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Preface

Python rocks!

From the earliest version in the late 1980s to the current 3.9 version, Python has
evolved with the same philosophy: providing a multi-paradigm programming
language with readability and productivity in mind.

Initially, people used to see Python as yet another scripting language. Many of them
didn't believe it could be used to build large and complex systems. But over the
years, and thanks to some pioneer companies, it became obvious that Python could
be used to build almost any kind of a software.

Although writing Python code is easy, making it readable, reusable, and easy to
maintain is challenging. You can achieve those qualities only through good software
artistry and technique, which you will build gradually by constantly learning and
gaining experience.

This book was written to express many years of professional experience in building
all kinds of applications with Python, from small system scripts done in a couple of
hours to very large applications written by dozens of developers over several years.

This book is divided into three parts:

1. Knowing your tools: Chapters 1 to 4 focus on basic elements of Python
programmer's toolbelt. From productivity tools, through modern
environments, to the newest syntax elements introduced in the latest Python
releases. It also offers a safe landing zone for programmers who have
experience with other programming languages and are just starting to learn
more advanced Python.

2. Building applications with Python: Chapters 5 to 9 are all about design
patterns, programming paradigms, and metaprogramming techniques. We
will try to build some small but useful programs and will be often taking
a deeper look into application architecture. We will also go a bit beyond
Python and see how we can integrate code written using other programming
languages.

[ix]
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3. Maintaining Python applications: Chapters 10 to 13 will be discussing all the
things that usually happen after the application "goes live". We will showcase
tools and techniques that help to keep applications easily maintainable and
show how to approach common problems with packaging, deployment,
monitoring, and performance optimization.

Who this book is for

The Python programming book is intended for expert programmers who want to
learn about Python's advanced-level concepts and latest features.

This book is written for Python developers who wish to go further in mastering
Python. And by developers, I mean mostly professional programmers who write
Python software for a living. This is because it focuses mostly on tools and practices
that are crucial for creating performant, reliable, and maintainable software in
Python.

However, this does not mean that hobbyists won't find anything interesting. This
book is great for anyone who is interested in learning advanced-level concepts with
Python. Anyone who has basic Python skills should be able to follow the content

of the book, although it might require some additional effort from less experienced
programmers. It should also be a good introduction to the newest releases of Python
for those who are still a bit behind and continue to use older versions of Python.

What this book covers

Chapter 1, Current Status of Python, showcases the current state of the Python
language and its community. We will see how Python is constantly changing and
why it is changing. We will learn what to do with old Python 2 code and how to be
constantly up to date with what is currently happening in the Python community.

Chapter 2, Modern Python Development Environments, describes modern ways

of setting up repeatable and consistent development environments for Python
programmers. We will learn differences between application-level and system-
level isolation. We will concentrate on two popular tools for environment isolation,
virtualenv-type environments and Docker containers, but will also review other
alternatives. At the end of the chapter, we will discuss common productivity tools
that are extremely useful during development.

Chapter 3, New Things in Python, showcases recent Python language additions. We
will review the most important Python syntax changes that happened in the last four
releases of Python. We will also take a look at exciting changes that are scheduled
for the next major Python release —Python 3.10.

[x]



Preface

Chapter 4, Python in Comparison with Other Languages, shows how Python compares
to other languages. We will learn what programming idioms are and how to
recognize them in code. We will take a deeper look into key elements of Python's
object-oriented programming model and how it is different from other object-
oriented programming languages but will also discuss other popular programming
language features like descriptors, decorators, and dataclasses. This chapter should
allow programmers with experience in other languages to safely land in the Python
ecosystem.

Chapter 5, Interfaces, Patterns, and Modularity, discusses elements of Python that allow
for implementing various reusable design patterns. If focuses on the concept of class
interfaces and how they can be implemented in Python. It also discusses inversion of
control and dependency injection —two extremely useful but not necessarily popular
programming techniques.

Chapter 6, Concurrency, explains how to implement concurrency in Python using
different approaches and libraries. It features three major concurrency models:
multithreading, multiprocessing and asynchronous programming. In this chapter we
will learn key differences between those models and how to use them effectively.

Chapter 7, Event-Driven Programming, describes what event-driven programming is
and how it relates to asynchronous programming and different concurrency models.
We will present various approaches to event-driven programming along with useful
libraries.

Chapter 8, Elements of Metaprogramming, presents an overview of common approaches
to metaprogramming available to Python programmers. We will learn about
common metaprogramming techniques like decorators, as well as metaclasses and
code generation patterns.

Chapter 9, Bridging Python with C and C++, explains how to integrate code written in
different languages in your Python application. We will learn when extensions in C
can be useful and how to create them.

Chapter 10, Testing and Quality Automation, is about providing automated testing and
quality processes. We will learn about a popular testing framework —Pytest —and
many useful testing techniques. We will also cover tools that can be used to assess
code quality metrics and improve code style in fully automated way.

Chapter 11, Packaging and Distributing Python Code, describes the current state of
Python packaging and best practices for creating packages that are to be distributed
as open source code in the Python Package Index (PyPI). We will also cover the
topics of packaging applications for web development and creating standalone
Python executables for desktop applications.
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Chapter 12, Observing Application Behavior and Performance, discusses the topic of
application observability. We will learn about Python logging systems, how to
monitor application metrics and perform distributed transaction tracing. We will
also learn how to scale simple observability practices to large-scale distributed
systems.

Chapter 13, Code Optimization, discusses the basic rules of optimization that

every developer should be aware of. We will learn how to identify application
performance bottlenecks and how to use common profiling tools. We will also learn
common optimization techniques and strategies that can be easily applied in many
situations once you know where the bottleneck is.

To get the most out of this book

This book is written for developers who work under any operating system for which
Python 3 is available.

This is not a book for beginners, so I assume you have Python installed in your
environment or know how to install it. Anyway, this book takes into account the fact
that not everyone needs to be fully aware of the latest Python features or officially
recommended tools. This is why Chapter 2, Modern Python Development Environments
provides an overview of recommended techniques and tools (such as virtual
environments and pip) for setting up development environments.

Download the example code files

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Expert-Python-Programming-Fourth-Edition. In case there's an
update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams
used in this book. You can download it here: https://static.packt-cdn.com/
downloads/9781801071109_ColorImages.pdf.
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Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names,
filenames, file extensions, pathnames, dummy URLs, and user input. Here is an
example: "Any attempt to run the code that has such issues will immediately cause
the interpreter to fail, raising a SyntaxError exception."

A block of code is set as follows:

print("hello world")

Any command-line input or output is written as follows:

$ python3 script.py

Some code examples will be representing input of shells. You can recognize them by
specific prompt characters:

* >>> for interactive Python shell
* ¢ for Bash shell (macOS and Linux)
* > for CMD or PowerShell (Windows)
Some code or command-line examples will require providing your own name or

values in provided placeholders. Placeholders will be surrounded with <> characters
as in following example:

$ python <my-module-name>

\/(p’, Warnings or important notes appear like this.

\ 7/
‘,@\' Tips and tricks appear like this.
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Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the
book title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful
if you would report this to us. Please visit www.packt.com/submit-errata, selecting
your book, clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the
Internet, we would be grateful if you would provide us with the location address or
website name. Please contact us at copyright@packt.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book,
please visit authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a
review on the site that you purchased it from? Potential readers can then see and
use your unbiased opinion to make purchase decisions, we at Packt can understand
what you think about our products, and our authors can see your feedback on their
book. Thank you!

For more information about Packt, please visit packt. com.
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Current Status of Python

Python is amazing. It is amazing because it has managed to stay relevant and keep
growing for so many years.

For a very long time, one of the most important virtues of Python was
interoperability. Thanks to that feature it didn't matter what operating system

you or your customers were using. If the Python interpreter was available for a
given operating system, your software written in Python would work there. And,
most importantly, your software would always work the same way regardless

of that operating system. However, this is now a common trait. Many modern
programming languages provide similar interoperability capabilities. Also, with
the advent of cloud computing, web-based applications, and reliable virtualization
software, it isn't that important to have a programming language that works in
many operating systems.

What seems to be increasingly more important for programmers nowadays

is productivity. With a constant search for innovation, it is often important to

build something that you can test in the field with real users and then iterate
quickly from that point until you build a really valuable product. And Python
allows programmers to iterate really fast. The Official Python Package Index is a
tremendous library of software libraries and frameworks that can be easily reused
in your software. It greatly reduces the amount of time and effort required to get
your job done. This vast availability of community libraries together with clear and
concise syntax that favors readability greatly limits the time and effort that has to be
spent on creating and maintaining the software. That makes Python really shine in
the area of programming productivity.

[11]
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Python stayed relevant for so long because it was constantly evolving. And it still
keeps evolving. That's why in this chapter we will take a brief look at the current
status of Python and learn how to stay up to date with changes happening in the
Python ecosystem and community.

In this chapter, we will cover the following topics:

*  Where are we now and where are we going?
*  What to do with Python 2
* Keeping up to date

Let's start by considering the history and development of Python, and where we're
currently at.

Where are we now and where are we
going?

Python isn't a young language. Its history starts somewhere in the late 1980s and
the official 1.0 release happened in year 1994. We could discuss the whole timeline

of major Python releases mentioned here, but we really only need to be concerned
about a few dates:

*  October 16, 2000: official release of Python 2.0
*  December 3, 2008: official release of Python 3.0
* November 9, 2011: announcement of Python 2.8 release un-schedule

* January 1, 2020: official sunsetting of Python 2

So, at the time of writing, Python 3 is almost half as old as Python itself. It has also
been active for longer than Python 2 was when it comes to active development of
new language features.

Although Python 3 has been around for quite some time, its adoption was so slow
that the initial end of life for Python 2 was postponed by 5 years. It was mostly
due to a lot of backward compatibility issues that didn't always allow an easy and
straightforward transition. A big part of Python's greatness comes from the vast
number of freely available libraries. So, it was even harder to make the Python 3
transition if your software critically relied on a third-party Python package that
wasn't compatible with Python 3 yet.

[2]
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Fortunately, Python 2 is finally behind us and the Python community can finally
breathe a sigh of relief. Many developers of open-source Python libraries stopped
providing compatibility with Python 2 already a long time ago. Also, the official
sunsetting of Python 2 provided an incentive to strategically prioritize transitions to
Python 3 in corporate environments, where there is usually limited desire to do so.
That incentive can be attributed mainly to the fact that there is absolutely no chance
of security patches for Python 2 being delivered anymore.

What to do with Python 2

We know that Python 2 is no longer officially supported by language developers.
Due to the lack of security patches, it should be considered unsafe. But is it dead yet?

Probably not. Even relatively popular open-source libraries can lose the interest

of their authors and contributors over time. It also happens that some better
alternatives appear, and there's simply no point in developing the original library
anymore. Such libraries are often left unmaintained, so no one could update them for
compatibility with Python 3.

One of the important reasons why Python 3 couldn't take off for a long time was the
sluggish release processes of many Linux distributions. Distribution maintainers
often aren't inclined toward the fast adoption of new language versions, especially if
these versions break backward compatibility and require patches of other software.
Many Python programmers are Linux users, and if they don't have access to the
latest version of the language through the system package repository they are less
likely to upgrade it on their own.

But the place where Python 2 will definitely linger for a few more years is

corporate environments. When money is at stake, it is usually hard to convince the
stakeholders that something that's already been done needs to be revisited just for
the sake of being up to date with upstream changes, especially if the software works.

Python 2 code probably won't be that common for the core components of actively
developed software, but it can still be found quite often in utility scripts, internal
tools, or services that haven't seen active development for a long time.

If you're in a situation where you still need to maintain bits of software written in
Python 2 you would be better off migrating to Python 3 soon. This often can't be
done overnight, and sometimes you'll have to convince others first before you're
ready to proceed.

[31]



Current Status of Python

If you're in such a situation, consider the following strategy:

1.

Identify what you need to migrate and why: Depending on the situation,
you'll be dealing with various pieces of code that have different uses. Not
everything may need migration after all. If code isn't actually used by
anyone, there is no value in keeping it updated.

Identify what is holding you back: Sometimes you'll be working with
code that has dependencies that cannot be easily migrated. This will make
the process a bit harder, so you'll have to know this in advance in order to
create a good migration plan.

Convince the stakeholders: If you're developing an open-source library,
you'll have to convince fellow contributors that will help you make this
migration; if you're working at a software company, you'll have to convince
the stakeholders who are paying for the job to be done that this is more
important than, for instance, working on a new feature.

Usually the hardest thing to do is to get buy-in from stakeholders, especially if
you're writing code professionally and need to find a way to squeeze such a project
into the day-to-day development of new features. You'll need to be well prepared
before raising such an issue. That's why the first two steps are essential. They allow
you to estimate the amount of work required to make the change and construct

a convincing reason for doing so. After all, the best way to convince someone is

by presenting the list of benefits of doing a migration. The following are common
positive reasons for doing a migration:

Ability to use newer and better libraries: After the official sunsetting of
Python 2 there is a very low chance that new (and possibly better) libraries
will be compatible with Python 2.

Reduced cost of ownership: If the team is using the latest version of Python
in other projects/components, it will be cheaper to converge multiple
projects to a single version as this will reduce the overall complexity.

Simpler maintenance and operations: Different runtime environments and
operating systems will gradually lose default built-in support for Python 2.
Using a newer version of Python will limit the operational costs required to
deploy software.

Easier new hire onboarding: Sticking to a single version of Python makes
it easier to onboard new team members as it will be easier for them to work
with the whole codebase from the very beginning

[4]
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Another tool for convincing stakeholders is explaining the risks related to not
migrating to a newer version of Python:

* Big security risk: After the official end of life, there's no guarantee of any
official security fixes. This risk is, of course, only speculative until real
vulnerabilities are discovered. Still, by using Python 2 you're already limiting
your ability to accept updates to third-party libraries and many open-source
projects that dropped support for Python 2 a few years ago.

* High security-related cost: Although it is possible to fork open-source code
and do security fixes on your own, the cost of doing this continuously is
usually much bigger than the overall cost of migrating to a newer version of
the language.

* Troubles in hiring new people: This is problematic regardless of target
programmer seniority. Younger developers may not be as familiar with
Python 2 as they are with Python 3. This will make their onboarding harder
and also increase the risk of making rookie mistakes with potentially
disastrous outcomes. Senior engineers on the other hand may not want to
work in an environment that relies on outdated technology.

Regardless of your communication strategy, you'll have to create a reasonable
tactical plan that carefully balances the promise of positive outcomes, risks, and the
ability to reach team goals at a sustainable pace. For instance, investing in reducing
future maintenance costs usually pays for itself only after a longer period of time.
That's why it makes sense to also spread such investment over time. Known and
exploitable security vulnerabilities, on the other hand, should always be prioritized.

Keeping up to date

Technology evolves constantly. People are constantly looking for tools that will
allow them to solve their problems more easily than before. Every few months,
either a completely new language pops up almost out of nowhere, or one of the
well-established languages introduces a completely new syntax feature. This also
happens to Python. We will briefly consider a few of the most important recent
additions to the Python language in Chapter 3, New Things in Python.

New languages or language features drive the creation of novel libraries and
frameworks. These in turn open the way for new programming paradigms and
new design patterns. The success of one such pattern or paradigm in one language
ecosystem often encourages programmers to adopt them in other languages. That's
how new ideas spread from language to language.
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We see that happening to Python too. We will be able to see how seemingly different
programming languages share similar features or concepts in Chapter 4, Python in
Comparison with Other Languages.

This process of language evolution is constant, inevitable, and seems to be only
speeding up. Starting from Python 3.9 (released October 5, 2020), new major releases
of Python will be happening annually. These releases more often than not lead

to explosions of new libraries and frameworks that are trying to test and explore
new tools. It's great for the Python community because it gives it constant fuel to
innovate. But it can be overwhelming for anyone that wants to keep an eye on what's
happening in Python. And being up to date is extremely important for every Python
professional.

In the following few sections, we will discuss a few ways in which you can source
information on what is happening in Python. It will allow you to better anticipate
changes happening to the language and the community around it. This will keep you
up to date with the latest best practices, and new tools that are worth investing in.

PEP documents

The Python community has a well-established way of dealing with changes. While
speculative Python language ideas are mostly discussed on a specific mailing

list (python-ideas@python.org), nothing major ever gets changed without the
existence of a new document, called a Python Enhancement Proposal (PEP).

\/‘/ You can subscribe to python-ideas@python.org and other

mailing lists at https://mail.python.org/mailman3/lists/.

A PEP is a formalized document that describes, in detail, the proposal of change to
be made in Python. It is also the starting point for the community discussion. A few
of the topics covered in this chapter were in fact already extensively described in
their dedicated PEP documents:

* PEP 373 —Python 2.7 Release Schedule
* PEP 404 — Python 2.8 Un-release Schedule
* PEP 602 — Annual Release Cycle for Python
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The whole purpose, format, and workflow of these documents is also standardized
in the form of a standalone PEP —the PEP 1 document.

PEP documentation is very important for Python, and, depending on the topic, it
serves different purposes:

* Informing: They summarize the information needed by core Python
developers, and notify about Python release schedules

* Standardizing: They provide code style, documentation, or other guidelines

* Designing: They describe the proposed features

A list of all proposed PEPs is available in a living (by which we mean continuously
updated) PEP 0 document. It is a great source of information for those who are
wondering what direction Python is heading in but do not have time to track every
discussion on Python mailing lists. It shows which ideas have been accepted, which
ideas have been implemented, and also which ideas are still under consideration.

Online URLSs for PEP documents take the following form:
http://www.python.org/dev/peps/pep-XXXX

\/V XXXX is a 4-digit PEP number with leading zeros. It should also be

easy to find them through web search engines using the Python
PEP XXX search term.

The PEP 0 document is available at https://www.python.org/
dev/peps/.

The index of all officially discussed proposals serves an additional purpose. Very
often, people ask questions like the following:

*  Why does feature A work that way?
*  Why does Python not have feature B?

In most such cases, the answer is already available in the specific PEP where the
feature was discussed. Instead of having the same conversation about adding some
language feature over and over again, people can be redirected to a specific PEP.
And there are a lot of PEPs describing Python language features that have been
proposed but not accepted.
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When it comes to being up to date, the most important section of the PEP index is
definitely open PEPs, which describes ideas that are still under active consideration.
For instance, the following are selected interesting PEPs that were still open at the
time of writing:

* PEP 603 — Adding a frozenmap type to collections

* PEP 634 —Structural Pattern Matching: Specification

* PEP 638 —Syntactic Macros

* PEP 640 —Unused variable syntax
These proposals vary from relatively small extensions of the existing standard library
(such as PEP 603) to completely new and complex syntax features (such as PEP 638).

If you wonder what the Python community is considering including in future Python
releases, then open PEPs are the best source of such information.

Active communities

The non-profit organization behind Python is Python Software Foundation (PSF).
It holds intellectual property rights for Python and manages its licensing. A brief
excerpt from its mission statement is as follows:

The mission of the Python Software Foundation is to promote, protect, and advance
the Python programming language, and to support and facilitate the growth of a
diverse and international community of Python programmers.

python.org/psf/mission/.

\/V You can find the full PSF mission statement text at https://www.

Support for the community of Python programmers is important to the PSF mission
because it is, after all, the community that drives the development of Python.

The community does that by extending the language transparently and openly

(as explained in the PEP documents section), but also through expanding and
maintaining a rich ecosystem of third-party packages and frameworks. So, one of the
best ways to know what's happening in Python is to get in touch with its community.

Like any other programming language, there are a lot of independent online
communities dedicated to Python. They are usually focused on specific frameworks
or software development areas, like web development, data science, machine
learning, and so on.
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One could assume that there is at least a single place online where all important
discussions about the core of the language and its interpreter happen. Unfortunately,
it's not that simple.

Due to many reasons, some of which are historic, the landscape of official Python
mailing lists and discussion boards can be very confusing. There are numerous
official and semi-official mailing lists and discussion boards where Python
developers hang out. It is especially confusing when it comes to mailing lists because
official mailing lists are spread over two different mailing list managers and thus
have two separate sets of list archives. Those archives are:

e Mailman 2: This is an older and smaller archive available at https://mail.
python.org/mailman/listinfo. Historically all python.org mailing list
archives could be accessed through the Mailman 2 archive but most of them
have been migrated to the Mailman 3 archive. Anyway, there are still some
mailing lists with active discussions that are managed through Mailman 2.

* Mailman 3: This is a younger archive available at https://mail.python.org/
archives. It is currently a primary archive of python.org mailing lists and is
the home for more active mailing lists. It has a more modern and convenient
interface, but it doesn't include mailing lists that have not been migrated
from Mailman 2 yet.

When it comes to actual mailing lists, there's plenty of them, but sadly the majority
of them aren't active anymore. Some mailing lists are dedicated to specific projects
(like scikit-image@python.org) or focus on specific areas of interest of their
members (like code-quality@python.org). Besides lists with very specific themes,
there are few general mailing lists that should be very interesting for every Python
programmer. These are:

* python-ideas@python.org: This is a staple when it comes to Python
mailing lists. It is a place for discussing a wide variety of ideas regarding
Python. Most PEPs start as a speculative idea discussion on this mailing list.
It is a great place for discussing potential "what ifs" and finding out what
features people would like to see in the near future.

* python-dev@python.org: This is a mailing list specifically for the purpose
of core Python development (mainly CPython interpreter). It is also a
place where first drafts of new PEPs are discussed before being officially
announced through other channels. It isn't a place where you should be
asking for general Python help, but it is an essential resource if you would
like to try your hand at fixing known bugs in the CPython interpreter or the
Python standard library.
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* python-announce-Tist@ython.org: This is a mailing list for various
announcements. You can find announcements of conferences and meetups
here, as well as notifications about new releases of your favorite packages
and frameworks or new PEPs. It is also great for discovering new and
exciting projects.

Besides classic mailing lists, there is an official internet forum on the Discourse
platform that is available at https://discuss.python.org/. It is a relatively new
addition to the Python official discussion landscape and its purpose overlaps with
many of the pre-existing mailing lists as it has dedicated categories for discussing
new ideas, PEPs, and topics of core Python development. It has a lower entry barrier
for those unfamiliar with the concept of mailing lists, and a much more modern user
experience.

Unfortunately, not every new discussion happens on discuss.python.org, so if you
want to know about everything that happens at the heart of Python development
you will have to keep track of discussion both on the forum and mailing lists.
Hopefully, these will eventually converge in a single place.

Besides the official message boards and mailing lists, there are a couple of open
Python communities based on popular discussion and messaging platforms. The
most notable ones are:

* PySlackers Slack workspace (pyslackers.com): A large community of
Python enthusiasts using the Slack messaging platform to discuss anything
Python-related

* Python Discord server (pythondiscord. com): Another open Python
community but using Discord as their messaging platform

* /r/python subreddit (www.reddit.com/r/Python/): A single subreddit on the
Reddit platform dedicated to Python

These three communities are open in the sense that you can freely join them as long
as you are a user of their underlying platforms (which are, of course, free). Whatever
you choose will probably be dictated by your preference for the specific messaging
or discussion platform. The chances are high that you or one of your friends is
already using one of these platforms.

The unquestionable advantage of such open communities is that they gather a very
large number of members, and you can almost always find someone online that you
can talk to. This provides the opportunity for ad hoc and loose discussions about
various Python-related topics and allows you to seek quick help in case of simple
programming problems.
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The downside is that it is impossible to keep track of every discussion happening
there. Fortunately, these communities often create systems of separate subchannels
or tags that you can subscribe to if you want to be notified about the content of your
specific interest. Also, these communities aren't officially endorsed and curated by
the PSE. As a result, information found on Reddit or other online communities may
sometimes be biased or inaccurate.

Other resources

Reading all the new PEPs, following mailing lists, and joining communities are

the best ways to know what is happening at the moment. Unfortunately, doing
this consistently requires a lot of time and effort as you will have to filter through
huge amounts of information. Also, sources like mailing lists, message boards, and
messaging platforms can be full of emotions because discussion is essentially a
human interaction. And surprisingly, some tech discussions on contentious topics
can be so heated that they are almost indistinguishable from social network drama.

If you are really busy or quickly get overloaded with social interactions between
online strangers, there is another way. Instead of filtering online information all
by yourself, you can turn to curated content like blogs, newsletters, and so-called
"awesome lists."

Newsletters are especially good if you want to be up to date. These are some
interesting newsletters that are worth subscribing to:

* Python Weekly (http://www.pythonweekly.com/) is a popular newsletter
that delivers to its subscribers dozens of new, interesting Python packages
and resources every week

* PyCoder's Weekly (https://pycoders.com) is another popular weekly
newsletter with a digest of new packages and interesting articles

These newsletters will keep you informed about the most important Python
announcements. They will also help you discover new blogs or especially interesting
discussions from other discussion platforms, like Reddit or Hacker News. Keep

in mind that the content of many general Python newsletters often overlaps, so
probably there is no need to subscribe to all of them.

A completely different way to source information is via awesome lists. These are
curated lists of links to valuable or important resources on specific topics maintained
usually as Git repositories on GitHub. These lists are often very long and split into
several categories.
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These are examples of popular Python-related awesome lists curated by various
GitHub users:

* awesome-python by vinta (https://github.com/vinta/awesome-python):
This contains numerous references to interesting projects (mostly hosted
on GitHub) and standard library modules divided into over 80 thematic
categories. Categories range from basic programming concepts —like
caching, authentication, and debugging — to whole engineering areas where
Python is often used, like web development, data science, robotics, and
penetration testing. The list of projects is supplemented with a collection of
links to newsletters, podcasts, books, and tutorials.

* pycrumbs by kirang89 (https://github.com/kirang89/pycrumbs): This is
focused on interesting and valuable articles. Articles are divided into over
100 categories dedicated to specific Python features, general programming
techniques, and self-development topics.

* pythonidae by svaksha (https://github.com/svaksha/pythonidae): This
is focused on specific fields of science and technology where Python is
frequently used, like mathematics, biology, chemistry, web development,
physics, image processing, and many more. It has a tree-like structure. The
main page contains a list of over 20 main category pages. These categories
contain more granular subcategories listing useful libraries and resources.

Awesome lists usually grow over time to enormous sizes. This means they are
not a good resource for keeping yourself constantly updated. This is because
they are simply snapshots of what the curators considered awesome at the time.
Nevertheless, if you need to jump into a completely new area, let's say artificial
intelligence, they serve as a good starting point for further research.

Summary

In this chapter, we've discussed the current status of Python and the process of
change that is visible throughout the history of that language. We've learned why
Python is changing and why it is important to follow that change.

Staying relevant is one of the biggest and most stressful challenges that professional
programmers face regardless of the programming language they choose. Due to over
30 years of Python history and the ever-growing Python community, it isn't always
clear how to efficiently stay up to date with the changes in the Python ecosystem.
That's why we've looked into all the places where you can follow important
discussions about Python's future.
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What also changes together with the language are development tools that aim to
ease and improve the software development processes. In the next chapter, we
will continue with the topic of change and take a look at modern development
environments. We will learn how to create repeatable and consistent runtime
environments both for production and development use. We will also get familiar
with various productivity tools provided by the Python community.

[13]
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A deep understanding of the programming language of choice is the most important
part of being a programming expert. Still, it is really hard to develop good software
efficiently without knowing the best tools and practices that are common within the
given language community. Python has no single feature that cannot be found in some
other language. So, when comparing the syntax, expressiveness, or performance, there
will always be a solution that is better in one or more fields. But the area in which
Python really stands out from the crowd is the whole ecosystem built around the
language. The Python community has spent many years polishing standard practices
and libraries that help to create high-quality software in a shorter time.

Writing new software is always an expensive and time-consuming process. However,
being able to reuse existing code instead of reinventing the wheel greatly reduces
development times and costs. For some companies, it is the only reason why

their projects are economically feasible. That's why the most important part of the
ecosystem is a huge collection of reusable packages that solve a multitude of problems.
A tremendous number of these packages are available as open-source through the
Python Package Index (PyPI).

Because of the importance of Python's open-source community, Python developers
put a lot of effort into creating tools and standards to work with Python packages that
have been created by others —starting from virtual isolated environments, improved
interactive shells, and debuggers, to utilities that help you to discover, search, and
analyze the huge collection of packages that are available on PyPL
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In this chapter, we will cover the following topics:

* Opverview of the Python packaging ecosystem
* Isolating the runtime environment

* Using Python's venv

* System-level environment isolation

* Popular productivity tools

Before we get into some specific elements of the Python ecosystem, let's begin by
considering the technical requirements.

Technical requirements

You can install the free system virtualization tools that are mentioned in this chapter
from the following sites:

* Vagrant: https://www.vagrantup.com
* Docker: https://www.docker.com
* VirtualBox: https://www.virtualbox.org/

The following are the Python packages that are mentioned in this chapter that you
can download from PyPI:

® poetry

e flask

* wait-for-it
* watchdog

* ipython

e ipdb

Information on how to install packages is included in the Installing Python packages
using pip section.

The code files for this chapter can be found at https://github.com/PacktPublishing/
Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%202.
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Python's packaging ecosystem

The core of Python's packaging ecosystem is the Python Packaging Index. PyPI is
a vast public repository of (mostly) free-to-use Python projects that at the time of
writing hosts almost three and a half million distributions of more than 250,000
packages. That's not the biggest number among all package repositories (npm
surpassed a million packages in 2019) but it still places Python among the leaders
of packaging ecosystems.

Such a large ecosystem of packages doesn't come without a price. Modern
applications are often built using multiple packages from PyPI that often have their
own dependencies. Those dependencies can also have their own dependencies.

In large applications, such dependency chains can go on and on. Add the fact that
some packages may require specific versions of other packages and you may quickly
run into dependency hell —a situation where it is almost impossible to resolve
conflicting version requirements manually.

That's why it is crucial to know the tools that can help you work with packages
available on PyPIL.

Installing Python packages using pip

Nowadays, a lot of operating systems come with Python as a standard component.
Most Linux distributions and UNIX-like systems (such as FreeBSD, NetBSD,
OpenBSD, and macOS) come with Python either installed by default or available
through system package repositories. Many of them even use it as part of some core
components —Python powers the installers of Ubuntu (Ubiquity), Red Hat Linux
(Anaconda), and Fedora (Anaconda again). Unfortunately, the Python version
preinstalled with operating systems is often older than the latest Python release.

Due to Python's popularity as an operating system component, a lot of packages
from PyPI are also available as native packages managed by the system's package
management tools, such as apt-get (Debian, Ubuntu), rpm (Red Hat Linux),

or emerge (Gentoo). It should be remembered, however, that the list of available
libraries is often very limited, and they are mostly outdated compared to PyPI.
Sometimes they may be evenly distributed with platform-specific patches to make
sure that they will properly support other system components.
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Due to these facts, when building your own applications, you should always

rely on package distributions available on PyPl. The Python Packaging

Authority (PyPA)—a group of maintainers of standard Python packaging tools —
recommends pip for installing packages. This command-line tool allows you

to install packages directly from PyPI. Although it is an independent project,
starting from versions 2.7.9 and 3.4 of CPython, every Python release comes with
an ensurepip module. This simple utility module ensures pip installation in your
environment, regardless of whether release maintainers decided to bundle pip. The
pip installation can be bootstrapped using the ensurepip module as in the following
example:

$ python3 -m ensurepip

Looking in links: /var/folders/t6/n6lw_s3j4nsd8ghslljhgd4w0e00gn/T/
tmpouvorguo

Requirement already satisfied: setuptools in ./.venv/lib/python3.9/
site-packages (49.2.1)

Processing /private/var/folders/t6/n6lw_s3j4nsd8qhslljhgd4wee00gn/T/
tmpouvorgu@/pip-20.2.3-py2.py3-none-any.whl

Installing collected packages: pip

Successfully installed pip-20.2.3

When you have pip available, installing a new package is as simple as this:

$ pip install <package-name>

So, if you want to install a package named django, you simply run:

$ pip install django

Among other features, pip allows specific versions of packages to be installed (using
pip install <package-name>==<version>) or upgraded to the latest version available
(using pip install --upgrade <package-name>).

pip is not just a package installer. Besides the install command, it offers additional
commands that allow you to inspect packages, search through PyP]I, or build your
own package distributions. The list of all available commands can be obtained by pip
--help as in the following command:

$ pip --help
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Usage:
pip <command> [options]

Commands:
install
download
uninstall
freeze

format.
list
show

packages.
check

And it will produce the following output:

Install packages.

Download packages.

Uninstall packages.

Output installed packages in requirements

List installed packages.
Show information about installed

Verify installed packages have compatible

dependencies.
config Manage local and global configuration.
search Search PyPI for packages.
cache Inspect and manage pip's wheel cache.
wheel Build wheels from your requirements.
hash Compute hashes of package archives.

completion A helper command used for command
completion.

debug Show information useful for debugging.
help Show help for commands.

(...)

The most up-to-date information on how to install pip for older Python versions is
available on the project's documentation page at https://pip.pypa.io/en/stable/
installing/

Isolating the runtime environment

When you use pip to install a new package from PyP], it will be installed into

one of the available site-packages directories. The exact location of site-packages
directories is specific to the operating system. You can inspect paths where Python
will be searching for modules and packages by using the site module as a command
as follows:

$ python3 -m site
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The following is an example output of running python3 -m site on macOS:

sys.path = [
'/Users/swistakm',
'/Library/Frameworks/Python.framework/Versions/3.9/1ib/python39.

zip’',
'/Library/Frameworks/Python.framework/Versions/3.9/1ib/python3.9",
'/Library/Frameworks/Python.framework/Versions/3.9/1ib/python3.9/

lib-dynload"’,
'/Users/swistakm/Library/Python/3.9/1ib/python/site-packages’,
'/Library/Frameworks/Python.framework/Versions/3.9/1ib/python3.9/

site-packages"',

1

USER_BASE: '/Users/swistakm/Library/Python/3.9' (exists)

USER_SITE: '/Users/swistakm/Library/Python/3.9/1ib/python/site-

packages' (exists)

ENABLE_USER_SITE: True

The sys.path variable in the preceding output is a list of module search locations.
These are locations that Python will attempt to load modules from. The first entry is
always the current working directory (in this case, /users/swistakm) and the last is
the global site-packages directory, often referred to as the dist-packages directory.

The USER_SITE in the preceding output describes the location of the user site-
packages directory, which is always specific to the user that is currently invoking
the Python interpreter. Packages installed in a local site-packages directory will take
precedence over packages installed in the global site-packages directory.

An alternative way to obtain the site-packages is by invoking sys.
getsitepackages(). The following is an example of using that function in an
interactive shell:

>>> import site
>>> site.getsitepackages()

['/Library/Frameworks/Python.framework/Versions/3.9/1ib/python3.9/site-
packages']

You can also obtain user site-packages directories by invoking the
sys.getusersitepackages() function like so:

>>> import site

>>> site.getusersitepackages()
/Users/swistakm/Library/Python/3.9/1ib/python/site-packages
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When running pip install, packages will be installed in either the user or the global
site-packages directory depending on several conditions evaluated in the following
order:

user site-packages if the --user switch is specified

global site-packages if the global site-packages directory is writable to the
user invoking pip

3. wuser site-packages otherwise

The preceding conditions simply mean that without the --user switch, pip will
always attempt to install packages to a global site-packages directory and only fall
back to user site-packages if that is not possible. On most operating systems where
Python is available by default (many Linux distributions, macOS), the global site-
packages directory of the system's Python distribution is protected from writes from
non-privileged users. This means that in order to install a package in the global
site-packages directory using a system's Python distributions, you will have to use a
command that grants you superuser privileges, like sudo. On UNIX-like and Linux
systems, such superuser invocation of pip will be as follows:

$ sudo -H pip install <package-name>

Superuser privileges for installing system-wide Python packages
are not required on Windows since it does not provide the Python
‘ p, interpreter by default. Also, for some other operating systems
\/ (like macOS) if you install Python from the installer available on
the python.org website, it will be installed in such a way that the
global site-packages directory will be writable to normal users.

Although installing packages directly from PyPI into the global site-packages
directory is possible and in certain environments will be happening by default, it

is usually not recommended and should be avoided. Bear in mind that pip will
only install a single version of a package in the site-packages directory. If an older
version is already available, the new installation will overwrite it. This may be
problematic, especially if you are planning to build different applications with
Python. Recommending not to install anything in the global site-packages directory
may sound confusing because this is the semi-default behavior of pip, but there are
some serious reasons for that.

As we mentioned earlier, Python is often an important part of many packages that
are available through operating system package repositories and may power a lot of
important services. System distribution maintainers put in a lot of effort to select the
correct versions of packages to match various package dependencies.
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Very often, Python packages that are available from a system's package repositories
(like apt, yum, or rpm) contain custom patches or are purposely kept outdated to
ensure compatibility with some other system components. Forcing an update of such
a package, using pip, to a version that breaks some backward compatibility might
cause bugs in some crucial system service.

Last but not least, if you're working on multiple projects in parallel, you'll notice
that maintaining a single list of package versions that works for all of your projects
is practically impossible. Packages evolve fast and not every change is backward
compatible. You will eventually run into a situation where one of your new projects
desperately needs the latest version of some library, but some other project cannot
use it because there is some backward-incompatible change. If you install a package
into global site-packages you will be able to use only one version of that package.

Fortunately, there is an easy solution to this problem: environment isolation.
There are various tools that allow the isolation of the Python runtime environment
at different levels of system abstraction. The main idea is to isolate project
dependencies from packages that are required by different projects and/or system
services. The benefits of this approach are as follows:

* It solves the project X depends on package 1.x but project Y needs package
4 .x dilemma. The developer can work on multiple projects with different
dependencies that may even collide without the risk of affecting each other.

* The project is no longer constrained by versions of packages that are
provided in the developer's system distribution repositories (like apt, yum,
rpm, and so on).

* There is no risk of breaking other system services that depend on certain
package versions, because new package versions are only available inside
such an environment.

* Alist of packages that are project dependencies can be easily locked. Locking
usually captures exact versions of all packages within all dependency chains
so it is very easy to reproduce such an environment on another computer.

If you're working on multiple projects in parallel, you'll quickly find that it is
impossible to maintain their dependencies without some kind of isolation.

Let's discuss the difference between application-level isolation and system-level
isolation in the next section.
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Application-level isolation versus system-
level isolation

The easiest and most lightweight approach to isolation is to use application-level
isolation through virtual environments. Python has a built-in venv module that
greatly simplifies the usage and creation of such virtual environments.

Virtual environments focus on isolating the Python interpreter and the packages
available within it. Such environments are very easy to set up but aren't portable,
mostly because they rely on absolute system paths. This means that they cannot be
easily copied between computers and operating systems without breaking things.
They cannot even be moved between directories on the same filesystem. Still, they
are robust enough to ensure proper isolation during the development of small
projects and packages. Thanks to built-in support within Python distributions, they
can also be easily replicated by your peers.

Virtual environments are usually sufficient for writing focused libraries that are
independent of the operating system or projects of low complexity that don't
have too many external dependencies. Also, if you write software that is to be run
only on your own computer, virtual environments should be enough to provide
sufficient isolation and reproducibility.

Unfortunately, in some cases, this may not be enough to ensure enough consistency
and reproducibility. Despite the fact that software written in Python is usually
considered very portable, not every package will behave the same on every
operating system. This is especially true for packages that rely on third-party shared
libraries (DLL on Windows, .so on Linux, .dylib on macOS) or make heavy use of
compiled Python extensions written in either C or C++, but can also happen for pure
Python libraries that use APIs that are specific to a given operating system.

In such cases, system-level isolation is a good addition to the workflow. This kind
of approach usually tries to replicate and isolate complete operating systems with
all of their libraries and crucial system components, either with classical operating
system virtualization tools (for example, VMware, Parallels, and VirtualBox) or
container systems (for example, Docker and Rocket). Some of the available solutions
that provide this kind of isolation are detailed later in the System-level environment
isolation section.
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System-level isolation should be your preferred option for the development
environment if you're writing software on a different computer than the one you'll
be executing it on. If you are running your software on remote servers, you should
definitely consider system-level isolation from the very beginning as it may save you
from portability issues in the future. And you should do that regardless of whether
your application relies on compiled code (shared libraries, compiled extensions)

or not. Using system-level isolation is also worth considering if your application
makes heavy use of external services like databases, caches, search engines, and so
on. That's because many system-level isolation solutions allow you to easily isolate
those dependencies too.

Since both approaches to environment isolation have their place in modern Python
development, we will discuss them both in detail. Let's start with the simpler one—
virtual environments using Python's venv module.

Application-level environment isolation

Python has built-in support for creating virtual environments. It comes in the form
of a venv module that can be invoked directly from your system shell. To create a
new virtual environment, simply use the following command:

$ python3.9 -m venv <env-name>

Here, env-name should be replaced with the desired name for the new environment
(it can also be an absolute path). Note how we used the python3.9 command instead
of plain python3. That's because depending on the environment, python3 may be
linked to different interpreter versions and it is always better to be very explicit
about the Python version when creating new virtual environments. The python3.9
-m venv commands will create a new env-name directory in the current working
directory path. Inside, it will contain a few sub-directories:

* bin/: This is where the new Python executable and scripts/executables
provided by other packages are stored.

Note for Windows users

The venv module under Windows uses a different naming
convention for its internal structure of directories. You need
L, touse Scripts/, Libs/, and Include/, instead of bin/,
-()- lib/, and include/, to match the development conventions

H commonly used on that operating system. The commands that
are used for activating/deactivating the environment are also
different; you need to use ENV-NAME/Scripts/activate.bat
and ENV-NAME/Scripts/deactivate.bat instead of using
source on activate and deactivate scripts.

[24]



Chapter 2

* 1lib/ and include/: These directories contain the supporting library files for
the new Python interpreter inside the virtual environment. New packages
will be installed in ENV-NAME/1ib/pythonX.Y/site-packages/.

Many developers keep their virtual environments together with the
source code and pick a generic path name like . venv or venv. Many
Python Integrated Development Environments (IDEs) are able to
L recognize that convention and automatically load the libraries for
‘,@\‘ syntax completion. Generic names also allow you to automatically
= exclude virtual environment directories from code versioning,
which is generally a good idea. Git users can, for instance, add this
path name to their global . gitgnore file, which lists path patterns
that should be ignored when versioning the source code.

Once the new environment has been created, it needs to be activated in the current
shell session. If you're using Bash as a shell, you can activate the virtual environment
using the source command:

$ source env-name/bin/activate

There's also a shorter version that should work under any POSIX-compatible system
regardless of the shell:

$ . env-name/bin/activate

This changes the state of the current shell session by affecting its environment
variables. In order to make the user aware that they have activated the virtual
environment, it will change the shell prompt by appending the (ENV-NAME) string
at its beginning. To illustrate this, here is an example session that creates a new
environment and activates it:

$ python3 -m venv example

$ source example/bin/activate
(example) $ which python
/home/swistakm/example/bin/python

(example) $ deactivate
$ which python
/usr/local/bin/python

The important thing to note about venv is that it does not provide any additional
abilities to track what packages should be installed in it. Virtual environments are
also not portable and should not be moved to another system/machine or even a
different filesystem path. This means that a new virtual environment needs to be
created every time you want to install your application on a new host.
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Because of this, there is a best practice that's used by pip users to store the definition
of all project dependencies in a single place. The easiest way to do this is by creating
a requirements.txt file (this is the naming convention), with contents as shown in
the following code:

eventlet==0.17.4
graceful==0.1.1

falcon>»=0.3.0,<0.5.0

pytz

With such a file, all dependencies can be easily installed in a single step. The pip
install command understands the format of such requirements files. You can
specify the path to a requirements file using the -r flag as in the following example:

$ pip install -r requirements.txt

Remember that requirements files specify only packages to be installed and not
packages that are currently in your environment. If you install something manually
in your environment, it won't be reflected in your requirements file automatically.
So, great care needs to be taken to keep your requirements file up to date, especially
for large and complex projects.

There is the pip freeze command, which prints all packages in the current
environment together with their versions, but it should be used carefully. This
list will also include dependencies of your dependencies, so for large projects, it
will quickly become very large. You will have to carefully inspect whether the list
contains anything installed accidentally or by mistake.

For projects that require better reproductivity of virtual environments and strict
control of installed dependencies, you may need a more sophisticated tool. We will
discuss such a tool — Poetry —in the following section.
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Poetry as a dependency management system

Poetry is quite a novel approach to dependency and virtual environment
management in Python. It is an open-source project that aims to provide a more
predictable and convenient environment for working with the Python packaging
ecosystem.

As Poetry is a package on PyPl, you can install it using pip:
$ pip install --user poetry

Be aware that Poetry takes care of creating Python virtual
environments so it should not be installed inside of a virtual
‘ / environment itself. You can install it in either user site-packages
) . . .
or global site-packages although user site-packages is the
recommended option (see the Isolating the runtime environment
section).

As already highlighted in the Installing Python packages using pip section, the above
command will install the poetry package in your site-packages directory. Depending
on your system configuration it will be either the global site-packages directory or
the user site-packages directory. To avoid this ambiguity, the Poetry project creators
recommend using an alternative bootstrapping method.

On macOS, Linux, and other POSIX-compatible systems Poetry can be installed
using the curl utility:

$ curl -sSL https://raw.githubusercontent.com/python-poetry/poetry/

master/get-poetry.py | python
On Windows it can be installed using PowerShell:

> (Invoke-WebRequest -Uri https://raw.githubusercontent.com/python-

poetry/poetry/master/get-poetry.py -UseBasicParsing).Content | python -

Once installed, Poetry can be used to:

* Create new Python projects together with virtual environments
* Initialize existing projects with a virtual environment
* Manage project dependencies

* Package libraries
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To create a completely new project with Poetry, you can use the poetry new
command as in the following example:

$ poetry new my-project

The above command will create a new my-project directory with some initial files in
it. The structure of that directory will be roughly as follows:

my-project/

— README.rst

F— my_project

| L— _init_ .py

I— pyproject.toml
L— tests

— _init__.py
L— test_my_project.py

As you can see, it creates some files that can be used as stubs for further
development. If you have a preexisting project, you can initialize Poetry within it
using the poetry init command inside of your project directory. The difference is
that it won't create any new project files except the pyproject.toml configuration file.

The core of Poetry is the pyproject.toml file, which stores the project configuration.
For the my-project example it may have the following content:

[tool.poetry]

name = "my-project”

version = "0.1.0"

description = ""

authors = ["Michat Jaworski <swistakm@gmail.com>"]

[tool.poetry.dependencies]
python = "~3.9"

[tool.poetry.dev-dependencies]
pytest = "~5.2"

[build-system]
requires = ["poetry-core>=1.0.0"]
build-backend = "poetry.core.masonry.api”
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As you can see, the pyproject.toml file is divided into four sections. Those are:

* [tool.poetry]: This is a set of basic project metadata like name, version
description, and author. This information is necessary if you would like to
publish your project as a package on PyPI.

