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ABSTRACT

The class of Markov data compression algorithms provides the best known
compression for ordinary symbol data. Of these, the PPM (Prediction by Partial
Matching) algorithm by Cleary and Witten (1934) is the most successful. This
thesis reviews the class of Markov algorithms and introduces algorithms similar
to PPM which are used as a vehicle for examining adaptivity in data compression
algorithms in general.

Despite the amount of research into adaptive data compression algorithms, the
term "adaptive" is not well defined. The term can be clarified by viewing the
problem of adapting as that of tracking a source through a source space using the
data the source is generating as a trail. Adaptive algorithms achieve this by making
assumptions about source trajectories. These assumptions can be used to classify
data compression algorithms into four groups with respect to adaptivity: not
adaptive, initially adaptive, asymptotically adaptive and locally adaptive. These
groups correspond roughly to classes of source trajectory. A new class of source
called multimodal sources is introduced, members of which ju-p among a finite
number of distinct points in the source space.

After common source trajectories have been identified., modifications to Markov
algorithms are described that enable them to track each kind of source. Some
of the modifications involve complex algorithms which are discussed in detail.
Experimental results show that these modifications can substantially improve
compression performance.

Of particular interest are sources with a multimodal trajectory. Such sources can
be compressed well using a combination of locally adaptive and asymptotically
adaptive models. The result is a multimodal algorithm which is independent of
any particular sub-model. Experimental results support this approach.

Finally, there is a discussion of the possible applications of data compression
techniques in the field of user interfaces. By predicting the user,s behavior and
presenting the predictions to the user in an invokable form, it is possible to
eliminate redundancy in the user interface just as it can be eliminated in data
streams.
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CHAPTER 1

INTRODUCTORY SURVEY

1.1 Introduction

The purpose of data compression is to remove redundancy from data so that
it takes less time to transmit and less space to store. Data compression increases
system throughput, improves network security and relieves programmers of the
task of packing data effi,ciently. Because data compression operates at the logical
level, it cannot be made obsolete by advances in storage or network technology.

The purpose of data compression research is to develop and analyse methods
for representing information in the minimum amount of space. Data compression
research is important to Computer Science because it explores one extreme of the
compactness/speed trade-off present in all decisions about data representation.
To store or transmit data, a representation must be chosen; there are no default
representations. With this in mind, r,¡¡e proceed in the examination of data
representations with the one-eyed view that compression is paramount.

1.1.1 Compression as Representation

In order to be stored or transmitted, information must first be represented in
a physical medium. Choosing a representation means associating meaning to the
states of a physical object. Representations vary in two respects:

o the amount of physical medium used.

o the processing po\¡¡er needed to perform various operations.

Unfortunately, representations that minimize one cost do not always minimize
the other and a compromise is usually necessary.

\Me view data compression as the translation of a message from one repre-
sentation to a different representation that uses less space. Data compression is
defined relatiuely, and strictly it is incorrect to refer to any particular represen-
tation as "compressed" without first defining an "uncompressed" representation
to which it can be compared. In practice, compression performance is usually
expressed relative to an unstated set of natural representations which is the
set of minimum-length representations that use the same amount of space for all
data values; ttcompressed" representations use less space on üaerage.

18



Section 1. 1: Introiluction 19

In order to use less space than a natural representation, compressed represen-
tations use code strings of varying length to represent the different data values.

This variation in length often increases the time required to perform operations
on compressed representations. For example, elements of a compressed array can
no longer be accessed at random. Thus, we expect to find data compression only
where the cost of space is high relative to the cost of time.

L,L,z Data Compression in Ancient Greece

The problem of choosing a representation has been around for as long as

humanity has had to represent information. In ancient Greece, the cost of papyrus
was orders of magnitude more expensive than the cost of paper is to us today.õ
As a result, texts were written with no punctuation and no spaces, yielding a
space saving at a cost of reading time. The ancient Greeks and Romans used. a
telegraph system that employed varying numbers of torches to convey letters of
the alphabet[HavelockTS](pp. 36-37) but it employed neither data compression
nor error correction.

In the late eighteenth century, the British Admiralty employed a series of
cabins that transmitted six-bit signals using shutters.o Some of the 26 : 64
permutations \Ã¡ere mapped onto the alphabet and the remaining code space was
allocated to common words and phrases, resulting in a form of data compression.
In particular, one code, used to represent the message "sentence of court martial
to be put into execution", simultaneously provided a high degree of compression
and a t'fatal" vulnerability to errors. More serious omissions of error detection
have occurred in our own time. The worst case was probably that of a nuclear
alert being triggered by the failure of a ten cent communications chip (a 74t75).
The chip caused the "number of missiles" field in an unchecksummed network filler
packet to go positive and signal a major attack[Borninggz](p. 118).

In recent years' the acceleration of technology has resulted in some long strings
of words falling into common use. The response has been to replace them with
newly created shorter words. The new word is typically an acronym. For example
the phrase t'Central Processing Unit" is now usually written as ,,CpU,'. Acronyms
have been used as a data compression technique for ages. In Roman civilization,
õ Dr' R.F' Newbold of the University of Adelaide Classics Department has estimated it as100 to 1000 times more expensive (priüate .o**u"i."ii." ip,er;ili""-6-q,,];"ïiüãlv gì"ït"ã

12 May 1989)).
6 The shutter cabin story ap-pears in the introductoty chapters of a book ,,Text Compres-sion"[Bell89l (to appear) änd'f am grateful to the .rrthärs-ioridi;..*.i"g th;.t^oiy. tt" uoot

contains further details of the system and some references.
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tombstone space was costly as \¡¡as the cost of engraving. The result was the
common S.T.L. (Sit Terra Levis) which means "Let the earth rest lightly upon
her".7 Acronyms were also used by the Romans to squeeze lengthy imperial
honours onto coins.

Perhaps the earliest widely-kno\¡/n example of data compression in a represen-

tation is Morse code which makes some attempt to allocate shorter codes to the
more frequent letters. In the normally used variant of Morse code, the letter Y

(- ' - -) takes three and a half times as long to transmit as the letter E (.).

The result of the drive to reduce sentence length can be found in many
languages whose commonly used words are shorter than rarely used words. In
general, the more often a word is used, the shorter it is[Zipfao] (p. 6a). Some
common combinations, such as "do not" (ttdontt") are explicitly shortened using
an apostrophe.

Another example of compression can be found in the Arabic number system
which represents numbers by digits of increasing powers of a base (using 0(lo96 n)
space) rather than the simpler system of using a number of strokes (O(") space).

The natural world is full of examples of data compression. A particularly
good example is the coding of genetic information. Ordinary DNA is highly
redundant, containing long tracts of unused bases. Viral DNA, on the other
hand, is under strong selection pressure to become small. The result is that
"some small viruses (tike /X17a) [have] evolved overlapping, genes) in which part
of the nucleotide sequerlce encoding one protein is used (in the same or a different
reading frame) to encode a second protein."[Albertsg3](pp. 2}g-2ae@mphasis
by Alberts). This phenomenon can be compared with the superstring problem
discussed in Section 7.5.2.5.

Finally, we find examples of data compression in everyday life. Newspaper
headlines are set in a large font which is time efficient (easy to read, even at
a distance) but is space inefficient (uses lots of space). On the other hand, the
classified advertisements are set in a font which is time inefficient (hard to read) but
space efficient.8 The examples of data compression are summarized in Table 1.

The requirement for simple and fast decodability by humans restricted the
field of data compression to representations that have a one-to-one correspondence
between objects and their representations. With the advent of computers,
7 Others were D.M. for Dis Manibus meaning "To the ghosts of the underworld,, and B.M. for

Bene l\{erenti meaning "To one deserving well,,.I Helman and Langdon used the example of legal fine print to ake the same point[Helmangg].
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Context Technique

Ancient Greece
Shutter Cabin
Acronyms
Morse Code
Arabic Digits
Viral DNA
Newspapers

Spaces omitted
Spare codes used to transmit phrases
\Mords replaced by letters
Shorter codes assigned to frequent letters
Base ó used rather than base 1

Genes overlap in the nucleotide sequence
Use of fine print

Data compression techniques are not the exclusive domain of computer systems
This table lists some uses of data compression in everyday life.

Table 1: Examples of everyday data compression.

representations which would be prohibitively expensive for humans to use, have
suddenly become feasible.

1.1.3 Founding'Work by Shannon

In 1948 Shannon [Shannon4S]e laid the foundation of the field of information
theorg a discipline that concerns itself with the communication of information
over noisy channels.

shannon divided communication into five components (Figure 1).

lnformation
Source Transmitter Receiver Destination

na

Message Signal
Message

Noise
Source

shannon's model of communication (1g4g) revolves around an abstracted chan-
nel through which a source communicatee with a destination. The transmitter
and receiver are used to overcome the limitations (e.g. noise) of the channer.

Figure 1: Shannon's model of communication.
(Redrawn from figure 1 of [Shannon4g])

e This
'Weaver.

papet was later reprinted in a book[Shannon4g] that also contained a related paper by
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1. An information source which produces a changing value over
time. Shannon's model is fairly general, encompassing multidimensional
continuous sources as well as discrete sources.

22

A transmitter which translates the message into a signal suitable for
transmission over the channel

3. A channel which is the medium used to transmit the signal. The
channel can use arry physical process as long as it carries the signal.lo
Shannon modelled only the channel's capacity to convey information. Both
noiseless and noisy channels are considered.

4. A receiver which translates the channel signal into the message.

5. A destination which is the process for whom the message is intended.

Shannonts model is general and covers many aspects of communication
including error correction, data compression and cryptography. Although these
three aspects are closely related (Section 1.16), it is wise to separate them in theory
and practice as they have conflicting design goals. In communication systems
that employ all three techniques, messages are typically compressed by a data
compression layer, encrypted and then expanded by an error correcting layer. The
three transformations are performed in reverse order at the receiving end.

As we are chiefly concerned with data compression, l,r¡e will operate under the
following assumptions which are additional restrictions on Shannon,s model:ll

Assumption 1: sources produce a sequence of symbols from a fixed, finite
'source alphabet.

Assumption 2: The channel carries a sequence of symbols from a fixed,
finite channel alphabet.

Assumption 3: The cost of transmitting each channel symbol is identi-
cal. l 2

2
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Assumption 4: The channel is noiseless.

It is not clear whether it is best to model a source as a rand,om process that
produces an infinite stream of symbols (as is implicit in Shannon's approach) or as

a random variable which produces a single finite string (as proposed by Rissanen
and Langdon[RissanenSl]). Both models are useful. Infinite messages can be
used to model communication lines and finite messages can be used to model the
compression of files. In this thesis both models will be used.

1.2 Common Notation and Data Structures

A number of constructs, concepts and data structures arise so often in data
compression that we present them here before continuing. The section starts
with notation and moves onto data structures. Discussion of data structure
í,mplementation is deferred until later sections.

Permeating all data compression is the notion of symbol symbols come in
two types. Source symbols are used to construct source messages. Channel
symbols are carried by the channel and are used to communicate the message.
In practice the two sets of symbols usually coincide. In this thesis, n is a constant
used to denote the number of different source symbols and L is used to denote the
fixed, finite, ordered set of n symbols, with A: {at...or}. The set of channel
symbols is not defined formally, as the focus of the thesis is on source modelling.

Experience has shown that it is important to distinguishls between symbols and,
instønces of symbols which in this thesis are referred to simply as instances.ra The
set of symbols defines the set of values that symbol-valued objects (instances) can
take. A message (also called a message string) consists of a sequence of instances.
Instances can be thought of as Petri net[Peterson77] like tokens that come in
n different colours[GenrichSl] and flow through data compression systems. The
set of symbols can be thought of as the set of colours of such tokens. There are
only ever exactly rz symbols but the number of instances in existence can vary
from zero to infinity.

A sample is a bag of instances. Samples are usually represented in the form
of a frequency for each symbol with the sum of the frequencies corresponding to
the number of instances in the sample.
rs As far as the
1a Oth"r names

tiont', ttoutcomet'

author is aware, this distinction is a new one.
considered wefe ttevent", ttarrivaltt, ,,occurencert, ,,elementrr, ,,item,,, ,,observa_

and ttsymbol instance',.
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,5 is used to denote the set of all finite strings of instances, with ^9¡ denoting
the set of all strings of length I instances. e denotes the empty string. The set of
all strings of a given length is ordered. If ø is a string then ø¿ denotes the &'th
instance in ø, with ø1 being the first (leftmost) instance. løl denotes the length of
n. If. n and gt are strings or instances then øy denotes the concatenation of æ and

u. tk..J denotes æk . . . æ1. A set of strings satisfy the prefix property if no string
is a prefix of any other string in the set. The term history is used to refer to the
string consisting of the concatcnation of all the instances generatecl by the source
to date, with the last (rightmost) instance of the string being the most recently
generated instance. In formal descriptions, ä denotes the history string.

R denotes the set of real numbers. Z denotes the set of integers. It is
convenient, when introducing constants and variables, to introduce their domain as

well. Thus the phrase "we introduce a constant x e 210,10]" introduces the integer
constant r which lies in the range [0,10]. Square brackets denote a closed interval
(x e la,,b) + a 1 æ 1 ó), round brackets an open one (r € (ø, ó) =) ø.( * < b),
The word "ifft' is used as an abbreviation for the phrase ,,if and only if,,.

The first data structure that arises repeatedly is the history buffer. Many
data compression algorithms require access to the most rece nt m instances
generated by the source. The history buffer stores these in rr¿ slots each of which
contains an instance. The slots are numbered ZlL,ml with slot t holding the most
recently received instance (the youngest) and slot rn holding the least recently
received instance (the oldest) (Figure 2).

Oldest
lnstance (m=8) Youngest

lnstance

ffi 87 65 4 3 21
Many data compression techniques require random access to the most recent rn
instances the source has generated. A sriding history buffer fulfills this need.

Figure 2: A history buffer.

When a n'ew instance arrives, the instances in the history buffer are shifted
one slot. The instance in slot i is moved to slot i + r. The instance in slot rr¿
is discarded and the newly arrived instance is placed in slot 1. History buffers
provide the same functionality as fixed-length queues but also allow any of their
elements to be read.
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The second common data structure is the digital search tree, sometimes
referred to as a trie[Knuth73](section 6.3). Because "trie" looks like a spelling
mistake, we will use "tree" instead. Unless otherwise stated, the word ,,tree',

in this thesis is used to refer to a digital search tree whose arcs are labelled by
symbols.

A digital search tree consists of a set of nodes with one node being distinguished
as the root node. Each node can have from 0 to r¿ child nodes. The term arc
is used to refer to the link between a node and one of its child nodes. The term
branch is used to refer to a sequence of arcs and nodes commencing at the root
node and connecting nodes of monotonically increasing depth. A branch need not
terminate at a leaf node.

Each arc in a tree is labelled with a symbol that is different from those of
its sibling arcs. Each node in the tree corresponds to the string constructed by
concatenating the symbols labelling the arcs on the path from the root to the
node in question. This string is known as the nodets string. Nodes are most
easily referred to by their string. In a forwards tree, the symbol labelling the
arc connecting to the root node forms the first (leftmost) instance of the string; in
a backwards tree it forms the last (rightmost) instance (Figure B). The root
node always represents the empty string.

0 *
d

b adf

c c

A Backwards Tree A Forwards Tree

AAaa

b

eda

fda

Backwards and forwards digital search trees arise repeatedly in data compres-
sion. Each node corresponds to the string constructeà by måving from the root
to the node. The root node corresponds to the empty string. ThJonly difference
between backwards and forwards trees is the direãti,on of iheir strings.

Figure 3: Backwards and forwards digitar search trees.
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The depth of a tree node is defined to be the number of arcs linking the node
to the root node. The root node has a depth of zero. The depth of a tree is defined
to be the depth of the deepest node in the tree. When we refer to the number of
nodes in a tree, the root node is included; a tree consisting of only the root node
contains one node.

Trees are often augmented with extra attributes. Information is usually
attached to the nodes. Sometimes probabilities are associated with each arc.

A tree is degenerate iff every node has less than two child nodes. A tree
is balanced iff the heights of the two subtrees of every node differ by at most 1

(from [Wirth76](p. 215)).1õ A tree is uniformly k-furcated if every non-leaf
has exactly fr child nodes. A tree is uniformly furcated if it is uniformly-fr-
furcated for some fr. A tree is solid if every leaf is of the same depth and the tree
is k-furcated where k is the maximum furcation allowed (usually le : n). A tree
is solid to depth d if it is solid and one of its leaves is of depth d.

Digital search trees arise repeatedly in data compression. A tree can be used
to store a dictionary of strings. The set of strings corresponding to the leaves of a
tree is guaranteed to satisfy the prefix property.

Trees are often used in conjunction with history buffers. A node in a tree
matches the history if the node's string ø is identical to the string formed by the

løl most recent elements of the history.lo Thus, for any given history and tree,
there is a distinguished branch stretching out from the root such that the string
of each node on the branch matches the history. This is called the matching
branch and the nodes on the branch are called matching nodes. The deepest
node of a matching branch, which is not necessarily a leaf node, is called the tip of
the branch. The depth of the tip node is constrained by the length of the history
as well as the depth of the relevant part of the tree.

Algorithms in this thesis will be specified in an Ada-like[USDODeSlrz
programming language. Liberties with the notation have been taken so as to
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does
ln contrast, the term unbalanced trees is used to refer to a method of managing treee thatnot attempt to maintain balance.

to the root node being
kwards tree and being
a forwards tree. A noã

vernment-Ada Joint program Office.
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simplify the code. The inc operator increments its integer argument. The dec
operator decrements its integer argument. The construct

loop
lstatements)
exit if <condition>;
lstatements)
end

describes an infinite loop that is terminated only when control encounters an ttexit

if <condition)" statement whose condition evaluates to true. The statement

return (expression)

terminates execution of a function, returning the value of the expression as the
function's value.

eaists(u) is a function that returns true iff node u exists. isleaf (u) is a function
that returns true iff u is a leaf. The proce dure new creates a new node and assigns
it to its argument. The new node's attributes are automatically initialized to
ttsensible" values (e.g. in the case of a sample of instances an empty sample).

Program variables are declared inline with the code
the end of the enclosing construct.

Their scope extends to

1.3 The Problem of Data Compression

Shannon's model presents the problem of data compression as that of con-
structing transmitters and receivers that can translate between compressed and
uncompressed representations. It is worth spending some time elaborating upon
this problem for, as history has shown, the manner in which the problem is ap-
proached radically affects the solutions that are apparent.

1.3.1 Real vs Quantized fnformation

Shannon devised a measure for the quantity of information f/ that knowledge
of the occurrence of an event of probability p yields.

H(P) : - logP
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of the space in the output buckets. Efficient
buffering ø input buckets and ó output bucket

conversion can be achieved by
s, effectively forming two large
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The log is to the base of digit that If is to be measured in. Rather than use
indefinite logarithms, îv'e choose base e as a suitable baserE and use natural
logarithms (ln) throughout.

Events that have a high probability convey little information when they occur.
Events that are unlikely convey a lot of information. The quantity Il(p) can take
any real value in the range [0, -]. Information is a continuous quantity.

In contrast, information in the digital world of computers is quantized. A
memory unit can be in one of n e Z[2roo) states. In practice n is usually a po]Mer

of two. The amount of information held by the unit is
n

lnt"n,i
i=l

where p¿ is the probability of the unit taking the value i. This is maximized when
ea,ch p¿ is 7f n in which case the register always holds exactly lnn nats; to assume
any other probabilities would be wasting space. Thus the set of all quantities of
information that can be stored as independent units in a computer is

{lni li e Ir},

a set of real values which we will call the bucket set. Each bucket in the set has
a bucket size i and a bucket capacity lni.

The problem of representing continuous sized pieces of information using
buckets of quantized size has been central to the difficulties faced by the field
over the last forty years. The traditional solution to the problem is the technique
of blocking.

L.3.2 Pure Blocking

Consider the problem of converting a stream of numbers of base nz into a
stream of numbers of base n with n ) m. The simplest method, of copying each
input bucket into each output bucket, wastes a proportion

/ \ Inn -lnmu\m'') : 
I
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buckets of size na and. *b. Th" closer the sizes of these buckets, the more efficient
the conversion. The values of ¿ and ó that are most efficient can be determined
by minimizing

u:(arb) - 
lnnb-- lltmo : f - y

lnnb - blr,n
which is the proportion of the output bucket wasted. u must fatl in the range

[0,1). The problem is now

minu(ø, b\ w(a,ó) > 0 where
ørb

which is the same as
alnmmax-

a,b bLr:n
such that

/ ,\ - alnmu\a,o): r - OlrLÎ?"

alnm

-¿1

:r
0 Lrr??"

6 :L!*
lnn

where

The result means that for a given rn and rz, buffer sizes a and ó can be chosen
so as to approximate 7/I{ as closely as desired and hence convert the streams as
efficiently as desired. This is a consequence of Shannon's fundamental theorem
for a noiseless channel[Shannon4S]. Unfortunately as ø and ô increase, so does the
cost of coding.

1.3.3 Impure Blocking
In the example of the previous section, the input packets all had.a uniform

probability of lf m and so compression did not take place. For non-uniform
probabilities, events of arbitrary and varying probabilities must be mapped onto
uniform output buckets. Again, if. n ) rn, input values can be mapped onto output
values at high cost, Pure blocking is more efficient but does not make use of the
varying probabilities.

The simplest efficient solution is to form a mapping between input strings and
output strings of various lengths with the aim of matching their probabilities as
closely as possible. In the input case, the probability is the estimated probability
for the string' In the output case it is set at --t (*h"re / is the length of the string)
so as to maximize information content. To simplify parsing, each set of strings
must possess the prefix property. This mapping technique is called blocking.

1.3.4 A Classification of Algorithms
The previous sections have shown that a non-trivial mapping is necessary in

order to achieve efficient translation between source events (source strings) and
channel events (channel strings). The technique of blocking encompasses nearly
all the early data compression techniques and can be used to classify the techniques
into four groups (Figure a).

-.4ll].âX lt =a,b b
such that

a1
b- r{
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Early data compres le mappings between
source strings and can be divided into
four groupe based f the lengths of the
source and channel

Figure 4: Four kinds of blocking.

Although each of these techniques can, in theory, provide optimape coding, in
practice variable-to-variable coding provides the most flexibility in matching the
characteristics of the source with those of the channel. Later we will see how more
advanced techniques enable the separation of the source and channel events that
are so tightly bound in blocking techniques. For norvr/, we continue to review the
history of data compression.

1.4 Huffman Coding: Too Good Too Soon

Huffman coding marked the first major practical ad.vance in the field. Huffman
coding was born in a theoretical paper and manifested itself in a number of different
practical schemes. As a result, the term ttHuffman Coding', d.oes not refer to any
specifi c practical technique.

L.4.L Shannon-Fano Coding and Huffman Coding

Shannon showed that for a given source and channel, coding techniques existed
that would code the source with an average code length of as close to the entropy of
the source as desired. Actually finding such a code was a separate problem. Given
a finite set of messages with associated probabilities, the problem was to find a
19 Here the word "optimal" is used to mean ,,as close to optimal as desired,,
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technique for allocating a binary code string to each message so as to minimize
the average code length.

Shannon soon discovered a nearly-suitable coding technique. Fano simulta-
neously discovered it2o and it has become known as the Shannon-Fano coding
technique. The messages are sorted by probability and then subdivided recur-
sively at as close to power of two boundaries as possible. The resultant binary tree
when labelled with 0s and 1s describes the set of code strings.2l This technique
yields an average code length (in bits) of. lH,^H + 1) where ff is the entropy of the
set of source messages.

The Shannon-Fano coding technique, though efficient, was not optimal. Very
Eoorrr Huffman proposed a variation that was optimal[Huffman52]. For the
problem as specified, a Huffman code cannot be bettered.

To form a Huffman code, the two least probable messages are combined into
a single pseudo message whose probability is the sum of the probabilities of its
component messages. The pseudo message replaces the two messages in the list of
messages and the grouping process is repeated iteratively until there is only one
pseudo message left. The resultant binary tree describes the set of code strings.

It is a little known fact that Huffman generalized his coding technique for
channel alphabets of more than two symbols. taditionally, his code is associated
with the binary alphabet, presumably because it is most easily implemented in
that form.

The codes just described provide a mappíng from a set of rnessøges to code
strings. Because it is not practical to manipulate sets of messages whose cardinality
is greater than the number of atoms in the universe, Huffman coding is usually
applied to each ind'iuid,ual instønce. Unfortunately, the minor redundancies that
are a function of having to code each message into an integer number of bits
are accumulated for each insto,nce. This results in unbounded inefficiency if the
greatest probability is close to one. This inefficiency can be reduced by using
blocking to run the code at a higher level. For example, binary source streams are
often organized into fixed length (say 12-bit) btocks to which Huffman coding is
applied.

Unfortunately, the optimality of the Huffman code at the message level is often
mistaken for optimality at the instance level.

20
described in R.M. Fano ,,The transmission ofR"port 65, Research tory of Electronics, MIT, Carnbridge, MA, 1

thesis has not obtained a copy of this report)21 In this thesis, the two binary digits are referred to as "0" and "1,,. The words ,,zero', and

information", Technical
949. (The author of this

ttonet' are reserved for expressrng quantities or attributes
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L.4.2 Huffman as a Back-End Coder

Huffman coding has been used as a back-end coder in a variety of data
compression schemes. The common theme is the division of instance streams
into events with a large number of outcomes whose probabilities are roughly
even. Huffman codes tend to perform well with large alphabets and this fact can
be exploited by constructing source alphabets oI woriJs rather than characters.
McCarthy[MccarthyTS] described a compression technique which maps strings
onto Huffman codes.

Another example of Huffman as a back-end coder is described by Jakobs-
son[Jakobsson7S] who divided the input stream into fr-bit blocks each of which
was assigned a probability based on the number of Os and ls that it contained.
These blocks and their probabilities were then used to drive a Huffman code.

t,4.3 Multi-Group Huffman Coding

One of the more interesting variations on Huffman coding is the so-called
"multi-group coding" technique. The earliest publication of the technique seems
to be by Hazboun and Bassiouni in [HazbounS2]. Bassiouni went on to present
variations of the technique in [BassiouniS5] and [BassiouniS6] (with Ok). A
similar technique is described in [Cormackgs].

The multi-group technique is designed to compress sources that generate bursts
(runs) of instances from disjoint subsets of the symbol set. Such a source might
generate a burst of letters followed by a burst of digits followed by a burst of
spaces. Such sources are common in databases containing fields of different types.

To design a multi-group algorithm, a Huffman tree is constructed for each
subset (class or group) of symbols. An extra pseudo symbol called the ,,failure

symbol" is inserted into each tree. Each instance is coded by looking it up in the
current Huffman tree. If the instance's symbol is in the tree, the symbol's code is
transmitted. If the instance's symbol is not in the tree, the code for the failure
symbol is transmitted to indicate that the current tree is to be changed. Separate
Huffman trees are used to send a code identifying the new current tree which is
then used to transmit the original instance.

A similar scheme involving multiple Huffman trees is described by Cormack
[CormackSS]. In this version, all the trees contain all possible symbols and the
current tree is determined solely by the most recently coded instance. This
eliminates the need for failure trees. The technique was successfully applied at
the device driver level in a database system and produced good compression on a
wide variety of data using almost no memory.
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1.4.4 Dynamic Huffman Coding

To honour the twenty-fifth anniversary of Huffman coding, Gallager [Gal-
lagerTS], presented three new theorems about Huffman cod.es, the first of which
showed that a Huffman tree with a distinguished node can be converted, in time
logarithmic to the number of nodes in the tree, to another Huffman tree which
would require no structural change (in order to remain a Huffman tree) were the
count on the distinguished node incremented. The conversion involves swapping
subtrees of equal weights. Knuth seized on Gallager's idea and detailed an algo-
rithm which can efficiently maintain a Huffman tree whose leaf weights are being
decremented as well as incremented[KnuthS5]. A similar principle was used by
Moffat[Moffat88] in his design of a data structure for arithmetic coding (Sec-
tion 1.11.5).

The capacity to modify Huffman trees dynamically, opens up other possibili-
ties. Moffat[Moffat87] described a two-pass technique in which the actual symbol
frequencies are transmitted after the first pass, The message is transmitted on the
second pass during which both sender and receiver count down the frequency of
each symbol. The last instance of the message need not be explicitly transmitted.

The ability to efficiently update a Huffman tree allows Huffman cod,es to be
altered during transmission. This means that they can be configured in the style
of modern one-pass data compression techniques using the statistics of the history
to construct the code for the instance or instances to follow.

1.4.5 Recent Results

The Huffman code is remarkably versatile and resilient. Despite its age,
research results are still rolling in. It is worth briefly examining some of this
work in order to illustrate the dominance of the Huffman code.

Johnsen[JohnsenSO] proved that given a two symbol channel alphabet, the
most probable symbol can immediately be assigned a single bit code if its
probability equals or exceeds 0.4. Gotomb[Golomb8o] investigated the kind
of sources that maximize the number of choices of optimal but coding-distinct
Huffman trees.

Even today, interesting practical work is still being performed. In 19g5
Mclntyre and Pechura[McfntyreS5] performed experiments which indicated that
for small files (and in many cases large ones) two pass (so-called dynamic) Huffman
coding is less efficient than (so-called static) one-pass Huffman coding which uses
a fixed coding tree for all files.
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In one sense, Huffman's code was too good too soon. Its proof of optimality
at the message level led many to believe that it was impossible to do better, while
its inefficiency at the instance level sidetracked the field into blocking. Today
the Huffman optimality theorem seems rather restricted. With hindsight rye can
identify the two mistaken assumptions that were made on the switch from the
message level to the instance level. The first was that instances in a message
are independent of one another. The second was that each source symbol must
be mapped onto a discrete number of channel symbols. It would be thirty years
before these assumptions would be exposed and discarded.

1.5 Thirty Years of Ad Hoc Data Compression

Following Huffman's publication and the proliferation of computers, the field
of data compression expanded. Although some of the work was rigorous and
theoretically sound, much of it was not. It may seem a little harsh to classify ø//
of the techniques to be described in this section as ai| hoc,brlt in the light of the
modern framework, it is hard to view them as otherwise. At least one other author
agrees roughly with this calegorization[Horspoolgg](end of first paragraph).

In the spirit of Huffman, this period was characterised by the simplicity of its
source models and the directness of its coding schemes. Whereas contemporary
compression systems code a particular message instance in a storm of probabilities,
coding schemes of the 1950s, 60s and 70s are characteri zed, by their intelligible
mapping between source symbols and channel symbols. Certainly the notion of
representation is more explicit in these older schemes.

Much of the research of this period focussed on the derivation of higher order
source alphabets, in which each symbol corresponds to a string of ordinary source
instances. Such alphabet extensions were used to project sources with highly
skewed distributions onto flatter sources for which simple coding schemes (such
as the Huffman or the fixed length codes) could more efficiently be driven. This
section examines some of the ad hoc techniques that arose during this thirty year
period (= 1950-= 1980).

1.5.1 Run Length Coding

Run length coding22 is a technique that parses the message into consecutive
sequences (runs) of identical instances. As with Huffman coding, run length

22

Len 
,,Run Length Encoding,, or ,,Run

the erature. The later coniorms with
late tic coding, adaptive coding). The
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coding takes many forms and has been used as a component of many compression
algorithms. Run length coding can usually be identified by its trade mark of coding
a run of identical data values by a single instance of the repeated value followed
by a repetition count.

1.5.1.1 Binary Run Length Coding

Binary run-length codes are of particular interest because they can represent
their data as a sequence of lengths of alternate 0 and 1 runs; the symbol repeated
in each run need not be sent. Furthermore, because binary codes have such a small
alphabet, it is likely that long runs of instances of the more frequent symbol will
occur.

One of the earliest and most influential descriptions of run length coding can
be found in a correspondence by Golomb[Golomb66]. This letter addresses the
case of a binary memoryless sourcezs that emits 1s with probability p a+d 0s with
probability g (where q : (t - p) and p > q). Golomb,s technique is to parse the
message into runs of. zero or more 1s terminated by a 0, This yields a sequence of
run lengths (a sequence of natural numbers) which are coded into binary words of
varying length.

Golomb observed that the probability of a run of length n*m is half that of a
run of length n for rn : -logzp. From this he concluded that if the infinite
set of lengths were to be mapped onto binary strings (codewords) of varying
length (satisfying the prefix property) then the set of code words should contain
na codewords of each possible codeword length.

Golomb proposed a code that satisfies this condition for a given nz. The length
.t to be encoded is expressed in the form (Q2m)+n. The codeword is e expressed
in base one24 followed by Ã (the remainder) expressed in binary as ræ bits. This
code satisfies the required property because the number of bits required to transmit
the remainder ¡3 is fixed for a given rn and the number of bits needed to transmit
the quotient grows by one bit for each increase in run length of. m. A slightly
more complicated version caters for values of rn that are not powers of two. This
Golomb code forms a subset of a particular arithmetic code developed by Langdon
and Rissanen[LangdonS2].

each instance with a fixed probability
it has generated or will generate.

resented by the number of occurcences of
ted by 111 in base one. tn the case ofthe
by a O so that the end of the numb", .un

represented by l0 and B by 1110.
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Despite its age, the technique of run length coding is still being studied. In
a comprehensive paper[Tanaka82], Tanaka and Leon-Garcia described a form of
run length coding that is highly efficient for binary memoryless sources. They
defined a mode rr¿ code to be a code that maps a run of 0s of length rr¿ into one bit
(o) and runs of length 0...2m - 1 into n't,+r bits (1. . .). The input is divided up
into blocks of .t bits. Each block is processed separately. The number of 1s in the
block is counted and the probability of a O is estimated. The optimal ræ for this
p is calculated and the block is encoded with a mode m code. The authors prove
that the largest possible difference between the coding rate and the corresponding
entropy is 0.0405 bits. Typically, the efficiency is gg% of the entropy. Coding is
fast because the order rn codes can be precomputed.

A remarkable similarity exists between the efficiency curves of Tanaka's an{
Leon-Garcia's code (figure 1 of [Tanaka82]) and that of Langdon and Rissanen's
binary arithmetic code (figure2 of. [LangdonSl]). Both curves consist of a series
of humps of exponentially decreasing width which represent the "modes" at which
the code can operate; both have a lower bound in efficiency of about g6%. Langdon
suspects that the similarity is because both techniques assign an integer-length
code string increase to the less popular symbol.2õ This similarity shows well
how, in the field of data compression, information properties can be harnessed
in radically different ways to the same effect. We will see more of this in the
section on Markov algorithms (Section 1.10).

Bahl and Kobayashi[BahlT4] presented a scheme for coding a binary memo-
ryless source for an image coding application. In particular, two of the schemes
cover two of the four blocking classes (Section 1.3.4) and are worthy of further
description.

The first coding scheme is a variable-to-fixed run-length code. The probability
p of the most likely digit is used to select an -ly'. Then, ¡tr-bit words are transmitted
which contain the lengths of successive runs of os and ls, If the run length exceed.s
the capacity of the word size, the maximum value is transmitted and the counter
is reset. An alternative method is to transmit a sequence of the lengths of ,,runs,,

defined to be sequer.ces or.zero or more os folrowed by a single 1.

The second scheme is a more complicated variable-to-variable run-length code.
It suffices to say that the run lengths are coded using varying-length binary codes
with the shorter run lengths assigned shorter codes than the longer run lengths.
25 Private correspondence

in another mail message on
in_ I mail message 12 August 1g88. permission to quote was granted
6 May 1989.
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A further refinement, called multi-mode Golomb coding, assigns shorter codes to
lhe more probable run lengths. Because a memoryless source produces a geometric
run-length distribution the shortest codes are assigned to runs with near average
length rather than to runs with shorter lengths.

Teuhola[Teuhola7S] described another modification of the Golomb code in
which runs of instances of the more probable symbol are parsed into subruns of
length 2k ,2k+l for some predefined base power k determined by p. The number of
such complete subruns is transmitted in base one and the length of the leftover is
transmitted in i bits where Iogz j is the length of the last complete subrun. This
scheme is fairly insensitive to the base power & because of the "binary exponential
backoff". It is also simpler than multi-mode Golomb coding.

L.6.L.2 Bit Vector Compression

A number of other techniques for compressing binary memoryless sources
are worth mentioning even though they do not use run-lengths explicitly. Such
techniques are sometimes referred to as bit vector compression techniques.
Whereas run-length coding relies directly on the occurrence of runs of symbols, bit
vector techniques rely on the increased occurrence of the more frequent symbol.

A technique described by Jakobsson[Jakobsson78] divides the input bit stream
into lc-bit blocks each of which can be assigned a probability based upon the
number of 0s and 1s. These blocks and their probabilities are used to drive a
Hufiman code. Jakobsson analyses the scheme and shows that good compression
can be achieved even for k as low as 10.

In a later paper, Jakobsson[JakobssonS2] described a similar blocking
technique. The source bit stream is parsed into blocks of fr bits and an index
is constructed with one bit corresponding to each block. Each bit of the index is
set to 0 if its corresponding block is all Os. The source is then coded by sending
the index followed by the non-zero blocks. Before this takes place, the index is
coded in the same way. This process repeats iteratively until a predetermined level
count is reached.

L.5.2 Dictionary Techniques

One of the most obvious redundancies of many data sets (and in particular text
files) is the repeated occurrence of substrings. For example, a particular identifier
may be referred to in a program text many times. It is therefore not surprising
to find that a great many data compression techniques have been based on the
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detection and elimination of these repeated strings.26 Techniques that "f.act"orize,,
common substrings are known as "dictionary techniques,t.

Dictionary techniques construct a dictionary of common substrings either on
the fly or in a separate pass. Channel instance strings are associated with each
dictionary entry and the message is transmitted by parsing the message into
dictionary entries and transmitting the corresponding channel strings. Dictionary
techniques can be fixed-to-fixed (e.g. entries are all the same length and are
mapped to fixed length codes), fixed-to-varying (e.g. dictionary consists of n-
grams,27 which are coded using a Huffman code), varying-to-fixed (e.g. dictionary
contains different length words which are coded into 12 bit integers) or varying-to-
varying (e.g. dictionary contains arbitrary strings which are coded using Huffman
coding) (Figure 4).

L.6.2,L Parsing Strategies

Given a dictionary and a message, there are many ways in which the message
can be expressed in terms of the dictionary. For example, if the dictionary
contained the strings listed in Table 2, and the message was wooloomooloo, the
message could be parsed in any of the following ways.

woo-1oo-moo-1oo

woo-loom-ooloo
woo-Ioomooloo

wool-oo¡n-oo1oo

¡rool-oomoo-1oo

The way in which a message is parsed affects compression. In the example, if
each word was mapped to a fixed length cod.e, a two-word parsing would use half
the space of a four word parsing. A number of different parsing algorithms exist
which vary in speed and efficiency.

An optimal algorithm can be constructed by mapping the parsing problem
onto a shortest path problem and solving that (Figure 5). The arcs of the graph
are labelled with dictionary entries (with their associated codeword length cost).
The nodes correspond to positions in the message. The approach is more efficient
than it might sound because for a given dictionary, most strings have cut points
at which a parsing division must occur. In the example, a cut point would occur
26 The term "string" is usually taken to mean a text string. In this context the term includesarbitrary byte streams. By ttstringtt is meant ,,sequence
27 .þrn n-gram ts any sequence of instances of length n.

of source instances".
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Dictionary
loo
loom
loomooloo
moo

ooloo
oom

oomoo

woo
wool

This dictionary, which is used in the wooroonooloo example has been specially
designed to highlight the ambiguity of the parsing problem. This dictionary
doea nol have the prefix property (Section 1.2).

Table 2: Example dictionary.

at woo-loo¡nooloo if the word wool were not in the dictionary. The end points of
the message are always cut points.

woolo omo
loomooloo

woo

For a given message and a given dictionary, the parsing problem can be mapped
onto the shortest path problem by constructing a dirãcìed acyclic graph åf ar
possible parses. The graph can then be solveã in linear tirne using ãynamic
programming. This graph corresponds to the wooroomooroo example-.

Figure 5: Parsing problem mapped onto shortest path problem.

The problem of optimal parsing is similar to the problem faced by the Tþ[
typesetting system of breaking paragraphs into lines[Knuthzg][Knuthga]. ThX
uses dynamic programming to solve the problem. Dynamic programming was
earlier proposed as a solution to the parsing problem by wagner['wagnerz3] who
showed that for a given dictionar¡ optimal parsing could be performed in time
linear in the length of the text to be parsed. It should be noted that the problem
of choosing an optimal ilictionary for a given text is NP-complete[Storerg2].

oloo

om

ooloo
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Although optimal parsing can be implemented with reasonable efficienc¡ much
faster techniques exist that perform nearly as well. The LFF (longest fragment
ffrst) heuristic examines the entire string and iteratively replaces the longest
matching substring with its codeword. By far and away the most popular parsing
algorithm, however, is the "greedy algorithm", which works sequentially through
the string parsing at each step the longest dictionary entry that matches the next
few instances in the message. In the example above, the greedy parsing algorithm
would parse wooloomooloo as wool-oomoo-1oo. Greedy parsing is not optimal;
by parsing the longest phrase first (woo1), the algorithm misses out on the big
ptize (loomootoo). In practice, greedy parsing performs nearly as well as optimal
parsing but is simpler and faster[Schuegraf'14]. Unless otherwise stated, all the
dictionary techniques reviewed in this chapter use greedy parsing.

L.6.2.2 Static vs Semi-Adaptive Dictionaries

In their book on text compression[Bell89], Bell, Cleary and Witten divided
dictionary techniques into static and semi-adaptive techniques. Static techniques
use the same dictionary for all files. This enables the dictionary to be embedded in
the compression program; it need not be transmitted. Semi-adaptive techniques
construct a different dictionary for each message and transmit the dictionary
along with the coded message. Static techniques are one pass and semi-adaptive
techniques are two pass.

Unfortunately, much of the literature on dictionary techniques does not
distinguish between static techniques and semi-adaptive techniques with many
authors failing to specify clearly whether the technique they are describing
transmits a dictionary.

l.ó.2.3 Early Dictionary Techniques

The earliest work on dictionary techniques seems to be by Schwartz [Schwa-
rtz63] who described a greedy-parsing static-dictionary technique that replaces
words (in a text) matching dictionary entries with fixed length codes; text that
doesn't match is transmitted verbatim. The theoretical basis of the technique is
that 500 to 1000 well chosen words will cover about 75% of most English texts.
This early work is interesting because it employed a ,,split dictionary,, in which
one part contains word roots and the other part contains word endings. This
organization resulted in a small dictionary that could synthesize a large number
of long words' The authors discuss techniques for automatically improving the
dictionary given extra training texts.



Section 1.5: Thirty Yeørs of Ad, Hoc Data Compression 4L

Four years later, White[White67] presented a similar, greedy-parsing static-
dictionary technique that used fixed length codes. The dictionary consisted mostly
of highly probable English words but also contained special strings, capitalized
words and suffixes. The technique contained a lot of ad-hoc tuning to cater for
the specialized class of texts being compressed. The authors concluded that a
dictionary containing 1000 words will yield about 50% compression for English
text.

Other early work on dictionary coding was done by Notley[Notley7o] who
described a multi-pass algorithm to construct a dictionary of commonly occurring
substrings (a "Cumulative Occurrence Library"). The technique was designed
for authorship fingerprinting but Notley also admits to a data compression
application. On each pass, greedy parsing is used to find the longest matching
dictionary entry. If there is no matching entry, a new symbol is added to ihe
dictionary. If there is an entry, the entry's count is incremented. If a count
reaches a threshold, a new entry consisting of the concatenation of the entry and
the previously parsed entry is inserted into the dictionary. Entries with a low count
are discarded. The dictionary develops during the sequence of passes. The message
is coded by transmitting the dictionary and then the message coded using fixed
length coding. Mayne and James[Mayne75] developed this technique further by
investigating heuristics for adding and removing dictionary entries.

Many of the earlier dictionary techniques for text compression use words as
dictionary entities. Clare, Cook and Lynch[Clare72] noted that the words of
natural language texts exhibit a Poisson rank-frequency distribution (see also

lzipfagl with a small number of common word,s accounting for a large proportion
of word occurrences. If a fixed length coding scheme is used, dictionaries tend
to become less efficient the bigger they get. The solution proposed was to use
arbitrary text fragments as dictionary entries rather than words.

One of the strangest dictionary techniques employs both a dictionary and
run length coding. Lynch[Lynch73] achieved good compression using a two pass
teãhnique. In the first pass, each instance of the message is replaced by a fixed-
length code, whose 0 bit content increases with the probability of the instance,s
symbol. The most frequent symbol is represented by oooooooo and the least
frequent symbol by 11111111. The second pass performs run length coding on the
result. This technique was extended to use digrams and 12-bit codes.

other early work was done by Mccarthy[Mccarthyz3] who described a
technique for constructing a dictionary from a sample of the file to be compressed.
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McCarthy went to more effort to make sure that the dictionary and the consequent
encoding were closer to optimal. The dictionary construction procedure iteratively
selects strings according to the compression they will yield. Optimal parsing is
implemented using the dynamic programming technique described in [Wagner73].
The resultant parse is used to drive a Huffman code,

Rubin[Rubin76] continued McCarthy's approach, experimenting with differ-
ent methods for building the dictionary. Rubin constructed the dictionary iter-
atively, parsing the message on each pass and maintaining occurrence statistics.
After each pass, the dictionary'was refined by "augmenting" (adding symbols to)
the "best" (according to some metric) entries and inserting them to the dictio-
nary. Rubin tried a number of metrics for "bestt' based on length and frequency
and concluded that frequency alone was the best measure. Three augmentation
schemes were implemented: prepend a symbol, append a symbol and append an
entry. The last method worked best, presumably because adding a symbol to the
start or end of a group can simply rob the symbol from an end of another group
(in the message string). Rubin tried coding the dictionary entries using Huffman
coding but found it ineffective because the dictionary usually contained roughly
equiprobable entries.

L.5.2.4 Later Dictionary Techniques

Wolff[Woltr78] described a static dictionary technique in which the dictionary
is constructed during multiple passes over the text. Each pass adds a new entry
to the dictionary. The number of passes depends on how large a dictionary is
required. Before the first pass, the dictionary is primed with the character set.
On each pass, greedy parsing is used to parse the message string into dictionary
phrases. During the pass, a count is kept of the frequency of all pairs of phrases. At
the end of the pass, the most frequently occurring pair are added to the dictionary.
The message is coded using a binary fixed length code.

Cooper and Lynch[Cooper78] described a greedy-parsing/fixed length code
dictionary technique for compressing files containing chemical structure informa-
tion (\Ä/iswesser Line Notation).

\Meiss and Vernor['Weiss78] described a dictionary technique that employs a
dictionary of. 7024 text words. The technique replaces words in the message text
by sixteen-bit codes. Text that does not match a dictionary entry is included
verbatim. Two of the spare six bits in the dictionary pointers are used to indicate
the presence of a pointer, one is used to indicate that the word,s first letter is
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capitalized and three are used to describe how the coded word ends (e.g. question
mark, comma).

Because dictionary compression techniques require a lot of table searching, an
investigation rvas made into how hardware could be employed to perform this task
more quickly. Lea[Lea78] described an associative memory that could be used to
eliminate the table searches in dictionary compression schemes.

Compression can be achieved by finding the rn most frequently occurring
n-grams (typically n is 2 or 3). Yannakoudakis, Goyal and Huggill [yan-
nakoudakisS2] described such a method. They note that this method is "an
attempt to convert the normal hyperbolic distribution of single letters to a rect-
angular or equiprobable distribution of symbol groups (n-grams) by considering
frequently occurring strings of up to r¿ letters in length.,, (p. rZ) Again the as-
sumption of fixed length channel strings is made.

Surprisingly good compression has been achieved by applying Huffman coding
to the output of a dictionary compression scheme[BassiouniS6]. This is an unusual
approach because compression algorithms aim to produce white noise. In this
algorithm, the second pass catches some redundancy missed in the first. The first
phase consists of a dictionary compression scheme that augments the dictionary
entry numbers with bit fields to indicate capitalization and various common
endings. Run length encoding is used as an alternative to referring to a dictionary
entry. The second phase uses a multi-group technique (Section 1.4.g) to remove
redundancy in the output of the first pass. Although particularly ad-hoc, this
technique removes approximately 65% of English text files and illustrates how the
combination of a number of techniques can sometimes be effective.

1.6.2.6 Compressing the Dictionary

Once the dictionary has been constructed and the message encoded, it remains
only to transmit the dictionary and the coded message. A final opportunity
remains for compression if the dictionary itself can be compressed. One way of
doing this is to construct a string of overlapping dictionary entries and store each
entry as a pointer into the string. Gallant analysed the problem of finding a
minimal length superstring of a finite set of substrings[Gallantgo] and proved
that it was NP complete. Efficient algorithms may exist for this problem but it is
likely that they would be neglected in practice for the same reasons that optimal
parsing is neglected.
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The problem of compressing the dictionary can be avoided by organising
the transmitter and receiver to simultaneously build identical dictionaries as

compression proceeds. This idea has been incorporated into the class of Lempel-
Ziv compression algorithms. Lempel-Ziv algorithms are theoretically based,
fast and have so completely surpassed the dictionary techniques just described
that discussion of them is deferred to a section specifically devoted to them
(Section 1.7).

1.5.3 Exploiting Speciffc Knowledge

The techniques described so far are fairly general. Most of them will perform
effectively on a variety of data. However, if more information is known about the
data to be compressed, the compressor can be tailored for the specific situation.
Examples of specific data sets are computer programs, English text, bibliographic
data, chemical data, signal data and sparse databases.

If detailed information is available about the structure of messages, a specific
compressor can be constructed which exploits that knowledge. Katajainen,
Penttonen and Teuhola[KatajainenS6], described a method for compressing
program files in which a parse tree is constructed and coded using Huffman coding.
A better technique is to construct a probabilistic grammar for the set of source
messages and code each message as a sequence of syntax graph decisions[Stone86].
Such a technique could be embedded in programs that automatically generate
interactive programming environments[Repsg4].

L.5.4 Data Base Compression Techniques

The requirements of data base representation lead to a perspective of data
compression slightly different from that of mainstream data compression research.
Data base compression differs from ordinary file compression in two ways. First,
data bases tend to be sparse and are unusually easy to compress. Second, there
is usually the need to be able to access the data quickly and at random. These
characteristics tend to constrain the set of possible data compression techniques to
those that provide a simple mapping. An example is the compression of file indexes
that must remain accessible in their compressed state. This section describes some
of the techniques used to compress data bases.

In a sequence of sorted items, it is usual to find that adjacent elements share
a common head string. The technique of differencing reduces the length of
each element by replacing the head string that each shares with the previous
element by a number that is the length of the shared head string. This is called
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front-compression. fn rear-compaction2s as much of the tail of a word is removed
without making it identical to the previous word. Rear compaction is capable of
losing information and is suited only to specialist indexing applications.

Eggers and Shoshani[EggersSo] presented a method for compressing large,
sparse data bases. In a sparse data base, one particular constant value fills most
of the data base. The first stage of compression is to serialize the data base. The
constant is then deleted from the data stream and a map is constructed containing
the location of the deleted runs and the remaining data. This operation can be
repeated to eliminate other constants in the remaining data. This technique allows
search techniques with a logarithmic access time (e.g. binary search) to be used
on the compressed data base. The second part of the paper describes how this can
be extended to the case of databases not all of whose keys are used.

Other ad-hoc techniques can be used to great effect. The printable members
of the ASCII2o character set utilize only seven of the eight bits of the standard
ASCII code and it is possible to store each character in only seven bits. If |ower
case characters are unused, only six bits are required. By eliminating these bits,
text storage can be reduced by 25%. Fixed length text data is notorious for
containing trailing blanks. tailing blanks can be eliminated by deleting them
(i.e. compaction, if the definition of a text file allows it) or by replacing them
using run-length coding. Another method for reducing ttwhitespace,' is to use
tabbing, in which runs of blanks are replaced by a single tab character.

Scientific data bases offer enormous scope for compression[BassiouniSS]. They
often contain long sequences of almost identical numbers (taken perhaps from a
slowly varying instrument) which can be compressed using a differencing technique.

In general, the techniques used to compress data bases are oriented around
recovery speed and the properties of the specific data being compressed. Data
bases are usually so easy to compress that the extra effort required to shave off
an extra few percent is usually not considered worthwhile. As a result, techniques
developed to represent data bases are not at the frontier of the field.
2E A' compressio¿ techniqu-e-r.lever 

-loses informatlon. A compaclion technique can sometimeslose informätion[severãncäãsiÌil!ùË;ii¡tïi."ïËi;';'h"ri."í.'ä"cerned only with compression
techniques.

2e American Standard Code for Information Interchange.
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1.5.5 The Practitionerts View

With so many compression techniques available, it is interesting to observe the
reaction of practitioners in the field whose job it is to manage large bodies of data.

There is an abundance of literature which reviews data compression techniques
(".s. [Reghbati8l], [GottliebT5], [cooper82], [severanceg3], [petersonzg]).
Most of these works describe a subset of the ad-hoc data compression techniques
and follow it up with a brief comparison in which a particular point of view
is put forward. Most papers do not even mention the modern techniques
described in Section 1.8. For example, a recent reuiew paper[LelewerS7] in
a reuiew journal described static and dynamic Huffman compression in great
detail, briefly described LZ78 and Bentley, Sleator, Tarjan and Wei's move-to-front
scheme[BentleyS6] but only mentioned, Markov modelling (a major focus of this
thesis) in the fourth last paragraph of the paper. The issue of modelling was hardly
addressed, as \Mitten and Bell pointed out in their review of the paper[WittenSg].
Hopefully the modern paradigm will become well known in a few years. Some up-
to-date works are appearing[Helman88] [\MittenSz] [AbrahamsonSg].

With so many techniques to choose from and few formal guidelines, it seems
that the reaction of the average data practitioner has been to ignore data
compression altogether! \Melch[WelchSa] gives three reasons for the neglect of
data compression: poor execution speed, the inability of most techniques to
compress different kinds of data, and the unpredictability of the size of compressed
data. Severance[Severance83] also gives three reasons: designers underestimating
the compression possible, wariness of the extra complexity introduced by a data
compression layer, and the narro\Mness and mathematical mystique surrounding
the data compression literature.

"What is clear nevertheless is that typical commercial databases can in fact be compactedby 30-90%, and that this should be of_ more applied interest than current usage of
compression techniques would indicate.,, [SeverancãSS]

It is of significance that most revieïì/ers complain that data compression
techniques are not used as much as they should be. Perhaps the point to be made is
that some data compression is better than none. Incleed, as the greatest gains are
to be made by taking the simplest measures, it is surprising that data compression
techniques are not already in wide practical use. As simple a technique as null
suppression can reduce a data base by up to 70%[SeveranceS3]. In addition, there
are indications that data compression does not significantly impact on processing
efficiency and in some cases can actually improve it[Smith76]. This is in contrast
to the commonly held belief that data compression will slow one,s system down.
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Another problem with data compression is deciding how it is to be used. Data
compression mechanisms can be located in disk drivers, in ordinary programs
(e.g. editors), in separate utilities that must be explicitly invoked or in background
jobs. Choosing the location can be difficult. Perhaps one of the most aggressive
implementations is described by Raita[Raita87] whose program hunts down and
compresses userst files that have not recently been accessed.

To summarize, there is a very large gap between data compression research and
practice. This gap can only be closed by commercial pressures (as has happened
with facsimile compression) or by researchers presenting a simpler, more concrete
image of data compression.

1.6 Adaptive Data Compression

All the techniques so far described either use fixed statistics, or make two
passes over the message, the first pass to gather statistics and the second. pass to
code the message (using the statistics). Bell, Cleary and Witten[Bell8g] called the
fixed statistics techniques "static" and the two pass techniques ,,semi-ad.aptivet,.

Static and semi-adaptive techniques are unsatisfactory for general-purpose
data compression. Static techniques cannot adapt to unexpected data, and semi-
adaptive techniques require two passes, making them unsuitable for communica-
tion lines.

"Adaptive" techniques combine the best of static and semi-static techniques
by making a single sequential pass over the message, adapting as they go. At each
step, the next piece of message is transmitted using a code constructed from the
history. This is possible because both the transmitter and receiver have access to
the history and can independently construct the code used to transmit the next
piece of the message.

An example of an adaptive technique is a technique in which each instance is
transmitted using a Huffman code constructed from the history. A straightforward
implementation would be prohibitively inefficient because it would require that a
new Huffman tree be constructed from the history for each instance transmitted.
The trick is to design a data structure that can be incrementally updated at low
cost' Such a dynamic technique has already been devised for Huffman coding
(Section L.4.4).

The advantages of adapting during a single pass might be considered reason
enough to dispense with static and semi-adaptive techniques altogether. In fact,
arguments exist that permanently lay the question to rest.
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A static technique will always yield better compression than an adaptive
technique on the data for which the static technique has been tuned. This is
because the adaptive technique must spend time learning what the static technique
already "knows". The best that could be expected under these conditions is
that adaptive algorithms use up at most M nats more channel space for any
message than the best static model, where M is the amount of information
contained in the static model. Such a theorem has been proven under fairly
general conditions[Cleary84] (in particular, the source must be ergodic). Static
models exhibit an unbounded inefficiency if ihey are fed unsuitable data. Thus,
the only advantage that static models have over dynamic models is a constant-
order compression advantage for the particular kind of data for which they were
tuned.

The same theorem shows that adaptive techniques are superior to semi-
adaptive techniques. At best, a semi-adaptive technique can construct and
transmit the optimal static model for the given data. Transmission of the model
will cost M ¡ats, If an adaptive model uses no more lhar- M nats more than the
best static model (the proof of which was discussed in the last paragraph) then it
can perform no \Morse than the semi-adaptive model. Thus semi-adaptive models
have r¿o advantage over adaptive models.

The conclusions above enable us to add a ne\M assumption to our view of data
compression.so

Assumption 5: Compression takes place in a single pass; the transmitter
can only see a small finite part of the remainder of the message.

1.7 Ziv and Lempel Algorithms

L.7.L Adaptive Dictionary Compression

All dictionary techniques have to find some method of transmitting the
dictionary from the transmitter to the receiver. The dictionary techniques that
we have seen so far do this either by using a static dictionary which doesn,t need
to be transmitted (static techniques) or by transmitting the dictionary before
transmitting the message (semi-adaptive techniques).

Adaptive dictionary t
itly. Instead the transmitter
adding to it as each instance

echniques do not ever transmit the dictionary explic_
and receiver both build the dictionary incrementally,
(or group of instances) is transmitted. At each point

30 The previous assumptions are listed in Section 1.1.3
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during the coding, the current dictionary is used to transmit the next portion of
the message.

The notion of sender and receiver simultaneously maintaining identical models
of the source is fundamental to the modern paradigm of data compression
(Section 1.8). Thus? even though Ziv and Lempel techniques are dictionary based,
it would be unfair to classify them as ad-hoc techniques.

L.7,2 The Launch of LZ Cornpression

Ziv a¡d Lempel coding (LZ codingsr) refers to two distinct but related
coding techniques first presented by Ziv and Lempel in two papers published in
L977lZiv77] and 197S[Ziv78]. The fundamental idea behind LZ algorithms is
that substrings of the message are replaced by a reference (e.g. an (offset,length)
tuple) to a substring in an earlier part of the message.

Ziv ar.d Lempel's approach was to hide a good idea in a sea of mathematics.
Bell, Cleary and \Mitten restate this feeling in gentler terms, summarizing the
problem well:32

"It is a common misconception that LZ coding is a single, well-defined algorithm. The
original LZ paperc were highly theoretical, and subsequent accounts by ãther authors
give more acceesible deocriptions. Because these subsequent descriptions ãre innovative to
some extent' a vely blurred picture has emerged of what LZ codingreally is. With so many
variations on the theme, LZ coding is best described * u g.oritg family of algorithms,
with each member reflecting diflerent design decisions." [BellSg] (ãection 8.3(v))

In order to avoid such confusion, the two original algorithms will be described
in detail, followed by a discussion of their variations. A more detailed discussion
and explanation of. LZ algorithms and all their variations can be found in the
book by 8e11, Cleary and Witten[Belt89] which introduces a naming scheme for
the algorithms based on the name of the authors. The two algorithm s by Ziv
and Lempel are named LZ77 and L278. Mathematical notation used in the
following descriptions does not follow the original papers, but rather the book
whose notation is simpler.

.,t^t ^1î:9l9in-g"19 tBeU89], the techlique is usually referred to as "Ziv and Lempel coding,, (after
the ordering of the authors'names in the original-papers) but when 

""ro.ry*irãã 
ir r"i"tì?a\î"*

"LZ" coding (because of a histo
32- 

Quotes lgm qnd comments g| refer to ar-final draft of the book printedon 16 May.1988_..Permission to #r1.o"ai j 
"";ì;ri"g'th";ìì ïas a drafr)was granred by Tim Beu in an et ;g"ì;ih; ,", oftti* l-n;i;;;l'öl;"äiïí

1988 for which appreciation is recorded.
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1,7.3 LZ77

The LZ77 algorithm takes two parameters:

o .l/ € ZlL,æ), the length of a sliding window buffer.

