the code could appear as follows:

import os
import re
import sys

import_re = re.compile(
 r"^\s*import\s+\.{0,2}((\w+\.)*(\w+))\s*$"
)
import_from_re = re.compile(
 r"^\s*from\s+\.{0,2}((\w+\.)*(\w+))\s+import\s+(\w+|*)+\s*$"
)

if __name__ == "__main__":
 if len(sys.argv) != 2:
 print(f"usage: {os.path.basename(__file__)} file-name")
 sys.exit(1)

 with open(sys.argv[1]) as file:
 for line in file:
 match = import_re.search(line)
 if match:
 print(match.groups()[0])

 match = import_from_re.search(line)
 if match:
 print(match.groups()[0])

As you can observe, we had to repeat twice the pattern that evaluates the match of
complex expressions and then retrieves grouped tokens. That block of code could be
rewritten with assignment expressions in the following way:

if match := import_re.match(line):
 print(match.groups()[0])

if match := import_from_re.match(line):
 print(match.groups()[0])

As you can see, there is a small improvement in terms of readability, but it isn't
dramatic. This type of change really shines in situations where you need to repeat
the same pattern multiple times. The continuous assignment of temporary results to
the same variable can make code look unnecessarily bloated.

New Things in Python

[82]

Another use case could be reusing the same data in multiple places in larger
expressions. Consider the example of a dictionary literal that represents some
predefined data of an imaginary user:

first_name = "John"
last_name = "Doe"
height = 168
weight = 70

user = {
 "first_name": first_name,
 "last_name": last_name,
 "display_name": f"{first_name} {last_name}",
 "height": height,
 "weight": weight,
 "bmi": weight / (height / 100) ** 2,
}

Let's assume that in our situation, it is important to keep all the elements consistent.
Hence, the display name should always consist of a first name and a last name, and
the BMI should be calculated on the basis of weight and height. In order to prevent
us from making a mistake when editing specific data components, we had to define
them as separate variables. These are no longer required once a dictionary has been
created. Assignment expressions enable the preceding dictionary to be written in a
more concise way:

user = {
 "first_name": (first_name := "John"),
 "last_name": (last_name := "Doe"),
 "display_name": f"{first_name} {last_name}",
 "height": (height := 168),
 "weight": (weight := 70),
 "bmi": weight / (height / 100) ** 2,
}

As you can see, we had to wrap assignment expressions with parentheses.
Unfortunately, the := syntax clashes with the : character used as an association
operator in dictionary literals and parentheses are a way around that.

Assignment expressions are a tool for polishing your code and nothing more.
Always make sure that once applied, they actually improve readability, instead of
making it more obscure.

Chapter 3

[83]

Type-hinting generics
Type-hinting annotations, although completely optional, are an increasingly popular
feature of Python. They allow you to annotate variable, argument, and function
return types with type definitions. These type annotations serve documentational
purposes, but can also be used to validate your code using external tools. Many
programming IDEs are able to understand typing annotations and visually highlight
potential typing problems. There are also static type checkers, such as mypy or
pyright, that can be used to scan through the whole code base and report all typing
errors of code units that use annotations.

In its simplest form, type hinting can be used with a conjunction of the built-in
or custom types to specify desired types, function input arguments, and return
values, as well as local variables. Consider the following function, which allows the
performance of the case-insensitive lookup of keys in a string-keyed dictionary:

from typing import Any

def get_ci(d: dict, key: str) -> Any:
 for k, v in d.items():
 if key.lower() == k.lower():
 return v

The first statement imports from the typing module the Any type, which defines that
the variable or argument can be of any type. The signature of our function specifies
that the first argument, d, should be a dictionary, while the second argument, key,
should be a string. The signature ends with the specification of a return value, which
can be of any type.

The story of the mypy project is very interesting. It began life as
the Ph.D. research of Jukka Lehtosalo, but it really started to take
shape when he started working on it together with Guido van
Rossum (Python creator) at Dropbox. You can learn more about
that story from the farewell letter to Guido on Dropbox's tech blog
at https://blog.dropbox.com/topics/company/thank-you--
guido.

The preceding example is, of course, a naïve implementation of
a case-sensitive lookup. If you would like to do this in a more
performant way, you would probably require a dedicated class.
We will eventually revisit this problem later in the book.

https://blog.dropbox.com/topics/company/thank-you--guido
https://blog.dropbox.com/topics/company/thank-you--guido

New Things in Python

[84]

If you're using type checking tools, the preceding annotations will be sufficient
to detect many mistakes. If, for instance, a caller switches the order of positional
arguments, you will be able to detect the error quickly, as the key and d arguments
are annotated with different types. However, these tools will not complain in a
situation where a user passes a dictionary that uses different types for keys.

For that very reason, generic types such as tuple, list, dict, set, frozenset, and
many more can be further annotated with types of their content. For a dictionary,
the annotation has the following form:

 dict[KeyType, ValueType]

The signature of the get_ci() function, with more restrictive type annotations,
would be as follows:

def get_ci(d: dict[str, Any], key: str) -> Any: ...

In older versions of Python, built-in collection types could not be annotated so easily
with types of their content. The typing module provides special types that can be
used for that purpose. These types include:

• typing.Dict for dictionaries
• typing.List for lists
• typing.Tuple for tuples
• typing.Set for sets
• typing.FrozenSet for frozen sets

These types are still useful if you need to provide functionality for a wide spectrum
of Python versions, but if you're writing code for Python 3.9 and newer releases
only, you should use the built-in generics instead. Importing those types from typing
modules is deprecated and they will be removed from Python in the future.

Positional-only parameters
Python is quite flexible when it comes to passing arguments to functions. There are
two ways in which function arguments can be provided to functions:

We will take a closer look at typing annotations in Chapter 4, Python
in Comparison with Other Languages.

Chapter 3

[85]

• As a positional argument
• As a keyword argument

For many functions, it is the choice of the caller in terms of how arguments are
passed. This is a good thing because the user of the function can decide that a specific
usage is more readable or convenient in a given situation. Consider the following
example of a function that concatenates the strings using a delimiter:

def concatenate(first: str, second: str, delim: str):
 return delim.join([first, second])

There are multiple ways in terms of how this function can be called:

• With positional arguments: concatenate("John", "Doe", " ")
• With keyword arguments: concatenate(first="John", second="Doe",

delim=" ")

• With a mix of positional and keyword arguments: concatenate("John",
"Doe", delim=" ")

If you are writing a reusable library, you may already know how your library is
intended to be used. Sometimes, you may know from your experience that specific
usage patterns will make the resulting code more readable, or quite the opposite.
You may not be certain about your design yet and want to make sure that the API of
your library may be changed within a reasonable time frame without affecting your
users. In either case, it is a good practice to create function signatures in a way that
supports the intended usage and also allows for future extension.

Once you publish your library, the function signature forms a usage contract with
your library. Any change to the argument names and their ordering can break
applications of the programmer using that library.

If you were to realize at some point in time that the argument names first and
second don't properly explain their purpose, you cannot change them without
breaking backward compatibility. That's because there may be a programmer who
used the following call:

concatenate(first="John", second="Doe", delim=" ")

If you want to convert the function into a form that accepts any number of strings,
you can't do that without breaking backward compatibility because there might be
a programmer who used the following call:

concatenate("John", "Doe", " ")

New Things in Python

[86]

Fortunately, Python 3.8 added the option to define specific arguments as positional-
only. This way, you may denote which arguments cannot be passed as keyword
arguments in order to avoid issues with backward compatibility in the future. You
can also denote specific arguments as keyword-only. Careful consideration as to
which arguments should be passed as position-only and which as keyword-only
serves to make the definition of functions more susceptible to future changes. Our
concatenate() function, defined with the use of positional-only and keyword-only
arguments, could look as follows:

def concatenate(first: str, second: str, /, *, delim: str):
 return delim.join([first, second])

The way in which you read this definition is as follows:

• All arguments preceding the / mark are positional-only arguments
• All arguments following the * mark are keyword-only arguments

The preceding definition ensures that the only valid call to the concatenate()
function would be in the following form:

concatenate("John", "Doe", delim=" ")

And if you were to try to call it differently, you would receive a TypeError error, as
in the following example:

>>> concatenate("John", "Doe", " ")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: concatenate() takes 2 positional arguments but 3 were given

Let's assume that we've published our function in a library in the last format and
now we want to make it accept an unlimited number of positional arguments. As
there is only one way in which this function can be used, we can now use argument
unpacking to implement the following change:

def concatenate(*items, delim: str):
 return delim.join(items)

The *items argument will capture all the positional arguments in the items tuple.
Thanks to such changes, users will be able to use the function with a variable number
of positional items, as in the following examples:

Chapter 3

[87]

>>> concatenate("John", "Doe", delim=" ")
'John Doe'
>>> concatenate("Ronald", "Reuel", "Tolkien", delim=" ")
'Ronald Reuel Tolkien'
>>> concatenate("Jay", delim=" ")
'Jay'
>>> concatenate(delim=" ")
''

Positional-only and keyword-only arguments are a great tool for library creators
as they create some space for future design changes that won't affect their users.
But they are also a great tool for writing applications, especially if you work with
other programmers. You can utilize positional-only and keyword-only arguments to
make sure that functions will be invoked as intended. This may help in future code
refactoring.

zoneinfo module
Handling time and time zones is one of the most challenging aspects of
programming. The main reasons are numerous common misconceptions that
programmers have about time and time zones. Another reason is the never-ending
stream of updates to actual time zone definitions. And these changes happen every
year, often for political reasons.

Python, starting from version 3.9, makes access to the information regarding current
and historical time zones easier than ever. The Python standard library provides a
zoneinfo module that is an interface to the time zone database either provided by
your operating system or obtained as a first-party tzdata package from PyPI.

Actual usage involves creating ZoneInfo objects using the following constructor call:

ZoneInfo(timezone_key)

Packages from PyPI are considered third-party packages, while
standard library modules are considered first-party packages.
tzdata is quite unique because it is maintained by CPython's core
developers. The reason for extracting the contents of the IANA
database to separate packages on PyPI is to ensure regular updates
that are independent from CPython's release cadence.

New Things in Python

[88]

Here, timezone_key is a filename from IANA's time zone database. These filenames
resemble the way in which time zones are often presented in various applications.
Examples include:

• Europe/Warsaw

• Asia/Tel_Aviv

• America/Fort_Nelson

• GMT-0

Instances of the ZoneInfo class can be used as a tzinfo parameter of the datetime
object constructor, as in the following example:

from datetime import datetime
from zoneinfo import ZoneInfo

dt = datetime(2020, 11, 28, tzinfo=ZoneInfo("Europe/Warsaw"))

This allows you to create so-called time zone-aware datetime objects. Time zone-
aware datetime objects are essential in properly calculating the time differences in
specific time zones because they are able to take into account things such as changes
between standard and daylight-saving time, together with any historical changes
made to IANA's time zone database.

You can obtain a full list of all the time zones available in your system using the
zoneinfo.available_timezones() function.

graphlib module
Another interesting addition to the Python standard library is the graphlib module,
added in Python 3.9. This is a module that provides utilities for working with graph-
like data structures.

A graph is a data structure consisting of nodes connected by edges. Graphs are a
concept from the field of mathematics known as graph theory. Depending on the
edge type, we can distinguish between two main types of graphs:

• An undirected graph is a graph where every edge is undirected. If a graph
was a system of cities connected by roads, the edges in an undirected graph
would be two-way roads that can be traversed from either side. So, if two
nodes, A and B, are connected to edge E in an undirected graph, you can
traverse from A to B and from B to A using the same edge, E.

Chapter 3

[89]

• A directed graph is a graph where every edge is directed. Again, if a graph
was a system of cities connected by roads, the edges in a directed graph
would be a single-way road that can be traversed from a single point of
origin only. If two nodes, A and B, are connected to a single edge, E, that
starts from node A, you can traverse from A to B using that edge, but can't
traverse from B to A.

Moreover, graphs can be either cyclic or acyclic. A cyclic graph is a graph that
has at least one cycle—a closed path that starts and ends at the same node. An
acyclic graph is a graph that does not have any cycles. Figure 3.1 presents example
representations of directed and undirected graphs:

Figure 3.1: Visual representations of various graph types

Graph theory deals with many mathematical problems that can be modeled using
graph structures. In programming, graphs are used to solve many algorithmic
problems. In computer science, graphs can be used to represent the flow of data or
relationships between objects. This has many practical applications, including:

• Modeling dependency trees
• Representing knowledge in a machine-readable format
• Visualizing information
• Modeling transportation systems

New Things in Python

[90]

The graphlib module is supposed to aid Python programmers when working with
graphs. This is a new module, so it currently only includes a single utility class
named TopologicalSorter. As the name suggests, this class is able to perform a
topological sort of directed acyclic graphs.

Topological sorting is the operation of ordering nodes of a Directed Acyclic Graph
(DAG) in a specific way. The result of topological sorting is a list of all nodes where
every node appears before all the nodes that you can traverse to from that node, in
other words:

• The first node will be the node that cannot be traversed to from any other
node

• Every next node will be a node from which you cannot traverse to previous
nodes

• The last node will be a node from which you cannot traverse to any node

Some graphs may have multiple orderings that satisfy the requirements of
topological sorting. Figure 3.2 presents an example DAG with three possible
topological orderings:

Figure 3.2: Various ways to sort the same graph topologically

Chapter 3

[91]

To better understand the use of topological sorting, let's consider the following
problem. We have a complex operation to execute that consists of multiple
dependent tasks. This job could be, for instance, migrating multiple database
tables between two different database systems. This is a well-known problem, and
there are already multiple tools that can migrate data between various database
management systems. But for the sake of illustration, let's assume that we don't
have such a system and need to build something from scratch.

In relational database systems, rows in tables are often cross-referenced, and the
integrity of those references is guarded by foreign key constraints. If we would like
to ensure that, at any given point in time, the target database is referentially integral,
we would have to migrate our all the tables in specific order. Let's assume we have
the following database tables:

• A customers table, which holds personal information pertaining to
customers.

• An accounts table, which holds information about user accounts, including
their balances. A single user can have multiple accounts (for instance,
personal and business accounts), and the same account cannot be accessed by
multiple users.

• A products table, which holds information on the products available for sale
in our system.

• An orders table, which holds individual orders of multiple products within a
single account made by a single user.

• An order_products table, which holds information regarding the quantities
of individual products within a single order.

Python does not have any special data type dedicated to represent graphs. But it has
a dictionary type that is great at mapping relationships between keys and values.
Let's define references between our imaginary tables:

table_references = {
 "customers": set(),
 "accounts": {"customers"},
 "products": set(),
 "orders": {"accounts", "customers"},
 "order_products": {"orders", "products"},
}

New Things in Python

[92]

If our reference graph does not have cycles, we can topologically sort it. The result
of that sorting would be a possible table migration order. The constructor of the
graphlib.TopologicalSorter class accepts as input a single dictionary in which keys
are origin nodes and values are sets of destination nodes. This means that we can
pass our table_references variable directly to the TopologicalSorter() constructor.
To perform a topological sort, we can use the static_order() call, as in the following
transcript from an interactive session:

>>> from graphlib import TopologicalSorter
>>> table_references = {
... "customers": set(),
... "accounts": {"customers"},
... "products": set(),
... "orders": {"accounts", "customers"},
... "order_products": {"orders", "products"},
... }
>>> sorter = TopologicalSorter(table_references)
>>> list(sorter.static_order())
['customers', 'products', 'accounts', 'orders', 'order_products']

Topological sorting can be performed only on DAGs. TopologicalSorter doesn't
check for the existence of cycles during initialization, although it will detect cycles
during sorting. If a cycle is found, the static_order() method will raise a graphlib.
CycleError exception.

The features we've reviewed so far are quite new, so it will take some time until they
become the mainstream elements of Python. That's because they are not backward
compatible, and older versions of Python are still supported by many library
maintainers.

In the next section, we will review a number of important Python elements
introduced in Python 3.6 and Python 3.7, so we will definitely have wider Python
version coverage. Not all of these new elements are popular though, so I hope you
will still learn something.

Our example was, of course, straightforward and fairly easy to
solve by hand. However, real databases often consist of dozens
or even hundreds of tables. Preparing such a plan manually for
databases that big would be a very tedious and error-prone task.

Chapter 3

[93]

Not that new, but still shiny
Every Python release brings something new. Some changes are real revelations;
they greatly improve the way we can program and are adopted almost instantly by
the community. The benefits of other changes, however, may not be obvious at the
beginning and they may require a little more time to really take off.

We've seen this happening with function annotations that were part of Python
from the very first 3.0 release. It took years to build an ecosystem of tools that
would leverage them. Now, annotations seem almost ubiquitous in modern Python
applications.

The core Python developers are very conservative about adding new modules to
the standard library and we rarely see new additions. Still, chances are that you
will soon forget about using the graphlib or zoneinfo modules if you don't have
the opportunity to work with problems that require manipulating graph-like data
structures or the careful handling of time zones. You may have already forgotten
about other nice additions to Python that have happened over the past few years.
That's why we will do a brief review of a few important changes that happened in
versions older than Python 3.7. These will either be small but interesting additions
that could easily be missed, or things that simply take time to get used to.

breakpoint() function
We discussed the topic of debuggers in Chapter 2, Modern Python Development
Environments. The breakpoint() function was already mentioned there as an
idiomatic way of invoking the Python debugger.

It was added in Python 3.7, so has already been available for quite some time. Still,
it is one of those changes that simply takes some effort to get used to. We've been
told and taught for many years that the simplest way to invoke the debugger from
Python code is via the following snippet:

import pdb; pdb.set_trace()

It doesn't look pretty, nor does it look straightforward but, if you've been doing
that every day for years, as many programmers have, you would have that in your
muscle memory. Problem? Jump to the code, input a few keystrokes to invoke pdb,
and then restart the program. Now you're in the interpreter shell at the very same
spot as your error occurs. Done? Go back to the code, remove import pdb; pdb.set_
trace(), and then start working on your fix.

So why should you bother? Isn't that something of a personal preference? Are
breakpoints something that ever get to production code?

New Things in Python

[94]

The truth is that debugging is often a solitary and deeply personal task. We often
spend numerous hours struggling with bugs, looking for clues, and reading code
over and over in a desperate attempt to locate that small mistake that is breaking
our application. When you're deeply focused on finding the cause of a problem,
you should definitely use something that you find the most convenient. Some
programmers prefer debuggers integrated into IDEs. Some programmers don't even
use debuggers, preferring elaborated print() calls spread all over the code instead.
Always choose whatever you find the most convenient.

But if you're used to a plain old shell-based debugger, the breakpoint() can
make your work easier. The main advantage of this function is that it isn't bound
to a single debugger. By default, it invokes a pdb session, but this behavior can
be modified with a PYTHONBREAKPOINT environment variable. If you prefer to use
an alternative debugger (such as ipdb, as mentioned Chapter 2, Modern Python
Development Environments), you can set this environment variable to a value that will
tell Python which function to invoke.

Standard practice is to set your preferred debugger in a shell profile script so that
you don't have to modify this variable in every shell session. For instance, if you're a
Bash user and want to always use ipdb instead of pdb, you could insert the following
statement in your .bash_profile file:

PYTHONBREAKPOINT=ipdb.set_trace()

This approach also works well when working together. For instance, if someone asks
for your help with debugging, you can ask them to insert breakpoint statements in
suspicious places. That way, when you run the code on your own computer, you will
be using the debugger of your choice.

Development mode
Since version 3.7, the Python interpreter can be invoked in dedicated development
mode, which introduces additional runtime checks. These are helpful in diagnosing
potential issues that may arise when running the code. In correctly working code,
those checks would be unnecessarily expensive, so they are disabled by default.

If you don't know where to put your breakpoint, but the
application exits upon an unhandled exception, you can use the
postmortem feature of pdb. With the following command, you can
start your Python script in a debugging session that will pause at
the moment the exception was raised:

python3 -m pdb -c continue script.py

Chapter 3

[95]

Development mode can be enabled in two ways:

• Using the -X dev command-line option of the Python interpreter, for
instance:

python -X dev my_application.py

• Using the PYTHONDEVMODE environment variable, for instance:

PYTHONDEVMODE=1 my_application

The most important effects that this mode enables are as follows:

• Memory allocation hooks: buffer under/overflow, violations of the memory
allocator API, unsafe usage of the Global Interpreter Lock (GIL)

• Import warnings issued in relation to possible mistakes when importing
modules

• Resource warnings issued in the case of improper handling of resources, for
instance, not closing opened files

• Deprecation warnings regarding elements of the standard library that have
been deprecated and will be removed in future releases

• Enabling a fault handler that outputs an application stack trace when the
application receives SIGSEGV, SIGFPE, SIGABRT, SIGBUS, or SIGILL system
signals

Warnings emitted in development mode are indications that something does
not work the way it should. They may be useful in finding problems that are not
necessarily manifested as errors during the normal operation of your code, but may
lead to tangible defects in the long term.

The improper cleanup of opened files may lead at some point to resource exhaustion
of the environment your application is running in. File descriptors are resources, the
same as RAM or disk storage. Every operating system has a limited number of files
that can be opened at the same time. If your application is opening new files without
closing them, at some point, it won't be able to open new ones.

Development mode enables you to identify such problems in advance. This is why
it is advised to use this mode during application testing. Due to the additional
overhead of checks enabled by development mode, it is not recommended to use this
in production environments.

Sometimes, development mode can be used to diagnose existing problems, too.
An example of really problematic situations is when your application experiences
a segmentation fault.

New Things in Python

[96]

When this happens in Python, you usually won't get any details of the error, except
the very brief message printed on your shell's standard output:

Segmentation fault: 11

When a segmentation fault occurs, the Python process receives a SIGSEGV system
signal and terminates instantly. On some operating systems, you will receive a core
dump, which is a snapshot of the process memory state recorded at the time of the
crash. This can be used to debug your application. Unfortunately, in the case of
CPython, this will be a memory snapshot of the interpreter process, so debugging
will be taking place at the level of C code.

Development mode installs additional fault handler code that will output the
Python stack trace whenever it receives a fault signal. Thanks to this, you will have
a bit more information about which part of the code could lead to the problem. The
following is an example of known code that will lead to a segmentation fault in
Python 3.9:

import sys

sys.setrecursionlimit(1 << 30)

def crasher():
 return crasher()

crasher()

If you execute this in Python interpreter with the -X dev flag, you will get output
similar to the following:

Fatal Python error: Segmentation fault

Current thread 0x000000010b04edc0 (most recent call first):
 File "/Users/user/dev/crashers/crasher.py", line 6 in crasher
 File "/Users/user/dev/crashers/crasher.py", line 6 in crasher
 File "/Users/user/dev/crashers/crasher.py", line 6 in crasher
 File "/Users/user/dev/crashers/crasher.py", line 6 in crasher
 File "/Users/user/dev/crashers/crasher.py", line 6 in crasher
 ...

This fault handler can also be enabled outside of development mode. To do that, you
can use the -X faulthandler command-line option or set the PYTHONFAULTHANDLER
environment variable to 1.

Chapter 3

[97]

Module-level __getattr__() and __dir__()
functions
Every Python class can define the custom __getattr__() and __dir__() methods
to customize the dynamic attribute access of objects. The __getattr__() function
is invoked when a given attribute name is not found to capture a missing attribute
lookup and possibly generate a value on the fly. The __dir__() method is called
when an object is passed to the dir() function and it should return a list of object
attribute names.

Starting from Python 3.7, the __getattr__() and __dir__() functions can be defined
at module level. The semantics are similar to object methods. The __getattr__()
module-level function, if defined, will be called on a failed module member lookup.
The __dir__() function will be called when a module object is passed to the dir()
function.

This feature may be useful for library maintainers when deprecating module
functions or classes. Let's imagine that we exposed our get_ci() function from the
Type-hinting generics section in an open source library called dict_helpers.py. If we
would like to rename the function to lookup_ci() and still be allowed to import it
under the old name, we could use the following deprecation pattern:

from typing import Any
from warnings import warn

def ci_lookup(d: dict[str, Any], key: str) -> Any:
 ...

def __getattr__(name: str):
 if name == "get_ci":
 warn(f"{name} is deprecated", DeprecationWarning)
 return ci_lookup

 raise AttributeError(f"module {__name__} has no attribute {name}")

It's not easy to cause segmentation faults in Python. This often
happens for some Python extensions written in C or C++ or
functions called from shared libraries (such as DLLs, .dylib, or
.so objects). Still, there are some known and well documented
conditions where this problem can occur in pure Python code. The
repository of the CPython interpreter includes a collection of such
known "crashers." This can be found under https://github.com/
python/cpython/tree/master/Lib/test/crashers.

https://github.com/python/cpython/tree/master/Lib/test/crashers
https://github.com/python/cpython/tree/master/Lib/test/crashers

New Things in Python

[98]

The preceding pattern will emit DeprecationWarning, regardless of whether the get_
ci() function is imported directly from a module (such as via from dict_helpers
import get_ci) or accessed as a dict_helpers.get_ci attribute.

Formatting strings with f-strings
F-strings, also known as formatted string literals, are one of the most beloved
Python features that came with Python 3.6. Introduced with PEP 498, they added
a new way of formatting strings. Prior to Python 3.6, we already had two different
string formatting methods. So right now, there are three different ways in which a
single string can be formatted:

• Using % formatting: This is the oldest method and uses a substitution pattern
that resembles the syntax of the printf() function from the C standard
library:

>>> import math
>>> "approximate value of π: %f" % math.pi
'approximate value of π: 3.141593'

• Using the str.format() method: This method is more convenient and less
error-prone than % formatting, although it is more verbose. It enables the use
of named substitution tokens as well as reusing the same value many times:

>>> import math
>>> " approximate value of π: {:f}".format(pi=math.pi)
'approximate value of π: 3.141593'

• Using formatted string literals (so called f-strings). This is the most concise,
flexible, and convenient option for formatting strings. It automatically
substitutes values in literals using variables and expressions from local
namespaces:

>>> import math
>>> f"approximate value of π: {math.pi:f}"
'approximate value of π: 3.141593'

Deprecation warnings are not visible by default. You can enable
them in development mode.

Chapter 3

[99]

Formatted string literals are denoted with the f prefix, and their syntax is closest to
the str.format() method, as they use a similar markup for denoting replacement
fields in formatted text. In the str.format() method, the text substitutions refer to
positional and keyword arguments. What makes f-strings special is that replacement
fields can be any Python expression, and it will be evaluated at runtime. Inside
strings, you have access to any variable that is available in the same namespace as
the formatted literal.

The ability to use expressions as replacement fields makes formatting code simpler
and shorter. You can also use the same formatting specifiers of replacement fields
(for padding, aligning, signs, and so on) as the str.format() method, and the syntax
is as follows:

f"{replacement_field_expression:format_specifier}"

The following is a simple example of code executed in an interactive session that
prints the first ten powers of the number 10 using f-strings and aligns the results
using string formatting with padding:

>>> for x in range(10):
... print(f"10^{x} == {10**x:10d}")
...
10^0 == 1
10^1 == 10
10^2 == 100
10^3 == 1000
10^4 == 10000
10^5 == 100000
10^6 == 1000000
10^7 == 10000000
10^8 == 100000000
10^9 == 1000000000

The full formatting specification of the Python string forms
a separate mini language inside Python. The best reference
source for this is the official documentation, which you can find
under https://docs.python.org/3/library/string.html.
Another useful internet resource regarding this topic is https://
pyformat.info/, which presents the most important elements of
this specification using practical examples.

https://docs.python.org/3/library/string.html
https://pyformat.info/
https://pyformat.info/

New Things in Python

[100]

Underscores in numeric literals
Underscores in numeric literals are probably one such feature that are the easiest to
adopt, but still not as popular as they could be. Starting from Python 3.6, you can
use the _ (underscore) character to separate digits in numeric literals. This facilitates
the increased readability of big numbers. Consider the following value assignment:

account_balance = 100000000

With so many zeros, it is hard to tell immediately whether we are dealing with
millions or billions. You can instead use an underscore to separate thousands,
millions, billions, and so on:

account_balance = 100_000_000

Now, it is easier to tell immediately that account_balance equals one hundred
million without carefully counting the zeros.

secrets module
One of the prevalent security mistakes perpetrated by many programmers is
assuming randomness from the random module. The nature of random numbers
generated by the random module is sufficient for statistical purposes. It uses the
Mersenne Twister pseudorandom number generator. It has a known uniform
distribution and a long enough period length that it can be used in simulations,
modeling, or numerical integration.

However, Mersenne Twister is a completely deterministic algorithm, as is the
random module. This means that as a result of knowing its initial conditions (the
seed number), you can generate the same pseudorandom numbers. Moreover, by
knowing enough consecutive results of a pseudorandom generator, it is usually
possible to retrieve the seed number and predict the next results. This is true for
Mersenne Twister as well.

That characteristic of pseudorandom number generators means that they should
never be used for generating random values in a security context. For instance, if
you need to generate a random secret that would be a user password or token, you
should use a different source of randomness.

If you want to see how random numbers from Mersenne Twister
can be predicted, you can review the following project on GitHub:
https://github.com/kmyk/mersenne-twister-predictor.

https://github.com/kmyk/mersenne-twister-predictor

Chapter 3

[101]

The secrets module serves exactly that purpose. It relies on the best source of
randomness that a given operating system provides. So, on Unix and Unix-like
systems, that would be the /dev/urandom device, and on Windows, it will be the
CryptGenRandom generator.

The three most important functions are:

• secrets.token_bytes(nbytes=None): This returns nbytes of random bytes.
This function is used internally by secrets.token_hex() and secrets.token_
urlsafe(). If nbytes is not specified, it will return a default number of bytes,
which is documented as "reasonable."

• secrets.token_hex(nbytes=None): This returns nbytes of random bytes
in the form of a hex-encoded string (not a bytes() object). As it takes two
hexadecimal digits to encode one byte, the resulting string will consist of
nbytes × 2 characters. If nbytes is not specified, it will return the same default
number of bytes as secrets.token_bytes().

• secrets.token_urlsafe(nbytes=None): This returns nbytes of random bytes
in the form of a URL-safe, base64-encoded string. As a single byte takes
approximately 1.3 characters in base64 encoding, the resulting string will
consist of nbytes × 1.3 characters. If nbytes is not specified, it will return the
same default number of bytes as secrets.token_bytes().

Another important, but often overlooked, function is secrets.compare_digest(a,
b). This compares two strings or byte-like objects in a way that does not allow an
attacker to guess if they at least partially match by measuring how long it took to
compare them. A comparison of two secrets using ordinary string comparison (the
== operator) is susceptible to a so-called timing attack. In such a scenario, the attacker
can try to execute multiple secret verifications and, by performing statistical analysis,
gradually guess consecutive characters of the original value.

What may come in the future?
At the time of writing this book, Python 3.9 is still only a few months old, but the
chances are that when you're reading this book, Python 3.10 has either already been
released or is right around the corner.

As the Python development processes are open and transparent, we have constant
insight into what has been accepted in the PEP documents and what has already
been implemented in alpha and beta releases. This allows us to review selected
features that will be introduced in Python 3.10. The following is a brief review of
the most important changes that we can expect in the near future.

New Things in Python

[102]

Union types with the | operator
Python 3.10 will bring yet another syntax simplification for the purpose of type
hinting. Thanks to this new syntax, it will be easier to construct union-type
annotations.

Python is dynamically typed and lacks polymorphism. As a result of this, functions
can easily accept the same argument, which can be a different type depending on
the call, and properly process it if those types have the same interface. To better
understand this, let's bring back the signature of a function that allowed case-
insensitive loopback of string-keyed dictionary values:

def get_ci(d: dict[str, Any], key: str) -> Any: ...

Internally, we used the upper() method of keys obtained from the dictionary. That's
the main reason why we defined the type of the d argument as dict[str, Any], and
the type of key argument as str.

However, the str type is not the only built-in type that has the upper() method. The
other type that has the same method is bytes. If we would like to allow our get_ci()
function to accept both string-keyed and bytes-keyed dictionaries, we need to specify
the union of possible types.

Currently, the only way to specify type unions is through the typing.Union hint. This
hint allows the union of bytes and str types to be specified as typing.Union[bytes,
str]. The complete signature of the get_ci() function would be as follows:

def get_ci(
 d: dict[Union[str, bytes], Any],
 key: Union[str, bytes]
) -> Any:
 ...

That is already verbose, and for more complex functions, it can get only worse. This
is why Python 3.10 will allow the union of types using the | operator to be specified.
In the future, you will be able to simply write the following:

def get_ci(d: dict[str | bytes, Any], key: str | bytes) -> Any: ...

In contrast to type-hinting generics, the introduction of a type union operator does
not deprecate the typing.Union hint. This means that we will be able to use those
two conventions interchangeably.

Chapter 3

[103]

Structural pattern matching
Structural pattern matching is definitely the most controversial new Python feature
of the last decade, and it is definitely the most complex one.

The acceptance of that feature was preceded by numerous heated debates and
countless design drafts. The complexity of the topic is clearly visible if we take a look
over all the PEP documents that tried to tackle the problem. The following is a table
of all PEP documents related to structural pattern matching (statuses accurate as of
March 2021):

Date PEP Title Type Status
23-Jun-2020 622 Structural Pattern Matching Standards

Track
Superseded
by PEP 634

12-Sep-2020 634 Structural Pattern Matching:
Specification

Standards
Track

Accepted

12-Sep-2020 635 Structural Pattern Matching:
Motivation and Rationale

Informational Final

12-Sep-2020 636 Structural Pattern Matching:
Tutorial

Informational Final

26-Sep-2020 642 Explicit Pattern Syntax for
Structural Pattern Matching

Standards
Track

Draft

9-Feb-2021 653 Precise Semantics for Pattern
Matching

Standards
Track

Draft

That's a lot of documents, and none of them are short. So, what is structural pattern
matching and how can it be useful?

Structural pattern matching introduces a match statement and two new soft
keywords: match and case. As the name suggests, it can be used to match a given
value against a list of specified "cases" and act accordingly to the match.

For some programmers, the syntax of the match statement resembles the syntax of
the switch statement found in languages such as C, C++, Pascal, Java, and Go. It can
indeed be used to implement the same programming pattern, but is definitely much
more powerful.

A soft keyword is a keyword that is not reserved in every context.
Both match and case can be used as ordinary variables or function
names outside the match statement context.

New Things in Python

[104]

The general (and simplified) syntax for a match statement is as follows:

match expression:
 case pattern:
 ...

expression can be any valid Python expression. pattern represents an actual
matching pattern that is a new concept in Python. Inside a case block, you can have
multiple statements. The complexity of a match statement stems mostly from the
introduction of match patterns that may initially be hard to understand. Patterns
can also be easily confused with expressions, but they don't evaluate like ordinary
expressions do.

But before we dig into the details of match patterns, let's take a look at a simple
example of a match statement that replicates the functionality of switch statements
from different programming languages:

import sys

match sys.platform:
 case "windows":
 print("Running on Windows")
 case "darwin" :
 print("Running on macOS")
 case "linux":
 print("Running on Linux")
 case _:
 raise NotImplementedError(
 f"{sys.platform} not supported!"
)

This is, of course, a very straightforward example, but already shows some
important elements. First, we can use literals as patterns. Second, there is a special _
(underscore) wildcard pattern. Wildcard patterns and other patterns that, from the
syntax alone, can be proven to match always create an irrefutable case block. An
irrefutable case block can be placed only as the last block of a match statement.

The previous example can, of course, be implemented with a simple chain of if,
elif, and else statements. A common entry-level recruitment challenge is writing a
FizzBuzz program.

Chapter 3

[105]

A FizzBuzz program iterates from 0 to an arbitrary number and, depending on the
value, does three things:

• It prints Fizz if the value is divisible by 3
• It prints Buzz if the value is divisible by 5
• It prints FizzBuzz if the value is divisible by 3 and 5
• It prints the value in all other cases

This is indeed a minor problem, but you would be surprised how people can
stumble on even the simplest things when under the stress of an interview. This can,
of course, be solved with a couple of if statements, but the use of a match statement
can give our solution some natural elegance:

for i in range(100):
 match (i % 3, i % 5):
 case (0, 0): print("FizzBuzz")
 case (0, _): print("Fizz")
 case (_, 0): print("Buzz")
 case _: print(i)

In the preceding example, we are matching (i % 3, i % 5) in every iteration of
the loop. We have to do both modulo divisions because the result of every iteration
depends on both division results. A match expression will stop evaluating patterns
once it finds a matching block and will execute only one block of code.

The notable difference from the previous example is that we used mostly sequence
patterns instead of literal patterns:

• The (0, 0) pattern: This will match a two-element sequence if both elements
are equal to 0.

• The (0, _) pattern: This will match a two-element sequence if the first
element is equal to 0. The other element can be of any value and type.

• The (_, 0) pattern: This will match a two-element sequence if the second
element is equal to 0. The other element can be of any value and type.

• The _ pattern: This is a wildcard pattern that will match all values.

Match expressions aren't limited to simple literals and sequences of literals. You
can also match against specific classes and actually, with class patterns, things start
to get really magical. That's definitely the most complex part of the whole feature.

New Things in Python

[106]

At the time of writing, Python 3.10 hasn't yet been released, so it's hard to show a
typical and practical use case for class matching patterns. So instead, we will take
a look at an example from an official tutorial. The following is a modified example
from the PEP 636 document that includes a simple where_is() function, which can
match against the structure of the Point class instance provided:

class Point:
 x: int
 y: int

 def __init__(self, x, y):
 self.x = x
 self.y = y

def where_is(point):
 match point:
 case Point(x=0, y=0):
 print("Origin")
 case Point(x=0, y=y):
 print(f"Y={y}")
 case Point(x=x, y=0):
 print(f"X={x}")
 case Point():
 print("Somewhere else")
 case _:
 print("Not a point")

A lot is happening in the preceding example, so let's iterate over all the patterns
included here:

• Point(x=0, y=0): This matches if point is an instance of the Point class and
its x and y attributes are equal to 0.

• Point(x=0, y=y): This matches if point is an instance of the Point class and
its x attribute is equal to 0. The y attribute is captured to the y variable, which
can be used within the case block.

• Point(x=x, y=0): This matches if point is an instance of the Point class and
its y attribute is equal to 0. The x attribute is captured to the x variable, which
can be used within the case block.

• Point(): This matches if point is an instance of the Point class.
• _: This always matches.

Chapter 3

[107]

As you can see, pattern matching can look deep into object attributes. Despite the
Point(x=0, y=0) pattern looking like a constructor call, Python does not call an
object constructor when evaluating patterns. It also doesn't inspect arguments and
keyword arguments of __init__() methods, so you can access any attribute value in
your match pattern.

Match patterns can also use "positional attribute" syntax, but that requires a bit more
work. You simply need to provide an additional __match_args__ class attribute that
specifies the natural position order of class instance attributes, as in the following
example:

class Point:
 x: int
 y: int

 __match_args__ = ["x", "y"]

 def __init__(self, x, y):
 self.x = x
 self.y = y

def where_is(point):
 match point:
 case Point(0, 0):
 print("Origin")
 case Point(0, y):
 print(f"Y={y}")
 case Point(x, 0):
 print(f"X={x}")
 case Point():
 print("Somewhere else")
 case _:
 print("Not a point")

And that's just the tip of the iceberg. Match statements are actually way more
complex than we could demonstrate in this short section. If we were to consider all
the potential use cases, syntax variants, and corner cases, we could potentially talk
about them throughout the whole chapter. If you want to learn more about them,
you should definitely read though the three "canonical" PEPs: 634, 635, and 636.

New Things in Python

[108]

Summary
In this chapter, we've covered the most important language syntax and standard
library changes that have happened over the last four versions of Python. If you're
not actively following Python release notes or haven't yet transitioned to Python 3.9,
this should give you enough information to be up to date.

In this chapter, we've also introduced the concept of programming idioms. This is
an idea that we will be referring to multiple times throughout the book. In the next
chapter, we will take a closer look at many Python idioms by comparing selected
features of Python to different programming languages. If you are a seasoned
programmer who has just recently transitioned to Python, this will be a great
opportunity to learn the "Python way of doing things." It will also be an opportunity
to see where Python really shines, and where it might still be behind the competition.

[109]

4
Python in Comparison with

Other Languages
Many programmers come to Python with prior experience of other programming
languages. It happens often that they are already familiar with programming idioms
of those languages and try to replicate them in Python. As every programming
language is unique, bringing such foreign idioms often leads to overly verbose or
suboptimal code.

The classic example of a foreign idiom that is often used by inexperienced
programmers is iteration over lists. Someone that is familiar with arrays in the C
language could write Python code similar to the following example:

for index in range(len(some_list)):
 print(some_list[index])

An experienced Pythonic programmer would most probably write:

for item in some_list:
 print(item)

Programming languages are often classified by paradigms that can be understood
as cohesive sets of features supporting certain "styles of programming." Python is a
multiparadigm language and thanks to this, it shares many similarities with a vast
amount of other programming languages. As a result, you can write and structure
your Python code almost the same way you would do that in Java, C++, or any other
mainstream programming language.

Python in Comparison with Other Languages

[110]

Unfortunately, often that won't be as effective as using well-recognized Python
patterns. Knowing native idioms allows you to write more readable and
efficient code.

This chapter is aimed at programmers experienced with other programming
languages. We will review some of the important features of Python together with
idiomatic ways of solving common problems. We will also see how these compare
to other programming languages and what common pitfalls are lurking for seasoned
programmers that are just starting their Python journey. Along the way, we will
cover the following topics:

• Class model and object-oriented programming
• Dynamic polymorphism
• Data classes
• Functional programming
• Enumerations

Let's begin by considering the technical requirements.

Technical requirements
The code files for this chapter can be found at https://github.com/PacktPublishing/
Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%204.

Class model and object-oriented
programming
The most prevalent paradigm of Python is object-oriented programming (also
known as OOP). It is centered around objects that encapsulate data (in the form
of object attributes) and behavior (in the form of methods). OOP is probably one
of the most diverse paradigms. It has many styles, flavors, and implementations
that have been developed over many years of programming history. Python takes
inspiration from many other languages, so in this section, we will take a look at the
implementation of OOP in Python through the prism of different languages.

To facilitate code reuse, extensibility, and modularity, OOP languages usually
provide a means for either class composition or inheritance. Python is no different
and like many other object-oriented languages supports the subclassing of types.

https://github.com/PacktPublishing/Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%204
https://github.com/PacktPublishing/Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%204

Chapter 4

[111]

Python may not have as many object-oriented features as other OOP languages, but
it has a pretty flexible data and class model that allows you to implement most OOP
patterns with extreme elegance. Also, everything in Python is an object, including
functions and class definitions and basic values like integers, floats, Booleans, and
strings.

If we would like to find another popular programming language that has similar
object-oriented syntax features and a similar data model, one of the closest matches
would probably be Kotlin, which is a language that runs (mostly) on Java Virtual
Machine (JVM). The following are the similarities between Kotlin and Python:

• A convenient way to call methods of super-classes: Kotlin provides the super
keyword and Python provides the super() function to explicitly reference
methods or attributes of super-classes.

• An expression for object self-reference: Kotlin provides the this expression,
which always references the current object of the class. In Python, the first
argument of the method is always an instance reference. By convention, it is
named self.

• Support for creating data classes: Like Python, Kotlin provides data classes as
"syntactic sugar" over classic class definitions to simplify the creation of class-
based data structures that are not supposed to convey a lot of behavior.

• The concept of properties: Kotlin allows you to define class property setters
and getters as functions. Python provides the property() decorator with a
similar purpose, together with the concept of descriptors, which allows you
to fully customize the attribute access of an object.

What makes Python really stand out in terms of OOP implementation is the
approach to inheritance. Python, unlike Kotlin and many other languages, freely
permits multiple inheritance (although it often isn't a good idea). Other languages
often do not allow this or provide some constraints. Another important Python
differentiator is the lack of private/public keywords that would control access to
internal object attributes outside of the class definition.

Let's take a closer look at a feature that Python shares with Kotlin and some other
JVM-based programming languages, which is access to super-classes through the
super() call.

Python in Comparison with Other Languages

[112]

Accessing super-classes
There are multiple ways of encapsulating object behavior in OOP languages but one
of the most common ones is the usage of classes. Python's OOP implementation is
based precisely on the concept of classes and subclassing.

Subclassing is a convenient way of reusing existing classes by enhancing or
specializing their behavior. Subclasses often rely on the behavior of their base
classes but extend them with additional methods or provide completely new
implementations for existing methods by overriding their definitions.

But overriding methods without access to their original implementations within the
subclass would not facilitate code reuse at all. That's why Python offers the super()
function, which returns a proxy object to the method implementations in all base
classes. To better understand the potential of the super() function, let's imagine we
want to subclass a Python dictionary type to allow access to the stored keys through
a case-insensitive key lookup. You could use this, for instance, to store HTTP
protocol header values as the HTTP protocol specification states that header names
are case-insensitive.

The following is a simple example of implementing such a structure in Python
through subclassing:

from collections import UserDict
from typing import Any

class CaseInsensitiveDict(UserDict):
 def __setitem__(self, key: str, value: Any):
 return super().__setitem__(key.lower(), value)

 def __getitem__(self, key: str) -> Any:
 return super().__getitem__(key.lower())

 def __delitem__(self, key: str) -> None:
 return super().__delitem__(key.lower())

Our implementation of CaseInsensitiveDict relies on collections.UserDict
instead of the built-in dict type. Although inheriting from the dict type is possible,
we would quickly run into inconsistencies as the built-in dict type doesn't always
call __setitem__() to update its state. Most importantly, it won't be used on object
initialization and on update() method calls. Similar problems can arise when
subclassing the list type. That's why good practice dictates to use collections.
UserDict classes for subclassing the dict type and collections.UserList for
subclassing the list type.

Chapter 4

[113]

The core of modified dictionary behavior happens in __getitem__(self, item: str)
and __setitem__(self, key: str, value: Any). These are methods responsible
respectively for accessing dictionary elements using dictionary[key] and setting
dictionary values using the dictionary[key] = value syntax. The typing annotations
help us to denote that keys should be strings but values can be any Python type.

__setitem__() is responsible for storing and modifying dictionary values. It would
not make sense to subclass the base dictionary type and not leverage its internal key-
value storage. That's why we use super().__setitem__() to invoke the original set-
item implementation. But before we allow the value to be stored, we transform the
key to lowercase using the str.lower() method. That way we ensure that all keys
stored in the dictionary will always be lowercase.

The __getitem__() method is analogous to the __setitem__() implementation. We
know that every key is transformed to lowercase before being stored in a dictionary.
Thanks to this, when key lookup occurs, we can also transform it to lowercase as
well. If the super implementation of the __getitem__() method does not return the
result, we can be sure that there is no case-insensitive match in the dictionary.

Last but not least, the __delitem__() method deletes existing dictionary keys. It
uses the same technique to transform a key to lowercase and invoke super-class
implementation. Thanks to this, we will be able to remove dictionary keys using the
del dictionary[key] statement.

The following transcript shows a case-insensitive key lookup of our class in action:

>>> headers = CaseInsensitiveDict({
... "Content-Length": 30,
... "Content-Type": "application/json",
... })
>>> headers["CONTENT-LENGTH"]
30
>>> headers["content-type"]
'application/json'

The above use case for the super() function should be simple to follow and
understand, but things get a bit more complex when multiple inheritance is
involved. Python allows you to use multiple inheritance by introducing the Method
Resolution Order (MRO). We will take a closer look at it in the next section.

Python in Comparison with Other Languages

[114]

Multiple inheritance and Method Resolution
Order
Python MRO is based on C3 linearization, the deterministic MRO algorithm
originally created for the Dylan programming language. The C3 algorithm builds
the linearization of a class, also called precedence, which is an ordered list of the
ancestors. This list is used to seek an attribute in a class inheritance tree.

Python didn't have the C3 linearization algorithm as its MRO from the beginning. It
was introduced in Python 2.3 together with a common base type for all objects (that
is, the object type). Before the change to the C3 linearization method, if a class had
two ancestors (refer to Figure 4.1), the order in which methods were resolved was
only easy to compute and track for simple cases that didn't use a multiple inheritance
model in a cascading way.

The following is an example of a simple multiple inheritance pattern that would not
require any special MRO:

class Base1:
 pass

class Base2:
 def method(self):
 print("Base2.method() called")

class MyClass(Base1, Base2):
 pass

You can find more information about the Dylan programming
language at http://opendylan.org and Wikipedia has a
great article on C3 linearization that can be found at https://
en.wikipedia.org/wiki/C3_linearization.

http://opendylan.org
https://en.wikipedia.org/wiki/C3_linearization
https://en.wikipedia.org/wiki/C3_linearization

Chapter 4

[115]

Before Python 2.3, that would be a simple depth-first search over a class hierarchy
tree. In other words, when MyClass().method() is called, the interpreter looks for the
method in MyClass, then Base1, and then eventually finds it in Base2.

Figure 4.1: Classical hierarchy

When we introduce a CommonBase class at the top of our class hierarchy (refer to
Figure 4.2), things will get more complicated:

class CommonBase:
 pass

class Base1(CommonBase):
 pass

class Base2(CommonBase):
 def method(self):
 print("Base2.method() called")

class MyClass(Base1, Base2):
 pass

As a result, the simple resolution order that behaves according to the left-to-right
depth-first rule is getting back to the top through the Base1 class before looking into
the Base2 class. This algorithm results in a counterintuitive output. Without the C3
linearization, the method that is executed would not be the one that is the closest in
the inheritance tree.

Python in Comparison with Other Languages

[116]

Figure 4.2: The diamond class hierarchy

Such an inheritance scenario (known as the diamond class hierarchy) is rather
uncommon for custom-built classes. The standard library typically does not structure
the inheritance hierarchies in this way, and many developers think that it is bad
practice. It is possible with Python anyway and thus requires a well-defined and
clear handling strategy.

Also, starting from Python 2.3, object is at the top of the type hierarchy for classes.
Essentially, every class is a part of a large diamond class inheritance hierarchy. It
became something that has to be resolved on the C side of the language as well.
That's why Python now has C3 linearization as the MRO algorithm.

The original reference document of the Python MRO written by Michele Simionato
describes linearization using the following words:

The linearization of C is the sum of C plus the merge of the linearizations of the
parents and the list of the parents.

In Python 2, classes inheriting from the object type were called
new-style classes. Classes did not inherit implicitly from objects. In
Python 3, every class is a new-style class and old-style classes are
not available.

The Michele Simionato reference document explaining Python's
MRO in great detail can be found at http://www.python.org/
download/releases/2.3/mro.

http://www.python.org/download/releases/2.3/mro
http://www.python.org/download/releases/2.3/mro

Chapter 4

[117]

The above simply means that C3 is a recursive algorithm. The C3 symbolic notation
applied to our earlier inheritance example is as follows:

L[MyClass(Base1, Base2)] =
 [MyClass] + merge(L[Base1], L[Base2], [Base1, Base2])

Here, L[MyClass] is the linearization of MyClass, and merge is a specific algorithm
that merges several linearization results.

The merge algorithm is responsible for removing the duplicates and preserving the
correct ordering. It uses the concept of list head and tail. The head is the first element
of the list and the tail is the rest of the list following the head. Simionato describes the
merge algorithm like this (adapted to our example):

Take the head of the first list, that is, L[Base1][0]; if this head is not in the tail of any
of the other lists, then add it to the linearization of MyClass and remove it from the
lists in the merge, otherwise look at the head of the next list and take it, if it is a good
head.

Then, repeat the operation until all the classes are removed or it is impossible to find
good heads. In this case, it is impossible to construct the merge; Python 2.3 will
refuse to create the MyClass class and will raise an exception.

In other words, C3 does a recursive depth lookup on each parent to get a sequence
of lists. Then, it computes a left-to-right rule to merge all lists with hierarchy
disambiguation when a class is involved in several lists.

If we had to calculate the MRO for MyClass manually through a series of symbolic
steps, we would first have to unfold all L[class] linearizations:

L[MyClass]
 = [MyClass] + merge(L[Base1], L[Base2], [Base1, Base2])]
 = [MyClass] + merge(
 [Base1 + merge(L[CommonBase], [CommonBase])],
 [Base2 + merge(L[CommonBase], [CommonBase])],
 [Base1, Base2]
)
 = [MyClass] + merge(
 [Base1] + merge(L[CommonBase], [CommonBase]),
 [Base2] + merge(L[CommonBase], [CommonBase]),
 [Base1, Base2]
)
 = [MyClass] + merge(

Python in Comparison with Other Languages

[118]

 [Base1] + merge([CommonBase] + merge(L[object]), [CommonBase]),
 [Base2] + merge([CommonBase] + merge(L[object]), [CommonBase]),
 [Base1, Base2]
)

Essentially, the object class has no ancestors so its C3 linearization is just a single
element list [object]. It means we continue by unfolding merge([object]) to
[object]:

 = [MyClass] + merge(
 [Base1] + merge([CommonBase] + merge([object]), [CommonBase]),
 [Base2] + merge([CommonBase] + merge([object]), [CommonBase]),
 [Base1, Base2]
)

merge([object]) has only a single element list so it immediately unfolds to [object]:

 = [MyClass] + merge(
 [Base1] + merge([CommonBase, object], [CommonBase]),
 [Base2] + merge([CommonBase, object], [CommonBase]),
 [Base1, Base2]
)

Now it's time to unfold merge([CommonBase, object], [CommonBase]). The head
of the first list is CommonBase. It is not in the tail of other lists. We can immediately
remove it from the merge and add it to the outer linearization result:

 = [MyClass] + merge(
 [Base1, CommonBase] + merge([object]),
 [Base2, CommonBase] + merge([object]),
 [Base1, Base2]
)

We are again left with merge([object]) and we can continue unfolding:

 = [MyClass] + merge(
 [Base1, CommonBase, object],
 [Base2, CommonBase, object],
 [Base1, Base2]
)

Now we are left with the last merge, which is finally non-trivial. The first head is
Base1. It is not found in the tails of other lists. We can remove it from the merge and
add it to the outer linearization result:

Chapter 4

[119]

 = [MyClass, Base1] + merge(
 [CommonBase, object],
 [Base2, CommonBase, object],
 [Base2]
)

Now the first head is CommonBase. It is found in the tail of the second list [Base2,
CommonBase, object]. It means we can't process it at the moment and have to move
to the next head, which is Base2. It is not found in the tail of other lists. We can
remove it from the merge and add it to the outer linearization result:

 = [MyClass, Base1, Base2] + merge(
 [CommonBase, object],
 [CommonBase, object],
 []
)

Now, CommonBase is again the first head but this time it is no longer found in other
list tails. We can remove it from the merge and add it to the outer linearization result:

 = [MyClass, Base1, Base2, CommonBase] + merge(
 [object],
 [object],
 []
)

The last merge([object], [object], []) step is trivial. The final linearization result
is the following:

 [MyClass, Base1, Base2, CommonBase, object]

You can easily inspect the results of C3 linearization by verifying the __mro__
attribute of any class. The following transcript presents the computed MRO of
MyClass:

>>> MyClass.__mro__
(<class '__main__.MyClass'>, <class '__main__.Base1'>, <class '__
main__.Base2'>, <class '__main__.CommonBase'>, <class 'object'>)

The __mro__ attribute of a class (which is read-only) stores the result of the C3
linearization computation. Computation is done when the class definition is loaded.
You can also call MyClass.mro() to compute and get the result.

Python in Comparison with Other Languages

[120]

Class instance initialization
An object in OOP is an entity that encapsulates data together with behavior. In
Python, data is contained as object attributes, which are simply object variables.
Behavior, on the other hand, is represented by methods. That is common to almost
every OOP language, but the exact nomenclature is sometimes different. For
instance, in C++ and Java, object data is said to be stored in fields. In Kotlin, object
data is stored behind properties (although they are a bit more than simple object
variables).

What makes Python different from statically typed OOP languages is its approach to
object attribute declaration and initialization. In short, Python classes do not require
you to define attributes in the class body. A variable comes into existence at the time
it is initialized. That's why the canonical way to declare object attributes is through
assigning their values during object initialization in the __init__() method:

class Point:
 def __init__(self, x, y):
 self.x = x
 self.y = y

That may be confusing for those coming to Python with prior knowledge of statically
typed programming languages. In those languages, the declaration of object fields
is usually static and lives outside of the object initialization function. That's why
programmers with a C++ or Java background often tend to replicate this pattern by
assigning some default values as class attributes in the main class body:

 class Point:
 x = 0
 y = 0

 def __init__(self, x, y):
 self.x = x
 self.y = y

The above code is a classic example of a foreign language idiom replicated in Python.
Most of all, it is redundant: class attribute values will always be shadowed by object
attributes upon initialization. But it is also a dangerous code smell: it can lead to
problematic errors if one decides to assign as a class attribute a mutable type like
list or dict.

Chapter 4

[121]

The problem comes from the fact that class attributes (attributes assigned outside
of the method body) are assigned to type objects and not type instances. When
accessing an attribute with self.attribute, Python will first look up the name
attribute value in the class instance namespace. If that lookup fails, it will perform a
lookup in the class type namespace. When assigning values through self.attribute
from within the class method, the behavior is completely different: new values are
always assigned in the class instance namespace. This is especially troublesome with
mutable types as this may cause an accidental leak of the object state between class
instances.

Because using mutable types as class attributes instead of instance attributes is rather
a bad practice, it is hard to come up with code examples that would be practical.
But it doesn't mean we can't take a quick look at how it actually works. Consider
the following class, which is supposed to aggregate values as a list and track the last
aggregated value:

class Aggregator:
 all_aggregated = []
 last_aggregated = None

 def aggregate(self, value):
 self.last_aggregated = value
 self.all_aggregated.append(value)

To see where the problem lies, let's start an interactive session, create two distinct
aggregators, and start aggregating elements:

>>> a1 = Aggregator()
>>> a2 = Aggregator()
>>> a1.aggregate("a1-1")
>>> a1.aggregate("a1-2")
>>> a2.aggregate("a2-1")

A code smell is a characteristic of code that may be a sign of a
deeper problem. A specific piece of code can be functionally
correct and free from errors but can be a stub for future problems.
Code smells are usually small architectural deficiencies or unsafe
constructs that attract bugs.

Python in Comparison with Other Languages

[122]

If we now take a look at the aggregation lists of both instances, we will see very
disturbing output:

>> a1.all_aggregated
['a1-1', 'a1-2', 'a2-1']
>>> a2.all_aggregated
['a1-1', 'a1-2', 'a2-1']

Someone reading the code could think that all Aggregator instances are supposed to
track the history of their own aggregations. But we see that instead, all Aggregator
instances share the state of the all_aggregated attribute. On the other hand, when
looking at the last aggregated values, we see correct values for both aggregators:

>>> a1.last_aggregated
'a1-2'
>>> a2.last_aggregated
'a2-1'

In situations like these, it is easy to solve the mystery by inspecting the unbound
class attribute values:

>>> Aggregator.all_aggregated
['a1-1', 'a1-2', 'a2-1']
>>> Aggregator.last_aggregated
>>>

As we see from the above transcript, all Aggregator instances shared their state
through the mutable Aggregator.all_aggregated attribute. Something like this
could be the intended behavior but very often is just an example of a mistake that
is sometimes hard to track down. Due to this fact, all attribute values that are
supposed to be unique for every class instance should absolutely be initialized in
the __init__() method only.

The fixed version of the Aggregator class would be as follows:

class Aggregator:
 def __init__(self):
 self.all_aggregated = []
 self.last_aggregated = None

 def aggregate(self, value):
 self.last_aggregated = value
 self.all_aggregated.append(value)

Chapter 4

[123]

We simply moved the initialization of the all_aggregated and last_aggregated
attributes to the __init__() method. Now let's repeat the same initialization and
aggregation calls as in the previous session:

>>> a1 = Aggregator()
>>> a2 = Aggregator()
>>> a1.aggregate("a1-1")
>>> a1.aggregate("a1-2")
>>> a2.aggregate("a2-1")

If we now inspect the state of Aggregator instances, we will see that they track the
history of their aggregations independently:

>>> a1.all_aggregated
['a1-1', 'a1-2']
>>> a2.all_aggregated
['a2-1']

If you really feel the urge to have some kind of declaration of all attributes at the top
of the class definition, you can use type annotations as in the following example:

from typing import Any, List

class Aggregator:
 all_aggregated: List[Any]
 last_aggregated: Any

 def __init__(self):
 self.all_aggregated = []
 self.last_aggregated = None

 def aggregate(self, value: Any):
 self.last_aggregated = value
 self.all_aggregated.append(value)

Having class attribute annotations actually isn't a bad practice. They can be used by
static type verifiers or IDEs to increase the quality of code and better communicate
the intended usage of your class and possible type constraints. Such class attribute
annotations are also used to simplify the initialization of data classes, which we will
discuss in the Data classes section.

Python in Comparison with Other Languages

[124]

Attribute access patterns
Another thing that sets Python apart from other statically typed object-oriented
languages is the lack of the notion of public, private, and protected class members. In
other languages, these are often used to restrict or open access to object attributes for
code outside of the class. The Python feature that is nearest to this concept is name
mangling. Every time an attribute is prefixed by __ (two underscores) within a class
body, it is renamed by the interpreter on the fly:

class MyClass:
 def __init__(self):
 self.__secret_value = 1

Accessing the __secret_value attribute by its initial name outside of the class will
raise an AttributeError exception:

>>> instance_of = MyClass()
>>> instance_of.__secret_value
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'MyClass' object has no attribute '__secret_value'
>>> instance_of._MyClass__secret_value
1

One could think that this is synonymous with private/protected fields and methods
commonly found in other OOP languages. It indeed makes it harder to access such
attributes outside of the class but doesn't make such access impossible. Private
and protected fields and methods in many other OOP languages are a means of
providing class encapsulation. They are used to restrict access to specific symbols
from anyone outside of a specific class (private) or anyone outside the inheritance
tree (protected). In Python, name mangling does not restrict attribute access in any
way. It only makes it less convenient.

The purpose of name mangling is an implicit way to avoid naming collisions. For
instance, it may happen that a specific identifier is a perfect fit for a new internal
attribute in some subclass. If that name is already taken somewhere up in the
inheritance tree, the name clash may result in unexpected behavior.

Note that the double underscore pattern is referred to as a
"dunder". Refer to the Dunder methods (language protocols) section
for more information.

Chapter 4

[125]

In such situations, the programmer may decide to use a different name or use name
mangling to resolve the conflict. Name mangling can also help in avoiding name
clashes in subclasses. Still, it is not recommended to use name mangling in base
classes by default, just to avoid any collisions in advance.

It all boils down to the Python way of doing things. Statically typed languages with
private/protected keywords enforce the attribute access restriction. It means that
usually there is no way to access such private/protected attributes outside of the
class. In Python, it is more common to clearly communicate what the intended use
is of each attribute instead of restricting users from doing whatever they want. With
or without name mangling, programmers will find a way to access the attribute
anyway. So, what's the purpose of making this less convenient for them?

When an attribute is not public, the convention to use is an _ prefix. This does not
involve any name mangling algorithm, but just usually documents the attribute as
an internal element of the class that is not intended to be used outside of the class
context. Many IDEs and style checkers are already aware of this convention and are
able to highlight places where such internal members are accessed outside of their
class.

Python also has other mechanisms to separate the public part of the class from its
private code. Two such mechanisms are descriptors and properties.

Descriptors
A descriptor lets you customize what should be done when you refer to an attribute
of an object. Descriptors are the basis of complex attribute access in Python. They are
used internally to implement properties, methods, class methods, static methods,
and super. They are objects that define how attributes of another class can be
accessed. In other words, a class can delegate the management of an attribute to
another class.

The descriptor classes are based on three special methods that form the descriptor
protocol:

• __set__(self, obj, value): This is called whenever the attribute is set. In
the following examples, we will refer to this as a setter.

• __get__(self, obj, owner=None): This is called whenever the attribute is
read (referred to as a getter).

• __delete__(self, obj): This is called when del is invoked on the attribute.

Python in Comparison with Other Languages

[126]

A descriptor that implements __get__() and __set__() is called a data descriptor.
If it just implements __get__(), then it is called a non-data descriptor.

Methods of the descriptor protocol are, in fact, called by the object's special
__getattribute__() method on every attribute lookup (do not confuse it with
__getattr__(), which has a different purpose). Whenever such a lookup is
performed, either by using a dotted notation in the form of instance.attribute or
by using the getattr(instance, 'attribute') function call, the __getattribute__()
method is implicitly invoked and it looks for an attribute in the following order:

1. It verifies whether the attribute is a data descriptor on the class object of the
instance

2. If not, it looks to see whether the attribute can be found in the __dict__
lookup of the instance object

3. Finally, it looks to see whether the attribute is a non-data descriptor on the
class object of the instance

In other words, data descriptors take precedence over the __dict__ lookup, and the
__dict__ lookup takes precedence over non-data descriptors.

To make it clearer, here is a modified example from the official Python
documentation that shows how descriptors work on real code:

class RevealAccess(object):
 """A data descriptor that sets and returns values
 normally and prints a message logging their access.
 """

 def __init__(self, initval=None, name='var'):
 self.val = initval
 self.name = name

 def __get__(self, obj, objtype):
 print('Retrieving', self.name)
 return self.val

 def __set__(self, obj, val):
 print('Updating', self.name)
 self.val = val

 def __delete__(self, obj):
 print('Deleting', self.name)

Chapter 4

[127]

class MyClass(object):
 x = RevealAccess(10, 'var "x"')
 y = 5

Note that x = RevealAccess() is defined as a class attribute instead of assigning it
in the __init__() method. Descriptors, in order to work, need to be defined as class
attributes. Also, they are closer to methods than normal variable attributes. Here is
an example of using the RevealAccess descriptor in the interactive session:

>>> m = MyClass()
>>> m.x
Retrieving var "x"
10
>>> m.x = 20
Updating var "x"
>>> m.x
Retrieving var "x"
20
>>> m.y
5
>>> del m.x
Deleting var "x"

The preceding example clearly shows that, if a class has the data descriptor for the
given attribute, then the descriptor's __get__() method is called to return the value
every time the instance attribute is retrieved, and __set__() is called whenever
a value is assigned to such an attribute. The __del__ method of a descriptor is
called whenever an instance attribute is deleted with the del instance.attribute
statement or the delattr(instance, 'attribute') call.

The difference between data and non-data descriptors is important for the reasons
highlighted at the beginning of the section. Python already uses the descriptor
protocol to bind class functions to instances as methods.

The official guide on using descriptors, together with many
examples, can be found at https://docs.python.org/3.9/
howto/descriptor.html.

https://docs.python.org/3.9/howto/descriptor.html
https://docs.python.org/3.9/howto/descriptor.html

Python in Comparison with Other Languages

[128]

Descriptors also power the mechanism behind the classmethod and staticmethod
decorators. This is because, in fact, the function objects are non-data descriptors too:

>>> def function(): pass
>>> hasattr(function, '__get__')
True
>>> hasattr(function, '__set__')
False

This is also true for functions created with lambda expressions:

>>> hasattr(lambda: None, '__get__')
True
>>> hasattr(lambda: None, '__set__')
False

So, without __dict__ taking precedence over non-data descriptors, we would not
be able to dynamically override specific methods on already constructed instances
at runtime. Fortunately, thanks to how descriptors work in Python, it is possible; so,
developers may use a popular technique called monkey patching to change the way
in which instances work ad hoc without the need for subclassing.

Real-life example – lazily evaluated attributes
One example usage of descriptors may be to delay the initialization of the class
attribute to the moment when it is accessed from the instance. This may be useful
if the initialization of such attributes depends on some context that is not yet
available at the time the class is imported. The other case is saving resources when
such initialization is simply expensive in terms of computing resources but it is not
known whether the attribute will be used anyway at the time the class is imported.
Such a descriptor could be implemented as follows:

class InitOnAccess:
 def __init__(self, init_func, *args, **kwargs):
 self.klass = init_func
 self.args = args
 self.kwargs = kwargs
 self._initialized = None

Monkey patching is the technique of modifying the class instance
dynamically at runtime by adding, modifying, or deleting
attributes without touching the class definition or the source code.

Chapter 4

[129]

 def __get__(self, instance, owner):
 if self._initialized is None:
 print('initialized!')
 self._initialized = self.klass(*self.args,
 **self.kwargs)
 else:
 print('cached!')
 return self._initialized

The InitOnAccess descriptor class includes some print() calls that allow us to see
whether values were initialized on access or accessed from the cache.

Let's imagine we want to have a class where all instances have access to a shared list
of sorted random values. The length of the list could be arbitrarily long, so it makes
sense to reuse it for all instances. On the other hand, sorting very long input can be
time-consuming. That's why the InitOnAccess class will make sure that such a list
will be initialized only on first access. Our class definition could be as follows:

import random

class WithSortedRandoms:
 lazily_initialized = InitOnAccess(
 sorted,
 [random.random() for _ in range(5)]
)

Note that we used fairly small input to the range() function to make the output
readable. Here is an example usage of the WithSortedRandoms class in an interactive
session:

>>> m = WithSortedRandoms()
>>> m.lazily_initialized
initialized!
[0.2592159616928279, 0.32590583255950756, 0.4015520901807743,
0.4148447834912816, 0.4187058605495758, 0.4534290894962043,
0.4796775578337028, 0.6963642650184283, 0.8449725511007807,
0.8808174325885045]
>>> m.lazily_initialized
cached!
[0.2592159616928279, 0.32590583255950756, 0.4015520901807743,
0.4148447834912816, 0.4187058605495758, 0.4534290894962043,
0.4796775578337028, 0.6963642650184283, 0.8449725511007807,
0.8808174325885045]

Python in Comparison with Other Languages

[130]

The official OpenGL Python library available on PyPI under the PyOpenGL name uses
a similar technique to implement a lazy_property object that is both a decorator and
a data descriptor:

class lazy_property(object):
 def __init__(self, function):
 self.fget = function

 def __get__(self, obj, cls):
 value = self.fget(obj)
 setattr(obj, self.fget.__name__, value)
 return value

The setattr() function allows you to set the attribute of the object instance by using
the attribute from the provided positional argument. Here, it is self.fget.__name__.
It is constructed like that because the lazy_property descriptor is supposed to be
used as a decorator of the method acting as a provider of the initialized value as in
the following example:

class lazy_property(object):
 def __init__(self, function):
 self.fget = function

 def __get__(self, obj, cls):
 value = self.fget(obj)
 setattr(obj, self.fget.__name__, value)
 return value

class WithSortedRandoms:
 @lazy_property
 def lazily_initialized(self):
 return sorted([[random.random() for _ in range(5)]])

Such an implementation is similar to using the property decorator described in the
next section. The function that is wrapped with it is executed only once and then
the instance attribute is replaced with a value returned by that function property.
This instance attribute takes precedence over the descriptor (the class attribute) so
no more initializations will be performed on the given class instance. This technique
is often useful when there's a need to fulfill the following two requirements at the
same time:

Chapter 4

[131]

• An object instance needs to be stored as a class attribute that is shared
between its instances (to save resources)

• This object cannot be initialized at the time of import because its creation
process depends on some global application state/context

In the case of applications written using OpenGL, you can encounter this kind of
situation very often. For example, the creation of shaders in OpenGL is expensive
because it requires a compilation of code written in OpenGL Shading Language
(GLSL). It is reasonable to create them only once, and, at the same time, include their
definition in close proximity to classes that require them. On the other hand, shader
compilations cannot be performed without OpenGL context initialization, so it is
hard to define and compile them reliably in a global module namespace at the time
of import.

The following example shows the possible usage of the modified version of
PyOpenGL's lazy_property decorator (here, lazy_class_attribute) in some
imaginary OpenGL-based application. The highlighted change to the original
lazy_property decorator was required in order to allow the attribute to be shared
between different class instances:

import OpenGL.GL as gl
from OpenGL.GL import shaders

class lazy_class_attribute(object):
 def __init__(self, function):
 self.fget = function

 def __get__(self, obj, cls):
 value = self.fget(cls)
 # note: storing in class object not its instance
 # no matter if its a class-level or
 # instance-level access
 setattr(cls, self.fget.__name__, value)
 return value

class ObjectUsingShaderProgram(object):
 # trivial pass-through vertex shader implementation
 VERTEX_CODE = """
 #version 330 core
 layout(location = 0) in vec4 vertexPosition;
 void main(){

Python in Comparison with Other Languages

[132]

 gl_Position = vertexPosition;
 }
 """
 # trivial fragment shader that results in everything
 # drawn with white color
 FRAGMENT_CODE = """
 #version 330 core
 out lowp vec4 out_color;
 void main(){
 out_color = vec4(1, 1, 1, 1);
 }
 """

 @lazy_class_attribute
 def shader_program(self):
 print("compiling!")
 return shaders.compileProgram(
 shaders.compileShader(
 self.VERTEX_CODE, gl.GL_VERTEX_SHADER
),
 shaders.compileShader(
 self.FRAGMENT_CODE, gl.GL_FRAGMENT_SHADER
)
)

Like every advanced Python syntax feature, this one should also be used with
caution and documented well in code. Descriptors affect the very basic part of class
behavior. For inexperienced developers, the altered class behavior might be very
confusing and unexpected. Because of that, it is very important to make sure that all
your team members are familiar with descriptors and understand this concept well
if it plays an important role in your project's code base.

Properties
Anyone who has programmed in C++ or Java for a while should probably be
familiar with the term encapsulation. It is a means of protecting direct access to class
fields coming from the assumption that all internal data held by a class should be
considered private. In a fully encapsulated class, as few methods as possible should
be exposed as public. Any write or read access to an object's state should be exposed
through setter and getter methods that are able to guard proper usage. In Java, for
instance, this pattern can look as follows:

Chapter 4

[133]

public class UserAccount {
 private String username;

 public String getUsername() {
 return username;
 }

 public void setUsername(String newUsername) {
 this.username = newUsername;
 }
}

The getUsername() method is a username getter and the setUsername() method is
a username setter. The premise is quite good. By hiding access to class members
behind getters and setters (also known as accessors and mutators), you are able
to guard the right access to internal class values (let's say, perform validation on
setters). You are also creating an extension point in the class public API that can
be potentially enriched with additional behavior whenever there is such a need
without breaking the backward compatibility of the class API.

Let's imagine that you have a class for a user account that, among others, stores
the user's password. If you would like to emit audit logs whenever a password is
accessed, you could either make sure that every place in your code that accesses
user passwords has proper audit log calls or proxy all access to password entry
through a set of setter and getter methods that have the logging call added by
default.

The problem is that you can never be sure what will require an additional extension
in the future. This simple fact often leads to over-encapsulation and a never-ending
litany of setter and getter methods for every possible field that could otherwise
be public. They are simply tedious to write, and way too often provide little to no
benefit and just reduce the signal-to-noise ratio.

Thankfully, Python has a completely different approach to the accessor and mutator
pattern through the mechanism of properties. Properties allow you to freely
expose public members of classes and simply convert them to getter and setter
methods whenever there is such a need. And you can do that completely without
breaking the backward compatibility of your class API. Consider the example of
an encapsulated UserAccount class that does not use the feature of properties:

class UserAccount:
 def __init__(self, username, password):
 self._username = username
 self._password = password

Python in Comparison with Other Languages

[134]

 def get_username(self):
 return self._username

 def set_username(self, username):
 self._username = username

 def get_password(self):
 return self._password

 def set_username(self, password):
 self._password = password

Whenever you see code like the above, which can be recognized by the abundance
of get_ and set_ methods, you can be almost 100% sure that you're dealing with
a foreign language idiom. That's something that a C++ or Java programmer could
write. A seasoned Python programmer would rather write the following:

class UserAccount:
 def __init__(self, username, password):
 self.username = username
 self.password = password

And only when there's an actual need to hide a specific field behind a property, not
sooner, an experienced programmer would provide the following modification:

class UserAccount:
 def __init__(self, username, password):
 self.username = username
 self._password = password

 @property
 def password(self):
 return self._password

 @password.setter
 def password(self, value):
 self._password = value

Chapter 4

[135]

The properties provide a built-in descriptor type that knows how to link an attribute
to a set of methods. The property() function takes four optional arguments: fget,
fset, fdel, and doc. The last one can be provided to define a docstring function that
is linked to the attribute as if it were a method. Here is an example of a Rectangle
class that can be controlled either by direct access to attributes that store two corner
points or by using the width and height properties:

class Rectangle:
 def __init__(self, x1, y1, x2, y2):
 self.x1, self.y1 = x1, y1
 self.x2, self.y2 = x2, y2

 def _width_get(self):
 return self.x2 - self.x1

 def _width_set(self, value):
 self.x2 = self.x1 + value

 def _height_get(self):
 return self.y2 - self.y1

 def _height_set(self, value):
 self.y2 = self.y1 + value

 width = property(
 _width_get, _width_set,
 doc="rectangle width measured from left"
)
 height = property(
 _height_get, _height_set,
 doc="rectangle height measured from top"
)

 def __repr__(self):
 return "{}({}, {}, {}, {})".format(
 self.__class__.__name__,
 self.x1, self.y1, self.x2, self.y2
)

Python in Comparison with Other Languages

[136]

The following is an example of such defined properties in an interactive session:

>>> rectangle = Rectangle(10, 10, 25, 34)
>>> rectangle.width, rectangle.height
(15, 24)
>>> rectangle.width = 100
>>> rectangle
Rectangle(10, 10, 110, 34)
>>> rectangle.height = 100
>>> rectangle
Rectangle(10, 10, 110, 110)
>>> help(Rectangle)
Help on class Rectangle

class Rectangle(builtins.object)
 | Methods defined here:
 |
 | __init__(self, x1, y1, x2, y2)
 | Initialize self. See help(type(self)) for accurate signature.
 |
 | __repr__(self)
 | Return repr(self).
 |
 | --
 | Data descriptors defined here:
 | (...)
 |
 | height
 | rectangle height measured from top
 |
 | width
 | rectangle width measured from left

The properties make it easier to write descriptors but must be handled carefully
when using inheritance over classes. The attribute created is made on the fly using
the methods of the current class and will not use methods that are overridden in the
derived classes.

For instance, the following example will fail to override the implementation of the
fget method of the parent class's width property:

Chapter 4

[137]

>>> class MetricRectangle(Rectangle):
... def _width_get(self):
... return "{} meters".format(self.x2 - self.x1)
...
>>> Rectangle(0, 0, 100, 100).width
100

In order to resolve this, the whole property simply needs to be overwritten in the
derived class:

>>> class MetricRectangle(Rectangle):
... def _width_get(self):
... return "{} meters".format(self.x2 - self.x1)
... width = property(_width_get, Rectangle.width.fset)
...
>>> MetricRectangle(0, 0, 100, 100).width
'100 meters'

Unfortunately, the preceding code has some maintainability issues. It can be a source
of confusion if the developer decides to change the parent class but forgets to update
the property call. This is why overriding only parts of the property behavior is not
advised. Instead of relying on the parent class's implementation, it is recommended
that you rewrite all the property methods in the derived classes if you need to
change how they work. In most cases, this is the only option, because usually, the
change to the property setter behavior implies a change to the behavior of getter as
well.

Because of this, the best syntax for creating properties is to use property as a
decorator. This will reduce the number of method signatures inside the class and
make the code more readable and maintainable:

class Rectangle:
 def __init__(self, x1, y1, x2, y2):
 self.x1, self.y1 = x1, y1
 self.x2, self.y2 = x2, y2

 @property
 def width(self):
 """rectangle width measured from left"""
 return self.x2 - self.x1

 @width.setter
 def width(self, value):

Python in Comparison with Other Languages

[138]

 self.x2 = self.x1 + value

 @property
 def height(self):
 """rectangle height measured from top"""
 return self.y2 - self.y1

 @height.setter
 def height(self, value):
 self.y2 = self.y1 + value

The best thing about the Python property mechanism is that it can be introduced to
a class gradually. You can start by exposing public attributes of the class instance
and convert them to properties only if there is such a need. Other parts of your code
won't notice any change in the class API because properties are accessed as if they
were ordinary instance attributes.

We've so far discussed the object-oriented data model of Python in comparison
to different programming languages. But the data model is only a part of the
OOP landscape. The other important factor of every object-oriented language
is the approach to polymorphism. Python provides a few implementations of
polymorphism and that will be the topic of the next section.

Dynamic polymorphism
Polymorphism is a mechanism found commonly in OOP languages. Polymorphism
abstracts the interface of an object from its type. Different programming languages
achieve polymorphism through different means. For statically typed languages, it
is usually achieved through:

• Subtyping: Subtypes of type A can be used in every interface that expects
type A. Interfaces are defined explicitly, and subtypes/subclasses inherit
interfaces of their parents. This is a polymorphism mechanism found in C++.

• Implicit interfaces: Every type can be used in the interface that expects
an interface of type A as long as it implements the same methods (has the
same interface) as type A. The declarations of interfaces are still defined
explicitly but subclasses/subtypes don't have to explicitly inherit from the
base classes/types that define such an interface. This is a polymorphism
mechanism found in Go.

Chapter 4

[139]

Python is a dynamically typed language, so uses a rather lax mechanism of
polymorphism that is often referred to as duck typing. The duck typing principle
says the following:

If it walks like a duck and it quacks like a duck, then it must be a duck.

Application of that principle in Python means that any object can be used within a
given context as long as the object works and behaves as the context expects. This
typing philosophy is very close to implicit interfaces known in Go, although it does
not require any declaration of the expected interfaces of function arguments. Because
Python does not enforce types or interfaces of function arguments, it does not matter
what types of objects are provided to the function. What matters instead is which
methods of those objects are actually used within the function body.

To better understand the concept, consider the following example of a function that
is supposed to read a file, print its contents, and close the file afterward:

def printfile(file):
 try:
 contents = file.read()
 print(file)
 finally:
 file.close()

From the signature of the printfile() function, we can already guess that it expects
a file or a file-like object (like StringIO from the io module). But the truth is this
function will consume any object without raising an unexpected exception if we are
able to ensure for the input argument that:

• The file argument has a read() method
• The result of file.read() is a valid argument to the print() function
• The file argument has the close() method

The above three points also indicate the three places where polymorphism happens
in the above example. Depending on the actual type of the file argument, the
printfile() function will use different implementations of the read() and close()
methods. The type of the contents variable can also be different depending on the
file.read() implementation, in which case the print() function will use different
implementation of object string representation.

Python in Comparison with Other Languages

[140]

This approach to polymorphism and typing is really powerful and flexible, although
it has some downsides. Due to the lack of type and interface enforcement, it is
harder to verify the code's correctness before execution. That's why high-quality
applications must rely on extensive code testing with rigorous coverage of every
path that code execution can take. Python allows you to partially overcome this
problem through type hinting annotations that can be verified with additional tools
before runtime.

The dynamic type system of Python together with the duck-typing principle creates
an implicit and omnipresent form of dynamic polymorphism that makes Python
very similar to JavaScript, which also lacks static type enforcement. But there
are other forms of polymorphism available to Python developers that are more
"classical" and explicit in nature. One of those forms is operator overloading.

Operator overloading
Operator overloading is a specific type of polymorphism that allows the language
to have different implementations of specific operators depending on the types of
operands.

Operators in many programming languages are already polymorphic. Consider
the following expressions that would be valid constructs in Python:

7 * 6
3.14 * 2
["a", "b"] * 3
"abba" * 2

Those expressions in Python would have four different implementations:

• 7 * 6 is integer multiplication resulting in an integer value of 42
• 3.14 * 2 is float multiplication resulting in a float value of 6.28
• ["a", "b"] * 3 is list multiplication resulting in a list value of ['a', 'b',

'a', 'b', 'a', 'b']

• "abba" * 2 is string multiplication resulting in a string value of 'abbaabba'

The semantics and implementation of all Python operators are already different
depending on the types of operands. Python provides multiple built-in types
together with various implementations of their operators, but it doesn't mean that
every operator can be used with any type.

Chapter 4

[141]

For instance, the + operator is used for the summation or concatenation of operands.
It makes sense to concatenate numeric types like integer or floating-point numbers,
as well as to concatenate strings and lists. But this operator can't be used with sets
or dictionaries as such an operation would not make mathematical sense (sets could
be either intersected or joined) and the expected result would be ambiguous (which
values of two dictionaries should be used in the event of conflict?).

Operator overloading is just the extension of the built-in polymorphism of operators
already included in the programming language. Many programming languages,
including Python, allow you to define a new implementation for operand types that
didn't have a valid operator implementation or shadow existing implementation
through subclassing.

Dunder methods (language protocols)
The Python data model specifies a lot of specially named methods that can be
overridden in your custom classes to provide them with additional syntax capabilities.
You can recognize these methods by their specific naming conventions that wrap the
method name with double underscores. Because of this, they are sometimes referred
to as dunder methods. It is simply shorthand for double underscores.

The most common and obvious example of such dunder methods is __init__(),
which is used for class instance initialization:

class CustomUserClass:
 def __init__(self, initiatization_argument):
 ...

These methods, either alone or when defined in a specific combination, constitute the
so-called language protocols. If we say that an object implements a specific language
protocol, it means that it is compatible with a specific part of the Python language
syntax. The following is a table of the most common protocols within the Python
language.

Protocol name Methods Description

Callable
protocol __call__()

Allows objects to be called with parentheses:

instance()
Descriptor
protocols

__set__(), __get__
(), and __del__()

Allows us to manipulate the attribute access
pattern of classes (see the Descriptors section)

Container
protocol __contains__()

Allows us to test whether or not an object
contains some value using the in keyword:

value in instance

Python in Comparison with Other Languages

[142]

Iterable
protocol __iter__()

Allows objects to be iterated using the for
keyword:

for value in instance:
 ...

Sequence
protocol

__getitem__(),

__len__()

Allows objects to be indexed with square
bracket syntax and queried for length using a
built-in function:

item = instance[index]

length = len(instance)

Each operator available in Python has its own protocol and operator overloading
happens by implementing the dunder methods of that protocol. Python provides
over 50 overloadable operators that can be divided into five main groups:

• Arithmetic operators
• In-place assignment operators
• Comparison operators
• Identity operators
• Bitwise operators

That's a lot of protocols so we won't discuss all of them here. We will instead
take a look at a practical example that will allow you to better understand how
to implement operator overloading on your own.

Let's assume that we are dealing with a mathematical problem that can be solved
through matrix equations. A matrix is a mathematical element of linear algebra
with well-defined operations. In the simplest form, it is a two-dimensional array
of numbers. Python lacks native support for multi-dimensional arrays other than
nesting lists within lists. Because of that, it would be a good idea to provide a
custom class that encapsulates matrices and operations between them. Let's start by
initializing our class:

A full list of available dunder methods can be found in the Data
model section of the official Python documentation available at
https://docs.python.org/3/reference/datamodel.html.

All operators are also exposed as ordinary functions in the
operators module. The documentation of that module gives a
good overview of Python operators. It can be found at https://
docs.python.org/3.9/library/operator.html.

https://docs.python.org/3/reference/datamodel.html
https://docs.python.org/3.9/library/operator.html
https://docs.python.org/3.9/library/operator.html

Chapter 4

[143]

class Matrix:
 def __init__(self, rows):
 if len(set(len(row) for row in rows)) > 1:
 raise ValueError("All matrix rows must be the same length")

 self.rows = rows

The first dunder method of the Matrix class is __init__(), which allows us to safely
initialize the matrix. It accepts a variable list of matrix rows as input arguments
through argument unpacking. As every row needs to have the same number of
columns, we iterate over them and verify that they all have the same length.

Now let's add the first operator overloading:

def __add__(self, other):
 if (
 len(self.rows) != len(other.rows) or
 len(self.rows[0]) != len(other.rows[0])
):
 raise ValueError("Matrix dimensions don't match")

 return Matrix([
 [a + b for a, b in zip(a_row, b_row)]
 for a_row, b_row in zip(self.rows, other.rows)
])

The__add__() method is responsible for overloading the + (plus sign) operator and
here it allows us to add two matrices together. Only matrices of the same dimensions
can be added together. This is a fairly simple operation that involves adding all
matrix elements one by one to form a new matrix.

The __sub__() method is responsible for overloading the – (minus sign) operator
that will be responsible for matrix subtraction. To subtract two matrices, we use a
similar technique as in the – operator:

def __sub__(self, other):
 if (
 len(self.rows) != len(other.rows) or
 len(self.rows[0]) != len(other.rows[0])
):
 raise ValueError("Matrix dimensions don't match")

 return Matrix([
 [a - b for a, b in zip(a_row, b_row)]

Python in Comparison with Other Languages

[144]

 for a_row, b_row in zip(self.rows, other.rows)
])

And the following is the last method we add to our class:

def __mul__(self, other):
 if not isinstance(other, Matrix):
 raise TypeError(
 f"Don't know how to multiply {type(other)} with Matrix"
)

 if len(self.rows[0]) != len(other.rows):
 raise ValueError(
 "Matrix dimensions don't match"
)

 rows = [[0 for _ in other.rows[0]] for _ in self.rows]

 for i in range(len(self.rows)):
 for j in range(len(other.rows[0])):
 for k in range(len(other.rows)):
 rows[i][j] += self.rows[i][k] * other.rows[k][j]

 return Matrix(rows)

The last overloaded operator is the most complex one. This is the * operator, which
is implemented through the __mul__() method. In linear algebra, matrices don't have
the same multiplication operation as real numbers. Two matrices can be multiplied if
the first matrix has a number of columns equal to the number of rows of the second
matrix. The result of that operation is a new matrix where each element is a dot
product of the corresponding row of the first matrix and the corresponding column
of the second matrix.

Here we've built our own implementation of the matrix to present the idea of
operators overloading. Although Python lacks a built-in type for matrices, you don't
need to build them from scratch. The NumPy package is one of the best Python
mathematical packages and among others provides native support for matrix
algebra. You can easily obtain the NumPy package from PyPI.

Chapter 4

[145]

Comparison to C++
One programming language where operator overloading is particularly common is
C++. It is a statically typed OOP language that is nothing like Python. Python has
OOP elements and some mechanisms that, in essence, are similar to those of C++.
These are mainly the existence of classes and class inheritance together with the
ability to overload operators. But the way these mechanisms are implemented within
the language is completely different. And that's why comparing those two languages
is so fascinating.

C++, in contrast to Python, has multiple coexisting polymorphism mechanisms. The
main mechanism is through subtyping, which is also available in Python. The second
major type of polymorphism in C++ is ad hoc polymorphism through function
overloading. Python lacks a direct counterpart of that feature.

Function overloading in C++ allows you to have multiple implementations of the
same function depending on input arguments. It means that you can have two
functions or methods sharing the same name but having a different number of and/
or types of arguments. As C++ is a statically typed language, types of arguments
are always known in advance and the choice of exact implementation happens at
compile time.

To make it even more flexible, function overloading can be used together with
operator overloading. The use case for such overloading coexistence can be better
understood if we bring back the matrix multiplication use case. We know that two
matrices can be multiplied together and we've learned how to do that in the previous
section. But linear algebra also allows you to multiply a matrix with a scalar type
like a real number. This operation results in a new matrix where every element
has been multiplied by the scalar. In code, that would mean essentially another
implementation of the multiplication operator.

In C++, you can simply provide multiple coexisting * operator overloading
functions. The following is an example of C++ function signatures for overloaded
operators that could allow various matrix and scalar multiplication implementations:

Matrix operator+(const Matrix& lhs, const Matrix& rhs)
Matrix operator+(const Matrix& lhs, const int& rhs)
Matrix operator+(const Matrix& lhs, const float& rhs)
Matrix operator+(const int& lhs, const Matrix& rhs)
Matrix operator+(const float& lhs, const Matrix& rhs)

Python in Comparison with Other Languages

[146]

Python is a dynamically typed language, and that's the main reason why it
doesn't have function overloading as in C++. If we want to implement * operator
overloading on the Matrix class that supports both matrix multiplication and scalar
multiplication, we need to verify the operator input type at runtime. This can be
done with the built-in isinstance() function as in the following example:

def __mul__(self, other):
 if isinstance(other, Matrix):
 ...

 elif isinstance(other, Number):
 return Matrix([
 [item * other for item in row]
 for row in self.rows
])
 else:
 raise TypeError(f"Can't subtract {type(other)} from Matrix")

Another major difference is that C++ operator overloading is done through free
functions instead of class methods, while in Python, the operator is always resolved
from one operand's dunder method. This difference can again be displayed using an
example of scalar implementation. The previous example allowed us to multiply a
matrix by an integer number in the following form:

Matrix([[1, 1], [2, 2]]) * 3

This will work because the overloaded operator implementation will be resolved
from the left operand. On the other hand, the following expression will result in
TypeError:

3 * Matrix([1, 1], [2, 2]])

In C++, you can provide multiple versions of operator overloading that cover all
combinations of operand types for the * operator. In Python, the workaround for
that problem is providing the __rmul__() method. This method is resolved from the
right-side operand if the left-side __mul__() operator raises TypeError. Most infix
operators have their right-side implementation alternatives. The following is an
example of the __rmul__() method for the Matrix class that allows you to perform
scalar multiplication with a right-hand side number argument:

 def __rmul__(self, other):
 if isinstance(other, Number):
 return self * other

Chapter 4

[147]

As you see, it still requires the use of type evaluation through the isinstance()
function, so operator overloading should be used very cautiously, especially if
overloaded operators receive completely new meaning that is not in line with their
original purpose.

The need to provide alternative overloaded implementations of the operator
depending on the single operand type is usually a sign that the operator has lost
its clear meaning. For instance, matrix multiplication and scalar multiplication are
mathematically two distinct operations. They have different properties. For instance,
scalar multiplication is cumulative while matrix multiplication isn't. Providing an
overloaded operator for a custom class that has multiple internal implementations
can quickly lead to confusion, especially in code that deals with math problems.

We were deliberately silent about the fact that Python actually has a dedicated
matrix multiplication operator despite the fact that it doesn't have the built-in matrix
type. That was just to better showcase the danger and complexities of overusing
operator overloading. The dedicated operator for matrix multiplication is @ and
actually, the potential confusion between scalar and matrix multiplication was one
of the main reasons this operator was introduced.

In many programming languages, operator overloading can be considered a
special case of function and method overloading and these usually come in a pair.
Surprisingly, Python has operator overloading but doesn't offer real function and
method overloading. It offers different patterns to fill that gap. We will discuss
them in the next section.

Function and method overloading
A common feature of many programming languages is function and method
overloading. It is another type of polymorphism mechanism. Overloading allows
you to have multiple implementations of a single function by using different call
signatures. Either a language compiler or interpreter is able to select a matching
implementation based on the set of function call arguments provided. Function
overloading is usually resolved based on:

• Function arity (number of parameters): Two function definitions can share a
function name if their signatures expect a different number of parameters.

• Types of parameters: Two function definitions can share a function name if
their signatures expect different types of parameters.

As already stated in the Operator overloading section, Python lacks an overloading
mechanism for functions and methods other than operator overloading. If you define
multiple functions in a single module that share the same name, the latter definition
will always shadow all previous definitions.

Python in Comparison with Other Languages

[148]

If there is a need to provide several function implementations that behave differently
depending on the type or number of arguments provided, Python offers several
alternatives:

• Using methods and/or subclassing: Instead of relying on a function to
distinguish the parameter type, you can bind it to a specific type by defining
it as a method of that type.

• Using argument and keyword argument unpacking: Python allows for
some flexibility regarding function signatures to support a variable number
of arguments via *args and **kwargs patterns (also known as variadic
functions).

• Using type checking: The isinstance() function allows us to test input
arguments against specific types and base classes to decide how to handle
them.

Of course, each of the above options has some limitations. Pushing function
implementation directly to class definitions as methods will not make any sense
if said method doesn't constitute unique object behavior. Argument and keyword
argument unpacking can make function signatures vague and hard to maintain.

Very often the most reliable and readable substitute for function overloading in
Python is simply type checking. We've already seen this technique in action when
discussing operator overloading. Let's recall the __mul__() method that was able to
distinguish between matrix and scalar multiplication:

def __mul__(self, other):
 if isinstance(other, Matrix):
 ...

 elif isinstance(other, Number):
 ...

 else:
 raise TypeError(f"Can't subtract {type(other)} from Matrix")

As you can see, something that in a statically typed language would have to be done
through function overloading, in Python can be resolved with a simple isinstance()
call. That can be understood as an upside rather than a downside of Python. Still, this
technique is convenient only for a small number of call signatures. When the number
of supported types grows, it is often better to use more modular patterns. Such
patterns rely on single-dispatch functions.

Chapter 4

[149]

Single-dispatch functions
In situations when an alternative to function overloading is required and the
number of alternative function implementations is really large, using multiple if
isinstance(...) clauses can quickly get out of hand. Good design practice dictates
writing small, single-purpose functions. One large function that branches over
several types to handle input arguments differently is rarely a good design.