* [tool.poetry.dependencies]: This is a list of project dependencies. On fresh
projects, it lists only the Python version but can also include all package
versions that normally would be described in the requirements.txt file.

* [tool.poetry.dev-dependencies]: This is a list of dependencies that require
local development, like testing frameworks or productivity tools. It is
common practice to have a separate list of such dependencies as they are
usually not required in production environments.

* [build-system]: Describes Poetry as a build system used to manage the
project.

The pyproject.toml file is part of the official Python standard

\/‘/ described in the PEP 518 document. You can read more

information about its structure at https://www.python.org/dev/
peps/pep-0518/.

If you create a new project or initialize an existing one using Poetry, it will be able
to create a new virtual environment in a shared location whenever you need it. You
can activate it using Poetry instead of "sourcing" the activate scripts. That's more
convenient than using the plain venv module because you don't need to remember
where the actual virtual environment is stored. The only thing you need to do is to
move your shell to any place in your project source tree and use the poetry shell
command as in the following example:

$ cd my-project
$ poetry shell

From that moment on, the current shell will have Poetry's virtual environment
activated. You can verify it with either the which python or python -m site
command.

Another thing that Poetry changes is how you manage dependencies. As we already
mentioned, requirements.txt files are a very basic way of managing dependencies.
They describe what packages to install but do not automatically track what has been
installed in the environment through the development. If you install something with
pip but forget to reflect that change in the requirements. txt file, other programmers
may have a problem recreating your environment.
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With Poetry, that problem is gone. There's only one way of adding dependencies to
your project and it is with the poetry add <package-name> command. It will:

Resolve whole dependency trees if other packages share dependencies

Install all packages from the dependency tree in the virtual environment
associated with your project

Reflect the change in the pyproject.toml file

The following transcript presents the process of installation of the Flask framework
within the my-project environment:

$ poetry add flask

This will produce an output like the following;:

Using version 7~1.1.2 for Flask

Updating dependencies
Resolving dependencies... (38.9s)

Writing lock file

Package operations: 15 installs, @ updates, @ removals

Installing
Installing
Installing
Installing
Installing
Installing
Installing
Installing
Installing
Installing
Installing
Installing
Installing
Installing
Installing

markupsafe (1.1.1)
pyparsing (2.4.7)

six (1.15.0)

attrs (20.3.0)

click (7.1.2)
itsdangerous (1.1.9)
jinja2 (2.11.2)
more-itertools (8.6.0)
packaging (20.4)
pluggy (0.13.1)

py (1.9.0)
wcwidth (0.2.5)

werkzeug (1.0.1)
flask (1.1.2)
pytest (5.4.3)
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And the following is the resulting pyproject.toml file with highlighted changes to
the project dependencies:

[tool.poetry]

name = "my-project”

version = "0.1.0"

description = ""

authors = ["Michat Jaworski <swistakm@gmail.com>"]

[tool.poetry.dependencies]
python = "73.9"
Flask = "~1.1.2"

[tool.poetry.dev-dependencies]
pytest = "25.2"

[build-system]
requires = ["poetry-core>=1.0.0"]

The preceding transcript shows that Poetry has installed 15 packages when we asked
for only one dependency. That's because Flask has its own dependencies and those
dependencies have their own dependencies. Such dependencies of dependencies

are called transitive dependencies. Libraries often have lax version specifiers like
six >=1.0.0 to denote that they are able to accept a wide range of versions. Poetry
implements a dependency resolution algorithm to find out which set of versions
can satisfy all dependency transitive dependency constraints.

The problem with transitive dependencies is their ability to change over time.
Remember that libraries can have lax version specifiers for their dependencies. It is
thus possible that two environments created on different dates will have different
final versions of packages installed. The inability to reproduce exact versions of

all transitive dependencies can be a big problem for large projects and manually
tracking them in requirements.txt files is usually a big challenge.

Poetry solves the problem of transitive dependencies by using so-called dependency
lock files. Whenever you are sure that your environment has a working and tested
set of package versions, you can issue the following command:

$ poetry lock

This will create a really verbose poetry.lock file that is a complete snapshot of the
dependency resolution process. That file will be then used to determine versions of
transitive dependencies instead of the ordinary dependency process.
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Whenever new packages are added with the poetry add command, Poetry will
evaluate the dependency tree and update the poetry.lock file. The lock file approach
is so far the best and most reliable way of handling transitive dependencies in your
project.

|
_\@’_ You can find more information about advanced usage of Poetry in

the official documentation under https://python-poetry.org.

System-level environment isolation

The key enabler to the rapid iteration of software implementation is the reuse of
existing software components. Don't repeat yourself — this is a common mantra

of many programmers. Using other packages and modules to include them in the
codebase is only a part of that mindset. What can also be considered as reused
components are binary libraries, databases, system services, third-party APIs, and
so on. Even whole operating systems should be considered as a component that is
being reused.

The backend services of web-based applications are a great example of how complex
such applications can be. The simplest software stack usually consists of a few layers.
Consider some imaginary application that allows you to store some information of
its users and exposes it to the internet over the HTTP protocol. It could have at least
the three following layers (starting from the lowest):

* A database or other kind of storage engine
* The application code implemented in Python

* An HTTP server working in reverse proxy mode, such as Apache or NGINX

Although very simple applications can be single-layered, it rarely happens for
complex applications or applications that are designed to handle very large traffic.
In fact, big applications are sometimes so complex that they cannot be represented
as a stack of layers but rather as a patchwork or mesh of interconnected services.
Both small and big applications can use many different databases, be divided into
multiple independent processes, and use many other system services for caching,
queuing, logging, service discovery, and so on. Sadly, there are no limits to this
complexity.
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What is really important is that not all software stack elements can be isolated

on the level of Python runtime environments. No matter whether it is an HTTP
server, such as NGINX, or an RDBMS, such as PostgreSQL, or a shared library,
those elements are usually not part of the Python distribution or Python package
ecosystem and can't be encapsulated within Python's virtual environments. That's
why they are considered external dependencies of your software.

What is very important is that external dependencies are usually available in
different versions and flavors on different operating systems. For instance, if two
developers are using completely different Linux distributions, let's say Debian
and Gentoo, it is really unlikely that at any given time they will have access to the
same version of software like NGINX through their system's package repositories.
Moreover, they can be compiled using different compile-time flags (for instance,
enabling specific settings), or be provided with custom extensions or distribution-
specific patches.

So, making sure that everyone in a development team uses the same versions of
every component is very hard without the proper tools. It is theoretically possible
that all developers in a team working on a single project will be able to get the same
versions of services on their development boxes. But all this effort is futile if they
do not use the same operating system as they do in their production environment.
Forcing a programmer to work on something else rather than their beloved system
of choice is also not always possible.

The production environment, or production for short, is the actual
environment where your application is installed and running to
serve its very purpose. For instance, the production environment

‘ , for a desktop application would be the actual desktop computer

\p/ on which your users install their applications. The production
environment of a backend server for a web application available
through the internet is usually a remote server (sometimes virtual)
operating in some sort of datacenter.

The problem lies in the fact that portability is still a big challenge. Not all services
will work exactly the same in the production environments as they do on the
developer's machines. And this is unlikely to change. Even Python can behave
differently on different systems, despite how much work is put into making it cross-
platform. Usually, for Python, this is well-documented and happens only in places
that interact directly with the operating system. Still, relying on the programmer's
ability to remember a long list of compatibility quirks is quite an error-prone
strategy.
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A popular solution to this problem is isolating whole systems as the application
environment. This is usually achieved by leveraging different types of system
virtualization tools. Virtualization, of course, may have an impact on performance;
but with modern CPUs that have hardware support for virtualization, the
performance loss is greatly reduced. On the other hand, the list of possible gains is
very long:

* The development environment can exactly match the system version,
services, and shared libraries used in production, which helps to solve
compatibility issues.

* Definitions for system configuration tools, such as Puppet, Chef, or Ansible
(if used), can be reused to configure both the production and development
environments.

* The newly hired team members can easily hop into the project if the creation
of such environments is automated.

* The developers can work directly with low-level system features that
may not be available on operating systems they use for work. For
example, Filesystem in Userspace (FUSE) is a feature of Linux operating
systems that you could not work with on Windows without virtualization.

In the next section, we'll take a look at two different approaches to achieving the
system-level isolation of development environments.

Containerization versus virtualization

There are two main ways that system-level isolation techniques can be used for
development purposes:

* Machine virtualization, which emulates the whole computer system

* Operating system-level virtualization, known also as containerization,
which isolates complete user spaces within a single operating system

Machine virtualization techniques concentrate on emulating whole computer
systems within other computer systems. Think of it as providing virtual hardware
that can be run as a piece of software on your own computer. As this is full hardware
emulation, it gives you the possibility to run any operating system within your host
environments. This is the technology that drives the infrastructure of Virtual Private
Server (VPS) and cloud computing providers, as it allows you to run multiple
independent and isolated operating systems within a single host computer.
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This is also a convenient method of running many operating systems for
development purposes, as starting a new operating system does not require
rebooting your computer. You can also easily dispose of virtual machines when not
needed. That's something that cannot be done easily with typical multi-boot system
installation.

Operating system-level virtualization, on the other hand, does not rely on emulating
the hardware. It encapsulates a user-space environment (shared libraries, resource
constraints, filesystem volumes, code, and so on) in the form of containers that
cannot operate outside the strictly defined container environment. All containers are
running on the same operating system kernel but cannot interfere with each other
unless you explicitly allow them to.

Operating system-level virtualization does not require emulation of the hardware.
Still, it can set specific constraints on the use of system resources like storage
space, CPU time, RAM, or network. These constraints are managed only by the
system kernel, so the performance overhead is usually smaller than in machine
virtualization. That's why operating system-level virtualization is often called
lightweight virtualization.

Usually, a container contains only application code and its system-level
dependencies, mostly shared libraries or runtime binaries like the Python interpreter,
but can be as large as you want. Images for Linux containers are often based on
whole system distributions like Debian, Ubuntu, or Fedora. From the perspective

of processes running inside a container, it looks like a completely isolated system
environment.

When it comes to system-level isolation for development purposes, both methods
provide a similarly sufficient level of isolation and reproducibility. Nevertheless,
due to its more lightweight nature, operating system-level virtualization seems to be
more favored by developers as it allows cheaper, faster, and more streamlined usage
of such environments together with convenient packaging and portability. This is
especially useful for programmers that work on multiple projects in parallel or need
to share their environments with other programmers.

There are two leading tools for providing system-level isolation of development
environments:

* Docker for operating system-level virtualization

* Vagrant for machine virtualization
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Docker and Vagrant seem to overlap in features. The main difference between
them is the reason why they were built. Vagrant was built primarily as a tool for
development. It allows you to bootstrap the whole virtual machine with a single
command but is rarely used to simply pack such an environment as a complete
artifact that could be easily delivered to a production environment and executed as
is. Docker, on the other hand, is built exactly for that purpose — preparing complete
containers that can be sent and deployed to production as a complete package. If
implemented well, this can greatly improve the process of product deployment.

Due to some implementation nuances, the environments that are based on containers
may sometimes behave differently than environments based on virtual machines.
They also do not package the operating system kernel, so for code that is highly
operating system-specific, they may not always behave the same on every host.

Also, if you decide to use containers for development, but don't decide to use them
on target production environments, you'll lose some of the consistency guarantees
that were the main reason for environment isolation.

But, if you already use containers in your target production environments, then you
should always replicate production conditions in the development stage using the
same technique. Fortunately, Docker, which is currently the most popular container
solution, provides an amazing docker-compose tool that makes the management of
local containerized environments extremely easy.

Containers are a great alternative to full machine virtualization. It is a lightweight
method of virtualization, where the kernel and operating system allow multiple
isolated user-space instances to be run. If your operating system supports containers
natively, this method of virtualization will require less overhead than full machine
virtualization.

Virtual environments using Docker

Software containers got their popularity mostly thanks to Docker, which is one of
the available implementations for the Linux operating system.

Docker allows you to describe an image of the container in the form of a simple

text document called a Dockerfile. Images from such definitions can be built and
stored in image repositories. Image repositories allow multiple programmers to
reuse existing images without the need to build them all by themselves. Docker also
supports incremental changes, so if new things are added to the container then it
does not need to be recreated from scratch.
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Docker is an operating system virtualization method for Linux operating systems,

so it isn't natively supported by kernels of Windows and macOS. Still, this doesn't
mean that you can't use Docker on Windows or macOS. On those operating systems,
Docker becomes kind of a hybrid between machine virtualization and operating
system-level virtualization. Docker installation on those two systems will create an
intermediary virtual machine with the Linux operating system that will act as a host
for your containers. The Docker daemon and command-line utilities will take care of
proxying any traffic and images between your own operating system and containers
running on that virtual machine seamlessly.

I
_\@’_ You can find Docker installation instructions on https://www.

docker.com/get-started.

The existence of an intermediary virtual machine means that Docker on Windows

or macOS isn't as lightweight as it is on Linux. Still, the performance overhead
shouldn't be noticeably higher than the performance overhead of other development
environments based strictly on machine virtualization.

Writing your first Dockerfile

Every Docker-based environment starts with a Dockerfile. A Dockerfile is a
description of how to create a Docker image. You can think about the Docker images
in a similar way to how you would think about images of virtual machines. It is a
single file (composed of many layers) that encapsulates all system libraries, files,
source code, and other dependencies that are required to execute your application.

Every layer of a Docker image is described in the Dockerfile by a single instruction
in the following format:

INSTRUCTION arguments

Docker supports plenty of instructions, but the most basic ones that you need to
know in order to get started are as follows:

* FROM <image-name>: This describes the base image that your image will be
based on. They are often based on common Linux system distributions and
usually come with additional libraries and software installed. The default
Docker images repository is called Docker Hub. It can be accessed for free
and browsed at https://hub.docker.com/.
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COPY <src>... <dst>: This copies files from the local build context (usually
project files) and adds them to the container's filesystem.

ADD <src>... <dst>: This works similarly to COPY but automatically unpacks
archives and allows <src> to be URLs.

RUN <command>: This runs a specified command on top of previous layers.
After execution, it commits changes that this command made to the
filesystem as a new image layer.

ENTRYPOINT [“<executable>", "<param>", ...]: This configures the default
command to be run as your container starts. If no entry point is specified
anywhere in the image layers, then Docker defaults to /bin/sh -c, which is
the default shell of a given image (usually Bash but can also be another shell).

CMD ["<param>", ...]: This specifies the default parameters for image
entry points. Knowing that the default entry point for Docker is /bin/

sh -c, this instruction can also take the form of CMD ["<executable>",
"<param>", ...].Itis recommended to define the target executable directly
in the ENTRYPOINT instruction and use CMD only for default arguments.

WORKDIR <dir>: This sets the current working directory for any of the
following RUN, CMD, ENTRYPOINT, COPY, and ADD instructions.

To properly illustrate the typical structure of a Dockerfile, we will try to dockerize a
simple Python application. Let's imagine we want to create an HTTP echo web server
that replies back with details of the HTTP request it received. We will use Flask,
which is a very popular Python web microframework.

Flask isn't a part of the Python standard library. You can install it
in your environment using pip as follows:

L
_/@\_ $ pip install flask

You can find more information about the Flask framework at
https://flask.palletsprojects.com/.

The code of our application, which would be saved in a Python script, echo.py, could
be as follows:
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from flask import Flask, request
app = Flask(__name__)

@app.route('/")
def echo():
return (
f"METHOD: {request.method}\n"
f"HEADERS:\n{request.headers}"
£"BODY: \n{request.data.decode()}"

if __name__ == '_main__‘'
app.run(host="0.0.0.0")

Our script starts with the import of the Flask class and the request object. The
instance of the Flask class represents our web application. The request object is a
special global object that always represents the context of the currently processed
HTTP request.

echo() is a so-called view function, which is responsible for handling incoming
requests. @app.route('/") registers the echo() view function under the / path.

This means that only requests that match the / path will be dispatched to this view
function. Inside of our view, we read incoming request details (method, headers, and
body) and return them in text form. Flask will include that text output in the request
response body.

Our script ends with the call to the app.run() method. It starts the local development
server of our application. This development server is not intended for production
environment use but is good enough for development purposes and greatly
simplifies our example.

If you have the Flask package installed, you can run your application using the
following command:

$ python3 echo.py

The above command will start the Flask development server on port 5000. You can
either visit the http://localhost:5000 address in your browser or use the command-
line utility.
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The following is an example of invoking a GET request using curl:

$ curl localhost:5000
METHOD: GET

HEADERS :

Host: localhost:5000

User-Agent: curl/7.64.1
Accept: */*

BODY:

As we confirmed that our application returned the HTTP details of the request it
received, we're almost ready to dockerize it. The structure of our project files could
be as follows:

— Dockerfile

|— echo.py
L— requirements.txt

The requirements. txt file will contain only one entry, flask==1.1.2, to make

sure our image will always use the same version of Flask. Before we jump to the
Dockerfile, let's decide how we want our image to work. What we want to achieve
is the following;:

* Hide some complexity from the user —especially the fact that we use Python
and Flask
* Package the Python 3.9 executable with all its dependencies

* Package all project dependencies defined in the requirements. txt file

Knowing the above requirements, we are ready to write our first Dockerfile. It will
take the following form:

FROM python:3.9-slim
WORKDIR /app/

COPY requirements.txt .
RUN pip install -r requirements.txt

COPY echo.py .
ENTRYPOINT ["python", "echo.py"]
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FROM python:3.9-slim defines the base image for our custom container image.
Python has a collection of official images on Docker Hub and python:3.9-slimis one
of them. 3.9-s1imis the tag of the image including Python 3.9 with only a minimal
set of system packages needed to run Python. It is usually a sensible starting point
for Python-based application images.

In the next section, we will learn how to build a Docker image from the above
Dockerfile and how to run our container.

Running containers

Before your container can be started, you'll first need to build an image defined in
the Dockerfile. You can build the image using the following command:

$ docker build -t <name> <path>

The -t <name> argument allows us to name the image with a readable identifier.

It is totally optional, but without it, you won't be able to easily reference a newly
created image. The <path> argument specifies the path to the directory where your
Dockerfile is located. Let's assume that we were already running the command
from the root of the project presented in the previous section. We also want to tag
our image with the name echo. The docker build command invocation will be the
following;:

$ docker build -t echo .

Its output may be as follows:

Sending build context to Docker daemon  16.8MB
Step 1/6 : FROM python:3.9-slim

3.9-slim: Pulling from library/python
bb79b6b2107f: Pull complete

35e30c3f3e2b: Pull complete

b13c2c@e2577: Pull complete

263be93302fa: Pull complete

30e7021a7001: Pull complete

Digest: sha256:c13fda®93489a1b699ee84240df4f5d0880112b%e@9ac21c5d687500
3d1aa927

Status: Downloaded newer image for python:3.9-slim
---> a90139e6bc2f

Step 2/6 : WORKDIR /app/
---> Running in fd85d9ac44a6

Removing intermediate container fd85d9ac44a6
---> b781318cdec?
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Step 3/6 : COPY requirements.txt .
---> 6d56980fedf6

Step 4/6 : RUN pip install -r requirements.txt
---> Running in 5cd9b86ac454
(000)
Successfully installed Jinja2-2.11.2 MarkupSafe-1.1.1 Werkzeug-1.0.1
click-7.1.2 flask-1.1.2 itsdangerous-1.1.0
Removing intermediate container 5cd9b86ac454
---> 0fbf85e8f6da

Step 5/6 : COPY echo.py .
---> a546d22e8c98

Step 6/6 : ENTRYPOINT ["python", "echo.py"]
---> Running in @b4e57680ac4

Removing intermediate container @b4e57680ac4
---> 0549d15959ef

Successfully built ©549d15959ef

Successfully tagged echo:latest

Once created, you can inspect the list of available images using the docker images
command:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE

echo latest 0549d15959ef About a minute ago  126MB
python 3.9-slim a90139e6bc2f 10 days ago 115MB

The shocking size of container images

Our image has a size of 126 MB because it actually captures the
whole Linux system distribution needed for running our Python
application. It may sound like a lot, but it isn't really anything to
worry about. For the sake of brevity, we have used a base image
/ that is simple to use. There are other images that have been crafted
\/{p: specially to minimize this size, but these are usually dedicated
to more experienced Docker users. Also, thanks to the layered
structure of Docker images, if you're using many containers,
the base layers can be cached and reused, so an eventual space
overhead is rarely an issue. In the preceding example, the total size
of storage used for both images will be only 126 MB because the
echo:latest image only adds 11 MB on top of the python:3.9-
slimimage.

[42]



Chapter 2

Once your image is built and tagged, you can run a container using the docker
run command. Our container is an example of a web service, so we will have to
additionally tell Docker that we want to publish the container's ports by binding
them locally:

docker run -it --rm --publish 5000:5000 echo

Here is an explanation of the specific arguments of the preceding command:

* -it: These are actually two concatenated options: -i and -t. The
-i (for interactive) keeps STDIN open, even if the container process is
detached, and -t (for tty) allocates pseudo-TTY for the container. TTY
stands for teletypewriter and on Linux and UNIX-like operating systems
represents the terminal connected to a program's standard input and output.
In short, thanks to these two options, we will be able to see live logs from our
application and ensure that the keyboard interrupt will cause the process to
exit. It will simply behave the same way as we would start Python, straight
from the command line.

* --rm: Tells Docker to automatically remove the container when it exits.
Without this option, the container will be kept so you can reattach to it in
order to diagnose its state. By default, Docker does not remove containers
just to make debugging easier. They can quickly pile up on your disk so
good practice is to use --rm by default unless you really need to keep the
exited container for later review.

* --publish 5000:5000: Tells Docker to publish the container's port 5000 by
binding port 5000 on the host's interface. You can use this option to also
remap application ports. If you would like, for instance, to expose the echo
application on port 8080 locally, you could use the --publish 8080:5000
argument.

Building and running your own images using the docker command is quite simple
and straightforward but can become cumbersome after a while. It requires using
quite long command invocations and remembering a lot of custom identifiers. It can
be quite inconvenient for more complex environments. In the next section, we will
see how a Docker workflow can be simplified with the Docker Compose utility.

Setting up complex environments

While the basic usage of Docker is pretty straightforward for basic setups, it can be
a bit overwhelming once you start to use it in multiple projects. It is really easy to
forget about specific command-line options, or which ports should be published on
which images.
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But things start to get really complicated when you have one service that needs
to communicate with others. A single Docker container should only contain one
running process.

This means that you really shouldn't put any additional process supervision tools,
such as Supervisor and Circus, into the container image, and instead set up multiple
containers that communicate with each other. Each service may use a completely
different image, provide different configuration options, and expose ports that may
or may not overlap. If you want to run multiple different processes, each process
should be a separate container.

Large production deployments of containers use dedicated container

orchestration systems like Kubernetes, Nomad, or Docker Swarm to keep track

of all containers and their execution details like images, ports, volumes, ports,
configuration, and so on. You could use one of those tools locally, but that would be
overkill for development purposes.

The best container development tool that you can use on your computer that works
well for both simple and complex scenarios is Docker Compose. Docker Compose
is usually distributed with Docker, but in some Linux distributions (for example,
Ubuntu), it may not be available by default. In such a case, it must be installed as a
separate package from the system package repository. Docker Compose provides a
powerful command-line utility named docker-compose and allows you to describe
multi-container applications using the YAML syntax.

Compose expects the specially named docker-compose.yml file to be in your project
root directory. An example of such a file for our previous project could be as follows:

version: '3.8'
services:

echo-server:

build:

ports:
- "5000:5000"

tty: true
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If you create such a docker-compose.yml file in your project, then your whole
application environment can be started and stopped with two simple commands:

* docker-compose up: This starts all containers defined in the docker-compose.
yml file and actively prints their standard output

* docker-compose down: This stops all containers started by docker-compose in
the current project directory

Docker Compose will automatically build your image if it hasn't been built yet.
That's a great way of encoding the development environment in the configuration
file. If you work with other programmers, you can provide one docker-compose.

yml file for your project. This way, setting up a fully working local development
environment will be a matter of one docker-compose up command. The docker-
compose.yml file should definitely be versioned together with the rest of your code if
you use the code versioning tools.

Moreover, if your application requires additional external services, you can easily
add them to your Docker Compose environment instead of installing them on your
host system. Consider the following example that adds one instance of a PostgreSQL
database and Redis memory storage using official Docker Hub images:

version: '3.8'

services:
echo-server:
build:
ports:
- "5000:5000"
tty: true

database:
image: postgres

cache:
image: redis

Docker Hub is the official repository of Docker images. Many
‘ n/ open-source developers host their official project images there. You
\/ can find more info about Docker Hub at https://hub.docker.
com.
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It is as simple as that. To ensure better reproducibility, you should always specify
version tags of external images (like postgres:13.1 and redis:6.0.9). That way you
will ensure everyone using your docker-compose.yml file will be using exactly the
same versions of external services. Thanks to Docker Compose you can use multiple
versions of the same service simultaneously without any interference. That's because
different Docker Compose environments are by default isolated on the network level.

Useful Docker and Docker Compose recipes for
Python

Docker and containers in general are such a vast topic that it is impossible to cover
them in one short section of this book. Thanks to Docker Compose, it is really easy
to start working with Docker without knowing a lot about how it works internally.
If you're new to Docker, you'll have to eventually slow down a bit, take the Docker
documentation, and read it thoroughly.

docker.com/.

\/‘/ The official Docker documentation can be found at https://docs.

The following are some quick tips and recipes that allow you to defer that moment
and solve most of the common problems that you may have to deal with sooner
or later.

Reducing the size of containers

A common concern of new Docker users is the size of their container images. It's true
that containers provide a lot of space overhead compared to plain Python packages,
but it is usually nothing if we compare this to the size of images for virtual machines.
However, it is still very common to host many services on a single virtual machine,
but with a container-based approach, you should definitely have a separate image
for every service. This means that with a lot of services, the overhead may become
noticeable.

If you want to limit the size of your images, you can use two complementary
techniques:

* Use a base image that is designed specifically for that purpose: Alpine
Linux is an example of a compact Linux distribution that is specifically
tailored to provide very small and lightweight Docker images. The base
image is around 5 MB in size and provides an elegant package manager that
allows you to keep your images compact.
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* Take into consideration the characteristics of the Docker overlay
filesystem: Docker images consist of layers where each layer encapsulates the
difference in the root filesystem between itself and the previous layer. Once
the layer is committed, the size of the image cannot be reduced. This means
that if you need a system package as a build dependency, and it may be later
discarded from the image, then instead of using multiple RUN instructions, it
may be better to do everything in a single RUN instruction with chained shell
commands to avoid excessive layer commits.

These two techniques can be illustrated by the following Dockerfile:

FROM alpine:3.13
WORKDIR /app/

RUN apk add --no-cache python3

COPY requirements.txt .

RUN apk add --no-cache py3-pip && \
pip3 install -r requirements.txt && \
apk del py3-pip

COPY echo.py .
CMD ["python", "echo.py"]

The above example uses the alpine:3.12 base image to illustrate
the technique of cleaning up needless dependencies before
| committing the layer. Unfortunately, the apk manager in the
_\@’_ Alpine distribution doesn't give proper control of which version
AR of Python will be installed. That's why recommended Alpine
base images for Python projects come from the official Python
repository. For Python 3.9 that would be the python:3.9-alpine
base image.

The --no-cache flag of apk (Alpine's package manager) has two effects. First, it will
cause apk to ignore the existing cache of package lists so it will install the latest
package version that is available officially in the package repository. Second, it won't
update the existing package lists cache, so the layer created with this instruction will
be slightly smaller than using the - -update-cache flag that is otherwise necessary

to install the package in its latest version. The difference is not that big (probably
around 2 MB) but those small chunks of cache can add up in bigger images that
have many layers of apk add invocations. Package managers of different Linux
distributions usually offer a similar way of disabling their package list caches.
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The second RUN instruction is an example of taking into account the way Docker
image layers work. On Alpine, the Python package doesn't come with pip installed
so we need to install it on our own. Generally, after all the required Python packages
have been installed, pip is no longer required and can be removed. We could use the
ensurepip module to bootstrap pip but then we wouldn't have an obvious way of
removing it. Instead, we use a long-chained instruction that relies on apk to install
the py3-pip package and remove it after installing the other Python packages. This
trick on Alpine 3.13 may even save us up to 16 MB.

If you run the Docker images command, you will see that there is a substantial size
difference between images based on Alpine and python:slim base images:

$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE

echo-alpine 1latest e7e3a2bc7b71 About a minute ago 53.7MB
echo latest 6b036d212e8f 40 minutes ago 126MB

The resulting image is now more than two times smaller than the one based on the
python:3.9-slim image. That's mostly due to a streamlined Alpine distribution
that is around 5 MB in total. Without our trick of deleting pip and using the --no-
cache flag, the image size would probably be around 72 MB (package lists caches
are around 2 MB, py3-pip around 16 MB). In total it allowed us to save almost 25%
of the size. Such a size reduction will not be that meaningful for larger applications
with more dependencies where 18 MB doesn't make that much of a difference. Still,
this technique can be used for other build-time dependencies. Some packages, for
instance, require additional compilers like gcc (GNU Compiler Collection) and extra
header files at the time of installation. In such a situation, you could use the same
pattern to avoid having the full GNU Compiler Collection in the final image. And
that actually can have quite a big impact on the image size.

Addressing services inside of a Docker Compose
environment

Complex applications often consist of multiple services that communicate with each
other. Compose allows us to define such applications with ease. The following is an
example docker-compose.yml file that defines the application as a composition of two
services:

version: '3.8'

services:
echo-server:
build:
ports:
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- "5000:5000"
tty: true

database:
image: postgres
restart: always

The preceding configuration defines two services:

* echo-server: This is our echo application service container with the image
built from the local Dockerfile

* database: This is a PostgreSQL database container from an
official postgres Docker image

We assume that the echo-server service wants to communicate with

the database service over the network. In order to set up such communications,

we need to know the service IP address or hostname so that it can be used as an
application configuration. Thankfully, Docker Compose is a tool that was designed
exactly for such scenarios, so it will make it a lot easier for us.

Whenever you start your environment with the docker-compose up command,
Docker Compose will create a dedicated Docker network by default and will register
all services in that network using their names as their hostnames. This means that
the echo-server service can use the database:5432 address to communicate with

the database (5432 is the default PostgreSQL port), and any other service in that
Docker Compose environment will be able to access the HTTP endpoint of the echo-
server service under the http://echo-server:80 address.

Even though the service hostnames in Docker Compose are easily predictable, it isn't
good practice to hardcode any addresses in your application code. The best approach
would be to provide them as environment variables that can be read by your
application on startup. The following example shows how arbitrary environment
variables can be defined for each service in a docker-compose.yml file:

version: '3.8'

services:
echo-server:
build:
ports:
- "5000:5000"
tty: true
environment:
- DATABASE_HOSTNAME=database
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- DATABASE_PORT=5432
- DATABASE_PASSWORD=password

database:
image: postgres
restart: always
environment:
POSTGRES_PASSWORD: password

The highlighted lines provide environment variables that tell our echo server what
the hostname and port of the database are. Environment variables are the most
recommended way of providing configuration parameters for containers.

Docker containers are ephemeral. This means that once the
container is removed (usually on exit), its internal filesystem
changes are lost. For databases, this means that if you don't want
to lose data in the database running in the container, you should
L mount a volume inside a container under the directory where
the data is supposed to be stored. Maintainers of Docker images
g for databases usually document how to mount such volumes, so
always refer to the documentation of the Docker image you are
using if you want to keep database data safe. An example of using
Docker volumes for slightly different purposes is shown in the
Adding live reload for absolutely any code section.

Communicating between Docker Compose environments

If you build a system composed of multiple independent services and/or
applications, you will very likely want to keep their code in multiple independent
code repositories (projects). The docker-compose.yml files for every Docker Compose
application are usually kept in the same code repository as the application code. The
default network that was created by Compose for a single application is isolated
from the networks of other applications. So, what can you do if you suddenly want
your multiple independent applications to communicate with each other?

Fortunately, this is another thing that is extremely easy with Compose. The syntax of
the docker-compose.yml file allows you to define a named external Docker network
as the default network for all services defined in that configuration.
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The following is an example configuration that defines an external network
named my-interservice-network:

version: '3.8'

networks:
default:
external:
name: my-interservice-network

services:
webserver:

build:

ports:
"80:80"

tty: true

environment:
- DATABASE_HOSTNAME=database
- DATABASE_PORT=5432
- DATABASE_PASSWORD=password

database:
image: postgres
restart: always
environment:
POSTGRES_PASSWORD: password

Such external networks are not managed by Docker Compose, so you'll have to
create it manually with the docker network create command, as follows:

$ docker network create my-interservice-network

Once you have done this, you can use this external network in other docker-
compose.yml files for all applications that should have their services registered in the
same network. The following is an example configuration for other applications that
will be able to communicate with both database and webserver services over my-
interservice-network, even though they are not defined in the same docker-
compose.yml file:

version: '3.8'

networks:
default:

[51]



Modern Python Development Environments

external:
name: my-interservice-network

services:
other-service:
build:
ports:
- "80:80"
tty: true
environment:
- DATABASE_HOSTNAME=database
- DATABASE_PORT=5432
- ECHO_SERVER_ADDRESS=http://echo-server:80

The above approach allows you to start two independent Docker Compose
environments in separate shells. All services will be able to communicate with each
other through a shared Docker network.

Delaying code startup until service ports are open

If you run docker-compose up, all services will be started at the same time. You can
control to some extent the service startup using the depends_on key in the service
definition as in the following example:

version: '3.8'

services:
echo-server:
build:
ports:
- "5000:5000"
tty: true
depends_on:
- database

database:
image: postgres
environment:
POSTGRES_PASSWORD: password

The preceding setup will make sure that our echo server will be started after the
database service. Unfortunately, it is not always enough to ensure proper startup
ordering of services within the development environment.
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Consider a situation where echo-server would have to read something from the
database immediately after starting. Docker Compose will make sure that services
will be started in order but will not make sure that PostgreSQL will be ready

to actually accept connections from the echo server. That's because PostgreSQL
initialization can take a couple of seconds.

The solution for this is pretty simple. There are numerous scripting utilities that
allow you to test if a specific network port is open before proceeding with the
execution of a command. One such utility is named wait-for-it and is actually
written in Python so you can easily install it with pip.

You can invoke wait-for-it using the following syntax:

$ wait-for-it --service <service-address> -- command [...]

The -- command [...] usage pattern is a common pattern for utilities that wrap
different command execution where [...] represents any set of arguments for
command. The wait-for-it process will try to create a TCP connection and when it
succeeds, it will execute command [...]. For instance, if we would like to wait for
localhost connection on port 2000 before starting the python echo.py command we
would simply execute:

$ wait-for-it --service localhost:2000 -- python echo.py

The following is an example of a modified docker-compose.yml file that elegantly
overrides the default Docker image command and decorates it with the call to the
wait-for-it utility to ensure our echo server starts only when it would be able to
connect to the database:

version: '3.8'

services:
echo-server:
build:
ports:
- "5000:5000"
tty: true
depends_on:
- database
command:
wait-for-it --service database:5432 --
python echo.py

database:

[53]



Modern Python Development Environments

image: postgres
environment:
POSTGRES_PASSWORD: password

wait-for-it by default times out after 15 seconds. After that timeout, it will start
the process after the - - mark regardless of whether it succeeded in connecting or
not. You can disable timeout using the --timeout @ argument. Without the timeout,
wait-for-it will wait indefinitely.

Adding live reload for absolutely any code

When developing a new application, we usually work with code iteratively. We
implement changes and see results. We either verify the code manually or run the
tests. There is a constant feedback loop.

With Docker, we need to enclose our code in the container image to make it work.
But running docker build or docker-compose build every time you make a change
in your host system would be highly counterproductive.

That's why the best way to provide code to the container while working with Docker
in the development stage is through Docker volumes. The idea is to bind your local
filesystem directory to the container's internal filesystem path. That way any changes
made to the files in the host's filesystem will be automatically reflected inside of

the container. With Docker Compose, it is extremely easy as it allows you to define
volumes in the service configuration. The following is a modified version of our
docker-compose.yml file for the echo service that mounts the project's root directory
under the /app/ path:

version: '3.8'

services:
echo-server:
build:
ports:
- "5000:5000"
tty: true
volumes:
- .:/app/

Changes happening on mounted Docker volumes are actively propagated on both
sides. Many Python frameworks or servers support active hot reloading whenever
they notice that your code has changed. This dramatically improves the development
experience because you can see how the behavior of your application changes as you
write it and without the need for manual restarts.
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Probably not every piece of code you write will be built using a framework that
supports active reloading. Fortunately, there is a great Python package named
watchdog that allows you to reload any application watching code changes. This
package provides a handful watchmedo utility that similarly to wait-for-it can wrap
any process execution.

The watchmedo utility from the watchdog package requires some
\@/ additional dependencies in order to execute. To install that package

> with extra dependencies use the following pip install syntax:

pip install watchdog[watchmedo]

The following is the basic usage format for reloading specified processes whenever
there is a change to any Python file in the current working directory:

$ watchmedo auto-restart --patterns "*.py" --recursive -- command [...]

The --patterns "*.py" options indicate which files the watchmedo process should
monitor for changes. The --recursive flag makes it traverse the current working
directory recursively so it will be able to pick up changes made even if they are
nested deep down in the directory tree. The -- command [...] usage pattern is the
same as the wait-for-it command mentioned in Delaying code startup until service
ports are open. It simply means that everything after the -- mark will be treated as
a single command with (optional) arguments. watchmedo starts that command and
restarts it whenever it discovers a change in the monitored files.

If you install the watchdog package in your Docker image, you will be able to
elegantly include it in your docker-compose.yml as in the following example:

version: '3.8'

services:
echo-server:
build:
ports:
- "5000:5000"
tty: true
depends_on:
- database
command:
watchmedo auto-restart --patterns "*.py" --recursive --
python echo.py
volumes:
- .:/app/
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The above Docker Compose setup will restart the process inside of a container

every time there is a change to your Python code. In our example, this will be any
file with the .py extension that lives under the /app/ path. Thanks to mounting the
source directory as a Docker volume, the watchmedo utility will be able to pick up any
change made on the host filesystem and restart as soon as you save changes in your
editor.

Development environments with Docker and Docker Compose are extremely useful
and convenient but have their limitations. The obvious one is that they only allow
you to run your code under the Linux operating system. Even though Docker is
available for macOS and Windows, it still relies on a Linux virtual machine as an
intermediary layer, so your Docker containers will still be running under Linux.

If you need to develop your application as if it were running exactly on a specific
system that is different from Linux, you need a completely different approach to
environment isolation. In the next section, we will learn about one such tool.

Virtual development environments using
Vagrant

Although Docker together with Docker Compose provides a very good foundation
for creating reproducible and isolated development environments, there are cases
where a real virtual machine will simply be a better (or only) choice. An example of
such a situation may be a need to do some system programming for an operating
system different than Linux.

Vagrant currently seems to be one of the most popular tools for developers to
manage virtual machines for the purpose of local development. It provides a
simple and convenient way to describe development environments with all system
dependencies in a way that is directly tied to the source code of your project. It

is available for Windows, macOS, and a few popular Linux distributions (refer

to https://www.vagrantup.com).

It does not have any additional dependencies. Vagrant creates new development
environments in the form of virtual machines or containers. The exact
implementation depends on a choice of virtualization providers. VirtualBox

is the default provider, and it is bundled with the Vagrant installer, but
additional providers are available as well. The most notable choices are VMware,
Docker, Linux Containers (LXC), and Hyper-V.

The most important configuration is provided to Vagrant in a single file named
a Vagrantfile. It should be independent for every project. The following are the
most important things it provides:

[56]


https://www.vagrantup.com

Chapter 2

* Choice of virtualization provider

* A box, which is used as a virtual machine image

* Choice of provisioning method

* Shared storage between the virtual machine and the virtual machine's host

e DPorts that need to be forwarded between the virtual machine and its host

The syntax language for a Vagrantfile is Ruby. The example configuration file
provides a good template to start the project and has excellent documentation,
so knowledge of this language is not required. The template configuration can be
created using a single command:

$ vagrant init

This will create a new file named Vagrantfile in the current working directory.

The best place to store this file is usually the root of the related project sources. This
file is already a valid configuration that will create a new virtual machine using the
VirtualBox provider and box image based on an Ubuntu Linux distribution. The
default Vagrantfile content that's created with the vagrant init command contains
a lot of comments that will guide you through the complete configuration process.

The following is a minimal example of a Vagrantfile for the Python 3.9 development
environment based on the Ubuntu operating system, with some sensible defaults
that, among others, enable port 80 forwarding in case you want to do some web
development with Python:

Vagrant.configure("2") do |config]|

config.vm.box = "ubuntu/bionic64"

config.vm.network "forwarded_port", guest: 80, host: 8080, host_ip:
"127.0.0.1"

config.vm.provider "virtualbox" do |vb]|
vb.gui = false

vb.memory = "1024"
end
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config.vm.provision "shell", inline: <<-SHELL
apt-get update
apt-get install python3.9 -y
SHELL
end

In the preceding example, we have set the additional provisioning of system
packages with a simple shell script inside of the config.vm.provision section. The
default virtual machine image provided by the ubuntu/bionic64 "box" does not
include the Python 3.9 version, so we need to install it using the apt-get package
manager.

When you feel that the Vagrantfile is ready, you can run your virtual machine
using the following command:

$ vagrant up

The initial startup can take a few minutes, because the actual box image must be
downloaded from the web. There are also some initialization processes that may
take a while every time the existing virtual machine is brought up, and the amount
of time depends on the choice of provider, image, and your system's performance.
Usually, once the image has been downloaded, this takes only a couple of seconds.
When the Vagrant environment is up and running, you can connect to it through
SSH using the following shell shorthand:

$ vagrant ssh

This can be done anywhere in the project source tree below the location of

the vagrantfile. For the developers' convenience, Vagrant will traverse

all directories above the user's current working directory in the filesystem tree,
looking for the configuration file and matching it with the related virtual machine
instance. Then, it establishes the secure shell connection, so the development
environment can be interacted with just like an ordinary remote machine. The
only difference is that the whole project source tree (root defined as the location of
the vagrantfile) is available on the virtual machine's filesystem under /vagrant/.
This directory is automatically synchronized with your host filesystem, so you can
normally use an IDE or code editor of your choice on the host and simply treat the
SSH session to your Vagrant virtual machine just like a normal local shell session.
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Popular productivity tools

Almost every open-source Python package that has been released on PyPl is a kind
of productivity booster —it provides ready-to-use solutions to some problem. That
way we don't have to reinvent the wheel all the time. Some could also say that
Python itself is all about productivity. Almost everything in this language and the
community surrounding it seems to be designed to make software development as
productive as possible.

This creates a positive feedback loop. Since writing code with Python is fun and
easy, a lot of programmers use their free time to create tools that make it even
easier and more fun. And this fact will be used here as a basis for a very subjective
and non-scientific definition of a productivity tool —a piece of software that makes
development easier and more fun.

By nature, productivity tools focus mainly on certain elements of the development
process, such as testing, debugging, and managing packages, and are not core parts
of the products that they help to build. In some cases, they may not even be referred
to anywhere in the project's codebase, despite being used on a daily basis.

We've already discussed tools revolving around package management and the
isolation of virtual environments. These are undoubtedly productivity tools as their
aim is to simplify and ease the tedious processes of setting up your local working
environment. Later in the book, we will discuss more productivity tools that help

to solve specific problems, such as profiling and testing. This section is dedicated to
other tools that are really worth mentioning but have no specific chapter in this book
where they could be introduced.

Custom Python shells

Python programmers spend a lot of time in interactive interpreter sessions. These
sessions are very good for testing small code snippets, accessing documentation,
or even debugging code at runtime. The default interactive Python session is

very simple and does not provide many features, such as tab completion or code
introspection helpers. Fortunately, the default Python shell can be easily extended
and customized.

If you use an interactive shell very often, you can easily modify the behavior of its
prompt. Python at startup reads the PYTHONSTARTUP environment variable, looking
for the path of the custom initializations script. Some operating system distributions
where Python is a common system component (for example, Linux or macOS) may
already be preconfigured to provide a default startup script. It is commonly found in
the user's home directory under the .pythonstartup name.
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These scripts often use the readline module (based on the GNU readline library)
together with rlcompleter in order to provide interactive tab completion and
command history. Both modules are part of the Python standard library.

LY The readline module is not available on Windows. Windows
‘@\‘ users often use the pyreadline package available on PyPl as a

4
g substitution for the missing module.

If you don't have a default Python startup script, you can easily build your own.
A basic script for command history and tab completion can be as simple as the
following:

import atexit
import os

try:

import readline
except ImportError:

print("Completion unavailable: readline module not available")
else:

import rlcompleter

readline.parse_and_bind('tab: complete")

history_file = os.path.expanduser('~/.python_shell history")
try:

readline.read_history_ file(history file)
except IOError:

pass

atexit.register(readline.write_history_file, history file)
del os, history_file, readline, rlcompleter
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Create this file in your home directory and call it . pythonstartup. Then, add
a PYTHONSTARTUP variable in your environment using the path of your file.

If you are running Linux or macOS, you can create the Python startup script in your
home folder. Then, link it with a PYTHONSTARTUP environment variable that's been
set in the system shell startup script. For example, the Bash and Korn shells use

the .profile file, where you can insert a line, as follows:

export PYTHONSTARTUP=~/.pythonstartup

If you are running Windows, it is easy to set a new environment variable as an
administrator in the system preferences and save the script in a common place
instead of using a specific user location.

Writing on the PYTHONSTARTUP script may be a good exercise but creating a good
custom shell all alone is a challenge that few can find time for. Fortunately, there are
a few custom Python shell implementations that immensely improve the experience
of interactive sessions in Python. In the next section, we will take a closer look at one
that is particularly popular —IPython.

Using IPython

[Python provides an extended Python command shell. It is available as a package on
PyPI so you can easily install it with either pip or poetry. Among all the features it
provides, some interesting ones are as follows:

* Dynamic object introspection

* System shell access from the prompt
* Multiline code editing

* Syntax highlighting

* Copy-paste helpers

* Direct profiling support

* Debugging facilities
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Now, [Python is a part of a larger project called Jupyter, which provides interactive
notebooks with live code that can be written in many different languages. Jupyter
notebooks are really popular within the data science community where Python really
shines. So it is good to know their shell sibling.