¡ -t'€ ZIL,N - 1], the maximum length of a matching string.

with .F < N. Typical values that are used in practice are .l[ x 2L3 and .t' æ 24;
as usual, pov/ers of two encourage an efficient implementation.

õ0

Message
slides out

Lempel Ziv Message
slides in

N-F N-F+1 N

The LZ77 algorithm slides the message through a buffer from right to left. The
Lempel holds the text already transmitted and the Ziv holds the text to be
transmitted. At each step, the next part of the Ziv is transmitted to the receiver
by expressing it as a substring of the Lempel using an ofset and a length.

Figure 6: The LZ77 algorithm.

Execution of.LZ77 revolves around a sliding window buffer of length N through
which the message is passed from right to left. The buffer's elements are numbered
consecutively with 1 at the far left and .ll at the far right. VVe will call the ¡f - F
leftmost elements (elements [1, ff - ^F]) the Lempel and the .F rightmost elements
(elements [¡f - F + 1,¡f]) the Ziv.s3 The Lempel holds the most recent ¡f _ F
instances that have been transmitted and the Ziv holds the next .t' instances to
be transmitted.

To start, the algorithm initializes the Lempel to a pre-defined string and slides
the first part of the message string into the Ziv. Coding proceeds by finding the
longest substring in the buffer whose leftmost element lies in the Lempel and which
matches the first zeto or more instances in the Ziv, and transmitting it (along with
the next instance ø) as the triple (s,I,a) where s e z[lrN - F] is the position
in the Lempel where the matching string starts,sa I e zl\,.F] is the length of the
matching string and ø € A is the instance following the matching string. The
message is then slid into the buffer from the right until the next instance to be
encoded is at the leftmost element of the ziv (i.e. element ¡,r - r+ 1).
33 warning: This ziu and. I'emper terminology is unique to this thesis.34 This is traditionally indexed from the right-orl position (¡r - r) of the Lempel with(N - r')---+ 1.

W o o o o m o o o o
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The following notes reveal how ingenious the algorithm really is:

o The extra instance a is transmitted to cover the case that no match is
found (i.e. when l: 0).

¡ The matching string can start near the end of the Lempel and extend
into the Ziv. This works because the decoder will have reconstructed the
part of the matching string in the Ziv by the time that section itself must
be copied. This feature means that the algorithm efficiently codes runs of
identical instances.

o The "dictionary" for this technique consists of every substring in the
Lempel. Despite this, it is never explicitly transmitted because it is

updated incrementally by both the coder and the decoder.

¡ The algorithm is locally adaptive (Chapter 3) because its model is based
solely upon the previous -f/ - .F' instances.

o Searching the buffer for the longest matching string is expensive but
bounded by N and .t'. The algorithm codes and decodes in time linear in
the length of the message.

¡ Decoding is extremely fast. The decoder uses a buffer identical to the
coder and repeatedly copies the substrings specified by the stream of triples
from the Lempel to the ziv. The message comes out the leftmost side of
the Lempel.

o Because N and F are finite, s, / and a, carl all be packed into fixed-length
bit fields.

o The sliding window can be implemented using rnod N arithmetic
(Section 4.5), which eliminates the need for explicit buffer sliding which
becomes expensive for large .ll.

o Ziv and Lempel showed lt'at LZTT could perform at least as well as a
semi-adaptive dictionary technique.

þI
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L,7.4 LZ77 Variants

Bell, Cleary and Witten[Bell89] identified four LZ77 variants. Rather than
enumerate them, we will briefly mention the modifications they introduced.

Inflnite \ü'indow \Midth: LZ77 uses a fixed length window which means that its
model is always based on the previous ¡ú - ^F instances seen. However, if N is set
to oo, the model is based on the entire history. For such a high I{, transmitting s

(the offset) becomes a problem which can be solved by using a varying length code
for s in which an integer of value i is coded in O(log2 i) bits.sõ This means that the
more recently a string has occurred, the shorter is its code string. With the window
width limit removed, one might suspect that a straightforward implementation of
the technique would have a quadratic time complexity in the size of the input
message. However, Rodeh, Pratt and Even[Rodeh8l] showed that sophisticated
data structures can reduce the time cost to linear complexity.

Infinite Maxirnum Matching Length: The maximum matching length.F'can
be similarly generalized.

Eliminate fnstance: Transmitting an instance (ø) as the third element of a
triple is wasteful if the instance could have appeared as part of the next triple. In
one variant, each tuple is preceded by a bit which specifies whether (ø) or (s, /) is
to be transmitted. At each step, the coder chooses the alternative that will most
compactly represent the matching substring.

Variable width pointers: Brent[Brent87] described a technique in which the
results of a variant of. LZ77 are coded using a Huffman code.

1.7.6 LZ78

The LZ78 algorithm is similar to LZ77 except that the Lempel is replaced by
a continually growing dictionary of. d e Z[7,oo) phrases (strings) numbered from
0 to d - 1. No limit is placed on the length of the Ziv. The algorithm has no
parameters.

3õ A good discussion of this form of integer coding can be found in Appendix A of [BellSg]
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Lempel

Message
slides out

d=6

Ziv (no bound on length)

õ3

I

Figure 7: The LZTï algorithm.

To start, the algorithm initializes the dictionary to a single phrase consisting
of the empty string and sets d <- 7. At each step, the algorithm transmits a ne\ry
phrase p e S in the Ziv consisting of the longest matching phrase m € S in the
dictionary plus the next instance a € A. Thus p : ma a,nd Zia:,rp...,r. p is
transmitted as rn's dictionary entry number (requiring lI"Sz û bits) followed by a
which is transmitted raw. The new phrase p is then inserted into the dictionary,
some more of the message is slid into the Ziv, and the process repeats.

The effect of this is to parse the input into phrases, each of which consists
of the longest previous phrase plus one instance. Ziv and Lempel proved that
this technique converges on the entropy of a stationary ergodic source as the
message length tends to infinity. While this result is important theoretically,
convergence is so slow that the property is meaningless in practice. Bell, Cleary
and Witten[Bell89] calculated that for a symbol set of 256 the technique wilt still
be 20% inefficient when d :240.

Here are some important features of the algorithm:

o The dictionary in this algorithm can be efficiently implemented using a
digital search tree (Figure 8). Each parsing step involves travelling from
the root to the node corresponding to m, and then attaching a new node
(corresponding to p) Io rn with an arc labelled ¿.

o ENEEI
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Lempel

Message
slides out

Ziv (no bound on length)

54
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The dictionary (Lempel) of the LZ78 algorithm can be organized as a forwards
tree. At each step, the algorithm transmits the number of the tip of the longest
matching branch. The new phrase is then added by appending a new leaf toìhe
tip node, This diagram depicts the state of the algorithm midway through the
processing of the string wootoonooloo.

Figure 8: The LZ78 algorithm implemented using a tree.

o As it stands, the size of the dictionary increases forever. In practice,
memory will eventually run out and some action must be taken. A common
solution is to empty the dictionary and continue.

Langdon[LangdonSS] cast light on the underlying mechanism of. LZ78 by
noting that following its creation, each node in the tree gains one d.escendentso for
each occurrence of the node's phrase (or an extension thereof) in the subsequent
sequence of phrases. Because the code space is divided evenly between nodes,
Lz78 is really using a statistical technique at the phrase level.

Langdon showed that the actual probabitity that could be assigned to each arc
of the LZ78 tree is cf p wherc c and p are the number of descendents of the child
and parent nodes of the arc. In the wooloo¡nooloo example (Figure g), the arcs
from o to or and from o to oo have probabitity 1/3, as does the imaginary arc
from o to o (i.e. stop at that node).

L.7.6 LZTB Variants

Bell, Cleary and Witten[Bell89] identified six LZ78 variants. Rather than
enumerate them, we will briefly mention the modifications they introduced.

Eliminate Instance: The explicit transmission of the last instance ¿ of each
new phrase p can be avoided by priming the dictionary with the symbol set and
transmitting ¿ as the first instance of the next phrase[Welchg4]. This means

2

o o o o

æ Here, the set of "descendents" of a node r is identical to the set of nodes contained in thesubtree rooted in r. The set includes r.
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that the decoder has to decode the k + 1'th phrase in order to insert the k'th
phrase into the tree. A special case arises when the /c + 1'th phrase's rn is the
same as the fr'th phrase, which can be handled by noting that the fr'th phrase,s
ø must equal its rn's first instance. Eliminating the transmission of ¿ was the
most important modification made to L278. A highly optimized version of this
algorithm forms the core of the popular cornpress program that runs under the
UNIX[RitchieTS] operating system. An innovative feature of. compress is that
when it runs out of memory, it freezes the dictionary and empties it only when
compression performance drops.

Dictionary Management: \Mhen the dictionary becomes full, some variations
(e.g. [TischerS7]) remove the Least Recently Used (LRU) phrase to make room
for the new phrase, thus introducing local adaptivity similar to that of LZ7T.

Rapid Phrase Growth: The LZ78 algorithm grorn¡s its dictionary phrases one
instance at a time. In an effort to increases the rate of phrase growth, one technique
inserts the concatenation of the fr - 1'th and k'th phrase into the dictionary at each
step rather than inserting just the k'th phrase. Another technique inserts not only
the new phrase into the tree, but all substrings less that a maximum length whose
last instance falls within the phrase in the message. When the dictionary is full,
phrases that have only been used. once are removed and compression continues.
Eventually the dictionary becomes static.

Window/tree approach: The highest perform ance LZ algorithm to date is the
LZFG[Fiala89] algorithm which has aspects of both LZTT and.LZTg. The message
is passed through a sliding window buffer as in L277, but the instances in the
window are parsed into phrases as in L278. A tree is maintained that contains only
those phrases in the window. Coding takes place by transmitting (offset,length)
pairs (as in LZ77) that match the buffer starting at a phrase boundary. This
variation is fast, gives good compression and manages memory effectively.

More detailed discussion of and references to LZ77 and LZ78 and their variants
can be found in the book by Bell, Cleary and Witten[BellSg] from which much of
the information in this section was obtained.

Ziv and Lempel have continued and extended their work in data compression.
In [Lempel86] they follow up that work by extending their results to two
dimensional data (e.g. bitmaps).
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L.7,7 Other Dynamic Dictionary Techniques

A few adaptive dictionary techniques have arisen that don't quite fit into the
Ziv ar.d Lempel mould. Bentley, Sleator, Tarjan and Wei[BentleyS6] described
a one-pass locally adaptive technique that maintains a list of words. No strict
definition of a word is given. At each step, the next input word is compared with
all the words in the list. If the next input word is in the list, the number of the
word in the list is transmitted and the word is moved to the head of the list. If
it isn't in the list, the word is transmitted explicitly, preceded by a number that
is one more than the number of elements in the list, and then the word is added
to the list. The scheme requires that the word numbers be transmitted in space
proportional to the logarithm of the number. Ryabko[Ryabkog7] claimed that
he invented a similar algorithm.

This work attracted criticism from Horspool and Cormack[HorspoolgT] who
claimed that they had investigated this form of algorithm and found it inferior to
other, more popular techniques such as Ziv and,Lempel coding. More importan¡y
they stated that their experiments show that a climbing heuristic in which words
are moved one position up the list rather than all the way to head of the list,
performs as well as the LRU heuristic employed by Bentley et al. The climbing
heuristic is easier to implement.

Perhaps what separates the Bentley technique from the class of Ziv anð.Lempel
techniques is that it transmits words verbatim if they are not present in the list.
Ziv ar.d Lempel algorithms build up their dictionary implicitly and incrementally.

1.8 The Modern paradigm of Data compression

The algorithms that have been discussed up to this point all conform to the
blocking paradigm of data compression presented in Section 1.8. Even the recent
Ziv and Lempel algorithms emproy brocking, though the mapping from source to
channel strings changes at each step.

In the early 1980s, a new paradigm of data compression arose which we call the
modern paradigm of data compression. The modern paradigm is provably
better (in theor¡ with respect to compression) than blocking techniques and
contains many of the previous techniques as special cases. The remainder of this
chapter focuses on the modern paradigm and the compression techniques that
arose from it.
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1.8.1 The fnformation Market Place

The blocking paradigm of data compression can be likened to a market
place of two traders (model/coder) who can only trade by swapping (bartering)
goods (source strings/channel strings). The aim of each trader is to minimize
the difference in value (information content) between the goods being traded.
Unfortunately, this market of strings approach has the effect of warping the outlook
of the traders to the extent that the internal organization of each becomes governed
by the other. There seems little point in presenting strings of value 0.001 bits for
trade if the minimum valued channel string that could be swapped for it is worth
1 bir.

In particular, the bartering mentality has impacted badly on source modelling
which, up until recently, has been concerned. only with choosing sets of source
strings (dictionaries). An alternative to bartering is to find a currency of
information that would allow the modeller to get on with modelling and the coder
to get on with coding without recourse to each other.

1.8.2 Predictions: A Currency of Information

In the modernsT paradigm, predictions act as a currency of.information that
allows the separation of model and coder.

In everyday life, to ttpredict" means to nominate an event. If the event occurs)
the prediction is said to be correct. In data compression, the concept of a prediction
is generalized to the specification of a finite set of exhaustive, mutually exclusive
events and their probabilities. The "correctness" of such a prediction depends on
the closeness with which the prediction's probabilities match the true probabilities.

The question remains of what the events of a prediction should correspond
to (mean). Assumption 5 (Section 1.6) constrains the events to yield information
about the remaining part of the message. The set of events could range from the
set of all possible strings, to partial information about the next instance. Without
loss of generality we choose the set of events to be the set of symbols. This yields
the following advantages.

o Predicting a single instance is as powerful as predicting more than one
instance. Once a mechanism is established which predicts a single instance
it can be invoked recursively to predict as many instances as desired.

37 The term "modern" ìas b-een used to descr,jÞe the paradigm of data compression about to bedescribed. For example, from ¡wittenazj(iiì¡' "ihi. ão"i.å.trîìir, the more modern model-basedparadigm for coding. . .,,.
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o The instance is the smallest convenient unit of a message,

¡ Instance prediction data structures are relatively easy to manipulate.

We define the set of all predictions to be

P:Vpe P, p(A)+ R A Vae A, p(a) >0 A I p@) :I
aeA

Predictions are functions that map source symbols to probabilities. A prediction
p is called safe iff p(a) > 0, Va e A.

Although P is a good theoretical working definition of the set of predictions,
it cannot be used in practice because a p e P is capable of containing an infinite
amount of information (if, for example, p(a) is transcendental for some ø). In
practice, each prediction must be approximated by a member of the set of all
samples

X: Yr e X, a(A) + Zl0,æ)

Anyprediction peP canberepresentedasasample n e X withinfinitesimal
loss of accuracy by setting ø such that ø(ø) - I¡ s ap(a) < ø(o) * f where y
is an abbreviation for Doe¿,a(a). n is p rounded to a particular fixed-point
accuracy. The representation of predictions by a group of integers not only allows
a precise approximation to anv p,¡ but also allows predictions to be constructed
from collections of instances sampled under particular source conditions. Each
ø(ø) stores the frequency of symbol ø. Thus ø is a structure that can be used in
practice to turn instances into frequencies into predictions.

In summary, predictions form a currency of information. A piece of information
consists of a prediction and an outcome. Under the modern paradigm, without
Ioss of generalit¡ the events in a prediction can be restricted to the set of symbols.

1.8.3 The Modern paradigrn

The modern paradigm uses predictions to divide compression into separate
modelling and coding units. The modern paradigm is best summarized by a
diagram (Figure 9).
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Channel

Shannon Transmitter Shannon Receiver

Figure g: The modern paradigm of data compression.

Model: The model accepts a sequence of instances and produces a stream
of predictions, one for each instance. Each prediction is produced just
before the instance it predicts is read.

coder: The coder accepts a stream of predictions and a stream of
instances and produces a stream of channer instances.

Each step transmits an instance.ss At the start of each step, the model
constructs a prediction p (of the next instance) and passes it to the coder.
The coder uses the prediction to transmit the next instaîce a, using as close to
- lnp(ø) nats as it can. Meanwhile, the receiver's model has generated an identical
prediction which the decoder uses to identify the instance that was transmitted.
The transmitter and receiver both use the new instance to update their models.
The cycle repeats until the entire message is transmitted.
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Important features of the modern paradigm are listed below.

o The model (predictor) can be any deterministic automata so long as
it produces safe predictions in finite time. However, its predictions must
approximate the true probabilities if compression is to take place.

o The prediction for each message instance can be different.

The modern paradigm \Mas put together for the first time in a landmark paper
by Rissanen and Langdon[RissanenSl], who divided compression into modelling
and coding. Their main theorem showed that only one instance need be predicted
and is worth repeating here.

"For every adaptive or nonadaptive recursive model using alphabet extension, there
existe another adaptive or nonadaptive recursive model resf,ectivety, using ,ro .lph"b"t
extension, which has the same number of parameters (anã hence 

'requirirrg 
thå ,am"

number of binary digits for its description), and which ha¡ the same ideal-codelength
- log P(s) for everv string s. The converse is not true." [Rissanengl](p. lg(v.(iti)

To assist in proving this theorem (for a\I finite strings), the authors defined
sources as producers of finite strings. This can be contrasted to classical sources
which produce infinite strings.

Cleary and Witten's theorem (Section 1.6) showing that adaptive codes are at
least as powerful as static and semi-adaptive codes, in conjunction with Rissanen
and Langdon's theorem showing the superiority of single-instance prediction over
alphabet extension, establishes the modern paradigm as superior, in terms of
compression, to other classes of algorithm.

1.E.4 Modelling

A model conforming to the modern paradigm must produce a prediction for
each instance in the message. Each prediction is based upon the history. The set
of all models is thus defined as

C:VceC,c(S)+p

A close inspection of this definition reveals that it also serves to define the set of
sources' Without loss of generality a source can also be defined as a generator
of predictions. For both models and sources, predictions are used as a method of
expressing what the source is going to do next. Thus the set C ilescribes th,e set
of aII sources as well as the set of all mod,e|s. The incremental construction of a
model can be viewed as the reconstruction of the source from the historv.
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Because real-world sources are extremely complex, it is impractical to recon-
struct them exactly. Instead, it is usual to restrict consideration to a class of
sources of a particular complexity. Modelling then consists of using the history to
select a particular model from the class. Thus the class of moilels lhat a conxpres-
sion o,lgorithm is capable of constructing will determine the class of sources that it
is capable of compressi,ng.

The actual class of sources selected for modelling depends on the sophistication
of modelling algorithms and the amount of processing power available. Modelting
is an open-ended task because its complexity is bounded only by the complexity of
real-world sources; as long as the need for greater compression remains, researchers
will continue to develop increasingly sophisticated models. Eventually the models
will incorporate mechanisms of artificial intelligence.se F\rture data compressors
might excel at compressing ne\¡¡spaper articles because of their knowledge of world
politics.

To date, the most successful models are Markov models. Because Markov
models are central to this thesis, discussion of them is deferred until Section 1.10
where they are discussed in detail.

1.8.5 Coding

The modern paradigm requires a coder with the following properties.

o Instances must be coded and decoded in the same order.

o Instances of symbols with probabilitv p(a) must be coded in as close to
- lnp(ø) nats of channel instances as desired.

This may seem a tall order but without such a coder, alphabet extension would
prevail over single instance predictions. Luckily, the recently developed technique
of arithmetic coding satisfies these conditions. Discussion of arithmetic coding is
deferred until Section 1.g.

se The foundation for this development is ¡F", 
";;;;Ë;ö;ä;ïhï;ä"";i;fl;'r,"rlïïö,:i'-"åltl;'åfå:y"".1ü: 

,l; 
ä.,:l*,,lli:t?:lï:'"råE:iìîî

complex sequences,
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1.8.6 Not So Modern A Paradigrn

The modern paradigm of data compression consists of four main concepts: the

separation of modeliing and coding, adaptive modelling, single-instance prediction

and arithmetic coding. Each of these concepts was present in Shannon's original
papers ([Shannon4S] [ShannonSl]). The separation of modelling and coding

is implicit in Shannon's- concept of entropy. Shannon advocated single-instance

prediction. The Shannon-Fano code employs the range division concept of
arithmetic coding. A later paper by Shannon covers adaptive modeliing and

contains a diagram (Figure 1O) that is almost identical to Figure g.

ORIGINAL
TEXT

COMPARISON COMPARISON ORIGINAL
TEXTREDUCED TEXT

Fíg. 2-Communication s1'stem using reduced text.

Figure 1O: Shannon's compression paradigm.

(Reproduced photographically from figure 2 of. [ShannonSl])

Shannon's predictions \¡/ere mere ordering of symbols. Shannon used the
metaphor of identical twins to describe the concept of mutually-tracking deter-
ministic predictors.

"To put this another way, the reduced text can be considered to be an encoded form of
the original, the result of passing the original text through a reversible transducer. In
fact, a communication system could be constructed in which only the reduced text is
transmitted from one point to the other. This could be set up as shown in Fig. 2, with
two identical prediction devicee." [ShannonSl](p. 5b)

Shannon used this technique to measure the redundancy of English by asking
human subjects to predict the next character of an English text basing their
prediction on zero or more previous characters. The success rate of the humans
gave an indication of the amount of information contained within the text. For
a 100 character context, the entropy was between 0.6 bits and 1.3 bits. In 1926,
I{auffman[Kauffman76] continued this work in the context of learning by using
this method as a measure of. subjectiue information in a text. The work was
sponsored by the U.S. Air Force who wanted to improve their teaching programs.

Despite the fact that all these concepts were present, it took thirty years
before they were combined into a coherent whole. The failure of these concepts
to be integrated and adopted at the time they were discovered can be attributed
to their impracticality in the 1950s (an era in which programmers spent weeks
shaving off milliseconds) combined with the early adoption of Huffma¡r cod.ing.
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1.9 Arithmetic Coding

This section presents an established coding technique called arithmetic
coding that satisfies the coder requirements of the modern paradigm. Under
the modern paradigm, the coder's task is to accept a stream of instances and
a stream of corresponding predictions and code each instance in as close to the
predicted entropy of the instance's symbol as possible. For example, if a prediction
specifies that symbol ø will occur with a probability of 0.25 then it is the coder,s
job to ensure that if an instance of the symbol does occur, it will use up two bits
(- logz 0.25 bits) of code string. Similarly, if the prediction specified a probability
of 345/999 then it is the coder's job to code instances of that symbol in as close
to - log2 345/999 bits as possible.

The technique of arithmetic coding achieves this seemingly impossible task
by packing nxore than one source ínsto,nce into the same channel instance. The
following description, which differs from the usual expositions of arithmetic coding,
follows the reasoning that led the author of this thesis to belatedly rediscover the
technique in late 1986; it is closest to Guazzo's approach[Guazzog0].

1.9.1 A Description of Arithmetic Coding

In this approach, coding is viewed as the fi,Uing of buclcets (Section 1.3.1).
The coder receives packets of information which are placed into buckets. When a
bucket is full, it is shipped to the channel.

lnformation packets Output buckets
(channel instances)(entropy of source instances)

In the past, coders could only efficiently code source events whose information
content was a multiple of the bucket capacity. In contrast, arithmetic coders
can accept a stream of events of arbitrary information content (including events

a bucketful of information) and code them as efficiently
the arithmetic coder treats the information as a liquiä
ng the arriving information to fill each bucket 

"*u.tly

Figure 11: The coder,s job is to fill output buckets.

Coder

H
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In the blocking paradigm, recognition of a source string implies the emission
of the corresponding channel string. Coding and decoding is simple because the
events are constrained to correspond to codes that are multiples of the channel
bucket capacity. In the modern paradigm, the coder must code packets containing
an arbitrøry amount of information. If coding is to be efficient, a technique must
be found for partially f,Uing a bucket (FÍgure 11).

In fact partial bucket filling is commonplace. Consider a coder about to fill a
bucket of size 256 with the outcome of an event that succeeds or fails with equal
probability. If the bucket is viewed as an eight bit byte, the coder can optimally
code the outcome by setting the '(top bit" of the byte to 0 upon failure and 1

upon success. This can be done by adding either 0 or 128 to the byte. The fact
that this information can be placed in the bucket ørithmetically conflicts with the
notion of the bucket being indivisible. \Mhat is happening here?

255 255

J2e
127

129
I

128

0 0-

Figure 12: Restricting ranges is the same as filling bits.

If the top bit is o, the value of the byte is in the range zl0,l27l; if 1, the value
of the byte is in the range Z[728,255]. Each outcome is allocated half lhe range
of the byte. This division serves to represent exactly one bit because 1281256
of the byte's possible values are allocated to each event of probability 1/2. Now
consider the case in which the probabilities are not 7f 2 eachbut rather 1,2g/256 anð.
1'271256. This event can be optimally coded by the same splitting process, the only
difference being that we can no longer point to a "bit" (Figure 12). Constraining

I
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a number from a range of width ø down to a range of width ä corresponds to the
transmission of lnø - lnó nats. For large ø and ö with a N b) this information
quantity can be very small. Arbitrary range divisions can be decoded by the
decoder in much the same way that bit aligned divisions can be decoded.

Returning to the example, so far a single event has been coded into a bucket by
splitting the bucket's range into two parts and using the outcome of the event to
select one of the ranges. If the bucket were shipped at this stage, it would contain
roughly one bit of information and most of its capacity would be wasted. The
remainder of the bucketts capacity can be used by treating the remaining range as

another bucket. If the event with probability L291256 occurred, there will remain
a "bucket" of size 729, If, the event with probability 1271256 occurred, there will
remain a *bucket" of, size 127. This range can be divided again and the process
repeated.

Eventually, the range decreases to a single value (the bucket fills up). When
this happens the bucket must be shipped and a new (empty) bucket used.

The description above covers the basic mechanism of arithmetic coding.
However, some tricky implementation problems must be resolved before the
technique becomes practical.

Problem: Range Resolution Coding the events of probabilify 72T l}b6 and
L291256 onto the range 210,2551was efficient because the range had exactly enough
resolution to represent the division. As a bucket fills and its remaining capacity
decreases, so does the accuracy with which the remaining range can accommódate
a range division. In the extreme, the coder might be expected to code a prediction
of (1/1000,999/1000) into a range Z[0,7). In such a case, the coder would have to
allocate the range Zl0,0l to one symbol and the range Z[I,I) to the other resulting
in a great inefficiency (because the 999/1000 event contains far less than one bit
of information). If there were three symbols to code, the coder would be blocked.

Whenever the range of the bucket being filled becomes too narrow to support
the level of accuracy required to efficiently code the next prediction, a new empty
bucket can be used to widen the range out again. The new bucket is merged
logically to the old bucket and the two buckets treated as a, single super bucket.
The new super bucket has a size that is the proiluct of the remaining sizes of the
old, nearly-full bucket and the new empty bucket. For example, if the old bucket
had a remaining range of.2178,20] (a size of 3) and the new bucket had a range of
2[0,255], the new super bucket would be of size B x256 (size z6g) (Figure 1g). A
good way of viewing the super bucket is as a two digit number with the first digit
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255 255 767

+
20
18
0

Two buckets of different sizes (e.g. a partially full and an empty bucket) can be
treated as one large bucket whoee range is the product of the ranges of the two
emaller buckets.

Figure 13: Addition of a new bucket extends the range.

expressed in base 3 and the second in base 256. The two buckets together form a
new range that can be divided in the original manner. Eventually, the divisions
result in the range of the first bucket diminishing to a single value. When this
happens, that bucket can be shipped.

The technique of bucket merging can be performed with many buckets. By
adding new buckets whenever the size of the super bucket falls below a threshold,
any desired accuracy can be maintained indefinitely. By shipping full buckets,
only finite memory is required to maintain the accuracy. If the bucket size is small
(".S. 2), many buckets can be joined together to form a target range of the required
accuracy.

Problem: Carry-Over Maintenance of a finite, bounded number of buckets in a
super bucket "filling station" is possible provided that full buckets can be shipped
when new buckets are created. Unfortunately, such a property is not guaranteed,
as it is possible for the division of the super bucket's range to occur in such a way
that the top digit of the super bucket (the value of the oldest bucket) is never
resolved. In such circumstances, the oldest bucket cannot be shipped. This results
in a build up of nearly-full buckets.

The author of this thesis couldn't solve this problem. Nor, it seems could
Guazzo.

"One disadvantage of the algorithm is that we have to keep a buffer of secondary symbols
that are still liable to be overwritten. This should be nolurprise; if we are unrviiling to
send to the output symbols that are not "full" of information, we should be prepared to
wait until we have some "piece of information" that fits into them." [Guazzo'S0]ip. 1g)

I

-

.l0 0

t
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In a strict sense, Guazzo is correct. However, in practice, the buffer itself
can be compressed to O(log rz) of its previous size, using negligible space. A close

examination shows that deferment of bucket shipping can only occur when all the
deferred buckets (except for the working buckets and one other bucket) have the
maximum value. This means that buffered buckets can be stored by a counter. It
is poetic justice that arithmetic coding algorithms use run-length coding internally.
Other solutions also exist (Section 1.9.2).

The "derivation" of arithmetic coding given above was motivated by practical
considerations. In contrast, other presentations of the technique suggest that
every other discovery of the technique was motivated by theoretical considerations.
In th,eory, arithmetic coding is even simpler than might be supposed from the
discussion above. If the multi-bucket register is considered to be of infinite length,
the technique becomes entirely arithmetic with no bucket manipulations involved.
The principle behind the theoretical technique is simply:

Principle of Arithmetic Coding: A set of messages is optimally coded
by exhaustively dividing the range [0,1) among the messages in proportion
to their probability. A message is coded by transmitting any number in
its subrange using channel digits (The narrower the range, the more digits
being required).

Thus, in theory, an arithmetic code would represent a ten megabyte message
as a single, very accurate number in the range [0, 1). As numbers of such accuracy
are intractable to manipulate, practical arithmetic coding relies on using fixed
precision arithmetic, which boils down to bucket shuffiing. In practice, buckets
are not manipulated explicitly. Instead, an arithmetic code manipulates two fixed
width registers called the A register and the C register (from [Langdon8a]). The
A register stores the width of the current range. The C register stores the position
of the lower bound of the current range. The two registers can be imagined to be
positioned at the end of the code string being generated (Figure 14). Whenever
the A register (which represents the available precision) gets too small, both
registers are shifted to the right (their contents are shifted left). It's all done with
shifting, adding and mirrors. The result is a highly ef;Êcient, practical technique.
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Zeros

0.00000000000

0.01 1 10101 100

A register (range width)

68

Registers
move,
increasing
precision.

Output code string C register (range start)

Arithmetic coding can be implemented using two registers that operate on the
end of the code string. Here, coding is viewed in the more theoretical eense as
the production of a singl R[0, 1). The A register hords the
width of the remaining r olds the lowest digits of the start
of the range. As the ran rs conceptually shift to the right
emitting the code string

Figure 14: Arithmetic coding using fixed precision registers.
(Based on the diagram on p. 802 of [LangdonS2])

In summary, arithmetic codes operate by subdividing ranges in proportion
to the specified probabilities. Ingenious mechanisms are used to overcome the
problems of resolution maintenance and bucket buffering. Arithmetic codes satisfy
the requirements of the modern paradigm of data compression by coding a sequence
of events of continually changing probabilities in as close to their information
theoretic space as desired.

1.9.2 The Development of Arithmetic Coding

Although the idea behind arithmetic coding is simple, the fietd of arithmetic
codes is messy and complex. There is no single code called "the arithmetic code,,.
Instead there is a class of codes. The development of arithmetic codes has been
messy too; no brilliant flash ushering in the new age; rather, three decades of
sparks which finally ignited in a few key papers. This section does not aim to
unravel these developments, only outline them. For a more detailed description
see Appendix 1 of [Langdon84].

There are a variety of arithmetic codes and many different ways of implement-
ing them. The technique of practical arithmetic coding can be decomposed into
three sufficient concepts:

o the representation of a message by a fraction in the range [0,1).

o the use of fixed-precision registers.

o the avoidance of indefinite carry over.

????????????

????
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The idea of a message being represented by a fraction first appeared in
Shannon's L948 paper[Shannon¿8](p. 402) as part of the proof of his ('Fundamental

Theorem for a Noiseless Channel". Shannon proposed that messages be arranged
in decreasing order of probability and that the chosen message be transmitted as

a binary fraction (being the sum of the probabilities of messages earlier in the list)
long enough to identify the message's probability range. This idea is used in the
Shannon-Fano code described in Section 1.4.7.

It took thirty years before Shannon's idea was developed into a practical coding
scheme. During this time, the area received attention by Abramson, Elias, Jelinek,
Schalkwijk, Cover (see [LangdonS4] for references) but was blocked by the twin
problems of precision and the requirement of having to decode the instances in the
same order in which they were encoded (FIFO (First In, First Out) operation as

opposed to LIFO (Last In, First Out) operation).

In 1976, Pasco[Pasco76] and Rissanen[RissanenT6] independentlyao discov-
ered the use of fixed-length registers. However, as presented, both techniques were
impractical. Rissanen's technique was LIFO and pasco,s, while FIFO, did. not
solve the indefinite carry over problem.

Another burst of publications followed in 1979, detailing practical techniques.
Guazzo[Guazzo8O] described a practical arithmetic coding scheme but couldn't
solve the carry over problem (Section 1.9.1) . Gra,zzo showed that arithmetic
coding allowed a source with one set of characteristics to be coded into a channel
with a different set of characteristics (a constrained channel) including the
case of a channel whose symbols occur with equal probability. Rubin[RubinTg]
refined Pasco's FIFO algorithm, by describing a technique for preventing carry
over. Rissanen and Langdon[RissanenTg] not only described a practical technique
but generalized and characterized the family of arithmetic codes.

Three solutions to the carry over problem have been proposed. The first,
proposed by Gu,azzo is simply to terminate the code (as if the end of the message
has been reached) every so often and continue afresh. The second solution,
proposed by [JonesSU(ry.iii(22-24)), is to use a counter to store the buckets
that threaten to overflow (i.e. internal run-length coding). The third solution,
called bit stuffing, bJr Langdon and Rissanen[LangdonSl], is to insert a 0 bit
into the output stream after a fixed limit of 1s have been shifted out of the coder
register; the artiffcially placed o bit catches any carry that might occur and allows

. 
ao 

,Actually, -whether the discoveries were independent is unclei*pli;il;i'th;;"ä;; i;á"p";ã;;ï;h;;;; the second o,,.r,,frt' .fl¿:l"ilå?åf:îir-":"if,1
they were not.
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the run of 1 bits to be written immediately. For a limit of å bits, an extra bit wilt
be inserted on average once every 2fr output bits (because the output approximates
a memoryless binary source with equiprobable symbols).

Of these solutions, bit stufÊng is probably the best in practice. Regular
termination of the message is inelegant and wastes space. The use of a counter
is extremely simple and elegant but does not guarantee an upper bound on the
effective buffering (a disadvantage for real time systems); if the code string is
1111111... (for a binary channel), the first instance of the code string will appear
only after the entire message has been processed. Bit stuffing does not require
regular termination and provides an upper bound on the effective buffering.

By 1980, arithmetic coding had been well fleshed out. It remained only to
popularize it and to refine its implementation,

1.9.3 The Popularization of Ariilrmetic Coding

Although arithmetic coding was well-developed in 1g80, there was no clear
public image of it as there was (say) of Huffman coding. The situation is much
the same today despite the publication of "accessible" descriptions.

In 1981, Langdon wrote a comprehensive "Introduction to Arithmetic Codes,'
in an IBM Research Report. This was revised and republished in 1984[LangdonS4].
Jones[Jones81], who independently discovered arithmetic coding, gave a detailed
description of an algorithm down to the program code level. Witten, Neal and
Cleary[Witten87] probably drew the most attention to arithmetic coding through
their publication in the popular Communications of the ACM in which they not
only described the technique but also presented a full implementation in one of the
most prevalent programming languages - C [KernighanS8]. Despite all these
efforts, arithmetic coding remains relatively unknown.

L.9.4 Refinements of Arithmetic Coding

By 1980 there were arithmetic codes that could code predictions to as close to
their entropy as required. F\:rther work focussed exclusively on making the codes
more efficient.

The most important refinement work on arithmetic codes was Langdon and
Rissanen's work on binary arithmetic codes. Binary arithmetic codes operate
upon binary source and channel symbol sets. Just as binary run-length codes are
special, so are binary arithmetic cod.es. In particular, binary arithmetic cod.es can
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be used to code a source symbol set of arbitrary size by arranging the symbols in
a binary tree and coding each traversal decision.

In 1981, Langdon and Rissanen[Langdon8l] published the remarkable fact that
for a prediction consisting of two events, the probability of the least likely event
could be approximated by a power of two (i.". p = t,+,å. . I with a relative loss

of compression of at most 4%. This fact was used to replace the multiplication
operation of previous arithmetic codes with a more efficient shift operation (at the
< 4% cost) - a great improvement over previous codes. The simplified code is
described by four simple equations involving only shift and addition operations.
A and C denote the entire numbers of Figure 14. e(s) is the skew number,
being minus the power of two approximating the probability of the least probable
symbol. Here, a prediction consists of a skew number[Langdon?g] and a bit
identifying the least probable symbol, which for the purposes of exposition, we
assume to be 1.

A(so):,4(s)-,a'(st)
A(sr):,4(s) v2-QG)

C(so) : C(s)

C(st)-C(s)+A(so)

In a later paper[Langdon82J, an additional approximation was used to make the
technique even more efficient. A minor problem with the technique above is that
the subtraction cannot take place concurrently with the shift. These operations
were made concurrent by replacing á(s) in the second equation by the greatest
power of two less than or equal to .4(s). This resulted in an even simpler algorithm
suitable for hardware implementation.

In a joint effort between different IBM research centers, the code in [Lang-
don82] was developed into a general purpose "turnkey" binary arithmetic code
called the Adaptive Q-Coder (or Q-Coder for short) which is suitable for
hardware and software implementation[LangdonSS][Mitchell87]. In particular,
algorithm "[Langdon82]" was modified to improve compression performance by re-
placing the powers of two Q-A(t) values) in the equation by precomputed values
slightly larger than the greatest pov¡er of two less than or equal to A(s). These
values were precomputed and stored in a lookup table. This modification partly
compensated for the approximations made in [Langdong2].

The Q-coder also keeps track of the frequencies of the binary symbols and
uses them to make the prediction (taking the form of most probable symbol and
a pov/er of two) for each message instance. The user merely feeds the e-coder a
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sequence of binary events and it does the rest. Further discussion of the Q-coder
is deferred until Section 1.11.7,

Martin, Langdon and Todd[Martin83] adapted arithmetic codes for use on
constrained channels such as magnetic recording devices in which state transitions
cannot occur too often or too rarely.

1.10 Markov Models

The modern paradigm permits the use of any model that can produce a stream
of safe predictions, one for each instance. Currently, the most successful class of
model is the class of Markov models, particularly the subclass of variable-order,
finite-context Markov models. Later chapters of this thesis focus on Markov models
and use them as a basis for exploring adaptive techniques. This section discusses
Markov models in detail.

1.10.1 Markov chains, Markov sources and Markov Models

In this section we give a brief description of Markov chains[Felter57] [Kar-
lin69] [Bhat72] and their relationship to Markov sources and Markov models.

A Markov chain consists of a set of states. The set can be infinite but we
will consider only finite Markov Chains containing g states numbered 1 to q with
Q - {Zll,q]}. Time is quantized. At any point in time, a chain is in a particular
state. At each tick, the chain changes state (possibly to the same state). If a chain
is in state i, it will change to state j with probability p¿,j.The conditions

Vi, D Pi,j :1 and Vj, Ð pi,j : L

jeq ieq
hold; each row forms a prediction of the next state. A Markov chain is a directed
graph, each node of whose outward arcs are labelled with probabilities summing
to one.

A Markov source is the same as a Markov chain except that each node has
exactly n outward arcs, each labelled with a different symbol. At each tick, the
source moves to the next state in accordance with the probabilities on the outward
arcs of its current state, and emits an instance of the symbol associated with the
arc taken.

Markov Models are identical to Markov Sources (Section 1.8.4). Markov
sources and models are simply stochastic deterministicar finite state machines.
al Deterministic in the sense that no two arcs leading from any node are labelled by the same

symbol.
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As Markov models tend to be unmanageable unless they are finite and
ergodic, we add a new assumption to the list of assumptions already accumulated
(Section 1.1.3 and Section 1.6).

Assumption 6: Sources are finite and ergodic.

A finite ergodic source is a source that has a finite number of states and for
which the statistical properties of its output converge as the length of the output
approaches infinity. The precise mathematical definition of a finite ergodic source
varies from one probabiliiy text to another. Here the term is used to indicate that
the source in question is a Markov chain, that it has a finite number of states, that
it is possible through zero or more steps to move from any state to any other, and
that the greatest common divisor of the lengths of all its cycles is one. The last
restriction is necessary to ensure that the chain does not retain phase information
at time infinity.

1.10.2 Constructing Models from Histories

A difficulty in constructing arbitrary Markov models is the lack of correspon-
dence between states and symbols. Even if the model probabilities are known,
the problem of determining the state of a Markov chain from a long history
string (without ever being given the state of the source) is non-trivial and non-
deterministic. At best, we can only obtain a probability distribution of the model's
current state.

To date, no one has found a feasible algorithm for constructing arbitrary
Markov models from history strings.a2 A particular string can correspond to many
models and it is difficult to arrive at a good model.

These problems can be transcended by considering only models whose state can
easily be determined from the history string. In fact it is desirable to consider only
those models whose state can be determined from a constantly bounileil number
of the most recent history instances. We add this assumption to the others.

Assumption 7: The state of a source can be determined by inspecting
the previous rn instances that it has emitted.

This assumption forces a ili,rect correspondence between the internal state of
a model and the string that it has produced. It also means that the entire history
need not be stored in order to determine the current state.
a2 The Forwards Backwards algorithm comes close but suffers from drawbacks discussed inSection 1.10.6.3.
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Bell and Moffat, two researchers currently active in this area, have associated
classes of finite state automata with the source models obtained with and without
the above assumption[Bell88]. Without the assumption, the model is a Finite
State Automaton. With the assumption, it is a Finite Context Automaton.
The distinction is important because it allows us to consider the set of all sources
as the set of mappings from strings of length rn to predictions:

Dz Yd e D, d(Sm,) * P

The domain of any d € D can be extended to shorter strings by defining
d(^9t)' Vl e Zl\,rn - 1l in terms of d's implicit steady state probabilitiee. The
set of sources D is called the set of order-m flnite-context Markov sources.

In practice, each prediction d(s) (s e ^9-) in each source d in the set D can be
approximated by a sample æs (Section 1.8.2). The dual nature of samples suggests
a method for constructing a sample/prediction æ from a history string å of length
l. þ returns the number of times that its argument is true over the specified
domain' 

r-m
V¿ € ^S-, ut(a): ltl (ht ...t +*_t - ú) A (h¡a* _ a)

È=1

This method treats the message as a statistical sample. Better still, it allows
the source model to be constructed incrementally from the message string. If
the source string is long enough, the probability of an instance of the symbol ø
following the string s € ^Srn in a source stream can be estimated as xs(a)lys. This
sampling technique has good asymptotic properties (lim¡*_ rr(a)lyr: d(sXo))
but does not produce safe predictions. To produce safe predictions, a non-obvious
estimation technique must be used. The problem of finding such a technique is
central to practical data compression and justifies a detailed discussion.

1.10.3 Estimation Techniques

We define the set of all estimation techniques E to be the set of all mappings
from samples to predictions.

V( e E, ((x) -+ P

Of these estimation techniques, only those that satisfy the following two require-
ments are of any practical interest
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The first requirement is the estimation technique generate only safe predic-
tions. An estimation technique ( is of interest iff

Yæ € X, Va e A, {(ø)(ø) > 0

This problem of producing safe predictions in the face of. zero frequencies is called
the zero frequency problem[Roberts82].

The second requirement is that the estimation techniquets predictions converge
on the samples as the sample size increases. An estimation technique ( is of interest
iff

Va €, X: U ) 0, ya € A, *l$e{trX") : *þ)lv
where frø denotes the sample æ with each frequency multiplied by fr.

The assignment of positive probabilities to symbols that have a, zerofrequency
may appear to be an action motivated entirely by the practical need for safe
predictions. In fact, this assignment is supported by statistical theory as well.
VVhen a sample æ of. y instances is taken from an infinite population described by
the prediction p, each p(a) has to manifest itself in an r(ø) as a member of the
set {$, 1,1,. . . ,l}.This leads to problems if a p(ø) is less than t/y. For large sr,
the law of large numbers states that on average, each p(ø) will manifest itself in
the ø(ø) value that minimizes lx(a)/a - p(a)|. By inverting this mapping ril.e can,
for a given 3r, map sample frequencies to probability ranges to the means of the
ranges.

ø(ø) : ¡

0<n(a)<y

x(a) : y

-+ p(a) e 10,+) =+ p(ù : t
:> p(a)el%,ry):+ p(ù:#

-+ p(a)etff,q -+ p(ù:W

The fact that each mean is positive indicates that there is a theoretical basis
for assigning small, positive probabilities to symbols of zero frequency. The
question of what the values should be is one that has baffied philosophers and
statisticians for hundreds of years. It is generally considered that no objective
solution exists['Witten86]. In practice, any "small" positive value will suffice.
Most practitioners seem to find making this arbitrary decision distasteful.

common estimation techniques form two groups: linear and non-linear.
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1.10.3.1 Linear Estimation

Linear estimation techniques allocate a small piece of probability to all n
symbols and then divide the remaining probability between the symbols of positive
frequency. The following generalized linear formula does this for symbol, a €. A
and coefficients ó, c,d,e € R(0,oo).

((')(o) : bæ(a) + c
dv+"

In fact, the four coefficients can be reduced to one by noting that the
probabilities of a prediction must sum to one.

bæ(a) + c
da+"D e('X,) : t so D

øCA

:]
øCA

dy + ": I bx@) i c

a€A
da*e-nc

b
:v

dY*e-nc:Ab
Because y is a free variable, we can separate into two constraint equations:

b: d, and e: nc

Thus the only form of the first equation that will prod.uce sensible probabilities is

€('Xo):bî(a)+c' ba+n"
which can be normalized by dividing by ó

€('Xo) -æ(a)+c/b"/ A i nc/b
ô and c can be collapsed into a single parameter ), : nc/b. This yields a normalized
linear form

((ø)(ø) : ø(ø) + À /n
v+^

The À € R(0, oo) parameter allows the specification of a greater or lesser
period of transition from uniform probabilities ({(ø)(ø) : l/") to those of the
sample (((tXo) : a(")/ù. The smaller the value of À, the greater the trust in
the sample.

It is possible to show that if all possible probability distributions are equally
likely, the optimal estimation formula is linear estimation with ) : n. Appendix A
contains a derivation by Jones showing this. In practice the optimal À seems to
be about 1 (Experiment 2, Section 4.17.5).
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1.10.3.2 Non-Linear Estimation
In non-linear estimation, symbols of zero frequency are treated as a special

case. The available probability is divided into two parts, one part of which is
divided evenly among the symbols of zero frequency and the other part of which is
divided among the remaining symbols in proportion to their frequency. Here,
dividing the probability within each group is easy because there is a natural
solution in each case. The difficulty is splitting the probability between the two
groups. As before, this question has no objective solution and we parameterizein
À using the same argument developed for linear estimation.

(x(a):o -'å#((ø)(a) : {Þ\ /\-.'/ 
[r(a)>0 -+rl'

z €, Zl|,rc] is the number of symbols of zero frequency in x (z: ltlae.A æ(ø) _ g¡.

1.10.3.3 Linear and Non-Linear Moffat Estimation
In the linear and non-linear estimation formulae, the À parameter acts as an

estimate of the likelihood of the arrival of an instance of a symbol of zerofrequency.
The higher the value of ), the more the formula is betting on the occurrence of a
new symbol.

The difficulty with choosing a fixed value for À is that different values are
appropriate for distributions of different entropy. For flat distributions high values
of À are appropriate; for spiky distributions low values work best.

In 1988, Moffat[Moffat88] described a non-linear technique that sets À to
n - z dynamically.as By setting \ + n - z, the technique effectively counts the
occurrence of novelaa symbols. This means that À is regulated in accordance with
the spikiness of the distribution.

Moffat calls this estimation technique "Method C" (after methods A and B in
[Cleary84]). \rú" will refer to it as nonlinear Moffat estimation and generalize
it so that it contains a À value as the other estimation techniques do. Moffat's
technique corresponds to the special case ,\ : 1.

€(.X.):{;l:l ;; :!m
A similar modification can be made to the linear formula, yielding linear Moffat
estimation.

((u)(ø) : x(a) + (n - z)À/n
ai(n-")^

as If n = z the value À = l- is used.aa The term "novel" is often used to describe symbols of zero frequency
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1.10.4 Sumnrary of Fixed-Order Markov Methods

Before moving onto variable-order methods, it is worth summarizing the fixed-
order Markov methods outlined in the previous few sections.

The designer chooses an order rn € Zl0ræ) (usually rn <
order determines the number of instances that are used to predict the next
instance. The order rn defines r¿m contexts (called conditioning classes in
Rissanen/Langdon[Rissanen8l] terminology) which are uniquely identified by
members of the set ^9¡¿. The model consists of a group of samples æs € X,
one for each context s € Sm. At the start of transmission, all samples are set to
empty (*t(o) <- 0 for all s € ,9¡r, and a e A). Before each instance is read, the
context cs is used to make a safe prediction (("") where s : hp1_*+1...1r¿l (the
most recent rn instances in the history) ({ ir chosen by the algorithm designer from
the estimation techniques discussed in Section 1.10.3). After the new instance ø

is transmitted, o6(a) is incremented. The process repeats for as long as required.

This technique is called a fixed-order technique because it bases each
prediction on the same number (rn) of history instances. Each instance is predicted
based on the instances that occurred in similar contexts of length rn in the history.

Example: A zero-order (rn : 0) technique uses a single (n0) context that
corresponds to the empty string e. The context records every instance in the
history string (*r("): blÍ=r h¿: o).

Example: A first-order (ræ : 1) technique uses r¿ contexts (rzl) ttrat correspond to
the ra symbols. Each context stores the frequency of instances of difierent symbols
following instances of the context's symbol in the history (*a@): t¡l=l hi...¡+t:
ba (h e S¡a e A)).

Example: A second-order (* :2) technique uses n2 contexts corresponding to
the n2 symbol pairs. Each context stores the frequency of instances of different
symbols occurring after instances of the context's symbol pair in the history
@a@): UÍ=? h¡.¡+z: ba (b E Sz,a e A)).

1.10.5 Variable-Order Techniques

Fixed-order models are simple but suffer from two problems that make them
impractical except for very low rn.

Memory consumption: An order rn moder requires memory fot nm
samples, each of which contains n counters. using today,s computer
storage technology with n - 256, fixed-order methods become impractical
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at m - 2. One optimization is to use a sparse representation, storing only
contexts that contain one or more instances. This reduces the memory
requirement to the smaller of. nm and / contexts, where t is the length of
the message.

Sample Significance: The second difficulty is the trade-off in speed and
accuracy between higher and lower order models. Consider an order 0

model containing one context and an order 100 model containing ¡¿100

contexts. For a history of length /, the order zero model will have placed
the / instances into its only sample and will make a prediction based on
a sample of I instances. On the other hand, the order 100 modet will
have distributed the f instances amongst its rr100 ,u,*ples and will make
a prediction based on an average sample of I/n100 instances which for
reasonable length messages (¿ < ,too), will be or, zero size, Thus for
I ( ,100, the order 0 model will perform better than the order 100 one. It
is guaranteed, however, that as / --+ oo, the order 100 model will perform
at least as well as the order zero model. Thus it is better to use lower
order models at the start of a message and switch to higher order models
as samples fill.

Variable order techniques avoid the learning problem by maintaining
models of many orders at the same time. Predictions are based on a combination
of the samples of the different ordered models. Variable order techniques avoid
the memory problem by organizing the contexts of the different orders of model
into a single tree structure that can be pruned to suit the memory requirement.

1.10.G An Overview of Markov Algorithms

This section contains a survey of the variable-order, finite-context Markov
algorithms that have appeared to date. The term ,,algorithm,, is used here to
describe researcherstefforts where the word ttmod.eltt is probably more appropriate.
However, because researchers tend to describe their compressors as algorithms
rather than models, the word ,,algorithm,, is preferred.

Before launching into a discussion of Markov algorithms, a historical note on
nomenclature is in order. As far as the author can tell, each of the algorithms
to be presented was invented independently of the others. This has meant
that each algorithm has been named after the general technique that it uses
("'s' Variable Order Markov Modelling) rather than the characteristics that
distinguish it from similar techniques. Because any sensible description of Markov
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modelling requires a few long words, the result is names such as "Local Order
Estimating Markovian Analysis", "Prediction by Partial Matching',, ,,Dynamic

History Prediction Compression" and "Dynamic Markov Compression,' all of
which basically describe the same thing.aõ The way that the field has recovered
from this historical mess has been to acronymize all the names and pretend that
the acronyms really stand for names that distinguish one algorithm from another.
This fragile tradition is perpetuated in this thesis.

1.10.6.1 Markov Sources by Shannon

Shannon spotted the relationship between Markov chains and Markov sources
in his founding paper[Shannon4S]. Shannon modelled sources as stochastic
processes that generate instances one at a time, and described a series of finite-
context, fixed-order Markov sources of increasing order as an approximation to
English. He did not tackle arbitrary Markov sources.

In a later paper, Shannon[ShannonSl] proposed a compression system (involv-
ing prediction based on n-gram frequencies) that embodied many of the concepts
of the modern paradigm (Section 1.3.6). Shannon's predictions consisted not of
probabilities but of orderings on the set of symbols.

Shannon's technique was not adopted generally, presumably because at the
time it would have been expensive in memory and processor time.

1.10.6.2 DAFC

The simplest variable-order algorithms maintain a zero order model and a
first order model. These algorithms are best described as fractional-order
algorithms. Whereas zero order models use one context (which collects instances
of all symbols), and first order models use ?? contexts (each of which collects
instances of a particular symbol), a fractional order model uses fr € l2,r? - 1]
contexts (each of which collects instances of one or more symbols).

The problem of forming a many-to-one relation between r¿ symbols and fr
contexts has n& solutions - less if each context has to correspond to at least one
symbol. The most skewed allocation allocates k - t symbols to separate contexts
and the remaining n - lc * 1 symbols to the remaining context. The most uniform
allocation allocates approximarely n/k symbols to each context. Both extremes
have been investigated.

.,no By- this is meant not. that-the objects that they denote are the same, but that the namesthemselves, when viewed in isolation, åll desc.ibe thä "tr.ì""t*i.ti., of ttã'.r"., å?îrgorithm towhich the objects all belong.
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The technique of allocating a small number of first-order contexts among
symbols is not a new one (Section 1.4.3). However, earlier techniques were static
(e.g. [Cormack8S]), requiring that the designer perform the allocation.

In 1983, Langdon and Rissanen[LangdonSS] described a fractional-order
algorithm called DAFC (Double-Adaptive File Compression) that ilynømically
allocates symbols to 32 contexts. Initially all symbols are lumped into a single
context (numbered 0). As instances of the symbols arrive, the frequency count
of each symbol increases. The first 31 symbols whose frequency exceeds a
constant threshold (the paper recommends a threshold of 50) are allocated a
context (numbered Z[L,37]). Once a context is allocated, it remains allocated
forever. The motivation for allocating contexts to the most frequent symbols is
to increase the proportion of time in which the model is generating first-order (as
opposed to zero-order) predictions. The technique was augmented with run-length
coding. Coding is performed by decomposition using the simple binary arithmetic
code ([LangdonS2], section 1.9.4). As mighi be expected, the algorithm yields
compression between that of, a, zero and first order model and consumes memory
between that of a zero and first order model.

The other extreme has been investigated by Jones[Jones88] who simply
mapped nf lc arbitrary (a modulo method was used) symbols to each context.
He then plotted a graph of compression vs fr and obtained a fairly smooth increase
of compression performance with increasing k.

Without exception, the variable-order Markov models to be described allocate
one context to each member of a group of privileged symbols and lump the
remaining symbols into a single context.

1.10.6.3 FBA

The Forward-Backward algorithm (FBA), described in Roberts,s ph.D. the-
sis[RobertsS2], is the only algorithm described here that does not make Assump-
tion 7 (Section 1.10.2). The FBA algorithm accepts a Markov model with a priori
transition probabilities. It then scans the message repeatedl¡ each time modi-
fying the transition probabilities so as to increase the probability of the model
generating the string if left to run generatively in equilibrium.

Roberts reports that a data compression algorithm based on the FBA yielded
4'8 bits/word for "the laser patent text" which is a concatenation of patents
relating to lasers. Although this algorithm is quite powerful, it has some severe
disadvantages.
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o It needs to scan the message repeatedly. In order to use it under the
modern paradigm, it would have to be operated in a block-wise fashion.

o It is expensive in memory and processing time.

o It does not guarantee to find the optimum probabilities; it uses what is
effectively a hill climbing technique.

o It is prone to ttoverparameterization", a condition that occurs when a
model adapts itself more to the message than to the source.

These disadvantages make the FBA unsuitable for data compression.

1.10.6.4 LOEMA

The LOEMA (Local Order Estimating Markov Analysis) algorithm by Roberts
[RobertsS2] was the earliest use of variable-order, finite-context Markov models for
data compression. The aim of the work was to overcome the two problems with
fixed-order models that were described in Section 1.10.5.

Although it is not explicitly specified, LOEMA appears to organize its contexts
in a backwards tree which is stored in a hash table. Predictions are made
by blending the predictions of matching contexts. The blending weightings are
calculated from the confidence value Ci € R[0,1] of each prediction (of order i).
The final prediction p predicts symbol ø with probability

p(o): C^p*(a) + (1 - C*_ù(C^_zpm_z(a) + (1 _ C*_2)
(c* - 3p*-s@) + (1 - c*_ù(.. . þo("))))

where p¿ is the prediction of the model of order i.

One of Robertsts aims was to conserve memory. Roberts discusses two ways
of restricting the growth of the Markov tree. The first is to grow leaves and
then prune those that do not perform well. The second is to use a metric of leaf
worthiness to determine where to grow leaves. Roberts used the product of the
entropy advantage of the presence of the parent node in the tree and the entropy
of the parent node's prediction. The second method was favoured., even though it
yielded less compression, because it used about half as much memory.

Roberts found that the LOEMA algorithm could reliably identify changes in
the authorship of a document.

Roberts's work addressed many of the fundamental issues in the field of Markov
modelling. However, the LOEMA algorithm requires arbitrary blending between
many orders of model, making it inefficient. The PPM algorithm (Section 1.10.6.6)
uses a simplified form of blending and yields comparable compression.
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1.10.6.5 UMC

One of the most impressive theoretical aspects of the L7'78 algorithm was
its capability to converge on any ergodic source at infinity (universality). In
1983, Rissanen used the same underlying mechanism (of infinite tree growth) to
construct a universaL Marleou algorithm which we will call UMCa6. Because Markov
algorithms are more powerful that dictionary algorithms, Rissanen's algorithm
converges on the source much faster lhan LZ7B.

The UMC algorithm compresses a binary (i.e. n : 2) source. The algorithm
builds a backwards tree that reflects the properties of the source and then predicts
from it. The tree is built as follows.

Each node in the tree has an associated sample. The algorithm starts with
just the root node, whose sample is (1,1). The tree is uniformly 2-furcated. The
tree is updated by adding the new instance to the sample of each matching node
that already contains an instance of the new symbol. Call the deepest such node
?. If ? is a leaf, n child nodes are appended to ?. Regardless, the child nodes of
T are then incremented.

The algorithm takes an unusual approach to memory management and
prediction. Tree growth stops when the deepest node does not reduce the tree
entropy by a certain amount. At each step, the deepest node that does provide a
sufficient entropy loss is used to make the model's prediction.

The algorithm can be seen to be universal by observing that at infinity, the
count on a node differs from the number of times that it has occurred by an amount
related only to the string associated with the node, not to the length of the history.

An interesting feature of the algorithm is that it accesses the history through
a permutation mapping. This means that the algorithm can easily be configured
to place different emphasis on instances at various distances.. This makes it easy
to modify for the compression of two dimensional data such as images in which a
pixel i will exhibit greater correlation with pixel i - r (where r is the width of the
image) than with pixel i - 2.

The algorithm is also unusual because it does not necessarily update to the
greatest depth that it can. In fact the algorithm can be considered to be managing
two tree structures, one for each symbol.

the only name. given to the algorithm he authoro ¡¡pjfary capacity. q€ -do1lthry1rade m the word. The acronym ,,UMC' (for Universal ll be useJrnstead.
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1.10.6.6 PPM

The PPM (for Prediction by Partial (string) Matching) algorithm by Cleary
and \Mitten[Cleary84] was the first practical variable-order, finite-context Markov
algorithm. The PPM algorithm maintains rn+L Markov models of orders Zl\,ml.
Samples are created only for contexts whose string appears in the history. These
contexts are stored in a forwards tree structure.

Cleary and \4/itten do not directly address the problem of memory running
out except to note that ". . . empty store is becoming a cheap resource. The major
expense associated with memory is the cost of filling it with information and
maintaining and updating that information."([Cleary84], p. a01) When dealing
with this algorithm, the traditionaT seems to be to assume that infinite memory is
available.