The Python Standard Library provides a convenient alternative. The functools.
singledispatch() decorator allows you to register multiple implementations
of a function. Those implementations can take any number of arguments but
implementations will be dispatched depending on the type of the first argument.
Single dispatch starts with a definition of a function that will be used by default
for any non-registered type. Let's assume that we need a function that can output
various variables in human-readable format for the purpose of a larger report being
displayed in the console output. By default, we could use the f-string to denote a
raw value in string format:

from functools import singledispatch

@singledispatch
def report(value):
 return f"raw: {value}"

From there, we can start registering different implementations for various types
using the report.register() decorator. That decorator is able to read function
argument type annotations to register specific type handlers. Let's say we want
datetime objects to be reported in ISO format:

from datetime import datetime

@report.register
def _(value: datetime):
 return f"dt: {value.isoformat()}"

Note that we used the _ token as the actual function name. That serves two
purposes. First, it is a convention for names of objects that are not supposed to be
used explicitly. Second, if we used the report name instead, we would shadow the
original function, thus losing the ability to access it and register new types.

Python in Comparison with Other Languages

[150]

Let's define a couple more type handlers:

from numbers import Real

@report.register
def _(value: complex):
 return f"complex: {value.real}{value.imag:+}j"

@report.register
def _(value: Real):
 return f"real: {value:f}"

Note that typing annotations aren't necessary but we've used them as an element
of good practice. If you don't want to use typing annotations, you can specify the
registered type as the register() method argument as in the following example:

@report.register(complex)
def _(value):
 return f"complex: {value.real}{value.imag:+}j"

@report.register(real)
def _(value):
 return f"real: {value:f}"

If we tried to verify the behavior of our collection of single-dispatch implementations
in an interactive session, we would get an output like the following:

>>> report(datetime.now())
'dt: 2020-12-12T00:22:31.690377'
>>> report(100-30j)
'complex: 100.0-30.0j'
>>> report(9001)
'real: 9001.000000'
>>> report("January")
'raw: January'
>>> for key, value in report.registry.items():
... print(f"{key} -> {value}")
...
<class 'object'> -> <function report at 0x7fdfd6929a60>
<class 'datetime.datetime'> -> <function _ at 0x7fdfd69a5af0>
<class 'complex'> -> <function _ at 0x7fdfd6993d30>
<class 'float'> -> <function _ at 0x7fdfd6d7ab80>
<class 'int'> -> <function _ at 0x7fdfd6d7ab80>

Chapter 4

[151]

As we see, the report() function is now an entry point to a collection of registered
functions. Whenever it is called with an argument, it looks in the registry mapping
stored in report.registry. There's always at least one key that maps the object type
to the default implementation of the function.

Additionally, there is a variation of the single-dispatch mechanism dedicated to
class methods. Methods always receive the current object instance as their first
argument. That means the functools.singledispatch() decorator would not be
effective as the first argument of methods is always the same type. The functools.
singledispatchmethod() decorator keeps that calling convention in mind and allows
you to register multiple type-specific implementations on methods as well. It works
by resolving the first non-self, non-cls argument:

from functools import singledispatchmethod

class Example:
 @singledispatchmethod
 def method(self, argument):
 pass

 @method.register
 def _(self, argument: float):
 pass

Remember that while the single-dispatch mechanism is a form of polymorphism that
resembles function overloading, it isn't exactly the same. You cannot use it to provide
several implementations of a function on multiple argument types and the Python
Standard Library currently lacks such a multiple-dispatch utility.

Data classes
As we learned from the Class instance initialization section, the canonical way to
declare class instance attributes is through assigning them in the __init__() method
as in the following example:

class Vector:
 def __init__(self, x, y):
 self.x = x
 self.y = y

Python in Comparison with Other Languages

[152]

Let's assume we are building a program that does some geometric computation
and Vector is a class that allows us to hold information about two-dimensional
vectors. We will display the data of the vectors on the screen and perform common
mathematical operations, such as addition, subtraction, and equality comparison.
We already know that we can use special methods and operator overloading to
achieve that goal in a convenient way. We can implement our Vector class as follows:

class Vector:
 def __init__(self, x, y):
 self.x = x
 self.y = y

 def __add__(self, other):
 """Add two vectors using + operator"""
 return Vector(
 self.x + other.x,
 self.y + other.y,
)

 def __sub__(self, other):
 """Subtract two vectors using - operator"""
 return Vector(
 self.x - other.x,
 self.y - other.y,
)

 def __repr__(self):
 """Return textual representation of vector"""
 return f"<Vector: x={self.x}, y={self.y}>"

 def __eq__(self, other):
 """Compare two vectors for equality"""
 return self.x == other.x and self.y == other.y

The following is the interactive session example that shows how it behaves when
used with common operators:

>>> Vector(2, 3)
<Vector: x=2, y=3>
>>> Vector(5, 3) + Vector(1, 2)
<Vector: x=6, y=5>
>>> Vector(5, 3) - Vector(1, 2)
<Vector: x=4, y=1>

Chapter 4

[153]

>>> Vector(1, 1) == Vector(2, 2)
False
>>> Vector(2, 2) == Vector(2, 2)
True

The preceding vector implementation is quite simple, but it involves a lot of code
that could be avoided. Our Vector class is focused on data. Most of the behavior
it provides is centered around creating new Vector instances through mathematic
operations. It doesn't provide complex initialization nor custom attribute access
patterns. Things like equality comparison, string representation, and attribute
initialization will look very similar and repetitive for various classes focused on data.

If your program uses many similar simple classes focused on data that do not
require complex initialization, you'll end up writing a lot of boilerplate code just
for the __init__(), __repr__(), and __eq__() methods.

With the dataclasses module, we can make our Vector class code a lot shorter:

from dataclasses import dataclass

@dataclass
class Vector:
 x: int
 y: int

 def __add__(self, other):
 """Add two vectors using + operator"""
 return Vector(
 self.x + other.x,
 self.y + other.y,
)

 def __sub__(self, other):
 """Subtract two vectors using - operator"""
 return Vector(
 self.x - other.x,
 self.y - other.y,
)

The dataclass class decorator reads attribute annotations of the Vector class and
automatically creates the __init__(), __repr__(), and __eq__() methods. The
default equality comparison assumes that the two instances are equal if all their
respective attributes are equal to each other.

Python in Comparison with Other Languages

[154]

But that's not all. Data classes offer many useful features. They can easily be made
compatible with other Python protocols, too. Let's assume we want our Vector class
instances to be immutable. Thanks to this, they could be used as dictionary keys and
as content values in sets. You can do this by simply adding a frozen=True argument
to the dataclass decorator, as in the following example:

from dataclasses import dataclass

@dataclass(frozen=True)
class FrozenVector:
 x: int
 y: int

Such a frozen Vector data class becomes completely immutable, so you won't be able
to modify any of its attributes. You can still add and subtract two Vector instances as
in our example; these operations simply create new Vector objects.

We've learned already about the dangers of assigning default values to class
attributes in the main class body instead of the __init__() function. The
dataclass module offers a useful alternative through the field() constructor. This
constructor allows you to specify both mutable and immutable default values for
data class attributes in a sane and secure way without risking leaking the state
between class instances. Static and immutable default values are provided using
the field(default=value) call. The mutable values should always be passed by
providing a type constructor using the field(default_factory=constructor) call.
The following is an example of a data class with two attributes that have their
default values assigned through the field() constructor:

from dataclasses import dataclass, field

@dataclass
class DataClassWithDefaults:
 immutable: str = field(default="this is static default value")
 mutable: list = field(default_factory=list)

Once a data class attribute has its default assigned, the corresponding initialization
argument for that field becomes optional. The following transcript presents various
ways of initializing DataClassWithDefaults class instances:

Chapter 4

[155]

>>> DataClassWithDefaults()
DataClassWithDefaults(immutable='this is static default value',
mutable=[])
>>> DataClassWithDefaults("This is immutable")
DataClassWithDefaults(immutable='This is immutable', mutable=[])
>>> DataClassWithDefaults(None, ["this", "is", "list"])
DataClassWithDefaults(immutable=None, mutable=['this', 'is', 'list'])

Data classes are similar in nature to structs in C or Go. Their main purpose is to
hold data and provide shortcuts for the otherwise tedious initialization of instance
attributes. But they should not be used as a basis for every possible custom class. If
your class isn't meant to represent the data, and/or requires custom or complex state
initialization, you should rather use the default way of initialization: through the
__init__() method.

Python is not only about OOP. It supports other programming paradigms as
well. One of those paradigms is functional programming, which concentrates on
the evaluation of functions. Pure functional programming languages are usually
drastically different than their OOP counterparts. But multiparadigm programming
languages try to take the best of many programming styles. That's also true for
Python. In the next section, we will review a few elements of Python that support
functional programming. You will soon notice that this paradigm in Python is
actually built over the foundation laid by OOP.

Functional programming
One of the great things about programming in Python is that you are never
constrained to a single way of thinking about your programs. There are always
various ways to solve a given problem, and sometimes the best one requires an
approach that is slightly different from the one that would be the most obvious.
Sometimes, this approach requires the use of declarative programming. Fortunately,
Python, with its rich syntax and large standard library, offers features of functional
programming, and functional programming is one of the main paradigms of
declarative programming.

Functional programming is a paradigm where the program flow is achieved mainly
through the evaluation of (mathematical) functions rather than through a series of
steps that change the state of the program. Purely functional programs avoid the
changing of state (side effects) and the use of mutable data structures.

Python in Comparison with Other Languages

[156]

One of the best ways to better understand the general concept of functional
programming is by familiarizing yourself with the basic terms of functional
programming:

• Side effects: A function is said to have a side effect if it modifies the
state outside of its local environment. In other words, a side effect is any
observable change outside of the function scope that happens as a result of a
function call. An example of such side effects could be the modification of a
global variable, the modification of an attribute of an object that is available
outside of the function scope, or saving data to some external service. Side
effects are the core of the concept of OOP, where class instances are objects
that are used to encapsulate the state of an application, and methods are
functions bound to those objects that are supposed to manipulate the state
of these objects. Procedural programming also heavily relies on side effects.

• Referential transparency: When a function or expression is referentially
transparent, it can be replaced with the value that corresponds to its output
without changing the behavior of the program. So, a lack of side effects is a
requirement for referential transparency, but not every function that lacks
side effects is a referentially transparent function. For instance, Python's
built-in pow(x, y) function is referentially transparent, because it lacks side
effects, and for every x and y argument, it can be replaced with the value
of xy. On the other hand, the datetime.now() constructor method of the
datetime type does not seem to have any observable side effects but will
return a different value every time it is called. So, it is referentially opaque.

• Pure functions: A pure function is a function that does not have any side
effects and that always returns the same value for the same set of input
arguments. In other words, it is a function that is referentially transparent.
Every mathematical function is, by definition, a pure function. Analogously,
a function that leaves a trace of its execution for the outside world (for
instance, by modifying received objects) is not a pure function.

• First-class functions: Language is said to contain first-class functions if
functions in this language can be treated as any other value or entity. First-
class functions can be passed as arguments to other functions, returned as
function return values, and assigned to variables. In other words, a language
that has first-class functions is a language that treats functions as first-class
citizens. Functions in Python are first-class functions.

Chapter 4

[157]

Using these concepts, we could describe a purely functional language as a language
that:

• Has first-class functions
• Is concerned only with pure functions
• Avoids any state modification and side effects

Python, of course, is not a purely functional programming language, and it would
be really hard to imagine a useful Python program that uses only pure functions
without any side-effects. On the other hand, Python offers a large variety of features
that, for years, were only accessible in purely functional languages, like:

• Lambda functions and first-class functions
• map(), filter(), and reduce() functions
• Partial objects and functions
• Generators and generator expressions

Those features make it possible to write substantial amounts of Python code in a
functional way, even though Python isn't purely functional.

Lambda functions
Lambda functions are a very popular programming concept that is especially
profound in functional programming. In other programming languages, lambda
functions are sometimes known as anonymous functions, lambda expressions, or
function literals. Lambda functions are anonymous functions that don't have to be
bound to any identifier (variable).

At some point in Python 3's development, there was a heated
discussion about removing the feature of lambda functions
together with the map(), filter(), and reduce() functions. You
can learn more about Guido van Rossum's article about reasons for
removing those features at https://www.artima.com/weblogs/
viewpost.jsp?thread=98196.

https://www.artima.com/weblogs/viewpost.jsp?thread=98196
https://www.artima.com/weblogs/viewpost.jsp?thread=98196

Python in Comparison with Other Languages

[158]

Lambda functions in Python can be defined only using expressions. The syntax for
lambda functions is as follows:

lambda <arguments>: <expression>

The best way to present the syntax of lambda functions is by comparing a "normal"
function definition with its anonymous counterpart. The following is a simple
function that returns the area of a circle of a given radius:

import math

def circle_area(radius):
 return math.pi * radius ** 2

The same function expressed as a lambda function would take the following form:

lambda radius: math.pi * radius ** 2

Lambda functions are anonymous, but it doesn't mean they cannot be referred to
using an identifier. Functions in Python are first-class objects, so whenever you
use a function name, you're actually using a variable that is a reference to the
function object. As with any other function, lambda functions are first-class citizens,
so they can also be assigned to a new variable. Once assigned to a variable, they
are seemingly indistinguishable from other functions, except for some metadata
attributes. The following transcripts from interactive interpreter sessions illustrate
this:

>>> import math
>>> def circle_area(radius):
... return math.pi * radius ** 2
...
>>> circle_area(42)
5541.769440932395
>>> circle_area
<function circle_area at 0x10ea39048>
>>> circle_area.__class__
<class 'function'>
>>> circle_area.__name__
'circle_area'

>>> circle_area = lambda radius: math.pi * radius ** 2
>>> circle_area(42)
5541.769440932395
>>> circle_area

Chapter 4

[159]

<function <lambda> at 0x10ea39488>
>>> circle_area.__class__
<class 'function'>
>>> circle_area.__name__
'<lambda>'

The main use for lambda expressions is to define contextual one-off functions that
won't have to be reused elsewhere. To better understand their potential, let's imagine
that we have an application that stores information about people. To represent a
record of a person's data, we could use the following data class:

from dataclasses import dataclass

@dataclass
class Person:
 age: int
 weight: int
 name: str

Now let's imagine that we have a set of such records and we want to sort them by
different fields. Python provides a sorted() function that is able to sort any list
as long as elements can be compared with at least "less than" comparison (the <
operator). We could define custom operator overloading on the Person class, but we
would have to know in advance what field our records will be sorted on.

Thankfully, the sorted() function accepts the key keyword argument, which allows
you to specify a function that will transform every element of the input into a value
that can be naturally sorted by the function. Lambda expressions allow you to define
such sorting keys on demand. For instance, sorting people by age can be done using
the following call:

sorted(people, key=lambda person: person.age)

The above behavior of the sorted() function presents a common pattern of allowing
code to accept a callable argument that resolves some injected behavior. Lambda
expressions are often a convenient way of defining such behaviors.

The map(), filter(), and reduce() functions
The map(), filter(), and reduce() functions are three built-in functions that
are most often used in conjunction with lambda functions. They are commonly
used in functional-style Python programming because they allow us to declare
transformations of any complexity, while simultaneously avoiding side effects.

Python in Comparison with Other Languages

[160]

In Python 2, all three functions were available as default built-in functions that did
not require additional imports. In Python 3, the reduce() function was moved to the
functools module, so it requires an additional import.

map(func, iterable, ...) applies the func function argument to every item of
iterable. You can pass more iterables to the map() function. If you do so, map()
will consume elements from each iterable simultaneously. The func function will
receive as many arguments as there are iterables on every map step. If iterables are
of different sizes, map() will stop when the shortest one is exhausted. It is worth
remembering that map() does not evaluate the whole result at once, but returns an
iterator so that every result item can be evaluated only when it is necessary.

The following is an example of map() being used to calculate the squares of the first
10 integers staring from 0:

>>> map(lambda x: x**2, range(10))
<map object at 0x10ea09cf8>
>>> list(map(lambda x: x**2, range(10)))
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

The following is an example of the map() function being used over multiple iterables
of different sizes:

>>> mapped = list(map(print, range(5), range(4), range(5)))
0 0 0
1 1 1
2 2 2
3 3 3
>>> mapped
[None, None, None, None]

filter(func, iterable) works similarly to map() by evaluating input elements
one by one. Unlike map(), the filter() function does not transform input elements
into new values, but allows us to filter out those input values that do not meet the
predicate defined by the func argument. The following are examples of the filter()
function's usage:

>>> evens = filter(lambda number: number % 2 == 0, range(10))
>>> odds = filter(lambda number: number % 2 == 1, range(10))
>>> print(f"Even numbers in range from 0 to 9 are: {list(evens)}")
Even numbers in range from 0 to 9 are: [0, 2, 4, 6, 8]
>>> print(f"Odd numbers in range from 0 to 9 are: {list(odds)}")
Odd numbers in range from 0 to 9 are: [1, 3, 5, 7, 9]

Chapter 4

[161]

>>> animals = ["giraffe", "snake", "lion", "squirrel"]
>>> animals_s = filter(lambda animal: animal.startswith('s'), animals)
>>> print(f"Animals that start with letter 's' are: {list(animals_s)}")
Animals that start with letter 's' are: ['snake', 'squirrel']]

The reduce(func, iterable) function works in completely the opposite way to
map(). As the name suggests, this function can be used to reduce an iterable to a
single value. Instead of taking items of iterable and mapping them to the func
return values in one-by-one fashion, it cumulatively performs the operation specified
by func over all iterable items. So, for the following inputs of reduce():

reduce(func, [a, b, c, d])

The return value would be equal to:

func(func(func(a, b), c), d)

Let's consider the following example of reduce() calls being used to sum values of
elements contained in various iterable objects:

>>> from functools import reduce
>>> reduce(lambda a, b: a + b, [2, 2])
4
>>> reduce(lambda a, b: a + b, [2, 2, 2])
6
>>> reduce(lambda a, b: a + b, range(100))
4950

One interesting aspect of map() and filter() is that they can work on infinite
sequences. Of course, evaluating an infinite sequence to a list type or trying to
ordinarily loop over such a sequence will result in a program that never ends. The
count() function from itertools is an example of a function that returns infinite
iterables. It simply counts from 0 to infinity. If you try to loop over it as in the
following example, your program will never stop:

from itertools import count

for i in count():
 print(i)

Python in Comparison with Other Languages

[162]

However, the return values of map() and filter() are iterators. Instead of using a
for loop, you can consume consecutive elements of the iterator using the next()
function. Let's take a look again at our previous map() call that generated consecutive
integer squares starting from 0:

map(lambda x: x**2, range(n))

The range() function returns a bounded iterable of n items. If we don't know how
many items we want to generate, we can simply replace it with count():

map(lambda x: x**2, count())

From now on we can start consuming consecutive squares. We can't use a for loop
because that would never end. But we can use next() numerous times and consume
items one at a time:

sequence = map(lambda x: x**2, count())
next(sequence)
next(sequence)
next(sequence)
...

Unlike the map() and filter() functions, the reduce() function needs to evaluate all
input items in order to return its value, as it does not yield intermediary results. This
means that it cannot be used on infinite sequences.

Partial objects and partial functions
Partial objects are loosely related to the concept of partial functions in mathematics.
A partial function is a generalization of a mathematical function in a way that isn't
forced to map every possible input value range (domain) to its results. In Python,
partial objects can be used to slice the possible input range of a given function by
setting some of its arguments to a fixed value.

In the previous sections, we used the x ** 2 expression to get the square value of x.
Python provides a built-in function called pow(x, y) that can calculate any power of
any number. So, our lambda x: x ** 2 expression is a partial function of the pow(x,
y) function, because we have limited the domain values for y to a single value, 2. The
partial() function from the functools module provides an alternative way to easily
define such partial functions without the need for lambda expressions, which can
sometimes become unwieldy.

Chapter 4

[163]

Let's say that we now want to create a slightly different partial function out of pow().
Last time, we generated squares of consecutive numbers. Now, let's narrow the
domain of other input arguments and say we want to generate consecutive powers
of the number two—so, 1, 2, 4, 8, 16, and so on.

The signature of a partial object constructor is partial(func, *args, **keywords).
The partial object will behave exactly like func, but its input arguments will be
pre-populated with *args (starting from the leftmost) and **keywords. The pow(x,
y) function does not support keyword arguments, so we have to pre-populate the
leftmost x argument as follows:

>>> from functools import partial
>>> powers_of_2 = partial(pow, 2)
>>> powers_of_2(2)
4
>>> powers_of_2(5)
32
>>> powers_of_2(10)
1024

Note that you don't need to assign your partial object to any identifier if you don't
want to reuse it. You can successfully use it to define one-off functions in the same
way that you would use lambda expressions.

Generators
Generators provide an elegant way to write simple and efficient code for functions
that return a sequence of elements. Based on the yield statement, they allow you to
pause a function and return an intermediate result. The function saves its execution
context and can be resumed later, if necessary.

The itertools module is a treasury of helpers and utilities
for iterating over any type of iterable objects in various ways.
It provides various functions that, among other things, allow
us to cycle containers, group their contents, split iterables into
chunks, and chain multiple iterables into one. Every function in
that module returns iterators. If you are interested in functional-
style programming in Python, you should definitely familiarize
yourself with this module. You can find the documentation of the
itertools module at https://docs.python.org/3/library/
itertools.html.

https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html

Python in Comparison with Other Languages

[164]

For instance, the function that returns consecutive numbers of the Fibonacci
sequence can be written using a generator syntax. The following code is an example
that was taken from the PEP 255 (Simple Generators) document:

def fibonacci():
 a, b = 0, 1
 while True:
 yield b
 a, b = b, a + b

You can retrieve new values from generators as if they were iterators, so using the
next() function or for loops:

>>> fib = fibonacci()
>>> next(fib)
1
>>> next(fib)
1
>>> next(fib)
2
>>> for item in fibonacci():
... print(item)
... if item > 10:
... break
...
1
1
2
3
5
8
13

Our fibonacci() function returns a generator object, a special iterator that knows
how to save the execution context. It can be called indefinitely, yielding the next
element of the sequence each time. The syntax is concise, and the infinite nature of
the algorithm does not disturb the readability of the code. It does not have to provide
a way to make the function stoppable. In fact, it looks similar to how the sequence
generating function would be designed in pseudo code.

Chapter 4

[165]

In many cases, the resources required to process one element are less than the
resources required to store whole sequences. Therefore, they can be kept low,
making the program more efficient. For instance, the Fibonacci sequence is infinite,
and yet the generator that generates it does not require an infinite amount of
memory to provide the values one by one and, theoretically, could work ad infinitum.
A common use case is to stream data buffers with generators (for example, from
files). They can be paused, resumed, and stopped whenever necessary at any stage
of the data processing pipeline without any need to load whole datasets into the
program's memory.

In functional programming, generators can be used to provide a stateful function
that otherwise would require saving intermediary results as side effects as if it were
a stateless function.

Generator expressions
Generator expressions are another syntax element that allows you to write code in
a more functional way. Its syntax is similar to comprehensions that are used with
dictionary, set, and list literals. A generator expression is denoted by parentheses,
like in the following example:

(item for item in iterable_expression)

Generator expressions can be used as input arguments in any function that accepts
iterables. They also allow if clauses to filter specific elements the same way as list,
dictionary, and set comprehensions. This means that you can often replace complex
map() and filter() constructions with more readable and compact generator
expressions.

Syntactically, generator expressions are no different from any other comprehension
expressions. Their main advantage is that they evaluate only one item at a time. So,
if you process an arbitrarily long iterable expression, a generator expression may be
a good fit as it doesn't need to fit the whole collection of intermediary results into
program memory.

Lambdas, map, reduce, filter, partial functions, and generators are focused on
presenting program logic as an evaluation of function call expressions. Another
important element of functional programming is having first-class functions. In
Python, all functions are objects and like any other object, they can be inspected and
modified at runtime. It allows for a useful syntax feature called function decorators.

Python in Comparison with Other Languages

[166]

Decorators
The decorator is generally a callable expression that accepts a single argument when
called (it will be the decorated function) and returns another callable object.

While decorators are often discussed in the scope of methods and functions, they are
not limited to them. In fact, anything that is callable (any object that implements the
__call__ method is considered callable) can be used as a decorator, and often, objects
returned by them are not simple functions but are instances of more complex classes
that are implementing their own __call__ method.

The decorator syntax is simply syntactic sugar. Consider the following decorator
usage:

@some_decorator
def decorated_function():
 pass

This can always be replaced by an explicit decorator call and function reassignment:

def decorated_function():
 pass
decorated_function = some_decorator(decorated_function)

However, the latter is less readable and also very hard to understand if multiple
decorators are used on a single function.

Prior to Python 3.9, only named expressions could be used with
a dedicated decorator syntax. Starting from Python 3.9, any
expression is a valid target for a dedicated decorator syntax,
including lambda expressions.

A decorator does not even need to return a callable!

As a matter of fact, any function can be used as a decorator,
because Python does not enforce the return type of decorators. So,
using some function as a decorator that accepts a single argument
but does not return a callable object, let's say str, is completely
valid in terms of syntax. This will eventually fail if you try to call
an object that's been decorated this way. This part of the decorator
syntax creates a field for some interesting experimentation.

Chapter 4

[167]

Decorators are elements of the programming language inspired by aspect-oriented
programming and the decorator design pattern. The main use case is to conveniently
enhance an existing function implementation with extra behavior coming from other
aspects of your application.

Consider the following example, taken from the Flask framework documentation:

@app.route('/secret_page')
@login_required
def secret_page():
 pass

secret_page() is a view function that presumably is supposed to return a secret
page. It is decorated with two decorators. app.route() assigns a URI route to the
view function and login_required() enforces user authentication.

According to the single-responsibility principle, functions should be rather small
and single-purpose. In our Flask application, the secret_page() view function
would be responsible for preparing the HTTP response that can be later rendered in
a web browser. It probably shouldn't deal with things like parsing HTTP requests,
verifying user credentials, and so on.

As the names suggests, the secret_page() function returns something that is secret,
and shouldn't be visible to anyone. Verifying user credentials isn't part of the view
function's responsibility but it is part of the general idea of "a secret page." The
@login_required decorator allows you to bring the aspect of user authentication
close to the view function. It makes the application more concise and the intent of the
programmer more readable.

Let's look further at the actual example of the @login_required decorator from the
Flask framework documentation:

from functools import wraps
from flask import g, request, redirect, url_for

def login_required(f):
 @wraps(f)
 def decorated_function(*args, **kwargs):
 if g.user is None:
 return redirect(url_for('login', next=request.url))
 return f(*args, **kwargs)
 return decorated_function

Python in Comparison with Other Languages

[168]

As we can see, this decorator returns a new decorated_function() function that at
first verifies if the global g object has a valid user assigned. That's a common way
of testing whether the user has been authenticated in Flask. If the test succeeds, the
decorated function calls the original function by returning f(*args, **kwargs). If
the login test fails, the decorated function will redirect the browser to the login page.

As we can see, the login_required() decorator conveys a little bit more than simple
check-or-fail behavior. That makes decorators a great mechanism of code reuse. The
login requirement may be a common aspect of applications, but the implementation
of that aspect can change over time. Decorators offer a convenient way to pack such
aspects into portable behaviors that can be easily added on top of existing functions.

We will use and explain decorators in more details in Chapter 8, Elements of
Metaprogramming, where we will discuss decorators as a metaprogramming technique.

Enumerations
There are common programming features that are found in many programming
languages regardless of the dominant programming paradigm. One such feature is
enumerated types that have a finite number of named values. They are especially
useful for encoding a closed set of values for variables or function arguments.

One of the special handy types found in the Python Standard Library is the Enum
class from the enum module. This is a base class that allows you to define symbolic
enumerations, similar in concept to the enumerated types found in many other
programming languages (C, C++, C#, Java, and many more) that are often denoted
with the enum keyword.

In order to define your own enumeration in Python, you will need to subclass the
Enum class and define all enumeration members as class attributes. The following is
an example of a simple Python enum:

from enum import Enum

class Weekday(Enum):
 MONDAY = 0
 TUESDAY = 1
 WEDNESDAY = 2

The @wraps decorator allows you to copy decorated function
metadata like name and type annotations. It is a good practice
to use the @wraps decorator in your own decorators as it eases
debugging and gives access to original function type annotations.

Chapter 4

[169]

 THURSDAY = 3
 FRIDAY = 4
 SATURDAY = 5
 SUNDAY = 6

The Python documentation defines the following nomenclature for enum:

• enumeration or enum: This is the subclass of the Enum base class. Here, it
would be Weekday.

• member: This is the attribute you define in the Enum subclass. Here, it would
be Weekday.MONDAY, Weekday.TUESDAY, and so on.

• name: This is the name of the Enum subclass attribute that defines the member.
Here, it would be MONDAY for Weekday.MONDAY, TUESDAY for Weekday.TUESDAY,
and so on.

• value: This is the value assigned to the Enum subclass attribute that defines
the member. Here, for Weekday.MONDAY it would be one, for Weekday.TUESDAY
it would be two, and so on.

You can use any type as the enum member value. If the member value is not
important in your code, you can even use the auto() type, which will be replaced
with automatically generated values. Here is a similar example written with the use
of auto:

from enum import Enum, auto

class Weekday(Enum):
 MONDAY = auto()
 TUESDAY = auto()
 WEDNESDAY = auto()
 THURSDAY = auto()
 FRIDAY = auto()
 SATURDAY = auto()
 SUNDAY = auto()

Enumerations in Python are really useful in every place where some variable can
take only a finite number of values/choices. For instance, they can be used to define
the status of objects, as shown in the following example:

from enum import Enum, auto

class OrderStatus(Enum):
 PENDING = auto()
 PROCESSING = auto()

Python in Comparison with Other Languages

[170]

 PROCESSED = auto()

class Order:
 def __init__(self):
 self.status = OrderStatus.PENDING

 def process(self):
 if self.status == OrderStatus.PROCESSED:
 raise ValueError(
 ""Can't process order that has ""
 ""been already processed""
)

 self.status = OrderStatus.PROCESSING
 ...
 self.status = OrderStatus.PROCESSED

Another use case for enumerations is storing selections of non-exclusive choices.
This is something that is often implemented using bit flags and bit masks in
languages where the bit manipulation of numbers is very common, like C. In
Python, this can be done in a more expressive and convenient way using the Flag
base enumeration class:

from enum import Flag, auto

class Side(Flag):
 GUACAMOLE = auto()
 TORTILLA = auto()
 FRIES = auto()
 BEER = auto()
 POTATO_SALAD = auto()

You can combine such flags using bitwise operators (the | and & operators) and
test for flag membership with the in keyword. Here are some examples of a Side
enumeration:

>>> mexican_sides = Side.GUACAMOLE | Side.BEER | Side.TORTILLA
>>> bavarian_sides = Side.BEER | Side.POTATO_SALAD
>>> common_sides = mexican_sides & bavarian_sides
>>> Side.GUACAMOLE in mexican_sides
True
>>> Side.TORTILLA in bavarian_sides
False
>>> common_sides
<Side.BEER: 8>

Chapter 4

[171]

Symbolic enumerations share some similarity with dictionaries and named tuples
because they all map names/keys to values. The main difference is that the Enum
definition is immutable and global. It should be used whenever there is a closed
set of possible values that can't change dynamically during program runtime, and
especially if that set should be defined only once and globally. Dictionaries and
named tuples are data containers. You can create as many instances of them as
you like.

Summary
In this chapter, we've looked at the Python language through the prism of different
programming paradigms. Whenever it was sensible, we've tried to see how it
compares to other programming languages that share similar features to see both
strengths and weaknesses of Python.

We went pretty deep into the details of object-oriented programming concepts and
extended our knowledge of supplementary paradigms like functional programming,
so we are now fully prepared to start discussing topics on structuring and
architecting whole applications.

The next chapter will cover that pretty extensively as it will be fully dedicated to
various design patterns and methodologies.

[173]

5
Interfaces, Patterns,

and Modularity
In this chapter, we will dive deep into the realm of design patterns through the
lens of interfaces, patterns, and modularity. We've already neared this realm when
introducing the concept of programming idioms. Idioms can be understood as
small and well-recognized programming patterns for solving small problems.
The key characteristic of a programming idiom is that it is specific to a single
programming language. While idioms can often be ported to a different language,
it is not guaranteed that the resulting code will feel natural to "native" users of that
programming language.

Idioms generally are concerned with small programming constructs—usually a
few lines of code. Design patterns, on the other hand, deal with much larger code
structures—functions and classes. They are also definitely more ubiquitous. Design
patterns are reusable solutions to many common design problems appearing in
software engineering. They are often language-agnostic and thus can be expressed
using many programming languages.

In this chapter, we will look at a quite unusual take on the topic of design patterns.
Many programming books start by going back to the unofficial origin of software
design patterns—the Design Patterns: Elements of Reusable Object-Oriented Software
book by Gamma, Vlissides, Helm, and Johnson. What usually follows is a lengthy
catalog of classic design patterns with more or less idiomatic examples of their
Python implementation. Singletons, factories, adapters, flyweights, bridges, visitors,
strategies, and so on and so forth.

Interfaces, Patterns, and Modularity

[174]

There are also countless web articles and blogs doing exactly the same, so if you are
interested in learning the classic design patterns, you shouldn't have any problems
finding resources online.

Instead, we will focus on two key "design pattern enablers":

• Interfaces
• Inversion of control and dependency injectors

These two concepts are "enablers" because without them we wouldn't even have
proper language terms to talk about design patterns. By discussing the topic of
interfaces and inversion of control, we will be able to better understand what the
challenges are for building modular applications. And only by deeply understanding
those challenges will we be able to figure out why we actually need patterns.

We will of course use numerous classic design patterns on the way, but we won't
focus on any specific pattern.

Technical requirements
The following are Python packages that are mentioned in this chapter that you can
download from PyPI:

• zope.interface

• mypy

• redis

• flask

• injector

• flask-injector

Information on how to install packages is included in Chapter 2, Modern Python
Development Environments.

If you are interested in learning about the implementation of
"classic" design patterns in Python, you can visit the https://
python-patterns.guide site. It provides a comprehensive catalog
of design patterns together with Python code examples.

https://python-patterns.guide
https://python-patterns.guide

Chapter 5

[175]

The code files for this chapter can be found at https://github.com/PacktPublishing/
Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%205.

Interfaces
Broadly speaking, an interface is an intermediary that takes part in the interaction
between two entities. For instance, the interface of a car consists mainly of the
steering wheel, pedals, gear stick, dashboard, knobs, and so on. The interface
of a computer traditionally consists of a mouse, keyboard, and display.

In programming, interface may mean two things:

• The overall shape of the interaction plane that code can have
• The abstract definition of possible interactions with the code that is

intentionally separated from its implementation

In the spirit of the first meaning, the interface is a specific combination of symbols
used to interact with the unit of code. The interface of a function, for instance,
will be the name of that function, its input arguments, and the output it returns.
The interface of an object will be all of its methods that can be invoked and all the
attributes that can be accessed.

Collections of units of code (functions, objects, classes) are often grouped into
libraries. In Python, libraries take the form of modules and packages (collections
of modules). They also have interfaces. Contents of modules and packages usually
can be used in various combinations and you don't have to interact with all of their
contents. That makes them programmable applications, and that's why interfaces of
libraries are often referred to as Application Programming Interfaces (APIs).

This meaning of interface can be expanded to other elements of the computing
world. Operating systems have interfaces in the form of filesystems and system calls.
Web and remote services have interfaces in the form of communication protocols.

The second meaning of interface can be understood as the formalization of the
former. Here interface is understood as a contract that a specific element of the code
declares to fulfill. Such a formal interface can be extracted from the implementation
and can live as a standalone entity. This gives the possibility to build applications
that depend on a specific interface but don't care about the actual implementation,
as long as it exists and fulfills the contract.

https://github.com/PacktPublishing/Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%205
https://github.com/PacktPublishing/Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%205

Interfaces, Patterns, and Modularity

[176]

This formal meaning of interface can also be expanded to larger programming
concepts:

• Libraries: The C programming language defines the API of its standard
library, also known as the ISO C Library. Unlike Python, the C standard
library has numerous implementations. For Linux, the most common is
probably the GNU C Library (glibc), but it has alternatives like dietlibc
or musl. Other operating systems come with their own ISO C Library
implementations.

• Operating System: The Portable Operating System Interface (POSIX) is a
collection of standards that define a common interface for operating systems.
There are many systems that are certified to be compliant with that standard
(macOS and Solaris to name a couple). There are also operating systems
that are mostly compliant (Linux, Android, OpenBSD, and many more).
Instead of using the term "POSIX compliance," we can say that those systems
implement the POSIX interface.

• Web services: OpenID Connect (OIDC) is an open standard for
authentication and an authorization framework based on the OAuth 2.0
protocol. Services that want to implement the OIDC standard must provide
specific well-defined interfaces described in this standard.

Formal interfaces are an extremely important concept in object-oriented
programming languages. In this context, the interface abstracts either the form or
purpose of the modeled object. It usually describes a collection of methods and
attributes that a class should have to implement with the desired behavior.

In a purist approach, the definition of interface does not provide any usable
implementation of methods. It just defines an explicit contract for any class that
wishes to implement the interface. Interfaces are often composable. This means that
a single class can implement multiple interfaces at once. In this way, interfaces are
the key building block of design patterns. A single design pattern can be understood
as a composition of specific interfaces. Similar to interfaces, design patterns do not
have an inherent implementation. They are just reusable scaffolding for developers
to solve common problems.

Python developers prefer duck typing over explicit interface definitions but having
well-defined interaction contracts between classes can often improve the overall
quality of the software and reduce the area of potential errors. For instance, creators
of a new interface implementation get a clear list of methods and attributes that a
given class needs to expose. With proper implementation, it is impossible to forget
about a method that is required by a given interface.

Chapter 5

[177]

Support for an abstract interface is the cornerstone of many statically typed
languages. Java, for instance, has traits that are explicit declarations that a
class implements a specific interface. This allows Java programmers to achieve
polymorphism without type inheritance, which sometimes can become problematic.
Go, on the other hand, doesn't have classes and doesn't offer type inheritance, but
interfaces in Go allow for selected object-oriented patterns and polymorphism
without type inheritance. For both those languages, interfaces are like an explicit
version of duck typing behavior—Java and Go use interfaces to verify type safety
at compile time, rather than using duck typing to tie things together at runtime.

Python has a completely different typing philosophy than these languages, so it
does not have native support for interfaces verified at compile time. Anyway, if you
would like to have more explicit control of application interfaces, there is a handful
of solutions to choose from:

• Using a third-party framework like zope.interface that adds a notion of
interfaces

• Using Abstract Base Classes (ABCs)
• Leveraging typing annotation, typing.Protocol, and static type analyzers.

We will carefully review each of those solutions in the following sections.

A bit of history: zope.interface
There are a few frameworks that allow you to build explicit interfaces in Python.
The most notable one is a part of the Zope project. It is the zope.interface package.
Although, nowadays, Zope is not as popular as it used to be a decade ago, the zope.
interface package is still one of the main components of the still popular Twisted
framework. zope.interface is also one of the oldest and still active interface
frameworks commonly used in Python. It predates mainstream Python features
like ABCs, so we will start from it and later see how it compares to other interface
solutions.

The zope.interface package was created by Jim Fulton to mimic
the features of Java interfaces at the time of its inception.

Interfaces, Patterns, and Modularity

[178]

The interface concept works best for areas where a single abstraction can have
multiple implementations or can be applied to different objects that probably
shouldn't be tangled with inheritance structure. To better present this idea, we will
take the example of a problem that can deal with different entities that share some
common traits but aren't exactly the same thing.

We will try to build a simple collider system that can detect collisions between
multiple overlapping objects. This is something that could be used in a simple game
or simulation. Our solution will be rather trivial and inefficient. Remember that
the goal here is to explore the concept of interfaces and not to build a bulletproof
collision engine for a blockbuster game.

The algorithm we will use is called Axis-Aligned Bounding Box (AABB). It is a
simple way to detect a collision between two axis-aligned (no rotation) rectangles. It
assumes that all elements that will be tested can be constrained with a rectangular
bounding box. The algorithm is fairly simple and needs to compare only four
rectangle coordinates:

Figure 5.1: Rectangle coordinate comparisons in the AABB algorithm

Chapter 5

[179]

We will start with a simple function that checks whether two rectangles overlap:

def rects_collide(rect1, rect2):
 """Check collision between rectangles

 Rectangle coordinates:
 ┌─────(x2, y2)
 │ │
 (x1, y1) ────┘
 """
 return (
 rect1.x1 < rect2.x2 and
 rect1.x2 > rect2.x1 and
 rect1.y1 < rect2.y2 and
 rect1.y2 > rect2.y1
)

We haven't defined any typing annotations but from the above code, it should be
clearly visible that we expect both arguments of the rects_collide() function to
have four attributes: x1, y1, x2, y2. These correspond to the coordinates of the
lower-left and upper-right corners of the bounding box.

Having the rects_collide() function, we can define another function that will
detect all collisions within a batch of objects. It can be as simple as follows:

import itertools

def find_collisions(objects):
 return [
 (item1, item2)
 for item1, item2
 in itertools.combinations(objects, 2)
 if rects_collide(
 item1.bounding_box,
 item2.bounding_box
)
]

Interfaces, Patterns, and Modularity

[180]

What is left is to define some classes of objects that can be tested together against
collisions. We will model a few different shapes: a square, a rectangle, and a circle.
Each shape is different so will have a different internal structure. There is no sensible
class that we could make a common ancestor. To keep things simple, we will use
dataclasses and properties. The following are all initial definitions:

from dataclasses import dataclass

@dataclass
class Square:
 x: float
 y: float
 size: float

 @property
 def bounding_box(self):
 return Box(
 self.x,
 self.y,
 self.x + self.size,
 self.y + self.size
)

@dataclass
class Rect:
 x: float
 y: float
 width: float
 height: float

 @property
 def bounding_box(self):
 return Box(
 self.x,
 self.y,
 self.x + self.width,
 self.y + self.height
)

@dataclass
class Circle:
 x: float

Chapter 5

[181]

 y: float
 radius: float

 @property
 def bounding_box(self):
 return Box(
 self.x - self.radius,
 self.y - self.radius,
 self.x + self.radius,
 self.y + self.radius
)

The only common thing about those classes (apart from being dataclasses) is the
bounding_box property that returns the Box class instance. The Box class is also a
dataclass:

@dataclass
class Box:
 x1: float
 y1: float
 x2: float
 y2: float

Definitions of dataclasses are quite simple and don't require explanation. We can
test if our system works by passing a bunch of instances to the find_collisions()
function as in the following example:

for collision in find_collisions([
 Square(0, 0, 10),
 Rect(5, 5, 20, 20),
 Square(15, 20, 5),
 Circle(1, 1, 2),
]):
 print(collision)

If we did everything right, the above code should yield the following output with
three collisions:

(Square(x=0, y=0, size=10), Rect(x=5, y=5, width=20, height=20))
(Square(x=0, y=0, size=10), Circle(x=1, y=1, radius=2))
(Rect(x=5, y=5, width=20, height=20), Square(x=15, y=20, size=5))

Interfaces, Patterns, and Modularity

[182]

Everything is fine, but let's do a thought experiment. Imagine that our application
grew a little bit and was extended with additional elements. If it's a game, someone
could include objects representing sprites, actors, or effect particles. Let's say that
someone defined the following Point class:

@dataclass
class Point:
 x: float
 y: float

What would happen if the instance of that class was put on the list of possible
colliders? You would probably see an exception traceback similar to the following:

Traceback (most recent call last):
 File "/.../simple_colliders.py", line 115, in <module>
 for collision in find_collisions([
 File "/.../simple_colliders.py", line 24, in find_collisions
 return [
 File "/.../simple_colliders.py", line 30, in <listcomp>
 item2.bounding_box
AttributeError: 'Point' object has no attribute 'bounding_box

That provides some clue about what the issue is. The question is if we could do
better and catch such problems earlier? We could at least verify all input objects'
find_collisions() functions to check if they are collidable. But how to do that?

Because none of the collidable classes share a common ancestor, we cannot easily use
the isinstance() function to see if their types match. We can check for the bounding_
box attribute using the hasattr() function, but doing that deeply enough to see
whether that attribute has the correct structure would lead us to ugly code.

Here is where zope.interface comes in handy. The core class of the zope.interface
package is the Interface class. It allows you to explicitly define a new interface. Let's
define an ICollidable class that will be our declaration of anything that can be used
in our collision system:

from zope.interface import Interface, Attribute

class ICollidable(Interface):
 bounding_box = Attribute("Object's bounding box")

Chapter 5

[183]

The common convention for Zope is to prefix interface classes with I. The Attribute
constructor denotes the desired attribute of the objects implementing the interface.
Any method defined in the interface class will be used as an interface method
declaration. Those methods should be empty. The common convention is to use only
the docstring of the method body.

When you have such an interface defined, you must denote which of your concrete
classes implement that interface. This style of interface implementation is called
explicit interfaces and is similar in nature to traits in Java. In order to denote the
implementation of a specific interface, you need to use the implementer() class
decorator. In our case, this will look as follows:

from zope.interface import implementer

@implementer(ICollidable)
@dataclass
class Square:
 ...

@implementer(ICollidable)
@dataclass
class Rect:
 ...

@implementer(ICollidable)
@dataclass
class Circle:
 ...

It is common to say that the interface defines a contract that a concrete
implementation needs to fulfill. The main benefit of this design pattern is being able
to verify consistency between contract and implementation before the object is used.
With the ordinary duck-typing approach, you only find inconsistencies when there is
a missing attribute or method at runtime.

The bodies of the dataclasses in the above example have been
truncated for the sake of brevity.

Interfaces, Patterns, and Modularity

[184]

With zope.interface, you can introspect the actual implementation using two
methods from the zope.interface.verify module to find inconsistencies early on:

• verifyClass(interface, class_object): This verifies the class object for the
existence of methods and correctness of their signatures without looking for
attributes.

• verifyObject(interface, instance): This verifies the methods, their
signatures, and also attributes of the actual object instance.

It means that we can extend the find_collisions() function to perform initial
verification of object interfaces before further processing. We can do that as follows:

from zope.interface.verify import verifyObject

def find_collisions(objects):
 for item in objects:
 verifyObject(ICollidable, item)

 ...

Now, if someone passes to the find_collisions() function an instance of the class
that does not have the @implementer(ICollidable) decorator, they will receive an
exception traceback similar to this one:

Traceback (most recent call last):
 File "/.../colliders_interfaces.py", line 120, in <module>
 for collision in find_collisions([
 File "/.../colliders_interfaces.py", line 26, in find_collisions
 verifyObject(ICollidable, item)
 File "/.../site-packages/zope/interface/verify.py", line 172, in
verifyObject
 return _verify(iface, candidate, tentative, vtype='o')
 File "/.../site-packages/zope/interface/verify.py", line 92, in _
verify
 raise MultipleInvalid(iface, candidate, excs)
zope.interface.exceptions.MultipleInvalid: The object Point(x=100,
y=200) has failed to implement interface <InterfaceClass __main__.
ICollidable>:
 Does not declaratively implement the interface
 The __main__.ICollidable.bounding_box attribute was not provided

Chapter 5

[185]

The last two lines tell us about two errors:

• Declaration error: Invalid item isn't explicitly declared to implement the
interface and that's an error.

• Structural error: Invalid item doesn't have all elements that the interface
requires.

The latter error guards us from incomplete interfaces. If the Point class had the
@implementer(ICollidable) decorator but didn't include the bounding_box()
property, we would still receive the exception.

The verifyClass() and verifyObject() methods only verify the surface area of the
interface and aren't able to traverse into attribute types. You optionally do a more
in-depth verification using the validateInvariants() method that every interface
class of zope.interface provides. It allows hook-in functions to validate the values
of interfaces. So if we would like to be extra safe, we could use the following pattern
of interfaces and their validation:

from zope.interface import Interface, Attribute, invariant
from zope.interface.verify import verifyObject

class IBBox(Interface):
 x1 = Attribute("lower-left x coordinate")
 y1 = Attribute("lower-left y coordinate")
 x2 = Attribute("upper-right x coordinate")
 y2 = Attribute("upper-right y coordinate")

class ICollidable(Interface):
 bounding_box = Attribute("Object's bounding box")
 invariant(lambda self: verifyObject(IBBox, self.bounding_box))

def find_collisions(objects):
 for item in objects:
 verifyObject(ICollidable, item)
 ICollidable.validateInvariants(item)

 ...

Interfaces, Patterns, and Modularity

[186]

Thanks to using the validateInvariants() method, we are able to check if input
items have all attributes necessary to satisfy the ICollidable interface, and also
verify whether the structure of those attributes (here bounding_box) satisfies deeper
constraints. In our case, we use invariant() to verify the nested interface.

Using zope.interface is an interesting way to decouple your application. It
allows you to enforce proper object interfaces without the need for the overblown
complexity of multiple inheritance, and also allows you to catch inconsistencies
early.

The biggest downside of zope.interface is the requirement to explicitly declare
interface implementors. This is especially troublesome if you need to verify instances
coming from the external classes of built-in libraries. The library provides some
solutions for that problem, although they make code eventually overly verbose. You
can, of course, handle such issues on your own by using the adapter pattern, or even
monkey-patching external classes. Anyway, the simplicity of such solutions is at
least debatable.

Using function annotations and abstract base
classes
Formal interfaces are meant to enable loose coupling in large applications, and not to
provide you with more layers of complexity. zope.interface is a great concept and
may greatly fit some projects, but it is not a silver bullet. By using it, you may shortly
find yourself spending more time on fixing issues with incompatible interfaces for
third-party classes and providing never-ending layers of adapters instead of writing
the actual implementation.

If you feel that way, then this is a sign that something went wrong. Fortunately,
Python supports building a lightweight alternative to the explicit interfaces. It's
not a full-fledged solution such as zope.interface or its alternatives but generally
provides more flexible applications. You may need to write a bit more code, but in
the end, you will have something that is more extensible, better handles external
types, and maybe more future-proof.

Note that Python, at its core, does not have an explicit notion of interfaces, and
probably never will have, but it has some of the features that allow building
something that resembles the functionality of interfaces. The features are as follows:

• ABCs
• Function annotations
• Type annotations

Chapter 5

[187]

The core of our solution is abstract base classes, so we will feature them first.

As you probably know, direct type comparison is considered harmful and not
Pythonic. You should always avoid comparisons as in the following example:

assert type(instance) == list

Comparing types in functions or methods this way completely breaks the ability to
pass a class subtype as an argument to the function. A slightly better approach is to
use the isinstance() function, which will take the inheritance into account:

assert isinstance(instance, list)

The additional advantage of isinstance() is that you can use a larger range of types
to check the type compatibility. For instance, if your function expects to receive some
sort of sequence as the argument, you can compare it against the list of basic types:

assert isinstance(instance, (list, tuple, range))

And such type compatibility checking is OK in some situations but is still not perfect.
It will work with any subclass of list, tuple, or range, but will fail if the user passes
something that behaves exactly the same as one of these sequence types but does not
inherit from any of them. For instance, let's relax our requirements and say that you
want to accept any kind of iterable as an argument. What would you do?

The list of basic types that are iterable is actually pretty long. You need to cover list,
tuple, range, str, bytes, dict, set, generators, and a lot more. The list of applicable
built-in types is long, and even if you cover all of them, it will still not allow checking
against the custom class that defines the __iter__() method but inherits directly
from object.

And this is the kind of situation where ABCs are the proper solution. ABC is a
class that does not need to provide a concrete implementation, but instead defines
a blueprint of a class that may be used to check against type compatibility. This
concept is very similar to the concept of abstract classes and virtual methods known
in the C++ language.

Abstract base classes are used for two purposes:

• Checking for implementation completeness
• Checking for implicit interface compatibility

Interfaces, Patterns, and Modularity

[188]

The usage of ABCs is quite simple. You start by defining a new class that either
inherits from the abc.ABC base class or has abc.ABCMeta as its metaclass. We won't
be discussing metaclasses until Chapter 8, Elements of Metaprogramming, so in this
chapter, we'll be using only classic inheritance.

The following is an example of a basic abstract class that defines an interface that
doesn't do anything particularly special:

from abc import ABC, abstractmethod

class DummyInterface(ABC):

 @abstractmethod
 def dummy_method(self): ...

 @property
 @abstractmethod
 def dummy_property(self): ...

The @abstractmethod decorator denotes a part of the interface that must be
implemented (by overriding) in classes that will subclass our ABC. If a class will
have a nonoverridden method or property, you won't be able to instantiate it. Any
attempt to do so will result in a TypeError exception.

This approach is a great way to ensure implementation completeness and is as
explicit as the zope.interface alternative. If we would like to use ABCs instead of
zope.interface in the example from the previous section, we could do the following
modification of class definitions:

from abc import ABC, abstractmethod
from dataclasses import dataclass

class ColliderABC(ABC):
 @property
 @abstractmethod
 def bounding_box(self): ...

@dataclass
class Square(ColliderABC):
 ...

@dataclass
class Rect(ColliderABC):

Chapter 5

[189]

 ...

@dataclass
class Circle(ColliderABC):
 ...

The bodies and properties of the Square, Rect, and Circle classes don't change as the
essence of our interface doesn't change at all. What has changed is the way explicit
interface declaration is done. We now use inheritance instead of the zope.interface.
implementer() class decorator. If we still want to verify if the input of find_
collisions() conforms to the interface, we need to use the isinstance() function.
That will be a fairly simple modification:

def find_collisions(objects):
 for item in objects:
 if not isinstance(item, ColliderABC):
 raise TypeError(f"{item} is not a collider")
 ...

We had to use subclassing so coupling between components is a bit more tight but
still comparable to that of zope.interface. As far as we rely on interfaces and not
on concrete implementations (so, ColliderABC instead of Square, Rect, or Circle),
coupling is still considered loose.

But things could be more flexible. This is Python and we have full introspection
power. Duck typing in Python allows us to use any object that "quacks like a duck"
as if it was a duck. Unfortunately, usually it is in the spirit of "try and see." We
assume that the object in the given context matches the expected interface. And
the whole purpose of formal interfaces was to actually have a contract that we can
validate against. Is there a way to check whether an object matches the interface
without actually trying to use it first?

Yes. To some extent. Abstract base classes provide the special __subclasshook__(cls)
method. It allows you to inject your own logic into the procedure that determines
whether the object is an instance of a given class. Unfortunately, you need to provide
the logic all by yourself, as the abc creators did not want to constrain the developers
in overriding the whole isinstance() mechanism. We have full power over it, but
we are forced to write some boilerplate code.

Although you can do whatever you want to, usually the only reasonable thing to
do in the __subclasshook__() method is to follow the common pattern. In order to
verify whether the given class is implicitly compatible with the given abstract base
class, we will have to check if it has all the methods of the abstract base class.

Interfaces, Patterns, and Modularity

[190]

The standard procedure is to check whether the set of defined methods are available
somewhere in the Method Resolution Order (MRO) of the given class. If we would
like to extend our ColliderABC interface with a subclass hook, we could do the
following:

class ColliderABC(ABC):
 @property
 @abstractmethod
 def bounding_box(self): ...

 @classmethod
 def __subclasshook__(cls, C):
 if cls is ColliderABC:
 if any("bounding_box" in B.__dict__ for B in C.__mro__):
 return True
 return NotImplemented

With the __subclasshook__() method defined that way, ColliderABC becomes an
implicit interface. This means that any object will be considered an instance of
ColliderABC as long as it has the structure that passes the subclass hook check.
Thanks to this, we can add new components compatible with the ColliderABC
interface without explicitly inheriting from it. The following is an example of the
Line class that would be considered a valid subclass of ColliderABC:

@dataclass
class Line:
 p1: Point
 p2: Point

 @property
 def bounding_box(self):
 return Box(
 self.p1.x,
 self.p1.y,
 self.p2.x,
 self.p2.y,
)

As you can see, the Line dataclass does not mention ColliderABC anywhere in its
code. But you can verify the implicit interface compatibility of Line instances by
comparing them against ColliderABC using the isinstance() function as in the
following example:

Chapter 5

[191]

>>> line = Line(Point(0, 0), Point(100, 100))
>>> line.bounding_box
Box(x1=0, y1=0, x2=100, y2=100)
>>> isinstance(line, ColliderABC)
True

We worked with properties, but the same approach may be used for methods as
well. Unfortunately, this approach to the verification of type compatibility and
implementation completeness does not take into account the signatures of class
methods. So, if the number of expected arguments is different in the implementation,
it will still be considered compatible. In most cases, this is not an issue, but if you
need such fine-grained control over interfaces, the zope.interface package allows
for that. As already said, the __subclasshook__() method does not constrain you
in adding much more complexity to the isinstance() function's logic to achieve a
similar level of control.

Using collections.abc
ABCs are like small building blocks for creating a higher level of abstraction. They
allow you to implement really usable interfaces, but are very generic and designed
to handle a lot more than this single design pattern. You can unleash your creativity
and do magical things, but building something generic and really usable may require
a lot of work that may never pay off. Python's Standard Library and Python's built-in
types fully embrace the abstract base classes.

The collections.abc module provides a lot of predefined ABCs that allow
checking for the compatibility of types with common Python interfaces. With the
base classes provided in this module, you can check, for example, whether a given
object is callable, mapping, or whether it supports iteration. Using them with the
isinstance() function is way better than comparing against the base Python types.
You should definitely know how to use these base classes even if you don't want to
define your own custom interfaces with abc.ABC.

The most common abstract base classes from collections.abc that you will use quite
often are:

• Container: This interface means that the object supports the in operator and
implements the __contains__() method.

• Iterable: This interface means that the object supports iteration and
implements the __iter__() method.

• Callable: This interface means that it can be called like a function and
implements the __call__() method.

Interfaces, Patterns, and Modularity

[192]

• Hashable: This interface means that the object is hashable (that is, it can be
included in sets and as a key in dictionaries) and implements the __hash__
method.

• Sized: This interface means that the object has a size (that is, it can be a
subject of the len() function) and implements the __len__() method.

The collections.abc module shows pretty well where ABCs work best: creating
contracts for small and simple protocols of objects. They won't be good tools to
conveniently ensure the fine-grained structure of a large interface. They also don't
come with utilities that would allow you to easily verify attributes or perform in-
depth validation of function arguments and return types.

Fortunately, there is a completely different solution available for this problem: static
type analysis and the typing.Protocol type.

Interfaces through type annotations
Type annotations in Python proved to be extremely useful in increasing the quality
of software. More and more professional programmers use mypy or other static type
analysis tools by default, leaving conventional type-less programming for prototypes
and quick throwaway scripts.

Support for typing in the standard library and community projects grew greatly
in recent years. Thanks to this, the flexibility of typing annotations increases with
every Python release. It also allows you to use typing annotations in completely new
contexts.

One such context is using type annotations to perform structural subtyping (or static
duck-typing). That's simply another approach to the concept of implicit interfaces. It
also offers minimal simple-minded runtime check possibilities in the spirit of ABC
subclass hooks.

The core of structural subtyping is the typing.Protocol type. By subclassing this
type, you can create a definition of your interface. The following is an example of
base Protocol interfaces we could use in our previous examples of the collision
detection system:

A full list of the available abstract base classes from the
collections.abc module is available in the official Python
documentation under https://docs.python.org/3/library/
collections.abc.html.

https://docs.python.org/3/library/collections.abc.html
https://docs.python.org/3/library/collections.abc.html

Chapter 5

[193]

from typing import Protocol, runtime_checkable

@runtime_checkable
class IBox(Protocol):
 x1: float
 y1: float
 x2: float
 y2: float

@runtime_checkable
class ICollider(Protocol):
 @property
 def bounding_box(self) -> IBox: ...

This time we have used two interfaces. Tools like mypy will be able to perform deep
type verification so we can use additional interfaces to increase the type safety. The
@runtime_checkable decorator extends the protocol class with isinstance() checks.
It is something we had to perform manually for ABCs using subclass hooks in the
previous section. Here it comes almost for free.

To take full advantage of static type analysis, we also must annotate the rest of the
code with proper annotations. The following is the full collision checking code with
runtime interface validation based on protocol classes:

import itertools
from dataclasses import dataclass
from typing import Iterable, Protocol, runtime_checkable

@runtime_checkable
class IBox(Protocol):
 x1: float
 y1: float
 x2: float
 y2: float

We will learn more about the usage of static type analysis tools in
Chapter 10, Testing and Quality Automation.

Interfaces, Patterns, and Modularity

[194]

@runtime_checkable
class ICollider(Protocol):
 @property
 def bounding_box(self) -> IBox: ...

def rects_collide(rect1: IBox, rect2: IBox):
 """Check collision between rectangles

 Rectangle coordinates:
 ┌───(x2, y2)
 │ │
 (x1, y1)──┘
 """
 return (
 rect1.x1 < rect2.x2 and
 rect1.x2 > rect2.x1 and
 rect1.y1 < rect2.y2 and
 rect1.y2 > rect2.y1
)

def find_collisions(objects: Iterable[ICollider]):
 for item in objects:
 if not isinstance(item, ICollider):
 raise TypeError(f"{item} is not a collider")

 return [
 (item1, item2)
 for item1, item2
 in itertools.combinations(objects, 2)
 if rects_collide(
 item1.bounding_box,
 item2.bounding_box
)
]

We haven't included the code of the Rect, Square, and Circle classes, because
their implementation doesn't have to change. And that's the real beauty of implicit
interfaces: there is no explicit interface declaration in a concrete class beyond the
inherent interface that comes from the actual implementation.

Chapter 5

[195]

In the end, we could use any of the previous Rect, Square, and Circle class iterations
(plain dataclasses, zope-declared classes, or ABC-descendants). They all would work
with structural subtyping through the typing.Protocol class.

As you can see, despite the fact that Python lacks native support for interfaces (in the
same way as, for instance, Java or the Go language do), we have plenty of ways to
standardize contracts of classes, methods, and functions. This ability becomes really
useful when implementing various design patterns to solve commonly occurring
programming problems. Design patterns are all about reusability and the use of
interfaces can help in structuring them into design templates that can be reused over
and over again.

But the use of interfaces (and analogous solutions) doesn't end with design patterns.
The ability to create a well-defined and verifiable contract for a single unit of code
(function, class, or method) is also a crucial element of specific programming
paradigms and techniques. Notable examples are inversion of control and
dependency injection. These two concepts are tightly coupled so we will discuss
them in the next section together.

Inversion of control and dependency
injection
Inversion of Control (IoC) is a simple property of some software designs. According
to Wiktionary, if a design exhibits IoC, it means that:

(…) the flow of control in a system is inverted in comparison to the traditional
architecture.

But what is the traditional architecture? IoC isn't a new idea, and we can trace it back
to at least David D. Clark's paper from 1985 titled The structuring of systems using of
upcalls. It means that traditional design probably refers to the design of software that
was common or thought to be traditional in the 1980s.

Clark describes the traditional architecture of a program as a layered structure of
procedures where control always goes from top to bottom. Higher-level layers
invoke procedures from lower layers.

You can access Clark's full paper in a digitalized form at https://
groups.csail.mit.edu/ana/Publications/PubPDFs/The%20
Structuring%20of%20Systems%20Using%20Upcalls.pdf.

https://groups.csail.mit.edu/ana/Publications/PubPDFs/The%20Structuring%20of%20Systems%20Using%20Upcalls.pdf
https://groups.csail.mit.edu/ana/Publications/PubPDFs/The%20Structuring%20of%20Systems%20Using%20Upcalls.pdf
https://groups.csail.mit.edu/ana/Publications/PubPDFs/The%20Structuring%20of%20Systems%20Using%20Upcalls.pdf

Interfaces, Patterns, and Modularity

[196]

Those invoked procedures gain control and can invoke even deeper-layered
procedures before returning control upward. In practice, control is traditionally
passed from application to library functions. Library functions may pass it deeper to
even lower-level libraries but, eventually, return it back to the application.

IoC happens when a library passes control up to the application so that the
application can take part in the library behavior. To better understand this concept,
consider the following trivial example of sorting a list of integer numbers:

sorted([1,2,3,4,5,6])

The built-in sorted() function takes an iterable of items and returns a list of sorted
items. Control goes from the caller (your application) directly to the sorted()
function. When the sorted() function is done with sorting, it simply returns the
sorted result and gives control back to the caller. Nothing special.

Now let's say we want to sort our numbers in a quite unusual way. That could be, for
instance, sorting them by the absolute distance from number 3. Integers closest to 3
should be at the beginning of the result list and the farthest should be at the end. We
can do that by defining a simple key function that will specify the order key of our
elements:

def distance_from_3(item):
 return abs(item - 3)

Now we can pass that function as the callback key argument to the sorted()
function:

sorted([1,2,3,4,5,6], key=distance_from_3)

What will happen now is the sorted() function will invoke the key function on
every element of the iterable argument. Instead of comparing item values, it will
now compare the return values of the key function. Here is where IoC happens. The
sorted() function "upcalls" back to the distance_from_3() function provided by
the application as an argument. Now it is a library that calls the functions from the
application, and thus the flow of control is reversed.

Callback-based IoC is also humorously referred to as the
Hollywood principle in reference to the "don't call us, we'll call
you" phrase.

Chapter 5

[197]

Note that IoC is just a property of a design and not a design pattern by itself. An
example with the sorted() function is the simplest example of callback-based IoC
but it can take many different forms. For instance:

• Polymorphism: When a custom class inherits from a base class and base
methods are supposed to call custom methods

• Argument passing: When the receiving function is supposed to call methods
of the supplied object

• Decorators: When a decorator function calls a decorated function
• Closures: When a nested function calls a function outside of its scope

As you see, IoC is a rather common aspect of object-oriented or functional
programming paradigms. And it also happens quite often without you even
realizing it. While it isn't a design pattern by itself, it is a key ingredient of many
actual design patterns, paradigms, and methodologies. The most notable one is
dependency injection, which we will discuss later in this chapter.

Clark's traditional flow of control in procedural programming also happens in object-
oriented programming. In object-oriented programs, objects themselves are receivers
of control. We can say that control is passed to the object whenever a method of that
object is invoked. So the traditional flow of control would require objects to hold full
ownership of all dependent objects that are required to fulfill the object's behavior.

Inversion of control in applications
To better illustrate the differences between various flows of control, we will build a
small but practical application. It will initially start with a traditional flow of control
and later on, we will see if it can benefit from IoC in selected places.

Our use case will be pretty simple and common. We will build a service that can
track web page views using so-called tracking pixels and serve page view statistics
over an HTTP endpoint. This technique is commonly used in tracking advertisement
views or email openings. It can also be useful in situations when you make extensive
use of HTTP caching and want to make sure that caching does not affect page view
statistics.

Our application will have to track counts of page views in some persistent storage.
That will also give us the opportunity to explore application modularity—a
characteristic that cannot be implemented without IoC.

Interfaces, Patterns, and Modularity

[198]

What we need to build is a small web backend application that will have two
endpoints:

• /track: This endpoint will return an HTTP response with a 1x1 pixel GIF
image. Upon request, it will store the Referer header and increase the
number of requests associated with that value.

• /stats: This endpoint will read the top 10 most common Referer values
received on the track/ endpoint and return an HTTP response containing a
summary of the results in JSON format.

We've already introduced Flask as a simple web microframework in Chapter 2,
Modern Python Development Environments, so we will use it here as well. Let's start by
importing some modules and setting up module variables that we will use on the
way:

from collections import Counter
from http import HTTPStatus

from flask import Flask, request, Response

app = Flask(__name__)
storage = Counter()

PIXEL = (
 b'GIF89a\x01\x00\x01\x00\x80\x00\x00\x00'
 b'\x00\x00\xff\xff\xff!\xf9\x04\x01\x00'
 b'\x00\x00\x00,\x00\x00\x00\x00\x01\x00'
 b'\x01\x00\x00\x02\x01D\x00;'
)

The app variable is the core object of the Flask framework. It represents a Flask
web application. We will use it later to register endpoint routes and also run the
application development server.

The Referer header is an optional HTTP header that web
browsers will use to tell the web server what is the URL of the
origin web page from which the resource is being requested. Take
note of the misspelling of the word referrer. The header was first
standardized in RFC 1945, Hypertext Transfer Protocol—HTTP/1.0
(see https://tools.ietf.org/html/rfc1945). When the
misspelling was discovered, it was already too late to fix it.

https://tools.ietf.org/html/rfc1945

Chapter 5

[199]

The storage variable holds a Counter instance. It is a convenient data structure from
the Standard Library that allows you to track counters of any immutable values.
Our ultimate goal is to store page view statistics in a persistent way, but it will be
a lot easier to start off with something simpler. That's why we will initially use this
variable as our in-memory storage of page view statistics.

Last but not least, is the PIXEL variable. It holds a byte representation of a 1x1
transparent GIF image. The actual visual appearance of the tracking pixel does
not matter and probably will never change. It is also so small that there's no need
to bother with loading it from the filesystem. That's why we are inlining it in our
module to fit the whole application in a single Python module.

Once we're set, we can write code for the /track endpoint handler:

@app.route('/track')
def track():
 try:
 referer = request.headers["Referer"]
 except KeyError:
 return Response(status=HTTPStatus.BAD_REQUEST)

 storage[referer] += 1

 return Response(
 PIXEL, headers={
 "Content-Type": "image/gif",
 "Expires": "Mon, 01 Jan 1990 00:00:00 GMT",
 "Cache-Control": "no-cache, no-store, must-revalidate",
 "Pragma": "no-cache",
 }
)

We use extra Expires, Cache-Control, and Pragma headers
to control the HTTP caching mechanism. We set them so that
they would disable any form of caching on most web browser
implementations. We also do it in a way that should disable
caching by potential proxies. Take careful note of the Expires
header value that is way in the past. This is the lowest possible
epoch time and in practice means that resource is always
considered expired.

Interfaces, Patterns, and Modularity

[200]

Flask request handlers typically start with the @app.route(route) decorator that
registers the following handler function for the given HTTP route. Request handlers
are also known as views. Here we have registered the track() view as a handler of
the /track route endpoint. This is the first occurrence of IoC in our application: we
register our own handler implementation within Flask frameworks. It is a framework
that will call back our handlers on incoming requests that match associated routes.

After the signature, we have simple code for handling the request. We check if
the incoming request has the expected Referer header. That's the value which the
browser uses to tell what URI the requested resource was included on (for instance,
the HTML page we want to track). If there's no such header, we will return an error
response with a 400 Bad Request HTTP status code.

If the incoming request has the Referer header, we will increase the counter value in
the storage variable. The Counter structure has a dict-like interface and allows you
to easily modify counter values for keys that haven't been registered yet. In such a
case, it will assume that the initial value for the given key was 0. That way we don't
need to check whether a specific Referer value was already seen and that greatly
simplifies the code. After increasing the counter value, we return a pixel response
that can be finally displayed by the browser.

Note that although the storage variable is defined outside the track() function, it is
not yet an example of IoC. That's because whoever calls the stats() function can't
replace the implementation of the storage. We will try to change that in the next
iterations of our application.

The code for the /stats endpoint is even simpler:

@app.route('/stats')
def stats():
 return dict(storage.most_common(10))

In the stats() view, we again take advantage of the convenient interface of the
Counter object. It provides the most_common(n) method, which returns up to n most
common key-value pairs stored in the structure. We immediately convert that to a
dictionary. We don't use the Response class, as Flask by default serializes the non-
Response class return values to JSON and assumes a 200 OK status for the HTTP
response.

In order to test our application easily, we finish our script with the simple invocation
of the built-in development server:

if __name__ == '__main__':
 app.run(host="0.0.0.0", port=8000)

Chapter 5

[201]

If you store the application in the tracking.py file, you will be able to start the server
using the python tracking.py command. It will start listening on port 8000. If you
would like to test the application in your own browser, you can extend it with the
following endpoint handler:

@app.route('/test')
def test():
 return """
 <html>
 <head></head>
 <body></body>
 </html>
 """

If you open the address http://localhost:8000/test several times in your web
browser and then go to http://localhost:8000/stats, you will see output similar to
the following:

{"http://localhost:8000/test":6}

The problem with the current implementation is that it stores request counters in
memory. Whenever the application is restarted, the existing counters will be reset
and we'll lose important data. In order to keep the data between restarts, we will
have to replace our storage implementation.

The options to provide data persistency are many. We could, for instance, use:

• A simple text file
• The built-in shelve module
• A relational database management system (RDBMS) like MySQL, MariaDB,

or PostgreSQL
• An in-memory key-value or data struct storage service like Memcached

or Redis

Depending on the context and scale of the workload our application needs to handle,
the best solution will be different. If we don't know yet what is the best solution, we
can also make the storage pluggable so we can switch storage backends depending
on the actual user needs. To do so, we will have to invert the flow of control in our
track() and stats() functions.

http://localhost:8000/test
http://localhost:8000/stats

Interfaces, Patterns, and Modularity

[202]

Good design dictates the preparation of some sort of definition of the interface of the
object that is responsible for the IoC. The interface of the Counter class seems like a
good starting point. It is convenient to use. The only problem is that the += operation
can be implemented through either the __add__() or __iadd__() special method. We
definitely want to avoid such ambiguity. Also, the Counter class has way too many
extra methods and we need only two:

• A method that allows you to increase the counter value by one
• A method that allows you to retrieve the 10 most often requested keys

To keep things simple, and readable, we will define our views storage interface as
an abstract base class of the following form:

from abc import ABC, abstractmethod
from typing import Dict

class ViewsStorageBackend(ABC):
 @abstractmethod
 def increment(self, key: str): ...

 @abstractmethod
 def most_common(self, n: int): Dict[str, int] ...

From now on, we can provide various implementations of the views storage
backend. The following will be the implementation that adapts the previously
used Counter class into the ViewsStorageBackend interface:

from collections import Counter
from typing import Dict

from .tracking_abc import ViewsStorageBackend

class CounterBackend(ViewsStorageBackend):
 def __init__(self):
 self._counter = Counter()

 def increment(self, key: str):
 self._counter[key] += 1

 def most_common(self, n: int) -> Dict[str, int]:
 return dict(self._counter.most_common(n))

Chapter 5

[203]

If we would like to provide persistency through the Redis in-memory storage
service, we could do so by implementing a new storage backend as follows:

from typing import Dict
from redis import Redis

class RedisBackend(ViewsStorageBackend):
 def __init__(
 self,
 redis_client: Redis,
 set_name: str
):
 self._client = redis_client
 self._set_name = set_name

 def increment(self, key: str):
 self._client.zincrby(self._set_name, 1, key)

 def most_common(self, n: int) -> Dict[str, int]:
 return {
 key.decode(): int(value)
 for key, value in
 self._client.zrange(
 self._set_name, 0, n-1,
 desc=True,
 withscores=True,
)
 }

Redis is an in-memory data store. This means that by default, data
is stored only in memory. Redis will persist data on disk during
restart but may lose data in an unexpected crash (for instance,
due to a power outage). Still, this is only a default behavior. Redis
offers various modes for data persistence, some of which are
comparable to other databases. This means Redis is a completely
viable storage solution for our simple use case. You can read
more about Redis persistence at https://redis.io/topics/
persistence.

https://redis.io/topics/persistence
https://redis.io/topics/persistence

Interfaces, Patterns, and Modularity

[204]

Both backends have the same interface loosely enforced with an abstract base class.
It means instances of both classes can be used interchangeably. The question is, how
will we invert control of our track() and stats() functions in a way that will allow
us to plug in a different views storage implementation?

Let's recall the signatures of our functions:

@app.route('/stats')
def stats():
 ...

@app.route('/track')
def track():
 ...

In the Flask framework, the app.route() decorator registers a function as a specific
route handler. You can think of it as a callback for HTTP request paths. You don't call
that function manually anymore and Flask is in full control of the arguments passed
to it. But we want to be able to easily replace the storage implementation. One way
to do that would be through postponing the handler registration and letting our
functions receive an extra storage argument. Consider the following example:

def track(storage: ViewsStorageBackend):
 try:
 referer = request.headers["Referer"]
 except KeyError:
 return Response(status=HTTPStatus.BAD_REQUEST)

 storage.increment(referer)

 return Response(
 PIXEL, headers={
 "Content-Type": "image/gif",
 "Expires": "Mon, 01 Jan 1990 00:00:00 GMT",
 "Cache-Control": "no-cache, no-store, must-revalidate",
 "Pragma": "no-cache",
 }
)

def stats(storage: ViewsStorageBackend):
 return storage.most_common(10)

Chapter 5

[205]

Our extra argument is annotated with the ViewsStorageBackend type so the type can
be easily verified with an IDE or additional tools. Thanks to this we have inverted
control of those functions and also achieved better modularity. Now you can
easily switch the implementation of storage for different classes with a compatible
interface. The extra benefit of IoC is that we can easily unit-test stats() and track()
methods in isolation from storage implementations.

The only part that is missing is actual route registration. We can no longer use the
app.route() decorator directly on our functions. That's because Flask won't be able
to resolve the storage argument on its own. We can overcome that problem by "pre-
injecting" desired storage implementations into handler functions and create new
functions that can be easily registered with the app.route() call.

The simple way to do that would be using the partial() function from the functools
module. It takes a single function together with a set of arguments and keyword
arguments and returns a new function that has selected arguments preconfigured.
We can use that approach to prepare various configurations of our service. Here,
for instance, is an application configuration that uses Redis as a storage backend:

from functools import partial

if __name__ == '__main__':
 views_storage = RedisBackend(Redis(host="redis"), "my-stats")

 app.route("/track", endpoint="track")(
 partial(track, storage=views_storage))
 app.route("/stats", endpoint="stats")(
 partial(stats, storage=views_storage))

 app.run(host="0.0.0.0", port=8000)

The presented approach can be applied to many other web frameworks as the
majority of them have the same route-to-handler structure. It will work especially
well for small services with only a handful of endpoints. Unfortunately, it may not
scale well in large applications. It is simple to write but definitely not the easiest
to read. Seasoned Flask programmers will for sure feel this approach is unnatural
and needlessly repetitive. Here, it simply breaks the common convention of writing
Flask handler functions.

We will discuss the topic of unit-tests together with detailed
examples of tests that leverage IoC in Chapter 10, Testing and
Quality Automation.

Interfaces, Patterns, and Modularity

[206]

The ultimate solution would be one that allows you to write and register view
functions without the need to manually inject dependent objects. So, for instance:

@app.route('/track')
def track(storage: ViewsStorageBackend):
 ...

In order to do that, from the Flask framework we would need to:

• Recognize extra arguments as dependencies of views.
• Allow the definition of a default implementation for said dependencies.
• Automatically resolve dependencies and inject them into views at runtime.

Such a mechanism is referred to as dependency injection, which we mentioned
previously. Some web frameworks offer a built-in dependency injection mechanism,
but in the Python ecosystem, it is a rather rare occurrence. Fortunately, there are
plenty of lightweight dependency injection libraries that can be added on top of any
Python framework. We will explore such a possibility in the next section.

Using dependency injection frameworks
When IoC is used at a great scale, it can easily become overwhelming. The example
from the previous section was quite simple so it didn't require a lot of setup.
Unfortunately, we have sacrificed a bit of readability and expressiveness for better
modularity and responsibility isolation. For larger applications, this can be a serious
problem.

Dedicated dependency injection libraries come to the rescue by combining a simple
way to mark function or object dependencies with a runtime dependency resolution.
All of that usually can be achieved with minimal impact on the overall code
structure.

There are plenty of dependency injection libraries for Python, so definitely there is no
need to build your own from scratch. They are often similar in implementation and
functionality, so we will simply pick one and see how it could be applied in our view
tracking application.

Our library of choice will be the injector library, which is freely available on PyPI.
We will pick it up for several reasons:

• Reasonably active and mature: Developed over more than 10 years with
releases every few months.

Chapter 5

[207]

• Framework support: It has community support for various frameworks
including Flask through the flask-injector package.

• Typing annotation support: It allows writing unobtrusive dependency
annotations and leveraging static typing analysis.

• Simple: injector has a Pythonic API. It makes code easy to read and to
reason about.

In our example, we will use the flask-injector package as it provides some initial
boilerplate to integrate injector with Flask seamlessly. But before we do that, we
will first separate our application into several modules that would better simulate
a larger application. After all, dependency injection really shines in applications that
have multiple components.

We will create the following Python modules:

• interfaces: This will be the module holding our interfaces. It will contain
ViewsStorageBackend from the previous section without any changes.

• backends: This will be the module holding specific implementations of
storage backends. It will contain CounterBackend and RedisBackend from the
previous section without any changes.

• tracking: This will be the module holding the application setup together
with view functions.

• di: This will be the module holding definitions for the injector library,
which will allow it to automatically resolve dependencies.

The core of the injector library is a Module class. It defines a so-called dependency
injection container—an atomic block of mapping between dependency interfaces
and their actual implementation instances. The minimal Module subclass may look
as follows:

from injector import Module, provider

def MyModule(Module):

You can install injector in your environment using pip as
follows:

$ pip install injector

You can find more information about injector at https://
github.com/alecthomas/injector.

https://github.com/alecthomas/injector
https://github.com/alecthomas/injector

Interfaces, Patterns, and Modularity

[208]

 @provider
 def provide_dependency(self, *args) -> Type:
 return ...

The @provider decorator marks a Module method as a method providing the
implementation for a particular Type interface. The creation of some objects may
be complex, so injector allows modules to have additional nondecorated helper
methods.

The method that provides dependency may also have its own dependencies. They
are defined as method arguments with type annotations. This allows for cascading
dependency resolution. injector supports composing dependency injection context
from multiple modules so there's no need to define all dependencies in a single
module.

Using the above template, we can create our first injector module in the di.py file.
It will be CounterModule, which provides a CounterBackend implementation for the
ViewsStorageBackend interface. The definition will be as follows:

from injector import Module, provider, singleton

from interfaces import ViewsStorageBackend
from backends import CounterBackend

class CounterModule(Module):
 @provider
 @singleton
 def provide_storage(self) -> ViewsStorageBackend:
 return CounterBackend()

CounterStorage doesn't take any arguments, so we don't have to define extra
dependencies. The only difference from the general module template is the
@singleton decorator. It is an explicit implementation of the singleton design
pattern. A singleton is simply a class that can have only a single instance. In this
context, it means that every time this dependency is resolved, injector will always
return the same object. We need that because CounterStorage stores view counters
under the internal _counter attribute. Without the @singleton decorator, every
request for the ViewsStorageBackend implementation would return a completely
new object and thus we would constantly lose track of view numbers.

The implementation of RedisModule will be only slightly more complex:

Chapter 5

[209]

from injector import Module, provider, singleton
from redis import Redis

from interfaces import ViewsStorageBackend
from backends import RedisBackend

class RedisModule(Module):
 @provider
 def provide_storage(self, client: Redis) -> ViewsStorageBackend:
 return RedisBackend(client, "my-set")

 @provider
 @singleton
 def provide_redis_client(self) -> Redis:
 return Redis(host="redis")

In the RedisStorage module, we take advantage of the injector library's ability to
resolve cascading dependencies. The RedisBackend constructor requires a Redis client
instance so we can treat it as another provide_storage() method argument. injector
will recognize typing annotation and automatically match the method that provides
the Redis class instance. We could go even further and extract a host argument to
separate configuration dependency. We won't do that for the sake of simplicity.

Now we have to tie everything up in the tracking module. We will be relying on
injector to resolve dependencies on views. This means that we can finally define
track() and stats() handlers with extra storage arguments and register them with
the @app.route() decorator as if they were normal Flask views. Updated signatures
will be the following:

@app.route('/stats')
def stats(storage: ViewsStorageBackend):
 ...

@app.route('/track')
def track(storage: ViewsStorageBackend):
 ...

The code files for this chapter provide a complete docker-compose
environment with a preconfigured Redis Docker image so you
don't have to install Redis on your own host.

Interfaces, Patterns, and Modularity

[210]

What is left is the final configuration of the app that designates which modules
should be used to provide interface implementations. If we would like to use
RedisBackend, we would finish our tracking module with the following code:

import di

if __name__ == '__main__':
 FlaskInjector(app=app, modules=[di.RedisModule()])
 app.run(host="0.0.0.0", port=8000)

The following is the complete code of the tracking module:

from http import HTTPStatus

from flask import Flask, request, Response
from flask_injector import FlaskInjector

from interfaces import ViewsStorageBackend
import di

app = Flask(__name__)

PIXEL = (
 b'GIF89a\x01\x00\x01\x00\x80\x00\x00\x00'
 b'\x00\x00\xff\xff\xff!\xf9\x04\x01\x00'
 b'\x00\x00\x00,\x00\x00\x00\x00\x01\x00'
 b'\x01\x00\x00\x02\x01D\x00;'
)

@app.route('/track')
def track(storage: ViewsStorageBackend):
 try:
 referer = request.headers["Referer"]
 except KeyError:
 return Response(status=HTTPStatus.BAD_REQUEST)

 storage.increment(referer)

 return Response(
 PIXEL, headers={
 "Content-Type": "image/gif",
 "Expires": "Mon, 01 Jan 1990 00:00:00 GMT",

Chapter 5

[211]

 "Cache-Control": "no-cache, no-store, must-revalidate",
 "Pragma": "no-cache",
 }
)

@app.route('/stats')
def stats(storage: ViewsStorageBackend):
 return storage.most_common(10)

@app.route("/test")
def test():
 return """
 <html>
 <head></head>
 <body></body>
 </html>
 """

if __name__ == '__main__':
 FlaskInjector(app=app, modules=[di.RedisModule()])
 app.run(host="0.0.0.0", port=8000)

As you can see, the introduction of the dependency injection mechanism didn't
change the core of our application a lot. The preceding code closely resembles the
first and simplest iteration, which didn't have the IoC mechanism. At the cost of a
few interface and injector module definitions, we've got scaffolding for a modular
application that could easily grow into something much bigger. We could, for
instance, extend it with additional storage that would serve more analytical purposes
or provide a dashboard that allows you to view the data at different angles.

Another advantage of dependency injection is loose coupling. In our example, views
never create instances of storage backends nor their underlying service clients (in
the case of RedisBackend). They depend on shared interfaces but are independent of
implementations. Loose coupling is usually a good foundation for a well-architected
application.

It is of course hard to show the utility of IoC and dependency injection in a really
concise example like the one we've just seen. That's because these techniques really
shine in big applications. Anyway, we will revisit the use case of the pixel tracking
application in Chapter 10, Testing and Quality Automation, where we will show that
IoC greatly improves the testability of your code.

Interfaces, Patterns, and Modularity

[212]

Summary
This chapter was a journey through time. Python is considered a modern language
but in order to better understand its patterns, we had to make some historical trips.

We started with interfaces—a concept almost as old as object-oriented programming
(the first OOP language—Simula—dates to 1967!). We took a look at zope.interface,
something that is probably one of the oldest actively maintained interface libraries
in the Python ecosystem. We learned some of its advantages and disadvantages.
That allowed us to really embrace two mainstream Python alternatives: abstract base
classes and structural subtyping through advanced type annotations.

After familiarizing ourselves with interfaces, we looked into inversion of control.
Internet sources about this topic can be really confusing and this concept is often
confused with dependency injection. To settle any disputes, we traced the origin of
the term to the 80s, when no one had yet ever dreamed about dependency injection
containers. We learned how to recognize inversion of control in various forms and
saw how it can improve the modularity of applications. We tried to invert control
in a simple application manually. We saw that sometimes it can cost us readability
and expressiveness. Thanks to this, we are now able to fully recognize the value
that comes from the simplicity of ready-made dependency injection libraries.

The next chapter should be refreshing. We will completely move away from the
topics of object-oriented programming, language features, design patterns, and
paradigms. It will be all about concurrency. We will learn how to write code that
does a lot, in parallel, and—hopefully—does it fast.

[213]

6
Concurrency

Concurrency and one of its manifestations, parallel processing, are among the
broadest topics in the area of software engineering. Concurrency is such a huge topic
that dozens of books could be written and we would still not be able to discuss all of
its important aspects and models. The purpose of this chapter is to show you why
concurrency may be required in your application, when to use it, and what Python's
most important concurrency models are.

We will discuss some of the language features, built-in modules, and third-party
packages that allow you to implement these models in your code. But we won't
cover them in much detail. Treat the content of this chapter as an entry point for your
own research and reading. We will try to guide you through the basic ideas and help
in deciding if you really need concurrency. Hopefully, after reading this chapter you
will be able to tell which approach suits your needs best.

In this chapter, we will cover the following topics:

• What is concurrency?
• Multithreading
• Multiprocessing
• Asynchronous programming

Before we get into the basic concepts of concurrency, let's begin by considering the
technical requirements.

Concurrency

[214]

Technical requirements
The following are the Python packages that are used in this chapter, which you can
download from PyPI:

• requests

• aiohttp

Information on how to install packages is included in Chapter 2, Modern Python
Development Environments.

The code files for this chapter can be found at https://github.com/PacktPublishing/
Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%206.

Before we delve into various implementations of concurrency available to Python
programmers, let's discuss what concurrency actually is.

What is concurrency?
Concurrency is often confused with actual methods of implementing it. Some
programmers also think that it is a synonym for parallel processing. This is the
reason why we need to start by properly defining concurrency. Only then will we be
able to properly understand various concurrency models and their key differences.

First and foremost, concurrency is not the same as parallelism. Concurrency is also
not a matter of application implementation. Concurrency is a property of a program,
algorithm, or problem, whereas parallelism is just one of the possible approaches to
problems that are concurrent.

In Leslie Lamport's 1976 paper Time, Clocks, and the Ordering of Events in Distributed
Systems, he defines the concept of concurrency as follows:

"Two events are concurrent if neither can causally affect the other."

By extrapolating events to programs, algorithms, or problems, we can say that
something is concurrent if it can be fully or partially decomposed into components
(units) that are order-independent. Such units may be processed independently
from each other, and the order of processing does not affect the final result. This
means that they can also be processed simultaneously or in parallel. If we process
information this way (that is, in parallel), then we are indeed dealing with parallel
processing. But this is still not obligatory.

https://github.com/PacktPublishing/Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%206
https://github.com/PacktPublishing/Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%206

Chapter 6

[215]

Doing work in a distributed manner, preferably using the capabilities of multicore
processors or computing clusters, is a natural consequence of concurrent problems.
Anyway, it does not mean that this is the only way of efficiently dealing with
concurrency. There are a lot of use cases where concurrent problems can be
approached in ways other than synchronous ways, but without the need for
parallel execution. In other words, when a problem is concurrent, it gives you the
opportunity to deal with it in a special, preferably more efficient, way.

We often get used to solving problems in a classical way: by performing a sequence
of steps. This is how most of us think and process information—using synchronous
algorithms that do one thing at a time, step by step. But this way of processing
information is not well suited to solving large-scale problems or when you need to
satisfy the demands of multiple users or software agents simultaneously:

• When the time to process the job is limited by the performance of the single
processing unit (a single machine, CPU core, and so on)

• When you are not able to accept and process new inputs until your program
has finished processing the previous one

These problems create three common application scenarios where concurrent
processing is a viable approach to satisfy user needs:

• Processing distribution: The scale of the problem is so big that the only way
to process it in an acceptable time frame (with constrained resources) is to
distribute execution on multiple processing units that can handle the work
in parallel.

• Application responsiveness: Your application needs to maintain
responsiveness (accept new inputs), even if it did not finish processing
previous inputs.

• Background processing: Not every task needs to be performed in a
synchronous way. If there is no need to immediately access the results of
a specific action, it may be reasonable to defer execution in time.

The processing distribution scenario directly maps to parallel processing. That's
why it is usually solved with multithreading and multiprocessing models. The
application responsiveness scenario often doesn't require parallel processing, so the
actual solution really depends on the problem details. The problem of application
responsiveness also covers the case when the application needs to serve multiple
clients (users or software agents) independently, without the need to wait for others
to be successfully served.

Concurrency

[216]

It is an interesting observation that these groups of problems are not exclusive.
Often, you will have to maintain application responsiveness and at the same time
won't be able to handle all the inputs on a single processing unit. This is the reason
why different and seemingly alternative or conflicting approaches to concurrency
may often be used at the same time. This is especially common in the development
of web servers, where it may be necessary to use asynchronous event loops, or
threads in conjunction with multiple processes, in order to utilize all the available
resources and still maintain low latencies under the high load.

Python provides several ways to deal with concurrency. These are mainly:

• Multithreading: This is characterized by running multiple threads of
execution that share the memory context of the parent process. It is one
of the most popular (and oldest) concurrency models and works best in
applications that do a lot of I/O (Input/Output) operations or need to
maintain user interface responsiveness. It is fairly lightweight but comes
with a lot of caveats and memory safety risks.

• Multiprocessing: This is characterized by running multiple independent
processes to perform work in a distributed manner. It is similar to threads in
operation, although it does not rely on a shared memory context. Due to the
nature of Python, it is better suited for CPU-intensive applications. It is more
heavyweight than multithreading and requires implementing inter-process
communication patterns to orchestrate work between processes.

• Asynchronous programming: This is characterized by running multiple
cooperative tasks within a single application process. Cooperative tasks
work like threads, although switching between them is facilitated by the
application itself instead of the operating system kernel. It is well suited to
I/O-bound applications, especially for programs that need to handle
multiple simultaneous network connections. The downside of asynchronous
programming is the need to use dedicated asynchronous libraries.

The first model we will discuss in detail is multithreading.

Multithreading
Developers often consider multithreading to be a very complex topic. While this
statement is totally true, Python provides high-level classes and functions that
greatly help in using threads. CPython has some inconvenient implementation
details that make threads less effective than in other programming languages like
C or Java. But that doesn't mean that they are completely useless in Python.

Chapter 6

[217]

There is still quite a large range of problems that can be solved effectively and
conveniently with Python threads.

In this section, we will discuss those limitations of multithreading in CPython, as
well as the common concurrent problems for which Python threads are still a viable
solution.

What is multithreading?
Thread is short for a thread of execution. A programmer can split their work into
threads that run simultaneously. Threads are still bound to the parent process and
can easily communicate because they share the same memory context. The execution
of threads is coordinated by the OS kernel.

Multithreading will benefit from a multiprocessor or multicore machines, where each
thread can be executed on a separate CPU core, thus making the program run faster.
This is a general rule that should hold true for most programming languages. In
Python, the performance benefit from multithreading on multicore CPUs has some
limits, which we will discuss later. For the sake of simplicity, let's assume for now
that this statement is also true for Python.

The simplest way to start a new thread of execution using Python is to use the
threading.Thread() class as in the following example:

def my_function():
 print("printing from thread")

if __name__ == "__main__":
 thread = Thread(target=my_function)
 thread.start()
 thread.join()

The my_function() function is the function we want to execute in the new thread. We
pass it to the Thread class constructor as the target keyword argument. Instances of
this class are used to encapsulate and control application threads.

Creating a new Thread class instance is not enough to start a new thread. In order to
do this, you need to call the start() method. Once the new thread is started, it will
be running next to the main thread until the target function finishes. In the above
example, we explicitly wait for the extra thread to finish using the join() method.

Concurrency

[218]

The start() and join() methods allow you to create and start multiple threads at
once. The following is a simple modification of the previous example that starts and
joins multiple threads in bulk:

from threading import Thread

def my_function():
 print("printing from thread")

if __name__ == "__main__":
 threads = [Thread(target=my_function) for _ in range(10)]
 for thread in threads:
 thread.start()

 for thread in threads:
 thread.join()

All threads share the same memory context. This means that you must be extremely
wary about how your threads access the same data structures. If two parallel threads
update the same variable without any protection, there might be a situation where a
subtle timing variation in thread execution can alter the final result in an unexpected
way. To better understand this problem, let's consider a small program that runs
multiple threads reading and updating the same value:

from threading import Thread

thread_visits = 0

def visit_counter():
 global thread_visits
 for i in range(100_000):
 value = thread_visits
 thread_visits = value + 1

We say that the join() method is a blocking operation. This
means that the thread isn't doing anything in particular (it doesn't
consume CPU time) and simply waits for a specific event to
happen.

Chapter 6

[219]

if __name__ == "__main__":
 thread_count = 100
 threads = [
 Thread(target=visit_counter)
 for _ in range(thread_count)
]
 for thread in threads:
 thread.start()

 for thread in threads:
 thread.join()

 print(f"{thread_count=}, {thread_visits=}")

The above program starts 100 threads and each one tries to read and increment
the thread_visits variable 100,000 times. If we were to run the tasks sequentially,
the final value of the thread_visits variable should be 10,000,000. But threads can
interweave and lead to unexpected results. Let's save the above code example in the
threaded_visits.py file and run it a few times to see the actual results:

$ python3 thread_visits.py
thread_count=100, thread_visits=6859624
$ python3 thread_visits.py
thread_count=100, thread_visits=7234223
$ python3 thread_visits.py
thread_count=100, thread_visits=7194665

On each run, we got a completely different number, and it was always very far from
the expected 10,000,000 thread visits. But that doesn't mean that the actual number
of thread visits was that small. With such a large number of threads, they started
interweaving and affecting our results.