The IPython shell is invoked through the ipython command. After starting IPython
you will immediately notice that the standard Python prompt is replaced by a
colorful number of execution cells:

$ ipython
Python 3.9.0 (v3.9.0:9¢f6752276, Oct 5 2020, 11:29:23)

Type 'copyright', ‘credits' or 'license' for more information
IPython 7.19.0 -- An enhanced Interactive Python. Type '?' for help.
In [1]:

There are two really handy properties of an IPython shell:

* Itallows you to easily work with multiline code including one that has been
pasted from the clipboard

* Provides shortcuts for inspecting docstrings, module documentation, and
code of imported modules

These two features alone make IPython great for learning purposes. First, if you find
any useful snippets of code (including ones in this book), you can easily paste them
from system's clipboard and modify them as if the Python interpreter were a code
editor. The following is a screenshot of a terminal with an interactive IPython session
that the source code of the echo application was pasted into:
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. @® "CHZ IPython: dev/Expert-Python-Programming-Fourth-Edition.

$ ipython
Python 3.9.8 (v3.9.0:9cf6752276, Oct 5 2020, 11:29:23)
Type 'copyright', 'credits' or 'license' for more information
IPython 7.19.8 -- An enhanced Interactive Python. Type '?' for help.

In [1]:
In [1]:

In [1]:

from flask import Flask, request
from flask import Flask, request
app = Flask(__name__)

from flask import Flask, request

: app = Flask(__name__)

L.t Eapparoutel /")
. def echo():

print{request.headers)

return
f'METHOD: {request.method}n I
f"HEADERS :“n{request.headers}"
f"BODY :\n{request .data.decode()}"

cif _name_ = '__main__":

app.runChost="0.0.0.8")

Figure 2.1: Pasting code into IPython

[63]



Modern Python Development Environments

When it comes to code introspection, IPython provides a really quick way of looking
into the documentation and source code of imported modules, functions, and classes.
Simply type a name you want to inspect and follow it with ? to see the docstring.
The following terminal transcript presents an example exploration session of the
urlunparse() function from the urllib.parse module:

In [1]: urllib.parse.urlunparse?

Signature: urllib.parse.urlunparse(components)

Docstring:

Put a parsed URL back together again. This may result in a
slightly different, but equivalent URL, if the URL that was parsed

originally had redundant delimiters, e.g. a ? with an empty query
(the draft states that these are equivalent).

File: /Library/Frameworks/Python.framework/Versions/3.9/1ib/
python3.9/urllib/parse.py

Type: function

Use ?? after the function name instead and you'll see the whole source code:

In [2]: urllib.parse.urlunparse??
Signature: urllib.parse.urlunparse(components)
Source:
def urlunparse(components):
"""Put a parsed URL back together again. This may result in a
slightly different, but equivalent URL, if the URL that was parsed
originally had redundant delimiters, e.g. a ? with an empty query
(the draft states that these are equivalent)."""
scheme, netloc, url, params, query, fragment, _coerce_result =
_coerce_
args (*components))
if params:
url = "%s;%s" % (url, params)
return _coerce_result(urlunsplit((scheme, netloc, url, query,
fragment)))
File: /Library/Frameworks/Python.framework/Versions/3.9/1ib/
python3.9/urllib/parse.py
Type: function
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| IPython is not the only enhanced Python shell at your disposal.
_\@’_ You may want to look at the btpython and ptpython projects,
AR which have similar capabilities but a slightly different user
- experience.

Interactive sessions are great for experimentation and module exploration but
sometimes can also be useful in final applications. In the next section, you will learn
how to embed them inside of your own code.

Incorporating shells in your own scripts and
programs

Sometimes, there is a need to incorporate a read-eval-print loop (REPL), similar
to Python's interactive session, inside of your own software. This allows easier
experimentation with your code and inspection of its internal state. Sometimes it
is simply easier to embed an interactive terminal instead of designing a custom
Command-Line Interface (CLI) for your application (especially if it has to be used
on rare occasions). Interactive interpreters are often embedded in web application
frameworks to allow developers to interact with data stored within applications
using Python REPL instead of database-specific terminal utilities.

The simplest module that allows emulating Python's interactive interpreter already
comes with the standard library and is named code.

The script that starts interactive sessions consists of one import and a single function
call:

import code
code.interact()

You can easily do some minor tuning, such as modify a prompt value or add banner
and exit messages, but anything fancier will require a lot more work. If you want

to have more features, such as code highlighting, completion, or direct access to the
system shell, it is always better to use something that was already built by someone.
Fortunately, the IPython shell mentioned in the previous section can be embedded in
your own program as easily as the code module.
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The following are examples of how to invoke all of the previously mentioned shells
inside of your code:

import IPython
IPython.embed()

import bpython
bpython.embed()

from ptpython.repl import embed
embed(globals(), locals())

The first two arguments to the embed() function are dictionaries of objects that will
be available as global and local namespaces during the interactive session. This can
be used to prepopulate the interactive session with modules, variables, functions, or
classes that are likely to be used during that session.

Interactive sessions are great for providing a low-level interface of an application
directly to the user. Sometimes they can be used to manually inspect the internal
state of an application by providing access to either local or global variables. Still,
if you want to interactively trace how your application executes the code, you
will probably need to use a debugger. Fortunately, Python comes with a built-in
debugger that offers such a possibility in the form of an interactive session.

Interactive debuggers

Code debugging is an integral element of the software development process.
Many programmers can spend most of their life using only extensive logging
and print() functions as their primary debugging tools, but most professional
developers prefer to rely on some kind of debugger.

Python already ships with a built-in interactive debugger called pdb. It can be
invoked from the command line on the existing script, so Python will enter post-
mortem debugging if the program exits abnormally:

$ python3 -m pdb -c continue script.py

Another way to achieve similar behavior is running the interpreter with the -1i flag:

$ python3 -i script.py
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The preceding code will open an interactive session at the moment where Python
would normally exit. From there, you can start a post-mortem debugging session
by importing the pdb module and using the pdb.pm() function as in the following
example:

>>> import pdb
>>> pdb.pm()

Post-mortem debugging, while useful, does not cover every scenario. It is useful
only when the application exits with some exception if the bug occurs. In many
cases, faulty code behaves abnormally but does not exit unexpectedly. In such cases,
custom breakpoints can be set on a specific line of code using the breakpoint()
function. The following is an example of setting a breakpoint inside of a simple
function:

import math

def circumference(r: float):
breakpoint()
return 2 * math.pi * r

The breakpoint () function was not available prior to Python 3.7
so you may see some older Python developers using the following
Y idiom
/@\ import pdb; pdb.set_trace()
This will cause the Python interpreter to start the debugger session
on this line during runtime.

The pdb module is very useful for tracing issues, and at first glance, it may look very
similar to the well-known GNU Debugger (GDB). Because Python is a dynamic
language, the pdb session is very similar to an ordinary interpreter session. This
means that the developer is not limited to tracing code execution but can call any
code and even perform module imports.

Sadly, because of its roots (gdb), your first experience with pdb can be a bit
overwhelming due to the existence of cryptic short-letter debugger commands such
as h, b, s, n, j, and r. When in doubt, the help pdb command, which can be typed
during the debugger session, will provide extensive usage information. You can also
use the h shortcut.
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The debugger session in pdb is very simple and does not provide additional features
such as tab completion or code highlighting. Fortunately, same as with enhanced
Python shells, there are a couple of enhanced debugging shells available on PyPI.
There is even one based on IPython. Its name is ipdb.

If you want to use ipdb instead of plain pdb, you can either use a modified debugging
idiom (import ipdb; ipdb.set_trace()) or set the PYTHONBREAKPOINT environment
variable to the ipdb.set_trace value.

Last but not least, many IDEs offer visual debuggers and some developers find them
extremely useful. These debuggers allow you to set breakpoints in multiple places of
your application without the need for modifying the code with manual breakpoint()
calls. They also often allow adding variable watches that stop program execution
when the selected variable has a specific value.

Other productivity tools

We've concentrated so far on the productivity tools that are specific to Python. But
the real truth is that programming in different languages is not that different. It
doesn't matter what languages programmers use, they often face the same problems
and tedious tasks like massaging the data in various formats, downloading network
artifacts, searching through filesystems, and navigating projects.

Probably the most flexible productivity tool of all time will be Bash together with
common standard utilities found in every POSIX and UNIX-like operating system.
Knowing them all thoroughly is probably impossible for an ordinary human. But
knowing a few well is something that will make you really productive.

Simply put, sometimes there's no need to write a sophisticated Python script for a
one-off job if you can quickly wire and pipe together a few invocations of the curl,
grep, sed, and sort commands. Sometimes, there is already a specialized tool for a
specific and non-trivial job (counting lines of code, for instance) that would take a lot
of time to implement from scratch.

The following table gives a short list of such useful utilities that I find invaluable
when working with any code. Think of it as a mini awesome list of programming
productivity tools:
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Utility

Description

iq
https://stedolan.github.io/jq/

Utility for manipulating data in the form of JSON
documents. Extremely useful for manipulating
the output of web APIs directly in the shell.

Data is read from standard input and results

are printed on standard output. Manipulation

is described through a custom domain-specific
language that is very easy to learn.

yq
https://pypi.org/project/yq/

Sibling of jq that uses the same syntax for
manipulating YAML documents.

curl

https://curl.se

Old-fashioned classic for transferring data
through URLs. Most often used for interfacing
with HTTP but actually supports over 20
protocols.

HTTPie

https://httpie.io

Python-based utility for interfacing with
HTTP servers. Many developers find it more
convenient to use than curl.

autojump

https://github.com/wting/
autojump

Shell utility that allows users to quickly
navigate to most recently visited directories.
Indispensable for programmers working on
dozens of projects in parallel. Simply type j and
a few characters of the desired directory name
and you will probably land in the right place.
Plays nicely with Poetry workflows.

cloc

https://github.com/AlDanial/
cloc

One of the best and most complete utilities for
counting lines of code. Sometimes you need

to see how big a project is and how many
programming or markup languages it uses. cloc
will give you the right answer quickly.

ack-grep

https://beyondgrep.com

grep on steroids. Allows you to quickly search
through large codebases looking for a specific
string. Allows filtering by programming
language and often is simply faster and better
than opening a project in an IDE.

GNU parallel

https://www.gnu.org/software/
parallel/

Enhanced replacement of xargs. Really
invaluable if you want to do many things
in parallel inside of in a shell or Bash script,
especially if you want to do it reliably and
efficiently.
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Summary

This chapter was all about development environments for Python programmers.
We've discussed the importance of environment isolation for Python projects.
You've learned two different levels of environment isolation (application-level and
system-level), and multiple tools that allow you to create them in a consistent and
repeatable manner. We've also discussed some essential topics for managing Python
dependencies in your projects. This chapter ended with a review of a few tools

that improve the ways in which you can experiment with Python or debug your
programs and work effectively.

Once you have all of these tools in your tool belt, you are well-prepared for the next
few chapters, where we will discuss multiple features of modern Python syntax.
You're probably already hungry for Python code so we will start with a quick
overview of the new things that were included in Python over the last few releases.

If you're quite up to date with what's happening in Python, you can probably skip
the next chapter. Still, take a quick look at the headings — it is possible that you have
missed something, as Python evolves really fast.
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One of the most important steps in the history of Python was probably the release
of Python 3.0. The most notable changes that happened in that release were:

Resolving multiple issues regarding text, data, and Unicode handling
Getting rid of old-style classes

Starting standard library reorganizations

Introducing function annotations

Introducing new syntax for exception handling

As we know from Chapter 1, Current Status of Python, Python 3 isn't backward-
incompatible with Python 2. This is the main reason why it took so many years for
the Python community to fully embrace it. That was a tough, albeit necessary, lesson
for Python core developers and the Python community.

Fortunately, problems associated with the adoption of Python 3 didn't stop the
process of language evolution. Since December 3, 2008 (the official release of Python
3.0), we've seen a stable inflow of new major Python updates. Every new release
brought new improvements to the language, its standard library, and its interpreter.
Moreover, beginning with version 3.9, Python has adopted an annual release cycle.
This means we will have access to new features and improvements every year.

/ If you want to learn more about the Python release cycle, read the
\/;p; PEP 602 — Annual Release Cycle for Python document, available at
https://www.python.org/dev/peps/pep-0602/.

[71]


https://www.python.org/dev/peps/pep-0602/

New Things in Python

In this chapter, we will take a closer look at the recent Python evolution. We will
review a number of important additions across the latest few releases. We will
also take a speculative look into the future and present a few features that have
been accepted in the PEP process and will become an official part of the Python
programming language in the very near future. Along the way, we'll cover the
following topics:

* Recent language additions
* Not that new, but still shiny
*  What may come in the future?

But before we review those features, let's begin by considering the technical
requirements.

Technical requirements

The following are the Python packages that are mentioned in this chapter that you
can download from PyPI:

* mypy
* pyright

Information on how to install packages is included in Chapter 2, Modern Python
Development Environments.

The code files for this chapter can be found at https://github.com/PacktPublishing/
Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%203.

Recent language additions

Every release of Python comes with it a lot of changes of different types. Almost
every release of Python brings some new syntax elements. However, the majority

of the changes are related to Python's standard library, the CPython interpreter, the
Python API, and CPython's C APL Due to space limitations, it is impossible to cover
all of these in this book. That is why we will focus just on new syntax features and
new additions to the standard library.

In terms of the two latest versions of Python, we can distinguish four main syntax
updates:

* Dictionary and merge update operators (added in Python 3.9)
* Assignment expressions (added in Python 3.8)
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* Type hinting generics (added in Python 3.9)
* Positional-only arguments (added in Python 3.8)

These four features would best be described as quality-of-life improvements. They
do not introduce any new programming paradigms, nor drastically change the way
your code can be written. They simply allow for better coding patterns or enable
stricter API definition.

In recent years, Python core developers have been primarily focused on removing
dead or redundant modules from the standard library rather than adding anything
new. Still, from time to time, we see some standard library additions. In the last two
releases, we have been the beneficiaries of two completely new modules:

* The zoneinfo module for supporting the IANA (Internet Assigned Numbers
Authority) time zone database (added in Python 3.9)

* The graphlib module for operating with graph-like structures (added in
Python 3.8)

Both modules are fairly small with regards to their API size. Later, we will discuss
some example areas where you could apply them. But first, let's zoom into the
syntax updates incorporated in Python 3.8 and Python 3.9.

Dictionary merge and update operators

Python allows the use of a number of selected arithmetic operators to manipulate
the built-in container types, including lists, tuples, sets, and dictionaries.

For lists and tuples, you can use the + (addition) operator to concatenate two
variables as long as they are the same type. There is also the += operator, which
allows for the in-place modification of existing variables. The following transcript
presents examples of the concatenation of lists and tuples in an interactive session:

[1, 2, 3] + [4, 5, 6]
2, 3, 4, 5, 6]

(1, 2, 3) + (4, 5, 6)
2, 3, 4, 5, 6)

value = [1, 2, 3]
value += [4, 5, 6]

value

2, 3, 4, 5, 6]
value = (1, 2, 3)
value += (4, 5, 6)
value

2, 3, 4, 5, 6)
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When it comes to sets, there are exactly four binary operators (having two operands)
that produce a new set:

* Intersection operator: Represented by & (bitwise OR). This produces a set
with elements common to both sets.

* Union operator: Represented by | (bitwise OR). This produces a set of all
elements in both sets.

* Difference operator: Represented by - (subtraction). This produces a set with
elements in the left-hand set that are not in the right-hand set.

* Symmetric difference: Represented by » (bitwise XOR). This produces a set
with elements of both sets that are in either of the sets but not both.

The following transcript presents examples of intersection and union operations on
sets in an interactive session:

>>> {1, 2, 3} & {1, 4}
{1}

>»> {1, 2, 3} | {1, 4}
{1, 2, 3, 4}

>>> {1, 2, 3} - {1, 4}
{2, 3}

>>> {1, 2, 3} ~ {1, 4}
{2, 3, 4}

For a very long time, Python didn't have a dedicated binary operator that would
permit the production of a new dictionary from two existing dictionaries. Starting
with Python 3.9, we can use the | (bitwise OR) and |= (in-place bitwise OR)
operators to perform a dictionary merge and update operations on dictionaries. That
should be the idiomatic way of producing a union of two dictionaries. The reasoning
behind adding new operators was outlined in the PEP 584 — Add Union Operators To
Dict document.

A programming idiom is the common and most preferable way
of performing specific tasks in a given programming language.
Writing idiomatic code is an important part of Python culture. The

\/&/ Zen of Python says: " There should be one — and preferably only one —

obvious way to do it."

We will discuss more idioms in Chapter 4, Python in Comparison with
Other Languages.
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In order to merge two dictionaries into a new dictionary, use the following
expression:

dictionary 1 | dictionary 2

The resulting dictionary will be a completely new object that will have all the keys
of both source dictionaries. If both dictionaries have overlapping keys, the resulting
object will receive values from the rightmost object.

Following is an example of using this syntax on two dictionary literals, where the
dictionary on the left is updated with values from the dictionary on the right:

>>> {'a': 1} | {'a': 3, 'b': 2}

{'a': 3, 'b': 2}

If you prefer to update the dictionary variable with the keys coming from a different
dictionary, you can use the following in-place operator:

existing dictionary |= other_dictionary

The following is an example of usage with a real variable:

>>> mydict
>>> mydict
>>> mydict
{'a': 3, 'b': 2}

In older versions of Python, the simplest way to update an existing dictionary
with the contents of another dictionary was to use the update() method, as in the
following example:

existing dictionary.update(other_dictionary)

This method modifies existing_dictionary in place and returns no value. This
means that it does not allow the straightforward production of a merged dictionary
as an expression and is always used as a statement.

\/V The difference between expressions and statements will be

explained in the Assignment expressions section.
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Alternative — Dictionary unpacking

It is a little-known fact that Python already supported a fairly concise way to
merge two dictionaries before version 3.9 through a feature known as dictionary
unpacking. Support for dictionary unpacking in dict literals was introduced

in Python 3.5 with PEP 448 Additional Unpacking Generalizations. The syntax for
unpacking two (or more) dictionaries into a new object is as follows:

{**dictionary_1, **dictionary_ 2}

The example involving real literals is as follows:

>»>>a = {'a': 1}; b = {'a":3, 'b': 2}
>>> {**a, **b}

{'a': 3, 'b': 2}

This feature, together with list unpacking (with *value syntax), may be familiar for
those who have experience of writing functions that can accept an undefined set

of arguments and keyword arguments, also known as variadic functions. This is
especially useful when writing decorators.

\/V We will discuss the topic of variadic functions and decorators in

detail in Chapter 4, Python in Comparison with Other Languages.

You should remember that dictionary unpacking, while extremely popular in
function definitions, is an especially rare method of merging dictionaries. It may
confuse less experienced programmers who are reading your code. That is why you
should prefer the new merge operator over dictionary unpacking in code that runs in
Python 3.9 and newer versions. For older versions of Python, it is sometimes better to
use a temporary dictionary and a simple update () method.

Alternative — ChainMap from the collections module

Yet another way to create an object that is, functionally speaking, a merge of two
dictionaries is through the ChainMap class from the collections module. This is a
wrapper class that takes multiple mapping objects (dictionaries in this instance) and
acts as if it was a single mapping object.

The syntax for merging two dictionaries with ChainMap is as follows:

new_map = ChainMap(dictionary_ 2, dictionary_1)

[76]



Chapter 3

Note that the order of dictionaries is reversed compared to the | operator. This
means that if you try to access a specific key of the new_map object, it will perform
lookups over wrapped objects in a left-to-right order. Consider the following
transcript, which illustrates examples of operations using the ChainMap class:

>>> from collections import ChainMap

>>> user_account = {"iban": "GB71BARC20031885581746", "type":
"account"}

>>> user_profile = {"display_name": "John Doe", "type": "profile"}
>>> user = ChainMap(user_account, user_profile)
>>> user["iban"]

'GB71BARC20031885581746"
>>> user["display_name"
'John Doe'

>>> user["type"]
‘account’

In the preceding example, we can clearly see that the resulting user object of

the ChainMap type contains keys from both the user_account and user_profile
dictionaries. If any of the keys overlap, the ChainMap instance will return the value of
the leftmost mapping that has the specific key. That is the complete opposite of the
dictionary merge operator.

ChainMap is a wrapper object. This means that it doesn't copy the contents of the
source mappings provided, but stores them as a reference. This means that if
underlying objects change, ChainMap will be able to return modified data. Consider
the following continuation of the previous interactive session:

>>> user["display_name"

'John Doe'

>>> user_profile["display name"] = "Abraham Lincoln"
>>> user["display_name"]

‘Abraham Lincoln'

Moreover, ChainMap is writable and populates changes back to the underlying
mapping. What you need to remember is that writes, updates, and deletes only affect
the leftmost mapping. If used without proper care, this can lead to some confusing
situations, as in the following continuation of the previous session:

>>> user["display_name"] = "John Doe"
>>> user["age"] = 33
>>> user["type"] = "extension"

>>> user_profile
{'display _name': 'Abraham Lincoln', ‘'type': 'profile'}
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>>> user_account

{'iban': 'GB71BARC20031885581746', 'type': 'extension', 'display_name':
"John Doe', 'age': 33}

In the preceding example, we can see that the'display_name' key was populated
back to the user_account dictionary, where user_profile was the initial source
dictionary holding such a key. In many contexts, such backpropagating behavior of
ChainMap is undesirable. That's why the common idiom for using it for the purpose
of merging two dictionaries actually involves explicit conversion to a new dictionary.
The following is an example that uses previously defined input dictionaries:

>>> dict(ChainMap(user_account, user_profile))

{'display _name': 'John Doe', 'type': 'account', 'iban':
'GB71BARC20031885581746 "' }

If you want to simply merge two dictionaries, you should prefer a new merge
operator over ChainMap. However, this doesn't mean that ChainMap is completely
useless. If the back and forth propagation of changes is your desired behavior,
ChainMap will be the class to use. Also, ChainMap works with any mapping type.

So, if you need to provide unified access to multiple objects that act as if they were
dictionaries, ChainMap will enable the provision of a single merge-like unit to do so.

If you have a custom dict-like class, you can always extend it with
the special __or__ () method to provide compatibility with the |
L operator instead of using ChainMap. Overriding special methods
'/@\' will be covered in Chapter 4, Python in Comparison with Other
2 Languages. Anyway, using ChainMap is usually easier than writing
a custom __or__ () method and will allow you to work with pre-

existing object instances of classes that you cannot modify.

Usually, the most important reason for using ChainMap over dictionary unpacking

or the union operator is backward compatibility. On Python versions older than 3.9,
you won't be able to use the new dictionary merge operator syntax. So, if you have to
write code for older versions of Python, use ChainMap. If you don't, it is better to use
the merge operator.

Another syntax change that has a big impact on backward compatibility is
assignment expressions.
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Assignment expressions

Assignment expressions are a fairly interesting feature because their introduction
affected the fundamental part of Python syntax: the distinction between expressions
and statements. Expressions and statements are the key building blocks of almost
every programming language. The difference between them is really simple:
expressions have a value, while statements do not.

Think of statements as consecutive actions or instructions that your program
executes. So, value assignments, if clauses, together with for and while loops, are all
statements. Function and class definitions are statements, too.

Think of expressions as anything that can be put into an if clause. Typical examples
of expressions are literals, values returned by operators (excluding in-place
operators), and comprehensions, such as list, dictionary, and set comprehensions.
Function calls and method calls are expressions, too.

There are some elements of the many programming languages that are often
inseparably bound to statements. These are often:

* Functions and class definitions

* Loops

* if...elseclauses

* Variable assignments

Python was able to break that barrier by providing syntax features that were
expression counterparts of such language elements, namely:

* Lambda expressions for anonymous functions as a counterpart for function
definitions:

lambda x: x**2

* Type object instantiation as a counterpart for class definition:
type("MyClass®, (), {})

* Various comprehensions as a counterpart for loops:

squares_of_2 = [x**2 for x in range(10)]

* Compound expressions as a counterpart for if .. else statements:

"odd" if number % 2 else "even"
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For many years, however, we haven't had access to syntax that would convey the
semantics of assigning a value to a variable in the form of an expression, and this
was undoubtedly a conscious design choice on the part of Python's creators. In
languages such as C, where variable assignment can be used both as an expression
and as a statement, this often leads to situations where the assignment operator is
confused by the equality comparison. Anyone who has programmed in C can attest
to the fact that this is a really annoying source of errors. Consider the following
example of C code:

int err 0;
if (err = 1) {
printf("Error occured");

}
And compare it with the following;:

int err = 0;
if (err == 1) {
printf("Error occured");

}

Both are syntactically valid in C because err = 1 is an expression in C that will
evaluate to the value 1. Compare this with Python, where the following code will
result in a syntax error:

err = 0
if err = 1:
printf("Error occured")

On rare occasions, however, it may be really handy to have a variable assignment
operation that would evaluate to a value. Luckily, Python 3.8 introduced the
dedicated := operator, which assigns a value to the variable but acts as an expression
instead of a statement. Due to its visual appearance, it was quickly nicknamed the
walrus operator.

The use cases for this operator are, quite frankly, limited. They help to make

code more concise. And often, more concise code is easier to understand because

it improves the signal-to-noise ratio. The most common scenario for the walrus
operator is when a complex value needs to be evaluated and then immediately used
in the statements that follow.

A commonly referenced example is working with regular expressions. Let's imagine
a simple application that reads source code written in Python and scans it with
regular expressions looking for imported modules.
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Without the use of assignment expressions, the code could appear as follows:

import os
import re
import sys

import_re = re.compile(
r"M\s*import\s+\.{0,2}((\w+\.)*(\w+))\s*$"

)

import_from_re = re.compile(
r"M\s*from\s+\.{0,2} ((\w+\.)*(\w+) ) \s+import\s+(\w+|\*)+\s*$"

if __name__ == "_main__"
if len(sys.argv) != 2:
print(f"usage: {os.path.basename(__file_ )} file-name")
sys.exit(1)

with open(sys.argv[1]) as file:
for line in file:
match = import_re.search(line)
if match:
print(match.groups()[@])

match = import_from_re.search(line)
if match:
print(match.groups()[@])

As you can observe, we had to repeat twice the pattern that evaluates the match of
complex expressions and then retrieves grouped tokens. That block of code could be
rewritten with assignment expressions in the following way:

if match := import_re.match(line):
print(match.groups()[0])

if match := import_from_re.match(line):
print(match.groups()[@])

As you can see, there is a small improvement in terms of readability, but it isn't
dramatic. This type of change really shines in situations where you need to repeat
the same pattern multiple times. The continuous assignment of temporary results to
the same variable can make code look unnecessarily bloated.
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Another use case could be reusing the same data in multiple places in larger
expressions. Consider the example of a dictionary literal that represents some
predefined data of an imaginary user:

first_name = "John"
last_name = "Doe"
height = 168
weight = 70

user = {

"first_name": first_name,
"last_name": last_name,
"display_name": f"{first_name} {last_name}",
"height": height,
"weight": weight,
"bmi": weight / (height / 100) ** 2,
}

Let's assume that in our situation, it is important to keep all the elements consistent.
Hence, the display name should always consist of a first name and a last name, and
the BMI should be calculated on the basis of weight and height. In order to prevent
us from making a mistake when editing specific data components, we had to define
them as separate variables. These are no longer required once a dictionary has been
created. Assignment expressions enable the preceding dictionary to be written in a
more concise way:

user = {
"first_name": (first_name := "John"),
"last_name": (last_name := "Doe"),

"display_name": f"{first_name} {last_name}",
"height": (height := 168),
"weight": (weight := 70),
"bmi": weight / (height / 100) ** 2,
}

As you can see, we had to wrap assignment expressions with parentheses.
Unfortunately, the : = syntax clashes with the : character used as an association
operator in dictionary literals and parentheses are a way around that.

Assignment expressions are a tool for polishing your code and nothing more.
Always make sure that once applied, they actually improve readability, instead of
making it more obscure.

[82]



Chapter 3

Type-hinting generics

Type-hinting annotations, although completely optional, are an increasingly popular
feature of Python. They allow you to annotate variable, argument, and function
return types with type definitions. These type annotations serve documentational
purposes, but can also be used to validate your code using external tools. Many
programming IDEs are able to understand typing annotations and visually highlight
potential typing problems. There are also static type checkers, such as mypy or
pyright, that can be used to scan through the whole code base and report all typing
errors of code units that use annotations.

The story of the mypy project is very interesting. It began life as
the Ph.D. research of Jukka Lehtosalo, but it really started to take
/ shape when he started working on it together with Guido van
\/;p> Rossum (Python creator) at Dropbox. You can learn more about
that story from the farewell letter to Guido on Dropbox's tech blog
at https://blog.dropbox.com/topics/company/thank-you--
guido.

In its simplest form, type hinting can be used with a conjunction of the built-in

or custom types to specify desired types, function input arguments, and return
values, as well as local variables. Consider the following function, which allows the
performance of the case-insensitive lookup of keys in a string-keyed dictionary:

from typing import Any

def get_ci(d: dict, key: str) -> Any:
for k, v in d.items():
if key.lower() == k.lower():
return v

The preceding example is, of course, a naive implementation of

\/‘/ a case-sensitive lookup. If you would like to do this in a more

performant way, you would probably require a dedicated class.
We will eventually revisit this problem later in the book.

The first statement imports from the typing module the Any type, which defines that
the variable or argument can be of any type. The signature of our function specifies
that the first argument, d, should be a dictionary, while the second argument, key,
should be a string. The signature ends with the specification of a return value, which
can be of any type.
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If you're using type checking tools, the preceding annotations will be sufficient

to detect many mistakes. If, for instance, a caller switches the order of positional
arguments, you will be able to detect the error quickly, as the key and d arguments
are annotated with different types. However, these tools will not complain in a
situation where a user passes a dictionary that uses different types for keys.

For that very reason, generic types such as tuple, list, dict, set, frozenset, and
many more can be further annotated with types of their content. For a dictionary,
the annotation has the following form:

dict[KeyType, ValueType]

The signature of the get_ci() function, with more restrictive type annotations,
would be as follows:

def get_ci(d: dict[str, Any], key: str) -> Any:

In older versions of Python, built-in collection types could not be annotated so easily
with types of their content. The typing module provides special types that can be
used for that purpose. These types include:

e typing.Dict for dictionaries

* typing.List for lists

* typing.Tuple for tuples

* typing.Set for sets

* typing.FrozenSet for frozen sets
These types are still useful if you need to provide functionality for a wide spectrum
of Python versions, but if you're writing code for Python 3.9 and newer releases

only, you should use the built-in generics instead. Importing those types from typing
modules is deprecated and they will be removed from Python in the future.

\/‘/ We will take a closer look at typing annotations in Chapter 4, Python

in Comparison with Other Languages.

Positional-only parameters

Python is quite flexible when it comes to passing arguments to functions. There are
two ways in which function arguments can be provided to functions:
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* Asa positional argument

* Asakeyword argument

For many functions, it is the choice of the caller in terms of how arguments are
passed. This is a good thing because the user of the function can decide that a specific
usage is more readable or convenient in a given situation. Consider the following
example of a function that concatenates the strings using a delimiter:

def concatenate(first: str, second: str, delim: str):
return delim.join([first, second])

There are multiple ways in terms of how this function can be called:

* With positional arguments: concatenate("John", "Doe", " ")

*  With keyword arguments: concatenate(first="John", second="Doe",
delim=" ")

*  With a mix of positional and keyword arguments: concatenate("John",
"Doe", delim=" ")

If you are writing a reusable library, you may already know how your library is
intended to be used. Sometimes, you may know from your experience that specific
usage patterns will make the resulting code more readable, or quite the opposite.
You may not be certain about your design yet and want to make sure that the API of
your library may be changed within a reasonable time frame without affecting your
users. In either case, it is a good practice to create function signatures in a way that
supports the intended usage and also allows for future extension.

Once you publish your library, the function signature forms a usage contract with
your library. Any change to the argument names and their ordering can break
applications of the programmer using that library.

If you were to realize at some point in time that the argument names first and
second don't properly explain their purpose, you cannot change them without
breaking backward compatibility. That's because there may be a programmer who
used the following call:

concatenate(first="John", second="Doe", delim=" ")

If you want to convert the function into a form that accepts any number of strings,
you can't do that without breaking backward compatibility because there might be
a programmer who used the following call:

concatenate("John", "Doe", " ")
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Fortunately, Python 3.8 added the option to define specific arguments as positional-
only. This way, you may denote which arguments cannot be passed as keyword
arguments in order to avoid issues with backward compatibility in the future. You
can also denote specific arguments as keyword-only. Careful consideration as to
which arguments should be passed as position-only and which as keyword-only
serves to make the definition of functions more susceptible to future changes. Our
concatenate() function, defined with the use of positional-only and keyword-only
arguments, could look as follows:

def concatenate(first: str, second: str, /, *, delim: str):
return delim.join([first, second])

The way in which you read this definition is as follows:

* All arguments preceding the / mark are positional-only arguments

e All arguments following the * mark are keyword-only arguments

The preceding definition ensures that the only valid call to the concatenate()
function would be in the following form:

concatenate("John", "Doe", delim=" ")

And if you were to try to call it differently, you would receive a TypeError error, as
in the following example:

>>> concatenate("John", "Doe", " ")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: concatenate() takes 2 positional arguments but 3 were given

Let's assume that we've published our function in a library in the last format and
now we want to make it accept an unlimited number of positional arguments. As
there is only one way in which this function can be used, we can now use argument
unpacking to implement the following change:

def concatenate(*items, delim: str):
return delim.join(items)

The *items argument will capture all the positional arguments in the items tuple.
Thanks to such changes, users will be able to use the function with a variable number
of positional items, as in the following examples:
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>>> concatenate("John", "Doe", delim=" ")

'John Doe'

>>> concatenate("Ronald", "Reuel", "Tolkien", delim=" ")
'Ronald Reuel Tolkien'

>>> concatenate("Jay", delim=" ")

‘Jay
>>> concatenate(delim=" ")

Positional-only and keyword-only arguments are a great tool for library creators

as they create some space for future design changes that won't affect their users.

But they are also a great tool for writing applications, especially if you work with
other programmers. You can utilize positional-only and keyword-only arguments to
make sure that functions will be invoked as intended. This may help in future code
refactoring.

zoneinfo module

Handling time and time zones is one of the most challenging aspects of
programming. The main reasons are numerous common misconceptions that
programmers have about time and time zones. Another reason is the never-ending
stream of updates to actual time zone definitions. And these changes happen every
year, often for political reasons.

Python, starting from version 3.9, makes access to the information regarding current
and historical time zones easier than ever. The Python standard library provides a
zoneinfo module that is an interface to the time zone database either provided by
your operating system or obtained as a first-party tzdata package from PyPIL.

Packages from PyPI are considered third-party packages, while
standard library modules are considered first-party packages.
‘ , tzdata is quite unique because it is maintained by CPython's core
\p/ developers. The reason for extracting the contents of the IANA
database to separate packages on PyPl is to ensure regular updates
that are independent from CPython's release cadence.

Actual usage involves creating ZoneInfo objects using the following constructor call:

ZoneInfo(timezone_ key)
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Here, timezone_key is a filename from IANA's time zone database. These filenames
resemble the way in which time zones are often presented in various applications.
Examples include:

®* Europe/Warsaw

® Asia/Tel Aviv

®* America/Fort_Nelson
* (GMT-0

Instances of the ZoneInfo class can be used as a tzinfo parameter of the datetime
object constructor, as in the following example:

from datetime import datetime
from zoneinfo import ZoneInfo

dt = datetime(2020, 11, 28, tzinfo=ZoneInfo("Europe/Warsaw"))

This allows you to create so-called time zone-aware datetime objects. Time zone-
aware datetime objects are essential in properly calculating the time differences in
specific time zones because they are able to take into account things such as changes
between standard and daylight-saving time, together with any historical changes
made to JANA's time zone database.

You can obtain a full list of all the time zones available in your system using the
zoneinfo.available_timezones() function.

graphlib module

Another interesting addition to the Python standard library is the graphlib module,
added in Python 3.9. This is a module that provides utilities for working with graph-
like data structures.

A graph is a data structure consisting of nodes connected by edges. Graphs are a
concept from the field of mathematics known as graph theory. Depending on the
edge type, we can distinguish between two main types of graphs:

* Anundirected graph is a graph where every edge is undirected. If a graph
was a system of cities connected by roads, the edges in an undirected graph
would be two-way roads that can be traversed from either side. So, if two
nodes, A and B, are connected to edge E in an undirected graph, you can
traverse from A to B and from B to A using the same edge, E.
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* A directed graph is a graph where every edge is directed. Again, if a graph
was a system of cities connected by roads, the edges in a directed graph
would be a single-way road that can be traversed from a single point of
origin only. If two nodes, A and B, are connected to a single edge, E, that
starts from node A, you can traverse from A to B using that edge, but can't
traverse from B to A.

Moreover, graphs can be either cyclic or acyclic. A cyclic graph is a graph that

has at least one cycle—a closed path that starts and ends at the same node. An
acyclic graph is a graph that does not have any cycles. Figure 3.1 presents example
representations of directed and undirected graphs:

directed acyclic graph

(2)

directed cyclic graph undirected cyclic graph

Figure 3.1: Visual representations of various graph types

Graph theory deals with many mathematical problems that can be modeled using
graph structures. In programming, graphs are used to solve many algorithmic
problems. In computer science, graphs can be used to represent the flow of data or
relationships between objects. This has many practical applications, including:

* Modeling dependency trees
* Representing knowledge in a machine-readable format

* Visualizing information

* Modeling transportation systems
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The graphlib module is supposed to aid Python programmers when working with
graphs. This is a new module, so it currently only includes a single utility class
named TopologicalSorter. As the name suggests, this class is able to perform a
topological sort of directed acyclic graphs.

Topological sorting is the operation of ordering nodes of a Directed Acyclic Graph
(DAG) in a specific way. The result of topological sorting is a list of all nodes where
every node appears before all the nodes that you can traverse to from that node, in
other words:

* The first node will be the node that cannot be traversed to from any other
node

* Every next node will be a node from which you cannot traverse to previous
nodes

* The last node will be a node from which you cannot traverse to any node
Some graphs may have multiple orderings that satisfy the requirements of

topological sorting. Figure 3.2 presents an example DAG with three possible
topological orderings:

0 9 O OQ

Figure 3.2: Various ways to sort the same graph topologically
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To better understand the use of topological sorting, let's consider the following
problem. We have a complex operation to execute that consists of multiple
dependent tasks. This job could be, for instance, migrating multiple database
tables between two different database systems. This is a well-known problem, and
there are already multiple tools that can migrate data between various database
management systems. But for the sake of illustration, let's assume that we don't
have such a system and need to build something from scratch.

In relational database systems, rows in tables are often cross-referenced, and the
integrity of those references is guarded by foreign key constraints. If we would like
to ensure that, at any given point in time, the target database is referentially integral,
we would have to migrate our all the tables in specific order. Let's assume we have
the following database tables:

* A customers table, which holds personal information pertaining to
customers.

* An accounts table, which holds information about user accounts, including
their balances. A single user can have multiple accounts (for instance,
personal and business accounts), and the same account cannot be accessed by
multiple users.

* A products table, which holds information on the products available for sale
in our system.

* Anorders table, which holds individual orders of multiple products within a
single account made by a single user.

* Anorder_products table, which holds information regarding the quantities
of individual products within a single order.

Python does not have any special data type dedicated to represent graphs. But it has
a dictionary type that is great at mapping relationships between keys and values.
Let's define references between our imaginary tables:

table_references = {
"customers": set(),
"accounts": {"customers"},
"products": set(),
"orders": {"accounts", "customers"},
"order_products": {"orders", "products"},
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If our reference graph does not have cycles, we can topologically sort it. The result

of that sorting would be a possible table migration order. The constructor of the
graphlib.TopologicalSorter class accepts as input a single dictionary in which keys
are origin nodes and values are sets of destination nodes. This means that we can
pass our table_references variable directly to the TopologicalSorter() constructor.
To perform a topological sort, we can use the static_order() call, as in the following
transcript from an interactive session:

>>> from graphlib import TopologicalSorter

>>> table_references =

"customers": set(),

"accounts": {"customers"},

"products": set(),

"orders": {"accounts", "customers"},
"order_products": {"orders", "products"},

.}
>>> sorter = TopologicalSorter(table references)
>>> list(sorter.static_order())
["customers', 'products', 'accounts', ‘'orders', ‘'order_products']

Topological sorting can be performed only on DAGs. TopologicalSorter doesn't
check for the existence of cycles during initialization, although it will detect cycles
during sorting. If a cycle is found, the static_order() method will raise a graphlib.
CycleError exception.

Our example was, of course, straightforward and fairly easy to
‘ / solve by hand. However, real databases often consist of dozens
\p/ or even hundreds of tables. Preparing such a plan manually for
databases that big would be a very tedious and error-prone task.

The features we've reviewed so far are quite new, so it will take some time until they
become the mainstream elements of Python. That's because they are not backward
compatible, and older versions of Python are still supported by many library
maintainers.

In the next section, we will review a number of important Python elements
introduced in Python 3.6 and Python 3.7, so we will definitely have wider Python
version coverage. Not all of these new elements are popular though, so I hope you
will still learn something.
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Not that new, but still shiny

Every Python release brings something new. Some changes are real revelations;
they greatly improve the way we can program and are adopted almost instantly by
the community. The benefits of other changes, however, may not be obvious at the
beginning and they may require a little more time to really take off.

We've seen this happening with function annotations that were part of Python
from the very first 3.0 release. It took years to build an ecosystem of tools that
would leverage them. Now, annotations seem almost ubiquitous in modern Python
applications.

The core Python developers are very conservative about adding new modules to
the standard library and we rarely see new additions. Still, chances are that you
will soon forget about using the graphlib or zoneinfo modules if you don't have
the opportunity to work with problems that require manipulating graph-like data
structures or the careful handling of time zones. You may have already forgotten
about other nice additions to Python that have happened over the past few years.
That's why we will do a brief review of a few important changes that happened in
versions older than Python 3.7. These will either be small but interesting additions
that could easily be missed, or things that simply take time to get used to.

breakpoint() function

We discussed the topic of debuggers in Chapter 2, Modern Python Development
Environments. The breakpoint() function was already mentioned there as an
idiomatic way of invoking the Python debugger.

It was added in Python 3.7, so has already been available for quite some time. Still,
it is one of those changes that simply takes some effort to get used to. We've been
told and taught for many years that the simplest way to invoke the debugger from
Python code is via the following snippet:

import pdb; pdb.set_trace()

It doesn't look pretty, nor does it look straightforward but, if you've been doing

that every day for years, as many programmers have, you would have that in your
muscle memory. Problem? Jump to the code, input a few keystrokes to invoke pdb,
and then restart the program. Now you're in the interpreter shell at the very same
spot as your error occurs. Done? Go back to the code, remove import pdb; pdb.set_
trace(), and then start working on your fix.

So why should you bother? Isn't that something of a personal preference? Are
breakpoints something that ever get to production code?
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The truth is that debugging is often a solitary and deeply personal task. We often
spend numerous hours struggling with bugs, looking for clues, and reading code
over and over in a desperate attempt to locate that small mistake that is breaking
our application. When you're deeply focused on finding the cause of a problem,
you should definitely use something that you find the most convenient. Some
programmers prefer debuggers integrated into IDEs. Some programmers don't even
use debuggers, preferring elaborated print() calls spread all over the code instead.
Always choose whatever you find the most convenient.

But if you're used to a plain old shell-based debugger, the breakpoint() can

make your work easier. The main advantage of this function is that it isn't bound

to a single debugger. By default, it invokes a pdb session, but this behavior can

be modified with a PYTHONBREAKPOINT environment variable. If you prefer to use

an alternative debugger (such as ipdb, as mentioned Chapter 2, Modern Python
Development Environments), you can set this environment variable to a value that will
tell Python which function to invoke.

Standard practice is to set your preferred debugger in a shell profile script so that
you don't have to modify this variable in every shell session. For instance, if you're a
Bash user and want to always use ipdb instead of pdb, you could insert the following
statement in your .bash_profile file:

PYTHONBREAKPOINT=ipdb.set_trace()

This approach also works well when working together. For instance, if someone asks
for your help with debugging, you can ask them to insert breakpoint statements in
suspicious places. That way, when you run the code on your own computer, you will
be using the debugger of your choice.

If you don't know where to put your breakpoint, but the
application exits upon an unhandled exception, you can use the
A postmortem feature of pdb. With the following command, you can
_@\_ start your Python script in a debugging session that will pause at
the moment the exception was raised:

/

python3 -m pdb -c continue script.py

Development mode

Since version 3.7, the Python interpreter can be invoked in dedicated development
mode, which introduces additional runtime checks. These are helpful in diagnosing
potential issues that may arise when running the code. In correctly working code,
those checks would be unnecessarily expensive, so they are disabled by default.
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Development mode can be enabled in two ways:

* Using the -X dev command-line option of the Python interpreter, for
instance:

python -X dev my_application.py

* Using the PYTHONDEVMODE environment variable, for instance:

PYTHONDEVMODE=1 my_application

The most important effects that this mode enables are as follows:

* Memory allocation hooks: buffer under/overflow, violations of the memory
allocator API, unsafe usage of the Global Interpreter Lock (GIL)

* Import warnings issued in relation to possible mistakes when importing
modules

* Resource warnings issued in the case of improper handling of resources, for
instance, not closing opened files

* Deprecation warnings regarding elements of the standard library that have
been deprecated and will be removed in future releases

* Enabling a fault handler that outputs an application stack trace when the
application receives SIGSEGV, SIGFPE, SIGABRT, SIGBUS, or SIGILL system
signals

Warnings emitted in development mode are indications that something does

not work the way it should. They may be useful in finding problems that are not
necessarily manifested as errors during the normal operation of your code, but may
lead to tangible defects in the long term.

The improper cleanup of opened files may lead at some point to resource exhaustion
of the environment your application is running in. File descriptors are resources, the
same as RAM or disk storage. Every operating system has a limited number of files
that can be opened at the same time. If your application is opening new files without
closing them, at some point, it won't be able to open new ones.

Development mode enables you to identify such problems in advance. This is why

it is advised to use this mode during application testing. Due to the additional
overhead of checks enabled by development mode, it is not recommended to use this
in production environments.

Sometimes, development mode can be used to diagnose existing problems, too.
An example of really problematic situations is when your application experiences
a segmentation fault.
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When this happens in Python, you usually won't get any details of the error, except
the very brief message printed on your shell's standard output:

Segmentation fault: 11

When a segmentation fault occurs, the Python process receives a SIGSEGV system
signal and terminates instantly. On some operating systems, you will receive a core
dump, which is a snapshot of the process memory state recorded at the time of the
crash. This can be used to debug your application. Unfortunately, in the case of
CPython, this will be a memory snapshot of the interpreter process, so debugging
will be taking place at the level of C code.