The defining aspects of PPM are its maintenance of models of different order
and its blending of the predictions of the various order models. ppM differs
from most other Markov techniques because it does not base its predictions on the
sample of a single context. Rather, it calculates its prediction by blending samples
from the different order models that it maintains. PPM uses a blending technique
that is more time efficient than LOEMA,s.

The PPM algorithm starts with a probability of 1 and allocates portions of
the remaining probability until all symbols have been given a positive probability.
Control starts with the highest order (ræ) model and works down to an order -1
model.as At each stage, a portion of the remaining probabiliiy is allocated to each
symbol that has a positive frequency in the current ord.er model and which has
not already been allocated a probability.

The blending method is most concisely described by a program fragment
(Figure 15). The function accepts an array of samples øs (one sample for the
matching context at each depth) and returns an array of probabilities. During
execution, a preil value of notìlone indicates that a symbol's probability has not
yet been calculated' The array øs contains an element indexed by -1 that has
the value øs(-1)(a) : L/r, Ya €. A. This ,,uniform prediction,' is used to ,,catch,,

4T

4A

p(ø)

As ascertained from private communication with witten, Bell and Moffat.
An order -1 model never records any instances and always makes the uniform prediction
= I/n, Va € A.
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function PPMest (in øs : samples) return preiliction;
pauailzrealel.0;
notd,one : constant real <- ooi

_ pred : array(sgmbol) of real e (others + notilone);
begín PPMest

for oriler in reverse -1 . . . rn loop
total : integer <- 0;
u : sample <- as(oriler);
for a in ,4, such that preil[a):notdone and ø(ø)>0 loop

total+total+x(0,);
endfor;
for ¿ in .4 such that preilla):notdone arrd ø(ø)>0 loop

pred,løl+ p øu ail x (æ (ø) I Qotøl+ 1 )) ;
end for;
pøu ail + paa ail x t I Qotal *t);

end for;
return preill

end PPMest

Figure 15: The PPM estimation algorithm.

symbols that have a' zeto frequency at all higher orders (i.e. symbols that have
never appeared). The prediction result appears in preil.

This description was constructed for the purposes of exposition. Much more
efficient implementations exist. In general, Markov algorithms are considered to
require more resources than other classes of data compression algorithm. The
PPM algorithm appears particularly inefficient because of the way in which it
blends more than one sample together to form predictions.

Moffat[Moffat88] evaluated methods for improving the performance of the
PPM algorithm. Successful modifications were: maintaining pointers to shorter
matching contexts, using a specially optimized estimation scanner for the deepest
context (which involves no exclusion), using a move-to-front list as a representation
for predictions, maintaining a bit array to keep track of exclusions, count scaling,
only updating the deepest matching node, reconstruction when memory runs out,
and dispensing with exclusions. The final program used 512K of memory and
processed about 4K of data per second without much loss of compression (in
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comparison to slower implementations). A highly tuned Ziv andlempel algorithm
on the same machine ran eight times faster but gave poorer compression.

1.10.6.7 DHPC

The DHPC algorithm is an algorithm developed by the author of this
thesis[WilliamsSS]. DHPC was developed independently from all the other
algorithms and has advantages and disadvantages over the other algorithms.

DHPC is the same as PPM except for a few major changes. Whereas PPM
blends predictions from the whole matching branch, DHPC bases its prediction
upon the sample of the deepest matching node whose sample contains more than
a constant threshold number of instances. Whereas PPM groÌvs each branch of its
tree to the maximum depth whenever a nelv context appears, DHPC grows its tree
slowly using threshold counts to retard growth. PPM and DHPC also differ in the
method of implementation adopted by their designers. PPM uses a forwards tree.
DHPC uses a backwards tree.

F\rrther discussion of DHPC is deferred until Chapter 2.

1.10.6.8 DMC

The DMC algorithm[CormackS7] represents a totally new approach to the
Markov data compression problem. Instead of explicitly manipulating trees whose
nodes correspond to finite context strings, the DMC algorithm manipulates a finite
state machine whose nod,es are not particularly øssociateil with anything! Although
the algorithm works with a symbol set of any size, it is strongly oriented towards
the binary alphabet and will be presented here in binary form.

The DMC finite state machine consists of one or more nodes connected by
arcs labelled O or 1. It is an invariant of the machine that each node has exactly
two outward arcs, one labelled o and the other labelled 1. Associated with each
arc labelled ø is a transition count rza which is the number of times that the arc
has been traversed. At any point of time (i.e. in between instances), there is a
distinguished node called the ,,current nod.e,,.
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The DMC algorithm starts with a single node that points to itself. Each arc is
assigned a transition count of one.

Figure 16: DMC starting configuration.
(Redrawn from figure 3(a) of [Cormack87])

The algorithm starts off with a machine consisting of a single node whose
outward arcs point to itself (Figure 16). Each arc begins with a transition count of
one. The single node is the current node. Before each instance is read., a prediction
of the instance is generated based upon the transition counts of the outward. arcs
of the current node. The estimation formula is p(a) : (no+c)/(ng*nt*2c)
where c is the usual smoothing constant.ae This is linear estimation with À : cz¿

(, - 2). After the instance (ø) is read, the current node changes to the node at
the end of the arc labelled ¿.

Thus far, the algorithm is fairly standard (as finite-state machines go). The
unusual aspect of DMC is the way its grov/s its finite state machine. Each time
that a transition is about to be made, a check is performed to see if the transition
count of the arc about to be traversed exceeds a certain constant threshold t1. If,
it does and the transition count of all other inward arcs to the next node exceeds
a similar constant threshold ú2, then a cloning operation takes place. Otherwise
it does not.

The effect of the cloning operation is described by the following five pointer
assignments which must be executed sequentially. The newnode function creates
a ne\¡/ node and returns a pointer to it. newr¿ is a temporary pointer that is used
to point to the new node. curr is a pointer to the current node just before the
cloning takes place. neut is a pointer to the node that would be the next current
node if the cloning did not take place. The dot notation is used to refer to the two
pointer fields (named 0 and t) of a node.

neun ts- neu¡node;
next <- cun.syrn;
curr'.gunx +- heuni
newn.0 <- nert.0;
neun.t ç- nert.!;

10

ae Cormack and Horspool do not specify the value of c that they used in their experiments.
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As well as adding a ne\M node and connecting the node into the machine
(as described above), the cloning operation apportions some of the counts of the
outward arcs of the next node to the outward arcs of the new node. An example
of the cloning operation (not giving counts) is shown graphically in Figure 17.

Next
node

0

Current
rþde

0
New
node

00

1

Cloning occurs in the DMC algorithm just before transitions are about to be
made. In this case the transition was to be from B to c. However, as the
transition counts on arcs AC and BC exceeded specified thresholds, a cloning
operation occurred. A new node C'was created and arc B0 switched to C,. Thã
effect was to divide the context of C between C and C', making the contexts
more specific.

Figure 17: DMC cloning operation.
(Based on figure 2 of [Cormackg7])

Although the cloning operation appears simple, its effect can be quite complex
becauseof aliasing. InFigure!7)allthenodesaredistinct. If nodesarealiased,
the operation is qualitatively different. In particular,if curr and. nent turn out to
be the same node, the newly created node winds up pointing to itself (Figure 1g).
This is a consequence of the third assignment being executed before the fourth and
fifth assignments (in which the new node copies over the output pointers of the
current node).

To the casual observer it may seem that this algorithm does not make
Assumption 7 (Section 1.10.2) and that it is capable of employing arbitrary state
machine structures to model the source. This conjecture has been proven incorrect
by Bell and Moffat[BellSS] who showed that the only finite state automata that
DMC is capable of generating are also finite context automata. This means
that a finite context string can be associated with each node. Experimental
results confirm that DMC has about the same power as the other Markov
algorithms[Bell89].
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1

Cloning ie not so eimple if the current node pointe to iteelf. This ca^se arisee at
the etart of the algorithm (shown here) where the first node is always cloned
into two new nodee (with context strings o and 1) that point to themellves and
each other.

Figure 18: Cloning a node that points to itself.

(a)
0 0

1

1

(b)

89

0

0
1

0

1

so little is known about the DMC algorithm that the main tutorial diagram of
the original paper is at best misleadin¡g and at worst incorrect. [n DMC, a node
can have heterogeneously labelled inward arcs only if it is the original node and
no cloning has taken place. But in this diagram, node c has hàterogeneously
labelled arcs.

Figure 1g: Erroneous tutorial example of DMC cloning.
(Redrawn from figure 2 of. [Cormackg7])

Not much else is known about the behaviour of DMC. In fact, so little is
known that it turns out that the main tutorial diagram that the inventors of the
algorithm use to describe the cloning operation is at best misleading and at worst
incorrect' Figure 2 in section 4.3 of [Cormack8T] (redrawn here in Figure Lg)

0

1

0
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contains two subwindows ((a) and (b)) which are supposed to illustrate a typical
cloning operation. In (a) the node that is about to be cloned has two inward arcs
labelled 0 and t. In (b) the node has been cloned. In contrast, the DMC algorithm
ensures that the only time that a node can have heterogeneously labelled inward
arcs is if the node is the initial node and then only if it has not yet been cloned.
This means that all five nodes in (a) must be the same node. This makes nonsense
out of (b). The figure would make sense if both inward arcs in (a) were labelled
0 (as in Figure 17). Bell and Moffat use the same example in their commentary
paper[Bell88] but appear not to have made the same mistake.

Cormack and Horspool could well be forgiven for this error. Once the algorithm
starts running, it is not at all clear what actually happens. DMC is one of those
objects whose workings are extremely simple but whose results are extremely
complicated.õo

1.10.6.9 \MORD

The Markov techniques described so far all parse the input into instances.
Although parsing into instances is the best approach in theory (Section 1.g.8), the
practical advantages (such as increased execution speed) of treating the input at
a higher level justify further investigation.

Moffat[Moffat89] investigated the application of Markov models (such as
PPM) at the word level. A "word.', is defined to be a maximal sequence of
alphabetic characters. A message is considered to be a sequence of alternating
words and non-words. Moffat's WORD algorithm parses the message into a stream
of words and a stream of non-words and compresses them separately at the word
level using two separate Markov models. Markov models are also maintained for
the length and character-level characteristics of words and. non-words. This allows
new words to be compressed as they are spelt out.

WORD works well for both text and non-text data. For non-text data,
the scheme degrades gracefully to a character-level Markov model. Moffat
experimented with various depths and found that order-one models out-performed
order-zero models (by about 13%) but that order-two models did not yield a
significant advantage over ord.er-one models.

\MORD is one of the best Markov algorithms. Its performance is comparable
to DMC and PPM but it runs faster.

This section ends the review of Markov algorithms. Attention now turns to
their implementation.

6() other examples are Rubik's cube[singmasterg0] and Mandelbrot sets[Barnsleygg]
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1.11 Data Structures For Predictions

Predictions are the glue that connects models to coders. 'Whenever a ne'w

instance is about to arrive, the model generates a prediction and hands it to
the coder (Figure 9). The coder then uses the prediction to code the incoming
instance. The prediction contains a probability for each symbol.

A major problem with handling predictions is their size. Predictions for
the binary alphabet consist of a single probability and can be manipulated very
efficiently. For larger symbol sets, predictions consist of a vector of probabilities
which can be quite large. For rz :256 and probabilities of just one byte, predictions
will consume 256 bytes. This makes them impractical to creater copy (e.g. from
model to coder) or destroy on a per-instance basis.

Given that it is forbidden to construct a new prediction for each instance, the
stream of predictions being passed to the coder must take the form of uiews lo
another data structure alreaily createil.

The obvious candidate for the "already created" predictions are the samples
stored in the nodes of the Markov models (æ in Section 1.8.2 and Section 1.10.2).
Our present description of ø as an array of symbol frequencies is totally oriented
towards the Markov model. By re-organizing the data structure so as to serve the
coder's needs, the structure can be used to connect the model to the coder without
ever copying predictions.

1.11.1 Prediction Functionality

Before looking for a suitable data structure for predictions, it is worth
specifying exactly what a prediction data structure must do. This section describes
a prediction abstract data type[GuttagSO] that serves the needs of both model
and coder.

The Markov model's requirements of the prediction are very simple. All that
the prediction must do for the model is to maintain a frequency for each symbol.
Some specialized models might require more operations but the basic functionality
is described as follows. p denotes the prediction object.

init(p) - Initializes the prediction's sample, giving every symbol a
frequency count of zeto.

inc(pra) 
- Increments the frequency associated with symbor a.
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In contrast, the arithmetic coderts requirements are quite demanding. In order
to divide the code space (Section 1.9.1) among the symbols, the coder has to define
an orderingot on the symbols. The actual ordering used by the coder does not
matter as long as the decoder can reconstruct the ordering. This ordering is used
to determine the symbols above or below a given symbol when dividing up the
code space. To code an instance of a particular symbol, the coder must find the
sum of the probabilities of the symbols above the target symbol. In practice, the
probabilities are manipulated in the form of frequency counts. The requirements
of the coder and decoder are specified as follows.

symbol-to-range(prrra) 
- Returns a tuple being the first and last

element in the subrange allocated to symbol ø, from the range [1,r].

range-to-symbol(prrrs) 
- Returns the symbol corresponding to the

subrange that contains integer s, from the range [1,r].

Thus, one end of the prediction data structure absorbs instances and the other
end generates ranges. Hidden somewhere in the middle is an estimation technique
(Section 1.10.3) which ensures that symbols of frequency zeto ate never mapped
into an empty range. With a few minor modifications, most of the data structures
to be described can be modified to use any estimation technique.

The requirements above define the prediction data structure. The major
difficulty with finding an efficient representation is the conflict between the model,s
need to modify the count of randomõ2 symbol s (inc) and the cod.er,s need to
access the sum of frequencies of symbols above a random symbol (symbol-to-range 

)

range-to-symbol). Unfortunately, any explicitly stored information about the sum
of frequencies above a given symbol can be invalidated by a single inc update to
a higher symbol (Figure 2o). we cannot expect a constant time solution.
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Figure 2o: Problem with maintaining frequency sum information.

L.Ll.2 Linear Representations

We start by considering linear data structures (such as an array (Figure 20)
or a linked list) for which all operations take time linear in the number of
symbols. Although such linear structures are undesirable in a design in which
prediction copying is forbidden, two significant improvements make the data
structure feasible. Both improvements apply to more sophisticated data structures
as well.

o Storage space and search time can be improved by using a, sparse data,
structure and storing only those symbols whose frequency is positive. In
practice, most samples are sparse.

o Search time can be improved by orilering the list so that the most
frequently used symbols are near the front. proposed list management
heuristics are frequency order, climb and move-to-front.õg

a 3 3

b 5 I
c 1 I
d 2 1 1

1 12
f 4 16

s 7 23
h 9 32

Coder
Range

63 In frequencg order -management, in frequency order. ln climbmanagem_ent, the record for a sfmbol is rds the'hèãd'of-th" jist wheneverthe record is accessed. ln moae-to-front r a symbol is moved to the headof the list whenever the record is accessed.
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It is unclear which of the alternatives of the second technique should be used.
However, it should be noted that the climb and move-to-front heuristics can be
performed in constant time whereas frequency ordering can degenerate to time
Iinear (or if an array and binary searching are used, logarithmic) in the number of
symbols.

Linear data structures (with the given improvements) work well for sparse,
highly skewed distributions. However, data compressors should. be designed to
handle white noise gracefully and so it is desirable to look for data structures with
a better worst-case running time.

1.11.3 Sparse Representations

Before turning to tree representations, it is worth investigating the issue of
sparseness in greater detail.

One of the axioms of Markov algorithms is that, in general, a higher ord.er
model can model a source better than a lower order model can. This means
that for a redundant source, \Me can expect that on average the entropy of deeper
nodes of the Markov tree will be lower than that of shallower nodes. Low entropy
distributions are characterized by "spikiness". This in turn manifests itself in
sparsity, As an example, in English text, it is common for the samples of deep
nodes to contain only 10 symbols with a positive frequency count. For 256 symbols,
this represents a g5% sparsity.

The greatest danger of using sparse data structures is the lack of any guarantee
of sparsity.õa Because sparse data structures use up more memory per element
than non-sparse data structures, sparse data structures are likely to tse more
memory than a non-sparse data structure for non-sparse data. To choose a sparse
representation is to gamble memory on the entropy of the source.

Consider a Markov tree algorithm that has just run out of memory. If a fixed
size representation for samples is being used, the algorithm is guaranteed not to
require any more memory. It can (say) freeze its tree and continue to record
instances' On the other hand, if a sparse representation is being used., more
memory may be needed. The only options are then to destroy part of the Markov
tree, or to recycle the records of infrequent symbols in some samples.

One technique is to switch between sparse and non-sparse data structures
in accordance with the data. This does not solve the problem of what to do

õa Th" variable size of coded data is a problem with data compression in general.
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when memory runs out but it does eliminate the spatial disadvantages of sparse
representations, admittedly at the cost of extra processing time.

In practice, data is sparse, and sparse data structures are nearly always
worthwhile.

L,LL.4 Tlee Representations

Tbee structures provide a better solution to the prediction representation
problem, generally solving it in time logarithmic in the number of symbols. Each
symbol is stored in a single node of a binary search tree. Each node is tagged by a
symbol and stores the sum of the frequencies of aII the symbols in the noile's subtree
(including the node itself) (Figure 21). For a leaf nod.e, this sum is the same as
its symbol's frequency. For a non-leaf node it is the sum of its symbol's frequency
and the sums of its child nodes. The inc operation is performed by traversing
from the root to the node of the target symbol, incrementing the sum of each
node visited. The symbol-to-range and range-to-symbol operations traverse the
tree from the root using the symbol and sum values to extract symbols or ranges.

2

5 4

freq of
symbol

symbol

sum of
subtree

lægend

3 1 1 7

A tree structure representation of samples/predictions satisfies the needs of the
model and coder in o(log n) time, Leaf nodes store the frequency of their symbol
and non-leaf nodes store the sum of their frequency and the numbers in their
child nodes, unlike the array implementation, incrementing a symbol affects only
the symbol'e node and its ancestors. The coder can obtãin ,"rrg", by movini
down the tree.

Figure 21: Prediction tree structure containing subtree sums.

The two optimizations used to improve linear representations can be profitably
applied to tree structures. Sparse trees are easily implemented and provide
considerable space savings. The ordering of a list structure corresponds to
minimizing the tree path of the nodes of frequently used symbols. Tree balancing

d

23

b f

9 12

a c e s
3 1 1 7
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is an involved field in its own right and we will only review the most relevant tree
management algorithms.

The simplest tree management is no management; that is nodes are never
moved after they are attached to the tree. The disadvantage here is that a badly
built tree can yield linear performan as poor as a list. However, so long as

the worst case performance is not fatal to the compression system, the worst case

may not be much of a threat in practice. For an ordinary source, on average, the
earliness of the first occurrence of an instance of a symbol will be proportional to
the symbol's probability. This means that it is unlikely that a degenerate tree will
be built. A simple one-to-one hash function can be employed to avoid the worst
case occurring for common orderings (such as sorted sequences).

The next class of tree management dynamically manipulates the tree so as
to optimize characteristics such as the tree's depth. The problem of balancing
trees is old, and many structures exist including height balanced trees, weight
balanced trees, b-trees, optimal search trees, biased search trees and finger search
trees[SleatorS5].õõ All of these trees have disadvantages. We do not intend to
explore this involved field. Only some of the solutions will be reviewed.

Of the balancing techniques, one of the simplest is height balancing (AVL
balancing)[Wirth76](p. 215) which endeavours to reduce the height of the nodes in
the tree. Height balancing guarantees logarithmic performance but is sub-optimal
for skewed distributions.

It might appear that for skewed distributions dynamic Huffman trees (Sec-
tion 1.4.4) would minimize the average path length. Unfortunately, because Huff-
man codes possess the prefix property, dynamic Huffman trees do not utilize in-
ternal nodes and their search path is about one arc longer than that of other
trees.

The recently developed splay trees by Sleator and Tarjan[SleatorSS] provide
an excellent prediction representation. Splay trees are self adjusting binary search
trees that have the following property.

"For an arbitrary but sufficiently long sequence of retrievals, a splay tree is as efficient towithin a constant factor as an optimum static binary search ir"" 
"*pr".rly constructed tominimize the total retrieval time for the given sequånce.,, [tarjanàz](p. zril --

Splay trees enjoy the following advantages over other trees.

o Splay trees are simple.

õõ see [Tarjan83] for a review of the current state of tree and graph algorithms.
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o Splay trees do not require storage for balancing information.

o Splay trees adapt very quickly to changing access characteristics.

A recent paper by Jones[Jones88] investigated applications of splay trees to
data compression. The first part of the paper describes an optimized splay tree
algorithm which can be used to construct an efficient adaptive prefix code similar
to dynamic Huffman coding. The optimizations are possible because with a
few additional data structures, the tree need not be ordered lexicographically.
The second part of the paper investigates the use of splay trees for representing
predictions. Jones formalizes the prediction representation problem in much the
same \¡¡ay as we have here, and uses the basic cumulative frequency tree structure
described above. The differences are as follows.

o Only the leaves of the tree are used to represent symbols.

o The cumulative frequencies are used for the coding but have no effect on
the structure of the tree. The splaying algorithm is used to balance the
tree.

o The modified splaying algorithm is used.

The result is a fast algorithm that provides an amortized,fTarjanSs] time
complexity that is linear in the length of the code string. This is a fascinating
result because the length of the code string and the processing time are determined
by independent processes (the cumulative frequencies and the splaying) driven by
the same data.

It is unclear why Jones did not utilize the internal nodes in the tree. This
omission may simply have been a carry over from the prefix trees described in the
first part of the paper.

The splay tree solution yields a linear amortizeil bound. This means that at
any instant, the number of output nats may not correspond to the time taken to
produce them; in practice a buffer would be required to drive a fixed rate channel,
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1.11.õ Heap Representations

Moffat[Moffat88] has provided a prediction data structure that yields the same
linear bound as splay trees, but at the instance level (i.e. not amortized).

The scheme uses four arrays of equal length, the length being the number of
symbols. The first array records the frequency of each symbol in frequency order.
The next two arrays provide mappings between symbols and their corresponding
elements of the frequency array. Because the first array is in frequency order, it can
be considered to be a perfectly balanced heap. The fourth array stores the sums of
frequencies of each element's subtree in the heap. The inc operation is performed
by swapping the target symbol with the leftmost (high frequency direction of the
frequency array) symbol with the same frequency (logarithmic time using binary
search). The frequency of the target symbol is incremented (constant time) and the
cumulative frequency branch of the heap is incremented (logarithmic time). This
scheme operates in a manner similar to the Dynamic Huffman Coding algorithm
(Section 1.4.4).

In this algorithm the access time and the length of the output string are
controlled directly by the same mechanism - the frequency array, This yields an
instantaneous linear time complexity in the length of the output, removing the
need for an output buffer. This is the only prediction data structure to date with
this property.

One of the problems of using large symbol sets is that wide coder ranges are
required for accurate coding. For example, if there arc 256 symbols, each with a
probability that is an integer multiple of 1/1000, the coder range would have to
be at least 256000 x fr wide to guarantee an accuracy of one part in fr within each
probability division (1/1000). Such large ranges stress coder designs.õ6

An alternative to coding large-alphabet symbols directly is to use a binary
arithmetic code (Section 1.9.4) to transmit binary branching decisions on the path
from the root to the target leaf, using the cumulative frequencies of each pair of
candidate child nodes as probabilities. This technique is called decompositionõ7
and has been proposed as a technique for coding predictions[LangdonS3]. De-
composition allows the use of alphabets of unbounded size without introducing
precision problems.

õ6

num
For example, the author's own coder implementation uses double-precision floating point
bers.

õ7 The technioue of "decomp,osition" comes from [Shannon4Sl(section 6, figure 6) who noted thathis definition of i'fo"m'tio" iliã*"ä^" ä;ñi.;î;5ärui;ffiir.$ ror.rtion ro be tonverred inro abinary decision tree with the same entropy.
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1.11.6 Stochastic Representations

All the prediction representations discussed so far are oriented towards
increasing the speed of the data structure. In general, speed is of greatest
importance in a prediction data structure. However, because Markov models can
have many thousands of contexts, memory consumption is also important.

A large portion of the memory consumed by a prediction is taken up by
frequency counters.õ8 The fact that predictions are based only on the relatiue
frequency of each symbol in a sample suggests that a floating point representation
could be used to reduce the memory consumption of these counters.

An 8-bit counter of the form rn x 2e with m €. 210,15] and e € 2,10,15] can
store natural numbers (scattered exponentially) in the range Zl0,L5 x 216]. This
is more than enough to prevent overflow under normal conditions. The major
problem is incrementing a counter with a positive exponent.

One possible implementation of the increment operation is to increment the
mantissa ræ with probability 2-". This organization conserves memory at the
expense of accuracy and uncertainty in the value of the count; after a number of
increment operations, the counter's value will be spread in a binomial distribution
around the ideal value (i.e. the value the counter would have if it was an integer
counter of infinite width).

The technique of stochastic counting presented above was devised by the
author of this thesis in early 1987. A less general form of the same idea was
devised in 1982 by Helman, Langdon, Martin and rodd[Helmang2]who proposed
stochastic incrementing as a method for updating skew numbers (Section 1.g.4). A
skew number is essentially a binary exponent (e in the above). Despite the lack of a
mantissa, the scheme is efficient for binary codes because of the accuracy to which
a binary prediction can be approximated by a power of two (Section 1.g.4). The
technique of stochastically incrementing skew factors \rras successfully incorporated
into the adaptive Q-Coder described in Section 1.11.2.

It should be mentioned that decoding can still take place in a compression
system that utilizes random numbers so long as a d,eterministic random number
generator is used. Linear congruential generators are the most popular and are
described in [KnuthEl] (chapter 3). Recently a minimum standard for random
number generators has been proposed[Park88]. In most compression systems,
õ6 The pointers of sparse representations also use up a rot of memory.
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speed is likely to be more important than randomness and faster, less sophisticated
techniques may be more effective.

If storage is really at a premium, samples could be represented as a list of the
frequencies of each symbol with each frequency / stored as ó : [-l"S /'ì Os followed
by a 1 followed by the ó bit representation of /. A sample of y instances would
require a minimum and maximum of

Zln *2lIos2a1,n(L * 2[log2 ylnD]

bits depending on the entropy of the sample. By sharing space between counters,
this representation requires space logarithmic in the total number of instances.
However, as prediction data structures are already speed-stressed, this structure
is unlikely to be practical in the immediate future.

L.LL.7 The Adaptive Q-Coder

One approach to prediction representations is to ro11 the coder, prediction
and context together into a single data abstraction that receives instances and
transmits channel symbols. Traces of this approach are present in Moffat,s
presentation of his prediction data structure [Moffat88], although strictly Moffat's
structure conforms to the prediction data structure specification given earlier
(Section 1.11.1).

The adaptive Q-coder[Langdon88][Mitchell87] combines several ideas together
to form a powerful integrated binary arithmetic coder. At the heart of the method
is an optimized version of the simple binary arithmetic code of [Langdong2]
(Section 1.9'4). The new code is very fast, involving only shift and addition
operations.

Driving the arithmetic code is a stochastically incremented sample that
consumes only six bits. One bit stores the most probable symbol (o or 1). The
other five bits store a skew number.õe The complete six bits form a prediction.
Whenever the least probable symbol arrives, the skew number is decremented and
the coder register is shifted. Whenever the most probable symbol arrives, a value
determined by the skew number is added to the coder register. If the coder register
has to be shifted, the skew number is incremented. The effect is that the coder
register acts as mantissa to the skew value,s exponent.

,,5e In the Q-coder, the relationship between the skew number and_the coder is more complicatedthan a simple power of_two. Here, [he des*iptiàn-i.;il;üi:Jr;ìË;;;;;J;ï;;;sirion. Forfull details of the Q-coder refer to [Langdontig].
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The symbiosis of the Q-coder's skew number and coder register suggests that
the Q-coder could not be modified to operate with more than one context. This is
not so. Although a single-context Q-coder apparently relies on the coder register
as a mantissa, it can do nearly as well with a stream of random numbers. This
enables many contexts to share the same coder register. The result is a single-

coder, multi-context system requiring only six bits per context.

1.1I-.8 A Comparison of Representations

The multitude of prediction representations begs a comparison. Unfortunately,
nobody has has performed a comparative study. Apart from the theoretical
results, the only practical result seems to be that sophisticated data structures
usually do not perform as well as the simple ones[Moffat89](p. 191). In practice
alphabets are sparse, and worst cases rarely occur. At the end of his paper on
splay trees, Jones[Jones88] compared his splay tree structure with a move-to-
front list structureoo and found that the list ran faster for entropies less than
6.5 bits/instance. 6.5 bits is a very high entropy for ordinary byte data and so it
seems that simple data structures run faster in practice. Moffat came to much the
same conclusion[Moffat89](p. 191). The author's orur¡. experience with splay trees
supports this result.

1.11.9 Summary

Predictions form the glue that connects the model and the coder. This section
has established prediction data structures as an important component of modern
data compression implementations. Prediction data structures are subject to
tight specifications which make them difficutt to implement efficiently (i.e. in
constant time). Because prediction abstractions map instances to ranges, they
must embody an estimation technique. Many representations can be used for
predictions, ranging from ordered lists and balanced trees to the sophisticated
splay and heap data structures recently proposed. For practical data compression
using small alphabets, sophisticated data structures may be less effective than
simple data structures. Tree structures allow binary decomposition which can be
used to avoid high precision arithmetic.

0o Jones claims to have used the ,,move
the teiï"ip.^sääi åî¿ prosram (p. 5s1) ili"#',,',tl;efi #.'Sffi,tiï:ä¿î"llå1,u"å31.,,.Ï"iJï
consequence, it is unclear whether Jones was using a move-to-front or a frequency-ordered heuristic.
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1.12 Data Structures for Markov Tbees

The previous section discussed the sample/prediction data structure which is
associated with each context in a Markov model. This section zooms out to cover
representations for the Markov tree structure itself.

The constraints on representations for Markov tree structures are much less

stringent than those for the representation for predictions. The tree structure is

fundamentally a one-v/ay mapping from strings to nodes. There seems to be two
ways of representing it. The first is hashing, in which strings are mapped directly
to nodes. The second approach is to use an explicit tree structure. Both forward
and backward trees can be used,

L.L2.L Hashing Representations

A very simple method for storing the nodes of a tree is simply to hash string
values directly onto their corresponding nodes. This method was used in the
LOEMA algorithm[RobertsS2](chapter 4, p. 82). To use a hash table, a hashing
algorithm must be found that maps strings of length Z[O,m] onto numbers in the
range Zl|,h - 1] where h is the length of the hash table. Each hash table entry
corresponds to a Markov tree node. Hash tables suffer from the disadvantages
of being of a fixed sizeor and of having to store the key value in each entry. In
this case, strings of up to length rn must be stored. Although this may seem a
problem, in practice it is not. Experiments show that the optimal rr¿ is about B

(Experiment 5 in Section 4,r7.8, [Moffat88]). For n:256 and rn : B, a maximum
of three bytes would be needed to store each entry.

Hash tables have the advantage of allowing totally random access to any node
in the tree. So long as the maximum node depth is kept low, hash tables will
conserve memory by eliminating pointers. An advantage of hash tables is that
they open up the possibility of storing non-tree structures (e.g. omitting parent
nodes).

L.12.2 Backwards and Forwards Tbees

The alternative to using a hash table is to construct an explicit tree structure
(either in an array or in heap). Tree structures can be constructed incrementally
(unlike hash tables which must be completely initialized at the start of the run)
and provide fast (pointer) access between related (parent/child) nodes.

61 However, extendable hash tables have recently been devised.
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The main design decision in representing a tree structure with a tree structure
is the way in which child nodes are connected to their parent node. Most of
the discussion in Section 1.11 applies here as well. The main difference between
furcation trees and prediction trees is that furcation trees need not conform
to the requirements of the arithmetic coder. F\rrther discussion of furcation
implementations can be found in Section 4.6.

The next major design decision is whether to use forward trees or backwards
trees (Section 1.2, Figure 3 (reproduced in Figure z2)). As each kind of tree
is capable of mapping strings to nodes, each is capable of implementing the
required mapping. The author's DHPC algorithm (Chapter 2) is strongly based
on backwards trees. In contrast, all implementations of PPM and its variants have
used forwards trees ([Cleary84]62, [BeltSg], [Motrat8S]).

The choice between backwards and forwards trees is considerably muddied
by proposed improvements involving cross-tree pointers. 'We start by considering
trees (Figure 22) without such pointers.
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In backwards and forwards digital search trees each node corresponds to the
string constructed by moving from the root to the node. The root node
corresponds to the empty string. The only difference between backwards and
forwards trees ie the direction of their strings. This figure is a duplicate of
Figure 3.

Figure 22: Backwards and forwards digital search trees.

The basic requirement of a tree is that it provide fast access to all nodes whose
strings match the history. In the case of a backwards tree, the set of matching
nodes always form a branch leading out from the root. If the maximum depth of
the tree is ræ, all matching nodes can be located using rn atc traversal operations
t', 

Tttt: first paper did not give many details on the way PPM was implemented. Howeververbal de_scriptions by the autiors along with r p.p"r- bt i4;tr ïiM;fiJ8îÍ'#ã'ää.t by rhe
inventors[Bell89] of the algorithm confirm their usã o] 

"*pii"itty linked forward trees.



Section 1.12: Datø Structures for Markoa Trees 104

(hops). In the case of a forwards tree, the matching nodes are scattered through
the tree and must be looked up separately. For a history string "sloth", the nodes
(rhtt, 6'th", "othtt, "lotht' and ttslotht' must all be accessed separately. This takes

m(m I1)/2 hops.

Bell, Cleary and Witten[Bell89] proposed a technique for reducing the m(m *
1)/2 hops. A window buffer of. m i 1 pointers is maintained that points to the
currently matching nodes of depth Zl\,ml. Whenever an instance arrives, each

pointer is moved one arc down the tree and the entire buffer is shifted. The pointer
of depth rn drops out one end of the buffer and a pointer to the root node is inserted
at the other. This system cuts the per-instance branch access time down to rn
hops, which is the same as for backwards trees.

So far backwards trees appear far superior. Backwards trees provide access

to the matching branch of any random history in rn hops. Forwards trees require
m(m + L)12 hops for a random history but for sequential data, yield rn hops with
the aid of an extra data structure. The main advantage of forward trees is that
their furcation data structure can be combined with their prediction data structure
to yield a memory saving for internal nodes.

In practice, once an algorithm has been running for a while, most predictions
are made by the deepest node of the matching branch. This fact led to the
independent discovery of vine pointers ([Bel189]) in forward trees and shortcut
pointers (Section 4.10) in backwards trees. The vine pointer of a node øs
(a e A, s e S) in a forwards tree points to node s. Vine pointers eliminate
the need for a window buffer of pointers. For backwards trees a shortcut pointer
is associated with each symbol in each prediction. For symbol ø of node s, the
pointer points to node s¿. To allow access to the entire matching branch, parent
pointers must be stored as well.

At this stage, the backwards tree seems a little overloaded with data structures;
in fact, for sequential data, the links from parent nodes to their child nodes are
no longer required. If they are removed, the backwards tree turns into a forwards
tree.

The relationship between backwards trees and forwards trees becomes clearer
if each structure is viewed merely as a collection of nodes supporting one or more
node-to-node mappings. Because each node corresponds to a context string, the
mappings are best expressed as mappings between strings. Table B lists four
such mappings, their (logical) names and the names given to them by advocates
of backwards and forwards trees. Mappings that require the specification of a
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symbol d are far more expensive (o(log n)) than mappings that don't (o(t)). The
entry sa,+s in the table is currently not used in any algorithm and is included
only for completeness.

Mapping Name Backwards Name Forwards Name
a,s-)ds

as_rE
as+8Q,

so,-ra

Ad,d,Left
StripLeft
Ad,d,Right
StripBisht

Child pointer
Parent pointer
Shortcut pointer

Vine pointer
Child pointer
Parent pointer

Table 3: Tbee mappings and their names.

These mappings provide a simple tool for analysing tree structures. A basic
backwards tree (as in [WilliamsS8]) is described by {Ad,d,L"Ít}. A basic forwards
tree (as in [ClearySa]) is described by {Ad,d,Right}. A backwards tree with parent
pointers and shortcuts pointers (as in Chapter 4) is described by {Add,Left,
Stripleft, Ad'd'Rightj. A forwards tree with vine pointers (as in [BellSg]) is
described by {Ad,d,Right, Stripl"lt}.

Different mappings lend different properties to a tree. The Ad,d,Lefi mapping
is needed if O(m) random access to contexts is required. The StripLeft mapping
is needed if context blending is to be performed. However, an array of pointers
can be used to avoid it if the Ad,d,Right mapping is available. The Ad,d,Right
mapping coincides with the prediction data structure. The StripLeft and, Ad,d,Right
mappings form a very pov¡erful combination because they can very efficiently
convert a history buffer string of the form øs into the form só (s € 

^g, 
a e A,b e A).

The conclusion is that forwards trees are more efficient for flattish trees.

The distinction between backwards and forwards trees becomes less blurry
when we consider the effect of maintaining incomplete trees. So far, we have
assumed that a node is created for each distinct string of length rn ot less that
appears in the history. Under such conditions, forwards and backwards trees store
identical sets of strings and have an identical effect. If memory is restricted, leaf
nodes must be destroyed (or never created). In such situations, forwards and
backwards trees present different pruning alternatives.

In a forwards tree, the string sloth is stored with the h at the leaf end. In a
backwards tree, the s is at the leaf end. In one case, removal of a leaf will leave
the context slot and in the other loth. Similarly, when choosing where to place
a node, for leaf node Iot, a backwards tree will present slot and a forwards tree
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loth. In the end, it may turn out that both kinds of leaf addition operations yield
equivalent compression on average. However, from an organizational standpoint,
the options presented by the backwards tree are more attractive. In general, if a
node is heavily used, it should be divided into nodes that represent more specific
contexts. For a context whose string is s, contexts of the form øs should be

created; s defines the context and ø refines it. In a backwards tree, specialization
of a context can be performed by adding one or more child nodes to the heavily
used node. In a forwards tree, an entirely new branch must be constructed to
achieve the same effect. Whereas attaching a leaf node to a node s in a backward
tree creates a context øs, addition of a leaf node to a node s of a forwards tree
creates a ne\¡/ context sø whose recorded instances will not be a subset of those of
the parent context.

In conclusion, for flattish trees, forwards and backwards trees provide much the
same performance. For sequential data, forwards trees emerge as the most efficient
representation, mainly because they save memory by combining the furcation and
prediction data structures. For randomly accessed contexts, backwards trees are
the best.

For irregular trees, the emphasis moves from efficiency to organi zalion,
Backwards trees present the most coherent tree growing and pruning options
because the tree structure corresponds directly to a refinement of contexts. The
forwards tree structure does not link related contexts as closely.

In this thesis, backwards trees are used exclusively. Chapter 2 describes an
algorithm that uses a backwards {Ad,d,Left} tree. Later on in Chapter 4, a more
sophisticated algorithm that uses a backwards {Ad,d,Left,, StripLeft,, Ad,d,Right}
tree. This is the most powerful structure available.

1.13 Dictionary Methods vs Markov Methods

The field of data compression is currently dominated by the two major
classes of algorithm: dictionary techniques and statistical techniques. Dictionary
techniques are represented by the adaptive Ziv a.nd, Lempel compressors, and in
particular L278. Statistical techniques are represented by finite-context Markov
models, and in particular PPM.

At present each class of algorithm is holding some ground. Markov algorithms
yield the best compression but dictionary algorithms are much faster and are
invariably chosen in practice. It is worth throwing some light on the relationship
between these two classes of algorithm.
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Langdon[LangdonS4] developed the ideas presented in his earlier paper

[Langdon8S] (Section 1.7.5) about the statistical equivalent of L278, The main
result is that it is always possible to construct a Markov model that emulates a
dictionary technique. The converse is not true.

Consider a dictionary of d strings each of which is assigned a probability p¿.

For the sake of simplicity, \Ã/e assume that a perfectly efficient arithmetic code

is being used. The message is parsed by the dictionary using greedy parsing. If
the dictionary is represented as a forwards ({Ad,d,RiglLJ}) tree, the parsing of a

single phrase consists of traversing the tree from root to leaf, one arc per incoming
instance. Aesociated with each node is a code string. By taking the inverse log
of the code string lengths at the leaves and working backwards down the tree,
probabilities can be assigned to each arc of the tree. Each forward branching then
corresponds to a prediction. The context on which each "prediction" is based
depends on the depth of the node in the tree. Because a parse consists of walking
from the root to a leaf, successive ttpredictions" are made using successively deeper
orders. \Mhen a leaf is reached, control returns to the root and the next prediction
is a zero order one. The result is the generation of predictions with orders that
vary as a saw-tooth function.

This is the fundamental difference between Markov techniques and dictionary
techniques. Markov models apply the same amount of "power" to each instance
whereas dictionary techniques apply power in a saw-tooth function. The effect
is that Markov models yield better compression than dictionary techniques, but
require more processing time.

Langdon quantified all these ideas in his paper by defining three models: M -a dictionary (parsing) model, M0 - the dictionary model expressed as a Markov
model, and Mt - a full Markov model using the same number of contexts as M.
He then showed that Mt will always perform at least as well as M, with equivalence
occurring when the source structure actually does follow the saw-tooth order curve.

Langdon pointed out that Markov models can approximate a source as closely
as desired as soorr as the model order exceeds that of the source. In contrast,
parsing techniques, which are based on the saw-tooth power function, must grow
an infinite number of phrases in order to raise the saw-tooth period to the point
where the inefficiency of the zero ord.er predictions at the start of the saw-tooth
have little impact. Langdon showed that for a universal parsing model, the length
of phrases approaches infinity as the message length approaches infinity. This
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implies that the average order of the implicit Markov models approaches infinity
as well.

Experimental results confirm Langdon's conclusion. Figure 23 shows the
performance of two LZ78 variants called LZC and LZFG and a PPM variant
called PPMC.63 LZC is the algorithm used in the TJnix compre,e,e program. LZFG
is the best LZ78 algorithm developed so far (in general LZ78 class algorithm
perform worse thanLZTT class algorithmsoa). PPMC is the best Markov algorithm
developed to date. The vertical axis plots compression (proportion remaining).
The files (a fiction book, a news file, an object file, a paper and a C program) are
described in Section 4.77.2.
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Thie histogram compares the compression performance of the best Ziv and

deecribed in Section 4.17.2. This graph indicates that the best Markov algorithm
yields better compression than the best dictionary algorithm.

Figure 23: Performance of dictionary and Markov techniques.

In practice, the extra compression obtained by Markov methods is usually
not worth the decrease in speed.6õ Fiala and Greene[FialaSg] describe some
sophisticated variants on LZ77 and LZ78 and make a strong case for the practical
68 Thie graph was generated based on results given in table B-1 of [BellSg]. The author of this

find application where the cost of the channel
Examples: Modem communication, batch file

es.
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advantages of dictionary techniques over Markov techniques. However, the field
is by no means stable and it is possible that faster Markov techniques will
appear (Appendix D). Meanwhile the debate continues ([LangdonSS], [LangdonS4],

[HamakerSS], [\Mitten88], [Fiala89]).

In summary, all current text compression techniques operate entirely by
exploiting the correlations between adjacent instances. The power of a technique

is measured by the number of instances used to predict the next instance. Markov
techniques apply roughly the same amount of power to each instance. Dictionary
techniques apply porvr¡er in a saw-tooth function. Markov models yield the best

compression. The best dictionary techniques yield nearly as good compression
but run much faster.

1.14 Signal Cornpression

Data comes in two different kinds: text data and signal data. This thesis is
concerned almost exclusively with text data. It is worth distinguishing between

the two kinds of data because completely different techniques are used to compress
them.

Text data consists of a stream of instances of symbols. Examples of text
data are English text and computer programs.

Signal data consists of a stream of numbers (also confusingly called
samples) taken from a real world sampling device such as a digital
microphone or a video camera. Examples of signal data are digital
representations of music and digital images. Each instance in a stream
of signal data is a snapshot of the amplitude of an analogue source at a
particular position or time.

Both text data compressors and signal data compressors compress streams
consisting of instances of a set of n symbols. Each stream can equally well be
thought of as a sequence of numbers in the range [0, r, - 1]. The difference between
the two kinds of data is that signal data assumes an orilering66 on the symbols
whereas text data does not. If text and signal messages were each fed through a
one-to-one random permutation function f : A - A, the text compressor would
yield iilentical compression whereas the signal compressor's performance would be
substantially reduced. Signal compression techniques are based on the assumption
that the instances are the result of a (slowly varying) physical process.

66 The values ordered are usually linearly distributed but are sometimes exponentially distributed
(fixed point vs floating point).
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The techniques used for modelling signal data are completely different from
those used to model symbol data. However, the recent advances in symbol
compression have resulted in an overlap between the fields and it is worth
briefly reviewing the area. There are two interesting classes of signal,data: one

dimensional and two dimensional. We will refer to these classes of data as ttsoundst'

and ttimagest'.

Two classes of technique are used to compress signal data. One method
is to fit a curve to the next few instances to be transmitted and transmit
only the coefficients of the curve. This has been done with Fourier trans-
forms. Turner[Turner75] discusses the use of the Hadamard transformation.
Shapiro[ShapiroSo] describes a technique which dynamically selects between a
number of different curves in a library of curves (e.g. linear curves, quadratic
curves, exponential curves).

The second (and most popular) signal compression technique is prediction; in
fact prediction was used in signal compression long before it began to star in text
compression. The technique of adaptive linear prediction[Witten80] uses
a linear function of the previous fr instances to predict the next instance. The
arithmetic difference (error) between the predicted symbol and the symbol of the
actual instance, is transmitted using a smaller number of bits.

Markov models are generally ineffective when applied to signal data because
the patterns in the signal data are not exact. A wave can cycle one hundred times
without using the same symbol (e.g. if the symbol set size is r¿ : Obbg6 as it is
for sound on compact disks). However, Markov models can be applied to black
and white images (which have a binary symbol set (n : 2)) and to predicting the
rough error of a distribution.

One of the earliest predictive techniques for compressing black and white
images is described by Kobayashi and Bahl[Kobayashi74]. Compression takes
places in two stages. Stage one does not effect a compression but simply
changes the statistical properties of the block of bits. Stage two does the actual
compression. In stage one, the image is scanned line by line, pixel by pixel, from
left to right. Before each pixel is scanned, linear prediction is used to predict
whether it will be O or 1. The prediction is based upon neighbouring pixels that
have already been scanned. Each pixel bit is then replaced by an error bit being
0 if the prediction was correct and 1 if it was incorrect. The result is a bit matrix
of the same size as the original image, but one that can reasonably be modelled as
the output of a memoryless binary source. This is then encoded using binary run
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length coding[Bail7a] (Section 1.5.1.1). Baht and Kobayashi discuss a number of
pixel predictors and both fixed and adaptive predictors are examined.

Bahl and Kobayashi's technique can be considered as a primitive version of a
more modern technique described by Langdon and Rissanen[LangdonSl]. Where,
in the second stage, Bahl and Kobayashi employed run length coding, Langdon
and Rissanen employed a binary arithmetic code (Section 1.9.4). Where in the
ffrst stage, Bahl and Kobayashi used an adaptive linear predictor, Langdon and
Rissanen used a Markov predictor. Use of a Markov predictor was possible because
there were only two symbols, 1024 contexts were constructed corresponding to the
1024 different states that 10 pixels near the pixel being predicted could be in.

The other application of modern techniques to signal compression is in
predicting lhe error of the prediction of an instance.

Traditionally, a signal lc bits wide is compressed by predicting it and transmit-
ting the error as a stream of instances e bits wide. If the error is greater than the
maximum transmittable error, the signal becomes distorted (slew rate distortion)
or an escape code is used to introduce a wider error code. A more general technique
is to assume an error distribution and transmit the error according to its proba-
bility as specified by the distribution (using an arithmetic code). Todd, Langdon
and Rissanen[Todd85] describe a technique that goes one step further by using
a Markov model to predict the error yietded by a linear prediction technique. A
first pass divides the error distribution into five zones called buckets, each of which
contains roughly the same number of error instances. To these zones is assigned
an error-symbol alphabet of size 5 that is distinct from the signal alphabet. The
error symbols of the three pixels adjacent to the pixel being predicted are used to
select from one of' I25 contexts. The selected context predicts the error symbol
of the predicted pixel. Surprisingly it was found that the actual predictor used
didn't matter much if the resulting errors were being compressed by this scheme.

There are a number of ad-hoc techniques for compressing image data that do
not use prediction. An image can be represented by a quad tree. euad trees
recursively divide the image into four parts, stopping when each part is a constant
value. Quad trees rely on the fact that images tend to contain large tracts of the
same colour. Another technique is to transmit a chain of points being the outer
boundaries of a contiguously coloured area[Morrin76].

One of the more interesting uses for prediction in image compression is that of
progressive transmission. Witten and Cleary[Witten86] describe a technique
in which the image is represented by a solid, uniformly 4-furcated (quad) tree with
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the leaves corresponding to the pixels. The image is transmitted layer by layer

from the root to the leaves, using the current layer to predict the next layer. The
technique transmits the image in the same time as a single linear scan but provides

coherent images of increasing resolution after each layer has been transmitted.
\Mithout using one layer to predict the next, layer by layer transmission would
take about 30% longer to transmit than the leaf layer alone.

One important area of image compression is facsimile compression. Facsimile
compression has become specialized because of the highly specific nature of images

transmitted; typically the images are of text documents. This fact is used to
advantage in the "Combined Symbol Matching Facsimile" algorithm described
by Pratt, Capitant, Chen, Hamilton and Wallis[PrattSO]. The algorithm first
scans the image looking for characters and divides the document into two bitmap
overlays, one containing symbols and the other containing the residue. A character
font dictionary is transmitted followed by a compressed form of the symbol portion
of the page. The residue is transmitted using run-length coding. The result is an
algorithm that out-performs run length coding for pages that contain a lot of text
and as well as the best run length coding schemes for pages that consist mainly of
graphics.

1.15 Measures of Compression

Researchers in the field of data compression seem to be uncertain of how to
express the performance of their compression algorithms. If o is used to denote
the length of the message and B is used to denote the length of the compressed
messager a measure can be expressed in terms of o and B. Because each formula
involves a division, the result of the formula is dimensionless and the units of
information of o and B do not matter so long as they are the same. An informal
sample of the literature revealed a high entropy in the measures used to present
experimental results (Table a).

Compiling this table was tedious because most papers do not explicitly define
the measure that they are using. For most papers the measure used could only
be determined by looking in the discussion section and locating a sentence that
compares two results. The problem of identifying the measure was particularly
acute when the compression presented was about b0%.

The measures listed in Table 4 are not exhaustive. There is al@fl which is
instances per bit and 1 - (0 /.) which is the proportion taken off the input file.
Similar measures can be devised for nats.
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Paper Value Description
WilliamsSS
Bahl74
JakobssonS2
PrattS0
TeuholaTS
TurnerTS
BentleyS6
Brent8T
ClearyS4
Cormack8S
Moffat88
Roberts82
CormackSS
CormackST
GottliebTS
McintyreSS
Moffat87
CooperTS
CooperS2
Katajainen86
MayneTS
MccarthyTS
RaitaST
Reghbati8l
Severance83
TischerST

01"
olp
o'l p
o'l p
olp
alp
s(þ l")
e(0 I ")s(þ l.)
a(þ1")
8(þ / *)
8(þ I o)

l")
-p
-p
-p
-p
-p
-p
-p
-p
-p

01")
þ l")
þ l")
þ l,)

100(
100(
100(
100(

0(p10
100(1
100(1
100(1
100(1
100(1
100(1
100(1
100(1
100(1

la
la
la
/a
la
la
la
la
/a

)
)
)
)
)
)
)
)
)

Compression
Compression
Compression gain
Compression ratio
Compression gain
Compression ratio
Bits per character
Compression ratio
Bits per character
Bits per character
Compression
Entropy
Compression ratio
Compression factor
Compression ratio
Not named
Compression ratio
Compression
Compression
Compression gain
Space saving
Storage saving
Percentage saving
Compression
Compression
Compression ratio

The method of reporting compression performance varies greatly from researcher
to researcher' This table lists the measures employed in an informal selection
of papers, o is the size of the uncompressed message and g is the eize of the
compressed message. The description column lists the descriptions used by the
different authors.

Table 4: Compression performance measures.

Perhaps the real problem is that terms such as ttcompression ratio,, are not
descriptive of the formulas they represento7. At this stage, proposing standardized
meanings to the various terms would be of little use. A better solution is for
researchers to report their results using more precise descriptions (Table 5).

Nearly all of the measures listed in Table 4 express compression in terms
of the ratio of the length of the compressed file to that of a byte strea,m
representation a]u.eady chosen by humans (e.g. ASCII). These measures are relative
67 A similar problem with nomenclature arises with Markov algorithms (Section 1.10.6)
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Formula Description

þ/o
t - (0lo)
100(B / a)
100(1 - þ1")
e(þ1.)

"lGp)8(rnz)(B la)
al@Qn2)B)
olp

Proportion remaining
Proportion removed
Percentage remaining
Percentage removed
Bits per instance
Instances per bit
Nats per instance
Instances per nat
Compression gain

One method of improving the clarity of compression results is to use more de-
scriptive terms for compression rather than generic terms euch as ttcompressiontt.

Thie table lists proposed terminology for various compression mea^sures,

Table 5: Proposed nomenclature for performance measures.

by definition (Section 1.1.1). The ideal measure would specify lhe absolutle amount
of information that a technique requires to represent a given abstract information
obiect, When compressing bananas, compression could be measured in information
per banana where the information could be measured in digits of a given base
(preferably base e). The measure t'bits per instance" is the best measure proposed
to date because it does not assume a representation for instances. The measure

"nats per instance" is even better because, in addition, it forces the user to realize
that information is a continuous quantity.

1.16 Error correction, Data compression and cryptography

Throughout the development of electronic communication systems there has
been a strong link between error correction, data compression and cryptography.
Error correction provides a noiseless channel without which data compression
would be hazardous. Data compression enhances the security of cyphers. Cyphers
form a dual with error correcting codes. This section describes this 

"y"i".
Conventional data compression techniques provide a simple one-to-one map-

ping between messages and code words. If a portion of the coded message is
corrupted, the text can usually be recovered manually. In contrast, modern data
compression techniques introduce such a complex of dependencies that the influ-
ence of a single instance can propagate throughout the rest of the coded message.
This makes errors much harder to correct. Data compression relies on the presence
of a noiseless communication line which can be approximated only with the use
of error correction. Data compression and error correction systems are symmetric
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with respect to redundancy; data compression removes redundancy whereas error
correction introduces it.

The link between data compression and cryptography is nearly as strong. At a
purely practical level, the introduction of data compression into a communications
system provides an extra level of complexity which the cryptanalyst must work
through[Rubin79]. Anyone who has tried to program a finite-context predictive
model driving an arithmetic code will realize how sensitive to detail the whole
system is. It would be difficult to find the exact system being used by an enemy

even if data compression were the only "cypher" being used. Cryptographers place
no weight on this argument, however, as they assume that the cryptanalyst has

access to the cypher algorithm, including protocols and data compression layers.
Cryptanalysts define three levels of attack. If only the cyphertext is known, the
attack is called a cyphertext only attack. If a piece of text and its cyphertext
is known, the attack is a known plaintext attack. If the cryptanalyst has the
capability to inject an unlimited number of messages into the cypher and observe
the resulting cyphertext, it is a chosen plaintext attack. The last threat is the
one most commonly addressed by cryptographers.

Early theoretical work on "secrecy Systems" was performed by Shannon
[Shannon4g] who used his newly founded field of information theory to provide
a solid foundation for cryptography. Shannon modelled a cypher as a mapping
from a set of messages to a set of codewords (Figure 24). The mapping is many
to many. The cypher key (which the cryptanalyst does not know) resolves the
ambiguity. Shannon constructed a measure of the security of a cypher based on
the average number of messages which map into an arbitrary cyphertext. This
enabled him to prove that there is such a thing as an unbreakable cypher, the
existence of which was an open question at the time.

\ryith the increasing need for fast, reliable, secure computer networks, cryptog-
raphy is again in the spotlight. In an excellent paper, Diffie and Hellman[Diffie76]
reviewed the current and future requirements for cryptographic systems, and then
introduced public key cryptography. The paper "caused. a basic revolution in the
way people think about cryptographic systems"[TanenbaumSl](section g.1.4)
because no-one up to that point had considered it possible to form a secure chan-
nel without a prior secret key exchange. Diffie and Hellman also discussed the
relationships between various problems in cryptography and ended with a discus-
sion of complexity theory[Garey7g].
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Messages Codewords

Shannon modelled a cypher as an ambiguous many-to-many mapping between
messages and codewords that could only be resolved using the cypher key.

Figure 24: Shannon's model of cryptography.
(Based on figure 4 and figure õ of [Shannon4g])

In a later paper, Hellman[HellmanT7] discussed Shannon's approach to
cyphers. In particular, Hellman emphasised a point made by Shannon about
the importance of data compression in cryptographic systems. Data compression
techniques map a large space of redundant source messagesos into a smaller space
of less redundant messages. If the message is encrypted øfter compression, the
ambiguity of the resulting cyphertext is increased because fewer of the possible
decyphered messages are meaningless (Figure 25 and Figure 26).

Messages Codeuords

Figure 25: Encryption without data compression.
(Based on figure 4 of [HellmanTT])

6E In this case the term ttredundant" is used to mean that the space of messages contains many
messages that will neaer be sent.
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Messages Codewords

Compressed
Messages

With data compression, the non-sensible messages are eliminated before encryp-
tion takes place. As a result, code word ambiguity increases.

Figure 26: Encryption with data compression.

(Based on figure 3 of [Hellman77])

At the end of his paper, Hellman completes the circle by connecting cryptogra-
phy and error correction in a dual relationship. In the absence of "source coding"
(a common term for data compression among theorists), the best error correction
code is one that provides a random mapping from codewords to messages (so as

to include as many meaningless messages as possible) whereas the best cypher is
one that provides a non-random mapping (so as to include as many meaningful
messages as possible). This view contrasts with Shannon's view which states that
a random mapping is optimal in both cases.

To summatize, error correction, data compression and cryptography form a
tight triangle. In particular, error correction is necessary for data compression to
be feasible over noisy channels, and data compression is fundamental to providing
cryptographic security.

1.17 Summary

Data compression has been in use for hundreds of years. The introduction
of information theory, computers and communication networks has greatly accel-
erated the field and added urgency to its application. Whereas information is a
continuous quantity computers can only store a finite set of information sizes, the
smallest size being one bit. This makes the storage of small units of information
inefficient. Huffman coding, the all-time most popular technique, suffers from this
malady. Early attempts to overcome this inefficiency involved mapping blocks of
source symbols to blocks of channel symbols with the aim being to minimi ze the
difference in information content.

o
o

o

o
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Following the introduction of Huffman coding, the field stagnated for thirty
yearsr during which a number of ad hoc techniques were developed. Principal
among these were run length coding and the dictionary techniques.

In the late seventies, the field warmed up again. Dictionary techniques became

adaptive. Arithmetic coding emerged as the solution to the coding inefficiency
problem. Two theorems arose in the early eighties consolidating these ideas,

The first asserted the superiority of single-instance parsing over multiple-instance
parsing. The second asserted the superiority of one-pass adaptive compression
over two pass semi-adaptive compression. These two ideas along with arithmetic
coding formed the modern paradigm of data compression from which finite-context
Markov algorithms arose. Finite-context Markov algorithms predict each instance
based on the previous few instances of the message and on the past behaviour of
the source.

Adaptive dictionary (Ziv and Lempel) techniques are the most practical,
operating at high speed and giving good compression. Markov models operate
more slowly but yield better compression.



CHAPTER 2

THE DHPC ALGORITHM

2.1 Introduction

Chapter 1 contained a review of the development and current status of data
compression. The remainder of the thesis presents the results of the author's work
in this field.

In this chapter we present a finite-context algorithm called Dynamic History
Predictive Compression (DHPC) that was devised by the author in late 1.986

and published in 1988[Williams88]. DHPC is similar to PPM in its basic approach
but differs in all other aspects. The algorithm will be described in detail because

it is

o an original contribution.

. a concrete example of a Markov algorithm.

o the basis for more sophisticated algorithms

DHPC is a variable-orderfinite-context Markov algorithm which conforms with
the modern paradigm. It uses a backwards tree to store its contexts and grorvs
the tree incrementally as compression proceeds. Each node in the tree contains a
sample which is updated whenever the node matches the history. Predictions are
based solely on the deepest matching node that contains enough instances to be
reliable.

2.2 Tree Growth

DHPC's tree growth is achieved by adding leaf nodes, one at a time, at a

maximum rate of one node per instance. Growth is ultimately bounded by a
predetermined maximum z € Z[1,,æ) on the number of nodes and a predetermined
maximum m e Z[0,oo) on the depth of a node. Tree growth continues forever only
if. m : oo and z -- æ. Once a node is attached to the tree, it is never moved; once
the tree contains z nodes, its structure does not change. It is therefore important
to build the tree in a manner that ensures that its final structure approximates
that of the source.