Such a situation is called a race hazard or race condition. It is one of the most hated
culprits of software bugs for multithreaded applications. Obviously, there is a slice
of time between the read and write operations on the thread_visits variable where
another thread can step in and manipulate the result.

Concurrency

[220]

One might think that the problem could be fixed using the += operator, which looks
like a single atomic operation:

def visit_counter():
 global thread_visits
 for i in range(100_000):
 thread_visits += 1

But that won't help us either! The += operator is just a shorthand for incrementing a
variable, but it will actually take a few operations in the Python interpreter. Between
those operations, there's still time for threads to interweave.

The proper way around race conditions is to use thread locking primitives. Python
has a few lock classes in the threading module. Here we can use the simplest one—
threading.Lock. The following is an example of a thread-safe visit_counter()
function:

from threading import Lock

thread_visits = 0
thread_visits_lock = Lock()

def visit_counter():
 global thread_visits
 for i in range(100_000):
 with thread_visits_lock:
 thread_visits += 1

If you run the modified version of the code, you will notice that thread visits with
locks are counted properly. But that will be at the expense of performance. The
threading Lock() will make sure that only one thread at a time can process a single
block of code. This means that the protected block cannot run in parallel. Moreover,
acquiring and releasing the lock are operations that require some additional effort.
With a lot of threads trying to access the lock, a performance drop will be noticeable.
We will see other examples of using locks to secure parallel data access later in
the chapter.

Multithreading is usually supported at the OS kernel level. When a machine has
a single processor with a single core, the system uses a time slicing mechanism to
allow threads to run seemingly in parallel. With time slicing, the CPU switches
from one thread to another so fast that there is an illusion of threads running
simultaneously.

Chapter 6

[221]

Parallelism without multiple processing units is obviously virtual, and the
application performance gain on such hardware is harder to evaluate. Anyway,
sometimes, it is still useful to implement code with threads, even if it means having
to execute on a single core. We will review such use cases later.

Everything changes when your execution environment has multiple processors or
multiple processor cores. In such cases, threads can be distributed among CPUs
or their cores by the OS kernel. This thus provides the opportunity to run your
program substantially faster. This is true for many programming languages but not
necessarily for Python. To understand why that is so, let's take a closer look at how
Python deals with threads.

How Python deals with threads
Unlike some other languages, Python uses multiple kernel-level threads that can run
any of the interpreter-level threads. Kernel-level threads are operated and scheduled
by the OS kernel. CPython uses OS-specific system calls to create threads and join
threads. It doesn't have full control over when threads run and on which CPU core
they will execute. These responsibilities are left to the sole discretion of the system
kernel. Moreover, the kernel can preempt a running thread at any time, for instance,
to run a thread with a higher priority.

Unfortunately, the standard implementation of the Python (the CPython interpreter)
language comes with a major limitation that renders threads less useful in many
contexts. All operations accessing Python objects are serialized by one global lock.
This is done because many of the interpreter's internal structures are not thread-safe
and need to be protected. Not every operation requires locking, and there are certain
situations when threads release the lock.

Single-core CPUs are pretty uncommon these days in desktop
computers but can still be a concern in other areas. Small and
cheap instances in many cloud compute platforms, as well as
low-cost embedded systems, often have only single-core CPUs or
virtual CPUs.

In the context of parallel processing, if we say that something is
serialized, we mean that actions are taken in a serial fashion (one
after another). Unintended serialization in concurrent programs is
usually something that we want to avoid.

Concurrency

[222]

This mechanism of the CPython interpreter is known as the Global Interpreter Lock
(GIL). The removal of the GIL is a topic that occasionally appears on the Python-
dev emailing list and was postulated by Python developers multiple times. Sadly,
at the time of writing, no one has ever managed to provide a reasonable and simple
solution that would allow you to get rid of this limitation. It is highly improbable
that we will see any progress in this area anytime soon. It is safer to assume that the
GIL will stay in CPython, and so we need to learn how to live with it.

So, what is the point of multithreading in Python? When threads contain only pure
Python code and don't do any I/O operations (like communicating through sockets),
there is little point in using threads to speed up the program. That's because the GIL
will most likely globally serialize the execution of all threads. But remember that the
GIL cares only about protecting Python objects. In practice, the GIL is released on a
number of blocking system calls like socket calls. It can be also released in sections of
C extensions that do not use any Python/C API functions. This means that multiple
threads can do I/O operations or execute specifically crafted C extension code
completely in parallel.

Multithreading allows you to efficiently utilize time when your program is waiting
for an external resource. This is because a sleeping thread that has released the GIL
(this happens internally in CPython) can wait on "standby" and "wake up" when the
results are back. Last, whenever a program needs to provide a responsive interface,
multithreading can be an answer, even in single-core environments where the OS
needs to use time slicing. With multithreading, the program can easily interact with
the user while doing some heavy computing in the so-called background.

In the next section, we will discuss more specific examples of situations where
threading can be useful.

We will discuss the details of interacting with the GIL in Python C
extensions in Chapter 9, Bridging Python with C and C++.

Note that the GIL does not exist in every implementation of
the Python language. It is a limitation of CPython, Stackless
Python, and PyPy, but does not exist in Jython (Python for JVM)
and IronPython (Python for .NET). There has also been some
development of a GIL-free version of PyPy. It is based on software
transactional memory and is called PyPy-STM.

Chapter 6

[223]

When should we use multithreading?
Despite the GIL limitation, threads can be really useful in some of the following
cases:

• Application responsiveness: Applications that can accept new input and
respond within a given time frame (be responsive) even if they did not finish
processing previous inputs.

• Multiuser applications and network communication: Applications that
are supposed to accept inputs of multiple users simultaneously often
communicate with users over the network. This means that they can heavily
reduce the impact of locking by leveraging those parts of CPython where the
GIL is released.

• Work delegation and background processing: Applications where much of
the heavy lifting is done by external applications or services and your code
acts as a gateway to those resources.

Let's start with responsive applications, as those are the ones that tend to prefer
multithreading over other concurrency models.

Application responsiveness
Let's say you ask your OS to copy a large file from one folder to another through its
graphical user interface. The task will possibly be pushed into the background and
the interface window will display a constantly refreshed progress status. This way,
you get live feedback on the progress of the whole process. You will also be able to
cancel the operation. You can also carry out other work like browsing the web or
editing your documents while your OS is still copying the file. The graphical user
interface of your system will stay responsive to your actions. This is less irritating
than a raw cp or copy shell command that does not provide any feedback until the
entirety of the work is finished.

A responsive interface also allows a user to work on several tasks at the same time.
For instance, Gimp (a popular open-source image editing application) will let you
play around with a picture while another one is being filtered, since the two tasks
are independent.

When trying to achieve such responsive interfaces, a good approach is to try to push
long-running tasks into the background, or at least try to provide constant feedback
to the user. The easiest way to achieve that is to use threads. In such a scenario,
threads are used to make sure that the user can still operate the interface, even if the
application needs to process its tasks for a longer period of time.

Concurrency

[224]

This approach is often used together with event-driven programming where the
main application thread pushes events to be processed by background worker
threads (see Chapter 7, Event-Driven Programming). Web browsers are good examples
of applications that often use this architectural pattern.

Multiuser applications
Serving multiple users simultaneously may be understood as a special case of
application responsiveness. The key difference is that here the application has to
satisfy the parallel inputs of many users and each one of them may have some
expectations about how quickly the application should respond. Simply put, one
user should not have to wait for other user inputs to be processed in order to be
served.

Threading is a popular concurrency model for multiuser applications and is
extremely common in web applications. For instance, the main thread of a web
server may accept all incoming connections but dispatch the processing of every
single request to a separate dedicated thread. This usually allows us to handle
multiple connections and requests at the same time. The number of connections and
requests the application will be able to handle at the same time is only constrained
by the ability of the main thread to quickly accept connections and dispatch requests
to new threads. A limitation of this approach is that applications using it can quickly
consume many resources. Threads are not free: memory is shared but each thread
will have at least its own stack allocated. If the number of threads is too large, the
total memory consumption can quickly get out of hand.

Another model of threaded multiuser applications assumes that there is always
a limited pool of threads acting as workers that are able to process incoming user
inputs. The main thread is then only responsible for allocating and managing the
pool of workers. Web applications often utilize this pattern too. A web server, for
instance, can create a limited number of threads and each of those threads will be
able to accept connections on its own and handle all requests incoming on that
connection. This approach usually allows you to serve fewer users at the same time
(compared to one thread per request) but gives more control over resource usage.
Two very popular Python WSGI-compliant web servers—Gunicorn and uWSGI—
allow serving HTTP requests with threaded workers in a way that generally
follows this principle.

Do not confuse application responsiveness with Responsive Web
Design (RDW). The latter is a popular design approach of web
applications that allows you to display the same web application
well on a variety of mediums (such as desktop browsers, mobiles,
or tablets).

Chapter 6

[225]

Using multithreading to enable concurrency in multiuser applications is generally
less expensive in terms of resources than using multiprocessing. Separate Python
processes will use more memory than threads since a new interpreter needs to
be loaded for each one of them. On the other hand, having too many threads
is expensive too. We know that the GIL isn't such a problem for I/O-intensive
applications, but there will always be a time when you will need to execute Python
code. Since you cannot parallelize all of the application parts with bare threads, you
will never be able to utilize all of the resources on machines with multicore CPUs
and a single Python process. This is why the optimal solution is sometimes a hybrid
of multiprocessing and multithreading—multiple workers (processes) running with
multiple threads. Fortunately, some WSGI-compliant web servers allow for such
setup (for instance, Gunicorn with the gthread worker type).

Multiuser applications often utilize the delegation of work to threads as a means of
ensuring proper responsiveness for multiple users. But work delegation alone can
also be understood as a standalone use case for multithreading too.

Work delegation and background processing
If your application depends on many external resources, threads may really help in
speeding it up. Let's consider the case of a function that indexes files in a folder and
pushes the built indexes into a database. Depending on the type of file, the function
executes a different processing routine. For example, one is specialized in PDFs and
another one in OpenOffice files.

Instead of processing all files in a sequence, your function can set up a single thread
for each converter and push jobs to be done to each one of them through a queue.
The overall time taken by the function will be closer to the processing time of the
slowest converter than to the total sum of the work.

The other common use case for threads is performing multiple network requests to
an external service. For instance, if you want to fetch multiple results from a remote
web API, it could take a lot of time to do that synchronously, especially if the remote
server is located in a distant location.

WSGI stands for Web Server Gateway Interface. It is a common
Python standard (defined in PEP 3333, accessible at https://www.
python.org/dev/peps/pep-3333/) for communication between
web servers and applications that promotes the portability of
web applications between web servers. Most modern Python web
frameworks and web servers are based on the WSGI.

https://www.python.org/dev/peps/pep-3333/
https://www.python.org/dev/peps/pep-3333/

Concurrency

[226]

If you wait for every previous response before making new requests, you will spend
a lot of time just waiting for the external service to respond. Additional round-trip
time delays will be added to every such request.

If you are communicating with some efficient service (the Google Maps API, for
instance), it is highly probable that it can serve most of your requests concurrently
without affecting the response times of individual requests. It is then reasonable to
perform multiple queries in separate threads. Here, when doing an HTTP request,
the application will most likely spend most of its time reading from the TCP
socket. Delegating such work to threads allows for a great improvement of your
application's performance.

An example of a multithreaded application
To see how Python threading works in practice, let's construct an example
application that could benefit from the usage of threads. We will consider a simple
problem that was already highlighted in the previous section as a common use case
for multithreading: making parallel HTTP requests to some remote service.

Let's say we need to fetch information from some web service using multiple queries
that cannot be batched into a single bulk HTTP request. As a realistic example, we
will use the foreign exchange reference rates endpoint from a free API, available at
https://www.vatcomply.com. The reasons for this choice are as follows:

• This service is open and does not require any authentication keys.
• The interface of the service is very simple and can be easily queried using the

popular requests library.
• This API uses a currency data format that is common across many similar

APIs. If this service goes down (or stops being free), you will be able to easily
switch the base URL of the API to the URL of a different service.

Free API services come and go. It is possible that after some time
the URLs in this book won't work or the API will require a paid
subscription. In such cases, running your own service may be a
good option.

At https://github.com/exchangeratesapi/
exchangeratesapi, you can find code for a currency exchange
API service that uses the same data format as the API used in this
chapter.

https://www.vatcomply.com
https://github.com/exchangeratesapi/exchangeratesapi
https://github.com/exchangeratesapi/exchangeratesapi

Chapter 6

[227]

In our examples, we will try to obtain exchange rates for selected currencies using
multiple currencies as reference points. We will then present the results as an
exchange rate currency matrix, similar to the following:

1 USD = 1.0 USD, 0.887 EUR, 3.8 PLN, 8.53 NOK, 22.7 CZK
1 EUR = 1.13 USD, 1.0 EUR, 4.29 PLN, 9.62 NOK, 25.6 CZK
1 PLN = 0.263 USD, 0.233 EUR, 1.0 PLN, 2.24 NOK, 5.98 CZK
1 NOK = 0.117 USD, 0.104 EUR, 0.446 PLN, 1.0 NOK, 2.66 CZK
1 CZK = 0.044 USD, 0.039 EUR, 0.167 PLN, 0.375 NOK, 1.0 CZK

The API we've chosen offers several ways to query for multiple data points within
single requests, but unfortunately it does not allow you to query for data using
multiple base currencies at once. Obtaining the rate for a single base is as simple as
doing the following:

>>> import requests
>>> response = requests.get("https://api.vatcomply.com/rates?base=USD")
>>> response.json()
{'base': 'USD', 'rates': {'BGN': 1.7343265053, 'NZD': 1.4824864769,
'ILS': 3.5777245721, 'RUB': 64.7361000266, 'CAD': 1.3287221779, 'USD':
1.0, 'PHP': 52.0368892436, 'CHF': 0.9993792675, 'AUD': 1.3993970027,
'JPY': 111.2973308504, 'TRY': 5.6802341048, 'HKD': 7.8425113062,
'MYR': 4.0986077858, 'HRK': 6.5923561231, 'CZK': 22.7170346723,
'IDR': 14132.9963642813, 'DKK': 6.6196683515, 'NOK': 8.5297508203,
'HUF': 285.09355325, 'GBP': 0.7655848187, 'MXN': 18.930477964, 'THB':
31.7495787887, 'ISK': 118.6485767491, 'ZAR': 14.0298838344, 'BRL':
3.8548372794, 'SGD': 1.3527533919, 'PLN': 3.8015429636, 'INR':
69.3340427419, 'KRW': 1139.4519819101, 'RON': 4.221867518, 'CNY':
6.7117141084, 'SEK': 9.2444799149, 'EUR': 0.8867606633}, 'date': '2019-
04-09'}

In order to keep our examples concise, we will use the requests
package to perform HTTP requests. It is not a part of the standard
library but can be easily obtained from PyPI using pip.

You can read more about requests at https://requests.
readthedocs.io/.

https://requests.readthedocs.io/
https://requests.readthedocs.io/

Concurrency

[228]

Since our goal is to show how a multithreaded solution of concurrent problems
compares to a classical synchronous solution, we will start with an implementation
that doesn't use threads at all. Here is the code of a program that loops over the list
of base currencies, queries the foreign exchange rates API, and displays the results
on standard output as a text-formatted table:

import time

import requests

SYMBOLS = ('USD', 'EUR', 'PLN', 'NOK', 'CZK')
BASES = ('USD', 'EUR', 'PLN', 'NOK', 'CZK')

def fetch_rates(base):
 response = requests.get(
 f"https://api.vatcomply.com/rates?base={base}"
)
 response.raise_for_status()
 rates = response.json()["rates"]

 # note: same currency exchanges to itself 1:1
 rates[base] = 1.

 rates_line = ", ".join(
 [f"{rates[symbol]:7.03} {symbol}" for symbol in SYMBOLS]
)
 print(f"1 {base} = {rates_line}")

def main():
 for base in BASES:
 fetch_rates(base)

if __name__ == "__main__":
 started = time.time()
 main()
 elapsed = time.time() - started

 print()
 print("time elapsed: {:.2f}s".format(elapsed))

Chapter 6

[229]

The main() function iterates over a list of base currencies and calls the fetch_rates()
function to obtain exchange rates for the base currencies. Inside fetch_rates(),
we make a single HTTP request using the requests.get() function. The response.
raise_for_status() method will raise an exception if the server returns a response
with a status code denoting a server or client error. For now, we don't expect any
exceptions and simply assume that after receiving the request, we can successfully
read the response payload using the response.json() method. We will discuss how
to properly handle exceptions raised within threads in the Dealing with errors in
threads section.

We've added a few statements around the execution of the main() function that are
intended to measure how much time it took to finish the job. Let's save that code in
a file named synchronous.py and execute it to see how it works:

$ python3 synchronous.py

On my computer, it can take a couple of seconds to complete that task:

1 USD = 1.0 USD, 0.823 EUR, 3.73 PLN, 8.5 NOK, 21.5 CZK
1 EUR = 1.22 USD, 1.0 EUR, 4.54 PLN, 10.3 NOK, 26.2 CZK
1 PLN = 0.268 USD, 0.22 EUR, 1.0 PLN, 2.28 NOK, 5.76 CZK
1 NOK = 0.118 USD, 0.0968 EUR, 0.439 PLN, 1.0 NOK, 2.53 CZK
1 CZK = 0.0465 USD, 0.0382 EUR, 0.174 PLN, 0.395 NOK, 1.0 CZK

time elapsed: 4.08s

Every run of our script will always take a different amount of time. This is because
the processing time mostly depends on a remote service that's accessible through
a network connection. There are many non-deterministic factors affecting the final
result. If we wanted to be really methodical, we would make longer tests, repeat
them multiple times, and calculate an average from the measurements. But for the
sake of simplicity, we won't do that. You will see later that this simplified approach
is just enough for illustration purposes.

We have some baseline implementation. Now it is time to introduce threads. In
the next section, we will try to introduce one thread per call of the fetch_rates()
function.

Using one thread per item
Now, it is time for improvement. We don't do a lot of processing in Python, and long
execution times are caused by communication with the external service. We send an
HTTP request to the remote server, it calculates the answer, and then we wait until
the response is transferred back.

Concurrency

[230]

There is a lot of I/O involved, so multithreading seems like a viable option. We
can start all the requests at once in separate threads and then just wait until we
receive data from all of them. If the service that we are communicating with is
able to process our requests concurrently, we should definitely see a performance
improvement.

So, let's start with the easiest approach. Python provides clean and easy-to-use
abstraction over system threads with the threading module. The core of this
standard library is the Thread class, which represents a single thread instance. Here
is a modified version of the main() function that creates and starts a new thread for
every base currency to process and then waits until all the threads finish:

from threading import Thread

def main():
 threads = []
 for base in BASES:
 thread = Thread(target=fetch_rates, args=[base])
 thread.start()
 threads.append(thread)

 while threads:
 threads.pop().join()

It is a quick and dirty solution that approaches the problem in a bit of a frivolous
way. It has some serious issues that we will have to address later. But hey, it works.
Let's save the modified script in the threads_one_per_item.py file and run it to see if
there is some performance improvement:

$ python3 one_thread_per_item.py

On my computer, I see substantial improvement in total processing time:

1 EUR = 1.22 USD, 1.0 EUR, 4.54 PLN, 10.3 NOK, 26.2 CZK
1 NOK = 0.118 USD, 0.0968 EUR, 0.439 PLN, 1.0 NOK, 2.53 CZK
1 CZK = 0.0465 USD, 0.0382 EUR, 0.174 PLN, 0.395 NOK, 1.0 CZK
1 USD = 1.0 USD, 0.823 EUR, 3.73 PLN, 8.5 NOK, 21.5 CZK
1 PLN = 0.268 USD, 0.22 EUR, 1.0 PLN, 2.28 NOK, 5.76 CZK

time elapsed: 1.34s

Chapter 6

[231]

Once we know that threads have a beneficial effect on our application, it is time to
use them in a more logical way. First, we need to identify the following issues in the
preceding code:

• We start a new thread for every parameter. Thread initialization also takes
some time, but this minor overhead is not the only problem. Threads also
consume other resources, like memory or file descriptors. Our example input
has a strictly defined number of items, but what if it did not have a limit?
You definitely don't want to run an unbound number of threads that depend
on the arbitrary size of data input.

• The fetch_rates() function that's executed in threads calls the built-in
print() function, and in practice it is very unlikely that you would want to
do that outside of the main application thread. This is mainly due to the way
the standard output is buffered in Python. You can experience malformed
output when multiple calls to this function interweave between threads.
Also, the print() function is considered slow. If used recklessly in multiple
threads, it can lead to serialization that will waste all your benefits of
multithreading.

• Last but not least, by delegating every function call to a separate thread, we
make it extremely hard to control the rate at which our input is processed.
Yes, we want to do the job as fast as possible, but very often, external services
enforce hard limits on the rate of requests from a single client that they
can process. Sometimes, it is reasonable to design a program in a way that
enables you to throttle the rate of processing, so your application won't be
blacklisted by external APIs for abusing their usage limits.

In the next section, we will see how to use a thread pool to solve the problem of an
unbounded number of threads.

Using a thread pool
The first issue we will try to solve is the unbounded number of threads that are run
by our program. A good solution would be to build a pool of threaded workers
with a strictly defined size that will handle all the parallel work and communicate
with main thread through some thread-safe data structure. By using this thread
pool approach, we will also make it easier to solve two other problems that we've
mentioned in the previous section.

Due to using print() inside of a thread, the output you will see
may be slightly malformed. This is one of the multithreading
problems that we will take care of later in this section.

Concurrency

[232]

The general idea is to start a predefined number of threads that will consume the
work items from a queue until it becomes empty. When there is no other work to do,
the threads will quit, and we will be able to exit from the program. A good candidate
for our communication data structure is the Queue class from the built-in queue
module. It is a First-In First-Out (FIFO) queue implementation that is very similar
to the deque collection from the collections module and was specifically designed
to handle inter-thread communication. Here is a modified version of the main()
function that starts only a limited number of worker threads with a new worker()
function as a target and communicates with them using a thread-safe queue:

from queue import Queue
from threading import Thread

THREAD_POOL_SIZE = 4

def main():
 work_queue = Queue()

 for base in BASES:
 work_queue.put(base)

 threads = [
 Thread(target=worker, args=(work_queue,))
 for _ in range(THREAD_POOL_SIZE)
]

 for thread in threads:
 thread.start()

 work_queue.join()

 while threads:
 threads.pop().join()

Python has some built-in thread pooling utilities. We will cover
them later in the Using multiprocessing.dummy as the multithreading
interface section.

Chapter 6

[233]

The main function initializes the Queue instance as the worker_queue variable and
puts all the base currencies in the queue as items of work to be processed by worker
threads. It then initializes the THREAD_POOL_SIZE number of threads with the worker()
function as a thread target and work_queue as their input argument. It then waits
until all items have been processed using work_queue.join() and then waits for all
threads to finish by calling the join method of every Thread instance.

The processing of work items from the queue happens in the worker function. Here is
its code:

from queue import Empty

def worker(work_queue):
 while not work_queue.empty():
 try:
 item = work_queue.get_nowait()
 except Empty:
 break
 else:
 fetch_rates(item)
 work_queue.task_done()

The worker() function runs in a while loop until work_queue.empty() returns True.
In every iteration, it tries to obtain a new item in a non-blocking fashion using the
work_queue.get_nowait() method. If the queue is already empty, it will raise an
Empty exception, and our function will break the loop and finish. If there is an item
to pick from the queue, the worker() function will pass it to fetch_rates(item) and
mark the item as processed using work_queue.task_done(). When all items from the
queue have been marked as done, the work_queue.join() function from the main
thread will return.

The rest of the script, namely the fetch_rates() function and the code under the if
__name__ == "__main__" clause, stays the same. The following is the full script that
we can save in the thread_pool.py file:

import time
from queue import Queue, Empty
from threading import Thread

import requests

THREAD_POOL_SIZE = 4
SYMBOLS = ('USD', 'EUR', 'PLN', 'NOK', 'CZK')

Concurrency

[234]

BASES = ('USD', 'EUR', 'PLN', 'NOK', 'CZK')

def fetch_rates(base):
 response = requests.get(
 f"https://api.vatcomply.com/rates?base={base}"
)

 response.raise_for_status()
 rates = response.json()["rates"]
 # note: same currency exchanges to itself 1:1
 rates[base] = 1.

 rates_line = ", ".join(
 [f"{rates[symbol]:7.03} {symbol}" for symbol in SYMBOLS]
)
 print(f"1 {base} = {rates_line}")

def worker(work_queue):
 while not work_queue.empty():
 try:
 item = work_queue.get_nowait()
 except Empty:
 break
 else:
 fetch_rates(item)
 work_queue.task_done()

def main():
 work_queue = Queue()

 for base in BASES:
 work_queue.put(base)

 threads = [
 Thread(target=worker, args=(work_queue,))
 for _ in range(THREAD_POOL_SIZE)
]

 for thread in threads:
 thread.start()

Chapter 6

[235]

 work_queue.join()

 while threads:
 threads.pop().join()

if __name__ == "__main__":
 started = time.time()
 main()
 elapsed = time.time() - started

 print()
 print("time elapsed: {:.2f}s".format(elapsed))

We can now execute the script to see if there is any performance difference between
the previous attempt:

$ python thread_pool.py

On my computer, I can see the following output:

1 NOK = 0.118 USD, 0.0968 EUR, 0.439 PLN, 1.0 NOK, 2.53 CZK
1 PLN = 0.268 USD, 0.22 EUR, 1.0 PLN, 2.28 NOK, 5.76 CZK
1 USD = 1.0 USD, 0.823 EUR, 3.73 PLN, 8.5 NOK, 21.5 CZK
1 EUR = 1.22 USD, 1.0 EUR, 4.54 PLN, 10.3 NOK, 26.2 CZK
1 CZK = 0.0465 USD, 0.0382 EUR, 0.174 PLN, 0.395 NOK, 1.0 CZK

time elapsed: 1.90s

The overall runtime may be slower than when using one thread per argument, but at
least now it is not possible to exhaust all the computing resources with an arbitrarily
long input. Also, we can tweak the THREAD_POOL_SIZE parameter for a better
resource/time balance.

In this attempt, we used an unmodified version of the fetch_rates() function that
outputs the API result on the standard output directly from within the thread. In
some cases, this may lead to malformed output when two threads attempt to print
results at the same time. In the next section, we will try to improve it by introducing
two-way queues.

Concurrency

[236]

Using two-way queues
The issue that we are now able to solve is the potentially problematic printing of the
output in threads. It would be much better to leave such a responsibility to the main
thread that started the worker threads. We can handle that by providing another
queue that will be responsible for collecting results from our workers. Here is the
complete code that puts everything together, with the main changes highlighted:

import time
from queue import Queue, Empty
from threading import Thread

import requests

SYMBOLS = ('USD', 'EUR', 'PLN', 'NOK', 'CZK')
BASES = ('USD', 'EUR', 'PLN', 'NOK', 'CZK')

THREAD_POOL_SIZE = 4

def fetch_rates(base):
 response = requests.get(
 f"https://api.vatcomply.com/rates?base={base}"
)
 response.raise_for_status()
 rates = response.json()["rates"]

 # note: same currency exchanges to itself 1:1
 rates[base] = 1.
 return base, rates

def present_result(base, rates):
 rates_line = ", ".join([
 f"{rates[symbol]:7.03} {symbol}"
 for symbol in SYMBOLS
])
 print(f"1 {base} = {rates_line}")

def worker(work_queue, results_queue):
 while not work_queue.empty():
 try:
 item = work_queue.get_nowait()
 except Empty:
 break

Chapter 6

[237]

 else:
 results_queue.put(fetch_rates(item))
 work_queue.task_done()

def main():
 work_queue = Queue()
 results_queue = Queue()

 for base in BASES:
 work_queue.put(base)

 threads = [
 Thread(
 target=worker,
 args=(work_queue, results_queue)
) for _ in range(THREAD_POOL_SIZE)
]

 for thread in threads:
 thread.start()

 work_queue.join()

 while threads:
 threads.pop().join()

 while not results_queue.empty():
 present_result(*results_queue.get())

if __name__ == "__main__":
 started = time.time()
 main()
 elapsed = time.time() - started

 print()
 print("time elapsed: {:.2f}s".format(elapsed))

The main difference is the introduction of the results_queue instance of the Queue
class and the presents_results() function. The fetch_rates() function no longer
prints its results to standard output. It instead returns processed API results straight
to the worker() function. Worker threads pass those results unmodified through a
new results_queue output queue.

Concurrency

[238]

Now only the main thread is responsible for printing the results on standard output.
After all the work has been marked as done, the main() function consumes results
from results_queue and passes them to the present_results() function.

This eliminates the risk of malformed inputs that we could encounter if the present_
result() function would do more print(). We don't expect any performance
improvement from this approach with small inputs, but in fact we also reduced the
risk of thread serialization due to slow print() execution.

In all the previous examples, we've assumed that the API we use will always
respond with a meaningful and valid answer. We've didn't cover any failure
scenarios to keep things simple, but in real applications, it could be a problem. In the
next section, we will see what happens when an exception is raised within a thread
and how it affects communication over queues.

Dealing with errors in threads
The raise_for_status() method of the requests.Response object will raise an
exception if the HTTP response has a status code indicating the error condition. We
have used that method in all the previous iterations of the fetch_rates() function
but we haven't handled any potential exceptions yet.

If the service we are calling with the requests.get() method responds with a status
code indicating an error, the exception will be raised in a separate thread and will
not crash the entire program. The worker thread will, of course, exit immediately.
But the main thread will wait for all tasks stored on work_queue to finish (with
the work_queue.join() call). Without further improvement, we may end up in a
situation where some of the worker threads crashed and the program will never exit.
To avoid this we should ensure that our worker threads gracefully handle possible
exceptions and make sure that all items from the queue are processed.

Let's make some minor changes to our code in order to be prepared for any issues
that may occur. In case there are exceptions in the worker thread, we may put an
error instance on the results_queue queue so the main thread will be able to tell
which of the tasks have failed to process. We can also mark the current task as
done, the same as we would do if there was no error. That way, we make sure that
the main thread won't lock indefinitely while waiting on the work_queue.join()
method call.

The main thread might then inspect the results and re-raise any of the exceptions
found on the results queue. Here are the improved versions of the worker() and
main() functions that can deal with exceptions in a safer way (the changes are
highlighted):

Chapter 6

[239]

def worker(work_queue, results_queue):
 while not work_queue.empty():
 try:
 item = work_queue.get_nowait()
 except Empty:
 break

 try:
 result = fetch_rates(item)
 except Exception as err:
 results_queue.put(err)
 else:
 results_queue.put(result)
 finally:
 work_queue.task_done()

def main():
 work_queue = Queue()
 results_queue = Queue()

 for base in BASES:
 work_queue.put(base)

 threads = [
 Thread(target=worker, args=(work_queue, results_queue))
 for _ in range(THREAD_POOL_SIZE)
]

 for thread in threads:
 thread.start()

 work_queue.join()

 while threads:
 threads.pop().join()

 while not results_queue.empty():
 result = results_queue.get()
 if isinstance(result, Exception):
 raise result

 present_result(*result)

Concurrency

[240]

To see how error handling works in action we will try to simulate a convincing error
scenario. Since we don't have full control over the API we use, we will randomly
inject error responses to the fetch_rates() function. The following is the modified
version of that function:

import random

def fetch_rates(base):
 response = requests.get(
 f"https://api.vatcomply.com/rates?base={base}"
)

 if random.randint(0, 5) < 1:
 # simulate error by overriding status code
 response.status_code = 500

 response.raise_for_status()
 rates = response.json()["rates"]
 # note: same currency exchanges to itself 1:1
 rates[base] = 1.
 return base, rates

By modifying response.status_code to 500, we will simulate the situation of our
API returning a response indicating a server error. This is a common status code
for issues occurring on the server side. In such situations, details of the error are
not always disclosed. This status code is just enough for the response.raise_for_
status() method to raise an exception.

Let's save a modified version of the code in the error_handling.py file and run it to
see how it handles exceptions:

$ python3 error_handling.py

Errors are injected randomly, so this may need to be executed a few times. After a
couple of tries, you should see an output similar to the following:

1 PLN = 0.268 USD, 0.22 EUR, 1.0 PLN, 2.28 NOK, 5.76 CZK
Traceback (most recent call last):
 File ".../error_handling.py", line 92, in <module>
 main()
 File ".../error_handling.py", line 85, in main
 raise result
 File ".../error_handling.py", line 53, in worker

Chapter 6

[241]

 result = fetch_rates(item)
 File ".../error_handling.py", line 30, in fetch_rates
 response.raise_for_status()
 File ".../.venv/lib/python3.9/site-packages/requests/models.py", line
943, in raise_for_status
 raise HTTPError(http_error_msg, response=self)
requests.exceptions.HTTPError: 500 Server Error: OK for url: https://
api.vatcomply.com/rates?base=NOK

Our code did not succeed in obtaining all the items, but we at least got clear
information about the error cause, which was in this case a 500 Server Error
response status.

In the next section, we will make the last improvement to our multithreaded
program. We will introduce a throttling mechanism to protect our program from
rate limiting and avoid the accidental abuse of the free service we use.

Throttling
The last of the issues mentioned in the Using one thread per item section that we
haven't tackled yet is potential rate limits that may be imposed by external service
providers. In the case of the foreign exchange rates API, the service maintainer did
not inform us about any rate limits or throttling mechanisms. But many services
(even paid ones) often do impose rate limits.

Usually, when a service has rate limits implemented, it will start returning responses
indicating errors after a certain number of requests are made, surpassing the
allocated quota. We've already prepared for error responses in the previous section,
but that is often not enough to properly handle rate limits. That's because many
services often count requests made beyond the limit, and if you go beyond the limit
consistently, you may never get back to the allocated quota.

When using multiple threads, it is very easy to exhaust any rate limit or simply—if
the service does not throttle incoming requests—saturate the service to the level
that it will not be able to respond to anyone. If done on purpose, this is known as a
Denial-of-Service (DoS) attack.

In order to not go over the rate limits or cause accidental DoS, we need to limit the
pace at which we make requests to the remote service. Limiting the pace of work is
often called throttling. There are a few packages in PyPI that allow you to limit the
rate of any kind of work that are really easy to use. But we won't use any external
code here. Throttling is a good opportunity to introduce some locking primitives for
threading, so we will try to build a throttling solution from scratch.

Concurrency

[242]

The algorithm we will use is sometimes called a token bucket and is very simple. It
includes the following functionality:

• There is a bucket with a predefined number of tokens
• Each token corresponds to a single permission to process one item of work
• Each time the worker asks for one or more tokens (permissions), we do the

following:
1. We check how much time has passed since the last time we refilled

the bucket
2. If the time difference allows for it, we refill the bucket with the

number of tokens that correspond to the time difference
3. If the number of stored tokens is bigger than or equal to the amount

requested, we decrease the number of stored tokens and return that
value

4. If the number of stored tokens is less than requested, we return zero

The two important things are to always initialize the token bucket with zero tokens
and to never allow it to overfill. This may be counter-intuitive, but if we don't
follow these precautions, we can release the tokens in bursts that exceed the rate
limit. Because, in our situation, the rate limit is expressed in requests per second, we
don't need to deal with arbitrary amount of time. We assume that the base for our
measurement is one second, so we will never store more tokens than the number of
requests allowed for that amount of time. Here is an example implementation of the
class that allows for throttling with the token bucket algorithm:

from threading import Lock

class Throttle:
 def __init__(self, rate):
 self._consume_lock = Lock()
 self.rate = rate
 self.tokens = 0
 self.last = None

 def consume(self, amount=1):
 with self._consume_lock:
 now = time.time()

 # time measurement is initialized on first
 # token request to avoid initial bursts
 if self.last is None:

Chapter 6

[243]

 self.last = now

 elapsed = now - self.last

 # make sure that quant of passed time is big
 # enough to add new tokens
 if elapsed * self.rate > 1:
 self.tokens += elapsed * self.rate
 self.last = now

 # never over-fill the bucket
 self.tokens = min(self.rate, self.tokens)

 # finally dispatch tokens if available
 if self.tokens >= amount:
 self.tokens -= amount
 return amount

 return 0

The usage of this class is very simple. We have to create only one instance of
Throttle (for example, Throttle(10)) in the main thread and pass it to every
worker thread as a positional argument:

def main():
 work_queue = Queue()
 results_queue = Queue()
 throttle = Throttle(10)

 for base in BASES:
 work_queue.put(base)

 threads = [
 Thread(
 target=worker,
 args=(work_queue, results_queue, throttle)
) for _ in range(THREAD_POOL_SIZE)
]
 ...

Concurrency

[244]

This throttle instance will be shared across threads, but it is safe to use because we
guarded the manipulation of its internal state with the instance of the Lock class from
the threading module. We can now update the worker() function implementation to
wait with every item until the throttle object releases a new token, as follows:

import time

def worker(work_queue, results_queue, throttle):
 while True:
 try:
 item = work_queue.get_nowait()
 except Empty:
 break

 while not throttle.consume():
 time.sleep(0.1)

 try:
 result = fetch_rates(item)
 except Exception as err:
 results_queue.put(err)
 else:
 results_queue.put(result)
 finally:
 work_queue.task_done()

The while not throttle.consume() block prevents us from processing work queue
items if a throttle object does not release any tokens (zero evaluates to False).
We've put a short sleep to add some pacing for the threads in the event of an empty
bucket. There's probably a more elegant way to do that, but this simple technique
does the job fairly well.

When throttle.consume() returns a non-zero value, we consider the token
consumed. The thread can exit the while loop and proceed with processing the work
queue item. When the processing is done, it will read another item from the work
queue and again try to consume the token. This whole process will continue until
the work queue is empty.

This was a very brief introduction to threads. We haven't covered every possible
aspect of multithreaded applications, but we already know enough to take a look
at other concurrency models and see how they compare to threads. The next
concurrency model will be multiprocessing.

Chapter 6

[245]

Multiprocessing
Let's be honest, multithreading is challenging. Dealing with threads in a sane
and safe manner required a tremendous amount of code when compared to the
synchronous approach. We had to set up a thread pool and communication queues,
gracefully handle exceptions from threads, and also worry about thread safety when
trying to provide a rate limiting capability. Dozens of lines of code are needed just
to execute one function from some external library in parallel! And we rely on the
promise from the external package creator that their library is thread-safe. Sounds
like a high price for a solution that is practically applicable only for doing I/O-bound
tasks.

An alternative approach that allows you to achieve parallelism is multiprocessing.
Separate Python processes that do not constrain each other with the GIL allow for
better resource utilization. This is especially important for applications running on
multicore processors that are performing really CPU-intensive tasks. Right now,
this is the only built-in concurrent solution available for Python developers (using
CPython interpreter) that allows you to take benefit from multiple processor cores
in every situation.

The other advantage of using multiple processes over threads is the fact that they
do not share a memory context. Thus, it is harder to corrupt data and introduce
deadlocks or race conditions in your application. Not sharing the memory context
means that you need some additional effort to pass the data between separate
processes, but fortunately there are many good ways to implement reliable inter-
process communication. In fact, Python provides some primitives that make
communication between processes almost as easy as it is between threads.

The most basic way to start new processes in any programming language is usually
by forking the program at some point. On POSIX and POSIX-like systems (like
UNIX, macOS, and Linux), a fork is a system call that will create a new child process.
In Python it is exposed through the os.fork() function. The two processes continue
the program in their own right after the forking. Here is an example script that forks
itself exactly once:

import os

pid_list = []

def main():
 pid_list.append(os.getpid())
 child_pid = os.fork()

 if child_pid == 0:

Concurrency

[246]

 pid_list.append(os.getpid())
 print()
 print("CHLD: hey, I am the child process")
 print("CHLD: all the pids I know %s" % pid_list)

 else:
 pid_list.append(os.getpid())
 print()
 print("PRNT: hey, I am the parent process")
 print("PRNT: the child pid is %d" % child_pid)
 print("PRNT: all the pids I know %s" % pid_list)

if __name__ == "__main__":
 main()

The os.fork() spawns a new process. Both processes will have the same memory
state till the moment of the fork() call, but after that call their memories diverge,
hence the fork name. os.fork() returns an integer value. If it is 0, we know that the
current process is a child process. The parent process will receive the Process ID
(PID) number of its child process.

Let's save the script in the forks.py file and run it in a shell session:

$ python3 forks.py

On my computer, I've got the following output:

PRNT: hey, I am the parent process
PRNT: the child pid is 9304
PRNT: all the pids I know [9303, 9303]

CHLD: hey, I am the child process
CHLD: all the pids I know [9303, 9304]

Notice how both processes have exactly the same initial state of their data before the
os.fork() call. They both have the same PID number (process identifier) as a first
value of the pid_list collection.

Later, both states diverge. We can see that the child process added the 9304 value
while the parent duplicated its 9303 PID. This is because the memory contexts of
these two processes are not shared. They have the same initial conditions but cannot
affect each other after the os.fork() call.

Chapter 6

[247]

After the fork, each process gets its own address space. To communicate, processes
need to work with system-wide resources or use low-level tools like signals.

Unfortunately, os.fork is not available under Windows, where a new interpreter
needs to be spawned in order to mimic the fork feature. Therefore, the
multiprocessing implementation depends on the platform. The os module also
exposes functions that allow you to spawn new processes under Windows. Python
provides the great multiprocessing module, which creates a high-level interface for
multiprocessing.

The great advantage of the multiprocessing module is that it provides some of the
abstractions that we had to code from scratch when we discussed multithreading.
It allows you to limit the amount of boilerplate code, so it improves application
maintainability and reduces complexity. Surprisingly, despite its name, the
multiprocessing module exposes a similar interface for threads, so you will probably
want to use the same interface for both approaches.

Let's take a closer look at the built-in multiprocessing module in the next section.

The built-in multiprocessing module
The multiprocessing module provides a portable way to work with processes as if
they were threads. This module contains a Process class that is very similar to the
Thread class, and can be used on any platform, as follows:

from multiprocessing import Process
import os

def work(identifier):
 print(
 f'Hey, I am the process '
 f'{identifier}, pid: {os.getpid()}'
)

def main():
 processes = [
 Process(target=work, args=(number,))
 for number in range(5)
]
 for process in processes:
 process.start()

 while processes:
 processes.pop().join()

Concurrency

[248]

if __name__ == "__main__":
 main()

The Process class has start() and join() methods that are similar to the methods in
the Thread class. The start() method spawns a new process and join() waits until
the child process exits.

Let's save that script in a file called basic_multiprocessing.py and execute it to see
how it works in action:

$ python3 basic_multiprocessing.py

On your own computer, you will be able to see output similar to the following:

Hey, I am the process 3, pid: 9632
Hey, I am the process 1, pid: 9630
Hey, I am the process 2, pid: 9631
Hey, I am the process 0, pid: 9629
Hey, I am the process 4, pid: 9633

When processes are created, the memory is forked (on POSIX and POSIX-like
systems). Besides the memory state that is copied, the Process class also provides
an extra args argument in its constructor so that data can be passed along.

Communication between processes requires some additional work because their
local memory is not shared by default. To ease this, the multiprocessing module
provides the following few ways of communicating between processes:

• Using the multiprocessing.Queue class, which is a functional equivalent of
queue.Queue, which was used earlier for communication between threads.

• Using multiprocessing.Pipe, which is a socket-like two-way communication
channel.

• Using the multiprocessing.sharedctypes module, which allows you to
create arbitrary C types (from the ctypes module) in a dedicated pool of
memory that is shared between processes.

The multiprocessing.Queue and queue.Queue classes have the same interface. The
only difference is that the first is designed for usage in multiprocess environments,
rather than with multiple threads, so it uses different internal transports and
locking primitives. We've already seen how to use Queue with multithreading in the
Multithreading section, so we won't do the same for multiprocessing. The usage stays
exactly the same, so such an example would not bring anything new.

Chapter 6

[249]

A more interesting communication pattern is provided by the Pipe class. It is a
duplex (two-way) communication channel that is very similar in concept to UNIX
pipes. The interface of Pipe is very similar to a simple socket from the built-in socket
module. The difference between raw system pipes and sockets is that it automatically
applies object serialization through the pickle module. From a developer's
perspective, it looks like sending ordinary Python objects. With plain system pipes or
sockets, you need to apply your own serialization manually in order to reconstruct
sent objects from byte streams.

This allows for much easier communication between processes because you can send
almost any basic Python type. Consider the following worker() class, which will read
an object from the Pipe object and output its representation on standard output:

def worker(connection):
 while True:
 instance = connection.recv()
 if instance:
 print(f"CHLD: recv: {instance}")
 if instance is None:
 break

Later on, we can use the Pipe in our main() function to send various objects
(including custom classes) to a child process:

from multiprocessing import Process, Pipe

class CustomClass:
 pass

def main():
 parent_conn, child_conn = Pipe()

 child = Process(target=worker, args=(child_conn,))

 for item in (
 42,
 'some string',

The pickle module can easily serialize and deserialize Python
objects to and from byte streams. It handles various types of
objects including instances of user-defined classes. You can learn
more about the pickle module and which objects are picklable at
https://docs.python.org/3/library/pickle.html.

https://docs.python.org/3/library/pickle.html

Concurrency

[250]

 {'one': 1},
 CustomClass(),
 None,
):
 print(
 "PRNT: send: {}".format(item)
)
 parent_conn.send(item)

 child.start()
 child.join()

if __name__ == "__main__":
 main()

When looking at the following example output of the preceding script, you will
see that you can easily pass custom class instances and that they have different
addresses, depending on the process:

PRNT: send: 42
PRNT: send: some string
PRNT: send: {'one': 1}
PRNT: send: <__main__.CustomClass object at 0x101cb5b00>
PRNT: send: None
CHLD: recv: 42
CHLD: recv: some string
CHLD: recv: {'one': 1}
CHLD: recv: <__main__.CustomClass object at 0x101cba400>

The other way to share a state between processes is to use raw types in a shared
memory pool with classes provided in multiprocessing.sharedctypes. The most
basic ones are Value and Array. Here is some example code from the official
documentation of the multiprocessing module:

from multiprocessing import Process, Value, Array

def f(n, a):
 n.value = 3.1415927
 for i in range(len(a)):
 a[i] = -a[i]

if __name__ == '__main__':

Chapter 6

[251]

 num = Value('d', 0.0)
 arr = Array('i', range(10))

 p = Process(target=f, args=(num, arr))
 p.start()
 p.join()

 print(num.value)
 print(arr[:])

And this example will print the following output:

3.1415927
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]

When working with multiprocessing.sharedctypes, you need to remember that
you are dealing with shared memory, so to avoid the risk of race conditions, you still
need to use locking primitives. multiprocessing provides some of the classes similar
to those available in the threading module, such as Lock, RLock, and Semaphore. The
downside of classes from sharedctypes is that they allow you only to share the basic
C types from the ctypes module. If you need to pass more complex structures or
class instances, you need to use Queue, Pipe, or other inter-process communication
channels instead. In most cases, it is reasonable to avoid types from sharedctypes
because they increase code complexity and bring all the dangers of multithreading.

We've already mentioned that the multiprocessing module allows you to reduce the
amount of boilerplate thanks to some extra functionalities. One such functionality is
built-in process pools. We will take a look at how to use them in the next section.

Using process pools
Using multiple processes instead of threads adds some overhead. Mostly, it increases
the memory footprint because each process has its own and independent memory
context. This means allowing unbound numbers of child processes may be more
of an issue than allowing an unbounded number of threads in multithreaded
applications.

Concurrency

[252]

The best pattern to control resource usage in applications that rely on
multiprocessing is to build a process pool in a similar way to what we described for
threads in the Using a thread pool section.

And the best thing about the multiprocessing module is that it provides a ready-
to-use Pool class that handles all the complexity of managing multiple process
workers for you. This pool implementation greatly reduces the amount of required
boilerplate and the number of issues related to two-way communication. You also
don't have to use the join() method manually, because Pool can be used as a context
manager (using the with statement). Here is one of our previous threading examples,
rewritten to use the Pool class from the multiprocessing module:

import time
from multiprocessing import Pool

import requests

SYMBOLS = ('USD', 'EUR', 'PLN', 'NOK', 'CZK')
BASES = ('USD', 'EUR', 'PLN', 'NOK', 'CZK')

POOL_SIZE = 4

def fetch_rates(base):
 response = requests.get(
 f"https://api.vatcomply.com/rates?base={base}"
)

 response.raise_for_status()
 rates = response.json()["rates"]
 # note: same currency exchanges to itself 1:1
 rates[base] = 1.
 return base, rates

If the OS supports the fork() system call with copy-on-write
(COW) semantics, the memory overhead of starting new
subprocesses will be greatly reduced. COW allows an OS to
deduplicate the same memory pages and copy them only if one
of the processes attempts to modify them. For instance, Linux
provides the fork() system call with COW semantics but
Windows does not. Also, COW benefits may be diminished in
long-running processes.

Chapter 6

[253]

def present_result(base, rates):
 rates_line = ", ".join(
 [f"{rates[symbol]:7.03} {symbol}" for symbol in SYMBOLS]
)
 print(f"1 {base} = {rates_line}")

def main():
 with Pool(POOL_SIZE) as pool:
 results = pool.map(fetch_rates, BASES)

 for result in results:
 present_result(*result)

if __name__ == "__main__":
 started = time.time()
 main()
 elapsed = time.time() - started

 print()
 print("time elapsed: {:.2f}s".format(elapsed))

As you can see, dealing with the worker pool is now simpler as we don't have to
maintain our own work queues and start()/join() methods. The code would now
be easier to maintain and debug in the case of issues. Actually, the only part of the
code that explicitly deals with multiprocessing is the main() function:

def main():
 with Pool(POOL_SIZE) as pool:
 results = pool.map(fetch_rates, BASES)

 for result in results:
 present_result(*result)

We no longer have to deal with explicit queues for passing results and we don't have
to wonder what happens when one of the subprocesses raises an exception. This is
a great improvement on the situation where we had to build the worker pool from
scratch. Now, we don't even need to care about communication channels because
they are created implicitly inside the Pool class implementation.

Concurrency

[254]

This doesn't mean that multithreading always needs to be troublesome. Let's take a
look at how to use multiprocessing.dummy as a multithreading interface in the next
section.

Using multiprocessing.dummy as the
multithreading interface
The high-level abstractions from the multiprocessing module, such as the Pool class,
provide great advantages over the simple tools provided in the threading module.
But this does not mean that multiprocessing is always better than multithreading.
There are a lot of use cases where threads may be a better solution than processes.
This is especially true for situations where low latency and/or high resource
efficiency are required.

Still, it does not mean that you need to sacrifice all the useful abstractions from the
multiprocessing module whenever you want to use threads instead of processes.
There is the multiprocessing.dummy module, which replicates the multiprocessing
API but uses multiple threads instead of forking/spawning new processes.

This allows you to reduce the amount of boilerplate in your code and also have
a more pluggable code structure. For instance, let's take yet another look at our
main() function from the previous section. We could give the user control over
which processing backend to use (processes or threads). We could do that simply
by replacing the Pool object constructor class, as follows:

from multiprocessing import Pool as ProcessPool
from multiprocessing.dummy import Pool as ThreadPool

def main(use_threads=False):
 if use_threads:
 pool_cls = ThreadPool
 else:
 pool_cls = ProcessPool

 with pool_cls(POOL_SIZE) as pool:
 results = pool.map(fetch_rates, BASES)

 for result in results:
 present_result(*result)

Chapter 6

[255]

This aspect of the multiprocessing module shows that multiprocessing and
multithreading have a lot in common. They both rely on the OS to facilitate
concurrency. They also can be operated in a similar fashion and often utilize similar
abstractions to ensure communication or memory safety.

A completely different approach to concurrency is asynchronous programming,
which does not rely on any OS capabilities to ensure the concurrent processing of
information. Let's take a look at this model of concurrency in the next section.

Asynchronous programming
Asynchronous programming has gained a lot of traction in the last few years.
In Python 3.5, we finally got some syntax features that solidified the concepts of
asynchronous execution. But this does not mean that asynchronous programming
wasn't possible before Python 3.5. A lot of libraries and frameworks were provided
a lot earlier, and most of them have origins in the old versions of Python 2. There
is even a whole alternate implementation of Python called Stackless Python that
concentrates on this single programming approach.

The easiest way to think about asynchronous programming in Python is to imagine
something similar to threads, but without system scheduling involved. This means
that an asynchronous program can concurrently process information, but the
execution context is switched internally and not by the system scheduler.

But, of course, we don't use threads to concurrently handle the work in an
asynchronous program. Many asynchronous programming solutions use different
kinds of concepts and, depending on the implementation, they are named
differently. The following are some example names that are used to describe
such concurrent program entities:

• Green threads or greenlets (greenlet, gevent, or eventlet projects)
• Coroutines (Python 3.5 native asynchronous programming)
• Tasklets (Stackless Python)

The dummy threading pool can also be imported from the
multiprocessing.pool module as the ThreadPool class. It will
have the same implementation; the actual import path is just a
matter of personal preference.

Concurrency

[256]

These are mainly the same concepts but often implemented in slightly different
ways.

For obvious reasons, in this section, we will concentrate only on coroutines that are
natively supported by Python, starting from version 3.5.

Cooperative multitasking and asynchronous
I/O
Cooperative multitasking is at the core of asynchronous programming. In this style
of computer multitasking, it's not the responsibility of the OS to initiate a context
switch (to another process or thread). Instead, every process voluntarily releases the
control when it is idle to enable the simultaneous execution of multiple programs.
This is why it is called cooperative multitasking. All processes need to cooperate in
order to multitask smoothly.

This model of multitasking was sometimes employed in the OS, but now it is hardly
found as a system-level solution. This is because there is a risk that one poorly
designed service might easily break the whole system's stability. Thread and process
scheduling with context switches managed directly by the OS is now the dominant
approach for concurrency at the OS level. But cooperative multitasking is still a great
concurrency tool at the application level.

When doing cooperative multitasking at the application level, we do not deal
with threads or processes that need to release control because all the execution
is contained within a single process and thread. Instead, we have multiple tasks
(coroutines, tasklets, or green threads) that release the control to the single function
that handles the coordination of tasks. This function is usually some kind of event
loop.

The name green threads comes from the original threads library
for the Java language implemented by The Green Team at the Sun
Microsystems company. Green threads were introduced in Java 1.1
and abandoned in Java 1.3

To avoid confusion later (due to Python terminology), from now
on, we will refer to such concurrent tasks as coroutines.

Chapter 6

[257]

The most important problem in cooperative multitasking is when to release the
control. In most asynchronous applications, the control is released to the scheduler
or event loop on I/O operations. It doesn't matter if the program reads data from the
filesystem or communicates through a socket, as such I/O operations always result
in some waiting time when the process becomes idle. The waiting time depends on
the external resource, so it is a good opportunity to release the control so that other
coroutines can do their work until they too would need to wait.

This makes such an approach somewhat similar in behavior to how multithreading
is implemented in Python. We know that the GIL serializes Python threads, but
it is also released on every I/O operation. The main difference is that threads in
Python are implemented as system-level threads so that the OS can preempt the
currently running thread and give control to the other one at any point in time. In
asynchronous programming, tasks are never preempted by the main event loop and
must instead return control explicitly. That's why this style of multitasking is also
called non-preemptive multitasking. This reduces time lost on context switching and
plays better with CPython's GIL implementation.

Of course, every Python application runs on an OS where there are other processes
competing for resources. This means that the OS always has the right to preempt
the whole process and give control to another process. But when our asynchronous
application is running back, it continues from the same place where it was paused
when the system scheduler stepped in. This is why coroutines are still considered
non-preemptive.

In the next section, we will take a look at the async and await keywords, which are
the backbone of cooperative multitasking in Python.

Python async and await keywords
The async and await keywords are the main building blocks in Python asynchronous
programming.

The async keyword, when used before the def statement, defines a new coroutine.
The execution of the coroutine function may be suspended and resumed in strictly
defined circumstances. Its syntax and behavior are very similar to generators. In
fact, generators need to be used in the older versions of Python whenever you want
to implement coroutines. Here is an example of a function declaration that uses the
async keyword:

async def async_hello():
 print("hello, world!")

Concurrency

[258]

Functions defined with the async keyword are special. When called, they do not
execute the code inside, but instead return a coroutine object. Consider the following
example from an interactive Python session:

>>> async def async_hello():
... print("hello, world!")
...
>>> async_hello()
<coroutine object async_hello at 0x1014129e8>

The coroutine object does not do anything until its execution is scheduled in the
event loop. The asyncio module is available in order to provide the basic event
loop implementation, as well as a lot of other asynchronous utilities. The following
example presents an attempt to manually schedule a coroutine execution in an
interactive Python session:

>>> import asyncio
>>> async def async_hello():
... print("hello, world!")
...
>>> loop = asyncio.get_event_loop()
>>> loop.run_until_complete(async_hello())
hello, world!
>>> loop.close()

Obviously, since we have created only one simple coroutine, there is no concurrency
involved in our program. In order to see something that is actually concurrent, we
need to create more tasks that will be executed by the event loop.

New tasks can be added to the loop by calling the loop.create_task() method or by
providing an "awaitable" object to the asyncio.wait() function. If you have multiple
tasks or coroutines to wait for, you can use asyncio.gather() to aggregate them into
a single object. We will use the latter approach and try to asynchronously print a
sequence of numbers that's been generated with the range() function, as follows:

import asyncio
import random

async def print_number(number):
 await asyncio.sleep(random.random())
 print(number)

if __name__ == "__main__":

Chapter 6

[259]

 loop = asyncio.get_event_loop()

 loop.run_until_complete(
 asyncio.gather(*[
 print_number(number)
 for number in range(10)
])
)
 loop.close()

Let's save our script in an async_print.py file and see how it works:

$ python async_print.py

The output you will see may look as follows:

0
7
8
3
9
4
1
5
2
6

The asyncio.gather() function accepts multiple coroutine objects and returns
immediately. It accepts a variable number of positional arguments. That's why we
used the argument unpacking syntax (the * operator) to unpack the list of coroutines
as arguments. As the name suggests, asyncio.gather() is used to gather multiple
coroutines to execute them concurrently. The result is an object that represents a
future result (a so-called future) of running all of the provided coroutines. The
loop.run_until_complete() method runs the event loop until the given future is
completed.

We used asyncio.sleep(random.random()) to emphasize the asynchronous operation
of coroutines. Thanks to this, coroutines can interweave with each other.

We couldn't achieve the same result (that is, the interweaving of coroutines) with
an ordinary time.sleep() function. Coroutines can start to interweave when they
release control of execution. This is done through the await keyword. It suspends
the execution of the coroutine that is waiting for the results of another coroutine or
future.

Concurrency

[260]

Whenever a function awaits, it releases the control over execution to the event loop.
To better understand how this works, we need to review a more complex example of
code.

Let's say we want to create two coroutines that will both perform the same simple
task in a loop:

• Wait a random number of seconds
• Print some text provided as an argument and the amount of time spent in

sleep

Let's start with the following simple implementation that does not use the await
keyword:

import time
import random

async def waiter(name):
 for _ in range(4):
 time_to_sleep = random.randint(1, 3) / 4
 time.sleep(time_to_sleep)
 print(f"{name} waited { time_to_sleep } seconds")

We can schedule the execution of multiple waiter() coroutines using asyncio.
gather() the same way as we did in the async_print.py script:

import asyncio

if __name__ == "__main__":
 loop = asyncio.get_event_loop()
 loop.run_until_complete(
 asyncio.gather(waiter("first"), waiter("second"))
)
 loop.close()

Let's save the code in the waiters.py file and see how those two waiter() coroutines
execute in the event loop:

$ time python3 waiters.py

Chapter 6

[261]

Note that we've used the time utility to measure total execution time. The preceding
execution can give the following output:

$ time python waiters.py
first waited 0.25 seconds
first waited 0.75 seconds
first waited 0.5 seconds
first waited 0.25 seconds
second waited 0.75 seconds
second waited 0.5 seconds
second waited 0.5 seconds
second waited 0.75 seconds

real 0m4.337s
user 0m0.050s
sys 0m0.014s

As we can see, both the coroutines completed their execution, but not in an
asynchronous manner. The reason is that they both use the time.sleep() function,
which is blocking but not releasing the control to the event loop. This would work
better in a multithreaded setup, but we don't want to use threads now. So, how can
we fix this?

The answer is to use asyncio.sleep(), which is the asynchronous version of time.
sleep(), and await its result using the await keyword. Let's see the following
improved version of the waiter() coroutine, which uses the await asyncio.sleep()
statement:

async def waiter(name):
 for _ in range(4):
 time_to_sleep = random.randint(1, 3) / 4
 await asyncio.sleep(time_to_sleep)
 print(f"{name} waited {time_to_sleep} seconds")

If we save a modified version of this script in the waiters_await.py file and execute
it in the shell, we will hopefully see how the outputs of the two functions interweave
with each other:

$ time python waiters_await.py

Concurrency

[262]

The output you will see should look something like the following:

first waited 0.5 seconds
second waited 0.75 seconds
second waited 0.25 seconds
first waited 0.75 seconds
second waited 0.75 seconds
first waited 0.75 seconds
second waited 0.75 seconds
first waited 0.5 seconds

real 0m2.589s
user 0m0.053s
sys 0m0.016s

The additional advantage of this simple improvement is that the code ran faster. The
overall execution time was less than the sum of all sleeping times because coroutines
were cooperatively releasing the control.

Let's take a look at a more practical example of asynchronous programming in the
next section.

A practical example of asynchronous
programming
As we have already mentioned multiple times in this chapter, asynchronous
programming is a great tool for handling I/O-bound operations. So, it's time to
build something more practical than a simple printing of sequences or asynchronous
waiting.

For the sake of consistency, we will try to handle the same problem that we solved
previously with the help of multithreading and multiprocessing. So, we will try to
asynchronously fetch some information about current currency exchange rates from
an external resource through a network connection. It would be great if we could use
the same requests library as in the previous sections. Unfortunately, we can't do so.
Or to be more precise, we can't do so effectively.

Unfortunately, the requests library does not support asynchronous I/O with the
async and await keywords. There are some other projects that aim to provide some
concurrency to the requests project, but they either rely on Gevent (like grequests,
available at https://github.com/kennethreitz/grequests) or thread/process pool
execution (like requests-futures, available at https://github.com/ross/requests-
futures). Neither of these solves our problem.

https://github.com/kennethreitz/grequests
https://github.com/ross/requests-futures
https://github.com/ross/requests-futures

Chapter 6

[263]

Knowing the limitation of the library that was so easy to use in our previous
examples, we need to build something that will fill the gap. The foreign exchange
rates API is really simple to use, so we just need to use a natively asynchronous
HTTP library for the job. The standard library of Python in version 3.9 still lacks any
library that would make asynchronous HTTP requests as simple as calling urllib.
urlopen(). We definitely don't want to build the whole protocol support from
scratch, so we will use a little help from the aiohttp package, which is available on
PyPI. It's a really promising library that adds both client and server implementations
for asynchronous HTTP. Here is a small module built on top of aiohttp that creates a
single get_rates() helper function that makes requests to the foreign exchange rates
API service:

import aiohttp

async def get_rates(session: aiohttp.ClientSession, base: str):
 async with session.get(
 f"https://api.vatcomply.com/rates?base={base}"
) as response:
 rates = (await response.json())['rates']
 rates[base] = 1.

 return base, rates

We will save that module in the asyncrates.py file so later we will be able to import
it as the asyncrates module.

Now, we are ready to rewrite the example used when we discussed multithreading
and multiprocessing. Previously, we split the whole operation into the following two
separate steps:

• Perform all requests to an external service in parallel using the asyncrates.
get_rates() function

• Display all the results in a loop using the present_result() function

The core of our program will be a simple main() function that gathers results from
multiple get_rates() coroutines and passes them to the present_result() function:

async def main():
 async with aiohttp.ClientSession() as session:
 for result in await asyncio.gather(*[
 get_rates(session, base)

Concurrency

[264]

 for base in BASES
]):
 present_result(*result)

And the full code, together with imports and event loop initialization, will be as
follows:

import asyncio
import time

import aiohttp

from asyncrates import get_rates

SYMBOLS = ('USD', 'EUR', 'PLN', 'NOK', 'CZK')
BASES = ('USD', 'EUR', 'PLN', 'NOK', 'CZK')

def present_result(base, rates):
 rates_line = ", ".join(
 [f"{rates[symbol]:7.03} {symbol}" for symbol in SYMBOLS]
)
 print(f"1 {base} = {rates_line}")

async def main():
 async with aiohttp.ClientSession() as session:
 for result in await asyncio.gather(*[
 get_rates(session, base)
 for base in BASES
]):
 present_result(*result)

if __name__ == "__main__":
 started = time.time()
 loop = asyncio.get_event_loop()
 loop.run_until_complete(main())
 elapsed = time.time() - started

 print()
 print("time elapsed: {:.2f}s".format(elapsed))

Chapter 6

[265]

The output of running this program will be similar to the output of versions that
relied on multithreading and multiprocessing:

$ python async_aiohttp.py
1 USD = 1.0 USD, 0.835 EUR, 3.81 PLN, 8.39 NOK, 21.7 CZK
1 EUR = 1.2 USD, 1.0 EUR, 4.56 PLN, 10.0 NOK, 25.9 CZK
1 PLN = 0.263 USD, 0.22 EUR, 1.0 PLN, 2.2 NOK, 5.69 CZK
1 NOK = 0.119 USD, 0.0996 EUR, 0.454 PLN, 1.0 NOK, 2.58 CZK
1 CZK = 0.0461 USD, 0.0385 EUR, 0.176 PLN, 0.387 NOK, 1.0 CZK

time elapsed: 0.33s

The advantage of using asyncio over multithreading and multiprocessing is
that we didn't have to deal with process pools and memory safety to achieve
concurrent network communication. The downside is that we couldn't use a
popular synchronous communication library like the requests package. We used
aiohttp instead, and that's fairly easy for a simple API. But sometimes, you need
a specialized client library that isn't asynchronous and cannot be easily ported.
We will cover such a situation in the next section.

Integrating non-asynchronous code with
async using futures
Asynchronous programming is great, especially for backend developers interested
in building scalable applications. In practice, it is one of the most important tools for
building highly concurrent servers.

But the reality is painful. A lot of popular packages that deal with I/O-bound
problems are not meant to be used with asynchronous code. The main reasons for
that are as follows:

• The low adoption of advanced Python 3 features (especially asynchronous
programming)

• The low understanding of various concurrency concepts among Python
beginners

This means that often, the migration of existing synchronous multithreaded
applications and packages is either impossible (due to architectural constraints)
or too expensive. A lot of projects could benefit greatly from incorporating the
asynchronous style of multitasking, but only a few of them will eventually do that.

Concurrency

[266]

This means that right now, you will experience a lot of difficulties when trying to
build asynchronous applications from scratch. In most cases, this will be something
similar to the problem of the requests library mentioned in the A practical example
of asynchronous programming section—incompatible interfaces and the synchronous
blocking of I/O operations.

Of course, you can sometimes resign from await when you experience such
incompatibility and just fetch the required resources synchronously. But this will
block every other coroutine from executing its code while you wait for the results. It
technically works but also ruins all the gains of asynchronous programming. So, in
the end, joining asynchronous I/O with synchronous I/O is not an option. It is kind
of an all-or-nothing game.

The other problem is long-running CPU-bound operations. When you are
performing an I/O operation, it is not a problem to release control from a coroutine.
When writing/reading from a socket, you will eventually wait, so using await is
the best you can do. But what should you do when you need to actually compute
something, and you know it will take a while? You can, of course, slice the problem
into parts and release control with asyncio.wait(0) every time you move the work
forward a bit. But you will shortly find that this is not a good pattern. Such a thing
will make the code a mess, and also does not guarantee good results. Time slicing
should be the responsibility of the interpreter or OS.

So, what should you do if you have some code that makes long synchronous I/O
operations that you can't or are unwilling to rewrite? Or what should you do when
you have to make some heavy CPU-bound operations in an application designed
mostly with asynchronous I/O in mind? Well... you need to use a workaround. And
by a workaround, I mean multithreading or multiprocessing.

This may not sound obvious, but sometimes the best solution may be the one that we
tried to escape from. Parallel processing of CPU-intensive tasks in Python is always
better with multiprocessing. And multithreading may deal with I/O operations
equally as well (quickly and without a lot of resource overhead) as async and await,
if you set it up properly and handle it with care.

So, when something simply does not fit your asynchronous application, use a
piece of code that will defer it to a separate thread or process. You can pretend
that this was a coroutine and release control to the event loop using await. You
will eventually process results when they are ready. Fortunately for us, the Python
standard library provides the concurrent.futures module, which is also integrated
with the asyncio module. These two modules together allow you to schedule
blocking functions to execute in threads or additional processes as if they were
asynchronous non-blocking coroutines.

Let's take a closer look at executors and futures in the next section.

Chapter 6

[267]

Executors and futures
Before we see how to inject threads or processes into an asynchronous event loop,
we will take a closer look at the concurrent.futures module, which will later be
the main ingredient of our so-called workaround. The most important classes in
the concurrent.futures module are Executor and Future.

Executor represents a pool of resources that may process work items in parallel. This
may seem very similar in purpose to classes from the multiprocessing module—
Pool and dummy.Pool—but it has a completely different interface and semantics. The
Executor class is a base class not intended for instantiation and has the following
two concrete implementations:

• ThreadPoolExecutor: This is the one that represents a pool of threads
• ProcessPoolExecutor: This is the one that represents a pool of processes

Every executor provides the following three methods:

• submit(func, *args, **kwargs): This schedules the func function for
execution in a pool of resources and returns the Future object representing
the execution of a callable

• map(func, *iterables, timeout=None, chunksize=1): This executes the func
function over an iterable in a similar way to the multiprocessing.Pool.map()
method

• shutdown(wait=True): This shuts down the executor and frees all of its
resources

The most interesting method is submit() because of the Future object it returns. It
represents the asynchronous execution of the callable and only indirectly represents
its result. In order to obtain the actual return value of the submitted callable, you
need to call the Future.result() method. And if the callable has already finished,
the result() method will not block and will just return the function output. If it
is not true, it will block until the result is ready. Treat it like a promise of a result
(actually, it is the same concept as a promise in JavaScript). You don't need to unpack
it immediately after receiving it (with the result() method), but if you try to do that,
it is guaranteed to eventually return something.

Let's consider the following interaction with ThreadPoolExecutor in an interactive
Python session:

>>> def loudly_return():
... print("processing")
... return 42
...

Concurrency

[268]

>>> from concurrent.futures import ThreadPoolExecutor
>>> with ThreadPoolExecutor(1) as executor:
... future = executor.submit(loudly_return)
...
processing
>>> future
<Future at 0x33cbf98 state=finished returned int>
>>> future.result()
42

As you can see, loudly_return() immediately printed the processing string after
it was submitted to the executor. This means that execution started even before we
decided to unpack its value using the future.result() method.

In the next section, we'll see how to use executors in an event loop.

Using executors in an event loop
The Future class instances returned by the Executor.submit() method are
conceptually very close to the coroutines used in asynchronous programming. This
is why we can use executors to make a hybrid between cooperative multitasking and
multiprocessing or multithreading.

The core of this workaround is the run_in_executor(executor, func, *args)
method of the event loop class. It allows you to schedule the execution of the func
function in the process or thread pool represented by the executor argument. The
most important thing about that method is that it returns a new awaitable (an object
that can be awaited with the await statement). So, thanks to this, you can execute a
blocking function that is not a coroutine exactly as if it was a coroutine. And most
importantly, it will not block the event loop from processing other coroutines, no
matter how long it will take to finish. It will stop only the function that is awaiting
results from such a call, but the whole event loop will still keep spinning.

And a useful fact is that you don't even need to create your executor instance. If
you pass None as an executor argument, the ThreadPoolExecutor class will be used
with the default number of threads (for Python 3.9, it is the number of processors
multiplied by 5).

So, let's assume that we did not want to rewrite the problematic part of our API-
facing code that was the cause of our headache. We can easily defer the blocking call
to a separate thread with the loop.run_in_executor() call, while still leaving the
fetch_rates() function as an awaitable coroutine, as follows:

Chapter 6

[269]

async def fetch_rates(base):
 loop = asyncio.get_event_loop()
 response = await loop.run_in_executor(
 None, requests.get,
 f"https://api.vatcomply.com/rates?base={base}"
)
 response.raise_for_status()
 rates = response.json()["rates"]
 # note: same currency exchanges to itself 1:1
 rates[base] = 1.
 return base, rates

Such a solution is not as good as having a fully asynchronous library to do the job,
but half a loaf is better than none.

Asynchronous programming is a great tool for building performant concurrent
applications that have to communicate a lot with other services over the network.
You can do that easily without all the memory safety problems that usually come
with multithreading and (to some extent) multiprocessing. A lack of involuntary
context switching also reduces the number of necessary locking primitives because
it is easy to predict when coroutines return control to the event loop.

Unfortunately, that comes at the cost of having to use dedicated asynchronous
libraries. Synchronous and threaded applications usually have better coverage of
client and communication libraries for interacting with popular services. Executors
and futures allow you to fill that gap but are less optimal than native asynchronous
solutions.

Summary
It was a long journey, but we successfully struggled through most of the common
approaches to concurrent programming that are available for Python programmers.

After explaining what concurrency really is, we jumped into action and dissected one
of the typical concurrent problems with the help of multithreading. After identifying
the basic deficiencies of our code and fixing them, we turned to multiprocessing
to see how it would work in our case. We found that multiple processes with the
multiprocessing module are a lot easier to use than plain threads coming with the
threading module. But just after that, we realized that we can use the same API for
threads too, thanks to the multiprocessing.dummy module. So, the decision between
multiprocessing and multithreading is now only a matter of which solution better
suits the problem and not which solution has a better interface.

Concurrency

[270]

And speaking about problem fit, we finally tried asynchronous programming, which
should be the best solution for I/O-bound applications, only to realize that we
cannot completely forget about threads and processes. So, we made a circle! Back to
the place where we started.

And this leads us to the final conclusion of this chapter. There is no silver bullet.
There are some approaches that you may prefer. There are some approaches that
may fit better for a given set of problems, but you need to know them all in order to
be successful. In real-life scenarios, you may find yourself using the whole arsenal of
concurrency tools and styles in a single application, and this is not uncommon.

In the next chapter, we will take a look at a topic somewhat related to concurrency:
event-driven programming. In that chapter, we will be concentrating on various
communication patterns that form the backbone of distributed asynchronous and
highly concurrent systems.

[271]

7
Event-Driven Programming

In the previous chapter, we discussed various concurrency implementation models
that are available in Python. To better explain the concept of concurrency, we used
the following definition:

Two events are concurrent if neither can causally affect the other.

We often think about events as ordered points in time that happen one after another,
often with some kind of cause-effect relationship. But, in programming, events are
understood a bit differently. They are not necessarily "things that happen." Events
in programming are more often understood as independent units of information
that can be processed by the program. And that very notion of events is a real
cornerstone of concurrency.

Concurrent programming is a programming paradigm for processing concurrent
events. And there is a generalization of that paradigm that deals with the bare
concept of events—no matter whether they are concurrent or not. This approach
to programming, which treats programs as a flow of events, is called event-driven
programming.

It is an important paradigm because it allows you to easily decouple even large
and complex systems. It helps in defining clear boundaries between independent
components and improves isolation between them.

In this chapter, we will cover the following topics:

• What exactly is event-driven programming?
• Various styles of event-driven programming
• Event-driven architectures

Event-Driven Programming

[272]

After reading this chapter, you will know the common techniques of event-driven
programming and how to extrapolate these techniques to event-driven architectures.
You'll also be able to easily identify problems that can be solved using event-driven
programs.

Technical requirements
The following are Python packages that are mentioned in this chapter that you can
download from PyPI:

• flask

• blinker

Information on how to install packages is included in Chapter 2, Modern Python
Development Environments.

The code files for this chapter can be found at https://github.com/PacktPublishing/
Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%207.

In this chapter, we will build a small application using a Graphical User Interface
(GUI) package named tkinter. To run the tkinter examples, you will need the Tk
library for Python. It should be available by default with most Python distributions,
but on some operating systems, it will require additional system packages to be
installed. On Debian-based Linux distributions, this package is usually named
python3-tk. Python installed though official macOS and Windows installers should
already come with the Tk library.

What exactly is event-driven
programming?
Event-driven programming focuses on the events (often called messages) and their
flow between different software components. In fact, it can be found in many types
of software. Historically, event-based programming is the most common paradigm
for software that deals with direct human interaction. It means that it is a natural
paradigm for GUIs. Anywhere the program needs to wait for some human input,
that input can be modeled as events or messages. In such a framing, an event-driven
program is often just a collection of event/message handlers that respond to human
interaction.

https://github.com/PacktPublishing/Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%207
https://github.com/PacktPublishing/Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%207

Chapter 7

[273]

Events of course don't have to be a direct result of user interaction. The architecture
of any web application is also event-driven. Web browsers send requests to web
servers on behalf of the user, and these requests are often processed as separate
interaction events. Some of the requests will indeed be the result of direct user input
(for example, submitting a form or clicking on a link), but don't always have to be.
Many modern applications can asynchronously synchronize information with a
web server without any interaction from the user, and that communication happens
silently without the user noticing.

In summary, event-driven programming is a general way of coupling software
components of various sizes and happens on various levels of software architecture.
Depending on the scale and type of software architecture we're dealing with, it can
take various forms:

• It can be a concurrency model directly supported by a semantic feature of a
given programming language (for example, async/await in Python)

• It can be a way of structuring application code with event dispatchers/
handlers, signals, and so on

• It can be a general inter-process or inter-service communication architecture
that allows for the coupling of independent software components in a larger
system

Let's discuss how event-driven programming is different from asynchronous
programming in the next section.

Event-driven != asynchronous
Although event-driven programming is a paradigm that is extremely common for
asynchronous systems, it doesn't mean that every event-driven application must be
asynchronous. It also doesn't mean that event-driven programming is suited only
for concurrent and asynchronous applications. Actually, the event-driven approach
is extremely useful, even for decoupling problems that are strictly synchronous and
definitely not concurrent.

Consider, for instance, database triggers, which are available in almost every
relational database system. A database trigger is a stored procedure that is executed
in response to a certain event that happens in the database. This is a common
building block of database systems that, among other things, allows the database
to maintain data consistency in scenarios that cannot be easily modeled with the
mechanism of database constraints.

Event-Driven Programming

[274]

For instance, the PostgreSQL database distinguishes three types of row-level events
that can occur in either a table or a view:

• INSERT: Emitted when a new row is inserted
• UPDATE: Emitted when an existing row is updated
• DELETE: Emitted when an existing row is deleted

In the case of table rows, triggers can be defined to be executed either BEFORE or
AFTER a specific event. So, from the perspective of event-procedure coupling, we can
treat each AFTER/BEFORE trigger as a separate event. To better understand this, let's
consider the following example of database triggers in PostgreSQL:

CREATE TRIGGER before_user_update
 BEFORE UPDATE ON users
 FOR EACH ROW
 EXECUTE PROCEDURE check_user();

CREATE TRIGGER after_user_update
 AFTER UPDATE ON users
 FOR EACH ROW
 EXECUTE PROCEDURE log_user_update();

In the preceding example, we have two triggers that are executed when a row in the
users table is updated. The first one is executed before a real update occurs and the
second one is executed after the update is done. This means that BEFORE UPDATE and
AFTER UPDATE events are casually dependent and cannot be handled concurrently.
On the other hand, similar sets of events occurring on different rows from different
sessions can still be concurrent, although that will depend on multiple factors
(transaction or not, the isolation level, the scope of the trigger, and so on). This is a
valid example of a situation where data modification in a database system can be
modeled with event-based processing although the system as a whole isn't fully
asynchronous.

In the next section, we'll take a look at event-driven programming in GUIs.

Event-driven programming in GUIs
GUIs are what many people think of when they hear the term "event-driven
programming." Event-driven programming is an elegant way of coupling user
input with code in GUIs because it naturally captures the way people interact
with graphical interfaces. Such interfaces often present the user with a plethora of
components to interact with, and that interaction is almost always nonlinear.

Chapter 7

[275]

In complex interfaces, this interaction is often modeled through a collection of events
that can be emitted by the user from different interface components.

The concept of events is common to most user interface libraries and frameworks,
but different libraries use different design patterns to achieve event-driven
communication. Some libraries even use other notions to describe their architecture
(for example, signals in the Qt library). Still, the general pattern is almost always
the same—every interface component (often called a widget) can emit events upon
interaction. Other components receive those events either by subscription or by
directly attaching themselves to emitters as their event handlers. Depending on
the GUI library, events can just be plain named signals stating that something has
happened (for example, "widget A was clicked"), or they can be more complex
messages containing additional information about the nature of the interaction.
Such messages can for instance contain the specific key that has been pressed or the
position of the mouse when an event was emitted.

We will discuss the differences of actual design patterns later in the Various styles
of event-driven programming section, but first let's take a look at the example Python
GUI application that can be created with the use of the built-in tkinter module:

The following GUI application displays a single Python Zen button. When the button is
clicked, the application will open a new window containing the Zen of Python text that was
imported from the this module. The this module is a Python easter egg. After import, it
prints on standard output the 19 aphorisms that are the guiding principles of Python's design.

import this
from tkinter import Tk, Frame, Button, LEFT, messagebox

rot13 = str.maketrans(
 "ABCDEFGHIJKLMabcdefghijklmNOPQRSTUVWXYZnopqrstuvwxyz",
 "NOPQRSTUVWXYZnopqrstuvwxyzABCDEFGHIJKLMabcdefghijklm"
)

def main_window(root: Tk):

Note that the Tk library that powers the tkinter module is usually
bundled with Python distributions. If it's somehow not available
on your operating system, you should be easily able to install it
through your system package manager. For instance, on Debian-
based Linux distributions, you can easily install it for Python as the
python3-tk package using the following command:

sudo apt-get install python3-tk

Event-Driven Programming

[276]

 frame = Frame(root)
 frame.pack()

 zen_button = Button(frame, text="Python Zen", command=show_zen)
 zen_button.pack(side=LEFT)

def show_zen():
 messagebox.showinfo("Zen of Python", this.s.translate(rot13))

if __name__ == "__main__":
 root = Tk()
 main_window(root)
 root.mainloop()

Our script starts with imports and the definition of a simple string translation table.
It is necessary because the text of the Zen of Python is encrypted inside the this
module using an ROT13 letter substitution cipher (also known as a Caesar cipher).
It is a simple encryption algorithm that shifts every letter in the alphabet by 13
positions.

The binding of events happens directly in the Button widget constructor:

Button(frame, text="Python Zen", command=show_zen)

The command keyword argument defines the event handler that will be executed
when the user clicks the button. In our example, we have provided the show_zen()
function, which will display the decoded text of the Zen of Python in a separate
message box.

Most GUI frameworks work in a similar manner—you rarely work with raw
keyboard and mouse inputs, but instead attach your commands/callbacks to higher-
level events such as the following:

• Checkbox state change
• Button clicked

Every tkinter widget offers also a bind() method that can be
used to define the handlers of very specific events, like mouse
press/release, hover, and so on.

Chapter 7

[277]

• Option selected
• Window closed

In the next section, we'll take a look at event-driven communication.

Event-driven communication
Event-driven programming is a very common practice for building distributed
network applications. With event-driven programming, it is easier to split complex
systems into isolated components that have a limited set of responsibilities, and
because of that, it is especially popular in service-oriented and microservice
architectures. In such architectures, the flow of events happens not between classes
or functions living inside of a single computer process, but between many networked
services. In large and distributed architectures, the flow of events between services
is usually coordinated using special communication protocols (for example, AMQP
and ZeroMQ), often with the help of dedicated services acting as message brokers.
We will discuss some of these solutions later in the Event-driven architectures section.

However, you don't need to have a formalized way of coordinating events, nor a
dedicated event-handling service, to consider your networked code an event-based
application. Actually, if you take a more detailed look at a typical Python web
application, you'll notice that most Python web frameworks have many things in
common with GUI applications. Let's, for instance, consider a simple web application
that was written using the Flask microframework:

import this

from flask import Flask

app = Flask(__name__)

rot13 = str.maketrans(
 "ABCDEFGHIJKLMabcdefghijklmNOPQRSTUVWXYZnopqrstuvwxyz",
 "NOPQRSTUVWXYZnopqrstuvwxyzABCDEFGHIJKLMabcdefghijklm"
)

def simple_html(body):
 return f"""
 <!DOCTYPE html>
 <html lang="en">
 <head>

Event-Driven Programming

[278]

 <meta charset="utf-8">
 <title>Book Example</title>
 </head>
 <body>
 {body}
 </body>
 </html>
 """

@app.route('/')
def hello():
 return simple_html("Python Zen")

@app.route('/zen')
def zen():
 return simple_html(
 "
".join(this.s.translate(rot13).split("\n"))
)

if __name__ == '__main__':
 app.run()

If you compare the preceding listing with the example of the tkinter application
from the previous section, you'll notice that, structurally, they are very similar.
Specific routes (paths) of HTTP requests translate to dedicated handlers. If we
consider our application to be event-driven, then the request path can be treated as
a binding between a specific event type (for example, a link being clicked) and the
action handler. Similar to events in GUI applications, HTTP requests can contain
additional data about interaction context. This information is, of course, structured.
The HTTP protocol defines multiple request methods (for example, POST, GET, PUT,
and DELETE) and a few ways to transfer additional data (query string, request body,
and headers).

We discussed examples of writing and executing simple Flask
applications in Chapter 2, Modern Python Development Environments.

Chapter 7

[279]

The user does not communicate with our application directly as they would when
using a GUI, but instead they use a web browser as their interface. This also makes it
somewhat similar to traditional graphical applications, as many cross-platform user
interface libraries (such as Tcl/Tk, Qt, and GTK+) are in fact just proxies between the
application and the user's operating system's windowing APIs. So, in both cases, we
deal with communication and events flowing through multiple system layers. It is
just that, in web applications, layers are more evident and communication is always
explicit.

Modern web applications often provide interactive interfaces based on JavaScript.
They are very often built using event-driven frontend frameworks that communicate
asynchronously with an application backend service through backend APIs. This
only emphasizes the event-driven nature of web applications.

We've seen so far that depending on the use case, event-driven programming can
be used in multiple types of applications. It can also take different forms. In the next
section, we will go through the three major styles of event-driven programming.

Various styles of event-driven
programming
As we already stated, event-driven programming can be implemented at
various levels of software architecture. It is also often applied to very specific
software engineering areas, such as networking, system programming, and GUI
programming. So, event-driven programming isn't a single cohesive programming
approach, but rather a collection of diverse patterns, tools, and algorithms that form
a common paradigm that concentrates on programming around the flow of events.

Due to this, event-driven programming exists in different flavors and styles. The
actual implementations of event-driven programming can be based on different
design patterns and techniques. Some of these event-driven techniques and tools
don't even use the term event. Despite this variety, we can easily identify three major
event-driven programming styles that are the foundation for more concrete patterns:

• Callback-based style: This concentrates on the act of coupling event emitters
with their handlers in a one-to-one fashion. In this style, event emitters
are responsible for defining actions that will happen when a specific event
occurs.

Event-Driven Programming

[280]

• Subject-based style: This concentrates on the one-to-many subscription of
events originating at specific emitters. In this style, emitters are subjects of a
subscription. Whoever wants to receive events needs to subscribe directly to
the source of events.

• Topic-based style: This concentrates on the types of events rather than
their origin and destination. In this style, event emitters are not necessarily
aware of event subscribers and vice versa. Instead, communication happens
through independent event channels—topics—that anyone can publish to or
subscribe to.

In the next sections, we will do a brief review of the three major styles of event-
driven programming that you may encounter when programming in Python.

Callback-based style
The callback-based style of event programming is one of the most common styles
of event-driven programming. In this style, objects that emit events are the ones
that are responsible for defining their event handlers. This means a one-to-one or
(at most) many-to-one relationship between event emitters and event handlers.

This style of event-based programming is the dominant pattern among GUI
frameworks and libraries. The reason for this is simple—it really captures how
both users and programmers think about user interfaces. For every action we do,
whether we toggle a switch, press a button, or tick a checkbox, we do it usually
with a clear and single purpose.

We've already seen an example of callback-based event-driven programming and
discussed an example of a graphical application written using the tkinter library
(see the Event-driven programming in GUIs section). Let's recall one line from that
application listing:

zen_button = Button(root, text="Python Zen", command=show_zen)

The previous instantiation of the Button class defines that the show_zen() function
should be called whenever the button is pressed. Our event is implicit. The show_
zen() callback (in tkinter, callbacks are called commands) does not receive any
object that would describe the event behind the call. This makes sense because the
responsibility of attaching event handlers lies closer to the event emitter. Here, it
is the zen_button instance. The event handler is barely concerned about the actual
origin of the event.

Chapter 7

[281]

In some implementations of callback-based event-driven programming, the actual
binding between event emitters and event handlers is a separate step that can be
performed after the event emitter is initialized. This style of binding is possible in
tkinter too, but only for raw user interaction events. The following is an updated
excerpt of the previous tkinter application that uses this style of event binding:

def main_window(root):
 frame = Frame(root)

 zen_button = Button(frame, text="Python Zen")
 zen_button.bind("<ButtonRelease-1>", show_zen)
 zen_button.pack(side=LEFT)

def show_zen(event):
 messagebox.showinfo("Zen of Python", this.s.translate(rot13))

In the preceding example, the event is no longer implicit. Because of that, the show_
zen() callback must be able to accept the event object. The event instance contains
basic information about user interaction, such as the position of the mouse cursor,
the time of the event, and the associated widget. What is important to remember is
that this type of event binding is still unicast. This means that one event from one
object can be bound to only one callback. It is possible to attach the same handler to
multiple events and/or multiple objects, but a single event that comes from a single
source can be dispatched to only one callback. Any attempt to attach a new callback
using the bind() method will override the old one.

The unicast nature of callback-based event programming has obvious limitations
as it requires the tight coupling of application components. The inability to attach
multiple fine-grained handlers to single events often means that every handler is
usually specialized to serve a single emitter and cannot be bound to objects of a
different type.

The subject-based style is a style that reverses the relationship between event
emitters and event handlers. Let's take a look at it in the next section.

Subject-based style
The subject-based style of event programming is a natural extension of unicast
callback-based event handling. In this style of programming, event emitters
(subjects) allow other objects to subscribe/register for notifications about their
events. In practice, this is very similar to the callback-based style, as event emitters
usually store a list of functions or methods to call when some new event happens.

Event-Driven Programming

[282]

In subject-based event programming, the focus moves from the event to the subject
(the event emitter). The most common product of this style is the observer design
pattern.

In short, the observer design pattern consists of two classes of objects—observers
and subjects (sometimes called observables). The Subject instance is an object that
maintains a list of Observer instances that are interested in what happens to the
Subject instance. In other words, Subject is an event emitter and Observer instances
are event handlers.

If we would like to define common interfaces for the observer design pattern, we
could do that by creating the following abstract base classes:

from abc import ABC, abstractmethod

class ObserverABC(ABC):
 @abstractmethod
 def notify(self, event): ...

class SubjectABC(ABC):
 @abstractmethod
 def register(self, observer: ObserverABC): ...

The instances of the ObserverABC subclasses will be the event handlers. We will be
able to register them as observers of subject events using the register() method
of the SubjectABC subclass instances. What is interesting about this design is that it
allows for multicast communication between components. A single observer can be
registered in multiple subjects and a single subject can have multiple subscribers.

To better understand the potential of this mechanism, let's build a more practical
example. We will try to build a naïve implementation of a grep-like utility. It will
be able to recursively scan through the filesystem looking for files containing some
specified text. We will use the built-in glob module for the recursive traversal of the
filesystem and the re module for matching regular expressions.

The core of our program will be the Grepper class, which will be a subclass of
SubjectABC. Let's start by defining the base scaffolding for the registration and
notification of observers:

class Grepper(SubjectABC):
 _observers: list[ObserverABC]

 def __init__(self):
 self._observers = []

Chapter 7

[283]

 def register(self, observer: ObserverABC):
 self._observers.append(observer)

 def notify_observers(self, event):
 for observer in self._observers:
 observer.notify(event)

The implementation is fairly simple. The __init__() function initializes an empty
list of observers. Every new Grepper instance will start with no observers. The
register() method was defined in the SubjectABC class as an abstract method, so
we are obliged to provide the actual implementation of it. It is the only method that
is able to add new observers to the subject state. Last is the notify_observers()
method, which will pass the specified event to all registered observers.

Since our scaffolding is ready, we are now able to define the Grepper.grep() method,
which will do the actual work:

from glob import glob
import os.path
import re

class Grepper(SubjectABC):
 ...

 def grep(self, path: str, pattern: str):
 r = re.compile(pattern)

 for item in glob(path, recursive=True):
 if not os.path.isfile(item):
 continue

 try:
 with open(item) as f:
 self.notify_observers(("opened", item))
 if r.findall(f.read()):
 self.notify_observers(("matched", item))
 finally:
 self.notify_observers(("closed", item))

Event-Driven Programming

[284]

The glob(pattern, recursive=True) function allows us to do recursive filesystem
path names search with "glob" patterns. We will use it to iterate over files in the
location designated by the user. For searching through actual file contents, we use
regular expressions provided in the re module.

As we don't know at this point what the possible observer use cases are, we decided
to emit three types of events:

• "opened": Emitted when a new file has been opened
• "matched": Emitted when Grepper found a match in a file
• "closed": Emitted when a file has been closed

Let's save that class in a file named observers.py and finish it with the following
fragment of code, which initializes the Grepper class instance with input arguments:

import sys

if __name__ == "__main__":
 if len(sys.argv) != 3:
 print("usage: program PATH PATTERN")
 sys.exit(1)

 grepper = Grepper()
 grepper.grep(sys.argv[1], sys.argv[2])

Our observers.py program is now able to search through files, but it won't output
any visible output yet. If we would like to find out which file contents match our
expression, we could change it by creating a subscriber that is able to respond
to"matched" events. The following is an example of a Presenter subscriber that
simply prints the name of the file associated with a "matched" event:

class Presenter(ObserverABC):
 def notify(self, event):
 event_type, file = event
 if event_type == "matched":
 print(f"Found in: {file}")

And here is how it could be attached to the Grepper class instance:

if __name__ == "__main__":
 if len(sys.argv) != 3:
 print("usage: program PATH PATTERN")
 sys.exit(1)

Chapter 7

[285]

 grepper = Grepper()
 grepper.register(Presenter())
 grepper.grep(sys.argv[1], sys.argv[2])

If we would like to find out which of the examples from this chapter's code bundle
contain the substring grep, we could use the following program invocation:

$ python observers.py 'Chapter 7/**' grep
Found in: Chapter 7/04 - Subject-based style/observers.py

The main benefit of this design pattern is extensibility. We can easily extend our
application capabilities by introducing new observers. If, for instance, we would like
to trace all opened files, we could create a special Auditor subscriber that logs all
opened and closed files. It could be as simple as the following:

class Auditor(ObserverABC):
 def notify(self, event):
 event_type, file = event
 print(f"{event_type:8}: {file}")

Moreover, observers aren't tightly coupled to the subject and have only minimal
assumptions on the nature of events delivered to them. If you decide to use a
different matching mechanism (for instance, the fnmatch module for glob-like
patterns instead of regular expressions from the re module), you can easily reuse
existing observers by registering them to a completely new subject class.

Subject-based event programming allows for the looser coupling of components
and thus increases application modularity. Unfortunately, the change of focus from
events to subjects can become a burden. In our example, observers will be notified
about every event emitted from the Subject class. They have no option to register
for only specific types and we've seen already how the Presenter class had filtered
out events other than "matched".

It is either the observer that must filter all incoming events or the subject that should
allow observers to register for specific events at the source. The first approach will
be inefficient if the number of events filtered out by every subscriber is large enough.
The second approach may make the observer registration and event dispatch overly
complex.