Development mode installs additional fault handler code that will output the
Python stack trace whenever it receives a fault signal. Thanks to this, you will have
a bit more information about which part of the code could lead to the problem. The
following is an example of known code that will lead to a segmentation fault in
Python 3.9:

import sys
sys.setrecursionlimit(1l << 39)

def crasher():
return crasher()

crasher()

If you execute this in Python interpreter with the -X dev flag, you will get output
similar to the following;:

Fatal Python error: Segmentation fault

Current thread 0x000000010b04edc® (most recent call first):
File "/Users/user/dev/crashers/crasher.py", line in crasher

File "/Users/user/dev/crashers/crasher.py"”, line in crasher

File "/Users/user/dev/crashers/crasher.py", line in crasher

File "/Users/user/dev/crashers/crasher.py", line in crasher

File "/Users/user/dev/crashers/crasher.py", line in crasher

This fault handler can also be enabled outside of development mode. To do that, you
can use the -X faulthandler command-line option or set the PYTHONFAULTHANDLER
environment variable to 1.
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It's not easy to cause segmentation faults in Python. This often
happens for some Python extensions written in C or C++ or
functions called from shared libraries (such as DLLs, .dylib, or

‘ / .50 objects). Still, there are some known and well documented

\p/ conditions where this problem can occur in pure Python code. The
repository of the CPython interpreter includes a collection of such
known "crashers." This can be found under https://github.com/
python/cpython/tree/master/Lib/test/crashers.

Module-level __getattr () and __dir__ ()
functions

Every Python class can define the custom __getattr__() and __dir__() methods
to customize the dynamic attribute access of objects. The __getattr__() function
is invoked when a given attribute name is not found to capture a missing attribute
lookup and possibly generate a value on the fly. The __dir__() method is called
when an object is passed to the dir() function and it should return a list of object
attribute names.

Starting from Python 3.7, the __getattr__() and __dir__() functions can be defined
at module level. The semantics are similar to object methods. The __getattr__()
module-level function, if defined, will be called on a failed module member lookup.
The __dir__() function will be called when a module object is passed to the dir()
function.

This feature may be useful for library maintainers when deprecating module
functions or classes. Let's imagine that we exposed our get_ci() function from the
Type-hinting generics section in an open source library called dict_helpers.py. If we
would like to rename the function to lookup_ci() and still be allowed to import it
under the old name, we could use the following deprecation pattern:

from typing import Any
from warnings import warn

def ci_lookup(d: dict[str, Any], key: str) -> Any:
def _ getattr_ (name: str):
if name == "get ci":
warn(f"{name} is deprecated", DeprecationWarning)

return ci_lookup

raise AttributeError(f"module {__name__} has no attribute {namel}")
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The preceding pattern will emit DeprecationWarning, regardless of whether the get_
ci() function is imported directly from a module (such as via from dict_helpers
import get_ci) or accessed as a dict_helpers.get_ci attribute.

\/V Deprecation warnings are not visible by default. You can enable

them in development mode.

Formatting strings with f-strings

F-strings, also known as formatted string literals, are one of the most beloved
Python features that came with Python 3.6. Introduced with PEP 498, they added
a new way of formatting strings. Prior to Python 3.6, we already had two different
string formatting methods. So right now, there are three different ways in which a
single string can be formatted:

* Using % formatting: This is the oldest method and uses a substitution pattern
that resembles the syntax of the printf() function from the C standard
library:

>>> import math
>>> "approximate value of m: %f" % math.pi

'approximate value of m: 3.141593'

* Using the str.format() method: This method is more convenient and less
error-prone than % formatting, although it is more verbose. It enables the use
of named substitution tokens as well as reusing the same value many times:

>>> import math
>>> " approximate value of m: {:f}".format(pi=math.pi)

'approximate value of m: 3.141593"'

* Using formatted string literals (so called f-strings). This is the most concise,
flexible, and convenient option for formatting strings. It automatically
substitutes values in literals using variables and expressions from local
namespaces:

>>> import math
>>> f"approximate value of m: {math.pi:f}"

"approximate value of m: 3.141593'
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Formatted string literals are denoted with the f prefix, and their syntax is closest to
the str.format() method, as they use a similar markup for denoting replacement
fields in formatted text. In the str.format () method, the text substitutions refer to
positional and keyword arguments. What makes f-strings special is that replacement
fields can be any Python expression, and it will be evaluated at runtime. Inside
strings, you have access to any variable that is available in the same namespace as
the formatted literal.

The ability to use expressions as replacement fields makes formatting code simpler
and shorter. You can also use the same formatting specifiers of replacement fields
(for padding, aligning, signs, and so on) as the str.format() method, and the syntax
is as follows:

f"{replacement_field expression:format_specifier}"

The following is a simple example of code executed in an interactive session that
prints the first ten powers of the number 10 using f-strings and aligns the results
using string formatting with padding;:

>>> for x in range(10):
print(f"107M{x} == {10**x:10d}")

10”0 1
1071 10
1072 100
1073 1000
10”4 10000
1075 100000
1076 1000000
1077 10000000
1078 == 100000000
1079 == 1000000000

The full formatting specification of the Python string forms
a separate mini language inside Python. The best reference
/ source for this is the official documentation, which you can find
\/{p; under https://docs.python.org/3/library/string.html.
Another useful internet resource regarding this topic is https://
pyformat.info/, which presents the most important elements of
this specification using practical examples.
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Underscores in numeric literals

Underscores in numeric literals are probably one such feature that are the easiest to
adopt, but still not as popular as they could be. Starting from Python 3.6, you can
use the _ (underscore) character to separate digits in numeric literals. This facilitates
the increased readability of big numbers. Consider the following value assignment:

account_balance = 100000000

With so many zeros, it is hard to tell immediately whether we are dealing with
millions or billions. You can instead use an underscore to separate thousands,
millions, billions, and so on:

account_balance = 100 000 000

Now, it is easier to tell immediately that account_balance equals one hundred
million without carefully counting the zeros.

secrets module

One of the prevalent security mistakes perpetrated by many programmers is
assuming randomness from the random module. The nature of random numbers
generated by the random module is sufficient for statistical purposes. It uses the
Mersenne Twister pseudorandom number generator. It has a known uniform
distribution and a long enough period length that it can be used in simulations,
modeling, or numerical integration.

However, Mersenne Twister is a completely deterministic algorithm, as is the
random module. This means that as a result of knowing its initial conditions (the
seed number), you can generate the same pseudorandom numbers. Moreover, by
knowing enough consecutive results of a pseudorandom generator, it is usually
possible to retrieve the seed number and predict the next results. This is true for
Mersenne Twister as well.

[ If you want to see how random numbers from Mersenne Twister

\ 7/
‘@\' can be predicted, you can review the following project on GitHub:

4

S https://github.com/kmyk/mersenne-twister-predictor.

That characteristic of pseudorandom number generators means that they should
never be used for generating random values in a security context. For instance, if
you need to generate a random secret that would be a user password or token, you
should use a different source of randomness.
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The secrets module serves exactly that purpose. It relies on the best source of
randomness that a given operating system provides. So, on Unix and Unix-like
systems, that would be the /dev/urandom device, and on Windows, it will be the
CryptGenRandom generator.

The three most important functions are:

* secrets.token_bytes(nbytes=None): This returns nbytes of random bytes.
This function is used internally by secrets.token_hex() and secrets.token_
urlsafe(). If nbytes is not specified, it will return a default number of bytes,
which is documented as "reasonable."

* secrets.token_hex(nbytes=None): This returns nbytes of random bytes
in the form of a hex-encoded string (not a bytes() object). As it takes two
hexadecimal digits to encode one byte, the resulting string will consist of
nbytes x 2 characters. If nbytes is not specified, it will return the same default
number of bytes as secrets.token_bytes().

* secrets.token_urlsafe(nbytes=None): This returns nbytes of random bytes
in the form of a URL-safe, base64-encoded string. As a single byte takes
approximately 1.3 characters in base64 encoding, the resulting string will
consist of nbytes x 1.3 characters. If nbytes is not specified, it will return the
same default number of bytes as secrets.token_bytes().

Another important, but often overlooked, function is secrets.compare_digest(a,

b). This compares two strings or byte-like objects in a way that does not allow an
attacker to guess if they at least partially match by measuring how long it took to
compare them. A comparison of two secrets using ordinary string comparison (the
== operator) is susceptible to a so-called timing attack. In such a scenario, the attacker
can try to execute multiple secret verifications and, by performing statistical analysis,
gradually guess consecutive characters of the original value.

What may come in the future?

At the time of writing this book, Python 3.9 is still only a few months old, but the
chances are that when you're reading this book, Python 3.10 has either already been
released or is right around the corner.

As the Python development processes are open and transparent, we have constant
insight into what has been accepted in the PEP documents and what has already
been implemented in alpha and beta releases. This allows us to review selected
features that will be introduced in Python 3.10. The following is a brief review of
the most important changes that we can expect in the near future.
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Union types with the | operator

Python 3.10 will bring yet another syntax simplification for the purpose of type
hinting. Thanks to this new syntax, it will be easier to construct union-type
annotations.

Python is dynamically typed and lacks polymorphism. As a result of this, functions
can easily accept the same argument, which can be a different type depending on
the call, and properly process it if those types have the same interface. To better
understand this, let's bring back the signature of a function that allowed case-
insensitive loopback of string-keyed dictionary values:

def get_ci(d: dict[str, Any], key: str) -> Any: ...

Internally, we used the upper() method of keys obtained from the dictionary. That's
the main reason why we defined the type of the d argument as dict[str, Any], and
the type of key argument as str.

However, the str type is not the only built-in type that has the upper() method. The
other type that has the same method is bytes. If we would like to allow our get_ci()
function to accept both string-keyed and bytes-keyed dictionaries, we need to specify
the union of possible types.

Currently, the only way to specify type unions is through the typing.Union hint. This
hint allows the union of bytes and str types to be specified as typing.Union[bytes,
str]. The complete signature of the get_ci() function would be as follows:

def get_ci(
d: dict[Union[str, bytes], Any],
key: Union[str, bytes]

) -> Any:

That is already verbose, and for more complex functions, it can get only worse. This
is why Python 3.10 will allow the union of types using the | operator to be specified.
In the future, you will be able to simply write the following:

def get ci(d: dict[str | bytes, Any], key: str | bytes) -> Any: ...

In contrast to type-hinting generics, the introduction of a type union operator does
not deprecate the typing.Union hint. This means that we will be able to use those
two conventions interchangeably.
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Structural pattern matching

Structural pattern matching is definitely the most controversial new Python feature
of the last decade, and it is definitely the most complex one.

The acceptance of that feature was preceded by numerous heated debates and
countless design drafts. The complexity of the topic is clearly visible if we take a look
over all the PEP documents that tried to tackle the problem. The following is a table
of all PEP documents related to structural pattern matching (statuses accurate as of
March 2021):

Date PEP | Title Type Status
23-Jun-2020 622 Structural Pattern Matching Standards Superseded
Track by PEP 634

12-Sep-2020 634 Structural Pattern Matching: Standards Accepted
Specification Track

12-Sep-2020 635 Structural Pattern Matching;: Informational | Final
Motivation and Rationale

12-Sep-2020 636 Structural Pattern Matching: Informational | Final
Tutorial

26-Sep-2020 642 Explicit Pattern Syntax for Standards Draft
Structural Pattern Matching Track

9-Feb-2021 653 Precise Semantics for Pattern Standards Draft
Matching Track

That's a lot of documents, and none of them are short. So, what is structural pattern
matching and how can it be useful?

Structural pattern matching introduces a match statement and two new soft
keywords: match and case. As the name suggests, it can be used to match a given
value against a list of specified "cases" and act accordingly to the match.

A soft keyword is a keyword that is not reserved in every context.
Both match and case can be used as ordinary variables or function
names outside the match statement context.

(Q

For some programmers, the syntax of the match statement resembles the syntax of
the switch statement found in languages such as C, C++, Pascal, Java, and Go. It can
indeed be used to implement the same programming pattern, but is definitely much
more powerful.
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The general (and simplified) syntax for a match statement is as follows:

match expression:
case pattern:

expression can be any valid Python expression. pattern represents an actual
matching pattern that is a new concept in Python. Inside a case block, you can have
multiple statements. The complexity of a match statement stems mostly from the
introduction of match patterns that may initially be hard to understand. Patterns
can also be easily confused with expressions, but they don't evaluate like ordinary
expressions do.

But before we dig into the details of match patterns, let's take a look at a simple
example of a match statement that replicates the functionality of switch statements
from different programming languages:

import sys

match sys.platform:
case "windows":
print("Running on Windows")
case "darwin"
print("Running on macO0S")
case "linux":
print("Running on Linux")
case _
raise NotImplementedError(
f"{sys.platform} not supported!"
)

This is, of course, a very straightforward example, but already shows some
important elements. First, we can use literals as patterns. Second, there is a special _
(underscore) wildcard pattern. Wildcard patterns and other patterns that, from the
syntax alone, can be proven to match always create an irrefutable case block. An
irrefutable case block can be placed only as the last block of a match statement.

The previous example can, of course, be implemented with a simple chain of if,
elif, and else statements. A common entry-level recruitment challenge is writing a
FizzBuzz program.
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A FizzBuzz program iterates from 0 to an arbitrary number and, depending on the
value, does three things:

* It prints Fizz if the value is divisible by 3
* It prints Buzz if the value is divisible by 5
* It prints FizzBuzz if the value is divisible by 3 and 5

* It prints the value in all other cases

This is indeed a minor problem, but you would be surprised how people can
stumble on even the simplest things when under the stress of an interview. This can,
of course, be solved with a couple of if statements, but the use of a match statement
can give our solution some natural elegance:

for i in range(100):
match (i % 3, i % 5):
case (0, 9): print("FizzBuzz")
case (0, _): print("Fizz")
case (_, 9): print("Buzz")
case _: print(i)

In the preceding example, we are matching (i % 3, i % 5) in every iteration of
the loop. We have to do both modulo divisions because the result of every iteration
depends on both division results. A match expression will stop evaluating patterns
once it finds a matching block and will execute only one block of code.

The notable difference from the previous example is that we used mostly sequence
patterns instead of literal patterns:

* The (0, @) pattern: This will match a two-element sequence if both elements
are equal to 0.

* The (0, _) pattern: This will match a two-element sequence if the first
element is equal to 0. The other element can be of any value and type.

* The (_, o) pattern: This will match a two-element sequence if the second
element is equal to 0. The other element can be of any value and type.

* The _ pattern: This is a wildcard pattern that will match all values.
Match expressions aren't limited to simple literals and sequences of literals. You

can also match against specific classes and actually, with class patterns, things start
to get really magical. That's definitely the most complex part of the whole feature.
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At the time of writing, Python 3.10 hasn't yet been released, so it's hard to show a
typical and practical use case for class matching patterns. So instead, we will take
a look at an example from an official tutorial. The following is a modified example
from the PEP 636 document that includes a simple where_is() function, which can
match against the structure of the Point class instance provided:

class Point:
X: int
y: int

def __ init_ (self, x, y):
self.x = x
self.y =y

def where_is(point):
match point:

case Point(x=0, y=0):
print("Origin™")

case Point(x=0, y=y):
print(f"Y={y}")

case Point(x=x, y=0):
print(f"X={x}")

case Point():
print("Somewhere else")

case _
print("Not a point")

A lot is happening in the preceding example, so let's iterate over all the patterns
included here:

* Point(x=0, y=0): This matches if point is an instance of the Point class and
its x and y attributes are equal to 0.

* Point(x=0, y=y): This matches if point is an instance of the Point class and
its x attribute is equal to 0. The y attribute is captured to the y variable, which
can be used within the case block.

* Point(x=x, y=0): This matches if point is an instance of the Point class and
its y attribute is equal to 0. The x attribute is captured to the x variable, which
can be used within the case block.

* Point(): This matches if point is an instance of the Point class.

* _:This always matches.
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As you can see, pattern matching can look deep into object attributes. Despite the
Point(x=0, y=8) pattern looking like a constructor call, Python does not call an
object constructor when evaluating patterns. It also doesn't inspect arguments and
keyword arguments of __init__() methods, so you can access any attribute value in
your match pattern.

Match patterns can also use "positional attribute" syntax, but that requires a bit more
work. You simply need to provide an additional __match_args__ class attribute that
specifies the natural position order of class instance attributes, as in the following
example:

class Point:

X: int
y: int
__match_args = ["x", "y"]

def _ init_ (self, x, y):
self.x = x
self.y =y

def where_is(point):
match point:

case Point(o, 0):
print("Origin™")

case Point(@, y):
print(f"Y={y}")

case Point(x, 9):
print(f"X={x}")

case Point():
print("Somewhere else")

case _
print("Not a point")

And that's just the tip of the iceberg. Match statements are actually way more
complex than we could demonstrate in this short section. If we were to consider all
the potential use cases, syntax variants, and corner cases, we could potentially talk
about them throughout the whole chapter. If you want to learn more about them,
you should definitely read though the three "canonical" PEPs: 634, 635, and 636.
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Summary

In this chapter, we've covered the most important language syntax and standard
library changes that have happened over the last four versions of Python. If you're
not actively following Python release notes or haven't yet transitioned to Python 3.9,
this should give you enough information to be up to date.

In this chapter, we've also introduced the concept of programming idioms. This is

an idea that we will be referring to multiple times throughout the book. In the next
chapter, we will take a closer look at many Python idioms by comparing selected
features of Python to different programming languages. If you are a seasoned
programmer who has just recently transitioned to Python, this will be a great
opportunity to learn the "Python way of doing things." It will also be an opportunity
to see where Python really shines, and where it might still be behind the competition.
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Many programmers come to Python with prior experience of other programming
languages. It happens often that they are already familiar with programming idioms
of those languages and try to replicate them in Python. As every programming
language is unique, bringing such foreign idioms often leads to overly verbose or
suboptimal code.

The classic example of a foreign idiom that is often used by inexperienced
programmers is iteration over lists. Someone that is familiar with arrays in the C
language could write Python code similar to the following example:

for index in range(len(some_list)):
print(some_list[index])

An experienced Pythonic programmer would most probably write:

for item in some_list:
print(item)

Programming languages are often classified by paradigms that can be understood

as cohesive sets of features supporting certain "styles of programming." Python is a
multiparadigm language and thanks to this, it shares many similarities with a vast
amount of other programming languages. As a result, you can write and structure
your Python code almost the same way you would do that in Java, C++, or any other
mainstream programming language.
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Unfortunately, often that won't be as effective as using well-recognized Python
patterns. Knowing native idioms allows you to write more readable and
efficient code.

This chapter is aimed at programmers experienced with other programming
languages. We will review some of the important features of Python together with
idiomatic ways of solving common problems. We will also see how these compare
to other programming languages and what common pitfalls are lurking for seasoned
programmers that are just starting their Python journey. Along the way, we will
cover the following topics:

* (lass model and object-oriented programming
* Dynamic polymorphism

* Data classes

* Functional programming

e  Enumerations

Let's begin by considering the technical requirements.

Technical requirements

The code files for this chapter can be found at https://github.com/PacktPublishing/
Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%204.

Class model and object-oriented
programming

The most prevalent paradigm of Python is object-oriented programming (also
known as OOP). It is centered around objects that encapsulate data (in the form

of object attributes) and behavior (in the form of methods). OOP is probably one

of the most diverse paradigms. It has many styles, flavors, and implementations
that have been developed over many years of programming history. Python takes
inspiration from many other languages, so in this section, we will take a look at the
implementation of OOP in Python through the prism of different languages.

To facilitate code reuse, extensibility, and modularity, OOP languages usually
provide a means for either class composition or inheritance. Python is no different
and like many other object-oriented languages supports the subclassing of types.
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Python may not have as many object-oriented features as other OOP languages, but
it has a pretty flexible data and class model that allows you to implement most OOP
patterns with extreme elegance. Also, everything in Python is an object, including
functions and class definitions and basic values like integers, floats, Booleans, and
strings.

If we would like to find another popular programming language that has similar
object-oriented syntax features and a similar data model, one of the closest matches
would probably be Kotlin, which is a language that runs (mostly) on Java Virtual
Machine (JVM). The following are the similarities between Kotlin and Python:

* A convenient way to call methods of super-classes: Kotlin provides the super
keyword and Python provides the super() function to explicitly reference
methods or attributes of super-classes.

* An expression for object self-reference: Kotlin provides the this expression,
which always references the current object of the class. In Python, the first
argument of the method is always an instance reference. By convention, it is
named self.

* Support for creating data classes: Like Python, Kotlin provides data classes as
"syntactic sugar" over classic class definitions to simplify the creation of class-
based data structures that are not supposed to convey a lot of behavior.

* The concept of properties: Kotlin allows you to define class property setters
and getters as functions. Python provides the property() decorator with a
similar purpose, together with the concept of descriptors, which allows you
to fully customize the attribute access of an object.

What makes Python really stand out in terms of OOP implementation is the
approach to inheritance. Python, unlike Kotlin and many other languages, freely
permits multiple inheritance (although it often isn't a good idea). Other languages
often do not allow this or provide some constraints. Another important Python
differentiator is the lack of private/public keywords that would control access to
internal object attributes outside of the class definition.

Let's take a closer look at a feature that Python shares with Kotlin and some other
JVM-based programming languages, which is access to super-classes through the
super() call.
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Accessing super-classes

There are multiple ways of encapsulating object behavior in OOP languages but one
of the most common ones is the usage of classes. Python's OOP implementation is
based precisely on the concept of classes and subclassing.

Subclassing is a convenient way of reusing existing classes by enhancing or
specializing their behavior. Subclasses often rely on the behavior of their base
classes but extend them with additional methods or provide completely new
implementations for existing methods by overriding their definitions.

But overriding methods without access to their original implementations within the
subclass would not facilitate code reuse at all. That's why Python offers the super()
function, which returns a proxy object to the method implementations in all base
classes. To better understand the potential of the super() function, let's imagine we
want to subclass a Python dictionary type to allow access to the stored keys through
a case-insensitive key lookup. You could use this, for instance, to store HTTP
protocol header values as the HTTP protocol specification states that header names
are case-insensitive.

The following is a simple example of implementing such a structure in Python
through subclassing;:

from collections import UserDict
from typing import Any

class CaselnsensitiveDict(UserDict):
def _ setitem_ (self, key: str, value: Any):
return super().__setitem__(key.lower(), value)

def _ getitem_ (self, key: str) -> Any:
return super().__getitem__(key.lower())

def _ delitem_ (self, key: str) -> None:
return super().__delitem__(key.lower())

Our implementation of CaseInsensitiveDict relies on collections.UserDict
instead of the built-in dict type. Although inheriting from the dict type is possible,
we would quickly run into inconsistencies as the built-in dict type doesn't always
call __setitem__() to update its state. Most importantly, it won't be used on object
initialization and on update() method calls. Similar problems can arise when
subclassing the 1ist type. That's why good practice dictates to use collections.
UserDict classes for subclassing the dict type and collections.UserList for
subclassing the 1ist type.

[112]



Chapter 4

The core of modified dictionary behavior happens in __getitem__(self, item: str)
and __setitem__(self, key: str, value: Any).These are methods responsible
respectively for accessing dictionary elements using dictionary[key] and setting
dictionary values using the dictionary[key] = value syntax. The typing annotations
help us to denote that keys should be strings but values can be any Python type.

__setitem__() is responsible for storing and modifying dictionary values. It would
not make sense to subclass the base dictionary type and not leverage its internal key-
value storage. That's why we use super().__setitem__() to invoke the original set-
item implementation. But before we allow the value to be stored, we transform the
key to lowercase using the str.lower() method. That way we ensure that all keys
stored in the dictionary will always be lowercase.

The __getitem__() method is analogous to the __setitem__() implementation. We
know that every key is transformed to lowercase before being stored in a dictionary.
Thanks to this, when key lookup occurs, we can also transform it to lowercase as
well. If the super implementation of the __getitem__() method does not return the
result, we can be sure that there is no case-insensitive match in the dictionary.

Last but not least, the __delitem__() method deletes existing dictionary keys. It
uses the same technique to transform a key to lowercase and invoke super-class
implementation. Thanks to this, we will be able to remove dictionary keys using the
del dictionary[key] statement.

The following transcript shows a case-insensitive key lookup of our class in action:

>>> headers = CaseInsensitiveDict({
"Content-Length": 30,
"Content-Type": "application/json",

o}

>>> headers["CONTENT-LENGTH"]
30

>>> headers["content-type"]
"application/json’

The above use case for the super() function should be simple to follow and
understand, but things get a bit more complex when multiple inheritance is
involved. Python allows you to use multiple inheritance by introducing the Method
Resolution Order (MRO). We will take a closer look at it in the next section.
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Multiple inheritance and Method Resolution
Order

Python MRO is based on C3 linearization, the deterministic MRO algorithm
originally created for the Dylan programming language. The C3 algorithm builds
the linearization of a class, also called precedence, which is an ordered list of the
ancestors. This list is used to seek an attribute in a class inheritance tree.

You can find more information about the Dylan programming
‘ n’ language at http://opendylan.org and Wikipedia has a
\/ great article on C3 linearization that can be found at https://

en.wikipedia.org/wiki/C3_linearization.

Python didn't have the C3 linearization algorithm as its MRO from the beginning. It
was introduced in Python 2.3 together with a common base type for all objects (that
is, the object type). Before the change to the C3 linearization method, if a class had
two ancestors (refer to Figure 4.1), the order in which methods were resolved was
only easy to compute and track for simple cases that didn't use a multiple inheritance
model in a cascading way.

The following is an example of a simple multiple inheritance pattern that would not
require any special MRO:

class Basel:
pass

class Base2:
def method(self):
print("Base2.method() called")

class MyClass(Basel, Base2):
pass
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Before Python 2.3, that would be a simple depth-first search over a class hierarchy
tree. In other words, when MyClass () .method() is called, the interpreter looks for the
method in MyClass, then Basel, and then eventually finds it in Base2.

class Basel class Base2

class MyClass

Figure 4.1: Classical hierarchy

When we introduce a CommonBase class at the top of our class hierarchy (refer to
Figure 4.2), things will get more complicated:

class CommonBase:
pass

class Basel(CommonBase):
pass

class Base2(CommonBase):
def method(self):
print("Base2.method() called")

class MyClass(Basel, Base2):
pass

As a result, the simple resolution order that behaves according to the left-to-right
depth-first rule is getting back to the top through the Base1 class before looking into
the Base2 class. This algorithm results in a counterintuitive output. Without the C3
linearization, the method that is executed would not be the one that is the closest in
the inheritance tree.
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class CommonBase

AN

class Basel class Base2

class MyClass

Figure 4.2: The diamond class hierarchy

Such an inheritance scenario (known as the diamond class hierarchy) is rather
uncommon for custom-built classes. The standard library typically does not structure
the inheritance hierarchies in this way, and many developers think that it is bad
practice. It is possible with Python anyway and thus requires a well-defined and
clear handling strategy.

Also, starting from Python 2.3, object is at the top of the type hierarchy for classes.
Essentially, every class is a part of a large diamond class inheritance hierarchy. It
became something that has to be resolved on the C side of the language as well.
That's why Python now has C3 linearization as the MRO algorithm.

In Python 2, classes inheriting from the object type were called

\/V new-style classes. Classes did not inherit implicitly from objects. In

Python 3, every class is a new-style class and old-style classes are
not available.

The original reference document of the Python MRO written by Michele Simionato
describes linearization using the following words:

The linearization of C is the sum of C plus the merge of the linearizations of the
parents and the list of the parents.

/ The Michele Simionato reference document explaining Python's
( Ay MRO in great detail can be found at http://www.python.org/
download/releases/2.3/mro.
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The above simply means that C3 is a recursive algorithm. The C3 symbolic notation
applied to our earlier inheritance example is as follows:

L[MyClass(Basel, Base2)] =
[MyClass] + merge(L[Basel], L[Base2], [Basel, Base2])

Here, L[MyClass] is the linearization of MyClass, and merge is a specific algorithm
that merges several linearization results.

The merge algorithm is responsible for removing the duplicates and preserving the
correct ordering. It uses the concept of list head and tail. The head is the first element
of the list and the tail is the rest of the list following the head. Simionato describes the
merge algorithm like this (adapted to our example):

Take the head of the first list, that is, L[Base1][0]; if this head is not in the tail of any
of the other lists, then add it to the linearization of MyClass and remove it from the

lists in the merge, otherwise look at the head of the next list and take it, if it is a good
head.

Then, repeat the operation until all the classes are removed or it is impossible to find
good heads. In this case, it is impossible to construct the merge; Python 2.3 will
refuse to create the MyClass class and will raise an exception.

In other words, C3 does a recursive depth lookup on each parent to get a sequence
of lists. Then, it computes a left-to-right rule to merge all lists with hierarchy
disambiguation when a class is involved in several lists.

If we had to calculate the MRO for MyClass manually through a series of symbolic
steps, we would first have to unfold all L[class] linearizations:

L[MyClass]

[MyClass] + merge(L[Basel], L[Base2], [Basel, Base2])]

[MyClass] + merge(
[Basel + merge(L[CommonBase], [CommonBase])],
[Base2 + merge(L[CommonBase], [CommonBase])],
[Basel, Base2]

)

[MyClass] + merge(
[Basel] + merge(L[CommonBase], [CommonBase]),
[Base2] + merge(L[CommonBase], [CommonBase]),
[Basel, Base2]

)
[MyClass] + merge(
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[Basel] + merge([CommonBase] + merge(L[object]), [CommonBase]),
[Base2] + merge([CommonBase] + merge(L[object]), [CommonBase]),
[Basel, Base2]

)

Essentially, the object class has no ancestors so its C3 linearization is just a single
element list [object]. It means we continue by unfolding merge([object]) to
[object]:

= [MyClass] + merge(
[Basel] + merge([CommonBase] + merge([object]), [CommonBase]),
[Base2] + merge([CommonBase] + merge([object]), [CommonBase]),
[Basel, Base2]

)
merge([object]) has only a single element list so it immediately unfolds to [object]:

= [MyClass] + merge(
[Basel] + merge([CommonBase, object], [CommonBase]),
[Base2] + merge([CommonBase, object], [CommonBase]),
[Basel, Base2]

)

Now it's time to unfold merge([CommonBase, object], [CommonBase]).The head
of the first list is CommonBase. It is not in the tail of other lists. We can immediately
remove it from the merge and add it to the outer linearization result:

= [MyClass] + merge(
[Basel, CommonBase] + merge([object]),
[Base2, CommonBase] + merge([object]),
[Basel, Base2]

)
We are again left with merge([object]) and we can continue unfolding;:

= [MyClass] + merge(
[Basel, CommonBase, object],
[Base2, CommonBase, object],
[Basel, Base2]

)

Now we are left with the last merge, which is finally non-trivial. The first head is
Basel. It is not found in the tails of other lists. We can remove it from the merge and
add it to the outer linearization result:
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= [MyClass, Basel] + merge(
[CommonBase, object],
[Base2, CommonBase, object],
[Base2]

)

Now the first head is CommonBase. It is found in the tail of the second 1list [Base2,
CommonBase, object]. It means we can't process it at the moment and have to move
to the next head, which is Base2. It is not found in the tail of other lists. We can
remove it from the merge and add it to the outer linearization result:

= [MyClass, Basel, Base2] + merge(
[CommonBase, object],
[CommonBase, object],
[]

)

Now, CommonBase is again the first head but this time it is no longer found in other
list tails. We can remove it from the merge and add it to the outer linearization result:

= [MyClass, Basel, Base2, CommonBase] + merge(
[object],
[object],
[]

)

The last merge([object], [object], []) step is trivial. The final linearization result
is the following:

[MyClass, Basel, Base2, CommonBase, object]

You can easily inspect the results of C3 linearization by verifying the __mro__
attribute of any class. The following transcript presents the computed MRO of
MyClass:

>>> MyClass.__mro

(<class '__main__.MyClass'>, <class '__main__.Basel'>, <class

main__.Base2'>, <class '__main__.CommonBase'>, <class 'object'>)

The __mro__ attribute of a class (which is read-only) stores the result of the C3
linearization computation. Computation is done when the class definition is loaded.
You can also call MyClass.mro() to compute and get the result.
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Class instance initialization

An object in OOP is an entity that encapsulates data together with behavior. In
Python, data is contained as object attributes, which are simply object variables.
Behavior, on the other hand, is represented by methods. That is common to almost
every OOP language, but the exact nomenclature is sometimes different. For
instance, in C++ and Java, object data is said to be stored in fields. In Kotlin, object
data is stored behind properties (although they are a bit more than simple object
variables).

What makes Python different from statically typed OOP languages is its approach to
object attribute declaration and initialization. In short, Python classes do not require
you to define attributes in the class body. A variable comes into existence at the time
it is initialized. That's why the canonical way to declare object attributes is through
assigning their values during object initialization in the __init__() method:

class Point:
def __init_ (self, x, y):
self.x = x
self.y =y

That may be confusing for those coming to Python with prior knowledge of statically
typed programming languages. In those languages, the declaration of object fields

is usually static and lives outside of the object initialization function. That's why
programmers with a C++ or Java background often tend to replicate this pattern by
assigning some default values as class attributes in the main class body:

class Point:
X =0
y =9

def __init_ (self, x, y):
self.x = x
self.y =y

The above code is a classic example of a foreign language idiom replicated in Python.
Most of all, it is redundant: class attribute values will always be shadowed by object
attributes upon initialization. But it is also a dangerous code smell: it can lead to
problematic errors if one decides to assign as a class attribute a mutable type like
list or dict.
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A code smell is a characteristic of code that may be a sign of a
/ deeper problem. A specific piece of code can be functionally
\/§p> correct and free from errors but can be a stub for future problems.
Code smells are usually small architectural deficiencies or unsafe
constructs that attract bugs.

The problem comes from the fact that class attributes (attributes assigned outside

of the method body) are assigned to type objects and not type instances. When
accessing an attribute with self.attribute, Python will first look up the name
attribute value in the class instance namespace. If that lookup fails, it will perform a
lookup in the class type namespace. When assigning values through self.attribute
from within the class method, the behavior is completely different: new values are
always assigned in the class instance namespace. This is especially troublesome with
mutable types as this may cause an accidental leak of the object state between class
instances.

Because using mutable types as class attributes instead of instance attributes is rather
a bad practice, it is hard to come up with code examples that would be practical.

But it doesn't mean we can't take a quick look at how it actually works. Consider

the following class, which is supposed to aggregate values as a list and track the last
aggregated value:

class Aggregator:
all aggregated = []
last_aggregated = None

def aggregate(self, value):
self.last_aggregated = value
self.all aggregated.append(value)

To see where the problem lies, let's start an interactive session, create two distinct
aggregators, and start aggregating elements:

Aggregator()
Aggregator()

.aggregate("al-1")
.aggregate("al-2")
.aggregate("a2-1")
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If we now take a look at the aggregation lists of both instances, we will see very
disturbing output:

>> al.all_aggregated
['al1-1', 'al-2', 'a2-1']

>>> a2.all_aggregated
[‘al1-1', 'al-2', 'a2-1']

Someone reading the code could think that all Aggregator instances are supposed to
track the history of their own aggregations. But we see that instead, all Aggregator
instances share the state of the all_aggregated attribute. On the other hand, when
looking at the last aggregated values, we see correct values for both aggregators:

>>> al.last_aggregated
'al-2"'
>>> a2.last_aggregated
'a2-1"'

In situations like these, it is easy to solve the mystery by inspecting the unbound
class attribute values:

>>> Aggregator.all aggregated
['al1-1', 'al-2', 'a2-1']

>>> Aggregator.last_aggregated
>>>

As we see from the above transcript, all Aggregator instances shared their state
through the mutable Aggregator.all_aggregated attribute. Something like this
could be the intended behavior but very often is just an example of a mistake that
is sometimes hard to track down. Due to this fact, all attribute values that are
supposed to be unique for every class instance should absolutely be initialized in
the __init__ () method only.

The fixed version of the Aggregator class would be as follows:

class Aggregator:
def __init__ (self):
self.all aggregated = []
self.last_aggregated = None

def aggregate(self, value):
self.last_aggregated = value
self.all aggregated.append(value)
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We simply moved the initialization of the all_aggregated and last_aggregated
attributes to the __init__ () method. Now let's repeat the same initialization and
aggregation calls as in the previous session:

Aggregator()
Aggregator()

.aggregate("al-1")
.aggregate("al-2")
.aggregate("a2-1")

If we now inspect the state of Aggregator instances, we will see that they track the
history of their aggregations independently:

>>> al.all aggregated
['al1-1", "al1-2"]

>>> a2.all_aggregated
['a2-1"]

If you really feel the urge to have some kind of declaration of all attributes at the top
of the class definition, you can use type annotations as in the following example:

from typing import Any, List

class Aggregator:
all aggregated: List[Any]
last_aggregated: Any

def __init_ (self):
self.all aggregated = []
self.last_aggregated = None

def aggregate(self, value: Any):
self.last_aggregated = value
self.all aggregated.append(value)

Having class attribute annotations actually isn't a bad practice. They can be used by
static type verifiers or IDEs to increase the quality of code and better communicate
the intended usage of your class and possible type constraints. Such class attribute
annotations are also used to simplify the initialization of data classes, which we will
discuss in the Data classes section.
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Attribute access patterns

Another thing that sets Python apart from other statically typed object-oriented
languages is the lack of the notion of public, private, and protected class members. In
other languages, these are often used to restrict or open access to object attributes for
code outside of the class. The Python feature that is nearest to this concept is name
mangling. Every time an attribute is prefixed by __ (two underscores) within a class
body, it is renamed by the interpreter on the fly:

class MyClass:
def __init__ (self):
self. secret_value =1

, Note that the double underscore pattern is referred to as a
\/{p> "dunder". Refer to the Dunder methods (language protocols) section
for more information.

Accessing the __secret_value attribute by its initial name outside of the class will
raise an AttributeError exception:

>>> instance_of = MyClass()

>>> instance_of.__secret_value

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

AttributeError: 'MyClass' object has no attribute
>>> instance_of._MyClass__secret_value
1

__secret_value'

One could think that this is synonymous with private/protected fields and methods
commonly found in other OOP languages. It indeed makes it harder to access such
attributes outside of the class but doesn't make such access impossible. Private

and protected fields and methods in many other OOP languages are a means of
providing class encapsulation. They are used to restrict access to specific symbols
from anyone outside of a specific class (private) or anyone outside the inheritance
tree (protected). In Python, name mangling does not restrict attribute access in any
way. It only makes it less convenient.

The purpose of name mangling is an implicit way to avoid naming collisions. For
instance, it may happen that a specific identifier is a perfect fit for a new internal
attribute in some subclass. If that name is already taken somewhere up in the
inheritance tree, the name clash may result in unexpected behavior.
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In such situations, the programmer may decide to use a different name or use name
mangling to resolve the conflict. Name mangling can also help in avoiding name
clashes in subclasses. Still, it is not recommended to use name mangling in base
classes by default, just to avoid any collisions in advance.

It all boils down to the Python way of doing things. Statically typed languages with
private/ protected keywords enforce the attribute access restriction. It means that
usually there is no way to access such private/protected attributes outside of the
class. In Python, it is more common to clearly communicate what the intended use
is of each attribute instead of restricting users from doing whatever they want. With
or without name mangling, programmers will find a way to access the attribute
anyway. So, what's the purpose of making this less convenient for them?

When an attribute is not public, the convention to use is an _ prefix. This does not
involve any name mangling algorithm, but just usually documents the attribute as
an internal element of the class that is not intended to be used outside of the class
context. Many IDEs and style checkers are already aware of this convention and are
able to highlight places where such internal members are accessed outside of their
class.

Python also has other mechanisms to separate the public part of the class from its
private code. Two such mechanisms are descriptors and properties.

Descriptors

A descriptor lets you customize what should be done when you refer to an attribute
of an object. Descriptors are the basis of complex attribute access in Python. They are
used internally to implement properties, methods, class methods, static methods,
and super. They are objects that define how attributes of another class can be
accessed. In other words, a class can delegate the management of an attribute to
another class.

The descriptor classes are based on three special methods that form the descriptor
protocol:

e  set (self, obj, value): This is called whenever the attribute is set. In
the following examples, we will refer to this as a setter.

e  get (self, obj, owner=None): This is called whenever the attribute is
read (referred to as a getter).

e  delete_ (self, obj): Thisis called when del is invoked on the attribute.
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A descriptor that implements __get_ () and __set__() is called a data descriptor.
If it just implements __get__ (), then it is called a non-data descriptor.

Methods of the descriptor protocol are, in fact, called by the object's special
__getattribute__() method on every attribute lookup (do not confuse it with
__getattr__(), which has a different purpose). Whenever such a lookup is
performed, either by using a dotted notation in the form of instance.attribute or
by using the getattr(instance, 'attribute') function call, the __getattribute_ ()
method is implicitly invoked and it looks for an attribute in the following order:

1. It verifies whether the attribute is a data descriptor on the class object of the
instance

2. Ifnot, it looks to see whether the attribute can be found in the _ dict
lookup of the instance object

3. Finally, it looks to see whether the attribute is a non-data descriptor on the
class object of the instance

In other words, data descriptors take precedence over the __dict__lookup, and the
_dict__lookup takes precedence over non-data descriptors.

To make it clearer, here is a modified example from the official Python
documentation that shows how descriptors work on real code:

class RevealAccess(object):
"""A data descriptor that sets and returns values
normally and prints a message logging their access.

def _init_ (self, initval=None, name='var'):
self.val = initval
self.name = name

def _ get (self, obj, objtype):
print('Retrieving', self.name)
return self.val

def _ set_  (self, obj, val):
print('Updating', self.name)
self.val = val

def _ delete_ (self, obj):
print('Deleting', self.name)
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class MyClass(object):
= RevealAccess(10, 'var "x"')
=5

< X

/ The official guide on using descriptors, together with many
; Ay examples, can be found at https://docs.python.org/3.9/

howto/descriptor.html.

Note that x = RevealAccess() is defined as a class attribute instead of assigning it
in the __init_ () method. Descriptors, in order to work, need to be defined as class
attributes. Also, they are closer to methods than normal variable attributes. Here is
an example of using the RevealAccess descriptor in the interactive session:

>>> m = MyClass()
>>> m.Xx

Retrieving var "x"
10

>>> m.x = 20
Updating var "x"
>>> m.X

Retrieving var "x
20

>>> m.y

5

>>> del m.x
Deleting var "x

The preceding example clearly shows that, if a class has the data descriptor for the
given attribute, then the descriptor's __get__() method is called to return the value
every time the instance attribute is retrieved, and __set__() is called whenever

a value is assigned to such an attribute. The __del__ method of a descriptor is
called whenever an instance attribute is deleted with the del instance.attribute
statement or the delattr(instance, 'attribute') call.

The difference between data and non-data descriptors is important for the reasons
highlighted at the beginning of the section. Python already uses the descriptor
protocol to bind class functions to instances as methods.
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Descriptors also power the mechanism behind the classmethod and staticmethod
decorators. This is because, in fact, the function objects are non-data descriptors too:

>>> def function(): pass
>>> hasattr(function, ' get
True

>>> hasattr(function, ' set ')
False

This is also true for functions created with lambda expressions:

>>> hasattr(lambda: None, '__get
True

>>> hasattr(lambda: None, ' _set_ ')
False

So, without __dict__ taking precedence over non-data descriptors, we would not

be able to dynamically override specific methods on already constructed instances
at runtime. Fortunately, thanks to how descriptors work in Python, it is possible; so,
developers may use a popular technique called monkey patching to change the way
in which instances work ad hoc without the need for subclassing.

dynamically at runtime by adding, modifying, or deleting
attributes without touching the class definition or the source code.

C’ Monkey patching is the technique of modifying the class instance
\"/

Real-life example — lazily evaluated attributes

One example usage of descriptors may be to delay the initialization of the class
attribute to the moment when it is accessed from the instance. This may be useful
if the initialization of such attributes depends on some context that is not yet
available at the time the class is imported. The other case is saving resources when
such initialization is simply expensive in terms of computing resources but it is not
known whether the attribute will be used anyway at the time the class is imported.
Such a descriptor could be implemented as follows:

class InitOnAccess:
def _ init_ (self, init_func, *args, **kwargs):
self.klass = init_func
self.args = args
self.kwargs = kwargs
self. initialized = None
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def _ get (self, instance, owner):

if self._initialized is None:
print('initialized!")
self. initialized = self.klass(*self.args,
**self.kwargs)

else:
print('cached!")

return self. initialized

The InitOnAccess descriptor class includes some print() calls that allow us to see
whether values were initialized on access or accessed from the cache.

Let's imagine we want to have a class where all instances have access to a shared list
of sorted random values. The length of the list could be arbitrarily long, so it makes
sense to reuse it for all instances. On the other hand, sorting very long input can be
time-consuming. That's why the InitOnAccess class will make sure that such a list
will be initialized only on first access. Our class definition could be as follows:

import random

class WithSortedRandoms:
lazily initialized = InitOnAccess(
sorted,

[random.random() for _ in range(5)]

)

Note that we used fairly small input to the range() function to make the output
readable. Here is an example usage of the WithSortedRandoms class in an interactive
session:

>>> m = WithSortedRandoms ()

>>> m.lazily initialized

initialized!

[0.2592159616928279, ©.32590583255950756, ©.4015520901807743,
0.4148447834912816, 0.4187058605495758, 0.4534290894962043,
0.4796775578337028, 0.6963642650184283, 0.8449725511007807,
0.8808174325885045 ]

>>> m.lazily initialized

cached!

[0.2592159616928279, ©.32590583255950756, 0.4015520901807743,
0.4148447834912816, 0.4187058605495758, 0.4534290894962043,
0.4796775578337028, 0.6963642650184283, 0.8449725511007807,
0.8808174325885045 ]

[129]



Python in Comparison with Other Languages

The official OpenGL Python library available on PyPI under the PyOpenGL name uses
a similar technique to implement a lazy_property object that is both a decorator and
a data descriptor:

class lazy property(object):
def _init_ (self, function):
self.fget = function

def _ get (self, obj, cls):
value = self.fget(obj)
setattr(obj, self.fget._name__, value)
return value

The setattr() function allows you to set the attribute of the object instance by using
the attribute from the provided positional argument. Here, it is self.fget.__name__.
It is constructed like that because the lazy_property descriptor is supposed to be
used as a decorator of the method acting as a provider of the initialized value as in
the following example:

class lazy property(object):
def _init_ (self, function):
self.fget = function

def _ get (self, obj, cls):
value = self.fget(obj)
setattr(obj, self.fget._ name__, value)
return value

class WithSortedRandoms:
@lazy_ property
def lazily initialized(self):
return sorted([[random.random() for _ in range(5)]1])

Such an implementation is similar to using the property decorator described in the
next section. The function that is wrapped with it is executed only once and then
the instance attribute is replaced with a value returned by that function property.
This instance attribute takes precedence over the descriptor (the class attribute) so
no more initializations will be performed on the given class instance. This technique
is often useful when there's a need to fulfill the following two requirements at the
same time:
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* An object instance needs to be stored as a class attribute that is shared
between its instances (to save resources)

* This object cannot be initialized at the time of import because its creation
process depends on some global application state/context

In the case of applications written using OpenGL, you can encounter this kind of
situation very often. For example, the creation of shaders in OpenGL is expensive
because it requires a compilation of code written in OpenGL Shading Language
(GLSL). It is reasonable to create them only once, and, at the same time, include their
definition in close proximity to classes that require them. On the other hand, shader
compilations cannot be performed without OpenGL context initialization, so it is
hard to define and compile them reliably in a global module namespace at the time
of import.