DHPC controls the rate of growth by preventing growth from nodes whose
samples are not ettensible. A node is extensible if its sample contains at least a
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instances where ot e Z[2,oo) is a constant parameter of the algorithm called the
extensibility threshold.

The rules for tree growth are summaúzed as follows. After each instance has

been transmitted and used to update the matching branch, a new matching leaf
node is attached to the deepest matching node (u - the potential parent node)

in the tree unless one or more of the following conditions hold.

o The tree contains z nodes.

o u is of depth rn.

o u is not extensible.

This policy ensures that the rate of growth of each part of the tree is
proportional to its frequency of access. This increases the tikelihood that the
eventual structure of the tree will approximate that of the source. The algorithm
attempts to construct a tree that maximizes the average access depth so as

to maximize the average order of finite-context Markov model used to make
predictions.

2.3 Estimation

The DHPC algorithm produces a prediction for each incoming instance. Each
prediction is based solely on the sample of the deepest matching credible node. A
node is credible if its sample contains at least B instances where P e Zí,oo) is
a constant parameter of the algorithm called the credibility threshold.

DHPC converts the sample of the deepest matching credible node into a
prediction using linear estimation (Section 1.10.8.1) with À : 1. That is

(('Xo) - "(ù +:t
AtL

yielding the estimated probability of a symbol ø recorded r(a) times in a sample
of g instances (y :DaeA*@)). The low value of À indicates that the algorithm
places a lot of trust in the samples chosen for prediction, those samples having to
contain at least B instances.

720
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2.4 TIne Algorithm in Detail

The DHPC algorithm manipulates two data structures: a backwards tree and a

sliding-window history buffer. The backwards tree models the source. The sliding
window history buffer stores the rn most recent instances of the history.

Four constant parameters control the behaviour of the algorithm.

The depth limit nx e Z[0,oo) defines the maximum depth of the tree and

hence also the length of the history buffer. The depth limit places a constant

upper bound on the time needed to process each instance and a weak (O("*))
upper bound on memory consumption.

The node limit z e ZlTroo) defines the maximum number of nodes in the
tree. The tree structure is frozen when it reaches z nodes. The node limit places

an upper bound on memory consumption.

The extensibility threshold a e Zl2,oo) defines the minimum number of
instances that a node's sample must contain before the node can sprout leaf nodes.

The credibility threshold B e ZIL,æ) defines the minimum number of
instances that a sample must contain for it to be used to make a prediction.

A review of previous definitions may resolve some ambiguities. The depth of
a node is defined to be the number of arcs between the node and the root node.
The root node is defined to be of depth zero. A, tree containing only the root node
contains one node. y is an abbreviation for Doe¿,{o). A node is extensible if
its sample contains at least o instances. A node is credible if its sample contains
at least B instances. The terminology of extensibility and credibility applies to
samples as well as nodes.

2.4.L Main Program

The main program of DHPC is listed in Figure 27. The algorithm is best cast
as a process that reads a stream of instances and writes a stream of predictions.
This enables it to be slotted into the model unit of Figure g.

In this formulation, the history buffer is represented by an array hist of. m
instances with histlL] containing the most recently received instance. The tree is
stored in some sort of dynamic data structure and is accessed through a ,,pointer,'
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pro cess D H P C (in insta,ncestreørn ; out p red,ictio nstream) is
a : constant integer + lÐxtensibility threshold pa,rameter)|
B : constant integer € <Credibility threshold patameter>;
rn : constant integer e <Depth Límit parameter);
z : constant integer e (Node limit pa,rameter);
type history is array[l ...m] of symbol;
lProcedures preilict and upilate>

begin DHPC
root : noilel
hist : history;
new(root); root.r lor...ap] <- 0;
histl7...ml - ' ';
loop

instønce : symbol;
writ e (p reili cti o nstream,p re ili ct (ro o t,hist)) ;

reø d, (inst an c e stream rin st øn ce) 
1

up il at e (ro o t,hist,inst an ce) 
1

end loop;
end DHPC;

The DHPC main program implements the model unit of Figure g, reading
a stream of instances and generating a stream of predictions. The algorithm
generates a prediction for each instance before it reads the instance. The preilict
function and, updøte procedure do all the work.

Figure 27: DHPC main program.

called rooú which points to the root node. Each node u contains a sample x of n
frequency counts u.æ(a), Va e A.

The algorithm starts by initializing the tree (which is manipulated through its
root node root) to a single (root) node and filting the history buffer (äisú) with
spaces.oe Each instance is processed in two phases: a prediction phase during
which a prediction for the next instance is generated, and an update phase during
which the next instance is used to update the history buffer and the ftee. preilict is
a function with no side effect s. upilate is a procedure that modifies its parameters
but has no other side effects. The next two sections describe the subprograms
pred,ict and upilate that implement these phases.

0e Because a ) 1, history length always exceeds tree depth, making this initialization strictly
unnecessary.
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function pred,ict(in root : noilel in hist : history) : preiliction is
begin preilict

if root.yl B th'en
return p p e P AVa e A, p(a) : l;

end if;
cument : noile <- root;
loop

exit if ilepth(cument):rn1
neat z noile <- current.child,fhistld,epth(current)+t]];
exit if not eaists(neut);
exit if neú.y< B;
currenteneutl

end loop;
return p p e P AYa e A, p(a) - ((current.a)(a);

end preilí,ct;

The DHPC algorithm bases each prediction entirely on the sample of the deepeet
matching credible node. If no such node exist , the uniform prediction ie
returned.

Figure 28: DHPC prediction function.

2.4.2 Prediction Phase

The prediction phase produces a prediction of the next instance. This phase
is controlled by function preilict (Figure 28). The function does not modify its
arguments and has no side effects.

F\rnction preilict starts by examining the root node and returning with ihe
uniform prediction if the root is not credible. It is an invariant that if the root is
not credible, all nodes are not credible.

If the root is credible, preilíct begins at the root and moves down the matching
branch stopping on the deepest credible node. The node's sample is then fed
through the estimation function { (Section 2.8) producing the prediction.

2.4.3 Update Phase

Between the prediction and update phases, the main program (Figure 2Z)
reads in the instance corresponding to the prediction made during the prediction
phase. The update phase uses the new instance (instønce) to update the history
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procedure update
(in root : noilel in out hist z history; in instance : symbol);

begin upilate
cument:noile+rootl
loop

inc current, xfinstancel;
exit if isleaf (cument);
exit if not eui st s ( cur re nt . clt il d, lhi,st ld e p th ( c ur r e nt) + tll ;

current <- current . child,lhistld,epth(current) + t ]] ;

end loop;
if (d,epth(current)< rn) and (treesize(root)< z) and

(cument.y) o) then
newnoile z noile;
new(newnoile)i newnoile.ælot. ..anl e 0;
current . chil d,lhi stld, epth (current ) + 1 ] ] e n ewn o il e i
inc n ewn oile . xlinst ancel;

end ifi
for i in reverse 2. . .m loop å,isú[i] + histli - ll end loop;
histlTl + instancei

end upilatel

After each instance has arrived, the DHPC algorithm adds it to the sample of
each node on the matching branch (first loop), working from root to tip. when
it reaches the end of the branch, it sometimes adds an extra node on the end
(if). The for loop slides the history buffer.

Figure 29: DHPC update procedure.

and the tree. This phase is controlled by procedure upilate listed in Figure 2g.
The procedure modifies its first two parameters but has no other side effects.

Procedure upiløte moves down the matching branch adding the new instance
to the sample of each node visited. It stops on the deepest matching node z. If, at
that point, u is not of maximum depth, and u is extensible, and the tree contains
less than z nodes, a matching chitd node (a leaf) is created and initialized with
an empty sample. The new instance is added to the new node's sample as if the
new node had been part of the matching branch all along. Once this is done,
the instance is shifted into the history, the oldest instance in the history being
discarded.

Thus a sample receives its first instance upon the creation of its node and
collects one instance each time its node matches the history. Because o ) 1, at
most one node is added to the tree for each instance read.

The statement exit if islea,f (current) exists only to prevent an illegal access

of histlm * 1] on the following line and can be eliminated by declaring å,isf with
an index range of Zf|,m -f Il.
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2.5 Example Execution of DHPC

We now present an example execution of DHPC. The example uses a three

symbol alphabet (n :3) consisting of the symbols a, b and c. The maximum
depth of the tree is set to six arcs (* :6) and the maximum number of nodes

to one hundred (z : 100). The extensibility threshold is set to three instances

(o : 3) and the credibility threshold to two instances (þ :2). These parameters

are summaúzed in Table 6. The message starts with abcbacbabc.

Parameter Value

n
rn
o(,

p

3
6
3
2
1

: (a, b, c)

00

Table 6: Parameters used in the DHPC example.

Execution of the algorithm will be illustrated using a sequence of snapshots
that summarize the state of processing between the arrival of each instance. The
snapshots are taken between the write and the reail sLalernents of the main loop
of the main procedure listed in Figure 27. L snapshot labelled '(Instances read,
: k" was taken at the time when the reail statement had been executed exactly fr

times.

Each snapshot gives a picture of the tree, the number of instances already
read, the position in the input string, the history bufrer, the sample used to make
the next prediction, and the next prediction itself. The tree is drawn with leaves

to the left so as to align it with the history through which instances flow from
right to left in accordance with Western reading conventions. Each node in the
tree is labelled by its sample in the form of a triple followed by the letter 'C' if the
node is credible and by the letter 'E' if the node is extensible. Instances to the
left of the vertical bar in the input string have already been read. The array hist
is displayed with histlll at the rightmost end in order to illustrate the right to left
flow of instances. Full stops take the place of spaces, The sample used to make
the next prediction is displayed as a triple containing the counts for each symbol,
in the order (a, b, c). This sample when fed into ( yields the next prediction
which is expressed as a vector of rational probabilities obtained from the form
{(tXo) : W. This form is derived from the form given in Section 2.8 by
multiplying the numerator and denominator by ,.
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Ingtancec read
Input tt,rLng/poan
Hlatory buffer
Prcdlctíon aamplc
Prcdlctl,on

L26

At time 0, no instances have been processed. This snapshot illustrates the

state of the data structures after the initialization but before the first instance has

been read. The tree consists of the root node, whose sample is empty. The history

is frlled with spaces. Despite the lack of information, a prediction must be made.

In the absence of a credible node, the uniform sample of (1,1,1) is used, resulting

in a uniform prediction of (4/ t2 ,4/ !2 ,4/ t2) .

o
(0,0,0)

Inrtancer read
Input atrLng/posn
Hlctory buffer
PredLctLon ranpJ.e
PrcdLctLon

l abcbacbabc"
tl

0
tt
tt

(
(

Instance 1, which is a, arrives and is added to the samples of the matching

branch, which consists of the root node. The root node is not extensible so no

growth occurs. The history buffer is shifted. As there is no credible node, the
prediction is based on the uniform sample.

o
(1,0,0)

1r 1,1)
41L2,41L2,4/L2'/

1
"a lbcbacbabctt
tt.....ltl

(1,1,1)
(4lL2t4/L2,t/L2l/

Instance 2, which is b, arrives and is added to the samples of the matching
branch, which consists of the root node. The root node, which now contains two
instances, is credible but not extensible, so no growth occurs. The history buffer
is shifted. As the root is credible, it so it is used to make the prediction. The root
node's sample of (1 , 1 ,0) results in the prediction (+/g ,q/g ,t/g). The estimation
function ( ensures that the third symbol (c) is allocated a small probability despite
its zero frequency.
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Ingtanceg read
InpuÈ atrlng/poan
HL!Èory buffer
PredLctlon sanple
PredLctl,on

InsÈancec read
Input string/posn
History buffer
Predlctíon rample
ÞredictLon

727

Instance 3, which is c, arrives and is added to the samples of the matching
branch, which consists of the root node. The arrival of this third instance makes

the root extensible (because 3 -- root.y > o¿ - 3), allowing it to grow a new

matching child node. The new node is created at depth d: L with an arc labelled
b so as to match the history histldl. The new node's sample is updated as if it had
been part of the tree all along. This results in a sample of (0,0,1). The history
buffer is shifted. The root is the deepest credible matching node and so its sample
of (f ,1,1) is used to make the prediction.

o
(1,1,0)C

2
"ab l cbecbabc"
t'. . . .abtt
(1,1,0)
l4l 9, 41 9, Ll 9l

3
"abc lbacbabc"
tt.

(1
l4

..abc"
,L,
/t2

1)
,41L2, 4lL2l

Instance 4, which is b, arrives and is added to the samples of the matching
branch which consists of the root node. The deepest node in the matching branch
is the root node, which is extensible, and so a new child node is created whose arc
is labelled c. The new node is updated with the new instance (b). The history
buffer is shifted. At this point the deepest matching node is the node on the b
arc, but as it is not credible, the root node's sample is again used to make the
prediction.
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(0,0,1)
b

c
(0,1,0)

Inctances read
Input atrLng/posn
Hlrtory buf,f,er
PredicÈion aençrlc
Predl,ctlon

Ingtanceg read
Input string/posn
tlistory buffer
Predictíon ranp1e
PredLct,ion

Instancea read
fnput string/posn
History buffer
Prediction sample
Prediction

128

Instance 5, which is a, arrives and is added to the samples of the matching
branch which consists of the root node and node b. This update makes the node b

credible. However node b is not yet extensible and so no new node is added. The
history buffer is shifted, As there is no node a, the root is the deepest credible
matching node and so it is used to make the prediction.

(1O,l)C
b

(2,2,\)CE

c
(0,1,0)

(1,2,1)CE

4
"abcb l acbabc"
tt . .lbcbtt
(Lt2 | Ll
(41L5,7 /L5, 4/L5'.)

5
"abcba l cbabc"
tt.abcbatt
(2,2tLl
(7 /L8 t7 /L8 | 4lL8l

6
"abcbac lbabc"t'abcbac"
(2,2,2'
(7 /2L,7 /2L,7 /2Ll

Instance 6, which is c, arrives and is added to the samples of the matching
branch which consists only of the root node. As the root node is extensible, a new
child node a is created. The history buffer is shifted. As node c is not yet credible,
the root's sample is used to make the prediction.

(0,0,1)

(2,2,2)CE

(1,0,l)c

c

(0,1,0)

a

b
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Instance 7, which is b, arrives and is added to the samples of the matching
branch which consists of the root node and node c. Node c is not yet extensible

and so no growth takes place. The history buffer is shifted. The prediction is

based on the sample of node b which became credible when instance 5 arrived.

(0,0,1)

b (2,3,z)CE

(1,0,1)C

c

a

(0,2,0)c

Ingtances read
Input stríng/posn
History buffer
PredLction tanpJ.e
Predíctíon

1
"abcbacb l abc"
"bcbacbt'
(1,0,1)
(4/9,Ll9,4/9'

Instance 8, which is a, arrives and is added to the samples of the matching
branch which consists of the root node and node b. This makes the node b
extensible and so a ne\¡v matching child node cb is created. The new instance
is added to the new node's sample as if it had been in the tree all along. The
history buffer is shifted. The deepest credible matching node is the root node
because node a is not yet credible.

(0,0,1)

c b

c

(3,3,2)CE

(1,0,0) (2,0,

(0,2,0)c

a

Instancea read
Input ltring/poln
HLctory buffer
Prediction sanple
Predictíon

I
tt

ll
abcbacba lbc"
cbacbatr

(3 ,3 ,21
(L0127,L0127,7 /211

Figure 30 depicts the state of the algorithm's data structures after a further
34 instances have been processed. As neither the depth nor the node limit
has been reached, all extensible nodes are non-leaf nodes. The prediction of



Seclion 2,õ: Euømple Enecution of DIIPC 130

(4/r2,7/12,1/12) is derived from the sample (L,2,0) of node ac. Node bac

matches but is not yet credible.
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(0,0,1)

(0,0,1)

(1,0,0)

(0,1,0)

(0,0,1)

(0,1,2)CE

(1,0,0)

(00,1)

(1,0,0)

(1,0,3)CE

(1,0,0)

(1,1,0)C

(1,8,5)CE

e

b

(9,1,6)CE

(15,16,11)CE

¡
b

(0,1,0)

a

(0,4,3)CE

c

c
a

b
(1,2,1)CE

b (3,0,5)CE

b

b

a

a

c a

c

c

b

c
(l

a

b
(4,1,0)CE

(1,0,0)

(0,1,0)

b

a

(1,2,O)CE
a

(4,6,0)CE

(0,1,0) (1,2,0)CE (3,2,0)CE

fnstancec read : 42

-Tlpyt at-ring,/pocn : "abcbacbabcabcababcacaababcbacbbacbababcbac l,'Iliatory buffer : "abcbac'rPredLcÈLon ranple z (Lr2rOl
PredLctLon z (4/L2,7/tZ,LlL2,

Figure 3O: DHPC tree structure after 42 instances.

b
b
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2,6 
^ 

Comparison of DHPC with Other Algorithms

DHPC can be considered to be a generalization of the DAFC algorithm

[LangdonSS] described in Section 1.10.6.2. The DAFC algorithm constructs a

fractional order model by starting with a single general context (whose string is
the empty string) and then constructing up to 31 first order contexts. A first
order context ø is created when 7 (a constant parameter of DAFC) instances of
the symbol ø have been recorded in the general context. For the purposes of
comparison, DAFC's run-length feature and optimized estimation technique are

ignored.

The DHPC algorithm with settingsm:I, z:32, a - 7 and þ:1is almost

identical to DAFC. The major difference is that DHPC creates a child node if the
parent node contains more than a certain number of instances, whereas DAFC
creates a child node if the child, node contains more than a certain number of
instances. DAFC accomplishes this seemingly impossible feat by recording how
often each child would, have been accessed had it existed. It does this without
using extra memory by examining the frequencies in the zero order sample which
happen to be identical to the first order context frequencies.?o

Despite their differences, DHPC and DAFC's similarities betray their identical
design goals of increasing order while conserving memory. Both use instance count
thresholds to determine the rate of growth in the hope of maximizing the average

access depth. Both base their predictions on the sample of a single node. DHPC
is really a recursive DAFC.

The relationship between DHPC and PPM is an interesting one. PPM sets a

depth limit rn, but otherwise does not address the memory problem. PPM creates

a context for every string of length n'¿ ot less in the history. This is the same as

setting a :7 in DHPC.7l

DHPC and PPM differ significantly in their approach to estimation. DHPC
chooses the deepest matching node that has at least B samples, and uses linear
estimation. PPM uses the deepest matching node (u), and uses non-linear
estimation (Section 1.10.3.2), but uses the parent of u's sample (less instances of
all symbols appearing in z) to divide the probability represented by the À/(y + À)

term among the zero-frequency symbols (Figure 15). This division continues
recursively, terminating at the order -1 sample. Both DHPC and PPM set À : 1.

70 It may be possible to extend this technique to many levels but it is not immediately clear how
this could be done.
zr DHPC does not allow this but could easily be modified to allow a -- L by moving the if

statement of Figure 29 into the loop above it.
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To summarize, PPM uses the deepest node no matter how few samples it has,

but is careful in allocating the zero frequency probabilities. DHPC is careful to
select a node with a credible number of samples but allocates equal probability to
the zero frequency symbols.

Experimental results indicate that the PPM estimation technique performs
about 7% absolute better than DHPC (Experiment 2 in Section 4.17.5). However,
DHPC does not blend the samples of different levels of the matching branch. This
allows it to use more efficient representations for predictions (Section 1.11).

On the implementation side, PPM is implemented using a forwards tree
whereas DHPC is implemented using a backwards tree.

2.7 An Analysis of TYee Growth

One of the innovations of DHPC is the use of an extensibility threshold to
control the rate of tree growth. This section presents upper and lower bounds for
the rate of tree growth of DHPC.

\Me assume that unbounded resources are available (* : æ) z = oo) and
consider the amortized constraints on attributes of the growing tree. The concept
of amortized computational complexity has recently been introduced by Tarjan and
Sleator [Tarjan85][SleatorS6] as a way of obtaining tighter complexity bounds for
sequences of operations. Traditional complexity measures consider the worst case

for each operation in a sequence; amortized complexity measures consider the
worst sequence.

Theorem 1: For e ) 1, Tn,: Ø¡ z : @¡ DHPC gro\¡/s its tree at a minimum rate
of one node per a - 1 instances and a maximum rate of one node per ((" - z) ln) +I
instances.

Proof: We consider a particular tree at a particular time and. define two integer
attributes ¿ and e. Attribute ø is the maximum number of consecutive instances
that the tree could absorb without causing tree growth. It is defined as

C¿: I/L @-L)-i.Y
(ieNodes)A(i.y<0-t)

Attribute e is the maximum number of consecutive instances that would cause
new tree growth. It is defined as

De:
(i e N o d e s ) n(i.y>(a - I))

n - child,ren(i)



Section 2.7: An Anølysis of Tree Growth 134

These definitions assume that each instance has the liberty of t'choosing" to arrive
at any node. In fact, the set of nodes that can be chosen is severely constrained
by the previous few instances. This assumption does not weaken the proof but ii
does mean that tighter bounds might exist.

For the purposes of the proof, the arrival of an instance is viewed as causing

one of two operations to be performed depending on whether the arrival of the
instance causes a neu/ node to be added to the tree. If a ne\M node is added, the
Ad,iI operation is performed. If no new node is added, a Hit operation is performed.

The effect of each of these operations on attributes ¿ and e is defined as follows.

Aild:e ) 0 
-r la + a+(a -2); e + e-If

- I n IHiüa )0+ la<-a-7 e?e++lL o'-2J

The guards on these operations protect them from being performed illegally.
For example, by definition, the Add, operation cannot be performed if e : 0.

When a node is added, the parent of the new node has one less slot for
expansion and so e is decremented. The newly created node has no child nodes.
This means that it can absorb a-2 instances without creating a ne\M node. Thus
ø is increased by a - 2.

The Hit operation has a counteracting effect. The absorption of an instance
decreases the capacity of the tree to absorb and so ø is decremented. On the other
hand, the node that was hit moves just a little closer to becoming extensible, at
which time e will increase by n. This discontinuity is hard to represent within the
amortization framework used here. However, the overall rates a!, which operations
are performed can be represented correctly by adding nl@ - 2) to e each time
the hit operation is performed. The justification for this is that once created, each
node will absorb a - 2 instances after which n child slots become available.

Now consider a long sequence of A Add and I/ Ilif operations. At the start of
the sequence, the tree consists of just a root node with ø : o¿- 2 and e:0. At
the end of the sequence are ) 0. Examination of the effect of the operations yields
the following constraints which give the upper and lower bounds on the ratios of
Ato H.

(c -2)A-H>0+Min A- H
a-2

l+) H- A)o=+Max,A - nH
\at-z/ a-2
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Min Røte:
H

ã=,
h+n

Multiplying top and bottom by the inverted top yields

135

Because .Á. corresponds to the number of nodes in the tree and A+ n corresponds

to the number of instances processed, the average growth rate is

RaA¡¿: ¡¡ H-

Substituting the minima and maxima of A yields the following bounds.

Maæ Rate:
nH
a-

#+n

Minilate: 1

7+(o -2)
_1Maxllate: 

-

t t Ol-Z¡ln

Which completes the proof.

Figure 31 shows the minimum and maximum growth rate (in nodes per
instance) plotted against a for n:256. Both curves arc7f a but the maximum
decreases significantly (to 0.5) only when d approaches n. In contrast, the
minimum drops rapidly. Setting a : 2 guarantees a rate of exactly one neu'
node per instance. Setting o : 3 guarantees a rate of between about 0.5 and 1

new nodes per instance. Tight bounds are possible for very high values of a, but
such values are inappropriate for practical purposes.
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This graph plots theoretically derived lower and upper bounds for the growth
rate (nodes per instance) of the DHPC algorithm against the extensibility
threshold a.

Figure 31: DHPC minimum and maximum growth rates against o
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In practice, the position of the node growth between the minima and maxrma

curves will be determined by the entropy of the source. For ordinary sources

(e.g. text files) the entropy is relatively low at depths of two or three and the

growth rate is likely to be closer to the minimum than the maximum. In practice,

the depth limit will prevent growth from continuing at the "hot spots" of a tree.

As a result, the effective rate is likely to be quite low.

2.8 Summary

The DHPC algorithm employs a variable-order, finite-context Markov model

with four parameters: a depth limit rn, a node limit z, an extensibility threshold o
and a credibility threshold B. The algorithm starts with a root node and grows a

backwards tree by attaching a nerv leaf to the tip of the matching branch whenever

a new instance arrives. A node is not attached if the deepest matching node is
of the maximum depth m or if. it contains less than a instances. The c threshold
ensures that the local rate of tree growth is proportional to the local rate of access,

resulting in a tree that maximizes the average access depth. Arriving instances

are added to the samples of all matching nodes. Each instance is predicted using

the sample of the deepest matching node that contains at least B instances. After
z nodes have been allocated, the tree structure becomes static. At this point the
tree structure should mirror that of the source. DHPC builds its tree more slowly
than the PPM algorithm and bases its predictions on a single node rather than a

blend of the nodes on the matching branch. DHPC is faster than PPM but yields
poorer compression.

DHPC's parameterization, simplicity of growth, simplicity of estimation and
simplicity of implementation make it an excellent platform from which to explore
the adaptive mechanisms of the class of variable-order, finite-context Markov
algorithms.



CHAPTER 3

A CLASSIFICATION
OF ADAPTIVITY

3.1 Introduction

So far, we have reviewed the field of data compression and presented a new

Markov algorithm called DHPC. In this chapter we investigate adaptivity in
data compression algorithms and describe how various kinds of adaptivity can

be incorporated into DHPC. This yields new insights into what is desirable in an

adaptive algorithm and into mechanisms for implementing adaptive algorithms in
general.

3.2 Previous Definitions of Adaptivity

The term "adaptive" is often used, but poorly defined. The root word "adapt"
is itself messy, having over 20 different forms (Appendix B). In the field of data
compression, the word "adaptive" has been used loosely to describe any algorithm
that varies its compression technique in response to the data.72 Recentl¡ the
definition of the term has been tightened. One of the contributions of this thesis

is to tighten the definition further.

Recent data compression literature (e.g. [RissanenSl.], [Cleary84]) has defined
the word "adaptive" as a term descriptive of one-pass algorithms that change the
way that they compress in response to the history. This definition aligns with
Assumption 5 (Section 1.6) and includes algorithms that use alphabet extension
as well as those that do not.

The current definition of the word "adaptive" seems to have arisen from
Rissanen and Langdon's work on the modern paradigm[RissanenSl].7s Although
Rissanen and Langdon were exponents of adaptive coding, in [Rissanen8l] they
were primarily concerned with alphabet extension vs single-instance prediction
rather than semi-static vs adaptive techniques. It was Cleary and Witten[Cleary84]
who proved the superiority of adaptive techniques over semi-adaptive techniques.
However, Langdon and Rissanen considered both adaptive and non-adaptive
12 The word t'dynamic" has been used in a similar manner.
73 A brief review of Rissanen and Langdon's definition of adaptivity appears in section D of

[Langdon8l].
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("static" in Cleary/\Mitten terminology) techniques and took the time to give

the best definition of adaptivity yet.

Rissanen and Langdon defined adaptivity in terms of their formalization of

models. A model is organized as a collection of contexts defined by a structure
function. The structure function maps the infinite set of possible history strings

onto a finite set of contexts. For example, a set of r¿ contexts (for a first
order model) might correspond to the set of conditions lz¡n¡ : a) Ya € A.

Associated with each context is a sample that records the instances generated by

the source under the conditions defined by that context. Rissanen and Langdon

defined an adaptive technique as one that (within a single context) employs a

counting/estimating technique that does not decrease the estimated probability of
a symbol if, within any given substring of the message, instances of the symbol

occur with a higher than estimated frequency. This is a simple constraint on the
way in which a model must react to the message if it is to be called adaptive.

Rissanen and Langdon's definition of adaptive is (briefly) described and

accepted in two other significant papers[Cleary84][CormackS7]. Chapter 3 of a
book by Bell, Cleary and \Mitten[Bel189] is devoted to "Adaptive Models". In it,
Bell, Cleary and Witten distinguish between static, semi-adaptive and adaptive
models and present the proof in [Cleary84] that shows that adaptive models are

superior to semi-adaptive models.

Recently the term "locally adaptive" has been used to refer to techniques
that base their prediction only on the recent behaviour of the source. An
example of this usage is in the paper title "A Locally Adaptive Data Compression
Technique" [BentleyS6].

In this chapter the issue of adaptivity is addressed by:

o classifying forms of adaptivity.

o classifying sources and the ways in which they change.

o investigating the performance of different kinds of adaptivity on different
kinds of sources

o discussing how various forms of adaptivity can be implemented.

3.3 A Classification of Adaptivity

In this section, Rissanen and Langdon's definition of adaptivity is extended to
define four classes of adaptivity. The four classes cover all the data compression
algorithms described to date (Figure B2).



Section 9.9: A Cløcsificati,on of Atløptiaity 139

History

Non Adaptive
lnitiallY AdaPtive 

-
Locally Adaptlve

Asymptotically Adaptive

Compression algorithms can be roughly sorted into four categories of adaptivity
depending on which part of the history is used to make predictions.

Figure 32: Use of the history by four kinds of adaptivity.

Non Adaptive: Does not alter its model in response to the history

Initially Adaptive: Builds its model from a finite number of instances

at the start of the history.

Locally Adaptive: Builds its model from a finite number of instances at
the end of the history.

Asymptotically Adaptive: Uses all of the history to build its model.7a

This refinement of adaptivity focuses not on lhe estimation technique but on
lhe locøtior¿ from which a model obtains its information.

The definitions above provide a good rule of thumb but are unsatisfactorily
vague. For example the definitions fail to classify a model that uses all but the
first instance of the history, when obviously such a model should be classified as

asymptotically adaptive. A more precisely stated, fuzzier definition is required.

The issues of adaptivity are greatly simplified by treating only zero-order
Markov models and sources. This can be done without loss of generality by treating
sources and models as collections of contexts organized by a structure function.
Once the zero-order case is taken care of, higher order sources and models can be
constructed from the zero order case using structure functions.

Consider a zero-order source d(So) that produces a stream of predictions which
in turn are used to produce a stream of instances. After I instances have been
produced, the history is å è Sr. n zero order model can be described by a tuple

TTIIII¡TTII¡ITIIITITT

t1 
+ the history lç",gth increases, the performance-of an asymptotically adaptive, finite-context,

order-È Markov model should converge àsymptotically on thð 
"ttt.opy "f a nnit"-"o"1ã*t, 

".goai.,order-ß Markov source.
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(r, €) where {(ø) is an estimation function (Section 1.10.3) and u.'(f, i) is a weight
function that specifies the emphasis that a model places on the itth instance of
a history of length f (with the first (leftmost) instance being numbered 1). The

function u is normalized for a given f. That is
I

Vt e Z[1, oo), Dr(t,i) : t
i=l

A. zero order model estimates the probability of the next instance being ø as7õ

p(o): €(rXo) where r(") : 
.Ð w(l,i)
'i,:h;-a

This view is fairly general. The function tu specifies where the sample is

obtained. The ( function specifies how much it is trusted. The classes of adaptivity
can norv be defined in terms of constraints on u.r and (.

In Section 1.10.3, two constraints were placed on (: that ( generate safe

predictions, and that { converge on the naively estimated probabilities (u(a)lg)
at infinity. Here, a variation of Rissanen and Langdon's definition of adaptivity is
used to place an additional constraint of monotonicity. óa is a sample containing
a single instance of ¿. The additional constraint is

Yæ e. X,a e A, €('+ 6rX") > (("X")

If ( is continuous, this is more simply specified as

vx € x,a € A. aí")(Í) t o\ rr' 
or(a) =

This condition in conjunction with the two of Section 1.10.3 ensures that the
estimation function { will behave itself. The estimation function must generate
safe predictions, must not decrease its estimations with increasing frequency and
must converge on the naive estimations at infinity.

The four classes of adaptivity are defined by constraints on t¿ which will now
be given. For a given l, the mean position of emphasis d is defined as

I

t: I w(t,i)i
:_1t-r

For convenience, we also define

a:ú and b: I ll -ú
(Figure 33).
75 Here we take the liberty of storing real values in ø which was defined in Section 1.8.2 to be a

vector of integers.
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Non adaptive

Initially adaptive

Locally adaptive

Asymptotically adaptive

t47

r'

History

The function w(1,í) can be used to describe the emphasis that an algorithm
places on the instancee at various positions of the history. The area under the
curve is always one. In this diagram, the algorithm is weighting heavily towards
the distant past. îD ie the mean position and o and ü more concisely describe
the relationship between i7 and the ends of the history.

Figure 33: Example adaptive weighting curve.

The values ø and ô give the distance of the mean d from the start and end of
the history. The notation q < I{ is used to indicate that g is bounded from above

by an arbitrary finite constant. Setting ¿ : 0 represents the use of no instances

at all. The four classes of adaptivity can be defined in terms of the behavior of ¿
and å as / -r oo.

b

a:0
a1K
ø-)oo
ø-)oo

ó-roo
ó+oo
b<I{
ó+oo

This definition is much more robust that the previous one and can classify all
kinds of unusual sampling strategies. For example, a technique that assigns

odd(i) ---+ 2lt
euen(i) + 0

u(I,i):

would be correctly classified as asymptotically adaptive. The classification scheme

does not classify models for which ø and ô do not converge at infinity.

The definition contains one major fault. Although it measures where the
information is gathered, it does not measure how much information is gathered.
A model that sets

w(I,i): i:ll/21+7
i I lll2l -+ 0

would be classified as asymptotically adaptive even though atl intuitive definitions
of that class require that it accumulate an ever increasing number of instances.
An improved definition must include a measure for the information content of a

IIIIITIITITIIIIIITTTTTTIIITTT
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model. Shannon's logarithmic definition works as well here as for predictions. 'We

define the sampling entropy of a model as

I

[--Dt"w(t,i)
i=l

and refine our definitions for classes of adaptivity to (as f -r oo)

Non adaptive

Initially adaptive

Locally adaptive

Strangely adaptive

Asymptotically adaptive

a<It
d, -+ oo

ø-)oo
ú¿ -+ oo

ö+oo
b<K
ó-roo
ö-+oo

f:0
I<I(
I<K
I<I(
f-roo

This definition is satisfactory. Static models contain no information gained
from the source. Initially adaptive and locally adaptive models contain a finite
amount of information derived from one end of the history. Asymptotically
adaptive sources contain an increasing amount of information obtained from
the entire history.To Strangely adaptive models are the same as asymptotically
adaptive models except that they contain only a finite amount of information.

3.4 Adaptivity of Previous Algorithms

In this section, the new definition of adaptivity is used to classify some of the
algorithms described in Chapter 1. Algorithms that are not one pass are ignored.

One form of local adaptivity arises so often that it is worth defining a name
for it. A model/algorithm is defined to be windowed locally adaptive if it has

w(l,i): i<l-K+0
i>l-K+7lI(

Knuth's windowed dynamic Huffman coding[Knuth85] andLZTT both fall into the
category of windowed locally adaptive algorithms.

In contrast, dynamic Huffman coding and LZ78 set tr(l, i) : ll| and are
asymptotically adaptive.

Variable order Markov algorithms are harder to classify because they employ
different kinds of adaptivity at the context and structural levels. The problem is
best illustrated by DAFC (Section 1.10.6.2), the simplest variable-order Markov
model.

. "l ttt" class .of asymptotically adaptive sources could be further divided depending on the
behaviour ofb/a as I * oo.
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(0,1,0,0,1) (1,0,2,0,1) (1,1,3,1,1)

a c e

(12,5,15,5,17)

The DAFC algorithm illustrates the difficulty in classifying the adaptivity
of variable-order Markov algorithms. DAFC freezes its tree when the last
node has been grown, making it slruclurally initàally ailaptiae but conteúually
asymplol,icallg ød apliae.

Figure 34: A snapshot of DAFC in execution.

DAFC allocates first-order contexts to the first 31 symbols whose cumulative
frequency exceeds a fixed threshold. After this point, the tree structure (of
depth one) is frozen but the contexts in the nodes of the tree continue to collect
instancesTT (Figure 34). This means that lhe structure of the tree is initially
adaptive but the conteats of the tree are asymptotically adaptive. Thus the DAFC
algorithm is asymptotically adaptive to a Markov order of the average update
depth of the tree. Because the root node is always present, the average update
depth is always at least zero.

For finite memory, the same reasoning applies to PPM, DHPC and DMC.
However, if there is enough memory to construct a tree whose structure encloses
the source's tree, these tree algorithms all become asymptotically adaptive.

Perhaps the most important observation to be made about the relationship
between adaptivity and compression techniques is that it appears that any
technique can be modified to conform to any class of adaptivity. For example,
LZ77 (Section 1.7.3) could be made non-adaptive by using a string bufier with a
constant value. Dynamic Huffman coding (Section L.4.4) could be made windowed
locally adaptive by using Knuth's abstraction[Knuth85] to remove instances as well
as add them. The satisfying conclusion is that classes of adaptivity are not bound
to classes of algorithm.

3.5 A Classiffcation of Sources

Traditionally, a soltrce is viewed as a finite ergodic Markov source that
generates an infinite string. If this were the case in practice there would be no
need for anything but asymptotically adaptive models. In contrast, the success
7" Wu assume that the counters that record the frequencies of instances in each context are ofinfinite width.
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of locally adaptive techniques in practice indicates that real sources often change

considerably over time. An understanding of the ways in which sources might
change is necessary to approach this problem.

A changing sourcez8 can be viewed as a point moving in a multi-dimensional
simple-source space.Te For sources of a particular order rn, simple source space

consists of, nm dimensions,lo each dimension corresponding to a probability d(s)(ø)
of a particular symbol ø € A in a particular context s €. Sm of the simple source

d e D. Each point in simple-source space defines a finite-context, order-rn Markov
source (a simple source). Movement of a source through simple source space

corresponds to a change in its probabilities.

In addition to moving through simple-source space, sources move through
state space. The combination of a sourcets position in simple-source space d e D
and state space s € Sm completely determines the next prediction that the source

will generate. Because, by Assumption 7 (Section 1.10.2), the state of a model can

be determined directly from the history, there are no continuity problems with
the state of the changing source (as there might be for example, if the source

ïvas an arbitrary, changing finite state machine). As a simple-source's state is a
function of the most recent few instances of the history, it does not determine
source trajectories and will not be considered further.

Section 1.8.4 showed that the problem of data compression is to reconstruct the
source from the history. This is accomplished by using the history to locate the
source in simple-source space. Whereas fixed sources need only be founil, moving
sources must be traclceil as they move through simple source space.

Implicit in the idea of tracking a source using a history of instances is the
assumption that the history will give some indication of the source's current
position. This may not be the case. If the source moves to a random position
between the generation of instances tracking becomes impossible and the games

theory[Neumann44] solution of uniform predictions must be adopted. Just as

asymptotically adaptive models are most effective on a source that does not move,
so are tracking models most effective on sources that move slowly.

A fundamental trade-off dominates the design of source tracking models.
Whereas it is advantageous to use as many instances as possible to estimate the

. 
tt 

It is worth distinguishing.between objects that change themselves and objects that are changedo|"otl:. objects (Appendix B). Here, both sources and rnodels are viewed as self-modifying objeãts.
'u rhe term source space is reserved for the space of all moving sources,Eo Actually, fewer dimensions are needed b"cau"e the probabilities are constrained to sum tounity. Here the redundant form is used because it is simpler. All the same concepts apply.
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source's position, it is disadvantageous to use instances that are so out of date that
they do not reflect the source's current position (Figure 35). Instances in the
history reflect the position of the source at the time theg were gemerølled. Instances

further back in the history are less informative. There is no clean solution to this
problem. Practical algorithms compromise by estimating the speed of the source

and using the estimation to choose a window size.

Actual
Trajectory

Too Few
lnstances

Appropriate
Number Of
lnstances

Too Many
lnstances

A trade-off exists when tracking a moving source. Many instances are required
to determine accurately the position of the source, but only the most recent
instances are repÌesentative of its current position. In this example, the leftmost
box contains the actual trajectory of the source in simple source epace (ending
at the dot) and the other boxes show the estimated position of the source (in
grey) based on varioue numbere of previous instances (the black line).

Figure 35: Tracking a moving source through simple source space

The trade-off is reminiscent of Heisenberg's uncertainty principle [May-
ffeld72](p. 134) which states that the position and momentum of a particle cannot
both be known at the same time. In data compression the tracking trade-off only
arises for moving sources; øII lhe instances generated by a fixed source are repre-
sentative of the source's current position.

The effect of the Heisenberg problem is that it is impossible to compress a
source's output without making some assumptions about the source's trajectory.
It seems appropriate therefore to categorize the trajectories that are likely to arise,
in the hope of recognising them and forming a strategy to compress them. The
following list of interesting trajectories is arranged from least to greatest entropy.
Each source trajectory is depicted graphically in Figure 86.

Fixed: The source does not move (also called ,,simple").

Fuzzy Fixed: The source moves but stays close to a fixed point.

Drifting: The source moves, but never very far between each instance.

:ltr.att
Iriai
t:::: h
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Vagrant: The source jumps to a completely new random position at
irregular intervals.

Multimodal: The source jumps between a finite set of points at irregular
intervals.

'White Noise: The source jumps to a random position between the
generation of each instance.
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Fixed Fuzzy Fixed Drif ting

?

l:
l:

a

Vagrant Multimodal White Noise

Thie diagram depicts graphically some intereeting source trajectories. Each box

Figure 36: Some interesting source trajectories.

The list above is only intended as a rough classification and no attempt wilt
be made to formalize it. The adjective "fvzzy" is used to describe a source that is
imprecise in its residency at a point.

3.6 A Comparison of Kinds of Adaptivity

Having examined classes of adaptivity and classes of sources, we are in a
position to assess the effectiveness of classes of adaptivity in compressing classes
of sources.

A non-adaptive model will perform poorly unless the source is fixed at the
position assumed by the model. If the source is not fixed, the instantaneous
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performance will be inversely related to the "distance" between the model and the
source.

An initially adaptive model relies not on the source being in any particular
position, but on its staying still. Initially adaptive models are likely to perform
poorly on all but fixed sources.

Asymptotically adaptive and locally adaptive models are superior to initially
adaptive models. Asymptotically adaptive models use more information (f -r oo)

and locally adaptive models use more recent information (ø + oo).

\Mith non-adaptive and initially adaptive models out of the race, we consider
the relative merits of locally adaptive and asymptotically adaptive models.

The advantage of asymptotically adaptive algorithms is their ability to
converge on a fixed source at infinity. To achieve this, they incorporate information
yielded by an ever increasing number of instances. This makes asymptotically
adaptive algorithms less responsive to source movements as the length of the
history increases.

The advantage of locally adaptive algorithms is their ability to track source
movements quickly. They achieve this by basing predictions only on the very recent
behaviour of the source. Because they use only a finite amount of information,
locally adaptive algorithms are incapable of converging on a fixed source.

Thus, the choice between local adaptivity and asymptotic adaptivity should
be made depending on whether convergence or responsiveness is more important.
Because most real sources move around the source space, locally adaptive models
a,re nea,rly always the best choice.

This concludes the theoretical part of this chapter. The remainder of this
chapter contains a description of techniques for incorporating asymptotic and local
adaptivity into variable-order fi nite- context Markov algori thms.

3.7 Mechanisms for Adaptivity

In Section 3.3, adaptivity was defined for a zero-order Markov model. The
same definition can be applied to higher order models by splitting the message
into different instance streams, one for each context and considering each context
as a zero order model. Adaptivity can be separated into a context component a¡¡d.
a structure component.

The theoretical discussion assumed that the entire history is available and
that there is an unbounded amount of processing power available to process it.
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In contrast, practical models must be feasible and in particular must satisfy the
following requirements.

o The model must use a fixed finite amount of memory.

o The model must process each instance in time constant with respect to
the length of the history.

These requirements imply that at most only a fixed, finite portion of the history
can be retained, and that models must be constructed incrementally. The only
concession that we make here is to allow counting registers of infinite width. In
most implementations, 32-bit registers approximate this assumption well.

3.7.L Context Adaptivity

Context adaptivity refers to the management of instances within a particular
sample. Because samples are constrained to use finite memory, they cannot store
much instance ordering information. Usually they store only a frequency counter
for each symbol.

Construction of an asymptotically adaptive context with u.'(/, i) : llI simply
involves recording the frequency of each symbol and using the frequencies to make
predictions.

A windowed locally adaptive context can be obtained by maintaining a
frequency for each symbol and a buffer of the y'f most recent instances of the
context history which we define to be the string of instances that have occurred
in a particular context. Upon the arrival of each instance, the frequency of the
new instancets symbol is incremented and the frequency of the .I('th most recent
instance's symbol is decremented.

An alternative to maintaining a buffer is to set

u(I,i) : ¿-tti

with ¡^r set so that !l:1 u(I,i) - 1. Because 
"-ui¡"-u(á+ú) 

¡, a constant for all
positive i and t, ro can be implemented without a history buffer by multiplying
every frequency counter (after the arrival of each instance) by a constant eln 0.5/h.

Such an operation is called a decay, with ä being the half life of an instance. The
half life is the age (measured in instances), that an instance must be before it is
half as influential as a fresh instance.

Performing n multiplications for each instance may be too expensive for
practical data compression. An alternative is to perform the decay operation
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at regular intervals using a smaller l¿. This has the disadvantage of making the
number of instances in samples rise and fall as a saw-tooth.

Another way to avoid frequent decay operations is to perform them only when

the frequency of a symbol reaches a certain threshold r. Although decaying will
occur at irregular intervals, the technique is guaranteed to be locally adaptive
because decay operations must occur at least every rn instances. This method
has the practical advantage of providing an upper bound on the required width of
counter registers.

3.7.2 Structural Adaptivity

The DHPC algorithm described in Chapter 2 is designed to maximize the
depth of nodes used to make predictions. The algorithm does this by growing
each part of the tree at a rate proportional to its use. Once all the available nodes
have been added to the tree, the tree's structure is frozen. DHPC is structurally
initially adaptive.

To maintain a locally or asymptotically adaptive tree structure, an algorithm
must be capable of altering the structure of its tree once the tree is built. Once
such an ongoing mechanismfor re-organization is in place, the heuristics controlling
the initial placement of nodes become much less important. For this reason, the
following discussion addresses only the transformation of fully grown trees.

For the sake of simplicity, the transformations performed upon the tree will
be restricted to one primitive operator called leafmove that moves a single leaf
node from one part of the tree to another. This constraint results in no loss of
generality, as the operator, repeatedly applied, is capable of transforming any tree
structure to any other.

The next problem is deciding how and when leafmoue should be applied.
Because the operator transfers an anonymous (contains no information) resource
from one place to another, the problem naturally splits into two separate problems:
that of supply and demand.

Supply problem: Given that a leaf node must be removed from a tree,
decide which leaf should be removed.

Demand problem: Given a spare node is available to add as a leaf to
the tree, decide where it should be added.

Before addressing these problems, it is worth investigating metrics for gauging
the worth of a leaf.
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3.7.3 Metrics on TYee Structures

Many different tree structures can be constructed from a group of nodes. Of
particular interest are structures that maximize the Markov order and structures
that minimize the entropy. It might be that these two groups are the same.

Because trees are to be manipulated using only leafmoae, it is important to
be able to measure the worth of a leaf. Consider the worth of a leaf be (of a
backwards tree) where ó e A and e € S. Suppose that for a fixed ergodic source

we find that o't time infinity the prediction of öe is pc (prediction of the child)
and the prediction of e is pp (prediction of the parent). If the probability of. be

matching the history is Iz¿ then the absolute entropy loss ø yielded by the child
to the tree is

o(be) : þ" - Ð Pc@)rnp'p(a)- - t pc@)tnp¿(a)
ø€A

which reduces to

o(be) : h"D pc@) (lnp"(ø) - lnpe(o))
aeA

Thus the worth of a leaf is the product of the probability of the leaf being used
(hs) multiplied by its advantage over its parent in predicting its own context.
Roberts[Roberts82] and Rissanen[Rissanen83] use similar metrics.

The most powerful term in the formula above is lz¿; if the node is rarely used, its
entropy loss hardly matters. In the remainder of this thesis we will use frequency
of use as the sole measure of the worthiness of a leaf.

3.7.4 The Supply Problem

Given that a leaf node must be removed from a tree, the supply problem is
that of deciding which leaf to remove. Ideally we wish to remove the leaf with the
lowest ø. If we settle on approximating ø by the frequency of use of a node, it
would seem that the best node to remove is the node containing the least number
of instances. Unfortunately, the different leaves on the tree are created at different
times making this measure unfair. A better scheme is to remove the leaf with the
lowest usage rate. Newly added leaves could be initialized with a slightly higher
than average rate so that they are not immediately recycled.

The minimum-rate heuristic can be considered to be asymptotically converging
because it will grow more and more sluggish as time goes by. The locally adaptive

aeA
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equivalent is to consider the rate of use of each node over a recent time period.

One measure of rate is the mean time between occurrences. A crude but effective

locally-adaptive lowest-rate supply heuristic is to select the least recently.used node

- the node with the lowest instantaneous rate.

3.7,6 The Demand Problem

Given that a node is available to add as a leaf to the tree, the demand
problem is that of deciding where the node should be added. Constructing demand

heuristics is difficult because, unlike the supply case, the candidate nodes do not
already exist and the only information available about the potential leaf is in the
potential parent node.

One approach is to find an upper bound on the entropy loss that a candidate
Ieaf, coulil make. Roberts[RobertsS2] achieved good results by using the product of
this bound and the established worth of the parent node as a metric for choosing
new leaf sites.

On the basis that the best leaves are the most frequently used leaves, the
DHPC demand policy of attaching leaves in proportion to the rate of use of their
parent appears sensible. It is unnecessary to maintain a list of rates of usage; if a
leaf is attached to the end of the matching branch with a certain fixed probabilit¡
then on average the leaves will be attached in proportion to the usage rate of each
potential parent node. When an extension is made, the matching leaf is most
likely to be the most likely leaf and so the most frequent child nodes will tend to
be created first, resulting in a recursive effect.

3.7.6 Connecting Supply and Demand

The supply and demand systems can be organized as: independent, supply
driven or demand driven. In an independent organization, the two systems operate
independently. If the supply process operates faster than the demand process, the
tree will soon be stripped bare (to the root) and there will be a large pool of spare
nodes. If the demand system operates faster, it will soon run out of nodes created
by the supply system. These problems can be avoided by placing one system in
control.

In a supply driven system the supply system regularly examines the tree and
remove nodes that are not performing well. These are given to the demand system
which must immediately place them on the tree. In a demand driven system,
the demand system examines the tree and chooses sites for tree growth. It then
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requests a number of nodes from the supply system which must fulfill the order
immediately.

We prefer demand systems because the demand system can easily be controlled
through the flexible tree growth mechanisms.

3.8 Implementing Asymptotic Adaptivity

To be asymptotically adaptive, an algorithm must continually increase the
amount of information that it stores. At the context level, this means that the
frequency counters must be allowed to run to infinity. At the structure level, nodes

must be added until the order of the tree matches the order of the source.

If an infinite amount of memory is available, DHPC with rn : @,t z : @¡

o ) 1 and B : 0 can be made asymptotically adaptive by increasing the credibility
threshold by L after ir¿i instances have arrived for each of i €, Zll,æ). This
guarantees that predictions will be made from samples whose depth and size

increases to infinity.

For a model that has only finite memorysl, the situation is more complicated.
For a source of order m, a" ftee containing at most r¿m leaves is required. No other
tree structure, not even a larger one, can perform better. If there is insufficient
memory to build such a tree, techniques must be found for converging on a
representative smaller tree.

The problem here is that at any point during compression, an asymptotically
adaptive model must be prepared to move any or all of its nodes in the tree. This
applies even if the source is fixed. No matter how many instances (ú) the model
accumulates, it is possible that they were just a statistical fluke and that at time
1000ú, the history will indicate an entirely different source position.

Unfortunately, the nodes that are being destroyed and created (moved) are
where the samples are stored. When a node is moved, its instances must be
destroyed or added to its parent. When this happens, information is destroyed -a happening dangerous to supposedly asymptotically adaptive models. The result
is that lve are faced with the inenviable task of designing an algorithm that must
accumulate an infinite amount of information but which, at any time, might have
to destroy all the information it currently has!

Two theorems from probability theory suggest that such an algorithm could
be constructed. The first theorem is that a one-dimensional random walk that
El Although we retain the infinite width registers.
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is bounded from below by zero, will average infinity at time infinity. This is the
same as saying that for a GlGltll queue[KleinrockTS] with ),: þ (arrival rate
equals service rate), the queue length will average infinite length at time infinity if
the variance of the arrival and service distributions are not both zero. The second
theorem is the law of large numbers.

By associating a random walk with each node in the potential tree82 (with
position fr corresponding to there being ,t instances in the node's sample), an
algorithm could be designed for which it could be shown that at infinity a given
number of "optimal" nodes average an infinite number of instances. One way that
such an algorithm might be built is to use a probabilistic demand heuristic and a
minimum-rate supply heuristic. As time tends to infinity, the rates of each of the
nodes would become less and less variable, requiring a longer run of randomness
to alter their ranks.

In practice, theoretical results for asymptotic sources are of little use. Real
sources often change rapidly and the extra effort involved in ensuring that an
algorithm converges at infinity is not warranted. Whenever an asymptotic model
is required in practice, a rough approximation usually serves well.

3.9 Implementing Local Adaptivity

Locally adaptive algorithms are much easier to construct that asymptotically
adaptive algorithms because local models contain only a finite amount of informa-
tion (f < /(). We have already seen how a context can be made locally adaptive
by maintaining a history buffer or by decaying. A similar technique can be used
to make a structure locally adaptive.

It is possible to construct a windowed structurally locally adaptive algorithm
with

w(t,i):Ii<¿-r(+o
[¿>l-K-+r/K

that uses at most .I(rn nodes of memory. At each step, the next instance is added
to the tree and the K'th most recent instance is discarded from the tree. This
requires only that a history buffer of K im instances be stored. Adding an instance
involves growing a matching branch of depth m (i[. the branch is not already
present). Removing an instance involves removing the instance from each node
on the branch that matched the history .Il instances before, and then removing
the node if the instance removed from it was the nod.e's last instance. Because at
most .I{ instances are present in the tree, and. each instance commands a branch
82 The potential tree contains all possible nodes and is of infinite depth
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of depth m, a,t most .I(nz nodes are required to store the tree. Typical values of
.I( and Tr¿ are I( : 5000 and rn : 4, for which at most 20000 nodes would be
required. For a source with any measure of redundancy, only a fraction of this
number would be used.

If less lhan Km nodes are available, a maximal length history buffer of length
K or less could be maintained. Vt/henever the supply of nodes runs out, instances
from the oldest part of the history buffer could be removed from the tree until
enough nodes are freed up.

The locally adaptive algorithm described above grows a branch of length rn
for each new instance (if such a branch does not already exist). If memory is
scarce' building long branches is wasteful because many of the deeper nodes are
unlikely to collect enough instances to become credible. In many cases they will
be destroyed without ever being used to make a single prediction. Reducing rn
is undesirable because it penalizes heavily used branches. A better solution is to
use some sort of growth retardation such as DHPC's extensibility threshold. This
would require the storage of an update depth for each instance in the history buffer
so that the instances could be removed only from the nodes to which they were
originally added.

It should be noted that it is possible to incorporate structural local adaptivity
without directly incorporating context local adaptivity. This can be done by using
an LRU supply system. This scheme yields an effect identical to the variable length
buffer scheme (with an inffnite maximum length) except that it only removes
instances when a node is moved. This allows structural and context adaptivity to
be separated.

3.1O Summary

In this chapter, the definition of adaptivity has been refined by constraining
the estimation function ( and by using a weight function t¡ to define four classes of
adaptivity: non-adaptive, initially adaptive, locally adaptive and asymptotically
adaptive. This definition of adaptivity focuses on the emphasis that a technique
places on various parts of the history. The variability of real world data is modelled
by considering it to have been generated by a source moving through a Markov
simple-source space. Such moving sources can be compressed by tracking them
through the source space using the instances they generate as a trail. A trade-off
arises because the usefulness of an instance in determining the current position
of the source decreases with the instance's age. \Mhether it is better to use an
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asymptotically adaptive model or a locally adaptive model depends on whether
the source is ffxed or moving.

Markov models can be modified to be adaptive in any of the four ways by
manipulating the instances within each context (contextual adaptivity) and by
manipulating the structure of the tree (structural adaptivity). Locally adaptive
algorithms are easy to construct because they require only a finite amount of
information. Asymptotically adaptive algorithms present greater difficulties, but
could be constructed (within the constraints of the memory) using probabilistic
techniques. In practice, sources move often enough to render such fine tuning
irrelevant.

The next chapter describes an algorithm that uses the contextual and struc-
tural mechanisms described in this chapter to implement local and asymptotic
adaptivity.



CHAPTER 4

AN EXPERIMENTAL
ADAPTIVE ALGORITHM

In this chapter an atgorit:t - rr*r:;rr, incorporates many of the
mechanisms for adaptivity described in Chapter 3. The algorithm began as

DHPC and developed incrementally. Originally, the algorithm was to be used

to investigate the performance of variants of DHPC and PPM. However, as

the algorithm developed, it became clear that the algorithm's flexibility and
integration of diverse, interacting features was of interest in its own right. In
this chapter, the algorithm, called the SAKDCS3 algorithm, is discussed in detail
and the results of experiments that explore its parameter space are presented. The
exploration of SAKDC's parameter space not only lends experimental support to
the theory presented in Chapter 3, but provides guidelines for practitioners working
with Markov algorithms.

It should be stressed from the start that SAKDC is an experimental algorithm
in which flexibility and reliability have taken precedence over efficiency. In
particular, the interaction and in some cases the very existence of parameters
has prevented many optimizations from being made. In a production compressor,
these parameters would be fixed, and many optimizations could be made. For
example, if the depth were fixed at B, loops could be unrolled.

4.2 Ovewiew of the SAKDC Algorithm

SAKDC is an extension of DHPC and contains DHPC as a special case. Like
DHPC, SAKDC uses a backwards tree, has a depth limit rn, a maximum number of
nodes z, a,nd a credibility threshold B. DHPC and SAKDC differ in the collection
and disposal of instances and the management of nodes.

SAKDC uses a demand-driven supply/demand system. The demand system
uses an extensibility threshold to determine if a node is fit for growth and
then appends matching leaves with a specified probability. Two sets of growth
parameters are used, one set for trees containing z node and one set for trees with
less than z nodes. The supply system is LRU (Least Recently Used). Instances

E3 Swiss Army Knife Data Compression
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can be added to the entire matching branch or just to some of the nodes on the
branch. Samples are decayed when a sample reaches a threshold. A.windowed
local adaptivity option allows instances to be forgotten after .I( more instances

have arrived. Shortcut pointers are used to speed up tree traversal, with an aging
technique used to detect pointers that have been invalidated by node movement.

SAKDC's strengths lie in its flexibility and its sophisticated adaptivity options
that allow it to run indefinitely without becoming initially adaptive.

The algorithm will be described by listing its parameters and then discussing
specific implementation problems and their solutions.

4.3 Parameters of the SAKDC Algorithm

This section describes SAKDC's functionality by specifying the parameters
that control its behaviour. In this and following sections, the author has opted
for precision over conciseness in the hope of avoiding the ambiguity present in so

much of the literature.

'Some common structures arise repeatedly in the parameters. A threshold is
a tuple (kind'rthrecå,) thai is used to classify all samples as either under or over
the threshoLd. threså is a positive integer threshold. Iainit is an enumerated type
having one of the two values surn or rnafr. A sample is defined to be over a
threshold t itr t.kínd':su,n't, and the sample contains at least t.thresh instances or
if t.kinil:møæ and the frequency of the symbol whose frequency is maximum is
at least t.thresh.

The SAKDC parameters are collected in Table 7 for easy reference. Param-
eters of the form P,actiue determine whether feature P is turned on or off. If
P.actiue:følse, the remaining parameters of the form p.* are meaningless.

The next few sections describe the parameters of SAKDC, giving an overview
of the effect of each parameter, but deferring to later sections detailed discussion
of the parameter's implementation and interaction with other parameters.

4.3.t Tlee Growth

Ten parameter groups control the growth of the tree.

maxdepth: Z[0, oo). This is the maximum allowable depth of any node in the
tree.sa The maxilepth parameter corresponds to m in DHPC and will often be
referred to as rn.