Despite the finer granularity of handlers and multicast capabilities, the subject-
based approach to event programming rarely makes the application components
more loosely coupled than the callback-based approach. This is why it isn't a good
choice for the overall architecture of large applications, but rather a tool for specific
problems.

Event-Driven Programming

[286]

This is mostly due to the focus on subjects, which requires all handlers to maintain a
lot of assumptions about the observed subjects. Also, in the implementation of that
style (that is, the observer design pattern), both observers and subjects must, at some
point, meet in the same context. In other words, observers cannot register to events
if there is no actual subject that would emit them.

Fortunately, there is a style of event-driven programming that allows fine-grained
multicast event handling in a way that really fosters loose coupling of large
applications. It is a topic-based style and is a natural evolution of subject-based event
programming.

Topic-based style
Topic-based event programming concentrates on the types of events that are passed
between software components without skewing toward either side of the emitter-
handler relationship. Topic-based event programming is a generalization of previous
styles. Event-driven applications written in the topic-based style allow components
(for example, classes, objects, and functions) to both emit events and/or register to
event types, completely ignoring the other side of the emitter-handler relation.

In other words, handlers can be registered to event types, even if there is no emitter
that would emit them, and emitters can emit events even if there is no one subscribed
to receive them. In this style of event-driven programming, events are first-class
entities that are often defined separately from emitters and handlers. Such events
are often given a dedicated class or are just global singleton instances of one generic
Event class. This is why handlers can subscribe to events even if there is no object
that would emit them.

Depending on the framework or library of choice, the abstraction that's used to
encapsulate such observable event types/classes can be named differently. Popular
terms are channels, topics, and signals. The term signal is particularly popular,
and, because of that, this style of programming is sometimes called signal-driven
programming. Signals can be found in such popular libraries and frameworks as
Django (web framework), Flask (web microframework), SQLAlchemy (database
ORM), and Scrapy (web crawling and scraping framework).

Amazingly, successful Python projects do not build their own signaling frameworks
from scratch, but instead use an existing dedicated library. The most popular
signaling library in Python seems to be blinker. It is characterized by extremely
wide Python version compatibility (Python 2.4 or later, Python 3.0 or later, Jython
2.5 or later, or PyPy 1.6 or later) and has an extremely simple and concise API that
allows it to be used in almost any project.

Chapter 7

[287]

blinker is built on the concept of named signals. To create a new signal definition,
you simply use the signal(name) constructor. Two separate calls to the signal()
constructor with the same name value will return the same signal object. This
allows you to easily refer to signals at any time. The following is an example of the
SelfWatch class, which uses named signals to notify its instances every time a new
sibling is created:

import itertools

from blinker import signal

class SelfWatch:
 _new_id = itertools.count(1)

 def __init__(self):
 self._id = next(self._new_id)
 init_signal = signal("SelfWatch.init")
 init_signal.send(self)
 init_signal.connect(self.receiver)

 def receiver(self, sender):
 print(f"{self}: received event from {sender}")

 def __str__(self):
 return f"<{self.__class__.__name__}: {self._id}>"

Let's save above code in topic_based_events.py file. The following transcript of
the interactive session shows how new instances of the SelfWatch class notify the
siblings about their initialization:

>>> from topic_based_events import SelfWatch
>>> selfwatch1 = SelfWatch()
>>> selfwatch2 = SelfWatch()
<SelfWatch: 1>: received event from <SelfWatch: 2>
>>> selfwatch3 = SelfWatch()
<SelfWatch: 2>: received event from <SelfWatch: 3>
<SelfWatch: 1>: received event from <SelfWatch: 3>
>>> selfwatch4 = SelfWatch()
<SelfWatch: 2>: received event from <SelfWatch: 4>
<SelfWatch: 3>: received event from <SelfWatch: 4>
<SelfWatch: 1>: received event from <SelfWatch: 4>

Event-Driven Programming

[288]

Other interesting features of the blinker library are as follows:

• Anonymous signals: Empty signal() calls always create a completely
new anonymous signal. By storing the signal as a module variable or class
attribute, you will avoid typos in string literals or accidental signal name
collisions.

• Subject-aware subscription: The signal.connect() method allows us
to select a specific sender; this allows you to use subject-based event
dispatching on top of topic-based dispatching.

• Signal decorators: The signal.connect() method can be used as a decorator;
this shortens code and makes event handling more evident in the code base.

• Data in signals: The signal.send() method accepts arbitrary keyword
arguments that will be passed to the connected handler; this allows signals
to be used as a message-passing mechanism.

One really interesting thing about the topic-based style of event-driven programming
is that it does not enforce subject-dependent relations between components. Both
sides of the relation can be event emitters and handlers to each other, depending on
the situation. This way of event handling becomes just a communication mechanism.
This makes topic-based event programming a good choice for the architectural
pattern.

The loose coupling of software components allows for smaller incremental changes.
Also, an application process that is loosely coupled internally through a system of
events can be easily split into multiple services that communicate through message
queues. This allows transforming event-driven applications into distributed event-
driven architectures.

Let's take a look at event-driven architectures in the next section.

Event-driven architectures
From event-driven applications, there is only one minor step to event-driven
architectures. Event-driven programming allows you to split your application into
isolated components that communicate with each other only by exchanging events or
signals. If you already did this, you should be also able to split your application into
separate services that do the same, but transfer events to each other, either through
some kind of inter-process communication (IPC) mechanism or over the network.

Chapter 7

[289]

Event-driven architectures transfer the concept of event-driven programming to the
level of inter-service communication. There are many good reasons for considering
such architectures:

• Scalability and utilization of resources: If your workload can be split into
many order-independent events, architectures that are event-driven allow
the work to be easily distributed across many computing nodes (hosts). The
amount of computing power can also be dynamically adjusted to the number
of events being processed in the system at any given moment.

• Loose coupling: Systems that are composed of many (preferably small)
services communicating over queues tend to be more loosely coupled than
monolithic systems. Loose coupling allows for easier incremental changes
and the steady evolution of system architecture.

• Failure resiliency: Event-driven systems with proper event transport
technology (distributed message queues with built-in message persistency)
tend to be more resilient to transient issues. Modern message queues, such
as Kafka or RabbitMQ, offer multiple ways to ensure that the message will
always be delivered to at least one recipient and are able to ensure that the
message will be redelivered in the case of unexpected errors.

Event-driven architectures work best for problems that can be dealt with
asynchronously, such as file processing or file/email delivery, or for systems that
deal with regular and/or scheduled events (for example, cron jobs). In Python, it
can also be used as a way of overcoming the CPython interpreter's performance
limitations (such as Global Interpreter Lock (GIL), which was discussed in Chapter
6, Concurrency) by splitting the workload across multiple independent processes.

Last but not least, event-driven architectures seem to have a natural affinity
for serverless computing. In this cloud-computing execution model, you're not
concerned about infrastructure and you don't have to purchase computing capacity
units. You leave all of the scaling and infrastructure management for your cloud
service operator and provide them only with your code to run. Often, the pricing for
such services is based only on the resources that are used by your code. The most
prominent category of serverless computing services is Function as a Service (FaaS),
which executes small units of code (functions) in response to events.

In the next section, we will discuss in more detail event and message queues, which
form the foundation of most event-based architectures.

Event-Driven Programming

[290]

Event and message queues
In most single-process implementations of event-driven programming, events
are handled as soon as they appear and are usually processed in a serial fashion.
Whether it is a callback-based style of GUI application or full-fledged signaling in
the style of the blinker library, an event-driven application usually maintains some
kind of mapping between events and lists of handlers to execute.

This style of information passing in distributed applications is usually realized
through a request-response communication model. Request-response is a
bidirectional and obviously synchronous way of communication between services.
It can definitely be a basis for simple event handling but has many downsides that
make it really inefficient in large-scale or complex systems. The biggest problem
with request-response communication is that it introduces relatively high coupling
between components:

• Every communicating component needs to be able to locate dependent
services. In other words, event emitters need to know the network addresses
of network handlers.

• A subscription happens directly in the service that emits the event. This
means that, in order to create a completely new event connection, usually
more than one service has to be modified.

• Both sides of communication must agree on the communication protocol
and message format. This makes potential changes more complex.

• A service that emits events must handle potential errors that are returned
in responses from dependent services.

• Request-response communication often cannot be easily handled in an
asynchronous way. This means that event-based architecture built on top of
a request-response communication system rarely benefits from concurrent
processing flows.

Due to the preceding reasons, event-driven architectures are usually implemented
using the concept of message queues, rather than request-response cycles. A message
queue is a communication mechanism in the form of a dedicated service or library
that is only concerned with the messages and their intended delivery mechanism. It
just acts as a communication hub between various parties. In a contract, the request-
response flow requires both communicating parties to know each other and be
"alive" during every information exchange.

Chapter 7

[291]

Typically, writing a new message to the message queue is a fast operation as it does
not require immediate action (a callback) to be executed on the subscriber's side.
Moreover, event emitters don't need their subscribers to be running at the time
that the new message is emitted, and asynchronous messaging can increase failure
resilience. The request-response flow, in contrast, assumes that dependent services
are always available, and the synchronous processing of events can introduce large
processing delays.

Message queues allow for the loose coupling of services because they isolate event
emitters and handlers from each other. Event emitters publish messages directly to
the queue but don't need to care if any other service listens to its events. Similarly,
event handlers consume events directly from the queue and don't need to worry
about who produced the events (sometimes, information about the event emitter is
important, but, in such situations, it is either in the contents of the delivered message
or takes part in the message routing mechanism). In such a communication flow,
there is never a direct synchronous connection between event emitters and event
handlers, and all the exchange of information happens through the queue.

In some circumstances, this decoupling can be taken to such an extreme that a single
service can communicate with itself by an external queuing mechanism. This isn't
so surprising, because using message queues is already a great way of inter-thread
communication that allows you to avoid locking (see Chapter 6, Concurrency).

Besides loose coupling, message queues (especially in the form of dedicated services)
have many additional capabilities:

• Persistence: Most message queues are able to provide message persistence.
This means that, even if a message queue's service dies, no messages will be
lost.

• Retrying: Many message queues support message delivery/processing
confirmations and allow you to define a retry mechanism for messages that
fail to deliver. This, with the support of message persistency, guarantees that
if a message was successfully submitted, it will eventually be processed, even
in the case of transient network or service failures.

• Natural concurrency: Message queues are naturally concurrent. With various
message distribution semantics (for example, fan-out and round-robin), it is a
great basis for a highly scalable and distributed architecture.

Event-Driven Programming

[292]

When it comes to the actual implementation of the message queue, we can
distinguish two major architectures:

• Brokered message queues: In this architecture, there is one service (or cluster
of services) that is responsible for accepting and distributing events. The
most common examples of open-source brokered message queue systems
are RabbitMQ and Apache Kafka. A popular cloud-based service is Amazon
SQS. These types of systems are most capable in terms of message persistence
and built-in message delivery semantics.

• Brokerless message queues: These are implemented solely as programming
libraries. A popular brokerless messaging library is ZeroMQ (often spelled as
ØMQ or zmq). The biggest advantage of brokerless messaging is elasticity.
Brokerless messaging libraries trade operational simplicity (no additional
centralized service or cluster of services to maintain) for feature completeness
and complexity (things like persistence and complex message delivery need
to be implemented inside of services).

Both types of messaging approach have advantages and disadvantages. In brokered
message queues, there is always an additional service to maintain in the case of
open-source queues running on their own infrastructure, or an additional entry on
your cloud provider invoice in the case of cloud-based services. Such messaging
systems quickly become a critical part of your architecture. If not designed with high
availability in mind, such a central message queue can become a single point of
failure for your whole system architecture. Anyway, modern queue systems have a
lot of features available out of the box, and integrating them into your code is usually
a matter of proper configuration or a few API calls. With the AMQP standard, it's
also quite easy to run local ad hoc queues for testing.

With brokerless messaging, your communication is often more distributed. This
means that your system architecture does not depend on a single messaging
service or cluster. Even if some services are dead, the rest of the system can still
communicate. The downside of this approach is that you're usually on your own
when it comes to things like message persistency, delivery/processing confirmations,
delivery retries, and handling complex network failure scenarios like network splits.
If you have such needs, you will either have to implement such capabilities directly
in your services or build your own messaging broker from scratch using brokerless
messaging libraries. For larger distributed applications, it is usually better to use
proven and battle-tested message brokers.

Event-driven architectures encourage modularity and the decomposition of large
applications into smaller services. This has both advantages and disadvantages.
With many components communicating over the queues, it may be harder to debug
applications and understand how they work.

Chapter 7

[293]

On the other hand, good system architecture practices like separation of concerns,
domain isolation, and the use of formal communication contracts improve overall
architecture and make the development of separate components easier.

Summary
In this chapter, we discussed the elements of event-driven programming. We started
with the most common examples and applications of event-driven programming
to better introduce ourselves to this programming paradigm. Then, we precisely
described the three main styles of event-driven programming, callback-based style,
subject-based style, and topic-based style. There are many event-driven design
patterns and programming techniques, but all of them fall into one of these three
categories. The last part of this chapter focused on event-driven programming
architectures.

With this chapter, we end something that we could call an "architecture and design
arc." From now on, we will be talking less about architecture, design patterns,
programming, and paradigms and more about Python internals and advanced
syntax features.

The next chapter is all about metaprogramming in Python, that is, how to write
programs that can treat themselves as data, analyze themselves, and modify
themselves at runtime.

Examples of standards focused on creating formal communication
contracts include OpenAPI and AsyncAPI. These are YAML-based
specification languages for defining specifications for application
communication protocols and schemas. You can learn more about
them at https://swagger.io/specification/ and https://
www.asyncapi.com.

https://swagger.io/specification/
https://www.asyncapi.com
https://www.asyncapi.com

[295]

8
Elements of

Metaprogramming
Metaprogramming is a collection of programming techniques that focus on the
ability of programs to introspect themselves, understand their own code, and modify
themselves. Such an approach to programming gives programmers a lot of power
and flexibility. Without metaprogramming techniques, we probably wouldn't have
modern programming frameworks, or at least those frameworks would be way less
expressive.

The term metaprogramming is often shrouded in an aura of mystery. Many
programmers associate it almost exclusively with programs that can inspect and
manipulate their own code at the source level. Programs manipulating their own
source code are definitely one of the most striking and complex examples of applied
metaprogramming, but metaprogramming takes many forms and doesn't always
have to be complex nor hard. Python is especially rich in features and modules that
make certain metaprogramming techniques simple and natural.

In this chapter, we will explain what metaprogramming really is and present a few
practical approaches to metaprogramming in Python. We will start with simple
metaprogramming techniques like function and class decorators but will also cover
advanced techniques to override the class instance creation process and the use of
metaclasses. We will finish with examples of the most powerful but also dangerous
approach to metaprogramming, which is code generation patterns.

Elements of Metaprogramming

[296]

In this chapter, we will cover the following topics:

• What is metaprogramming?
• Using decorators to modify function behavior before use
• Intercepting the class instance creation process
• Metaclasses
• Code generation

Before we get into some metaprogramming techniques available for Python
developers, let's begin by considering the technical requirements.

Technical requirements
The following are Python packages that are mentioned in this chapter that you can
download from PyPI:

• inflection

• macropy3

• falcon

• hy

Information on how to install packages is included in Chapter 2, Modern Python
Development Environments.

The code files for this chapter can be found at https://github.com/PacktPublishing/
Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%208.

What is metaprogramming?
Maybe we could find a good academic definition of metaprogramming, but this is a
book that is more about good software craftsmanship than about computer science
theory. This is why we will use our own informal definition of metaprogramming:

"Metaprogramming is a technique of writing computer programs that can treat
themselves as data, so they can introspect, generate, and/or modify themselves while
running."

https://github.com/PacktPublishing/Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%208
https://github.com/PacktPublishing/Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%208

Chapter 8

[297]

Using this definition, we can distinguish between two major branches of
metaprogramming in Python:

• Introspection-oriented metaprogramming: Focused on natural introspection
capabilities of the language and dynamic definitions of functions and types

• Code-oriented metaprogramming: Metaprogramming focused on treating
code as mutable data structures

Introspection-oriented metaprogramming concentrates on the language's ability
to introspect its basic elements, such as functions, classes, or types, and to create or
modify them on the go. Python really provides a lot of tools in this area. This feature
of the Python language is often used by Integrated Development Environments
(IDEs) to provide real-time code analysis and name suggestions. The easiest possible
metaprogramming tools in Python that utilize language introspection features are
decorators that allow for adding extra functionality to existing functions, methods,
or classes. Next are special methods of classes that allow you to interfere with the
class instance creation process. The most powerful are metaclasses, which allow
programmers to even completely redesign Python's implementation of object-
oriented programming.

Code-oriented metaprogramming allows programmers to work directly with code,
either in its raw (plain text) format or in the more programmatically accessible
abstract syntax tree (AST) form. This second approach is, of course, more
complicated and difficult to work with but allows for really extraordinary things,
such as extending Python's language syntax or even creating your own domain-
specific language (DSL).

In the next section, we'll discuss what decorators are in the context of
metaprogramming.

Using decorators to modify function
behavior before use
Decorators are one of the most common inspection-oriented metaprogramming
techniques in Python. Because functions in Python are first-class objects, they can
be inspected and modified at runtime. Decorators are special functions capable of
inspecting, modifying, or wrapping other functions.

The decorator syntax was explained in Chapter 4, Python in Comparison with Other
Languages, and is in fact a syntactic sugar that is supposed to make it easier to work
with functions that extend existing code objects with additional behavior.

Elements of Metaprogramming

[298]

You can write code that uses the simple decorator syntax as follows:

@some_decorator
def decorated_function():
 pass

You can also write it in the following (more verbose) way:

def decorated_function():
 pass
decorated_function = some_decorator(decorated_function)

This verbose form of function decoration clearly shows what the decorator does. It
takes a function object and modifies it at runtime. A decorator usually returns a new
function object that replaces the pre-existing decorated function name.

We've already seen how function decorators are indispensable in implementing
many design patterns, in Chapter 5, Interfaces, Patterns, and Modularity. Function
decorators are often used to intercept and preprocess original function arguments,
modify the return values, or enhance the function call context with additional
functional aspects like logging, profiling, or evaluating a caller's authorization/
authentication claims.

Let's, for instance, consider the following example usage of the @lru_cache decorator
from the functools module:

from functools import lru_cache

@lru_cache(size=100)
def expensive(*args, **kwargs):
 ...

The @lru_cache decorator creates a Last Recently Used (LRU) cache of return values
for a given function. It intercepts incoming function arguments and compares them
with a list of recently used argument sets. If there is a match, it returns the cached
value instead of calling the decorated function. If there is no match, the original
function will be called first and the return value will be stored in the cache for later
use. In our example, the cache will hold no more than 100 values.

What is really interesting is that the use of @lru_cache is already a metaprogramming
technique. It takes an existing code object (here, the expensive() function) and
modifies its behavior. It also intercepts arguments and inspects their value and type
to decide whether these can be cached or not.

Chapter 8

[299]

This is good news. We've seen already, in Chapter 4, Python in Comparison with Other
Languages, that decorators are relatively easy to write and use in Python. In most
cases, decorators make code shorter, easier to read, and also cheaper to maintain.
This means that they serve as a perfect introductory technique to metaprogramming.
Other metaprogramming tools that are available in Python may be more difficult to
understand and master.

The natural step forward from function decorators is class decorators. We take a look
at them in the next section.

One step deeper: class decorators
One of the lesser-known syntax features of Python is class decorators. Their syntax
and implementation are exactly the same as function decorators. The only difference
is that they are expected to return a class instead of the function object.

We've already used some class decorators in previous chapters. These were the
@dataclass decorator from the dataclasses module explained in Chapter 4, Python in
Comparison with Other Languages, and @runtime_checkable from the typing module,
explained in Chapter 5, Interfaces, Patterns, and Modularity. Both decorators rely on
Python's introspection capabilities to enhance existing classes with extra behavior:

• The @dataclass decorator inspects class attribute annotations to create a
default implementation of the __init__() method and comparison protocol
that saves developers from writing repeatable boilerplate code. It also allows
you to create custom "frozen" classes with immutable and hashable instances
that can be used as dictionary keys.

• The @runtime_checkable decorator marks Protocol subclasses as "runtime
checkable." It means that the argument and return value annotation of
the Protocol subclass can be used to determine at runtime if another class
implements an interface defined by the protocol class.

The best way to understand how class decorators work is to learn by doing. The
@dataclass and @runtime_checkable decorators have rather complex inner workings,
so instead of looking at their actual code, we will try to build our own simple
example.

One of the great features of dataclasses is the ability to provide a default
implementation of the __repr__() method. That method returns a string
representation of the object that can be displayed in an interactive session, logs,
or in standard output.

Elements of Metaprogramming

[300]

For custom classes, this __repr__() method will by default include only the
class name and memory address, but for dataclasses it automatically includes
a representation of each individual field of the dataclass. We will try to build a
dataclass decorator that will provide a similar capability for any class.

We'll start by writing a function that can return a human-readable representation of
any class instance if given a list of attributes to represent:

from typing import Any, Iterable

UNSET = object()

def repr_instance(instance: object, attrs: Iterable[str]) -> str:
 attr_values: dict[str, Any] = {
 attr: getattr(instance, attr, UNSET)
 for attr in attrs
 }
 sub_repr = ", ".join(
 f"{attr}={repr(val) if val is not UNSET else 'UNSET'}"
 for attr, val in attr_values.items()
)
 return f"<{instance.__class__.__qualname__}: {sub_repr}>"

Our repr_instance() function starts by traversing instance attributes using the
getattr() function over all attribute names provided in the attrs argument. Some
instance attributes may not be set at the time we are creating the representation. The
getattr() function will return None if the attribute is not set—however, None is also
a valid attribute value so we need to have a way to distinguish unset attributes from
None values. That's why we use the UNSET sentinel values.

Once attributes and their values are known, our function uses f-strings to create an
actual representation of the class instance that will include a representation of each
individual attribute defined in the attrs argument.

UNSET = object() is a common pattern for creating a unique
sentinel value. The bare object type instance returns True on the
is operator check only when compared with itself.

Chapter 8

[301]

We will soon look at how to automatically include such representations in custom
classes, but first, let's try to see how it deals with existing objects. Here, for instance,
is an example of using the instance_repr() function in an interactive session to get
a representation of an imaginary number:

>>> repr_instance(1+10j, ["real", "imag"])
'<complex: real=1.0, imag=10.0>'

It's good so far but we need to pass the object instance explicitly and know all the
possible attribute names before we want to print them. That's not very convenient
because we will have to update the arguments of repr_instance() every time the
structure of the class changes. We will write a class decorator that will be able to
take the repr_instance() function and inject it into a decorated class. We will also
use class attribute annotations stored under a class's __annotations__ attribute to
determine what attributes we want to include in the representation. Following is the
code of our decorator:

def autorepr(cls):
 attrs = set.union(
 *(
 set(c.__annotations__.keys())
 for c in cls.mro()
 if hasattr(c, "__annotations__")
)
)

 def __repr__(self):
 return repr_instance(self, sorted(attrs))

 cls.__repr__ = __repr__
 return cls

In those few lines, we use a lot of things that we learned about in Chapter 4, Python in
Comparison with Other Languages. We start by obtaining a list of annotated attributes
from the cls.__annotations__ dictionary from each class in the class Method
Resolution Order (MRO). We have to traverse the whole MRO because annotations
are not inherited from base classes.

Elements of Metaprogramming

[302]

Later, we use a closure to define an inner __repr__() function that has access to
the attrs variable from the outer scope. When that's done, we override the existing
cls.__repr__() method with a new implementation. We can do that because
function objects are already non-data descriptors. It means that in the class context
they become methods and simply receive an instance object as a first argument.

Now we can test our decorator on some custom instance. Let's save our code in the
autorepr.py file and define some trivial class with attribute annotations that will be
decorated with our @autorepr decorator:

from typing import Any

@autorepr
class MyClass:
 attr_a: Any
 attr_b: Any
 attr_c: Any

 def __init__(self, a, b):
 self.attr_a = a
 self.attr_b = b

If you are vigilant, you've probably noticed that we have missed the attr_c attribute
initialization. This is intentional. It will allow us to see how @autorepr deals with
unset attributes. Let's start Python, import our class, and see the automatically
generated representations:

>>> from autorepr import MyClass
>>> MyClass("Ultimate answer", 42)
<MyClass: attr_a='Ultimate answer', attr_b=42, attr_c=UNSET>
>>> MyClass([1, 2, 3], ["a", "b", "c"])
<MyClass: attr_a=[1, 2, 3], attr_b=['a', 'b', 'c'], attr_c=UNSET>
>>> instance = MyClass(None, None)
>>> instance.attr_c = None
>>> instance
<MyClass: attr_a=None, attr_b=None, attr_c=None>

The above example from an interactive Python session shows how the @autorepr
decorator can use class attribute annotations to discover the fields that need to be
included in instance representation. It is also able to distinguish unset attributes
from those that have an explicit None value. A decorator is reusable so you can easily
apply it to any class that has type annotations for attributes instead of creating new
__repr__() methods manually.

Chapter 8

[303]

Moreover, it does not require constant maintenance. If you extend the class with
an additional attribute annotation, it will be automatically included in instance
representation.

Modifying existing classes in place (also known as monkey patching) is a common
technique used in class decorators. The other way to enhance existing classes with
decorators is through utilizing closures to create new subclasses on the fly. If we had
to rewrite our example as a subclassing pattern, we could write it as follows:

def autorepr(cls):
 attrs = cls.__annotations__.keys()

 class Klass(cls):
 def __repr__(self):
 return repr_instance(self, attrs)

 return Klass

The major drawback of using closures in class decorators this way is that this
technique affects class hierarchy. Among others, this will override the class's
__name__, __qualname__, and __doc__ attributes. In our case, that would also mean
that part of the intended functionality would be lost. The following are would-be
example representations of MyClass decorated with such a decorator:

<autorepr.<locals>.Klass: attr_a='Ultimate answer', attr_b=42, attr_
c=UNSET>
<autorepr.<locals>.Klass: attr_a=[1, 2, 3], attr_b=['a', 'b', 'c'],
attr_c=UNSET>

This cannot be easily fixed. The functools module provides the @wraps utility
decorator, which can be used in ordinary function decorators to preserve the
metadata of an annotated function. Unfortunately, it can't be used with class
decorators. This makes the use of subclassing in class decorators limited. They can,
for instance, break the results of automated documentation generation tools.

Still, despite this single caveat, class decorators are a simple and lightweight
alternative to the popular mixin class pattern. A mixin in Python is a class that is
not meant to be instantiated but is instead used to provide some reusable API or
functionality to other existing classes. Mixin classes are almost always added using
multiple inheritance. Their usage usually takes the following form:

class SomeConcreteClass(MixinClass, SomeBaseClass):
 pass

Elements of Metaprogramming

[304]

Mixin classes form a useful design pattern that is utilized in many libraries and
frameworks. To name one, Django is an example framework that uses them
extensively. While useful and popular, mixin classes can cause some trouble if not
designed well, because, in most cases, they require the developer to rely on multiple
inheritance. As we stated earlier, Python handles multiple inheritance relatively well,
thanks to its clear MRO implementation. Anyway, try to avoid subclassing multiple
classes if you can, as multiple inheritance makes code complex and hard to work
with. This is why class decorators may be a good replacement for mixin classes.

In general, decorators concentrate on modifying the behavior of functions and
classes before they are actually used. Function decorators replace existing functions
with their wrapped alternatives and class decorators, usually modifying the class
definition. But there are some metaprogramming techniques that concentrate more
on modifying code behavior when it is actually in use. One of those techniques relies
on intercepting the class instance creation process through the overriding of the
__new__() method. We will discuss this in the next section.

Intercepting the class instance creation
process
There are two special methods concerned with the class instance creation and
initialization process. These are __init__() and __new__().

The __init__() method is the closest to the concept of the constructor found in
many object-oriented programming languages. It receives a fresh class instance
together with initialization arguments and is responsible for initializing the class
instance state.

The special method __new__() is a static method that is actually responsible for
creating class instances. This __new__(cls, [,...]) method is called prior to the
__init__() initialization method. Typically, the implementation of the overridden
__new__() method invokes its superclass version using super().__new__() with
suitable arguments and modifies the instance before returning it.

The __new__() method is a special-cased static method so there is
no need to declare it as a static method using the staticmethod
decorator.

Chapter 8

[305]

The following is an example class with the overridden __new__() method
implementation in order to count the number of class instances:

class InstanceCountingClass:
 created = 0
 number: int

 def __new__(cls, *args, **kwargs):
 instance = super().__new__(cls)
 instance.number = cls.created
 cls.created += 1

 return instance

 def __repr__(self):
 return (
 f"<{self.__class__.__name__}: "
 f"{self.number} of {self.created}>"
)

Here is the log of the example interactive session that shows how our
InstanceCountingClass implementation works:

>>> instances = [InstanceCountingClass() for _ in range(5)]
>>> for i in instances:
... print(i)
...
<InstanceCountingClass: 0 of 5>
<InstanceCountingClass: 1 of 5>
<InstanceCountingClass: 2 of 5>
<InstanceCountingClass: 3 of 5>
<InstanceCountingClass: 4 of 5>
>>> InstanceCountingClass.created
5

The __new__() method should usually return the instance of the featured class, but
it is also possible for it to return other class instances. If this does happen (a different
class instance is returned), then the call to the __init__() method is skipped. This
fact is useful when there is a need to modify the creation/initialization behavior of
immutable class instances like some of Python's built-in types.

Elements of Metaprogramming

[306]

Following is an example of the subclassed int type that does not include a zero
value:

class NonZero(int):
 def __new__(cls, value):
 return super().__new__(cls, value) if value != 0 else None

 def __init__(self, skipped_value):
 # implementation of __init__ could be skipped in this case
 # but it is left to present how it may be not called
 print("__init__() called")
 super().__init__()

The above example includes several print statements to present how Python skips
the __init__() method call in certain situations. Let's review these in the following
interactive session:

>>> type(NonZero(-12))
__init__() called
<class '__main__.NonZero'>
>>> type(NonZero(0))
<class 'NoneType'>
>>> NonZero(-3.123)
__init__() called
-3

So, when should we use __new__()? The answer is simple: only when __init__() is
not enough. One such case was already mentioned, that is, subclassing immutable
built-in Python types such as int, str, float, frozenset, and so on. This is because
there was no way to modify such an immutable object instance in the __init__()
method once it was created.

Some programmers would argue that __new__() may be useful for performing
important object initialization that may be missed if the user forgets to use the
super().__init__() call in the overridden initialization method. While it sounds
reasonable, this has a major drawback. With such an approach, it becomes harder
for the programmer to explicitly skip previous initialization steps if this is the
already desired behavior. It also breaks an unspoken rule of all initializations
performed in __init__().

Chapter 8

[307]

Because __new__() is not constrained to return the same class instance, it can be
easily abused. Irresponsible usage of this method might do a lot of harm to code
readability, so it should always be used carefully and backed with extensive
documentation. Generally, it is better to search for other solutions that may be
available for the given problem, instead of affecting object creation in a way that
will break a basic programmer's expectations. Even the overridden initialization of
immutable types can be replaced with more predictable and well-established design
patterns like factory methods.

There is at least one aspect of Python programming where extensive usage of the
__new__() method is well justified. These are metaclasses, which are described in the
next section.

Metaclasses
A metaclass is a Python feature that is considered by many as one of the most
difficult things to understand in the language and is thus avoided by a great number
of developers. In reality, it is not as complicated as it sounds once you understand
a few basic concepts. As a reward, knowing how to use metaclasses grants you the
ability to do things that are not possible without them.

Factory methods in Python are usually defined with the use of the
classmethod decorator, which can intercept arguments before the
class constructor is invoked. That usually allows you to pack more
than one initialization semantic into a single class. Following is an
example of a list type subclass that has two factory methods for
creating list instances that are doubled or tripled in size:

from collections import UserList

class XList(UserList):
 @classmethod
 def double(cls, iterable):
 return cls(iterable) * 2

 @classmethod
 def triple(cls, iterable):
 return cls(iterable) * 3

Elements of Metaprogramming

[308]

A metaclass is a type (class) that defines other types (classes). The most important
thing to know in order to understand how they work is that classes (so, types that
define object structure and behavior) are objects too. So, if they are objects, then they
have an associated class. The basic type of every class definition is simply the built-in
type class (see Figure 8.1).

Figure 8.1: How classes are typed

In Python, it is possible to substitute the metaclass for a class object with your
own type. Usually, the new metaclass is still the subclass of the type metaclass
(refer to Figure 8.2) because not doing so would make the resulting classes highly
incompatible with other classes in terms of inheritance:

Figure 8.2: Usual implementation of custom metaclasses

Let's take a look at the general syntaxes for metaclasses in the next section.

Chapter 8

[309]

The general syntax
The call to the built-in type() class can be used as a dynamic equivalent of the class
statement. The following is an example of a class definition with the type() call:

def method(self):
 return 1

MyClass = type('MyClass', (), {'method': method})

The first argument is the class name, the second is a list of base classes (here, an
empty tuple), and the third is a dictionary of class attributes (usually methods).
This is equivalent to the explicit definition of the class with the class keyword:

class MyClass:
 def method(self):
 return 1

Every class that's created with the class statement implicitly uses type as its
metaclass. This default behavior can be changed by providing the metaclass
keyword argument to the class statement, as follows:

class ClassWithAMetaclass(metaclass=type):
 pass

The value that's provided as a metaclass argument is usually another class object,
but it can be any other callable that accepts the same arguments as the type class and
is expected to return another class object.

The detailed call signature of a metaclass is type(name, bases, namespace) and the
meaning of the arguments are as follows:

• name: This is the name of the class that will be stored in the __name__ attribute
• bases: This is the list of parent classes that will become the __bases__

attribute and will be used to construct the MRO of a newly created class
• namespace: This is a namespace (mapping) with definitions for the class body

that will become the __dict__ attribute

One way of thinking about metaclasses is the __new__() method but at a higher level
of class definition.

Elements of Metaprogramming

[310]

Despite the fact that functions that explicitly call type() can be used in place of
metaclasses, the usual approach is to use a different class that inherits from type for
this purpose. The common template for a metaclass is as follows:

class Metaclass(type):
 def __new__(mcs, name, bases, namespace):
 return super().__new__(mcs, name, bases, namespace)

 @classmethod
 def __prepare__(mcs, name, bases, **kwargs):
 return super().__prepare__(name, bases, **kwargs)

 def __init__(cls, name, bases, namespace, **kwargs):
 super().__init__(name, bases, namespace)

 def __call__(cls, *args, **kwargs):
 return super().__call__(*args, **kwargs)

The name, bases, and namespace arguments have the same meaning as in the type()
call we explained earlier, but each of these four methods is invoked at a different
stage of the class lifecycle:

• __new__(mcs, name, bases, namespace): This is responsible for the actual
creation of the class object in the same way as it does for ordinary classes.
The first positional argument is a metaclass object. In the preceding
example, it would simply be Metaclass. Note that mcs is the popular naming
convention for this argument.

• __prepare__(mcs, name, bases, **kwargs): This creates an empty
namespace object. By default, it returns an empty dict instance, but it can be
overridden to return any other dict subclass instance. Note that it does not
accept namespace as an argument because, before calling it, the namespace
does not exist yet. Example usage of that method will be explained later, in
the Metaclass usage section.

• __init__(cls, name, bases, namespace, **kwargs): This is not common in
metaclass implementations but has the same meaning as in ordinary classes.
It can perform additional class object initialization once it is created with
__new__(). The first positional argument is now named cls by convention
to mark that this is already a created class object (metaclass instance) and
not a metaclass object. When __init__() is called, the class has been already
constructed and so the __init__() method can do less than the __new__()
method. Implementing such a method is very similar to using class
decorators, but the main difference is that __init__() will be called for every
subclass, while class decorators are not called for subclasses.

Chapter 8

[311]

• __call__(cls, *args, **kwargs): This is called when an instance of a
metaclass is called. The instance of a metaclass is a class object (refer to Figure
8.1); it is invoked when you create new instances of a class. This can be used
to override the default way of how class instances are created and initialized.

Each of the preceding methods can accept additional extra keyword arguments, all of
which are represented by **kwargs. These arguments can be passed to the metaclass
object using extra keyword arguments in the class definition in the form of the
following code:

class Klass(metaclass=Metaclass, extra="value"):
 pass

This amount of information can be overwhelming at first without proper examples,
so let's trace the creation of metaclasses, classes, and instances with some print()
calls:

class RevealingMeta(type):
 def __new__(mcs, name, bases, namespace, **kwargs):
 print(mcs, "METACLASS __new__ called")
 return super().__new__(mcs, name, bases, namespace)

 @classmethod
 def __prepare__(mcs, name, bases, **kwargs):
 print(mcs, " METACLASS __prepare__ called")
 return super().__prepare__(name, bases, **kwargs)

 def __init__(cls, name, bases, namespace, **kwargs):
 print(cls, " METACLASS __init__ called")
 super().__init__(name, bases, namespace)

 def __call__(cls, *args, **kwargs):
 print(cls, " METACLASS __call__ called")
 return super().__call__(*args, **kwargs)

Using RevealingMeta as a metaclass to create a new class definition will give the
following output in the Python interactive session:

>>> class RevealingClass(metaclass=RevealingMeta):
... def __new__(cls):
... print(cls, "__new__ called")
... return super().__new__(cls)
... def __init__(self):
... print(self, "__init__ called")

Elements of Metaprogramming

[312]

... super().__init__()

...
<class '__main__.RevealingMeta'> METACLASS __prepare__ called
<class '__main__.RevealingMeta'> METACLASS __new__ called
<class '__main__.RevealingClass'> METACLASS __init__ called

As you can see, during the class definition, only metaclass methods are called. The
first one is the __prepare__() method, which prepares a new class namespace. It is
immediately followed by the __new__() method, which is responsible for the actual
class creation and receives the namespace created by the __prepare__() method.
Last is the __init__() method, which receives the class object created by the
__new__() method (here, the RevealingClass definition).

Metaclass methods cooperate with class methods during class instance creation. We
can trace the order of method calls by creating a new RevealingClass instance in the
Python interactive session:

>>> instance = RevealingClass()
<class '__main__.RevealingClass'> METACLASS __call__ called
<class '__main__.RevealingClass'> CLASS __new__ called
<__main__.RevealingClass object at 0x10f594748> CLASS __init__ called

The first method called was the __call__() method of a metaclass. At this point,
it has access to the class object (here, the RevealingClass definition) but no class
instance has been created yet. It is called just before class instance creation, which
should happen in the __new__() method of the class definition. The last step of the
class instance creation process is the call to the class __init__() method responsible
for instance initialization.

We know roughly how metaclasses work in theory so let's now take a look at
example usage of metaclasses.

Metaclass usage
Metaclasses are a great tool for doing unusual things. They give a lot of flexibility
and power in modifying typical class behavior. So, it is hard to tell what common
examples of their usage are. It would be easier to say that most usages of metaclasses
are pretty uncommon.

For instance, let's take a look at the __prepare__() method of every object type.
It is responsible for preparing the namespace of class attributes. The default type
for a class namespace is a plain dictionary. For years, the canonical example of the
__prepare__() method was providing a collections.OrderedDict instance as a class
namespace.

Chapter 8

[313]

Preserving the order of attributes in the class namespace allowed for things like
repeatable object representation and serialization. But since Python 3.7 dictionaries
are guaranteed to preserve key insertion order, that use case is gone. But it doesn't
mean that we can't play with namespaces.

Let's imagine the following problem: we have a large Python code base that was
developed over dozens of years and the majority of the code was written way before
anyone in the team cared about coding standards. We may have, for instance, classes
mixing camelCase and snake_case as the method naming convention. If we cared
about consistency, we would be forced to spend a tremendous amount of effort to
refactor the whole code base into either of the naming conventions. Or we could just
use some clever metaclass that could be added on top of existing classes that would
allow for calling methods in both ways. We could write new code using the new
calling convention (preferably snake_case) while leaving the old code untouched
and waiting for a gradual update.

That's an example of a situation where the __prepare__() method could be used!
Let's start by writing a dict subclass that automatically interpolates camelCase names
into snake_case keys:

from typing import Any
import inflection

class CaseInterpolationDict(dict):
 def __setitem__(self, key: str, value: Any):
 super().__setitem__(key, value)
 super().__setitem__(inflection.underscore(key), value)

Our CaseInterpolationDict class works almost like an ordinary dict type but
whenever it stores a new value, it saves it under two keys: the original one and one
converted to snake_case. Note that we used the dict type as a parent class instead
of the recommended collections.UserDict. This is because we will use this class
in the metaclass __prepare__() method and Python requires namespaces to be dict
instances.

To save some work, we use the inflection module, which is not
a part of the standard library. It is able to convert strings between
various "string cases." You can download it from PyPI using pip:

$ pip install inflection

Elements of Metaprogramming

[314]

Now it's time to write an actual metaclass that will override the class namespace
type. It will be surprisingly short:

class CaseInterpolatedMeta(type):
 @classmethod
 def __prepare__(mcs, name, bases):
 return CaseInterpolationDict()

Since we are set up, we can now use the CaseInterpolatedMeta metaclass to create a
dummy class with a few methods that uses the camelCase naming convention:

class User(metaclass=CaseInterpolatedMeta):
 def __init__(self, firstName: str, lastName: str):
 self.firstName = firstName
 self.lastName = lastName

 def getDisplayName(self):
 return f"{self.firstName} {self.lastName}"

 def greetUser(self):
 return f"Hello {self.getDisplayName()}!"

Let's save all that code in the case_user.py file and start an interactive session to see
how the User class behaves:

>>> from case_user import User

The first important thing to notice is the contents of the User.__dict__ attribute:

>>> User.__dict__
mappingproxy({
 '__module__': 'case_class',
 '__init__': <function case_class.User.__init__(self, firstName:
str, lastName: str)>,
 'getDisplayName': <function case_class.User.getDisplayName(self)>,
 'get_display_name': <function case_class.User.
getDisplayName(self)>,
 'greetUser': <function case_class.User.greetUser(self)>,
 'greet_user': <function case_class.User.greetUser(self)>,
 '__dict__': <attribute '__dict__' of 'User' objects>,
 '__weakref__': <attribute '__weakref__' of 'User' objects>,
 '__doc__': None
})

Chapter 8

[315]

The first thing that catches the eye is the fact that methods got duplicated. That
was exactly what we wanted to achieve. The second important thing is the fact that
User.__dict__ is of the mappingproxy type. That's because Python always copies the
contents of the namespace object to a new dict when creating the final class object.
The mapping proxy also allows proxy access to superclasses within the class MRO.

So, let's see if our solution works by invoking all of its methods:

>>> user = User("John", "Doe")
>>> user.getDisplayName()
'John Doe'
>>> user.get_display_name()
'John Doe'
>>> user.greetUser()
'Hello John Doe!'
>>> user.greet_user()
'Hello John Doe!'

It works! We could call all the snake_case methods even though we haven't defined
them. For an unaware developer, that could look almost like magic!

However, this is a kind of magic that should be used very carefully. Remember that
what you have just seen is a toy example. The real purpose of it was to show what
is possible with metaclasses and just a few lines of code. In fact, doing something
similar in a large and complex code base could be really dangerous. Metaclasses
interact with the very core of the Python data model and can lead to various pitfalls.
Some of them are discussed in the next section.

Metaclass pitfalls
Metaclasses, once mastered, are a powerful feature, but always complicate the code.
Metaclasses also do not compose well and you'll quickly run into problems if you try
to mix multiple metaclasses through inheritance.

Like some other advanced Python features, metaclasses are very elastic and can be
easily abused. While the call signature of the class is rather strict, Python does not
enforce the type of the return parameter. It can be anything as long as it accepts
incoming arguments on calls and has the required attributes whenever it is needed.

One such object that can be anything-anywhere is the instance of the Mock class that's
provided in the unittest.mock module. Mock is not a metaclass and also does not
inherit from the type class. It also does not return the class object on instantiating.
Still, it can be included as a metaclass keyword argument in the class definition, and
this will not raise any syntax errors.

Elements of Metaprogramming

[316]

Using Mock as a metaclass is, of course, complete nonsense, but let's consider the
following example:

>>> from unittest.mock import Mock
>>> class Nonsense(metaclass=Mock): # pointless, but illustrative
... pass
...
>>> Nonsense
<Mock spec='str' id='4327214664'>

It's not hard to predict that any attempt to instantiate our Nonsense pseudo-class
will fail. What is really interesting is the following exception and traceback you'll
get trying to do so:

>>> Nonsense()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/Library/Frameworks/Python.framework/Versions/3.9/lib/
python3.9/unittest/mock.py", line 917, in __call__
 return _mock_self._mock_call(*args, **kwargs)
 File "/Library/Frameworks/Python.framework/Versions/3.9/lib/
python3.9/unittest/mock.py", line 976, in _mock_call
 result = next(effect)
StopIteration

Does the StopIteration exception give you any clue that there may be a problem
with our class definition on the metaclass level? Obviously not. This example
illustrates how hard it may be to debug metaclass code if you don't know where to
look for errors.

But there are situations where things cannot be easily done without metaclasses. For
instance, it is hard to imagine Django's ORM implementation built without extensive
use of metaclasses. It could be possible, but it is rather unlikely that the resulting
solution would be similarly easy to use. Frameworks are the place where metaclasses
really shine. They usually have a lot of complex internal code that is not easy to
understand and follow but eventually allow other programmers to write more
condensed and readable code that operates on a higher level of abstraction.

For simple things, like changing the read/write attributes or adding new ones,
metaclasses can be avoided in favor of simpler solutions, such as properties,
descriptors, or class decorators. There is also a special method named __init__
subclass__(), which can be used as an alternative to metaclasses in many situations.
Let's take a closer look at it in the next section.

Chapter 8

[317]

Using the __init__subclass__() method as an
alternative to metaclasses
The @autorepr decorator presented in the One step deeper: class decorators section was
fairly simple and useful. Unfortunately, it has one problem that we haven't discussed
yet: it doesn't play well with subclassing.

It will work well with simple one-off classes that do not have any descendants but
once you start subclassing the originally decorated class, you will notice that it
doesn't work as one might expect. Consider the following class inheritance:

from typing import Any
from autorepr import autorepr

@autorepr
class MyClass:
 attr_a: Any
 attr_b: Any
 attr_c: Any

 def __init__(self, a, b):
 self.attr_a = a
 self.attr_b = b

class MyChildClass(MyClass):
 attr_d: Any

 def __init__(self, a, b):
 super().__init__(a, b)

If you try to obtain a representation of MyChildClass instances in an interactive
interpreter session, you will see the following output:

<MyChildClass: attr_a='Ultimate answer', attr_b=42, attr_c=UNSET>
<MyChildClass: attr_a=[1, 2, 3], attr_b=['a', 'b', 'c'], attr_c=UNSET>

That's understandable. The @autorepr decorator was used only on the base class
so didn't have access to the subclass annotations. MyChildClass inherited the
unmodified __repr__() method.

Elements of Metaprogramming

[318]

The way to fix that is to add the @autorepr decorator to the subclass as well:

@autorepr
class MyChildClass(MyClass):
 attr_d: Any

 def __init__(self, a, b):
 super().__init__(a, b)

But how can we make the class decorator auto-apply on subclasses? We could clearly
replicate the same behavior with the use of metaclasses but we already know that
this can really complicate things. That would also make usage way harder as you
can't really mix the inheritance of classes using different metaclasses.

Fortunately, there's a method for that. Python classes provide the __init_subclass__()
hook method that will be invoked for every subclass. It is a convenient alternative for
otherwise problematic metaclasses. This hook just lets the base class know that it has
subclasses. It is often used to facilitate various event-driven and signaling patterns (see
Chapter 7, Event-Driven Programming) but can also be employed to create "inheritable"
class decorators.

Consider the following modification to our @autorepr decorator:

def autorepr(cls):
 attrs = set.union(
 *(
 set(c.__annotations__.keys())
 for c in cls.mro()
 if hasattr(c, "__annotations__")
)
)

 def __repr__(self):
 return repr_instance(self, sorted(attrs))
 cls.__repr__ = __repr__

 def __init_subclass__(cls):
 autorepr(cls)
 cls.__init_subclass__ = classmethod(__init_subclass__)

 return cls

Chapter 8

[319]

What is new is the __init_subclass__() method, which will be invoked with the
new class object every time the decorated class is subclassed. In that method, we
simply re-apply the @autorepr decorator. It will have access to all new annotations
and will also be able to hook itself in for further subclasses. That way you don't
have to manually add the decorator for every new subclass and can be sure that all
__repr__() methods will always have access to the latest annotations.

So far, we have discussed the built-in features of Python that facilitate the
metaprogramming techniques. We've seen that Python is quite generous in this
area thanks to natural introspection capabilities, metaclasses, and the flexible
object model. But there's a branch of metaprogramming available to practically any
language, and regardless of its features. It is code generation. We will discuss that
in the next section.

Code generation
As we already mentioned, dynamic code generation is the most difficult approach to
metaprogramming. There are tools in Python that allow you to generate and execute
code or even make some modifications to already compiled code objects.

Various projects such as Hy (mentioned later) show that even whole languages can
be reimplemented in Python using code generation techniques. This proves that the
possibilities are practically limitless. Knowing how vast this topic is and how badly
it is riddled with various pitfalls, I won't even try to give detailed suggestions on
how to create code this way, or to provide useful code samples.

Anyway, knowing what is possible may be useful for you if you plan to study this
field in more depth by yourself. So, treat this section only as a short summary of
possible starting points for further learning.

Let's take a look at how to use the exec(), eval(), and compile() functions.

exec, eval, and compile
Python provides the following three built-in functions to manually execute, evaluate,
and compile arbitrary Python code:

• exec(object, globals, locals): This allows you to dynamically execute
Python code. The object attribute should be a string or code object (see the
compile() function) representing a single statement or a sequence of multiple
statements. The globals and locals arguments provide global and local
namespaces for the executed code and are optional.

Elements of Metaprogramming

[320]

If they are not provided, then the code is executed in the current scope. If
provided, globals must be a dictionary, while locals may be any mapping
object. The exec() function always returns None.

• eval(expression, globals, locals): This is used to evaluate the given
expression by returning its value. It is similar to exec(), but it expects the
expression argument to be a single Python expression and not a sequence of
statements. It returns the value of the evaluated expression.

• compile(source, filename, mode): This compiles the source into the code
object or AST object. The source code is provided as a string value in the
source argument. The filename should be the name of the file from which
the code was read. If it has no file associated (for example, because it was
created dynamically), then "<string>" is the value that is commonly used.
The mode argument should be either "exec" (a sequence of statements),
"eval" (a single expression), or "single" (a single interactive statement,
such as in a Python interactive session).

The exec() and eval() functions are the easiest to start with when trying to
dynamically generate code because they can operate on strings. If you already
know how to program in Python, then you may already know how to correctly
generate working source code programmatically.

The most useful in the context of metaprogramming is obviously exec() because
it allows you to execute any sequence of Python statements. The word any should
be alarming for you. Even eval(), which allows only the evaluation of expressions
in the hands of a skillful programmer (when fed with the user input), can lead to
serious security holes.

Even if used with trusted input, there is a list of little details about exec() and eval()
that is too long to be included here but might affect how your application works in
ways you would not expect. Armin Ronacher has a good article that lists the most
important of them, titled Be careful with exec and eval in Python (refer to
http://lucumr.pocoo.org/2011/2/1/exec-in-python/).

Note that crashing the Python interpreter is the scenario you
should be least afraid of. Introducing vulnerability to remote
execution exploits due to irresponsible use of exec() and eval()
could cost you your image as a professional developer, or even
your job. This means that neither exec() nor eval() should ever
be used with untrusted input. And every input coming from end
users should always be considered unsafe.

http://lucumr.pocoo.org/2011/2/1/exec-in-python/

Chapter 8

[321]

Despite all these frightening warnings, there are natural situations where the usage
of exec() and eval() is really justified. Still, in the case of even the tiniest doubt, you
should not use them and try to find a different solution.

We'll take a look at the abstract syntax tree in the next section.

The abstract syntax tree
The Python syntax is converted into AST format before it is compiled into byte code.
This is a tree representation of the abstract syntactic structure of the source code.
Processing of Python grammar is available thanks to the built-in ast module. Raw
ASTs of Python code can be created using the compile() function with the ast.PyCF_
ONLY_AST flag, or by using the ast.parse() helper. Direct translation in reverse is not
that simple and there is no function provided in the standard library that can do so.
Some projects, such as PyPy, do such things though.

The ast module provides some helper functions that allow you to work with the
AST, for example:

>>> import ast
>>> tree = ast.parse('def hello_world(): print("hello world!")')
>>> tree
<_ast.Module object at 0x00000000038E9588>
>>> print(ast.dump(tree, indent=4))
Module(
 body=[
 FunctionDef(
 name='hello_world',
 args=arguments(
 posonlyargs=[],
 args=[],

The signature of the eval() function might make you think
that if you provide empty globals and locals namespaces
and wrap them with proper try ... except statements, then
it will be reasonably safe. There could be nothing more wrong.
Ned Batchelder has written a very good article in which he
shows how to cause an interpreter segmentation fault in the
eval() call, even with erased access to all Python built-ins (see
http://nedbatchelder.com/blog/201206/eval_really_is_
dangerous.html). This should be enough proof that both exec()
and eval() should never be used with untrusted input.

http://nedbatchelder.com/blog/201206/eval_really_is_dangerous.html
http://nedbatchelder.com/blog/201206/eval_really_is_dangerous.html

Elements of Metaprogramming

[322]

 kwonlyargs=[],
 kw_defaults=[],
 defaults=[]),
 body=[
 Expr(
 value=Call(
 func=Name(id='print', ctx=Load()),
 args=[
 Constant(value='hello world!')],
 keywords=[]))],
 decorator_list=[])],
 type_ignores=[])

It is important to know that the AST can be modified before being passed to
compile(). This gives you many new possibilities. For instance, new syntax nodes
can be used for additional instrumentation, such as test coverage measurement. It is
also possible to modify the existing code tree in order to add new semantics to the
existing syntax. Such a technique is used by the MacroPy project (https://github.
com/lihaoyi/macropy) to add syntactic macros to Python using the already existing
syntax (refer to Figure 8.3):

Figure 8.3: How MacroPy adds syntactic macros to Python modules on import

Unfortunately, MacroPy isn't compatible with the latest Python
versions and is only tested to run on Python 3.4. Anyway, it is a
very interesting project that shows what can be achieved with AST
manipulation.

https://github.com/lihaoyi/macropy
https://github.com/lihaoyi/macropy

Chapter 8

[323]

ASTs can also be created in a purely artificial manner, and there is no need to parse
any source code at all. This gives Python programmers the ability to create Python
bytecode for custom DSLs, or even to completely implement other programming
languages on top of Python VMs.

Import hooks
Taking advantage of MacroPy's ability to modify original ASTs is as easy as using
the import macropy.activate statement, because it is able to somehow override
the Python import behavior. It is not magic and Python provides a way to intercept
imports for every developer using the following two kinds of import hooks:

• Meta hooks: These are called before any other import processing has
occurred. Using meta hooks, you can override the way in which sys.path is
processed for even frozen and built-in modules. To add a new meta hook, a
new meta path finder object must be added to the sys.meta_path list.

• Import path hooks: These are called as part of sys.path processing. They
are used if the path item associated with the given hook is encountered. The
import path hooks are added by extending the sys.path_hooks list with a
new path entry finder object.

The details of implementing both path finders and meta path finders are extensively
documented in the official Python documentation (see https://docs.python.
org/3/reference/import.html). The official documentation should be your primary
resource if you want to interact with imports on that level. This is so because the
import machinery in Python is rather complex and any attempt to summarize it in
a few paragraphs would inevitably fail. Here, we just want to make you aware that
such things are possible.

We'll take a look at projects that use code generation patterns in the following
sections.

Notable examples of code generation in
Python
It is hard to find a really usable implementation of the library that relies on code
generation patterns that is not only an experiment or simple proof of concept. The
reasons for that situation are fairly obvious:

• Deserved fear of the exec() and eval() functions because, if used
irresponsibly, they can cause real disasters

https://docs.python.org/3/reference/import.html
https://docs.python.org/3/reference/import.html

Elements of Metaprogramming

[324]

• Successful code generation is very difficult to develop and maintain
because it requires a deep understanding of the language and exceptional
programming skills in general

Despite these difficulties, there are some projects that successfully take this approach
either to improve performance or achieve things that would be impossible by other
means.

Falcon's compiled router
Falcon (http://falconframework.org/) is a minimalist Python WSGI web
framework for building fast and lightweight web APIs. It strongly encourages the
REST architectural style that is currently very popular around the web. It is a good
alternative to other rather heavy frameworks, such as Django or Pyramid. It is also a
strong competitor for other micro-frameworks that aim for simplicity, such as Flask,
Bottle, or web2py.

One of the best Falcon features is its very simple routing mechanism. It is not
as complex as the routing provided by Django urlconf and does not provide as
many features, but in most cases is just enough for any API that follows the REST
architectural design. What is most interesting about Falcon's routing is the internal
construction of that router. Falcon's router is implemented using the code generated
from the list of routes, and the code changes every time a new route is registered.
This is the effort that's needed to make routing fast.

Consider this very short API example, taken from Falcon's web documentation:

sample.py
import falcon
import json

class QuoteResource:
 def on_get(self, req, resp):
 """Handles GET requests"""
 quote = {
 'quote': 'I\'ve always been more interested in '
 'the future than in the past.',
 'author': 'Grace Hopper'
 }

 resp.body = json.dumps(quote)

api = falcon.API()
api.add_route('/quote', QuoteResource())

http://falconframework.org/

Chapter 8

[325]

In short, the call to the api.add_route() method dynamically updates the whole
generated code tree for Falcon's request router. It also compiles it using the
compile() function and generates the new route-finding function using eval(). Let's
take a closer look at the following __code__ attribute of the api._router._find()
function:

>>> api._router._find.__code__
<code object find at 0x00000000033C29C0, file "<string>", line 1>
>>> api.add_route('/none', None)
>>> api._router._find.__code__
<code object find at 0x00000000033C2810, file "<string>", line 1>

This transcript shows that the code of this function was generated from the string
and not from the real source code file (the "<string>" file). It also shows that the
actual code object changes with every call to the api.add_route() method (the
object's address in memory changes).

Hy
Hy (http://docs.hylang.org/) is the dialect of Lisp that is written entirely in
Python. Many similar projects that implement other programming languages in
Python usually try only to tokenize the plain form of code that's provided either as
a file-like object or string and interpret it as a series of explicit Python calls. Unlike
others, Hy can be considered as a language that runs fully in the Python runtime
environment, just like Python does. Code written in Hy can use the existing built-
in modules and external packages and vice versa. Code written with Hy can be
imported back into Python.

To embed Lisp in Python, Hy translates Lisp code directly into Python AST. Import
interoperability is achieved using the import hook that is registered once the Hy
module is imported into Python. Every module with the .hy extension is treated as a
Hy module and can be imported like the ordinary Python module. The following is a
"hello world" program written in this Lisp dialect:

;; hyllo.hy
(defn hello [] (print "hello world!"))

It can be imported and executed with the following Python code:

>>> import hy
>>> import hyllo
>>> hyllo.hello()
 hello world!

http://docs.hylang.org/

Elements of Metaprogramming

[326]

If we dig deeper and try to disassemble hyllo.hello using the built-in dis module,
we will notice that the bytecode of the Hy function does not differ significantly from
its pure Python counterpart, as shown in the following code:

>>> import dis
>>> dis.dis(hyllo.hello)
 2 0 LOAD_GLOBAL 0 (print)
 3 LOAD_CONST 1 ('hello world!')
 6 CALL_FUNCTION 1 (1 positional, 0 keyword pair)
 9 RETURN_VALUE
>>> def hello(): print("hello world!")
...
>>> dis.dis(hello)
 1 0 LOAD_GLOBAL 0 (print)
 3 LOAD_CONST 1 ('hello world!')
 6 CALL_FUNCTION 1 (1 positional, 0 keyword pair)
 9 POP_TOP
 10 LOAD_CONST 0 (None)
 13 RETURN_VALUE

As you can see, the bytecode for the Hy-based function is shorter than the bytecode
for the plain Python counterpart. Maybe a similar tendency can be observed for
larger chunks of code. It shows that creating a completely new language on top of a
Python VM is definitely possible and may be worth experimenting with.

Summary
In this chapter, we've explored the vast topic of metaprogramming in Python. We've
described the syntax features that favor the various metaprogramming patterns in
detail. These are mainly decorators and metaclasses.

We've also taken a look at another important aspect of metaprogramming, dynamic
code generation. We described it only briefly as it is too vast to fit into the limited
size of this book. However, it should be a good starting point that gives you a quick
summary of the possible options in that field.

With the example of Hy, we've seen that metaprogramming can even be used to
implement other languages on top of the Python runtime. The road taken by Hy
developers is of course quite unusual and, generally the best way to bridge Python
with other languages is through custom Python interpreter extensions or using
shared libraries and foreign function interfaces. And these are exactly the topics of
the next chapter.

[327]

9
Bridging Python with

C and C++
Python is great but it isn't suited for everything. Sometimes you may find that
particular problems can be solved more easily with a different language. Those
different languages may be better due to greater expressiveness for certain technical
domains (like control engineering, image processing, or system programming) or
offer natural performance gains over Python. And Python (together with default
CPython implementation) has a few characteristics that aren't necessarily good
for performance:

• Threading usability is greatly reduced for CPU-bound tasks due to the
existence of Global Interpreter Lock (GIL) in CPython and is dependent
on the Python implementation of choice

• Python is not a compiled language (in the way C and Go are) so it lacks many
compile-time optimizations

• Python does not provide static typing and the possible optimizations that
come with it

But the fact that some languages are better for specific tasks doesn't mean that
you have to completely forgo Python when faced with such problems. With
proper techniques, it is possible to write applications that take advantage of many
technologies.

Bridging Python with C and C++

[328]

One such technique is architecting applications as independent components that
communicate with each other through well-defined communication channels. This
often comes in the form of service-oriented or microservice architectures. This
is extremely common in distributed systems where every component (service) of
system architecture can run independently on a different host. Systems written in
multiple languages are often nicknamed polyglot systems.

The disadvantage of using polyglot service-oriented or microservice architectures is
that you will usually have to recreate a lot of application scaffolding for every such
language. This includes things like application configuration, logging, monitoring,
and communication layers, as well as different frameworks, libraries, build tools,
common conventions, and design patterns. Introducing those tools and conventions
will cost time and future maintenance effort, which can often exceed the gains of
adding another language to your architecture.

Fortunately, there's another way to overcome this problem. Often what we really
need from a different language can be packaged as an isolated library that does
one thing and does it well. What we need to do is to find a bridge between Python
and other languages that will allow us to use their libraries in Python applications.
This can be done either through custom CPython extensions or so-called Foreign
Function Interfaces (FFIs).

In both cases, the C and C++ programming languages act as a gateway to libraries
and code written in different languages. The CPython interpreter is itself written in C
and provides the Python/C API (defined in the Python.h header file) that allows you
to create shared C libraries that can be loaded by the interpreter. C (and C++, due to
its native interoperability with the C language) can be used to create such extensions.
The FFIs on the other hand can be used to interact with any compatible compiled
shared library regardless of the language it is written in. These libraries will still rely
on C calling conventions and basic types.

This chapter will discuss the main reasons for writing your own extensions in other
languages and introduce you to the popular tools that help to create them. We will
learn about the following topics in this chapter:

• C and C++ as the core of Python extensibility
• Compiling and loading Python C extensions
• Writing extensions
• Downsides of using extensions
• Interfacing with compiled dynamic libraries without extensions

Chapter 9

[329]

In order to bridge Python with different languages, we will need a handful of extra
tools and libraries so let's take a look at the technical requirements for this chapter.

Technical requirements
In order to compile the Python extensions mentioned in this chapter, you will need C
and C++ compilers. The following are suitable compilers that you can download for
free on selected operating systems:

• Visual Studio 2019 (Windows): https://visualstudio.microsoft.com
• GCC (Linux and most POSIX systems): https://gcc.gnu.org
• Clang (Linux and most POSIX systems): https://clang.llvm.org

On Linux, GCC and Clang compilers are usually available through package
management systems specific to the given system distribution. On macOS, the
compiler is part of the Xcode IDE (available through the App Store).

The following are Python packages that are mentioned in this chapter that you can
download from PyPI:

• Cython

• Cffi

Information on how to install packages is included in Chapter 2, Modern Python
Development Environments.

The code files for this chapter can be found at https://github.com/PacktPublishing/
Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%209.

C and C++ as the core of Python
extensibility
The reference implementation of Python—the CPython interpreter—is written in C.
Because of that, Python interoperability with other languages revolves around C and
C++, which has native interoperability with C. There is even a full superset of the
Python language called Cython, which uses a source-to-source compiler for creating
C extensions for CPython using extended Python syntax.

https://visualstudio.microsoft.com
https://gcc.gnu.org
https://clang.llvm.org
https://github.com/PacktPublishing/Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%209
https://github.com/PacktPublishing/Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%209

Bridging Python with C and C++

[330]

In fact, you can use dynamic/shared libraries written in any language if the language
supports compilation in the form of dynamic/shared libraries. So, interlanguage
integration possibilities go way beyond C and C++. This is because shared libraries
are intrinsically generic. They can be used in any language that supports their
loading. So, even if you write such a library in a completely different language (let's
say Delphi or Prolog), you can use it in Python. Still, it is hard to call such a library a
Python extension if it does not use the Python/C API.

Unfortunately, writing your own extensions only in C or C++ using the
bare Python/C API is quite demanding. Not only because it requires a good
understanding of one of the two languages that are relatively hard to master, but also
because it requires an exceptional amount of boilerplate. You will have to write a lot
of repetitive code that is used only to provide an interface that will glue your core C
or C++ code with the Python interpreter and its datatypes.

Anyway, it is good to know how pure C extensions are built because of the following
reasons:

• You will better understand how Python works in general
• One day, you may need to debug or maintain a native C/C++ extension
• It helps in understanding how higher-level tools for building extensions

work

That's why in this chapter we will first learn how to build a simple Python C
extension from scratch. We will later reimplement it with different techniques that
do not require the usage of the low-level Python/C API.

But before we dive into the details of writing extensions, let's see how to Compile
and load one.

Compiling and loading Python C
extensions
The Python interpreter is able to load extensions from dynamic/shared libraries such
as Python modules if they provide an applicable interface using the Python/C API.
The definition of all functions, types, and macros constituting the Python/C API is
included in a Python.h C header file that is distributed with Python sources. In many
distributions of Linux, this header file is contained in a separate package (for example,
python-dev in Debian/Ubuntu) but under Windows, it is distributed by default with
the interpreter. On POSIX and POSIX-compatible systems (for example, Linux and
macOS), it can be found in the include/ directory of your Python installation. On
Windows, it can be found in the Include/ directory of your Python installation.

Chapter 9

[331]

The Python/C API traditionally changes with every release of Python. In most
cases, these are only additions of new features to the API so are generally source-
compatible. Anyway, in most cases, they are not binary-compatible due to changes
in the Application Binary Interface (ABI). This means that extensions must be
compiled separately for every major version of Python. Also, different operating
systems have incompatible ABIs, so this makes it practically impossible to create a
single binary distribution for every possible environment. This is the reason why
most Python extensions are distributed in source form.

Since Python 3.2, a subset of the Python/C API has been defined to have a stable
ABI. Thanks to this, it is possible to build extensions using this limited API (with a
stable ABI), so extensions can be compiled only once for a given operating system
and it will work with any version of Python higher than or equal to 3.2 without the
need for recompilation. Anyway, this limits the number of API features and does not
solve the problems of older Python versions. It also does not allow you to create a
single binary distribution that would work on multiple operating systems. This is a
trade-off and the price of the stable ABI sometimes may be a bit too high for a very
low gain.

It is important to know that the Python/C API is a feature that is limited only to
CPython implementations. Some efforts were made to bring extension support to
alternative implementations such as PyPI, Jython, or IronPython, but it seems that
there is no stable and complete solution for them at the moment. The only alternative
Python implementation that should deal easily with extensions is Stackless Python
because it is in fact only a modified version of CPython.

C extensions for Python need to be compiled into shared/dynamic libraries before
they can be imported. There is no native way to import C/C++ code in Python
directly from sources. Fortunately, the setuptools package provides helpers to
define compiled extensions as modules, so compilation and distribution can be
handled using the setup.py script as if they were ordinary Python packages.

The following is an example of the setup.py script from the official documentation
that handles the preparation of a simple package distribution that has an extension
written in C:

from setuptools import setup, Extension

We will learn more details about creating Python packages
in Chapter 11, Packaging and Distributing Python Code.

Bridging Python with C and C++

[332]

module1 = Extension(
 'demo',
 sources=['demo.c']
)

setup(
 name='PackageName',
 version='1.0',
 description='This is a demo package',
 ext_modules=[module1]
)

Once prepared this way, the following additional step is required in your
distribution flow:

python3 setup.py build

This step will compile all your extensions defined as the ext_modules argument
according to all additional compiler settings provided with the Extension()
constructor. The compiler that will be used is the one that is a default for your
environment. This compilation step is not required if the package is going to be
distributed as a source distribution. In that case, you need to be sure that the target
environment has all the compilation prerequisites such as the compiler, header files,
and additional libraries that are going to be linked to your binary (if your extension
needs any). More details of packaging the Python extensions will be explained later
in the Downsides of using extensions section.

In the next section, we will discuss why you may need to use extensions.

The need to use extensions
It's not easy to say when it is a reasonable decision to write extensions in C/C++. The
general rule of thumb could be "never unless you have no other choice". But this is
a very subjective statement that leaves a lot of place for the interpretation of what is
not doable in Python. In fact, it is hard to find a thing that cannot be done using pure
Python code.

We will learn more about distributing Python packages and the
setup.py script in Chapter 11, Packaging and Distributing Python
Code.

Chapter 9

[333]

Still, there are some problems where extensions may be especially useful by adding
the following benefits:

• Bypassing GIL in the CPython threading model
• Improving performance in critical code sections
• Integrating source code written in different languages
• Integrating third-party dynamic libraries
• Creating efficient custom datatypes

Of course, for every such problem, there is usually a viable native Python solution.
For example, the core CPython interpreter constraints, such as GIL, can easily
be overcome with a different approach to concurrency, such as coroutines or
multiprocessing, instead of a threading model (we discussed these options in
Chapter 6, Concurrency). To work around third-party dynamic libraries and custom
datatypes, third-party libraries can be integrated with the ctypes module, and every
datatype can be implemented in Python.

Still, the native Python approach may not always be optimal. The Python-only
integration of an external library may be clumsy and hard to maintain. The
implementation of custom datatypes may be suboptimal without access to low-level
memory management. So, the final decision of what path to take must always be
taken very carefully and take many factors into consideration. A good approach is to
start with a pure Python implementation first and consider extensions only when the
native approach proves to be not good enough.

The next section will explain how extensions can be used to improve the
performance in critical code sections.

Improving performance in critical code
sections
Let's be honest, Python is not chosen by developers because of its performance. It
does not execute fast but allows you to develop fast. Still, no matter how performant
we are as programmers, thanks to this language, we may sometimes find a problem
that may not be solved efficiently using pure Python.

In most cases, solving performance problems is really mostly about choosing proper
algorithms and data structures and not about limiting the constant factor of language
overhead. Usually, it is not a good approach to rely on extensions in order to shave
off some CPU cycles if the code is already written poorly or does not use efficient
algorithms.

Bridging Python with C and C++

[334]

It is often possible that performance can be improved to an acceptable level without
the need to increase the complexity of your project by adding yet another language
to your technology stack. And if it is possible to use only one programming
language, it should be done that way in the first place.

Anyway, it is also very likely that even with a state-of-the-art algorithmic approach
and the best-suited data structures, you will not be able to fit some arbitrary
technological constraints using Python alone.

The example field that puts some well-defined limits on the application's
performance is the Real-Time Bidding (RTB) business. In short, the whole of RTB
is about buying and selling advertisement inventory (places for online ads) in a way
that is similar to how real auctions or stock exchanges work. The whole trading
usually takes place through some ad exchange service that sends the information
about available inventory to demand-side platforms (DSPs) interested in buying
areas for their advertisements. And this is the place where things get exciting.
Most of the ad exchanges use the OpenRTB protocol (which is based on HTTP) for
communication with potential bidders. The DSP is the site responsible for serving
responses to its OpenRTB HTTP requests. And ad exchanges always put very strict
time constraints on how long the whole process can take. It can be as little as 50
ms—from the first TCP packet received to the last byte written by the DSP server. To
spice things up, it is not uncommon for DSP platforms to process tens of thousands
of requests per second. Being able to shave off a few milliseconds from the response
times often determines service profitability. This means that porting even trivial code
to C may be reasonable in that situation but only if it's a part of some performance
bottleneck and cannot be improved any further algorithmically. As Guido once said:

If you feel the need for speed, (...) – you can't beat a loop written in C.

A completely different use-case for custom extensions is integrating code written in
different languages, which is explained in the next section.

Integrating existing code written in different
languages
Although computer science is young when compared to other fields of technical
studies, we are already standing on the shoulders of giants. Many great
programmers have written a lot of useful libraries for solving common problems
using many programming languages. It would be a great loss to forget about all that
heritage every time a new programming language pops out, but it is also impossible
to reliably port any piece of software that was ever written to every new language.

Chapter 9

[335]

The C and C++ languages seem to be the most important languages that provide
a lot of libraries and implementations that you would like to integrate into your
application code without the need to port them completely to Python. Fortunately,
CPython is already written in C, so the most natural way to integrate such code is
precisely through custom extensions.

The next section explains a very similar use-case: integrating third-party dynamic
libraries.

Integrating third-party dynamic libraries
Integrating code written using different technologies does not end with C/C++. A
lot of libraries, especially third-party software with closed sources, are distributed as
compiled binaries. In C, it is really easy to load such shared/dynamic libraries and
call their functions. This means that you can use any C library as long as you wrap it
as a Python extension using the Python/C API.

This, of course, is not the only solution and there are tools such as ctypes and CFFI
that allow you to interact with dynamic libraries directly using pure Python code
without the need for writing extensions in C. Very often, the Python/C API may still
be a better choice because it provides better separation between the integration layer
(written in C) and the rest of your application.

Last but not least, extensions can be used to enhance Python with novel and
performant data structures.

Creating efficient custom datatypes
Python provides a very versatile selection of built-in datatypes. Some of them
really use state-of-the-art internal implementations (at least in CPython) that are
specifically tailored for usage in the Python language. The number of basic types and
collections available out of the box may look impressive for newcomers, but it is clear
that it does not cover all of a programmer's needs.

You can, of course, create many custom data structures in Python, either by
subclassing built-in types or by building them from scratch as completely new
classes. Unfortunately, sometimes the performance of such a data structure may be
suboptimal. The whole power of complex collections such as dict or set comes from
their underlying C implementation. Why not do the same and implement some of
your custom data structures in C too?

Since we already know the possible reasons to create custom Python extensions, let's
see how to actually build one.

Bridging Python with C and C++

[336]

Writing extensions
As already said, writing extensions is not a simple task but, in return for your hard
work, it can give you a lot of advantages. The easiest approach to creating extensions is
to use tools such as Cython. Cython allows you to write C extensions using language
that greatly resembles Python without all the intricacies of the Python/C API. It will
increase your productivity and make code easier to develop, read, and maintain.

Anyway, if you are new to this topic, it is good to start your adventure with
extensions by writing one using nothing more than bare C language and the
Python/C API. This will improve your understanding of how extensions work and
will also help you to appreciate the advantages of alternative solutions. For the sake
of simplicity, we will take a simple algorithmic problem as an example and try to
implement it using the two following different approaches:

• Writing a pure C extension
• Using Cython

Our problem will be finding the nth number of the Fibonacci sequence. This is a
sequence of numbers where each element is the sum of two preceding ones. The
sequence starts with 0 and 1. The first 10 numbers of the sequence are as follows:

0, 1, 1, 2, 3, 5, 8, 13, 21, 34

As you see, the sequence is easy to explain and also easy to implement. It is very
unlikely that you would need to create a compiled extension solely for solving this
problem. But it is very simple so it will serve as a very good example of wiring any C
function to the Python/C API. Our goals are only clarity and simplicity, so we won't
try to provide the most efficient solution.

Before we create our first extension, let's define a reference implementation that
will allow us to compare different solutions. Our reference implementation of the
Fibonacci function implemented in pure Python looks as follows:

"""Python module that provides fibonacci sequence function"""

def fibonacci(n):
 """Return nth Fibonacci sequence number computed recursively."""
 if n == 0:
 return 0
 if n == 1:
 return 1
 else:
 return fibonacci(n - 1) + fibonacci(n - 2)

Chapter 9

[337]

Note that this is one of the most simple implementations of the fibonnaci() function.
A lot of improvements could be applied to it. We don't optimize our implementation
(using a memoization pattern, for instance) because this is not the purpose of our
example. In the same manner, we won't optimize our code later when discussing
implementations in C or Cython, even though the compiled code gives us many
more possibilities to do so.

Let's look into pure C extensions in the next section.

Pure C extensions
If you have decided that you need to write C extensions for Python, I assume that
you already know the C language at a level that will allow you to fully understand
the examples that are presented. This book is about Python, and as such nothing
other than the Python/C API details will be explained here. This API, despite being
crafted with great care, is definitely not a good introduction to C, so if you don't
know C at all, you should avoid attempting to write Python extensions in C until you
gain experience in this language. Leave it to others and stick with Cython or Pyrex,
which are a lot safer from a beginner's perspective.

As announced earlier, we will try to port the fibonacci() function to C and expose
it to the Python code as an extension. Let's start with a base implementation that
would be analogous to the previous Python example. The bare function without
any Python/C API usage could be roughly as follows:

long long fibonacci(unsigned int n) {
 if (n == 0) {
 return 0;
 } else if (n == 1) {
 return 1;
 } else {
 return fibonacci(n - 2) + fibonacci(n - 1);
 }
}

Memoization is a popular technique of saving past results
of function calls for later reference to optimize application
performance. We explain it in detail in Chapter 13, Code
Optimization.

Bridging Python with C and C++

[338]

And here is the example of a complete, fully functional extension that exposes this
single function in a compiled module:

#define PY_SSIZE_T_CLEAN
#include <Python.h>

long long fibonacci(unsigned int n) {
 if (n == 0) {
 return 0;
 } else if (n == 1) {
 return 1;
 } else {
 return fibonacci(n - 2) + fibonacci(n - 1);
 }
}

static PyObject* fibonacci_py(PyObject* self, PyObject* args) {
 PyObject *result = NULL;
 long n;

 if (PyArg_ParseTuple(args, "l", &n)) {
 result = Py_BuildValue("L", fibonacci((unsigned int)n));
 }

 return result;
}

static char fibonacci_docs[] =
 "fibonacci(n): Return nth Fibonacci sequence number "
 "computed recursively\n";

static PyMethodDef fibonacci_module_methods[] = {
 {"fibonacci", (PyCFunction)fibonacci_py,
 METH_VARARGS, fibonacci_docs},
 {NULL, NULL, 0, NULL}
};

static struct PyModuleDef fibonacci_module_definition = {
 PyModuleDef_HEAD_INIT,
 "fibonacci",

Chapter 9

[339]

 "Extension module that provides fibonacci sequence function",
 -1,
 fibonacci_module_methods
};

PyMODINIT_FUNC PyInit_fibonacci(void) {
 Py_Initialize();

 return PyModule_Create(&fibonacci_module_definition);
}

I know what you think. The preceding example might be a bit overwhelming at first
glance. We had to add four times more code just to make the fibonacci() C function
accessible from Python. We will discuss every bit of that code step by step later, so
don't worry. But before we do that, let's see how it can be packaged and executed in
Python.

The following minimal setuptools configuration for our module needs to use the
setuptools.Extension class in order to instruct the interpreter how our extension
is compiled:

from setuptools import setup, Extension

setup(
 name='fibonacci',
 ext_modules=[
 Extension('fibonacci', ['fibonacci.c']),
]
)

The build process for extensions can be initialized with the setup.py build
command, but it will also be automatically performed upon package installation. The
following transcript presents the result of the installation in editable mode (using pip
with the -e flag):

$ python3 -m pip install -e .
Obtaining file:///Users/.../Expert-Python-Programming-Fourth-Edition/
Chapter%209/02%20-%20Pure%20C%20extensions
Installing collected packages: fibonacci
 Running setup.py develop for fibonacci
Successfully installed fibonacci

Bridging Python with C and C++

[340]

Using the editable mode of pip allows us to take a peek at files created during the
build step. The following is an example of files that could be created in your working
directory during the installation:

$ ls -1ap
./
../
build/
fibonacci.c
fibonacci.cpython-39-darwin.so
fibonacci.egg-info/
setup.py

The fibonacci.c and setup.py files are our source files. fibonacci.egg-info/ is a
special directory that stores package metadata, and we should not be concerned about
it at the moment. What is really important is the fibonacci.cpython-39-darwin.so
file. This is our binary shared library that is compatible with the CPython interpreter.
That's the library that the Python interpreter will load when we attempt to import our
fibonacci module. Let's try to import it and review it in an interactive session:

$ python3
Python 3.9.1 (v3.9.1:1e5d33e9b9, Dec 7 2020, 12:10:52)
[Clang 6.0 (clang-600.0.57)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import fibonacci
>>> help(fibonacci)
Help on module fibonacci:

NAME
 fibonacci - Extension module that provides fibonacci sequence
function

FUNCTIONS
 fibonacci(...)
 fibonacci(n): Return nth Fibonacci sequence number computed
recursively

FILE
 /(...)/fibonacci.cpython-39-darwin.so
>>> [fibonacci.fibonacci(n) for n in range(10)]
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

Now let's take a closer look at the anatomy of our extension.

Chapter 9

[341]

A closer look at the Python/C API
Since we know how to properly package, compile, and install a custom C extension
and we are sure that it works as expected, now is the right time to discuss our code
in detail.

The extensions module starts with the following single C preprocessor directive,
which includes the Python.h header file:

#include <Python.h>

This pulls the whole Python/C API and is everything you need to include to be
able to write your extensions. In more realistic cases, your code will require a lot
more preprocessor directives to benefit from the C standard library functions or to
integrate other source files. Our example was simple, so no more directives were
required.

Next, we have the core of our module as follows:

long long fibonacci(unsigned int n) {
 if (n == 0) {
 return 0;
 } else if (n == 1) {
 return 1;
 } else {
 return fibonacci(n - 2) + fibonacci(n - 1);
 }
}

The preceding fibonacci() function is the only part of our code that does something
useful. It is a pure C implementation that Python by default can't understand. The
rest of our example will create the interface layer that will expose it through the
Python/C API.

The first step of exposing this code to Python is the creation of the C function that
is compatible with the CPython interpreter. In Python, everything is an object. This
means that C functions called in Python also need to return real Python objects.
Python/C APIs provide a PyObject type and every callable must return the pointer
to it. The signature of our function is as follows:

static PyObject* fibonacci_py(PyObject* self, PyObject* args)

Note that the preceding signature does not specify the exact list of arguments, but
PyObject* args will hold the pointer to the structure that contains the tuple of the
provided values.

Bridging Python with C and C++

[342]

The actual validation of the argument list must be performed inside the function
body and this is exactly what fibonacci_py() does. It parses the args argument list
assuming it is the single unsigned int type and uses that value as an argument to
the fibonacci() function to retrieve the Fibonacci sequence element as shown in the
following code:

static PyObject* fibonacci_py(PyObject* self, PyObject* args) {
 PyObject *result = NULL;
 long n;

 if (PyArg_ParseTuple(args, "l", &n)) {
 result = Py_BuildValue("L", fibonacci((unsigned int)n));
 }

 return result;
}

The "l" (lowercase L) string in the PyArg_ParseTuple(args, "l", &n) call means that
we expect args to contain only a single long value. In the case of failure, it will return
NULL and store information about the exception in the per-thread interpreter state.

The actual signature of the parsing function is int PyArg_ParseTuple(PyObject
*args, const char *format, ...) and what goes after the format string is a
variable-length list of arguments that represents parsed value output (as pointers).
This is analogous to how the scanf() function from the C standard library works.
If our assumption fails and the user provides an incompatible arguments list, then
PyArg_ParseTuple() will raise the proper exception. This is a very convenient way
to encode function signatures once you get used to it but has a huge downside when
compared to plain Python code. Such Python call signatures implicitly defined by the
PyArg_ParseTuple() calls cannot be easily inspected inside the Python interpreter.
You need to remember this fact when using the code provided as extensions.

As already said, Python expects objects to be returned from callables. This means
that we cannot return a raw long value obtained from the fibonacci() function as a
result of fibonacci_py(). Such an attempt would not even compile and there is no
automatic casting of basic C types to Python objects.

The preceding example function has a serious bug, which the eyes
of an experienced developer should spot very easily. Try to find it
as an exercise in working with C extensions. For now, we'll leave
it as it is for the sake of brevity. We will try to fix it later when
discussing the details of dealing with errors and exceptions in the
Exception handling section.

Chapter 9

[343]

The Py_BuildValue(*format, ...) function must be used instead. It is the
counterpart of PyArg_ParseTuple() and accepts a similar set of format strings.
The main difference is that the list of arguments is not a function output but an
input, so actual values must be provided instead of pointers.

After fibonacci_py() is defined, most of the heavy work is done. The last step is to
perform module initialization and add metadata to our function that will make usage
a bit simpler for the users. This is the boilerplate part of our extension code. For
simple examples, such as this one, it can take up more space than the actual functions
that we want to expose. In most cases, it simply consists of some static structures and
one initialization function that will be executed by the interpreter on module import.

At first, we create a static string that will be the content of the Python docstring for
the fibonacci_py() function as follows:

static char fibonacci_docs[] =
 "fibonacci(n): Return nth Fibonacci sequence number "
 "computed recursively\n";

Note that this could be inlined somewhere later in fibonacci_module_methods, but it
is a good practice to have docstrings separated and stored in close proximity to the
actual function definition that they refer to.

The next part of our definition is the array of the PyMethodDef structures that define
methods (functions) that will be available in our module. The PyMethodDef structure
contains exactly four fields:

• char* ml_name: This is the name of the method.
• PyCFunction ml_meth: This is the pointer to the C implementation of the

function.
• int ml_flags: This includes the flags indicating either the calling convention

or binding convention. The latter is applicable only for the definition of class
methods.

• char* ml_doc: This is the pointer to the content of the method/function
docstring.

Such an array must always end with a sentinel value of {NULL, NULL, 0, NULL}.
This sentinel value simply indicates the end of the structure. In our simple case, we
created the static PyMethodDef fibonacci_module_methods[] array that contains only
two elements (including sentinel value):

static PyMethodDef fibonacci_module_methods[] = {
 {"fibonacci", (PyCFunction)fibonacci_py,
 METH_VARARGS, fibonacci_docs},

Bridging Python with C and C++

[344]

 {NULL, NULL, 0, NULL}
};

And this is how the first entry maps to the PyMethodDef structure:

• ml_name = "fibonacci": Here, the fibinacci_py() C function will be exposed
as a Python function under the fibonacci name.

• ml_meth = (PyCFunction)fibonacci_py: Here, the casting to PyCFunction is
simply required by the Python/C API and is dictated by the call convention
defined later in ml_flags.

• ml_flags = METH_VARARGS: Here, the METH_VARARGS flag indicates that the
calling convention of our function accepts a variable list of arguments and no
keyword arguments.

• ml_doc = fibonacci_docs: Here, the Python function will be documented
with the content of the fibonacci_docs string.

When an array of function definitions is complete, we can create another structure
that contains the definition of the whole module. It is described using the
PyModuleDef type and contains multiple fields. Some of them are useful only for more
complex scenarios, where fine-grained control over the module initialization process
is required. Here, we are interested only in the first five of them:

• PyModuleDef_Base m_base: This should always be initialized with
PyModuleDef_HEAD_INIT.

• char* m_name: This is the name of the newly created module. In our case, it is
fibonacci.

• char* m_doc: This is the pointer to the docstring content for the module. We
usually have only a single module defined in one C source file, so it is OK to
inline our documentation string in the whole structure.

• Py_ssize_t m_size: This is the size of the memory allocated to keep the
module state. This is used only when support for multiple subinterpreters or
multiphase initialization is required. In most cases, you don't need that and it
gets the value -1.

• PyMethodDef* m_methods: This is a pointer to the array containing module-
level functions described by the PyMethodDef values. It could be NULL if the
module does not expose any functions. In our case, it is fibonacci_module_
methods.

Chapter 9

[345]

The other fields are explained in detail in the official Python documentation (refer to
https://docs.python.org/3/c-api/module.html) but are not needed in our example
extension. They should be set to NULL if not required and they will be initialized
with that value implicitly when not specified. This is why our module description
contained in the fibonacci_module_definition variable can take the following
simple form:

static struct PyModuleDef fibonacci_module_definition = {
 PyModuleDef_HEAD_INIT,
 "fibonacci",
 "Extension module that provides fibonacci sequence function",
 -1,
 fibonacci_module_methods
};

The last piece of code that crowns our work is the module initialization function.
This must follow a very specific naming convention, so the Python interpreter
can easily find it when the dynamic/shared library is loaded. It should be named
PyInit_<name>, where <name> is the name of your module. So it is exactly the same
string that was used as the m_base field in the PyModuleDef definition and as the
first argument of the setuptools.Extension() call. If you don't require a complex
initialization process for the module, it takes a very simple form, exactly like in our
example:

PyMODINIT_FUNC PyInit_fibonacci(void) {
 return PyModule_Create(&fibonacci_module_definition);
}

The PyMODINIT_FUNC macro is a preprocessor macro that will declare the return type
of this initialization function as PyObject* and add any special linkage declarations if
required by the platform.

One very important difference between Python and C functions is the calling and
binding conventions. This is quite a verbose topic, so let's discuss that in a separate
section.

Calling and binding conventions
Python is an object-oriented language with flexible calling conventions using both
positional and keyword arguments. Consider the following print() function call:

print("hello", "world", sep=" ", end="!\n")

https://docs.python.org/3/c-api/module.html

Bridging Python with C and C++

[346]

The first two expressions provided to the call (the "hello" and "world" expressions)
are positional and will be matched with the positional argument of the print()
function. Order is important and if we modify it, the function call will give a different
result. On the other hand, the following " " and "!\n" expressions will be matched
with keyword arguments. Their order is irrelevant as long as the names don't change.

C is a procedural language with only positional arguments. When writing Python
extensions, there is a need to support Python's argument flexibility and object-
oriented data model. That is done mostly through the explicit declaration of
supported calling and binding conventions.

As explained in the A closer look at the Python/C API section, the ml_flags bit field of
the PyMethodDef structure contains flags for calling and binding conventions. Calling
convention flags are as follows:

• METH_VARARGS: This is a typical convention for the Python function or method
that accepts only arguments as its parameters. The type provided as the
ml_meth field for such a function should be PyCFunction. The function will
be provided with two arguments of the PyObject* type. The first is either
the self object (for methods) or the module object (for module functions).
A typical signature for the C function with that calling convention is
PyObject* function(PyObject* self, PyObject* args).

• METH_KEYWORDS: This is the convention for the Python function that
accepts keyword arguments when called. Its associated C type is
PyCFunctionWithKeywords. The C function must accept three arguments of
the PyObject* type — self, args, and a dictionary of keyword arguments.
If combined with METH_VARARGS, the first two arguments have the same
meaning as for the previous calling convention, otherwise, args will be NULL.
The typical C function signature is PyObject* function(PyObject* self,
PyObject* args, PyObject* keywds).

• METH_NOARGS: This is the convention for Python functions that do not accept
any other argument. The C function should be of the PyCFunction type, so
the signature is the same as that of the METH_VARARGS convention (with self
and args arguments). The only difference is that args will always be NULL,
so there is no need to call PyArg_ParseTuple(). This cannot be combined with
any other calling convention flag.

• METH_O: This is the shorthand for functions and methods accepting single
object arguments. The type of the C function is again PyCFunction, so it
accepts two PyObject* arguments: self and args. Its difference from METH_
VARARGS is that there is no need to call PyArg_ParseTuple() because PyObject*
provided as args will already represent the single argument provided in the
Python call to that function. This also cannot be combined with any other
calling convention flag.

Chapter 9

[347]

A function that accepts keywords is described either with METH_KEYWORDS or bitwise
combinations of calling convention flags in the form of METH_VARARGS | METH_
KEYWORDS. If so, it should parse its arguments with PyArg_ParseTupleAndKeywords()
instead of PyArg_ParseTuple() or PyArg_UnpackTuple().

Here is an example module with a single function that returns None and accepts two
named arguments that are printed on standard output:

#define PY_SSIZE_T_CLEAN
#include <Python.h>

static PyObject* print_args(PyObject *self, PyObject *args,
 PyObject *keywds)
{
 char *first;
 char *second;

 static char *kwlist[] = {"first", "second", NULL};

 if (!PyArg_ParseTupleAndKeywords(args, keywds, "ss", kwlist,
 &first, &second))
 return NULL;

 printf("%s %s\n", first, second);

 Py_INCREF(Py_None);
 return Py_None;
}

static PyMethodDef module_methods[] = {
 {"print_args", (PyCFunction)print_args,
 METH_VARARGS | METH_KEYWORDS,
 "print provided arguments"},
 {NULL, NULL, 0, NULL}
};

static struct PyModuleDef module_definition = {
 PyModuleDef_HEAD_INIT,
 "kwargs",
 "Keyword argument processing example",
 -1,

Bridging Python with C and C++

[348]

 module_methods
};

PyMODINIT_FUNC PyInit_kwargs(void) {
 return PyModule_Create(&module_definition);
}

The format argument in PyArg_ParseTuple() and PyArg_ParseTupleAndKeywords()
allows fine-grained control over the argument number and types. Every advanced
calling convention known from Python can be coded in C with this API, including
the following:

• Functions with default values for arguments
• Functions with arguments specified as keyword-only
• Functions with arguments specified as positional-only
• Functions with a variable number of arguments
• Functions without arguments

The additional binding convention flags METH_CLASS, METH_STATIC, and METH_COEXIST
are reserved for methods and cannot be used to describe module functions. The first
two are quite self-explanatory. They are C counterparts of the @classmethod and @
staticmethod decorators and change the meaning of the self argument passed to the
C function.

METH_COEXIST allows loading a method in place of the existing definition. It is
useful very rarely. This is mostly in the case when you would like to provide an
implementation of the C method that would be generated automatically from the
other features of the type that was defined. The Python documentation gives the
example of the __contains__() wrapper method that would be generated if the type
has the sq_contains slot defined. Unfortunately, defining your own classes and types
using the Python/C API is beyond the scope of this introductory chapter.

Let's take a look at exception handling in the next section.

Argument parsing in the Python/C API is very elastic and is
extensively described in the official documentation at https://
docs.python.org/3/c-api/arg.html.

https://docs.python.org/3/c-api/arg.html
https://docs.python.org/3/c-api/arg.html

Chapter 9

[349]

Exception handling
C, unlike Python or even C++, does not have syntax for raising and catching
exceptions. All error handling is usually handled with function return values and
optional global state for storing details that can explain the cause of the last failure.

Exception handling in the Python/C API is built around that simple principle. There
is a global per-thread indicator of the last error that occurred. It is set to describe
the cause of a problem. There is also a standardized way to inform the caller of
a function if this state was changed during the call, for example:

• If the function is supposed to return a pointer, it returns NULL
• If the function is supposed to return a value of type int, it returns -1

The only exceptions from the preceding rules in the Python/C API are the PyArg_*()
functions that return 1 to indicate success and 0 to indicate failure.

To see how this works in practice, let's recall our fibonacci_py() function from the
example in the previous sections:

static PyObject* fibonacci_py(PyObject* self, PyObject* args) {
 PyObject *result = NULL;
 long n;

 if (PyArg_ParseTuple(args, "l", &n)) {
 result = Py_BuildValue("L", fibonacci((unsigned int) n));
 }

 return result;
}

Error handling starts at the very beginning of our function with the initialization
of the result variable. This variable is supposed to store the return value of our
function. It is initialized with NULL, which, as we already know, is an indicator of
error. And this is how you will usually code your extensions—assuming that error is
the default state of your code.

Later we have the PyArg_ParseTuple() call that will set error information in the case
of an exception and return 0. This is part of the if statement, so in the case of an
exception, we don't do anything more and the function will return NULL. Whoever
calls our function will be notified about the error.