The following example shows the possible usage of the modified version of
PyOpenGL's lazy_property decorator (here, lazy_class_attribute) in some
imaginary OpenGL-based application. The highlighted change to the original
lazy_property decorator was required in order to allow the attribute to be shared
between different class instances:

import OpenGL.GL as gl
from OpenGL.GL import shaders

class lazy class_attribute(object):
def __init_ (self, function):
self.fget = function

def get (self, obj, cls):
value = self.fget(cls)

setattr(cls, self.fget.__name__, value)
return value

class ObjectUsingShaderProgram(object):

VERTEX_CODE = """
#version 330 core
layout(location = @) in vec4 vertexPosition;
void main(){
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gl Position = vertexPosition;

}

FRAGMENT_CODE = """
#version 330 core
out lowp vec4 out_color;
void main(){
out_color = vec4(1, 1, 1, 1);
}

@lazy_class_attribute
def shader_program(self):
print("compiling!")
return shaders.compileProgram(
shaders.compileShader(
self.VERTEX_CODE, gl.GL_VERTEX_SHADER
)>
shaders.compileShader(
self.FRAGMENT_CODE, gl.GL_FRAGMENT_SHADER

)
)

Like every advanced Python syntax feature, this one should also be used with
caution and documented well in code. Descriptors affect the very basic part of class
behavior. For inexperienced developers, the altered class behavior might be very
confusing and unexpected. Because of that, it is very important to make sure that all
your team members are familiar with descriptors and understand this concept well
if it plays an important role in your project's code base.

Properties

Anyone who has programmed in C++ or Java for a while should probably be
familiar with the term encapsulation. It is a means of protecting direct access to class
fields coming from the assumption that all internal data held by a class should be
considered private. In a fully encapsulated class, as few methods as possible should
be exposed as public. Any write or read access to an object's state should be exposed
through setter and getter methods that are able to guard proper usage. In Java, for
instance, this pattern can look as follows:
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public class UserAccount {
private String username;

public String getUsername() {
return username;

}

public void setUsername(String newUsername) {
this.username = newUsername;

}
}

The getUsername() method is a username getter and the setUsername() method is
a username setter. The premise is quite good. By hiding access to class members
behind getters and setters (also known as accessors and mutators), you are able
to guard the right access to internal class values (let's say, perform validation on
setters). You are also creating an extension point in the class public API that can
be potentially enriched with additional behavior whenever there is such a need
without breaking the backward compatibility of the class API.

Let's imagine that you have a class for a user account that, among others, stores
the user's password. If you would like to emit audit logs whenever a password is
accessed, you could either make sure that every place in your code that accesses
user passwords has proper audit log calls or proxy all access to password entry
through a set of setter and getter methods that have the logging call added by
default.

The problem is that you can never be sure what will require an additional extension
in the future. This simple fact often leads to over-encapsulation and a never-ending
litany of setter and getter methods for every possible field that could otherwise

be public. They are simply tedious to write, and way too often provide little to no
benefit and just reduce the signal-to-noise ratio.

Thankfully, Python has a completely different approach to the accessor and mutator
pattern through the mechanism of properties. Properties allow you to freely

expose public members of classes and simply convert them to getter and setter
methods whenever there is such a need. And you can do that completely without
breaking the backward compatibility of your class API. Consider the example of

an encapsulated UserAccount class that does not use the feature of properties:

class UserAccount:
def _ init_ (self, username, password):
self. _username = username
self. password = password
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def get_username(self):
return self._username

def set _username(self, username):
self. username = username

def get_password(self):
return self. password

def set _username(self, password):
self. password = password

Whenever you see code like the above, which can be recognized by the abundance
of get_ and set_ methods, you can be almost 100% sure that you're dealing with

a foreign language idiom. That's something that a C++ or Java programmer could
write. A seasoned Python programmer would rather write the following;:

class UserAccount:
def __init_ (self, username, password):
self.username = username
self.password = password

And only when there's an actual need to hide a specific field behind a property, not
sooner, an experienced programmer would provide the following modification:

class UserAccount:
def __init_ (self, username, password):
self.username = username
self._password = password

@property
def password(self):
return self._password

@password.setter
def password(self, value):
self._password = value
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The properties provide a built-in descriptor type that knows how to link an attribute
to a set of methods. The property() function takes four optional arguments: fget,
fset, fdel, and doc. The last one can be provided to define a docstring function that
is linked to the attribute as if it were a method. Here is an example of a Rectangle
class that can be controlled either by direct access to attributes that store two corner
points or by using the width and height properties:

class Rectangle:
def _ init_ (self, x1, yl1, x2, y2):
self.x1, self.yl = x1, y1
self.x2, self.y2 = x2, y2

def width_get(self):
return self.x2 - self.x1l

def _width_set(self, value):
self.x2 = self.x1 + value

def height get(self):
return self.y2 - self.yl

def _height_set(self, value):
self.y2 = self.yl + value

width = property(

_width_get, _width_set,

doc="rectangle width measured from left"
)
height = property(

_height_get, _height_set,

doc="rectangle height measured from top"

def __repr__(self):
return "{}({}, {}, {}, {})".format(
self. class__._ name__,
self.x1, self.yl, self.x2, self.y2
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The following is an example of such defined properties in an interactive session:

>>> rectangle = Rectangle(10, 10, 25, 34)
>>> rectangle.width, rectangle.height
(15, 24)

>>> rectangle.width = 100

>>> rectangle

Rectangle(10, 10, 110, 34)

>>> rectangle.height = 100

>>> rectangle

Rectangle(10, 10, 110, 110)

>>> help(Rectangle)

Help on class Rectangle

class Rectangle(builtins.object)
| Methods defined here:

__init_ (self, x1, y1, x2, y2)
Initialize self. See help(type(self)) for accurate signature.

__repr__(self)
Return repr(self).

Data descriptors defined here:

(...)

height
rectangle height measured from top

width
rectangle width measured from left

The properties make it easier to write descriptors but must be handled carefully
when using inheritance over classes. The attribute created is made on the fly using
the methods of the current class and will not use methods that are overridden in the
derived classes.

For instance, the following example will fail to override the implementation of the
fget method of the parent class's width property:
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>>> class MetricRectangle(Rectangle):
def _width_get(self):
return "{} meters".format(self.x2 - self.x1)

>>> Rectangle(@, 0, 100, 100).width
100

In order to resolve this, the whole property simply needs to be overwritten in the
derived class:

>>> class MetricRectangle(Rectangle):
def _width_get(self):
return "{} meters".format(self.x2 - self.x1)
width = property(_width_get, Rectangle.width.fset)

>>> MetricRectangle(0, 0, 100, 100).width
‘100 meters'

Unfortunately, the preceding code has some maintainability issues. It can be a source
of confusion if the developer decides to change the parent class but forgets to update
the property call. This is why overriding only parts of the property behavior is not
advised. Instead of relying on the parent class's implementation, it is recommended
that you rewrite all the property methods in the derived classes if you need to
change how they work. In most cases, this is the only option, because usually, the
change to the property setter behavior implies a change to the behavior of getter as
well.

Because of this, the best syntax for creating properties is to use property as a
decorator. This will reduce the number of method signatures inside the class and
make the code more readable and maintainable:

class Rectangle:
def __init_ (self, x1, yl, x2, y2):
self.x1, self.yl = x1, yl
self.x2, self.y2 = x2, y2

@property

def width(self):
"""rectangle width measured from left"""
return self.x2 - self.x1

@width.setter
def width(self, value):
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self.x2 = self.x1 + value

@property

def height(self):
"""rectangle height measured from top"""
return self.y2 - self.yl

@height.setter
def height(self, value):
self.y2 = self.yl + value

The best thing about the Python property mechanism is that it can be introduced to
a class gradually. You can start by exposing public attributes of the class instance
and convert them to properties only if there is such a need. Other parts of your code
won't notice any change in the class API because properties are accessed as if they
were ordinary instance attributes.

We've so far discussed the object-oriented data model of Python in comparison
to different programming languages. But the data model is only a part of the
OOP landscape. The other important factor of every object-oriented language
is the approach to polymorphism. Python provides a few implementations of
polymorphism and that will be the topic of the next section.

Dynamic polymorphism

Polymorphism is a mechanism found commonly in OOP languages. Polymorphism
abstracts the interface of an object from its type. Different programming languages
achieve polymorphism through different means. For statically typed languages, it

is usually achieved through:

* Subtyping: Subtypes of type A can be used in every interface that expects
type A. Interfaces are defined explicitly, and subtypes/subclasses inherit
interfaces of their parents. This is a polymorphism mechanism found in C++.

* Implicit interfaces: Every type can be used in the interface that expects
an interface of type A as long as it implements the same methods (has the
same interface) as type A. The declarations of interfaces are still defined
explicitly but subclasses/subtypes don't have to explicitly inherit from the
base classes/types that define such an interface. This is a polymorphism
mechanism found in Go.
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Python is a dynamically typed language, so uses a rather lax mechanism of
polymorphism that is often referred to as duck typing. The duck typing principle
says the following;:

If it walks like a duck and it quacks like a duck, then it must be a duck.

Application of that principle in Python means that any object can be used within a
given context as long as the object works and behaves as the context expects. This
typing philosophy is very close to implicit interfaces known in Go, although it does
not require any declaration of the expected interfaces of function arguments. Because
Python does not enforce types or interfaces of function arguments, it does not matter
what types of objects are provided to the function. What matters instead is which
methods of those objects are actually used within the function body.

To better understand the concept, consider the following example of a function that
is supposed to read a file, print its contents, and close the file afterward:

def printfile(file):
try:
contents = file.read()
print(file)
finally:
file.close()

From the signature of the printfile() function, we can already guess that it expects
a file or a file-like object (like StringIO from the io module). But the truth is this
function will consume any object without raising an unexpected exception if we are
able to ensure for the input argument that:

* The file argument has a read() method
* Theresult of file.read() is a valid argument to the print() function

* The file argument has the close() method

The above three points also indicate the three places where polymorphism happens
in the above example. Depending on the actual type of the file argument, the
printfile() function will use different implementations of the read() and close()
methods. The type of the contents variable can also be different depending on the
file.read() implementation, in which case the print() function will use different
implementation of object string representation.
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This approach to polymorphism and typing is really powerful and flexible, although
it has some downsides. Due to the lack of type and interface enforcement, it is
harder to verify the code's correctness before execution. That's why high-quality
applications must rely on extensive code testing with rigorous coverage of every
path that code execution can take. Python allows you to partially overcome this
problem through type hinting annotations that can be verified with additional tools
before runtime.

The dynamic type system of Python together with the duck-typing principle creates
an implicit and omnipresent form of dynamic polymorphism that makes Python
very similar to JavaScript, which also lacks static type enforcement. But there

are other forms of polymorphism available to Python developers that are more
"classical" and explicit in nature. One of those forms is operator overloading.

Operator overloading

Operator overloading is a specific type of polymorphism that allows the language
to have different implementations of specific operators depending on the types of
operands.

Operators in many programming languages are already polymorphic. Consider
the following expressions that would be valid constructs in Python:

7 *6

3.14 * 2

["a", "b"] * 3
"abba" * 2

Those expressions in Python would have four different implementations:

* 7 * 6isinteger multiplication resulting in an integer value of 42

* 3.14 * 2is float multiplication resulting in a float value of 6.28

e ["a", "b"] * 3islist multiplication resulting in a list value of ['a", 'b",
Ial, Ibl, lal, lbl]

e "abba" * 2 is string multiplication resulting in a string value of 'abbaabba

The semantics and implementation of all Python operators are already different
depending on the types of operands. Python provides multiple built-in types
together with various implementations of their operators, but it doesn't mean that
every operator can be used with any type.
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For instance, the + operator is used for the summation or concatenation of operands.
It makes sense to concatenate numeric types like integer or floating-point numbers,
as well as to concatenate strings and lists. But this operator can't be used with sets
or dictionaries as such an operation would not make mathematical sense (sets could
be either intersected or joined) and the expected result would be ambiguous (which
values of two dictionaries should be used in the event of conflict?).

Operator overloading is just the extension of the built-in polymorphism of operators
already included in the programming language. Many programming languages,
including Python, allow you to define a new implementation for operand types that
didn't have a valid operator implementation or shadow existing implementation
through subclassing.

Dunder methods (language protocols)

The Python data model specifies a lot of specially named methods that can be
overridden in your custom classes to provide them with additional syntax capabilities.
You can recognize these methods by their specific naming conventions that wrap the
method name with double underscores. Because of this, they are sometimes referred
to as dunder methods. It is simply shorthand for double underscores.

The most common and obvious example of such dunder methods is __init__ (),
which is used for class instance initialization:

class CustomUserClass:
def init_ (self, initiatization_argument):

These methods, either alone or when defined in a specific combination, constitute the
so-called language protocols. If we say that an object implements a specific language
protocol, it means that it is compatible with a specific part of the Python language
syntax. The following is a table of the most common protocols within the Python
language.

Protocol name | Methods Description

Callable a1l () Allows objects to be called with parentheses:
protocol T T instance()

Descriptor _set_ (),__get Allows us to manipulate the attribute access
protocols (),and __del_ () pattern of classes (see the Descriptors section)

Allows us to test whether or not an object

Container contains_ () contains some value using the in keyword:
protocol - -

value in instance
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Allows objects to be iterated using the for
Iterable iter () keyword:
protocol - for value in instance:
Allows objects to be indexed with square
bracket syntax and queried for length using a
Sequence __getitem_ (), built-in function:
protocol _len__() item = instance[index]
length = len(instance)

Each operator available in Python has its own protocol and operator overloading
happens by implementing the dunder methods of that protocol. Python provides
over 50 overloadable operators that can be divided into five main groups:

* Arithmetic operators
* In-place assignment operators
* Comparison operators
* Identity operators
* Bitwise operators
That's a lot of protocols so we won't discuss all of them here. We will instead

take a look at a practical example that will allow you to better understand how
to implement operator overloading on your own.

A full list of available dunder methods can be found in the Data
model section of the official Python documentation available at
https://docs.python.org/3/reference/datamodel.html.

\@/ All operators are also exposed as ordinary functions in the

operators module. The documentation of that module gives a
good overview of Python operators. It can be found at https://
docs.python.org/3.9/1library/operator.html.

Let's assume that we are dealing with a mathematical problem that can be solved
through matrix equations. A matrix is a mathematical element of linear algebra
with well-defined operations. In the simplest form, it is a two-dimensional array

of numbers. Python lacks native support for multi-dimensional arrays other than
nesting lists within lists. Because of that, it would be a good idea to provide a
custom class that encapsulates matrices and operations between them. Let's start by
initializing our class:
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class Matrix:
def __init_ (self, rows):
if len(set(len(row) for row in rows)) > 1:
raise ValueError("All matrix rows must be the same length")

self.rows = rows

The first dunder method of the Matrix classis __init__(), which allows us to safely
initialize the matrix. It accepts a variable list of matrix rows as input arguments
through argument unpacking. As every row needs to have the same number of
columns, we iterate over them and verify that they all have the same length.

Now let's add the first operator overloading:

def __add__ (self, other):
if (
len(self.rows) != len(other.rows) or
len(self.rows[@]) != len(other.rows[@])

raise ValueError("Matrix dimensions don't match")

return Matrix([
[a + b for a, b in zip(a_row, b_row)]
for a_row, b_row in zip(self.rows, other.rows)

D

The__add__() method is responsible for overloading the + (plus sign) operator and
here it allows us to add two matrices together. Only matrices of the same dimensions
can be added together. This is a fairly simple operation that involves adding all
matrix elements one by one to form a new matrix.

The __sub__() method is responsible for overloading the - (minus sign) operator
that will be responsible for matrix subtraction. To subtract two matrices, we use a
similar technique as in the - operator:

def _ sub__ (self, other):
if (
len(self.rows) != len(other.rows) or
len(self.rows[@]) != len(other.rows[@])

raise ValueError("Matrix dimensions don't match")

return Matrix([
[a - b for a, b in zip(a_row, b_row)]
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for a_row, b_row in zip(self.rows, other.rows)

D

And the following is the last method we add to our class:

def __mul__ (self, other):
if not isinstance(other, Matrix):
raise TypeError(
f"Don't know how to multiply {type(other)} with Matrix"

)

if len(self.rows[0]) != len(other.rows):
raise ValueError(
"Matrix dimensions don't match"

rows = [[@ for _ in other.rows[@]] for _ in self.rows]

for i in range(len(self.rows)):
for j in range(len(other.rows[0])):
for k in range(len(other.rows)):
rows[i][j] += self.rows[i][k] * other.rows[k][j]

return Matrix(rows)

The last overloaded operator is the most complex one. This is the * operator, which
is implemented through the __mul__() method. In linear algebra, matrices don't have
the same multiplication operation as real numbers. Two matrices can be multiplied if
the first matrix has a number of columns equal to the number of rows of the second
matrix. The result of that operation is a new matrix where each element is a dot
product of the corresponding row of the first matrix and the corresponding column
of the second matrix.

Here we've built our own implementation of the matrix to present the idea of
operators overloading. Although Python lacks a built-in type for matrices, you don't
need to build them from scratch. The NumPy package is one of the best Python
mathematical packages and among others provides native support for matrix
algebra. You can easily obtain the NumPy package from PyPI.
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Comparison to C++

One programming language where operator overloading is particularly common is
C++. It is a statically typed OOP language that is nothing like Python. Python has
OOQOP elements and some mechanisms that, in essence, are similar to those of C++.
These are mainly the existence of classes and class inheritance together with the
ability to overload operators. But the way these mechanisms are implemented within
the language is completely different. And that's why comparing those two languages
is so fascinating.

C++, in contrast to Python, has multiple coexisting polymorphism mechanisms. The
main mechanism is through subtyping, which is also available in Python. The second
major type of polymorphism in C++ is ad hoc polymorphism through function
overloading. Python lacks a direct counterpart of that feature.

Function overloading in C++ allows you to have multiple implementations of the
same function depending on input arguments. It means that you can have two
functions or methods sharing the same name but having a different number of and/
or types of arguments. As C++ is a statically typed language, types of arguments
are always known in advance and the choice of exact implementation happens at
compile time.

To make it even more flexible, function overloading can be used together with
operator overloading. The use case for such overloading coexistence can be better
understood if we bring back the matrix multiplication use case. We know that two
matrices can be multiplied together and we've learned how to do that in the previous
section. But linear algebra also allows you to multiply a matrix with a scalar type
like a real number. This operation results in a new matrix where every element

has been multiplied by the scalar. In code, that would mean essentially another
implementation of the multiplication operator.

In C++, you can simply provide multiple coexisting * operator overloading
functions. The following is an example of C++ function signatures for overloaded
operators that could allow various matrix and scalar multiplication implementations:

Matrix operator+(const Matrix& lhs, const Matrix& rhs)
Matrix operator+(const Matrix& lhs, const int& rhs)
Matrix operator+(const Matrix& lhs, const float& rhs)
Matrix operator+(const int& lhs, const Matrix& rhs)
Matrix operator+(const float& lhs, const Matrix& rhs)
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Python is a dynamically typed language, and that's the main reason why it

doesn't have function overloading as in C++. If we want to implement * operator
overloading on the Matrix class that supports both matrix multiplication and scalar
multiplication, we need to verify the operator input type at runtime. This can be
done with the built-in isinstance() function as in the following example:

def _ mul__ (self, other):
if isinstance(other, Matrix):

elif isinstance(other, Number):
return Matrix([
[item * other for item in row]
for row in self.rows
D
else:
raise TypeError(f"Can't subtract {type(other)} from Matrix")

Another major difference is that C++ operator overloading is done through free
functions instead of class methods, while in Python, the operator is always resolved
from one operand's dunder method. This difference can again be displayed using an
example of scalar implementation. The previous example allowed us to multiply a
matrix by an integer number in the following form:

Matrix([[1, 1], [2, 2]]) * 3

This will work because the overloaded operator implementation will be resolved
from the left operand. On the other hand, the following expression will result in
TypeError:

3 * Matrix([1, 1], [2, 2]1])

In C++, you can provide multiple versions of operator overloading that cover all
combinations of operand types for the * operator. In Python, the workaround for
that problem is providing the __rmul__() method. This method is resolved from the
right-side operand if the left-side __mul__() operator raises TypeError. Most infix
operators have their right-side implementation alternatives. The following is an
example of the __rmul__() method for the Matrix class that allows you to perform
scalar multiplication with a right-hand side number argument:

def _ rmul__ (self, other):
if isinstance(other, Number):
return self * other
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As you see, it still requires the use of type evaluation through the isinstance()
function, so operator overloading should be used very cautiously, especially if
overloaded operators receive completely new meaning that is not in line with their
original purpose.

The need to provide alternative overloaded implementations of the operator
depending on the single operand type is usually a sign that the operator has lost

its clear meaning. For instance, matrix multiplication and scalar multiplication are
mathematically two distinct operations. They have different properties. For instance,
scalar multiplication is cumulative while matrix multiplication isn't. Providing an
overloaded operator for a custom class that has multiple internal implementations
can quickly lead to confusion, especially in code that deals with math problems.

We were deliberately silent about the fact that Python actually has a dedicated
matrix multiplication operator despite the fact that it doesn't have the built-in matrix
type. That was just to better showcase the danger and complexities of overusing
operator overloading. The dedicated operator for matrix multiplication is @ and
actually, the potential confusion between scalar and matrix multiplication was one
of the main reasons this operator was introduced.

In many programming languages, operator overloading can be considered a
special case of function and method overloading and these usually come in a pair.
Surprisingly, Python has operator overloading but doesn't offer real function and
method overloading. It offers different patterns to fill that gap. We will discuss
them in the next section.

Function and method overloading

A common feature of many programming languages is function and method
overloading. It is another type of polymorphism mechanism. Overloading allows
you to have multiple implementations of a single function by using different call
signatures. Either a language compiler or interpreter is able to select a matching
implementation based on the set of function call arguments provided. Function
overloading is usually resolved based on:

* Function arity (number of parameters): Two function definitions can share a
function name if their signatures expect a different number of parameters.

* Types of parameters: Two function definitions can share a function name if
their signatures expect different types of parameters.

As already stated in the Operator overloading section, Python lacks an overloading
mechanism for functions and methods other than operator overloading. If you define
multiple functions in a single module that share the same name, the latter definition
will always shadow all previous definitions.
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If there is a need to provide several function implementations that behave differently
depending on the type or number of arguments provided, Python offers several
alternatives:

* Using methods and/or subclassing: Instead of relying on a function to
distinguish the parameter type, you can bind it to a specific type by defining
it as a method of that type.

* Using argument and keyword argument unpacking: Python allows for
some flexibility regarding function signatures to support a variable number
of arguments via *args and **kwargs patterns (also known as variadic
functions).

* Using type checking: The isinstance() function allows us to test input
arguments against specific types and base classes to decide how to handle
them.

Of course, each of the above options has some limitations. Pushing function
implementation directly to class definitions as methods will not make any sense
if said method doesn't constitute unique object behavior. Argument and keyword
argument unpacking can make function signatures vague and hard to maintain.

Very often the most reliable and readable substitute for function overloading in
Python is simply type checking. We've already seen this technique in action when
discussing operator overloading. Let's recall the __mul__() method that was able to
distinguish between matrix and scalar multiplication:

def _ mul__ (self, other):
if isinstance(other, Matrix):

elif isinstance(other, Number):

else:
raise TypeError(f"Can't subtract {type(other)} from Matrix")

As you can see, something that in a statically typed language would have to be done
through function overloading, in Python can be resolved with a simple isinstance()
call. That can be understood as an upside rather than a downside of Python. Still, this
technique is convenient only for a small number of call signatures. When the number
of supported types grows, it is often better to use more modular patterns. Such
patterns rely on single-dispatch functions.
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Single-dispatch functions

In situations when an alternative to function overloading is required and the
number of alternative function implementations is really large, using multiple if
isinstance(...) clauses can quickly get out of hand. Good design practice dictates
writing small, single-purpose functions. One large function that branches over
several types to handle input arguments differently is rarely a good design.

The Python Standard Library provides a convenient alternative. The functools.
singledispatch() decorator allows you to register multiple implementations

of a function. Those implementations can take any number of arguments but
implementations will be dispatched depending on the type of the first argument.
Single dispatch starts with a definition of a function that will be used by default

for any non-registered type. Let's assume that we need a function that can output
various variables in human-readable format for the purpose of a larger report being
displayed in the console output. By default, we could use the f-string to denote a
raw value in string format:

from functools import singledispatch

@singledispatch
def report(value):
return f"raw: {value}"

From there, we can start registering different implementations for various types
using the report.register() decorator. That decorator is able to read function
argument type annotations to register specific type handlers. Let's say we want
datetime objects to be reported in ISO format:

from datetime import datetime

@report.register
def (value: datetime):
return f"dt: {value.isoformat()}"

Note that we used the _ token as the actual function name. That serves two
purposes. First, it is a convention for names of objects that are not supposed to be
used explicitly. Second, if we used the report name instead, we would shadow the
original function, thus losing the ability to access it and register new types.
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Let's define a couple more type handlers:

from numbers import Real

@report.register
def _(value: complex):
return f"complex: {value.real}{value.imag:+}j"

@report.register
def (value: Real):
return f"real: {value:f}"

Note that typing annotations aren't necessary but we've used them as an element
of good practice. If you don't want to use typing annotations, you can specify the
registered type as the register() method argument as in the following example:

@report.register(complex)
def _(value):
return f"complex: {value.real}{value.imag:+}j"

@report.register(real)
def _(value):
return f"real: {value:f}"

If we tried to verify the behavior of our collection of single-dispatch implementations
in an interactive session, we would get an output like the following:

>>> report(datetime.now())

‘dt: 2020-12-12T00:22:31.690377"

>>> report(100-307j)

‘complex: 100.0-30.0j"'

>>> report(9001)

‘real: 9001.000000"

>>> report("January")

‘raw: January'

>>> for key, value in report.registry.items():
print(f"{key} -> {value}")

<class 'object'> -> <function report at 0x7fdfd6929a60>
<class 'datetime.datetime'> -> <function _ at @x7fdfd69a5afe>
<class 'complex'> -> <function _ at @x7fdfd6993d30>

<class 'float'> -> <function _ at ex7fdfde6d7ab8e>

<class 'int'> -> <function _ at @x7fdfdé6d7ab8e>
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As we see, the report () function is now an entry point to a collection of registered
functions. Whenever it is called with an argument, it looks in the registry mapping
stored in report.registry. There's always at least one key that maps the object type
to the default implementation of the function.

Additionally, there is a variation of the single-dispatch mechanism dedicated to
class methods. Methods always receive the current object instance as their first
argument. That means the functools.singledispatch() decorator would not be
effective as the first argument of methods is always the same type. The functools.
singledispatchmethod() decorator keeps that calling convention in mind and allows
you to register multiple type-specific implementations on methods as well. It works
by resolving the first non-self, non-cls argument:

from functools import singledispatchmethod

class Example:
@singledispatchmethod
def method(self, argument):
pass

@method.register
def (self, argument: float):
pass

Remember that while the single-dispatch mechanism is a form of polymorphism that
resembles function overloading, it isn't exactly the same. You cannot use it to provide
several implementations of a function on multiple argument types and the Python
Standard Library currently lacks such a multiple-dispatch utility.

Data classes

As we learned from the Class instance initialization section, the canonical way to
declare class instance attributes is through assigning them in the __init__ () method
as in the following example:

class Vector:

def _init_ (self, x, y):
self.x = x
self.y =y
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Let's assume we are building a program that does some geometric computation

and Vector is a class that allows us to hold information about two-dimensional
vectors. We will display the data of the vectors on the screen and perform common
mathematical operations, such as addition, subtraction, and equality comparison.
We already know that we can use special methods and operator overloading to
achieve that goal in a convenient way. We can implement our Vector class as follows:

class Vector:

def

def

def

def

def

__init_ (self, x, y):
self.x = x
self.y =y
__add__(self, other):

Add two vectors using + operator
return Vector(

self.x + other.x,

self.y + other.y,

__sub__ (self, other):

Subtract two vectors using - operator
return Vector(

self.x - other.x,

self.y - other.y,

__repr__(self):

Return textual representation of vector
return f"<Vector: x={self.x}, y={self.y}>"

__eq__(self, other):

Compare two vectors for equality
return self.x == other.x and self.y == other.y

The following is the interactive session example that shows how it behaves when
used with common operators:

>>> Vector(2, 3)

<Vector:

X=2, y=3>

>>> Vector(5, 3) + Vector(l, 2)

<Vector:

X=6, y=5>

>>> Vector(5, 3) - Vector(l, 2)

<Vector:

x=4, y=1>
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>>> Vector(1l, 1) == Vector(2, 2)
False

>>> Vector(2, 2) == Vector(2, 2)
True

The preceding vector implementation is quite simple, but it involves a lot of code
that could be avoided. Our Vector class is focused on data. Most of the behavior

it provides is centered around creating new Vector instances through mathematic
operations. It doesn't provide complex initialization nor custom attribute access
patterns. Things like equality comparison, string representation, and attribute
initialization will look very similar and repetitive for various classes focused on data.

If your program uses many similar simple classes focused on data that do not
require complex initialization, you'll end up writing a lot of boilerplate code just
forthe _init_ (), _repr_ (), and __eq__ () methods.

With the dataclasses module, we can make our Vector class code a lot shorter:

from dataclasses import dataclass

@dataclass
class Vector:
X: int
y: int

def __add__ (self, other):
"""Add two vectors using + operator
return Vector(
self.x + other.x,
self.y + other.y,

def sub_ (self, other):
"""Subtract two vectors using - operator"""
return Vector(
self.x - other.x,
self.y - other.y,

)

The dataclass class decorator reads attribute annotations of the Vector class and
automatically creates the __init_ (), __repr__ (), and __eq__() methods. The
default equality comparison assumes that the two instances are equal if all their
respective attributes are equal to each other.
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But that's not all. Data classes offer many useful features. They can easily be made
compatible with other Python protocols, too. Let's assume we want our Vector class
instances to be immutable. Thanks to this, they could be used as dictionary keys and
as content values in sets. You can do this by simply adding a frozen=True argument
to the dataclass decorator, as in the following example:

from dataclasses import dataclass

@dataclass(frozen=True)
class FrozenVector:

x: int

y: int

Such a frozen Vector data class becomes completely immutable, so you won't be able
to modify any of its attributes. You can still add and subtract two Vector instances as
in our example; these operations simply create new Vector objects.

We've learned already about the dangers of assigning default values to class
attributes in the main class body instead of the __init__() function. The
dataclass module offers a useful alternative through the field() constructor. This
constructor allows you to specify both mutable and immutable default values for
data class attributes in a sane and secure way without risking leaking the state
between class instances. Static and immutable default values are provided using
the field(default=value) call. The mutable values should always be passed by
providing a type constructor using the field(default_factory=constructor) call.
The following is an example of a data class with two attributes that have their
default values assigned through the field() constructor:

from dataclasses import dataclass, field

@dataclass

class DataClassWithDefaults:
immutable: str = field(default="this is static default value")
mutable: list = field(default_factory=1list)

Once a data class attribute has its default assigned, the corresponding initialization
argument for that field becomes optional. The following transcript presents various
ways of initializing DataClassWithDefaults class instances:
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>>> DataClassWithDefaults()

DataClassWithDefaults(immutable="'this is static default value',
mutable=[])
>>> DataClassWithDefaults("This is immutable")

DataClassWithDefaults(immutable="'This is immutable', mutable=[])
>>> DataClassWithDefaults(None, ["this", "is", "list"])
DataClassWithDefaults(immutable=None, mutable=['this', 'is', 'list'])

Data classes are similar in nature to structs in C or Go. Their main purpose is to

hold data and provide shortcuts for the otherwise tedious initialization of instance
attributes. But they should not be used as a basis for every possible custom class. If
your class isn't meant to represent the data, and/or requires custom or complex state
initialization, you should rather use the default way of initialization: through the
__init_ () method.

Python is not only about OOP. It supports other programming paradigms as

well. One of those paradigms is functional programming, which concentrates on
the evaluation of functions. Pure functional programming languages are usually
drastically different than their OOP counterparts. But multiparadigm programming
languages try to take the best of many programming styles. That's also true for
Python. In the next section, we will review a few elements of Python that support
functional programming. You will soon notice that this paradigm in Python is
actually built over the foundation laid by OOP.

Functional programming

One of the great things about programming in Python is that you are never
constrained to a single way of thinking about your programs. There are always
various ways to solve a given problem, and sometimes the best one requires an
approach that is slightly different from the one that would be the most obvious.
Sometimes, this approach requires the use of declarative programming. Fortunately,
Python, with its rich syntax and large standard library, offers features of functional
programming, and functional programming is one of the main paradigms of
declarative programming.

Functional programming is a paradigm where the program flow is achieved mainly
through the evaluation of (mathematical) functions rather than through a series of
steps that change the state of the program. Purely functional programs avoid the
changing of state (side effects) and the use of mutable data structures.
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One of the best ways to better understand the general concept of functional
programming is by familiarizing yourself with the basic terms of functional
programming;:

Side effects: A function is said to have a side effect if it modifies the

state outside of its local environment. In other words, a side effect is any
observable change outside of the function scope that happens as a result of a
function call. An example of such side effects could be the modification of a
global variable, the modification of an attribute of an object that is available
outside of the function scope, or saving data to some external service. Side
effects are the core of the concept of OOP, where class instances are objects
that are used to encapsulate the state of an application, and methods are
functions bound to those objects that are supposed to manipulate the state
of these objects. Procedural programming also heavily relies on side effects.

Referential transparency: When a function or expression is referentially
transparent, it can be replaced with the value that corresponds to its output
without changing the behavior of the program. So, a lack of side effects is a
requirement for referential transparency, but not every function that lacks
side effects is a referentially transparent function. For instance, Python's
built-in pow(x, y) function is referentially transparent, because it lacks side
effects, and for every x and y argument, it can be replaced with the value

of x¥. On the other hand, the datetime.now() constructor method of the
datetime type does not seem to have any observable side effects but will
return a different value every time it is called. So, it is referentially opaque.

Pure functions: A pure function is a function that does not have any side
effects and that always returns the same value for the same set of input
arguments. In other words, it is a function that is referentially transparent.
Every mathematical function is, by definition, a pure function. Analogously,
a function that leaves a trace of its execution for the outside world (for
instance, by modifying received objects) is not a pure function.

First-class functions: Language is said to contain first-class functions if
functions in this language can be treated as any other value or entity. First-
class functions can be passed as arguments to other functions, returned as
function return values, and assigned to variables. In other words, a language
that has first-class functions is a language that treats functions as first-class
citizens. Functions in Python are first-class functions.
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Using these concepts, we could describe a purely functional language as a language
that:

* Has first-class functions

* Is concerned only with pure functions

* Avoids any state modification and side effects
Python, of course, is not a purely functional programming language, and it would
be really hard to imagine a useful Python program that uses only pure functions

without any side-effects. On the other hand, Python offers a large variety of features
that, for years, were only accessible in purely functional languages, like:

* Lambda functions and first-class functions
* map(), filter(), and reduce() functions

* Partial objects and functions

* Generators and generator expressions

Those features make it possible to write substantial amounts of Python code in a
functional way, even though Python isn't purely functional.

Lambda functions

Lambda functions are a very popular programming concept that is especially
profound in functional programming. In other programming languages, lambda
functions are sometimes known as anonymous functions, lambda expressions, or
function literals. Lambda functions are anonymous functions that don't have to be
bound to any identifier (variable).

At some point in Python 3's development, there was a heated
discussion about removing the feature of lambda functions
Q’ together with the map (), filter(), and reduce() functions. You
p . , .
can learn more about Guido van Rossum's article about reasons for
removing those features at https://www.artima.com/weblogs/
viewpost.jsp?thread=98196.
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Lambda functions in Python can be defined only using expressions. The syntax for
lambda functions is as follows:

lambda <arguments>: <expression>

The best way to present the syntax of lambda functions is by comparing a "normal"
function definition with its anonymous counterpart. The following is a simple
function that returns the area of a circle of a given radius:

import math

def circle_area(radius):
return math.pi * radius ** 2

The same function expressed as a lambda function would take the following form:
lambda radius: math.pi * radius ** 2

Lambda functions are anonymous, but it doesn't mean they cannot be referred to
using an identifier. Functions in Python are first-class objects, so whenever you

use a function name, you're actually using a variable that is a reference to the
function object. As with any other function, lambda functions are first-class citizens,
so they can also be assigned to a new variable. Once assigned to a variable, they

are seemingly indistinguishable from other functions, except for some metadata
attributes. The following transcripts from interactive interpreter sessions illustrate
this:

>>> import math
>>> def circle_area(radius):
return math.pi * radius ** 2
>>> circle_area(42)
5541.769440932395
>>> circle_area
<function circle _area at 0x10ea39048>

>>> circle_area.__class__
<class 'function'>

>>> circle_area.__name__
‘circle_area’

>>> circle_area = lambda radius: math.pi * radius ** 2
>>> circle_area(42)

5541.769440932395

>>> circle_area
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<function <lambda> at ©x10ea39488>
>>> circle_area.__class__

<class 'function'>
>>> circle_area.__name__
‘<lambda>"

The main use for lambda expressions is to define contextual one-off functions that
won't have to be reused elsewhere. To better understand their potential, let's imagine
that we have an application that stores information about people. To represent a
record of a person's data, we could use the following data class:

from dataclasses import dataclass

@dataclass

class Person:
age: int
weight: int
name: str

Now let's imagine that we have a set of such records and we want to sort them by
different fields. Python provides a sorted() function that is able to sort any list

as long as elements can be compared with at least "less than" comparison (the <
operator). We could define custom operator overloading on the Person class, but we
would have to know in advance what field our records will be sorted on.

Thankfully, the sorted() function accepts the key keyword argument, which allows
you to specify a function that will transform every element of the input into a value
that can be naturally sorted by the function. Lambda expressions allow you to define
such sorting keys on demand. For instance, sorting people by age can be done using
the following call:

sorted(people, key=lambda person: person.age)

The above behavior of the sorted() function presents a common pattern of allowing
code to accept a callable argument that resolves some injected behavior. Lambda
expressions are often a convenient way of defining such behaviors.

The map(), filter(), and reduce() functions

The map(), filter(), and reduce() functions are three built-in functions that

are most often used in conjunction with lambda functions. They are commonly
used in functional-style Python programming because they allow us to declare
transformations of any complexity, while simultaneously avoiding side effects.
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In Python 2, all three functions were available as default built-in functions that did
not require additional imports. In Python 3, the reduce() function was moved to the
functools module, so it requires an additional import.

map(func, iterable, ...) applies the func function argument to every item of
iterable. You can pass more iterables to the map() function. If you do so, map()
will consume elements from each iterable simultaneously. The func function will
receive as many arguments as there are iterables on every map step. If iterables are
of different sizes, map() will stop when the shortest one is exhausted. It is worth
remembering that map() does not evaluate the whole result at once, but returns an
iterator so that every result item can be evaluated only when it is necessary.

The following is an example of map() being used to calculate the squares of the first
10 integers staring from o:

>>> map(lambda x: x**2, range(10))
<map object at Ox10eal®9cf8>

>>> list(map(lambda x: x**2, range(10)))
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

The following is an example of the map() function being used over multiple iterables
of different sizes:

>>> mapped = list(map(print, range(5), range(4), range(5)))
000

111

222

333

>>> mapped

[None, None, None, None]

filter(func, iterable) works similarly to map() by evaluating input elements

one by one. Unlike map(), the filter() function does not transform input elements
into new values, but allows us to filter out those input values that do not meet the
predicate defined by the func argument. The following are examples of the filter()
function's usage:

>>> evens = filter(lambda number: number % 2 == 0, range(10))
>>> odds = filter(lambda number: number % 2 == 1, range(10))
>>> print(f"Even numbers in range from © to 9 are: {list(evens)}")

Even numbers in range from © to 9 are: [0, 2, 4, 6, 8]
>>> print(f"0dd numbers in range from @ to 9 are: {list(odds)}")
0dd numbers in range from © to 9 are: [1, 3, 5, 7, 9]
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>>> animals = ["giraffe", "snake", "lion", "squirrel"]
>>> animals_s = filter(lambda animal: animal.startswith('s'), animals)

>>> print(f"Animals that start with letter 's' are: {list(animals_s)}")
Animals that start with letter 's' are: ['snake', 'squirrel']]

The reduce(func, iterable) function works in completely the opposite way to

map (). As the name suggests, this function can be used to reduce an iterable to a
single value. Instead of taking items of iterable and mapping them to the func
return values in one-by-one fashion, it cumulatively performs the operation specified
by func over all iterable items. So, for the following inputs of reduce():

reduce(func, [a, b, c, d])
The return value would be equal to:
func(func(func(a, b), c), d)

Let's consider the following example of reduce() calls being used to sum values of
elements contained in various iterable objects:

from functools import reduce
reduce(lambda a, b: a + b, [2, 2])

reduce(lambda a, b: a + b, [2, 2, 2])

reduce(lambda a, b: a + b, range(100))
4950

One interesting aspect of map() and filter() is that they can work on infinite
sequences. Of course, evaluating an infinite sequence to a list type or trying to
ordinarily loop over such a sequence will result in a program that never ends. The
count() function from itertools is an example of a function that returns infinite
iterables. It simply counts from 0 to infinity. If you try to loop over it as in the
following example, your program will never stop:

from itertools import count

for i in count():
print(i)
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However, the return values of map() and filter() are iterators. Instead of using a
for loop, you can consume consecutive elements of the iterator using the next()
function. Let's take a look again at our previous map() call that generated consecutive
integer squares starting from 0:

map(lambda x: x**2, range(n))

The range() function returns a bounded iterable of n items. If we don't know how
many items we want to generate, we can simply replace it with count():

map(lambda x: x**2, count())

From now on we can start consuming consecutive squares. We can't use a for loop
because that would never end. But we can use next() numerous times and consume
items one at a time:

sequence = map(lambda x: x**2, count())
next(sequence)
next(sequence)
next(sequence)

Unlike the map() and filter() functions, the reduce() function needs to evaluate all
input items in order to return its value, as it does not yield intermediary results. This
means that it cannot be used on infinite sequences.

Partial objects and partial functions

Partial objects are loosely related to the concept of partial functions in mathematics.
A partial function is a generalization of a mathematical function in a way that isn't
forced to map every possible input value range (domain) to its results. In Python,
partial objects can be used to slice the possible input range of a given function by
setting some of its arguments to a fixed value.

In the previous sections, we used the x ** 2 expression to get the square value of x.
Python provides a built-in function called pow(x, y) that can calculate any power of
any number. So, our lambda x: x ** 2 expression is a partial function of the pow(x,
y) function, because we have limited the domain values for y to a single value, 2. The
partial() function from the functools module provides an alternative way to easily
define such partial functions without the need for lambda expressions, which can
sometimes become unwieldy.
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Let's say that we now want to create a slightly different partial function out of pow().
Last time, we generated squares of consecutive numbers. Now, let's narrow the
domain of other input arguments and say we want to generate consecutive powers
of the number two—so, 1, 2, 4, 8, 16, and so on.

The signature of a partial object constructor is partial(func, *args, **keywords).
The partial object will behave exactly like func, but its input arguments will be
pre-populated with *args (starting from the leftmost) and **keywords. The pow(x,
y) function does not support keyword arguments, so we have to pre-populate the
leftmost x argument as follows:

>>> from functools import partial
>>> powers_of 2 = partial(pow, 2)
>>> powers_of 2(2)

4

>>> powers_of 2(5)
32

>>> powers_of_2(10)
1024

Note that you don't need to assign your partial object to any identifier if you don't
want to reuse it. You can successfully use it to define one-off functions in the same
way that you would use lambda expressions.

The itertools module is a treasury of helpers and utilities

for iterating over any type of iterable objects in various ways.

It provides various functions that, among other things, allow

us to cycle containers, group their contents, split iterables into

-()- chunks, and chain multiple iterables into one. Every function in

AR that module returns iterators. If you are interested in functional-

style programming in Python, you should definitely familiarize
yourself with this module. You can find the documentation of the
itertools module at https://docs.python.org/3/library/
itertools.html.

Generators

Generators provide an elegant way to write simple and efficient code for functions
that return a sequence of elements. Based on the yield statement, they allow you to
pause a function and return an intermediate result. The function saves its execution
context and can be resumed later, if necessary.
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For instance, the function that returns consecutive numbers of the Fibonacci
sequence can be written using a generator syntax. The following code is an example
that was taken from the PEP 255 (Simple Generators) document:

def fibonacci():
a, b=29, 1
while True:
yield b

a, b=Db, a+b

You can retrieve new values from generators as if they were iterators, so using the
next () function or for loops:

fib = fibonacci()
next(fib)

next(fib)

next(fib)

for item in fibonacci():
print(item)
if item > 10:
break

Our fibonacci() function returns a generator object, a special iterator that knows
how to save the execution context. It can be called indefinitely, yielding the next
element of the sequence each time. The syntax is concise, and the infinite nature of
the algorithm does not disturb the readability of the code. It does not have to provide
a way to make the function stoppable. In fact, it looks similar to how the sequence
generating function would be designed in pseudo code.
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In many cases, the resources required to process one element are less than the
resources required to store whole sequences. Therefore, they can be kept low,
making the program more efficient. For instance, the Fibonacci sequence is infinite,
and yet the generator that generates it does not require an infinite amount of
memory to provide the values one by one and, theoretically, could work ad infinitum.
A common use case is to stream data buffers with generators (for example, from
files). They can be paused, resumed, and stopped whenever necessary at any stage
of the data processing pipeline without any need to load whole datasets into the
program's memory.

In functional programming, generators can be used to provide a stateful function
that otherwise would require saving intermediary results as side effects as if it were
a stateless function.