8a Reminder: The root node is at depth zero (Section I.2)
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Parameter Description

mønìlepth
møanoiles
grow,actiue
grow.thresholil
grow,probeat
moae,actiae
moue.thresholil
moue.probeut
Iruparent
phoenia.actiae
phoeniø.ashes
ilecøy.actiae
ilecøy.threshold
ilecøy.factor
ilecay.rounding
ilecøy.resiilue
Iocøl.actiae
Iocal.perioil
ileeponly
aililbøcle
shortcuts
estim.thresholil
estim,merge
estim.methoil
estim.lambilo,

Maximum depth of the tree.
Maximum number of nodes in the tree.
Does growth occur in a growing tree?
Extensibility threshold for a growing tree.
Probability of extension for a growing tree.
Does growth occur for a moving tree?
Extensibility threshold for a moving tree.
Probability of extension for a moving tree.
LRU discipline.
Will tree be destroyed when memory runs out?
Number of past instances used to reconstruct tree.
Will decaying take place?
Threshold above which decaying takes place.
Decaying multiplies frequencies in sample by this.
Are frequencies rounded when decayed?
Does decaying keep positive frequencies positive?
Windowed local adaptivity to be used?
Time after which instances are removed from tree.
Determines how much of matching branch is updated.
Parents inherit instances of doomed child nodes?
Use shortcuts to reduce execution time?
Nodes are credible if their sample is over this.
Determines the method of merging nodes.
Estimation method.
Confidence parameter on estimation technique

Table 7: Summary of SAKDC parameters.

maxnodes: Zllræ). This is the maximum number of nodes allowed in the
tree. If the tree contains less than the maximum number of nodes, it is called a
"growing" tree, otherwise it is called a "moving" tree. If windowed local adaptivity
(Section 4.3.4) is turned on, it is possible that the tree will alternate between
growing and moving. The ma,anoìl,es paxameter corresponds to z in DHPC and
will often be referred to as z.

growr move: recoril. The remainder of the tree growth parameters are divided
into two groups of identical structure called nùoae and. grow. During execution, the
grou 9tolrp is used if the tree contains less !,ha,n maxnoiles (i.e. z) nodes, otherwise
the moue group is used. In a growing tree, the addition of a node requires the
creation of a node. In a moving tree, addition of a node requires the removal of a
different node from the tree.
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grow.active, move.active: booleo,n, If this parameter is følse,, no tree growth
occurs. If this parameter is lrue, the remainder of the grow ovtnoae parameters

determine the conditions under which a node is added to the tree.

\Mhenever an instance arrives, it is added to some nodes on the matching
branch. Once this is done, one or more nodes can be added to the end of
the matching branch. A node will be added only if regime.øctiae:true and the
candidate-parent node's sample exceeds an extensibility threshold. If both these

conditions hold, a new matching node is attached with a certain probability (the
probability of extension). If a node is attached, the process repeats with the new

node having to meet the requirements afresh.

grow.threshold, move.threshold: threshold,. A node is defined to be extensible
if it exceeds this threshold.

grow.probext, move.probext: R[0,1]. If the potential parent node is extensi-
ble, it then has to pass a probability criterion. The new node is only created with
a certain probability, the probability of extension. A deterministic random
number generator is used to implement this constraint.sõ

The semantics of the tree growth parameters are summaÅzed by Figure 87.

4.3.2 The Supply System

The parameters described in the previous section determine the conditions
under which & neu¡ node will be added to the tree. The new nodes are obtained
from the supply system. The SAKDC supply system is controlled by the following
three parameters.

lruparent: (youngestrsamerolilest). The default supply system in SAKDC is
to remove the least recently used node (set lruparent+same). Unfortunately,
maintaining this information is computationally expensive (Section 4.2), and it is
worth investigating slightly dirtier methods. The lruparent parameter determines
where in the LRU list to insert nodes whose only child has just been removed. If
youngest, the node is placed at the head of the LRU list (position least likely to be
recycled). If. olilest, the node is placed at the tail of the LRU list (position most
likely to be recycled). If same, the node is placed in a position consistent with the
time it was last used (i.e. LRU order is maintained). See Section4.T for more on
this parameter.

Eõ The random number generator must be deterministic so that its behaviour can be reproduced
by the decompressor (Section 1.11.6).
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{current is the tip of the matching branch}
loop

regime 
= 

(moae, grow);
exit if ilepth(cument)- maad,epth;
if n o d, e s -in-tree : m øun o d e s t he n

regime ?- rftoae;
else

regime +- grow;
end if;
exit if not regirne.actiael
exit if not is -o a er -thre sh oI d, ( current. x,reg im e. thre sh o I il) ;
exit if not rand,orrz(O,1) lregime.probeatl
mewnoile : mod,e',

new(neunode);
current . chí,I d,lhistld, epth ( curren¿ ) + 1 ] ] <- n ewn o d, e ;
current + newnoilei

end loop;

unlike the DHPC algorithm (whose tree grows at most one node per instance),
the sAKDC algorithm can add many matching nodes during a single updatå.
Äfter the matching branch has been updated, nodes are added iteratively by
the loop until one of the exit conditions becomee lrue. At the start of each
iteration, one of the two growth regimes (moue or grow) is selected depending
on whether there are matnodes in the tree. Then, if all the conditions are met, á
new matching node is added to the end of the branch. The node is then updated
(not shown here) with the new instance, and a new iteration commences starting
from the newly created leaf node.

Figure 37: Summary of growth parameters.

phoenix.active: booleøn, If, true, the compressor's tree is completely destroyed
(and its nodes placed in a pool for recycling) whenever the supply of nodes runs
out. In order to prevent the new tree from initially performing poorl¡ the new
tree is primed with the most recent phoneir.ashes of the history. The phoeniu
parameter was included so as to allow other authors' compression algorithms to
be selected (in particular Mofrat's PPMC' algorithm[Motrat8S]). Many authors
advocate destroying and rebuilding data structures when memory runs out.

phoenix.ashes: Zl0,æ). This parameter specifies the number of instances used
to rebuild the tree after its destruction.

4.3.3 Decaying

The next group of parameters determines how the instances within each node
will be decayed. The motivation for decaying is given in section B.T.l.
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decay.activez booleo,n. If. this parameter is false,, decaying does not take place; if
true, it takes place whenever a sample exceeds ileco,y.thresholil.

decay.threshold: thresholil. A decay operation takes place whenever a sample
exceeds this threshold.

decay.factor: R[0,1]. A decay operation has the effect of scaling (multiplying)
each frequency in the sample by this parameter.

decay.rounding: boolean. If true, frequencies are rounded after being scaled. If
false, the frequencies are truncated.

decay.residue: boolean. If. truerfrequencies that were truncated or rounded down
to zero but were previously positive are set to one. If føIse, no action is taken.

\Mhenever an instance is added to a sample, a check is performed to see if
the sample should be decayed. The semantics of the decay operation are given in
Figure 38.

inc a(newinstance);
if ilecay. øctí,aíty then

if o u er -thr e sh o I d, (a, il e c ay . thre s h o I d,) tlr.en
for a in .4 loop

olilua, + u(a);
if ilecay.rouniling then
_ "(a) + lu(a) x ilecay.factor *0.S J;

else
u(ø) + lr@) x ilecøy.factor l;

end if;
if decøy.resiilue and old,ua) 0 and r(0,)_ 0 then

r(a)+ t;
end it

end loop;
end if;

end if;

Thie code describes the semantice of the decay parameters of the sAKDC
algorithm. Decaying is used to introduce local adaptivity at the context level.
Decaying also places an upper bound on the frequency counts in a sampre.
Whenever an instance is added to a sample, the code above is executed. If ìhe
sample exceeds the decay thresh old decay.threshold, each frequency in the sample
is multiplied by a decay factor decøy.factor. Rounding andìesidúal parameters
take care of details.

Figure 38: Semantics of decaying.
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4.3.4'Windowed Local Adaptivity

The parameters described so far allow local structural adaptivity and local
sample adaptivity. Each of these mechanisms employs a roughly negative
exponential tu function (Section 3.3). Another important form of local adaptivity
is windowed local adaptivity (Section 3.4). A windowed locally adaptive model
completely forgets an instance after a fixed interval. The local parameters allow
windowed local adaptivity to be specified.

local.active¿ boolean. true iff windowed local adaptivity is to be employed.

local.period: Zll,æ), If locøl,o,ctiue:true¡ each instance is removed from the
lree locøl,perioil instances after it arrives. If an instance removed from a node was
the only instance in the node, the node is removed from the tree for recycling.so

4.3.6 Instance Management

DHPC adds each new instance to every node in the matching branch. SAKDC
allows more complicated updating.

deeponlyz (wholercreilible,symbol). This parameter specifies the policy used to
determine which nodes on the matching branch are updated (have the new instance
ø added to their sample). If. whole, all nodes are updated. If creilible, only nodes
at least as deep as the deepest credible node are updated. If. syrnbol, only nodes
at least as deep as the deepest node containing an instance of the symbol of ø are
updated.

addback: booleøn, If. false, a node's instances are destroyed when the node is
moved. If. true, instances that were not originally added to the parent of the node
about to be moved, are added to the parent of the node about to be moved.

4.3.6 fmproving Efficiency

Execution of DHPC involves traversing the matching branch once for each
instance processed. This means that the processing of each instance takes O(*)
time. To avoid this traversal, shortcut pointers (Section I.12.2) can be associated
with each symbol in each sample in the tree. The pointer associated with symbol
¿ in node ø points to a node that matches cø.87 The algorithm endeavors to make
these pointers point to as deep a matching node as possible. \Ä/hen a new instance
86 This can cause the status of the tree to change rrom mouing to growing.87 This is a variant o! the AddRight opetator oi Section I.12.2 which mapped a and. c onto xaonly. Here shortcut pointers can point to any tail string of cø.
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arrives, a shortcut pointer is used to jump deep into the next matching branch.
This saves traversal time, especially if. ileeponly:true.

shortcutsz booleøn, If, false, the tree is traversed from the root at each step. If
true, shottcut pointers are used to j,t*p deep into the matching branch upon the
arrival of each new instance. This parameter has no effect on the functionality of
the algorithm, only on its efficiency.

4.3.7 Estimation

SAKDC has four estimation parameters. Estimation is oriented around a pivot
node on the matching branch. The pivot node is the deepest credible node on
the matching branch.

estim.threshold: Zll,æ). A node is termed "credible" if its sample is over this
threshold.

estim.me rgez (D H P C, L A z Y, P P M ). The mergesa parameter determines wheth-
er DHPC, LA7.'y or PPM node merging is to be used. In DHPC, the sample of the
pivot node is used to make the prediction. In PPM, the samples of the pivot node
and its ancestors are blended together to make the prediction (Section 1.10.6.6
and Figure 15). LAZY is the same as PPM except that it does not perform
"exclusions" (Figure Bg).

All three merging techniques use the estimation function ((ø) specified by the
remaining esti,m parameters.

estim.method: (Iinear, nonlinear,, lineør-moffat, nonlinear-moffat). This pa-
rameter determines the estimation formula used to estimate the probabilities
of symbols. The formula can be linear (Section 1.10.8.1), non-linear (Sec-
tion 1.10.3.2), linear Moffat or non-linear Moffat (Section 1.10.8.9). In the case
of PPM merging (estim.merge:PPM), the sum of the probabilities allocated to
zero frequency symbols by the estimation technique is used. as the escape proba-
bilityICleary84].

estim'lambda: R(0, oo) is the confidence parameter of the estimation method
chosen (Section 1.10.8).

, 
tt 

Ïti: parameter should probably be called estim.blend after other authors, nomenclature(e.g. [Bellse]).
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function LAZYest (xs z samples) return preiliction;
pauail : real +- 1.0;
notd,one : constant reøI (- oo;
pred : arcay(symbol) of reøl + (others + notìlone);

begin LAZYest
for ord,er in reverse -1 . . . rn loop

a : sample ,- æs(order);
zerosun't,: reøl +0.0;
for a in .4 loop

if ø(ø):Q then
zero E,.t rn ? zero sum *€( r X, ) ;

end if;
if pred,løl:notdone and ø(ø)>0 then

p red, la) + p øa ail x {(a) ( ø) ;
end if;

end for;
p øa ail + p au øiI x z ero s urn i

end for;
return pred;

end LAZYest;

The LAZY estimation algorithm lies half way between the DHpc and ppM
estimation algorithms in computational expense and performance. Starting at
the tip of the matching branch, the LAZY algorithm allocatee probability in
the same manner as the PPM algorithm - the available probability is divided
among the symbols of positive frequency leaving a little left over (the "escape"
p¡obability) for the symbolo of zero frequency. As in the ppM algorithm,
this escape probability is divided according to the sample of the prt"nt ,rodu.
However, the LAZY algorithm does not exclude symbols already seen at higher
levels. The LAZY estimation algorithm can be compared with the pÞM
estimation algorithm (Figure 15).

Figure 3g: The LAZY estimation algorithm.

4.4 Representation of Predictions

Previous sections describe the parameters and functionality of the SAKDC
algorithm. This and future sections describe the problems that v¡ere encountered
during the algorithm's implementation, and. the solutions that were adopted. This
section describes the representation used for predictions. The terms ,,prediction"

and "sample" will be used interchangeably.

Section 1.11 showed that choosing a data structure for predictions (samples)
is non trivial. In the case of SAKDC, the prediction abstraction was further
complicated by the following requirements.

o There must be a d,ecay operation.
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¡ A shortcut pointer must be associated with each symbol with a positive
count

o The a'ìlilbacle operation requires that two frequency counts be stored
for each symbol whose count is positive: one for the number of instances
and another for the number of instances also received by the parent node.
An operation to add all the instances of one sample to another sample is
required.

o Because nodes can be destroyed, so can predictions. A destroy routine
is required if a dynamic data structure is used.

o Frequencies must be decremented as well as incremented, so as to allow
the local adaptivity mechanism to remove instances from samples.

o The abstraction must be able to quickly provide the number of instances
in a sample and the maximum frequency in the sample.

o Incremental PPM merging must be supported.

Many of these operations can be expensive (O(")). Luckily, it can be shown
that SAKDC uses the operations in a manner that guarantees a low ømortizeil
cost. Proofs of this can be based upon the fact that at most rn * 1 instances are
added to the tree upon the arrival of each instance.

For example, if predictions are represented by a sparse data structure, the
time taken to destroy a prediction is bounded by the number of symbols in the
prediction whose frequency is positive. This in turn is bounded by the number
of instances in the prediction. As at most rn * 1 instances are added to the tree
each time a neïv instance arrives, the amortized cost of all the calls of the d,estroy
operator in DHPC can be at most rn + I calls per instance. Another example of
such a proof is given in Section 4.g.

The greatest difficulty is the simultaneous requirement for: an operator to
increment a frequencï, an operator to decrement a frequency, an¿ an operator
to return the maximum frequency. A constant time solution seems impossible.
Although a logarithmic solution is possible, our implementation simply stores a
variable for the maximum frequency and updates it by performin g an O(n) search
whenever a decrement operation takes place.

The data structure actually used was an unbalanced binary tree. Unbalanced
trees are less likely to become as slow as a list, but still avoid the implementation
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complexity of balancing. Each frequency counter was four bytes wide, allowing
large files to be compressed with decaying turned off.

The final record structure for each node in the prediction tree consisted of a
symbol namer the cumulative frequency of its subtree, the number of instances of
the symbol received by the parent, a shortcut pointer and left and right pointers.

The final prediction abstraction supported coding (the generation of output
bytes) only for DHPC merging with linear estimation and À : 1. In order to map
the estimated probability of a symbol onto an integer range suitable for use by the
arithmetic code, the numerator and denominator of the linear estimation formula
in Section 1.1.0.3.1 were multiplied by rz yielding the following formula.

{(ø)(ø) :
næ( a + 1

nU*n
This led to problems with register widths. For n : 256 and files of lengths
approachin|224 symbols, nU in can grorvv larger than 32 bits. For smaller files
it can get dangerously close to 24 bits. A six-byte coder solved this problem but
proved inefficient because it had to be implemented using double-precision floating
point arithmetic. Far better implementations are possible (Section 1.11) but were
not pursued, as the main focus of this work is on modelling, not coding.

4.5 Representation of the History Buffer

The history buffer is a data structure that stores the most recent rn instances
received from the source. It should not be confused with the "history" which is
the name for the string consisting of, all the instances received from the source.
The history buffer consists of rn slots each of which contains an instance. The
slots are numbered Z[l,m) with slot t holding the most recently received instance
(the youngest) and slot rn holding the least recently received instance (the oldest)
(Figure a0).

)

Oldest
lnstance (m=8)

8 7 6 5 4 3 21

Youngest
lnstance

#[
A direct implementation of a hietory buffer usee an array as shown, whenever a
new instance arrives, the entire array is shifted. This reqlires o(rn) assignmenìs.
However, if rn is small, this may be the most efficient implemeitation.

Figure 40: Direct implementation of a history buffer.
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When a, new instance arrives, it is used in conjunction with the history to
update the Markov tree. This done, the instances in the history buffer are shifted
one slot. The instance in slot i is moved to slot i + 1. The instance in slot rn
is discarded and the newly arrived instance is placed in slot 1. History buffers
provide the same functionality as fixed-length queues but also allow random read
access to any of their elements.

A history buffer is most simply implemented as an array, with the shift
operation being performed by a loop (Figure aO). If ræ is large, the shifting
operation can become expensive, \Marranting the use of a cyclic bounded bufrer
which eliminates the shift at the cost of modulo arithmetic at every access

(Figure a1). In practice, m is usually so small (o 4) that a cyclic bounded
buffer is less efficient. In a production compressor, for a small fixed rn, the
shifting operation of a direct array representation could be hard coded using direct
assignments or move instructions.

Youngest OIdest
( m=8) lnstance lnstance

5 4 3 21 87

Boundary moves

Figure 41: cyclic array implementation of a history buffer.

Our implementation of SAKDC used a cyclic bounded buffer. This was a
consequence of having originally written the compressor with larget m in mind.

4.6 Representation of the Ïlee
The SAKDC algorithm uses a backwards tree supporting the following set of

mappings : {Add,Left, Stripleft, Add,Righú} (Section t.t2.2).

The StripLeft mapping is implemented by including a parent pointer in each
node' Although parent pointers are strictly unnecessary, they can greatly increase
efficiency. Parent pointers allow a branch to be traversed from leaf to root at the
cost of only one pointer access per arc. This is very much faster than a root to

IT
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leaf traversal which costs (say) one binary tree search per arc. The advantages of
parent pointers are discussed further in Section 4.10.

The Ad'd'Right mapping is implemented by associating a pointer with each

symbol in the prediction data structure (Section 4.4).

The Ad,d'Le.¡t mapping maps nodes in the backwards tree to their child nodes

(Figure 42). Each node can be required to store up to n pointers to child nodes.

As the tree is likely to be sparsely branched, use of an array of n pointers would
be wasteful.se Figure 43 shows an array implementation of a tree structure that
wastes most of its array space on null pointers. A sparse data structure is more
profitably employed.

Figure 42: A branching tree structure.

Çhoosing a furcation representation is easier than choosing a prediction
representation because the furcation representation does not need to comply with
the needs of the coder. A furcation representation merely has to provide an
efficient sparse mapping from symbols to pointers, allowing insert,, ilelete and,
Ioolcup operations. we choose unbalanced binary trees (Figure 44).
8e The wastefulness of the array is bounded by a constant factor n

h

f

I



Section /¡,6: Representati,on of the Tree

d

Because most trees ate sparse, an array implementation of furcations is wasteful
of space; most pointers point nowhere.

Figure 43: Branching using an array.

The array can be replaced by a binary tree whose sparsity conserves memoÌy.
However, this also introduces a new heap object.

Figure 44 Branching using an explicit branch tree.

Figure 44 shows that there is a one to one correspondence between the node
in each furcation binary tree and the Markov tree node that it points to. It seems
sensible therefore to incorporate the furcation binary tree into the nodes of the

a

c
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main tree structure (Figure 45). Each node in the main tree stores a left and
right pointer as part of its parent node's child tree and a pointer to a tree of
its own children. This small modification contributes significantly to efficiency
by eliminating a whole class of heap object. It is tempting to try to apply the
same trick to the prediction binary trees whose nodes store symbol frequencies and
shortcut pointers. However, the trick is not applicable because in SAKDC many
shortcut pointers can point to the same node.

The one to one relationship between the explicit furcation tree of Figure 44
and the nodee it pointe to meane that the furcation tree can be incorporated
into the nodee themselves.

Figure 45: Branching using a branch tree built into the main tree.

4.7 Maintaining LRU fnformation

SAKDC uses demand driven node migration and the LRU supply system
suggested in Section 3.7.4. The demand system is fairly simple; at the end of each
update phase, zeto or more nodes are added to the matching branch (Section 4.8.1).
The supply system is much more complicated because it involves the maintenance
of LRU information.

The LRU supply heuristic described in Section 3.7.4 ranks the leaves according
to their instantaneous frequency, this being inversely proportional to the time since
the leaf was last used. A node is useil whenever an instance is added to it during
a,n upd,ate operation.

Unfortunately, the task of keeping track of the oldest leaf is non-trivial.
Usually, LRU algorithms from many areas maintain a doubly linked list and move
each element to the front of the list whenever the element is accessed. This would
be ideal for this application \Mere it not for the fact that in the SAKDC tree, leaves
regularly change into non-leaves and non-reaves into leaves.

ba

d

d
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4.7.L The Two-Colour LRU Maintenance Problem

The SAKDC LRU maintenance problem can be expressed in abstract terms
as follows. An abstract data type ? must maintain the LRU relation of a set

of r distinct things. Each thing is coloured either red or green.eo The following
operations are defined on ?.

init(T) - Initializes the set of things to the empty set.

insert(T,t) - Places thing ú under the controt of ?.

use(Trt) - Records that the thing ú has just been ,,used,'.

paint(Trt) - Changes the colour of thing ú.

grab(T) - Returns the least recently used green thing.

The above operations are applied one at a time to arbitrary things. The init
and insert operations are included only for completeness and the discussion will
concentrate on the other three operations. The problem at hand is to find an
efficient implementation for this ADT.

The simplest solution is to use a linked list of things, with the thing at the
head of the list being the most recently used thing and the thing at the tail of
the list being the least recently used thing. The øúe operation moves a thing to
the head of the list. For this representation, use opetations can be performed in
constant time as can paint operations. The difficulty arises when a grøb operation
must be performed. To obtain the least recently used green thing, a search must
be made from the tail of the list forwards until a green thing is found. This is
expensive in both theory and practice.er

To avoid these long linear searches, one might consider threading the list with
a list of the green things. This would allow tlne grab operation to be performed
in constant time. Unfortunately, this has the effect of forcing the po,int operation
to perform a linear search whenever a red thing is changed into a green thing.
similar trade offs arise for a variety of other list organizations.

One interesting organization is to store the time of the most recent use of each
thing (in each thing) and maintain only a list of green things. As before, this

'o R"9 and green-are the colours traditionally used in queueing theory in such situations. In thiscase red corresponds to the non-leaves and greän to th; È;v";l irri"hãrlï;;;;á;-""d tree withgreen leaves.
91

rhe ,:t:9_.(l::!i:_l 4.10), all.the rarily, used_n_on_-leaf (red) nodes cluster arrn extremely long searches to find the LRU greeà nóde (typicaily b00nod
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yields a constant time u,se, a, constant lirne grab and a linear paint. The appeal
of this organization is that it strips the problem to its essentials. All that need be

found is a fast way of inserting a just-painted green thing into the correct position
of the green thing list. As there seemed to be no constant time solution to this
problem, a heap structure was adopted. The heap structure is described in detail
in the next section.

It is tempting at this stage to avoid the heap structure by inserting newly
painted Sreen things at the head or tail of the green list rather than at their
correct position. Both these ideas (along with the heap) were implemented as

options of the lruparent parameter.

The policy of inserting newly-painted green nodes at the head of the list
(youngest) means that the minimum time needed to destroy a rarely accessed,

branch is increased. Each time the leaf of the branch is removed, the parent will
be placed at the head of the list. This protects it from destruction for at least
another z instances. Thus this policy ensures that it will always take at keast zd,

instances for a branch of depth d to be destroyed.

Inserting newly-painted green nodes at the tail of the list (otd,est) would place
the nodes in immediate danger of being recycled. This would accelerate the
removal of dead wood. It would also mean that rarely used child nodes might
endanger their heavily-used parent nodes when they are recycled. In fact, the
parent node is only placed in danger if its løsú child node is removed. Because the
demand system tends to grow child nodes from heavily used parent nodes, it is
unlikely that the only child of a heavily used node will be lightly used.

4.7.2 A Heap Implementation

This section describes a heap implementation that yields ure and, paint
operations logarithmic in the number of leaves and a constant time grab.

A monotonically increasing counter representing the time in instances (".S. llrl)
is maintained. The counter is incremented each time a use occurs. Each thing has
an "age" which is the time it was last used. A heap of green things is maintained
by age with the oldest thing (lowest age value) at the top of the heap.

Using these structures, the operations are implemented as follows:

use(Trt) 
- Thing ú's age is updated to the current time. If ú is red,

no action is taken. If ú is green, f (already in the heap) is sifted into a



Section /¡,7: Maintaining LRU Informati,on 173

position in the heap consistent with its new age. This operation takes

time logarithmic in l"l.

paint(Trt) - If ú is red, it is painted green and inserted into a position in
the heap consistent with its age. If ú is green, it is painted red and removed
from the heap. This operation takes time logarithmic in l?1.

grab(T) - The least recently used green thing is always at the top of the
heap and can be located in constant time.

4,7.3 fmplementing a Heap using Dynamic Data Structures

Tbaditionally, heaps are implemented using arrays. However, as arrays cannot
usually be extended incrementall¡ it was desirable to avoid them in favour of
dynamic data structures. The result $ras a heap implementation technique that
to the authorts knowledge is original.e2

The heap resides entirely in the dynamic storage area. The heap is structured
as shown in Figure 46 and has the following properties.

3

6

8 9 10 (. Shrink Grow Ð

By carefully numbering heap positions, a heap can gro\¡r7 and shrink using
dynamic memory management. The binary representation of the number oi
each slot (node) in the heap describes its path from the root to the slot. The
heap always takes the form of a solid binary tree with a partially (left to right)
filled bottom layer. Nodes are added and deleted at the botto* of th" h""p-.

Figure 46: The structure of the heap.
e2 This eolution was arrived at with the help of Barry Dwyer of the Department of Computer

Science, The University of Adelaide (November 1g8Z),

1
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¡ Each node in the heap is numbered according to the path taken in getting
from the root node to the node. Starting with a 1, binary digits are

added to the least significant (right) side of the number until the node

is reached. The root node has the number 1. Node 3 has the number
11. This organization means that the nodes in the heap are numbered

consecutively along each level.

¡ A tree of r nodes consists exactly of those nodes numbered Z[1,r]. This
means that the heap is always well balanced. New nodes are added at the
r * 1'th position. An old node can be deleted by swapping it with the node

at the r'th position and then removing it.

¡ The age of each node of the heap is less than or equal to that of its child
nodes.

Insertions and deletions can be implemented as follows.

rnsertion: To insert a node into the heap, the node is attached at position
r * 1 and sifted up until its parent node is as least as old as the new node.

Deletion: To delete a target node, currently numbered k, from a heap of
r nodes, the target node is first swapped with the r'th node in the heap
(to be called the "refugee" node). The target node is then removed from
the heap, leaving r - 7 nodes. Removing the target node is easy because,
having become the r'th node, the target node has no child nodes. Following
this, the refugee node is sifted into a consistent position in the heap.

These operations require that each node store a pointer to its heap parent.
A sift operation takes time logarithmic in l?1.e3 The advantage of this heap
organization is that it allows indefinite growth using non-contiguous, dynamically
allocated memory.

4.7.4 Boundary Problems

Two small problems remain for the supply system.

The first problem is that of ensuring that the demand system is never supplied
with the node that it is about to build upon (the build node). A simple solution
is for the demand system to "use" the build node before requesting a leaf from
the supply system. This moves the build node to the end of the LRU list which
prevents it from being chosen next (so long as there are at least two leaves).
e3 Because the heap is balanced, this is an exact upper bound, not an amortized upper bound.
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The second problem occurs if the build node is the only leaf in the tree. This
can occur if, z €, ZlTrml, and can be avoided by preventing growth under those

circumstances or by using more than rn nodes.

4.8 Deep Updating

T}re ileeponly parameter determines how much of the matching branch is
updated by each arriving instance. \Mhen ileeponly:whole, each arriving instance
is added to every node in the matching branch. When d,eeponly:cred,ible, each

arriving instance is added only to the deepest credible node and its matching
descendents. When ileeponly-symbol, each arriving instance is added only to the
deepest node that already contains an instance of the arriving instance's symbol,
and that node's matching descendants (Figure a7). The whole option is used by
PPM and DHPC. The creilible option was invented by the author of this thesis.
The sgmbol option was invented by Moffat[Moffat8S]. In this thesis, trhe ileeponly
parameter is sometimes referred to as being "turned on, (ileeponlyfwhole) or
"turned off" (deeponly:whole). "Deeponly updating" refers to updating with
deeponlyfwhole.

Under ordinary updating (ìleeponly:whole, as in DHPC), a non-leaf node
accumulates an instance each time its context occurs, but is used to make
predictions only when none of its child nodes are able to (i.e. when there is no
credible matching child node). This mearrs that each nod,e's sample is collected over
a superset of the conditions under which it can be required to make a prediction.
The values cred,ible and symbot of the ileeponly parameter cause instances to be
added to a node only under the conditions in which the node's sample could be
used to make a prediction.

The difference betweer' d,eeponly:whole updating and. ileeponly-creilible up_
dating is shown in Figure 48. For simplicity,s sake, the diagram assumes a
credibility threshold of one.

If ileeponlU:creilible and the extensibility threshold is less than the credibility
threshold, there can be a twilight period for each non-leaf node during which it
accumulates instances in contexts that match its (currently non-credible) chitd
nodes. When the child node eventually becomes credible, the instances collected
by the parent in the child node's context during the twilight period will remain
in the parent node, even though the parent can no longer make predictions in the
child's context. This issue is not addressed as as it is unlikely to be of much effect.
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Nodes updated under
whole updating

Nodes updated under
credible updating

Nodes updated under
symbol updating

(lnstance z)
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When a new instance arrivee, it is added to samples in nodes on the matching
branch. The SAKDC algorithm supports three methods of updating. The whole
method (top) adde the instance to every node on the matching branch, The
credible method (middle) adds it only to the deepest credible node and its
descendants. The symbol method (bottom) adds the instance only to the deepest
node already containing an instance of the new instance's symbol, and the
node'e descendents. Partial updating allowe speed optimizations and improves
compression. Note that the node at depth 2 is not credible. This is poesible in
sAKDc if both deeponly updating and windowed local adaptivity are turned
on.

Figure 47: Effect of deeponly updating on the matching branch.

d,eeponly:symbol updating was included in the SAKDC algorithm so that
Moffat's PPMC' updating[Moffat88] could be selected.

In practice, deeponlyfwhole updating does not improve compression perfor-
mance much (Section 4.L7.7). This is to be expected; any context that occurs
frequently will force the growth of a child node. A far more important aspect
is that deeponly updating increases execution speed by reducing the number of
nodes that need be updated by each arriving instance. If a depth limit is set, and
the source is fairly stable, all the nodes in the tree will eventually become cred-
ible (or contain an instance of each frequent symbot) and each arriving instance
need be added only to a single node at the tip of the matching branch. Deeponly
updating can be combined to great effect with shortcut pointers (Section 4.10) io
avoid branch traversals altogether.
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Collection zone for each node
under the policy of updating
the entire match¡ng branch.

aa

ab

Collection zone for each node
under the policy of updating

only the deepest matching node.

L77

b

Under whole upd,ating (left), each node collects instances in contexts matching
any of its ancestor nodes. under credible updating (with a threshold of one),
only the tip of the matching branch is updated. The efrect is to partition túe
context string opace.

Figure 48: Effect of deeponly updating on node zones.

4.9 Saving Instances of Deleted Nodes

When a leaf node is moved, responsibility for making predictions in the leaf,s
context falls upon its parent. This is likely to be an acceptable degradation if the
entire matching branch has received every instance. However if deeponly updating
is turned on, the parent node will have received few of the instances that the leaf
node did and will be poorly adapted to predict in the leaf's context (Figure  8).
By not updating parent nodes, instances are lost when a leaf node is moved.

A solution to this problem is to record in each node the number of instances
(of each symbol) that the nod.e, but not its parent, has received. Then, when a
node is deleted, those instances can be added to its parents's sample. This allows
node movement and deep updating without the loss of instances. If a branch is
deleted from leaf to root, the root winds up containing all the instances in the
branch.
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Adding two samples together may appear to be a expensive, but turns out to
have a low amortized cost. If a sparse data structure is used to represent samples,

the cost of adding one sample to another is bounded by the number of symbols

of positive frequency in each sample. This in turn is bounded by the number of
instances in the sample. Under the addback scheme, a particular instance can be

added to a parent node at most rn times, after which it resides in the root node

and can go no further. In practice, if deeponly updating is turned on, the rate of
introduction of new instances to the tree will be about one instance per arriving
instance, and the cost will be even lower.

4.1O Shortcut Pointers

Section 4.8 showed that it is unnecessary and undesirable to update the entire
matching branch. Only a few (and in the limit one) node near the tip of the
matching branch need be updated. Although welcome, this optimization is spoiled
somewhat by the fact that the entire matching branch must be traversed to get

to the node to be updated. It would be advantageous to frnd a method to jump
among the deeper nodes without visiting the shallower nodes. Shortcut pointers
provide such a mechanism.

The key observation motivating shortcut pointers is that each matching branch
tightly constrains the set of possible next matching branches. More specificall¡
if a node whose string is ø € ,5 is in the current matching branch then the string
y e S of each node in the next matching branch must share a tail of fr instances
with the string øø where a €. A is the next arriving instance and /c is the length
of the shorter of the strings æa and y.

Shortcut pointers provide a mapping consisting of an Ad,diligå.ú mapping
followed by zero or more StripLeft mappings (Section 1.72.2). A shortcut pointer
associated with symbol a of node xyz could point to node xyza) node yza, node
za, node a or node e. The shortcut pointers are stored along with each symbol in
the prediction (Ad,dhight) data structure. Because the depth of the target node is
not guaranteed, each node must store its own depth explicitly. The combination
of the history buffer and the depth of the target node identifies the target node,s
string.

Figure 49 depicts a tree with shortcut pointers on the leaves only. If every
node were credible and deeponly updating were turned on, the algorithm would
make one transition per instance instead of the two (or in the general case rn)
required to move from the root to the leaf.
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aa

b

In a solid tree structure, shortcut pointers (grey) provide instant access to the
tip of the next matching branch. Each node stores n shortcut pointers, one for
each possible next symbol. In this tree, only shortcut pointers emerging from
leaf nodes are shown.

Figure 49: Shortcut pointers in a solid tree structure.

Shortcut pointers turn the tree into a finite state machine, yielding the
one-transition per instance efficiency of the DMC algorithm while retaining the
flexibility and conceptual clarity of the underlying tree structure. The tree
structure remains, but the shortcut pointers eliminate the costly branch traversals.

Shortcut pointers improve efficiency even when the entire branch must be
updated. By providing a direct link to a node deep in the matching branch,
shortcut pointers allow the matching branch to be traversed and updated from
tip to root. As mentioned in Section 4.6, tip to root traversals are more efficient
than root to tip traversals because tip to root traversals can use parent pointers
whereas root to tip traversals require a binary search (or more generally, an n-\r¡ay
branch) at each level.

The example of Figure 49 shows a solid tree. In practice the tree is more
likely to be non-solid. If the "depth" of a shortcut pointer is defined to be the
depth of the node that it points to, two natural constraints apply to the depth of
a shortcut pointer in a non-solid tree.

o The pointer can be at most one level deeper than the source node.

o The pointer can be no deeper than the depth of the next matching branch.

a

b

b
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Figure 5O shows a non-solid tree in which these restrictions are evident. In
SAKDC, every node contains shortcut pointers (unlike the tree in Figure 49
which contains shortcut pointers only in its leaves).

ba

In a non-solid tree structure, shortcut pointers (grey) are constrained by the
depth of the source node and cannot alwaya point to the tip of the next matching
branch. Instead, they are guaranteed only to point to somewhere on the next
matching branch.

Figure 5O: Shortcut pointers in a non-solid tree structure.

The first restriction is evident in the shortcut pointers emerging from the root
node. The root nodets string is the empty string, and knowledge of just one more
instance allows pointers only to a depth of one, even though in the case of the
a arc deeper nodes exist. The second restriction is evident in the b shortcut arc
emerging from node aa. Knowledge that the next instance is b would be sufficient
to point to a node rraabrr of depth three. However, as such a node does not exist,
the shortcut arc points to the deepest alternative which is node b.

The addition and deletion of nodes presents two problems for shortcut pointers.

If it is specified that shortcut pointers always point to the deepest node in the
target branch (subject to the two constraints listed above) then a problem arises
when a node is added to the tree. In Figure 49 and Figure 5O, all the shortcut
pointers are optimally placed. If a node ab is attached to node b, the shortcut
arcs b from node aa, b from ba and b from node a suddenly become sub-optimal.
To update such arcs in the general case would mean modifying the b shortcut arc
emerging from every node in the tree whose string ended in a.

A better solution is to optimize shortcut pointers incrementally. By removing
the condition of shortcut pointer optimality from the tree's invariant, the opti-
mization of a shortcut pointer that has been made suboptimal (by the addition of

a
aa

a

b

b
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a node) can be delayed until the next time the pointer is used (Figure õ1). The
invariant for shortcut pointers becomes simply that all shortcut pointers point to
øny node on the next matching branch. A tree with all shortcut pointers pointing
to the root would satisfy this invariant.

b

Tree immediately after
addition of the node ab.

Tree a short time afterwards. The
ba-b-> shortcut has been optimized.

aa

a

AA

a

AA

ba

b

In a dynamically changing tree, maintaining optimized (as deep as possible)
shortcut pointers is too expensive. A better technique is to update them

(ab) does not immediately
be updated (left). Instead,

diagram to the right shows

Figure 51: Incremental shortcut pointer optimization.

To ensure that shortcut pointers are usually optimal, shortcut pointers should
be tested for optimality whenever they are used, and updated if found to be
suboptimal. Incremental optimizing is more efficient than eager optimizing
because incremental optimization optimizes only when the information needed to
optimize is readily available. Also, incremental optimization does not produce long
delays (as does an O(z) lumped optimization), a feature important in real-time
systems. SAKDC uses incremental optimization.

A secondr more serious problem arises for shortcut pointers when nodes
are moved to a different part of the tree. Whereas the tree structure remains
valid, shortcut pointers to a moved node become invalid and must not be used.
Reconstructing an invalidated shortcut pointer is simply a matter of searching
from the root. The difficult part is determining if a particular shortcut pointer is
valid.

An approach to this problem is based on the fact that tree nod.es that are
moved need not be deallocated at the language level. In general, nod.e movement
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requires only the switching of a few pointers. Thus, regardless of the volatility of
the tree, each shortcut pointer is guaranteed at least to point to a valid node in
the tree.ea If deallocation never takes place, there can be no danger of a shortcut
pointer ever pointing to an undefined portion of the heap.

Given that all pointers are guaranteed to point to an allocated tree node,

integer incarnation number fields can be added to each node.eõ The incarnation
number of each node starts at zero and is incremented whenever the node is moved.

By storing incarnation numbers in shortcut pointers as well, the validity of a
pointer can be determined by comparing the incarnation number of the pointer
with that of the node. If the node was moved since the pointer's value was set,

the incarnation numbers will differ and the pointer can be detected as invalid
(Figure 52).

a1 a1

a1

a1

Tree before node move.

Tree atter node b has been detached
and reattached as node aba. Shortcut
pointers labelled b3 are now invalid.

When a node is moved from one part of the tree to another, shortcut pointers
that were pointing to the node become invalid, and must be detectable as such.
This can be done by storing an incarnørion number with each node and with
each pointer. when a node is moved, its number is incremented. A pointer is
then defined to be valid only if its number is the same as that of the nodã it points
to. In this example, the node b changes to node aba and its number increa¡es
from 3 to 4. This action invalidatee four pointers which remain numbered B.

Figure 52: Incarnation numbers detect invalid shortcut pointers.
sa If local,actiae--l¡11¿,^on, occasions some allocated nodes will be in a node pool rather than inthe tree (Section 4.13). As long as such nodes are not ¿"áttocaìã¿;; ih"-i;g"ã;lãîäilir,ã-rr*ã

argument applies (and works in practice).
eõ To the author's knowledge, ihu ur" tf incarnation numbers in poinüers is original.
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The main disadvantages with incarnation numbers are the extra memory
they use and the possibility of their overfowing. Small incarnation registers

consume little memory but will overflow frequently, requiring some action. Large

incarnation registers use more space but are unlikely to overflow. One encouraging

fact is that under LRU, a node can be re-cycled at most every z instances.

This means that a lower bound on the overflow time is zk instances where the
incarnation register is flog2 kl bits. If 16-bit registers are used, and there are

256 nodes available, it is guaranteed that overflow cannot occur until the 224t¡¡
symbol.

If an incarnation number does overflow, processing could resume after a
cleanup operation during which every incarnation number in the tree is set to
zero and every shortcut pointer in the tree is set to point to the root node. This
would require a full tree traversal and would generate a long delay which would
be unacceptable in a real-time system. Incremental solutions might exist.

4.11 Deletion of Non-Leaf Nodes

After being exposed to a stable source over a long period, the SAKDC
algorithm will settle down and start to operate like a finite state machine; control
will mostly flow through shortcut pointers. Under such conditions, it is tempting
to organize the algorithm so as to remove the rarely used shallow non-leaf nodes
for re-use as high-access leaves.

Unfortunately, abandoning the tree structure means that groups of nodes with
no ancestor path to the root become hard to locate. If a node in such a group is
moved, nodes that previous connected to it using shortcut pointers must find their
way to the moved node's deepest ancestor. This is difficult if the target ancestor
has no ancestor path to the root.

One method that might work, but which has not been explored in this thesis
is to use hashing to access tree nodes. This would allow instant access to all
nodes and would allow the shortcut pointers to be restored. As a further bonus,
leaf nodes and non-leaf nodes could be mixed freely in an LRU system ällowing a
simple LRU list to be used rather than the heap system described in Section 4.2.
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4.L2 Credibility Thresholds

The DHPC algorithm uses a credibility threshold B to prevent samples with
fewer than B instances from being used to make predictions (Section 2.3). The
SAKDC algorithm uses a credibility threshold as well (estim.threshold.threså,) but
also provides the option (estim,thresholil,kinil,) of basing the threshold upon the
maximum frequency in the sample rather than the total number of instances in
the sample.

The aim of a credibility test is to distinguish between samples that are

representative of the probability distribution they are modelling and those that
are not. DHPC's heuristic is based on the assumption that samples containing at
least B instances are likely to be representative. For very large 0 (..5. þ > n2),
this is a good rule of thumb. For the smaller values of B required in practice

þ.g. þ ( rz so as to utilize the samples of higher order nodes as early as possible),
the heuristic is less reliable.

DHPC's simple threshold scheme assumes that a fixed amount of information
(B instances) will yield approximations of the same precision for distributions
of different entropies. In fact, the higher the entropy of the distribution, the
more information is required to represent it to a given accuracy (Section 1.10.3).
For example, for n : 256, consider the difference in precision of samples of ten
instances from each of the following distributions.

p(a) : Lln and p(o) :

This example shows how a total-instance threshold can reject a good approxi-
mation to a low-entropy distribution and accept a bad approximation to a high-
entropy distribution. What is required is a measure that takes the entropy of the
distribution into account.

Statistical theories of confidence provide metrics for measuring how represen-
tative a sample is. Roberts[Roberts82] has even used these in a data compression
algorithm. However, these metrics are expensive to calculate and maintain. Here,
rtve are concerned only with replacing DHPC's simple, fast test with a better sim-
ple, fast test.

A threshold based upon the maximum(max) frequency of a sample rather than
the total (sum) number of instances in the sample is likely to provide a better
sample filter than szrn thresholds because rnar thresholds distinguish between
samples based upon a crude measure of their entropy. The lower the entropy

a:b-+!
afb+0
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of a distribution, the faster the maximum frequency of a sample of increasing
size is likely to increase. In the limit, the lowest average rate of increase of the
maximum isL/n per instance (for a high entropy distribution) and the highest is
1 per instance (for a zero entropy distribution). In contrast, the total number of
instances climbs at the same rate for all entropies.

4.13'Windowed Local Adaptivity

Section 3.9 describes a simple scheme for implementing local adaptivit¡ in
which the K'th oldest instance is removed from the tree whenever a new instance
arrives. In order to reconstruct the nodes to which an instance was originally
added, the history is required to be extended from .I{ instances to m* K instances.
In this section we describe how this simple scheme has been integrated into
SAKDC.

As mentioned in Section 3.9, if less than rn.I( nodes are available, it is possible
that growth caused by incoming instances will result in the removal of nodes from
other parts of the tree and hence the destruction of instances already queued for
destruction. This problem cannot be overcome by simply removing an instance
from whatever nodes are present in a branch, as the end of the branch could
be destroyed and then recreated during a single instance's journey through the
history buffer. One solution is to reduce the rate of growth, and record the depth
of each update along with each instance in the history buffer. This works for the
problem posed, but does not take into account the other happenings in the more
complicated algorithm (such as deeponly updating). A variable length history
buffer is undesirable because the multimodal algorithm described in Chapter 5
requires a windowed locally adaptive algorithm with a fixed -I(.

The complete algorithm is complicated by the partial updating of branches
(including deeponly updating), and the creation and destruction of nodes. Under
these conditions, a more robust windowed locally adaptive scheme is required. One
solution is to replace the depth of each update by a list of pointers to the updated
nodes. A cyclic bounded buffer of. K, rr¿ * l-pointer arrays is appropriate. Each
pointer contains an incarnation number which is used to prevent instances from
being removed from nodes that have been.moved. Figure 58 depicts a simpler
scheme in which each instance stores only a single pointer, being the the deepest
node to which the instance rvas added.

185



Section /¡.19: Wind,oweil Local Ad,aptiuity 186

m
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<- +_
History

K

indowed locally adaptive Markov algorithm can
h each instance in the history buffer pointers to
dated. When an instance reaches the end of the

history buffer, it is removed from each node that it was originally added to. If
the last instance of a node is removed, the node is deleted. This diagram depicts
only the deepest pointers.

Figure 53: Mechanism for a windowed local tree.

The only restriction on the scheme is that it cannot be combined with decaying
or addback. The scheme assumes that if a node has not been moved since the
instance (about to be removed) was added to the nod.e, the instance will still be
present in the node's sample. Decaying and addbacks break this invariant.

As it is possible that the number of nodes in the tree will var¡ it is necessary
to maintain a pool of nodes that have been allocated but are not currently required
in the tree. This could happen if the source is going through a low-entropy phase.
It is important that this pool be maintained so that nodes are never deallocated.
This simplifies the management of shortcut pointers (Section 4.10).

Another difficulty is the order in which nodes are recorded. If an instance
causes the creation of a whole branch, then the whole branch may need to be
destroyed when the instance is removed. This implies that the instance must be
removed from the leaf node working backwards towards the root. Unfortunately
instance addition takes place in the opposite order. In our implementation of the
SAKDC algorithm, the m* l-pointers in each element of the local bounded buffer
are organized as a stack.

m

tlr
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4,L4 
^ 

Sketch of How an Instance is processed

This section describes how the SAKDC algorithm combines the mechanisms
of the previous sections into a coherent whole.

The SAKDC algorithm can be implemented as an abstract data type providing
the operalions preilict and upilate (as in DHPC). SAKDC maintains a history
buffer, a tree structure and a pointer to the deepest matching node, which we will
call the history node.

The preilicú operation is performed by starting at the history node and working
backwards until a credible node is found. The resultant node is the pivot node
from which the estimation process is based. The search up the tree for the pivot
and the possible subsequent movements up the tree (in PPM or LAZY estimation)
can be performed quickly using the history node pointer and parent pointers.

The upd'øfe operation is much messier. Figure 54 depicts the four steps
involved. Each step corresponds to a distinct movement within the tree.

4: Move to new history node and

New History Node
update the shortcut po¡nter

taken in step 3.

3: Take shortcut
to nexl matching

branch.

Old History Node 1: Update
matching
branch.2: Extend matching branch

when a new instance arrives, the tree is updated in four steps. control starts at
the tip of the currently matching branch (the old history 

"oa"¡. 
In step 1, the

instance is added to (¡ome) nodes on t e matching branch. tí step 2,- zeio o,
more new nodes are added to the end of the matching branch and are updated.
In step 3, the shortcut pointer in the old history node ls used to jump somewhere
into the new matching branch. If this is not the tip of the new rirat.hing branch,
1!"o ¿ moves to the tip and updates the shortcut fointer in the old histãry node.
The new tip becomes the new history node.

Figure 54: Steps of an SAKDC Update.
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Step 1: The new instance is added to nodes on the matching branch.
This is done starting from the history node and moving towards the root.
The ileeponly para,rneter determines how far up the branch updating take
place.

Step 2: The matching branch is extended according to the tree growth
parameters (Section 4.3.1). Nodes that are added (if any) are updated as

if they had been part of the branch all the time. No attempt is made to
optimize shortcut pointers that point to the old history node. The new
instance is slid into the history buffer.

step 3: Steps 3 and 4 are concerned with establishing the (new) history
node corresponding to the modified history buffer. In Step B, the shortcut
in the old history node is taken. This leads to a node somewhere on the
new matching branch. If the shortcut pointer is invalid (or if shortcuts are
disabled), the node will be the root node.

Step 4: The new matching branch is traversed from the position reached
at the end of Step 3 to the new history node. Along the way, the shortcut
pointer from the old history node is updated if it was suboptimal. This
step yields a new history node which can be used in the next prediction
and update operation.

All of the other mechanisms described in this chapter fit into this update
framework.

The four movements of the four steps of an update can be described in terms of
the string operators of section r.12.2 as \:stripLeft*, 2:AililLeft, B:Ad,d,Righú (and
implicitly Stripleft*) and  :Ad,dLeft* where * denotes zero or more repetitions.
Although the whole process may appear expensive, the process is highly efficient
for a source that has any sort of stability. If. ileeponly:true, Step 1 will involve
the updating of only one node. Step 2 is performed only if the depth limit has
not been reached. Step 3 is expensive requiring an Ad,d,Right operation. Here
a binary tree must be traversed to access the shortcut pointer associated with
the next instance. As this traversal is necessary for coding, there is no loss here
either. Finally, there aîe zero or more Ad,d,Left operations. Again, this operation
is unlikely to be necessary if the shortcut pointer is optimal.

SAKDC's complicated updating algorithm allows the use of shortcut pointers
in a dynamically changing tree, and provides other access paths that speed
prediction.
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4.15 Controlling Implementation Complexity

At this stage, it should be clear that the SAKDC algorithm presents a minefield
of potential implementation programming errors. A variety of techniques were used

to control the implementation complexity.

The model was implemented as three packages:

A Prediction Package: This package exports a prediction abstraction.
The abstraction allows the incrementing and decrementing of frequencies,
the storage ofshortcut pointers, and provides a clean interface to the coder.

A Node Package: The node package provides a tree abstraction. It is
called the node package because fundamentally, it deals with nodes. A
node can be detached (in which case it is not connected to anything) or
it can be attached as part of a tree. The node package maintains all
the information about a tree (including LRU information) and provides
subprograms with information about a particular node (such as the node,s
depth).

A Compressor Package: The compressor package implements the actual
SAKDC model. The compressor abstraction provides a,n operation to
create a model (create), an operation to obtain a prediction from a model
(pred'ict) and an operation to give the model an instanc e (upd,ate). The
compressor algorithm contains the main predict/update routines that use
the prediction package and node package.

To increase reliability, assertions were sprinkled throughout each abstraction.
A test package was written for the prediction package and the node package.
Each test package contained a duplicate implementation of the abstraction to be
tested. The duplicate implementation used simpler, but much less efficient data
structures such as arrays. The test packages applied one million operations to a
single instance of the abstraction with the probabilities of particular operations
and data contrived to increase the probability of special cases arising frequently.
For example, only seven symbols were used. when testing the prediction package.
Each operation was performed on the actual and simulated abstraction. If the
operation involved the production of information, the information from the two
abstractions \ryas compared and an error generated if the results were different.
Operations sometimes used illegal data so as to test a packagets error detection
behaviour. The test packages also performed consistency checks at random. No
bug was ever detected in a package that had passed its test package's testing.
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A test package for the compressor could not be constructed in the same manner
as for the other packages as there appeared to be no way of coding the compressor's
semantics any more simply than they were already coded (even at the cost of
speed). No test package was used. In retrospect, a test suite should have been
used.

rhe au, h.. "ï:, ï"'.":;::':: : :: :,:T:,, :",:::. wi, h i m pr.vi n g

finite-context Markov algorithms. Moffat[Motrat88] has investigated ways in
which PPM can be improved. Bell, Cleary and Witten summarized Moffat's
improvements along with some of their own in chapter 6 of their book[Bell89].

It is interesting that every researcher who has investigated PPM has used a
forwards tree whereas the author of this thesis alighted upon backwards trees.
Moffat's optimizations are targetted at forward trees; however, many of them are
applicable to backwards trees as well.

A comparison of past improvements with current work will be made by
reviewing SAKDC's parameters. Most Markov algorithms have a depth limit
(UMC and DMC being notable exceptions). PPM does not address the memory
issue. PPMC' destroys the tree and rebuilds when it runs out of memory.
Tree growth in nearly all other algorithms proceeds at full speed while memory
is available (i.e. grow,actiae:true¡ grow,thresholil.thresh:I, grow.probeøÍ:1.g¡
and stops once memory runs out (i.e. grow.actiae:true,t grow,thresholil.thresh:!,
grow,probeøÚ:1.0). DAFC and DMC set some kind of grow threshold. No Markov
algorithm uses any kind of LRU node management. Phoenix reconstruction is
used by PPMC' with phoenin,.ashes:2048.

Moffat used decaying in PPMC' with d,ecay.actiue:true, d,ecøy.thresholil:
(sum, 300), d,ecøy.rounding-true and d,ecay.resiilue:true. windowed local
adaptivity has been used in some Huffman algorithms[Knuth85] but not in a
Markov algorithm. d,eeponly:creilible was invented by the author of this thesis.
deeponly-symbol appears in PPMC'. Addbacks are original. Vinè pointers
(which are similar to shortcut pointers) have been used in PPM implementations.
However, the suboptimality of shortcut pointers and the incarnation numbers are
original. Credibility thresholds have been used by other researchers whose work
has not been pursued by this author.eo DHPC merging is really a special case of
PPM merging. LAZY merging was proposed by Moffat[Moffat88]. Although none
e6 S"" p. 19 of [Roberts82] for a reference to such work.
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of the estimation techniques in SAKDC is original, the generalization of estimation
techniques is original.

The originality of the SAKDC lies mainly in:

o its mechanisms for various kinds of adaptivity.

o its integration of generalizations of mechanisms introduced in other
algorithms.

This concludes the description of SAKDC. The remainder of this chapter
describes experiments that were performed to explore SAKDC's parameter space.

4.17 Experirnents

This section takes up the rest of the chapter and describes the experiments
performed.

4.L7.1 SAKDC Implementation

The SAKDC algorithm was implemented in the Ada[USDOD8g]rz program-
ming language on a Digital VAX11/750[DigitalTg][DigitalSl] computer running
VMS[DigitalTS]. Tests were run on a Vax750, a Vax780 and a Vax85B0. Because
of the complexity of the SAKDC algorithm, all language-based run-time checks
were left on. A preprocessor called FunnelWeó (written by the author of this the-
sis) was used to generate the Ada source code. FunnelWeó, which is similar to
rhe WEBlKnuthSS] preprocessor, allows the programmer to weave program and
documentation together. This improves code readability and reliability.

SAKDC (like DHPC) is best described as a process that reads a stream of
instances and writes a stream of predictions. SAKDC implements the model
unit of Figure g. Section 2.4.1 explains how such a model can be used in a
compression program. In our implementation, the SAKDC algorithm drives an
arithmetic coder. However, the coder lvas so slow (partly because of the double
precision floating point - see Section 4.4) that it was turned off for most of the
experiments. Compression was calculated from the sum of the entropies of the
instances processed. In all cases when the coder was turned on, compression was
within a few bytese' of the theoretically calculated figure.

The SAKDC implementation used in these experiments sets n (the number of
symbols in the set of symbols) to 256 and divides the input file into a stream of
bytes each of which is treated as a separate instance.

Äda is a registered trade mark of the uS-Government-Äda Joint program office.
Within six bytes; the coder register was six bytes wide.
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4.L7.2 Description of the Test Data

Researchers in data compression at the University of Calgary have prepared

and released a corpus of "standard" files to be used in data compression research.ee

This is an enlightened move, because it allows data compression researchers in
many countries to compare the performance of their data compression algorithms
on a standard set of data. We will call the corpus of files from Calgary the "Calgary
corpustt.

The corpus of files assembled to test SAKDC consisted of the Calgary corpus
with some additional files added to assist in the investigation of adaptivity. These
extra files were necessary because many of the files in the Calgary corpus are fairly
homogenous.

Table I lists the files that were used in the experiments to be described.
To avoid ambiguity, each file has been given a name and a number. The names
given to files in the Calgary corpus are the same as those used by the originators
of the corpus. Files numbered in the range Zl7,I8] are members of the Calgary
corpus. The remaining files (2[101,104]) were added by the author of this thesis.roo
Checksums lvere calculated according to the following formula, with each file being
treated as a sequence of eight-bit bytes in the range 210,2ó51.

checksum("):f fl - Î'0,^= 
| l"l ) 0 + (3x checksum(s1...1r1-r)+"1"1 *1) mod216

F\rrther information about files in the Calgary corpus can be found in [Belt8g].
The files added to the corpus by the author of this thesis are all files that change
their characteristics in interesting ways. TLre multi file consists of the output
of three simple, pure Markov sources interleaved at 10000-instance intervals.
The concaú file was constructed by concatenating four files together and then
concatenating the result to itself. The four files consisted of Postscript cod,e,
numeric data in text form, a hex dump and a program written in an editor
language. The file inter consists of twenty 10000-instance chunks from four corpus
files and the ASCII numeric file. The objpap file is simply the objl file followed
by the paperl file. A more detailed description of the frles multi, concat and. inter
can be found in Section 5.7.
ee The author of this thesis received his copy of the corpus from Ian Witten and Tim Bell on4-February 1988. Corrections to the pic file were received ånd made on 14 March 1ggg.

"li"Tm'";Hi:.',",'fi,'ð'$fii':i:':îî::liliì#."'îËitåÌriär, î,ift*¡l*':lm*þ.i,åäTåå
the range Z[100,199].
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This table lists the data files used in experiments in this thesis. Files numbered
?U,l9l form a corpus of filee prepared by researchers at the university of
Calgary. The other files were prepared by the author of this thesis and conlain
data generated by a moving source.

Table E: The corpus of data files used to test SAKDC.

4.17.3 Presentation of Experiments

A wide range of experiments \Mere performed to explore SAKDC's parameter
space. A quick review of the literature revealed that data compression experiments
are usually described in a conversational style. While highly readable, this style
suffers from the following maladies.

¡ Where there is more than one algorithm, it is not made cleat which
algorithm is being described.

o The values of some algorithm parameters used in experiments are
omitted.

o The nature of the data, and in particular the length, is not adequately

Num Name Length Chksum Text Description
1

2
3
4
Ð

6
I

8
I
10
11
L2
13
L4
1õ
16
L7

18
101
L02
103
104

bib
boole I
bools2

geo

newS
objl
obj2
paperl
paper2
paperS
paperl
paperS
pøper6
pic
progc
progl
progp
trans
multi
concøt
inter
objpap

17t26L
768771
610856
102400
377109
2L604
2468t4
53161
82199
46526
13286
11954
3810õ
513216
39611
77646
49379
93695
90000
185286
200000
74665

67927
49õ16
404t
44972
5454
38609
57595
2278
10028
292ó5
õ8710
27667
43918
7886
27350
33011
47806
48136
78ó27
58496
2911
50617

Yes
Yes
Yes
No
Yes
No
No
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes
Yes
No
Yes
No
No

A bibliography
A fiction book
A non-fiction book
Geophysical data
A News batch file
A Vax object file
A Mac object file
A paper
A paper
A paper
A paper
A paper
A paper
A CCITT test image
A C program
A Lisp program
A Pascal program
A terminal session
Multimodal (see text)
Many files (see text)
Many files (see text)
objl {paperl

specified
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o Discussion of the experiments drifts from experiment to experiment with
no clear indication of whether the mechanisms tested in one experiment
are being employed in the next.

o The discussion is not amenable to ttrandom accesst'. That is, a reader
cannot obtain all the details and the conclusion of a particular experiment
without reading the entire text.

To avoid these difficulties, we revert to the classic scientific experimental
writingup style of aim, rnethoil, results, conclusion¡. To the extent that SAKDC
has a large multidimensional parameter space, it can be considered to be a natural
phenomenon worthy of experimental observation.

Unless otherwise specified, the vertical axis of all the graphs in the following ex-
periments measures compression in the form "proportion remaining" (Prop.Rem.).
The measure "proportion remaining" was chosen over "bits/instance" because of
its direct practical applicability in a world of eight-bit bytes. Most people (includ-
ing the author of this thesis) are skilled at quantification in base ten but not in base

eight. Despite this rejection, bits/instance remains the most objective measure of
compression.lol

In each experiment, a table of SAKDC base parameters will be given. The
effect of varying one or more of the parameters (the "independent variable") under
those conditions will then be described. Parameters listed as having a value of
"?)' in the base parameter table are the independent variables. The shortcuts
parameter is not listed as it has no effect on compression. Unless otherwise stated,
shortcuts:true, A,s stated earlier, n:256 in all runs.

of the experiments to be described the most important are:

Experiment 2 which evaluates different estimation formulae.