Bridging Python with C and C++

[350]

Py_BuildValue() can also raise an exception. It is supposed to return PyObject*
(pointer), so in the case of failure, it gives NULL. We can simply store this as our
result variable and pass it on as a return value.

But our job does not end with caring for exceptions raised by Python/C API calls. It
is very probable that you will need to inform the extension user about what kind of
error or failure occurred. The Python/C API has multiple functions that help you to
raise an exception but the most common one is PyErr_SetString(). It sets an error
indicator with the given exception type and with the additional string provided as
the explanation of the error cause. The full signature of this function is as follows:

void PyErr_SetString(PyObject* type, const char* message)

You could have already noticed a problematic issue in the fibonacci_py() function
from the section A closer look at the Python/C API. If not, now is the right time to
uncover it and fix it. Fortunately, we finally have the proper tools to do that.

The problem lies in the insecure casting of the long type to unsigned int in the
following lines:

if (PyArg_ParseTuple(args, "l", &n)) {
 result = Py_BuildValue("L", fibonacci((unsigned int) n));
}

Thanks to the PyArg_ParseTuple() call, the first and only argument will be
interpreted as a long type (the "l" specifier) and stored in the local n variable. Then
it is cast to unsigned int so the issue will occur if the user calls the fibonacci()
function from Python with a negative value. For instance, -1 as a signed 32-bit
integer will be interpreted as 4294967295 when casting to an unsigned 32-bit integer.
Such a value will cause a very deep recursion and will result in a stack overflow and
segmentation fault. Note that the same may happen if the user gives an arbitrarily
large positive argument. We cannot fix this without a complete redesign of the
C fibonacci() function, but we can at least try to ensure that the function input
argument meets some preconditions. Here, we check whether the value of the n
argument is greater than or equal to 0 and we raise a ValueError exception if that's
not true, as follows:

static PyObject* fibonacci_py(PyObject* self, PyObject* args) {
 PyObject *result = NULL;
 long n;
 long long fib;

 if (PyArg_ParseTuple(args, "l", &n)) {
 if (n<0) {

Chapter 9

[351]

 PyErr_SetString(PyExc_ValueError,
 "n must not be less than 0");
 } else {
 result = Py_BuildValue("L", fibonacci((unsigned int) n));
 }
 }

 return result;
}

The last note about exception handling is that the global error state does not clear by
itself. Some of the errors can be handled gracefully in your C functions (the same as
using the try ... except clause in Python) and you need to be able to clear the error
indicator if it is no longer valid. The function for that is PyErr_Clear().

One of the great advantages of C extensions is the ability to bypass the GIL, which
can be detrimental to threaded concurrency in Python applications. In the next
section, we will discuss the possibility of releasing GIL in C extensions.

Releasing GIL
We have already mentioned that extensions can be a way to bypass Python's GIL.
It is a famous limitation of the CPython implementation that only one thread at
a time can execute the Python code. Multiprocessing is the suggested approach
to circumvent this problem (see Chapter 6, Concurrency) but it may not be the best
solution for some highly parallelizable algorithms, due to the resource overhead
of running additional processes.

Because extensions are mostly used in cases where a bigger part of the work is
performed in pure C without any calls to the Python/C API, it is possible (or even
advisable) to release GIL in some application sections while doing non-Python data
processing. Thanks to this, you can still benefit from having multiple CPU cores
and multithreaded application designs. The only thing you need to do is to wrap
blocks of code that are known to not use any of the Python/C API calls or Python
structures with specific macros provided by the Python/C API. These two following
preprocessor macros are provided to simplify the whole procedure of releasing and
reacquiring the GIL:

• Py_BEGIN_ALLOW_THREADS: This declares the hidden local variable where the
current thread state is saved and it releases GIL.

• Py_END_ALLOW_THREADS: This reacquires GIL and restores the thread state from
the local variable declared with the previous macro.

Bridging Python with C and C++

[352]

When we look carefully at our fibonacci extension example, we can clearly see that
the fibonacci() function does not execute any Python code and does not touch any
of the Python structures. This means that the fibonacci_py() function that simply
wraps the fibonacci(n) execution could be updated to release GIL around that call
as follows:

static PyObject* fibonacci_py(PyObject* self, PyObject* args) {
 PyObject *result = NULL;
 long n;
 long long fib;

 if (PyArg_ParseTuple(args, "l", &n)) {
 if (n<0) {
 PyErr_SetString(PyExc_ValueError,
 "n must not be less than 0");
 } else {
 Py_BEGIN_ALLOW_THREADS;
 fib = fibonacci(n);
 Py_END_ALLOW_THREADS;

 result = Py_BuildValue("L", fib);
 }
 }

 return result;
}

Another important topic regarding the Python/C API is memory management
and garbage collection. The most common garbage collection mechanism among
dynamic programming languages is tracing garbage collection, which works by
tracing whether objects can be reached from a program's root reference. If objects
become unreachable, they can be released from program memory to reclaim memory
space.

Python has a minimal tracing garbage collector for finding reference cycles but in
fact uses reference counting as a main memory management mechanism. That's not
a problem in plain Python code but adds some substantial work when writing C
extensions. Let's dive deeper into this topic in the next section.

Chapter 9

[353]

Reference counting
Finally, we come to the important topic of memory management in Python. Python
has its own garbage collector, but it is designed only to solve the issue of cyclic
references in the reference counting algorithm. Reference counting is the primary
method of managing the deallocation of objects that are no longer needed.

The Python/C API documentation introduces ownership of references to explain
how it deals with the deallocation of objects. Objects in Python are never owned by
extension code and thus cannot be created or released by extensions themselves. The
actual creation of objects is managed by Python's memory manager. That's why we
say that objects in Python are owned by the memory manager.

The memory manager is the internal component of the CPython interpreter that is
the only one responsible for allocating and deallocating memory for objects that are
stored in a private heap. What can be owned instead is a reference to the object.

Every object in Python that is represented by a reference (PyObject* pointer) has an
associated reference count. When it goes to zero, it means that no one holds any valid
references to that object and the deallocator associated with its type can be invoked.
The Python/C API provides a few macros for increasing and decreasing reference
counts:

• Py_INCREF() and Py_DECREF(): The first one increases the reference count and
the second one decreases it. These macros accept object pointers that must
not be NULL.

• Py_XINCREF() and Py_XDECREF(): The first one increases the reference count
and the second one decreases it. These macros accept NULL values so you
should use them whenever you are not sure if you are dealing with NULL
pointers.

Tracing garbage collection is such a common garbage collection
strategy that it is often treated as a synonym to garbage collection.
That's why some people argue that Python isn't garbage
collected (because it uses reference counting as the main memory
management technique) and others argue that it is (because it uses
tracing for finding reference cycles and reference counting can be
understood as an alternative garbage collection strategy).

Bridging Python with C and C++

[354]

But before we discuss their details, we need to understand the following terms
related to reference ownership:

• Passing of ownership: Whenever we say that the function passes the
ownership over a reference, it means that it has already increased the
reference count and it is the responsibility of the caller to decrease the count
when the reference to the object is no longer needed. Most of the functions
that return the newly created objects, such as Py_BuildValue, are doing that.
If that object is going to be returned from our function to another caller, then
the ownership is passed again. We do not decrease the reference count in that
case because it is no longer our responsibility. This is why the fibonacci_
py() function does not call Py_DECREF() on the result variable.

• Borrowed references: The borrowing of references happens when the
function receives a reference to some Python object as an argument. The
reference count for such a reference should never be decreased in that
function unless it was explicitly increased in its scope. In our fibonacci_
py() function, the self and args arguments are such borrowed references
and thus we do not call PyDECREF() on them. Some of the Python/C API
functions may also return borrowed references. The notable examples
are PyTuple_GetItem() and PyList_GetItem(). It is often said that such
references are unprotected. There is no need to dispose of their ownership
unless they will be returned as a function's return value. In most cases, extra
care should be taken if we use such borrowed references as arguments of
other Python/C API calls. It may be necessary in some circumstances to
additionally protect such references with a separate Py_INCREF() call before
using it as an argument to other functions and then calling Py_DECREF() when
it is no longer needed. We'll see an example of such a situation at the end of
the section.

• Stolen references: It is also possible for the Python/C API function to steal
the reference instead of borrowing it when provided as a call argument.
This is the case of exactly two functions—PyTuple_SetItem() and PyList_
SetItem(). They fully take over the responsibility of the reference passed to
them. They do not increase the reference count by themselves but will call
Py_DECREF() when the reference is no longer needed.

Keeping an eye on the reference counts is one of the hardest things when writing
complex extensions. Some of the non-obvious issues may not be noticed until the
code is run in a multithreaded setup.

The other common problem is caused by the very nature of Python's object model
and the fact that some functions return borrowed references. When the reference
count goes to zero, the deallocation function is executed. For user-defined classes, it
is possible to define a __del__() method that will be called at that moment.

Chapter 9

[355]

This can be any Python code and it is possible that it will affect other objects and
their reference counts. The official Python documentation gives the following
example of code that may be affected by this problem:

void bug(PyObject *list) {
 PyObject *item = PyList_GetItem(list, 0);

 PyList_SetItem(list, 1, PyLong_FromLong(0L));
 PyObject_Print(item, stdout, 0); /* BUG! */
}

It looks completely harmless, but the problem is in fact that we cannot know what
elements the list object contains. When PyList_SetItem() sets a new value on the
list[1] index, the ownership of the object that was previously stored at that index
is disposed of. If it was the only existing reference, the reference count will become 0
and the object may be deallocated. It is possible that it was some user-defined class
with a custom implementation of the __del__() method. A serious issue will occur if,
in the result of such a __del__() execution, item[0] is removed from the list.

Note that PyList_GetItem() returns a borrowed reference! It does not call Py_
INCREF() before returning a reference. So in that code, it is possible that PyObject_
Print() will be called with a reference to an object that no longer exists. This will
cause a segmentation fault and crash the Python interpreter.

The proper approach is to protect borrowed references for the whole time that we
need them because there is a possibility that any call in between may cause the
deallocation of that object. This can happen even if they are seemingly unrelated,
as shown in the following code:

void no_bug(PyObject *list) {
 PyObject *item = PyList_GetItem(list, 0);

 Py_INCREF(item);
 PyList_SetItem(list, 1, PyLong_FromLong(0L));
 PyObject_Print(item, stdout, 0);
 Py_DECREF(item);
}

As you can see, writing Python extensions in C using the Python/C API can be a
challenge. Especially if you are not experienced with C. It requires a lot of knowledge
about CPython internals and precise memory management. But fortunately, there's
an easier path to custom extensions. It is Cython, which is a special dialect of Python.
We will discuss it in the next section.

Bridging Python with C and C++

[356]

Writing extensions with Cython
Cython is both an optimizing static compiler and the name of a programming
language that is a superset of Python. It can be used to speed up Python applications
by compiling them to machine code but can also be used as a "wrapping language"
for code written in C or C++.

As a compiler, it performs the source-to-source compilation of native Python code
and Cython dialect to Python C extensions using the Python/C API. It allows you
to combine the power of Python and C without the need to manually deal with the
Python/C API.

As a superset of Python, it offers the ability to use static typing, static linking of C
libraries (as opposed to dynamic linking of shared libraries), the ability to interact
with C header files, and direct control over CPython's GIL.

Let's first discuss Cython as a source-to-source compiler.

Cython as a source-to-source compiler
For extensions created using Cython, the major advantage you will get is using the
superset language that it provides. Anyway, it is possible to create extensions from
plain Python code using source-to-source compilation. This is the simplest approach
to Cython because it requires almost no changes to the code and can give some
significant performance improvements with very little effort.

To begin with, in order to build Cython extensions you will need the Cython
package. It can be installed from PyPI using pip:

$ python3 -m pip install Cython

Cython provides a simple cythonize utility function that allows you to easily
integrate the compilation process with the setuptools package. Let's assume that we
would like to compile a pure Python implementation of our fibonacci() function
to a C extension. If it is located in the fibonacci.py module, the minimal setup.py
script could be as follows:

from setuptools import setup
from Cython.Build import cythonize

setup(
 name='fibonacci',
 ext_modules=cythonize(['fibonacci.py'])
)

Chapter 9

[357]

You can install such a module with pip the same way as you would do with a plain
C extension:

$ python3 -m pip install -e .
Installing collected packages: fibonacci
 Running setup.py develop for fibonacci
Successfully installed fibonacci

The above command installs the package in editable mode so we can take a look at
all files generated in the process. If you execute it in your own shell, you can see it
creates some additional build artifacts:

$ ls -1ap
./
../
build/
fibonacci.c
fibonacci.cpython-39-darwin.so
fibonacci.egg-info/
fibonacci.py
setup.py

fibonacci.c in the preceding output is autogenerated C extension code. Cython
translates the plain Python code into raw C code. During installation, this C code
will be used to build the extension module library. In our case, it is the fibonacci.
cpython-39-darwin.so file.

Cython, when used as a source compilation tool for the Python language, has
another benefit. Source-to-source compilation to an extension can be a fully optional
part of the source distribution installation process. If the environment where
the package needs to be installed does not have Cython or any other building
prerequisites, it can be installed as a normal pure Python package. The user should
not notice any functional difference in the behavior of code distributed that way. A
common approach for distributing extensions built with Cython is to include both
Python/Cython sources and C code that would be generated from these source files.

You can take a look at the fibonacci.c file to see how much work
Cython does behind the curtain. It is actually pretty long. For our
simple fibonacci.py module, it can even be over 4000 lines long.

Bridging Python with C and C++

[358]

This way, the package can be installed in the following three different ways,
depending on the existence of building prerequisites:

• If the installation environment has Cython available, the extension C code
is generated from the Python/Cython sources that are provided.

• If Cython is not available but there are available building prerequisites
(C compiler, Python/C API headers), the extension is built from distributed
pregenerated C files.

• If neither of the preceding is available but the extension is created from pure
Python sources, the modules are installed like ordinary Python code, and the
compilation step is skipped.

Note that the Cython documentation says that including generated C files as well
as Cython sources is the recommended way of distributing Cython extensions. The
same documentation says that Cython compilation should be disabled by default
because the user may not have the required version of Cython in their environment,
and this may result in unexpected compilation issues.

Anyway, with the advent of environment isolation, this seems to be a less worrying
problem today. Also, Cython is a valid Python package that is available on PyPI, so
it can easily be defined as your project requirement in a specific version. Including
such a prerequisite is, of course, a decision with serious implications and should be
considered very carefully. The safer solution is to leverage the power of the extras_
require feature in the setuptools package and allow the user to decide whether they
want to use Cython with a specific environment variable, for example:

import os

from setuptools import setup, Extension

try:
 # cython source to source compilation
 # available only when Cython is available
 # and specific environment variable says
 # explicitly that Cython should be used
 # to generate C sources

You can read more about official guidelines on distribution Cython
code at https://cython.readthedocs.io/src/userguide/
source_files_and_compilation.html.

https://cython.readthedocs.io/src/userguide/source_files_and_compilation.html
https://cython.readthedocs.io/src/userguide/source_files_and_compilation.html

Chapter 9

[359]

 USE_CYTHON = bool(os.environ.get("USE_CYTHON"))
 import Cython

except ImportError:
 USE_CYTHON = False

ext = '.pyx' if USE_CYTHON else '.c'

extensions = [Extension("fibonacci", ["fibonacci"+ext])]

if USE_CYTHON:
 from Cython.Build import cythonize
 extensions = cythonize(extensions)

setup(
 name='fibonacci',
 ext_modules=extensions,
 extras_require={
 # Cython will be set in that specific version
 # as a requirement if package will be installed
 # with '[with-cython]' extra feature
 'with-cython': ['cython==0.29.22']
 }
)

The pip installation tool supports the installation of packages with the extras option
by adding the [extra-name] suffix to the package name. For the preceding example,
the optional Cython requirement and compilation during the installation from local
sources can be enabled using the following command:

$ USE_CYTHON=1 pip install .[with-cython]

The USE_CYTHON environment variable guarantees that pip will use Cython to compile
.pyx sources to C and [with-cython] guarantees that the Cython compiler will be
actually downloaded before installation.

Although you can use Cython to compile plain Python code, you will get the most
benefit from using the Cython dialect. It has a few additional features that are not
available in plain Python. We will take a closer look at Cython as a separate language
in the next section.

Bridging Python with C and C++

[360]

Cython as a language
Cython is not only a compiler but also a superset of the Python language. Superset
means that any valid Python code is allowed but it can be further enhanced with
additional features, such as support for calling C functions or declaring C types
on variables and class attributes. So, any code written in Python is also written
in Cython but the reverse is not always true. This explains why ordinary Python
modules can be so easily compiled to C using the Cython compiler.

But we won't stop at that simple fact. Instead of just saying that our reference
fibonacci() function is also Cython code, we will try to improve it a bit. This won't
be any real optimization because we still want to implement our Fibonacci sequence
recursively. But we will do some minor updates that will allow it to benefit more
from being written in Cython.

Cython sources use a different file extension. It is .pyx instead of .py. The content
of the fibonacci.pyx file might look like this:

"""Cython module that provides fibonacci sequence function."""

def fibonacci(unsigned int n):
 """Return nth Fibonacci sequence number computed recursively."""
 if n == 0:
 return 0
 if n == 1:
 return 1
 else:
 return fibonacci(n - 1) + fibonacci(n - 2)

As you can see, the only thing that has really changed is the signature of the
fibonacci() function. Thanks to optional static typing in Cython, we can declare the
n argument as unsigned int and this should slightly improve the way our function
works. Additionally, it does a lot more than we did previously when writing
extensions by hand. If the argument of the Cython function is declared with a static
type, then the extension will automatically handle conversion and overflow errors
by raising proper exceptions. The following is an example of an interactive session
showing how our fibonacci() function written in Cython deals with conversion and
overflow errors:

>>> from fibonacci import fibonacci
>>> fibonacci(5)
5
>>> fibonacci(0)
0

Chapter 9

[361]

>>> fibonacci(-1)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "fibonacci.pyx", line 4, in fibonacci.fibonacci
 def fibonacci(unsigned int n):
OverflowError: can't convert negative value to unsigned int
>>> fibonacci(10 ** 10)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "fibonacci.pyx", line 4, in fibonacci.fibonacci
 def fibonacci(unsigned int n):
OverflowError: value too large to convert to unsigned int

We already know that Cython compiles only source to source and the generated
code uses the same Python/C API that we would use when writing C code for
extensions by hand. Note that fibonacci() is a recursive function, so it calls itself
very often. This will mean that although we declared a static type for the input
argument, during the recursive call it will treat itself like any other Python function.
So n-1 and n-2 will be packed back into the Python object and then passed to the
hidden wrapper layer of the internal fibonacci() implementation that will again
bring it back to the unsigned int type. This will happen again and again until we
reach the final depth of recursion. This is not necessarily a problem but involves
a lot more argument processing than is really required.

We can cut off the overhead of Python function calls and argument processing by
delegating more of the work to the pure C function that does not know anything
about Python structures. We did this previously when creating C extensions with
pure C and we can do that in Cython too. We can use the cdef keyword to declare
C-style functions that accept and return only C types as follows:

cdef long long fibonacci_cc(unsigned int n):
 if n == 0:
 return 0
 if n == 1:
 return 1
 else:
 return fibonacci_cc(n - 1) + fibonacci_cc(n - 2)

def fibonacci(unsigned int n):
 """ Return nth Fibonacci sequence number computed recursively
 """
 return fibonacci_cc(n)

Bridging Python with C and C++

[362]

The fibonacci_cc() function will not be available to import in the final compiled
fibonacci module. The fibonacci() function forms a façade to the low-level
fibonacci_cc() implementation.

We can go even further. With a plain C example, we finally showed how to release
GIL during the call of our pure C function, so that the extension was a bit nicer for
multithreaded applications. In previous examples, we have used Py_BEGIN_ALLOW_
THREADS and Py_BEGIN_ALLOW_THREADS preprocessor macros from Python/C API
headers to mark a section of code as free from Python calls. The Cython syntax is
a lot shorter and easier to remember. GIL can be released around the section of code
using a simple with nogil statement like the following:

def fibonacci(unsigned int n):
 """ Return nth Fibonacci sequence number computed recursively
 """
 with nogil:
 return fibonacci_cc(n)

You can also mark the whole C-style function as safe to call without GIL as follows:

cdef long long fibonacci_cc(unsigned int n) nogil:
 if n < 2:
 return n
 else:
 return fibonacci_cc(n - 1) + fibonacci_cc(n - 2)

It is important to know that such functions cannot have Python objects as arguments
or return types. Whenever a function marked as nogil needs to perform any
Python/C API call, it must acquire GIL using the with gil statement.

We already know two ways of creating Python extensions: using plain C code with
the Python/C API and using Cython. The first one gives you the most power and
flexibility at the cost of quite complex and verbose code and the second one makes
writing extensions easier but does a lot of magic behind your back. We also learned
some potential advantages of extensions so it's time to take a closer look at some
potential downsides.

Downsides of using extensions
To be honest, I started my adventure with Python only because I was tired of all
the difficulty of writing software in C and C++. In fact, it is very common that
programmers start to learn Python when they realize that other languages do not
deliver what their users need.

Chapter 9

[363]

Programming in Python, when compared to C, C++, or Java, is a breeze. Everything
seems to be simple and well designed. You might think that there are no places
where you can trip over and there are no other programming languages required
anymore.

And of course, nothing could be more wrong. Yes, Python is an amazing language
with a lot of cool features, and it is used in many fields. But it doesn't mean that it is
perfect and doesn't have any downsides. It is easy to understand and write, but this
easiness comes with a price. It is not as slow as many people think but will never
be as fast as C. It is highly portable, but its interpreter is not available on as many
architectures as compilers of some other languages are. We could go on with that list
for a while.

One of the solutions to fix that problem is to write extensions. That gives us some
ability to bring some of the advantages of good old C back to Python. And in most
cases, it works well. The question is—are we really using Python because we want
to extend it with C? The answer is no. This is only an inconvenient necessity in
situations where we don't have any better options.

Extensions always come with a cost and one of the biggest downsides of using
extensions is increased complexity.

Additional complexity
It is not a secret that developing applications in many different languages is not an
easy task. Python and C are completely different technologies, and it is very hard to
find anything that they have in common. It is also true that there is no application
that is free of bugs. If extensions become common in your code base, debugging can
become painful. Not only because the debugging of C code requires a completely
different workflow and tools, but also because you will need to switch context
between two different languages very often.

We are all human and we all have limited cognitive capabilities. There are, of course,
people who can handle multiple layers of abstraction at the same time efficiently, but
they seem to be a very rare specimen. No matter how skilled you are, there is always
an additional price to pay for maintaining such hybrid solutions. This will either
involve extra effort and time required to switch between C and Python, or additional
stress that will make you eventually less efficient.

According to the TIOBE index, C is still one of the most popular programming
languages. Despite this fact, it is very common for Python programmers to know
very little or almost nothing about it. Personally, I think that C should be the
lingua franca in the programming world, but my opinion is very unlikely to change
anything in this matter.

Bridging Python with C and C++

[364]

Python also is so seductive and easy to learn, meaning that a lot of programmers
forget about all their previous experiences and completely switch to the new
technology. And programming is not like riding a bike. This particular skill erodes
very fast if not used and polished sufficiently. Even programmers with a strong C
background are risking gradually losing their previous C proficiency if they decide
to dive into Python for too long.

All of the above leads to one simple conclusion—it is harder to find people who
will be able to understand and extend your code. For open-source packages, this
means fewer voluntary contributors. In closed source, this means that not all of
your teammates will be able to develop and maintain extensions without breaking
things. And debugging broken things is definitely harder in extensions than in plain
Python code.

Harder debugging
When it comes to failures, the extensions may break very badly. One could think that
static typing gives you a lot of advantages over Python and allows you to catch a lot
of issues during the compilation step that would be hard to notice in Python. And
that can happen even without a rigorous testing routine and full test coverage. But
that's only one side of the coin.

On the other side, we have all the memory management that must be performed
manually. And faulty memory management is the main reason for most
programming errors in C. In the best-case scenario, such mistakes will result only
in some memory leaks that will gradually eat all of your environment resources.
The best case does not mean easy to handle. Memory leaks are really tricky to find
without using proper external tools such as Valgrind. In most cases, the memory
management issues in your extension code will result in a segmentation fault that is
unrecoverable in Python and will cause the interpreter to crash without raising an
exception that would explain the cause. This means that you will eventually need
to arm up with additional tools that most Python programmers usually don't need
to use. This adds complexity to your development environment and workflow.

The downsides of using extensions mean that they are not always the best tool to
bridge Python with other languages. If the only thing you need to do is to interact
with already built shared libraries, sometimes the best option is to use a completely
different approach. The next section discusses ways of interacting with dynamic
libraries without using extensions.

Chapter 9

[365]

Interfacing with dynamic libraries without
extensions
Thanks to ctypes (a module in the standard library) or cffi (an external package
available on PyPI), you can integrate every compiled dynamic/shared library in
Python, no matter what language it was written in. And you can do that in pure
Python without any compilation step. Those two packages are known as foreign
function libraries. They are interesting alternatives to writing your own extensions
in C.

Although using foreign function libraries does not require writing C code, it does not
mean you don't need to know anything about C to use them effectively. Both ctypes
and cffi require from you a reasonable understanding of C and how dynamic
libraries work in general. On the other hand, they remove the burden of dealing with
Python reference counting and greatly reduce the risk of making painful mistakes.
Also, interfacing with C code through ctypes or cffi is more portable than writing
and compiling the C extension modules.

Let's first take a look at ctypes, which is a part of the Python standard library.

The ctypes module
The ctypes module is the most popular module to call functions from dynamic or
shared libraries without the need to write custom C extensions. The reason for that
is obvious. It is part of the standard library, so it is always available and does not
require any external dependencies.

The first step to use code from a shared library is to load it. Let's see how to do that
with ctypes.

Loading libraries
There are exactly four types of dynamic library loaders available in ctypes and two
conventions to use them. The classes that represent dynamic and shared libraries
are ctypes.CDLL, ctypes.PyDLL, ctypes.OleDLL, and ctypes.WinDLL. The differences
between them are as follows:

• ctypes.CDLL: This class represents loaded shared libraries. The functions in
these libraries use the standard calling convention and are assumed to return
the int type. GIL is released during the call.

Bridging Python with C and C++

[366]

• ctypes.PyDLL: This class works like ctypes.CDLL, but GIL is not released
during the call. After execution, the Python error flag is checked, and an
exception is raised if the flag was set during the execution. It is only useful
when the loaded library is directly calling functions from the Python/C API
or uses callback functions that may be Python code.

• ctypes.OleDLL: This class is only available on Windows. Functions in these
libraries use Windows' stdcall calling convention and return Windows-
specific HRESULT code about call success or failure. Python will automatically
raise an OSError exception after a result code indicating a failure.

• ctypes.WinDLL: This class is only available on Windows. Functions in these
libraries use Windows' stdcall calling convention and return values of type
int by default. Python does not automatically inspect whether these values
indicate failure or not.

To load the library, you can either instantiate one of the preceding classes with
proper arguments or call the LoadLibrary() function from the submodule associated
with a specific class:

• ctypes.cdll.LoadLibrary() for ctypes.CDLL
• ctypes.pydll.LoadLibrary() for ctypes.PyDLL
• ctypes.windll.LoadLibrary() for ctypes.WinDLL
• ctypes.oledll.LoadLibrary() for ctypes.OleDLL

The main challenge when loading shared libraries is how to find them in a portable
way. Different systems use different suffixes for shared libraries (.dll on Windows,
.dylib on macOS, .so on Linux) and search for them in different places. The main
offender in this area is Windows, which does not have a predefined naming scheme
for libraries. Because of that, we won't discuss details of loading libraries with ctypes
on this system and will concentrate mainly on Linux and macOS, which deal with
this problem in a consistent and similar way.

Both library loading conventions (the LoadLibrary() functions and specific library-
type classes) require you to use the full library name. This means all the predefined
library prefixes and suffixes need to be included. For example, to load the C standard
library on Linux, you need to write the following:

If you are interested in the Windows platform, refer to the official
ctypes documentation, which has plenty of information about
supporting that system. It can be found at https://docs.python.
org/3/library/ctypes.html.

https://docs.python.org/3/library/ctypes.html
https://docs.python.org/3/library/ctypes.html

Chapter 9

[367]

>>> import ctypes
>>> ctypes.cdll.LoadLibrary('libc.so.6')
<CDLL 'libc.so.6', handle 7f0603e5f000 at 7f0603d4cbd0>

Here, for macOS, this would be the following:

>>> import ctypes
>>> ctypes.cdll.LoadLibrary('libc.dylib')

Fortunately, the ctypes.util submodule provides a find_library() function that
allows you to load a library using its name without any prefixes or suffixes and will
work on any system that has a predefined scheme for naming shared libraries:

>>> import ctypes
>>> from ctypes.util import find_library
>>> ctypes.cdll.LoadLibrary(find_library('c'))
<CDLL 'libc.so.6', handle 7f2e82f12000 at 0x7f2e8288e220>
>>> ctypes.cdll.LoadLibrary(find_library('bz2'))
<CDLL 'libbz2.so.1.0', handle 55fb3c2d1660 at 0x7f2e827e8af0>

So, if you are writing a ctypes package that is supposed to work both under macOS
and Linux, always use ctypes.util.find_library().

When your shared library is loaded, it is time to use its functions. Calling C functions
using ctypes is explained in the next section.

Calling C functions using ctypes
When the dynamic/shared library is successfully loaded to the Python object, the
common pattern is to store it as a module-level variable with the same name as the
name of the loaded library. The functions can be accessed as object attributes, so
calling them is like calling a Python function from any other imported module, for
example:

>>> import ctypes
>>> from ctypes.util import find_library
>>> libc = ctypes.cdll.LoadLibrary(find_library('c'))
>>> libc.printf(b"Hello world!\n")
Hello world!
13

Bridging Python with C and C++

[368]

Unfortunately, all the built-in Python types except integers, strings, and bytes are
incompatible with C datatypes and thus must be wrapped in the corresponding
classes provided by the ctypes module. Here is the full list of compatible datatypes
that come from the ctypes documentation:

ctypes type C type Python type
c_bool _Bool bool
c_char char 1-character bytes
c_wchar wchar_t 1-character string
c_byte char int
c_ubyte unsigned char int
c_short short int
c_ushort unsigned short int
c_int int int
c_uint unsigned int int
c_long long int
c_ulong unsigned long int
c_longlong __int64 or long long int
c_ulonglong unsigned __int64 or long long int
c_size_t size_t int
c_ssize_t ssize_t or Py_ssize_t int
c_float float float
c_double double float
c_longdouble long double float
c_char_p char* (NULL-terminated) bytes or None
c_wchar_p wchar_t* (NULL-terminated) string or None
c_void_p void* int or None

As you can see, the preceding table does not contain dedicated types that would
reflect any of the Python collections as C arrays. The recommended way to create
types for C arrays is to simply use the multiplication operator with the desired basic
ctypes type as follows:

>>> import ctypes
>>> IntArray5 = ctypes.c_int * 5
>>> c_int_array = IntArray5(1, 2, 3, 4, 5)
>>> FloatArray2 = ctypes.c_float * 2
>>> c_float_array = FloatArray2(0, 3.14)
>>> c_float_array[1]
3.140000104904175

Chapter 9

[369]

The above syntax works for every basic ctypes type.

Let's look at how Python functions are passed as C callbacks in the next section.

Passing Python functions as C callbacks
It is a very popular design pattern to delegate part of the work of function
implementation to custom callbacks provided by the user. The most-known function
from the C standard library that accepts such callbacks is a qsort() function that
provides a generic implementation of the quicksort algorithm. It is rather unlikely
that you would like to use this algorithm instead of the default TimSort implemented
in the CPython interpreter, which is more suited for sorting Python collections.
Anyway, qsort() seems to be a canonical example of an efficient sorting algorithm
and a C API that uses the callback mechanism that is found in many programming
books. This is why we will try to use it as an example of passing the Python function
as a C callback.

The ordinary Python function type will not be compatible with the callback function
type required by the qsort() specification. Here is the signature of qsort() from
the BSD man page that also contains the type of accepted callback type (the compar
argument):

void qsort(void *base, size_t nel, size_t width,
 int (*compar)(const void*, const void *));

So in order to execute qsort() from libc, you need to pass the following:

• base: This is the array that needs to be sorted as a void* pointer.
• nel: This is the number of elements as size_t.
• width: This is the size of the single element in the array as size_t.
• compar: This is the pointer to the function that is supposed to return int and

accepts two void* pointers. It points to the function that compares the size
of two elements that are being sorted.

We already know from the Calling C functions using ctypes section how to construct
the C array from other ctypes types using the multiplication operator. nel should be
size_t and that maps to Python int, so it does not require any additional wrapping
and can be passed as len(iterable). The width value can be obtained using the
ctypes.sizeof() function once we know the type of our base array. The last thing
we need to know is how to create the pointer to the Python function compatible with
the compar argument.

Bridging Python with C and C++

[370]

The ctypes module contains a CFUNCTYPE() factory function that allows you to
wrap Python functions and represent them as C callable function pointers. The first
argument is the C return type that the wrapped function should return.

It is followed by the variable list of C types that the function accepts as the
arguments. The function type compatible with the compar argument of qsort() will
be as follows:

CMPFUNC = ctypes.CFUNCTYPE(
 # return type
 ctypes.c_int,
 # first argument type
 ctypes.POINTER(ctypes.c_int),
 # second argument type
 ctypes.POINTER(ctypes.c_int),
)

To wrap everything up, let's assume that we want to sort a randomly shuffled list
of integer numbers with a qsort() function from the standard C library. Here is the
example script that shows how to do that using everything that we have learned
about ctypes so far:

from random import shuffle

import ctypes
from ctypes.util import find_library

libc = ctypes.cdll.LoadLibrary(find_library('c'))

CMPFUNC = ctypes.CFUNCTYPE(
 # return type
 ctypes.c_int,
 # first argument type
 ctypes.POINTER(ctypes.c_int),
 # second argument type
 ctypes.POINTER(ctypes.c_int),

CFUNCTYPE() uses the cdecl calling convention, so it is compatible
only with the CDLL and PyDLL shared libraries. The dynamic
libraries on Windows that are loaded with WinDLL or OleDLL use
the stdcall calling convention. This means that the other factory
must be used to wrap Python functions as C callable function
pointers. In ctypes, it is WINFUNCTYPE().

Chapter 9

[371]

)

def ctypes_int_compare(a, b):
 # arguments are pointers so we access using [0] index
 print(" %s cmp %s" % (a[0], b[0]))

 # according to qsort specification this should return:
 # * less than zero if a < b
 # * zero if a == b
 # * more than zero if a > b
 return a[0] - b[0]

def main():
 numbers = list(range(5))
 shuffle(numbers)
 print("shuffled: ", numbers)

 # create new type representing array with length
 # same as the length of numbers list
 NumbersArray = ctypes.c_int * len(numbers)
 # create new C array using a new type
 c_array = NumbersArray(*numbers)

 libc.qsort(
 # pointer to the sorted array
 c_array,
 # length of the array
 len(c_array),
 # size of single array element
 ctypes.sizeof(ctypes.c_int),
 # callback (pointer to the C comparison function)
 CMPFUNC(ctypes_int_compare)
)
 print("sorted: ", list(c_array))

if __name__ == "__main__":
 main()

Bridging Python with C and C++

[372]

The comparison function provided as a callback has an additional print statement,
so we can see how it is being executed during the sorting process as follows:

$ python3 ctypes_qsort.py
shuffled: [4, 3, 0, 1, 2]
 4 cmp 3
 4 cmp 0
 3 cmp 0
 4 cmp 1
 3 cmp 1
 0 cmp 1
 4 cmp 2
 3 cmp 2
 1 cmp 2
sorted: [0, 1, 2, 3, 4]

Of course, using qsort in Python doesn't make a lot of sense because Python has its
own specialized sorting algorithm. Anyway, passing Python functions as C callbacks
is a very useful technique for integrating many third-party libraries.

The ctypes module is very popular among Python programmers because it is part
of the standard library. Its downside is a lot of low-level type handling and a bit of
boilerplate required to interact with loaded libraries. That's why some developers
prefer using a third-party package, CFFI, that streamlines the usage of foreign
function calls. We will take a look at it in the next section.

CFFI
CFFI is a foreign function interface for Python that is an interesting alternative to
ctypes. It is not a part of the standard library, but it is easily available from PyPI
as the cffi package. It is different from ctypes because it puts more emphasis
on reusing plain C declarations instead of providing extensive Python APIs in
a single module. It is way more complex and also has a feature that allows you to
automatically compile some parts of your integration layer into extensions using
the C compiler. This means it can be used as a hybrid solution that fills the gap
between plain C extensions and ctypes.

Because it is a very large project, it is impossible to briefly introduce it in a few
paragraphs. On the other hand, it would be a shame to not say something more
about it. We have already discussed one example of integrating the qsort()
function from the standard library using ctypes. So, the best way to show the main
differences between these two solutions would be to reimplement the same example
with cffi.

Chapter 9

[373]

I hope that the following one block of code is worth more than a few paragraphs
of text:

from random import shuffle

from cffi import FFI

ffi = FFI()

ffi.cdef("""
void qsort(void *base, size_t nel, size_t width,
 int (*compar)(const void *, const void *));
""")
C = ffi.dlopen(None)

@ffi.callback("int(void*, void*)")
def cffi_int_compare(a, b):
 # Callback signature requires exact matching of types.
 # This involves less magic than in ctypes
 # but also makes you more specific and requires
 # explicit casting
 int_a = ffi.cast('int*', a)[0]
 int_b = ffi.cast('int*', b)[0]
 print(" %s cmp %s" % (int_a, int_b))

 # according to qsort specification this should return:
 # * less than zero if a < b
 # * zero if a == b
 # * more than zero if a > b
 return int_a - int_b

def main():
 numbers = list(range(5))
 shuffle(numbers)
 print("shuffled: ", numbers)

 c_array = ffi.new("int[]", numbers)

 C.qsort(
 # pointer to the sorted array

Bridging Python with C and C++

[374]

 c_array,
 # length of the array
 len(c_array),
 # size of single array element
 ffi.sizeof('int'),
 # callback (pointer to the C comparison function)
 cffi_int_compare,
)
 print("sorted: ", list(c_array))

if __name__ == "__main__":
 main()

The output will be similar to the one presented earlier when discussing the example
of C callbacks in ctypes. Using CFFI to integrate qsort in Python doesn't make any
more sense than using ctypes for the same purpose. Anyway, the preceding example
should show the main differences between ctypes and cffi regarding handling
datatypes and function callbacks.

Summary
This chapter explained one of the most complex topics in the book. We discussed the
reasons and tools for building Python extensions as a way of bridging Python with
other languages. We started by writing pure C extensions that depend only on the
Python/C API and then reimplemented it with Cython to show how easy it can be
if you only choose the proper tool.

There are still some reasons for doing things the hard way and using nothing
more than the pure C compiler and the Python.h headers. Anyway, the best
recommendation is to use tools such as Cython because this will make your code
base more readable and maintainable. It will also save you from most of the issues
caused by incautious reference counting and memory mismanagement.

Our discussion of extensions ended with the presentation of ctypes and CFFI as
alternative ways to solve the problems of integrating shared libraries. Because they
do not require writing custom extensions to call functions from compiled binaries,
they should be your tools of choice for integrating closed-source dynamic/shared
libraries—especially if you don't need to use custom C code.

Chapter 9

[375]

In the last few chapters, we have discussed multiple complex topics. From advanced
design patterns, through concurrency and event-driven programming to bridging
Python with different languages. Now we will be moving on to the topic of
maintaining Python applications: from testing and quality assurance to packaging,
monitoring, and optimizing applications of any size.

One of the most important challenges of software maintenance is how to assure that
the code we wrote is correct. As our software inevitably becomes more complex, it
is harder to ensure that it is working properly without an organized testing regime.
And as it will grow bigger, it will be impossible to effectively test it without any kind
of automation. That's why in the next chapter, we will take a look at various Python
tools and techniques that allow you to automate testing and quality processes.

[377]

10
Testing and Quality

Automation
Software is complex. No matter what language you use, what frameworks you build
on, and how elegant your coding style is, it is hard to verify software correctness just
by reading the code. That's not only because non-trivial applications usually consist
of large amounts of code. It is also because complete software is often composed of
many layers and relies on many external or interchangeable components, such as
operating systems, libraries, databases, caches, web APIs, or clients used to interact
with your code (browsers, for instance).

The complexity of modern software means that the verification of its correctness
often requires you to go beyond your code. You need to consider the environment in
which your code runs, variations of components that can be replaced, and the ways
your code can be interacted with. That's why developers of high-quality software
often employ special testing techniques that allow them to quickly and reliably verify
that the code they write meets desired acceptance criteria.

Another concern of complex software is its maintainability. This can be understood
as how easy it is to sustain the ongoing development of a piece of software. And
development is not only about implementing new features or enhancements but
also diagnosing and fixing issues that will be inevitably discovered along the way.
Maintainable software is software that requires little effort to introduce new changes
and where there is a low risk of introducing new defects upon change.

Testing and Quality Automation

[378]

As you can probably guess, maintainability is a product of many software aspects.
Automated testing of course helps in reducing the risk of change by enforcing
that known use cases are properly covered by existing and future code. But it is
not enough to ensure that future changes will be easy to implement. That's why
modern testing methodologies also rely on automated code quality measurement
and testing to enforce specific coding conventions, highlight potentially erroneous
code fragments, or scan for security vulnerabilities.

The modern testing landscape is vast. It is easy to get lost in a sea of testing
methodologies, tools, frameworks, libraries, and utilities. That's why in this chapter
we will review the most popular testing and quality automation techniques that are
often employed by professional Python developers. This should give you a good
overview of what's generally possible and also allow you to build your own testing
routine. We will cover the following topics:

• The principles of test-driven development
• Writing tests with pytest
• Quality automation
• Mutation testing
• Useful testing utilities

We will use a lot of packages from PyPI, so let's start by considering the technical
requirements for this chapter.

Technical requirements
The following are the Python packages that are mentioned in this chapter, which you
can download from PyPI:

• pytest

• redis

• coverage

• mypy

• mutmut

• faker

• freezegun

Information on how to install packages is included in Chapter 2, Modern Python
Development Environments.

Chapter 10

[379]

The code files for this chapter can be found at https://github.com/PacktPublishing/
Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%2010.

The principles of test-driven development
Testing is one of the most important elements of the software development process.
It is so important that there is even a software development methodology called
Test-Driven Development (TDD). It advocates writing software requirements as
tests as the first (and foremost) step in developing code.

The principle is simple: you focus on the tests first. Use them to describe the behavior
of the software, verify it, and check for potential errors. Only when those tests are
complete should you proceed with the actual implementation to satisfy the tests.

TDD, in its simplest form, is an iterative process that consists of the following steps:

1. Write tests: Tests should reflect the specification of a functionality or
improvement that has not been implemented yet.

2. Run tests: At this stage all new tests should fail as the feature or
improvement is not yet implemented.

3. Write a minimal valid implementation: The code should be dead simple
but correct. It is OK if it does not look elegant or has performance issues. The
main focus at this stage should be satisfying all the tests written in step 1. It
is also easier to diagnose problems in code that is simple than in code that is
optimized for performance.

4. Run tests: At this stage all tests should pass. That includes both new and
preexisting tests. If any of them fail, the code should be revised until it
satisfies the requirements.

5. Hone and polish: When all tests are satisfied, the code can be progressively
refactored until it meets desired quality standards. This is the time for
streamlining, refactoring, and sometimes obvious optimizations (if you have
brute-forced your way through the problem). After each change, all tests
should be rerun to ensure that no functionality was broken.

This simple process allows you to iteratively extend your application without
worrying that new change will break some preexisting and tested functionality.
It also helps to avoid premature optimization and guides you through the
development with a series of simple and bite-sized steps.

https://github.com/PacktPublishing/Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%2010
https://github.com/PacktPublishing/Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%2010

Testing and Quality Automation

[380]

TDD won't deliver the promised results without proper work hygiene. That's why it
is important to follow some basic principles:

• Keep the size of the tested unit small: In TDD we often talk about units of
code and unit tests. A unit of code is a simple autonomous piece of software
that (preferably) should do only one thing, and a single unit test should
exercise one function or method with a single set of arguments. This makes
writing tests easier but also favors good development practices and patterns
like the single responsibility principle and inversion of control (see Chapter 5,
Interfaces, Patterns, and Modularity).

• Keep tests small and focused: It is almost always better to create many
small and simple tests than one long and elaborate test. Every test should
verify only one aspect/requirement of the intended functionality. Having
granular tests allows for easier diagnosing of potential issues and better
maintainability of the test suite. Small tests pinpoint problems better and are
just easier to read.

• Keep tests isolated and independent: The success of one test should not
rely on the specific order of execution of all tests within the test suite. If a test
relies on a specific state of the execution environment, the test itself should
ensure that all preconditions are satisfied. Similarly, any side effects of the
test should be cleaned up after the execution. Those preparation and cleanup
phases of every test are also known as setup and teardown.

These few principles will help you write tests that are easy to understand and
maintain. And that's important because writing tests is just yet another activity that
takes time and increases initial development cost. Still, when done right, this is an
investment that pays off pretty quickly. A systematic and automated testing routine
reduces the number of software defects that would otherwise reach the end users. It
also provides a framework for the verification of known software bugs.

A rigorous testing routine and following a few basic principles is usually supported
by a dedicated testing library or framework. Python programmers are really lucky
because the Python standard library comes with two built-in modules created exactly
for the purpose of automated tests. These are:

• doctest: A testing module for testing interactive code examples found in
docstrings. It is a convenient way of merging documentation with tests.
doctest is theoretically capable of handling unit tests but it is more often
used to ensure that snippets of the code found in docstrings reflect the correct
usage examples.

Chapter 10

[381]

• unittest: A full-fledged testing framework inspired by JUnit (a popular Java
testing framework). It allows for the organization of tests into test cases and
test suites and provides common ways for managing setup and teardown
primitives. unittest comes with a built-in test runner that is able to discover
test modules across the whole codebase and execute specific test selections.

These two modules together can satisfy most of the testing needs of even the most
demanding developers. Unfortunately, doctest concentrates on a very specific use
case for tests (the testing of code examples) and unittest requires a rather large
amount of boilerplate due to class-oriented test organization. Its runner also isn't as
flexible as it could be. That's why many professional programmers prefer using one
of the third-party frameworks available on PyPI.

One such framework is pytest. It is probably one of the best and most mature Python
testing frameworks out there. It offers a more convenient way of organizing tests as
flat modules with test functions (instead of classes) but is also compatible with the
unittest class-based test hierarchy. It has also a truly superior test runner and comes
with a multitude of optional extensions.

The above advantages of pytest are the reason why we are not going to discuss the
details of unittest and doctest usage. They are still great and useful but pytest is
almost always a better and more practical choice. That's why we are now going to
discuss examples of writing tests using pytest as our framework of choice.

Writing tests with pytest
Now it's time to put the theory into practice. We already know the advantages of
TDD, so we'll try to build something simple with the help of tests. We will discuss
the anatomy of a typical test and then go over common testing techniques and tools
that are often employed by professional Python programmers. All of that will be
done with the help of the pytest testing framework.

You can read more about doctest in the official
documentation found at https://docs.python.org/3/
library/doctest.html.

You can read more about unittest in the official
documentation found at https://docs.python.org/3/
library/unittest.html.

https://docs.python.org/3/library/doctest.html
https://docs.python.org/3/library/doctest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html

Testing and Quality Automation

[382]

In order to do that we will require some problems to solve. After all, testing starts
at the very beginning of the software development life cycle—when the software
requirements are defined. In many testing methodologies, tests are just a code-native
way of describing software requirements in executable form.

It's hard to find a single convincing programming challenge that would allow for
showcasing a variety of testing techniques and at the same time would fit into a
book format. That's why we are going to discuss a few small and unrelated problems
instead. We will also revisit some of the examples found in previous chapters of the
book.

From a TDD perspective, writing tests for existing code is of course an unorthodox
approach to testing as writing tests ideally should precede the implementation and
not vice versa. But it is a known practice. For professional programmers it is not
uncommon to inherit a piece of software that is poorly tested or has not been tested
at all. In such a situation, if you want to test your software reliably, you will have to
eventually do the missing work. In our case, writing some tests for preexisting code
will also be an interesting opportunity to talk about the challenges of writing tests
after the code.

The first example will be pretty simple. It will allow us to understand the basic
anatomy of a test and how to use the pytest runner to discover and run tests. Our
task will be to create a function that:

• Accepts an iterable of elements and a batch size
• Returns an iterable of sub-lists where every sub-list is a batch of consecutive

elements from the source list. The order of elements should stay the same
• Each batch has the same size
• If the source list does not have enough elements to fill the last batch, that

batch should be shorter but never empty

That would be a relatively small but useful function. It could for instance be used
to process large streams of data without needing to load them fully into process
memory. It could also be used for distributing chunks of work to process separate
threads or process workers as we learned in Chapter 6, Concurrency.

Let's start by writing the stub of our function to find out what we are working with.
It will be named batches() and will be hosted in a file called batch.py. The signature
can be as follows:

from typing import Any, Iterable, List

def batches(
 iterable: Iterable[Any], batch_size: int

Chapter 10

[383]

) -> Iterable[List[Any]]:
 pass

We haven't provided any implementation yet as this is something we will take care
of once the tests are done. We can see typing annotations that constitute part of the
contract between the function and the caller.

Once we have done this, we are able to import our function into the test module to
write the tests. The common convention for naming test modules is test_<module-
name>.py, where <module-name> is the name of the module whose contents we are
going to test. Let's create a file named test_batch.py.

The first test will do a pretty common thing: provide input data to the function and
compare the results. We will be using a plain literal list as input. The following is
some example test code:

from batch import batches

def test_batch_on_lists():
 assert list(batches([1, 2, 3, 4, 5, 6], 1)) == [
 [1], [2], [3], [4], [5], [6]
]
 assert list(batches([1, 2, 3, 4, 5, 6], 2)) == [
 [1, 2], [3, 4], [5, 6]
]
 assert list(batches([1, 2, 3, 4, 5, 6], 3)) == [
 [1, 2, 3], [4, 5, 6]
]
 assert list(batches([1, 2, 3, 4, 5, 6], 4)) == [
 [1, 2, 3, 4], [5, 6],
]

The assert statement is the preferred way in pytest to test for the pre- and post-
conditions of tested code units. pytest is able to inspect such assertions, recognize
their exceptions, and thanks to this, output detailed reports of the test failures in a
readable form.

The above is a popular structure for tests for small utilities and is often just enough
to ensure they work as intended. Still, it does not clearly reflect our requirements, so
maybe it would be worth restructuring it a little bit.

Testing and Quality Automation

[384]

The following is an example of two extra tests that more explicitly map to our
predefined requirements:

from itertools import chain

def test_batch_order():
 iterable = range(100)
 batch_size = 2

 output = batches(iterable, batch_size)

 assert list(chain.from_iterable(output)) == list(iterable)

def test_batch_sizes():
 iterable = range(100)
 batch_size = 2

 output = list(batches(iterable, batch_size))

 for batch in output[:-1]:
 assert len(batch) == batch_size
 assert len(output[-1]) <= batch_size

The test_batch_order() test ensures that the order of elements in batches is the
same as in the source iterable. The test_batch_sizes() test ensures that all batches
have the same size (with the exception of the last batch, which can be shorter).

We can also see a pattern unfolding in both tests. In fact, many tests follow a very
common structure:

1. Setup: This is the step where the test data and all other prerequisites are
prepared. In our case the setup consists of preparing iterable and batch_
size arguments.

2. Execution: This is when the actual tested unit of code is put into use and the
results are saved for later inspection. In our case it is a call to the batches()
function.

3. Validation: In this step we verify that the specific requirement is met by
inspecting the results of unit execution. In our case these are all the assert
statements used to verify the saved output.

Chapter 10

[385]

4. Cleanup: This is the step where all resources that could affect other tests are
released or returned back to the state they were in before the setup step. We
didn't acquire any such resources, so in our case this step can be skipped.

According to the testing process outlined in the principles of test-driven development
section, at the moment our test should fail as we haven't provided any function
implementation yet. Let's run the pytest runner and see how it goes:

$ pytest -v

The output we get may look as follows:

======================== test session starts ========================
platform darwin -- Python 3.9.2, pytest-6.2.2, py-1.10.0, pluggy-0.13.1
-- .../Expert-Python-Programming-Fourth-Edition/.venv/bin/python
cachedir: .pytest_cache
rootdir: .../Expert-Python-Programming-Fourth-Edition/Chapter 10/01 -
Writing tests with pytest
collected 3 items

test_batch.py::test_batch_on_lists FAILED [33%]
test_batch.py::test_batch_order FAILED [66%]
test_batch.py::test_batch_sizes FAILED [100%]

============================= FAILURES ==============================
________________________ test_batch_on_lists ________________________

 def test_batch_on_lists():
> assert list(batches([1, 2, 3, 4, 5, 6], 1)) == [
 [1], [2], [3], [4], [5], [6]
]
E TypeError: 'NoneType' object is not iterable

test_batch.py:7: TypeError
_________________________ test_batch_order __________________________

 def test_batch_order():
 iterable = range(100)
 batch_size = 2

 output = batches(iterable, batch_size)

> assert list(chain.from_iterable(output)) == list(iterable)

Testing and Quality Automation

[386]

E TypeError: 'NoneType' object is not iterable

test_batch.py:27: TypeError
_________________________ test_batch_sizes __________________________

 def test_batch_sizes():
 iterable = range(100)
 batch_size = 2

> output = list(batches(iterable, batch_size))
E TypeError: 'NoneType' object is not iterable

test_batch.py:34: TypeError
====================== short test summary info ======================
FAILED test_batch.py::test_batch_on_lists - TypeError: 'NoneType' ...
FAILED test_batch.py::test_batch_order - TypeError: 'NoneType' obj...
FAILED test_batch.py::test_batch_sizes - TypeError: 'NoneType' obj...

As we can see, the test run failed with three individual test failures and we've got a
detailed report of what went wrong. We have the same failure in each test. TypeError
says that the NoneType object is not iterable so it could not be converted to a list. This
means that none of our three requirements have been met yet. That's understandable
because the batches() function doesn't do anything meaningful yet.

Now it's time to satisfy those tests. The goal is to provide a minimal working
implementation. That's why we won't do anything fancy and will provide a simple
and naïve implementation based on lists. Let's take a look at our first iteration:

from typing import Any, Iterable, List

def batches(
 iterable: Iterable[Any], batch_size: int
) -> Iterable[List[Any]]:
 results = []
 batch = []

 for item in iterable:
 batch.append(item)
 if len(batch) == batch_size:
 results.append(batch)
 batch = []

 if batch:

Chapter 10

[387]

 results.append(batch)

 return results

The idea is simple. We create one list of results and traverse the input iterable,
actively creating new batches as we go. When a batch is full, we add it to the list of
results and start a new one. When we are done, we check if there is an outstanding
batch and add it to the results as well. Then we return the results.

This is a pretty naïve implementation that may not work well with arbitrarily large
results, but it should satisfy our tests. Let's run the pytest command to see if it
works:

$ pytest -v

The test result should now be as follows:

======================== test session starts ========================
platform darwin -- Python 3.9.2, pytest-6.2.2, py-1.10.0, pluggy-0.13.1
-- .../Expert-Python-Programming-Fourth-Edition/.venv/bin/python
cachedir: .pytest_cache
rootdir: .../Expert-Python-Programming-Fourth-Edition/Chapter 10/01 -
Writing tests with pytest
collected 3 items

test_batch.py::test_batch_on_lists PASSED [33%]
test_batch.py::test_batch_order PASSED [66%]
test_batch.py::test_batch_sizes PASSED [100%]

========================= 3 passed in 0.01s =========================

As we can see, all tests have passed successfully. This means that the batches()
function satisfies the requirements specified by our tests. It doesn't mean the code is
completely bug-free, but it gives us confidence that it works well within the area of
conditions verified by the tests. The more tests we have and the more precise they
are, the more confidence in the code correctness we have.

Our work is not over yet. We made a simple implementation and verified it works.
Now we are ready to proceed to the step where we refine our code. One of the
reasons for doing things this way is that it is easier to spot errors in tests when
working with the simplest possible implementation of the code. Remember that tests
are code too, so it is possible to make mistakes in tests as well.

Testing and Quality Automation

[388]

If the implementation of a tested unit is simple and easy to understand, it will be
easier to verify whether the tested code is wrong or there's a problem with the test
itself.

The obvious problem with the first iteration of our batches() function is that it
needs to store all the intermediate results in the results list variable. If the iterable
argument is large enough (or even infinite), it will put a lot of stress on your
application as it will have to load all the data into memory. A better way would be to
convert that function into a generator that yields successive results. This can be done
with only a little bit of tuning:

def batches(
 iterable: Iterable[Any], batch_size: int
) -> Iterable[List[Any]]:
 batch = []
 for item in iterable:
 batch.append(item)

 if len(batch) == batch_size:
 yield batch
 batch = []

 if batch:
 yield batch

The other way around would be to make use of the iterators and the itertools
module as in the following example:

from itertools import islice

def batches(
 iterable: Iterable[Any], batch_size: int
) -> Iterable[List[Any]]:
 iterator = iter(iterable)

 while True:
 batch = list(islice(iterator, batch_size))

 if not batch:
 return

 yield batch

Chapter 10

[389]

That's what is really great about the TDD approach. We are now able to easily
experiment and tune existing function implementation with a reduced risk of
breaking things. You can test it for yourself by replacing the batches() function
implementation with one of those shown above and running the tests to see if it
meets the defined requirements.

Our example problem was small and simple to understand and so our tests were
easy to write. But not every unit of code will be like that. When testing larger or
more complex parts of code, you will often need additional tools and techniques that
allow you to write clean and readable tests. In the next few sections we will review
common testing techniques often used by Python programmers and show how to
implement them with the help of pytest. The first one will be test parameterization.

Test parameterization
Using a direct comparison of the received and expected function output is a
common method for writing short unit tests. It allows you to write clear and
condensed tests. That's why we used this method in our first test_batch_on_lists()
test in the previous section.

One problem with that technique is that it breaks the classic pattern of setup,
execution, verification, and cleanup stages. You can't see clearly what instructions
prepare the test context, which function call constitutes unit execution, and which
instructions perform result verification.

The other problem is that when the number of input-output data samples increases,
tests become overly large. It is harder to read them, and potential independent
failures are not properly isolated. Let's recall the code of the test_batch_on_lists()
test to better understand this issue:

def test_batch_on_lists():
 assert list(batches([1, 2, 3, 4, 5, 6], 1)) == [
 [1], [2], [3], [4], [5], [6]
]
 assert list(batches([1, 2, 3, 4, 5, 6], 2)) == [
 [1, 2], [3, 4], [5, 6]
]
 assert list(batches([1, 2, 3, 4, 5, 6], 3)) == [
 [1, 2, 3], [4, 5, 6]
]
 assert list(batches([1, 2, 3, 4, 5, 6], 4)) == [
 [1, 2, 3, 4], [5, 6],
]

Testing and Quality Automation

[390]

Each assert statement is responsible for verifying one pair of input-output
samples. But each pair can be constructed to verify different conditions of the initial
requirements. In our case the first three statements could verify that the size of each
output batch is the same. But the last assert verifies that the incomplete batch is also
returned if the length of the iterable argument is not divisible by batch_size. The
intention of the test isn't perfectly clear as it slightly breaks the "keep tests small and
focused" principle.

We can slightly improve the test structure by moving the preparation of all the
samples to the separate setup part of the test and then iterating over the samples in
the main execution part. In our case this can be done with a simple dictionary literal:

def test_batch_with_loop():
 iterable = [1, 2, 3, 4, 5, 6]
 samples = {
 # even batches
 1: [[1], [2], [3], [4], [5], [6]],
 2: [[1, 2], [3, 4], [5, 6]],
 3: [[1, 2, 3], [4, 5, 6]],
 # batches with rest
 4: [[1, 2, 3, 4], [5, 6]],
 }

 for batch_size, expected in samples.items():
 assert list(batches(iterable, batch_size)) == expected

Thanks to this change we have a more clear separation of the setup and execution
parts of the test. We can now say that the execution of the batch() function is
parameterized with the content of the samples dictionary. It is like running multiple
small tests within a single test run.

Another problem with testing multiple samples within a single test function is
that the test may break early. If the first assert statement fails, the test will stop
immediately. We won't know whether subsequent assert statements would succeed
or fail until we fix the first error and are able to proceed with further execution of the
test. And having a full overview of all individual failures often allows us to better
understand what's wrong with the tested code.

See how a small change to the test structure allowed us to annotate
which samples are expected to verify a particular function
requirement. We don't always have to use separate tests for every
requirement. Remember: practicality beats purity.

Chapter 10

[391]

This problem cannot be easily solved in a loop-based test. Fortunately, pytest
comes with native support for test parameterization in the form of the @pytest.
mark.parametrize decorator. This allows us to move the parameterization of a test's
execution step outside of the test body. pytest will be smart enough to treat each set
of input parameters as a separate "virtual" test that will be run independently from
other samples.

@pytest.mark.parametrize requires at least two positional arguments:

• argnames: This is a list of argument names that pytest will use to provide test
parameters to the test function as arguments. It can be a comma-separated
string or a list/tuple of strings.

• argvalues: This is an iterable of parameter sets for each individual test run.
Usually, it is a list of lists or a tuple of tuples.

We could rewrite our last example to use the @pytest.mark.parametrize decorator as
follows:

import pytest

@pytest.mark.parametrize(
 "batch_size, expected", [
 # even batches
 [1, [[1], [2], [3], [4], [5], [6]]],
 [2, [[1, 2], [3, 4], [5, 6]]],
 [3, [[1, 2, 3], [4, 5, 6]]],
 # batches with rest
 [4, [[1, 2, 3, 4], [5, 6]]]
]
)
def test_batch_parameterized(batch_size, expected):
 iterable = [1, 2, 3, 4, 5, 6]
 assert list(batches(iterable, batch_size)) == expected

If we now execute all the tests that we've written so far with the pytest -v
command, we will get the following output:

======================== test session starts ========================
platform darwin -- Python 3.9.2, pytest-6.2.2, py-1.10.0, pluggy-0.13.1
-- .../Expert-Python-Programming-Fourth-Edition/.venv/bin/python
cachedir: .pytest_cache
rootdir: .../Expert-Python-Programming-Fourth-Edition/Chapter 10/01 -
Writing tests with pytest
collected 8 items

Testing and Quality Automation

[392]

test_batch.py::test_batch_on_lists PASSED [12%]
test_batch.py::test_batch_with_loop PASSED [25%]
test_batch.py::test_batch_parameterized[1-expected0] PASSED [37%]
test_batch.py::test_batch_parameterized[2-expected1] PASSED [50%]
test_batch.py::test_batch_parameterized[3-expected2] PASSED [62%]
test_batch.py::test_batch_parameterized[4-expected3] PASSED [75%]
test_batch.py::test_batch_order PASSED [87%]
test_batch.py::test_batch_sizes PASSED [100%]

========================= 8 passed in 0.01s =========================

As you can see, the test report lists four separate instances of the test_batch_
parameterized() test run. If any of those fails it won't affect the others.

Test parameterization effectively puts a part of classic test responsibility—the setup
of the test context—outside of the test function. This allows for greater reusability
of the test code and gives more focus on what really matters: unit execution and the
verification of the execution outcome.

Another way of extracting the setup responsibility from the test body is through
the use of reusable test fixtures. pytest already has great native support for reusable
fixtures that is truly magical.

pytest's fixtures
The term "fixture" comes from mechanical and electronic engineering. It is a physical
device that can take the form of a clamp or grip that holds the tested hardware
in a fixed position and configuration (hence the name "fixture") to allow it to be
consistently tested in a specific environment.

Software testing fixtures serve a similar purpose. They simulate a fixed environment
configuration that tries to mimic the real usage of the tested software component.
Fixtures can be anything from specific objects used as input arguments, through
environment variable configurations, to sets of data stored in a remote database that
are used during the testing procedure.

In pytest, a fixture is a reusable piece of setup and/or teardown code that can be
provided as a dependency to the test functions. pytest has a built-in dependency
injection mechanism that allows for writing modular and scalable test suites.

Chapter 10

[393]

To create a pytest fixture you need to define a named function and decorate it with
the @pytest.fixture decorator as in the following example:

import pytest

@pytest.fixture
def dependency():
 return "fixture value"

pytest runs fixture functions before test execution. The return value of the fixture
function (here "fixture value") will be provided to the test function as an input
argument. It is also possible to provide both setup and cleanup code in the same
fixture function by using the following generator syntax:

@pytest.fixture
def dependency_as_generator():
 # setup code
 yield "fixture value"
 # teardown code

When generator syntax is used, pytest will obtain the yielded value of the fixture
function and keep it suspended until the test finishes its execution. After the test
finishes, pytest will resume execution of all used fixture functions just after the
yield statement regardless of the test result (failure or success). This allows for the
convenient and reliable cleanup of the test environment.

To use a fixture within a test you need to use its name as an input argument of the
test function:

def test_fixture(dependency):
 pass

We've covered the topic of dependency injection for Python
applications in Chapter 5, Interfaces, Patterns, and Modularity.

Testing and Quality Automation

[394]

When starting a pytest runner, pytest will collect all fixture uses by inspecting the
test function signatures and matching the names with available fixture functions.
By default, there are a few ways that pytest will discover fixtures and perform their
name resolution:

• Local fixtures: Tests are able to use all the fixtures that are available from the
same module that they are defined in. These can be fixtures that are imported
in the same module. Local fixtures always take precedence over shared
fixtures.

• Shared fixtures: Tests are able to use fixtures available in the conftest
module stored in the same directory as the test module or any of its parent
directories. A test suite can have multiple conftest modules. Fixtures from
conftest that are closer in the directory hierarchy take precedence over
those that are further in the directory hierarchy. Shared fixtures always take
precedence over plugin fixtures.

• Plugin fixtures: pytest plugins can provide their own fixtures. These fixture
names will be matched last.

Last but not least, fixtures can be associated with specific scopes that decide
the lifetime of fixture values. These scopes are extremely important for fixtures
implemented as generators because they determine when cleanup code is executed.
There are five scopes available:

• "function" scope: This is the default scope. A fixture function with the
"function" scope will be executed once for every individual test run and will
be destroyed afterward.

• "class" scope: This scope can be used for test methods written in the xUnit
style (based on the unittest module). Fixtures with this scope are destroyed
after the last test in a test class.

• "module" scope: Fixtures with this scope are destroyed after the last test in
the test module.

• "package" scope: Fixtures with this scope are destroyed after the last test in
the given test package (collection of test modules).

• "session" scope: This is kind of a global scope. Fixtures with this scope live
though the entire runner execution and are destroyed after the last test.

Different scopes of fixtures can be used to optimize the test execution as a specific
environment setup may sometimes take a substantial amount of time to execute.
If many tests can safely reuse the same setup, it may be reasonable to expand the
default "function" scope to "module", "package", or even "session".

Chapter 10

[395]

Moreover, "session" fixtures can be used to perform global setup for the whole
test run as well as a global cleanup. That's why they are often used with the
autouse=True flag, which marks a fixture as an automatic dependency for a given
group of tests. The scoping of autouse fixtures is as follows:

• Module-level for the test module fixture: If a fixture with the autouse flag
is included in the test module (a module with the test prefix), it will be
automatically marked as a dependency of every test within that module.

• Package-level for the test conftest module fixture: If a fixture with the
autouse flag is included in a conftest module of a given test directory, it
will be automatically marked as a dependency of every test in every test
module within the same directory. This also includes subdirectories.

The best way to learn about using fixtures in various forms is by example. Our tests
for the batch() function from the previous section were pretty simple and so didn't
require the extensive use of fixtures. Fixtures are especially useful if you need to
provide some complex object initialization or the setup state of external software
components like remote services or databases. In Chapter 5, Interfaces, Patterns, and
Modularity, we discussed examples of code for tracking page view counts with
pluggable storage backends, and one of those examples used Redis as a storage
implementation. Testing those backends would be a perfect use case for pytest
fixtures, so let's recall the common interface of the ViewsStorageBackend abstract
base class:

from abc import ABC, abstractmethod
from typing import Dict

class ViewsStorageBackend(ABC):
 @abstractmethod
 def increment(self, key: str): ...

 @abstractmethod
 def most_common(self, n: int) -> Dict[str, int]: ...

Abstract base classes or any other types of interface implementations, like Protocol
subclasses, are actually great when it comes to testing. They allow you to focus on
the class behavior instead of the implementation.

Testing and Quality Automation

[396]

If we would like to test the behavior of any implementation of ViewsStorageBackend,
we could test for a few things:

• If we receive an empty storage backend, the most_common() method will
return an empty dictionary

• If we increment a number of page counts for various keys and request
a number of most common keys greater or equal to the number of keys
incremented, we will receive all tracked counts

• If we increment a number of page counts for various keys and request a
number of most common keys greater than or equal to the number of keys
incremented, we will receive a shortened set of the most common elements

We will start with tests and then go over actual fixture implementation. The first test
function for the empty storage backend will be really simple:

import pytest
import random
from interfaces import ViewsStorageBackend

@pytest.mark.parametrize(
 "n", [0] + random.sample(range(1, 101), 5)
)
def test_empty_backend(backend: ViewsStorageBackend, n: int):
 assert backend.most_common(n) == {}

This test doesn't require any elaborate setup. We could use a static set of n argument
parameters, but additional parameterization with random values adds a nice
touch to the test. The backend argument is a declaration of a fixture use that will be
resolved by pytest during the test run.

The second test for obtaining a full set of increment counts will require more verbose
setup and execution:

def test_increments_all(backend: ViewsStorageBackend):
 increments = {
 "key_a": random.randint(1, 10),
 "key_b": random.randint(1, 10),
 "key_c": random.randint(1, 10),
 }

 for key, count in increments.items():
 for _ in range(count):
 backend.increment(key)

 assert backend.most_common(len(increments)) == increments
 assert backend.most_common(len(increments) + 1) == increments

Chapter 10

[397]

The test starts with the declaration of a literal dictionary variable with the intended
increments. This simple setup serves two purposes: the increments variable guides
the further execution step and also serves as validation data for two verification
assertions. As in the previous test, we expect the backend argument to be provided
by a pytest fixture.

The last test is quite similar to the previous one:

def test_increments_top(backend: ViewsStorageBackend):
 increments = {
 "key_a": random.randint(1, 10),
 "key_b": random.randint(1, 10),
 "key_c": random.randint(1, 10),
 "key_d": random.randint(1, 10),
 }

 for key, count in increments.items():
 for _ in range(count):
 backend.increment(key)

 assert len(backend.most_common(1)) == 1
 assert len(backend.most_common(2)) == 2
 assert len(backend.most_common(3)) == 3

 top2_values = backend.most_common(2).values()
 assert list(top2_values) == (
 sorted(increments.values(), reverse=True)[:2]
)

The setup and execution steps are similar to the ones used in the test_increments_
all() test function. If we weren't writing tests, we would probably consider
moving those steps to separate reusable functions. But here it would probably have
a negative impact on readability. Tests should be kept independent, so a bit of
redundancy often doesn't hurt if it allows for clear and explicit tests. However, this is
not a rule of course and always requires personal judgment.

Since all the tests are written down, it is time to provide a fixture. In Chapter 5,
Interfaces, Patterns, and Modularity, we've included two implementations of backends:
CounterBackend and RedisBackend. Ultimately, we would like to use the same set
of tests for both storage backends. We will get to that eventually, but for now let's
pretend that there's only one backend. It will simplify things a little bit.

Testing and Quality Automation

[398]

Let's assume for now that we are testing only RedisBackend. It is definitely more
complex than CounterBackend so we will have more fun doing that. We could write
just one backend fixture but pytest allows us to have modular fixtures, so let's see
how that works. We will start with the following:

from redis import Redis
from backends import RedisBackend

@pytest.fixture
def backend(redis_client: Redis):
 set_name = "test-page-counts"
 redis_client.delete(set_name)

 return RedisBackend(
 redis_client=redis_client,
 set_name=set_name
)

redis_client.delete(set_name) removes the key in the Redis data store if it exists.
We will use the same key in the RedisBackend initialization. The underlying Redis
key that stores all of our increments will be created on the first storage modification,
so we don't need to worry about non-existing keys. This way we ensure that every
time a fixture is initialized, the storage backend is completely empty. The default
fixture session scope is "function", and that means every test using that fixture will
receive an empty backend.

You may have noticed that we didn't instantiate the Redis client in the backend()
fixture and instead specified it as an input argument of the fixture functions.

Redis is not a part of most system distributions so you will
probably have to install it on your own. Most Linux distributions
have it available under the redis-server package name in
their package repositories. You can also use Docker and Docker
Compose. The following is a short docker-compose.yml file that
will allow you to quickly start it locally:

version: "3.7"
services:
 redis:
 image: redis
 ports:
 - 6379:6379

You can find more details about using Docker and Docker
Compose in Chapter 2, Modern Python Development Environments.

Chapter 10

[399]

The dependency injection mechanism in pytest also covers fixture functions. This
means you can request other fixtures inside of a fixture.

The following is example of a redis_client() fixture:

from redis import Redis

@pytest.fixture(scope="session")
def redis_client():
 return Redis(host='localhost', port=6379)

To avoid over-complicating things we have just hardcoded the values for the Redis
host and port arguments. Thanks to the above modularity it will be easier to replace
those values globally if you ever decide to use a remote address instead.

Save all the tests in the test_backends.py module, start the Redis server locally, and
execute the pytest runner using the pytest -v command. You will get output that
may look as follows:

======================= test session starts =========================
platform darwin -- Python 3.9.2, pytest-6.2.2, py-1.10.0, pluggy-0.13.1
-- .../Expert-Python-Programming-Fourth-Edition/.venv/bin/python
cachedir: .pytest_cache
rootdir: .../Expert-Python-Programming-Fourth-Edition/Chapter 10/03 -
Pytest's fixtures
collected 8 items

test_backends.py::test_empty_backend[0] PASSED [12%]
test_backends.py::test_empty_backend[610] PASSED [25%]
test_backends.py::test_empty_backend[611] PASSED [37%]
test_backends.py::test_empty_backend[7] PASSED [50%]
test_backends.py::test_empty_backend[13] PASSED [62%]
test_backends.py::test_empty_backend[60] PASSED [75%]
test_backends.py::test_increments_all PASSED [87%]
test_backends.py::test_increments_top PASSED [100%]

======================== 8 passed in 0.08s =========================

All tests passing means that we have succeeded in verifying the RedisBackend
implementation. It would be great if we could do the same for CounterBackend. The
most naïve thing to do would be to copy the tests and rewrite the test fixtures to now
provide a new implementation of the backend. But this is a repetition that we would
like to avoid.

Testing and Quality Automation

[400]

We know that tests should be kept independent. Still, our three tests referenced only
the ViewsStorageBackend abstract base class. So they should always be the same
regardless of the actual implementation of the tested storage backends. What we
have to do is to find a way to define a parameterized fixture that will allow us to
repeat the same test over various backend implementations.

The parameterization of the fixture functions is a bit different than the
parameterization of the test functions. The @pytest.fixture decorator accepts
an optional params keyword value that accepts an iterable of fixture parameters.
A fixture with the params keyword must also declare the use of a special built-
in request fixture that, among other things, allows access to the current fixture
parameter:

import pytest

@pytest.fixture(params=[param1, param2, ...])
def parmetrized_fixture(request: pytest.FixtureRequest):
 return request.param

We can use the parameterized fixture and the request.getfixturevalue() method
to dynamically load a fixture depending on a fixture parameter. The revised and
complete set of fixtures for our test functions can now look as follows:

import pytest
from redis import Redis
from backends import RedisBackend, CounterBackend

@pytest.fixture
def counter_backend():
 return CounterBackend()

@pytest.fixture(scope="session")
def redis_client():
 return Redis(host='localhost', port=6379)

@pytest.fixture
def redis_backend(redis_client: Redis):
 set_name = "test-page-counts"
 redis_client.delete(set_name)

 return RedisBackend(
 redis_client=redis_client,
 set_name=set_name

Chapter 10

[401]

)

@pytest.fixture(params=["redis_backend", "counter_backend"])
def backend(request):
 return request.getfixturevalue(request.param)

If you now run the same test suite with a new set of fixtures, you will see that the
amount of executed tests just doubled. The following is some example output of the
pytest -v command:

======================== test session starts ========================
platform darwin -- Python 3.9.2, pytest-6.2.2, py-1.10.0, pluggy-0.13.1
-- .../Expert-Python-Programming-Fourth-Edition/.venv/bin/python
cachedir: .pytest_cache
rootdir: .../Expert-Python-Programming-Fourth-Edition/Chapter 10/03 -
Pytest's fixtures
collected 16 items

test_backends.py::test_empty_backend[redis_backend-0] PASSED [6%]
test_backends.py::test_empty_backend[redis_backend-72] PASSED [12%]
test_backends.py::test_empty_backend[redis_backend-23] PASSED [18%]
test_backends.py::test_empty_backend[redis_backend-48] PASSED [25%]
test_backends.py::test_empty_backend[redis_backend-780] PASSED [31%]
test_backends.py::test_empty_backend[redis_backend-781] PASSED [37%]
test_backends.py::test_empty_backend[counter_backend-0] PASSED [43%]
test_backends.py::test_empty_backend[counter_backend-72] PASSED [50%]
test_backends.py::test_empty_backend[counter_backend-23] PASSED [56%]
test_backends.py::test_empty_backend[counter_backend-48] PASSED [62%]
test_backends.py::test_empty_backend[counter_backend-780] PASSED [68%]
test_backends.py::test_empty_backend[counter_backend-781] PASSED [75%]
test_backends.py::test_increments_all[redis_backend] PASSED [81%]
test_backends.py::test_increments_all[counter_backend] PASSED [87%]
test_backends.py::test_increments_top[redis_backend] PASSED [93%]
test_backends.py::test_increments_top[counter_backend] PASSED [100%]

======================== 16 passed in 0.08s ========================

Thanks to the clever use of fixtures, we have reduced the amount of testing code
without impacting the test readability. We could also reuse the same test functions
to verify classes that should have the same behavior but different implementations.
So, whenever requirements change, we can be sure that we will be able to recognize
differences between classes of the same interface.

Testing and Quality Automation

[402]

Using fixtures to provide connectivity for external services like Redis is convenient
because the installation of Redis is pretty simple and does not require any custom
configuration to use it for testing purposes. But sometimes your code will be using a
remote service or resource that you cannot easily provide in the testing environment
or cannot perform tests against without making destructive changes. This can be
pretty common when working with third-party web APIs, hardware, or closed
libraries/binaries, for instance. In such cases, a common technique is to use fake
objects or mocks that can substitute for real objects. We will discuss this technique in
the next section.

Using fakes
Writing unit tests presupposes that you can isolate the unit of code that is being
tested. Tests usually feed the function or method with some data and verify its return
value and/or the side effects of its execution. This is mainly to make sure that:

• Tests are concerned with an atomic part of the application, which can be a
function, method, class, or interface

• Tests provide deterministic, reproducible results

Sometimes, the proper isolation of the program component is not obvious or easily
done. In the previous section we discussed the example of a testing suite that, among
other things, was verifying a piece of code that interacted with a Redis data store. We
provided the connectivity to Redis using a pytest fixture and we saw that it wasn't
that hard. But did we test only our code, or did we test also the behavior of Redis?

In this particular case, including connectivity to Redis was a pragmatic choice. Our
code did only a bit of work and left most of the heavy lifting to the external storage
engine. It couldn't work properly if Redis didn't work properly. In order to test the
whole solution, we had to test the integration of our code and the Redis data store.
Tests like that are often called integration tests and are commonly used in testing
software that heavily relies on external components.

But safe integration tests are not always possible. Not every service you will use
will be as easy to start locally as Redis. Sometimes you will be dealing with those
"special" components that cannot be replicated outside of ordinary production use.

You need to be cautious when designing your fixtures as the
overuse of dependency injection can make understanding the
whole test suite harder. Fixture functions should be kept simple
and well documented.

Chapter 10

[403]

In such cases, you will have to substitute the dependency with a fake object that
simulates a real-life component.

To better understand the typical use cases for using fakes in tests, let's consider the
following imaginary story: We are building a scalable application that provides our
customers with the ability to track page counts on their sites in real time. Unlike
our competitors, we offer a highly available and scalable solution with very low
latency and the ability to run with consistent results in many datacenters across the
globe. The cornerstone of our product is a small counter class from the backends.py
module.

Having a highly available distributed hash map (the data type we used in Redis) that
would ensure low latency in a multi-region setup isn't something trivial. Surely one
Redis instance won't do what we advertise to our customers. Thankfully, a cloud
computing vendor—ACME Corp—reached out to us recently, offering one of their
latest beta products. It is called ACME Global HashMap Service and it does exactly
what we want. But there's a catch: it is still in beta, and thus ACME Corp by their
policy does not provide a sandbox environment that we can use for testing purposes
yet. Also, for some unclear legal reasons, we can't use the production service
endpoint in our automated testing pipelines.

So, what could we do? Our code grows every day. The planned AcmeStorageBackend
class will likely have the additional code that handles logging, telemetry, access
control, and a lot of other fancy stuff. We definitely want to be able to test it
thoroughly. Therefore, we've decided to use a fake substitute of the ACME Corp
SDK that we were supposed to integrate into our product.

The ACME Corp Python SDK comes in the form of the acme_sdk package. Among
other things, it includes the following two interfaces:

from typing import Dict

class AcmeSession:
 def __init__(self, tenant: str, token: str): ...

class AcmeHashMap:
 def __init__(self, acme_session: AcmeSession): ...

 def incr(self, key: str, amount):
 """Increments any key by specific amount"""
 ...

 def atomic_incr(self, key: str, amount):
 """Increments any key by specific amount atomically"""
 ...

Testing and Quality Automation

[404]

 def top_keys(self, count: int) -> Dict[str, int]:
 """Returns keys with top values"""
 ...

The AcmeSession session is an object that encapsulates the connection to ACME
Corp services, and AcmeHashMap is the service client we want to use. We will most
likely use the atomic_incr() method to increment page view counts. top_keys() will
provide us with the ability to obtain the most common pages.

To build a fake, we simply have to define a new class that has an interface that
is compatible with our use of AcmeHashMap. We can take the pragmatic approach
and implement only those classes and methods that we plan to use. The minimal
implementation of AcmeHashMapFake could be as follows:

from collections import Counter
from typing import Dict

class AcmeHashMapFake:
 def __init__(self):
 self._counter = Counter()

 def atomic_incr(self, key: str, amount):
 self._counter[key] += amount

 def top_keys(self, count: int) -> Dict[str, int]:
 return dict(self._counter.most_common(count))

We can use AcmeHashMapFake to provide a new fixture in the existing test suite for our
storage backends. Let's assume that we have an AcmeBackend class in the backends
module that takes the AcmeHashMapFake instance as its only input argument. We
could then provide the following two pytest fixture functions:

from backends import AcmeBackend
from acme_fakes import AcmeHashMapFake

@pytest.fixture
def acme_client():
 return AcmeHashMapFake()

@pytest.fixture
def acme_backend(acme_client):
 return AcmeBackend(acme_client)

Chapter 10

[405]

Splitting the setup into two fixtures prepares us for what may come in the near
future. When we finally get our hands on the ACME Corp sandbox environment, we
will have to modify only one fixture:

from acme_sdk import AcmeHashMap, AcmeSession

@pytest.fixture
def acme_client():
 return AcmeHashMap(AcmeSession(..., ...))

To summarize, fakes provide the equivalent behavior for an object that we can't
build during a test or that we simply don't want to build. This is especially useful for
situations where you have to communicate with external services or access remote
resources. By internalizing those resources, you gain better control of the testing
environment and thus are able to better isolate the tested unit of code.

Building custom fakes can become a tedious task if you have to build many of them.
Fortunately, the Python library comes with the unittest.mock module, which can be
used to automate the creation of fake objects.

Mocks and the unittest.mock module
Mock objects are generic fake objects that can be used to isolate the tested code. They
automate the building process of the fake object's input and output. There is a greater
level of use of mock objects in statically typed languages, where monkey patching
is harder, but they are still useful in Python to shorten the code that mimics external
APIs.

There are a lot of mock libraries available in Python, but the most recognized one is
unittest.mock, which is provided in the standard library.

Mocks can almost always be used in place of custom fake objects. They are especially
useful for faking external components and resources that we don't have full control
over during the test. They are also an indispensable utility when we have to go
against the prime TDD principle—that is, when we have to write tests after the
implementation has been written.

unittest.mock was initially created as a third-party mock
package available on PyPI. After some time, it was included in the
standard library as a provisional package. To learn more about
provisional standard library packages, visit https://docs.
python.org/dev/glossary.html#term-provisional-api.

https://docs.python.org/dev/glossary.html#term-provisional-api
https://docs.python.org/dev/glossary.html#term-provisional-api

Testing and Quality Automation

[406]

We already discussed the example of faking the connectivity layer to the external
resource in the previous section. Now we will take a closer look at a situation when
we have to write a test for an already existing piece of code that doesn't have any
tests yet.

Let's say we have the following send() function that is supposed to send email
messages over the SMTP protocol:

import smtplib
import email.message

def send(
 sender, to,
 subject='None',
 body='None',
 server='localhost'
):
 """sends a message."""
 message = email.message.Message()
 message['To'] = to
 message['From'] = sender
 message['Subject'] = subject
 message.set_payload(body)

 client = smtplib.SMTP(server)
 try:
 return client.sendmail(sender, to, message.as_string())
 finally:
 client.quit()

It definitely doesn't help that the function creates its own smtplib.SMTP instance,
which clearly represents an SMTP client connection. If we started with tests first,
we would probably have thought of it in advance and utilized a minor inversion of
control to provide the SMTP client as a function argument. But the damage is done.
The send() function is used across our whole codebase and we don't want to start
refactoring yet. We need to test it first.

The send() function is stored in a mailer module. We will start with a black-box
approach and assume it doesn't need any setup. We create a test that naively tries to
call the function and hope for success. Our first iteration will be as follows:

from mailer import send

def test_send():

Chapter 10

[407]

 res = send(
 'john.doe@example.com',
 'john.doe@example.com',
 'topic',
 'body'
)
 assert res == {}

Unless you have an SMTP server running locally you will see the following output
when running pytest:

$ py.test -v --tb line
======================= test session starts =========================
platform darwin -- Python 3.9.2, pytest-6.2.2, py-1.10.0, pluggy-0.13.1
-- .../Expert-Python-Programming-Fourth-Edition/.venv/bin/python
cachedir: .pytest_cache
pytest-mutagen-1.3 : Mutations disabled
rootdir: .../Expert-Python-Programming-Fourth-Edition/Chapter 10/05 -
Mocks and unittest.mock module
plugins: mutagen-1.3
collected 1 item

test_mailer.py::test_send FAILED [100%]

============================ FAILURES ===============================
/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/socket.
py:831: ConnectionRefusedError: [Errno 61] Connection refused
======================= short test summary info =======================
FAILED test_mailer.py::test_send - ConnectionRefusedError: [Errno 61...
======================== 1 failed in 0.05s ==========================

There go our hopes. The send function failed with a ConnectionRefusedError
exception. If we don't want to run the SMTP server locally or send real messages
by connecting to a real SMTP server, we will have to find a way to substitute the
smtplib.SMTP implementation with a fake object.

The --tb parameter of the py.test command can be used to
control the length of the traceback output on test failures. Here we
used --tb line to receive one-line tracebacks. Other values are
auto, long, short, native, and no.

Testing and Quality Automation

[408]

In order to achieve our goal, we will use two techniques:

• Monkey patching: We will modify the smtplib module on the fly during the
test run in order to trick the send() function into using a fake object in place
of the smtplib.SMTP class.

• Object mocking: We will create a universal mock object that can act as a fake
for absolutely any object. We will do that just to streamline our work.

Before we explain both techniques in more detail, let's take a look at an example test
function:

from unittest.mock import patch
from mailer import send

def test_send():
 sender = "john.doe@example.com"
 to = "jane.doe@example.com"
 body = "Hello jane!"
 subject = "How are you?"

 with patch('smtplib.SMTP') as mock:
 client = mock.return_value
 client.sendmail.return_value = {}

 res = send(sender, to, subject, body)

 assert client.sendmail.called
 assert client.sendmail.call_args[0][0] == sender
 assert client.sendmail.call_args[0][1] == to
 assert subject in client.sendmail.call_args[0][2]
 assert body in client.sendmail.call_args[0][2]
 assert res == {}

The unittest.mock.path context manager creates a new unittest.mock.Mock class
instance and substitutes it under a specific import path. When the send() function
will try to access the smtplib.SMTP attribute, it will receive the mock instance instead
of the SMTP class object.

Mocks are quite magical. If you try to access any attribute of a mock outside of
the set of names reserved by the unittest.mock module, it will return a new mock
instance. Mocks can also be used as functions and, when called, also return a new
mock instance.

Chapter 10

[409]

The send() function expects stmptlib.SMTP to be a type object, so it will use the
SMTP() call to obtain an instance of the SMTP client object. We use mock.return_
value (return_value is one of the reserved names) to obtain the mock of that client
object and control the return value of the client.sendmail() method.

After the execution of the send() function, we used a couple of other reserved names
(called and call_args) to verify whether the client.sendmail() method was called
and to inspect the call arguments.

The patch() context manager from the unittest.mock module is one way of
dynamically monkey patching import paths during the test run. It can be also used
as a decorator. It is quite an intricate feature, so it is not always easy to patch what
you want. Also, if you want to patch several objects at once it will require a bit of
nesting, and that may be quite inconvenient.

pytest comes with an alternative way to perform monkey patching. It comes with a
built-in monkeypatch fixture that acts as a patching proxy. If we would like to rewrite
the previous example with the use of the monkeypatch fixture, we could do the
following:

import smtplib
from unittest.mock import Mock
from mailer import send

def test_send(monkeypatch):
 sender = "john.doe@example.com"
 to = "jane.doe@example.com"
 body = "Hello jane!"
 subject = "How are you?"

 smtp = Mock()
 monkeypatch.setattr(smtplib, "SMTP", smtp)
 client = smtp.return_value
 client.sendmail.return_value = {}

Note that what we did here probably isn't a good idea, as we
just retraced what the send() function's implementation does.
You should avoid doing so in your own tests because there's no
purpose in a test that just paraphrases the implementation of the
tested function. Regardless, this was more to present the abilities
of the unittest.mock module than to show how tests should be
written.

Testing and Quality Automation

[410]

 res = send(sender, to, subject, body)

 assert client.sendmail.called
 assert client.sendmail.call_args[0][0] == sender
 assert client.sendmail.call_args[0][1] == to
 assert subject in client.sendmail.call_args[0][2]
 assert body in client.sendmail.call_args[0][2]
 assert res == {}

The monkey patching and mocks can be easily abused. That happens especially
often when writing tests after the implementation. That's why mocks and monkey
patching should be avoided if there are other ways of reliably testing software.
Otherwise, you may end up with a project that has a lot of tests that are just empty
shells and do not really verify software correctness. And there is nothing more
dangerous than a false sense of security. There is also a risk that your mocks will
assume behavior that is different from reality.

In the next section we will discuss the topic of quality automation, which dovetails
with TDD.

Quality automation
There is no arbitrary scale that can say definitely if some code's quality is bad or
good. Unfortunately, the abstract concept of code quality cannot be measured and
expressed in the form of numbers. Instead, we can measure various metrics of
the software that are known to be highly correlated with the quality of code. The
following are a few:

• The percentage of code covered by tests
• The number of code style violations
• The amount of documentation
• Complexity metrics, such as McCabe's cyclomatic complexity
• The number of static code analysis warnings

Many projects use code quality testing in their continuous integration workflows. A
good and popular approach is to test at least the basic metrics (test coverage, static
code analysis, and code style violations) and not allow the merging of any code to
the main branch that scores poorly on these metrics.

In the following sections, we will discuss some interesting tools and methods that
will allow you to automate the evaluation of select code quality metrics.

Chapter 10

[411]

Test coverage
Test coverage, also known as code coverage, is a very useful metric that provides
objective information on how well some given source code is tested. It is simply a
measurement of how many and which lines of code are executed during the test run.
It is often expressed as a percentage, and 100% coverage means that every line of
code was executed during tests.

The most popular code coverage tool for measuring Python code is the coverage
package, and it is freely available on PyPI. Its usage is very simple and consists only
of two steps:

1. Running the test suite using the coverage tool
2. Reporting the coverage report in the desired format

The first step is to execute the coverage run command in your shell with the path
to your script/program that runs all the tests. For pytest, it could be something like
this:

$ coverage run $(which pytest)

Another way to invoke coverage run is using the -m flag, which specifies the
runnable module. This is similar to invoking runnable modules with python -m. Both
the pytest package and the unittest module provide their test runners as runnable
modules:

$ python -m pytest
$ python -m unittest

So, in order to run test suites under the supervision of the coverage tool, you can use
the following shell commands:

$ coverage run -m pytest
$ coverage run -m unittest

The which command is a useful shell utility that returns in
standard output the path to the executable of the other command.
The $() expression can be used in many shells as a subexpression
to substitute the command output into the given shell statement as
a value.

Testing and Quality Automation

[412]

By default, the coverage tool will measure the test coverage of every module
imported during the test run. It may thus also include external packages installed
in a virtual environment for your project. You usually want to only measure the test
coverage of the source code of your own project and exclude external sources. The
coverage command accepts the --source parameter, which allows you to restrict the
measurement to specific paths as in the following example:

$ coverage run --source . -m pytest

During the test run, the coverage tool will create a .coverage file with the
intermediate results of the coverage measurement. After the run you can review the
results by issuing the coverage report command.

To see how coverage measurement works in practice, let's say that we decided to
do an ad hoc extension of one of the classes mentioned in the pytest's fixtures section
but we didn't bother to test it properly. We would add the count_keys() method to
CounterClass as in the following example:

class CounterBackend(ViewsStorageBackend):
 def __init__(self):
 self._counter = Counter()

 def increment(self, key: str):
 self._counter[key] += 1

 def most_common(self, n: int) -> Dict[str, int]:
 return dict(self._counter.most_common(n))

 def count_keys(self):
 return len(self._counter)

The coverage tool allows you to specify some configuration flags
in the setup.cfg file. The example contents of setup.cfg for the
above coverage run invocation would be as follows:

[coverage:run]
source =
 .

Chapter 10

[413]

This count_keys() method hasn't been included in our interface declaration (the
ViewsStorageBackend abstract base class), so we didn't anticipate its existence when
writing our test suite.

Let's now perform a quick test run using the coverage tool and review the overall
results. This is the example shell transcript showing what we could potentially see:

$ coverage run –source . -m pytest -q
................

[100%]
16 passed in 0.12s
$ coverage report -m
Name Stmts Miss Cover Missing
--
backends.py 21 1 95% 19
interfaces.py 7 0 100%
test_backends.py 39 0 100%
--
TOTAL 67 1 99%

As we can see, all the tests have passed but the coverage report showed that the
backends.py module is 95% covered by tests. This means that 5% of lines haven't been
executed during the test run. This highlights that there is a gap in our test suite.

The Missing column (thanks to the -m flag of the coverage report command) shows
the numbers of lines that were missed during the test run. For small modules with
high coverage, it is enough just to locate missing coverage gaps. When coverage is
very low, you will probably want a more in-depth report.

All parameters and flags after the -m <module> parameter in the
coverage run command will be passed directly to the runnable
module invocation. Here the -q flag is a pytest runner flag saying
that we want to obtain a short (quiet) report of the test run.

Testing and Quality Automation

[414]

The coverage tool comes with a coverage html command that will generate an
interactive coverage report in HTML format:

Figure 10.1: Example HTML coverage report highlighting coverage gaps

Test coverage is a very good metric that has high correlation with overall quality of
code. Projects with low test coverage will statistically have more quality problems
and defects. Projects with high coverage will usually have fewer defects and quality
problems, assuming that tests are written according to the good practices highlighted
in the principles of test-driven development section.

Even projects with 100% coverage can behave unpredictably
and be riddled with notorious bugs. In such situations, it may be
necessary to use techniques that could validate the usefulness of
existing test suites and uncover missed testing conditions. One
such technique is mutation testing, discussed in the Mutation
testing section.

Chapter 10

[415]

Still, it is very easy to write meaningless tests that greatly increase test coverage.
Always review the test coverage results of new projects with great care and don't
treat the results as a definitive statement of project code quality.