Generator expressions

Generator expressions are another syntax element that allows you to write code in
a more functional way. Its syntax is similar to comprehensions that are used with

dictionary, set, and list literals. A generator expression is denoted by parentheses,

like in the following example:

(item for item in iterable_expression)

Generator expressions can be used as input arguments in any function that accepts
iterables. They also allow if clauses to filter specific elements the same way as list,
dictionary, and set comprehensions. This means that you can often replace complex
map() and filter() constructions with more readable and compact generator
expressions.

Syntactically, generator expressions are no different from any other comprehension
expressions. Their main advantage is that they evaluate only one item at a time. So,
if you process an arbitrarily long iterable expression, a generator expression may be
a good fit as it doesn't need to fit the whole collection of intermediary results into
program memory.

Lambdas, map, reduce, filter, partial functions, and generators are focused on
presenting program logic as an evaluation of function call expressions. Another
important element of functional programming is having first-class functions. In
Python, all functions are objects and like any other object, they can be inspected and
modified at runtime. It allows for a useful syntax feature called function decorators.
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Decorators

The decorator is generally a callable expression that accepts a single argument when
called (it will be the decorated function) and returns another callable object.

Prior to Python 3.9, only named expressions could be used with

\/‘/ a dedicated decorator syntax. Starting from Python 3.9, any

expression is a valid target for a dedicated decorator syntax,
including lambda expressions.

While decorators are often discussed in the scope of methods and functions, they are
not limited to them. In fact, anything that is callable (any object that implements the
__call__method is considered callable) can be used as a decorator, and often, objects
returned by them are not simple functions but are instances of more complex classes
that are implementing their own __call__ method.

The decorator syntax is simply syntactic sugar. Consider the following decorator
usage:

@some_decorator
def decorated_function():
pass

This can always be replaced by an explicit decorator call and function reassignment:

def decorated_function():
pass
decorated_function = some_decorator(decorated_function)

However, the latter is less readable and also very hard to understand if multiple
decorators are used on a single function.

A decorator does not even need to return a callable!

As a matter of fact, any function can be used as a decorator,
S because Python does not enforce the return type of decorators. So,
-,@\- using some function as a decorator that accepts a single argument
H but does not return a callable object, let's say str, is completely
valid in terms of syntax. This will eventually fail if you try to call
an object that's been decorated this way. This part of the decorator

syntax creates a field for some interesting experimentation.
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Decorators are elements of the programming language inspired by aspect-oriented
programming and the decorator design pattern. The main use case is to conveniently
enhance an existing function implementation with extra behavior coming from other
aspects of your application.

Consider the following example, taken from the Flask framework documentation:

@app.route('/secret_page')
@login_required
def secret_page():

pass

secret_page() is a view function that presumably is supposed to return a secret
page. It is decorated with two decorators. app.route() assigns a URI route to the
view function and login_required() enforces user authentication.

According to the single-responsibility principle, functions should be rather small
and single-purpose. In our Flask application, the secret_page() view function
would be responsible for preparing the HTTP response that can be later rendered in
a web browser. It probably shouldn't deal with things like parsing HTTP requests,
verifying user credentials, and so on.

As the names suggests, the secret_page() function returns something that is secret,
and shouldn't be visible to anyone. Verifying user credentials isn't part of the view
function's responsibility but it is part of the general idea of "a secret page." The
@login_required decorator allows you to bring the aspect of user authentication
close to the view function. It makes the application more concise and the intent of the
programmer more readable.

Let's look further at the actual example of the @login_required decorator from the
Flask framework documentation:

from functools import wraps
from flask import g, request, redirect, url_for

def login_required(f):
@wraps ()
def decorated_function(*args, **kwargs):
if g.user is None:
return redirect(url_for('login', next=request.url))
return f(*args, **kwargs)
return decorated_function
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| The @wraps decorator allows you to copy decorated function
_\@’_ metadata like name and type annotations. It is a good practice
NN to use the @wraps decorator in your own decorators as it eases
debugging and gives access to original function type annotations.

As we can see, this decorator returns a new decorated_function() function that at
first verifies if the global g object has a valid user assigned. That's a common way

of testing whether the user has been authenticated in Flask. If the test succeeds, the
decorated function calls the original function by returning f(*args, **kwargs). If
the login test fails, the decorated function will redirect the browser to the login page.

As we can see, the login_required() decorator conveys a little bit more than simple
check-or-fail behavior. That makes decorators a great mechanism of code reuse. The
login requirement may be a common aspect of applications, but the implementation
of that aspect can change over time. Decorators offer a convenient way to pack such
aspects into portable behaviors that can be easily added on top of existing functions.

We will use and explain decorators in more details in Chapter 8, Elements of
Metaprogramming, where we will discuss decorators as a metaprogramming technique.

Enumerations

There are common programming features that are found in many programming
languages regardless of the dominant programming paradigm. One such feature is
enumerated types that have a finite number of named values. They are especially
useful for encoding a closed set of values for variables or function arguments.

One of the special handy types found in the Python Standard Library is the Enum
class from the enum module. This is a base class that allows you to define symbolic
enumerations, similar in concept to the enumerated types found in many other
programming languages (C, C++, C#, Java, and many more) that are often denoted
with the enum keyword.

In order to define your own enumeration in Python, you will need to subclass the
Enum class and define all enumeration members as class attributes. The following is
an example of a simple Python enum:

from enum import Enum

class Weekday(Enum):
MONDAY = ©
TUESDAY = 1
WEDNESDAY = 2
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THURSDAY
FRIDAY =
SATURDAY
SUNDAY =

(o) W | I S ||
Ul

The Python documentation defines the following nomenclature for enum:

e enumeration or enum: This is the subclass of the Enum base class. Here, it
would be Weekday.

* member: This is the attribute you define in the Enum subclass. Here, it would
be Weekday .MONDAY, Weekday . TUESDAY, and so on.

* name: This is the name of the Enum subclass attribute that defines the member.
Here, it would be MONDAY for Weekday .MONDAY, TUESDAY for Weekday . TUESDAY,
and so on.

* value: This is the value assigned to the Enum subclass attribute that defines
the member. Here, for Weekday .MONDAY it would be one, for Weekday . TUESDAY
it would be two, and so on.

You can use any type as the enum member value. If the member value is not
important in your code, you can even use the auto() type, which will be replaced
with automatically generated values. Here is a similar example written with the use
of auto:

from enum import Enum, auto

class Weekday(Enum):
MONDAY = auto()
TUESDAY = auto()
WEDNESDAY = auto()
THURSDAY = auto()
FRIDAY = auto()
SATURDAY = auto()
SUNDAY = auto()

Enumerations in Python are really useful in every place where some variable can
take only a finite number of values/choices. For instance, they can be used to define
the status of objects, as shown in the following example:

from enum import Enum, auto

class OrderStatus(Enum):
PENDING = auto()
PROCESSING = auto()
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PROCESSED = auto()

class Order:
def __init_ (self):
self.status = OrderStatus.PENDING

def process(self):
if self.status == OrderStatus.PROCESSED:
raise ValueError(
""Can't process order that has
""been already processed""

self.status = OrderStatus.PROCESSING

self.status OrderStatus.PROCESSED

Another use case for enumerations is storing selections of non-exclusive choices.
This is something that is often implemented using bit flags and bit masks in
languages where the bit manipulation of numbers is very common, like C. In
Python, this can be done in a more expressive and convenient way using the Flag
base enumeration class:

from enum import Flag, auto

class Side(Flag):
GUACAMOLE = auto()
TORTILLA = auto()
FRIES = auto()
BEER = auto()
POTATO_SALAD = auto()

You can combine such flags using bitwise operators (the | and & operators) and
test for flag membership with the in keyword. Here are some examples of a Side
enumeration:

>>> mexican_sides = Side.GUACAMOLE | Side.BEER | Side.TORTILLA
>>> bavarian_sides = Side.BEER | Side.POTATO_ SALAD

>>> common_sides = mexican_sides & bavarian_sides

>>> Side.GUACAMOLE in mexican_sides

True

>>> Side.TORTILLA in bavarian_sides
False

>>> common_sides

<Side.BEER: 8>
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Symbolic enumerations share some similarity with dictionaries and named tuples
because they all map names/keys to values. The main difference is that the Enum
definition is immutable and global. It should be used whenever there is a closed
set of possible values that can't change dynamically during program runtime, and
especially if that set should be defined only once and globally. Dictionaries and
named tuples are data containers. You can create as many instances of them as
you like.

Summary

In this chapter, we've looked at the Python language through the prism of different
programming paradigms. Whenever it was sensible, we've tried to see how it
compares to other programming languages that share similar features to see both
strengths and weaknesses of Python.

We went pretty deep into the details of object-oriented programming concepts and
extended our knowledge of supplementary paradigms like functional programming,
so we are now fully prepared to start discussing topics on structuring and
architecting whole applications.

The next chapter will cover that pretty extensively as it will be fully dedicated to
various design patterns and methodologies.
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and Modularity

In this chapter, we will dive deep into the realm of design patterns through the
lens of interfaces, patterns, and modularity. We've already neared this realm when
introducing the concept of programming idioms. Idioms can be understood as
small and well-recognized programming patterns for solving small problems.

The key characteristic of a programming idiom is that it is specific to a single
programming language. While idioms can often be ported to a different language,
it is not guaranteed that the resulting code will feel natural to "native" users of that
programming language.

Idioms generally are concerned with small programming constructs —usually a
few lines of code. Design patterns, on the other hand, deal with much larger code
structures — functions and classes. They are also definitely more ubiquitous. Design
patterns are reusable solutions to many common design problems appearing in
software engineering. They are often language-agnostic and thus can be expressed
using many programming languages.

In this chapter, we will look at a quite unusual take on the topic of design patterns.
Many programming books start by going back to the unofficial origin of software
design patterns —the Design Patterns: Elements of Reusable Object-Oriented Software
book by Gamma, Vlissides, Helm, and Johnson. What usually follows is a lengthy
catalog of classic design patterns with more or less idiomatic examples of their
Python implementation. Singletons, factories, adapters, flyweights, bridges, visitors,
strategies, and so on and so forth.
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There are also countless web articles and blogs doing exactly the same, so if you are
interested in learning the classic design patterns, you shouldn't have any problems
finding resources online.

If you are interested in learning about the implementation of
‘ n/ "classic" design patterns in Python, you can visit the https://
\/ python-patterns.guide site. It provides a comprehensive catalog
of design patterns together with Python code examples.

Instead, we will focus on two key "design pattern enablers":

* Interfaces

* Inversion of control and dependency injectors
These two concepts are "enablers" because without them we wouldn't even have
proper language terms to talk about design patterns. By discussing the topic of
interfaces and inversion of control, we will be able to better understand what the

challenges are for building modular applications. And only by deeply understanding
those challenges will we be able to figure out why we actually need patterns.

We will of course use numerous classic design patterns on the way, but we won't
focus on any specific pattern.

Technical requirements

The following are Python packages that are mentioned in this chapter that you can
download from PyPI:

®* zope.interface

* mypy
* redis
e flask

® injector

* flask-injector

Information on how to install packages is included in Chapter 2, Modern Python
Development Environments.
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The code files for this chapter can be found at https://github.com/PacktPublishing/
Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%205.

Interfaces

Broadly speaking, an interface is an intermediary that takes part in the interaction
between two entities. For instance, the interface of a car consists mainly of the
steering wheel, pedals, gear stick, dashboard, knobs, and so on. The interface

of a computer traditionally consists of a mouse, keyboard, and display.

In programming, interface may mean two things:

* The overall shape of the interaction plane that code can have

* The abstract definition of possible interactions with the code that is
intentionally separated from its implementation

In the spirit of the first meaning, the interface is a specific combination of symbols
used to interact with the unit of code. The interface of a function, for instance,
will be the name of that function, its input arguments, and the output it returns.
The interface of an object will be all of its methods that can be invoked and all the
attributes that can be accessed.

Collections of units of code (functions, objects, classes) are often grouped into
libraries. In Python, libraries take the form of modules and packages (collections

of modules). They also have interfaces. Contents of modules and packages usually
can be used in various combinations and you don't have to interact with all of their
contents. That makes them programmable applications, and that's why interfaces of
libraries are often referred to as Application Programming Interfaces (APIs).

This meaning of interface can be expanded to other elements of the computing
world. Operating systems have interfaces in the form of filesystems and system calls.
Web and remote services have interfaces in the form of communication protocols.

The second meaning of interface can be understood as the formalization of the
former. Here interface is understood as a contract that a specific element of the code
declares to fulfill. Such a formal interface can be extracted from the implementation
and can live as a standalone entity. This gives the possibility to build applications
that depend on a specific interface but don't care about the actual implementation,
as long as it exists and fulfills the contract.
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This formal meaning of interface can also be expanded to larger programming
concepts:

* Libraries: The C programming language defines the API of its standard
library, also known as the ISO C Library. Unlike Python, the C standard
library has numerous implementations. For Linux, the most common is
probably the GNU C Library (glibc), but it has alternatives like dietlibc
or musl. Other operating systems come with their own ISO C Library
implementations.

* Operating System: The Portable Operating System Interface (POSIX) is a
collection of standards that define a common interface for operating systems.
There are many systems that are certified to be compliant with that standard
(macOS and Solaris to name a couple). There are also operating systems
that are mostly compliant (Linux, Android, OpenBSD, and many more).
Instead of using the term "POSIX compliance," we can say that those systems
implement the POSIX interface.

*  Web services: OpenID Connect (OIDC) is an open standard for
authentication and an authorization framework based on the OAuth 2.0
protocol. Services that want to implement the OIDC standard must provide
specific well-defined interfaces described in this standard.

Formal interfaces are an extremely important concept in object-oriented
programming languages. In this context, the interface abstracts either the form or
purpose of the modeled object. It usually describes a collection of methods and
attributes that a class should have to implement with the desired behavior.

In a purist approach, the definition of interface does not provide any usable
implementation of methods. It just defines an explicit contract for any class that
wishes to implement the interface. Interfaces are often composable. This means that
a single class can implement multiple interfaces at once. In this way, interfaces are
the key building block of design patterns. A single design pattern can be understood
as a composition of specific interfaces. Similar to interfaces, design patterns do not
have an inherent implementation. They are just reusable scaffolding for developers
to solve common problems.

Python developers prefer duck typing over explicit interface definitions but having
well-defined interaction contracts between classes can often improve the overall
quality of the software and reduce the area of potential errors. For instance, creators
of a new interface implementation get a clear list of methods and attributes that a
given class needs to expose. With proper implementation, it is impossible to forget
about a method that is required by a given interface.
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Support for an abstract interface is the cornerstone of many statically typed
languages. Java, for instance, has traits that are explicit declarations that a

class implements a specific interface. This allows Java programmers to achieve
polymorphism without type inheritance, which sometimes can become problematic.
Go, on the other hand, doesn't have classes and doesn't offer type inheritance, but
interfaces in Go allow for selected object-oriented patterns and polymorphism
without type inheritance. For both those languages, interfaces are like an explicit
version of duck typing behavior —Java and Go use interfaces to verify type safety

at compile time, rather than using duck typing to tie things together at runtime.

Python has a completely different typing philosophy than these languages, so it
does not have native support for interfaces verified at compile time. Anyway, if you
would like to have more explicit control of application interfaces, there is a handful
of solutions to choose from:

* Using a third-party framework like zope.interface that adds a notion of
interfaces

* Using Abstract Base Classes (ABCs)

* Leveraging typing annotation, typing.Protocol, and static type analyzers.

We will carefully review each of those solutions in the following sections.

A bit of history: zope.interface

There are a few frameworks that allow you to build explicit interfaces in Python.
The most notable one is a part of the Zope project. It is the zope. interface package.
Although, nowadays, Zope is not as popular as it used to be a decade ago, the zope.
interface package is still one of the main components of the still popular Twisted
framework. zope.interface is also one of the oldest and still active interface
frameworks commonly used in Python. It predates mainstream Python features
like ABCs, so we will start from it and later see how it compares to other interface
solutions.

\/‘/ The zope.interface package was created by Jim Fulton to mimic

the features of Java interfaces at the time of its inception.
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The interface concept works best for areas where a single abstraction can have
multiple implementations or can be applied to different objects that probably
shouldn't be tangled with inheritance structure. To better present this idea, we will
take the example of a problem that can deal with different entities that share some
common traits but aren't exactly the same thing.

We will try to build a simple collider system that can detect collisions between
multiple overlapping objects. This is something that could be used in a simple game
or simulation. Our solution will be rather trivial and inefficient. Remember that

the goal here is to explore the concept of interfaces and not to build a bulletproof
collision engine for a blockbuster game.

The algorithm we will use is called Axis-Aligned Bounding Box (AABB). Itis a
simple way to detect a collision between two axis-aligned (no rotation) rectangles. It
assumes that all elements that will be tested can be constrained with a rectangular
bounding box. The algorithm is fairly simple and needs to compare only four
rectangle coordinates:

(x2, y2)

Ri

Rj.yz >R2.yj ?

(X1, y1)

I\ )

Rix2> Raxp?

Ri.x1 < Ra.x2?

Figure 5.1: Rectangle coordinate comparisons in the AABB algorithm
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We will start with a simple function that checks whether two rectangles overlap:

def rects_collide(rectl, rect2):
"""Check collision between rectangles

Rectangle coordinates:
|__—(X2, y2)

(x1, y1) —

return (
rectl.x1l < rect2.x2 and
rectl.x2 > rect2.x1 and
rectl.yl < rect2.y2 and
rectl.y2 > rect2.yl

)

We haven't defined any typing annotations but from the above code, it should be
clearly visible that we expect both arguments of the rects_collide() function to

have four attributes: x1, y1, x2, y2.These correspond to the coordinates of the

lower-left and upper-right corners of the bounding box.

Having the rects_collide() function, we can define another function that will
detect all collisions within a batch of objects. It can be as simple as follows:

import itertools

def find_collisions(objects):
return [

(iteml, item2)

for iteml, item2

in itertools.combinations(objects, 2)

if rects_collide(
iteml.bounding_box,
item2.bounding_box
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What is left is to define some classes of objects that can be tested together against
collisions. We will model a few different shapes: a square, a rectangle, and a circle.
Each shape is different so will have a different internal structure. There is no sensible
class that we could make a common ancestor. To keep things simple, we will use
dataclasses and properties. The following are all initial definitions:

from dataclasses import dataclass

@dataclass
class Square:
x: float
y: float
size: float

@property
def bounding_box(self):
return Box(
self.x,
self.y,
self.x + self.size,
self.y + self.size

@dataclass

class Rect:
x: float
y: float
width: float
height: float

@property
def bounding box(self):
return Box(
self.x,
self.y,
self.x + self.width,
self.y + self.height

@dataclass
class Circle:
x: float
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y: float
radius: float

@property
def bounding box(self):
return Box(
self.x - self.radius,
self.y - self.radius,
self.x + self.radius,
self.y + self.radius

)

The only common thing about those classes (apart from being dataclasses) is the
bounding_box property that returns the Box class instance. The Box class is also a
dataclass:

@dataclass

class Box:
x1l: float
yl: float
x2: float
y2: float

Definitions of dataclasses are quite simple and don't require explanation. We can
test if our system works by passing a bunch of instances to the find_collisions()
function as in the following example:

for collision in find_collisions([
Square(0, 0, 10),
Rect(5, 5, 20, 20),
Square(15, 20, 5),
Circle(1, 1, 2),
1):

print(collision)

If we did everything right, the above code should yield the following output with
three collisions:

(Square(x=0, y=0, size=10), Rect(x=5, y=5, width=20, height=20))

(Square(x=0, y=0, size=10), Circle(x=1, y=1, radius=2))
(Rect(x=5, y=5, width=20, height=20), Square(x=15, y=20, size=5))
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Everything is fine, but let's do a thought experiment. Imagine that our application
grew a little bit and was extended with additional elements. If it's a game, someone
could include objects representing sprites, actors, or effect particles. Let's say that
someone defined the following Point class:

@dataclass

class Point:
x: float
y: float

What would happen if the instance of that class was put on the list of possible
colliders? You would probably see an exception traceback similar to the following;:

Traceback (most recent call last):
File "/.../simple_colliders.py", line 115, in <module>
for collision in find_collisions([
File "/.../simple_colliders.py", line 24, in find_collisions

return [
File "/.../simple_colliders.py", line 30, in <listcomp>
item2.bounding_box
AttributeError: 'Point' object has no attribute 'bounding box

That provides some clue about what the issue is. The question is if we could do
better and catch such problems earlier? We could at least verify all input objects'
find_collisions() functions to check if they are collidable. But how to do that?

Because none of the collidable classes share a common ancestor, we cannot easily use
the isinstance() function to see if their types match. We can check for the bounding_
box attribute using the hasattr() function, but doing that deeply enough to see
whether that attribute has the correct structure would lead us to ugly code.

Here is where zope.interface comes in handy. The core class of the zope.interface
package is the Interface class. It allows you to explicitly define a new interface. Let's
define an ICollidable class that will be our declaration of anything that can be used
in our collision system:

from zope.interface import Interface, Attribute

class ICollidable(Interface):
bounding box = Attribute("Object's bounding box")
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The common convention for Zope is to prefix interface classes with I. The Attribute
constructor denotes the desired attribute of the objects implementing the interface.
Any method defined in the interface class will be used as an interface method
declaration. Those methods should be empty. The common convention is to use only
the docstring of the method body.

When you have such an interface defined, you must denote which of your concrete
classes implement that interface. This style of interface implementation is called
explicit interfaces and is similar in nature to traits in Java. In order to denote the
implementation of a specific interface, you need to use the implementer() class
decorator. In our case, this will look as follows:

from zope.interface import implementer

@implementer(ICollidable)
@dataclass
class Square:

@implementer(ICollidable)
@dataclass
class Rect:

@implementer(ICollidable)
@dataclass
class Circle:

truncated for the sake of brevity.

\/V The bodies of the dataclasses in the above example have been

It is common to say that the interface defines a contract that a concrete
implementation needs to fulfill. The main benefit of this design pattern is being able
to verify consistency between contract and implementation before the object is used.
With the ordinary duck-typing approach, you only find inconsistencies when there is
a missing attribute or method at runtime.
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With zope. interface, you can introspect the actual implementation using two
methods from the zope.interface.verify module to find inconsistencies early on:

verifyClass(interface, class_object): This verifies the class object for the
existence of methods and correctness of their signatures without looking for
attributes.

verifyObject(interface, instance): This verifies the methods, their
signatures, and also attributes of the actual object instance.

It means that we can extend the find_collisions() function to perform initial
verification of object interfaces before further processing. We can do that as follows:

from zope.interface.verify import verifyObject

def find_collisions(objects):

for item in objects:
verifyObject(ICollidable, item)

Now, if someone passes to the find_collisions() function an instance of the class
that does not have the @implementer(ICollidable) decorator, they will receive an
exception traceback similar to this one:

Traceback (most recent call last):
File "/.../colliders_interfaces.py", line 120, in <module>

for collision in find_collisions([

File "/.../colliders_interfaces.py", line 26, in find_collisions

verifyObject(ICollidable, item)

File "/.../site-packages/zope/interface/verify.py", line 172, in
verifyObject

return _verify(iface, candidate, tentative, vtype='o')

File "/.../site-packages/zope/interface/verify.py", line 92, in _
verify

raise MultipleInvalid(iface, candidate, excs)

zope.interface.exceptions.MultipleInvalid: The object Point(x=100,
y=200) has failed to implement interface <InterfaceClass _ main__ .
ICollidable>:

Does not declaratively implement the interface
The __main__.ICollidable.bounding box attribute was not provided
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The last two lines tell us about two errors:

* Declaration error: Invalid item isn't explicitly declared to implement the
interface and that's an error.

e Structural error: Invalid item doesn't have all elements that the interface
requires.

The latter error guards us from incomplete interfaces. If the Point class had the
@implementer(ICollidable) decorator but didn't include the bounding_box()
property, we would still receive the exception.

The verifyClass() and verifyoObject() methods only verify the surface area of the
interface and aren't able to traverse into attribute types. You optionally do a more
in-depth verification using the validateInvariants() method that every interface
class of zope. interface provides. It allows hook-in functions to validate the values
of interfaces. So if we would like to be extra safe, we could use the following pattern
of interfaces and their validation:

from zope.interface import Interface, Attribute, invariant
from zope.interface.verify import verifyObject

class IBBox(Interface):

x1 = Attribute("lower-left x coordinate™)
yl = Attribute("lower-left y coordinate")
x2 = Attribute("upper-right x coordinate")
y2 = Attribute("upper-right y coordinate")

class ICollidable(Interface):
bounding box = Attribute("Object's bounding box")
invariant(lambda self: verifyObject(IBBox, self.bounding box))

def find _collisions(objects):
for item in objects:
verifyObject(ICollidable, item)
ICollidable.validateInvariants(item)

[185]



Interfaces, Patterns, and Modularity

Thanks to using the validateInvariants() method, we are able to check if input
items have all attributes necessary to satisfy the ICollidable interface, and also
verify whether the structure of those attributes (here bounding_box) satisfies deeper
constraints. In our case, we use invariant() to verify the nested interface.

Using zope.interface is an interesting way to decouple your application. It
allows you to enforce proper object interfaces without the need for the overblown
complexity of multiple inheritance, and also allows you to catch inconsistencies
early.

The biggest downside of zope.interface is the requirement to explicitly declare
interface implementors. This is especially troublesome if you need to verify instances
coming from the external classes of built-in libraries. The library provides some
solutions for that problem, although they make code eventually overly verbose. You
can, of course, handle such issues on your own by using the adapter pattern, or even
monkey-patching external classes. Anyway, the simplicity of such solutions is at
least debatable.

Using function annotations and abstract base
classes

Formal interfaces are meant to enable loose coupling in large applications, and not to
provide you with more layers of complexity. zope.interface is a great concept and
may greatly fit some projects, but it is not a silver bullet. By using it, you may shortly
find yourself spending more time on fixing issues with incompatible interfaces for
third-party classes and providing never-ending layers of adapters instead of writing
the actual implementation.

If you feel that way, then this is a sign that something went wrong. Fortunately,
Python supports building a lightweight alternative to the explicit interfaces. It's
not a full-fledged solution such as zope.interface or its alternatives but generally
provides more flexible applications. You may need to write a bit more code, but in
the end, you will have something that is more extensible, better handles external
types, and maybe more future-proof.

Note that Python, at its core, does not have an explicit notion of interfaces, and
probably never will have, but it has some of the features that allow building
something that resembles the functionality of interfaces. The features are as follows:

e ABCs
¢ Function annotations

* Type annotations
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The core of our solution is abstract base classes, so we will feature them first.

As you probably know, direct type comparison is considered harmful and not
Pythonic. You should always avoid comparisons as in the following example:

assert type(instance) == list

Comparing types in functions or methods this way completely breaks the ability to
pass a class subtype as an argument to the function. A slightly better approach is to
use the isinstance() function, which will take the inheritance into account:

assert isinstance(instance, list)

The additional advantage of isinstance() is that you can use a larger range of types
to check the type compatibility. For instance, if your function expects to receive some
sort of sequence as the argument, you can compare it against the list of basic types:

assert isinstance(instance, (list, tuple, range))

And such type compatibility checking is OK in some situations but is still not perfect.
It will work with any subclass of 1ist, tuple, or range, but will fail if the user passes
something that behaves exactly the same as one of these sequence types but does not
inherit from any of them. For instance, let's relax our requirements and say that you
want to accept any kind of iterable as an argument. What would you do?

The list of basic types that are iterable is actually pretty long. You need to cover 1ist,
tuple, range, str, bytes, dict, set, generators, and a lot more. The list of applicable
built-in types is long, and even if you cover all of them, it will still not allow checking
against the custom class that defines the __iter__() method but inherits directly
from object.

And this is the kind of situation where ABCs are the proper solution. ABC is a

class that does not need to provide a concrete implementation, but instead defines

a blueprint of a class that may be used to check against type compatibility. This
concept is very similar to the concept of abstract classes and virtual methods known
in the C++ language.

Abstract base classes are used for two purposes:

* Checking for implementation completeness

*  Checking for implicit interface compatibility

[187]



Interfaces, Patterns, and Modularity

The usage of ABCs is quite simple. You start by defining a new class that either
inherits from the abc.ABC base class or has abc.ABCMeta as its metaclass. We won't
be discussing metaclasses until Chapter 8, Elements of Metaprogramming, so in this
chapter, we'll be using only classic inheritance.

The following is an example of a basic abstract class that defines an interface that
doesn't do anything particularly special:

from abc import ABC, abstractmethod
class DummyInterface(ABC):

@abstractmethod
def dummy_method(self):

@property
@abstractmethod
def dummy_property(self):

The @abstractmethod decorator denotes a part of the interface that must be
implemented (by overriding) in classes that will subclass our ABC. If a class will
have a nonoverridden method or property, you won't be able to instantiate it. Any
attempt to do so will result in a TypeError exception.

This approach is a great way to ensure implementation completeness and is as
explicit as the zope. interface alternative. If we would like to use ABCs instead of
zope.interface in the example from the previous section, we could do the following
modification of class definitions:

from abc import ABC, abstractmethod
from dataclasses import dataclass

class ColliderABC(ABC):
@property
@abstractmethod
def bounding_box(self):

@dataclass

class Square(ColliderABC):

@dataclass
class Rect(ColliderABC):
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@dataclass
class Circle(ColliderABC):

The bodies and properties of the Square, Rect, and Circle classes don't change as the
essence of our interface doesn't change at all. What has changed is the way explicit
interface declaration is done. We now use inheritance instead of the zope.interface.
implementer() class decorator. If we still want to verify if the input of find_
collisions() conforms to the interface, we need to use the isinstance() function.
That will be a fairly simple modification:

def find_collisions(objects):
for item in objects:
if not isinstance(item, ColliderABC):
raise TypeError(f"{item} is not a collider")

We had to use subclassing so coupling between components is a bit more tight but
still comparable to that of zope.interface. As far as we rely on interfaces and not
on concrete implementations (so, ColliderABC instead of Square, Rect, or Circle),
coupling is still considered loose.

But things could be more flexible. This is Python and we have full introspection
power. Duck typing in Python allows us to use any object that "quacks like a duck"
as if it was a duck. Unfortunately, usually it is in the spirit of "try and see." We
assume that the object in the given context matches the expected interface. And
the whole purpose of formal interfaces was to actually have a contract that we can
validate against. Is there a way to check whether an object matches the interface
without actually trying to use it first?

Yes. To some extent. Abstract base classes provide the special __subclasshook__(cls)
method. It allows you to inject your own logic into the procedure that determines
whether the object is an instance of a given class. Unfortunately, you need to provide
the logic all by yourself, as the abc creators did not want to constrain the developers
in overriding the whole isinstance() mechanism. We have full power over it, but
we are forced to write some boilerplate code.

Although you can do whatever you want to, usually the only reasonable thing to
do in the __subclasshook__() method is to follow the common pattern. In order to
verify whether the given class is implicitly compatible with the given abstract base
class, we will have to check if it has all the methods of the abstract base class.

[189]



Interfaces, Patterns, and Modularity

The standard procedure is to check whether the set of defined methods are available
somewhere in the Method Resolution Order (MRO) of the given class. If we would
like to extend our ColliderABC interface with a subclass hook, we could do the
following;:

class ColliderABC(ABC):
@property
@abstractmethod
def bounding_box(self):

@classmethod
def _ subclasshook__(cls, C):
if cls is ColliderABC:
if any("bounding_box" in B.__dict__ for B in C._mro__):
return True
return NotImplemented

With the __subclasshook__() method defined that way, ColliderABC becomes an
implicit interface. This means that any object will be considered an instance of
ColliderABC as long as it has the structure that passes the subclass hook check.
Thanks to this, we can add new components compatible with the Col1liderABC
interface without explicitly inheriting from it. The following is an example of the
Line class that would be considered a valid subclass of Col1liderABC:

@dataclass

class Line:
pl: Point
p2: Point

@property
def bounding_box(self):
return Box(
self.pl.x,
self.pl.y,
self.p2.x,
self.p2.y,
)

As you can see, the Line dataclass does not mention ColliderABC anywhere in its
code. But you can verify the implicit interface compatibility of Line instances by
comparing them against ColliderABC using the isinstance() function as in the
following example:
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>>> line = Line(Point(@, ©), Point(100, 100))
>>> line.bounding_box
Box(x1=0, yl1=0, x2=100, y2=100)

>>> isinstance(line, ColliderABC)
True

We worked with properties, but the same approach may be used for methods as
well. Unfortunately, this approach to the verification of type compatibility and
implementation completeness does not take into account the signatures of class
methods. So, if the number of expected arguments is different in the implementation,
it will still be considered compatible. In most cases, this is not an issue, but if you
need such fine-grained control over interfaces, the zope.interface package allows
for that. As already said, the __subclasshook__() method does not constrain you

in adding much more complexity to the isinstance() function's logic to achieve a
similar level of control.

Using collections.abc

ABC s are like small building blocks for creating a higher level of abstraction. They
allow you to implement really usable interfaces, but are very generic and designed

to handle a lot more than this single design pattern. You can unleash your creativity
and do magical things, but building something generic and really usable may require
a lot of work that may never pay off. Python's Standard Library and Python's built-in
types fully embrace the abstract base classes.

The collections.abc module provides a lot of predefined ABCs that allow
checking for the compatibility of types with common Python interfaces. With the
base classes provided in this module, you can check, for example, whether a given
object is callable, mapping, or whether it supports iteration. Using them with the
isinstance() function is way better than comparing against the base Python types.
You should definitely know how to use these base classes even if you don't want to
define your own custom interfaces with abc.ABC.

The most common abstract base classes from collections.abc that you will use quite
often are:

* Container: This interface means that the object supports the in operator and
implements the __contains__() method.

* Iterable: This interface means that the object supports iteration and
implements the __iter__() method.

® (Callable: This interface means that it can be called like a function and
implements the __call__() method.
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* Hashable: This interface means that the object is hashable (that is, it can be
included in sets and as a key in dictionaries) and implements the __hash__
method.

* Sized: This interface means that the object has a size (that is, it can be a
subject of the 1en() function) and implements the __len__() method.

A full list of the available abstract base classes from the
‘ / collections.abc module is available in the official Python
\p/ documentation under https://docs.python.org/3/1library/
collections.abc.html.

The collections.abc module shows pretty well where ABCs work best: creating
contracts for small and simple protocols of objects. They won't be good tools to
conveniently ensure the fine-grained structure of a large interface. They also don't
come with utilities that would allow you to easily verify attributes or perform in-
depth validation of function arguments and return types.

Fortunately, there is a completely different solution available for this problem: static
type analysis and the typing.Protocol type.

Interfaces through type annotations

Type annotations in Python proved to be extremely useful in increasing the quality
of software. More and more professional programmers use mypy or other static type
analysis tools by default, leaving conventional type-less programming for prototypes
and quick throwaway scripts.

Support for typing in the standard library and community projects grew greatly

in recent years. Thanks to this, the flexibility of typing annotations increases with
every Python release. It also allows you to use typing annotations in completely new
contexts.

One such context is using type annotations to perform structural subtyping (or static
duck-typing). That's simply another approach to the concept of implicit interfaces. It
also offers minimal simple-minded runtime check possibilities in the spirit of ABC
subclass hooks.

The core of structural subtyping is the typing.Protocol type. By subclassing this
type, you can create a definition of your interface. The following is an example of
base Protocol interfaces we could use in our previous examples of the collision
detection system:
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from typing import Protocol, runtime_checkable

@runtime_checkable
class IBox(Protocol):

x1l: float
yl: float
x2: float
y2: float

@runtime_checkable
class ICollider(Protocol):

@property
def bounding box(self) -> IBox:

This time we have used two interfaces. Tools like mypy will be able to perform deep
type verification so we can use additional interfaces to increase the type safety. The
@runtime_checkable decorator extends the protocol class with isinstance() checks.
It is something we had to perform manually for ABCs using subclass hooks in the
previous section. Here it comes almost for free.

\/V We will learn more about the usage of static type analysis tools in

Chapter 10, Testing and Quality Automation.

To take full advantage of static type analysis, we also must annotate the rest of the
code with proper annotations. The following is the full collision checking code with
runtime interface validation based on protocol classes:

import itertools
from dataclasses import dataclass
from typing import Iterable, Protocol, runtime_checkable

@runtime_checkable
class IBox(Protocol):

x1l: float
yl: float
x2: float
y2: float
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@runtime_checkable
class ICollider(Protocol):

@property
def bounding box(self) -> IBox:

def rects _collide(rectl: IBox, rect2: IBox):
"""Check collision between rectangles

Rectangle coordinates:

I'_(X2; y2)
(x1, y1)—

return (
rectl.x1l < rect2.x2 and
rectl.x2 > rect2.x1 and
rectl.yl < rect2.y2 and
rectl.y2 > rect2.yl

def find_collisions(objects: Iterable[ICollider]):
for item in objects:
if not isinstance(item, ICollider):
raise TypeError(f"{item} is not a collider")

return [
(item1, item2)
for iteml, item2
in itertools.combinations(objects, 2)
if rects_collide(
iteml.bounding_box,
item2.bounding_box

]

We haven't included the code of the Rect, Square, and Circle classes, because
their implementation doesn't have to change. And that's the real beauty of implicit
interfaces: there is no explicit interface declaration in a concrete class beyond the
inherent interface that comes from the actual implementation.
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In the end, we could use any of the previous Rect, Square, and Circle class iterations
(plain dataclasses, zope-declared classes, or ABC-descendants). They all would work
with structural subtyping through the typing.Protocol class.

As you can see, despite the fact that Python lacks native support for interfaces (in the
same way as, for instance, Java or the Go language do), we have plenty of ways to
standardize contracts of classes, methods, and functions. This ability becomes really
useful when implementing various design patterns to solve commonly occurring
programming problems. Design patterns are all about reusability and the use of
interfaces can help in structuring them into design templates that can be reused over
and over again.

But the use of interfaces (and analogous solutions) doesn't end with design patterns.
The ability to create a well-defined and verifiable contract for a single unit of code
(function, class, or method) is also a crucial element of specific programming
paradigms and techniques. Notable examples are inversion of control and
dependency injection. These two concepts are tightly coupled so we will discuss
them in the next section together.

Inversion of control and dependency
injection

Inversion of Control (IoC) is a simple property of some software designs. According
to Wiktionary, if a design exhibits IoC, it means that:

(...) the flow of control in a system is inverted in comparison to the traditional
architecture.

But what is the traditional architecture? IoC isn't a new idea, and we can trace it back
to at least David D. Clark's paper from 1985 titled The structuring of systems using of
upcalls. It means that traditional design probably refers to the design of software that
was common or thought to be traditional in the 1980s.

/ You can access Clark's full paper in a digitalized form at https://
groups.csail.mit.edu/ana/Publications/PubPDFs/The%20
Structuring%200f%20Systems%20Using%20Upcalls.pdf.

@

Clark describes the traditional architecture of a program as a layered structure of
procedures where control always goes from top to bottom. Higher-level layers
invoke procedures from lower layers.
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Those invoked procedures gain control and can invoke even deeper-layered
procedures before returning control upward. In practice, control is traditionally
passed from application to library functions. Library functions may pass it deeper to
even lower-level libraries but, eventually, return it back to the application.

IoC happens when a library passes control up to the application so that the
application can take part in the library behavior. To better understand this concept,
consider the following trivial example of sorting a list of integer numbers:

sorted([1,2,3,4,5,6])

The built-in sorted() function takes an iterable of items and returns a list of sorted
items. Control goes from the caller (your application) directly to the sorted()
function. When the sorted() function is done with sorting, it simply returns the
sorted result and gives control back to the caller. Nothing special.

Now let's say we want to sort our numbers in a quite unusual way. That could be, for
instance, sorting them by the absolute distance from number 3. Integers closest to 3
should be at the beginning of the result list and the farthest should be at the end. We
can do that by defining a simple key function that will specify the order key of our
elements:

def distance_from_3(item):
return abs(item - 3)

Now we can pass that function as the callback key argument to the sorted()
function:

sorted([1,2,3,4,5,6], key=distance_from_3)

What will happen now is the sorted() function will invoke the key function on
every element of the iterable argument. Instead of comparing item values, it will
now compare the return values of the key function. Here is where IoC happens. The
sorted() function "upcalls" back to the distance_from_3() function provided by
the application as an argument. Now it is a library that calls the functions from the
application, and thus the flow of control is reversed.

, Callback-based IoC is also humorously referred to as the
\p/ Hollywood principle in reference to the "don't call us, we'll call
you" phrase.
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Note that IoC is just a property of a design and not a design pattern by itself. An
example with the sorted() function is the simplest example of callback-based IoC
but it can take many different forms. For instance:

* Polymorphism: When a custom class inherits from a base class and base
methods are supposed to call custom methods

* Argument passing: When the receiving function is supposed to call methods
of the supplied object

e Decorators: When a decorator function calls a decorated function

* Closures: When a nested function calls a function outside of its scope

As you see, IoC is a rather common aspect of object-oriented or functional
programming paradigms. And it also happens quite often without you even
realizing it. While it isn't a design pattern by itself, it is a key ingredient of many
actual design patterns, paradigms, and methodologies. The most notable one is
dependency injection, which we will discuss later in this chapter.

Clark's traditional flow of control in procedural programming also happens in object-
oriented programming. In object-oriented programs, objects themselves are receivers
of control. We can say that control is passed to the object whenever a method of that
object is invoked. So the traditional flow of control would require objects to hold full
ownership of all dependent objects that are required to fulfill the object's behavior.

Inversion of control in applications

To better illustrate the differences between various flows of control, we will build a
small but practical application. It will initially start with a traditional flow of control
and later on, we will see if it can benefit from IoC in selected places.

Our use case will be pretty simple and common. We will build a service that can
track web page views using so-called tracking pixels and serve page view statistics
over an HTTP endpoint. This technique is commonly used in tracking advertisement
views or email openings. It can also be useful in situations when you make extensive
use of HTTP caching and want to make sure that caching does not affect page view
statistics.

Our application will have to track counts of page views in some persistent storage.
That will also give us the opportunity to explore application modularity —a
characteristic that cannot be implemented without IoC.
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What we need to build is a small web backend application that will have two
endpoints:

* /track: This endpoint will return an HTTP response with a 1x1 pixel GIF
image. Upon request, it will store the Referer header and increase the
number of requests associated with that value.

* /stats: This endpoint will read the top 10 most common Referer values
received on the track/ endpoint and return an HTTP response containing a
summary of the results in JSON format.

The Referer header is an optional HTTP header that web
browsers will use to tell the web server what is the URL of the
, origin web page from which the resource is being requested. Take
\/;p; note of the misspelling of the word referrer. The header was first
standardized in RFC 1945, Hypertext Transfer Protocol - HTTP/1.0
(see https://tools.ietf.org/html/rfc1945). When the
misspelling was discovered, it was already too late to fix it.

We've already introduced Flask as a simple web microframework in Chapter 2,
Modern Python Development Environments, so we will use it here as well. Let's start by
importing some modules and setting up module variables that we will use on the
way:

from collections import Counter
from http import HTTPStatus

from flask import Flask, request, Response

app = Flask(__name_ )
storage = Counter()

PIXEL = (
b'GIF89a\x01\x00\x01\x00\x80\x00\x00\x00"
b ' \x00\x00\xfF\xff\xff!\xf9\x04\x01\x00'"
b'\x00\x00\x00, \x00\x00\x00\x00\x01\x00'"
b'\x01\x00\x00\x02\x01D\x00;

)

The app variable is the core object of the Flask framework. It represents a Flask
web application. We will use it later to register endpoint routes and also run the
application development server.
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The storage variable holds a Counter instance. It is a convenient data structure from
the Standard Library that allows you to track counters of any immutable values.
Our ultimate goal is to store page view statistics in a persistent way, but it will be

a lot easier to start off with something simpler. That's why we will initially use this
variable as our in-memory storage of page view statistics.

Last but not least, is the PIXEL variable. It holds a byte representation of a 1x1
transparent GIF image. The actual visual appearance of the tracking pixel does
not matter and probably will never change. It is also so small that there's no need
to bother with loading it from the filesystem. That's why we are inlining it in our
module to fit the whole application in a single Python module.

Once we're set, we can write code for the /track endpoint handler:

@app.route('/track")
def track():
try:
referer = request.headers["Referer"]
except KeyError:
return Response(status=HTTPStatus.BAD_REQUEST)

storage[referer] += 1

return Response(
PIXEL, headers={
"Content-Type": "image/gif",
"Expires": "Mon, 01 Jan 1990 00:00:00 GMT",
"Cache-Control": "no-cache, no-store, must-revalidate",
"Pragma": "no-cache",

We use extra Expires, Cache-Control, and Pragma headers
to control the HTTP caching mechanism. We set them so that
they would disable any form of caching on most web browser

‘ p/ implementations. We also do it in a way that should disable

\/ caching by potential proxies. Take careful note of the Expires
header value that is way in the past. This is the lowest possible
epoch time and in practice means that resource is always
considered expired.
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Flask request handlers typically start with the @app.route(route) decorator that
registers the following handler function for the given HTTP route. Request handlers
are also known as views. Here we have registered the track() view as a handler of
the /track route endpoint. This is the first occurrence of IoC in our application: we
register our own handler implementation within Flask frameworks. It is a framework
that will call back our handlers on incoming requests that match associated routes.

After the signature, we have simple code for handling the request. We check if

the incoming request has the expected Referer header. That's the value which the
browser uses to tell what URI the requested resource was included on (for instance,
the HTML page we want to track). If there's no such header, we will return an error
response with a 468 Bad Request HTTP status code.

If the incoming request has the Referer header, we will increase the counter value in
the storage variable. The Counter structure has a dict-like interface and allows you
to easily modify counter values for keys that haven't been registered yet. In such a
case, it will assume that the initial value for the given key was 0. That way we don't
need to check whether a specific Referer value was already seen and that greatly
simplifies the code. After increasing the counter value, we return a pixel response
that can be finally displayed by the browser.

Note that although the storage variable is defined outside the track() function, it is
not yet an example of IoC. That's because whoever calls the stats() function can't
replace the implementation of the storage. We will try to change that in the next
iterations of our application.

The code for the /stats endpoint is even simpler:

@app.route('/stats")
def stats():
return dict(storage.most_common(10))

In the stats() view, we again take advantage of the convenient interface of the
Counter object. It provides the most_common(n) method, which returns up to n most
common key-value pairs stored in the structure. We immediately convert that to a
dictionary. We don't use the Response class, as Flask by default serializes the non-
Response class return values to JSON and assumes a 200 0K status for the HTTP
response.