Experiment 5 which evaluates the effect of depth.

Experiment 6 which evaluates the effect of memory.

Experiment 12 which evaluates the effect of structural adaptivity.

lol Except of course for nats/instance!
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4.L7.4 Experiment 1: rnitial Benchmarks (DHPC, PPMA, PpMc')

Aim: To determine the performance of some well-known algorithms.

Method: Three methods were chosen for testing: DHPC, ppMA and ppMC'.
PPMA is a variation of PPM; the "4" describes the estimation technique. PPMC'
is a refinement of PPM by Moffat[MoffatS8]. PPMC' is also described in [BellSg].
The parameters chosen for each method are as close to those specified by their
inventors as could be determined from their papers. The parameters for DHPC
are given in Table 9. The parameters for PPMA are given in Table 10. The
parameters for PPMC' are given in Table 11. Each method was run over the
entire corpus of files.

Parameter Value Parameter VaIue

Moxdepth
Grou
Lruparent
Local
Deeponlg
Estim

4
Yes, Sum of 2, Pext=l.0
Same
No
Whole
DHPC, Lin, l: I

Masnodee
Moue
Phoenis
Decay
Addbøck
Estím.threshold

20000
No
No
No
No
Sum of 3

Table 9: Experiment 1: Benchmark parameters for DHPC.

Parameter Value Parameter Value
Mardepth
Grow
Lruparent
Locøl
Deeponly
Estím

4
Yea, Sum of 1, Pext=I,0
Same
No
\{hole
PPM,Nonlin,À=l

Masnodee
Moue
Phoenis
Decog
Addback
Estím,threahold

20000
No
No
No
No
Sum of I

Table 10: Experiment 1: Benchmark parameters for ppMA

Table 11: Experiment l: Benchmark parameters for ppMc'.

Parameter Value Parameter Value
Maadepth
Grow
Lruporent
Local
Deeponly
Estím

3

Yes, Sum of l, Pext=l.0
Same
No
Symbol
PPM,NonlinMof,À=l

Mosnodea
Mouc
Phoenia
Decay
Addback
Estím.threshold

20000
No
Yes, Ashes=2048
Yes, Sum of 300, 0.5, Rou, Res
No
Sum of I
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Num Name DHPC PPMA PPMC'
1

2

3

4
Ð

6
I
8

I
10
11

t2
13
L4
15
16
77

18

bib
boolcl
book2
geo

neuS
objl
obj2
paperl
paper2
paperS
pøperl
paperõ
paper6
pic
progc
progl
progp
trans

0.315
0.337
0.312
0.732
0.403
0.586
0.435
0.389
0.376
0.432
0.487
0.498
0.402
0.123
0.391
0.286
0.275
0.257

0.268
0.304
0.289
0.761
0.374
0.626
0.453
0.328
0.314
0.354
0.406
0.427
0.343
O,TLz
0.345
0.247
0.247
0.225

0.264
0.315
0.288
0.671
0.350
0.497
0.348
0.311
0.307
0.338
0.366
0.381
0.318
0.161
0.315
0.239
0.235
0.223

average 0.391 0.357 0.329

This table lists the compression performance of the algorithms DHpc, ppM and
PPMC'. compression is expressed as the proportion remaining. Atthough, the
three algorithms yield similar compression, PPMC'emerges as the clear winner.

Table 12: Experiment l.: Benchmarks for DHPC, PPMA and ppMC,.

Results: The results are listed in Table L2, DHPC is inferior to PPMA except
for the frles geo, objl, obj2. PPMA is inferior to PPMC'except for the frles bookl
and pic.

DHPC's better performance on three files (files that could be expected to
contain changing data) could be because of its slower tree growth. In the geo

run (of 702400 instances), PPMA stopped growing its tree after 10755 instances
whereas DHPC stopped after 20986 instances. It could also be the differences in
estimation scheme.

DHPC ran at about 120 instances per CPU second, PPMA at about 80 per
CPU second and PPMC' at about 100 instances per CPU second. These figures
are rough as no attempt was made to optimize the program.

conclusions: The methods DHPC, PPM (ppMA) and ppMC'yield results that
are within a few percent (absolute) of each other. However, it is safe to say that
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PPMC'out-performs PPM (by about 3% absolute) and PPM out-performs DHPC
(by about 3% absolute).
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Method and Results: Although it would be desirable to test each SAKDC
parameter independently of the others, some parameters are so closely related that
they must be tested together. This experiment tests the parameter group estim.
The estim.threshold parameter is held constant at 1 so as to expose the estimation
techniques to small samples; because all estimation techniques must converge

as the sample size approaches infinity (Section 1.10.3), differences between the
estimation techniques are likely to be most evident for small sample sizes.

The compressor runs in Experiment 1 took six hours of CPU time on a VAX750
for each run through the corpus. This is about two hours per megabyte. To speed

things up, three small files were selected for further experimentation. These were
obj1,, which contained object code, paperl, which contained English text, and
progc) which contained a C program. This amounted to 112K which could be run
in a total of about 15 minutes of CPU time.

Parameter Value Parameter Value

Maadepth
Grow
Lruporent
Local
Deeponly
Estím

4
Yes, Sum of l, Pext:l.0
Same
No
\{hole
? Ì r-1

Masnodes
Moae
Phoenis
Decay
Addback
Estirn.threshold

20000
No
No
No
No
Sum of I

Table 13: Experiment 2: Estimation base parameters

The experiment commenced with a run of eight different estimation techniques
for the frIe paperl over a wide range of À. The base parameters used for the runs
in this experiment are listed in Table 13. The results of the first ,,wide angle"
run are shown in Figure 55.

In this and further graphs in this experiment, circles are used for linear
estimation and squares for non-linear estimation. A dotted line indicates that
the Moffat variant was used. Thick lines are used for PPM merging, medium
lines for LAZY merging, and thin lines for DHPC merging. The horizontal axis
measures À and the vertical axis measures compression.

As might be expected, Figure 55 shows that the best values for ) are fairly
small (< 10). Figure 56 shows the more interesting range R[0, b].
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This graph shows the compression p of the twelve different
combinatione of merging and eetima a wide range of À (x-
axia) for the file paperl. This graph ues of ,\ are best. The
best compreseion is obtained in the shaded region, which is shown in greater
detail in Figure õ6.

Figure õ5: Experiment 2: Prop.Rem. vs ), for paperl (wide angle)
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This graph corresponds to the shaded region of Figure 55 and gives a better
idea of the best estimation techniques. Linear (circles) and non-lii'ear (squares)
estimation techniques perform nearly identicalÌy. ppM merging is better than
LAVy merging which is better than DHpc merging. rn ãch case, Moffat's
modification improves compression considerably.

Figure 56: Experiment 2: Prop.Rem. vs À for paperl (close up).

It is immediately clear from Figure 56 that the linear (circles) and non-linear
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(squares) techniques perform identically over this range. Indeed they are so close
that only six or so lines appear on the graph even though twelve were plotted.
The squares of the lines of the nonlinear methods (plotted underneath the linear
methods) can be seen at the very right of the graph where the lines diverge slightly.
Figure 55 shows that the linear and non-linear line pairs diverge by ,tp to TYo

at ) : 100. Because linear and non-linear methods are so similar in effect, only
linear methods will be used in further runs. When designing a production data
compressor, the choice of linear or non-linear should be determined by ease of
implementation.

Another prominent aspect of Figure 56 is the superiority of PPM merging
over DHPC merging and LAZY merging.

,,,,,,,,,1,,,,,,,,,?,,,,,,,,,?,,,,,,,,,1,,,,,,,,,f,,,,,,,,,f,,,,,,,,,7,,,,,,,,,?,,,,,,,,,?,,,,,,,,Ip

ïh PM.

200
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-0.5

-0.4

t2 64 9 o

This graph is very similar to Figure 56 and suggests the same conclusions.

Figure õ7: Experiment 2: prop.Rem. vs À for progc.

To ensure that the results for paperl were not file specific, the same run was
performed on the frles progc and objr. The À range was extended to R[0,10].
The results for progc (Figure 5z) are much the same as for paperl. For objl
(Figure 58) the curves are quite different. The object file has a higher entropy
than the other files and the curves are situated higher. The graph has split into
Moffat and non-Moffat line groups instead of ppM, LAZY and DHpc groups.
Non-Moffat DHPC merging performs better here than non-Moffat ppM merging.
All the curves have slumped right (relative to Figure 56), and the optimum I
has followed. However, because of the flatness of the slump, low values of À would
still yield near optimal performance.
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This graph shows the performance of various merging and estimation techniques
for a range of À on an object file. In this graph, the line groups split into Moffat
and non-Moffat rather than DIIPC , LLZY and ppM groups,

Figure 58: Experiment 2: Prop.Rem. vs ), for objl.

The next two runs tested the estimation techniques for few and many instances.
To obtain samples with few instances, the model \Mas run on paperl with the
n'¿oue parameters set the same as the grow parameters and locøl.o,ctiue:true
and local,perioil:500, meaning that the model would forget all but the last b00
instances (Figure õ9), Apart from raising the curves by about L1To, the result is
little different to Figure 56.

To obtain samples with many instances, the compressor was run with
mo,uilepth=t on paperl (Figure 60) and oåjf (Figure 61). For paperf , the
effect of lowering the depth (and hence increasing the sample size) is to flatten the
curves (observe the y axis labellings). Strangely, the optimal ) for the non-Moffat
formulas has increased while that of the Moffat formulas has slightly decreased.
For the object file, the curves have moved up and retained their shape, although
the PPM, LAZY and DHPC pairs have moved closer.

During the above runs, statistics were accumulated, after each prediction was
made, of the sample of the deepest node used to make the prediction. Table 14
shows the average number of instances (AaNumIns), the average maximum
frequency (AuMaxFrq) and the average number of symbol s (AuVumsy*) in the
predictions. The table confirms that turning on windowed local adaptivity and
lowering the depth were good ways of manipulating the instance density. The 4.15

207
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0.7

Thin=DHPC, medium=LAZY, thick=PPM.
Solid=non-Moffat, dotæd=Moffat.

All runs used linear estimation.
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This graph shows the performance of various merging and estimation techniques
where the number of instances in samples has been held low by setiing
local,period=5OO, These reeulte are eimilar to earlier reeults.

Figure 59: Experiment 2: Prop.Rem. vs ), for paperf with local.period:500.

Thin=DHPC, medium=LAZY, rhick=PPM.
Solid=16n-¡4s¡¡.t, dotted=Moffat.

All runs used linear estimation.
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This graph shows the performance of various merging and estimation techniques
where the number of insta.nces in sampres has Èeen made artificially high by
setting the maximum depth to one. Again, ppM merging and Moffat estimation
yield the best performance, although the curves have become much closer.

Figure 6o: Experiment 2: prop.Rem. vs ), for paperl with mønilepth:!.

entry rv.\¡as unexpected but can be explained by the decreasing depth of predictions
as the supply of nodes decreases.
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This graph shows the performance of various merging and estimation techniques
where the number of instances in samples has been made artificially high by
setting the maximum depth to one. For the object file, DHpc yields thá best
compression.

Figure 61: Experiment 2: Prop.Rem. vs ), for objl wirh møailepth:!.

Table 14: Experiment 2: symbol and instance densities.

Conclusions: The optimum I for all the estimation techniques nearly always
lies in the range 0 to 5. The linear and non-linear forms yield almost identical
performance for 0 < À ( 10 but diverge for À > 10 with linear yielding better
performance. The Moffat forms of estimation with À ng 1 perform significantly
better than the non-Moffat forms. PPM merging performs 5To to 10% better than
DHPC merging unless the entropy of the source is high, in which case DHpC
merging does a few percent better than PPM merging. The performance of the
LAZY merging technique is roughly between that of DHpc and ppM merging.

Run Figure AuNumlns AaMaxPrq AuNumSym
Few instances
Ordinary
Many instances

Figure 59
Figure 56
Figure 60

19

32
1339

4.5
74.7
289

4.75
3.75
30
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The best estimation technique is PPM merging with Moffat estimation with I - 1

(linear or non-linear).
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4.L7.6 Experiment 3: Credibility (estim.threshold,)

Aim: To determine the effect on compression of credibility thresholds.

Method: In this experiment the compressor v/as run over the files paperl and,

obil for a range of values of. estim.thresholil. All six estimation techniques were

used (linear estimation is used exclusively in the remaining experiments). The
base parameters are listed in Table 1õ.

Parameter Value Parameter Value

Moadepth
Grow
Lruparent
Local
Deeponly
Estóm

4
Yee, Sum of 1, Pext=I.O
Same
No
\{hole
?,LinMof, l=1

Mosnodee
Move
Phoeníø
Decag
Addback
Estím.threshold

20000
No
No
No
No
? of ?

Table 15: Experiment 3: Credibility base parameters.

Results: The resultsfor pøperl are shown in Figure 62. The graph shows clearly
that use of any sort of credibility threshold is detrimental to compression unless
predictions are based solely on the deepest node (DHpc merging).

1074
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Fo.¡t
Ë
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Fo.ss
F
E-0.34
F
E-0.33
F
E-0.32

flo.rr

0,35

0.34

0.33

o.32

0.31

94 6 7

ance (y-axis (proportion remaining))
linear Moffat estimation with À - 1)

is) for pøperl. Dotted lines are useá
,eørn thresholds. Thresholding improves

compression only for DHPC and then only a little. Generally ãstimation
thresholding appears to be detrimental to compression.

Figure 62: Experiment 3: Prop.Rem. vs estirn.threshold,.thresh for paperl
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Figure 63 leads to the same disappointing conclusion. It appears that it is
better to blend in aII the available information rather than to cut it off arbitrarily.

"In theory, theory is the same as practice, but in practice it isn't." Fortune Cookie

Thin=DHPC, medium=LAZY, thick=PPM.
Solid=Sum, dotæd=Max.

All run¡ used linearMoffat estimation.

2

72
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0.55
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This graph ehows the compression performance (y-axis (proportion remaining))
of three different -"_tgilg techniques (using linear Moffat estimation with ) =-í)over a range of credibility thresholds (x-axis) for objl. Dotted linee are useá
lor maÆ t'hresholds and solid lines for curn thresholds. Thresholding improves
compression only for DHPC and then only a little. Generally ãstimation
thresholding appears to be detrimental to compression.

Figure 63: Experiment 3: Prop.Rem. vs estim.thresholil.thresh for objl.

Conclusions: Credibility thresholds are detrimental to compression and should
not be used (i.e. estim.thresholil.threså, should be set to 1). An exception is when
predictions are to be based entirely on the deepest matching node (DHPC merging)
in which caser a max threshold of 3 will improve compression by a few percent
absolute.
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4.L7,7 Experiment 4: Deep Updating (d,eeponly)

Aim: To evaluate the performance of different updating methods (d,eeponly).

Method: The compressor rvas run over the entire corpus for each value of the
ileeponly parameter, The base parameter values are listed in Table 16.

Parameter Value Parameter VaIue

Maadepth
Grou
Lruparent
Locol
Deeponly
Eetim

4
Yes, Sum of l, Pext=l,0
Same
No
?

PPM, LinMof, .\: 1

Masnodes
Moae
Phoenis
Decay
Addback
Estim.threshold

20000
No
No
No
No
Sum of I

Table 16: Experiment 4: Deep updating base parameters.

Results: The results of the runs are shown in Table 17.

207

Num File Whole Credible Symbol
1

2

3
4
b
6
I

8
I
10

11

t2
13
L4
15
16
T7

18

bib
boole 1

book2
geo
neus
objl
obj2
pa,perL
paper2
pa,perS

p0,per4
paperS
paper6
pic
progc
progl
progp
trans

0.253
0.299
0.281
0.605
0.351
0.520
0,424
0.304
0.299
0.330
0.372
0.386
0.316
0.103
0.314
0.234
0.230
0.211

0.264
0.307
0.281
0.626
0.354
0.516
0.408
0.326
0.323
0.358
0.406
0.420
0.341
0.107
0.334
0.235
0.245
0.215

0.244
0.296
0.270
0.586
0.337
0.481
0.403
0.296
0.294
0.325
0.362
0.375
0.305
0.103
0.302
0.22L
0.22L
0.200

average 0.324 0.337 0.312

This table lists the performance of. whole, credible and sgmbol updating on
the files in the calgary corpus. The compression perfbr*.r." of the different
methods is similar, but symbol emerges as the clear winner by a few percent.

Table 17: Experiment 4: Deep updating results.
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The table shows lhat symbol out-performed creilible and whole updating
by about 2% absolute. whole out-performed creilible for every file except the
object frles objl and objÙ for which whole performed about 1% absolute worse.

Moffat[Moffat88] found lhat syrnbol updating yields a 5% relative improvement
over whole. Here it is 3.7% relative.

Although the compressor program was not much optimized, it is instructive
to review the execution speeds. The speed of these runs (expressed in bytes per

second on a VaxSõ3O and averaged in the same manner as the compression results
of Table 17) were whole:404, creilible:506 and symbol:487. It seems that any
sort of modification that prevents shallow nodes from being updated will increase

execution speed by about 25%.

Conclusions: Assuming PPM estimation, the best updating technique (value for
lhe ileeponly parameter) is symbol. That is, it is best to update only the matching
descendents of the deepest matching node whose sample already contains at least
one instance identical to that about to be added. Symbol yields a compression
improvement of about 1% absolute (4To relative) over whole while speeding the
compressor up by about 25T0. Cred,ible (adding the instance only to the deepest
matching node (esfim.threshold,:t)) yields the same speed increase but loses about
1% absolute in compression.
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Figure 64: Experiment 5: Prop.Rem. vs maxdepth for files.

4.L7.8 Experiment 5: Depth of ïbee (maad,epth)

Aim: To determine the effect of tree depth on compression.

Method: The compressor was run for marilepúå, values Z[1,10] over five different
files: geo, obil , paperl , progc and bib. The base parameters for the runs are shown
in Table 18.

Parameter Value Parameter Value
Maadepth
Grow
Lruparent
Local
Deeponly
Eatím

?

Yes, Sum of 1, Pext=1,0
Same
No
Symbol
PPM, LinMof, À: t

Maxnodes
Moae
Phoenís
Decag
Addback
Estóm.threshold

20000
No
No
No
No
Sum of I

Table 18: Experiment 5: Depth base parameters.

Results: The results are shov/n in Figure 64. The graph shows that increasing
the tree depth helps, but only to an extent. rncreases up to order 4 have a
huge effect after which increasing the depth appears to be mildly detrimental to
compression. The graph also shows the different complexities of the different files.
The geo file seems to contain only first-order correlations whereas óiá contains at
Ieast fourth-order correlations.



One explanation for the lack of effect of extra depth after depth 4 is that when
memory runs out, deeper nodes are more profitable employed at shallower levels.
Table 19 lists for each file and depth, the rate of growth in nodes/instance during
the period that the tree was growing. The table shows that each extra level of
depth increases memory consumption considerably.

Table 2O lists, for each run, the number of instances before memory ran
out. To an extent, the figures here correlate with the decrease in performance
at depth 4. However, there is also evidence to suppose that memory is not the
governing factor here. For geo, the runs at depth 1 and 2 did not run out of
memory and yet there is little difference in their performance. Similarly, for objl
for depths 2 and 3 and paperl and objl for depths 3 and 4. From these results
it appears that if memory is available, extra depth will yield minor improvements
but that there is not much to gain after depth 4. Because of the huge difference
in memory consumption between depths B and 4, depth B is recommended,

Section l. 17: Eøperiments 2L0

Depth geo objl paperl progc bib

1

2

3

4
b

0.0025
0.138
0.78
1.85
2.86

0.0120
0.240
0.66
1.30
L.77

0.0018
0.031
0.015
0.40
1.10

0.0023
0.046
0.19
0.48
1.36

0.0007
0.015
0.87
0.38
L.07

Table 19: Experiment 5: Rate of node growth for different depths.

Depth geo objl pøper1 progc bib

1

2

3
4
Ò

t02400
102400
25596
10755
6970

21504
2t504
27504
L5344
I7728

53161
53161
53161
49869
18057

39611
39611
39611
39611
L4750

ttL26L
111261
L7726t
62425
18668

Table 2o: Experiment 5: Memory run out times for different depths.

conclusions: starting from depth 0, compression improves quickly (typically
yielding an extra 10% absolute per extra level) up to and including depth B. Above
depth 3, compression can improve by up to B%bú is more likely to degrade. A
depth of 3 is recommended.
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4.L7.9 Experiment 6: Memory Size (mørnoiles)

Aim: To determine the effect on compression of memory size (maunoiles),

Method: In this experiment memory is measured in tree nodes rather than
in bytes. This makes the measure portable as well as easy to constrain. The
compressor \ryas run over a range of tree sizes for the files paperl , obj2 a"nd trans,
The runs were performed for depths of 3 and 4 so as to confirm the results of
Experiment 5.

Parameter Value Parameter Value

Maxdepth
Grow
Lrupørent
Local
Deeponly
Datím

?

Yes, Sum of 1, Pext=I.0
Same
No
Symbol
PPM,LinMof,À=l

Maønodes
Moue
Phoenís
Decay
Addback
Estim.threshold

?

No
No
No
No
Sum of I

Table 21: Experiment 6: Memory base parameters

Results: The results are shown in Figure 65. Tbiangles mark the depth B runs
and squares mark the depth 4 runs.

Starting from just one node, compression improves dramatically as nodes are
added. For the frLe trans, a tree of 500 nodes yields 20To abso\ute more compression
than a tree with just one node. Adding another 500 removes another 5% absolute.

Zooming out, Figure 66 shows a wider view. The shaded region contains
Figure 65. As might be expected, the improvement in compression diminishes as
more nodes are added. Here the curve trails off at about 10000 nodes.

It is interesting that a depth of 4 yields slightly better compressi on (2%
absolute) if there are more than (approximately) 12000 nodes available. This
indicates that depth 4 nodes are a luxury that can be afforded only when nodes
are plentiful. The points at the far right of the graph plot the position of the
curves at 60000 nodes. For the paperl and trans files, compression does not
improve with extra memory beyond about 20000 nodes. For objp, there is a 5To
absolute improvement. This is probably because lhe obj| file is longer than the
other files. The graph shows that a depth 4 tree does not outperform a depth 3
tree even if memory is tripled. It is likely that a depth 2 tree would outperform a
tree of depth 3 under even more stringent memory constraints.

conclusions: Starting with one nod.e, huge gains in compression can be made
by increasing the number of nodes in the tree. If one nod.e yields 0.2 (proportion
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Figure 65: Experiment 6: Prop.Rem. vs nùa,ünod,eE for files (close up).
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This graph gives a wider view of the data given in Figure 65 (enclosed in the
grey-region)' This graph shows that while great impr-ovements in compression
can be obtained by adding memory wher¡- memory i. ,.rr"u, there ls httre
advantage in increasing memory above 10000 nodes.

Figure 66: Experiment 6: prop.Rem. vs matnod,es for files (wide angle)
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remaining) then õ00 nodes will yietd 0.5. At 5000 nodes, compression tapers off
and by 10000 nodes there is little to be gained by increasing memory. These

results confirm the optimal depth as 3. Fbr less than 500 nodes, decreasing the
depth can improve compression. For over 20000 nodes, compression can improve
for a depth of 4 but is unlikely to improve for higher depths. These results are

based on ordinary files of ordinary length.
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4.L7.LO Experiment 7z 'Windowed Local Adaptivity (Ioca|)

Aim: To determine the locality of typical data and consequently the best
windowed local adaptivity settings (local).

Method: For this experiment the SAKDC algorithm's windowed locally adaptive
mechanism was used (loca|). Unlike the decay mechanism, the windowed locally
adaptive mechanism places a fixed bound on the maximum age of instances in the
tree.

The compressor lryas run with the parameters listed in Table 22 for a variety
of values of. IocøLperioil. The compressor was given 50000 nodes so as to lower
the chance of it having to recycle nodes prematurely (for a depth of 3 and 50000
nodes, premature recycling could only happen for loca,I.perioil >x 16000). Six
files were tested: objl, obj\, paperl ) progc) bookl [1 ...200000], multi and, inter.
By "booklll...200000]" is meant the first 200000 instances of the frle boolcl;
performing the runs on the whole book would have taken too long.

Parameter Value Parameter Value

Maødepth
Grow
Lruparent
Local
Deeponly
Estim

3

Yes, Sum of l, Pext=l,0
Same
Yes, Period=?
Symbol
PPM, LinMof, À: I

Masnodes
Moue
Phoenís
Decay
Addback
Estim.threshold

50000
Yes, Sum of l, Pext=l.0
No
No
No
Sum of 1

Table 22: Experiment 7: windowed adaptivity base parameters.

Results: The results of the run are listed in Figure 67. The horizontal axis
plots local.peri,oil and the vertical axis plots compression (proportion remaining).
The fuzzy horizontal lines are included solely to provide a visual reference of the
horizonal at interesting points on the graph. The point markers (squares, circles,
triangles) have no significance other than to distinguish the different lines. Dotted
lines were used for non-homogenous files.
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section 4.13 described how windowed local adaptivity could be implemented
by removing instances from the tree when they are 1l instances old. Here
compression performance (proportion remained) is plotted against the length
of the window (Iocal.period) for a variety of files. with the exception of the
multimodal files (dotted), compression is improved by increasing the size of the
window. This indicates a poor locality in ordinary data. Because compreseion
is not much worse for smaller windows, small windows could be used in practice
to simplify implementations.

Figure 67: Experiment 7: Prop.Rem. vs local.perioil nor some files.

of the homogeneous files (objl, objp, boolcf [1... 200000], progc and paperl),
only the object frles (objL and obj2) have a low optimum locality. The rest
all appear to have optimum localities at.infinity. This result contrasts strongly
with the generally held view that data is highly localized (e.g. [BentleyS6],
[Abrahamson8g]). The difference might be caused by the level at which the data
is parsed (Bentley - words, Abrahamson - bytes), by the order of the model
(Bentley - 0, Abrahamson - 1) or by the differing to (Section B.B) which in this
experiment is flat but in the other research was strongly biased towards the most
recent instances.

Of great interest is the fact that for most of the files, only 5000 to 10000
instances were required to give good compression. Arithmetic coding becomes
clumsy if frequency counts can grow large (e.g. > 168g8 ([Moffatgg])). Typically
decaying is used to keep these counts down. However, as only about 10000
instances are needed in a compressor to produce reasonable compression, windowed
local adaptivity could also be used to place an upper bound on the counts.

Of all the files tested, bookl appears to be the most homogeneous with a 4%
gap between 10000 and 80000 nodes.

bookl ..200m01

.. - ^.,,,,...o...r:T9S::::::::@ 
" "":-'-'o"-------"""""...-.'-..--.---o
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The results of the multimodal files multi and inter are also surprising. As

expected, the optimum period for multi is about 3000 instances. Any more, and

the advantage gained by keeping extra instances of the current source are lost
at the source boundary. What is surprising is the downwards dip in the curve
at 30000. This figure can be compared to the period of the repetitions of the
three sources in multi which is also 30000. The inter curve shows the same effect

although it is less dramatic.

Conclusions: For byte-level high-order models with flat tl, the optimum sized

window is one of infinite length. However, only the most recent 5000 to 10000

instances are needed to achieve near optimal compression. This fact could be

used to keep frequency counts down, simplifying the design of practical arithmetic
coders. The result also means that there is little to lose (say 5%) by making a

compressor locally adaptive. However, if compression is the absolute priority then
asymptotically adaptive models will be best for highly stable sources.
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4.t7.LL Experiment 8: Decaying (d,ecøy)

Aim: To determine the effect on compression of sample decaying.

Method: The compressor ïvas run with the parameters listed in Table 23 for a
variety of values of. ilecay.threshold. The other decay parameters (ilecay.factor,
d,ecay.rouniling and ilecøy.resiilual) werc set to constant values and were not
explored in this experiment.

Parameter Value Parameter Value

Maødepth
Grow
Lruporent
Local
Deeponlg
Estim

3

Yes, Sum of 1, Pext=I,0
Same
No
Symbol
PPM,LinMof,À=l

Mannodes
Moue
Phoenís
Decog
Addback
Esti¡n,threchold

20000
No
No
Yes, ? of ?, 0.5, norou,nores
No
Sum of I

Table 23: Experiment 8: Decay base parameters.

Results: The results of the run are plotted in Figure 68. The horizontal axis
plots ilecay.threshold.thresh and the vertical axis plots compression. Circles are
used for homogenous files and squares for multimodal files. Solid lines denote
runs for which il,ecay.threshold.lcinil:sum; dotted lines denote runs for which
d,ecay.threshold.kind,:rnar. Seven files were tested, making the graph a little
messy.

The graph shows that, in general, decaying is detrimental to compression,
particularly at low thresholds. The graph carries good news, however, for it
shows that if decaying is to be used to keep maximum counts down (so as to
simplify arithmetic coding), quite stringent decaying can be used with little loss of
compression. It seems for example, that a maximum sunt, of 100 instances could
be imposed with little impact on compression. The danger of imposing a low
threshold is that it places a bound on the ratio between the most frequent and
least frequent symbols in a sample. This bound reduces the compressor's capacity
to compress low entropy sources efficiently. However, in most designs there will
be little corlcern for this ,,best casett.

Another solution is to use a nùat threshold which the graph indicates is even
more robust; according to the graph, rn&t couîts can be set as low as 10 with
little impact on compression. In fact, this graph shows that for this data, three
bit (2P,7]) registers could have been used for symbol counts, allowing a g6 byte
(but O(n) access) array prediction representation.
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0.3Pfo8c,

multi

500100 300

Decaying of samples can be used to introduce contextual local adaptivity and
bound on frequency r, for ordinary data,
effect. In this graph roportion remaining)
ecay threshold (decay for a variety of files,
d nrøo(dotted) thresh

Figure 68: Experiment 8: Prop.Rem. vs ilecay.threshold.thresh (wide angle).

Figure 69 shows a close up view of the interesting zorLe a,t Z[1,100]. Most
interesting is that obj2 exhibits a degree of locality on its rna,a cvrve with a
minimum at about 10. Multi has sum arrd rnar optimal values at about 20.

Conclusions: In general, decaying has a detrimental effect on ordinary files. Low
thresholds (".g. < 20 for sum and ( 10 for man) are detrimental to compression.
However, for thresholds above !00 sum and 20 møa, decaying has almost no affect
on compression. For files generated by moving sources, decaying can provide an
advantage @ a% absolute for these runs). The main benefits of decaying appear
to be the reduction of frequency register widths (which simplifies the design of
arithmetic coders) and the long term insurance that it provides against sources
that move.
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Figure 69: Experiment 8: Prop.Rem. vs ìlecøy.thresholil.thresh (close up).
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4.L7.L2 Experiment 9: Threshold Growth (grow)

Aim: To examine the effect on compression of restricting tree growth using
frequency thresholding in a compressor that has an initially adaptive structure
and asymptotically adaptive contexts.

Method: During the design and implementation of the grou and rnoae parame-
ters, it was assumed that high depth values (".g. 5, 10, 20) would be optimal and
that nodes would have to be carefully allocated. However, Experiment 5 showed
that the optimal depth is 3. This means that for English text files with approxi-
mately 27 heavily used symbols, only about 273 :19683 nodes are likely ever to
be needed. Because this value (19683) is less than the number of nodes being used
in these experimental runs (20000), the effect of sophisticated tree growth strate-
gies is unlikely to become evident. In this experiment, the memory size is varied
(in addition to the growth threshotd) so that the advantage of tree management
becomes apparent.

In this experiment we are concerned only with the grow parameter. The
nùoae parameter is examined in a later experiment. In this experiment the moue
parameter is turned off. Of the grow pa,rarneter, only grow.thresholil,lcinil and,
grow.thresholil.thresh are testedi grou.probext is set to 1.0 in this experiment.

The compressor was run over the frles paperl, objl a,nd. trøns for a variety of
memory sizes and growth parameters. The base parameters are listed in Table 24,

Paramete¡ Value Parameter Value
Maxdepth
Grow
Lruparent
Local
Deeponly
Ectim

3

Yes, ? of ?, Pext=l.0
Same
No
Symbol
PPM,LinMof,À=l

Mosnodes
Moue
Phoenôa
Decay
Addback
Egtím.threshold

?

No
No
No
No
Sum of L

Table 24: Experiment g: Threshold growth base parameters.

Results¡ The results of the run for the pøperL file are shown in Figure ZO. The
horizontal axis plots grow.threshold,.thresh. The vertical axis plots compression
(proportion remaining). Each line corresponds to a different value of. mo,xnod,es

and is labelled as such.
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Compressore that never move tree nodes once they has been attached to the tree
must be ceutious about where such nodea are placed. This graph plots compres-
sion (proportion remaining) against growth threshold (grow.threchold.threeh) fot
a variety of memory sizes (marnodes) for the file pøper(. The point on the far
left (grow.threshold.thresl¿=1) represents the fast growth employed by most al-
gorithms. This is optimal if more than about 2000 nodes are available. For
smaller memory, huge gains in compression can be made by slowing tree growth
(an improvement of 9% absolute for 200 nodes).

Figure 7o: Experiment g: Prop.Rem. vs grow.thresholil.thresh(sum), pu,perl.

This graph shows that if there are less than 1000 nodes, significant gains can
be made by retarding tree growth using a,n extensibility threshold (grow.thres-
hold'.thresh). Taking grow,thresholil.thresh:10 as a reasonable production value,
the saving in the case of møanoiles:20O is about 9% absolute. For 500 nodes it is
about 7% absolute. Even for 2000 nodes the technique saves about 2% absolute.
For large memory, compression is lost, but by at most 1% absolute.

At very high thresholds (e.g. 1000 - not shown on this graph) nearly all the
curve sloped upwards. A quick check of Figure 64 confirmed that these curves
v/ere converging on first order compression.

Of interest is the bump in the 50 curve. This was probably caused by the
increasing sensitivity of the positioning of nodes as the nodes become scarcer.
Other runs with maxnod,es <
dramatically as the number of nodes decreased.

The grow.threshold.kind parameter was tested by re-running the experiment
with grow.thresholil.lcind,:max. The results are shown in Figure z1 which
duplicates the previous (szrn) graph but also includes ilrre man runs as the dotted
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lines. In general, t}r,e maa threshold has little effect, but for low memory it can

take off up to 3% absolute.lo2

10 20 30 40 50 60 70 80 90 100
,,,,1,r,,1,,,,r,,,,1,,,,r,,,,1,,,,1,,,,1,r¡,r,,,,1,,,rr,,,,1,,,,1,,,,1,,,,1,,,,1,,,,r,,,,1,,,,1,,,,1

maxnodes

0.5- 0.5

0.4- 0.4

Solid for sum lhreshold.
Dotæd for m¡x threshold.

l0 20 60 70 80

This graph is the same as Figure 70 except that mrc thresholds have been
added as dotted lines, nrøo thresholds perform marginally better than sørn
thresholds at low thresholds.

Figure 71: Experiment g: Prop.Rem. vs grow.threshold,.thresh(møæ), pa,perl.

For generality, the experiment was repeated for the frIes objl (Figure 72)
a,nd trans (Figure 73). Short files were chosen because of the increased resource
requirements necessitated by the extra dimension (memory).

The objl curves are much sharper than the pøperl curves. Above the threshold
4, there is little compression to be gained. The curves still exhibit the dramatic
drop at the left which shows the usefulness of the threshold. In this case there is
an advantage even when there are 10000 nodes. This could be because Markov
trees resulting from object files are likety to have a higher furcation than those
generated from English text. For 20000 nodes, the cost of using a threshold of 5
(which saves so much for smaller memory) is negligible.

The terminal session transcript (trans) curves are similar to the paperl curves.
The same dramatic drop at the left is evident with up to t5% absolute to be gained,
tL% if. a sensible value (say 10) is chosen for the threshold.

50

1o2 Unfortunately, this fact was missed during the experimental process and subsequent experi-
ments use ,e?¿?n thresholds rather than mm thresholds.
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This graph repeats the experiment summarized in Figure z0 but uses the file
objl . The object file exhibits the same dramatic improvement in compression
found for pøperl, with improvements in compression evident even for 10000
nodes.

Figure 72: Experiment 9: Prop.Rem. vs grou.threshold.thresh for obj1.

l0 20 30 40 50 60 70 80 90 100,,,,r,,,,1,,,,1,,',1,,',1,,',1,,,,r,,,,1,,,,1,,,,1,,,,r,,,,1,,,,r,,,,1,,,,r,,,,1,,,,1,,,,1,,,,1,,,,1
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^,,,'.,,,1',,,1,,,'1,,,,r,,,,1,,,,r,,,,1,,,,1,,,,1,,,,1,,,,t,,,,1,,,,1ì,,,r,,,iù,,,1,,,íù,,,r,,,ìi-

100

200
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0.5
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30 40

50

0.6

0.3

This graph repeats the experiment summarized in Figure z0 but uses the file
lrøns' Huge improvements in compression are possible here with gains of 10%
absolute for 500 nodes.

Figure 73: Experiment 9: Prop.Rem. vs grow.thresholil.thresh for trans

Conclusions: These conclusions refer to the retarding of tree growth through
the mechanism of a growth threshold (grow.threshold,.threså,) in the case of a
Markov algorithm that is asymptotically adaptive at the instance level but only
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initially adaptive structurally and which is compressing a fairly static source. For
ordinary files, growth thresholds are very effective for small memory sizes (< 2000

nodes) but have little effect if memory is plentiful, Sum and møa threeholds are

comparable but rnøs lhresholds can yield better compression at low memory sizee

at low thresholds. For ordinary files a good value appears to be sum of 10. This
yields gains of. ó% to l0To absolute for small numbers of nodes while losing at most
1% absolute for large numbers of nodes. If, a maa threshold is used, the best value
appears to be about 5.
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4.L7.tg Experiment 10: Probabilistic Growth (grow.probeæt)

Aim: To examine the effect on compression of restricting tree growth, through the
mechanism of probabilistic growth, in a compressor that is structurally initially
adaptive structure but has asymptotically adaptive contexts.

Method: This experiment is similar to Experiment 9 except that tree growth is
restricted probabilistically (grow.probeøú) rather than by a threshold (grow.thres-
hold,).

The compressor \Mas run over the frIes paperl, objl a,nd trøns for a variety of
memory sizes and probabilities. The base parameters are listed in Table 2õ.

Parameter Value Parameter Value

Mardepth
Grow
Lruparent
Local
Deeponly
Estirn

3
Yes, Sum of 1, Pext=J
Same
No
Symbol
PPM,LinMof,À=1

Masnodes
Motte
Phoenis
Decay
Addback
Estim.threshold

?

No
No
No
No
Sum of I

Table 2õ: Experiment 10: Probabilistic growth base parameters

Results: The results of the run for lhe paperl file are shown in Figure 74. The
horizontal axis plots grow.thresholil.probeat. The vertical axis plots compression
(proportion remaining). Each line corresponds to a different value of. rnarnod,es

and is labelled as such. In contrast to the threshold graphs, in this graph gror,¡¡th
is slowest (probability of zero) at the left and fastest at the right (probability of
one).

This graph shows the same effects exhibited in Figure 70. The same massive
gains are evident. For a value of. grow.probent of.0.35, the saving for 200 nodes is
about 5% absolute. For 500 nodes it is about 4% absolute. For large numbers of
nodes there is a loss of about 1% absolute.

Although probabilistic retardation provides a distinct advantage over rapid
tree growth, compression is 40To rclalive worse than the compression provided by
threshold retardation. This is a direct result of stochas tic finz which ensures some
bad growth decisions as well as many good ones. The stochasticity of the method
is also evident in the variability of the stability in the curves ranging from smooth
at 20000 nodes to jagged at 50 nodes.

For generality, the experiment was repeated for the frles objl (Figure Z5)
and trans (Figure 76). Short files were chosen because of the large resource
requirements necessitated by the extra dimension (memory) in this experiment.
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one way of retarding tree growth is to append leaves probabilistically. This
graph plots compression (proportion remaining) against the probability of
appending a leaf on the end of the matching branch during an update
(grow.proberl). The tree is frozen once all the nodes are placed. Each line
corresponds to a different amount of memory. Previous techniques are located
at 1..0 at the right of the graph. Probabilistic retardation yields significant gains.
However, threshold retardation (Figure 70) performs much better.

Figure 74: Experiment L0: Prop.Rem. vs grow,probeæt lor paperl

0,1 0,2 0.3 04 0.5 0.6 o.7 0.8 0.9,,,,',,,,1,,,,r,,,,1,,,,r,,,,1,,,,r,,,,1,,,,r,,,,1,,,,r,,,,i,,,,1,,,,i,,,,r,,,iii,,,r,,,iií,,,r,,,,
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This graph repeats the experiment described in Figure z4 using the file oäj.f
The same effects are evident.

Figure 75: Experiment 10: Prop.Rem. vs grou.probent nor obj1.

Again \Me see losses of about 20To to 50% relative to the non-stochastic
threshold method.
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This graph repeato the experiment described in Figure z4 using rhe frle trøns
The same effects are evident.

Figure 76: Experiment 10: Prop.Rem. vs grou.probert for trans,

Conclusions: Probabilistic growth exhibits all the same properties of threshold
grovvth but performs about 40To relative worse because of its stochasticity. The
best value for grow.probext appears to be 0.4. This setting yields gains (over a
probability of 1.0) of about 5% absolute for small numbers of nodes and -1%
absolute for large numbers of nodes. The 40To relative degradation over threshold
retardation serves as a reminder of the overhead incurred by using stochastic
techniques. In this case at least, thresholds should always be used in favour of
stochastic growth.

5m

1000
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4.L7.L4 Experiment 11: Node Movement (moue)

Aim: To evaluate the effect on compression of moving leaf nodes within the tree

after the supply of nodes (memory) has run out.

Method: Experiment 10 showed that probabilistic growth is inferior to threshold
growth and that surn thresholds are roughly as good as rnan thresholds for the
purpose of tree growth. As a consequence, the only parameter tested here is
moae.threshold.thresh. The compressor v¡as run for a variety of memory sizes and

threshold values for the frles paperl, objl and objpap. The base parameters are

listed in Table 26.

Parameter Value Parameter Value

Maadepth
Grovt
Lruparent
Local
Deeponly
Estim

3
Yes, Sum of 1, Pext:l.0
Same
No
Symbol
PPM,LinMof,À=1

Maønodea
Moue
Phoenia
Decoy
Addback
Estim.threshold

?

Yes, Sum of ?, Pext=I,0
No
No
No
Sum of 1

Table 26: Experiment L1: Node movement base parameters

Results: Figure 77 shows the results for the file paperl. The horizontal
axis plots moue,thresholil,thresh. The vertical axis plots compression (proportion
remaining). The lines correspond to different maxnod,e,s and are labelled as such.
Solid lines correspond lo grow.thresholil,thresh:1 and dotted lines correspond to
g ro w. thre sh olil. thre sh : 5 .

As in the earlier experiments, the adaptive mechanism has little effect when
memory is plentiful. Here the high memory curves are flat. For less memory,
there are significant gains. This graph has the same "look and feel" as the graphs
in Experiment 9 but must be interpreted differently. Although the same rising
of curves for the low threshold values is present, for this graph the "default,,
value (i.e. the one used in previous experiments and by other researchers) is
moue.thresholil.thresh:oo; the rapid drop at the left indicates only that moving
nodes too rapidly is detrimental to compression. Presumabty the nodes require
time to build up significant samples. More important is the slow drop from infinity
back to about 20. This indicates that moving nodes is worthwhile.

The results for the obil file are shown in Figure 78. In the light of the
previous results, grow.threshold.thresh:5 was not plotted. The effect of moving
nodes is much more pronounced for this run, with the 500-node and 1000-node
runs yielding an advantage of about b% absolute.
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This graph plots compression (proportion remaining) against the parameter
rnoae,lhresholtl.thresh for the frle pøperl. The lines correspond to different
memory sizee. Two diflerent growth rates appear: fast(solid) and slow(dotted).
Previous algorithms (e.g. PPM) are located at infinity on this graph. The fite
pøperl appears fairly stable and the greatest improvement in compression is
only about 3% absolute.

Figure 77: Experiment 11: Prop.Rem. vs m,oae.thresholil.thresh for paperl.

maxnodeg
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't'
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This graph ploto compression (proportion remaining) against the parameter
moue.threshold.lhresh for the frle objl. The lines .orr"rponã to differenì memory
sizes' The parameter grow.lhreshold.thresh was set tó 1. Previous algorithms
(e.9. PPM) are located at infinity on this graph. Node move*"rrt yi"ld,
enormous improvements in compression here - ïVo absolute for the 200Onode
curve. ,A.gain, for small memory, movement is highly detrimental.

Figure 78: Experiment 11: Prop.Rem. vs moue.threshold,.thresh for objI.
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The graph fot objpap is shown in Figure 79. The curves here are smoother,

but the same compression advantage is evident - 5% absolute for a memory of
about 2000 nodes.

100 200 300 400 500,,., r,,,,l,,, '1, ', ' l',, ' r,,,,1,,,,l,,,,1,,,, r,,,,1

maxnodes
0.6-

50

0.5- -0.5

-0.4

I

400

This graph plots compression (proportion remaining) against the parameter
moae.threshold.lhresh for the frle objpap. The lines correspond to different
memory sizes. The parametet grow,lhreshold,thresh was set to 1.. Previous
algorithms (e.g. PPM) are located at infinity on this graph. Node movement
yields significant compression gains here - 5% absolute for the L000 node curve.
For emall memoÌy, movement is highly detrimental.

Figure 79: Experiment 11: Prop.Rem. vs moue.thresholil.thresh for objpap.

All the graphs indicate that if there are very few nodes (i.". < 100), it is best
not to move the nodes around. This gives the nodes a chance to settle and build
up a significant sample,

Conclusions: The policy of relocating nodes in the tree after memory runs out
(grow) has a negligible effect on compression for large memory (= 20000 nodes),
a detrimental effect (x 3%) for small memory (< 100 nodes) but can produce
significant compression gains (x 7To absolute) in the mid range (21100,10000]).
If nodes are being relocated, there is no advantage in retarding the initial tree
growth. Relocation is advised for memory sizes of 100 nodes or greater, for which
the best threshold value seems to be moue.thresh,olil.thresh:20.
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4.t7.L5 Experiment 12: Four Growth Regimes (growrmoae)

Aim: To compare the compression performance of four regimes of tree manage-
ment.

Method: Experiment 9 and Experiment 11 explored the effect of different
threshold values for a variety of tree management policies over a variety of files.

In this experiment, the best settings of the four distinct policies are run over the

three files for a variety of rnenrory sizes. The base parameters for the experiment
are listed in Table 27.

Parameter V¿lue Parameter Value

Maødepth
Grow
Lruparent
Locøl
Deeponly
Esti¡n

3

Yes, Sum of ?, Pext=l.0
Same
No
Symbol
PPM,LinMof,À=l

Maanodes
Move
Phoenís
Decay
Addback
Estim.threshold

?

Yes, Sum of ?, Pext:l,O
No
No
No
Sum of 1

Table 27: Experiment 12: Growth regimes base parameters.

The four tree management techniques are characterized by their grow aîd
n'ùoae thresholds which are listed in Table 28. Each technique has been given a

two part name depending on the rate at which it grows its tree before and after it
has run out of nodes.

Scheme g ro w. thre sh o I d,. thre sh m o u e.lhre sh oI il, thre sh

fast/stop
slow/stop
fast/slow
slow/slow

1

Ð

1

Ð

oo
oo
20
20

This table defines th schemes used in Experiment 12.
grow.threshold.thresh tree growth when nodes are still
being created, ,noae ines the rate at which nodes are
moved around the tree once the supply of nodes has run out. The four schemes
are given names of the forrn <growth speed>/<moae speed>. Algorithms by
other authors can be classified as fast/stop.

Table 28: Experiment 12: Four growth regimes.

Results: The resultsfor paperl are shown in Figure 80. The horizontal axis
plots mannodes. The vertical axis plots compression (proportion remaining). Each
line corresponds to one of the four schemes. Schem e slou/sloø is not plotted in
any of these results because it performed almost identically to fast/slow. The
x-axis only goes to 5000 nodes after which tree management has little effect.
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Figure 8o: Experiment 12: Prop.Rem. vs møanoiles for pøperl (B regimes)

For paperl, the føst/slotr scheme out-performs the conventional fast/stop
scheme by about 4% absolute. For 200 nodes, the difference is about 10% absolute.

The resulß for obil are shown in Figure 81. Again fast/slow has a 4To

absolute advantage over fast/stop. The maximum difference here is 12% absolute
for 200 nodes. The cr¡rves for objl are more jagged than for paperl. In particular,
Ihe objl fast/slow curve dips down sooner for small memory.

The resultsfor objpap are shown in Figure 82. For this file, which changes
from object code to English a quarter of the way through, structural adaptivity
yields great gains across the entire range of the graph. The difference here is
about 74T0. îor 800 nodes the gain is about 18%. This massive improvement in
compression demonstrates the importance of adaptivity in data compression.

The book, which is the most homogeneous file, yields the least dramatic results
(Figure 83). However the technique stitl yields an advantage, with b% absolute
to be gained at 200 nodes.

232
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Figure 81: Experiment 12: Prop.Rem. vs rnannod,es for objl (B regimes).
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This graph plots compression (proportion remaining) against memory (maxn-
odes) for the file objpøp for three tree managem"tttl"gimes (Table ãa). trr"
frle objpap consists of 20K of object file followed by bOK of onilish text. In this
situation the fast/slot¿ scheme yields up to lg7o absolute bJt"r compression
than.fasl/slop. By moving nodes around after they are placed in the tree, the
fasl/slow algorithm adapts to the change in sourcã from object file to onltisrr
text.

Figure 82: Experiment 12: Prop.Rem. vs marnod,es for objpap (3 regimes).
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This graph plots tion rema
odes) for the first the file ôo
regimes (Table 2 k consists
text, the føst/slow scheme did not perform as dramatically as it did in Fig-
ure 82. Nevertheless, it etill yielded a compression improvement of. 5To absolute
for 200 nodes.

Figure 83: Experiment 12: Prop.Rem. vs rnl,tno¿ley for boolel [1..100000].

Conclusions: As in previous experiments, structural adaptivity is ineffective if
memory is plentiful. In this experiment memory was restricted to less than 5000
nodes. The scheme slow/slou, performed nearly identically to fa,st/slou. The three
remaining regimes are ranked from best to worst as follows: føst/slow, slow/stop,
fast/stop. The technique fast/slow is by far the best, beating the other techniques
by t p to 20% absolute. slou/stop enjoys a significant advantage over fast/stop.
These results show that adaptivity is important in data compression algorithms
that use less than 5000 nodes.
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4.L7,L6 Experiment 13: Inheriting Instances (ød,d,back)

Aim: To determine the effect on compression of adding the sample of a node
about to be moved to the sample of the node's parent node.

Method: To test the effect of the addbo,clc parameter, the compressor \Mas run
on a variety of files using the fast/slow para,meters settings of Experiment 12

(Table 29). To ensure that a lot of node movement occurred, only 2000 nodes

were used.

Parameter Value Parameter Value

Maxdepth
Grow
Lrvparent
Local
Deeponly
Datóm

3

Yes, Sum of 1, Pext=l.0
Same
No
Symbol
PPM, LinMof, À: I

Masnodes
Moae
Phoeníx
Decay
Addback
Eatím.threshold

2000
Yes, Sum of 20, Pext:!.Q
No
No
?

Sum of I

Table 29: Experiment 13: Inheriting instances base parameters.

Results: The results are shown in Table 30 arranged from best to v/orst. The
third column indicates the effect of addback in absolute proportion remgved units.

File No Addback Addback Difference
boolcl [1. . .100000]
bookl
paperl
objpap
objl
obj2
inter

0.3627
0.3468
0.3257
0.3769
0.4776
0.3497
0.3735

0.3607
0.3466
0.3250
0.3786
0.4796
0.3555
0.3797

-0.0020
-0.0002
-0.0007
+0.0017
+0.0020
+0.0058
+0.0062

when a node is moved to another part of the tree, ite instancee are normally
lost, This is potentially detrimental to compression. Loss of instances can be
prevented by adding the instances to the parent ofthe node about to be moved.
unfortunately, in practice the technique does not improve compression, as this
table shows.

Table 3O: Experiment 13: Addback results,

Conclusions: The effect of adding back is at worst detrimental and at best
negligible. It appears to be of no advantage and should not be used.
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4.L7.L7 Experiment 14: LRU Heap Management (Iruparent)

Aim: To determine the effect on compression of the lruparenú parameter.

Method: This experiment is identical to Experiment 13 except that the indepen-
dent variable is lruparent rather than aild,bo,ck. The parameters for the runs are

listed in Table 31.

Parameter Value Parameter VaIue

Maødepth
Grow
Lruparent
Locol
Deeponlg
Eetúm

3

Yes, Sum of l, Pext=l,0
?

No
Symbol
PPM, LinMof, À: 1

Masnodee
Mooe
Phoenis
Decay
Addback
Estim,threshold

2000
Yes, Sum of 20, Pext=l.0
No
No
No
Sum of 1

Table 31: Experiment 14: Heap management base parameters.

Results: The results are listed in Table 32. The results show that compromising
the LRU system by inserting nodes (whose last child node has just been deleted) at
the head or tail of the LRU list (instead of in order some\4¡here in the middle of the
list), has negligible impact on compression. This result means that the expensive
heap management used to maintain LRU order (Section 4.7) is totally unnecessary
and can be replaced by a much more efficient (constant time vs logarithmic time)
LRU list.

File Olilest Same Youngest

paperl
objl
objpap
bookllL.
bookl
obj2
inter

1000001

0,3262
0.4770
0.3765
0.3627
0.3468
0.3498
0.3735

0.32ó7
0.4776
0.3769
0.3627
0.3468
0.3497
0.3735

0.3254
0.4775
0.3764
0.3627
0.3460
0.3477
0.3705

means that a fast (constant time oldest or youngest heuristic) LRU leaf list could
be used in practice

Table 32: Experiment 14: Heap management results.
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Conclusions: The lrupørent patameter has a negligible affect on compression.
This mea^ns that the LRU heap structure described in Section 4.7 could be replaced
by a highly efficient linked list structure. F'or such a list, compression is not afiected
by whether new leaf nodes are inserted at the head or tail of the list. However,
the tail (Irwpørent:olilest) is probably best for the theoretical reasons given in
Section 4.7.L.
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4.L7.L8 Experiment 15: Ilee Reconstruction (phoeni,u)

Aim: To evaluate the compression performance of the strategy of rebuilding the
tree when memory runs out (phoeniu).

Method: This experiment is similar to Experiment 12. However, here when

the supply of nodes runs out, the tree is destroyed and rebuilt from the most

recent phoenix.ashes instances in the history buffer. The base parameters for the
experiment are listed in Table 33.

Parameter Value Pa¡ameter Value

Maulepth
Grow
Lrupørent
Local
Deeponly
Dstim

3

Yes, Sum of ?, Pext:l.0
Same
No
Symbol
PPM,LinMof,À=l

Masnodes
Moae
Phoenía
Decay
Addbøck
Estím.threshold

?

No
?, Period=?
No
No
Sum of I

Table 33: Experiment 15: Tree reconstruction base parameters.

The compressor was run with these parameters for a variety of files and
memory sizes. In each case, the phoenh.aslres parameter was set to one quarter of
m,øtnodes. This is a good, safe, efficient value for a tree of depth three. Rebuilding
the tree with more instances would be likely to result in thrashing. Two values
were used for grow,thresholil.thresh, a fast va\ue of 1 and a, slow value of 5.

Results: The results for obil are shown in Figure 84. The horizontal axis
plots matnod,es, The vertical axis plots compression (proportion remaining). The
top two curves (labelled with squares) show the performance of the fast and slow
phoenix methods. The lower curve (labelled with circles) is for comparison only
and is taken directly from Experiment 12.

Figure 84 shows that slow growth remains effective in the presence of a
phoenix mechanism. For 200 nodes, slowing tree growth yields a 5% absolute
improvement in compression. However, incremental tree re-arrangement remains
the best technique. For 200 nodes, incremental tree management yields a I0%
absolute improvement in compression over the fast phoenix method.

The resultsfor objpap aîe shown in Figure 85. As in previous runs on this file,
massive gains in compression are the reward of careful tree management. For 200
nodes, retarding tree growth yields an 8To absolute improvement in compression.
Full incremental management yields an ISTo absolute improvement. Improvements
of 7To absolute can be obtained at 1000 nodes.
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Squarc: Phoenix, phoenix.period=maxnodes/4.
Circle: No phoenix.

o.7 - -0.7

0.6-

fast/phoenix

slow/phoenix

-0.ó

0.5- -0.5
farr/slow

1000 2000 3000 4000 5000

When some Markov data compression techniques run out of memory, they scrap
their tree, construct a new tree from the previous phoenfu.ashe.c instances anã
then continue. This graph plots compression (proportion remaining) against
memory for the frle obil for two such phoenix schemes and the continually
adaptive føst/slow scheme described in Experiment 12. The fast/slow techniquã
yields better compression for small memory sizes.

Figure 84: Experiment 15: Prop.Rem. vs rnønnodes for objl with phoenix.

0.8
Square: Phoenix, phoenix.period=maxnodes/4,

Circle: No phoenix.

o.7

0.6

0.5

0.4

-0.8
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fastþhoenix
sloØphoenix

-0.6

-0,5

20(l() 3000 4000 5m0

This graph repeats the experiment plotted in Figure 84 for the file objpap. For
small memory, the fast/slow technique yields far better compression-(fôø fo.
200 nodes) than the fast/phoenix technique.

Figure 85: Experiment 15: Prop.Rem. vs n'ùútno¿les for objpap with phoenix.

The same compression improvements are obtained for the book file (Fig-
ure 86). It is interesting to compare Figure g6 with Figure gB.
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2m0 50ü)

Square: Phoenix, phoenix.period=maxnodes/4.
Circle: No plioenü.
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Thio graph repeats the experiment plotted in Figure 84 for the first 100000
instances of bookl. Theee reeults indicate that discrete (i.e. phoenix) adaptivity
is inferior to continuous adaptivity.

Figure 86: Experiment 15: Prop.Rem. vs m,ørnodes) bookl [1..100000](+ph)

Conclusions: If memory is plentiful, the phoenix mechanism will perform nearly
as well as incremental tree management. However, as memory decreases, the
beneffts of incremental tree management increase dramatically. Below 2000 nodes,
incremental tree management methods perform between 5To a,nd,20To better than
phoenix methods. Retarding tree growth (grow,thresholil.thresh:5) improves the
performance of phoenix methods at these low memory sizes.

0.8-

0.6-

o.4-
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4.L7.Lg Experiment 16: Shortcut Pointers (shortcuts)

Aim: To evaluate the effectiveness of shortcut pointerc (shortcuts).

Method: In previous experiments, shortcut pointers were used to increase

execution speed. This experiment measures the advantage obtained by using
shortcut pointers. The parameters for the experiment are given in Table 34.

Parameter Value Pa¡ameter Value

Maxdepth
Grow
Lruparent
Locol
Deeponlg
Estóm

3

Yes, Sum of 1, Pext:I.0
Oldest
No
Symbol
PPM,LinMof,À=l

Maxnodes
Moue
Phoenis
Decay
Addbøck
Estirn.thre¿hold

?

Yes, Sum of 20, Pext:l.0
No
No
No
Sum of 1

Table 34: Experiment 16: Shortcut base parameters.

The compressor was run with these parameters for two memory sizes and a
selection of files. Memory sizes of 200 and 20000 were chosen to represent two
extremes of tree volatility.

Results: The use of shortcut pointers had almost no effect on the speed of the
compressor' \¡/ith the speedup for most files being just a few percent. This is
probably a result of the complexity and overheads of the SAKDC algorithm. A
far better measure of the worth of shortcut pointers is the number of parent to
child (Ad,dLeft) tuansitions they avoid.

Table 35 lists the results of the run (rounded to two significant digits).
AuUpdøte is the average of the depths of the deepest node updated for each
instance. AuShort is the average depth of shortcut pointers taken during the
run (this is the average number of hops saved per instance). Relocfuate is the
average number of nodes added to the tree per instance after memory ran out.

In a 20000 node tree, the shortcut pointers take the algorithm most of the way
down each branch. When there is a lot of memory, most of the nodes required are
in place and node turnover is low. For the 200 node tree, the shortcut pointers
reach just over half way down each branch, saving about one hop. The decreased
effectiveness of shortcut pointers for smaller trees can be attributed to an increase
in node turnover (which increases the rate of invalidation of shortcut pointers) and
to the increased sparseness of the tree.