Also, software quality is not only about how precisely software is tested but also
about how easy it is to read, maintain, and extend. So, it is also about code style,
common conventions, code reuse, and safety. Thankfully, measurement and
validation of those programming areas can be automated to some extent.

Let's start with code style automation and linters, as those are the most common
examples of quality automation used by professional Python programmers.

Style fixers and code linters
Code is simply harder to read than it is to write. That's true regardless of the
programming language. It is less likely for a piece of software to be high quality if it
is written inconsistently or with bizarre formatting or coding conventions. This is not
only because it will be hard to read and understand but also because it will be hard
to extend and maintain at a constant pace, and software quality concerns both the
present state of code and its possible future.

To increase consistency across the codebase, programmers use tools that can verify
the code style and various coding conventions. These tools are known as linters.
Some such tools can also search for seemingly harmless but potentially problematic
constructs, which include the following:

• Unused variables or import statements
• Access to protected attributes from outside of the hosting class
• Redefining existing functions
• Unsafe use of global variables
• Invalid order of except clauses
• Raising bad (non-exception) types

In this section we have used the coverage tool in a "classic" way.
If you use pytest you can streamline the coverage measurement
using the pytest-cov plugin, which can automatically add a
coverage run to every test run. You can read more about pytest-
cov at https://github.com/pytest-dev/pytest-cov.

https://github.com/pytest-dev/pytest-cov

Testing and Quality Automation

[416]

Although linter is an umbrella term used for any tool that flags style errors/
inconsistencies as well as suspicious and potentially dangerous code constructs, in
recent years we have seen the ongoing specialization of linters. There are two main
groups of linters commonly found in the Python community:

• Style fixers: These are linters that focus on coding conventions and enforce
specific styling guidelines. For Python, this can be PEP 8 guidelines or any
arbitrary coding conventions. Style fixers are able to find styling errors and
apply fixes automatically. Examples of some popular Python style fixers
are black, autopep8, and yapf. There are also highly specialized style fixers
that focus only on one aspect of code style. A prime example is isort, which
focuses on sorting import statements.

• Classic linters: These are linters that focus more on suspicious/dangerous
constructs that may lead to bugs and/or undefined behaviors, although they
can also include rulesets for specific style conventions. Classic linters usually
work in a complain-only mode. They are able to flag issues but aren't able to
fix those issues automatically. Examples of popular classic Python linters are
pylint and pyflakes. A common style-only classic linter is pycodestyle.

Both style fixers and classic linters are indispensable when writing high-quality
software, especially for professional use. Popular classic linters like pyflakes
and pylint have a plethora of rules for errors, warnings, and automatic
recommendations, and the list of rules is ever-expanding.

A large collection of rules means that introducing one of these linters to a preexisting
large project usually requires some tuning to match common coding conventions.
You may find some of these rules quite arbitrary (like default line lengths, specific
import patterns, or maximum function argument numbers) and decide to silence
some of the default checks. That requires a bit of effort, but it is an effort that really
pays off in the long term.

Anyway, configuring linters is quite a tedious task, so we won't dive any deeper
into that. Both pylint and pyflakes have great documentation that describes their
use clearly. Definitely more exciting than classic linters are style fixers. They usually
require very little configuration or no configuration at all.

There are also some experimental hybrid linters focusing
on auto-fixing suspicious code constructs, like autoflake.
Unfortunately, due to the delicate nature of those
suspicious constructs (like unused import statements or
variables), it is not always possible to perform a safe fix
without introducing side effects. Those fixers should be
used with great care.

Chapter 10

[417]

They can bring a lot of consistency to an existing codebase with just a single
command execution. We will see how it works on the examples of the code bundle
for this book.

All examples in this book are written usually according to the PEP 8 code style. Still
being constrained by the medium, we had to make a few tweaks just to make sure
the code samples are clear, concise, and read nicely on paper. These tweaks were as
follows:

• Using a single empty new line instead of two whenever possible: There are
places where PEP 8 recommends two (mostly for the separation of functions,
methods, and classes). We decided to use one just to save space and avoid
breaking longer code examples over two pages.

• Using a lower characters-per-line amount: The PEP 8 line width limit is 79
characters. It's not a lot, but it turns out that it's still too much for a book.
Books typically have a portrait format and the standard 79-80 characters in
monotype font would usually not fit a single line in print. Also, some readers
may use ebook readers where the author has no control over the display
of code samples. Using shorter lines makes it more likely that examples on
paper and ebook readers will look the same.

• Not grouping imports into sections: PEP 8 suggests grouping imports for
standard library modules, third-party modules, and local modules and
separating them with a single newline. That makes sense for code modules
but in a book format, where we rarely use more than two imports per
example, it would only introduce noise and waste precious page space.

These small deviations from the PEP 8 guideline are definitely justified for the book
format. But the same code samples are also available in the Git repository dedicated
to the book. If you were to open those samples in your favorite IDE just to see the
code unnaturally compacted to the book format, you would probably feel a bit
uneasy. It was thus necessary to include the code bundle in the format that is best
for computer display.

The book code bundle includes over 100 Python source files, and writing them in
two styles independently would be error-prone and cost us a lot of time. So, what
did we do instead? We worked on the book samples in the Git repository using the
informal book format. Every chapter was reviewed by multiple editors, so some
examples had to be updated a few times. When we knew that everything was
correct and working as expected, we simply used the black tool to discover all style
violations and automatically apply fixes.

Testing and Quality Automation

[418]

The usage of the black tool is pretty straightforward. You invoke it with the black
<sources> command, where <sources> is a path to the source file or directory
containing the source files you want to reformat. To reformat all source files in the
current working directory, you can use:

$ black .

When you run black over the code bundle for this book, you will see output like the
following:

(...)
reformatted /Users/swistakm/dev/Expert-Python-Programming-Fourth-
Edition/Chapter 8/01 - One step deeper: class decorators/autorepr.py
reformatted /Users/swistakm/dev/Expert-Python-Programming-Fourth-
Edition/Chapter 6/07 - Throttling/throttling.py
reformatted /Users/swistakm/dev/Expert-Python-Programming-Fourth-
Edition/Chapter 8/01 - One step deeper: class decorators/autorepr_
subclassed.py
reformatted /Users/swistakm/dev/Expert-Python-Programming-Fourth-
Edition/Chapter 7/04 - Subject-based style/observers.py
reformatted /Users/swistakm/dev/Expert-Python-Programming-Fourth-
Edition/Chapter 8/04 - Using __init__subclass__ method as alternative
to metaclasses/autorepr.py
reformatted /Users/swistakm/dev/Expert-Python-Programming-Fourth-
Edition/Chapter 9/06 - Calling C functions using ctypes/qsort.py
reformatted /Users/swistakm/dev/Expert-Python-Programming-Fourth-
Edition/Chapter 8/04 - Using __init__subclass__ method as alternative
to metaclasses/autorepr_with_init_subclass.py
All done! ✨ 🍰🍰 ✨

64 files reformatted, 37 files left unchanged.

What would otherwise have cost us many hours of mundane work, thanks to the
black tool, was done in just a few seconds.

Of course, you can't rely on every developer in the project consistently running black
for every change committed to the central code repository. That's why the black tool
can be run in check-only mode using the --check flag. Thanks to this, black can also
be used as a style verification step in shared build systems, providing the continuous
integration of changes.

The actual output of the black command was a few times longer
and we had to truncate it substantially.

Chapter 10

[419]

Tools like black definitely increase the quality of code by ensuring effortless
and consistent formatting of code. Thanks to this, code will be easier to read and
(hopefully) easier to understand. Another advantage is that it saves a lot of time
that otherwise would be wasted on countless code formatting debates. But that's
only a small aspect of the quality spectrum. There's no guarantee that consistently
formatted code will have fewer bugs or will be visibly more maintainable.

When it comes to defect discovery and maintainability, classic linters are generally
much better than any automated fixer. One subgroup of classic linters is especially
great at finding potentially problematic parts of code. These are linters that are able
to perform static type analysis. We will take a closer look at one of them in the next
section.

Static type analysis
Python isn't statically typed but has voluntary type annotations. This single feature,
with the help of highly specialized linters, can make Python code almost as type-safe
as classical statically typed languages.

The voluntary nature of typing annotations has also another advantage. You can
decide whether to use type annotations or not at any time. Typed arguments,
variable functions, and methods are great for consistency and avoiding silly mistakes
but can get in your way when you attempt to do something unusual. Sometimes
you just need to add an extra attribute to a preexisting object instance using
monkey patching, or hack through a third-party library that doesn't seem to want to
cooperate. It is naturally easier to do so if the language doesn't enforce type checks.

The leading type of static checker for Python is currently mypy. It analyzes functions
and variable annotations that can be defined using a type hinting hierarchy from the
typing module. In order to work, it does not require you to annotate the whole code
with types. This characteristic of mypy is especially great when maintaining legacy
codebases as typing annotations can be introduced gradually.

Like with other linters, the basic usage of mypy is pretty straightforward. Simply write
your code (using type annotations or not) and verify its correctness with one mypy
<path> command, where <path> is a source file or a directory containing multiple
source files. mypy will recognize parts of the code that feature type annotations and
verify that the usage of functions and variables matches the declared types.

You can learn more about the typing hierarchy of Python by
reading the PEP 484 -- Type Hints document, available at https://
www.python.org/dev/peps/pep-0484/.

https://www.python.org/dev/peps/pep-0484/
https://www.python.org/dev/peps/pep-0484/

Testing and Quality Automation

[420]

Although mypy is an independent package available on PyPI, type hinting for the
purpose of static analysis is fully supported by mainstream Python development in
the form of a Typeshed project. Typeshed (available at https://github.com/python/
typeshed) is a collection of library stubs with static type definitions for both the
standard library and many popular third-party projects.

So far, we have discussed the topic of quality automation with regard to application
code. We used tests as a tool to increase overall software quality and measured test
coverage to get some understanding of how well tests have been written. What we
haven't spoken about yet is the quality of tests, and this is as important as the quality
of the code that is being tested. Bad tests can give you a false sense of security and
software quality. This can be almost as harmful as a lack of any tests at all.

Generally, the basic quality automation tools can be applied to test code as well.
This means that linters and style fixers can be used to maintain the test codebase.
But those tools do not give us any quantitative measurements of how well tests
can detect new and existing bugs. Measuring the effectiveness and quality of tests
requires slightly different techniques. One of those techniques is mutation testing.
Let's learn what that is.

Mutation testing
Having 100% test coverage in your project is indeed a satisfying thing. But the higher
it is, the quicker you will learn that it is never a guarantee of bullet-proof software.
Countless projects with high coverage discover new bugs in parts of the code that
are already covered by tests. How does that happen?

Reasons for that vary. Sometimes requirements aren't clear, and tests do not cover
what they were supposed to cover. Sometimes tests include errors. In the end, tests
are just code and like any other code are susceptible to bugs.

But sometimes bad tests are just empty shells—they execute some units of code
and compare some results but don't actually care about really verifying software
correctness. And amazingly, it is easier to fall into this trap if you really care about
quality and measure the test coverage. Those empty shells are often tests written in
the last stage just to achieve perfect coverage.

You'll find more information about mypy and its command-line
usage on the official project page at http://mypy-lang.org.

https://github.com/python/typeshed
https://github.com/python/typeshed
http://mypy-lang.org

Chapter 10

[421]

One of the ways to verify the quality of tests is to deliberately modify the code in a
way that we know would definitely break the software and see if tests can discover
the issue. If at least one test fails, we are sure that they are good enough to capture
that particular error. If none of them fails, we may need to consider revisiting the test
suite.

As possibilities for errors are countless, it is hard to perform this procedure often
and repeatedly without the aid of tools and specific methodologies. One such
methodology is mutation testing.

Mutation testing works on the hypothesis that most faults of software are introduced
by small errors like off-by-one errors, flipping comparison operators, wrong ranges,
and so on. There is also the assumption that these small mistakes cascade into larger
faults that should be recognizable by tests.

Mutation testing uses well-defined modification operators known as mutations that
simulate small and typical programmer mistakes. Examples of those can be:

• Replacing the == operator with the is operator
• Replacing a 0 literal with 1
• Switching the operands of the < operator
• Adding a suffix to a string literal
• Replacing a break statement with continue

In each round of mutation testing, the original program is modified slightly to
produce a so-called mutant. If the mutant can pass all the tests, we say that it
survived the test. If at least one of the tests failed, we say that it was killed during
the test. The purpose of mutation testing is to strengthen the test suite so that it does
not allow new mutants to survive.

All of this theory may sound a little bit vague at this point, so we will now take
a look at a practical example of a mutation testing session. We will try to test an
is_prime() function that is supposed to verify whether an integer number is a prime
number or not.

A prime number is a natural number greater than 1 that is divisible only by itself
and 1. We don't want to repeat ourselves, so there is no easy way to test the is_
prime() function other than providing some sample data. We will start with the
following simple test:

from primes import is_prime

def test_primes_true():
 assert is_prime(5)

Testing and Quality Automation

[422]

 assert is_prime(7)

def test_primes_false():
 assert not is_prime(4)
 assert not is_prime(8)

We could use some parameterization, but let's leave that for later. Let's save that in
the test_primes.py file and move to the is_prime() function. What we care about
right now is simplicity, so we will create a very naïve implementation as follows:

def is_prime(number):
 if not isinstance(number, int) or number < 0:
 return False

 if number in (0, 1):
 return False

 for element in range(2, number):
 if number % element == 0:
 return False
 return True

It may not be the most performant implementation, but it's dead simple and so
should be easy to understand. Only integers greater than 1 can be prime. We start by
checking for type and against the values 0 and 1. For other numbers, we iterate over
integers smaller than number and greater than 1. If number is not divisible by any of
those integers it means it is a prime. Let's save that function in the primes.py file.

Now it's time to evaluate the quality of our tests. There are a few mutation testing
tools available on PyPI. One that seems the simplest to use is mutmut, and we
will use it in our mutation testing session. mutmut requires you to define a minor
configuration that tells it how tests are run and how to mutate your code. It uses its
own [mutmut] section in the common setup.cfg file. Our configuration will be the
following:

[mutmut]
paths_to_mutate=primes.py
runner=python -m pytest -x

The paths_to_mutate variable specifies paths of the source files that mutmut is able to
mutate. Mutation testing in large projects can take a substantial amount of time so it
is crucial to guide mutmut on what it is supposed to mutate, just to save time.

Chapter 10

[423]

The runner variable specifies the command that is used to run tests. mutmut is
framework agnostic so it supports any type of test framework that has a runner
executable as a shell command. Here we use pytest with the -x flag. This flag tells
pytest to abort testing on the first failure. Mutation testing is all about discovering
surviving mutants. If any of the tests fail, we will already know that the mutant
hasn't survived.

Now it's time to start the mutation testing session. The mutmut tool's usage is very
similar to that of the coverage tool, so our work starts with the run subcommand:

$ mutmut run

The whole run will take a couple of seconds. After mutmut finishes validation of the
mutants, we will see the following summary of the run:

- Mutation testing starting -

These are the steps:
1. A full test suite run will be made to make sure we
 can run the tests successfully and we know how long
 it takes (to detect infinite loops for example)
2. Mutants will be generated and checked

Results are stored in .mutmut-cache.
Print found mutants with `mutmut results`.

Legend for output:
🎉🎉 Killed mutants. The goal is for everything to end up in this
bucket.
⏰ Timeout. Test suite took 10 times as long as the baseline so
were killed.
🤔🤔 Suspicious. Tests took a long time, but not long enough to be
fatal.
🙁🙁 Survived. This means your tests needs to be expanded.
🔇🔇 Skipped. Skipped.

1. Running tests without mutations
 Running...Done

2. Checking mutants
 15/15 🎉🎉 8 ⏰ 0 🤔🤔 0 🙁🙁 7 🔇🔇 0

Testing and Quality Automation

[424]

The last line shows a short summary of the results. We can get a detailed view by
running the mutmut results command. We got the following output in our session:

$ mutmut results
To apply a mutant on disk:
 mutmut apply <id>

To show a mutant:
 mutmut show <id>

Survived 🙁🙁 (7)

---- primes.py (7) ----

8-10, 12-15

The last line shows the identifiers of the mutants that survived the test. We can see
that 7 mutants survived, and their identifiers are in the 8-10 and 12-15 ranges. The
output also shows useful information on how to review mutants using the mutmut
show <id> command. You can also review mutants in bulk using the source file name
as the <id> value.

We're doing this only for illustration purposes, so we will review only two mutants.
Let's take a look at the first one with an ID of 8:

$ mutmut show 8
--- primes.py
+++ primes.py
@@ -2,7 +2,7 @@
 if not isinstance(number, int) or number < 0:
 return False

- if number in (0, 1):
+ if number in (1, 1):
 return False

 for element in range(2, number):

mutmut has modified the range values of our if number in (...) and our tests
clearly didn't catch the issue. This means that we probably have to include those
values in our testing conditions.

Chapter 10

[425]

Let's now take a look at the last mutant with an ID of 15:

$ mutmut show 15
--- primes.py
+++ primes.py
@@ -1,6 +1,6 @@
 def is_prime(number):
 if not isinstance(number, int) or number < 0:
- return False
+ return True

 if number in (0, 1):
 return False

mutmut has flipped the value of the bool literal after the type and value range checks.
The mutant survived because we included a type check but didn't test what happens
when the input value has the wrong type.

In our case all those mutants could have been killed if we included more test samples
in our tests. If we extend the test suite to cover more corner cases and invalid values,
it would probably make it more robust. The following is a revised set of tests:

from primes import is_prime

def test_primes_true():
 assert is_prime(2)
 assert is_prime(5)
 assert is_prime(7)

def test_primes_false():
 assert not is_prime(-200)
 assert not is_prime(3.1)
 assert not is_prime(0)
 assert not is_prime(1)
 assert not is_prime(4)
 assert not is_prime(8)

Testing and Quality Automation

[426]

Mutation testing is a hybrid methodology because it not only verifies the testing
quality but also can highlight potentially redundant code. For instance, if we
implement the test improvements from the above example, we will still see two
surviving mutants:

mutant 12
--- primes.py
+++ primes.py
@@ -1,5 +1,5 @@
 def is_prime(number):
- if not isinstance(number, int) or number < 0:
+ if not isinstance(number, int) or number <= 0:
 return False

 if number in (0, 1):

mutant 13
--- primes.py
+++ primes.py
@@ -1,5 +1,5 @@
 def is_prime(number):
- if not isinstance(number, int) or number < 0:
+ if not isinstance(number, int) or number < 1:
 return False

 if number in (0, 1):

Those two mutants survive because the two if clauses we used can potentially
handle the same condition. It means that the code we wrote is probably overly
complex and can be simplified. We will be able to kill those two outstanding mutants
if we collapse two if statements into one:

def is_prime(number):
 if not isinstance(number, int) or number <= 1:
 return False

 for element in range(2, number):
 if number % element == 0:
 return False
 return True

Chapter 10

[427]

Mutation testing is a really interesting technique that can strengthen the quality of
tests. One problem is that it doesn't scale well. On larger projects, the number of
potential mutants will be really big and in order to validate them, you have to run
the whole test suite. It will take a lot of time to execute a single mutation session if
you have many long-running tests. That's why mutation testing works well with
simple unit tests but is very limited when it comes to integration testing. Still, it is a
great tool for poking holes in those perfect coverage test suites.

In the past few sections, we have been focusing on systematic tools and approaches
for writing tests and quality automation. These systematic approaches create a good
foundation for your testing operations but do not guarantee that you will be efficient
in writing tests or that testing will be easy. Testing sometimes can be tedious and
boring. What makes it more fun is the large collection of utilities available on PyPI
that allows you to reduce the boring parts.

Useful testing utilities
When it comes to efficiency in writing tests, it usually boils down to handling
all those mundane or inconvenient problems like providing realistic data
entries, dealing with time-sensitive processing, or working with remote services.
Experienced programmers usually boost their effectiveness with the help of a large
collection of small tools for dealing with all these small typical problems. Let's take
a look at a few of them.

Faking realistic data values
When writing tests based on input-output data samples, we often need to provide
values that have some meaning in our application:

• Names of people
• Addresses
• Telephone numbers
• Email addresses
• Identification numbers like tax or social security identifiers

Testing and Quality Automation

[428]

The easiest way around that is to use hardcoded values. We've already done that
in the example of our test_send() function in the Mocks and unittest.mock module
section:

def test_send():
 sender = "john.doe@example.com"
 to = "jane.doe@example.com"
 body = "Hello jane!"
 subject = "How are you?"
 ...

The advantage of doing that is that whoever reads the test will be able to visually
understand the values, so it can also serve test documentation purposes. But the
problem of using hardcoded values is that it does not allow tests to efficiently search
through the vast space of potential errors. We've already seen in the Mutation testing
section how a small set of testing samples can lead to low-quality tests and a false
sense of security about your code quality.

We could of course solve this problem by parameterizing tests and using much
more realistic data samples. But this is a lot of mundane repeatable work and many
developers are not willing to do that on a larger scale.

One way around this monotony of sample data sets is using a readily available
generator of data entries that could provide realistic values. One such generator
is the faker package available on PyPI. faker comes with a built-in pytest plugin,
which provides a faker fixture that can be easily used in any of your tests. The
following is the modified part of the test_send() function that utilizes the faker
fixture:

from faker import Faker

def test_send(faker: Faker):
 sender = faker.email()
 to = faker.email()
 body = faker.paragraph()
 subject = faker.sentence()
 ...

On each run, faker will seed the test with different data samples. Thanks to this,
you are more likely to discover potential issues. Also, if you want to run the same
tests multiple times using various random values, you can use the following pytest
parameterization trick:

Chapter 10

[429]

import pytest

@pytest.mark.parametrize("iteration", range(10))
def test_send(faker: Faker, iteration: int):
 ...

pytest has dozens of data provider classes and each one has several data entry
methods. Every method can be obtained directly through the Faker class instance.
It also supports localization, so many provider classes are available in versions for
different languages.

faker can also provide date and time entries in various standards. What it can't do is
freeze time. But don't worry, we have a different package for that.

Faking time values
It may happen that for some reason you would like to change the way your
application experiences the passage of time. This could be useful in testing time-
sensitive processing like work scheduling or inspecting the automatically assigned
creation timestamps of specific objects.

You can of course always pause your application. On POSIX systems you can pause
the process with the pause() system call. In Python you can set a breakpoint using
the breakpoint() function. But that doesn't affect the passage of time. Time still
flows. Also, when the application is suspended, it cannot continue processing, so you
can't continue testing.

What we need to do instead is to trick our code into thinking that time is moving
at a different rate or is stopped at a single point without interfering with normal
execution. There is a great freezegun package on PyPI that is capable of doing
exactly that.

The usage of freezegun is quite simple. It offers a @freeze_time decorator that can be
used on a test function to freeze time at a specific date and time:

from freeze_gun import freeze_time

@freeze_time("1988-02-05 05:10:00")
def test_with_time():
 ...

Testing and Quality Automation

[430]

During the test, all calls to the standard library functions that return current time
values will return the value specified with the decorator parameter. Among other
things, this means that time.time() will return an epoch value and datetime.
datetime.now() will return a datetime object, which are both located at the same
point in time, namely 1988-02-05 05:10:00.

The freeze_time() call can also be used as a context manager. It will return a special
FrozenDateTimeFactory that allows you to precisely control the flow of time as in the
following example:

from datetime import timedelta
from freeze_gun import freeze_time

with freeze_time("1988-02-04 05:10:00") as frozen:
 frozen.move_to("1988-02-05 05:10:00")
 frozen.tick()
 frozen.tick(timedelta(hours=1))

The move_to() method moves the current time context to a designated point of time
(string-formatted or datetime object) and tick() progresses the time by a specified
interval (1 second by default).

Freezing time should of course be done really carefully. If your application actively
checks the current time with time.time() and waits until a certain time passes, you
could easily lock it in indefinite sleep.

Summary
The most important thing in developing software with TDD is always starting with
tests. That's the only way you can ensure that code units are easily testable. This also
naturally encourages good design practices like the single responsibility principle
or the inversion of control. Sticking to those principles helps in writing good and
maintainable code. And we've already seen how hard it is to test code reliably when
tests are just an afterthought.

But caring about software correctness and maintainability does not end with
testing and quality automation. These two allow us to verify the requirements we
know about and fix bugs we have discovered. We can of course deepen the testing
suite, and we've learned that mutation testing is an effective technique to discover
potential testing blindspots, but this approach has its limits.

Chapter 10

[431]

What follows next is usually the constant monitoring of the application and listening
to bug reports submitted by the users. You probably don't want to treat your users
as a free workforce and swarm them with countless bugs to discover, but in the long
run they will be the best source of insights you can get. That's both due to their scale
and the fact that they are the ones who have the most interest in having a working
piece of software.

But before your users will be able to get their hands on your application, you need
to package and ship it. That will be the sole topic of the next chapter. We will learn
how to prepare a Python package for distribution on PyPI and also discuss common
patterns for releasing web-based software and desktop applications.

[433]

11
Packaging and Distributing

Python Code
In this chapter, we will focus on ways of packaging and shipping various types of
Python packages. We will consider complete applications intended for end users
as well as libraries that are typically consumed only by software developers.

Everyone that writes software does so for a reason. You may be a hobbyist
that makes applications for fun and wants to share them with friends for their
amusement. You may be a scientist or researcher that solves an important problem
and wants to share code with other people to make their lives easier. Or you may be
a professional that writes code for a living and you want to make your application or
service available for paying customers.

Every reason for writing code is good but each one usually comes with its own
preferable way of distributing the software. In this chapter, we will discuss three
main scenarios:

• Packaging and distributing libraries
• Packaging applications and services for the web
• Creating standalone executables

At first, we will focus on packaging and distributing libraries as this is the scenario
that may support the development of other packaging and distribution flows. But
before we continue on this topic, let's first consider the technical requirements for
this chapter.

Packaging and Distributing Python Code

[434]

Technical requirements
The following are Python packages that are mentioned in this chapter that you can
download from PyPI:

• twine

• wheel

• cx_Freeze

• py2exe

• pyinstaller

Information on how to install packages is included in Chapter 2, Modern Python
Development Environments.

The code files for this chapter can be found at https://github.com/PacktPublishing/
Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%2011.

Packaging and distributing libraries
A software library is a reusable piece of code that can be used as a component of
a larger application or another library. Libraries usually focus on solving limited
sets of problems of a specific technical area, but there is no limit for library size.
For the purpose of this chapter, we will consider frameworks to be libraries too.
That's because frameworks also can be understood as components of an application,
although on a larger and more generic scale.

Libraries in Python are distributed in the form of packages (or modules). We've been
using them throughout the book already. Most of the packages that we've obtained
from PyPI in previous chapters can in fact be considered libraries. Most of the open-
source Python libraries are distributed through PyPI and that's why we will discuss
this topic through the prism of distributing open-source packages.

You should know how to create packages even if you are not interested in
distributing your code as open-source. Knowing how to make your own packages
will give you more insight into the packaging ecosystem and will help you to work
with third-party code that is available on PyPI (which you are probably using
already).

Python packaging can be a bit overwhelming at first. The main reason for that is the
confusion about proper tools for creating Python packages. Anyway, once you create
your first package, you will see that this is not as hard as it looks. Also, knowing
proper, state-of-the-art packaging tools helps a lot.

https://github.com/PacktPublishing/Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%2011
https://github.com/PacktPublishing/Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%2011

Chapter 11

[435]

But before we get to the state-of-the-art tools, let's take a closer look at the anatomy
of a Python package.

The anatomy of a Python package
The minimal distributable piece of Python code is a module, which is a single source
file ending with the .py extension. A collection of modules is called a package. While
you could theoretically distribute your Python packages and modules as a raw
source code bundle and let your users use it through the Python interpreter, it would
be really problematic for non-technical people. Even developers expect some amount
of minimal packaging that would allow them to install your application or library
using Python packaging tools like pip or Poetry.

There are several possible layouts of the source tree for a Python package that has to
be distributed on PyPI. There are a few recurring patterns and almost every package
has a few common files. It's hard to tell which layout is best so let's simply consider
the following layout, which is the authors' favorite:

.
├── packagename/
│ └── __init__.py
├── tests/
│ ├── __init__.py
│ └── conftest.py
├── bin/
├── data/
├── docs/
├── README.md
├── LICENSE
├── setup.py
├── setup.cfg
├── MANIFEST.in
└── CHANGELOG.md

The main structure of the project sources is dictated by the sub-directory layout.
Each one has its own role:

• packagename/: This is the directory holding the Python sources of the
package. This is the core of what is distributed on PyPI. Preferably, this has
exactly the same name as the name under which the package is registered
on PyPI, although many developers use dashes instead of underscores in
the PyPI registration. Usually, there's only one top-level package in the
source tree.

Packaging and Distributing Python Code

[436]

• tests/: This is the test package directory. It holds test modules and
(optionally) test sub-packages. In the example above, we see the conftest
module, which is a special test module of the pytest framework that usually
contains test fixtures and optional pytest plugins. This directory usually isn't
distributed on PyPI because the tests name is pretty common, and your test
package would likely conflict with other test packages in the site-packages
directory after the installation. If you want to distribute tests with your
package, you should namespace it by nesting it within the main package
directory (here, the packagename/ directory).

• bin/: This is a directory for shell scripts and utilities that may be helpful
in package development. It can hold, for instance, scripts for building
documentation, custom linters, or utilities aiding in the package distribution
process. These scripts are not distributed on PyPI.

• data/: This is a directory for essential data files that have to be included in
package distribution. An example could be pre-trained machine learning
models, images, or translation files.

• docs/: This is a directory for package documentation. Documentation can
take any form, but many developers use automated documentation building
systems like Sphinx or MkDocs. In such cases, the docs/ directory holds
documentation sources and configuration for those systems but not the
rendered documentation files. This directory often isn't distributed on PyPI.

Some developers prefer to put a package sources directory
and test package directory inside of an additional top-level
src/ directory. This doesn't change a lot and is rather a
matter of personal preference.

If a package has to distribute some actual shell scripts,
the common convention is to put them in the scripts/
directory.

Sphinx is a documentation generator that is used to build
official Python documentation. You can learn more about
Sphinx at https://www.sphinx-doc.org.

Sphinx is powerful but quite heavyweight. Sometimes
(especially for smaller packages) a more lightweight tool
can be a better alternative. MkDocs is a popular static site
generator that is specifically designed for building project
documentation. You can learn more about MkDocs at
https://www.mkdocs.org.

https://www.sphinx-doc.org
https://www.mkdocs.org

Chapter 11

[437]

Files outside of the above directories usually provide configuration tools or hold
metadata of the package. The suggested layout lists six files that are the essential
minimum for an open-source package:

• README.md: This file contains a minimal description and/or documentation
of the package. The .md extension denotes the Markdown markup language,
which is a popular choice with developers. The use of dedicated markup
language is fully optional and common alternative names for this file are
README or README.txt. It is a good practice to include this file in package
distribution.

• LICENSE: This file contains a software license for package users. It is usually
a plain-text file without any specific markup language. Package distribution
should include this file.

• setup.py: This is a Python package distribution script. It is used to build
package distributions and upload them to the package registry. Among other
things, it contains package metadata and definitions of extensions (if the
package provides any). It is included only in source distributions (we will
discuss them in the Types of package distributions section).

• setup.cfg: This is an optional Python package configuration file (INI-style).
It may include package metadata and default options for setup.py script
subcommands. Many Python development tools (test frameworks, linters)
use dedicated sections in this file as their own configuration too.

• MANIFEST.in: This is the template file for the package file manifest. It can
be used to tell the setup.py script which of the non-source files should be
included in the package distribution.

• CHANGELOG.md: This is an optional file with a log of all changes made to the
package up to the current release. It is a good practice to include it in the
package distribution. Short changelogs can also be included in the README
file, although for projects with frequent releases, it is usually better to have
a dedicated file for that purpose.

Another popular markup choice for documenting a
Python project is reStructuredText (denoted by the .rst
file extension). It is the default markup language of the
Sphinx engine. You can read more about reStructuredText
at https://docutils.sourceforge.io/rst.html.

https://docutils.sourceforge.io/rst.html

Packaging and Distributing Python Code

[438]

Some of those files have a very specific syntax or structure, which we will discuss
shortly. Let's take a closer look at the most important one—the setup.py script.

setup.py
The root directory of a project that has a distributable Python package contains
a setup.py script. It provides essential package metadata like version number,
description, authors, license type, or required dependency. Package metadata
is expressed as arguments to the setuptools.setup() function.

Therefore, the minimum content for the setup.py file is as follows:

from setuptools import setup

setup(
 name='mypackage',
)

Note that using a bare name argument is just enough to register the package in the
package registry but it still does not allow you to create functional distributions.
In order to create functional distributions, you will have to provide a little more
metadata that will allow the setuptools package to properly collect source files.
We will discuss the most important metadata entries later, in the Essential package
metadata section.

Many developers choose to maintain a log of changes
in a more convenient form outside of the source tree.
A popular example is the project's Releases section on
GitHub. Still, it is a good practice to include at least a
minimal log of changes with package distribution as well.

Python provides the built-in distutils module for the purpose
of code packaging, but it is actually recommended to use the
setuptools instead. The setuptools package provides a layer
of multiple enhancements over the standard distutils module.
Also, starting from Python 3.10, the distutils package will
be officially deprecated and the setuptools codebase is now
independent of the distutils module. That's why we will be
discussing the behavior of the setuptools package in this chapter.

Chapter 11

[439]

The name argument defines the full name of the package distribution. If you decide
to publish your package in a registry like PyPI, it will be registered under this exact
name. From there, the script provides several commands that can be listed with the
--help-commands option. The following is an example output:

$ python3 setup.py --help-commands
Standard commands:
 build build everything needed to install
 clean clean up temporary files from 'build' command
 install install everything from build directory
 sdist create a source distribution (tarball, zip file,
etc.)
 register register the distribution with the Python package
index
 bdist create a built (binary) distribution
 check perform some checks on the package
 upload upload binary package to PyPI

Extra commands:
 bdist_wheel create a wheel distribution
 alias define a shortcut to invoke one or more commands
 develop install package in 'development mode'

usage: setup.py [global_opts] cmd1 [cmd1_opts] [cmd2 [cmd2_opts] ...]
 or: setup.py --help [cmd1 cmd2 ...]
 or: setup.py --help-commands
 or: setup.py cmd --help

Standard commands are the built-in commands provided by distutils, whereas
extra commands are the ones provided by third-party packages, such as setuptools
or any other package that defines and registers a new command. Here, one such
extra command registered by another package is bdist_wheel, provided by the wheel
package.

The actual list of commands is longer and can vary depending on
the available setuptools extensions. It was truncated to show
only those that are most important and relevant to this chapter.

Packaging and Distributing Python Code

[440]

setup.cfg
The setup.cfg file contains default options for commands of the setup.py script.
This is very useful if the process for building and distributing the package is more
complex and requires many optional arguments to be passed to the setup.py script
commands. This setup.cfg file allows you to store such default parameters together
with your source code on a per-project basis. This will make your distribution flow
bound to the project and also provides transparency about how your package was
built/distributed to the users or your team members.

The syntax for the setup.cfg file is the same as provided by the built-in configparser
module so it is similar to the popular Microsoft Windows INI files. Here is an
example of the setup.cfg configuration file that provides some global defaults
as well as defaults for sdist and bdist_wheel commands:

[global]
quiet=1

[sdist]
formats=tar,zip

[bdist_wheel]
universal=1

The above configuration will ensure that source distributions (the sdist section) will
always be created in two formats (ZIP and TAR) and the built wheel distributions
(the bdist_wheel section) will be created as universal wheels that are independent of
the Python version. Also, most of the output will be suppressed on every command
by the global --quiet switch.

MANIFEST.in
When building a source distribution with the sdist command, the setuptools
module browses the package directory looking for files to include in the archive.
By default, setuptools will include the following files based on arguments of the
setup() function:

Note that the global quiet option is included here only for
demonstration purposes and it may not be a sensible choice to
suppress the output for every command by default. You can also
provide a global personal configuration file named .pydistutils.
cfg in your home directory.

Chapter 11

[441]

• All Python source files implied by the py_modules and packages arguments
• All extension source files listed in the ext_modules argument
• All scripts specified by the scripts argument
• All files specified by the package_data and data_files arguments
• The license files specified by the license_file and license_files arguments
• Files that match the glob pattern test/test*.py
• Files named setup.py, pyproject.toml, setup.cfg, and MANIFEST.in
• Files named README, README.txt, README.rst, and README.md

Besides that, if your package is versioned with a version control system such as
Subversion, Mercurial, or Git, there is the possibility to auto-include all version-
controlled files using additional setuptools extensions such as setuptools-svn,
setuptools-hg, and setuptools-git. Integration with other version control systems
is also possible through other custom extensions.

No matter if it uses the default built-in file collection strategy or one defined by a
custom extension, sdist will create a MANIFEST file that lists all files and will include
it in the final archive.

Although the setup() function arguments allow you to list any type of file to
be included in the package distribution, listing them one by one may not be the
most convenient option. Also, using the extensions for a specific version control
system may capture some files that you may not want to include in your package
distribution. In both cases, you can use the MANIFEST.in template to provide an extra
manifest template to automatically include or exclude files based on the file name
pattern.

Let's say you are not using any extra extensions, and you need to include in your
package distribution some files that are not captured by default. You can define a
template called MANIFEST.in in your package root directory (the same directory as
the setup.py file). This template directs the sdist command on which files to include.

The MANIFEST.in template defines one inclusion or exclusion rule per line. The
following is an example of the MANIFEST.in template that enables the inclusion of
the LICENSE file, extra textual information found in .txt files, and all Markdown-
formatted files:

include HISTORY.txt
include README.txt
include CHANGES.txt
include CONTRIBUTORS.txt
include LICENSE
recursive-include *.md

Packaging and Distributing Python Code

[442]

Essential package metadata
The most important argument of the setup() function is name. Without it, the
setuptools package will assume the UNKNOWN name, which won't allow you to easily
distinguish different package distributions.

Using just the name argument is of course not enough to provide proper and
functional packaging for your code. The most important arguments that the setup()
function can receive are as follows:

• version: This is the current version specifier of the package.
• description: This includes a short description of the package. It is usually

one sentence that explains the purpose of the package.
• long_description: This includes a full description that can be in

reStructuredText (default) or other supported markup languages.
• long_description_content_type: This defines the MIME type of the long

description; it is used to tell the package repository what kind of markup
language is used for the package description.

• keywords: This is a list of keywords that define the package and allow for
better indexing in the package repository.

• author: This is the name of the package author or organization that takes
care of it.

• author_email: This is the contact email address of the package author.
• install_requires: This lists the packages and their versions that are required

dependencies of your package. For instance, if your package requires some
other packages available on PyPI in order to work, you put their names
(and their version requirements) here.

• url: This is the project URL. It is often the URL to the site where project
sources and/or documentation are hosted.

• license: This is the name of the license (GPL, LGPL, and so on) under which
the package is distributed.

• py_modules: A list of Python modules to include in the distribution. It can be
used for simple projects that have only top-level modules that do not share
a common package namespace.

The full list of the MANIFEST.in commands can be found in
the official distutils documentation available at https://
packaging.python.org/guides/using-manifest-
in/#manifest-in-commands.

https://packaging.python.org/guides/using-manifest-in/#manifest-in-commands
https://packaging.python.org/guides/using-manifest-in/#manifest-in-commands
https://packaging.python.org/guides/using-manifest-in/#manifest-in-commands

Chapter 11

[443]

• packages: This is a list of all package names in the package distribution;
setuptools() provides a helpful function called find_packages() that can
automatically find package names to include.

• namespace_packages: This is a list of namespace packages within a package
distribution.

The above arguments are essential metadata entries that will allow you to properly
build package distributions but also attribute your code to you. Pay attention to
license information and all addresses (email and URLs) that will allow users to gain
more information about your package and terms of use or to reach you for help.

One of the important but not essential arguments is classifiers. It allows you to
categorize your application using a standardized set of software categories known
as trove classifiers. This feature is especially useful if you want to publish your
application on PyPI. Let's take a closer look at it.

Trove classifiers
PyPI provides a solution for categorizing applications with the set of classifiers called
trove classifiers. All trove classifiers form a tree-like structure. Each classifier string
defines a list of nested namespaces where every namespace is separated by the ::
substring. Their list is provided to the package definition as a classifiers argument
of the setup() function.

Here is an example list of classifiers taken from the solrq project available on PyPI:

from setuptools import setup

setup(
 name="solrq",
 # (...)

 classifiers=[
 'Development Status :: 4 - Beta',
 'Intended Audience :: Developers',
 'License :: OSI Approved :: BSD License',
 'Operating System :: OS Independent',
 'Programming Language :: Python',

The setuptools package provides a few more metadata entries
that we didn't list here. The detailed description of all package
metadata entries is described in the PEP 345 document available at
https://www.python.org/dev/peps/pep-0345/.

https://www.python.org/dev/peps/pep-0345/

Packaging and Distributing Python Code

[444]

 'Programming Language :: Python :: 2',
 'Programming Language :: Python :: 2.6',
 'Programming Language :: Python :: 2.7',
 'Programming Language :: Python :: 3',
 'Programming Language :: Python :: 3.2',
 'Programming Language :: Python :: 3.3',
 'Programming Language :: Python :: 3.4',
 'Programming Language :: Python :: Implementation :: PyPy',
 'Topic :: Internet :: WWW/HTTP :: Indexing/Search',
],
)

Trove classifiers are completely optional in the package definition but provide a
useful extension to the basic metadata available in the setup() interface. Among
others, trove classifiers may provide information about supported Python versions,
supported operating systems, the development stage of the project, or the license
under which the code is released. Many PyPI users search and browse the available
packages by categories so a proper classification helps packages to reach their target.

Trove classifiers serve an important role in the whole packaging ecosystem and
should never be ignored. There is no organization that verifies package classification,
so it is your responsibility to provide proper classifiers for your packages and not
introduce chaos to the whole package index.

At the time of writing this book, there are 756 classifiers available on PyPI that are
grouped into the following major categories:

• Development status
• Environment
• Framework
• Intended audience
• License
• Natural language
• Operating system
• Programming language
• Topic
• Typing

Chapter 11

[445]

This list is ever-growing, and new classifiers are added from time to time. It is thus
possible that the total count of them will be different at the time you read this.
The full list of currently available trove classifiers is available at https://pypi.
org/classifiers/ and can be accessed in Python code via the trove-classifiers
package available at https://github.com/pypa/trove-classifiers.

We know what the typical anatomy of a Python package is. Now it's time to discuss
various types of package distributions supported by standard Python packaging
tools.

Types of package distributions
Package distribution is a packaging artifact that wraps Python package sources,
metadata, and any additional files into a single-file archive that can be distributed to
other developers either in raw form or through the package repository.

There are generally two types of distributions for Python packages:

• Source distributions
• Built (binary) distributions

Source distributions are the simplest and most platform-independent. For pure
Python packages, it is a no-brainer. Such a distribution contains only Python sources,
and these should already be highly portable.

A more complex situation is when your package introduces some extensions written,
for example, in C. Source distributions will still work provided that the package user
has the proper development toolchain in their environment. This consists mostly of
the compiler and proper C header files. For such cases, the built distribution format
may be better suited because it can provide already built extensions for specific
platforms.

Creating source distributions is handled by the sdist command of the setup.py
script. That's why they are also commonly referred to as sdist distributions. They
are the easiest to create so let's take a look at them first.

sdist distributions
The sdist command is the simplest of the setup.py script distribution commands.
It creates a release tree and copies everything that is needed to run the package to
it. This tree is then archived in one or many archive files (often, it just creates one
tarball). The archive is basically a copy of the source tree.

https://pypi.org/classifiers/
https://pypi.org/classifiers/
https://github.com/pypa/trove-classifiers

Packaging and Distributing Python Code

[446]

This command is the easiest way to distribute a package that would be independent
of the target system. It creates a dist/ directory for storing the archives to be
distributed. Before you create the first distribution, you have to provide a setup()
call with a version number. If you don't, the setuptools module will assume the
default value of 0.0.0.

To see how it works in action, let's consider the following example of the setup.py
script:

from setuptools import setup

setup(name='acme.sql', version='0.1.1')

Let's now run the sdist command for the acme.sql package in the 0.1.1 version:

$ python setup.py sdist

You should see the following output:

running sdist
...
creating dist
tar -cf dist/acme.sql-0.1.1.tar acme.sql-0.1.1
gzip -f9 dist/acme.sql-0.1.1.tar
removing 'acme.sql-0.1.1' (and everything under it)

If we now list the contents of the dist/ directory, we should see the following
output:

$ ls dist/
acme.sql-0.1.1.tar.gz

The version specifier is used in the name of the archive. Now the archive can be
distributed and installed on any system that has Python. In the sdist distribution,
if the package contains C libraries or extensions, the target system is responsible for
compiling them. This is very common for Linux-based systems or macOS because
they commonly provide a compiler. But it is less usual to have it working out of the
box under Windows.

On Windows, the default archive type will be ZIP.

Chapter 11

[447]

If a package with extensions is intended to be used on several platforms, it should
always be distributed with a prebuilt distribution format as well.

Prebuilt distributions are created with a different set of setup.py script commands.
Let's take a look at them.

bdist and wheel distributions
To be able to distribute a prebuilt distribution, setuptools provides the build
command. This command compiles the package in the following four steps:

• build_py: This builds pure Python modules by byte-compiling them and
copying them into the build folder.

• build_clib: This builds C libraries, when the package contains any, using the
Python compiler and creating a static library in the build folder.

• build_ext: This builds C extensions and puts the result in the build folder
like build_clib.

• build_scripts: This builds the modules that are marked as scripts. It also
changes the interpreter path when the first line was set (using the !# prefix)
and fixes the file mode so that it is executable.

Each of these steps is a command that can also be invoked independently. The result
of the compilation process is a build/ folder that contains everything needed for
the package to be installed. There's no cross-compilation option in the setuptools
package. This means that the result of the command is always specific to the system
it was built on.

When some C extensions have to be created, the build process uses the default
system compiler and the Python header file (Python.h). For a packaged Python
distribution, an extra system package for your system distribution is probably
required. At least in popular Linux distributions, it is often named python-dev or
python3-dev. It contains all the necessary header files for building Python extensions.

The C compiler used in the build process is the compiler that is the default for
your operating system. For a Linux-based system or macOS, this would be gcc or
clang respectively. For Windows, Microsoft Visual C++ can be used (there's a free
command-line version available). The open-source project MinGW can be used as
well. The compiler choice can also be configured through setuptools.

The build command is used by the bdist command to build a binary distribution. It
invokes build and all the dependent commands and then creates an archive in the
same way as sdist does.

Packaging and Distributing Python Code

[448]

Let's create a binary distribution for acme.sql as follows:

$ python setup.py bdist

If run on macOS, the output could be as follows:

running bdist
running bdist_dumb
running build
...
running install_scripts
tar -cf dist/acme.sql-0.1.1.macosx-10.3-fat.tar .
gzip -f9 acme.sql-0.1.1.macosx-10.3-fat.tar
removing 'build/bdist.macosx-10.3-fat/dumb' (and everything under it)

If we now list the contents of the dist/ directory, we should see the following
output:

$ ls dist/
acme.sql-0.1.1.macosx-10.3-fat.tar.gz acme.sql-0.1.1.tar.gz

Notice that the newly created archive's name contains the name of the system
and the distribution it was built on (macOS 10.3). The same command invoked on
Windows will create a different system-specific distribution archive:

C:\acme.sql> python.exe setup.py bdist
...

C:\acme.sql> dir dist
25/02/2008 08:18 <DIR> .
25/02/2008 08:18 <DIR> ..
25/02/2008 08:24 16 055 acme.sql-0.1.1.win32.zip
 1 File(s) 16 055 bytes
 2 Dir(s) 22 2222 2 D free

If a package contains C code, apart from a source distribution,
it's important to release as many different binary distributions
as possible. At the very least, a Windows binary distribution is
important for those who most probably don't have a C compiler
installed.

Chapter 11

[449]

A binary release contains all resources required to use the package on the intended
system. It mainly contains a folder that is copied into Python's site-packages folder.
It may also contain cached bytecode files (the __pycache__/*.pyc files).

The other kind of build distributions are wheels provided by the wheel package.
When installed (for example, using pip), the wheel package adds a new bdist_
wheel command to the setup.py script. It allows the creation of platform-specific
distributions (currently only for Windows, macOS, and Linux) that are better
alternatives to normal bdist distributions. It was designed to replace another
distribution format introduced earlier by setuptools, called eggs. Eggs are now
obsolete, so won't be featured in the book. The list of advantages of using wheels
is quite long. Here are the ones that are mentioned on the Python Wheels page
available at http://pythonwheels.com/:

• Faster installation for pure Python and native C extension packages.
• Avoids arbitrary code execution for installation (avoids setup.py).
• Installation of a C extension does not require a compiler on Windows,

macOS, or Linux.
• Allows better caching for testing and continuous integration.
• Creates .pyc files as part of the installation to ensure they match the Python

interpreter used.
• More consistent installs across platforms and machines.

According to Python Packaging Authority (PyPA) recommendations, wheels should
be your default distribution format. For a very long time, the binary wheels for Linux
were not supported, but that has changed, fortunately. Binary wheels for Linux are
called manylinux wheels.

The process of building manylinux wheels is unfortunately not as straightforward
as for Windows and macOS binary wheels. For this kind of wheel, PyPA maintains
special Docker images that serve as a ready-to-use build environment. You can find
sources of these images and detailed information on how to use them on the project's
GitHub page available at https://github.com/pypa/manylinux.

PyPA is a community formed to bring back order and organization
to the Python packaging ecosystem. The Python Packaging
User Guide (https://packaging.python.org), maintained by
PyPA, is the authoritative source of information about the latest
packaging tools and best practices.

http://pythonwheels.com/
https://github.com/pypa/manylinux
https://packaging.python.org

Packaging and Distributing Python Code

[450]

Registering and publishing packages
Packages would be useless without an organized way to store, upload, and
download them. The Python Package Index is the main source of open-source
packages in the Python community. Anyone can freely upload new packages and the
only requirement is to register on the PyPI site at https://pypi.python.org/pypi.

You are not, of course, limited to only this index and all Python packaging tools
support the usage of alternative package repositories. This is especially useful for
distributing closed-source code among internal organizations or for deployment
purposes. Here we focus mainly on open-source uploads to PyPI, with only a brief
mention of how to specify alternative repositories.

The easiest way to upload a package is to use the following upload command of the
setup.py script:

$ python setup.py <dist-commands> upload

Here, <dist-commands> is a list of commands that creates distributions to upload.
Only distributions created during the same setup.py execution will be uploaded to
the repository. So, if you want to upload the source distribution, built distribution,
and wheel package all at once, then you need to issue the following command:

$ python setup.py sdist bdist bdist_wheel upload

When uploading using setup.py, you cannot reuse distributions that were already
built during previous distribution command executions and you are instead forced
to rebuild them on every upload. This may be inconvenient for large or complex
projects where the creation of the actual distribution may take a considerable amount
of time. Notable examples are packages leveraging Python/C API extensions (see
Chapter 9, Bridging Python with C and C++).

Another problem with setup.py upload is that it could use plain-text HTTP or
unverified HTTPS connections on some older Python versions or if your system is
not configured properly. This is why Twine is recommended as a secure replacement
for the setup.py upload command.

Packages are bound to the user, so, by default, only the user that
registered the name of the package is its admin and can upload
new distributions. This could be a problem for bigger projects, so
there is an option to mark other users as package maintainers so
that they are able to upload new distributions too.

https://pypi.python.org/pypi

Chapter 11

[451]

Twine is the utility for interacting with PyPI that currently serves only one
purpose—securely uploading packages to the repository. It supports any packaging
format and always ensures that the connection is secure. It also allows you to upload
files that were already created, so you are able to test distributions before the release.
The following example usage of Twine still requires invoking the setup.py script for
building distributions:

$ python setup.py sdist bdist_wheel
$ twine upload dist/*

Twine of course won't guess your credentials and you need to provide them in the
special .pypirc file. The .pypirc file is a configuration file that stores information
about Python package repositories. It should be located in your home directory. The
format for this file is as follows:

[distutils]
index-servers =
 pypi
 other

[pypi]
repository: <repository-url>
username: <username>
password: <password>

[other]
repository: https://example.com/pypi
username: <username>
password: <password>

The distutils section should have the index-servers variable that lists all sections
describing all the available repositories and credentials for them. There are only the
following three variables that can be modified for each repository section:

• repository: This is the URL of the package repository (it defaults to
https://pypi.org/).

• username: This is the username for authentication in the given repository.
• password: This is the user password for authentication in the given repository

(in plain text).

Packaging and Distributing Python Code

[452]

Note that storing your repository password in plain text may not be the wisest
security choice. You can always leave it blank. Twine will prompt you for credentials
when it needs them.

The .pypirc file should be respected by every packaging tool built for Python. While
this may not be true for every packaging-related utility out there, it is supported by
the most important ones, such as pip, twine, distutils, and setuptools.

The danger of using the .pypirc file with Twine is that Twine is by default set to
publish packages on PyPI. That may be a problem if you're working with closed-
source code and want to publish your package in a private package index. If you
forget to use the proper registry argument (the -r flag) and actually have your
.pypirc file configured to work with PyPI, you may accidentally make your closed
code accessible to the public.

Another option for the safe handling of your PyPI credentials
is to use the keyring package. It will allow Twine to interact
with your system keyring service, like Keychain for macOS
or Windows Credential Locker. You can read more about this
feature at https://twine.readthedocs.io/en/latest/index.
html#keyring-support.

One of the tools that solves multiple problems of packaging Python
code is Poetry. It doesn't require providing custom distribution
scripts (the setup.py scipts are replaced with the pyproject.toml
configuration file), is fully interactive, and allows you to specify a
dedicated package registry together with the source code of your
project. Usually, distributing packages with Poetry is as simple as
running two commands:

$ poetry build
$ poetry publish

You can learn more about building and publishing packages with
Poetry at https://python-poetry.org/docs/cli/#publish.

https://twine.readthedocs.io/en/latest/index.html#keyring-support
https://twine.readthedocs.io/en/latest/index.html#keyring-support
https://python-poetry.org/docs/cli/#publish

Chapter 11

[453]

Package versioning and dependency
management
If you have your package published on the package registry, chances are that you
will want to modify it at some point and publish a new version of it. In order to
allow developers to decide whether they want to use a new release of the package or
not, we use version specifiers to tag consecutive releases of the package.

A version specifier generally takes the form of a string composed of numbers
separated by dots (like 1.0, 3.6.5, or 4.0.0). That's why version specifiers are also
commonly referred to as version numbers. This allows for easy sorting of the version
specifiers. By convention, a higher version means a newer release. This convention
is assumed by almost every package versioning tool and allows for straightforward
updates of outdated packages to their newer version. For instance, with pip you can
install a newer package version using the -U switch as in the following example:

$ pip install -U pip
Collecting pip
 Using cached pip-21.0.1-py3-none-any.whl (1.5 MB)
Installing collected packages: pip
 Attempting uninstall: pip
 Found existing installation: pip 20.2.4
 Uninstalling pip-20.2.4:
 Successfully uninstalled pip-20.2.4
Successfully installed pip-21.0.1

In the above example, we've used pip to update itself (it is distributed as a package).
The output shows that the currently installed pip version was 20.2.4. At the time
of running this command, the most recent pip version on PyPI was 21.0.1. pip
compared those two version specifiers and decided that the one available on PyPI is
a higher version number. It uninstalled the old version and installed the new one in
the current environment.

Although package versions are usually composed only of numbers, Python allows
you to use letters in version specifiers. This allows you, for instance, to tag specific
versions as pre-releases, development releases, or post-release. Those extra version
specifier components are usually included as the last version specifier segment just
after the numeric segments.

Packaging and Distributing Python Code

[454]

The PEP 440 document (Version Identification and Dependency Specification) is the
official standard for versioning packages that, among other things, specifies the
following conventions for those special release tags:

• {a|b|rc}N: Designates the pre-release version (alpha, beta, or release-
candidate). These tags designate versions at various stages of development.
Alpha releases are the earliest stages and release-candidates are close to
being the final versions. A package can have multiple versions in any pre-
release stages and they are distinguished by raising the N number. An
example progression of pre-release versions could be: 1.0.0a1, 1.0.0a2,
1.0.0b1, and 1.0.0rc. Versions without pre-release tags are considered final
and always take precedence over pre-releases with the same number prefix.

• postN: Designates a post-release version. Post-releases are often used to
release an update that does not constitute a functional fix or enhancement.
Examples could be updates to package metadata or documentation (if it is
included in the package distribution). The same version number can have
multiple post releases and they are distinguished by raising the N number.
Post-releases can also be added on top of pre-releases. Example post-release
version specifiers could be 1.0.0-post1, 1.0.0a1.post1, and 1.0.0.a1.post2.

• devN: Designates a developmental release. Some package maintainers choose
to publish packages as part of continuous integration systems and those
developmental versions can be used to distinguish consecutive builds of
the package. The same version number can have multiple developmental
releases distinguished by raising the N number. Developmental releases can
also be added on top of pre-releases and post-releases, although this practice
is strongly discouraged on general-purpose public package indexes.

Pre-releases, post-releases, and dev-releases add some complexity to the package
versioning and thus are not used by many package maintainers. Anyway, at least
pre-releases can be a useful tool to give developers the ability to preview and
evaluate a future release of the package in their own environment.

pip does not install pre-releases and development
versions by default. If you want to install a pre-release
version, you need to use the --pre option of the pip
install command.

You can access the full version of the PEP 440 document at
https://www.python.org/dev/peps/pep-0440/.

https://www.python.org/dev/peps/pep-0440/

Chapter 11

[455]

What matters most is the final version number of the package. There are two popular
versioning strategies to decide what number to assign to the new package release:

• Semantic versioning: This strategy assumes that each numeric component
has a semantic value that allows package consumers to infer the amount and
scope of changes between two versions.

• Calendar versioning: This strategy assumes that selected numeric
components are derived from the date on which the new release was crafted
(or was supposed to be crafted). This allows users to infer the amount of
development time that has passed between two versions.

To make things easier, the community has come up with with two standards for
those versioning strategies to ease their adoption. Let's take a closer look at them.

The SemVer standard for semantic versioning
The SemVer standard assumes that a version specifier consists of, at most, three
numerical segments:

• The MAJOR segment: Changing the MAJOR segment is a sign of a backward-
incompatible change. Users updating between two major versions should
expect that their code may no longer be working properly.

• The MINOR segment: Changing the MINOR segment is a sign of new backward-
compatible feature upgrades. Users updating between two minor versions
(within the same major version) should not expect their code to become
invalid but may receive new functional enhancements.

• The PATCH segment: Changing the PATCH segment is a sign of bug fixes. Users
updating between two patch versions (within the same major and minor
versions) should expect some issues to be fixed but should not expect any
other enhancements or new features.

A proper SemVer version always includes all three segments in the following order:

MAJOR.MINOR.PATCH

For instance, version 20.2.4 of a package would mean it is on its 20th major update,
with 2 minor updates and 4 patches. According to SemVer versioning principles,
users updating from version 20.2.0 or 20.1.0 should not expect any braking
changes.

Packaging and Distributing Python Code

[456]

The full specification also covers usage of pre-release versions and build numbers
and provides guidance on communicating API changes and handling feature
deprecation policies. You can access the full specification text at https://semver.org.

CalVer for calendar versioning
CalVer is more of a versioning blueprint than a full-fledged standard (especially
when compared to SemVer). It assumes that a version specifier is composed of
segments corresponding to elements of the date associated with a particular release.

The site explaining the CalVer convention lists the following common date-based
segments:

• YYYY: Full year: 2006, 2016, 2106
• YY: Short year: 6, 16, 106
• 0Y: Zero-padded year: 06, 16, 106
• MM: Short month: 1, 2 ... 11, 12
• 0M: Zero-padded month: 01, 02 ... 11, 12
• WW: Short week (since start of year): 1, 2, 33, 52
• 0W: Zero-padded week: 01, 02, 33, 52
• DD: Short day: 1, 2 ... 30, 31
• 0D: Zero-padded day: 01, 02 ... 30, 31

This convention is best suited for projects that have a well-defined release schedule
or are somehow time-sensitive. Example time-sensitive projects are certify (a
bundle of Mozilla-curated lists of trusted root certificates that changes regularly) and
tzdata (a bundle of IANA time zone databases, see Chapter 3, New Things in Python).

There's no common format of CalVer versions and users of CalVer have to decide
on their own which version segments to use. The deciding factor is usually the
release cadence of the project. This convention can also be mixed to some extent
with semantic versioning. The pip project, for instance, used a versioning scheme
composed of YY.MINOR.PATCH segments.

All CalVer segments are based on the Gregorian calendar.

https://semver.org

Chapter 11

[457]

The official site for the CalVer convention isn't as thorough as the SemVer
specification but provides some interesting case studies and guidelines for calendar
versioning. You can find it at https://calver.org.

Installing your own packages
Working with setuptools is mostly about building and distributing packages.
However, you still need to use setuptools to install packages directly from project
sources. And the reason for that is simple. It is a good habit to test if our packaging
code works properly before submitting your package to PyPI. And the simplest way
to test it is by installing it. If you send a broken package to the repository, then in
order to re-upload it, you need to increase the version number.

Testing if your code is packaged properly before the final distribution saves you
from unnecessary version number inflation and obviously from wasting your time.

Installing packages directly from sources
Installation directly from your own sources using setuptools may be essential when
working on multiple related packages at the same time:

setup.py install

The install command installs the package in your current Python environment. It
will try to build the package if no previous build was made and then inject the result
into the filesystem directory where Python is looking for installed packages. If you
have an archive with a source distribution of some package, you can decompress it
in a temporary folder and then install it with this command. The install command
will also install dependencies that are defined in the install_requires argument.
Dependencies will be installed from PyPI.

When installing a package, an alternative to the setup.py script is to use pip. Since
it is a tool that is recommended by PyPA, you should use it even when installing a
package in your local environment just for development purposes. In order to install
a package from local sources, run the following command:

pip install <project-path>

If you want to install a package from the distribution archive, this command
becomes:

pip install <path-to-archive>

https://calver.org

Packaging and Distributing Python Code

[458]

Amazingly, the setup.py script lacks the uninstall command. Fortunately, it is
possible to uninstall any Python package using pip as follows:

pip uninstall <package-name>

Uninstalling can be a dangerous operation when attempted on system-wide
packages. This is another reason why it is so important to use virtual environments
for any development.

Installing packages through the setup.py script or the pip install command copies
the sources of the package (or contents of the distribution) to your site-packages
directory. But sometimes we want to make package sources available in a specific
environment without copying them. This method of installation is called editable-
mode installation and is especially useful when working on multiple related
packages that have independent source trees.

Installing packages in editable mode
Packages installed with setup.py install are copied to the site-packages directory
of your current Python environment. This means that whenever you make a change
to the sources of that package, you are required to reinstall it. This is often a problem
during intensive development because it is very easy to forget about the need to
perform the installation again.

This is why setuptools provides an extra develop command that allows you to
install packages in the development mode. This command creates a special link to
project sources in the deployment directory (site-packages) instead of copying
the whole package there. Package sources can be edited without the need for
reinstallation and are available in sys.path as if they were installed normally.

pip also allows you to install packages in such a mode. This installation option
is called editable mode and can be enabled with the -e parameter in the install
command as follows:

pip install -e <project-path>

Once you install the package in your environment in editable mode, you can freely
modify the installed package in place and all the changes will be immediately visible
without the need to reinstall the package.

Using editable mode helps when you need to work with multiple related packages
without the need to reinstall them continuously. Another practice that is helpful in
projects composed of multiple related packages is using namespace packages.

Chapter 11

[459]

Namespace packages
The Zen of Python says the following about namespaces:

Namespaces are one honking great idea – let's do more of those!

And this can be understood in at least two ways. The first is a namespace in the
context of the language. We all use the following namespaces without even knowing:

• The global namespace of a module
• The local namespace of the function or method invocation
• The class namespace

The other kind of namespaces can be provided at the packaging level. These are
namespace packages. This is often an overlooked feature of Python packaging that
can be very useful in structuring the package ecosystem in your organization or in a
very large project.

Namespace packages can be understood as a way of grouping related packages,
where each of these packages can be installed independently.

Namespace packages are especially useful if you have components of your
application developed, packaged, and versioned independently but you still want
to access them from the same namespace. This also helps to make clear to which
organization or project every package belongs. For instance, for some imaginary
Acme company, the common namespace could be acme. Therefore, this organization
could create the general acme namespace package that could serve as a container for
other packages from this organization. For example, if someone from Acme wants
to contribute to this namespace with, for example, an SQL-related library, they can
create a new acme.sql package that registers itself in the acme namespace.

It is important to know what's the difference between normal and namespace
packages and what problem they solve. Normally (without namespace packages),
you would create a package called acme and a sql sub-package with the following
file structure:

acme/
├── acme
│ ├── __init__.py
│ └── sql
│ └── __init__.py
└── setup.py

Packaging and Distributing Python Code

[460]

Whenever you want to add a new sub-package, let's say templating, you are forced
to include it in the source tree of acme as follows:

acme/
├── acme
│ ├── __init__.py
│ ├── sql
│ │ └── __init__.py
│ └── templating
│ └── __init__.py
└── setup.py

Such an approach makes the independent development of acme.sql and acme.
templating almost impossible. The setup.py script will also have to specify all
dependencies for every sub-package. It is impossible (or at least very hard) to have
an optional installation of some of the acme components. Also, with enough sub-
packages, it may be hard to avoid dependency conflicts.

With namespace packages, you can store the source tree for each of these sub-
packages independently as follows:

acme.sql/
├── acme
│ └── sql
│ └── __init__.py
└── setup.py

acme.templating/
├── acme
│ └── templating
│ └── __init__.py
└── setup.py

And you can also register them independently in PyPI or any package index you
use. Users can choose which of the sub-packages they want to install from the acme
namespace, but they never install the general acme package (it doesn't even have to
exist). Example pip usage would be as follows:

$ pip install acme.sql acme.templating

Note that the setuptools.find_packages() function does not find namespace
packages. If you want your setup.py script to collect namespace packages
automatically instead of listing them individually, you need to use the setuptools.
find_namespace_packages() instead.

Chapter 11

[461]

This function will automatically discover namespace packages in directory structures
as presented in the previous example.

Packages and namespace packages are concerned mostly with sharing code
between projects that run in various environments. If you install such a package in
a given environment, it will be immediately available for imports. But that's not the
only purpose of Python packaging. Many Python projects provide shell utilities,
commands, or even applications with graphical interfaces. A great example is the
pip command distributed with the pip package. You can use the Python packaging
infrastructure to surface your application scripts and executable modules in the
target installation environment the same way the pip package does. Let's see how to
do this.

Package scripts and entry points
Every Python module can be executed as if it were a program using the python -m
command. This includes standard library modules as well as modules from packages
installed by pip. For instance, the following is an invocation of the json.tool module
from the standard library that allows you to format JSON text in your shell:

$ echo '{"name": "John Doe", "age": 42}' | python -m json.tool
{
 "name": "John Doe",
 "age": 42
}

That's a simple way to execute any module from the installed package, but not the
most convenient one. Most of all, users of your package will have to know what
the structure of modules is inside of your application and know which modules
are supposed to be run in the shell. Also, users will have to type the python -m
command, which adds a bit of redundancy to their scripts. That's why when using
pip, we'd rather invoke the pip command than python -m pip.

When writing your own Python packages, you can do the same as what the pip
package does and provide your own custom shell command that will be installed
together with your package. There are two ways to do that:

• Through the scripts argument of the setuptools.setup() function
• Through the entry_points argument of the setuptools.setup() function

Packaging and Distributing Python Code

[462]

The scripts argument is the most basic method of providing shell commands
through your package. The argument is already supported by the distutils module
(the standard library module that setuptools is based on) so it is quite simple. It
accepts a list of script file paths that are to be distributed with your package. After
package installation, these scripts become available in one of the PATH directories
associated with your Python environment.

To see how it works, we will reuse the example of the script that finds imports within
Python sources from Chapter 3, New Things in Python. The full code and detailed
explanation can be found in that chapter. We will start by creating the findimports.
py file with the following contents:

import os
import re
import sys

import_re = re.compile(r"^\s*import\s+\.{0,2}((\w+\.)*(\w+))\s*$")
import_from_re = re.compile(
 r"^\s*from\s+\.{0,2}((\w+\.)*(\w+))\s+import\s+(\w+|*)+\s*$"
)

def main():
 if len(sys.argv) != 2:
 print(f"usage: {os.path.basename(__file__)} file-name")
 sys.exit(1)

 with open(sys.argv[1]) as file:
 for line in file:
 if match := import_re.match(line):
 print(match.groups()[0])

 if match := import_from_re.match(line):
 print(match.groups()[0])

if __name__ == "__main__":
 main()

From there, we will create the following setup.py script with some basic metadata
and the scripts argument:

from setuptools import setup

setup(

Chapter 11

[463]

 name="findimports",
 version="0.0.0",
 py_modules=["findimports.py"],
 scripts=["findimports"],
)

Now you are able to install the package either in editable mode using one of the
following commands:

$ pip install -e .
$ python setup.py develop

Or if you prefer, you can install the package in normal mode:

$ pip install .
$ python setup.py install

Once we've installed the package, the findimports module will be available as a shell
command. On macOS or Linux, we can use compgen and grep to search through all
discoverable commands and see that it is now indeed available in your shell:

$ compgen -c | grep findimports
findimports.py

As you see, the findimports.py script is now available under the name that is exactly
the same as the script file name. If you really want to omit the .py extension from the
shell command, you have one of two options:

• Remove the .py extension from the module file name: You will have to
update the setup.py script accordingly. The drawback of this approach is
that you will no longer be able to distribute the findimports module as an
importable Python module (the py_modules argument). It would also make
unit-testing of the script module harder.

• Create a wrapper script for findimports.py: The scripts argument allows
you to distribute any type of script including shell scripts. Here, we could
create a wrapper shell script with a name without an extension (for instance,
scripts/findimports) and specify it as the target of the scripts argument.
The file could be as simple as the following:

#!/usr/bin/env sh
python -m findimports

Packaging and Distributing Python Code

[464]

The problems with script file extensions and wrapper scripts in distutils can be
avoided thanks to the entry_points extension offered by the setuptools module. It
is a standardized way to provide application entry points (like shell scripts) via the
configuration in the setup.py distribution script. It allows you to target any function
within your package sources to be distributed as a shell script. This greatly simplifies
the management of application entry points because you don't need to create
dedicated runnable modules.

There are various types of entry points possible but the most common is console_
scripts, which allows you to register the module or function as a target of the
autogenerated script command. The following is an example of the console entry
point we could provide for our findimports script:

from setuptools import setup

setup(
 name="findimports",
 version="0.0.0",
 py_modules=["findimports"],
 entry_points={
 "console_scripts": ["findimports=findimports:main"]
 }
)

The usage of console entry points is more flexible when it comes to the naming of
commands and the selection of what to exactly run when a command is invoked. On
the left side of the = sign, we have the desired name of the command. In our case, it is
simply findimports. On the right side, we have a module import path (findimports
again) together with the name of the function (the main() function) to execute.

The entry_points argument allows for better naming of commands as well as
packing multiple commands into a single Python module. But it doesn't mean that
the scripts argument becomes useless. You can't, for instance, package shell scripts
(like Bash) with entry_points but you can do that with the scripts argument.

The feature of entry points in the setuptools package is in fact
a generic method of advertising hooks between packages. Every
package can query for existing entry points of other packages. This
feature can be used, for instance, to create a plugin mechanism. The
pytest unit-testing framework is an example package that uses
the mechanism of entry points for its plugin system. You can learn
more about writing pytest plugins at https://docs.pytest.
org/en/stable/writing_plugins.html.

https://docs.pytest.org/en/stable/writing_plugins.html
https://docs.pytest.org/en/stable/writing_plugins.html

Chapter 11

[465]

Python packaging, thanks to binary wheels and features that allow packaging
scripts, can be a method of distributing complete applications. If you use virtual
environments, you can ensure a sensible amount of dependency isolation between
various applications.

Unfortunately, Python packaging and virtual environments don't solve all
environment isolation problems. You cannot, for instance, shield your applications
from changes in shared system libraries through virtual Python environments. Also,
not every Python dependency you use will be distributed in a binary wheel format.
Python extensions written in C, C++, or Cython are amazingly popular, which means
that for complex applications, an on-site compilation may often be required. Lack of
pure dependency isolation and a common need for on-site compilation are the main
reasons why Python packages often aren't reliable distribution artifacts for specific
use cases. One such use case is packaging applications and services for the web.

Packaging applications and services for
the web
The distribution of software is a process that traditionally requires two parties.
Someone (the distributor) has to make the software release available to be consumed.
In the past, it required physical mediums like floppy disk or CD, but nowadays it is
usually done through the internet. Someone else (the consumer) needs to consciously
obtain the software and install it on their own computer. It's not always the same for
software updates as many applications offer automated updates. Still, these updates
usually require the user's consent in order to be installed.

With the advent of Software as a Service (SaaS), less and less software is distributed
in a form that would allow it to be installed on the user's own computer. We see that
classic programs are gradually being replaced by their SaaS counterparts:

• Traditional desktop applications are being replaced with web-based software
• Traditional software libraries are being replaced by web APIs

Web-based software isn't distributed to its users the same way as a traditional web
desktop application. Users of web-based applications usually interact with them
through a standard web browser or a dedicated client that acts as a mere shell
for your code that lives on some server or cluster of servers. It has to indeed be
distributed to these servers anyway but the whole process is usually opaque to the
end users and they rarely are aware of this process.

Packaging and Distributing Python Code

[466]

That's why many developers often prefer the term shipping in the context of web-
based applications: consumers consciously sign up as users of the software but have
very limited control over how and when it will be delivered. Also, potential updates
are just shoved through their door, and cannot be easily rejected or discarded.

Web-based applications are increasingly popular. Even applications that are
primarily intended for desktop use often provide web-based capabilities like
automated updates, cloud synchronization, or online collaboration. It means that it is
worth knowing the basics of shipping those web applications even if the web is not
your thing.

In this section, we will discuss good practices and tools for building and distributing
web applications together with some Python-specific tips and tricks.

The Twelve-Factor App manifesto
Being able to distribute software only to your own servers removes one important
factor from the distribution process: users. You don't need to care if they are able
to download your application and handle the installation process. You don't have
to care about their operating system (although you may need to care about their
browser). And also, most of the time, you don't have to ask for permission to
perform the update. You can do whatever you want. But should you?

Web-based software comes with a lot of advantages. You have full control of it. You
can do as many updates as you want and whenever you want. But that is a double-
edged sword. Users of web applications will expect frequent updates and almost
immediate fixes for problems they submit. Also, if your software becomes successful,
you will have to rely on a large fleet of servers to support the growing scale of your
user base. And a large user base is usually the goal of web-based applications.

That's why it is extremely important to build your software in a way that will enable
its growth at a sustainable pace. Your application should be easily configurable and
decoupled from its dependencies (like external services and the operating system)
to ensure easy maintenance and straightforward, repeatable deployments of new
versions. It should also be as easy to deploy in a production environment as to run
locally for development (and vice versa).

That's of course not easy to do without some operational knowledge. If you have
not got much experience working with software on a large scale, you will definitely
make a lot of mistakes that will cost you a lot of time, resources, and money (server
costs for instance). That's why it is a good idea to follow a set of good, proven
practices.

Chapter 11

[467]

The Twelve-Factor App manifesto is a good set of such practices. It is a general
language-agnostic methodology for building SaaS apps. One of its purposes is
making applications easier to deploy, but it also highlights other topics such as
maintainability or making applications easier to scale.

As the name says, the Twelve-Factor App consists of 12 rules:

1. Codebase: One codebase tracked in a revision control system and many
deploys

2. Dependencies: Explicitly declare and isolate dependencies
3. Config: Store configurations in the environment
4. Backing services: Treat backing services as attached resources
5. Build, release, run: Strictly separate build and run stages
6. Processes: Execute the app as one or more stateless process
7. Port binding: Export services via port binding
8. Concurrency: Scale out via the process model
9. Disposability: Maximize robustness with fast startup and graceful shutdown
10. Dev/prod parity: Keep development, staging, and production as similar as

possible
11. Logs: Treat logs as event streams
12. Admin processes: Run administration/management tasks as one-off

processes

We won't discuss every factor in detail as the Twelve-Factor App website provides
a great explanation and rationale for all of them. We will anyway zoom into specific
rules because some of them can be employed using popular tools, techniques, or
libraries that are popular in the Python ecosystem.

Leveraging Docker
We've already introduced Docker in Chapter 2, Modern Python Development
Environments, as a lightweight virtualization tool that can provide great development
environment isolation.

You can access the full text of the Twelve-Factor App manifesto at
https://12factor.net.

https://12factor.net

Packaging and Distributing Python Code

[468]

It simply packages all your code and its runtime dependencies (modules, packages,
shared libraries) into container images that can be executed as isolated containers in
given environments.

Moreover, Docker containers are stateless. This means that two containers started
from the same image will have the same initial state. Every filesystem modification
done within a container stays inside of the container. Part of the filesystem inside of
a container can be of course exported outside by mounting a dedicated volume but
this is always explicit and never happens by accident. A container that has finished
its work (the main process exited, either gracefully or due to abrupt termination) is
out of use, the same as its internal state.

The way Docker containers and their images are defined, run, and managed already
ticks multiple checkboxes of the Twelve-Factor App manifesto:

• Dependencies: To create a new Docker image, you need to define a
Dockerfile, which is a declarative statement of all the preparation steps. This
includes all shared libraries, packages, and your own code. Moreover, the
multi-stage Docker builds allow you to separate build-time dependencies
from runtime builds. Dependencies are isolated. You can have multiple
containers from different Docker images running on the same host systems
and their dependencies will never conflict.

• Build, release, run: Docker images are usually built outside of their
dedicated runtime environment. It can be a dedicated build server or even
your own computer used for development. Images are usually stored in a
dedicated image repository. From there, Docker daemons running in target
environments can pull the latest image version. Moreover, the tagging
of images with descriptive labels allows you to easily keep track of their
versions and even designation for a specific environment.

• Processes: Docker containers are stateless. Moreover, a container looks like
a single process from the perspective of the operating system that hosts
it. It sandboxes all threads or subprocesses that may be running within
a container as well as all resources it may use (memory, for instance).

In fact, Docker containers do not vanish by default after they exit.
The automatic removal of exited containers is ensured with the
--rm flag of the docker run command. It is possible to resume
working with the container after it has finished, although this
should be used only for inspection and not as a default means of
operation.

Chapter 11

[469]

• Dev/prod parity: Packaging software into containers allows you to reduce
the gap between production and development environments because it
isolates a lot of dependencies from the operating system. Also, Docker
Compose allows you to compose whole applications from multiple
containers and use the same versions of backing services (databases, caches,
reverse proxies, and so on) as the ones used in the production environment.

The great thing about Docker is the portability of the applications. As long as your
target system can run the Docker daemon, it will be able to run your containers.

If you operate your own cluster of servers (physical or virtual), you will have to
provision them with the Docker daemon and also provide some configuration and/
or scripting that will ensure your containers are always up and running. But this
is something you would have to do anyway with any kind of software. Docker
may make your life easier because every application will have the same type of
deliverable—a container image—and will not require a complex installation process.
The management of containers alone can be done, for instance, with systemd, a
common system and service manager found in most Linux distributions.

But not all organizations are willing to support their own infrastructure. Fortunately,
many cloud providers offer various services that can take a lot of the operation
burden from Docker users. For a larger scale, you can use dedicated container
orchestration systems like Kubernetes (k8s). Kubernetes is a container orchestration
system designed by Google. It organizes collections of application containers that
should run on the same cluster node into groups called Pods. Kubernetes can
manage container volumes, configuration maps, control automated scaling of
services, and manage communication within the cluster as well as incoming traffic.

We've discussed the topic of creating Docker images using
Dockerfiles in Chapter 2, Modern Python Development Environments.
You can learn more about best practices for writing Dockerfiles
at https://docs.docker.com/develop/develop-images/
dockerfile_best-practices/.

You can learn more about Kubernetes at https://kubernetes.io.

https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://docs.docker.com/develop/develop-images/dockerfile_best-practices/
https://kubernetes.io

Packaging and Distributing Python Code

[470]

Kubernetes can handle a range of container orchestration needs, from managed
Kubernetes clusters where you can decide how many worker nodes you need and
how to configure them, to fully serverless offerings where you simply provide
Docker images with their configuration and the cloud provider takes care of scaling
the infrastructure for you. Flexible on-demand pricing often means you pay only for
allocated resources. This allows you to avoid large upfront infrastructure costs and
to "scale as you grow."

Docker is of course not the only way for applications to be portable between hosts or
service providers. But regardless of the packaging format, your application won't be
portable if it isn't configurable in a system- and application-agnostic way. Let's take
a look at typical configuration options for applications.

Handling environment variables
Every application will require configuration values that will vary between
environments. Examples can be:

• Connection strings (URLs), hostnames, and ports of backing services like
caches, databases, proxy servers, or web APIs

• Credentials to those services
• Other secrets like encryption keys and client certificates
• Per-environment values like feature toggles or resource limits

These configuration values should always be separated from the application
code and definitely shouldn't be stored as constants in modules. That's especially
important for values that have to be kept secret. There are multiple reasons for that:

• The first one is security. If the code contains information about secrets and
credentials, whoever gets access to the code will know them all. And if
someone gets access to the code repository, they will know all and also past
secrets. That poses a real security risk.

• Another reason for decoupling configuration from applications is the
volatility of environments—they come and go. On one day, you may work
with just a few environments, but on another day, you may want to create
more of them. What if you want to create a new short-lived environment for
every feature branch you work on? What if you would like to do the same
for every team member on the project. Do you really want to keep all those
configurations in the same project repository?

Chapter 11

[471]

• Last but not least, the configuration should be language- and framework-
agnostic. You will eventually use different technologies to run your software.
You may change your framework or maybe even move from Python to
a completely different language. You may also want to migrate from one
infrastructure to another at some point in time. Today it may be a simple
application running in a virtual environment on one host but tomorrow it
may be a Docker container in a Kubernetes cluster. Or even some serverless
function managed by your cloud provider. You never know how your
application will evolve so you need to be sure that the way you provide
configuration to your application is as generic as possible.

The most universal way to provide configuration to your application is through
environment variables. This is a simple key-value mapping that should be
supported by every operating system and every programming language. They can
be easily changed without any code or file modification. They are stored only in
a running process environment (which is ephemeral) so are also better suited for
providing secret values to your application.

The biggest advantage of using environment variables for configuration is that
they can be completely decoupled from application source code. Thanks to this,
you will be able to use the same deployable artifact (like a Docker container image
or Python package) in various environments and tune it just by providing new
environment variable values on application startup. This approach reduces the
version drift between environments and allows you to avoid the bundling of secret
variables in your application packages. Also, you may eventually decide to use code
written in various frameworks or even languages. Environment variables allow the
same configuration medium across different technologies (as opposed to dedicated
configuration files or modules).

Using environment variables is easy. If you're working on Linux, macOS, or another
POSIX-compliant system, you can set a new environment variable value using the
export command as in the following example:

$ export MY_VARIABLE="my-value"

In those systems, you can also set specific variables just for the scope of one
command invocation. You do that by prepending a series of variables to the
command:

$ VARIABLE_1="value-1" command

On Windows, if you're using PowerShell, you can set an environment variable value
through the special $env variable:

$ $env:TEAMS="my-value"

Packaging and Distributing Python Code

[472]

If you use CMD on Windows, you can also use the set command:

$ set MY_VARIABLE="my-value"

As you can see, depending on the environment, there are different ways to set
the environment variables. Moreover, for container-orchestration systems like
Kubernetes or provider-specific cloud services, you won't be interacting with the
system shell directly. You will usually be setting the desired environment values
through dedicated service manifest files or the provider API.

What doesn't change between those environments is the way you read those
variables. Environment variables in Python are exposed in the environ variable in the
built-in os module. It is a dict-like object that allows access to and the modification of
environment variables.

os.environ can be accessed at any time but the common convention is to create a
single module in your application that accesses all environment variables. Thanks
to this, you get a good overview of all configuration options supported by the
application and are in control of all value processing and validation.

The example configuration for a small application could be as follows:

import os

DATABASE_URI = os.environ["DATABASE_URI"]
ENCRYPTION_KEY = os.environ["ENCRYPTION_KEY"]

BIND_HOST = os.environ.get("BIND_HOST", "localhost")
BIND_PORT = int(os.environ.get("BIND_PORT", "80"))

SCHEDULE_INTERVAL = timedelta(
 seconds=int(os.environ.get("SHEDULE_INTERVAL_SECONDS", 50))
)

Environment variable names on Linux and macOS are case-
sensitive but on Windows are case-insensitive. That's why a
good convention is to use the uppercase naming convention for
environment variables, the same as you would do for constants in
code.

Chapter 11

[473]

As you can see, os.environ has a common dictionary protocol. If a given variable
does not exist, item access through the [key] syntax will raise a KeyError exception.
This is a common way to specify environment variables that are required and
without which the application will not work.

Analogously, the os.environ.get() method allows you to specify environment
variables that are optional or can have a default value. Using defaults is a convenient
way to reduce the amount of configuration required for an individual environment.
Good targets for defaults are configuration values that usually stay the same for most
environments but need to be overridden in specific use cases (a testing environment,
for instance). From a security standpoint, defaults should reflect production values
rather than development values. That prevents accidental misconfiguration in the
most critical environment. Defaults should of course never store secret values.

Last but not least, some values may need conversion to specific data types. That's
because environment variable values in the os.environ object are always strings. If
you need a specific data type that would be more useful in your code, you need to
parse and transform the string value. In the previous example, we see the BIND_PORT
value parsed to integer format and SHEDULE_INTERVAL_SECONDS transformed into a
timedelta object.

If the amount of environment variables grows, it may be sensible to pack them into
a common configuration object that can automate value parsing and bring more
structure to the configuration. The Python standard library lacks such a feature but
there are plenty of utilities on PyPI that help with handling environment variables.

One such utility is the environ-config package. It allows for automatic prefixing
of environment variables and grouping them in descriptive sections. It offers easy
validation and transformation of the values. The core of the environ-config package
is the environ.config() class decorator and environ.var() descriptor. They are used
to define configuration classes that can read values directly from the os.environ
object. The following is a reimplementation of the previous configuration module
with the usage of the environ-config package:

from datetime import timedelta
import environ

@environ.config(prefix="")
class Config:
 @environ.config()
 class Bind:
 host = environ.var(default="localhost")
 port = environ.var(default="80", converter=int)

Packaging and Distributing Python Code

[474]

 bind = environ.group(Bind)
 database_uri = environ.var()
 encryption_key = environ.var()

 schedule_interval = environ.var(
 name="SCHEDULE_INTERVAL_SECONDS",
 converter=lambda value: timedelta(seconds=int(value)),
 default=50
)

In order to actually create a configuration object, you can use Config.from_environ()
as in the following example:

>>> config = Config.from_environ()
>>> config.bind
Config.Bind(host='localhost', port=80)
>>> config.bind.host
'localhost'
>>> config.schedule_interval
datetime.timedelta(seconds=50)

The configuration classes decorated with the environ.config() decorator will
automatically look for environment variables by transforming their attribute names
into uppercase. So the config.database_uri attribute is related directly to the
DATABASE_URI environment variable. But sometimes you may want to use a specific
name instead of an auto-generated one. You can do that easily by providing the name
keyword argument to the environ.var() descriptor. We see an example of such
usage in the definition of the schedule_interval attribute.

The definition of the Config.Bind class and usage of the environ.group() descriptor
show how configurations can be nested. The environ-config package is smart
enough to prefix requested environment variable names with the name of the group
attribute. It means that the Config.bind.host attribute relates to the BIND_HOST
environment variable and the Config.bind.port attribute relates to the BIND_PORT
environment variable.

But the most useful feature of the environment-config module is the ability to
conveniently handle the conversion and validation of environment variables.
That can be done with the converter keyword argument. It can be either a type
constructor as in the Config.bind.port example or a custom function that takes one
positional string argument.

Chapter 11

[475]

The common technique is to use one-off lambda functions as in the Config.
schedule_interval example. Usually, the converter argument is just enough to
ensure that the variable has the correct type and value. If that's not enough, you can
provide an additional validator keyword argument. It should be a callable that
receives the output of the converter function and returns the final result.

The role of environment variables in
application frameworks
The role of environment variables within application frameworks that have a
dedicated configuration files or modules layout can be unclear. A prime example of
such frameworks is the Django framework, which comes with the popular settings.
py module. The settings.py module in Django is a module of every application
that contains a collection of various runtime configuration variables. It serves two
purposes:

• Statement of application structure within the framework: Django
applications are a composition of various components: apps, views, middle-
wares, templates, context processors, and so on. The settings.py file is
a manifest of all installed apps, used components, and a declaration of
their configuration. Most of this configuration is independent from the
environment in which the application runs. In other words, it is an integral
part of the application.

• Definition of runtime configuration: The settings.py module is a
convenient way to provide environment-specific values that need to be
accessed by application components during the application runtime. It is
thus a common medium for application configuration.

Having the framework-specific statement of application structure inside the code
repository of your application code is something normal. It is indeed part of the
application code. Problems arise when this settings.py file holds explicit values for
the actual environments where an application is supposed to be deployed.

Packaging and Distributing Python Code

[476]

The common convention among some Django developers is to define multiple
settings modules to store project configuration. Those settings modules can be quite
large, so usually there is one base settings.py file that holds common configurations
and multiple per-environment modules that override specific values (see Figure 11.1).

Figure 11.1: Typical layout of settings modules in many Django applications

This design is quite simple, and Django actually supports it out of the box. The
Django application will read the value of the DJANGO_SETTINGS_MODULE environment
variable on startup to decide which settings module to import. That's why this
pattern is so popular.

Although using multiple per-environment settings modules is simple and popular,
it has multiple drawbacks:

• Configuration indirection: Every settings module has to either preserve
a copy of common values or import values from a shared common file.
Usually, it is the latter. Then if you want to check what is the actual
configuration of a specific environment, you have to read both modules.

Chapter 11

[477]

In rare situations, developers decide to import parts of configuration between
specific environments. In such situations, inspecting the configuration
becomes a nightmare.

• Adding a new environment requires code change: Settings modules are
Python code and thus will be tied to the application code. Whenever you
need to create a completely new environment, you will have to modify the
code.

• Modifying configuration requires a new repackaging of application:
Whenever you modify the code for a configuration change, you need
to create a new deployable artifact. A common practice in deployment
methodologies is to promote every new version of an application through
multiple environments. The common progression is:
development → testing → staging → production
With multiple settings modules, a single change for one environment
configuration may necessitate redeployments in unaffected environments.
This creates operational overhead.

• A single application holds configurations for all environments: This
can pose a security risk if one environment is less secure than others. For
instance, an attacker obtaining access to a development environment may
gain more information about the possible attack surface in the production
environment. This becomes even more problematic if secret values are stored
in the configuration.

• The problem of secret values: Secrets should not be stored on a filesystem
and definitely should not be put into the code. Django applications using
per-environment settings modules usually read secrets from environment
variables anyway (or communicate with dedicated password managers).

We used Django as an example of an application framework because it is extremely
popular. But it's not the only framework that has the notion of settings modules
and not the only framework where the pattern of multiple per-environment settings
modules occurs.

Those frameworks often can't run without their settings modules. That's because
settings modules are not only about environment-specific configuration but also
about the composition of your application. It means that you cannot easily replace
them with a set of environment variables. It would also be very inconvenient as
many application-defining values often have to be provided as lists, dictionaries,
or specialized data types.

Packaging and Distributing Python Code

[478]

But there is some middle ground. You can have an application that has a dedicated
settings module but is still able to satisfy the twelve-factor rule about storing
configuration in an environment. This can be achieved by following a few basic
principles:

• Use only one settings module: A settings module should be a statement of
the application structure and default behavior (timeout values, for instance)
that is completely independent of the environment. In other words, if a
specific value never changes between environments, you can put it safely
in the settings module.

• Use environment variables for environment-specific values: If a value
changes between environments, it can be exposed as a variable within the
settings module, but it should always be read from environment variables.
You can still be pragmatic and use defaults in situations where a value needs
to be overridden only in very specific circumstances. An example could be
a debugging flag that usually is enabled in development environments but
rarely in others.

• Use production defaults: If a configuration variable has a default value, it
is easy to miss it when configuring a specific environment. If you decide to
use default values for specific configuration variables, always make sure
that default values are the ones that can be safely used in a production
environment. Examples of values that should be considered with great care
are authentication/authorization settings or feature toggles that enable/
disable experimental features. By using production defaults, you are
shielding your environment from accidental misconfiguration.

• Never put secrets into settings modules: Secrets can be exposed as variables
via a settings module (for instance, by reading them from environment
variables) but should never be put there in plain-text format.

• Do not expose an environment label to an application: An application
should be aware of its environment only through the qualities it can
experience—specific configuration variables. It should never decide how
to behave based on a specific label (development, staging, production, and
so on) that you attach to the environment. The only acceptable use case for
providing an environment label to the application is providing context to
logging and telemetry utilities.

We will talk more about logging and telemetry (including
environment labeling) in Chapter 12, Observing Application
Behavior and Performance.

Chapter 11

[479]

• Avoid per-environment .env files in your repository: There's a common
practice of writing down environment variables into so-called .env files.
Those variables can be later exported through a shell script or read directly
inside of the settings module. Simply avoid the urge to follow the practice to
provide per-environment .env files inside of your code repository. It has all
the downsides of per-environment settings modules and only increases the
amount of configuration indirection.

The above set of principles is a pragmatic tradeoff between pure environment-
based configuration and classic settings modules. Environment variables can be
conveniently read through the os.environ object, environ-config package, or any
other dedicated utility.

This methodology of course requires some experience in deciding which values
would be environment-specific. It thus doesn't guarantee that you will never have
to modify the code just to reconfigure a specific environment. The need to modify
the code just for the sake of configuration change will definitely happen more
often if you decide to heavily rely on default values. That's why it is usually better
to avoid defaults if the value for a specific variable can be different in at least one
environment.

Packaging applications that need to run on remote servers concentrates on isolation,
configurability, and repeatability. Usually, we have full control over the servers
and infrastructure where our code runs and can build dedicated architectures, such
as container orchestration systems, to support and simplify the whole packaging
process. However, things change dramatically when you are not the owner or
administrator of the target environment and need your users to install or run
your application themselves. This is a common case for desktop applications that
are installed on users' personal computers. In such a situation, we usually build
standalone executables that operate like any other standalone application. Let's see
how to build such executables for Python.

There's one acceptable use case for .env files. It is
providing a configuration template for local development
purposes that developers could use to quickly set up their
own unique local development environment. Tools for
local development like Docker Compose can understand
.env files and export their values to an application
container. Still, this practice should never be expanded
to other environments. Also, it is better to use a scripting
layer (or Docker Compose support) and to export .env
files as real environment variables than to use dedicated
libraries that could read those files directly from the
filesystem.

Packaging and Distributing Python Code

[480]

Creating standalone executables
Creating standalone executables is a commonly overlooked topic in materials
that cover the packaging of Python code. This is mainly because Python lacks
proper tools in its standard library that could allow programmers to create simple
executables that could be run by users without the need to install the Python
interpreter.

Compiled languages have a big advantage over Python in that they allow you to
create an executable application for the given system architecture that could be
run by users in a way that does not require them to have any knowledge of the
underlying technology. Python code, when distributed as a package, requires the
Python interpreter in order to be run. This creates a big inconvenience for users who
do not have enough technical proficiency.

Developer-friendly operating systems, such as macOS or most Linux distributions,
come with the Python interpreter preinstalled. So, for their users, the Python-based
application still could be distributed as a source package that relies on a specific
interpreter directive in the main script file that is popularly called shebang. For most
Python applications, this takes the following form:

#!/usr/bin/env python

Such a directive when used as the first line of script will mark it to be interpreted
in the default Python version for the given environment. This can, of course, take
a more detailed form that requires a specific Python version such as python3.9,
python3, python2, and so on. Note that this will work in most popular POSIX
systems but isn't portable at all. This solution relies on the existence of specific
Python versions and also the availability of an env executable exactly at /usr/bin/
env. Both of these assumptions may fail on some operating systems. Also, shebang
will not work on Windows at all. Additionally, the bootstrapping of the Python
environment on Windows can be a challenge even for developers, so you cannot
expect nontechnical users to be able to do that by themselves.