In order to test our application easily, we finish our script with the simple invocation
of the built-in development server:

if __name__ == ' main__'
app.run(host="0.0.0.0", port=8000)
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If you store the application in the tracking.py file, you will be able to start the server
using the python tracking.py command. It will start listening on port 8eee. If you
would like to test the application in your own browser, you can extend it with the
following endpoint handler:

@app.route('/test")
def test():
return """
<html>
<head></head>
<body><img src="/track"></body>
</html>

If you open the address http://localhost:8000/test several times in your web
browser and then go to http://localhost:8008/stats, you will see output similar to
the following:

{"http://localhost:8000/test":6}

The problem with the current implementation is that it stores request counters in
memory. Whenever the application is restarted, the existing counters will be reset
and we'll lose important data. In order to keep the data between restarts, we will
have to replace our storage implementation.

The options to provide data persistency are many. We could, for instance, use:

* A simple text file
e The built-in shelve module

* Arelational database management system (RDBMS) like MySQL, MariaDB,
or PostgreSQL

* Anin-memory key-value or data struct storage service like Memcached
or Redis

Depending on the context and scale of the workload our application needs to handle,
the best solution will be different. If we don't know yet what is the best solution, we
can also make the storage pluggable so we can switch storage backends depending
on the actual user needs. To do so, we will have to invert the flow of control in our
track() and stats() functions.
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Good design dictates the preparation of some sort of definition of the interface of the
object that is responsible for the IoC. The interface of the Counter class seems like a
good starting point. It is convenient to use. The only problem is that the += operation
can be implemented through either the __add__() or __iadd__() special method. We
definitely want to avoid such ambiguity. Also, the Counter class has way too many
extra methods and we need only two:

* A method that allows you to increase the counter value by one

* A method that allows you to retrieve the 10 most often requested keys

To keep things simple, and readable, we will define our views storage interface as
an abstract base class of the following form:

from abc import ABC, abstractmethod
from typing import Dict

class ViewsStorageBackend(ABC):
@abstractmethod
def increment(self, key: str): ...

@abstractmethod
def most_common(self, n: int): Dict[str, int] ...

From now on, we can provide various implementations of the views storage
backend. The following will be the implementation that adapts the previously
used Counter class into the ViewsStorageBackend interface:

from collections import Counter
from typing import Dict

from .tracking_abc import ViewsStorageBackend
class CounterBackend(ViewsStorageBackend):
def __init__ (self):
self. counter = Counter()

def increment(self, key: str):
self. counter[key] += 1

def most_common(self, n: int) -> Dict[str, int]:
return dict(self._counter.most_common(n))
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If we would like to provide persistency through the Redis in-memory storage
service, we could do so by implementing a new storage backend as follows:

from typing import Dict
from redis import Redis

class RedisBackend(ViewsStorageBackend):
def __init_ (
self,
redis_client: Redis,
set_name: str

self._client = redis_client
self._set_name = set_name

def increment(self, key: str):
self. client.zincrby(self. set_name, 1, key)

def most_common(self, n: int) -> Dict[str, int]:
return {

key.decode(): int(value)

for key, value in

self._client.zrange(
self. set_name, 0, n-1,
desc=True,
withscores=True,

Redis is an in-memory data store. This means that by default, data
is stored only in memory. Redis will persist data on disk during
restart but may lose data in an unexpected crash (for instance,
/ due to a power outage). Still, this is only a default behavior. Redis

\/§p> offers various modes for data persistence, some of which are
comparable to other databases. This means Redis is a completely
viable storage solution for our simple use case. You can read
more about Redis persistence at https://redis.io/topics/
persistence
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Both backends have the same interface loosely enforced with an abstract base class.
It means instances of both classes can be used interchangeably. The question is, how
will we invert control of our track() and stats() functions in a way that will allow
us to plug in a different views storage implementation?

Let's recall the signatures of our functions:

@app.route('/stats")
def stats():

@app.route('/track")
def track():

In the Flask framework, the app.route() decorator registers a function as a specific
route handler. You can think of it as a callback for HTTP request paths. You don't call
that function manually anymore and Flask is in full control of the arguments passed
to it. But we want to be able to easily replace the storage implementation. One way

to do that would be through postponing the handler registration and letting our
functions receive an extra storage argument. Consider the following example:

def track(storage: ViewsStorageBackend):
try:
referer = request.headers["Referer"]
except KeyError:
return Response(status=HTTPStatus.BAD_REQUEST)

storage.increment(referer)

return Response(
PIXEL, headers={
"Content-Type": "image/gif",
"Expires": "Mon, 01 Jan 1990 00:00:00 GMT",
"Cache-Control": "no-cache, no-store, must-revalidate",
"Pragma": "no-cache",

def stats(storage: ViewsStorageBackend):
return storage.most_common(19)
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Our extra argument is annotated with the ViewsStorageBackend type so the type can
be easily verified with an IDE or additional tools. Thanks to this we have inverted
control of those functions and also achieved better modularity. Now you can

easily switch the implementation of storage for different classes with a compatible
interface. The extra benefit of IoC is that we can easily unit-test stats() and track()
methods in isolation from storage implementations.

examples of tests that leverage 1oC in Chapter 10, Testing and
Quality Automation.

B’ We will discuss the topic of unit-tests together with detailed
\”/

The only part that is missing is actual route registration. We can no longer use the
app.route() decorator directly on our functions. That's because Flask won't be able
to resolve the storage argument on its own. We can overcome that problem by "pre-
injecting" desired storage implementations into handler functions and create new
functions that can be easily registered with the app.route() call.

The simple way to do that would be using the partial() function from the functools
module. It takes a single function together with a set of arguments and keyword
arguments and returns a new function that has selected arguments preconfigured.
We can use that approach to prepare various configurations of our service. Here,

for instance, is an application configuration that uses Redis as a storage backend:

from functools import partial

if __name__ == '_ _main__
views_storage = RedisBackend(Redis(host="redis"), "my-stats")

app.route("/track", endpoint="track")(
partial(track, storage=views_storage))

app.route("/stats", endpoint="stats")(
partial(stats, storage=views_storage))

app.run(host="0.0.0.0", port=8000)

The presented approach can be applied to many other web frameworks as the
majority of them have the same route-to-handler structure. It will work especially
well for small services with only a handful of endpoints. Unfortunately, it may not
scale well in large applications. It is simple to write but definitely not the easiest

to read. Seasoned Flask programmers will for sure feel this approach is unnatural
and needlessly repetitive. Here, it simply breaks the common convention of writing
Flask handler functions.
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The ultimate solution would be one that allows you to write and register view
functions without the need to manually inject dependent objects. So, for instance:

@app.route('/track")
def track(storage: ViewsStorageBackend):

In order to do that, from the Flask framework we would need to:

* Recognize extra arguments as dependencies of views.
* Allow the definition of a default implementation for said dependencies.

* Automatically resolve dependencies and inject them into views at runtime.

Such a mechanism is referred to as dependency injection, which we mentioned
previously. Some web frameworks offer a built-in dependency injection mechanism,
but in the Python ecosystem, it is a rather rare occurrence. Fortunately, there are
plenty of lightweight dependency injection libraries that can be added on top of any
Python framework. We will explore such a possibility in the next section.

Using dependency injection frameworks

When IoC is used at a great scale, it can easily become overwhelming. The example
from the previous section was quite simple so it didn't require a lot of setup.
Unfortunately, we have sacrificed a bit of readability and expressiveness for better
modularity and responsibility isolation. For larger applications, this can be a serious
problem.

Dedicated dependency injection libraries come to the rescue by combining a simple
way to mark function or object dependencies with a runtime dependency resolution.
All of that usually can be achieved with minimal impact on the overall code
structure.

There are plenty of dependency injection libraries for Python, so definitely there is no
need to build your own from scratch. They are often similar in implementation and
functionality, so we will simply pick one and see how it could be applied in our view
tracking application.

Our library of choice will be the injector library, which is freely available on PyPL
We will pick it up for several reasons:

* Reasonably active and mature: Developed over more than 10 years with
releases every few months.
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* Framework support: It has community support for various frameworks
including Flask through the flask-injector package.

* Typing annotation support: It allows writing unobtrusive dependency
annotations and leveraging static typing analysis.

* Simple: injector has a Pythonic API. It makes code easy to read and to
reason about.

You can install injector in your environment using pip as
follows:

\ ! 7/
‘@' $ pip install injector
7/ AN

You can find more information about injector at https://
github.com/alecthomas/injector.

In our example, we will use the flask-injector package as it provides some initial
boilerplate to integrate injector with Flask seamlessly. But before we do that, we
will first separate our application into several modules that would better simulate

a larger application. After all, dependency injection really shines in applications that
have multiple components.

We will create the following Python modules:

* interfaces: This will be the module holding our interfaces. It will contain
ViewsStorageBackend from the previous section without any changes.

* backends: This will be the module holding specific implementations of
storage backends. It will contain CounterBackend and RedisBackend from the
previous section without any changes.

* tracking: This will be the module holding the application setup together
with view functions.

* di: This will be the module holding definitions for the injector library,
which will allow it to automatically resolve dependencies.

The core of the injector library is a Module class. It defines a so-called dependency
injection container —an atomic block of mapping between dependency interfaces
and their actual implementation instances. The minimal Module subclass may look
as follows:

from injector import Module, provider

def MyModule(Module):
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@provider
def provide_dependency(self, *args) -> Type:
return ...

The @provider decorator marks a Module method as a method providing the
implementation for a particular Type interface. The creation of some objects may
be complex, so injector allows modules to have additional nondecorated helper
methods.

The method that provides dependency may also have its own dependencies. They
are defined as method arguments with type annotations. This allows for cascading
dependency resolution. injector supports composing dependency injection context
from multiple modules so there's no need to define all dependencies in a single
module.

Using the above template, we can create our first injector module in the di. py file.
It will be CounterModule, which provides a CounterBackend implementation for the
ViewsStorageBackend interface. The definition will be as follows:

from injector import Module, provider, singleton

from interfaces import ViewsStorageBackend
from backends import CounterBackend

class CounterModule(Module):
@provider
@singleton
def provide storage(self) -> ViewsStorageBackend:
return CounterBackend()

CounterStorage doesn't take any arguments, so we don't have to define extra
dependencies. The only difference from the general module template is the
@singleton decorator. It is an explicit implementation of the singleton design
pattern. A singleton is simply a class that can have only a single instance. In this
context, it means that every time this dependency is resolved, injector will always
return the same object. We need that because CounterStorage stores view counters
under the internal _counter attribute. Without the @singleton decorator, every
request for the ViewsStorageBackend implementation would return a completely
new object and thus we would constantly lose track of view numbers.

The implementation of RedisModule will be only slightly more complex:
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from injector import Module, provider, singleton
from redis import Redis

from interfaces import ViewsStorageBackend
from backends import RedisBackend

class RedisModule(Module):
@provider
def provide storage(self, client: Redis) -> ViewsStorageBackend:
return RedisBackend(client, "my-set")

@provider

@singleton

def provide_redis_client(self) -> Redis:
return Redis(host="redis")

environment with a preconfigured Redis Docker image so you

C’ The code files for this chapter provide a complete docker-compose
o
don't have to install Redis on your own host.

In the RedisStorage module, we take advantage of the injector library's ability to
resolve cascading dependencies. The RedisBackend constructor requires a Redis client
instance so we can treat it as another provide_storage() method argument. injector
will recognize typing annotation and automatically match the method that provides
the Redis class instance. We could go even further and extract a host argument to
separate configuration dependency. We won't do that for the sake of simplicity.

Now we have to tie everything up in the tracking module. We will be relying on
injector to resolve dependencies on views. This means that we can finally define
track() and stats() handlers with extra storage arguments and register them with
the @app.route() decorator as if they were normal Flask views. Updated signatures
will be the following:

@app.route('/stats")
def stats(storage: ViewsStorageBackend):

@app.route('/track")
def track(storage: ViewsStorageBackend):
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What is left is the final configuration of the app that designates which modules
should be used to provide interface implementations. If we would like to use
RedisBackend, we would finish our tracking module with the following code:

import di

if __name__ == '__main__':
FlaskInjector(app=app, modules=[di.RedisModule()])
app.run(host="0.0.0.0", port=8000)

The following is the complete code of the tracking module:

from http import HTTPStatus

from flask import Flask, request, Response
from flask_injector import FlaskInjector

from interfaces import ViewsStorageBackend
import di

app = Flask(__name_ )

PIXEL = (
b'GIF89a\x01\x00\x01\x00\x80\x00\x00\x00"
b ' \x00\x00\xfF\xff\xff!\xf9\x04\x01\x00'"
b'\x00\x00\x00, \x00\x00\x00\x00\x01\x00'"
b'\x01\x00\x00\x02\x01D\x00; '

@app.route('/track")
def track(storage: ViewsStorageBackend):
try:
referer = request.headers["Referer"]
except KeyError:
return Response(status=HTTPStatus.BAD_REQUEST)

storage.increment(referer)

return Response(
PIXEL, headers={
"Content-Type": "image/gif",
"Expires": "Mon, 01 Jan 1990 00:00:00 GMT",
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"Cache-Control": "no-cache, no-store, must-revalidate",
"Pragma": "no-cache",

@app.route('/stats")
def stats(storage: ViewsStorageBackend):
return storage.most_common(19)

@app.route("/test")
def test():
return """
<html>
<head></head>
<body><img src="/track"></body>
</html>

if _name__ == '_main__
FlaskInjector(app=app, modules=[di.RedisModule()])
app.run(host="0.0.0.0", port=8000)

As you can see, the introduction of the dependency injection mechanism didn't
change the core of our application a lot. The preceding code closely resembles the
first and simplest iteration, which didn't have the IoC mechanism. At the cost of a
few interface and injector module definitions, we've got scaffolding for a modular
application that could easily grow into something much bigger. We could, for
instance, extend it with additional storage that would serve more analytical purposes
or provide a dashboard that allows you to view the data at different angles.

Another advantage of dependency injection is loose coupling. In our example, views
never create instances of storage backends nor their underlying service clients (in
the case of RedisBackend). They depend on shared interfaces but are independent of
implementations. Loose coupling is usually a good foundation for a well-architected
application.

It is of course hard to show the utility of IoC and dependency injection in a really
concise example like the one we've just seen. That's because these techniques really
shine in big applications. Anyway, we will revisit the use case of the pixel tracking
application in Chapter 10, Testing and Quality Automation, where we will show that
IoC greatly improves the testability of your code.
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Summary

This chapter was a journey through time. Python is considered a modern language
but in order to better understand its patterns, we had to make some historical trips.

We started with interfaces —a concept almost as old as object-oriented programming
(the first OOP language — Simula — dates to 1967!). We took a look at zope. interface,
something that is probably one of the oldest actively maintained interface libraries

in the Python ecosystem. We learned some of its advantages and disadvantages.
That allowed us to really embrace two mainstream Python alternatives: abstract base
classes and structural subtyping through advanced type annotations.

After familiarizing ourselves with interfaces, we looked into inversion of control.
Internet sources about this topic can be really confusing and this concept is often
confused with dependency injection. To settle any disputes, we traced the origin of
the term to the 80s, when no one had yet ever dreamed about dependency injection
containers. We learned how to recognize inversion of control in various forms and
saw how it can improve the modularity of applications. We tried to invert control
in a simple application manually. We saw that sometimes it can cost us readability
and expressiveness. Thanks to this, we are now able to fully recognize the value
that comes from the simplicity of ready-made dependency injection libraries.

The next chapter should be refreshing. We will completely move away from the
topics of object-oriented programming, language features, design patterns, and
paradigms. It will be all about concurrency. We will learn how to write code that
does a lot, in parallel, and —hopefully — does it fast.
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Concurrency and one of its manifestations, parallel processing, are among the
broadest topics in the area of software engineering. Concurrency is such a huge topic
that dozens of books could be written and we would still not be able to discuss all of
its important aspects and models. The purpose of this chapter is to show you why
concurrency may be required in your application, when to use it, and what Python's
most important concurrency models are.

We will discuss some of the language features, built-in modules, and third-party
packages that allow you to implement these models in your code. But we won't
cover them in much detail. Treat the content of this chapter as an entry point for your
own research and reading. We will try to guide you through the basic ideas and help
in deciding if you really need concurrency. Hopefully, after reading this chapter you
will be able to tell which approach suits your needs best.

In this chapter, we will cover the following topics:

* What is concurrency?

* Multithreading

*  Multiprocessing

* Asynchronous programming

Before we get into the basic concepts of concurrency, let's begin by considering the
technical requirements.
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Technical requirements

The following are the Python packages that are used in this chapter, which you can
download from PyPI:

® requests

* aiohttp

Information on how to install packages is included in Chapter 2, Modern Python
Development Environments.

The code files for this chapter can be found at https://github.com/PacktPublishing/
Expert-Python-Programming-Fourth-Edition/tree/main/Chapter%206.

Before we delve into various implementations of concurrency available to Python
programmers, let's discuss what concurrency actually is.

What is concurrency?

Concurrency is often confused with actual methods of implementing it. Some
programmers also think that it is a synonym for parallel processing. This is the
reason why we need to start by properly defining concurrency. Only then will we be
able to properly understand various concurrency models and their key differences.

First and foremost, concurrency is not the same as parallelism. Concurrency is also
not a matter of application implementation. Concurrency is a property of a program,
algorithm, or problem, whereas parallelism is just one of the possible approaches to
problems that are concurrent.

In Leslie Lamport's 1976 paper Time, Clocks, and the Ordering of Events in Distributed
Systems, he defines the concept of concurrency as follows:

"Two events are concurrent if neither can causally affect the other."

By extrapolating events to programs, algorithms, or problems, we can say that
something is concurrent if it can be fully or partially decomposed into components
(units) that are order-independent. Such units may be processed independently
from each other, and the order of processing does not affect the final result. This
means that they can also be processed simultaneously or in parallel. If we process
information this way (that is, in parallel), then we are indeed dealing with parallel
processing. But this is still not obligatory.
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Doing work in a distributed manner, preferably using the capabilities of multicore
processors or computing clusters, is a natural consequence of concurrent problems.
Anyway, it does not mean that this is the only way of efficiently dealing with
concurrency. There are a lot of use cases where concurrent problems can be
approached in ways other than synchronous ways, but without the need for
parallel execution. In other words, when a problem is concurrent, it gives you the
opportunity to deal with it in a special, preferably more efficient, way.

We often get used to solving problems in a classical way: by performing a sequence
of steps. This is how most of us think and process information — using synchronous
algorithms that do one thing at a time, step by step. But this way of processing
information is not well suited to solving large-scale problems or when you need to
satisfy the demands of multiple users or software agents simultaneously:

*  When the time to process the job is limited by the performance of the single
processing unit (a single machine, CPU core, and so on)

*  When you are not able to accept and process new inputs until your program
has finished processing the previous one

These problems create three common application scenarios where concurrent
processing is a viable approach to satisfy user needs:

* Processing distribution: The scale of the problem is so big that the only way
to process it in an acceptable time frame (with constrained resources) is to
distribute execution on multiple processing units that can handle the work
in parallel.

* Application responsiveness: Your application needs to maintain
responsiveness (accept new inputs), even if it did not finish processing
previous inputs.

* Background processing: Not every task needs to be performed in a
synchronous way. If there is no need to immediately access the results of
a specific action, it may be reasonable to defer execution in time.

The processing distribution scenario directly maps to parallel processing. That's
why it is usually solved with multithreading and multiprocessing models. The
application responsiveness scenario often doesn't require parallel processing, so the
actual solution really depends on the problem details. The problem of application
responsiveness also covers the case when the application needs to serve multiple
clients (users or software agents) independently, without the need to wait for others
to be successfully served.
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It is an interesting observation that these groups of problems are not exclusive.
Often, you will have to maintain application responsiveness and at the same time
won't be able to handle all the inputs on a single processing unit. This is the reason
why different and seemingly alternative or conflicting approaches to concurrency
may often be used at the same time. This is especially common in the development
of web servers, where it may be necessary to use asynchronous event loops, or
threads in conjunction with multiple processes, in order to utilize all the available
resources and still maintain low latencies under the high load.

Python provides several ways to deal with concurrency. These are mainly:

* Multithreading: This is characterized by running multiple threads of
execution that share the memory context of the parent process. It is one
of the most popular (and oldest) concurrency models and works best in
applications that do a lot of I/O (Input/Output) operations or need to
maintain user interface responsiveness. It is fairly lightweight but comes
with a lot of caveats and memory safety risks.

* Multiprocessing: This is characterized by running multiple independent
processes to perform work in a distributed manner. It is similar to threads in
operation, although it does not rely on a shared memory context. Due to the
nature of Python, it is better suited for CPU-intensive applications. It is more
heavyweight than multithreading and requires implementing inter-process
communication patterns to orchestrate work between processes.

* Asynchronous programming: This is characterized by running multiple
cooperative tasks within a single application process. Cooperative tasks
work like threads, although switching between them is facilitated by the
application itself instead of the operating system kernel. It is well suited to
I/ O-bound applications, especially for programs that need to handle
multiple simultaneous network connections. The downside of asynchronous
programming is the need to use dedicated asynchronous libraries.

The first model we will discuss in detail is multithreading.

Multithreading

Developers often consider multithreading to be a very complex topic. While this
statement is totally true, Python provides high-level classes and functions that
greatly help in using threads. CPython has some inconvenient implementation
details that make threads less effective than in other programming languages like
C or Java. But that doesn't mean that they are completely useless in Python.
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There is still quite a large range of problems that can be solved effectively and
conveniently with Python threads.

In this section, we will discuss those limitations of multithreading in CPython, as
well as the common concurrent problems for which Python threads are still a viable
solution.

What is multithreading?

Thread is short for a thread of execution. A programmer can split their work into
threads that run simultaneously. Threads are still bound to the parent process and
can easily communicate because they share the same memory context. The execution
of threads is coordinated by the OS kernel.

Multithreading will benefit from a multiprocessor or multicore machines, where each
thread can be executed on a separate CPU core, thus making the program run faster.
This is a general rule that should hold true for most programming languages. In
Python, the performance benefit from multithreading on multicore CPUs has some
limits, which we will discuss later. For the sake of simplicity, let's assume for now
that this statement is also true for Python.

The simplest way to start a new thread of execution using Python is to use the
threading.Thread() class as in the following example:

def my_function():
print("printing from thread")

if _name__ == "_main__ "
thread = Thread(target=my_function)
thread.start()
thread.join()

The my function() function is the function we want to execute in the new thread. We
pass it to the Thread class constructor as the target keyword argument. Instances of
this class are used to encapsulate and control application threads.

Creating a new Thread class instance is not enough to start a new thread. In order to
do this, you need to call the start() method. Once the new thread is started, it will
be running next to the main thread until the target function finishes. In the above
example, we explicitly wait for the extra thread to finish using the join() method.
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We say that the join() method is a blocking operation. This
‘ p/ means that the thread isn't doing anything in particular (it doesn't
\/ consume CPU time) and simply waits for a specific event to
happen.

The start() and join() methods allow you to create and start multiple threads at
once. The following is a simple modification of the previous example that starts and
joins multiple threads in bulk:

from threading import Thread

def my_function():
print("printing from thread")

if __name__ == "__main__
threads = [Thread(target=my_function) for _ in range(10)]
for thread in threads:
thread.start()

for thread in threads:
thread.join()

All threads share the same memory context. This means that you must be extremely
wary about how your threads access the same data structures. If two parallel threads
update the same variable without any protection, there might be a situation where a
subtle timing variation in thread execution can alter the final result in an unexpected
way. To better understand this problem, let's consider a small program that runs
multiple threads reading and updating the same value:

from threading import Thread

thread_visits = 0

def visit_counter():
global thread_visits
for i in range(100_000):
value = thread_visits
thread_visits = value + 1
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if __name__ == "__main__"
thread_count = 100
threads = [

Thread(target=visit counter)
for _ in range(thread_count)
]
for thread in threads:
thread.start()

for thread in threads:
thread.join()

print(f"{thread_count=}, {thread_visits=}")

The above program starts 100 threads and each one tries to read and increment

the thread_visits variable 100,000 times. If we were to run the tasks sequentially,
the final value of the thread_visits variable should be 10,000,000. But threads can
interweave and lead to unexpected results. Let's save the above code example in the
threaded_visits.py file and run it a few times to see the actual results:

$ python3 thread visits.py
thread_count=100, thread_visits=6859624
$ python3 thread visits.py

thread_count=100, thread_visits=7234223
$ python3 thread visits.py
thread_count=100, thread_visits=7194665

On each run, we got a completely different number, and it was always very far from
the expected 10,000,000 thread visits. But that doesn't mean that the actual number
of thread visits was that small. With such a large number of threads, they started
interweaving and affecting our results.

Such a situation is called a race hazard or race condition. It is one of the most hated
culprits of software bugs for multithreaded applications. Obviously, there is a slice
of time between the read and write operations on the thread_visits variable where
another thread can step in and manipulate the result.
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One might think that the problem could be fixed using the += operator, which looks
like a single atomic operation:

def visit_counter():
global thread_visits
for i in range(100_000):
thread_visits += 1

But that won't help us either! The += operator is just a shorthand for incrementing a
variable, but it will actually take a few operations in the Python interpreter. Between
those operations, there's still time for threads to interweave.

The proper way around race conditions is to use thread locking primitives. Python
has a few lock classes in the threading module. Here we can use the simplest one —
threading.Lock. The following is an example of a thread-safe visit_counter()
function:

from threading import Lock

thread_visits = 0
thread_visits_lock = Lock()

def visit_counter():
global thread_visits
for i in range(100_000):
with thread_visits_lock:
thread_visits += 1

If you run the modified version of the code, you will notice that thread visits with
locks are counted properly. But that will be at the expense of performance. The
threading Lock () will make sure that only one thread at a time can process a single
block of code. This means that the protected block cannot run in parallel. Moreover,
acquiring and releasing the lock are operations that require some additional effort.
With a lot of threads trying to access the lock, a performance drop will be noticeable.
We will see other examples of using locks to secure parallel data access later in

the chapter.

Multithreading is usually supported at the OS kernel level. When a machine has
a single processor with a single core, the system uses a time slicing mechanism to
allow threads to run seemingly in parallel. With time slicing, the CPU switches
from one thread to another so fast that there is an illusion of threads running
simultaneously.
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Single-core CPUs are pretty uncommon these days in desktop
/ computers but can still be a concern in other areas. Small and
\/;p; cheap instances in many cloud compute platforms, as well as
low-cost embedded systems, often have only single-core CPUs or
virtual CPUs.

Parallelism without multiple processing units is obviously virtual, and the
application performance gain on such hardware is harder to evaluate. Anyway,
sometimes, it is still useful to implement code with threads, even if it means having
to execute on a single core. We will review such use cases later.

Everything changes when your execution environment has multiple processors or
multiple processor cores. In such cases, threads can be distributed among CPUs

or their cores by the OS kernel. This thus provides the opportunity to run your
program substantially faster. This is true for many programming languages but not
necessarily for Python. To understand why that is so, let's take a closer look at how
Python deals with threads.

How Python deals with threads

Unlike some other languages, Python uses multiple kernel-level threads that can run
any of the interpreter-level threads. Kernel-level threads are operated and scheduled
by the OS kernel. CPython uses OS-specific system calls to create threads and join
threads. It doesn't have full control over when threads run and on which CPU core
they will execute. These responsibilities are left to the sole discretion of the system
kernel. Moreover, the kernel can preempt a running thread at any time, for instance,
to run a thread with a higher priority.

Unfortunately, the standard implementation of the Python (the CPython interpreter)
language comes with a major limitation that renders threads less useful in many
contexts. All operations accessing Python objects are serialized by one global lock.
This is done because many of the interpreter's internal structures are not thread-safe
and need to be protected. Not every operation requires locking, and there are certain
situations when threads release the lock.

In the context of parallel processing, if we say that something is
‘ / serialized, we mean that actions are taken in a serial fashion (one
) . c le e . .
after another). Unintended serialization in concurrent programs is
usually something that we want to avoid.
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This mechanism of the CPython interpreter is known as the Global Interpreter Lock
(GIL). The removal of the GIL is a topic that occasionally appears on the Python-
dev emailing list and was postulated by Python developers multiple times. Sadly,

at the time of writing, no one has ever managed to provide a reasonable and simple
solution that would allow you to get rid of this limitation. It is highly improbable
that we will see any progress in this area anytime soon. It is safer to assume that the
GIL will stay in CPython, and so we need to learn how to live with it.

So, what is the point of multithreading in Python? When threads contain only pure
Python code and don't do any I/O operations (like communicating through sockets),
there is little point in using threads to speed up the program. That's because the GIL
will most likely globally serialize the execution of all threads. But remember that the
GIL cares only about protecting Python objects. In practice, the GIL is released on a
number of blocking system calls like socket calls. It can be also released in sections of
C extensions that do not use any Python/C API functions. This means that multiple
threads can do I/O operations or execute specifically crafted C extension code
completely in parallel.

\/‘/ We will discuss the details of interacting with the GIL in Python C

extensions in Chapter 9, Bridging Python with C and C++.

Multithreading allows you to efficiently utilize time when your program is waiting
for an external resource. This is because a sleeping thread that has released the GIL
(this happens internally in CPython) can wait on "standby" and "wake up" when the
results are back. Last, whenever a program needs to provide a responsive interface,
multithreading can be an answer, even in single-core environments where the OS
needs to use time slicing. With multithreading, the program can easily interact with
the user while doing some heavy computing in the so-called background.

Note that the GIL does not exist in every implementation of
the Python language. It is a limitation of CPython, Stackless
‘ p, Python, and PyPy, but does not exist in Jython (Python for JVM)
\/ and IronPython (Python for .NET). There has also been some
development of a GIL-free version of PyPy. It is based on software
transactional memory and is called PyPy-STM.

In the next section, we will discuss more specific examples of situations where
threading can be useful.
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When should we use multithreading?

Despite the GIL limitation, threads can be really useful in some of the following
cases:

* Application responsiveness: Applications that can accept new input and
respond within a given time frame (be responsive) even if they did not finish
processing previous inputs.

*  Multiuser applications and network communication: Applications that
are supposed to accept inputs of multiple users simultaneously often
communicate with users over the network. This means that they can heavily
reduce the impact of locking by leveraging those parts of CPython where the
GIL is released.

*  Work delegation and background processing: Applications where much of
the heavy lifting is done by external applications or services and your code
acts as a gateway to those resources.

Let's start with responsive applications, as those are the ones that tend to prefer
multithreading over other concurrency models.

Application responsiveness

Let's say you ask your OS to copy a large file from one folder to another through its
graphical user interface. The task will possibly be pushed into the background and
the interface window will display a constantly refreshed progress status. This way,
you get live feedback on the progress of the whole process. You will also be able to
cancel the operation. You can also carry out other work like browsing the web or
editing your documents while your OS is still copying the file. The graphical user
interface of your system will stay responsive to your actions. This is less irritating
than a raw cp or copy shell command that does not provide any feedback until the
entirety of the work is finished.

A responsive interface also allows a user to work on several tasks at the same time.
For instance, Gimp (a popular open-source image editing application) will let you
play around with a picture while another one is being filtered, since the two tasks
are independent.

When trying to achieve such responsive interfaces, a good approach is to try to push
long-running tasks into the background, or at least try to provide constant feedback
to the user. The easiest way to achieve that is to use threads. In such a scenario,
threads are used to make sure that the user can still operate the interface, even if the
application needs to process its tasks for a longer period of time.
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This approach is often used together with event-driven programming where the
main application thread pushes events to be processed by background worker
threads (see Chapter 7, Event-Driven Programming). Web browsers are good examples
of applications that often use this architectural pattern.

Do not confuse application responsiveness with Responsive Web
, Design (RDW). The latter is a popular design approach of web
\/;p; applications that allows you to display the same web application
well on a variety of mediums (such as desktop browsers, mobiles,
or tablets).

Multiuser applications

Serving multiple users simultaneously may be understood as a special case of
application responsiveness. The key difference is that here the application has to
satisfy the parallel inputs of many users and each one of them may have some
expectations about how quickly the application should respond. Simply put, one
user should not have to wait for other user inputs to be processed in order to be
served.

Threading is a popular concurrency model for multiuser applications and is
extremely common in web applications. For instance, the main thread of a web
server may accept all incoming connections but dispatch the processing of every
single request to a separate dedicated thread. This usually allows us to handle
multiple connections and requests at the same time. The number of connections and
requests the application will be able to handle at the same time is only constrained
by the ability of the main thread to quickly accept connections and dispatch requests
to new threads. A limitation of this approach is that applications using it can quickly
consume many resources. Threads are not free: memory is shared but each thread
will have at least its own stack allocated. If the number of threads is too large, the
total memory consumption can quickly get out of hand.

Another model of threaded multiuser applications assumes that there is always

a limited pool of threads acting as workers that are able to process incoming user
inputs. The main thread is then only responsible for allocating and managing the
pool of workers. Web applications often utilize this pattern too. A web server, for
instance, can create a limited number of threads and each of those threads will be
able to accept connections on its own and handle all requests incoming on that
connection. This approach usually allows you to serve fewer users at the same time
(compared to one thread per request) but gives more control over resource usage.
Two very popular Python WSGI-compliant web servers — Gunicorn and uWSGI —
allow serving HTTP requests with threaded workers in a way that generally
follows this principle.
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WSGI stands for Web Server Gateway Interface. It is a common

Python standard (defined in PEP 3333, accessible at https://www.
‘ p, python.org/dev/peps/pep-3333/) for communication between
\/ web servers and applications that promotes the portability of

web applications between web servers. Most modern Python web

frameworks and web servers are based on the WSGL

Using multithreading to enable concurrency in multiuser applications is generally
less expensive in terms of resources than using multiprocessing. Separate Python
processes will use more memory than threads since a new interpreter needs to

be loaded for each one of them. On the other hand, having too many threads

is expensive too. We know that the GIL isn't such a problem for I/ O-intensive
applications, but there will always be a time when you will need to execute Python
code. Since you cannot parallelize all of the application parts with bare threads, you
will never be able to utilize all of the resources on machines with multicore CPUs
and a single Python process. This is why the optimal solution is sometimes a hybrid
of multiprocessing and multithreading — multiple workers (processes) running with
multiple threads. Fortunately, some WSGI-compliant web servers allow for such
setup (for instance, Gunicorn with the gthread worker type).

Multiuser applications often utilize the delegation of work to threads as a means of
ensuring proper responsiveness for multiple users. But work delegation alone can
also be understood as a standalone use case for multithreading too.

Work delegation and background processing

If your application depends on many external resources, threads may really help in
speeding it up. Let's consider the case of a function that indexes files in a folder and
pushes the built indexes into a database. Depending on the type of file, the function
executes a different processing routine. For example, one is specialized in PDFs and
another one in OpenOffice files.

Instead of processing all files in a sequence, your function can set up a single thread
for each converter and push jobs to be done to each one of them through a queue.
The overall time taken by the function will be closer to the processing time of the
slowest converter than to the total sum of the work.

The other common use case for threads is performing multiple network requests to
an external service. For instance, if you want to fetch multiple results from a remote
web AP], it could take a lot of time to do that synchronously, especially if the remote
server is located in a distant location.
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If you wait for every previous response before making new requests, you will spend
a lot of time just waiting for the external service to respond. Additional round-trip
time delays will be added to every such request.

If you are communicating with some efficient service (the Google Maps AP], for
instance), it is highly probable that it can serve most of your requests concurrently
without affecting the response times of individual requests. It is then reasonable to
perform multiple queries in separate threads. Here, when doing an HTTP request,
the application will most likely spend most of its time reading from the TCP
socket. Delegating such work to threads allows for a great improvement of your
application's performance.

An example of a multithreaded application

To see how Python threading works in practice, let's construct an example
application that could benefit from the usage of threads. We will consider a simple
problem that was already highlighted in the previous section as a common use case
for multithreading: making parallel HTTP requests to some remote service.

Let's say we need to fetch information from some web service using multiple queries
that cannot be batched into a single bulk HTTP request. As a realistic example, we
will use the foreign exchange reference rates endpoint from a free API, available at
https://www.vatcomply.com. The reasons for this choice are as follows:

* This service is open and does not require any authentication keys.

* The interface of the service is very simple and can be easily queried using the
popular requests library.

* This API uses a currency data format that is common across many similar
APIs. If this service goes down (or stops being free), you will be able to easily
switch the base URL of the API to the URL of a different service.

Free API services come and go. It is possible that after some time
the URLs in this book won't work or the API will require a paid
subscription. In such cases, running your own service may be a

, good option.
\/\_";‘

Athttps://github.com/exchangeratesapi/
exchangeratesapi, you can find code for a currency exchange
API service that uses the same data format as the API used in this
chapter.
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In our examples, we will try to obtain exchange rates for selected currencies using
multiple currencies as reference points. We will then present the results as an
exchange rate currency matrix, similar to the following:

1.0 USD, ©.887 EUR, 3.8 PLN, 8.53 NOK, 22.7 CZK
1.13 USD, 1.0 EUR, 4.29 PLN, 9.62 NOK, 25.6 CZK
©.263 USD, ©.233 EUR, 1.0 PLN, 2.24 NOK, 5.98 CZK

©.117 USD, ©.104 EUR, ©.446 PLN, 1.0 NOK, 2.66 CZK
©.044 USD, ©.039 EUR, ©.167 PLN, ©.375 NOK, 1.0 CZK

The API we've chosen offers several ways to query for multiple data points within
single requests, but unfortunately it does not allow you to query for data using
multiple base currencies at once. Obtaining the rate for a single base is as simple as
doing the following:

>>> import requests

>>> response = requests.get("https://api.vatcomply.com/rates?base=USD")
>>> response.json()

{'base': 'USD', 'rates': {'BGN': 1.7343265053, 'NZD': 1.4824864769,
'ILS': 3.5777245721, 'RUB': 64.7361000266, 'CAD': 1.3287221779, 'USD':
1.0, 'PHP': 52.0368892436, 'CHF': ©.9993792675, 'AUD': 1.3993970027,
"JPY': 111.2973308504, 'TRY': 5.6802341048, 'HKD': 7.8425113062,

'"MYR': 4.0986077858, 'HRK': 6.5923561231, 'CZK': 22.7170346723,

"IDR': 14132.9963642813, 'DKK': 6.6196683515, 'NOK': 8.5297508203,
"HUF': 285.09355325, ‘GBP': 0.7655848187, 'MXN': 18.930477964, 'THB':
31.7495787887, 'ISK': 118.6485767491, 'ZAR': 14.0298838344, 'BRL':
3.8548372794, 'SGD': 1.3527533919, 'PLN': 3.8015429636, 'INR':
69.3340427419, 'KRW': 1139.4519819101, 'RON': 4.221867518, 'CNY':
6.7117141084, 'SEK': 9.2444799149, 'EUR': 0.8867606633}, 'date': '2019-
04-09'}

In order to keep our examples concise, we will use the requests
Y package to perform HTTP requests. It is not a part of the standard
_@_ library but can be easily obtained from PyPI using pip.
N\

4

You can read more about requests at https://requests.
readthedocs.io/.
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Since our goal is to show how a multithreaded solution of concurrent problems
compares to a classical synchronous solution, we will start with an implementation
that doesn't use threads at all. Here is the code of a program that loops over the list
of base currencies, queries the foreign exchange rates API, and displays the results
on standard output as a text-formatted table:

import time
import requests

SYMBOLS =( "EUR', 'PLN', 'NOK', 'CZK')
BASES = ('US 'EUR', 'PLN', 'NOK', 'CZK')

def fetch_rates(base):
response = requests.get(
f"https://api.vatcomply.com/rates?base={base}"
)
response.raise_for_status()
rates = response.json()["rates"]

# note: same currency exchanges to itself 1:1
rates[base] =

rates_line = ", ".join(
[f"{rates[symbol]:7.03} {symbol}" for symbol in SYMBOLS]

)
print(f"1 {base} = {rates_line}")

def main():
for base in BASES:
fetch_rates(base)

if __name__ == "_main__ ":
started = time.time()
main()

elapsed = time.time() - started

print()
print("time elapsed: {:.2f}s".format(elapsed))
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The main() function iterates over a list of base currencies and calls the fetch_rates()
function to obtain exchange rates for the base currencies. Inside fetch_rates(),

we make a single HTTP request using the requests.get() function. The response.
raise_for_status() method will raise an exception if the server returns a response
with a status code denoting a server or client error. For now, we don't expect any
exceptions and simply assume that after receiving the request, we can successfully
read the response payload using the response.json() method. We will discuss how
to properly handle exceptions raised within threads in the Dealing with errors in
threads section.

We've added a few statements around the execution of the main() function that are
intended to measure how much time it took to finish the job. Let's save that code in
a file named synchronous.py and execute it to see how it works:

$ python3 synchronous.py

On my computer, it can take a couple of seconds to complete that task:

1 USD ) 0.823 EUR, 3.73 PLN, 8.5 NOK, 21.5 CZK
1 EUR 1.22 1.0 EUR, 4.54 PLN, 10.3 NOK, 26.2 CZK
1 PLN 0.268 0.22 EUR, 1.0 PLN, 2.28 NOK, 5.76 CZK
1 NOK 0.118 0.0968 EUR, 0.439 PLN, 1.0 NOK, 2.53 CZK
1 CzZK 0.0465 0.0382 EUR, 0.174 PLN, 0.395 NOK, 1.0 CZK

time elapsed: 4.

Every run of our script will always take a different amount of time. This is because
the processing time mostly depends on a remote service that's accessible through

a network connection. There are many non-deterministic factors affecting the final
result. If we wanted to be really methodical, we would make longer tests, repeat
them multiple times, and calculate an average from the measurements. But for the
sake of simplicity, we won't do that. You will see later that this simplified approach
is just enough for illustration purposes.

We have some baseline implementation. Now it is time to introduce threads. In
the next section, we will try to introduce one thread per call of the fetch_rates()
function.

Using one thread per item

Now, it is time for improvement. We don't do a lot of processing in Python, and long
execution times are caused by communication with the external service. We send an
HTTP request to the remote server, it calculates the answer, and then we wait until
the response is transferred back.
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There is a lot of I/O involved, so multithreading seems like a viable option. We
can start all the requests at once in separate threads and then just wait until we
receive data from all of them. If the service that we are communicating with is
able to process our requests concurrently, we should definitely see a performance
improvement.

So, let's start with the easiest approach. Python provides clean and easy-to-use
abstraction over system threads with the threading module. The core of this
standard library is the Thread class, which represents a single thread instance. Here
is a modified version of the main() function that creates and starts a new thread for
every base currency to process and then waits until all the threads finish:

from threading import Thread

def main():
threads = []
for base in BASES:
thread = Thread(target=fetch_rates, args=[base])
thread.start()
threads.append(thread)

while threads:
threads.pop().join()

It is a quick and dirty solution that approaches the problem in a bit of a frivolous
way. It has some serious issues that we will have to address later. But hey, it works.
Let's save the modified script in the threads_one_per_item. py file and run it to see if
there is some performance improvement:

$ python3 one_thread_per_item.py

On my computer, I see substantial improvement in total processing time:

1 EUR y) 1.0 EUR, 4.54 PLN, 10.3 NOK, 26.2 CZK
1 NOK 0.118 0.0968 EUR, ©.439 PLN, 1.0 NOK, 2.53 CzZK
1 CzK 0.0465 ©.0382 EUR, ©.174 PLN, ©.395 NOK, 1.0 CZK
1 USD 1.0 0.823 EUR, 3.73 PLN, 8.5 NOK, 21.5 CzZK
1 PLN 0.268 0.22 EUR, 1.0 PLN, 2.28 NOK, 5.76 CZK

time elapsed: 1.
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may be slightly malformed. This is one of the multithreading
problems that we will take care of later in this section.

C’ Due to using print() inside of a thread, the output you will see
\”/

Once we know that threads have a beneficial effect on our application, it is time to
use them in a more logical way. First, we need to identify the following issues in the
preceding code:

We start a new thread for every parameter. Thread initialization also takes
some time, but this minor overhead is not the only problem. Threads also
consume other resources, like memory or file descriptors. Our example input
has a strictly defined number of items, but what if it did not have a limit?
You definitely don't want to run an unbound number of threads that depend
on the arbitrary size of data input.

The fetch_rates() function that's executed in threads calls the built-in
print() function, and in practice it is very unlikely that you would want to
do that outside of the main application thread. This is mainly due to the way
the standard output is buffered in Python. You can experience malformed
output when multiple calls to this function interweave between threads.
Also, the print() function is considered slow. If used recklessly in multiple
threads, it can lead to serialization that will waste all your benefits of
multithreading.

Last but not least, by delegating every function call to a separate thread, we
make it extremely hard to control the rate at which our input is processed.
Yes, we want to do the job as fast as possible, but very often, external services
enforce hard limits on the rate of requests from a single client that they

can process. Sometimes, it is reasonable to design a program in a way that
enables you to throttle the rate of processing, so your application won't be
blacklisted by external APIs for abusing their usage limits.

In the next section, we will see how to use a thread pool to solve the problem of an
unbounded number of threads.

Using a thread pool

The first issue we will try to solve is the unbounded number of threads that are run
by our program. A good solution would be to build a pool of threaded workers
with a strictly defined size that will handle all the parallel work and communicate
with main thread through some thread-safe data structure. By using this thread
pool approach, we will also make it easier to solve two other problems that we've
mentioned in the previous section.
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The general idea is to start a predefined number of threads that will consume the
work items from a queue until it becomes empty. When there is no other work to do,
the threads will quit, and we will be able to exit from the program. A good candidate
for our communication data structure is the Queue class from the built-in queue
module. It is a First-In First-Out (FIFO) queue implementation that is very similar
to the deque collection from the collections module and was specifically designed
to handle inter-thread communication. Here is a modified version of the main()
function that starts only a limited number of worker threads with a new worker()
function as a target and communicates with them using a thread-safe queue:

from queue import Queue
from threading import Thread

THREAD_POOL_SIZE = 4

def main():
work_queue = Queue()

for base in BASES:
work_queue.put(base)

threads = [

Thread(target=worker, args=(work_queue,))
for _ in range(THREAD_POOL_SIZE)

for thread in threads:
thread.start()
work_queue.join()

while threads:
threads.pop().join()

/ Python has some built-in thread pooling utilities. We will cover
\/;D; them later in the Using multiprocessing.dummy as the multithreading

interface section.
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The main function initializes the Queue instance as the worker_queue variable and
puts all the base currencies in the queue as items of work to be processed by worker
threads. It then initializes the THREAD_POOL_SIZE number of threads with the worker()
function as a thread target and work_queue as their input argument. It then waits
until all items have been processed using work_queue.join() and then waits for all
threads to finish by calling the join method of every Thread instance.