Table 36 lists some prediction statistics of general interest. The statistics
refer to the samples/predictions in the pivot nodes (Section 4.8.7) during the
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Shortcut pointers can be used to avoid most tree traversals as this table shows.
Each line in the table corresponds to a single run. Aa(Ipdøre is the average
update depth of the run. AuShort is the average depth of travereed ehortcut
pointers. RelocRøte is the average number of nodes moved per instance after
memory ran out. For large memory (20000 nodes), shortcut pointers span most
of the matching branch. For smaller memory, they span about half the matching
branch.

Table 35: Experiment 16: Shortcuts results.

run.los AaPred,Depth is the average depth of the predictions. AaPreilDis is the
average number of symbols in the prediction . AuPreilsurn is the average number
of instances in the predictions, AuPreilMøa is the average maximum frequency in
the predictions.

A comparison of Table 35 and Table 36 shows that the average prediction
depth lags behind the average update depth. This is probably a startup effect as

there is no lag for the multi rur..

The extra 19800 nodes roughly double AuPred,Depth and, halve AaPred,Dis.
The AuPreilMm field, in comparison with the other fields, gives an idea of the
spikiness of the samples.

Conclusions: Shortcut pointers are effective at avoiding parent to child (Ad,d,Left)
transitions. For large memory (æ20000 nodes) they avoid ftom 70To to 100% of
transitions (typically S0%). For small memory (æ200 nodes) in a volatile tree they
avoid over 50% of transitions. Whether shortcut pointers will yield an execution
speed improvement depends on the particular implementation and the entropy of
the source being compressed.

File maunod,es AuUpd,ate AaShort RelocRate

objl
multi
inter
objpøp
boolel [1. . .100000]

200
200
200
200
200

1.80
3.00
2.\L
1.95
2.rt

t.77
2.99
1.30
1.05
0.93

0.27
0.00
0.32
0.33
0.41

objl
multi
inter
objpap
boolcl [1...100000]

20000
20000
20000
20000
20000

3.00
3.00
2.90
2.98
3.00

1.60
2.99
2.24
2.10
2.4L

0.000
0.000
0.082
0.040
0.000

1o3 The statistics refer to the predictions that would actually be made if estim.merge=D7pC
and estim. thre sh o I d. lhre sh =1.
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This table lists eome statistics about the samples of the pivot nodes used for
predictions. AaPredDeptl¿ is the average depth of the pivot node. AupredDis
is the average number of symbols of positive frequency in the pivot node.
AuPredSwn is the average number of instances in the pivot node. AupretlMau
ie the average of the maximum frequencies in the pivot nodes. Theee reeults
sketch a relationship between memory and tree depth as well as giving an idea
of the reduction of instance density caused by a deeper tree. Note: "book7,, is
used in thie table as a shorthand for booklll...100000].

Table 36: Experiment 16: Prediction statistics.

243

File mannod,es AuPredDepth AuPreilDis AaPredSum AaPreilMan
objl
multi
inter
objpap
boolcl

200
200
200
200
200

1.54
3.00
7.79
7.62
1.70

34.5
4.0
24.4
23.9
13.1

474
816
L042
502
509

150
370
207
78
85

objl
multi
inter
objpap
boolcl

20000
20000
20000
20000
20000

2.34
3.00
2.74
2.7L
2.92

73.4
4.0
8.2
7.9
7.8

265
816
256
L02
87

232
370
191
81
44
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4.L7.2O Experiment 17: Final Optimized Benchmark

Aim: To evaluate the strength of the combination of best parameters arrived at
in the previous experiments.

Method: In this experiment, the best parameter values of the previous experi-
ments were combined to yield what we call the Optl version of SAKDC algorithm
(or SAKDC(Optl) for short). "Optl" stands for "optimized" version one. In the
future, better settings might be found. These can be named "Opt2" and so on.

The Optl parameter settings are listed in Table 37. The PPMC' algorithm
was tested for comparison, as it performed best in the benchmark runs of
Experiment 1. The parameters of PPMC' are listed in Table 38 (a duplicate
of Table 11, for convenience of comparison). PPMC' uses decaying to provide
context adaptivity and the phoenix mechanism to provide structural adaptivity,
SAKDC(Opt1) provides no context adaptivity and uses the moue parameter to
provide structural adaptivity.

Despite all the mechanisms tested in these experiments, the final optimal
SAKDC(Opt1) algorithm differs from PPMC' in only two major respects: the
grou paîarneters and the ilecay parameters. PPMC' uses non-linear estimation
and SAKDC(OpI1) uses linear estimation, but this is of little consequence.

Parameter Value Parameter Value
Maødepth
Grow
Lruparent
Local
Deeponly
Estím

3

Yes, Sum of 1, Pext=I.0
Oldest
No
Symbol
PPM, LinMof, À:1

Masnodes
Moue
Phoenis
Decay
Addback
Estim.threshold

?

Yes, Sum of 20, Pext-l.0
No
No
No
Sum of I

Table 37: Experiment 17: SAKDC(OpI1) parameters

Parameter Value Parameter VaIue
Maxdepth
Grow
Lruparent
Locøl
Deeponly
Estim

3

Yes, Sum of l, Pext=1.0
Same
No
Symbol
PPM, NonlinMof, À: I

Maxnodes
Moue
Phoends
Decay
Addbacle
Estím.threshol¿l

?

No
Yes, Ashes=2048
Yes, Sum of 300, 0,5, Rou, Res
No
Sum of 1

Table 38: Experiment 17: Benchmark parameters for ppMC,
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Both SAI{DC(OpI1) and PPMC' algorithms were run on the entire corpus of
files for memory sizes of 20000 nodes and 200 nodes. For the PPMC' 200 node
run, phoenin.ashes was set to 50.

Results: The results are given in Table 39. The columns labelled "P" are for
PPMC' and the ones labelled "O" are for SAKDC(Optl). The other heading
numbers are the number of nodes for the run.

Num Name P200 o200 P20000 o20000
1

2

3
4
Ð

6

7

8

I
10
11

t2
13
t4
15
16
77
18

bib
boolcl
boolc2

geo

neus
objl
obj2
paperl
paper2
paperS
paper/¡
paperS
paper6
pic
progc
progl
progp
trans

0.755
0.648
0.630
0.700
0.680
0.603
0.575
0.648
0.641
0.653
0.648
0.627
0.627
0.134
0.603
0.491
0.511
0.591

0.435
0.453
0.427
0.621
0.490
0.501
0.423
0.433
0.428
0.449
0.446
0.452
0.427
0.100
0.413
0.319
0.322
0.390

0.264
0.315
0.288
0.671
0.350
0.497
0.348
0.311
0.307
0.338
0.366
0.381
0.318
0.161
0.315
0.239
0.235
0.223

0.263
0.309
0.283
0.590
0.332
0.473
0.346
0.309
0.306
0.336
0.365
0.378
0.316
0.102
0.372
0.237
0.230
0.22I

average 0.598 0.418 0.329 0.317
101
r02
103
704

ørtif
concat
inter
objpap

0.215
0.521
0.555
0.635

0.220
0.379
0.426
0.463

0.215
0.267
0.368
0.374

0.220
0.266
0.346
0.364

totaverage 0.577 0.410 0.325 0.314

The re were used to arrive at a tuning forSAKD ows the result of this algorithir incompe the corpus of files for two different
memory sizes. compression is expressed as a proportion remaining. The new
sAKDC (opt 1 ) algorithm performs similarly to p pMc, for large *"rio.y (20000
nodes) and performs much better (about 18% absolute) for såall *"-äry lzoonodes).

Table 39: Experiment 1: Benchmarks for sAKDC(optl) and ppMC,
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These results show that for large memory, many of the mechanisms proposed

and tested have little to offer. However, for small memory, the mechanisms can

produce enormous improvements in compression (nv L5%). The lack of context
adaptivity in SAKDC(OpI1) is evident in its poor relative performance on ørtif .

Conclusions: A compilation of the best parameters from previous experiments
reveals that many of the mechanisms proposed are of little use. However, lhe moue

parameter is worthwhile and can provide huge improvements in compression. In
addition, the information obtained from these experiments will allow more efficient
Markov compressors to be constructed.

246
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4,L7.2L Discussion

The experiments presented above are not intended to be exhaustive or
conclusive, merely extensive and thorough. They are a measure of progress to
date. As well as highlighting the importance of adaptivity in data compression,
they provide a general survey that should serve practitioners well. Although the
survey is lacking in many respects (e.g. the choice of files), in the absence of any
other such survey in the field, the conclusions should rest until challenged by better
or broader data.

A few general lessons arose from the experiments.

First, the greatest effect is always produced by the smallest initial force. For
example, a little extra memory improves compression dramatically but a lot more
improves it only a little. This effect is also evident in other forms such as the need
for a history buffer of only 5000 instances to give good compression and the way
in which decaying does not impact greatly on compression.

Second, incremental techniques perform better than block techniques, not only
because they do not produce sudden, huge delays that are fatal to real time
systems, but because they provide steadier performance; the area under a line will
always be greater than the area under a saw-tooth curve drawn under the line. This
result was evident in the comparison of incremental and phoenix tree management
mechanisms. It was also present in the comparison of Markov techniques and Ziv
and Lempel techniques (Section 1.18).

Third, there is a remarkable variation in the strength of effect of the different
mechanisms. Estimation and blending techniques seem critical whereas instance
management seems to have little effect unless extreme.

Finally, exploring a multi-dimensional compressor parameter space can be
confusing. It is very easy to be wrong about what will work and what won't.

"In a minute or two the Caterpillar took the hookah out of its mouth, and yawned once
or twice, and shook itself. Then it got down off the mushroom, and crawled away into the
grass, merely remarking as it went, "One side will make you grow taller, and ihe other
side will make you grow shorter." "One side of. what? The olher side of u,åør lhought
Alice to herself,"" Alice in Wonilerlantl by Lewis Carroll
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4.1-8 Summary

This chapter has introduced a flexible and powerful variable-order Markov
data compression algorithm called SAKDC. The SAKDC algorithm integrates
generalized forms of mechanisms found in other algorithms and forms a superset
of many previous algorithms such as DHPC and PPM. In addition, the SAKDC
algorithm contains a variety of new mechanisms that implement various kinds of
adaptivity. These mechanisms include tree growth control, sample decaying, and
windowed local adaptivity.

The integration of diverse features produced some problems which have been
solved. The problem of maintaining LRU information in a tree has been solved
using a new dynamic heap structure. Although made obsolete by experimental
results, the technique will find application in other areas of computer science,

The problem of maintaining cross-tree links (shortcut pointers) in a dynamically
changing tree was identified and solved by allowing suboptimized pointers and
by using node incarnation numbers. Windowed local adaptivity was incorporated
into all this using a bounded bufrer of pointer stacks.

The SAKDC algorithm ïvas implemented and thoroughly tested. Not only did
this confirm its design as feasible, but it provided experimental data general to the
class of variable-order Markov models. This data could be used to tune production
compressors. The conclusions of the experiments are summarized below.

o AIl the Markov techniques have roughly the same power.

o The best estimation technique is PPM with Moffat estimation (linear or
non linear) with À - 1. Credibility thresholds do not improve compression
unless DHPC estimation is being used.

o The best updating technique is symbol.

o A depth of 3 is best in practice. Increasing the depth further does not
improve compression.

o Adding memory improves compression until about 10000 nodes, after
which extra memory does not improve compression.

o 'windowed local adaptivity is generally slightty detrimental to compres-
sion but may be of use in keeping down the size of samples for the sake of
the coder.
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o Decaying is useful for keeping down the size of samples, but otherwise
does not improve compression much.

¡ Mechanisms that introduce structural adaptivity have little effect if nodes

are plentiful, but greatly improve compression for small memory (< 5000

nodes).

¡ Stochastic growth has the same properties as threshold growth but suffers

a 40% relative degradation due to its randomness.

o The best growth policy is fast growth while new memory is available,
and slow growth when memory has run out and is being recycled.

o Instance inheritance has at best a negligible effect on compression and
at worst a detrimental effect.

o Strict LRU management is not necessary, allowing the use of constant
time data structures.

¡ The technique of destroying and rebuilding the tree when memory runs
out is inferior to incremental tree management.

This chapter has confirmed the approach to adaptivity outlined in Chapter S.

The introduction of structural adaptivity into an algorithm significantly improves
compression when nodes are scarce and the source is moving.



CHAPTER 5

A MULTIMODAL
ALGOR,ITHM

S.L lntroduction

Of the classes of adaptivity presented in Chapter 3, asymptotic and local
adaptivity are of greatest interest. The flexible SAKDC algorithm described
in Chapter 4 incorporates both forms of adaptivity as special cases. In thie
chapter, both locally adaptive and asymptotically adaptive instances of SAKDC
are employed in a single algorithm that combines the best aspects of both.

5.2 Combining Models

Many trade-offs are required when designing a data compression model. An
example is the trade-off between convergence (asymptotic adaptivity) and tracking
speed (local adaptivity). One possibility that has not been adequately explored is
that of maintaining many models simultaneousl¡ using only the best-performing
model to make the predictions (Figure 87). At the expense of extra processing
time, the best aspects of a variety of models could be combined without suffering
from any of their disadvantages. For example, locally adaptive models and
asymptotically adaptive models could be run side by side, forming an algorithm
that will converge asymptotically on a fixed source but can also adapt quickly to
source movements.

The most important component of an algorithm that maintains many models
is the mechanism that arbitrates between the models. At each step, the arbitrator
chooses one model and uses the model's prediction to code the next instance.roa
The chosen model is the one whose recent performance (as measured by the entropy
of recent instances in relation to the model's predictions) is the best.

A trade-off arises in setting the "recency" of the measure. Measurement of the
performance of the models over the entire history would prevent rapid transitions
between models, whereas measurement based only on the most recent instance of
the history would result in chaotic switching.

\4/ith the exception of the design of the arbitration unit, the combining of many
difrerent models is extremely simple. The only costs are the extra memory and
extra processing time required, both of which are linear in the number of models.

. 
1o4 A more general approach is to blend the predictions of the different models. This possibility

is not explored in this thesis.

250
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lncoming instances

Outgoing predictions

Some of the trade-offs involved in model design can be avoided at the expense of
processing time by maintaining many different models simultaneously and using
the cunently best performing model to make predictions. The selection unii
uses the predictions from each of the models along with the incoming instances
(centre) to obtain a smoothed performance measure for each model. The entire
system is a model in itself and can be slotted into the model unit of Figure g.

Figure 87: Combining models.

5.3 Multimodal Sources

A compressor that simultaneously maintains a local and an asymptotic model
is well suited to compressing both fixed and moving sources. Figure BB (which
for convenience reproduces Figure 36 of Section 3.5) shows a number of source
trajectories. The reader can verify that a compressor that maintains a locally
adaptive model and an asymptotically adaptive model should perform acceptably
for all of them.

Of particular interest is the multimodal source which jumps between a small,
finite number of positions. Multimodal sources are likely to be quite common
in practice. In particular, they can be expected wherever files are concatenated
together, a prime example being the ttsourcet' presented to a communications line.
Such a source might alternate between pascal programs, hex dumps, an¿ object
files.

Multimodal sources are interesting because they combine aspects of both fixed
and moving sources. Their movement ensures that locally adaptive models will
compress them better than asymptotically adaptive models. However, because
the source returns to old modes, a locally adaptive model is also inappropriate. In

M1 M2 M3 M4

Selection
Unit
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a

Fixed

262

ffi-

Fuzzy Flxed Drif ting

Vagrant Multimodal White Noise

This diagram duplicates Figure 36. The combination of an asymptotically
adaptive model and a locally adaptive model will perform well for a variety of
Eource trajectories. The locally adaptive model will home in on local behaviour
(fixed, fuzzy, drifting, vagrant, multimodal) whereas the asymptotically adaptive
model will handle long term trends (better convergence on fixed, fuzzy and white
noise sources, and conservative predictions for sources with other trajectories
that are moving too fast for the local model).

Figure 88: Some interesting source trajectories.

this case, the locally adaptive model's strength of forgetting is also its weakness.
As the source jumps between modes, a locally adaptive model will adapt to each
mode in turn, forgetting the previous mode.

5.4 Multimodal Models

Better compression could be obtained by maintaining a separate asymptoti-
cally adaptive model for each of the source's "modes". Only the model that best
models the mode that the source is in would be updated, allowing each model to
converge asymptotically on a mode without being contaminated by other modes.

We call the class of algorithms that do this multimoilally ailaptiue algorithms
or just multimodal algorithms.loõ

-too T!" ttmodal" part of the word t'multimodal" is derived from the word ,,mode,, rather than
the word ttmodel", sourcee have "modes"; compressors have ,,modelsr,.
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5.5 Multi-Modal Algorithm Design fssues

Although the idea behind multimodal algorithms is simple, it is by no means

clear how such algorithms could be constructed. Not only must the algorithm
decide when to switch between models, but it must also decide when a new model

should be created. We address these two problems separately.

5.5.1 Model Arbitration

The problem of arbitrating between many models is the same as that of
arbitrating between a local and an asymptotic model (Section 5.2) and the solution
of maintaining a local performance measure is applicable here as well.

The performance measure of a model should be based on the cumulative
entropy of recent instances according to predictions the model made, If. p¿,¡ is
the prediction of instance j by model i, and ^I( is a locality parameter, then a

good performance measure H¿ is

K
H i : - t ln p¿,lt l- j +r (hl¿l-¡+r)

j=r

A disadvantage of this performance measure is that it requires the storag e of. K
entropy values for each model so that the entropy of the K'th most recent instance
can be subtracted after each new instance arrives. Much the same effect can be
achieved using less memory by abandoning the rectangular weighting in favour of
an exponential decay.loo An exponentially decayed measure can be maintained
using a single number. Upon the arrival of each instance, the number is multiplied
by a decay factor p e R(0,1) and then the entropy of the new instance is added
to it (see also Section 3.7.1).

làl
H¡- -D plhl-ihp¿,¡(h¡)

j=l

At each step, the model with the lowest performance measure is used to make
the next prediction.

loo .A.nother way of saving memory is to store the sum of à instances.'l'hrs would reduce memory u_sq,ge by a factor of å. The in not matter
much for largish K, Howevêr, blõckiñg would have to be synchron r all models
so as to avoid saw-tooth effects.
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6.6.2 Model Creation

A new model should be created whenever the source jumps to a ttnewtt place,

where a "new" place is defined to be a place significantly distant from the old
places corresponding to existing models. To detect such new source behaviour,
some method is required for determining how far a\May the source's current position
is from the position of each of the models already in existence. A threshold could
then be set, below which an old model is used, and above which a new model is
created.

There are many ways in which models can be compared. All sorts of tree
comparison metrics could be devised. In practice the simplest, most efficient
method is to compare the performance of models. A new model could be created
whenever all of the old models perform poorly. The difficulty here is defining

"poorly"; a nerv\¡ mode might cause a drop in the entropy of all models, hiding the
fact that a nervr/ model would cause an even greater drop.

A more effective technique is to compare the performance of old models with
the performance of a model constructed from the recent behaviour of the source
(i.e. a local model). This eliminates the need for subjective interpretations of
entropy performance. \Mhenever the local model out-performs all of the ordinary
asymptotic models by a certain factor 7, a new asymptotic model is created,
commencing as a copy of the local model. The new model is created only when
it seems likely that the new model will outperform all other models und.er some
circumstances. These heuristics ensure that a new model is created only if it is a
significant distance from the other models. 7 is the distance measure.

5.5.3 Mernory Allocation

If memory is limited, it must somehow be divided among the models. How this
should be done is by no means obvious. It might be advantageous, for example,
to let the current model grow at the expense of less used models.

At worst, the best performance might be obtained by allocating all the memory
to a single model, in which case the multimodal algorithm provides no advantage.

Justification for splitting memory among a number of models comes from the
performance graphs generated in Experiment 6 (Section 4.1?.g). Time and time
again, we have seen that the first kilogram of compression comes from the first
gram of algorithm. For a text file, an algorithm that uses just one node in its
Markov tree will remove about 40To of the data. Another 10% absolute can be
obtained with an extra 300 nodes. The next 10% absolute requires another 200
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nodes. The final 10% absolute (taking the compression to a percentage removed

of. 70To) requires an additional 9000 nodes (depth 3 paperl in Figure 65 and
Figure 66). Thus, 10,000 nodes can be allocated to a single model having the
power to remove about 70% of. the data, or to 5 different models each of which has

the power to remove about 65% of, the data (Figure 66). The 5% lost in direct
performance is made up for in the flexibility of having many models.

In this work, we are more concerned with the mechanism of the algorithm
than its resource management. In this study, memory management is simplified
by using a fixed number of model slots each of which is allocated a fixed amount of
memory. This ensures that the issue of the fairness of arbitrating between models
with differing amounts of memory does not arise.

5.6 The MMDC Algorithm

In this section rve present the MMDC (Multi-Modal Data Compression)
algorithm, which is based upon the discussion above.

5.6.1 Overview

The multimodal algorithm maintains from 1 to maa-moilels asymptotically
adaptive models (the ordinary models) and a single locally adaptive model (the
local model). Each model generates a prediction for each arriving instance.
The predictions are used to maintain a performance measure for each model.
The performance measure is the sum of the entropies of the predictions, with
exponential decaying (Section 5.5.1) being used to introduce locality. Because the
measure is a sum of entropies, a low value indicates good performance and a high
value indicates poor performance.

At all times there is an active model and a best model. The active model is
deffned to be the ordinary model whose performance measure is lowest. The best
model is defined to be the model (ordinary or local) whose performance measure
is lowest. At each step, the prediction of the best model is used to code the next
instance.

Each arriving instance is used to update only the active model and the local
model. Other models use the instance to update their history buffers but do not
update (alter) their modet (i.e. their tree) at all.loz

- 
1o7 

.However, the optimization of shortcut pointers can take place because it does not alter thefunctionality of a model with respect to compression.
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Whenever the local model performs significantly better than the active model
(i.e. better than all the ordinary models), a new model is created. If there are

already møa-moilels models, the least recently used model is destroyed so as to
free a slot for the new model. The new model starts as a copy of the local model,
but its parameters are set to make it asymptotically adaptive.

Whenever a new model is created, it is put on trial for a fixed period called
the trial period. Only one model can be on trial at a time. New models cannot
be created while a model is on trial. If outperformed by an ordinary model, a
trial model is instantly destroyed. If at the end of the trial period the local model
is performing significantly better than the trial model, the trial model is reset to
the local model and commences a ner¡/ trial period. Otherwise, the trial model is
taken off trial, becoming an undistinguished ordinary model.

6.6.2 Parameters

The parameters of MMDC are mainly to do with timing intervals and
performance measures. They are listed below.

max-rnodels: ZlTræ). This parameter specifies the maximum number of
ordinary models that can be maintained by the algorithm at one time (the number
of "model slots"). As in SAKDC, a demand system is used when the slots run
out. If a nerv\¡ model must be created when all the slots are full, the least recently
used model is destroyed to make room for the new model.

local-model-rnemory: ZlTræ). This parameter specifies the memory of the
local model. In this implementation, locøI-moilel-memory corresponds to the
local,period parameter of the SAKDC local model.

performancel¡alflife: Z[7,æ). This parameter specifies the half-life (in
instances) of the negative exponential decay curve of the performance measure
(Section 5.5.1). It is the time after which the entropy of an instance is weighted
half as heavily as it was when it originally appeared. Because the performance
measure consists of a sum of entropies of instances, low values correspond to high
performance and high values to low performance.

creation-threshold: R(0,1). For a new model to be created, the local model
must perform significantly better than all the ordinary models. The creation
threshold defines "significantly". If the performance of the local model is .t and
the performance of the best asymptotic model (i.e. the active model) is B, then
a n'e\'\¡ model is created itr L < Bxcreation-thresholiJ. The closer this value is to
1.0, the more "trigger h.ppy" the algorithm will be in creating new models.
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trial-periodz Z[l,oo). When a model is created, it is in a fairly vulnerable state.
This parameter defines the length (in instances) of a safe period, after a model
has been created, during which no new models can be created.

SAKDCJocal, SAKDC-asymptotic: record,. In addition to the parameters

of the MMDC algorithm itself, locally adaptive and asympototically adaptive
versions of the SAKDC algorithm must be chosen for use as component models.

5.6.3 A Formal Description

The MMDC algorithm is best viewed as a process that reads a stream of
instances and writes a stream of predictions (Figure 89 (similar to Figure 27
for the DHPC algorithm)). The models are stored in an array called moilel. The
local model occupies the position numbered 0 (hence the constanl, Iocøl) and the
ordinary models occupy the positions numbered Zll,moilels) where moilels is the
number of ordinary models in existence at a given time. The placement of all the
models in a single array allows models to be referenced by index and to be easily
enumerated. The array perf stotes the performance measure for each model.

The óesú and actiae variables contain the index numbers of the best and active
models. The variable trial-rem is zero if. there is no model on trial and positive if
there is a model on trial. If positive, the value is the number of instances until the
end of the trial period. trial is the number of the model on trial and is undefined
if trial-rem:O. The any operator is deterministic, but the actual choice made in
the face of equal values does not matter.

The algorithm starts with a single, ordinary model on trial. Starting.the model
on trial allows the model to be reset if the source commences in a volatile state.

Figure 9O shows the interesting part of the algorithm - the part that
performs the model management. This code is executed once per instance. To
start, a test is made to see if the trial model, if any, is the best-performing ordinary
model (i.e. the active model). If it is not the active model, it is immediately
destroyed - if the trial model cannot outperform other active models under the
conditions for which it was created then it is unlikely to ever be of much use.

The second if statement ages the trial period. If a model under trial reaches the
end of the trial period, it must have outperformed all the other ordinary models
during that time. This is strong evidence that the source has moved to a new
mode. If, however, the local model is out-performing the trial model, it is tikely
that the trial model was forged during a volatile period of source behaviour and
that a brand new model would be more useful. In this case, the trial model is
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pro cess M M D C (in instancestrearùi out preili,ctio nstream) is
man-moilels : const ant integer <- <parameter);
IocøI-moilel-memory : constant i,nteger e lpa,rameter);
performance-hølf-Iife : constant integer <- <patameter);
creøtion-thresholil : constant real + lparameter)|
triøl4eriod : constant i,nteger ? lpa,ra,meter)1
SAKDC-IocaI : eonstant recoril + <parameter);
SAKDC-asymptotic : constant record, e lparameter)|
local ; constant integer +- 0;
best ; integer 0. .,maumoilels ,- l;
actiue : integer t...m,aæmodels +- \;
trial : integer l...maumod,els + I;
triøI-rem : integer 0 .. ,trial4erioil .- trial-perioil;
moilels ; integer 1...møumodels + 11

moilel : array[O ...ntønl"tùod,els] of SAKDC-rnod,el;
perf : array[0 .. .rno,trnod,els] of real + 0.0;

begin MMDC
m od,elllocall <- S A K D C -l ocal (Iocal-m oil e|-mem ory);
mod,elfLl +- S A K D C -asyrnptotic;
loop

wri,t e (p redi cti o nstream,m o d, ellb e stf . p reili cti o n) ;

reø il (in st an c e stream,in st an ce) 
1

for i in 0...¡nodels loop
p e rf lil + p e r f lil x il e c ay + ( - ln m o d, etli), p re d,i cti o nfi,n s t an c e)) ;

end loop;
upil o,te (m oil elllocal l,instance);
up il at e (m o d, elfa ctiu e],in st an ce)
øctiue s any iz perf [i]<perll
best + any i: perf lil<pertl}.
<Model Management>

end loop;
end MMDC;

The MMDC main program implements the model unit of Figure g, reading
a stream of instances and generating a stream of predictions. The algorithm
generates a prediction for each instance before it reads the instance. The
algorithm maintains an array of sAKDC models in the variable model. The
anay perf holds the cumulative performance measure for each of the models.
only the local model and the active model are updated by each inetance.

Figure Bg: MMDC main program.

reset to the local model and the trial period restarted in the hope that the source
will eventually settle.

The third if statement creates a new trial model if there is no trial model and
if the local model is performing significantly better than all the ordinary models.

;

L...modelsl;
..moilelsl;
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<Model Management>:
if trial-rem) 0 and trial I actiae then

ilestroy(mod,elltriøIl)1 triøl-rem,e 0; dec moilels;
lRea,nange models to be contiguous in 1.. .moilels>

end if;
if trial-rem) 0 then

dec trial-reml
if trio,I-rem: 0 then

if p e rt lI o cal) < p e r f ltri øll x n e o,ti o n -thr e sh o I il t h e n
lStart túal perìod>

end if;
end if;

end if;
if trial-rem:0 then

if p e rf lI o c øI) < p erf lø ctia el x c r eati o n -thre sh o I il t h e n
if moilels:mat-mod,e/s then

tri aI + I east-recently -a ctia e (m o d, els) ;
il e str o y (m o d, el ltr i all) ;

else
trial+mat-modelslL;

end if;
lStart tñal period>

end if;
end if;

This piece of code describes the MMDC model management. The first if destroys
the trial model (if any) if it is not the active model. The second if ages the ttial
model (if any) and makes it an ordinary model at the end of the trial period;
however, if at the end of the trial period, the local model is outperforming the
trial model, the trial model is reset to the local model and the trial begins anew.
The third if creates a new trial model if there is no trial model and the local
model is performing significantly better than the active model.

Figure gO: MMDC model management.

Finall¡ there are two code scraps (Figure 91) that u¡ere separated out so as
to clarify the rest of the code. The first scrap starts a trial period by initializing
a trial model to be an asymptotically adaptive copy of the local model. The
performance measure is copied over too. The second code scrap is a consequence
of the decision to present this code with all models in a contiguous group at the
low end of the array. This decision simplified the code, but made model deletion
messy' because when a model is deleted, the models above it must be moved down
to fill the gap. In addition, the index numbers of the best and active models must
be adjusted.
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lStart trial period>:
m o iI elltri all + øs y mp t o ti c (m o il elll o call) ;
p e rf ltr i øIl <- p e rf ll o c a|l;
tr i al -re m + tr i aI -p er i, o d ;

lReatrange models to be contiguous in 1 ...moilels>:
sw ap (m oil elltriall,moilellmoilels + 1] ) ;
s w øp (p e r f ltr i, all, p e rf lm o d, eI s | 7)) ;

actiue ts any iz perf lil<perf ll...modelsf;
best + any i: perf lil<perfl0. . .moilels];

Starting a trial period involves making an asymptotically adaptive copy of the
local model and then setting the timer variable l,riøl-rem. The need to rearrange
models ie a coneequence of the decision to store the models contiguously in the
array at indices Zll,models].

Figure 91: MMDC code scraps.

A: Trial model is created
if local model significantly
outperforms ordinary D: At end of trial period, trial
models. model is taken off trial

if local model is not
sig nif icantly

outperforming it.

260

Start ol
Trial Period

End of
Trial Period

C: At end of trial period, trial model is reset
if local model is significantly outperforming it.

The MMDC algorithm has only two (major) states. These two states correspond
to the existence or non-existence of a trial model, There is a time limit on the
trial model state which is represented here by a long thin rectangle. The trial
model is protected from the local model but vulnerable to ordinary models. At
the end of the trial period, if the trial model is performing well, it becomes an
ordinary model, otherwise it is reset and the trial period starts again.

Figure 92: State diagram for the MMDC algorithm.

The MMDC algorithm's model management scheme can be summarized by
a simple state diagram (Figure 92). Each transition is identified by a letter;
the letters are not intended to imply an ordering between the transitions. The
algorithm can be in one of two states: "trial mod.el" or "no trial model"
corresponding to the existence or non-existence of a trial model. The trial model
state has a maximum time limit on it (trial-period,) after which a state transition
must occur.

no
model is
on trial

B: Trial model
destroyed if
oulperformed by
ordinary model.

a model is on trial rilI
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The MMDC algorithm's rather complicated model management scheme arose

as a result of experiments with simpler versions of the algorithm. The first version
had no trial period; it was assumed that the creation threshold would prevent the
local model from significantly out-performing a newly created model, recently its
clone. In practice, the creation threshold mechanism proved inadequate.

Without a trial period, models are created in rapid succession when the source
becomes unstable. This is most evident during transitions from high entropy
sources to low entropy sources. As the local model converges on the new source,
its performance measure decreases and it out-performs any model recently cloned
from itself, resulting in the creation of another model.

The difficulty with transition periodsros highlights the tension created by using
the creation threshold for two purposes. One the one hand, we wish to detect new
modes and create asymptotic models for them as early as possible (i.e. we wish
to make the threshold more sensitive). On the other hand, we do not wish to
maintain models created during periods of volatile source behaviour (i.9. we wish
to make the threshold less sensitive). Use of a trial period prevents models that
v/ere created during transition periods from being retained, while allowing the
early creation of new models. New models must prove not only that they are
better than the other ordinary models, but that they can better the local model
as well.

The MMDC algorithm protects the model on trial from the local model while
exposing it to attack from other ordinary models. The intention is to give the new
model a chance to diverge from the local model while also preparing for the new
modelts destruction in the event that the source'B behaviour isn't new (i.e. if an
old model performs better). At the end of the trial period, the new model must
have proven useful. If it has not, it is reset in the hope that the source has settled.
tÎ.",tt may seem strange to talk about a "transition period" for a source that we consider to beswitching instantly, The transition period that we refei to is actually an effect of thelerformance

smoothing and model latency,
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5.7 Experiments

The algorithm was tested by running it on a variety of artificially constructed
multimodal data files. Table 40 lists the parameters that were used for all the
runs. Table 41 and Table 42 list the parameters for the locally adaptive and

asymptotically adaptive component SAKDC models.

Parameter Value

mau-moilels
Iocal-model-memory
p e rf o rm an c e -h alf -Iif e
creation-threshold
tríal-perioil
SAKDCJocaI
SAKDC-orilinary

8 models
1500 instances
500 instances
0.9
3000 instances
see Table 41
see Table 42

The parameters used in the multimodal experiments were arrived at experimen-
tally by tuning the algorithm for the frle multi. These parameters proved effective
in later runs. Early attempts at tuning failed because the locøl-model-rnernory)
performønceJralf-life and lriøl-period pararneters were eet too low. The cre-
atúon-threshold is important becauee it determines the entropy "distance" tol-
erated between models. Ilere, the creation threshold parameter specifies that a
new model must yield 10% relative better compression to eetablish iteelf.

Table 4o: Multimodal parameters used in the multimodal experiments.

The parameters for the local model were easily chosen with the exception of the
rnoae parameter which could become applicable during a high-entropy period
of the source. To allow continued growth, moae.Ttrobeof was set to 0.2. In the
light of Experiment 10, a threshold would have been better, but the results of
Experiment 1.0 were unavailable at the time these parameters were set.

Table 41: SAKDC parameters used for the local model.

Parameter Value Parameter VaIue
Maadepth
Grow
Lruparent
Local
Deeponly
Estim

3

Yes, Sum of 1, Pext:l,0
Same
Yes, Period:local-model-rnemory (-1500)
Symbol
PPM, LinMof, À: 1

Maanodec
Move
Phoenis
Decay
Addback
Estim.threshold

2000
Yes, Sum of l, Pext=0,7
No
No
No
Sum of 1



Section 5,7: Eaperiments

Parameter Value Parameter Value

Maødepth
Grow
Lruparent
Local
Deeponly
Estím

3
Yes, Sum of 2, Pext:l.0
Same
No
Symbol
PPM,LinMof,À=t

Masnodeg
Move
Phoenis
Decag
Addback
Dctím.threehold

2000
No
No
No
No
Sum of I

Ideally, ordinary models would be asymptotic, both contextually and struc-
turally. However, making models structurally adaptive also makes them more
vulnerable to contamination so in these experiments, the ordinary models were
made structurally initially adaptive (mou e. actia e- fals e).

Table 42: SAKDC parameters used for the ordinary models.

The local and asymptotic (ordinary) models are identical except for their
adaptivity settings.loe Ordinary models build their tree and then fix its structure.
This prevents them from adapting to nelv sources. To prevent the tree from
freezing too quickly, the grou exteîsibility thresholds of ordinary models were set

to 2; for a complete branch to be created, it has to receive three instances. In
contrast, the local model gror'¡/s its tree quickly and then uses probabilistic gro\4/th
(0.7) to sustain its strict local adaptivity, Because there are only 2000 nodes
(less than 3 (the depth) x 1500 (the local period)), a perfect locally adaptive tree
cannot be guaranteed.

The parameters listed in Table 40 were arrived at by experimenting with
naulti) the first of the three data files to be described. At first there was little
success because many of the parameters \Mere set too low. In particular, the delay
parameters (locøl-moilel-memory and performance-høIf-Iife) were set too low to
provide reliable performance. The creøtion-thresholil parameter also had to be
reduced before reliable performance was achieved.

263

loe Note: At the time of setting the SAKDC parameters for MMDC, only a few of the experiments
of Chapter 4 had been performed. Some of the eettings may therefor" 

"ipu", inappropriate.
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6.7.1 Experiment 18: Artiffcial Data

Aim: To establish the operation of the multimodal algorithm with data perfectly

fitted for it.

Method: Three artificial sources were constructed, Each produced a file of 30000

instances. These three files were then interleaved at 10000 instance intervals
producing the final90000 instance output file which is called multi and is numbered

101. This file was fed into the multimodal compressor for this experiment.

Each of the three artificial sources consisted of a solid to depth 3 tree and used

only four symbols.rro Each leaf distribution was chosen by iteratively dividing
its prediction probability space. A random symbol was allocated a probabitity
p being a uniformly chosen random number in the range [0,1). The remaining
probability L - p was divided recursively among the remaining symbols. To ensure

that the tree's graph lvas a strongly connected component, each symbol was given
a positive probability not lower than 0.01.

It should be noted that this experiment was not performed in a vacuum, as

lhe multi file was used to tune the algorithm's parameters. For a long time the
algorithm did not work on this (perfectly suited) data and it ruas many runs
before the copybook graph (Figure gB) was generated. However, once found, the
parameters served the algorithm well in further runs on real data. In retrospect
the main difficulty with tuning the algorithm was that the author had set the
locøl-moilel-memory and the performønce-ho,tf-Iife far too low.

Results: Figure 93 illustrates the results of the run. The vertical axis measures
compression (proportion remaining). The horizontal axis measures time (in
instances). The ftzzy vertical lines indicate a change of source mode (referred
to here for convenience simply as ttsources"). The three sources are named A, B
and C and their zones in the data are labelled.

The jaggy black lines of the graph plot the performance measure of each model.
The graph was plotted at 50 instance intervals, The performance measure has been
scaled to correspond to entropy. The lower the line, the lower the entropy and
the better the compression. The black horizontal line at the bottom of the graph
is the performance measures of the models available, but not yet created; their
performance measure is kept to zeto until they are created. When a new model is
lro Th" fact that a four symbol alphabet was used for these sources had no bearing on the

number of symbols assumed by the multimodal compressor which remained at 2b6.
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created, its performance measure is copied from that of the local model; Thus the
vertical lines at 10000 and 20000 correspond to model creations.

Each of the models in the multimodal algorithm is numbered. The number
that labels each line of the graph is the number of the model that generated the
line. The local model is labelled L.

The graph reveals most of the workings of the multimodal algorithm. At the
start of the file (at instance one) the source is A and only the local model (model
L) and model 1 exist. Model 1 commences on trial and as the active model.
Before long, both models adapt to source A; this can be seen from the downward
line between 0 and 1500 instances. After about 2000 instances, model 1 diverges

downwards from the local model, which remains roughly level. The local model
remains roughly level because it bases its predictions only on the most recent 1500

instances and so never builds up samples large enough to converge further. Model
1 diverges because it is continuously accumulating instances from a fixed source.

At instance 10000, the source changes from A to B. Immediately the perfor-
mance measure of both models increases dramatically. During this period model 1

is contaminated by the instances of source B. If model 1 were exposed to such
instances for a long period, it would eventually adapt to them. However, after
about 700 more instances, the local model has adapted to source B to the extent
that its performance measure is less than 0.9 (the creation threshold) of model 1's
(the active model's) performance measure. The result is the creation of model 2

as indicated by the vertical black line rising at 10700 instances. Mod.el 2 starts off
as a copy of the local model and with a performance measure identical to the local
model. At this point model 2 becomes the active model and model 1 is no longer
updated. This prevents model 1 from being further contaminated by source B.

For the next few thousand instances model 2 and the local model joust for
the best performance. Eventually (at about 14000 instances) model 2 separates
from the local model. This example shows the importance of the trial period;
new models must be given a chance to accumulate enough instances to diverge
significantly from the local model.

At instance 20000, the source changes to source C and another model is created.
The performance of the models in existence rises rapidly and the performance of
the local model then falls, causing a new model to be created. The new model,
model 3, iousts with the local model but eventually diverges.

At instance 30000, the file switches to source A again. The effect is that
the performance tr.easures of all the models rises rapidly. Model 1, however,
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t'recognises" source A and its performance measure falls fast enough to prevent the
creation of a new model. Even if a new model were created, it would immediately
be cancelled by model 1 (transition B of Figure 92). After crossing the local
model, model 1 sinks down below the local model and learns some more about
source A. One of the advantages of the multimodal algorithm is that models not
only don't have to relearn a source but they can pick up more information each

time tttheir" source occurs; the only overhead is the contamination by other sources

at the boundaries. This contamination will prevent perfect convergence at infinity.

The fuzzy horizontal line helps to show the result of the interleaved learning.
During ite first invocation (from 20000 to 30000), model 3 hovers about 2Yo off the
0.15 mark. During its second invocation (from 50000 to 60000) it hovers a little
above the line. During its final invocation (from 80000 to 90000) it hovers close

to the line and at one point dips below the line.

The rest of the file is processed in a similar manner, with each model becoming
active whenever its source arises. It should be stressed that throughout the run,
only the local model and the active model are updated. The rest merely make
predictions. Graphically, the best model is the model whose line is lowest at any
point of time. The active model is the ordinary model whose line is lowest at a
given point in time.

It should be noted that performance measures lag actual performance. For
example at 40000 instances, model 2's performance measure takes a long time to
drop to 0.17. However, model 2 becomes the best model at about 40500 instances
and generates predictions of entropy 0.17 from that point.

The algorithm ran at about 200 instances per second on a Vax8530. This was
probably because of the small number of models and the fact that only 4 symbols
rvl¡efe evef USed.

The actual compression performance of the multimodal algorithm is given in
Table 43. The performance of four other models is also listed. "Asymptotic"
refers to an ordinary model run by itself for the entire run. "Local" refers to the
local model. "PPMC'2000" is Moffat's PPMC, algorithm given the same amount
of memory as each ordinary and local model (2000 nodes). ,,PPMC'20000', is
Moffat's PPMC' algorithm given the same amount of memory as v/as allocated
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Algorithm Prop. Rem. Rel. Improv.
Multimodal
Asymptotic
Local
PPMC'2000
PPMC'20000

0.182
0.220
0.199
0.215
0.215

0%
L7%
8%
76%
L5%

This table lists the compression performance (proportion remaining) of various
algorithms on the frle mulló. Multómodal and PPMC'20000 were given 20000
nodes. The other algorithms were given 2000 nodes. Asgmptotic and Locøl arc
identical to the component models of the multimodal algorithm. The relative
performance is given as the percentage reduction achieved by the multimodal
algorithm over each other algorithm.

Table 43: Performance of MMDC on the artifrcial source (multi).

Sources Active models

A
B
C

111
222
333

the models ühat became active of the
, B and C in the frle ørtif . The M single
source and invoked each model eared.
t result

Table 44: Mode detection performance for rnulti.

to the entire multimodal algorithm (20000 nodes). The percentage improvements
quoted are relo,tiue to the performance of the multimodal algorithm.

In this and future experiments, the success of the mechanism of the algorithm
will be measured by listing the models that were active during each of a source's
activations. For this first run, the results are listed in Table 44. This is a perfect
performance.

Conclusions: The multimodal algorithm operated perfectly on specially created
artificial data. Exactly one model was created for each source mode and each model
became active whenever the corresponding source mode arose, MMDC yielded a
15To rclative improvement in compression over PPMC'. This result shows that the
MMDC mechanism is basically sound.
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6.7.2 Experiment 19: Real Files Concatenated

Aim: To test the multimodal compressor on real data files.

Method: The next stage in testing the multimodal compressor was to run it on

real data. Four text files (none in the corpus) were selected for their radically
different properties. The files were:

PostScript: A version of the Apple Macintosh LaserWriter header file
(Iength 29005 bytes).

Num: Numbers in ASCII separated by spaces (length 10584 bytes).

HexDump: A hex dump of a VMS .EXE file using the VMS dump

command (length 25574 bytes).

Editor: A program written in an editor language (tength 27480 bytes).

The resultant concatenated file was concatenated to itself, yielding the test file
concat numbered 102 in the corpus. This was fed into the multimodal compressor.

Results: A graph similar to that of Experiment 18 was produced and is shown in
Figure 94. The tick marks on the horizontal axes indicate the points that were
sampled when labelling the curves.

In this experiment, the sources were real but the data was repeated. This is
evident in the spikiness of the graph and the identical local model performance
curves produced by each appearance of the same file.

The graph starts off with the local model and model 1. However, model 1 does
not diverge and a ne\4¡ model is created by chance when the local model crosses
over at instance 13000. The model is soon destroyed when model 1 out-performs
it. The same cycle occurs again at 17000 instances.

At about 30000 instances, source Num takes over and model 2 is created.
Although model 2 does not diverge from the local model, it must have learned
something because it diverges quite well when source Num isre-invoked at instance
122000.

A close inspection of the graph reveals that the system is not behaving cleanly.
For example, two new models are created during lhe Eilitor section. What is
significant, however, is that no new models are created during the repetitions of
the files (except model 6 at instance 185000). Furthermore, during the repetitions,
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Sources Active models

PostScript
Num
HetDump
Eilitor

11
22
33
4,5 4,5

This table lists the models that became active during each appearance of the
four gources PoctScript, Num, Hexl)ump and, Editor in the frle conco,l. The
MMDC algorithm performed perfectly with the exception of the Eilitor source
for which two models were created.

Table 45: Mode detection performance for concøt.

the active model is separated in general by a large gap from the local model
(e.g. during instances 132000 to 157000).

The success of the algorithm in detecting the sources is evident from Table 46.
Although lhe Ed'itor text provoked the creation of two models, those two models
were both invoked at similar intervals when the Ed,itor text arose again.

The actual compression performance of the multimodal algorithm is given in
Table 46 in the same format as Table 43. Surprisingly, in this run, ppMC'
performed slightly better than MMDC. One explanation for this is that in this
run, the MMDC algorithm did not use all of the memory available to it. For most
of the run, only six models were active (five ordinary models and the local model).
This meant that at most only 12000 nodes were being used, rather than the 20000
allocated. A more sophisticated version of the algorithm would avoid this problem
by using variable-sized model slots.

Conclusions: The multimodal algorithm performed well on the file of repeated
real data. Each source was correctly identified except the Editor file to which two
models were assigned. This experiment shows that the multimodal mechanism
will operate on real data. However, in this run, PPMC' yielded stightly better
compression than MMDC.
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Algorithm Prop. Rem. Rel. Improv.
Multimodal
Asymptotic
Local
PPMC'2OOO
PPMC'20000

0.275
0.377
0.364
0.344
0.267

OT
27To

24%
20%
-3%

This table lists the compression performance (proportion remaining) of various
algorithms on the frle concal. Multimodal and PPMC'20000 werc given 20000
nodes. The other algorithme were given 2000 nodee. Aeymptotic and. Local arc
identical to the component models of the multimodal algorithm. The relative
performance is given as the percentage reduction achieved by the multimodal
algorithm over each other algorithm. For thie file, the multimodal algorithm
performed worce than the PPMC' algorithm.

Table 46: Performance of MMDC on concatenated frres (concat),

272
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6.7.3 Experiment 2O: Real Files Interleaved

Aim: To test the multimodal algorithm on real interleaved data.

Method: Experiment 19 tested the multimodal algorithm on highly distinct
repeated text files. In this experiment, five (not so distinct) files were selected
(four from the corpus, and llne Num file used in Experiment 19) and merged at
random (using a dice) in 10000 instance blocks with the only constraint on the
randomness being that no file contribute two consecutive blocks.

Results: The results are shown in Figure g5.

The success of the algorithm in picking sources can be judged from Table 47.
Multiple models were created for trans a,nd progl Otherwise, the sources u'ere
detected reliably.

Sources Active models

lrans
geo

nurn
progl
bookl

L 4 !,4 4,5
1111
2223,2
3367
ooþb

This table liste the models that became active during each appearance of the five
sources lrøns, geo, num, progl and bookl. The MMDC algorithm had trouble
with the sources trans and progl,bul, otherwise performed iell.

Table 47: Mode detection performance for inter.

The actual compression performance of the multimodal algorithm is given in
Table 48 in the same format as Table 48.

Conclusions: The multimodal algorithm performed well on real multimodal data
(such as might be carried on a network), yielding4% relative more compression
than PPMC'. This experiment confirms MMDC,s practical applicability.
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Algorithm Prop. Rem. Rel. Improv
Multimodal
Asymptotic
Local
PPMC'2000
PPMC'20000

0.353
0.405
0.401
0.388
0.368

0%
t2%
t2%
9To

4%

This table lists the compressi remaining) of various
algorithms on the frle inter. 000 were given 20000
nodee, The other algorithms mptotic and Locøl arc
identical to the component models of the multimodal algorithm. The relative
performance is given as the percentage reduction achieved by the multimodal
algorithm over each other algorithm.

Table 48: Performance of MMDC on real interleaved data (inter).

27ó
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6.7.4 Experiment 21: Effect of Memory

Aim: To determine the effect on the compression performance of MMDC of
increasing memory.

Method: Experiment 6 (Section 4.17.9) demonstrated that the returns for using

more and more memory in a compression algorithm are diminishing (Figure 66).
This suggests that the relative improvement of MMDC over PPMC' would increase

if more memory were allocated to each algorithm. To test this hypothesis, both
algorithmq \Mere run orr the file i,nter with triple the memory (60000 nodes).

Results: The results are shown in Table 49. Although the extra memory
improved the performance of both algorithms, MMDC Iost ground relative to
PPMC' (3% relative in comparison to Table 48).

Algorithm Prop. Rem. Rel. Improv
Multimodal
Asymptotic
Local
PPMC'60OO
PPMC'60000

0.348
0.387
0.401
0.376
0.353

0%
L0%
73%
7To

1..4%

g) of various
given 60000
nd, Local are
The relative

performance is given as the percentage reduction achieved by the multimodal
algorithm over each other algorithm.

Table 49: Performance of MMDC with increased memory.

Conclusions: Increasing memory improved the performance of both MMDC and
PPMC'. However, the performance of PPMC' relative to MMDC improved. This
is a surprising result.
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ó.7,ó Discussion

The results of the four MMDC experiments are summarized in Figure 96.

PPMCSmall is PPMC' given the same amount of memory as each submodel of
the same MMDC run. PPMCLarge is PPMCT given the same amount of memory
allocated to MMDC as a whole. "284" and "6E4" refer to the total number of
nodes allocated to the each algorithm in each run.

For three out of the four files, MMDC achieved better compression than
PPMC', the greatest difference being LSTo rcIalive for the artificial data. In
general, the difference was small. Nevertheless, MMDC did perform better and

this chapter aims only to establish the multimodal algorithm as a ne'\,ì¡ mechanism

in data compression. F\¡rther research will be required to refine the technique.

0.4

0.35

0.3

0.25

0.2

0.15

0.1

0.05

0
Artif Concat lnler2E4 lnter6E4

The experiments in this chapter &re summarized by this histogram which
compares the performance of the MMDC algorithm with the ppMc, algorithm.
PPMCSmall refers to PPMC' given as much memory aÉ¡ rüa^É¡ given to each
component model of MMDC. PPMCLarge refere to PPMC' given as much
memory as the entire MMDC algorithm. The two inler runs were for a total
memory of 20000 nodee and 60000 nodee.

Figure 96: Performance of MMDC and PPMC' on the multimodal data.

The results of Section 5.7 raise some interesting questions.

o \Mhy did the multimodal algorithm outperform ppMC' by such a wide
margin on the artificial data (muliú) but not on the real data (concat,
inter)?

o In Experiment 20 (Section 5.7.3), why did the multimodal algorithm fait
to generate a new model at instance 10000 (Figure g5), a point at which

r PPMCSmaII

E PPMCLarge

@ MMDc

;i::: ! | i
l¡:.:r: ¡

:::;::::
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a radically different source took over? Why did model 1 subsequently
perform well?

o Why did the multimodal algorithm perform \¡/orse than PPMC' on the
repeated frIes (concøt)?

o Why did the multimodal algorithm's compression relative to ppMC'
decrease when the memory size was increased?

The following explanation has not been experimentally verified but fits all four
phenomena remarkably well.

Consider a Markov tree model that is compressing a file consisting of three
segments generated by three sources X, Y and Z of depth 2. Source X generates
symbols a and b according to its (depth 2) conditional probability distributions.
Source Y generates the same symbols but according to a quite different probability
distribution. Source Z generates the symbols c and d according to yet another
probability distribution.

Now consider the effect of the sources on the multimodal algorithm (Fig-
ure 97). During source Xts segment, model 1 grows six nodes and. accumulates
instances in them. By the time source Y arrives, model t has accumulated many
instances and is well adapted to source X. The new instances from the radically
different source Y hardly impact on model 1's samples (which contain many in-
stances) and so model 1 starts performing poorly. The local model performs bet-
ter and model 2 is created. During source Y's segment, model 1 is not updated.
Model 2 grows a tree identical to model 1's tree except that its samples are entirely
different, reflecting the different transition probabilities of source y.

When source Z anives, the input consists of instances of the symbols c and
d. As no part of model 2's tree deals with these symbols, six new nodes (a new
subtree in fact) are very quickly gro\¡¡n. Because the new subtree contains no
instances, it adapts øs fast as the local moilel to the ne\M sourceZ. The result is
that the local model never out-performs model 2 and no nerv model is created.

Central to this explanation is the concept of tree zones. A source mode's
zoÍte is a subset of nodes in a tree that the source mode generally ,,inhabitstt.

Two source modes are said to collide if their zorres overlap. So long as there are
no collisions between source modes, there is no advantage in using different trees
to model them, as a single tree can contain all the models without the models

278
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(a) Tree after
source X.

(b) Trees after
sources X and Y.

X's zone
b

a

model 1

(c) Trees after
sources X, Y and Z.
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This diagram illustrates how the tree zones of different source modes could afect
the operation of the MMDC algorithm. These pictures depict the state of two
models after data from various sources has arrived. In (a), a source x has caused
model 1 to be created. In (b), source Y has appeared. Because it uses the same
zone as source X, it collides with source X causing the creation of a new model.
In (c), source Z has appeared but because its tree zone does not collide with
that of source Y, it is incorporated into model 2 as a distinct zone and no new
model ie created.

F igure 97: The tree zone explanation of MMDC's performar.ce.

interfering with each other. The concepts of zones and collisions provide ansrvers
to the questions posed earlier.

Conjecture: The multimodal algorithm performed significantly better
(relative to PPMC) on the artificial data than on the real data because the
artificial data was generated by sources whose trees were solid to depth B.

The three artificial sources collided (overlapped) completely.

Conjecture: The multimodal algorithm failed to create a new source
at instance 10000 in Experiment 20 because the two sources (on either
side of 10000) occupied different tree zones. The first source section was
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a terminal transcript (ASCII data) and the second was geological data
(containing many null bytes and low numbered bytes).

If two source modes are similar, a collision can actually irnproue compression

because the overlapping models will improve each other's statistics. This is what
happens in an ordinary Markov model.

Conjecture: The multimodal algorithm performed worse than PPMC'on
the repeated files because the files that were radically different occupied

different tree zones and the sources that were similar fed off each other's
statistics.

Another factor is memory. In the zone example, model 2 had enough memory
to allow it to create the c, d subtree for mode Z. If. if had not had the memory,
the subtree would not have been created, the modelts performance would have
dropped, and a new model would have been created. Thus memory is a factor in
model creation.

Conjecture: The multimodal algorithm's performance relatiae to PPMC'
decreased when more memory was added because with more memory, new
modes rvere more likely to grow in old models.

A closer examination of the results of Experiment 21 revealed that only
five 6000 node models had been created; seven 2000 node models were created
in Experiment 20. The problem of ordinary models adapting too quickly to
new modes u/as anticipated early in the experimental process. That is why the
grow,actiae parameter of the ordinary models was set lo føIse,

It may appear from this discussion that the multimodal algorithm can never
yield an improvement, as sources that dontt collide can have no effect on each other
and sources that do collide tend to enhance each other's performance. However,
in a third case of two sources that collide ønil have quite different statistics, the
multimodal algorithm will excel, as it did in Experiment 18. In practice, the
situation is likely to be much messier with most sources partially colliding.

5.8 Other Issues

MMDC is a completely new kind of data compression algorithm. Until
now' research has been oriented towards the development of more and more
sophisticated locally adaptive algorithms. MMDC steps sideways by addressing
issues of model management. There is much to discuss.
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5.8.1 MMDC is Really a Meta-Algorithm

Although our present implementation of MMDC uses the SAKDC algorithm
described in Chapter 4, the MMDC algorithm is not strictly bound to it. All that
the MMDC algorithm requires is locally adaptive and asymptotically adaptive
versions of a component model. MMDC is not even bound to the modern paradigm

- there is no need for the input to be processed one instance at a time, nor for
there to be a common, shared coder. All that is required is that it be possible to
measure the performance of each model for arbitration purposes.

In Section 3.4 we saw that most data compression algorithms can be modified
to be non-adaptive, initially adaptive, locally adaptive or asymptotically adaptive.
There is no reason to believe that any algorithm could not be used as a component
model in the MMDC algorithm.

Thus the MMDC algorithm is really a meta-algorithm, an algorithm for
manipulating and choosing other algorithms.lll

An exciting prospect is that of building multimodal algorithms from LZ models
(Section 1.7). LZ models do not compress as well as Markov models, but they run
much faster.ll2 A multimodal algorithm using LZ models is likely to yield better
compression than ordinary LZ algotithms, while still remaining fast enough to be
practical.

5.8.2 Efficiency

MMDC maintains many models simultaneously. This can be expensive in CpU
time. Fortunatel¡ only the local model and the active model are actually updated;
the other models must generate predictions but are not updated.lls Generating a
prediction involves shifting the history buffer and taking a shortcut pointer to the
next matching branch.

Maintaining a performance measure for each model is expensive because the
logarithm of the probability of the symbol of each arriving instance has to be
calculated and summed. This operation could be sped up with the help of a
logarithm lookup table. Another solution is to use the new fast arithmetic codes
and simply measure the number of output bits.

r11 The word "algorithm" in this section could just as well be replaced by the word "model"112 Moffat[Moffat88] reports that a highly optimized LZ algorithm ran about eight times as fast
as a highly optimized version of the PPM algorithm.

113 However , shortcut pointers can be optimized as
model, only its speed.

they do not affect the functionality of a
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Maintaining identification of the least recently active model is not the problem
that it was in Chapter 4. Here the "things" are not coloured red and green and
there are fewer of them. A standard doubly linked list can be used.

Copying the local model is another expensive operation. The operation could
be avoided by altering the algorithm so that whenever a trial model is required,
the local model is converted to an asymptotic model (becoming the trial model)
and a new empty local model is created from scratch. Another solution, assuming
the copy operation must take place, is to use only relatiae pointers in models. This
would allow models to be copied by a single memory copy instruction rather than
by recursive structure traversal.

In this implementation, copies of local models were constructed by feeding the
local model's history buffer into a newly created model. This was not fast, but it
was simple and reliable.

Multimodal data compression is perfectly suited for parallel execution. The
component models, the arbitration unit and the coder could be placed on
separate processors. Because the models do not communicate with each other,
interprocess communication would be minimal. Although a straightforward
parallel implementationlla would require that the models be synchronized at the
instance level, appropriate buffering would render this unnecessary.

5.8.3 The Use of Non-Adaptive Models

In addition to managing a set of asymptotic models, a multimodal algorithm
could run a group of non-adaptive models tuned to particular commonly occurring
sources. The number and nature of models used is bounded only by the deviousness
and ingenuity of the model constructors. On a highly parallel machine, inclusion
of extra static models would cost nothing in time except the slight increase in the
o(log &) blending time needed to compare the performance of k models.

5.8.4 Heterogeneous MMDC

Although powerful, Markov models perform poorly on some sources. Signal
data, for example, is better compressed using linear prediction[Witten3¡]. To cater
for different classes of data, more than one class of model could be manipulated
by the MMDC algorithm.

Each class would have its own local model. However, as in homogeneous
MMDC, only one model from the entire set of models would be updated.

114 som" researchers might argue that this is a contradiction in terms.
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The combination of multiple classes of asymptotically adaptive model along
with a suite of non-adaptive models would result in an extremely versatile
algorithm capable of efficiently compressing messages generated by u variety
of interleaved sources. This flexibility is bought at the cost of an increase in
processing time.

5.8.5 MMDC as Unifler

The field of data compression was launched by Huffman coding and was carried
by ad-hoc techniques for many years. The emergence of the modern paradigm of
data compression provided a much purer view of the field, in which a single model
supplies predictions through a narro$' interface to an arithmetic coder. With
the advent of multimodal data compression comes the possibility of combining
many different kinds of model. If processors are cheap, multimodal techniques will
encourage the inclusion of any model that is vaguely orthogonal to the others. We
are likely to find ourselves back where we started: in a lrrraze of ad-hocery.