The other thing to consider is the simple user experience in the desktop environment.
Users usually expect applications to be run from the desktop by simply double-
clicking on the executable file or the shortcut to the application. Not every desktop
environment will support that with Python applications distributed in source form.

So, it would be best if we are able to create a binary distribution that would work as
any other compiled executable. Fortunately, it is possible to create an executable that
has both the Python interpreter and our project embedded. This allows users to open
our application without caring about Python or any other dependency.

Let's see some specific use cases for standalone executables.

Chapter 11

[481]

When standalone executables are useful
Standalone executables are useful in situations where the simplicity of the user
experience is more important than the user's ability to interfere with the application's
code.

Note that the fact that you are distributing applications as executables only makes
code reading or modification harder, not impossible. It is not a way to secure
application code and should only be used as a way to make interacting with the
application simpler.

Standalone executables should be a preferred way of distributing applications for
non-technical end users and also seems to be the only reasonable way of distributing
any Python application for Windows.

Standalone executables are usually a good choice for the following:

• Applications that depend on specific Python versions that may not be easily
available on the target operating systems

• Applications that rely on modified precompiled CPython sources
• Applications with graphical interfaces
• Projects that have many binary extensions written in different languages
• Games

Creating Python executables may not be straightforward but there are some tools
that may ease the process. Let's take a look at some popular choices.

Popular tools
Python does not have any built-in support for building standalone executables.
Fortunately, there are some community projects solving that problem with a varied
amount of success. The following four are the most notable:

• PyInstaller

• cx_Freeze

• py2exe

• py2app

Each one of them is slightly different in use and also all have slightly different
limitations. Before choosing your tool, you need to decide which platform you want
to target, because every packaging tool can support only a specific set of operating
systems.

Packaging and Distributing Python Code

[482]

It is best if you make such a decision at the very beginning of the project's life.
Although none of these tools requires complex integration in your code, if you
start building standalone packages early, you can automate the whole process and
definitely save some future development time. If you leave this for later, you may
find yourself in a situation where the project is built in such a sophisticated way
that none of the available tools will work out of the box. Providing a standalone
executable for such a project will be problematic and will take a lot of effort.

Let's take a look at PyInstaller in the next section.

PyInstaller
PyInstaller is by far the most advanced program to freeze Python packages into
standalone executables. It provides the most extensive multiplatform compatibility
among every available solution at the moment, so it is the most highly recommended
one. PyInstaller supports the following platforms:

• Windows (32-bit and 64-bit)
• Linux (32-bit and 64-bit)
• macOS (32-bit and 64-bit)
• FreeBSD, Solaris, and AIX

At the time of writing, the latest version of PyInstaller supports all Python versions
from 3.5 to 3.9. It is available on PyPI, so it can be installed in your working
environment using pip. If you have problems installing it this way, you can always
download the installer from the project's page.

Unfortunately, cross-platform building (cross-compilation) is not supported, so
if you want to build your standalone executable for a specific platform, then you
need to perform building on that platform. This is not a big problem today with the
advent of many virtualization tools. If you don't have a specific system installed on
your computer, you can always use VirtualBox or a similar system virtualization
tool, which will provide you with the desired operating system as a virtual machine.

The documentation for PyInstaller can be found at http://www.
pyinstaller.org/.

http://www.pyinstaller.org/
http://www.pyinstaller.org/

Chapter 11

[483]

Usage for simple applications is pretty straightforward. Let's assume our application
is contained in the script named myscript.py. This is a simple hello world
application. We want to create a standalone executable for Windows users, and we
have our sources located under D://dev/app in the filesystem. Our application can be
bundled with the following short command:

$ pyinstaller myscript.py

The output you will see may be as follows:

2121 INFO: PyInstaller: 3.1
2121 INFO: Python: 3.9.2
2121 INFO: Platform: Windows-7-6.1.7601-SP1
2121 INFO: wrote D:\dev\app\myscript.spec
2137 INFO: UPX is not available.
2138 INFO: Extending PYTHONPATH with paths ['D:\\dev\\app', 'D:\\dev\\
app']
2138 INFO: checking Analysis
2138 INFO: Building Analysis because out00-Analysis.toc is non existent
2138 INFO: Initializing module dependency graph...
2154 INFO: Initializing module graph hooks...
2325 INFO: running Analysis out00-Analysis.toc
(...)
25884 INFO: Updating resource type 24 name 2 language 1033

PyInstaller's standard output is quite long, even for simple applications, so it has
been truncated in the preceding example for the sake of brevity. On Windows, the
resulting structure of directories and files created by PyInstaller may look as follows:

project/
├── myscript.py
├── myscript.spec
├───build/
│ └───myscript/
│ ├── myscript.exe
│ ├── myscript.exe.manifest
│ ├── out00-Analysis.toc
│ ├── out00-COLLECT.toc
│ ├── out00-EXE.toc
│ ├── out00-PKG.pkg
│ ├── out00-PKG.toc
│ ├── out00-PYZ.pyz
│ ├── out00-PYZ.toc

Packaging and Distributing Python Code

[484]

│ └── warnmyscript.txt
└───dist/
 └───myscript/
 ├── bz2.pyd
 ├── Microsoft.VC90.CRT.manifest
 ├── msvcm90.dll
 ├── msvcp90.dll
 ├── msvcr90.dll
 ├── myscript.exe
 ├── myscript.exe.manifest
 ├── python39.dll
 ├── select.pyd
 ├── unicodedata.pyd
 └── _hashlib.pyd

The dist/myscript directory contains the built application that can now be
distributed to users. Note that the whole directory must be distributed. It contains
all the additional files that are required to run our application (DLLs, compiled
extension libraries, and so on). A more compact distribution can be obtained with
the --onefile switch of the pyinstaller command as follows:

$ pyinstaller --onefile myscript.py

The resulting file structure will then look as follows:

project/
├── myscript.py
├── myscript.spec
├───build
│ └───myscript
│ ├── myscript.exe
│ ├── myscript.exe.manifest
│ ├── out00-Analysis.toc
│ ├── out00-COLLECT.toc
│ ├── out00-EXE.toc
│ ├── out00-PKG.pkg
│ ├── out00-PKG.toc
│ ├── out00-PYZ.pyz
│ ├── out00-PYZ.toc
│ └── warnmyscript.txt
└───dist/
 └── myscript.exe

Chapter 11

[485]

When built with the --onefile option, the only file you need to distribute to other
users is the single executable found in the dist directory (here, myscript.exe). For
small applications, this is probably the preferred option.

One of the side effects of running the pyinstaller command is the creation of the
*.spec file. This is an auto-generated Python module containing the specification on
how to create executables from your sources. This is the example specification file
created automatically for myscript.py code:

-*- mode: python -*-

block_cipher = None

a = Analysis(['myscript.py'],
 pathex=['D:\\dev\\app'],
 binaries=None,
 datas=None,
 hiddenimports=[],
 hookspath=[],
 runtime_hooks=[],
 excludes=[],
 win_no_prefer_redirects=False,
 win_private_assemblies=False,
 cipher=block_cipher)
pyz = PYZ(a.pure, a.zipped_data,
 cipher=block_cipher)
exe = EXE(pyz,
 a.scripts,
 a.binaries,
 a.zipfiles,
 a.datas,
 name='myscript',
 debug=False,
 strip=False,
 upx=True,
 console=True)

Packaging and Distributing Python Code

[486]

This .spec file contains all the pyinstaller arguments specified earlier. This is very
useful if you have performed a lot of customizations on your build. Once created,
you can use it as an argument to the pyinstaller command instead of your Python
script as follows:

$ pyinstaller.exe myscript.spec

Note that this is a real Python module, so you can extend it and perform more
complex customizations to the build procedure. Customizing the .spec file is
especially useful when you are targeting many different platforms. Also, not all of
the pyinstaller options are available through the command-line interface. The .spec
file allows you to use every possible PyInstaller feature.

PyInstaller is an extensive tool, which is suitable for the great majority of programs.
Anyway, thorough reading of its documentation is recommended if you are
interested in using it as a tool to distribute your applications.

Let's take a look at cx_Freeze in the next section.

cx_Freeze
cx_Freeze is another tool for creating standalone executables. It is a simpler solution
than PyInstaller, but also supports the following three major platforms:

• Windows
• Linux
• macOS

At the time of writing, the latest version of cx_Freeze supports all Python versions
from 3.6 to 3.9. It is available on PyPI, so it can be installed in your working
environment using pip.

Similar to PyInstaller, cx_Freeze does not allow you to perform cross-platform
builds, so you need to create your executables on the same operating system you are
distributing to. The major disadvantage of cx_Freeze is that it does not allow you to
create real single-file executables. Applications built with it need to be distributed
with related DLL files and libraries.

Documentation for cx_Freeze can be found at https://cx-
freeze.readthedocs.io.

https://cx-freeze.readthedocs.io
https://cx-freeze.readthedocs.io

Chapter 11

[487]

Let's assume that we want to package a Python application for Windows with
cx_Freeze. The minimal example usage is very simple and requires only one
command:

$ cxfreeze myscript.py

The output you will see may be as follows:

copying C:\Python39\lib\site-packages\cx_Freeze\bases\Console.exe ->
D:\dev\app\dist\myscript.exe
copying C:\Windows\system32\python39.dll ->
D:\dev\app\dist\python39.dll
writing zip file D:\dev\app\dist\myscript.exe
(...)
copying C:\Python39\DLLs\bz2.pyd -> D:\dev\app\dist\bz2.pyd
copying C:\Python39\DLLs\unicodedata.pyd -> D:\dev\app\dist\
unicodedata.pyd

The resulting structure of the files may be as follows:

project/
├── myscript.py
└── dist/
 ├── bz2.pyd
 ├── myscript.exe
 ├── python39.dll
 └── unicodedata.pyd

Instead of providing its own format for build specification (like PyInstaller does),
cx_Freeze extends the distutils package. This means you can configure how your
standalone executable is built with the familiar setup.py script. This makes
cx_Freeze very convenient if you already distribute your package using setuptools
or distutils because additional integration requires only small changes to your
setup.py script. Here is an example of such a setup.py script using cx_Freeze.
setup() for creating standalone executables on Windows:

import sys
from cx_Freeze import setup, Executable

Dependencies are automatically detected,
but it might need fine tuning.
build_exe_options = {"packages": ["os"], "excludes": ["tkinter"]}

setup(

Packaging and Distributing Python Code

[488]

 name="myscript",
 version="0.0.1",
 description="My Hello World application!",
 options={
 "build_exe": build_exe_options
 },
 executables=[Executable("myscript.py")]
)

With such a file, the new executable can be created using the new build_exe
command added to the setup.py script as follows:

$ python setup.py build_exe

The usage of cx_Freeze may seem a bit more Pythonic than PyInstaller, thanks to
the distutils integration. Unfortunately, this project may cause some trouble for
inexperienced developers due to the following reasons:

• Installation using pip may be problematic under Windows
• The official documentation is very brief and lacking in some places

cx_Freeze is not the only tool for creating Python executables that integrates with
distutils. Two notable examples are py2exe and py2app, which are described in the
next section.

py2exe and py2app
py2exe (http://www.py2exe.org/) and py2app (https://py2app.readthedocs.io/en/
latest/) are two complementary programs that integrate with Python packaging
either via distutils or setuptools in order to create standalone executables. Here
they are mentioned together because they are very similar in both usage and their
limitations. The major drawback of py2exe and py2app is that they target only a
single platform:

• py2exe allows building Windows executables.
• py2app allows building macOS apps.

The documentation for py2exe can be found at https://www.
py2exe.org and the documentation for py2app can be found at
https://py2app.readthedocs.io.

http://www.py2exe.org/
https://py2app.readthedocs.io/en/latest/
https://py2app.readthedocs.io/en/latest/
https://www.py2exe.org
https://www.py2exe.org
https://py2app.readthedocs.io

Chapter 11

[489]

Because the usage is very similar and requires only modification of the setup.py
script, these packages complement each other. The documentation of the py2app
project provides the following example of the setup.py script, which allows you to
build standalone executables with the right tool (either py2exe or py2app) depending
on the platform used:

import sys
from setuptools import setup

mainscript = 'MyApplication.py'

if sys.platform == 'darwin':
 extra_options = dict(
 setup_requires=['py2app'],
 app=[mainscript],
 # Cross-platform applications generally expect sys.argv to
 # be used for opening files.
 options=dict(py2app=dict(argv_emulation=True)),
)
elif sys.platform == 'win32':
 extra_options = dict(
 setup_requires=['py2exe'],
 app=[mainscript],
)
else:
 extra_options = dict(
 # Normally unix-like platforms will use "setup.py install"
 # and install the main script as such
 scripts=[mainscript],
)

setup(
 name="MyApplication",
 **extra_options
)

With such a script, you can build your Windows executable using the python
setup.py py2exe command and macOS app using python setup.py py2app. Cross-
compilation is, of course, not possible.

Packaging and Distributing Python Code

[490]

Despite py2app and py2exe having obvious limitations and offering less elasticity
than PyInstaller or cx_Freeze, it is always good to be familiar with them. In some
cases, PyInstaller or cx_Freeze might fail to build the executable for the project
properly. In such situations, it is always worth checking whether other solutions can
handle your code.

Security of Python code in executable
packages
It is important to know that standalone executables do not make the application
code secure by any means. In fact, there is no reliable way to secure applications
from decompilation with the tools available today, and while it is not an easy task to
decompile embedded code from executable files, it is definitely doable. What is even
more important is that the results of such decompilation (if done with the proper
tools) might look strikingly similar to original sources.

Still, there are some ways to make the decompilation process harder.

Usually, the process of decompilation consists of the following steps:

1. Extracting the project's binary representation of bytecode from standalone
executables

2. Mapping a binary representation to the bytecode of a specific Python version
3. Translating bytecode to AST
4. Re-creating sources directly from AST

Providing the exact solutions for deterring developers from such reverse engineering
of standalone executables would be pointless for obvious reasons—they will do it
anyway. So here are only some ideas for hampering the decompilation process or
devaluing its results:

• Removing any code metadata available at runtime (docstrings) so the
eventual results will be a bit less readable.

• Modifying the bytecode values used by the CPython interpreter, so
conversion from binary to bytecode, and later to AST, requires more effort.

It's important to note that harder does not mean less probable. For
some programmers, the hardest challenges are the most tempting
ones. And the eventual prize in this challenge is very high—the
code that you tried to keep secret.

Chapter 11

[491]

• Using a version of CPython sources modified in such a complex way that
even if decompiled sources of the application are available, they are useless
without decompiling the modified CPython binary.

• Using obfuscation scripts on sources before bundling them into an
executable, which will make sources less valuable after the decompilation.

Such solutions make the development process a lot harder. Some of the preceding
ideas require a very deep understanding of the Python runtime, and each one of
them is riddled with many pitfalls and disadvantages. Mostly, they only delay the
inevitable. Once your trick is broken, it renders all your additional efforts a waste
of time and effort. This fact means standalone Python executables are not a viable
solution for closed-source projects where leaking of the application code could harm
the organization.

The only reliable way to not allow your closed code to leak outside of your
application is to not ship it directly to users in any form. And this is only possible if
other aspects of your organization's security stay airtight (using strong multi-factor
authentication, encrypted traffic, and a VPN to start with). So, if your whole business
can be copied simply by copying the source code of your application, then you
should think of other ways to distribute the application. Maybe providing software
as a service would be a better choice for you.

Summary
In this chapter, we have discussed various ways of packaging Python libraries
and applications including applications for SaaS/cloud environments as well as
desktop applications. Now you should have a general idea about possible packaging
tools and strategies for distributing your project. You should also know popular
techniques for common problems and how to provide useful metadata to your
project.

On our way, we've learned about the importance of the packaging ecosystem and
details of publishing Python package distributions on package indexes. We've seen
that standard distribution scripts (the setup.py files) can be useful even when not
publishing code directly to PyPI.

The real fun begins when your code is made available to its users. No matter how
well it is tested and how well it is designed, you will find that your application
does not always behave as expected. People will report problems. You will have
performance issues. Some things will inevitably go wrong.

Packaging and Distributing Python Code

[492]

To solve those issues, you will need a lot of information to replicate user errors and
understand what has really happened. Wise developers are always prepared for the
unexpected and know how to actively collect data that helps in diagnosing problems
and allows you to anticipate future failures. That will be the topic of the next chapter.

[493]

12
Observing Application

Behavior and Performance
With every new version of our software, we feel that release thrill. Did we manage
to finally fix all those pesky problems we've been working on lately? Will it work
or will it break? Will users be satisfied, or will they complain about new bugs or
performance issues?

We usually employ various quality assurance techniques and automated testing
methodologies to increase our confidence in software quality and validity. But these
techniques and methodologies just increase our expectation that things will run
smoothly with each new release. But how can you make sure that an application is
running smoothly for your users? Or conversely, how can you know if something is
going wrong?

In this chapter we will discuss the topic of application observability. Observability
is a property of a software system that allows you to explain and understand the
application's state based on its outputs. If you know the state of the system and
understand how it got there, you will know if the state is correct. By employing
various observability techniques, we will learn about:

• Capturing errors and logs
• Instrumenting code with custom metrics
• Distributed application tracing

Observing Application Behavior and Performance

[494]

Most observability techniques can be applied to both desktop applications installed
on users' own computers and distributed systems running on remote servers
or cloud services. However, in the case of desktop applications, observability
options are often limited due to privacy concerns. That's why we will focus
mainly on observing the behavior and performance of code running on your own
infrastructure.

Great observability cannot be achieved without proper tools, so let's first consider the
technical requirements for this chapter.

Technical requirements
The following are the Python packages that are mentioned in this chapter that you
can download from PyPI:

• freezegun

• sentry-sdk

• prometheus-client

• jaeger-client

• Flask-OpenTracing

• redis_opentracing

Information on how to install packages is included in Chapter 2, Modern Python
Development Environments.

The code files for this chapter can be found at https://github.com/PacktPublishing/
Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%2012.

Capturing errors and logs
Standard output is the cornerstone of observability. That's because one of the
simplest things every application can do is to read information from standard
input and print information to standard output. That's why the first thing every
programmer learns is usually how to print "Hello world!"

Despite the fact that standard input and output are so important, users of modern
software rarely know anything about their existence. Desktop applications usually
aren't invoked from the terminal and users often interact with them using graphical
interfaces instead.

https://github.com/PacktPublishing/Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%2012
https://github.com/PacktPublishing/Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%2012

Chapter 12

[495]

Web-based software usually runs on remote servers and users interact with it using
web browsers or custom client software. In both cases, standard input and output are
hidden from the user.

But although users don't see standard output, that doesn't mean it does not exist.
Standard output is often used for logging detailed information about internal
application state, warnings, and errors that happen during program execution.
Moreover, standard output can be easily directed to a filesystem for easy storage
and later processing. The simplicity and versatility of standard output make it one
of the most flexible observability enablers. It also provides the most basic way to
capture and inspect information about error details.

Although you could handle application output using bare print() function calls,
good logging requires some consistent structure and formatting. Python comes with
a built-in logging module that provides a basic yet powerful logging system. Before
we dive deeper into good practices for capturing logs and errors, let's get to grips
with some of the basics of the Python logging system.

Python logging essentials
The usage of the logging module is pretty straightforward. The first thing to do is to
create a named logger instance and configure the logging system:

import logging

logger = logging.getLogger("my_logger")
logging.basicConfig()

Every logger is named. If you don't provide the name argument, logging.
getLogger() will return a special "root" logger that serves as a basis for other loggers.
logging.basicConfig() allows the specification of additional logging options like
logging capture level, message formatters, and log handlers.

A common idiom when defining loggers is to use module name as
the logger's name:

logger = logging.getLogger(__name__)

This pattern helps in managing logger configuration in a
hierarchical way. See the Logging configuration section for more
details on configuring loggers.

Observing Application Behavior and Performance

[496]

Using your logger instance, you can now record log messages at a specified log
level using either the log() method:

logger.log(logging.CRITICAL, "this is critical message")

Or various convenience methods associated with specific log levels:

logger.error("This is info message")
logger.warning("This is warning message")

The log level is a positive integer value where greater values correspond to messages
of higher importance. If logger is configured with a specific level, it will ignore
messages of lower value. Python logging provides the following preconfigured
levels with their respective integer values:

• CRITICAL and FATAL (50): Reserved for messages indicating errors due to
which the program is unlikely to be able to continue its operation. A practical
example would be exhaustion of resources (like disk space) or an inability to
connect with a crucial backing service (a database, for instance).

• ERROR (40): Reserved for messages indicating serious errors that make the
program unable to perform a specific task or function. A practical example
would be an inability to parse user input or an intermediary network
timeout.

• WARNING or WARN (30): Reserved for messages indicating abnormal situations
that the program has recovered from or situations that may lead to more
serious problems in the near future. A practical example would be fixing
malformed user input using a fallback value or an indication of low disk
space.

• INFO (20): Reserved for messages confirming that the program works as
expected. It can be used, for instance, to output details about successful
operations performed during program execution.

• DEBUG (10): Reserved for very detailed debugging messages, allowing us to
trace application behavior during debugging sessions.

• NOTSET (0): A pseudo-level that captures all possible log levels.

As you can see, the default logging level values are defined in intervals of 10. This
allows you to define custom levels in between existing levels if you need finer
granularity.

Chapter 12

[497]

Every predefined log level except NOTSET has a dedicated convenience method in the
logger instance:

• critical() for the CRITICAL and FATAL levels
• error() or exception() for the ERROR level (the latter automatically prints a

traceback of the currently captured exception)
• warning() for the WARNING and WARN levels
• info() for the INFO level
• debug() for the DEBUG level

The default configuration captures messages up to the logging.WARNING level
and outputs them to standard output. The default format includes a textual
representation of the error level, the logger name, and a message, as in the following
example:

ERROR:my_logger:This is error message
WARNING:my_logger:This is warning message
CRITICAL:my_logger:This is critical message

The format and output of loggers can be modified by specifying two types of logging
components: log handlers and formatters.

Logging system components
The Python logging system consists of four main components:

• Loggers: These are the entry points of the logging system. Application code
uses loggers to produce messages for the logging system.

• Handlers: These are the receivers of the logging system. Handlers are
attached to loggers and are supposed to emit information to the desired
destination (usually outside of the application). One logger can have multiple
handlers.

• Filters: These allow loggers or handlers to reject specific messages based on
their contents. Filters can be attached to either loggers or handlers.

• Formatters: These transform raw logging messages into the desired format.
Formatters can produce either human- or machine-readable messages.
Formatters are attached to message handlers.

Observing Application Behavior and Performance

[498]

In essence, Python log messages go in one direction—from the application to the
desired destination through loggers and handlers (see Figure 12.1). Both loggers and
filters can terminate message propagation either through the mechanism of filters or
by specifying the enabled=False flag.

Figure 12.1: Topology of the Python logging system

The basic configuration of the logging system enabled with an empty logging.
basicConfig() sets up the following hierarchy of components:

• A root logger with the logging.WARNING level: All messages with a severity
level lower than logging.WARNING will be ignored by default.

• A single console handler attached to the root logger: This emits log
messages to the standard error stream.

• A simple formatter with "%(levelname)s:%(name)s:%(message)s" style:
Every message emitted to the given output will contain the severity level
name, the name of the logger, and some plain message text separated by
a colon.

Chapter 12

[499]

These default settings are a good starting point. The simple format allows for
easy parsing and the standard console handler will work well with every console
application. However, some applications require more structured message
representation and/or the handling of custom message destinations. Such
customization can be achieved by overriding the log handlers and formatters.

The standard logging library comes with three built-in logging handlers:

• NullHandler: This handler does nothing. It can be used similarly as a /dev/
null device on POSIX systems to discard all messages from the logger. It
is often used as a default handler in libraries that use the Python logging
system. In such a case, the library user is responsible for overriding the
default NullHandler using their own logging configuration.

• StreamHandler: This handler emits messages to a given stream (a file-
like object). If no stream is provided, StreamHandler will by default emit
messages to the sys.stderr stream. After every message, the stream object
will be flushed if it supports the flush() method.

• FileHandler: This handler is a subclass of StreamHandler that emits messages
to the file specified by the filename argument. It will take care of opening
and closing the file. By default, it uses the append mode of a file and default
system encoding.

This is a very modest set of log handlers, but there's a logging.handlers module that
offers over a dozen more advanced handlers. The following are the most important
ones:

• RotatingFileHandler: This is a file handler that can rotate the logfiles
whenever the current logfile exceeds a certain size limit. This is a good
extension of the basic FileHandler that is especially useful for verbose
applications that can produce a lot of log messages in a short period of time.
RotatingFileHandler can be configured to keep only a specified number of
past log backup files and thus reduces the risk of logfiles overflowing the
disk.

• TimedRotatingFileHandler: This is similar to RotatingFileHandler but
performs logfile rollovers at specified time intervals instead of monitoring
the logfile size. It can be used to avoid disk overflow for applications
that produce log messages at a rather constant and predictable pace.
The advantage of TimedRotatingFileHandler is that past logfiles can
be easily browsed by the date of their creation. The default interval of
TimedRotatingFileHandler is one hour.

Observing Application Behavior and Performance

[500]

• SysLogHandler: This handler emits logs to the syslog server. Syslog is
a popular logging standard and many Linux distributions come with a
syslog server running locally by default. Many applications and services
support logging to the syslog server, so SysLogHandler can be used to unify
log collections across many programs running on the same host. Also,
using syslog allows you to offload the responsibility of logfile rotation and
compaction to a single system logging facility.

• SMTPHandler: This log handler emits a single SMTP email for every log
message. It is commonly used together with the logging.ERROR severity
level to deliver information about errors and exceptions to a specified email
address. Such errors can be later reviewed at any time in the recipient's
inbox. Using SMTPHandler is one of the simplest methods of error monitoring
and allows programmers to be notified about issues even if they don't have
direct access to the application runtime environment.

• SocketHandler, DatagramHandler, and HTTPHandler: These are simple
network handlers that allow you to deliver log messages over the network.
SocketHandler emits log messages over a socket connection, DatagramHandler
emits logs messages as UDP datagrams, and HTTPHandler emits logs
messages as HTTP requests. These handlers can be used to build your own
custom distributed log delivery mechanism, although it will work well only
for low volumes of logs that do not require good delivery guarantees. For
larger log volumes, it is advised to use a specialized log delivery mechanism
such as syslog or another modern distributed log system.

To see how one of those specialized log handlers works, let's assume we are building
a small desktop application. Let's pretend our program runs with a graphical user
interface and the user usually does not run it from the shell. We will be logging
information about warnings and errors discovered during program execution. If
there is a problem, the user will be able to find the logfile and send us a reference
to it.

We don't know how many messages our application will produce. In order to avoid
disk overflow, we will provide a rotating file handler. Files will be rotated daily, and
we will keep a history of the last 30 days. Our logging handler configuration can be
as simple as this:

We will discuss an example of a modern distributed log
system in the Distributed logging section.

Chapter 12

[501]

import logging.handlers
from datetime import timedelta, datetime

root_logger = logging.getLogger()
root_logger.setLevel(logging.INFO)
root_logger.addHandler(
 logging.handlers.TimedRotatingFileHandler(
 filename="application.log",
 when="D",
 backupCount=30,
)
)

The logging.getLogger() call (without a specific logger name) allows us to obtain a
special root logger. The purpose of this logger is to provide default configuration and
handlers for other loggers that do not have specific handlers attached. If the logger
does not have its own handlers, its messages will be automatically propagated to the
parent logger.

Once we have access to the root logger, we are able to provide the default
configuration. The root_logger.setLevel(logging.INFO) call makes sure that the
logger will emit only messages with a severity level greater than or equal to logging.
INFO. That's quite a verbose setting. If you don't use custom log levels, the only more
verbose setting would be logging.DEBUG.

We didn't configure the logging system using the logging.basicConfig()
function so our root logger doesn't have a default handler. We add a
TimedRotatingFileHandler() instance to the root logger using the addHandler()
method. The when="D" argument specifies a daily rollover strategy and backupCount
specifies the number of logfile backup files we want to keep on disk.

You probably don't have a full month of time to run the application just to see how
rotated logfiles pile up on the disk. To speed up the process, we will use a neat trick
and employ the freezegun package to trick Python into thinking that time is passing
at an increased pace.

We will learn more about logger hierarchy and log message
propagation in the Logging configuration section.

Observing Application Behavior and Performance

[502]

The following code simulates an application that produces one message every hour
but speeds up the process by 36,000:

from datetime import timedelta, datetime
import time
import logging
import freezegun

logger = logging.getLogger()

def main():
 with freezegun.freeze_time() as frozen:
 while True:
 frozen.tick(timedelta(hours=1))
 time.sleep(0.1)
 logger.info(f"Something has happened at {datetime.now()}")

if __name__ == "__main__":
 main()

If you run the application in your shell, you won't see any output. But if you list all
the files in the current directory, you will see that after few seconds, new logfiles
start appearing:

$ ls -al
total 264
drwxr-xr-x 35 swistakm staff 1120 8 kwi 00:22 .
drwxr-xr-x 4 swistakm staff 128 7 kwi 23:00 ..
-rw-r--r-- 1 swistakm staff 583 8 kwi 00:22 application.log
-rw-r--r-- 1 swistakm staff 2491 8 kwi 00:21 application.log.2021-
04-07
-rw-r--r-- 1 swistakm staff 1272 7 kwi 23:59 application.log.2021-
04-08

The application.log file is the current logfile and files ending with a date are
historical backup files. If you let your program spin for a little longer, you will
see that the number of historical backup files never exceeds 30. After some time,
TimedRotatingFileHandler will start replacing old backups with new ones.

We used the freezegun package previously to test time-dependent
code in Chapter 10, Testing and Quality Automation.

Chapter 12

[503]

In our example, we have configured the log without any formatters. In such cases,
the handler will emit messages as is and without any extra information. Here's a
sample taken from the most recent logfile:

Something has happened at 2021-04-08 17:31:54.085117
Something has happened at 2021-04-07 23:32:04.347385
Something has happened at 2021-04-08 00:32:04.347385
Something has happened at 2021-04-08 01:32:04.347385

It is missing some important context. We see the date of the message only because
we included it in the log message, but we are missing information about the logger
from which messages are originating and information about message severity. We
can customize the output from a specific log handler by attaching a custom message
formatter.

Formatters are attached to log handlers using the setFormatter() method of the
handler object. The formatter should be a logging.Formatter() instance that accepts
four initialization arguments:

• fmt: This is a string formatting pattern for the output message. A string
formatting pattern can reference any of the attributes of the logging.
LogRecord class. It defaults to None, which is a plain text log message without
any formatting.

• datefmt: This is a date formatting pattern for representing the message
timestamp. It accepts the same formatting directives as the time.strftime()
function. It defaults to None, which translates to an ISO8601-like format.

• style: This specifies the string formatting style used for the fmt argument. It
can be either '%' (percent formatting), '{' (str.format() formatting), or '$'
(string.Template formatting). It defaults to '%'.

• validate: This specifies whether to validate the fmt formatting argument
against the style argument. It defaults to True.

We can, for instance, provide a custom formatter that includes the severity message
time, level name, logger name, and exact line of the log call along with the emitted
message. Our logging setup would then look as follows:

root_logger = logging.getLogger()
root_logger.setLevel(logging.INFO)
formatter = logging.Formatter(
 fmt=(
 "%(asctime)s | %(levelname)s | "
 "%(name)s | %(filename)s:%(lineno)d | "
 "%(message)s"

Observing Application Behavior and Performance

[504]

)
)
handler = logging.handlers.TimedRotatingFileHandler(
 filename="application.log",
 when="D",
 backupCount=30,
)
handler.setFormatter(formatter)
root_logger.addHandler(handler)

With such a configuration, a message in our logfile would look as follows:

2021-04-08 02:03:50,780 | INFO | __main__ | logging_handlers.py:34 |
Something has happened at 2021-04-08 00:03:50.780432

The choice of whether to use a specialized log handler usually depends on multiple
factors, like the target operating system, the existing system logging infrastructure in
your organization, the expected volume of logs, and the deployment methodology.
Standalone applications, system services, or Docker containers usually log
differently, and you need to take that into account. For instance, having historical
logfiles easily accessible is definitely a practical thing, but managing a collection of
thousands of logfiles in a large distributed system consisting of tens or hundreds
of hosts can be a real hurdle. On the other hand, you can't expect end users of
standalone applications to run a distributed logging system on their own personal
computer just to use your application.

The same applies to log message formatting. Some log collection and processing
systems can take advantage of structured message formats such as JSON, msgpack,
or avro. Others will be able to parse and extract semantic elements of the message
using customized parsing rules. Plaintext messages are easier to inspect and
understand for humans but are harder to process using specialized log analysis
software. Structured log messages are easier to process by machines but are harder
to read with the naked eye.

Regardless of your current needs, you can be sure that your logging choices
and preferences will change over time. That's why providing a logging setup
by manually creating handlers and formatters is rarely a convenient method.

You can learn more about the available LogRecord attributes
that can be referenced with custom formatters at https://
docs.python.org/3/library/logging.html#logrecord-
attributes.

https://docs.python.org/3/library/logging.html#logrecord-attributes
https://docs.python.org/3/library/logging.html#logrecord-attributes
https://docs.python.org/3/library/logging.html#logrecord-attributes

Chapter 12

[505]

We've already learned about the logging.basicConfig() function. It sets up a
reasonable logging default but also allows you to provide some shortcuts for
defining the message format or the default handler selection. Unfortunately, it works
only at the root logger level and doesn't allow you to target other loggers. In the next
section we will learn about alternative logging configuration methods that allow you
to define complex logging rules for applications of any size.

Logging configuration
Using the root logger is a convenient method of defining the top-level configuration
of your application logging system. Unfortunately, you will quickly learn that some
libraries often use the Python logging module to emit information about important
events happening inside them. At some point, you may find it necessary to fine-tune
the logging behavior of those libraries as well.

Usually, libraries use their own logger names. The common pattern for naming
loggers is to use a special __name__ attribute that contains the fully qualified name
of a module:

import logging

logger = logging.getLogger(__name__)

For instance, the __name__ attribute inside the utils sub-module of the package acme
will be acme.utils. If acme.utils defines its logger as logging.getLogger(__name__)
then the name of that logger will be 'acme.utils'.

When you know the name of the logger, you can obtain it at any time and provide a
custom configuration. Common use cases are:

• Silencing the logger: Sometimes you are not interested in messages coming
from a library at all. In your main application file, you can find a logger and
silence it with the disabled attribute as in the following example:

acme_logger = logging.getLogger("acme.utils")
acme_logger.disabled = True

• Overriding handlers: Libraries should not define their own handlers;
that should be the responsibility of the library user. Anyway, not every
programmer is aware of good logging practices and it happens sometimes
that a useful third-party package comes with a logger that has an attached
handler. It will effectively ignore your root logger configuration.

Observing Application Behavior and Performance

[506]

You can use such logger and override handlers as in the following example:
acme_logger = logging.getLogger("acme.utils")
acme_logger.handlers.clear()

• Changing logger verbosity: It may happen that some loggers are too
verbose. Sometimes warnings inside a library are not severe enough to be
included in the main application log. You can find a logger and override its
severity level:

acme_logger = logging.getLogger("acme.utils")
acme_logger.setLevel(logging.CRITICAL)

Using per-module loggers is also useful in non-library code. It is good practice to
use per-module loggers in larger applications consisting of multiple sub-packages or
sub-modules. This will allow you to easily fine-tune the verbosity and manage the
handlers of multiple loggers. And the key in consistently managing Python logging
configuration is understanding the parent-child relationship of loggers.

Whenever you create a logger with a name that contains periods, the logging module
will actually build a hierarchy of loggers. If you, for instance, try to obtain a logger
using logging.getLogger("acme.lib.utils"), the logging module will perform the
following steps:

1. It will first search for a logger registered under "acme.lib.utils" in a thread-
safe manner. If it does not exist, it will create a fresh logger and register it
under "acme.lib.utils".

2. If a new logger has been created, it will iteratively remove the last segments
from the logger name and search for a new name until it finds a registered
logger. If the name doesn't have a logger registered under it, the logging
module will register special placeholder object. For "acme.lib.utils", it will
search first for "acme.lib" and then for "acme". The first non-placeholder
logger will become the parent of "acme.lib.utils".

3. If there are no non-placeholder loggers above the newly created logger, the
root logger becomes the parent of this logger.

Moreover, the logging module ensures that existing placeholders are actively
replaced with proper loggers the first time they are explicitly accessed with the
logging.getLogger() function. In such a case, the parent-child relationships are
retroactively updated. Thanks to this, concrete loggers can be configured in any
order and regardless of their hierarchy.

Chapter 12

[507]

This parent-child relationship plays a role in the evaluation of logger handlers.
Whenever you log a new message through a specific logger, handlers are invoked
according to the following rules:

1. If a logger has its own handlers, a message is passed to every handler:
• If the logger has the propagate attribute set to True (default value),

the message is propagated to the parent logger.
• If the logger has the propagate attribute set to False, processing

stops.

2. If a logger does not have its own handlers, a message is passed to the
parent logger

Best practice is to define log handlers only at the top-level root logger. Otherwise,
it will be hard to track all propagation rules and make sure that every message is
logged only once. But sometimes specifying handlers on lower-level (per-module)
loggers can be useful for applying special treatment to a very specific category
of errors. For instance, your application may generally log using the default
console handler, but if there is a business-critical module, you may want to attach
SMTPHandler. That way you will be sure that all log messages coming from that
module will be additionally delivered to you as SMTP emails.

The logging hierarchy is also useful for controlling the verbosity of whole logger
groups. For example, if the acme package contains multiple sub-loggers and none of
them has handlers attached, you can disable the whole "acme" logger to silence every
sub-logger.

Complex hierarchies can be intimidating, especially if you need to perform fine-
tuning of loggers living in multiple modules. Creating individual loggers, handlers,
and formatters using Python may sometimes require a substantial amount of
boilerplate. That's why the logging.config module offers two functions that allow
you to configure the whole Python logging system in a more declarative way:

• fileConfig(): This takes the path of an INI-like configuration file. The syntax
of that file is the same as the syntax of configuration files handled with the
built-in configparser module.

• dictConfig(): This takes a dictionary of configuration values.

You can find more information about Python logging
configuration options at https://docs.python.org/3/
library/logging.config.html.

https://docs.python.org/3/library/logging.config.html
https://docs.python.org/3/library/logging.config.html

Observing Application Behavior and Performance

[508]

Both configuration ways assume similar configuration sections and options. The
only difference is the format. The following is an example of the configuration file
for logging with time-based file rotation:

[formatters]
keys=default

[loggers]
keys=root

[handlers]
keys=logfile

[logger_root]
handlers=logfile
level=INFO

[formatter_default]
format=%(asctime)s | %(levelname)s | %(name)s | %(filename)s:%(lineno)d
| %(message)s

[handler_logfile]
class=logging.handlers.TimedRotatingFileHandler
formatter=default
kwargs={"filename": "application.log", "when": "D", "backupCount": 30}

And the following is the same configuration defined with use of the dictConfig()
function:

logging.config.dictConfig({
 "version": 1,
 "formatters": {
 "default": {
 "format": (
 "%(asctime)s | %(levelname)s | "
 "%(name)s | %(filename)s:%(lineno)d | "
 "%(message)s"
)
 },
 },
 "handlers": {
 "logfile": {
 "class": "logging.handlers.TimedRotatingFileHandler",
 "formatter": "default",
 "filename": "application.log",

Chapter 12

[509]

 "when": "D",
 "backupCount": 30,
 }
 },
 "root": {
 "handlers": ["logfile"],
 "level": "INFO",
 }
})

With so many formatting options and a hierarchical logger structure, logging in
Python can be quite complex. But it rarely has to be complex. You can reduce the
complexity of logging by following some good practices explained in the next section.

Good logging practices
Python provides a flexible and powerful logging system. With so many configuration
options, it is really easy to get tangled in unnecessary complexity. But in fact, logging
should be as simple as possible. It is, in the end, the first and foremost tool to use to
understand how your application works. You won't be able to understand how your
code works if you're spending countless hours trying to understand what's wrong
with your logging.

The key to good logging is to follow good practices. The following are common rules
for efficient and simple logging in Python:

• Use per-module loggers: By using logging.getLogger(__name__) to create
new loggers, you make it simple to control the logging behavior of whole
module trees. This practice is especially useful for libraries because it allows
developers to tune library logging from within the main application logging
configuration.

• Use one event per line: If you use text-based outputs (stdout/stderr streams,
files), a single log message should preferably fit a single line of text. This
allows you to avoid most text buffering issues and the mixing of messages
coming from multiple threads or processes logging to the same output. If you
really need to fit multiline text into a message (for instance, for an error stack
trace), you can still do that by leveraging structured log formats like JSON.

• Offload work to system logging facilities or a distributed logging system:
Log compaction, forwarding, or logfile rotation can all be done in Python
code using custom log handlers, but that is rarely a wise choice. It is
usually better to use a system logging facility like syslog or a dedicated log
processing tool like logstash or fluentd. Dedicated tools will usually do these
things better and more consistently.

Observing Application Behavior and Performance

[510]

They will also remove a lot of log processing complexity from your own code
and will reduce problems with logging in concurrent applications.

• If possible, log directly to standard output or error streams: Writing to
stdout or stderr is one of the most basic things every application can do. This
is true for writing to files, but not every environment will have a writable or
persistent filesystem. If you need logs stored in files, you can simply use shell
output redirection. If you need your logs delivered over the network, you
can use dedicated log forwarders like logstash or fluentd.

• Keep log handlers at the root logger level: Defining handlers and formatters
for specific loggers other than the root logger makes a logging configuration
unnecessarily complex. It is usually better to define a single console handler
at the root level and leave the rest of the log processing logic to external
logging utilities.

• Avoid the urge to write a custom distributed logging system: Reliably
delivering logs over a network in a large distributed system isn't a simple
thing. It is usually better to leave this task to dedicated tools like syslog,
fluentd, or logstash.

• Use structured log messages: As the volume of logs grows, it becomes
harder and harder to extract meaningful information from them. Dedicated
log processing systems allow you to search through large volumes of textual
information using various queries and even do sophisticated analytics of
historical log events. Most of these systems can perform efficient parsing of
plain textual log messages, but they always work better if they have access
to structured log messages from the very beginning. Common structured
message formats for logs are JSON and msgpack.

Python's logging and logging.handlers modules
lack a dedicated handler for structured log messages.
python-json-logger is a popular package from PyPI
that provides a formatter capable of emitting messages in
JSON format. You can learn more about python-json-
logger at https://github.com/madzak/python-json-
logger.

Another popular package is structlog. It extends the
Python logging system with various utilities for capturing
log context, processing messages, and outputting them in
various structured formats. You can learn more about the
structlog package at https://www.structlog.org/
en/stable/index.html.

https://github.com/madzak/python-json-logger
https://github.com/madzak/python-json-logger
https://www.structlog.org/en/stable/index.html
https://www.structlog.org/en/stable/index.html

Chapter 12

[511]

• Configure logging in only one place: Logging configuration (understood as
a collection of handlers and formatters) should be defined only in one part
of your application. Preferably, that's the main application entrypoint script,
like the __main__.py file or a WSGI/ASGI application module (for web-based
applications).

• Use basicConfig() whenever possible: If you follow most of the previous
rules, the basicConfig() function is all that you need to perform a complete
logging configuration. It works at the root logger level and by default defines
the StreamHandler class attached to the stderr stream. It also allows for the
convenient configuration of date and log message format strings and usually,
you won't need anything more beyond that. If you want to use structured
log messages you can easily use your own handler with a custom message
formatter.

• Prefer dictConfig() over fileConfig(): The syntax of logging configuration
files supported by fileConfig() is a bit clunky and way less flexible than
dictConfig(). It is, for instance, a common pattern to control the verbosity
of application logging through command-line arguments or environment
variables. Such functionality is definitely easier to implement through
a dictionary-based logging configuration than through a file-based
configuration.

It may seem like a lot of rules, but generally, they are all about keeping things simple
and not overengineering your logging system. If you keep the configuration simple,
log to standard output, and use reasonable log formatting, you are usually set for
success.

Good logging hygiene will prepare you for handling and processing arbitrarily
large volumes of logs. Not every application will generate a lot of logs, but those
that do generally need the support of dedicated log forwarding and processing
systems. These systems are usually capable of handling distributed logs coming
from hundreds or even thousands of independent hosts.

Distributed logging
With a single service or program running on a single host, you can easily go with
a simple logging setup based on rotated logfiles. Almost every process supervision
tool (like systemd or supervisord) allows for the redirection of stdout and stderr
output to a specified logfile, so you don't have to open any files in your application.
You also can easily offload the responsibility of compacting and rotating historical
logfiles to a system utility like logrotate.

Observing Application Behavior and Performance

[512]

Simple things will work well only for small applications. If you run multiple services
on the same host, you will eventually want to handle logs of various programs in
a similar way. The first step to organize logging chaos is to use a dedicated system
logging facility like syslog. It will not only digest logs in a consistent format but will
also provide command-line utilities to browse and filter past logs.

Things become more complex once you scale your application to run in a distributed
manner across many hosts. The main challenges of distributed logging are the
following:

• Large volumes of logs: Distributed systems can produce enormous amounts
of logs. The volume of logs grows with the number of processing nodes
(hosts). If you want to store historical logs, you will need a dedicated
infrastructure to keep all this data.

• The need for centralized log access: It is really impractical to store logs only
on the hosts that produce them. When you know that something is going
wrong with your application, the last thing you want to do is to jump from
host to host to find a logfile that has crucial information about the issue
you're experiencing. What you need is a single place where you can access
all logs available in your system.

• Unreliable networks: Networks are unreliable by nature, and if you are
sending data over one, you need to be prepared for temporary connection
failures, network congestion, or unexpected communication delays, which
may happen in any distributed system. With centralized log access, you
will need to deliver logs from each individual host to a dedicated logging
infrastructure. To avoid any data loss, you will need specialized software
that can buffer log messages and retry delivery in the case of network
failures.

• Information discoverability and correlation: With large volumes of logs,
it will be hard to find useful information in the sea of log messages of
various severity. You will eventually need a way to perform custom queries
against your log dataset that allows you to filter messages by their sources,
logger names, severity levels, and textual content. Also, issues occurring in
distributed systems are often very intricate. In order to understand what
is really going on in your system, you will need tools that allow you to
aggregate information from various log streams and perform statistical
data analysis.

The complexity of the logging infrastructure depends mainly on the scale of your
application and the observability needs you have. Depending on the capabilities
of the logging infrastructure, we can define the following logging maturity model:

Chapter 12

[513]

• Level 0 (snowflake): Every application is a unique "snowflake." Each handles
all extra logging activities, like storage, compaction, archiving, and retention,
on its own. Level 0 offers almost no extra observability capabilities beyond
the ability to open historical logs in a text editor or shell utility.

• Level 1 (unified logging): Every service on the same host logs messages
in a similar way to a system daemon, known destination, or disk. Basic log
processing tasks like compaction or retention are delegated to system logging
facilities or common utilities like logrotate. To view logs from a particular
host, the developer needs to "shell into" the host or communicate with the
dedicated service daemon running on that host.

• Level 2 (centralized logging): Logs from every host are delivered to a
dedicated host or a cluster of hosts to prevent data loss and for archival
storage. Services may need to deliver logs to a specific destination (a logging
daemon or a location on disk). It is possible to view a slice of all logs in a
given time frame, sometimes with advanced filtering, aggregation, and
analytics capabilities.

• Level 3 (logging mesh): Services are completely unaware of the logging
infrastructure and can log directly to their stdout or stderr streams. A logging
mesh working on every host is capable of automatically discovering new log
streams and/or logfiles from every running service. Upon the deployment
of a new application, its output streams will be automatically included in
the logging infrastructure. A centralized log access infrastructure is capable
of performing sophisticated queries over arbitrarily large time spans. It is
possible to run log aggregation and analytics on stored messages. Logging
information is available in near real time.

Centralized logging and logging mesh infrastructures can offer similar capabilities
with regards to log filtering, aggregation, and analytics. The key differentiator
here is the ubiquity of logging in logging mesh infrastructures. In Level 3 logging
architectures, everything that runs your infrastructure and outputs information on
standard output or error streams is automatically a source of logging information
and will be automatically available in a centralized log access system.

There are many companies offering Level 2 or Level 3 logging infrastructures as a
service. A popular example is AWS CloudWatch, which is well integrated with other
AWS services. Other cloud providers also offer alternative solutions. If you have
enough time and determination, you can also build a full-fledged Level 2 or Level
3 logging infrastructure from scratch using open-source tools.

Observing Application Behavior and Performance

[514]

Capturing errors for later review
Logging is the most popular choice for storing and discovering information about
errors and issues happening in the system. Mature logging infrastructures offer
advanced correlation capabilities that allow you to have more insight into what is
happening in the whole system at any given time. They can often be configured to
alert on error message occurrence, which enables fast response times in situations
of unexpected failure.

But the main problem of tracking errors using ordinary logging infrastructures is
that they provide only a limited overview of the full context of the error occurrence.
Simply put, you will only have access to the information that was included in a
logging call.

In order to fully understand why a particular problem has occurred, you will need
more information than was initially included in the logging call. With a traditional
logging infrastructure, you would have to modify the code with additional logging,
release the new version of the application, and wait for the error to occur again. If
you missed something, you would have to repeat the process over and over again.

Another problem is the filtering of meaningful errors. It is not uncommon for
large distributed systems to log tens of thousands of error messages or warnings
daily. But not every error message has to be acted upon immediately. Teams doing
maintenance often perform a bug triaging process to estimate the impact of an
error. Usually, you concentrate on issues that occur very often or those that happen
in a critical part of your application. For efficient triaging, you will need a system
that is at least capable of deduplicating (merging) error events and assessing their
frequency. Not every logging infrastructure will be able to do that efficiently.

That's why for tracking errors in your application, you should usually use a
dedicated error tracking system that can work independently from your logging
infrastructure.

A popular open-source choice for building full-fledged logging
infrastructures is the Elastic Stack. This is a software ecosystem
composed of multiple components: Logstash/Beats (log and metric
ingestors/collectors), Elasticsearch (document store and search
system), and Kibana (frontend application and dashboard for
the Elastic Stack). You can learn more about the Elastic Stack at
https://www.elastic.co/.

https://www.elastic.co/

Chapter 12

[515]

One of the popular tools that gives a great error tracking experience is Sentry. It
is a battle-tested service for tracking exceptions and collecting crash reports. It is
available as open source, written in Python, and originated as a tool for backend
Python developers. Now, it has outgrown its initial ambitions and has support for
many more languages, including PHP, Ruby, and JavaScript, Go, Java, C, C++, and
Kotlin. It still remains one of the most popular error tracking tools for many Python
web developers.

Sentry is available as a paid software-as-a-service model, but it is also an open-
source project, so it can be hosted for free on your own infrastructure. The library
that provides integration with Sentry is sentry-sdk (available on PyPI). If you
haven't worked with it yet and want to test it without having to run your own Sentry
server, then you can easily sign up for a free trial at the Sentry service site. Once
you have access to a Sentry server and have created a new project, you will obtain
a string called a Data Source Name (DSN) string. This DSN string is the minimal
configuration setting needed to integrate your application with Sentry. It contains the
protocol, credentials, server location, and your organization/project identifier in the
following format:

'{PROTOCOL}://{PUBLIC_KEY}:{SECRET_KEY}@{HOST}/{PATH}{PROJECT_ID}'

Once you have your DSN, the integration is pretty straightforward, as shown in the
following code:

import sentry_sdk

sentry_sdk.init(
 dsn='https://<key>:<secret>@app.getsentry.com/<project>'
)

From now on, every unhandled exception in your code will be automatically
delivered to the Sentry server using the Sentry API. The Sentry SDK uses the HTTP
protocol and delivers errors as compressed JSON messages over a secure HTTP
connection (HTTPS). By default, messages are sent asynchronously from a separate
thread to limit the impact on application performance. Error messages can then be
later reviewed in the Sentry portal.

You can learn more about Sentry at https://sentry.io/.

https://sentry.io/

Observing Application Behavior and Performance

[516]

Error capture happens automatically on every unhandled exception, but you can also
explicitly capture exceptions as in the following example:

try:
 1 / 0
except Exception as e:
 sentry_sdk.capture_exception(e)

The Sentry SDK has numerous integrations with the most popular Python
frameworks, such as Django, Flask, Celery, and Pyramid. These integrations will
automatically provide additional context that is specific to the given framework.
If your web framework of choice does not have dedicated support, the sentry-sdk
package provides generic WSGI middleware that makes it compatible with any
WSGI-based web server, as shown in the following code:

from sentry_sdk.integrations.wsgi import SentryWsgiMiddleware

sentry_sdk.init(
 dsn='https://<key>:<secret>@app.getsentry.com/<project>'
)
...
application = SentryWsgiMiddleware(application)

The other notable integration is the ability to track messages logged through
Python's built-in logging module. Enabling such support requires only the following
few additional lines of code:

import logging

import sentry_sdk
from sentry_sdk.integrations.logging import LoggingIntegration

Exceptions in Python web applications

Commonly, web applications do not exit on unhandled exceptions
because HTTP servers are obliged to return an error response
with a status code from the 5XX group if any server error occurs.
Most Python web frameworks do such things by default. In such
cases, the exception is, in fact, handled either on the internal web
framework level or by the WSGI server middleware. Anyway, this
will usually still result in the exception stack trace being printed
(usually on standard output). The Sentry SDK is aware of the
WSGI conventions and will automatically capture such exceptions
as well.

Chapter 12

[517]

sentry_logging = LoggingIntegration(
 level=logging.INFO,
 event_level=logging.ERROR,
)

sentry_sdk.init(
 dsn='https://<key>:<secret>@app.getsentry.com/<project>',
 integrations=[sentry_logging],
)

The capturing of logging messages may have caveats, so make sure to read the
official documentation on the topic if you are interested in such a feature. This
should save you from unpleasant surprises.

If you decide to use Sentry or any other similar service, carefully consider the "build
versus buy" decision. As you may already heard, "there ain't no such thing as a
free lunch." If you decide to run an error tracking service (or any utility system) on
your own infrastructure, you will eventually pay additional infrastructure costs.
Such an additional system will also be just another service to maintain and update.
Maintenance = additional work = costs!

As your application grows, the number of exceptions grows, so you will be forced
to scale Sentry (or any other system) as you scale your product. Fortunately, Sentry
is a very robust project, but it will not give you any value if it's overwhelmed with
too much load. Also, keeping Sentry prepared for a catastrophic failure scenario,
where thousands of crash reports can be sent per second, is a real challenge. So, you
must decide which option is really cheaper for you and whether you have enough
resources to do all of this by yourself.

Capturing errors allows for later review, eases debugging, and allows you to
respond quickly in situations when errors suddenly start to accumulate. But this
is a reactive approach in situations when users have likely been exposed to buggy
software.

There is, of course, no "build versus buy" dilemma if security
policies in your organization deny sending any data to third
parties. If so, just host Sentry or similar software on your own
infrastructure. There are costs, of course, but they are ones that
are definitely worth paying.

Observing Application Behavior and Performance

[518]

Mindful developers want to observe their applications all the time and be able
to react before actual failures occur. This type of application observability can be
implemented by instrumenting your code with custom metrics. Let's learn about
various types of custom metrics and systems used for metrics collection.

Instrumenting code with custom metrics
If we want to keep our application running smoothly, we need to be proactive.
Observability isn't only about being able to do post-mortem analysis of logs and
error reports. It is also about collecting various metrics that provide insights about
service load, performance, and resource usage. If you monitor how your application
behaves during normal operation, you will be able to spot anomalies and anticipate
failures before they happen.

The key in monitoring software is defining metrics that will be useful in determining
the general service health. Typical metrics can be divided into a few categories:

• Resource usage metrics: Typical metrics are memory, disk, network, and
CPU time usage. You should always monitor these metrics because every
infrastructure has limited resources. That's true even for cloud services,
which provide seemingly unlimited resource pools. If one service has
abnormal resource usage, it can starve other services and even induce
cascading failures in your infrastructure. This is especially important when
running code on cloud infrastructure where you often pay for the resources
that you use. A resource-hungry service that goes rogue can cost you a lot of
money.

• Load metrics: Typical metrics are the number of connections and the number
of requests in a given time frame. Most services can accept a limited number
of parallel connections and their performance degrades after reaching a
specific threshold. The usual pattern for overloaded services is a gradual
performance drop followed by sudden unavailability after reaching the
critical load point. Monitoring load metrics allows deciding whether you
need to scale out or not. Low load periods can also be an opportunity to
scale your infrastructure in to reduce operating costs.

• Performance metrics: Typical metrics are request or task processing times.
Performance metrics are often correlated with load metrics but can also
highlight performance hotspots in code that needs optimization. Good
application performance improves user experience and allows you to save
money on infrastructure costs because performant code will likely need
fewer resources to run. The continuous monitoring of performance allows
discovering performance regressions that can happen when introducing
new changes in an application.

Chapter 12

[519]

• Business metrics: These are the key performance metrics of your business.
Typical examples might be the number of signups or sold items in a given
time frame. Anomalies in these metrics allow you to discover functional
regressions that slipped through the testing process (a defective cart checkout
process, for instance) or evaluate dubious changes in the application interface
that may confuse frequent users.

Some of those metrics can sometimes be derived from application logs, and many
mature logging infrastructures can perform rolling aggregations on log event
streams. This practice works best for load metrics and performance metrics, which
often can be reliably derived from the access logs of web servers, proxies, or load
balancers. The same approach can be used also for business metrics, although that
requires careful consideration of log formats for key business events and can be very
brittle.

Log processing has the least utility in the case of resource usage metrics. That's
because resource metrics are based on regular probing of resource usage, and log
processing is concerned with streams of discrete events that often happen on a rather
irregular basis. Also, centralized log infrastructures are not well suited for storing
time series data.

Usually, to monitor application metrics, we use dedicated infrastructure that is
independent of logging infrastructure. Advanced metric monitoring systems offer
complex metric aggregation and correlation capabilities and are focused on dealing
with time series data. Metric infrastructure systems also offer faster access to the
most recent data because they are more concerned with observing live systems than
logging infrastructures. With logging infrastructures, it is more common to observe
noticeable lag in data propagation.

There are generally two architectures of metric monitoring systems:

• Push architectures: In this architecture, the application is responsible for
pushing data to the system. It is usually a remote metrics server or local
metric daemon (metric forwarder) responsible for pushing metrics to
a higher-level daemon on a different server (layered architecture). The
configuration is usually distributed: each service needs to know the location
of the destination daemon or server.

• Pull architectures: In this architecture, the application is responsible for
exposing a metrics endpoint (usually an HTTP endpoint) and the metric
daemon or server pulls information from known services. The configuration
can be either centralized (where the main metric server knows the locations
of monitored services) or semi-distributed (the main server knows the
location of metric forwarders that pull metrics from lower layers).

Observing Application Behavior and Performance

[520]

Both types of architectures can have mesh-like capabilities by utilizing a service
discovery mechanism. For instance, in push architectures, metric forwarders can
advertise themselves as services capable of forwarding metrics to other services. In
pull architectures, monitored services usually advertise themselves in the service
discovery catalog as services that provide metrics to be collected.

One of the popular choices for monitoring applications is Prometheus.

Using Prometheus
Prometheus is a prime example of pull-based metrics infrastructure. It is a complete
system capable of collecting metrics, defining forwarding topologies (through so-
called metric exporters), data visualization, and alerting. It comes with an SDK for
multiple programming languages, including Python.

The architecture of Prometheus (presented in Figure 12.2) consists of the following
components:

• Prometheus server: This is a standalone metrics server that is capable
of storing time series data, responding to metrics queries, and retrieving
metrics (pulling) from metrics exporters, monitored services (jobs), and
other Prometheus servers. A Prometheus server provides an HTTP API for
querying data and includes a simple interface that allows us to create various
metrics visualizations.

• Alert manager: This is an optional service that is able to store the definition
of alerting rules and trigger notifications when specific alerting conditions
are met.

• Metric exporters: These are the processes that the Prometheus server can
pull data from. An exporter can be any service that uses the Prometheus SDK
to expose a metrics endpoint. There are also standalone exporters that can
probe information directly from hosts (like general host usage information),
expose metrics for services without Prometheus SDK integration (like
databases), or act as a push gateway for short-lived processes (like cron jobs).
Every Prometheus server can act as a metrics exporter for other Prometheus
servers.

The above three components are the bare minimum for having a fully functional
metrics infrastructure with data visualizations and reliable alerting. Moreover,
many Prometheus deployments extend this architecture with the following extra
components:

Chapter 12

[521]

• Service discovery catalog: A Prometheus server is capable of reading
information from various service discovery solutions to locate available
metrics exporters. The usage of service discovery mechanisms simplifies
configuration and allows for a mesh-like developer experience. Popular
choices for service discovery catalogs are Consul, ZooKeeper, and etcd.
Container orchestration systems (like Kubernetes) often have built-in service
discovery mechanisms.

• Dashboarding solution: Prometheus servers have a simple web interface
capable of performing simple data visualizations. These basic capabilities are
often not enough for operations teams. Thanks to its open API, Prometheus
can easily be extended with a custom dashboarding solution. The most
popular choice is Grafana, which can also be easily integrated with other
metrics systems and data sources.

Figure 12.2: Architecture of a typical Prometheus deployment

To see how applications can be easily extended with Prometheus monitoring, we
will take one of the applications written in previous chapters and try to furnish it
with the Prometheus SDK. We will also define a small Docker Compose setup that
will allow us to evaluate the whole solution locally.

For evaluating metrics systems, it is essential to have an application that actually
does something useful. One practical example that served us well in various parts
of the book was the pixel tracking service from Chapter 5, Interfaces, Patterns, and
Modularity. You should be familiar with how it works, so we will use it as the basis
of our experiment.

Observing Application Behavior and Performance

[522]

The heart of our application is the tracking.py file. It includes module imports,
definitions of views, HTTP route bindings, and an instance of a Flask application
object. If we skip the view functions, it looks roughly as follows:

from flask import Flask, request, Response
from flask_injector import FlaskInjector

from interfaces import ViewsStorageBackend
import di

app = Flask(__name__)

@app.route("/track")
def track(storage: ViewsStorageBackend):
 ...

@app.route("/stats")
def stats(storage: ViewsStorageBackend):
 ...

@app.route("/test")
def test():
 ...

if __name__ == "__main__":
 FlaskInjector(app=app, modules=[di.RedisModule()])
 app.run(host="0.0.0.0", port=8000)

In order to make our application observable by the Prometheus server, we need
to embed it with a Prometheus metrics exporter. We will do that using the official
prometheus-client package available on PyPI. We start by defining some metric
objects using classes from the prometheus_client module:

For the sake of brevity, we are omitting parts of the application
code that won't deal directly with metrics. Full code examples
of the pixel tracking service can be found in Chapter 5, Interfaces,
Patterns, and Modularity. You can also find all the source code
for this section (including the configuration, Dockerfile,
and docker-compose.yml) in the Chapter 12/05 - Using
Prometheus directory of the code repository for this book
(see the Technical requirements section).

Chapter 12

[523]

from prometheus_client import Summary, Gauge, Info

REQUEST_TIME = Summary(
 "request_processing_seconds",
 "Time spent processing requests"
)
AVERAGE_TOP_HITS = Gauge(
 "average_top_hits",
 "Average number of top-10 page counts "
)
TOP_PAGE = Info(
 "top_page",
 "Most popular referrer"
)

REQUEST_TIME is a Summary metric that can be used to track the size and number of
events. We will use it to track the time and number of processed requests.

AVERAGE_TOP_HITS is a Gauge metric that can be used to track how a single value
changes over time. We will use it to track the average number of hit counts of the
10 most popular pages.

TOP_PAGE is an Info metric that can be used to expose any textual information. We
will use it to track the most popular pixel-tracked page at any given time.

Individual metric values can be updated using various code patterns. One of the
more popular ways is to use specific metric methods as decorators. This is the most
convenient way to measure time spent in a function. We will use this method to track
the REQUEST_TIME metric as in the following example:

@app.route("/track")
@REQUEST_TIME.time()
def track(storage: ViewsStorageBackend):
 ...

@app.route("/stats")
@REQUEST_TIME.time()
def stats(storage: ViewsStorageBackend):
 ...

@app.route("/test")
@REQUEST_TIME.time()
def test():
 ...

Observing Application Behavior and Performance

[524]

Another way is to use specific metric object methods as normal function calls. This is
a common technique for counters, gauges, and info metrics. We will use this pattern
to track the values of the AVERAGE_TOP_HITS and TOP_PAGE metrics. We can get a quite
good estimate by inspecting the values of the stats() view function:

@app.route("/stats")
@REQUEST_TIME.time()
def stats(storage: ViewsStorageBackend):
 counts: dict[str, int] = storage.most_common(10)

 AVERAGE_TOP_HITS.set(
 sum(counts.values()) / len(counts) if counts else 0
)
 TOP_PAGE.info({
 "top": max(counts, default="n/a", key=lambda x: counts[x])
 })

 return counts

When the metrics are defined, we can finally embed the metric exporter. This can
be done either by starting a separate metrics thread using the prometheus_client.
start_http_server() function or using specific integration handlers. prometheus-
client comes with nice Flask support through Werkzeug's DispatcherMiddleware
class.

We will use exactly this solution:

from prometheus_client import make_wsgi_app
from werkzeug.middleware.dispatcher import DispatcherMiddleware
app.wsgi_app = DispatcherMiddleware(app.wsgi_app, {
 '/metrics': make_wsgi_app()
})

if __name__ == "__main__":
 app.run(host="0.0.0.0", port=8000)

Werkzeug is a toolkit for creating web applications based on the
WSGI interface. Flask is built using Werkzeug, so it is compatible
with Werkzeug middlewares. You can learn more about Werkzeug
at https://palletsprojects.com/p/werkzeug/.

https://palletsprojects.com/p/werkzeug/

Chapter 12

[525]

When we start our application and visit http://localhost:8000/test and http://
localhost:8000/stats in a web browser, we will automatically populate metric
values. If you the visit the metrics endpoint at http://localhost:8000/metrics, you
will see output that may look as follows:

HELP python_gc_objects_collected_total Objects collected during gc
TYPE python_gc_objects_collected_total counter
python_gc_objects_collected_total{generation="0"} 595.0
python_gc_objects_collected_total{generation="1"} 0.0
python_gc_objects_collected_total{generation="2"} 0.0
HELP python_info Python platform information
TYPE python_info gauge
python_info{implementation="CPython",major="3",minor="9",patchlevel="0"
,version="3.9.0"} 1.0
HELP process_virtual_memory_bytes Virtual memory size in bytes.
TYPE process_virtual_memory_bytes gauge
process_virtual_memory_bytes 1.88428288e+08
HELP process_cpu_seconds_total Total user and system CPU time spent
in seconds.
TYPE process_cpu_seconds_total counter
process_cpu_seconds_total 0.13999999999999999
HELP process_open_fds Number of open file descriptors.
TYPE process_open_fds gauge
process_open_fds 7.0
HELP request_processing_seconds Time spent processing requests
TYPE request_processing_seconds summary
request_processing_seconds_count 1.0
request_processing_seconds_sum 0.0015633490111213177
HELP request_processing_seconds_created Time spent processing
requests
TYPE request_processing_seconds_created gauge
request_processing_seconds_created 1.6180166638851087e+09

prometheus-client uses thread-safe in-memory storage
for metric objects. That's why it works best with a threaded
concurrency model (see Chapter 6, Concurrency). Due to CPython
threading implementation details (mainly Global Interpreter Lock),
multiprocessing is definitely a more popular concurrency model
for web applications. It is possible to use prometheus-client in
multiprocessing applications, although it requires slightly more
setup. For details, see the official client documentation at https://
github.com/prometheus/client_python.

https://github.com/prometheus/client_python
https://github.com/prometheus/client_python

Observing Application Behavior and Performance

[526]

HELP average_top_hits Average number of top-10 page counts
TYPE average_top_hits gauge
average_top_hits 6.0
HELP top_page_info Most popular referrer
TYPE top_page_info gauge
top_page_info{top="http://localhost:8000/test"} 1.0

As you can see, the output is a human- and machine-readable representation of the
current metric values. Besides our custom metrics, it also includes useful default
metrics regarding garbage collection and resource usage. These are exactly the same
metrics that the Prometheus server will pull from our service.

Now it's time to set up the Prometheus server. We will use Docker Compose so
you won't have to install it manually on your own development host. Our docker-
compose.yml file will include the definition of three services:

version: "3.7"

services:
 app:
 build:
 context: .
 ports:
 - 8000:8000
 volumes:
 - ".:/app/"

 redis:
 image: redis

 prometheus:
 image: prom/prometheus:v2.15.2
 volumes:
 - ./prometheus/:/etc/prometheus/
 command:
 - '--config.file=/etc/prometheus/prometheus.yml'
 - '--storage.tsdb.path=/prometheus'
 - '--web.console.libraries=/usr/share/prometheus/console_
libraries'
 - '--web.console.templates=/usr/share/prometheus/consoles'
 ports:
 - 9090:9090
 restart: always

Chapter 12

[527]

The app service is our main application container. We will build it from a local
Dockerfile containing the following code:

FROM python:3.9-slim
WORKDIR app

RUN pip install \
 Flask==1.1.2 \
 redis==3.5.3 \
 Flask_Injector==0.12.3 \
 prometheus-client==0.10.1

ADD *.py ./
CMD python3 tracking.py –reload

The redis service is a container running the Redis data store. It is used by our pixel-
tracking application to store information about visited page counts.

Last but not least is the prometheus service with our Prometheus server container. We
override the default prometheus image command to provide custom configuration
locations. We need a custom configuration file mounted as a Docker volume to
tell Prometheus about our metrics exporter location. Without configuration, the
Prometheus server won't know where to pull metrics from. We don't have a service
discovery catalog, so we will use a simple static configuration:

global:
 scrape_interval: 15s
 evaluation_interval: 15s

 external_labels:
 monitor: 'compose'

scrape_configs:
 - job_name: 'prometheus'
 scrape_interval: 5s
 static_configs:
 - targets: ['localhost:9090']

 - job_name: 'app'
 scrape_interval: 5s
 static_configs:
 - targets: ["app:8000"]

Observing Application Behavior and Performance

[528]

We can start the whole solution using the docker-compose command as follows:

$ docker-compose up

When all services are running, you will notice in the docker-compose output that the
Prometheus server is asking the app service for metrics every few seconds:

app_1 | 172.21.0.3 - - [10/Apr/2021 01:49:09] "GET /metrics HTTP/1.1"
200 -
app_1 | 172.21.0.3 - - [10/Apr/2021 01:49:14] "GET /metrics HTTP/1.1"
200 -
app_1 | 172.21.0.3 - - [10/Apr/2021 01:49:19] "GET /metrics HTTP/1.1"
200 -
app_1 | 172.21.0.3 - - [10/Apr/2021 01:49:24] "GET /metrics HTTP/1.1"
200 -

You can access the Prometheus server web interface at http://localhost:9090. It
allows you to browse registered services and perform simple metrics visualization
(as in Figure 12.3). The following is an example query that will give you an average
response time per request over a 5-minute window:

rate(request_processing_seconds_sum[5m])
/ rate(request_processing_seconds_count[5m])

The results, displayed in Prometheus, will look similar to the following:

The initial docker-compose run may take a little longer because
Docker will have to download or build images that do not exist on
your filesystem yet.

Chapter 12

[529]

Figure 12.3: Example of visualizations in the Prometheus server web interface

Observing Application Behavior and Performance

[530]

As you can see, the Prometheus UI can present plots of your custom metrics. It can
give an overview of how your application behavior changes over time. It can be a
useful tool in spotting anomalies or ensuring that your application meets the desired
performance levels. Give it a try and test a few queries. Try to use application
endpoints and see how the data is reflected in your queries.

Using metrics allows you to have better knowledge of how your application works
in production environments. It can also provide you with insight into how well it
fulfills its purpose by tracking business metrics. Advanced queries allow you to
correlate metrics of various types and from various services. This is especially useful
in distributed systems, which can have many moving parts.

But using a metrics infrastructure isn't the only way to have better visibility into a
distributed system. A completely different approach is to measure each individual
transaction and the relationships between related transactions happening in various
system components. This methodology is called distributed tracing and it tries to
connect elements of logging and traditional metrics infrastructures.

Distributed application tracing
Distributed and networked systems are inevitable in any large-scale infrastructure.
That's because you can put only a limited amount of hardware in a single server
rack. If you have to serve a large number of users concurrently, you will have to
scale out eventually. Also, having all of your software running on a single host will
be risky from a reliability and availability standpoint. If one machine fails, the whole
system goes down. And it isn't that uncommon to see even whole datacenters being
brought down due to natural disasters or other unpredictable events. This means
that highly available systems are often forced to be spread over multiple datacenters
located in different regions or even managed by different providers, just to ensure
enough redundancy.

Another reason for distributed systems is splitting infrastructures into independent
domain services in order to split large codebases and enable multiple teams to work
efficiently without stepping on each others' toes. That allows you to reduce elaborate
change management processes, simplify deployments of large systems, and limit the
amount of orchestration between independent development teams.

But distributed systems are hard. Networks are unreliable and introduce delays.
Unnecessary communication roundtrips add up with every service-to-service hop
and can have a noticeable impact on application performance. Also, every new host
increases operational costs and the failure surface. Organizations with large and
distributed architectures usually have dedicated teams responsible for keeping them
healthy.

Chapter 12

[531]

This is also true for clients of cloud services like AWS, Azure, or Google Cloud
Platform, as the complexity of these cloud environments requires skilled and trained
professionals that know how to harness the configuration in an auditable and
maintainable way.

But the real nightmare of distributed systems (from a developer's perspective) is
observability and debugging. If you have many applications and services running on
multiple hosts, it is really hard to get a good overview of what's actually happening
inside of your system. A single web transaction can, for instance, go through several
layers of a distributed architecture (web balancers, caching proxies, backend APIs,
queues, databases) and involve a dozen independent services in the process (see
Figure 12.4):

Figure 12.4: Example of an elaborate distributed application architecture with many inter-service connections

Observing Application Behavior and Performance

[532]

With architectures that complex, it is hard to know what the real source of the user's
problems is. Logging and error tracking via dedicated systems can help to discover
unhandled exceptions but doesn't help that much if erroneous behavior does not
produce any observable notifications. Also, errors in a single service can cascade
into errors in dependent services. Classic error tracking and logging solutions may
produce a lot of noise when such a cascade happens. It will then be harder to track
the real root cause of a problem.

When it comes to understanding performance issues, classic metrics systems can
highlight obvious performance hotspots but usually do so on a single service level.
Common reasons for performance problems in distributed systems are inefficient
service usage patterns and not the isolated performance characteristics of a single
service. Consider for instance the following example of a distributed transaction
from an imaginary eCommerce website:

1. The user requests data about an order summary from Checkout Service.
2. Checkout Service retrieves the user session identifier from the request

headers and asks Authentication Service to verify if it is valid:
• Authentication Service verifies the session identifier against a list of

active sessions in the relational database acting as a session store.
• If the session is valid, Authentication Service returns a successful

response.

3. If the session is valid, Checkout Service retrieves the list of items in the user's
cart that is stored in another relational database.

4. For every entry in the cart, Checkout Service asks Inventory Service if there
are enough items in the warehouse to fulfill the order. To ensure authorized
access, it forwards the user's session identifier in the request header:

• For every request, Inventory Service asks Authentication Service to
validate the session identifier.

• If the session is valid, Inventory Service checks the warehouse
inventory state for the requested item type in its own database and
returns the result.

5. If the order can be fulfilled, Checkout Service makes a series of requests to
Pricing Service to obtain the current item prices and tax charges for every
entry in the cart:

• For every request, Checkout Service asks Authentication Service to
validate the session identifier.

Chapter 12

[533]

• If the session is valid, Pricing Service checks the warehouse inventory
state for the requested item type in its own database and returns the
result.

6. Checkout Service then returns a complete order summary for the user's cart
contents.

Do you see the pattern there? There is a lot of redundancy, network hopping, and
potential sources of problems. And there is definitely a lot of room for improvement,
like reducing unnecessary requests to Authentication Service or batching queries to
dependent services.

It is debatable whether distributed applications should be designed in such a
granular way. Distributed architecture has its merits, like scalability on an individual
service level, distributed code ownership, and (usually) faster release processes,
but introduces a whole new class of problems to deal with. Unfortunately, with the
advent of microservice architectures, inter-service communication usually gets out
of hand quickly. Moreover, with independent teams working on separate services
it is not uncommon to see sudden performance regressions due to additional
communication links.

Traditional observability techniques like collecting logs and per-service metrics
may not be good enough to provide complete insight into a distributed system's
operation. What we usually need instead is the ability to track whole user
interactions as atomic distributed transactions that span across many services and
many hosts within the whole system. This technique is called distributed tracing
and often combines the features of traditional logging and metrics solutions.

As with logging and metric collection, there are good paid SaaS solutions for
providing whole-stack distributed tracing capabilities for architectures of virtually
any size. These may be pricy, but there are also good open-source solutions for
building distributed tracing infrastructures on your own. One of the more popular
open-source implementations of distributed tracing is Jaeger.

As with every other observability solution, you need to carefully
evaluate the "build versus buy" factors when deciding to use
such a system. There are high-quality, open-source distributed
tracing solutions available, but they all require some expertise and
maintaining your own infrastructure. Hiring skilled professionals
costs money and hardware doesn't come for free either. Depending
on your scale and needs, it may actually be cheaper to pay some
other company to run and maintain the whole distributed tracing
infrastructure for you.

Observing Application Behavior and Performance

[534]

Distributed tracing with Jaeger
Many distributed tracing solutions are based on the OpenTracing standard.
OpenTracing is an open protocol and a set of libraries for various programming
languages that can be used to instrument code with the ability to send transaction
traces to an OpenTracing compatible server. Jaeger is one of the most popular
implementations of such servers.

The key concept of the OpenTracing standard is the span. A span is a building
block of a distributed transaction trace that represents a logical operation within the
transaction. Every trace consists of one or more spans, and spans can reference other
spans in a nested fashion. Every span contains the following information:

• The name of the operation that the span represents
• A pair of timestamps that define the start and end of a span
• A set of span tags that allow you to query, filter, and analyze traces
• A set of span logs that are specific to the operation within the span
• A span context that is a container for cross-process information carried over

between spans

In distributed systems, spans usually represent complete request-response cycles
within a single service. OpenTracing libraries allow you also to easily define smaller
spans that can be used to track smaller logical blocks of processing like database
queries, file access requests, or individual function calls.

OpenTracing provides the opentracing-python package on PyPI, but we can't use
it to interact with the Jaeger server. It is a reference implementation that is just an
empty shell to be extended by actual implementations of OpenTracing. For instance,
for Jaeger users, we will use the official jaeger-client package. Instrumenting code
with jaeger-client is really simple.

OpenTelemetry is a new standard that is supposed to supersede
the OpenTracing (an open protocol for tracing collection) and
OpenCensus (an open protocol for metrics and traces collection)
standards. OpenTelementry is a protocol that is backward-
compatible with former ones and future versions of Jaeger
are expected to support the OpenTelemetry standard as well.

Despite the need to use implementation-specific libraries like
jaeger-client, the OpenTracing architecture is designed
in a way that makes it very easy to migrate between various
implementations.

Chapter 12

[535]

It would be great if we had some distributed service to evaluate distributed tracing
with Jaeger, but our simple pixel-tracking application will do the job too. It maintains
connections to the Redis server and is complex enough to give us the opportunity to
create our own custom spans.

The integration with jaeger-client starts with initializing the tracer object:

from jaeger_client import Config

tracer = Config(
 config={
 'sampler': {
 'type': 'const',
 'param': 1,
 },
 },
 service_name="pixel-tracking",
).initialize_tracer()

The 'sampler' section in the tracer config defines the event sampling strategy. Our
setting uses a constant sampling strategy with a value of 1. This means that all
transactions will be reported to the Jaeger server.

Every configuration should be created with the service_name argument. This allows
Jaeger to tag and identify spans coming from the same service and allows for better
traces. In our case, we've set service_name to "pixel-tracking".

Once we have an instance of tracer, we can start defining spans. The most
convenient way to do this is through the context manager syntax as in the following
example:

@app.route("/stats")
def stats(storage: ViewsStorageBackend):
 with tracer.start_span("storage-query"):
 return storage.most_common(10)

Jaeger provides multiple event sampling strategies. The correct
sampling strategy depends on the expected service load and the
scale of the Jaeger deployment. You can read more about Jaeger
sampling at https://www.jaegertracing.io/docs/1.22/
sampling/.

https://www.jaegertracing.io/docs/1.22/sampling/
https://www.jaegertracing.io/docs/1.22/sampling/

Observing Application Behavior and Performance

[536]

Applications created with the use of web frameworks usually have multiple request
handlers, and you usually want to track all of them. Instrumenting every request
handler manually would be unproductive and error prone. That's why it is generally
better to use a framework-specific OpenTracing integration that will automate this
process. For Flask we can use the Flask-Opentracing package from PyPI. You can
enable this integration by simply creating a FlaskTracing class instance in your main
application module:

from flask import Flask
from flask_opentracing import FlaskTracing
from jaeger_client import Config

app = Flask(__name__)

tracer = Config(
 config={'sampler': {'type': 'const', 'param': 1}},
 service_name="pixel-tracking",
).initialize_tracer()

FlaskTracing(tracer, app=app)

Another useful technique is to enable automatic integration for libraries that we use
to communicate with external services, databases, and storage engines. That way, we
will be able to track outgoing transactions and OpenTracing will build a relationship
between spans coming from various services.

In our example, we have only one service, so there is no opportunity to correlate
distributed spans. But we use Redis as a datastore, so we could at least instrument
queries made to Redis. There's a dedicated package on PyPI for that purpose named
redis_opentracing. To enable this integration, you need to perform only a single
function call:

import redis_opentracing

redis_opentracing.init_tracing(tracer)

You can find all the source code for this section (including the
configuration, Dockerfile, and docker-compose.yml) in the
Chapter 12/ Distributed tracing with Jaeger directory
of code repository for this book (see the Technical requirements
section).

Chapter 12

[537]

redis_opentracing is a new package, so we will have to modify our Dockerfile as
follows:

FROM python:3.9-slim
WORKDIR app

RUN pip install \
 Flask==1.1.2 \
 redis==3.5.3 \
 Flask_Injector==0.12.3 \
 prometheus-client==0.10.1 \
 jaeger-client==4.4.0 \
 opentracing==2.4.0 \
 Flask-OpenTracing==1.1.0

RUN pip install --no-deps redis_opentracing==1.0.0

ADD *.py ./
CMD python3 tracking.py --reload

Last but not least, we need to start the Jaeger server. We can do that locally using
Docker Compose. We will use the following docker-compose.yml file to start our
pixel-tracking application, Redis server, and Jaeger server:

version: "3.7"

services:
 app:
 build:
 context: .
 ports:
 - 8000:8000

Note that we've installed redis_opentracing with pip install
--no-deps. This tells pip to ignore package dependencies.
Unfortunately, at the time of writing, install_requires of
redis_opentracing does not list opentracing=2.4.0 as a
supported package version, although it works with it pretty
well. Our approach is a trick to ignore this dependency conflict.
Hopefully, the new release of redis_opentracing will resolve
this issue.

Observing Application Behavior and Performance

[538]

 environment:
 - JAEGER_AGENT_HOST=jaeger
 volumes:
 - ".:/app/"

 redis:
 image: redis

 jaeger:
 image: jaegertracing/all-in-one:latest
 ports:
 - "6831:6831/udp"
 - "16686:16686"

The Jaeger server (similarly to the Prometheus server) consists of a few components.
The jaegertracing/all-in-one:latest Docker image is a convenient packaging
of all those components for simple deployments or for local experimentation. Note
that we used the JAEGER_AGENT_HOST environment variable to tell the Jaeger client
about the location of our Jaeger server. This is a pretty common pattern among
observability SDKs that allows for the easy swapping of solutions without affecting
the configuration of the monitored application.

Once we have everything set up, we can start the whole solution using Docker
Compose:

$ docker-compose up

When all services are running, you can visit http://localhost:8000/test and
http://localhost:8000/stats in your browser to generate some traces. You can visit
http://localhost:16686/ to access the web interface of the Jaeger server and browse
the collected traces.

The example trace, displayed in Jaeger, may look similar to the following:

The initial docker-compose run may take a little longer because
Docker will have to download or build non-existent images.

Chapter 12

[539]

Figure 12.5: Example visualization of a distributed trace in the Jaeger web interface
with multiple nested spans visible

As you can see, the pixel-tracing: stats transaction consists of three spans:

• stats: This is the topmost span of the stats() endpoint, added automatically
by the FlaskTracing middleware.

• storage-query: This is the middle span, added manually using the
tracer.start_span("storage-query") context manager.

• ZVREVRANGE: This is the span added automatically by the redis_opentracing
integration.

Every trace comes with a precise time measurement and additional tags like IP
address, library version, or span-specific information (database statement, HTTP
response code, and so on). These elements are indispensable in pinpointing
performance issues and understanding communication patterns between
components of distributed systems.

Observing Application Behavior and Performance

[540]

Summary
We've discussed the three main observability techniques of modern applications:
logging, metrics collection, and distributed tracing. All of them have their
advantages, but logging is definitely the most important way of collecting
information from your application. That's because it is simple, does not require any
special infrastructure (although it is good to have one), and is least likely to fail you.

But logging has some limitations. Unstructured logging messages make it harder
to extract insights from logs. Logging is also not suitable for the periodic probing of
information about resource usage and performance. It is good for auditing purposes
and post-mortem analysis after major failures but is rarely helpful in tracking current
information and reacting to sudden events.

That's why metrics collection systems are a natural and valuable extension of logging
infrastructures. They allow you to collect information in real time, create custom
metrics, and create powerful operational dashboards that can be actively monitored
by operations teams. They can also be used to some extent to provide an overview
of business metrics, although larger organizations usually prefer dedicated analytic
software. Metrics systems are indispensable in monitoring application performance.

Last but not least, there are distributed tracing infrastructures, which are great in
complex systems with many moving pieces. These are indispensable in situations
where issues arise at the meeting points between multiple communicating services.
They give a great overview of the information flow within the system and make it
easy to spot communication anomalies.

Each type of observability solution provides a useful view of what's going on within
your system but no single one solves all of your problems. It would be best if we
could have all of them, but unfortunately, not every organization can afford to build
or buy all of these solutions. If you have constrained resources and need to pick only
one, you should definitely consider logging first, because it will usually have the
greatest return on your investment.

When you have an efficient observability solution in place, you will start discovering
intricate problems and performance issues. Some of them will really surprise you. In
the end, the best way to evaluate software is to run it in the desired environment and
under real-life load. You will usually notice that most of your performance issues
are concentrated in isolated hotspots. Once you have identified them, it's time for
detailed performance analysis and optimization—the topic of our next chapter.

[541]

13
Code Optimization

Code optimization is the process of making an application work more efficiently,
usually without modifying its functionality and accuracy. Code optimization is
usually concerned with the speed of processing (CPU time optimization), but can
also be used to minimize the usage of different resources, such as memory, disk
space, or network bandwidth.

In the previous chapter, we learned about various observability techniques that
can be used to identify performance hotspots in applications. Logging, metric
monitoring, and tracing can be used to create a general performance overview and
prioritize optimization efforts. Moreover, operations teams often use custom alerts
of performance and resource usage metrics or log messages related to operation
timeouts to determine components that require immediate action.

But even the best logging, metrics, and tracing systems will give you only a rough
overview of the performance problem. If you decide to fix it, you will have to
perform a careful profiling process that will uncover detailed resource usage
patterns.

There are plenty of optimization techniques. Some concentrate on algorithmic
complexity and the use of optimized data structures. Others can trade the accuracy
or consistency of results for quick and easy performance gains. Only when you know
how your application works and how it uses resources will you be able to apply the
proper optimization technique.

Code Optimization

[542]

In this chapter, we will discuss the following topics:

• Common culprits for bad performance
• Code profiling
• Reducing complexity by choosing appropriate data structures
• Leveraging architectural trade-offs

Python comes with built-in profiling capabilities and useful optimization utilities, so
theoretically, we could use nothing other than Python and its standard library. But
extra tools are like meta-optimization—they increase your own efficiency in finding
and solving performance issues. That's why we will rely heavily on some extra
utilities. Let's consider them.

Technical requirements
The following are the Python packages that are mentioned in this chapter that you
can download from PyPI:

• gprof2dot

• objgraph

• pymemcache

Information on how to install packages is included in Chapter 2, Modern Python
Development Environments.

The following are some extra applications that you may need to install:

• Graphviz: An open source diagram visualization solution available
at https://graphviz.org

• Memcached: An open source caching service available at https://
memcached.org

The code files for this chapter can be found at https://github.com/PacktPublishing/
Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%2013.

Common culprits for bad performance
Before we go into the details of profiling, let's first discuss the typical reasons for bad
performance in applications.

https://graphviz.org
https://memcached.org
https://memcached.org
https://github.com/PacktPublishing/Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%2013
https://github.com/PacktPublishing/Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%2013

Chapter 13

[543]

In practice, many performance problems are pretty common and reoccurring.
Knowledge of potential culprits is essential in choosing the right profiling strategy.
Also, some specific culprits may manifest in recognizable patterns. If you know what
to look for, you will be able to fix obvious performance issues without a detailed
analysis and save a lot of time on further optimization attempts.

The most common reasons for experiencing bad application performance are the
following:

• Excessive complexity
• Excessive resource allocation and resource leaks
• Excessive I/O and blocking operations

The most dreaded culprit of application inefficiency is excessive complexity, so we
will discuss this first.

Code complexity
The first and most obvious thing to look for when trying to improve application
performance is complexity. There are many definitions of what makes a program
complex, and there are many ways to express it. Some measurable complexity
metrics can provide objective information about how code behaves, and such
information can often be extrapolated into performance expectations. An
experienced programmer can even reliably guess how two different implementations
will perform in practice, as long as they're aware of their complexities and the
execution context.

The two most popular ways to define application complexity are as follows:

• Cyclomatic complexity, which is very often correlated with application
performance.

• The Landau notation, also known as big O notation, is an algorithm
classification method that is useful in objectively judging code performance.

The optimization process may therefore be sometimes understood as a process of
reducing complexity. In the following sections, we will take a closer look at the
definitions of these two types of code complexity.

Code Optimization

[544]

Cyclomatic complexity
Cyclomatic complexity is a metric that was developed by Thomas J. McCabe in
1976; because of its author, it's also known as McCabe's complexity. Cyclomatic
complexity measures the number of linear paths through a piece of code. In short, all
branching points (if statements) and loops (for and while statements) increase code
complexity.

Depending on the value of measured cyclomatic complexity, code can be classified
into various complexity classes. The following is a table of commonly used McCabe
complexity classes:

Cyclomatic complexity value Complexity class

1 to 10 Not complex

11 to 20 Moderately complex

21 to 50 Really complex

Above 50 Too complex

Cyclomatic complexity usually correlates inversely with application performance
(higher complexity = lower performance). Still, it is more of a code quality score than
a performance metric. It does not replace the need for code profiling when looking
at performance bottlenecks. Code that has high cyclomatic complexity often tends to
utilize rather complex algorithms that may not perform well with larger inputs.

Although cyclomatic complexity is not a reliable way to judge application
performance, it has an important advantage: it is a source code metric that can
be measured with proper tools. This cannot be said of other canonical ways of
expressing complexity, including big O notation. Thanks to its measurability,
cyclomatic complexity may be a useful addition to profiling, as it gives you more
information about problematic parts of your software. Complex parts of code are the
first things you should review when considering radical code architecture redesigns.

Measuring McCabe's complexity is relatively simple in Python because it can be
deduced from its abstract syntax tree. Of course, you don't need to do that by
yourself. mccabe is a popular Python package from PyPI that can perform automated
complexity analysis over Python sources. It is also available as a Pytest plugin
named pytest-mccabe, so it is easy to include in your automated quality and testing
processes (see Chapter 10, Testing and Quality Automation).

Chapter 13

[545]

The big O notation
The canonical method of defining function complexity is the big O notation.
This metric defines how an algorithm is affected by the size of the input. For
instance, does an algorithm's complexity scale linearly with the size of the input,
or quadratically?

Manually assessing the big O notation for an algorithm is the best approach when
trying to achieve an overview of how its performance is related to the size of the
input. Knowing the complexity of your application's components gives you the
ability to detect and focus on aspects that will significantly slow down the code.

To measure the big O notation, all constants and low-order terms are removed
in order to focus on the portion that really matters when the size of the input data
grows very large. The idea is to categorize the algorithm in one of the known
complexity categories (even if it is an approximation). The following are the most
common complexity classes, where n is equal to the number of input elements
of a problem:

Notation Type

O(1) Constant; does not depend on the input size

O(n) Linear; will grow at a constant rate as n grows

O(n log n) Quasi-Linear

O(n2) Quadratic

O(n3) Cubic

O(n!) Factorial

You can learn more about the mccabe package at https://pypi.
org/project/mccabe/.

The pytest-mccabe package is available at https://pypi.org/
project/pytest-mccabe/.

https://pypi.org/project/mccabe/
https://pypi.org/project/mccabe/
https://pypi.org/project/pytest-mccabe/
https://pypi.org/project/pytest-mccabe/

Code Optimization

[546]

We can easily understand complexity classes by comparing basic lookup operations
in some Python standard data types:

• Python list lookup by index has a complexity of O(1): Python lists are pre-
allocated resizable arrays akin to a Vector container from the C++ standard
library. The in-memory position of the list item of a given index is known
in advance, so accessing it is a constant-time operation.

• Finding the element index in a list by value has a complexity of O(n): If
you use the list.index(value) method, Python will have to iterate over
items until it finds the element that matches the value expression. In the
worst case, it will have to iterate over all the elements of the list, so it will
perform n operations, where n is the list length. On average, however,
finding random elements will take n/2 operations, so the complexity is O(n).

• Key lookup in a dictionary has a complexity of O(1): In Python, you can
use any immutable value as keys in a dictionary. Key values do not translate
directly into exact positions in memory, but Python uses an advanced
hashing technique that ensures that the average complexity of the key lookup
operation is constant.

To understand how function complexity can be determined, let's take a look at the
following example:

def function(n):
 for i in range(n):
 print(i)

In the preceding function, the print() function will be executed n times. Loop length
depends linearly on n, so the complexity of the whole function is O(n).

If the function has conditions, the correct notation is that of the worst-case scenario.
Consider the following example:

def function(n, print_count=False):
 if print_count:
 print(f'count: {n}')
 else:
 for i in range(n):
 print(i)

In this example, the function could be O(1) or O(n), depending on the value of the
print_count argument. The worst case is O(n), so the whole function complexity
is O(n).

Chapter 13

[547]

We don't always have to consider the worst-case scenario when determining
complexity. Many algorithms change runtime performance, depending on the
statistical characteristic of input data, or amortize the cost of worst-case operations
by performing clever tricks. This is why, in many cases, it may be better to review
your implementation in terms of average complexity or amortized complexity.

For example, take a look at the operation of appending a single element to
Python's list type instance. We know that a list in CPython uses an array with
overallocation for the internal storage instead of linked lists. If an array is already
full, appending a new element requires the allocation of a new array and copying all
existing elements (references) to a new area in the memory. If we look at this from
the point of view of worst-case complexity, it is clear that the list.append() method
has O(n) complexity, which is a bit expensive compared to a typical implementation
of the linked list structure. We also know, however, that the CPython list type
implementation uses the mechanism of overallocation (it allocates more space than
is required at a given time) to mitigate the complexity of occasional reallocation. If
we evaluate the complexity over a sequence of operations, we will notice that the
average complexity of list.append() is O(1), and this is actually a great result.

Always be mindful of big O notation, but don't be too dogmatic about it. Big
O notation is asymptotic notation, meaning it is intended to analyze the limiting
behavior of a function when the size of the input trends toward infinity. It therefore
may not offer a reliable performance approximation for real-life data. Asymptotic
notation is a great tool for defining the growth rate of a function, but it won't give
a direct answer to the simple question of "Which implementation will take the least
time?" Worst-case complexity ignores all the details about timings of individual
operations to show you how your program will behave asymptotically. It works
for arbitrarily large inputs that you may not always have considered.

For instance, let's assume that you have a problem that requires the processing of n
independent elements. Let's say we have Program A and Program B. You know that
Program A requires 100n2 operations to complete the task, while Program B requires
5n3 operations to provide a solution. Which one would you choose?