The processing of work items from the queue happens in the worker function. Here is
its code:

from queue import Empty

def worker(work_queue):
while not work_queue.empty():

try:
item = work_queue.get_nowait()

except Empty:
break

else:
fetch_rates(item)
work_queue.task_done()

The worker () function runs in a while loop until work_queue.empty() returns True.
In every iteration, it tries to obtain a new item in a non-blocking fashion using the
work_queue.get_nowait() method. If the queue is already empty, it will raise an
Empty exception, and our function will break the loop and finish. If there is an item
to pick from the queue, the worker () function will pass it to fetch_rates(item) and
mark the item as processed using work_queue.task_done(). When all items from the
queue have been marked as done, the work_queue. join() function from the main
thread will return.

The rest of the script, namely the fetch_rates() function and the code under the if
__name__ == "__main__" clause, stays the same. The following is the full script that
we can save in the thread_pool.py file:

import time
from queue import Queue, Empty
from threading import Thread

import requests

THREAD_POOL_SIZE = 4
SYMBOLS = ('USD', 'EUR', 'PLN', 'NOK', 'CZK')
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BASES = ('USD', 'EUR', 'PLN', 'NOK', 'CZK')

def fetch_rates(base):
response = requests.get(
f"https://api.vatcomply.com/rates?base={base}"

response.raise_for_status()

rates = response.json()["rates"]

# note: same currency exchanges to itself 1:1
rates[base] = 1.

rates_line = ", ".join(
[f"{rates[symbol]:7.03} {symbol}" for symbol in SYMBOLS]

)
print(f"1 {base} = {rates_line}")

def worker(work_queue):
while not work_queue.empty():

try:
item = work_queue.get_nowait()

except Empty:
break

else:
fetch_rates(item)
work_queue.task_done()

def main():
work_queue = Queue()

for base in BASES:
work_queue.put(base)

threads = [
Thread(target=worker, args=(work_queue,))
for _ in range(THREAD_POOL_SIZE)

for thread in threads:
thread.start()
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work_queue.join()

while threads:
threads.pop().join()

if __name__ == "__main__"
started = time.time()
main()

elapsed = time.time() - started

print()
print("time elapsed: {:.2f}s".format(elapsed))

We can now execute the script to see if there is any performance difference between
the previous attempt:

$ python thread_pool.py

On my computer, I can see the following output:

NOK 0.118 USD, ©.0968 0.439 PLN, 1.0 NOK, 2.53 CZK
PLN 0.268 USD, 9.22 1.0 PLN, 2.28 NOK, 5.76 CZK
USD 1.0 USD, ©.823 3.73 PLN, 8.5 NOK, 21.5 CZK
EUR 1.22 USD, 1.0 4.54 PLN, 10.3 NOK, 26.2 CZK
CzK 0.0465 USD, ©.0382 ©.174 PLN, ©.395 NOK, 1.0 CZK

time elapsed: 1.90s

The overall runtime may be slower than when using one thread per argument, but at
least now it is not possible to exhaust all the computing resources with an arbitrarily
long input. Also, we can tweak the THREAD_POOL_SIZE parameter for a better
resource/time balance.

In this attempt, we used an unmodified version of the fetch_rates() function that
outputs the API result on the standard output directly from within the thread. In
some cases, this may lead to malformed output when two threads attempt to print
results at the same time. In the next section, we will try to improve it by introducing
two-way queues.
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Using two-way queues

The issue that we are now able to solve is the potentially problematic printing of the
output in threads. It would be much better to leave such a responsibility to the main
thread that started the worker threads. We can handle that by providing another
queue that will be responsible for collecting results from our workers. Here is the
complete code that puts everything together, with the main changes highlighted:

import time
from queue import Queue, Empty
from threading import Thread

import requests

SYMBOLS = ('USD', 'EUR', 'PLN', 'NOK', 'CZK')
BASES = ('USD', 'EUR', 'PLN', 'NOK', 'CZK')

THREAD_POOL_SIZE = 4

def fetch _rates(base):
response = requests.get(
f"https://api.vatcomply.com/rates?base={base}"
)
response.raise_for_status()
rates = response.json()["rates"]

rates[base] = 1.
return base, rates

def present_result(base, rates):
rates_line = ", ".join([
f"{rates[symbol]:7.03} {symbol}"
for symbol in SYMBOLS

D
print(f"1 {base} = {rates_line}")

def worker(work_queue, results_queue):
while not work_queue.empty():
try:
item = work_queue.get_nowait()
except Empty:
break
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else:
results_queue.put(fetch_rates(item))
work_queue.task _done()

def main():
work_queue = Queue()
results_queue = Queue()

for base in BASES:
work_queue.put(base)

threads = [
Thread(
target=worker,
args=(work_queue, results_queue)
) for _ in range(THREAD_POOL_SIZE)

for thread in threads:
thread.start()

work_queue.join()

while threads:
threads.pop().join()

while not results_queue.empty():
present_result(*results_queue.get())

if __name__ == "_main__
started = time.time()
main()

elapsed = time.time() - started

print()
print("time elapsed: {:.2f}s".format(elapsed))

The main difference is the introduction of the results_queue instance of the Queue
class and the presents_results() function. The fetch_rates() function no longer
prints its results to standard output. It instead returns processed API results straight
to the worker () function. Worker threads pass those results unmodified through a
new results_queue output queue.
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Now only the main thread is responsible for printing the results on standard output.
After all the work has been marked as done, the main() function consumes results
from results_queue and passes them to the present_results() function.

This eliminates the risk of malformed inputs that we could encounter if the present_
result() function would do more print(). We don't expect any performance
improvement from this approach with small inputs, but in fact we also reduced the
risk of thread serialization due to slow print() execution.

In all the previous examples, we've assumed that the API we use will always
respond with a meaningful and valid answer. We've didn't cover any failure
scenarios to keep things simple, but in real applications, it could be a problem. In the
next section, we will see what happens when an exception is raised within a thread
and how it affects communication over queues.

Dealing with errors in threads

The raise_for_status() method of the requests.Response object will raise an
exception if the HTTP response has a status code indicating the error condition. We
have used that method in all the previous iterations of the fetch_rates() function
but we haven't handled any potential exceptions yet.

If the service we are calling with the requests.get() method responds with a status
code indicating an error, the exception will be raised in a separate thread and will
not crash the entire program. The worker thread will, of course, exit immediately.
But the main thread will wait for all tasks stored on work_queue to finish (with

the work_queue.join() call). Without further improvement, we may end up in a
situation where some of the worker threads crashed and the program will never exit.
To avoid this we should ensure that our worker threads gracefully handle possible
exceptions and make sure that all items from the queue are processed.

Let's make some minor changes to our code in order to be prepared for any issues
that may occur. In case there are exceptions in the worker thread, we may put an
error instance on the results_queue queue so the main thread will be able to tell
which of the tasks have failed to process. We can also mark the current task as
done, the same as we would do if there was no error. That way, we make sure that
the main thread won't lock indefinitely while waiting on the work_queue.join()
method call.

The main thread might then inspect the results and re-raise any of the exceptions
found on the results queue. Here are the improved versions of the worker() and
main() functions that can deal with exceptions in a safer way (the changes are
highlighted):
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def worker(work_queue, results_queue):
while not work_queue.empty():
try:
item = work_queue.get_nowait()
except Empty:
break

try:
result = fetch_rates(item)
except Exception as err:
results_queue.put(err)
else:
results_queue.put(result)
finally:
work_queue.task_done()

def main():
work_queue = Queue()
results_queue = Queue()

for base in BASES:
work_queue.put(base)

threads = [
Thread(target=worker, args=(work_queue, results_queue))
for _ in range(THREAD_POOL_SIZE)

for thread in threads:
thread.start()
work_queue.join()

while threads:
threads.pop().join()

while not results_queue.empty():
result = results_queue.get()
if isinstance(result, Exception):
raise result

present_result(*result)
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To see how error handling works in action we will try to simulate a convincing error
scenario. Since we don't have full control over the API we use, we will randomly
inject error responses to the fetch_rates() function. The following is the modified
version of that function:

import random

def fetch_rates(base):
response = requests.get(
f"https://api.vatcomply.com/rates?base={base}"

if random.randint(@, 5) < 1:
# simulate error by overriding status code
response.status_code = 500

response.raise_for_status()
rates = response.json()["rates"]

rates[base] = 1.
return base, rates

By modifying response.status_code to 500, we will simulate the situation of our
API returning a response indicating a server error. This is a common status code
for issues occurring on the server side. In such situations, details of the error are
not always disclosed. This status code is just enough for the response.raise_for_
status() method to raise an exception.

Let's save a modified version of the code in the error_handling.py file and run it to
see how it handles exceptions:

$ python3 error_handling.py

Errors are injected randomly, so this may need to be executed a few times. After a
couple of tries, you should see an output similar to the following;:

1 PLN = ©.268 USD, 0.22 EUR, 1.0 PLN, 2.28 NOK, 5.76 CZK
Traceback (most recent call last):
File ".../error_handling.py", line 92, in <module>

main()

File ".../error_handling.py", line 85, in main
raise result

File ".../error_handling.py", line 53, in worker
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result = fetch_rates(item)

File ".../error_handling.py", line 30, in fetch_rates
response.raise_for_status()

File ".../.venv/1lib/python3.9/site-packages/requests/models.py", line

943, in raise_for_status
raise HTTPError(http_error_msg, response=self)

requests.exceptions.HTTPError: 500 Server Error: OK for url: https://
api.vatcomply.com/rates?base=NOK

Our code did not succeed in obtaining all the items, but we at least got clear
information about the error cause, which was in this case a 500 Server Error
response status.

In the next section, we will make the last improvement to our multithreaded
program. We will introduce a throttling mechanism to protect our program from
rate limiting and avoid the accidental abuse of the free service we use.

Throttling

The last of the issues mentioned in the Using one thread per item section that we
haven't tackled yet is potential rate limits that may be imposed by external service
providers. In the case of the foreign exchange rates API, the service maintainer did
not inform us about any rate limits or throttling mechanisms. But many services
(even paid ones) often do impose rate limits.

Usually, when a service has rate limits implemented, it will start returning responses
indicating errors after a certain number of requests are made, surpassing the
allocated quota. We've already prepared for error responses in the previous section,
but that is often not enough to properly handle rate limits. That's because many
services often count requests made beyond the limit, and if you go beyond the limit
consistently, you may never get back to the allocated quota.

When using multiple threads, it is very easy to exhaust any rate limit or simply —if
the service does not throttle incoming requests — saturate the service to the level
that it will not be able to respond to anyone. If done on purpose, this is known as a
Denial-of-Service (DoS) attack.

In order to not go over the rate limits or cause accidental DoS, we need to limit the
pace at which we make requests to the remote service. Limiting the pace of work is
often called throttling. There are a few packages in PyPI that allow you to limit the
rate of any kind of work that are really easy to use. But we won't use any external
code here. Throttling is a good opportunity to introduce some locking primitives for
threading, so we will try to build a throttling solution from scratch.
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The algorithm we will use is sometimes called a token bucket and is very simple. It
includes the following functionality:

* There is a bucket with a predefined number of tokens
* Each token corresponds to a single permission to process one item of work

* Each time the worker asks for one or more tokens (permissions), we do the
following;:

1. We check how much time has passed since the last time we refilled
the bucket

2. If the time difference allows for it, we refill the bucket with the
number of tokens that correspond to the time difference

3. If the number of stored tokens is bigger than or equal to the amount
requested, we decrease the number of stored tokens and return that
value

4. If the number of stored tokens is less than requested, we return zero

The two important things are to always initialize the token bucket with zero tokens
and to never allow it to overfill. This may be counter-intuitive, but if we don't
follow these precautions, we can release the tokens in bursts that exceed the rate
limit. Because, in our situation, the rate limit is expressed in requests per second, we
don't need to deal with arbitrary amount of time. We assume that the base for our
measurement is one second, so we will never store more tokens than the number of
requests allowed for that amount of time. Here is an example implementation of the
class that allows for throttling with the token bucket algorithm:

from threading import Lock

class Throttle:
def __init_ (self, rate):
self._consume_lock = Lock()
self.rate = rate
self.tokens = ©
self.last = None

def consume(self, amount=1):

with self._consume_lock:
now = time.time()

if self.last is None:
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The usage of this class is very simple. We have to create only one instance of
Throttle (for example, Throttle(10)) in the main thread and pass it to every

self.last = now
elapsed = now - self.last

# make sure that quant of passed time 1is big
# enough to add new tokens
if elapsed * self.rate > 1:
self.tokens += elapsed * self.rate
self.last = now

# never over-fill the bucket
self.tokens = min(self.rate, self.tokens)

# finally dispatch tokens 1if available
if self.tokens >= amount:

self.tokens -= amount

return amount

return 0

worker thread as a positional argument:

def main():
work_que

ue = Queue()

results_queue = Queue()

throttle

for base
work

threads
Thre

) fo

= Throttle(10)

in BASES:
_queue.put(base)

= [

ad(

target=worker,

args=(work_queue, results_queue, throttle)
r _ in range(THREAD_POOL_SIZE)
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This throttle instance will be shared across threads, but it is safe to use because we
guarded the manipulation of its internal state with the instance of the Lock class from
the threading module. We can now update the worker () function implementation to
wait with every item until the throttle object releases a new token, as follows:

import time

def worker(work_queue, results_queue, throttle):
while True:
try:
item = work_queue.get_nowait()
except Empty:
break

while not throttle.consume():
time.sleep(0.1)

try:
result = fetch_rates(item)
except Exception as err:
results_queue.put(err)
else:
results_queue.put(result)
finally:
work_queue.task _done()

The while not throttle.consume() block prevents us from processing work queue
items if a throttle object does not release any tokens (zero evaluates to False).
We've put a short sleep to add some pacing for the threads in the event of an empty
bucket. There's probably a more elegant way to do that, but this simple technique
does the job fairly well.

When throttle.consume() returns a non-zero value, we consider the token
consumed. The thread can exit the while loop and proceed with processing the work
queue item. When the processing is done, it will read another item from the work
queue and again try to consume the token. This whole process will continue until
the work queue is empty.

This was a very brief introduction to threads. We haven't covered every possible
aspect of multithreaded applications, but we already know enough to take a look
at other concurrency models and see how they compare to threads. The next
concurrency model will be multiprocessing.
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Multiprocessing

Let's be honest, multithreading is challenging. Dealing with threads in a sane

and safe manner required a tremendous amount of code when compared to the
synchronous approach. We had to set up a thread pool and communication queues,
gracefully handle exceptions from threads, and also worry about thread safety when
trying to provide a rate limiting capability. Dozens of lines of code are needed just

to execute one function from some external library in parallel! And we rely on the
promise from the external package creator that their library is thread-safe. Sounds
like a high price for a solution that is practically applicable only for doing I/ O-bound
tasks.

An alternative approach that allows you to achieve parallelism is multiprocessing.
Separate Python processes that do not constrain each other with the GIL allow for
better resource utilization. This is especially important for applications running on
multicore processors that are performing really CPU-intensive tasks. Right now,
this is the only built-in concurrent solution available for Python developers (using
CPython interpreter) that allows you to take benefit from multiple processor cores
in every situation.

The other advantage of using multiple processes over threads is the fact that they
do not share a memory context. Thus, it is harder to corrupt data and introduce
deadlocks or race conditions in your application. Not sharing the memory context
means that you need some additional effort to pass the data between separate
processes, but fortunately there are many good ways to implement reliable inter-
process communication. In fact, Python provides some primitives that make
communication between processes almost as easy as it is between threads.

The most basic way to start new processes in any programming language is usually
by forking the program at some point. On POSIX and POSIX-like systems (like
UNIX, macOS, and Linux), a fork is a system call that will create a new child process.
In Python it is exposed through the os.fork() function. The two processes continue
the program in their own right after the forking. Here is an example script that forks
itself exactly once:

import os

pid_list = []

def main():
pid_list.append(os.getpid())
child_pid = os.fork()

if child_pid == o:
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pid_list.append(os.getpid())

print()

print("CHLD: hey, I am the child process")
print("CHLD: all the pids I know %s" % pid_list)

else:
pid_list.append(os.getpid())
print()
print("PRNT: hey, I am the parent process")
print("PRNT: the child pid is %d" % child_pid)
print("PRNT: all the pids I know %s" % pid_list)

if __name__ == "_main__
main()

The os.fork() spawns a new process. Both processes will have the same memory
state till the moment of the fork() call, but after that call their memories diverge,
hence the fork name. os.fork() returns an integer value. If it is 0, we know that the
current process is a child process. The parent process will receive the Process ID
(PID) number of its child process.

Let's save the script in the forks.py file and run it in a shell session:

$ python3 forks.py

On my computer, I've got the following output:

PRNT: hey, I am the parent process
PRNT: the child pid is 9304
PRNT: all the pids I know [9303, 9303]

CHLD: hey, I am the child process
CHLD: all the pids I know [9303, 9304]

Notice how both processes have exactly the same initial state of their data before the
os.fork() call. They both have the same PID number (process identifier) as a first
value of the pid_list collection.

Later, both states diverge. We can see that the child process added the 9304 value
while the parent duplicated its 9303 PID. This is because the memory contexts of
these two processes are not shared. They have the same initial conditions but cannot
affect each other after the os.fork() call.
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After the fork, each process gets its own address space. To communicate, processes
need to work with system-wide resources or use low-level tools like signals.

Unfortunately, os.fork is not available under Windows, where a new interpreter
needs to be spawned in order to mimic the fork feature. Therefore, the
multiprocessing implementation depends on the platform. The os module also
exposes functions that allow you to spawn new processes under Windows. Python
provides the great multiprocessing module, which creates a high-level interface for
multiprocessing.

The great advantage of the multiprocessing module is that it provides some of the
abstractions that we had to code from scratch when we discussed multithreading.

It allows you to limit the amount of boilerplate code, so it improves application
maintainability and reduces complexity. Surprisingly, despite its name, the
multiprocessing module exposes a similar interface for threads, so you will probably
want to use the same interface for both approaches.

Let's take a closer look at the built-in multiprocessing module in the next section.

The built-in multiprocessing module

The multiprocessing module provides a portable way to work with processes as if
they were threads. This module contains a Process class that is very similar to the
Thread class, and can be used on any platform, as follows:

from multiprocessing import Process
import os

def work(identifier):
print(
f'Hey, I am the process
f'{identifier}, pid: {os.getpid()}'
)

def main():
processes = [
Process(target=work, args=(number,))
for number in range(5)
]
for process in processes:
process.start()

while processes:
processes.pop().join()
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if __name__ == "__main__
main()

The Process class has start() and join() methods that are similar to the methods in
the Thread class. The start() method spawns a new process and join() waits until
the child process exits.

Let's save that script in a file called basic_multiprocessing.py and execute it to see
how it works in action:

$ python3 basic_multiprocessing.py
On your own computer, you will be able to see output similar to the following;:

the process 3,
the process 1,

the process 2,
the process 0,
the process 4,

When processes are created, the memory is forked (on POSIX and POSIX-like
systems). Besides the memory state that is copied, the Process class also provides
an extra args argument in its constructor so that data can be passed along.

Communication between processes requires some additional work because their
local memory is not shared by default. To ease this, the multiprocessing module
provides the following few ways of communicating between processes:

* Using the multiprocessing.Queue class, which is a functional equivalent of
queue.Queue, which was used earlier for communication between threads.

* Using multiprocessing.Pipe, which is a socket-like two-way communication
channel.

* Using the multiprocessing.sharedctypes module, which allows you to
create arbitrary C types (from the ctypes module) in a dedicated pool of
memory that is shared between processes.

The multiprocessing.Queue and queue.Queue classes have the same interface. The
only difference is that the first is designed for usage in multiprocess environments,
rather than with multiple threads, so it uses different internal transports and
locking primitives. We've already seen how to use Queue with multithreading in the
Multithreading section, so we won't do the same for multiprocessing. The usage stays
exactly the same, so such an example would not bring anything new.
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A more interesting communication pattern is provided by the Pipe class. Itis a
duplex (two-way) communication channel that is very similar in concept to UNIX
pipes. The interface of Pipe is very similar to a simple socket from the built-in socket
module. The difference between raw system pipes and sockets is that it automatically
applies object serialization through the pickle module. From a developer's
perspective, it looks like sending ordinary Python objects. With plain system pipes or
sockets, you need to apply your own serialization manually in order to reconstruct
sent objects from byte streams.

The pickle module can easily serialize and deserialize Python
/ objects to and from byte streams. It handles various types of
\/;», objects including instances of user-defined classes. You can learn
more about the pickle module and which objects are picklable at
https://docs.python.org/3/1library/pickle.html.

This allows for much easier communication between processes because you can send
almost any basic Python type. Consider the following worker() class, which will read
an object from the Pipe object and output its representation on standard output:

def worker(connection):
while True:
instance = connection.recv()
if instance:
print(f"CHLD: recv: {instance}")
if instance is None:
break

Later on, we can use the Pipe in our main() function to send various objects
(including custom classes) to a child process:

from multiprocessing import Process, Pipe

class CustomClass:
pass

def main():
parent_conn, child_conn = Pipe()

child = Process(target=worker, args=(child_conn,))
for item in (

42,
'some string’,
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{'one': 1},
CustomClass(),
None,

):
print(

"PRNT: send: {}".format(item)
)

parent_conn.send(item)

child.start()
child.join()

if __name__ == "_main__
main()

When looking at the following example output of the preceding script, you will
see that you can easily pass custom class instances and that they have different
addresses, depending on the process:

: 42

: some string

: {'one': 1}

: <__main__.CustomClass object at 0x101cb5boo>
: None

: 42

: some string

: {'one': 1}

: <__main__.CustomClass object at 0x101cba400>

The other way to share a state between processes is to use raw types in a shared
memory pool with classes provided in multiprocessing.sharedctypes. The most
basic ones are Value and Array. Here is some example code from the official
documentation of the multiprocessing module:

from multiprocessing import Process, Value, Array

def f(n, a):
n.value = 3.1415927
for i in range(len(a)):
a[i] = -a[i]
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num
arr

Value('d', 0.0)
Array('i', range(10))

p = Process(target=f, args=(num, arr))
.start()
p.Jjoin()

©

print(num.value)
print(arr[:])

And this example will print the following output:

3.1415927

[91 _1) _2) _3) _4) '5) '6) '7) _81 _9]

When working with multiprocessing.sharedctypes, you need to remember that
you are dealing with shared memory, so to avoid the risk of race conditions, you still
need to use locking primitives. multiprocessing provides some of the classes similar
to those available in the threading module, such as Lock, RLock, and Semaphore. The
downside of classes from sharedctypes is that they allow you only to share the basic
C types from the ctypes module. If you need to pass more complex structures or
class instances, you need to use Queue, Pipe, or other inter-process communication
channels instead. In most cases, it is reasonable to avoid types from sharedctypes
because they increase code complexity and bring all the dangers of multithreading.

We've already mentioned that the multiprocessing module allows you to reduce the
amount of boilerplate thanks to some extra functionalities. One such functionality is
built-in process pools. We will take a look at how to use them in the next section.

Using process pools

Using multiple processes instead of threads adds some overhead. Mostly, it increases
the memory footprint because each process has its own and independent memory
context. This means allowing unbound numbers of child processes may be more

of an issue than allowing an unbounded number of threads in multithreaded
applications.
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If the OS supports the fork() system call with copy-on-write
(COW) semantics, the memory overhead of starting new
subprocesses will be greatly reduced. COW allows an OS to

‘ n, deduplicate the same memory pages and copy them only if one

\/ of the processes attempts to modify them. For instance, Linux
provides the fork() system call with COW semantics but
Windows does not. Also, COW benefits may be diminished in
long-running processes.

The best pattern to control resource usage in applications that rely on
multiprocessing is to build a process pool in a similar way to what we described for
threads in the Using a thread pool section.

And the best thing about the multiprocessing module is that it provides a ready-
to-use Pool class that handles all the complexity of managing multiple process
workers for you. This pool implementation greatly reduces the amount of required
boilerplate and the number of issues related to two-way communication. You also
don't have to use the join() method manually, because Pool can be used as a context
manager (using the with statement). Here is one of our previous threading examples,
rewritten to use the Pool class from the multiprocessing module:

import time
from multiprocessing import Pool

import requests

SYMBOLS = ('USD', 'EUR', 'PLN', 'NOK', 'CZK')
BASES = ('USD', 'EUR', 'PLN', 'NOK', 'CzZK')

POOL_SIZE = 4
def fetch_rates(base):

response = requests.get(
f"https://api.vatcomply.com/rates?base={base}"

response.raise_for_status()
rates = response.json()["rates"]

rates[base] = 1.
return base, rates
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def present_result(base, rates):
rates_line = ", ".join(
[f"{rates[symbol]:7.03} {symbol}" for symbol in SYMBOLS]

)
print(f"1 {base} = {rates_line}")

def main():
with Pool(POOL_SIZE) as pool:
results = pool.map(fetch_rates, BASES)

for result in results:
present_result(*result)

if __name__ == "_main__"
started = time.time()
main()

elapsed = time.time() - started

print()
print("time elapsed: {:.2f}s".format(elapsed))

As you can see, dealing with the worker pool is now simpler as we don't have to
maintain our own work queues and start()/join() methods. The code would now
be easier to maintain and debug in the case of issues. Actually, the only part of the
code that explicitly deals with multiprocessing is the main() function:

def main():
with Pool(POOL_SIZE) as pool:
results = pool.map(fetch_rates, BASES)

for result in results:
present_result(*result)

We no longer have to deal with explicit queues for passing results and we don't have
to wonder what happens when one of the subprocesses raises an exception. This is

a great improvement on the situation where we had to build the worker pool from
scratch. Now, we don't even need to care about communication channels because
they are created implicitly inside the Pool class implementation.
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This doesn't mean that multithreading always needs to be troublesome. Let's take a
look at how to use multiprocessing.dummy as a multithreading interface in the next
section.

Using multiprocessing.dummy as the
multithreading interface

The high-level abstractions from the multiprocessing module, such as the Pool class,
provide great advantages over the simple tools provided in the threading module.
But this does not mean that multiprocessing is always better than multithreading.
There are a lot of use cases where threads may be a better solution than processes.
This is especially true for situations where low latency and/or high resource
efficiency are required.

Still, it does not mean that you need to sacrifice all the useful abstractions from the
multiprocessing module whenever you want to use threads instead of processes.
There is the multiprocessing.dummy module, which replicates the multiprocessing
API but uses multiple threads instead of forking/spawning new processes.

This allows you to reduce the amount of boilerplate in your code and also have

a more pluggable code structure. For instance, let's take yet another look at our
main() function from the previous section. We could give the user control over
which processing backend to use (processes or threads). We could do that simply
by replacing the Pool object constructor class, as follows:

from multiprocessing import Pool as ProcessPool
from multiprocessing.dummy import Pool as ThreadPool

def main(use_threads=False):
if use_threads:
pool cls = ThreadPool
else:
pool cls = ProcessPool

with pool_cls(POOL_SIZE) as pool:
results = pool.map(fetch_rates, BASES)

for result in results:
present_result(*result)
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The dummy threading pool can also be imported from the

\/V multiprocessing.pool module as the ThreadPool class. It will

have the same implementation; the actual import path is just a
matter of personal preference.

This aspect of the multiprocessing module shows that multiprocessing and
multithreading have a lot in common. They both rely on the OS to facilitate
concurrency. They also can be operated in a similar fashion and often utilize similar
abstractions to ensure communication or memory safety.

A completely different approach to concurrency is asynchronous programming,
which does not rely on any OS capabilities to ensure the concurrent processing of
information. Let's take a look at this model of concurrency in the next section.

Asynchronous programming

Asynchronous programming has gained a lot of traction in the last few years.

In Python 3.5, we finally got some syntax features that solidified the concepts of
asynchronous execution. But this does not mean that asynchronous programming
wasn't possible before Python 3.5. A lot of libraries and frameworks were provided
a lot earlier, and most of them have origins in the old versions of Python 2. There
is even a whole alternate implementation of Python called Stackless Python that
concentrates on this single programming approach.

The easiest way to think about asynchronous programming in Python is to imagine
something similar to threads, but without system scheduling involved. This means
that an asynchronous program can concurrently process information, but the
execution context is switched internally and not by the system scheduler.

But, of course, we don't use threads to concurrently handle the work in an
asynchronous program. Many asynchronous programming solutions use different
kinds of concepts and, depending on the implementation, they are named
differently. The following are some example names that are used to describe

such concurrent program entities:

* Green threads or greenlets (greenlet, gevent, or eventlet projects)
* Coroutines (Python 3.5 native asynchronous programming)
* Tasklets (Stackless Python)
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The name green threads comes from the original threads library
‘ / for the Java language implemented by The Green Team at the Sun
\p/ Microsystems company. Green threads were introduced in Java 1.1
and abandoned in Java 1.3

These are mainly the same concepts but often implemented in slightly different
ways.

For obvious reasons, in this section, we will concentrate only on coroutines that are
natively supported by Python, starting from version 3.5.

Cooperative multitasking and asynchronous
/0

Cooperative multitasking is at the core of asynchronous programming. In this style
of computer multitasking, it's not the responsibility of the OS to initiate a context
switch (to another process or thread). Instead, every process voluntarily releases the
control when it is idle to enable the simultaneous execution of multiple programs.
This is why it is called cooperative multitasking. All processes need to cooperate in
order to multitask smoothly.

This model of multitasking was sometimes employed in the OS, but now it is hardly
found as a system-level solution. This is because there is a risk that one poorly
designed service might easily break the whole system's stability. Thread and process
scheduling with context switches managed directly by the OS is now the dominant
approach for concurrency at the OS level. But cooperative multitasking is still a great
concurrency tool at the application level.

When doing cooperative multitasking at the application level, we do not deal

with threads or processes that need to release control because all the execution

is contained within a single process and thread. Instead, we have multiple tasks
(coroutines, tasklets, or green threads) that release the control to the single function
that handles the coordination of tasks. This function is usually some kind of event
loop.

on, we will refer to such concurrent tasks as coroutines.

\/‘/ To avoid confusion later (due to Python terminology), from now
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The most important problem in cooperative multitasking is when to release the
control. In most asynchronous applications, the control is released to the scheduler
or event loop on I/O operations. It doesn't matter if the program reads data from the
filesystem or communicates through a socket, as such I/O operations always result
in some waiting time when the process becomes idle. The waiting time depends on
the external resource, so it is a good opportunity to release the control so that other
coroutines can do their work until they too would need to wait.

This makes such an approach somewhat similar in behavior to how multithreading
is implemented in Python. We know that the GIL serializes Python threads, but

it is also released on every I/O operation. The main difference is that threads in
Python are implemented as system-level threads so that the OS can preempt the
currently running thread and give control to the other one at any point in time. In
asynchronous programming, tasks are never preempted by the main event loop and
must instead return control explicitly. That's why this style of multitasking is also
called non-preemptive multitasking. This reduces time lost on context switching and
plays better with CPython's GIL implementation.

Of course, every Python application runs on an OS where there are other processes
competing for resources. This means that the OS always has the right to preempt
the whole process and give control to another process. But when our asynchronous
application is running back, it continues from the same place where it was paused
when the system scheduler stepped in. This is why coroutines are still considered
non-preemptive.

In the next section, we will take a look at the async and await keywords, which are
the backbone of cooperative multitasking in Python.

Python async and await keywords

The async and await keywords are the main building blocks in Python asynchronous
programming,.

The async keyword, when used before the def statement, defines a new coroutine.
The execution of the coroutine function may be suspended and resumed in strictly
defined circumstances. Its syntax and behavior are very similar to generators. In
fact, generators need to be used in the older versions of Python whenever you want
to implement coroutines. Here is an example of a function declaration that uses the
async keyword:

async def async_hello():
print("hello, world!")
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Functions defined with the async keyword are special. When called, they do not
execute the code inside, but instead return a coroutine object. Consider the following
example from an interactive Python session:

>>> async def async_hello():
print("hello, world!")

>>> async_hello()
<coroutine object async_hello at 0x1014129e8>

The coroutine object does not do anything until its execution is scheduled in the
event loop. The asyncio module is available in order to provide the basic event
loop implementation, as well as a lot of other asynchronous utilities. The following
example presents an attempt to manually schedule a coroutine execution in an
interactive Python session:

>>> import asyncio
>>> async def async_hello():
print("hello, world!")

>>> loop = asyncio.get_event_loop()

>>> loop.run_until complete(async_hello())
hello, world!

>>> loop.close()

Obviously, since we have created only one simple coroutine, there is no concurrency
involved in our program. In order to see something that is actually concurrent, we
need to create more tasks that will be executed by the event loop.

New tasks can be added to the loop by calling the loop.create_task() method or by
providing an "awaitable" object to the asyncio.wait() function. If you have multiple
tasks or coroutines to wait for, you can use asyncio.gather() to aggregate them into
a single object. We will use the latter approach and try to asynchronously print a
sequence of numbers that's been generated with the range() function, as follows:

import asyncio
import random

async def print_number(number):
await asyncio.sleep(random.random())
print(number)

if __name__ == "_main__
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loop = asyncio.get_event_loop()

loop.run_until complete(
asyncio.gather(*[
print_number(number)
for number in range(10)
D
)

loop.close()

Let's save our script in an async_print.py file and see how it works:

$ python async_print.py

The output you will see may look as follows:

AN UV R DA O WOONO®

The asyncio.gather() function accepts multiple coroutine objects and returns
immediately. It accepts a variable number of positional arguments. That's why we
used the argument unpacking syntax (the * operator) to unpack the list of coroutines
as arguments. As the name suggests, asyncio.gather() is used to gather multiple
coroutines to execute them concurrently. The result is an object that represents a
future result (a so-called future) of running all of the provided coroutines. The
loop.run_until_complete() method runs the event loop until the given future is
completed.

We used asyncio.sleep(random.random()) to emphasize the asynchronous operation
of coroutines. Thanks to this, coroutines can interweave with each other.

We couldn't achieve the same result (that is, the interweaving of coroutines) with
an ordinary time.sleep() function. Coroutines can start to interweave when they
release control of execution. This is done through the await keyword. It suspends
the execution of the coroutine that is waiting for the results of another coroutine or
future.
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Whenever a function awaits, it releases the control over execution to the event loop.
To better understand how this works, we need to review a more complex example of
code.

Let's say we want to create two coroutines that will both perform the same simple
task in a loop:

¢  Wait a random number of seconds

* Print some text provided as an argument and the amount of time spent in
sleep

Let's start with the following simple implementation that does not use the await
keyword:

import time
import random

async def waiter(name):
for _ in range(4):
time_to_sleep = random.randint(1, 3) / 4
time.sleep(time_to_sleep)
print(f"{name} waited { time_to_sleep } seconds")

We can schedule the execution of multiple waiter() coroutines using asyncio.
gather() the same way as we did in the async_print.py script:

import asyncio

if __name__ == "_ main_"
loop = asyncio.get_event_loop()
loop.run_until complete(
asyncio.gather(waiter("first"), waiter("second"))

)

loop.close()

Let's save the code in the waiters.py file and see how those two waiter() coroutines
execute in the event loop:

$ time python3 waiters.py
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Note that we've used the time utility to measure total execution time. The preceding
execution can give the following output:

$ time python waiters.py

first waited 0.25 seconds
first waited 0.75 seconds
first waited 0.5 seconds

first waited 0.25 seconds
second waited 0.75 seconds
second waited 0.5 seconds

second waited 0.5 seconds
second waited 0.75 seconds

real om4.337s
user ome.050s
sys omo.014s

As we can see, both the coroutines completed their execution, but not in an
asynchronous manner. The reason is that they both use the time.sleep() function,
which is blocking but not releasing the control to the event loop. This would work
better in a multithreaded setup, but we don't want to use threads now. So, how can
we fix this?

The answer is to use asyncio.sleep(), which is the asynchronous version of time.
sleep(), and await its result using the await keyword. Let's see the following
improved version of the waiter() coroutine, which uses the await asyncio.sleep()
statement:

async def waiter(name):
for _ in range(4):
time_to_sleep = random.randint(1, 3) / 4
await asyncio.sleep(time_to_sleep)
print(f"{name} waited {time_to_sleep} seconds")

If we save a modified version of this script in the waiters_await.py file and execute
it in the shell, we will hopefully see how the outputs of the two functions interweave
with each other:

$ time python waiters_await.py
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The output you will see should look something like the following:

first waited 0.5 seconds

second waited ©.75 seconds
second waited 0.25 seconds
first waited 0.75 seconds
second waited 0.75 seconds
first waited 0.75 seconds

second waited 0.75 seconds
first waited 0.5 seconds

real Om2.589s
user ome.053s
sys omo.016s

The additional advantage of this simple improvement is that the code ran faster. The
overall execution time was less than the sum of all sleeping times because coroutines
were cooperatively releasing the control.

Let's take a look at a more practical example of asynchronous programming in the
next section.

A practical example of asynchronous
programming

As we have already mentioned multiple times in this chapter, asynchronous
programming is a great tool for handling I/ O-bound operations. So, it's time to
build something more practical than a simple printing of sequences or asynchronous
waiting.

For the sake of consistency, we will try to handle the same problem that we solved
previously with the help of multithreading and multiprocessing. So, we will try to
asynchronously fetch some information about current currency exchange rates from
an external resource through a network connection. It would be great if we could use
the same requests library as in the previous sections. Unfortunately, we can't do so.
Or to be more precise, we can't do so effectively.

Unfortunately, the requests library does not support asynchronous I/ O with the
async and await keywords. There are some other projects that aim to provide some
concurrency to the requests project, but they either rely on Gevent (like grequests,
available at https://github.com/kennethreitz/grequests) or thread/process pool
execution (like requests-futures, available at https://github.com/ross/requests-
futures). Neither of these solves our problem.
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Knowing the limitation of the library that was so easy to use in our previous
examples, we need to build something that will fill the gap. The foreign exchange
rates API is really simple to use, so we just need to use a natively asynchronous
HTTP library for the job. The standard library of Python in version 3.9 still lacks any
library that would make asynchronous HTTP requests as simple as calling urllib.
urlopen(). We definitely don't want to build the whole protocol support from
scratch, so we will use a little help from the aiohttp package, which is available on
PyPl. It's a really promising library that adds both client and server implementations
for asynchronous HTTP. Here is a small module built on top of aiohttp that creates a
single get_rates() helper function that makes requests to the foreign exchange rates
API service:

import aiohttp

async def get rates(session: aiohttp.ClientSession, base: str):
async with session.get(
f"https://api.vatcomply.com/rates?base={base}"
) as response:
rates = (await response.json())['rates’']
rates[base] = 1.

return base, rates

We will save that module in the asyncrates. py file so later we will be able to import
it as the asyncrates module.

Now, we are ready to rewrite the example used when we discussed multithreading
and multiprocessing. Previously, we split the whole operation into the following two
separate steps:

* Perform all requests to an external service in parallel using the asyncrates.
get_rates() function

* Display all the results in a loop using the present_result() function

The core of our program will be a simple main() function that gathers results from
multiple get_rates() coroutines and passes them to the present_result() function:

async def main():
async with aiohttp.ClientSession() as session:
for result in await asyncio.gather(*[
get_rates(session, base)
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for base in BASES
1):

present_result(*result)

And the full code, together with imports and event loop initialization, will be as
follows:

import asyncio
import time

import aiohttp
from asyncrates import get_rates

SYMBOLS = ('USD', 'EUR', 'PLN', 'NOK', 'CZK')
BASES = ('USD', 'EUR', 'PLN', 'NOK', 'CzK')

def present_result(base, rates):
rates_line = ", ".join(
[f"{rates[symbol]:7.03} {symbol}" for symbol in SYMBOLS]
)

print(f"1 {base} = {rates_line}")

async def main():
async with aiohttp.ClientSession() as session:
for result in await asyncio.gather(*[
get_rates(session, base)
for base in BASES
1):

present_result(*result)

if __name__ == "_ main__ ":
started = time.time()
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
elapsed = time.time() - started

print()
print("time elapsed: {:.2f}s".format(elapsed))
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The output of running this program will be similar to the output of versions that
relied on multithreading and multiprocessing;:

python async_aiohttp.py

usD 1.0 USD, 0.835 3.81 PLN, 8.39 NOK, 21.7 CZK
EUR 1.2 USD, 1.0 4.56 PLN, 10.0 NOK, 25.9 CZK
PLN 0.263 USD, 0.22 1.0 PLN, 2.2 NOK, 5.69 CZK
NOK 0.119 USD, ©.0996 0.454 PLN, 1.0 NOK, 2.58 CZK
CZK 0.0461 USD, ©0.0385 0.176 PLN, 0.387 NOK, 1.0 CZK

time elapsed: 0.33s

The advantage of using asyncio over multithreading and multiprocessing is

that we didn't have to deal with process pools and memory safety to achieve
concurrent network communication. The downside is that we couldn't use a
popular synchronous communication library like the requests package. We used
aiohttp instead, and that's fairly easy for a simple APIL. But sometimes, you need
a specialized client library that isn't asynchronous and cannot be easily ported.
We will cover such a situation in the next section.

Integrating non-asynchronous code with
async using futures

Asynchronous programming is great, especially for backend developers interested
in building scalable applications. In practice, it is one of the most important tools for
building highly concurrent servers.

But the reality is painful. A lot of popular packages that deal with I/ O-bound
problems are not meant to be used with asynchronous code. The main reasons for
that are as follows:

* The low adoption of advanced Python 3 features (especially asynchronous
programming)

* The low understanding of various concurrency concepts among Python
beginners

This means that often, the migration of existing synchronous multithreaded
applications and packages is either impossible (due to architectural constraints)

or too expensive. A lot of projects could benefit greatly from incorporating the
asynchronous style of multitasking, but only a few of them will eventually do that.
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This means that right now, you will experience a lot of difficulties when trying to
build asynchronous applications from scratch. In most cases, this will be something
similar to the problem of the requests library mentioned in the A practical example
of asynchronous programming section—incompatible interfaces and the synchronous
blocking of I/ O operations.

Of course, you can sometimes resign from await when you experience such
incompatibility and just fetch the required resources synchronously. But this will
block every other coroutine from executing its code while you wait for the results. It
technically works but also ruins all the gains of asynchronous programming. So, in
the end, joining asynchronous I/O with synchronous I/O is not an option. It is kind
of an all-or-nothing game.

The other problem is long-running CPU-bound operations. When you are
performing an I/ O operation, it is not a problem to release control from a coroutine.
When writing/reading from a socket, you will eventually wait, so using await is
the best you can do. But what should you do when you need to actually compute
something, and you know it will take a while? You can, of course, slice the problem
into parts and release control with asyncio.wait(@) every time you move the work
forward a bit. But you will shortly find that this is not a good pattern. Such a thing
will make the code a mess, and also does not guarantee good results. Time slicing
should be the responsibility of the interpreter or OS.

So, what should you do if you have some code that makes long synchronous I/O
operations that you can't or are unwilling to rewrite? Or what should you do when
you have to make some heavy CPU-bound operations in an application designed
mostly with asynchronous I/O in mind? Well... you need to use a workaround. And
by a workaround, I mean multithreading or multiprocessing.

This may not sound obvious, but sometimes the best solution may be the one that we
tried to escape from. Parallel processing of CPU-intensive tasks in Python is always
better with multiprocessing. And multithreading may deal with I/O operations
equally as well (quickly and without a lot of resource overhead) as async and await,
if you set it up properly and handle it with care.

So, when something simply does not fit your asynchronous application, use a

piece of code that will defer it to a separate thread or process. You can pretend

that this was a coroutine and release control to the event loop using await. You
will eventually process results when they are ready. Fortunately for us, the Python
standard library provides the concurrent. futures module, which is also integrated
with the asyncio module. These two modules together allow you to schedule
blocking functions to execute in threads or additional processes as if they were
asynchronous non-blocking coroutines.

Let's take a closer look at executors and futures in the next section.
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Executors and futures

Before we see how to inject threads or processes into an asynchronous event loop,
we will take a closer look at the concurrent. futures module, which will later be
the main ingredient of our so-called workaround. The most important classes in
the concurrent.futures module are Executor and Future.

Executor represents a pool of resources that may process work items in parallel. This
may seem very similar in purpose to classes from the multiprocessing module —
Pool and dummy.Pool —but it has a completely different interface and semantics. The
Executor class is a base class not intended for instantiation and has the following
two concrete implementations:

* ThreadPoolExecutor: This is the one that represents a pool of threads

* ProcessPoolExecutor: This is the one that represents a pool of processes

Every executor provides the following three methods:

* submit(func, *args, **kwargs): This schedules the func function for
execution in a pool of resources and returns the Future object representing
the execution of a callable

* map(func, *iterables, timeout=None, chunksize=1): This executes the func
function over an iterable in a similar way to the multiprocessing.Pool.map()
method

* shutdown(wait=True): This shuts down the executor and frees all of its
resources

The most interesting method is submit() because of the Future object it returns. It
represents the asynchronous execution of the callable and only indirectly represents
its result. In order to obtain the actual return value of the submitted callable, you
need to call the Future.result() method. And if the callable has already finished,
the result() method will not block and will just return the function output. If it

is not true, it will block until the result is ready. Treat it like a promise of a result
(actually, it is the same concept as a promise in JavaScript). You don't need to unpack
it immediately after receiving it (with the result() method), but if you try to do that,
it is guaranteed to eventually return something.

Let's consider the following interaction with ThreadPoolExecutor in an interactive
Python session:

>>> def loudly_return():
print("processing")

return 42
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>>> from concurrent.futures import ThreadPoolExecutor
>>> with ThreadPoolExecutor(l) as executor:
future = executor.submit(loudly return)

processing

>>> future

<Future at 0x33cbf98 state=finished returned int>
>>> future.result()

42

As you can see, loudly_return() immediately printed the processing string after
it was submitted to the executor. This means that execution started even before we
decided to unpack its value using the future.result() method.

In the next section, we'll see how to use executors in an event loop.

Using executors in an event loop

The Future class instances returned by the Executor.submit() method are
conceptually very close to the coroutines used in asynchronous programming. This
is why we can use executors to make a hybrid between cooperative multitasking and
multiprocessing or multithreading.

The core of this workaround is the run_in_executor(executor, func, *args)
method of the event loop class. It allows you to schedule the execution of the func
function in the process or thread pool represented by the executor argument. The
most important thing about that method is that it returns a new awaitable (an object
that can be awaited with the await statement). So, thanks to this, you can execute a
blocking function that is not a coroutine exactly as if it was a coroutine. And most
importantly, it will not block the event loop from processing other coroutines, no
matter how long it will take to finish. It will stop only the function that is awaiting
results from such a call, but the whole event loop will still keep spinning.

And a useful fact is that you don't even need to create your executor instance. If
you pass None as an executor argument, the ThreadPoolExecutor class will be used
with the default number of threads (for Python 3.9, it is the number of processors
multiplied by 5).

So, let's assume that we did not want to rewrite the problematic part of our API-
facing code that was the cause of our headache. We can easily 