When speaking about very large inputs, Program A is the better choice because it
behaves better asymptotically. It has O(n2) complexity compared to Program B's O(n3)
complexity. However, by solving a simple 100n2 > 5n3 inequality, we can find that
Program B will take fewer operations when n is less than 20. Therefore, if we know
a bit more about our input bounds, we can make slightly better decisions. Moreover,
we can't assume that individual operations in both programs take the same amount
of time. If we want to know which one runs faster for a given input size, we will
have to profile both applications.

Code Optimization

[548]

Excessive resource allocation and leaks
With increased complexity often comes the problem of excessive resource allocation.
Code that is complex (either algorithmically or asymptotically) is more likely to
include inefficient data structures or allocate too many resources without freeing
them afterward.

Although resource usage inefficiency often goes hand in hand with complexity,
excessive resource usage needs to be treated as a separate performance issue. And
this is for two reasons:

• Allocating (and freeing) resources takes time: This includes RAM, which
is supposed to be fast memory (when compared to disks). Sometimes, it is
better to maintain a pool of resources instead of allocating and freeing them
constantly.

• Your application is unlikely to run alone on the same host: If it allocates too
many resources, it may starve other programs. In extreme cases, excessive
usage of resources by a single application may render the whole system
unavailable or lead to abrupt program termination.

Whether it is network bandwidth, disk space, memory, or any other resource, if an
application appropriates all available resources to itself, this will have a detrimental
impact on other programs running in the same environment.

Moreover, many operating systems or environments allow more resources to be
requested than are technically available. A common case is memory overcommitting,
which allows an operating system to assign processes more memory than hosts
physically have available. It works by assigning processes virtual memory. In the
event of a physical memory shortage, an operating system will usually temporarily
swap unused memory pages to disk to create more free space.

This swapping may go unnoticed at healthy usage levels. However, if virtual
memory is overused, normal swapping can transform into 'thrashing,' where the
operating system is constantly swapping pages in and out of the disk. This can lead
to a dramatic performance collapse.

Excessive resource usage may stem from ineffective data structures, overly large
resource pool allocations, or be caused by unintentional resource leaks. Resource
leaks happen when an application is allocated some specific resources but never
frees them, even after it is no longer necessary. Resource leaks are most common for
memory allocations, but can happen for other resources (such as file descriptors or
open connections) too.

Chapter 13

[549]

Excessive I/O and blocking operations
When writing applications, we often forget that every operation requires writing
to and reading from a disk or via a network connection, which takes time. These
Input/Output (I/O) operations always have a noticeable performance impact on
applications, and this is what many software architects ignore when designing
elaborate networked systems.

With the advent of fast SSDs (Solid State Drives), disk I/O is faster than ever but
is still not as fast as RAM (and RAM is not as fast as a CPU cache). Also, some drives
have fast throughput for big files, but perform surprisingly poorly in random access
mode.

The same goes for network connections. It cannot go faster than the speed of
light. If processes are running on two hosts separated by a great distance, every
communication exchange will add a noticeable round-trip overhead. This is a great
concern in distributed systems that are often characterized by the fine granulation
of many networked services.

Excessive I/O operations will also have an impact on the ability to serve multiple
users concurrently. We've already learned about various concurrency models in
Chapter 6, Concurrency. Even with the asynchronous concurrency model, which
should theoretically deal best with I/O, it is possible to accidentally include
synchronous I/O operations that can potentially ruin the benefits of concurrency.
In such a situation, a performance drop may be observed as a drop in application
maximum processing throughput.

As you can see, there are many possible reasons for performance problems. In
order to fix them, you will need to identify their culprit. We usually do that through
a process known as profiling.

Code profiling
Knowing what can potentially go wrong allows you to make hypotheses and bets
on what are the performance issue culprits and how can you fix them. But profiling
is the only way to verify these hypotheses. You should usually avoid optimization
attempts without profiling your application first.

Experience helps, so there is of course nothing wrong with doing a small code
overview and experiments before profiling. Also, some profiling techniques require
the incorporation of additional code instrumentation or the writing of performance
tests. It means that often you will have to read it thoroughly anyway. If you perform
some small experiments along the way (for instance, in the form of debugging
sessions), you may spot something obvious.

Code Optimization

[550]

Low-hanging fruit happens, but don't rely on it. A good ratio between freeform
experiments and classic profiling is around 1:9. My favorite way of organizing the
profiling and optimization process is as follows:

1. Decide how much time you can spend: Not every optimization is possible,
and you will not always be able to fix it. Accept the possibility that you won't
succeed on your first attempt. Decide when you will stop in advance. It is
better to withdraw and successfully retry later than lose a long-standing
battle.

2. Split that time into sessions: Optimization is like debugging. It requires
focus, organization, and a clear mind. Pick a length of the session that will
allow you to run a whole cycle, consisting of putting forward a hypothesis,
profiling, and experimentation. This should be no more than a few hours.

3. Make a schedule: Implement your sessions when you are least likely to be
interrupted and will be most effective. It is often better to plan a few days
ahead if the problem is big so you can start every day with fresh ideas.

4. Don't make other development plans: If you don't succeed in your first
session, you will probably be constantly thinking about your problem. It
will be hard to focus on other bigger tasks. If you work in a team, make it
transparent because you won't contribute fully until you close the topic.
Have a handful of small bite-sized tasks to keep you distracted between
sessions.

The key to every profiling session is a hypothesis in terms of what could be wrong.
It allows you to decide what profiling technique to use and what tools will work
best. A great source of hypotheses are metrics collection and distributed tracing
systems, which we discussed in detail in Chapter 12, Observing Application Behavior
and Performance.

Optimization will likely require code changes in your application.
To reduce the risk of breaking things, it is a good practice to ensure
that code is well covered in tests. We discussed common testing
techniques in Chapter 10, Testing and Quality Automation.

Chapter 13

[551]

If you have no clue as to what could be wrong, the best way is to start traditional
CPU profiling because this has the best chance of leading you to the next viable
hypothesis. That's because many common resource and network usage anti-patterns
can manifest themselves in CPU profiles as well.

Profiling CPU usage
Typically, performance problems arise in a narrow part of code that has a significant
impact on application performance as a whole. We call such places bottlenecks.
Optimization is a process of identifying and fixing those bottlenecks.

The first source of bottlenecks is your code. The standard library provides all the
tools that are required to perform code profiling. They are based on a deterministic
approach. A deterministic profiler measures the time spent in each function by
adding a timer at the lowest level. This introduces a noticeable overhead but
provides a good idea of where the time is consumed. A statistical profiler, on the
other hand, samples instruction pointer usage and does not instrument the code.
The latter is less accurate, but allows you to run the target program at full speed.

There are two ways to profile the code:

• Macro-profiling: This profiles the whole program while it is being used and
generates statistics.

• Micro-profiling: This measures a precise part of the program by
instrumenting it manually.

Where we don't know the exact fragment of the code that runs slowly, we usually
start with macro-profiling of the whole application to get a general performance
profile and determine components that act as performance bottlenecks.

Macro-profiling
Macro-profiling is done by running the application in a special mode, where the
interpreter is instrumented to collect statistics regarding code usage. The Python
standard library provides several tools for this, including the following:

• profile: This is a pure Python implementation.
• cProfile: This is a C implementation that provides the same interface as

that of the profile tool, but has less overhead.

Code Optimization

[552]

The recommended choice for most Python programmers is cProfile due to its
reduced overhead. In any case, if you need to extend the profiler in some way, then
profile will be a better choice because it doesn't use C extensions and so is easier
to extend.

Both tools have the same interface and usage, so we will use only one of them here.
The following is a myapp.py module with a main function that we are going to profile
with the cProfile module:

import time

def medium():
 time.sleep(0.01)

def light():
 time.sleep(0.001)

def heavy():
 for i in range(100):
 light()
 medium()
 medium()
 time.sleep(2)

def main():
 for i in range(2):
 heavy()

if __name__ == '__main__':
 main()

Chapter 13

[553]

This module can be called directly from the prompt, and the results are summarized
here:

$ python3 -m cProfile myapp.py

Example profiling output for our myapp.py script can be as follows:

 1208 function calls in 8.243 seconds

 Ordered by: standard name

 ncalls tottime percall cumtime percall filename:lineno(function)
 2 0.001 0.000 8.243 4.121 myapp.py:13(heavy)
 1 0.000 0.000 8.243 8.243 myapp.py:2(<module>)
 1 0.000 0.000 8.243 8.243 myapp.py:21(main)
 400 0.001 0.000 4.026 0.010 myapp.py:5(medium)
 200 0.000 0.000 0.212 0.001 myapp.py:9(light)
 1 0.000 0.000 8.243 8.243 {built-in method exec}
 602 8.241 0.014 8.241 0.014 {built-in method sleep}

The meaning of each column is as follows:

• ncalls: The total number of calls
• tottime: The total time spent in the function, excluding time spent in the calls

of sub-functions
• cumtime: The total time spent in the function, including time spent in the calls

of sub-functions

The percall column to the left of tottime equals tottime / ncalls, and the percall
column to the left of cumtime equals the cumtime / ncalls.

Code Optimization

[554]

These statistics are a print view of the statistic object that was created by the profiler.
You can also create and review this object within the interactive Python session, as
follows:

>>> import cProfile
>>> from myapp import main
>>> profiler = cProfile.Profile()
>>> profiler.runcall(main)
>>> profiler.print_stats()
 1206 function calls in 8.243 seconds

 Ordered by: standard name

 ncalls tottime percall cumtime percall file:lineno(function)
 2 0.001 0.000 8.243 4.121 myapp.py:13(heavy)
 1 0.000 0.000 8.243 8.243 myapp.py:21(main)
 400 0.001 0.000 4.026 0.010 myapp.py:5(medium)
 200 0.000 0.000 0.212 0.001 myapp.py:9(light)
 602 8.241 0.014 8.241 0.014 {built-in method sleep}

The statistics can also be saved in a file and then read by the pstats module. This
module provides a class that knows how to handle profile files, and gives a few
helpers to more easily review the profiling results. The following transcript shows
how to access the total number of calls and how to display the first three calls, sorted
by the time metric:

>>> import pstats
>>> import cProfile
>>> from myapp import main
>>> cProfile.run('main()', 'myapp.stats')
>>> stats = pstats.Stats('myapp.stats')
>>> stats.total_calls
1208
>>> stats.sort_stats('time').print_stats(3)
Mon Apr 4 21:44:36 2016 myapp.stats

 1208 function calls in 8.243 seconds

 Ordered by: internal time
 List reduced from 8 to 3 due to restriction <3>

 ncalls tottime percall cumtime percall file:lineno(function)
 602 8.241 0.014 8.241 0.014 {built-in method sleep}

Chapter 13

[555]

 400 0.001 0.000 4.025 0.010 myapp.py:5(medium)
 2 0.001 0.000 8.243 4.121 myapp.py:13(heavy)

From there, you can browse the code by printing out the callers and callees for each
function, as follows:

>>> stats.print_callees('medium')
 Ordered by: internal time
 List reduced from 8 to 1 due to restriction <'medium'>

Function called...
 ncalls tottime cumtime
myapp.py:5(medium) -> 400 4.025 4.025 {built-in method sleep}

>>> stats.print_callees('light')
 Ordered by: internal time
 List reduced from 8 to 1 due to restriction <'light'>

Function called...
 ncalls tottime cumtime
myapp.py:9(light) -> 200 0.212 0.212 {built-in method sleep}

Being able to sort the output allows you to work on different views to find the
bottlenecks. For instance, consider the following scenarios:

• When the number of small calls (a low value of percall for the tottime
column) is really high (high value of ncalls) and takes up most of the global
time, the function or method is probably running in a very long loop. Often,
optimization can be done by moving this call to a different scope to reduce
the number of operations.

• When a single function call is taking a very long time, a cache might be
a good option, if possible.

Another great way to visualize bottlenecks from profiling data is to transform them
into diagrams (see Figure 13.1). The gprof2dot.py script can be used to turn profiler
data into a dot graph:

$ gprof2dot.py -f pstats myapp.stats | dot -Tpng -o output.png

The gprof2dot.py script is part of the gprof2dot package
available on PyPI. You can download it using pip. Working with it
requires the installation of Graphviz software. You can download
this for free from http://www.graphviz.org/.

http://www.graphviz.org/

Code Optimization

[556]

The following is an example output of the preceding gprof2dot.py invocation in a
Linux shell that turns the myapp.stats profile file into a PNG diagram:

Figure 13.1: An example of a profiling overview diagram that was generated with gprof2dot

Chapter 13

[557]

The example diagram shows different code paths that were executed by the program
and the relative time spent in each path. Each box represents a single function.
Linking the functions, you have the number of times a given code path was executed
and the percentage of total execution time spent on those paths. Using diagrams is
a great way to explore the performance patterns of large applications.

Macro-profiling is a good way to detect the function that has a problem, or at least its
neighborhood. When you have found it, you can proceed to micro-profiling.

Micro-profiling
When the slow function is found, we usually proceed with micro-profiling to
generate a profile focused on the smallest possible amount of code. This is done
by manually instrumenting a part of the code in a specifically created speed test.

For instance, the cProfile module can be used in the form of a decorator, as in the
following example:

import time
import tempfile
import cProfile
import pstats

def profile(column='time', list=3):
 def parametrized_decorator(function):
 def decorated(*args, **kw):
 s = tempfile.mktemp()

 profiler = cProfile.Profile()
 profiler.runcall(function, *args, **kw)
 profiler.dump_stats(s)

 p = pstats.Stats(s)
 print("=" * 5, f"{function.__name__}() profile", "=" * 5)
 p.sort_stats(column).print_stats(list)
 return decorated

The advantage of gprof2dot is that it tries to be language-agnostic.
It is not limited to a Python profile or cProfile output and can read
from multiple other profiles, such as Linux perf, xperf, gprof,
Java HPROF, and many others.

Code Optimization

[558]

 return parametrized_decorator

def medium():
 time.sleep(0.01)

@profile('time')
def heavy():
 for i in range(100):
 medium()
 medium()
 time.sleep(2)

def main():
 for i in range(2):
 heavy()

if __name__ == '__main__':
 main()

This approach allows for testing only selected parts of the application (here, the
heavy() function) and sharpens the statistics' output. This way, you can collect many
isolated and precisely targeted profiles on a single application run, as follows. The
following is example output of running the preceding code in a Python interpreter:

===== heavy() profile =====
Wed Apr 10 03:11:53 2019 /var/folders/jy/wy13kx0s7sb1dx2rfsqdvzdw0000gq
/T/tmpyi2wejm5

 403 function calls in 4.330 seconds

 Ordered by: internal time
 List reduced from 4 to 3 due to restriction <3>

 ncalls tottime percall cumtime percall filename:lineno(function)
 201 4.327 0.022 4.327 0.022 {built-in method time.sleep}
 200 0.002 0.000 2.326 0.012 cprofile_decorator.
py:24(medium)
 1 0.001 0.001 4.330 4.330 cprofile_decorator.py:28(heavy)

===== heavy() profile =====
Wed Apr 10 03:11:57 2019 /var/folders/jy/wy13kx0s7sb1dx2rfsqdvzdw0000gq
/T/tmp8mubgwjw

Chapter 13

[559]

 403 function calls in 4.328 seconds

 Ordered by: internal time
 List reduced from 4 to 3 due to restriction <3>

 ncalls tottime percall cumtime percall filename:lineno(function)
 201 4.324 0.022 4.324 0.022 {built-in method time.sleep}
 200 0.002 0.000 2.325 0.012 cprofile_decorator.
py:24(medium)
 1 0.001 0.001 4.328 4.328. cprofile_decorator.py:28(heavy)

In the preceding output, we see that the heavy() function was called exactly twice
and both times the profile was very similar. In the list of calls, we made 201 calls to
the time.sleep() function, which cumulatively takes around 4.3 seconds to execute.

Sometimes at this stage, having just a profile with a list of callees is not enough to
understand the problem. A common practice is to create alternative implementations
of specific parts of the code and measure how long it takes to execute them. If the
heavy() function was to do anything useful, we could try, for instance, to solve the
same problem with code of lower complexity.

timeit is a useful module that provides a simple way to measure the execution time
of a small code snippet, with the best underlying timer the host system provides (the
time.perf_counter() object), as shown in the following example:

>>> from myapp import medium
>>> import timeit
>>> timeit.timeit(light, number=1000)
1.2880568829999675

The timeit.timeit() function will run the specified function 1,000 times (specified
by the number parameter) and return the total amount of time spent during all
executions. If you expect a larger variance in terms of results, you can use timeit.
repeat() to repeat the whole test a specified number of times:

>>> timeit.repeat(light, repeat=5, number=1000)
[1.283251813999982, 1.2764048459999913, 1.2787090969999326,
1.279601415000002, 1.2796783549999873]

The timeit module allows you to repeat the call multiple times, and can be easily
used to try out isolated code snippets. This is very useful outside the application
context, in a prompt, for instance, but is not really ideal for use within an existing
application.

Code Optimization

[560]

The timeit module can be used to create speed tests in your automated testing
framework, but that approach should be used with caution. Timing results may vary
each time. Repeating the same test multiple times and taking the average provides
more accurate results. Furthermore, some computers have special CPU features,
which might change the processor clock time depending on the load or temperature.
So you can see different time results when the computer is idling and when it is
really busy. Other programs running concurrently will also very likely affect overall
timings. So, continually repeating the test is good practice for small code snippets.
That's why, when measuring time in automated testing flows, we usually try to
observe patterns rather than put concrete timing thresholds as assertions.

When doing CPU profiling, we often spot various patterns related to acquiring and
releasing resources as these often happen through function calls. Traditional Python
profiling with profile and cProfile modules can provide a general overview of
resource usage patterns, but when it comes to memory usage, we prefer dedicated
memory profiling solutions.

Profiling memory usage
Before we start to hunt down memory issues in Python, you should know that the
nature of memory leaks in Python is quite special. In some compiled languages such
as C and C++, the memory leaks are almost exclusively caused by allocated memory
blocks that are no longer referenced by any pointer. If you don't have a reference to
memory, you cannot release it. This very situation is called a memory leak.

In Python, there is no low-level memory management available for the user, so we
instead deal with leaking references—references to objects that are no longer needed
but were not removed. This stops the interpreter from releasing resources, but is not
the same situation as a classic memory leak in C.

There is always the exceptional case of memory leaking through
pointers in Python C extensions, but they are a different kind of
beast that needs completely different tools to diagnose. These
cannot be easily inspected from Python code. A common tool for
inspecting memory leaks in C is Valgrind. You can learn more
about Valgrind at https://valgrind.org/.

https://valgrind.org/

Chapter 13

[561]

So, memory issues in Python are mostly caused by unexpected or unplanned
resource acquisition patterns. It happens very rarely that this is the effect of real bugs
caused by the mishandling of memory allocation and deallocation routines. Such
routines are available to the developer only in CPython when writing C extensions
with Python/C APIs. You will deal with these very rarely, if ever. Thus, most
memory leaks in Python are mainly caused by the overblown complexity of the
software and subtle interactions between its components that are really hard to track.
To spot and locate such deficiencies in your software, you need to know how actual
memory usage looks in the program.

Getting information about how many objects are controlled by the Python interpreter
and inspecting their real size is a bit tricky. For instance, knowing how much
memory a given object takes in bytes would involve crawling down all its attributes,
dealing with cross-references, and then summing up everything. This is a pretty
complex problem if you consider the way objects tend to refer to each other. The
built-in gc module, which is the interface of Python's garbage collector, does not
provide high-level functions for this, and it would require Python to be compiled
in debug mode to have a full set of information.

Often, programmers just ask the system about the memory usage of their application
before and after a given operation has been performed. But this measure is an
approximation and depends a lot on how the memory is managed at the system
level. Using the top command under Linux, or the task manager under Windows,
for instance, makes it possible to detect memory problems when they are obvious.
However, this approach is laborious and makes it really hard to track down the
faulty code block.

Fortunately, there are a few tools available to make memory snapshots and calculate
the number and size of loaded objects. But let's keep in mind that Python does not
release memory easily and prefers to hold on to it in case it is needed again.

For some time, one of the most popular tools to use when debugging memory issues
and usage in Python was Guppy-PE and its Heapy component. Unfortunately, it no
longer appears to be maintained and it lacks Python 3 support. Luckily, the following
are some of the other alternatives that are Python 3-compatible to some extent:

• Memprof (http://jmdana.github.io/memprof/): This is declared to work
on some POSIX-compliant systems (macOS and Linux). Last updated in
December 2019.

• memory_profiler (https://pypi.org/project/memory-profiler): Declared
to be OS-independent. Actively maintained.

http://jmdana.github.io/memprof/
https://pypi.org/project/memory-profiler

Code Optimization

[562]

• Pympler (https://pypi.org/project/Pympler/): Declared to be OS-
independent. Actively maintained.

• objgraph (https://mg.pov.lt/objgraph/): Declared to be OS-independent.
Actively maintained.

As you can see, there are a lot of memory profiling tools available to Python
developers. Each one has some constraints and limitations. In this chapter, we will
focus on one profiler that is known to work well with the latest release of Python
(that is, Python 3.9) on different operating systems. This tool is objgraph.

The API of objgraph may seem a bit clumsy, and it has a very limited set of
functionalities. But it works, does what it needs to do very well, and is really simple
to use. Memory instrumentation is not a thing that is added to the production code
permanently, so this tool does not need to be pretty.

Using the objgraph module
objgraph is a simple module for creating diagrams of object references within
applications. These are extremely useful when hunting memory leaks in Python.

Note that the preceding information regarding compatibility
is based purely on trove classifiers that are used by the latest
distributions of featured packages, declarations from the
documentation, and the inspection of projects' build pipeline
definitions at the time of writing the book. These values may
be different at the time you read this.

objgraph is available on PyPI, but it is not a completely standalone
tool and requires Graphviz, which was installed in the Macro-
profiling section, in order to create memory usage diagrams.

https://pypi.org/project/Pympler/
https://mg.pov.lt/objgraph/

Chapter 13

[563]

objgraph provides multiple utilities that allow you to list and print various statistics
regarding memory usage and object counts. An example of such utilities in use is
shown in the following transcript of interpreter sessions:

>>> import objgraph
>>> objgraph.show_most_common_types()
function 1910
dict 1003
wrapper_descriptor 989
tuple 837
weakref 742
method_descriptor 683
builtin_function_or_method 666
getset_descriptor 338
set 323
member_descriptor 305
>>> objgraph.count('list')
266
>>> objgraph.typestats(objgraph.get_leaking_objects())
{'Gt': 1, 'AugLoad': 1, 'GtE': 1, 'Pow': 1, 'tuple': 2, 'AugStore':
1, 'Store': 1, 'Or': 1, 'IsNot': 1, 'RecursionError': 1, 'Div': 1,
'LShift': 1, 'Mod': 1, 'Add': 1, 'Invert': 1, 'weakref': 1, 'Not': 1,
'Sub': 1, 'In': 1, 'NotIn': 1, 'Load': 1, 'NotEq': 1, 'BitAnd': 1,
'FloorDiv': 1, 'Is': 1, 'RShift': 1, 'MatMult': 1, 'Eq': 1, 'Lt': 1,
'dict': 341, 'list': 7, 'Param': 1, 'USub': 1, 'BitOr': 1, 'BitXor': 1,
'And': 1, 'Del': 1, 'UAdd': 1, 'Mult': 1, 'LtE': 1}

Note that the preceding numbers of allocated objects displayed by objgraph are
already high due to the fact that a lot of Python built-in functions and types are
ordinary Python objects that live in the same process memory. Also, objgraph itself
creates some objects that are included in this summary.

Code Optimization

[564]

As mentioned earlier, objgraph allows you to create diagrams of memory usage
patterns and cross-references that link all the objects in the given namespace.
The most useful functions of the objgraph module are objgraph.show_refs()
and objgraph.show_backrefs(). They both accept a reference to the object being
inspected and save a diagram image to file using the Graphviz package. Examples
of such graphs are presented in Figure 13.2 and Figure 13.3. Here is the code that was
used to create these diagrams:

from collections import Counter
import objgraph

def graph_references(*objects):
 objgraph.show_refs(
 objects,
 filename='show_refs.png',
 refcounts=True,
 # additional filtering for the sake of brevity
 too_many=5,
 filter=lambda x: not isinstance(x, dict),
)
 objgraph.show_backrefs(
 objects,
 filename='show_backrefs.png',
 refcounts=True
)

if __name__ == "__main__":
 quote = """
 People who think they know everything are a
 great annoyance to those of us who do.
 """
 words = quote.lower().strip().split()
 counts = Counter(words)
 graph_references(words, quote, counts)

Without Graphviz installed, objgraph will output diagrams in
DOT format, which is a special graph description language.

Chapter 13

[565]

The following diagram shows the diagram of all references held by words, quote, and
counts objects:

Figure 13.2: An example result of the show_refs() diagram from the graph_references() function

As you can see, the words object (denoted as list [3]) holds references to 16 objects.
The counts object (denoted as Counter [3]) holds references to 15 objects. It is one
object less than the words object because the word "who" appears twice. The quote
object (denoted as str [5]) is a plain string, so it doesn't hold any extra references.

The following diagram shows the back references leading to words, quote, and
counts objects:

Figure 13.3: An example result of the show_backrefs() diagram from the graph_references() function

In the preceding diagram, we see that the quote, words, and counts objects are
references in a dictionary (denoted as dict[6]) of global variables of the __main__
module named __globals__. Moreover, the quote object is referenced in a special list
object (denoted as list [1]) due to CPython's string interning mechanism.

Code Optimization

[566]

To show how objgraph may be used in practice, let's review a code example that
may create memory issues under certain versions of Python. As we already noted
in Chapter 9, Bridging Python with C and C++, CPython has its own garbage collector
that exists independently from its reference counting mechanism. It is not used for
general-purpose memory management, and its sole purpose is to solve the problem
of cyclic references. In many situations, objects may reference each other in a way
that would make it impossible to remove them using simple techniques based on
reference counting. Here is the simplest example:

x = []
y = [x]
x.append(y)

Such a situation is presented visually in Figure 13.4:

Figure 13.4: An example diagram generated by objgraph of cyclic references between two objects

In the preceding case, even if all external references to x and y objects are removed
(for instance, by returning from the local scope of a function), these two objects
cannot be removed through reference counting because there will always be two
cross-references owned by these two objects. This is a situation where the Python
garbage collector steps in. It can detect cyclic references to objects and trigger their
deallocation if there are no other valid references to these objects outside of the cycle.

String interning is the memory optimization mechanism of
CPython. Most of the string literals are pre-allocated by CPython
when a module is loaded. Strings in Python are immutable, so
duplicate occurrences of the same string literal will refer to the
same address in memory.

Chapter 13

[567]

The real problem starts when at least one of the objects in such a cycle has the custom
__del__() method defined. This is a custom deallocation handler that will be called
when the object's reference count finally goes to zero. It can execute any arbitrary
Python code and thus can also create new references to featured objects. This is the
reason why the garbage collector prior to Python 3.4 could not break reference cycles
if at least one of the objects provided the custom __del__() method implementation.
PEP 442 introduced safe object finalization to Python and became part of the
language standard, starting from Python 3.4. Anyway, this may still be a problem
for packages that worry about backward compatibility and target a wide spectrum
of Python interpreter versions. The following snippet of code allows you to show
the difference in behavior between the cyclic garbage collector in different Python
versions:

import gc
import platform
import objgraph

class WithDel(list):
 """ list subclass with custom __del__ implementation """
 def __del__(self):
 pass

def main():
 x = WithDel()
 y = []
 z = []

 x.append(y)
 y.append(z)
 z.append(x)

 del x, y, z

 print("unreachable prior collection: %s" % gc.collect())
 print("unreachable after collection: %s" % len(gc.garbage))
 print("WithDel objects count: %s" %
 objgraph.count('WithDel'))

Code Optimization

[568]

if __name__ == "__main__":
 print("Python version: %s" % platform.python_version())
 print()
 main()

The following output of the preceding code, when executed under Python 3.3, shows
that the cyclic garbage collector in the older versions of Python cannot collect objects
that have the __del__() method defined:

$ python3.3 with_del.py
Python version: 3.3.5

unreachable prior collection: 3
unreachable after collection: 1
WithDel objects count: 1

With a newer version of Python, the garbage collector can safely deal with the
finalization of objects, even if they have the __del__() method defined, as follows:

$ python3.5 with_del.py
Python version: 3.5.1

unreachable prior collection: 3
unreachable after collection: 0
WithDel objects count: 0

Although custom finalization is no longer a memory threat in the latest Python
releases, it still poses a problem for applications that need to work in different
environments. As we mentioned earlier, the objgraph.show_refs() and objgraph.
show_backrefs() functions allow you to easily spot problematic objects that take
part in unbreakable reference cycles. For instance, we can easily modify the main()
function to show all back references to the WithDel instances to see whether we have
leaking resources, as follows:

def main():
 x = WithDel()
 y = []
 z = []

 x.append(y)
 y.append(z)
 z.append(x)

Chapter 13

[569]

 del x, y, z

 print("unreachable prior collection: %s" % gc.collect())
 print("unreachable after collection: %s" % len(gc.garbage))
 print("WithDel objects count: %s" %
 objgraph.count('WithDel'))

 objgraph.show_backrefs(
 objgraph.by_type('WithDel'),
 filename='after-gc.png'
)

Running the preceding example under Python 3.3 will result in the diagram
presented in Figure 13.5. It shows that gc.collect() could not succeed in removing
x, y, and z object instances. Additionally, objgraph highlights all the objects that have
the custom __del__() method in red to make spotting such issues easier:

Figure 13.5: A diagram showing an example of cyclic references that can't be picked
by the Python garbage collector prior to Python 3.4

Code Optimization

[570]

When memory leaks happen in the C extensions (for instance, in Python/C
extensions), it is usually much harder to diagnose and profile them. However,
harder does not mean impossible, as we will discover in the next section.

C code memory leaks
If the Python code seems perfectly fine and memory still increases when you loop
through the isolated function, the leak might be located on the C side. This happens,
for instance, when a Py_DECREF macro is missing in the critical part of an imported C
extension.

The C code of CPython interpreter is pretty robust and tested for the existence of
memory leaks, so it is the last place to look for memory problems. But if you use
packages that have custom C extensions, they might be a good place to look first.
Because you will be dealing with code operating on a much lower level of abstraction
than Python, you need to use completely different tools to resolve such memory
issues.

Memory debugging is not easy in C, so before diving into extension internals, make
sure that you properly diagnose the source of your problem. It is a very popular
approach to isolate a suspicious package with code similar in nature to unit tests. To
diagnose the source of your problem, you should consider the following actions:

1. Write a separate test for each API unit or functionality of an extension you
suspect of leaking memory.

2. Perform the test in a loop for an arbitrarily long time in isolation (one test
function per run).

3. Observe from outside which of the tested functionalities increases memory
usage over time.

By using such an approach, you will eventually isolate the faulty part of the
extension and this will reduce the time required later to inspect and fix its code.
This process may seem burdensome because it requires a lot of additional time and
coding, but it does pay off in the long run. You can always make your work easier
by reusing some of the testing tools that were introduced in Chapter 10, Testing and
Quality Automation. Utilities such as Pytest were perhaps not designed specifically
for this case, but can at least reduce the time required to run multiple tests in isolated
environments.

Chapter 13

[571]

If you have successfully isolated the part of the extension that is leaking the memory,
you can finally start actual debugging. If you're lucky, a simple manual inspection
of the isolated source code section may provide the desired results. In many cases,
the problem is as simple as adding the missing Py_DECREF call. Nevertheless, in most
cases, your work won't be that simple. In such situations, you need to bring out
some bigger guns. One of the notable generic tools for combating memory leaks in
compiled code that should be in every programmer's toolbelt is Valgrind. This is
a whole instrumentation framework for building dynamic analysis tools. Because
of this, it may not be easy to learn and master, but you should definitely acquaint
yourself with the basics of its usage.

After profiling, when you know what's wrong with your code performance, it's time
to apply actual code optimizations. The most common reason for bad performance
is code complexity. Very often, code complexity can be reduced just by applying
appropriate data structures. Let's now look at some examples of optimizations with
built-in Python data types.

Reducing complexity by choosing
appropriate data structures
To reduce code complexity, it's important to consider how data is stored. You should
pick your data structure carefully. The following section will provide you with a few
examples of how the performance of simple code snippets can be improved by the
correct data types.

Searching in a list
Due to the implementation details of the list type in Python, searching for a specific
value in a list isn't a cheap operation. The complexity of the list.index() method
is O(n), where n is the number of list elements. Such linear complexity won't be an
issue if you only need to perform a few element index lookups, but it can have a
negative performance impact in some critical code sections, especially if done over
very large lists.

You can learn more about Valgrind at https://valgrind.org.

https://valgrind.org

Code Optimization

[572]

If you need to search through a list quickly and often, you can try the bisect
module from Python's standard library. The functions in this module are mainly
designed for inserting or finding insertion indexes for given values in a way that will
preserve the order of the already sorted sequence. This module is used to efficiently
find an element index using a bisection algorithm. The following recipe, from the
official documentation of the function, finds an element index using a binary search:

def index(a, x):
 'Locate the leftmost value exactly equal to x'
 i = bisect_left(a, x)
 if i != len(a) and a[i] == x:
 return i
 raise ValueError

Note that every function from the bisect module requires a sorted sequence in order
to work. If your list is not in the correct order, then sorting it is a task with a worst-
case complexity of O(n log n). This is a worse class than O(n), so sorting the whole
list to then perform only a single search will not pay off. However, if you need to
perform a number of index searches across a large list that rarely changes, using
a single sort() operation for bisect may prove to be the best trade-off.

If you already have a sorted list, you can also insert new items into that list
using bisect without needing to re-sort it. The bisect_left() and bisect_right()
functions already return insertion points in the left-to-right or right-to-left sorted lists
accordingly. The following is an example of inserting a new value in a left-to-right
sorted list using the bisect_left() function:

>>> from bisect import bisect_left
>>> items = [1, 5, 6, 19, 20]
>>> items.insert(bisect_left(items, 15), 15)
>>> items
[1, 5, 6, 15, 19, 20]

There are also insort_left() and insort_right() functions that are shorthand for
inserting elements in sorted lists:

>>> from bisect import insort_left
>>> items = [1, 5, 6, 19, 20]
>>> insort_left(items, 15)
>>> items
[1, 5, 6, 15, 19, 20]

Chapter 13

[573]

In the next section, we will see how to use a set instead of a list when element
uniqueness is required.

Using sets
When you need to build a sequence of distinct values from a given sequence, the first
algorithm that might come to mind is as follows:

>>> sequence = ['a', 'a', 'b', 'c', 'c', 'd']
>>> result = []
>>> for element in sequence:
... if element not in result:
... result.append(element)
...
>>> result
['a', 'b', 'c', 'd']

In the preceding example, the complexity is introduced by the lookup in the result
list. The in operator has a time complexity of O(n). It is then used in the loop, which
costs O(n). So, the overall complexity is quadratic, that is, O(n2).

Using a set type for the same work will be faster because the stored values are
looked up using hashes (the same as in the dict type). The set type also ensures the
uniqueness of elements, so we don't need to do anything more than create a new set
from the sequence object. In other words, for each value in sequence, the time taken
to see whether it is already in the set will be constant, as follows:

>>> sequence = ['a', 'a', 'b', 'c', 'c', 'd']
>>> unique = set(sequence)
>>> unique
set(['a', 'c', 'b', 'd'])

This lowers the complexity to O(n), which is the complexity of the set object creation.
The additional advantage of using the set type for element uniqueness is shorter and
more explicit code.

Sometimes the built-in data types are not enough to handle your data structures
efficiently. Python comes with a great set of additional performant data types in the
collections module.

Code Optimization

[574]

Using the collections module
The collections module provides specialized alternatives to general-purpose, built-
in container types. The main types from this module that we will focus on in this
chapter are as follows:

• deque: A list-like type with extra features
• defaultdict: A dict-like type with a built-in default factory feature
• namedtuple: A tuple-like type that assigns keys for members

We'll discuss these types in the following sections.

deque
A deque is an alternative implementation for lists. While the built-in list type is
based on ordinary arrays, a deque is based on a doubly-linked list. Hence, a deque is
much faster when you need to insert something into its tail or head, but much slower
when you need to access an arbitrary index.

Of course, thanks to the overallocation of an internal array in the Python list
type, not every list.append() call requires memory reallocation, and the average
complexity of this method is O(1). The situation changes dramatically when the
element needs to be added at the first index of the list. Because all elements to the
right of the new one need to be shifted in an array, the complexity of list.insert()
is O(n). If you need to perform a lot of pops, appends, and inserts, a deque in place of
a list may provide a substantial performance improvement.

For example, if we measure the time it takes to append one element and remove it
from the sequence with timeit, the difference between a list and a deque may not
even be noticeable.

We've already discussed other types from the collections
module in other chapters: ChainMap in Chapter 3, New Things in
Python; UserList and UserDict in Chapter 4, Python in Comparison
with Other Languages; and Counter in Chapter 5, Interfaces, Patterns,
and Modularity.

Remember to always profile your code before switching from a
list to a deque because a few things that are fast in arrays (such
as accessing an arbitrary index) are extremely inefficient in linked
lists.

Chapter 13

[575]

The following is a sample timeit run for the list type:

$ python3 -m timeit \
 -s 'sequence=list(range(10))' \
 'sequence.append(0); sequence.pop();'
1000000 loops, best of 3: 0.168 usec per loop

And the following is a sample timeit run for the deque type:

$ python3 -m timeit \
 -s 'from collections import deque; sequence=deque(range(10))' \
 'sequence.append(0); sequence.pop();'
1000000 loops, best of 3: 0.168 usec per loop

However, if we perform a similar comparison for situations where we want to
add and remove the first element of the sequence, the performance difference is
impressive.

The following is a sample timeit run for the list type:

$ python3 -m timeit \
 -s 'sequence=list(range(10))' \
 'sequence.insert(0, 0); sequence.pop(0)'
1000000 loops, best of 3: 0.392 usec per loop

And the following is a similar timeit run for the deque type:

$ python3 -m timeit \
 -s 'from collections import deque; sequence=deque(range(10))' \
 'sequence.appendleft(0); sequence.popleft()'
10000000 loops, best of 3: 0.172 usec per loop

As you may expect, the difference gets bigger as the size of the sequence grows. The
following is an example of running the same test with timeit for a list that contains
10,000 elements:

$ python3 -m timeit \
 -s 'sequence=list(range(10000))' \
 'sequence.insert(0, 0); sequence.pop(0)'
100000 loops, best of 3: 14 usec per loop

Code Optimization

[576]

If we do the same for deque, we will see that the timing of the operation does not
change:

$ python3 -m timeit \
 -s 'from collections import deque; sequence=deque(range(10000))' \
 'sequence.appendleft(0); sequence.popleft()'
10000000 loops, best of 3: 0.168 usec per loop

Thanks to the efficient append() and pop() methods, which work at the same speed
from both ends of the sequence, deque makes a perfect example of implementing
queues. For example, a First-In First-Out (FIFO) queue will be much more efficient
if implemented with deque instead of list.

defaultdict
The defaultdict type is similar to the dict type, except it adds a default factory for
new keys. This avoids the need to write an extra test to initialize the mapping entry
and is also a bit more efficient than the dict.setdefault method.

defaultdict may seem like simple syntactic sugar over dict that allows us to write
shorter code. However, the fallback to a pre-defined value on a failed key lookup is
slightly faster than the dict.setdefault() method.

deque works well when implementing queues, but there is also a
separate queue module in Python's standard library that provides
a basic implementation for FIFO, Last-In First-Out (LIFO), and
priority queues. If you want to utilize queues as a mechanism
of inter-thread communication, you should use classes from the
queue module instead of collections.deque. This is because
these classes provide all the necessary locking semantics. If
you don't use threading and choose not to utilize queues as a
communication mechanism, deque should be enough to provide
queue implementation basics.

Chapter 13

[577]

The following is a timeit run for the dict.setdefault() method:

$ python3 -m timeit \
 -s 'd = {}' \
 'd.setdefault("x", None)'
10000000 loops, best of 3: 0.153 usec per loop

And the following is a timeit run for the equivalent defaultdict usage:

$ python3 -m timeit \
-s 'from collections import defaultdict; d = defaultdict(lambda: None)' \
'd["x"]'
10000000 loops, best of 3: 0.0447 usec per loop

The defaultdict type takes a factory as a parameter and can therefore be used with
built-in types or classes whose constructors do not take arguments. The following
code snippet is an example from the official documentation that demonstrates how
to use defaultdict for counting:

>>> from collections import defaultdict
>>> s = 'mississippi'
>>> d = defaultdict(int)
>>> for k in s:
... d[k] += 1
...
>>> list(d.items())
[('i', 4), ('p', 2), ('s', 4), ('m', 1)]

For this particular example (counting unique elements), the collections module also
offers a special Counter class. It can be used to query efficiently for a number of top
elements.

The difference in the preceding example may seem more substantial,
but the computational complexity hasn't changed. The dict.
setdefault() method consists of two steps (key lookup and key
set), both of which have a complexity of O(1). There is no way to
have a complexity class lower than O(1), but sometimes it is worth
looking for faster alternatives in the same O(1) class. Every small
speed improvement counts when optimizing critical code sections.

Code Optimization

[578]

namedtuple
namedtuple is a class factory that takes a name of a type with a list of attributes
and creates a class out of it. The new class can then be used to instantiate tuple-like
objects and also provides accessors for their elements, as follows:

>>> from collections import namedtuple
>>> Customer = namedtuple(
... 'Customer',
... 'firstname lastname'
...)
>>> c = Customer('Tarek', 'Ziadé')
>>> c.firstname
'Tarek'

As shown in the preceding example, it can be used to create records that are easier
to write compared to a custom class that may require boilerplate code to initialize
values. On the other hand, it is based on a tuple, so gaining access to its elements by
means of an index is a quick process. The generated class can also be sub-classed to
add more operations.

The advantage of using namedtuple over other data types may not be obvious at first
glance. The main advantage is that it is easier to use, understand, and interpret than
ordinary tuples. Tuple indexes don't carry any semantics, so it is great to be able to
access tuple elements by attributes. Note that you could also get the same benefits
from dictionaries that have an O(1) average complexity of get and set operations.

The main advantage in terms of performance is that namedtuple is still a flavor of
tuple. This means that it is immutable, so the underlying array storage is allocated
for the necessary size. Dictionaries, on the other hand, need to use overallocation in
the internal hash table to ensure the low-average complexity of get/set operations.
So, namedtuple wins over dict in terms of memory efficiency.

Similar micro memory optimization can be done on user-defined
classes using slots. Slots were discussed in Chapter 4, Python in
Comparison with Other Languages.

Chapter 13

[579]

The fact that namedtuple is based on a tuple may also be beneficial for performance.
Its elements may be accessed by an integer index, as in other simple sequence
objects—lists and tuples. This operation is both simple and fast. In the case of dict
or custom class instances (that use dictionaries for storing attributes), the element
access requires a hash table lookup. Dictionaries are highly optimized to ensure good
performance independently from collection size, but as mentioned, O(1) complexity
is actually only regarded as average complexity. The actual, amortized worst-case
complexity for set/get operations in dict is O(n). The real amount of work required
to perform such an operation is dependent on both collection size and history. In
sections of code that are critical for performance, it may be wise to use lists or tuples
over dictionaries, as they are more predictable. In such a situation, namedtuple is a
great type that combines the following advantages of dictionaries and tuples:

• In sections where readability is more important, the attribute access may be
preferred.

• In performance-critical sections, elements may be accessed by their indexes.

Reduced complexity can be achieved by storing data in an efficient data structure
that works well with the way the algorithm will use it. That said, when the solution
is not obvious, you should consider dropping and rewriting the incriminating part
of the code instead of sacrificing the readability for the sake of performance. Often,
Python code can be both readable and fast, so try to find a good way to perform the
work instead of trying to work around a flawed design.

But sometimes, the problem we are trying to solve doesn't have an efficient solution
or we don't have a good and performant structure at hand. In such situations, it is
worth considering some architectural trade-offs. We will discuss examples of such
trade-offs in the next section.

Named tuples can be a useful optimization tool, but when
readability matters, usually, data classes are a better choice for
storing struct-like data. We've discussed data classes and their
advantages in Chapter 4, Python in Comparison with Other Languages.

Code Optimization

[580]

Leveraging architectural trade-offs
When your code can no longer be improved by reducing the complexity or choosing
a proper data structure, a good approach may be to consider a trade-off. If we review
users' problems and define what is really important to them, we can often relax some
of the application's requirements. Performance can often be improved by doing the
following:

• Replacing exact solution algorithms with heuristics and approximation
algorithms

• Deferring some work to delayed task queues
• Using probabilistic data structures

Let's move on and take a look at these improvement methods.

Using heuristics and approximation algorithms
Some algorithmic problems simply don't have good state-of-the-art solutions that
could run within a time span that would be acceptable to the user.

For example, consider a program that deals with complex optimization problems,
such as the Traveling Salesman Problem (TSP) or the Vehicle Routing Problem
(VRP). Both problems are NP-hard problems in combinatorial optimization. Exact
low-complexity algorithms for these problems are not known; this means that the
size of a problem that can be solved practically is greatly limited. For larger inputs,
it is unlikely that you'll be able to provide the correct solution in time.

Fortunately, a user will likely not be interested in the best possible solution, but
one that is good enough and can be obtained in a timely manner. In these cases, it
makes sense to use heuristics or approximation algorithms whenever they provide
acceptable results:

• Heuristics solve given problems by trading optimality, completeness,
accuracy, or precision for speed. Thus, it may be hard to prove the quality
of their solutions compared to the result of exact algorithms.

• Approximation algorithms are similar in idea to heuristics, but, unlike
heuristics, have provable solution quality and runtime bounds.

There are many known good heuristics and approximation algorithms that can solve
extremely large TSP or VRP problems within a reasonable amount of time. They
also have a high probability of producing good results, just 2-5% from the optimal
solution.

Chapter 13

[581]

Another good thing about heuristics is that they don't always need to be constructed
from scratch for every new problem that arises. Their higher-level versions, called
metaheuristics, provide strategies for solving mathematical optimization problems
that are not problem-specific and can thus be applied in many situations. Popular
metaheuristic algorithms include the following:

• Simulated annealing, which imitates the physical processes happening
during annealing in metallurgy (controlled heating and cooling of materials)

• Evolutionary computation, which is inspired by biological evolutions
and uses evolutionary mechanisms, such as mutation, reproduction,
recombination, and selection, to efficiently search a large area of solutions in
complex problems

• Genetic algorithms, which are a specialized form of evolutionary
computation that represent possible problem solutions as sets of genotypes
and perform genetic transformations, such as crossover and mutations, to
produce better results

• Tabu search, which is a general problem search technique that introduces
prohibited search paths (taboos) to reduce the probability of algorithm
settling in local optimums

• Ant colony optimization, which imitates the behavior of ants in a colony
when searching through the possible space of problem solutions

Heuristic and approximation algorithms are viable optimization techniques
when the majority of the performance happens in a single algorithmic task of the
application. But often, performance issues are caused by general system architecture
and communication links between different system components.

A common architectural trade-off that improves the perceived performance of
complex applications involves the use of task queues and delayed processing.

Using task queues and delayed processing
Sometimes, it's not about doing too much, but about doing things at the right time.
A common example that's often mentioned in literature is sending emails within a
web application. In this case, increased response times for HTTP requests may not
necessarily translate to your code implementation. The response time may instead be
dominated by a third-party service, such as a remote email server. So, can you ever
successfully optimize your application if it spends most of its time waiting on other
services to reply?

Code Optimization

[582]

The answer is both yes and no. If you don't have any control over a service that is
the main contributor to your processing time, and there is no faster solution you can
use, you cannot speed up the service any further. A simple example of processing an
HTTP request that results in sending an email is presented in Figure 13.6:

Figure 13.6: An example of synchronous email delivery in a web application

If your code relies on third-party services, you often cannot reduce the waiting time.
But you can change the way users will perceive it.

The usual solution to this is kind of problem is to use message or task queues (see
Figure 13.7). When you need to do something that could take an indefinite amount
of time, add it to the queue of work that needs to be done and immediately tell the
user that their request was accepted. This is why sending emails is such a great
example: emails are already task queues! If you submit a new message to an email
server using the SMTP protocol, a successful response does not mean your email
was delivered to the addressee—it means that the email was delivered to the email
server. If a response from the server does not guarantee that an email was delivered,
you don't need to wait for it in order to generate an HTTP response for the user:

Chapter 13

[583]

Figure 13.7: An example of asynchronous email delivery in a web application

Even if your email server is responding at blazing speed, you may need some
more time to generate the message that needs to be sent. Are you generating yearly
reports in an XLS format? Or are you delivering invoices via PDF files? If you use
an email transport system that is already asynchronous, then you can put the whole
message generation task to the message processing system. If you cannot guarantee
the exact time of delivery, then you should not bother generating your deliverables
synchronously.

Code Optimization

[584]

The correct usage of task and message queues in critical sections of an application
can also give you other benefits, including the following:

• Web workers that serve HTTP requests will be relieved from additional work
and will be able to process requests faster. This means that you will be able
to process more requests with the same resources and thereby handle greater
loads.

• Message queues are generally more immune to transient failures of external
services. For instance, if your database or email server times out from time to
time, you can always re-queue the currently processed task and retry it later.

• With a good message queue implementation, you can easily distribute work
on multiple machines. This approach may improve the scalability of some
of your application components.

As you can see in Figure 13.7, adding an asynchronous task process to your
application inevitably increases the complexity of the whole system's architecture.
You will need to set up some new backing services (a message queue such as
RabbitMQ) and create workers that will be able to process asynchronous jobs.
Fortunately, there are some popular tools available for building distributed
task queues.

Although there are some good and battle-hardened tools available, you should
always carefully consider your approach to task queues. Not every kind of task
should be processed in queues. While queues are good at solving a number of issues,
they can also introduce the following problems:

• The increased complexity of system architecture
• The possibility of processing a single message more than once

A popular Python tool for asynchronous job handling is Celery.
Celery is a fully fledged task queue framework with the support
of multiple message brokers that also allows for the scheduled
execution of tasks. It can even replace your cron jobs. You can read
more about Celery at http://www.celeryproject.org/.

If you need something simpler, then RQ might be a good
alternative. RQ is a lot simpler than Celery and uses Redis key-
value storage as its message broker Redis Queue (RQ). You can
read more about RQ at http://python-rq.org/.

http://www.celeryproject.org/
http://python-rq.org/

Chapter 13

[585]

• More services to maintain and monitor
• Larger processing delays
• More difficult logging

A completely different approach to architectural tradeoffs involves the use of non-
deterministic/probabilistic data structures.

Using probabilistic data structures
Probabilistic data structures are structures that are designed to store collections
of values in a way that allows you to answer specific questions within time or
resource constraints that would otherwise be impossible. A common example
would be efficiently storing unique view counts in a large video streaming platform
such as YouTube that has billions of videos and billions of users. Having naïve
implementation that stores exact information on who watched what would take a
tremendous amount of memory and would probably be hard to operate efficiently.
When the problem is that big, it may be necessary to consider the use of probabilistic
data structures.

The most important feature of probabilistic data structures is that the answers they
give are only probable to be true; in other words, they are just approximations of real
values. The probability of a correct answer can be easily estimated, however. Despite
not always giving the correct answer, probabilistic data structures can still be useful
if there is some room for potential error.

There are a lot of data structures with such probabilistic properties. Each one of them
solves specific problems, but due to their stochastic nature, they cannot be used in
every situation. As a practical example, we'll talk about one of the more popular
structures, HLL (HyperLogLog).

HLL is an algorithm that approximates the number of distinct elements in a multiset.
With ordinary sets, if you want to know the number of unique elements, you need to
store all of them. This is obviously impractical for very large datasets. HLL is distinct
from the classical way of implementing sets as programming data structures.

Without digging into implementation details, let's say that it only concentrates
on providing an approximation of set cardinality; real values are never stored.
They cannot be retrieved, iterated, or tested for membership. HLL trades accuracy
and correctness for time complexity and size in memory. For instance, the Redis
implementation of HLL takes only 12k bytes with a standard error of 0.81%, with
no practical limit on collection size.

Code Optimization

[586]

Using probabilistic data structures is an interesting way of solving performance
problems. In most cases, it is about trading off some accuracy for faster processing
or more efficient resource usage. It does not always need to do so, however.
Probabilistic data structures are often used in key/value storage systems to speed
up key lookups. One of the most popular techniques that's used in such systems is
called an Approximate Member Query (AMQ). An interesting probabilistic data
structure that is often used for this purpose is the Bloom filter.

In the next section, we'll take a look at caching.

Caching
When some of your application functions take too long to compute, a useful
technique to consider is caching. Caching saves the return values of function calls,
database queries, HTTP requests, and so on for future reference. The result of
a function or method that is expensive to run can be cached as long as one of the
following conditions is met:

• The function is deterministic and the results have the same value every time,
given the same input.

• The return value of the function is non-deterministic, but continues to be
useful and valid for certain periods of time.

In other words, a deterministic function always returns the same result for the same
set of arguments, whereas a non-deterministic function returns results that may
vary in time. The caching of both types of results usually greatly reduces the time
of computation and allows you to save a lot of computing resources.

The most important requirement for any caching solution is a storage system that
allows you to retrieve saved values significantly faster than it takes to calculate them.
Good candidates for caching are usually the following:

• Results from callables that query databases
• Results from callables that render static values, such as file content, web

requests, or PDF rendering
• Results from deterministic callables that perform complex calculations
• Global mappings that keep track of values with expiration times, such as web

session objects
• Results that need to be accessed often and quickly

Chapter 13

[587]

Another important use case for caching is when saving results from third-party APIs
served over the web. This may greatly improve application performance by cutting
off network latencies, but it also allows you to save money if you are billed for every
request to an API.

Depending on your application architecture, the cache can be implemented in many
ways and with various levels of complexity. There are many ways of providing a
cache, and complex applications can use different approaches on different levels of
the application architecture stack. Sometimes, a cache may be as simple as a single
global data structure (usually a dictionary) that is kept in the process memory. In
other situations, you may want to set up a dedicated caching service that will run
on carefully tailored hardware. The following sections will provide you with basic
information on the most popular caching approaches, guiding you through some
common use cases as well as the common pitfalls.

So, let's move on and see what deterministic caching is.

Deterministic caching
Deterministic functions are the easiest and safest use case for caching. Deterministic
functions always return the same value if given the same input, so caching can
generally store their results indefinitely. The only limitation to this approach is
storage capacity. The simplest way to cache results is to put them into process
memory, as this is usually the fastest place to retrieve data from. Such a technique
is often called memoization.

Memoization is very useful when optimizing recursive functions that may need to
evaluate the same input multiple times. We already discussed recursive implementations
for the Fibonacci sequence in Chapter 9, Bridging Python with C and C++. Earlier on in this
book, we tried to improve the performance of our program with C and Cython. Now, we
will try to achieve the same goal by simpler means—through caching. Before we do that,
let's first recall the code for the fibonacci() function, as follows:

def fibonacci(n):
 if n < 2:
 return 1
 else:
 return fibonacci(n - 1) + fibonacci(n - 2)

As we can see, fibonacci() is a recursive function that calls itself twice if the input
value is more than two. This makes it highly inefficient. The runtime complexity is
O(2n) and its execution creates a very deep and vast call tree. For a large input value,
this function will take a long time to execute. There is also is a high chance that it will
exceed the maximum recursion limit of the Python interpreter.

Code Optimization

[588]

If you take a closer look at the following Figure 13.8, which presents an example
call tree of the fibonacci() function, you will see that it evaluates many of the
intermediate results multiple times. A lot of time and resources can be saved if
we reuse some of these values:

Figure 13.8: A call tree for the fibonacci(5) execution

An example of a simple memoization attempt would be to store the results
of previous runs in a dictionary and to retrieve them if they are available.

Both the recursive calls in the fibonacci() function are contained in a single line
of code, as follows:

return fibonacci(n - 1) + fibonacci(n - 2)

We know that Python evaluates instructions from left to right. This means that, in
this situation, the call to the function with a higher argument value will be executed
before the call to the function with a lower argument value. Thanks to this, we can
provide memoization by constructing a very simple decorator, as follows:

def memoize(function):
 call_cache = {}

 def memoized(argument):
 try:
 return call_cache[argument]
 except KeyError:
 return call_cache.setdefault(
 argument, function(argument)
)

 return memoized

We can then apply it to the fibonacci() function as follows:

@memoize
def fibonacci(n):

Chapter 13

[589]

 if n < 2:
 return 1
 else:
 return fibonacci(n - 1) + fibonacci(n - 2)

We've used the dictionary on the closure of the memoize() decorator as a simple
storage solution from cached values. Saving and retrieving values in the preceding
data structure has an average complexity of O(1). This should greatly reduce the
overall complexity of the memoized function. Every unique function call will be
evaluated only once. The call tree of such an updated function is presented in
Figure 13.9. Even without mathematical proof, we can visually deduce that we have
reduced the complexity of the fibonacci() function from the very expensive O(2n) to
the linear O(n):

Figure 13.9: A call tree for the fibonacci(5) execution with memorization

The implementation of our memoize() decorator is, of course, not perfect. It worked
well for the preceding example, but it isn't a reusable piece of software. If you need
to memoize functions with multiple arguments, or want to control the size of your
cache, you will require something more generic.

Luckily, the Python standard library provides a very simple and reusable utility that
can be used in most cases of deterministic caching. This utility is the lru_cache()
decorator from the functools module. The name comes from the LRU (Last Recently
Used) algorithm. The following additional parameters allow for finer control of
memoization behavior:

• maxsize: This sets the maximum size of the cache. The None value means no
limit at all.

• typed: This defines whether values of different types that compare as equal
should be mapped to the same result.

Code Optimization

[590]

The usage of lru_cache() in our Fibonacci sequence example would be as follows:

from functools import lru_cache

@lru_cache(None)
def fibonacci(n):
 if n < 2:
 return 1
 else:
 return fibonacci(n - 1) + fibonacci(n - 2)

In the next section, we will take a look at non-deterministic caching.

Non-deterministic caching
Caching non-deterministic functions is trickier than memoization. Since every
execution of such a function may provide different results, it is usually impossible
to use previous values for an arbitrarily long amount of time. What you need to do
instead is to decide for how long a cached value can be considered valid. After a
defined period of time passes, the stored results are considered stale, and the cache
will need to be refreshed with a new value.

So, in other words, non-deterministic caching is performed in any situation where
pre-computed results are used temporarily. Cached non-deterministic functions
often depend on some external state that is hard to track inside your application
code. Typical examples of components include the following:

• Relational databases, or generally any type of structured data storage engine
• Third-party services accessible through a network connection (web APIs)
• Filesystems

Note that such an implementation is a trade-off. If you resign from running part
of your code whenever necessary and instead use historical results, you are risking
using data that is stale or represents an inconsistent state of your system. In this case,
you are trading accuracy and/or completeness for speed and performance.

Of course, such caching is only efficient as long as the time taken to interact with the
cache is less than the time the cached function takes to execute. If it's faster to simply
recalculate the value, by all means do so! That's why setting up a cache has to be
done only if it's worth it; setting it up properly has a cost.

Chapter 13

[591]

Things that can actually be cached are usually the results of interactions with other
components of your system. For instance, if you want to save time and resources
when communicating with the database, it is worth caching frequent and expensive
queries. If you want to reduce the number of I/O operations, you may want to cache
the content of files that are most frequently accessed or responses from external APIs.

Techniques for caching non-deterministic functions are actually very similar to those
used in caching deterministic ones. The most notable difference is that they usually
require the option of invalidating cached values by their age. This means that the
lru_cache() decorator from the functools module has limited use; however, it
should not be too difficult to extend this function to provide the expiration feature.
As this is a very common problem that has been solved numerous times by many
developers, you should be able to find multiple libraries on PyPI that have been
designed for caching non-deterministic values.

Using local process memory is a fast way to cache values, but every process
maintains its own cache. If you have a lot of processes, independent caches can take
a substantial amount of your memory. In distributed systems, it is common to use
dedicated cache services.

Cache services
Although non-deterministic caching can be implemented using local process
memory, it is actually rarely done that way in a distributed system. That's because
a cache needs to be duplicated for every service and this is often a waste of resources.
Moreover, multiple process instances can have different cache values, and this may
lead to data inconsistencies.

If you run into a situation where non-deterministic caching is your preferred
solution to performance problems, you may well need something more. Usually,
non-deterministic caching is your must-have solution when you need to serve data
or a service to multiple users at the same time.

Sooner or later, you may also need to ensure that users can be served concurrently.
While local memory provides a way of sharing data between multiple threads,
threading may not be the best concurrency model for every application. It does not
scale well, so you will eventually need to run your application as multiple processes.

If you are lucky enough, you may be able to run your application on hundreds or
thousands of machines. If you would like to store cached values in local memory in
this scenario, your cache will need to be duplicated on every process that requires it.
This is not just a total waste of resources—if every process has its own cache, which
is already a trade-off between speed and consistency, how can you guarantee that all
caches are consistent with each other?

Code Optimization

[592]

Consistency across subsequent requests is a serious concern, especially for web
applications with distributed backends. In complex distributed systems, it is
extremely hard to ensure that the user will always be served by the same process
hosted on the same machine. It is, of course, doable to some extent, but once you
solve that problem, 10 others will pop up.

If you are making an application that needs to serve multiple concurrent users, the
best way to handle a non-deterministic cache is to use a dedicated service. With tools
such as Redis or Memcached, you allow all of your application processes to share
the same cached results. This both reduces the use of precious computing resources
and saves you from any problems caused by having too many independent and
inconsistent caches.

Caching services such as Memcached are useful for implementing memoization-
like caches with states that can be easily shared across multiple processes, and even
multiple servers. There is also another way of caching that can be implemented
on a system architecture-level, and such an approach is extremely common in
applications working over the HTTP protocol. Many elements of a typical HTTP
application stack provide elastic caching capabilities that often use mechanisms that
are well standardized by the HTTP protocol. This kind of caching can, for instance,
take the form of the following:

• Caching reverse-proxy (for example, nginx or Apache): Where a proxy caches
full responses from multiple web workers working on the same host

• Caching load balancer (for example, HAProxy): Where a load balancer not
only distributes the load over multiple hosts, but also caches their responses

• Content distribution network: Where resources from your servers are cached
by a system that also tries to keep them in close geographical proximity to
users, thus reducing network roundtrip times

In the next section, we will take a look at Memcached.

Using Memcached
If you want to be serious about caching, Memcached is a very popular and battle-
hardened solution. This cache server is used by big applications, including Facebook
and Wikipedia, to scale their websites. Among simple caching features, it has
clustering capabilities that make it possible for you to set up an efficiently distributed
cache system in no time.

Chapter 13

[593]

Memcached is a multi-platform service, and there are a handful of libraries for
communicating with it available in multiple programming languages. Many
Python clients differ slightly from one another, but the basic usage is usually the
same. The simplest interaction with Memcached almost always consists of the
following three methods:

• set(key, value): This saves the value for the given key.
• get(key): This gets the value for the given key if it exists.
• delete(key): This deletes the value under the given key if it exists.

The following code snippet is an example of integration with Memcached using one
popular Python package available on PyPI, pymemcache:

from pymemcache.client.base import Client

setup Memcached client running under 11211 port on localhost
client = Client(('localhost', 11211))

cache some value under some key and expire it after 10 seconds
client.set('some_key', 'some_value', expire=10)

retrieve value for the same key
result = client.get('some_key')

One of the downsides of Memcached is that it is designed to store values as binary
blobs. This means that more complex types need to be serialized in order to be
successfully stored in Memcached. A common serialization choice for simple data
structures is JSON. An example of how to use JSON serialization with pymemcached
is as follows:

import json
from pymemcache.client.base import Client

def json_serializer(key, value):
 if type(value) == str:
 return value, 1
 return json.dumps(value), 2

def json_deserializer(key, value, flags):
 if flags == 1:
 return value
 if flags == 2:

Code Optimization

[594]

 return json.loads(value)
 raise Exception("Unknown serialization format")

client = Client(('localhost', 11211), serializer=json_serializer,
 deserializer=json_deserializer)
client.set('key', {'a':'b', 'c':'d'})
result = client.get('key')

Another problem that is very common when working with a caching service that
works on the key/value storage principle is how to choose key names.

For cases when you are caching simple function invocations that have basic
parameters, the solution is usually simple. Here, you can convert the function name
and its arguments into strings and then concatenate them together. The only thing
you need to worry about is making sure that there are no collisions between keys
that have been created for different functions if you are caching in different places
within an application.

A more problematic case is when cached functions have complex arguments that
consist of dictionaries or custom classes. In that case, you will need to find a way
to convert invocation signatures into cache keys in a consistent manner.

Many caching services (including Memcached) store their cache in RAM to provide
the best cache lookup performance. Often, old cache keys can be removed when the
working dataset gets too large. The whole cache can be also cleared when the service
gets restarted. It is important to take this into account and use caching services to
store data that should remain persistent. Sometimes, it may also be necessary to
provide a proper cache warmup procedure that will populate the cache with the
most common cache entries (for instance, in the case of a service upgrade or new
application release).

The last problem is that Memcached, like many other caching services, does not
respond well to very long key strings, which may either reduce performance or
will simply not fit the hardcoded service limits. For instance, if you cache whole
SQL queries, the query strings themselves are generally suitable unique identifiers
that can be used as keys. On the other hand, complex queries are generally too
long to be stored in a caching service such as Memcached. A common practice is
to instead calculate the MD5, SHA, or any other hash function and use that as a
cache key instead. The Python standard library has a hashlib module that provides
implementation for a few popular hash algorithms. One important thing to note
when using hashing functions is hash collisions. No hash function guarantees that
collisions will never occur, so always be sure to know and mitigate any potential
risks.

Chapter 13

[595]

Summary
In this chapter, we've learned about the optimization process, from identifying
possible bottlenecks, through common profiling techniques, to useful optimization
techniques that can be applied to a wide variety of performance problems.

This chapter concludes the book, the same way that optimization usually
concludes application development cycles. We perform an optimization process
on applications that are known to work well. That's why it is important to have
proper methodologies and processes set in place that will ensure that our application
continues to work properly.

While optimization often concentrates on reducing algorithmic and computational
complexity, it can increase different kinds of complexity. Optimized applications
are often harder to read and understand, and so are more complex in terms of
readability and maintainability. Architectural trade-offs often rely on introducing
dedicated services or using solutions that sacrifice part of application correctness
or accuracy. Applications that leverage such architectural trade-offs almost always
have more complex architectures.

Code optimization, like every other development practice, requires skill and
expertise. Part of that expertise is knowing what the balance between various
development processes and activities is. Sometimes, minor optimizations are not
worth doing at all. Sometimes, it is worth breaking a few rules to satisfy business
needs. That is why, in this book, we tried to capture a holistic view of the entire
development process of the application. You may not always be doing everything
on your own, but knowing how applications are built, maintained, tested, released,
observed, and optimized will allow you to know the right balance between each of
those activities.

Share your experience

Thank you for taking the time to read this book. If you enjoyed this book, help
others to find it. Leave a review at https://www.amazon.com/dp/1801071101

https://www.amazon.com/dp/1801071101

[597]

packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos,
as well as industry leading tools to help you plan your personal development and
advance your career. For more information, please visit our website.

Why subscribe?
• Spend less time learning and more time coding with practical eBooks and

Videos from over 4,000 industry professionals
• Learn better with Skill Plans built especially for you
• Get a free eBook or video every month
• Fully searchable for easy access to vital information
• Copy and paste, print, and bookmark content

At www.Packt.com, you can also read a collection of free technical articles, sign up for
a range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://packt.com
http://www.Packt.com

[599]

Other Books
You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Clean Code in Python - 2nd edition

Mariano Anaya

ISBN: 978-1-80056-021-5

• Set up a productive development environment by leveraging automatic tools
• Leverage the magic methods in Python to write better code, abstracting

complexity away and encapsulating details
• Create advanced object-oriented designs using unique features of Python,

such as descriptors
• Eliminate duplicated code by creating powerful abstractions using software

engineering principles of object-oriented design
• Create Python-specific solutions using decorators and descriptors
• Refactor code effectively with the help of unit tests
• Build the foundations for solid architecture with a clean code base

as its cornerstone

https://www.packtpub.com/product/clean-code-in-python-second-edition/9781800560215

[600]

Other Books You May Enjoy

Modern Python Cookbook – Second Edition

Steven F. Lott

ISBN: 978-1-80020-745-5

• See the intricate details of the Python syntax and how to use it to your
advantage

• Improve your coding with Python readability through functions
• Manipulate data effectively using built-in data structures
• Get acquainted with advanced programming techniques in Python
• Equip yourself with functional and statistical programming features
• Write proper tests to be sure a program works as advertised
• Integrate application software using Python

https://www.packtpub.com/product/modern-python-cookbook-second-edition/9781800207455

[601]

Index
Symbols
__dir__() functions 97, 98
__getattr__() functions 97, 98
/r/python subreddit

URL 10

A
Abstract Base Classes (ABC) 177

using 186-191
purposes 187

abstract interface 177
abstract syntax tree (AST) 297, 321-323
ack-grep

reference link 69
acyclic graph 89
ad hoc polymorphism 145
Application Binary Interface (ABI) 331
application inefficiency 543

code complexity 543
excessive I/O and blocking operations 549
excessive resource allocation and leaks 548

application inefficiency 543
application frameworks

environment variables role 475-479
application-level environment isolation 24-26
application-level isolation

versus system-level isolation 23
Application Programming Interfaces

(APIs) 175
application responsiveness 223, 224
application scenarios, concurrent process

application responsiveness 215
background processing 215
distribution processing 215

Approximate Member Query (AMQ) 586

approximation algorithms 580
architectural trade-offs, leveraging 580

approximation algorithms, using 580, 581
caching 586, 587
delayed processing, using 581-585
heuristics, using 580, 581
probabilistic data structures, using 585, 586
task queues, using 581-585

assert statement 383
assignment expressions 79-82
asynchronous programming 255

asynchronous I/O 256, 257
cooperative multitasking 256, 257
example 262-265
non-asynchronous code, integrating with

async futures 265, 266
Python async keywords 257-262
Python await keywords 257-262
versus event-driven programming 273, 274

async keywords 257-262
attribute access patterns 124, 125
autojump

reference link 69
autouse fixtures 395
await keywords 257-262
awesome lists 11, 12

awesome-python, by vinta 12
pycrumbs, by kirang89 12
pythonidae, by svaksha 12

Axis-Aligned Bounding Box (AABB) 178

B
background processing 225, 226
bad performance, in applications

reasons 542
bdist distributions 447-449

[602]

big O notation 545, 547
measuring 545

binary compatible 331
binary operators 74

difference operator 74
intersection operator 74
symmetric operator 74
union operator 74

binding conventions 346-348
blinker library

features 288
blocking operation 218
borrowed references 354
bottlenecks 551
breakpoint() function 93, 94
brokered message queues 292
brokerless message queues 292
business metrics 519

C
C 330

functions, calling with ctypes module
367, 368

language 329
C++ 329, 330
C3 linearization 114

reference link 114
caching 586, 587

candidates 586
deterministic caching 587-590
non-deterministic caching 590
use cases 587

Caesar cipher 276
calendar versioning 455
callback-based IoC 196
callback-based style 279-281
calling conventions 346-348
calling conventions flags

METH_KEYWORDS 346
METH_NOARGS 346
METH_O 346
METH_VARARGS 346

CalVer convention
reference link 457

CalVer standard 456
for calendar versioning 456

Celery 584
CFFI package 372, 374
C functions

calling, with ctypes module 367, 368
ChainMap class

from collections module 76, 78
channels 286
C language 329
class decorators 299-304
classic linters 415-419
class instance

creation process, intercepting 304-307
class instance initialization 120-123
class model 110, 111
class scope 394
cloc

reference link 69
code

instrumenting, with custom metrics 518-520
live reload, adding for 54-56
profiling 549
profiling, organization and optimization

process 550
code complexity

big O notation 545-547
cyclomatic complexity 544
reducing 571

code complexity, reducing
collections module, using 574
searching, in list 571, 572
sets, using 573

code coverage 411
code debugging 66
code generation 319

abstract syntax tree 321-323
compile() function 319-321
eval() function 319-321
exec() function 319-321
import hooks 323
notable examples, in Python 323

code-oriented metaprogramming 297
code startup

delaying 52-54
collections.abc

reference link 192
using 191, 192

collections module

[603]

ChainMap class 76, 78
defaultdict type, using 576
deque, using 574, 575
namedtuple, using 578, 579
using 574

Command-Line Interface (CLI) 65
commands 280
compile() function 320
complex environments

setting up 43-45
concurrency 214-216
containerization

versus virtualization 34-36
containers

running 41-43
size, reducing of 46-48

cooperative multitasking 256, 257
copy-on-write (COW) 252
CPU usage, profiling 551

macro-profiling 551-557
micro-profiling 551-560

cron jobs 289
ctypes module 365

libraries, loading 365-367
Python functions, passing as

C callbacks 369-372
used, for calling C functions 367, 368

curl
reference link 69

custom metrics
used, for instrumenting code 518-520

custom Python shells 59-61
cx_Freeze 486-488

reference link 486
cyclic graph 89
cyclomatic complexity 544
Cython extensions 329

as language 360-362
as source-to-source compiler 356-359
writing with 356

D
database tables 91
database trigger 273
data classes 151-154
data descriptor 126

Data Source Name (DSN) 515
declaration error 185
decorators 166-168

using, to modify function behavior 297, 298
demand-side platforms (DSPs) 334
Denial-of-Service (DoS) attack 241
dependency hell 17
dependency injection 195-197

container 207
frameworks, using 206-211

dependency lock files 31
dependency management 453, 454
dependency resolution algorithm 31
descriptors 125-128

class attribute initialization, delaying 128-132
classes, methods 125
protocol 125
reference link 127

deterministic caching 587-590
deterministic profiler 551
development mode 94-96

enabling 95
dictionary merge operators 73-75
dictionary unpacking 76
dictionary update operators 75
dietlibc 176
Directed Acyclic Graph (DAG) 90
directed graph 89
dist-packages directory 20
distributed application tracing 530-533
distributed logging 511-513

challenges 512
distributed tracing 530, 533

with Jaeger 534-539
distribution Cython code

reference link 358
Docker 36

compose environment communication 50-52
compose environment services, addressing

48-50
compose recipes, for Python 46
overview 468-470
URL 37

Dockerfiles 36
reference link 469
writing 37-40

Docker Hub

[604]

URL 45
dockerize 38
doctest 380

reference link 381
domain-specific language (DSL) 297
duck typing 139, 176
dunder 141
dunder methods 141-144

reference link 142
Dylan programming language

reference link 114
dynamic and shared libraries, classes

ctypes.CDLL 365
ctypes.OleDLL 366
ctypes.PyDLL 366
ctypes.WinDLL 366

dynamic libraries
interfacing, without extensions 365

dynamic polymorphism 138

E
editable mode 458

editable mode 458
Elastic Stack

reference link 514
encapsulation 132
enumeration 168-171
environment variables 471

handling 470-474
role, in application frameworks 475-479

errors
capturing 494, 495
capturing, for review 514-518
dealing with, in threads 238-241

eval() function 320
event-driven architectures 288, 289

event queues 290
features 289
message queues 291-293

event-driven communication 277-279
event-driven programming 272, 273

in GUIs 274-276
versus asynchronous programming 273, 274

event-driven programming, styles
callback-based style 279-281
subject-based style 280-286

topic-based style 280-288
event loop

executor, using 268, 269
event queues 290
exception handling 349-351
exec() function 319
executor 267, 268

methods 267
using, in event loop 268, 269

expressions 79
external dependencies 33
extra commands 439

F
fake object

using, in tests 402-405
Falcon

reference link 324
Falcon's compiled router 324, 325
File System in User Space (FUSE) 34
filter() function 159-162
First-In First-Out (FIFO) 232-576
Flask framework

reference link 38
Foreign Function Interfaces (FFIs) 328
foreign function libraries 365
foreign key constraints 91
formal interfaces 176, 186
formatted string literals

used, for formatting strings 98, 99
functional programming 155, 157

decorator 166-168
filter() function 159-162
generator expressions 165
generators 163-165
Lambda functions 157-159
map() function 159-162
partial objects and partial functions 162, 163
reduce() function 160-162

functional programming, basic terms
first-class functions 156
pure functions 156
referential transparency 156
side-effects 156

function annotations
using 186-191

[605]

Function as a Service (FaaS) 289
function behavior

modifying, with decorators 297, 298
function decorators 165
function overloading 145-148
function scope 394
future 267, 268

G
generator expressions 165
generators 163-165
getter 125
Gimp 223
Global Interpreter Lock (GIL) 95, 222, 289

releasing 351, 352
GNU C Library (glibc) 176
GNU Debugger (GDB) 67
GNU parallel

reference link 69
graph 88
graphlib module 73, 88-92
graph theory 88
Graphviz

installation link 555
GUIs

event-driven programming 274-276

H
hashable 192
heuristics 580
Hollywood principle 196
HTTPie

reference link 69
Hy 319

overview 325, 326
reference link 325

HyperLogLog (HL) 585

I
implicit interface 190
import hooks 323

meta hooks 323
path hooks 323

injector
reference link 207

Input/Output (I/O) 216
Integrated Development Environments

(IDEs) 25, 297
integration tests 402
interactive debuggers 66, 67
interfaces 175, 176

through, type annotations 192-195
introspection-oriented

metaprogramming 297
Inversion of Control (IoC) 195-197

in applications 197-206
IPython

using 61-65
irrefutable case block 104
ISO C Library 176
itertools module documentation

reference link 163

J
Jaeger

distributed tracing 534-539
Jaeger sampling

reference link 535
Java Virtual Machine (JVM) 111
jq

reference link 69

K
keyring package

reference link 452
Kubernetes (k8s) 469

reference link 469

L
Lambda functions 157-159
Landau notation. See big O notation
language protocols 141
Last-In First-Out (LIFO) 576
Last Recently Used (LRU) 298

algorithm 589
libraries 176
lightweight virtualization 35
linearization 114
linters 415

classic linters 416

[606]

style fixers 416
Linux Containers (LXC) 56
live reload

adding, for code 54-56
load metrics 518
local fixtures 394
logging maturity model

Level 0 (snowflake) 513
Level 1 (unified logging) 513
Level 2 (centralized logging) 513
Level 3 (logging mesh) 513

LogRecord attributes
reference link 504

logs
capturing 494, 495

M
machine virtualization 34
MacroPy project

reference link 322
Mailman 2 9

reference link 9
Mailman 3 9

reference link 9
manylinux wheels 449
map() function 159-162
Markdown markup language 437
match patterns 104
match statement 103

syntax 104
McCabe's complexity. See cyclomatic

complexity
memoization 587
memory leak 560
memory_profiler

URL 561
memory usage, profiling 560-562

C code memory leaks 570, 571
objgraph module, using 562-570

Memprof
URL 561

message queues 291, 292
brokered message queues 292
brokerless message queues 292
features 291

messages 272

metaclass 307, 308
__init__subclass__() method, using 317-319
pitfalls 315, 316
syntax 309-312
usage 312-315

metaheuristic algorithms
ant colony optimization 581
evolutionary computation 581
genetic algorithms 581
simulated annealing 581
tabu search 581

meta hooks 323
meta path finder object 323
metaprogramming 296
method overloading 147, 148
Method Resolution Order (MRO) 114-301
metric monitoring systems

pull architectures 519
push architectures 519

mixin class pattern 303
MkDocs 436

reference link 436
mock object

using, in tests 405-410
module scope 394
monkey patching 128, 303, 408
multiple inheritance 114-119
multiple per-environment settings modules

drawbacks 476
multiprocessing 245, 246
multiprocessing.dummy

using, as multithreading interface 254, 255
multiprocessing module 247-251

communicating ways, between
processes 248

multithreaded application
errors, dealing with in threads 238-241
example 226-229
one thread per item, using 229-231
thread pool, using 231-235
throttling 241-244
two-way queues, using 236, 238

multithreading 216-221
need for 223

multiuser applications 224, 225
musl 176
mutation testing 420-427

[607]

mutmut 422
mypy 83

N
name mangling concept 124
namespace packages 459-461
newsletters 11

Pycoder's Weekly 11
Python Weekly 11

non-asynchronous code
integrating, with async futures 265, 266

non-data descriptor 126
non-deterministic caching 590, 591

cache services 591, 592
memcached, using 592, 594

NP-hard problems 580
numeric literals

underscores 100

O
OAuth 2.0 176
object mocking 408
object-oriented programming (OOP) 110, 111

attribute access patterns 124, 125
class instance initialization 120-123
descriptors 125-128
MRO 114-119
multiple inheritance 114-119
properties 132-138
super-classes, accessing 112, 113

objgraph
URL 562

observables 282
ØMQ 292
one thread per item

using 229-231
OpenCensus 534
OpenGL Shading Language (GLSL) 131
OpenID Connect (OIDC) 176
OpenTelemetry 534
OpenTracing 534
operating system-level virtualization 34, 35
operating system (OS) 216
operator overloading 140, 141

comparing, to C++ 145-147
dunder methods 141-144

P
package 435

installing 457
installing, from sources 457, 458
installing, in editable mode 458
scope 394
scripts 461-465
versioning 453, 454

package distributions, types 445
built distributions 447-449
source distributions 445, 446

package entry points 461-465
partial functions 162, 163
partial objects 162, 163
passing of ownership 354
path entry finder object 323
path hooks 323
PEP 0 document

reference link 7
PEP 345 document

reference link 443
PEP 440 document

reference link 454
performance metrics 518
pickle module

reference link 249
pip

used, for installing Python packages 17, 18
plugin fixtures 394
Pods 469
Poetry

as dependency management system 27-31
reference link 32

polymorphism 138-140
implicit interfaces 138
subtyping 138

popular tools, standalone executables
cx_Freeze 486-488
py2app 488, 489
py2exe 488, 489
PyInstaller 482-486

Portable Operating System Interface
(POSIX) 176

positional-only parameters 84, 86
post-mortem debugging 67
precedence 114

[608]

process pools
using 251-253

production environment 33
productivity tools 59, 68
programming idiom 74
programming productivity tools

ack-grep 69
autojump 69
cloc 69
curl 69
GNU parallel 69
HTTPie 69
jq 69
yq 69

Prometheus
using 520-530

Prometheus, components
alert manager 520
metric exporters 520
Prometheus server 520

Prometheus deployments, components
dashboarding solution 521
service discovery catalog 521

properties 132-138
PSF mission statement text

reference link 8
pull architectures 519
push architectures 519
py2app 488, 490

reference link 488
py2exe 488, 490

reference link 488
Pycoder's Weekly

URL 11
pycrumbs

reference link 12
PyInstaller 482

reference link 482
Pympler

URL 561
PyPI 17
pyright 83
PySlackers Slack workspace

URL 10
pytest 381

tests, writing with 381-389
pytest plugins

reference link 464
pytest fixtures 392-402

local fixtures 394
plugin fixtures 394
shared fixtures 394

Python
active communities 8, 10
additional features 72, 73
awesome lists 11, 12
breakpoint() function 93, 94
code generation, notable examples 323
dealing with, threads 221, 222
development mode 94-96
__dir__() functions 97, 98
__getattr__() functions 97, 98
mailing lists 9
newsletters 11
packaging ecosystem 17
random module 100, 101
secrets module 100, 101
structural pattern matching 103-107
union types, with | operator 102
updating 5

Python 2 3, 4, 5
Python 3 2, 3
Python/C API 341-345
Python C extensions

benefits 333
binding conventions 348
building 330-332
calling conventions 346-348
code, integrating in different languages 334
conventions, binding conventions 346, 347
efficient custom datatypes, creating 335
exception handling 349-351
GIL, releasing 351, 352
loading 330-332
need for 332, 333
performance, improving in critical code

sections 333, 334
Python/C API 341-345
reference counting 353-355
third-party dynamic libraries, integrating 335
writing 336-340

Python code
security, in executable packages 490

Python communities 10

[609]

PySlackers Slack workspace 10
Python Discord server 10
/r/python subreddit 10

Python, concurrency
asynchronous programming 216
multiprocessing 216
multithreading 216

Python Discord server
URL 10

Python documentation
reference link 345

Python Enhancement Proposal (PEP)
documents 6, 8

purposes 7
Python extensibility

C++ 330
C language 330

Python extensions, limitations 362
additional complexity 363, 364
debugging 364

Python functions
passing, as C callbacks 369-372

pythonidae
reference link 12

Python logging 495, 497
common rules 509-511
configuration 505-509
practices 509
predefined log level 496
system components 497-501

Python operators
reference link 142

Python package
essential package metadata 442, 443
publishing 450-452
registering 450-452

Python package, anatomy 435-438
installing, with pip 17, 18
MANIFEST.in 440, 441
setup.cfg file 440
setup.py script 438, 439
trove classifiers 443-445

Python Packaging Authority (PyPA) 18, 449
Python packaging ecosystem 449
Python's MRO

reference link 117
Python Software Foundation (PSF) 8

PYTHONSTARTUP environment variable
setting up 61

Python, syntax updates 73
assignment expressions 79-82
dictionary merge operators 73-75
dictionary update operators 75
graphlib module 88-92
positional-only parameters 84-86
type-hinting generics 83, 84
zoneinfo module 87, 88

Python Weekly
URL 11

Python Wheels
reference link 449

Q
quality automation 410

classic linters 415-419
static type analysis 419, 420
style fixers 415-419
test coverage 411-415

R
race condition 219
race hazard 219
random module 100, 101
read-eval-print loop (REPL) 65
Real-Time Bidding (RTB) 334
Redis 203
Redis persistence

reference link 203
Redis Queue (RQ)

URL 584
reduce() function 159-162
reference counting 353-355
relational database management system

(RDBMS) 201
request-response 290
resource leaks 548
resource usage metrics 518
Responsive Web Design (RDW) 224
reStructuredText 437

reference link 437
ROT13 letter substitution cipher 276
runtime environment

isolating 19-22

[610]

S
sdist distributions 445, 447
secrets module 100, 101
semantic versioning 455
SemVer standard 455

for semantic versioning 455, 456
SemVer standard, numerical segments

MAJOR segment 455
MINOR segment 455
PATCH segment 455

Sentry
reference link 515

serialized 221
services

addressing, of Docker Compose
environment 48-50

session scope 394
setter 125
setup.py script 438, 439
shared fixtures 394
shebang 480
shells

incorporating, in programs 65, 66
incorporating, in scripts 65, 66

signal 286
signal-driven programming 286
single-dispatch functions 149, 151
singleton design pattern 208
site-packages directories 19
soft keyword 103
software library

distributing 434
packaging 434

Solid State Drives (SSDs) 549
source-compatible 331
source distributions 437
span 534
Sphinx 436

reference link 436
Stackless Python 255
standalone executables

creating 480
need for 481
popular tools 481, 482

standard commands 439
standard logging library

built-in logging handlers 499-505
statements 79
static type analysis 419, 420
statistical profiler 551
stolen references 354
strings

formatting, with formatted string
literals 98, 99

structlog package
reference link 510

structural error 185
structural pattern matching 103-107
style fixers 415-419
subject-based style 280-286
super-classes

accessing 112, 113
system components, Python logging

filters 497
formatters 497
handlers 497
loggers 497

system-level environment isolation 32-34
system-level isolation

versus application-level isolation 23

T
test coverage 411-415
Test-Driven Development (TDD)

principles 379-381
testing utilities 427

realistic data values, faking 427-429
time values, faking 429, 430

test parameterization 389-392
tests

writing, with pytest 381-389
threaded() function 217
thread errors

dealing with 238-241
thread pool

using 231-235
throttling 241-244
token bucket 242
topic-based style 280, 286-288
topics 286
tracing garbage collection 352
tracking pixels 197

[611]

transitive dependencies 31
Traveling Salesman Problem (TSP) 580
trove classifiers 443

reference link 445
Twelve-Factor App manifesto 466, 467

reference link 467
rules 467

Twisted framework 177
two-way queues

using 236, 238
type annotations 192
type-hinting generics 83, 84
typing module

built-in collection types 84

U
underscores

in numeric literals 100
undirected graph 88
union types

with | operator 102
unittest 381

reference link 381
unittest.mock module 405, 408-410
user site-packages directory 20

V
Vagrant 36

virtual development environments 56-58
Valgrind

tool 364
URL 560

variable watches 68
variadic functions 76
Vehicle Routing Problem (VRP) 580
versioning strategies

calendar versioning 455
semantic versioning 455

version numbers 453
version specifiers 453
view function 39
virtual development environments

with Vagrant 56-58
virtual environments

with Docker 36, 37
virtualization

versus containerization 34-36
Virtual Private Server (VPS) 34

W
walrus operator 80
watchmedo utility 55
web applications

packaging 465, 466
Twelve-Factor App manifesto 466, 467

Web Server Gateway Interface (WSGI) 225
web services 176

packaging 465, 466
Werkzeug

reference link 524
wheel distributions 447-449
widget 275
work delegation 225, 226

Y
yq

reference link 69

Z
ZeroMQ 292
zoneinfo module 73, 87, 88
zope.interface 177-186
Zope project 177

	Cover
	Copyright
	Contributors
	Table of Contents
	Preface
	Chapter 1: Current Status of Python
	Where are we now and where are we going?
	What to do with Python 2
	Keeping up to date
	PEP documents
	Active communities
	Other resources

	Summary

	Chapter 2: Modern Python Development Environments
	Technical requirements
	Python's packaging ecosystem
	Installing Python packages using pip

	Isolating the runtime environment
	Application-level isolation versus system-level isolation

	Application-level environment isolation
	Poetry as a dependency management system

	System-level environment isolation
	Containerization versus virtualization
	Virtual environments using Docker
	Writing your first Dockerfile
	Running containers
	Setting up complex environments
	Useful Docker and Docker Compose recipes for Python

	Virtual development environments using Vagrant

	Popular productivity tools
	Custom Python shells
	Using IPython
	Incorporating shells in your own scripts and programs
	Interactive debuggers
	Other productivity tools

	Summary

	Chapter 3: New Things in Python
	Technical requirements
	Recent language additions
	Dictionary merge and update operators
	Alternative – Dictionary unpacking
	Alternative – ChainMap from the collections module

	Assignment expressions
	Type-hinting generics
	Positional-only parameters
	zoneinfo module
	graphlib module

	Not that new, but still shiny
	breakpoint() function
	Development mode
	Module-level __getattr__() and __dir__() functions
	Formatting strings with f-strings
	Underscores in numeric literals
	secrets module

	What may come in the future?
	Union types with the | operator
	Structural pattern matching

	Summary

	Chapter 4: Python in Comparison with Other Languages
	Technical requirements
	Class model and object-oriented programming
	Accessing super-classes
	Multiple inheritance and Method Resolution Order
	Class instance initialization
	Attribute access patterns
	Descriptors
	Real-life example – lazily evaluated attributes

	Properties

	Dynamic polymorphism
	Operator overloading
	Dunder methods (language protocols)
	Comparison to C++

	Function and method overloading
	Single-dispatch functions

	Data classes
	Functional programming
	Lambda functions
	The map(), filter(), and reduce() functions
	Partial objects and partial functions
	Generators
	Generator expressions
	Decorators

	Enumerations
	Summary

	Chapter 5: Interfaces, Patterns, and Modularity
	Technical requirements
	Interfaces
	A bit of history: zope.interface
	Using function annotations and abstract base classes
	Using collections.abc

	Interfaces through type annotations

	Inversion of control and dependency injection
	Inversion of control in applications
	Using dependency injection frameworks

	Summary

	Chapter 6: Concurrency
	Technical requirements
	What is concurrency?
	Multithreading
	What is multithreading?
	How Python deals with threads
	When should we use multithreading?
	Application responsiveness
	Multiuser applications
	Work delegation and background processing

	An example of a multithreaded application
	Using one thread per item
	Using a thread pool
	Using two-way queues
	Dealing with errors in threads
	Throttling

	Multiprocessing
	The built-in multiprocessing module
	Using process pools
	Using multiprocessing.dummy as the multithreading interface

	Asynchronous programming
	Cooperative multitasking and asynchronous I/O
	Python async and await keywords
	A practical example of asynchronous programming
	Integrating non-asynchronous code with async using futures
	Executors and futures
	Using executors in an event loop

	Summary

	Chapter 7: Event-Driven Programming
	Technical requirements
	What exactly is event-driven programming?
	Event-driven != asynchronous
	Event-driven programming in GUIs
	Event-driven communication

	Various styles of event-driven programming
	Callback-based style
	Subject-based style
	Topic-based style

	Event-driven architectures
	Event and message queues

	Summary

	Chapter 8: Elements of Metaprogramming
	Technical requirements
	What is metaprogramming?
	Using decorators to modify function behavior before use
	One step deeper: class decorators

	Intercepting the class instance creation process
	Metaclasses
	The general syntax
	Metaclass usage
	Metaclass pitfalls
	Using the __init__subclass__() method as an alternative to metaclasses

	Code generation
	exec, eval, and compile
	The abstract syntax tree
	Import hooks
	Notable examples of code generation in Python
	Falcon's compiled router
	Hy

	Summary

	Chapter 9: Bridging Python with C and C++
	Technical requirements
	C and C++ as the core of Python extensibility
	Compiling and loading Python C extensions
	The need to use extensions
	Improving performance in critical code sections
	Integrating existing code written in different languages
	Integrating third-party dynamic libraries
	Creating efficient custom datatypes

	Writing extensions
	Pure C extensions
	A closer look at the Python/C API
	Calling and binding conventions
	Exception handling
	Releasing GIL
	Reference counting

	Writing extensions with Cython
	Cython as a source-to-source compiler
	Cython as a language

	Downsides of using extensions
	Additional complexity
	Harder debugging

	Interfacing with dynamic libraries without extensions
	The ctypes module
	Loading libraries
	Calling C functions using ctypes
	Passing Python functions as C callbacks

	CFFI

	Summary

	Chapter 10: Testing and Quality Automation
	Technical requirements
	The principles of test-driven development
	Writing tests with pytest
	Test parameterization
	pytest's fixtures
	Using fakes
	Mocks and the unittest.mock module

	Quality automation
	Test coverage
	Style fixers and code linters
	Static type analysis

	Mutation testing
	Useful testing utilities
	Faking realistic data values
	Faking time values

	Summary

	Chapter 11: Packaging and Distributing Python Code
	Technical requirements
	Packaging and distributing libraries
	The anatomy of a Python package
	setup.py
	setup.cfg
	MANIFEST.in
	Essential package metadata
	Trove classifiers

	Types of package distributions
	sdist distributions
	bdist and wheel distributions

	Registering and publishing packages
	Package versioning and dependency management
	The SemVer standard for semantic versioning
	CalVer for calendar versioning

	Installing your own packages
	Installing packages directly from sources
	Installing packages in editable mode

	Namespace packages
	Package scripts and entry points

	Packaging applications and services for the web
	The Twelve-Factor App manifesto
	Leveraging Docker
	Handling environment variables
	The role of environment variables in application frameworks

	Creating standalone executables
	When standalone executables are useful
	Popular tools
	PyInstaller
	cx_Freeze
	py2exe and py2app

	Security of Python code in executable packages

	Summary

	Chapter 12: Observing Application Behavior and Performance
	Technical requirements
	Capturing errors and logs
	Python logging essentials
	Logging system components
	Logging configuration

	Good logging practices
	Distributed logging
	Capturing errors for later review

	Instrumenting code with custom metrics
	Using Prometheus

	Distributed application tracing
	Distributed tracing with Jaeger

	Summary

	Chapter 13: Code Optimization
	Technical requirements
	Common culprits for bad performance
	Code complexity
	Cyclomatic complexity
	The big O notation

	Excessive resource allocation and leaks
	Excessive I/O and blocking operations

	Code profiling
	Profiling CPU usage
	Macro-profiling
	Micro-profiling

	Profiling memory usage
	Using the objgraph module
	C code memory leaks

	Reducing complexity by choosing appropriate data structures
	Searching in a list
	Using sets
	Using the collections module
	deque
	defaultdict
	namedtuple

	Leveraging architectural trade-offs
	Using heuristics and approximation algorithms
	Using task queues and delayed processing
	Using probabilistic data structures
	Caching
	Deterministic caching
	Non-deterministic caching

	Summary
	Why subscribe?

	Packt Page
	Other Books You May Enjoy
	Index