Whatever happens, we can at least be assured that the ad-hocery will be
contained. An advantage of the modern paradigm and the MMDC algorithm
is that they provide strong frameworks within which models must reside. No
matter how different the models may be on the inside, their interfaces must all be
identical; all must accept instances and produce predictions (or perhaps generate
code). Multimodal data compression integrates nearly all other data compression
techniques by providing a framework within which different models can reside
without interfering with each other.

5.8.6 A Note on Security

Before finishing this chapter, it is worth pointing out a rather surprising
security implication of multimodal algorithms. A multimodal algorithm set up on
a public communications channel will store information about messages produced
by various "sources" that have used the channel in the past. If users of the
channel are able to measure the compression yielded by the channel (for example
by measuring the time that the channel takes to transmit the message), they will be
able to obtain information about messages that have previously been transmitted.
This problem exists with adaptive data compression but is far more severe for
multimodal algorithms which are capable of "recognising" a d.ocument that was
transmitted a long time before.

For example, if a multimodal compressor were connected. to a user's terminal
line (so as to reduce the transmission time), an intruder who had gained access
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to a user's line could tell if the user has been scrolling particular files simply by
scrolling them himself and seeing how fast they appear. More tenuous channels
are apparently already in use in the intelligence world['WrightS7].

The problem cannot be alleviated by cryptography, as data compression must
be performed before any cypher layer takes control of the data. The only solutions
seem to be to hide the compression performance or to isolate the compression data
streams of different users.

Hiding compression performance may be possible over a multi-user line by
delaying all messages at the receiving end so as to provide a fixed (worst-case)
transmission speed. From each user's point of view, the channel has a constant
speed and no data compression is taking place. From the channel's point of view,
the (multi-modal) data compression is reducing traffic volume, allowing more (fixed
rate) users to use the channel.

Isolation of users' compression data streams can be accomplished by main-
taining a separate multimodal model for each user or by restarting the data com-
pression system whenever the channel user changes. The former scheme loses the
simplicity of centralization and the later scheme loses some of the advantages of
multimodal models.

5.9 Summary

This chapter introduced the technique of dynamically swapping between
different models (".S. locally and asymptotically adaptive models) so as to
maximize the benefits and minimize the disadvantages of each. Fbom this grew a
technique for the compression of multimodal sources, in which asymptotic models
are created dynamically, one for each of the source's mod.es. New models are
created whenever a locally adaptive model out-performs all the asymptotically
adaptive models. This method was used to construct the MMDC algorithm which
has been described in detail. Experiments showed that the MMDC algorithm
reliably detects source modes, creating a new model only when a ne\¡/ source mode
appears. MMDC is really a meta-algorithm because it can use any component
model so long as the component model exists in locally adaptive and asymptotically
adaptive forms. MMDC is ideally suited for parallel execution because its models
are loosely coupled. Extensions for different classes of models and a library of fixed
models make MMDC an ideal base for the combination of many different data
compression algorithms' Multimodal algorithms introduce new security problems
because of their tendency to store sophisticated models for long periods of time.
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The development of the MMDC algorithm is a good example of how science
builds upon itself. It is hard to imagine the MMDC algorithm arising without
some concept of model or without a clear categorization of adaptivit¡ but neither
of these concepts were developed with multimodal adaptivity in mind,



CHAPTER 6

APPLICATIONS TO
USER INTBRFACES

6.1 Introduction

Data compression techniques are used to reduce the volume of data being
conveyed through a channel. Applications of data compression are distinguished
by the nature of their channel. For data transfer, the channel is a communications
line. For data storage, the channel is a storage medium. Other applications,
such as authorship identification[Roberts82], which rely on fluctuations in data
compression performance, use an imaginary channel. In this chapter we introduce a
new applications area whose channel is the interface between a user and a computer
terminal.

6,2 L New Application

The motivation for the new application is that the behaviour of users can be
predicted just as the behaviour of files can be predicted. By presenting these
predictions to the user in a useful form, they can be used to red.uce the amount of
work the user has to perform.

A user prediction system might operate as follows. The user works at the
terminal entering commands and receiving responses on the screen. Inside the
computer there is a special process, independent from the user's process, that
records everything that the user types (i.e. the user's input stream). The process
uses the data compression techniques described in this thesis to predict what the
user is going to type next. If the program has confidence in its prediction, it
displays the prediction in a special place on the screen. The prediction consists of
a string of characters.lrõ This contrasts with our previous view of predictions as
probability distributions. The user observes the prediction, and if it is the same
as what was about to be typed, the user hits a specially reserved. key which enters
the predicted string as if the user had typed the string directly.

The effect of all this is to reduce the number of keystrokes that the user needs
to make. At each step, the system programs the special key with the characters
that it thinks the user is likely to type next.

. 
tt1 

.u-p u-ntil this poilt, we have referred to-symbols as "symbols". In the context of user interfacesin which the user nearly always typ"r Ásctr".h;;;;;r,"i';'ã.""trL" the liberty of referring morespecifically to "characters,,.
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6.3 A Paradigm of l-Jser Prediction

The new application deviates from the modern paradigm of data compression.
Nevertheless, the major components can still be identified. The user is both source
and transmitter. The terminal keyboard is the channel. The model and decoder
exist in software.

Channel
(Keyboard)

Backdoor
Channel
(Screen)

Shannon Transmitter Shannon Receiver

Figure g8: The modern paradigm modified for user interfaces.

Channel

Shannon Transmitter Shannon Receiver

This figure is a duplicate of Figure 9, placed here for convenient comparison
with Figure 98.
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Figure 99: The modern paradigm of data compression
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Figure 99 shows the modern paradigm of data compression. Figure gE shows
the modern paradigm modified for user prediction. Predictions are displayed on
the user's screen at position 2. The user types keys on the keyboard at position
1. The receiver has not much changed but the transmitter differs substantially.
Instead of having a coder and predictor, there is only a coder. Predictions originate
from the receiver.

It is unusual for information to flow backwards in a data compression system.
The aim is usually to reduce the traffic between the sender and the receiver. In
this case, the cost of sending from the receiver to the sender is negligible compared
to that of sending from the sender to the receiver, and so it is possible for all
the predicting to be done by the receiving end. Thus, the receiver presents the
alternatives and the sender selects from them.

6.4 Examples

\Me now present some practical examples of how a user predictor might be
used. It is not intended that a user predictor produce helpful predictions at all
times. The system would be useful even if it produced predictions that saved the
user just 6% of, typing. For some data, the success rate will be much higher.rlo A
prediction system would be useful in reducing user frustration even if it were only
required on the occasions where the input required was tiresomely repetitive.

6.4.1 Debugger Sessions

A debugger program is being used to debug a program. At first, the user uses
the debugger only for simple checks. However, as the program grows bigger and
the debugging task grotvl/s more complicated, so does the number of ,,setting up,,
commands that need to be executed whenever the debugger is entered.
Example setting up commands might be (vAX/vMS Debugger):

SET MODE DISPLAY
SET LANGUAGE PASCAL
SCROLL/DOT,IN: 145
SET BREAK/LrUN/MTER : lOOO
GO

After one or two debug sessions with this setting up sequence, the prediction
system acquires enough information to predict the sequence. The next time the

288

116 Forexampleif theuserweretypingthewordsof thesong "TheTwelveDaysof Christmas,,



Section 6./¡: Eæamples 289

user enters the debugger and types debug^Mset,rlT the prediction system predicts
the rest.

Although the user could have anticipated the repetition and placed. the
commands in a command file, in practice the user is more likely not to notice
the build up of commands and type them each time. Eventually the user will
recognise the problem and write a command file. A prediction system could help
create such a file.

6.4.2 Typist

A typist is typing in a document in which the word "indistinguishable" occurs
very often. After the typist has typed it a few times, the prediction system catches
on to the string and starts predicting it after (say) "indi". Eventuall¡ the typist
types the word as "indi"Þ, (where > is a single key that enters the prediction
systcm's current prediction), thus saviug thirteen keystrokes per occurrence.

That sufficient repetition occurs in manuscripts to warrant a prediction system
is indicated in the following discussion of the use of the macro facility in the Tþ[
typesetting system[Knuth79][Knuth84]. Knuth has mathematical Tþ[ts in mind
but the quote does illustrate the problems and trade-offs involved in reducing
repetition.

"Of course, yo ition just to speed up the typing of one
isolated formu .rrr" li*" go", by *ir"r, yor.i" ãeciding
whether or no you're typlng thã aennition itself. The
real payoff comes when some cluster of symbols is used ãorãtrr of times throughout a
manuscript. A wise typist will look through a document before typing anything,ihereby
getting a feel for what eort of problems wi l arise and what sort of definitioñs will be
helpful." [Knuth84](chapter 20).

As well as helping to replace the simple use of macros, a prediction system can
be helpful at the times when the overheads associated with using other methods
(e.g. definitions) are prohibitive.

6.4.3 Indenting a Program

A programmer is editing a program and needs to indent a procedure by three
characters per line. The programmer starts with "U ¡ ¡Â¡frr1s and repeats it.
After a few repetitions, the prediction system catches on and the programmer
uses a single keystroke for each repetition.

117 The notation "Aleller" will be used to represent a control character. In this example ^M isthe ASCII "RETURN" character (code-13) ,r.ãd to terminate lines of input.118 'uD will be used on o"casions to repråsent the space character.
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rhe user,,".:',:;:;.J:':i:îJ"",;ï" *:tia, ro become an
important and useful part of interactive environments. However, a multitude of
user-environment tools have already been developed. Because most of these tools
have been developed for programmers, the field is usually referred to as the field
of fnteractive Programming Environments (IPEs for short). The airn of this
section is to position user predictors in this field.

6.5.1 Inner and Outer Environments

Barstow and Shrobe[BarstowS4](section 2.4) have suggested that in future
IPEs, programs under development will be tightly bound with the tools that
manipulate them. At present, program and tools can still be distinguished.
\Me divide environments into two parts: an ,i,nner enuironrnent and. an outer
enuironment.

The inner environment consists of the object that the user is working on
and the set of primitive operations used to manipulate it. In a programming
environment, the object would be a computer program, and the primitives would
be the commands to edit and run it. The program and the set of primitives can
be considered formally as being an instance of an abstract data type[Guttag80].

The outer environment consists of a set of sophisticated tools whose
purpose is to amplify the user's actions. These tools are based upon (but are
not necessarily symbiotic with) the tools of the inner environment. Currently,
few environments have an outer environment. Examples of outer environments
are the Programmer's Assistant[Teitelman72][Teitelman84], the programmer's
Apprentice[Rich78]['Waters82], DWJMlle Spelling Correction[TeitelmanT2]
[Teitelman72] and Active Help Systems[FischerSa]. Although all these tools can
ultimately be considered to be an extension of the abstract data type of the inner
environment, this may not be a very useful view to take.

jest that dwim be added to it.', [Steele83](p. bg)
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Modern environments can be divided into an inner enaironment and an ouler
enaironmenl. The inner environment consists of the objects on which the user
ie working, along with tools to manipulate the objects. The outer environment
looks in to the inner pts to aid
the user by providing the inner
environment, Example Assistant,
the Programmer's App

Figure 100: Inner and outer environments.

The relationship between the user, the outer environment and the inner
environment is confusing because the outer layer can vary its thickness. The best
way to imagine the system is to consider the user to be communicating with the
inner environment with the outer environment intercepting the communication
from time to time (Figure 1oo). At times, the user directly manipulates the
inner environment, whereas at others all communication is channelled through the
complex mechanisms of the outer environment. The outer environment should not
distract the attention of the user from the inner environment unless it can help in a
significant way. To summarize, the inner environment defines the domain in which
the user is working, and the outer environment provides entities that enhance the
interface to the domain.

Tools in the outer environment exist to serve the user. Unlike objects in the
inner environment, they do not define the domain in which the user is working
but rather "look int', as the user does, to the inner domain. Commands issued
to the outer environment are tikely to be less specific than those to the inner
environment. As a result, outer environments often contain user models which are
used to resolve ambiguity and choose a course of action.

Having established a split-level view of the field of IPEs, we turn our attention
to previous work in interactive systems design and other areas that relate to
automatic prediction.

tool

I nner
Environment User

tool

Outer
Environment
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Research into IPEs that is relevant to user prediction can be sorted into roughly
the following categories.

o General design of interactive systems.

o Programmer's helpers.

o The design of command languages.

o Modelling the user at the keystroke level.

o Modelling the user at the command level.

The work in each of these categories will be discussed in turn.

6.6.2 General Design of fnteractive Systems

There is no shortage of work on interactive design. Interactive design has
recently become a popular research topic because of the increasing cost of hu-
man resources. This work can be split into two groups. The first group typically
çoncerns itself with low level terminal interface design (e.g. [MorlandS3](4.2)).
Schneiderman[SchneidermanS2] discusses command languages, response time,
the wording of system messages, help facilities and other issues before getting on
to his main point which is that interactive systems are important and can be made
easy to learn and use by employing the principle of direct manipulation. The prin-
ciple of direct manipulation requires.that a model of the world being manipulated
be built, and that it be directly and simply manipulated by the user. The second
group concerns itself with the implementation of such systems and methodologies
for their development[FYeemanzS] [Zunde81] [wassermans2](p. 6).

None of this work is particularly relevant to prediction systems as it mainly
deals with the design of conventional environments.

6.5.3 Programmerts Helpers

Programmerts helpers are outer environment programming tools.

Researchers on the Programmer's Apprentice (PA)[RichTS][Maters82] describe
it as "midway between an improved programming methodology and an automatic
programming system." Fundamentally it is a high level programming language
cast in interactive form.
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The programmer's apprentice is a good example of an outer environment
component. The following extract gives a very good feel for the PA and the
nature of inner and outer environments.

"The programmer is the active agent in the picture. He issues commands directing
the components in the environment in order to create and modify programo. The
Programmer's apprentice eystem (PA) is an additional active agent which assists the
programmer with the task of programming. There are three important points about the
way the PA fits into this picture. First, it ie not intended to replace the programming
environment, but rather to augment it. It will communicate with the rest of the
environment in terme of code, and commands. Second, the programmer can still
communicate directly with the reet of the environment. This gives him a trap door
eo that he is not alwaye required to work through the PA." [Waters82]

The programmer's apprentice differs in many v/ays from a user predictor. It is

much more intelligent than a user predictor and contains more knowledge about
the inner environment.

"The PA will act as a junior partner and critic, keeping track of details and assisting
in the documentation, verification, debugging, and modification of a program while
the programmer does the really hanl paús of design and implementation. ln order to
cooperate with a Programmer, the PA must be able to understønd what is going on.,'
[Waters82] (Italics by Waters).

The programmer's apprentice is essentially a reactive entity. It does not
anticipate what it will be asked or expected to do next and is always given a
general outline on which it elaborates. Typical commands to a PA are (from
[Waters82]).

Define a progran SQRT with a paraneter NUM.
Irnplement the test as an equality within epsilon.
share t}'.e / in the test and the second / in the approximation.

Automatic programming systems always seem to boil down to simply being
high leu eI progrúnùnling languag es.

"In short, automatic programming always has been a euphemism for programming with a
higher-level language than was then available to the programmer. Research in automatic
programming is simply research in the implementation of higher-level programming
languages." [parnas85](p. a3g)

The programmer's apprentice is difficult to identify as a high level program-
ming language because the programmerts attention is focussed on the object code.
The programmer's program is not written in ,,programmer's Apprentice',, but
rather in LISP with the help of a clever macro expanding programmer,s appren-
tice. A similar system could be constructed one level down for assembly language
and Pascal[BSI82]. The programmer would work on an assembly language pro-
gram but could type in small portions of Pascal code which would immediately be
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translated into assembly language and inserted into the program. At that point,
the Pascal code (instructions to programmer's apprentice) would be forgotten and
the programmer would manipulate only the resultant assembly language.

The Programmer's Assistant[Teitelman72][Teitelman84] is an excellent exam-
ple of an added-on outer environment. All communication from the user to the
inner environment passes through the programmer's assistant. The programmer's
assistant provides a variety of aids. These are, the maintenance and access of a
command history list, the capacity to "undo" commands, and DWIM automatic
spelling correction[Teitelman72] [TeitelmanT2]. The way that the programmer's
assistant presents itself to the user (usually as completely transparent) is very like
the way that a user predictor presents itself.

User predictors are similar to the programmerts assistant. However, user
predictors perform a completely new and independent function; there is nothing
in the armory of the programmer's assistant that predicts the user. Nevertheless,
automatic prediction is a function that would considerably enhance the already
powerful facility that the programmer's apprentice provides. Thus, prediction
systems cøn be slotteil in øs ønother string to the bow of the progro,nlrner's o,ssistant
whilst being welcomed ús ú neu innouation.

It is interesting to take a cursory look at some recent commercial products that
exploit the programmer's helper idea. One such product is Turbo Lightni,ng fto¡¡-
Borland International[BorlandS6]. Turbo Lightning is a background process that
intercepts the user's input stream and looks up every word typed (it is presumed
that a word is defined to be a sequence of letters) in a dictionary. If it sees a word
that it doesn't know, it interrupts the user with a menu showing a list of candidate
corrections. The user can then choose a correction or define a new word.

"so how does it work? Let's say the word you meant to type was ,RIGHT' but you
accidentally typed 'RIHGT,' which is wrong, What happens then? you immediaiely
hear a 'beep,t so you know there was a boo-boo. You instanily see a window, that doesntt
list "RIHGT" but it does list 'RIGIIT' and its sound-alike wordg,,' [Borlandg6]

This product is significant because it indicates that the demand for environ-
ment assistants is strong enough to make them commercially viable. Many similar
products have appeared since Turbo Lightning.



Section 6.5: Reuiew of Intero,ctiue Enuironments 29ó

6.6.4 Research into Command Languages

Much work has been done on command language design (e.g. [Palme7g]
("User Commands"), [Hardy82] and [NievergeltS2]). Command languages

are important because every user has to face them to accomplish anything.
Researchers in this area are concerned with command abbreviation, menus versus

command lines, the trade-off between po\Mer and ease of use and flat versus

hierarchical command structures. These issues are relevant to user predictors
only as far as they describe much of the domain of user/computer discourse that
user predictors will be charged with predicting.

Of particular interest are command recall facilities, which allow the user to
retrieve and re-enter commands previously given.

6.5.5 Modelling the lJser at the Keystroke Level

A lot of work has been done in the area of low level modelling, (e.g. [Card80]
(p. a01) and [RobertsSS]). Workers in this area construct models of user

behaviour at the level of individual physical actions such as moving a mouse or
pressing a ke¡ and attach timing information to these actions. The result is a

model that predicts the time it will take for users to perform particular sequences

of actions. This information can then be used in the design of text editors and
other interactive systems. The most typical of these papers is [Card80] in which
an elaborate keystroke level model is built that functions as a fairly good timing-
predictive model. Other related work in relation to text editors is [RobertsS3].

Most of this work is not relevant to user predictors as it deals with short
sequences of keystrokes and the timing of low level user actions. Although some
writers delve into the correlations between various letters, most describe models
that predict only the time that an action will take, not the action itself.

6.5.6 Modelling the tJser at the Command Level

As with the research described in the previous section, research in this area is
concerned wilh perforrnance times (e.g. [Booth8l](Esp. ,,Modelling the Task,'),
[Zunde8l]). However, the problem has been raised a level. Here the concern is the
performance of users performing higher level tasks for which they may choose their
orvl¡n commands. The result is a more complex analysis, parts of which are relevant
to user predictors. In [Booth81] for example, the authors describe a modelling
method by which a grammar is constructed to imitate the userts use of a software
tool.
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Some work is not concerned with performance times but rather with user

customization. In [RichSS](p. 203), the author asserts that computer systems

should behave in different ways for different users. Two approaches for achieving

this are given. First, the user can do the customizing. This can be complicated
and does not cater for new users. Second, the customization can be performed
automatically. The rest of the paper continues on this theme indicating how clues

from the user behaviour can be used to make using the computer easier. This
is relevant to user predictors as such a system uses information gleaned from the
user to make using the computer easier.

In [FischerS4], the authors describe a help facility that models the user and
occasionally jumps out at the user and describes what the user is doing wrong and
how it can be fixed.

6.6.7 Summary of Interactive Environment 'Work

An increasing emphasis is being placed on increasing the productivity of
the users of computer systems. This has resulted in sophisticated interactive
environments that can be modelled as two-level systems composed of an inner
environment containing the objects that the user is manipulating, and an outer
environment consisting of a collection of tools whose function is to help the user
use the inner environment. Prediction systems can be categorized as tools residing
in outer environments. A lot of work has been done on interactive programming
environments. Much of this is not relevant to user predictors. The studies on outer
environment tools have been helpful. User prediction systems can be regarded as

part of the tool kit of the programmer's assistant.

6.6 Multi-Character Predictions

As we have seen, user prediction systems operate in a manner similar to
that of data compression systems. As a consequence, all of the models and
methods for predictions discussed in earlier parts of this thesis are applicable. The
major difference between the two systems is the kind of predictions they produce.
Whereas the existence of arithmetic coding allows data compression models to
predict a single character, user predictors must predict whole strings of characters
to be at all useful.

The only useful user predictions are those that would normally take more than
one keystroke to type. The cost of the user reading the prediction to determine if it
is correct sets the threshold of usefulness even higher. Predictions of less than five
characters are probably useless. This means that in order for useful user-prediction
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to take place, the user input must be highly redundant. It must be possible in some

circumstances to predict whole strings of characters with confidence. Predictions
of low entropy (e.g. because there are only four symbols) but uniform probability
are of little use.

String-level redundancy can be measured by identifying all repeated substrings
in a section of user input. Experiment 22 in Appendix C performed such a
measurement. The experiment showed that in the sample of 32948 consecutive

instances taken from a user input stream, at least a third of the instances lay
within a repeated substring of length ten or greater. This result indicates a high
degree of string-level predictability. Experiments using the mechanisms of earlier
chapters have not been performed.

Multi-character predictions can be obtained from a model that only predicts
a single character by invoking the model recursively. In general, a multi-instance
prediction of length k consists of a n-way tree that is solid to depth k, with a
probability on each arc. Such a tree can be generated using a single character
predictor by feeding characters into the predictor and pulling out a hypothetical
prediction. If the current context was beg, the probabilities on the arcs leading
from the node begi could be obtained by temporarily feeding the character i into
the model and then examining the prediction yielded.

In practice, a user predictor would never actually build a prediction tree. Even
if such a tree could be efÊciently constructed, it could not be presented to the user,
because the cost of reading the tree would exceed the cost of typing the characters
the tree predicts. At each point of time, only a very few predictions can be
used. These predictions can be found by following branches of high probabilit¡
constructing them on the fly. The difficulty then becomes that of deciding which
predictions from the prediction tree should be chosen for presentation to the user.
The trade-off here is between length and probability. Should the user be presented
with short, reliable predictions or with lengthy long-shots?

The problem can be expressed formally as the need for a goodness function
g(Irp) that can be applied to each node in the tree, where / is the depth of the
node (length of the prediction in characters) and p is the probability of the node
arising.l2o Once this function is specified, the problem becomes that of simple tree
search. About all we know about g is that it must be monotonically increasing
with / and with p.

12o The method of. assigning probabilities here is the same as that used by Rissanen and
Langdon[RissanenSl] in their definition of a source.
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A good first approximation is g(I,p) : p(I - 1) which is the number of
keystrokes saved. If the cost of examining the prediction is taken into account,

the metric can be refined to g(I,p) - p(l - 1) - (i + sl) where i is the cost in the
user's time of being interrupted to be given the prediction and s is the cost per
character of reading the prediction.

Once a goodness function has been found, an algorithm is required for
finding the tree node with the greatest goodness. A branch and bound algo-

rithm[\Minston77] seems appropriate but can only be used if a limit is placed on
the length of predictions. The best way to do this would be to modify g so that
its value increases and then decreases with increasing l.

If more than one prediction is required (say the k best prediction strings), the
branch and bound algorithm could be modifi.ed to maintain a list of the best k
predictions with the cutoff point being set at the worst of the k predictions.

The amount that should be predicted is inextricably linked with the structure
of the commands the user is giving. From a psychological standpoint, the best
thing that the prediction system could do is to predict one or more chunks of
user action. For example, a chunk could be a complete command. Luckily, the
boundaries of such commands will tend to correspond with the points where the
user will make a choice about what is to be done next. These branching points
are, in turn, reflected by an uncertainty in what to predict next. Thus, command
boundaries can be detected from high entropy branchings in the prediction tree.

One source of information available in a user prediction system but not in a
data compression system is the timing of the arrival of the characters. There are
many reasons to think that much of the structure of an input could be determined
from the time intervals between the keystrokes.

o The existence of muscle memory means that commonly typed sequences

are likely to be typed in a burst.

o When users type a command terminator, they have to wait until the
computer responds. The time taken by the computer will delay entry of
the next keystroke.

o \Mhen users reach the end of a coherent conceptual unit, they pause.

Some of these hypotheses have been tested by writing a program to tokenize
an input stream based only on the time interval between keystrokes. The result
is presented in Experiment 23 in Appendix C. Although no statistical tests have
been performed upon the parsed output, it appears by inspection that the program
has determined much of the structure of the input stream.
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6.7 The Prediction Interface

Given fr prediction strings, how can they best be presented to the user? We

divide the interaction with the user into two parts: the part that presents the
prediction to the user and the part that reacts to the user's response to the
prediction. Each of these can be rated on an aggressiveness scale.

6.7 .L Presenting Predictions

The presentation of predictions involves somehow making the user aware that
a prediction exists so that action can be taken. Here are some approaches rated
from least aggressive to most aggressive.

o The least aggressive thing that a prediction system can do is absolutely
nothing.

o The next least aggressive thing that a prediction system can do is to
present predictions to the user only when the user requests them. There
could be a special key on the keyboard for this purpose. After a while, the
user would gain an intuitive sense for the situations in which a prediction
system is likely to be correct.

¡ The next presentation option is for the prediction system automatically
to present the user with a prediction whenever the system has a prediction
with a high goodness.

o A fourth method of presentation is to continually present the prediction
system's best prediction. \4/indow systems would be well suited for this.

¡ The most aggressive system would continually present a list of the best
predictions.

6.7,2 Confirming Predictions

When a prediction is presented to the user, the user must respond to it in
some way. One response is to do nothing. Here are some of the ways in which
the user could confirm predictions. They are rated from least aggressive to most
aggressive.

o The least aggressive method for confirming predictions is to provide a
key for confirming a prediction. The user could press the key if he wanted
thc prediction executed, or could ignore it and continue.
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¡ A second and more aggressive option is to set up a key that indicates
that the user does not want a prediction executed. If, after a prediction
is presented, the user does not respond in a prescribed time, the system
executes the command.

o Finally, there is the extremely aggressive option of simply executing the
prediction without confirmation. Extreme as it sounds, this option could
be very useful in situations when the goodness value of a prediction is
extremely high.

Our experience with prediction systems indicates that introverted prediction
systems are the best as they tend to fit in with the concept that the user is in the
driving seat.

Perhaps the best choice amongst these is all of them. The prediction system
could employ a mixture of these and choose any one method depending on how
sure it is of its prediction.

6.8 Tuning Models

If Markov models are to be used to predict the user, they must be tuned. In
this section we note the parameters that we expect would perform well.

The two properties of user data that should be kept in mind are first that
commands that have just been issued are often repeated a short time afterward,s,
and second that commands are often quite long. We work on the principle that
in a user prediction system, a high entropy prediction is a completely useless one.
Branches that contain high entropy predictions may as well be pruned.

The maximum depth of the tree should be set much higher than for data
compression. In data compression the optimal depth is about four; deeper trees do
little to reduce the entropy while making the tree too specific. In user prediction,
this specificity is likely to be useful because users often repeat commands soon
after they are given. In a user prediction system, the cost of being wrong (and
being \Mrong is a much sharper concept in these systems) is much higher than for
data compression.

Tree growth should be set to be very high. Because the userts most recent
input is likely to be of greatest relevance, the tree growth parameters should
be adjusted to grow each branch to the depth limit upon the arrival of each
character' \Mindowed local adaptivity should probably be turned ofi. The
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estimation parameters should be biased strongly against symbols that have not
occurred (i.e. a low value of À).

One of the pleasing aspects of the tree adjustment techniques presented in
Chapter 4 is that they are incremental. Whereas most previous algorithms destroy
the Markov tree and start ane'u/ whenever memory runs out, SAKDC can operate
smoothly forever. Use of such incremental tree adjustment means that there are
no discontinuities in the performance of an SAKDC user predictor.

Finall¡ we note that the user input stream is tikely to be multimodal: Different
software tools have different input grammars and are likely to have different
characteristics. As the user switches from one software tool to another, so

should the compressor switch from one model to another. This could be done
automatically without the need for a tight link between the software tools and the
prediction system.

6.9 Human Fáctors

Interactive systems are extremely prone to instability with respect to user
perception. Such little things as the exact length of response time or the phrasing
of error messages can greatly affect the attitude that the user takes towards the
system' In introducing a system as unusual as a user predictor, it is prudent to
take at least a cursory look at the psychological factors involved.

Perhaps the single biggest difference that a user predicting system could
make to an interactive environment is to make the user no longer feel in control.
taditionally, human/computer interfaces are set up as master/slave relationships.
The computer waits until the human types in a command and then executes
it. It displays some messages to the user and then waits for another command,.
This is a user-driven dialogue. In contrast, some user prediction systems might
actually interrupt the user with suggestions or possible commands to be executed.
Users who are used to the computer "not speaking until spoken to,, may find this
behaviour disconcerting.

Humans do not like to be predicted because knowledge of their own predictabil-
ity compromises their self-image as agents of free will[Dennettg4]. people hold
the art of prediction in high regard and can feel threatened if successfully predicted.
An experiment has shown that resentment is generated by people whose predictive
powers (of human performance) have been upstaged by a machine[Daweszl].

A similar problem of some user prediction systems is the way in which they
"suggest" a course of action to the user. For example, the user predictor might
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predict that the user is about to edit a program and suggest this action when, for
the first time in twenty compilation iterations, the user actually wants to run the
program. This sort of prediction could be interpreted by the user as bossiness,
making the user feel pressured by the system to perform a particular course of
action. Witten and Cleary[Witten86] touch on a similar point in their paper on
general applications of predictive models.

"The prediction methodo suggest continuations that have occurred frequently in the
previous text (or the priming text). It is dangerous to use the predictions aÉ¡ sujgestiona
of what to type; for the result will lack variety, vigor, and verve. Instead, it is essential
to conceive what is to be entered firat, and use the predictione to facilitate its entry.
Otherwise, theee techniques will encourage etultification, unimaginative prose, and we
will want to disown them." [Witten86](emphasis by Witten)

A more positive way of viewing the warning is to realize that the predictor
is probably a very good indication of what not to write. If good writing is the
aim, the user might do well to aim to mo,rimize the number of keystrokes! In
contrast, many dialogues with computers are structured by the computer software
and creativity is not a factor, In this case, suggestions are likely to be welcome.

It is interesting to note that here the computer is pressuring the human to
conform in the present to the image that the human has projected in the past.
This sort of pressure could have a powerful effect on users as it is the way that
much social interaction occurs. Individuals, in interacting with a group of other
people' develop a social personality that the group feels happy with. Any deviation
from this personalit¡ often even if it is for the better, is met by strong resistance
by the group[Schachter5l]. Self correcting mechanisms and reinforcers of social
images such as nicknames are used to create stability.

To summarize, a prediction system, in suggesting that a particular course of
action is to follow, DaY be interpreted by the user to be implying much more. In the
extreme case of someone who has never used a computer before, such a prediction
could be interpreted as a demand. It may be possible to counter these effects
by careful wording, explanation and by manipulating the user's perception of the
capabilities of the prediction system. It is reassuring to see that automatic helpers
are becoming more common in interactive environments, at least for environments
used by experts, as this indicates that in practice these effects are at least 'otprohibitive.
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6.1O'W'ork by Witten, Cleary and Darragh

Most of this chapter was written in late 1986. In mid 1988, the author of this
thesis became aware of work performed by Witten, Cleary and Darragh in 1982-
1983 in the area of user prediction. Their work, which duplicates many of the
ideas in this chapter, is described in two papers, the first by Witten[\MittenE2]
and the second by Witten, Cleary and Darragh[WittenS3].

In the first paper, Witten[\Mitten82] described a line-based user-prediction
system implemented under Unix. As the user types each Unix command, the
prediction system displays its prediction of what the user is about to type next.
The prediction is presented in inverse video at the end of the user's line. If the user
does not agree with the prediction, the user continues typing as if no prediction
had been made. If the user agrees with the prediction, one or more function keys
can be pressed to transmit all or part of the prediction. The system does not
attempt to predict past a newline character.

The predictor operates in one of three modes: character, word or string,
depending on the level at which it tokenizes (forms symbols), and it uses a fixed-
order Markov model of the symbols. If a context contains a single symbol, that
symbol is predicted, otherwise a choice is made. One strategy investigated for
this case was to choose the symbol with the most recently added instance, unless
another symbol had a significantly higher frequency count.

Witten experimented with the granularity of tokens and the order of model,
and found that an order three, character-level model performed best. Performance
decreased slowly from order three to order twenty. This is consistent with the
ffndings of Experiment 5 of this thesis.12l Witten experimented with a symbol-
level credibility threshold in which a symbol's frequency was treated as zero if it
was below a certain threshold. This technique reduced the error rate but also
reduced the number of predictions.

In general, \Mitten's user predictor worked well, successfully predicting about
one quarter of the user's input. However, Witten seemed to think that 25% lvas a
small proportion of the user input to predict.

"This may still be useful for poor typists, with around2STo of characters being predicted
correctly." [Witten82]

-121- 
However, these results contrast with the author of this thesis's own estimates of the bestdepth (Section 6.8).
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\4/itten stressed that the system is not likely to be useful to experienced users

and fast typists. He also stated that the system could not be used with programs
that do not echo their input.

In contrast, we feel that such systems will be of great use to experienced
users. For a start, experienced users are used to working with a multitude of
tools and could assimilate a user prediction system into their environment with
little fuss. Beginners often have difficulty understanding that a computer system
contains many different software components and find it even harder to distinguish
between the components.r22

Second, the system need not be used for all input. It need be used only when
the input to the system becomes particularly monotonous. This often happens
when a ttone-off" task (such as moving one hundred files from one machine to
another) must be performed, and it is not worth writing programs to perform the
task. A prediction system can fill the gap between typing in commands and writing
programs. We might expect the cost structure to look something like Figure 101.

Cost
per

Repetition
(logarithmic)

1 100

Figure 101: cost of typing and programming vs repetition.

Writing
a program

in

predict¡on system
Typin g+

.,'11,Pî:l¡:?,ìe31ff #xî*iîi."i.?".,î.'"ïf.ån*:":i tlf.ilH:'i*'",:lf,H.lL,lllåifif:the screen editor and then raise their hand for help when ,rothing happens.
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Third, it is quite possible to use prediction systems in non line-oriented
interfaces. All that is required is that a printable representation be found for
non-printable characters so that predictions can be presented on the screen. In
fact, it is likely that screen-based interfaces will account for most of the use of a
prediction system. It is common, for example, in screen-based editors to wish to
perform a complicated operation repeatedly on a number of lines.rzs

At the end of his paper, Witten hints at the multimodal nature of user input:
"Further research is needed to assesg the benefit of continuing the thread of preilict,s
context right through the interactive dialogue, irrespective of the subsystems that the
uger entets. It may be preferable to save preilicl's state on entry to subsystems and
preserve a context from one invocation of a subsystem to the next." [Witten82](last
paragraph)

This quote touches on an important aspect of multimodal systems. Although
the algorithm of Chapter 5 is capable of determining the sources just from looking
at the data stream, in practice there are times when source transitions may actually
be known.

Witten's first paper presented the idea of user prediction and described a
very specified Unix line-based implementation of a predictor. In the second
paper' Witten, Cleary and Darragh[Witten83] presented a more sophisticated and
finely grained predictor that operates using a menu. 'Whereas the 1g82 predictor
presented a single prediction, the later predictor, called "the reactive keyboard",
presents a number of prediction strings organized into a menu. Whereas in the
earlier predictor, predictions were confirmed in full or in part by pressing a function
key, in the reactive keyboard a prediction is confirmed by clicking part way into
the prediction with a pointing device. That part to the left of the click position
is entered. This me&ns that for a, menu with ten-entries of ten characters each,
there are 100 possible selections. Menu items are listed in probability order. These
innovations partly solve the problems presented in Section 6.6 of having to decide
how many predictions to make and how much to predict.

Despite the earlier results which indicated that low orders were the most
effective, the reactive keyboard uses a ppM model of ord,er ten.

'Witten, Cleary and Darragh experimented with different sized menus and,
produced some graphs showing the costs of various sized menus. Once the menu
size reaches about 20 entries, t
discussed the other possibilities
checking and other constraints

here is little to gain by increasing it. Finall¡ they
presented by the technique. These include spelling
and the abiliiy to present non-text symbols.

123 In..early.1986, the author of this thesis constp"-lgd a prediction system using what wasessentiallv a high-order, variabre-order Markov -;d;i. th; ,yri;;*ä;-,¡;ilGb.ji'ïE.hura.tu*
per Vax750 CPU second) but predicted editor command ."q.r"."", as effectively as anything else.
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6.11 Summary

This chapter has introduced user-prediction as a new application of data
compression techniques. The modern paradigm of data compression has been
modified for use in predicting users. Some examples were given of how a user
prediction system could be used. A review of the field of interactive programming
environments revealed that environments can be divided into two parts, an inner
environment and an outer environment. User predictors are outer-environment
entities suitable for incorporation in Teitelman's programmer's assistant system.

Arithmetic codes allow data predictors to predict a single character. In
contrast, user prediction systems must predict more than one character. By
recursive invocation, a single-character predictor can generate a multi-character
prediction tree from which the best predictions can be selected using a branch
and bound search algorithm and a goodness function. The best predictions can
be presented to the user in a variety of ways.

User input differs from other data in significant ways, and the requirements
on a user predictor are stringent. First, the system must operate in real-time,
without lengthy delays. Second, the predictor must adapt to the user's behaviour.
Third, user input is likely to be multimodal. The incremental, adaptive algorithms
described in early chapters are ideally suited to meet these requirements.

Human factors are important in a user prediction system; the user must be
made to feel in control.

Finally, the work of Witten, Cleary and Darragh has been acknowledged. Al-
though their work is slightly pessimistic about the applicability of user prediction,
we have given good reasons for optimism: that experienced users will be comfort-
able with user predictors, that prediction systenrs are applicable to screen based
programs' and that user predictors fill in a productivity gap between typing com-
mands manually and writing a program to execute them.



CHAPTER 7

CONCLUSIONS

The goal of this research was to investigate the use of adaptivity in data
compression. This goal has been achieved by identifying different kinds of
adaptivity implementing them and evaluating their performance. This chapter
presents the highlights of this thesis. It does not summaÅzeil. Summaries appear
at the end of each chapter.

T.L Primary Contributions

Primary contributions of this thesis are listed below.

o A comprehensive literature review of the field of data compression has
been given (Chapter 1).

o The concept of adaptivity in a data compression algorithm has been
refined by focussing on the emphasis that a particular technique places on
different parts of the history, and by constraining the estimation function.
Four different classes of adaptivity have been identified, and mechanisms
for each form of adaptivity given (Chapter S).

o A general Markov algorithm (the SAKDC algorithm) has been presented
that integrates many diverse features of contemporary Markov algorithms,
and implements local and asymptotic adaptivity at the context and
structure levels (Chapter 4).

¡ Experiments on the sAKDC algorithm have been conducted. The
results will be useful to practitioners who are tuning a production Markov
compressor (Section 4.lT).

¡ The experiments show that for small memory (less than b000 nodes,
structural adaptivity (in which nodes are moved within the Markov tree)
can improve compression by up to 20To abso\ute (section a.1z.1b).

o The techniques of suboptimality and incarnation numbers have been
introduced as a solution to the problem of maintaining shortcut pointers
in a tree whose structure is changing (Section 4.10).

o The class of multimodal sources has been identified. The class is
interesting because it is likely to appear on communication lines. A
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multimodal data compression algorithm (MMDC) has been described

that outperforms ordinary models for these sources, by creating and
maintaining a model for each detected source mode (Chapter 5).

o An application of data compression models to user interfaces has been
proposed. A model of the user's input stream is developed and used to
predict future input. The incremental, adaptive techniques described in
this thesis are ideally suited for this application (Chapter 6).

7.2 Secondary Contributions

The secondary contributions of this thesis are listed below.

¡ The distinction between "symbols" and t'instances" has been introduced
(Section 1.2).

o The estimation techniques used in previous Markov algorithms have been
generalized and classified into two groups, linear and non-linear, with a À
parameter (Section 1.10.3).

e A generalized form of floating point, stochastically incremented counters
has been introduced (Section 1.11.6).

¡ The relationship between backwards and forwards trees has been anal-
ysed and the advantages of each enumerated (Section 1.L2.2).

o Problems in the literature in reporting compression performance results
have been identified and a nomenclature proposed (section 1.15).

o A method of retarding Markov tree growth using thresholding has
been given, and upper and lower bounds on the growth rate derived
(Section 2.7).

o The distinction between context adaptivity and structural adaptivity has
been made (Section 3.7).

¡ The two colour LRU management problem has been identified and solved
in logarithmic time (Section 4.7.1).

o A method for organizing heaps using dynamic memory allocation has
been given (Section 4.7.2).
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o A mechanism for structural and contextual windowed local adaptivity
has been given (Section 3.9 and Section 4.13).

o The concept of source zones has been developed as a possible explanation
to the behaviour of the MMDC algorithm (Section 5.7.5).

o Possible security problems arising from sophisticated data compression
techniques (and in particular Multimodal data compression) have been
identified (Section 5.8.6).

o A study of the word "adapt" has been made (Appendix B).

o An experiment was performed that indicated that user input is highly
redundant (Section C.2).

¡ An experiment was performed that indicated that there is a strong
relationship between the pauses between keystrokes and the characters
being typed. An input stream was tokenized solely on the basis of timing
information (Section C.3).

o Ideas for further research are given in Appendix D.

7.3 About Communication

Insofar as data compression is a special case of data representation, this
thesis has been about cornmunication. Whereas much communication can be
viewed as a simple process in which information is transmitted using a fixed, well-
defined alphabet having fixed, well-defined meanings, the mod.ern paradigm of
data compression presents a much less stable picture in which the semantics of the
channel alphabet change from moment to moment. The only way to make sense
of such communication is to refer to the predictions that underpin it. Here we
consider predictions as defining the set of events and their semantics as well as
their probabilities.

These predictions, which are so changeable, map channel symbols to semantics,
(which in the case of computer communication consist simply of the set of source
symbols). Without predictions, communication involving representationr24 cannot
take place. Communication cannot occur without the two parties somehow setting
up a system of predictions to determine the semantics of the communication.

124 All communication at the.physical level is rooted in the semantics of reality common to allobjects; no predictions are requiieå. If a treå îrà".ülr.ä-; äko' r.; #li",írö'fr¡1, or, ,,'uand kills me, it communicates with me and the sem.ntìcs are clear.
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In ordinary communication using a simple-alphabet, both sides agree to attach
simple, fixed semantics (fixed prediction) to the channel alphabet. In a data
compression system that uses the modern-paradigm, both sides agree upon a
method for generating predictions from what has passed before. fn user prediction
systems the computer explicitly informs the user of the predictions (through a
special backwards channel).12õ

In summary, the principles underlying this thesis highlight the adaptive nature
of most communication and lead to a view of communication that focuses on the
generation of predictions rather than the generation of instances.

7.4 Towards a More General Theory

Much of the work in data compression has been pre-scientific. This thesis is
no exception. Much of what has been achieved has been driven by pragmatic
concerns backed by intuitive theory. There are two lights on the horizon which
may be worth following in order to arrive at a more systematic approach to the
field.

The first is the tantalizing correspondence between multimodal data compres-
sion and Markov models. Each works with "contexts", one at the instance level
and one at the ten-thousand instance level. The Markov model concept of a con-
text is that of a short context string. The multimodal concept of a context is that
of a mode of behaviour over a long period. Ideally these two concepts could be
fused into a single compressor that incorporates the concept of context at many
levels, possibly recursively.

Second, many of the estimation and adaptivity techniques discussed in this
thesis have been on the fringe of signal theory. The field of text data compression
may well be at the point where it can profitably employ concepts from this field.
For example, we might think of the mode changes of a multimodal source as
having a frequency spectrum. If a generalized concept of context were to arise,
it is possible that the concept of frequency spectrum of change could be applied
more generally to a source, resulting in a better understanding of the systems
being studied.

12õ For this
interpreting su

to take place, the computer and the user had to ,,agree,, upon a protocor for
ch information.
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7.5 Thesis Perspective

Much of the author's candidature has been spent exploring and catching up
with the fields of interactive programming environments and data compression.
The thesis has grown out of this process.

The following table indicates the path that the author has taken to define this
thesis. The first two columns list an idea that the author had and the date at
which the author had the idea. The third column lists the paper that introduced
the idea (or a similar idea) and the date that the author discovered the paper.

Date Idea Previously published by
Feb-85
Oct-86
Oct-86
Oct-86
Nov-87
Oct-88

Prediction of user input
Predict/code paradigm
Markov-tree modelling
Arithmetic coding
Adaptive mechanisms
Multimodal algorithm

Witten82 (Jun-88)
RissanenSl (Sep-87)
Cleary84 (Sep-S7)
Several (1963-1987) (Oct-86)
Original
Original

While inefficient, rediscovery has resulted in different perspectives. For
example, the author's first Markov tree algorithm (DHPC) employed an estimation
technique inferior to that previously published but used a more sophisticated tree
manetement technique. Thus, this thesis has approached old ideas from a different
direction as well as making some original contributions.

7.6 Summary

This thesis has made a number of contributions to the field of data compression.
The concept of adaptivity has been refined by defining it in terms of constraints
on the estimation function ( and the history weighting function tu. Four classes
of adaptivity were identified, as were mechanisms for implementing each class.
Some of these mechanisms were incorporated into a general Markov algorithm.
Experiments on the algorithm showed that adaptivity can improve compression
considerably. The class of multimodal sources \Mas identified and an algorithm
described that performs better on such sources than previous algorithms. Finally,
a proposal was given for the application of data compression techniques to user
interfaces.



APPENDIX A

ESTIMATION FORMULA CATCUTATION
Although there is no theoretical basis for deciding between different estimation

formulae (Section 1.10.3), it is possible to derive the best formula for a given meta-
distribution (distribution of distributions). The author of this thesis has derived
the best estimation function for the uniformly meta-distributed binary memoryless
source. The solution was linear estimation with À : 2.

Jones has given a more general derivation (for more than two symbols) which
is reproduced here exactly.126 The solution, which is consistent with the author of
this thesis's binary analysis, is linear estimation with À : r¿.

Consider first a binary source with probability p of one and g of zero. The
probability of a sequence of length r¿ containing r ones is

b(r,n,r: (7)r,qn-r

where the binomial coefficient (i) - nl/ (, - r) r! Suppose that all possible binary
sources are equally likely, i.e. the (unknown) probability p was chosen randomly
in the range (0' 1). The probability of a sequence of length n containing r ones is
then

b(r,n,r, : (;) 
lo' 

o, (t - p)n-, dp

The integral has the form of the Beta function[Abrarnowitz72l and

b(r,n,", : (i) 0 þ + L,n -r * 1) : (Ðr(r * 1)r(n - r *t) /t(n +2)

Substituting for the Gamma function I (rz * 1) : ,r!

(?),t ( r 1n

n+7
)b(rrn,p):

(n + 1)!

Thus it is equally probable that a sequence of length n contains 0)!,2,. . . , r¿ ones
and the probability of a particular sequence containing r ones is

1 _ rl(n-r)l
(n+1)(i) - (n+t)!

This is presented as equatio" (4) in [Lawre nce77l. \Mhen a particular sequence
of length r¿ containing r ones has been received, if tËe next symtol is one there will

126 Private communication (letter) 7 September 1987. Permission to reproduce the derivationhcre was granted by telephone' on 2ó April' 198g. N"lã' gã.ã-"." this proof is reproduced exactly,the notation is different from that of thà rest of the thesis.
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be a sequence of length n+l containing r* 1 ones, so the conditional probability
of one is

n+1 (rz+1)!(r*1 )!(rz - r)! r+1
çn + z¡ (ij (n +z¡r.r¡(n - r)l n +2I

This is the probability estimation function for a binary source. The generalization
to a source with ,b different symbols proceeds as follows. After rz symbols, let the
number of occurrences () 0) of each symbol be

11*12+...+rk:n

The number of distributions satisfying the above equation (see [Fel1er57]) is

)

( )
n+k-t

n

nl,

and the number of the ways ?¿ symbols can be partitioned according to a particular
distribution is

rylr2t. . . .rn!
By analogy with the binary source, we assume that each distribution is equally
probable. The probability of a particular sequence of rz symbols (with a particular
distribution) is therefore

rfr2l...r k-1 lrlr2t ...,
n

t)"t (n+fr-1)!

The conditional probability that the r,¿ + 1th symbol will be symbol i is then

rlr2,... (r¿*1)!...rht (n+k -t )! rt*1: n+krlr2! . . .rí! . . .rk! (n + ft)!

This then is the probability estimation function for a source with fr difierent
symbols.



APPENDIX B

THE WORD 66ADAPT"

AND ITS FORMS

During the writing of this thesis, it became clear that the word "adaptt' is a
problem word. For a period in the preparation of Chapter 3 chaos reignãd with
different forms of the word "adapt" being used interchangeably. Eveniually, the
author decided to address the issue explicitly.

The word "adaptt' has many forms, many of which are interchangeable.
Table õO contains a list of all the forms of "adapt" that the author has found. All
the words eppear in the Oxford English Dictionary[MurrayS3] (herewith ,,the
gPD]) except for "adaptably" and "adaptivity", whiàh are markäd with a dagger
(J). ttt_" meanings are paraphrases of the OED definition but the examples * Uv
the author.

To sort out these alternatives, the words \ivere arranged into groups that
compete for grammatical slots (Table 51).

A few notes on the table of competing words are in order. The verb
forms have few variations. The form "adaptate" is rarely used. The words
"adapter" and "adaptortt are merely difrerent spellings of ihe same word with
"adaptor" listed as rarely used. The OED'I Ig72 supplement lists the form
"adaptortt as nolv commonly used to describe electricai fittirrg.. Of the groupttadaptation", ttadaptiont' and ttadaptment", the commentaries Fowlerrs Mid,ern
English.U_s_øge[Fowler65! 

""9 Right Worils: A Guid,e to Moilern English (Isage in
AustraliafMurray-Smith87] all indicate that "adaptation" is much-*or" pofuhr
than ttadaptiont'. t'adaptmenttt is rarely used.

The author's preference in each group is marked with an asterisk (*). pluses
(*) indicate alternative choices to bã explained later.

\4iith so many words competing for the same slots, one might expect semantic
variations between them. However, the OED does not make 

"Iny "lu.r 
distinction

between the different forms. In contrast, the author has found that his ear
naturally distinguishes between words that indicate that an object is amenable
to being adapted and words that indicate that an object is capable of adapting of
its own accord. Consider the following two sentences-:

ttThe new professor proved most adaptive.tt

"The pocket knife proved most adaptable.',

In the first case, the object modifies itself; in the second, the object is modifiedbI 3tt external agent. In each case, the,*9rd "adapt" is used to inãicate a degree
of flexibility. By experimenting with different wårds in different sentences, the
author arrived a,t the following rule:
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Ad Hoc Rule: Forms beginning with adapti- indicate that an object is
capable of modifying itself. Forms beginning with adapta- indicate that
an object is capable of being modified.

This rule has been used to mark alternate forms in the table. 'Words indicating
external modification have been marked with a plus (*). Here is a table of the
alternate forms.

Internal External
Noun
Adjective
Adverb

adaptivity
adaptive
adaptively

adaptability
adaptable
adaptably

It should be emphasized that this distinction is not made in the OED, but is
merely proposed by the author of this thesis. Nevertheless, with so many forms,
the distinction might as well be made.

In this thesis we have attempted to use only the forms of the word "adapt"
marked by * and * in Table 51.
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'Word Kind Meaning
adapt verb To alter or modify so as to fit for a new use.

"I had to adapt the spanner to fit the nut.tt
adaptability adjective The quality of being adaptable.

"The adaptability of the robot was extraordinary."
adaptable adjective Capable of being adapted.

"Principles are adaptable to all ages."
adaptableness adjective :adaptability.
adaptablyt adverb In an adaptive manner.

t'The compressor compressed adaptably.tt
adaptate verb :adapt (rare).
adaptation noun Noun of action. The action of adapting something.

"\Me see this in a later adaptation of the play."
adaptational adjective Of or pertaining to adaptation.

"Models can be divided into the adaptational and
the static."

adaptative adjective :adaptive.
adaptativeness noun :adaptiveness.
adapted adjective Modified so as to suit new conditions.

('The sloth is highly adapted to moving slowly.,,
adaptedness noun The quality of being adapted or suitedl

t'The sloth has a greater degree of adaptedness."
adapter noun One who adapts other objects.

t'He was a proficient adapter of plays.',
adapting gerund Action of rendering suitable for some purpose.

"Adapting to foreign food is a challenge."
adaption noun :adaptation.
adaptitude noun :adapt*aptitude.

"He lacked adaptitude.',
adaptive adjective characterized or given to adaptation.

ttThe compressor is adaptive.,t
adaptively adverb In an adapiive manner.

t'The compressor compressed adaptively.',
adaptiveness noun The quality of being adaptive.

"The adaptiveness of the compressor \Mas good.,tadaptivityt noun The property of being able to adapt.
ttThe adaptivity of the compressor \rras good.rtadaptly adverb In a fit or a< apted manner.
"The miner adaptly scurried along the tunnel."adaptment noun Adaptation. Fitting condition.
ttThe miner's adaptment to the tunnel \¡¡as eerie."adaptness noun :adaptedness.

adaptor noun :adapter.
adaptorial noun :adaptive.
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Table 5O: The various forms of the word ,,adapt".
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VERB past adapted *
VERB present adapting *
VERB future adapt *

adaptate

NOUN for
modifier

NOUN for
modifyee

NOUN
for
quality
of
being
flexible

NOUN for
quality of
having been
modified

ADJECTIVE adaptable {
adaptational
adaptative
adaptorial
adaptive *

ADVERB adaptly
adaptably {
adaptively *

ttWe have ô to our circumstances.tt
ttWe are o to our circumstances.tt
tt\4/e will o to our circumstances."

adapter *
adaptor

"The algorithm is an efficient o."

adaptation * "Cutoff is evident in this o."
adaption
adaptment

adaptableness "The o of the algorithm is remarkable."
adaptativeness
adaptiveness
adaptivity *
adaptitude
adaptability *

adaptedness "The o of the walrus is unusual.,,

"An o algorithm compresses well.t,

"The algorithm o compressed the data.,'

Table 51: Forms of the word "adapt" arranged in grammatical slots



APPENDIX C

USER INPUT
EXPERIMENTS

C.l fntroduction

This appendix contains a description of two experiments that were performed
to investigate some characteristics of user input streams. The first experiment
investigated the redundancy of user input streams and the second investigated the
delays between instances in such streams. The first experiment indicatedìh.t ,rr",
input streams are highly redundant. The second indicated that there is a strong
relationship between the pauses between instances and the instances themselves.

318
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C.2 Experiment 22: Redundancy of LJser Input
Aim: To obtain a rough measure of the predictability of typical user input.

Method: A user's terminal line was tapped and all input from the terminal was
logged in a file. The delay between bytes (in milliseconds) was recorded as well as
the bytes themselves. The number of bytes in the file was 32948. The user, who
wa,É a tutor in the Department of Computer Science at the University of Adelaide,
knew that the line was being tapped. During the period of the tap, the user mailed
mail messages, developed programs, and did many of the other things that users
do.

The set of all repeated substrings of a string can be represented as black bars
hovering over the string. In this experiment, each instance is assigned a number,
being the length of the longest repeated substring of which ii is a mumb"r.
Histograms of these numbers can then be plotted (elsewhere).

Figure 102: Set of all substrings in a message.

As was pointed out in Section 6.6, short predictions are of little use in user
prediction. It is therefore important to ffnd ont ho* long the strings that can be
predicted are. In this experiment every substring of leng-th 1 or grãater that was
repeated in at least two different places in the input wasldentineã (figure 102).
Each occurrence of each repeated substring wus lriuw"d as a black b"t !la."d oué,
the top of a portio:n of the input text, with many of the black bars oïerlapping.
Each instance in the input was then assigned a number being the length of the
longest bar containing the instance.

Results: Figure 1O3 is a histogram of the set of numbers associated with the
instances. The horizontal axis is substring length and the vertical axis is the

whose maximal-length repeated substring was of that
shows that over 50% of instances fall within substrings
Beyond length 30, the histogram is rather flat but sti-ll

ut stream. Both these figures indicate a high degree of
predictability.

w o o I o;r;;Ï;;
155555155555
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This histogram ehowe the percentage of instancee contained in various manimal
substring lengths (Figure 102) for a user input string of length B2g4g. over
fifty percent ofinstances fall within repeated substrings oflength ten or greater.

Figure 103: Experiment 22 Percentage of lengths in raw input.
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This histogram is similar to Figure 103 but gives the results for the user input
string after escape sequences, non printables and runs of identical instances had
been removed' Despite the filtering, over 30% of instances fall within repeated
substrings of length ten or greater.

Figure 104: Experiment 22: percentage of lengths in filtered input.

It is possible that the above result was caused by special terminal codes or
sequences. To check this, the input was passed through three filters in sequence.
The first filter removed escape sequences. The second filter removed instances
of non printable symbols. The third filter replaced runs of instances of a single
symbol by a single instance of the symbol (e.g. aaaa -. a). The filtering process
removed about one third of the input stream leaving 20986 instances. Figure 104
shows the results for the filtered stream.
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The filtered stream has the same characteristics as the raw stream except that
most instances are contained in shorter strings. Nevertheless, the same striking
statistics remain. Over 30% of instances fall within a repeated substring of tength
ten or greater.

The level of redundancy in the input stream becomes more obvious when
the previous histograms are compared with a histogram of a random stream.
Figure 105 shows the histogram for a stream of 30000 randomly generated,
uniformly distributed upper-case letters.
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This histogram is similar to Figure 103 but gives results for a string of 80000
randomly generated, uniformly distributed uppeÌ-case letters. The froportion
of long repeated substrings is much smaller than for user input.

Figure 1o5: Experiment 22 Percentage of lengths in random letters.

Conclusions: Although this experiment was not performed on a large sample,
the sample taken v¡as reasonably representative. Ìhe r"sults showeJthat user
input is highly redundant and probably highly predictable. In this sample, at
least one third of the input instances lay within aìepeated substring of length ten
ol greater.
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C.3 Experiment 23: Timing Between Keystrokes

Aim: To determine if the inter-keystroke timing intervals of a typical user input
stream relate significantly to what is being typed.

Method: Two short extracts were taken from the stream captured in Experi-
ment 22. The extracts were manually chosen but were chosen by content, not by
iiming. The first extract was taken from a section of the input in which the user
was typing a mail message. The second extract was taken from a section of the
input in which the user was typing commands in the command language (VMS
DcL).

Results: In order to present the results, some method is required for representing
unprintable characters. The following mapping rules were used to 

"orr*r"rt 
all non-

printable characters into printable strings of characters.

o All printables map to themselves except 'A' which maps to ,ÂÂ,, space
which maps onto t-', and t-t which maps onto ,Â-t.

o Lettered control characters lr,26l map to ,^<uppercaseconttolchar),.

o Escape maps to tAe,.

¡ All other characters map to tAxxx', where xxx is a decimal number that
is the ASCII number of the character.
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The next two pages list all the timing information for a section of input in
which the user was typing a mail message. Each line corresponds to a single
instance. Each instance appears just before the 'I' on each line. The numberãt
the start of each line is the delay in seconds between the instance corresponding
to the line and the previous instance. The instance appears again to the right oi
the 'l' displaced to the right in proportion to the delay just dãscribed.
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The information on the previous two pages indicates that the user is pausing
between words and syllables. These pauses are so consistent and reliable that it
is possible to write a program to tolcení,ze the input based solely upon the inter-
keystroke timing intervals. Figure 106 lists an algorithm that echoes the input
stream, splitting it across lines at the points where timing information indicates
the end of a token. The algorithm always splits at delays greater lhan breøk-time
and never splits at delays less than join-time. For delays in between these limits,
the algorithm bases its decision on the average inter-instance delay since the last
split.

join-time : constant integer <- 66;
breølc-time : constant integer e 600;
renew-time : constant integer <- 300;
surn i integer <- reneu)-time;
count z integer <- L;
loop

{Delay is in milliseconds.}
reail (instance, del ay) ;
if (deløy> j oin-time) and

((d, eI ay > b re ak -tim e) or ( il el ay ) 2* (s um f co unt))) t he n
write-newlinel
su'rm?-Tenew-limel
count+ I1

else
sun¿?suTnl ilelay;
inc countl

end if;
write(instance);

end loop;

when users type input into a computer, the derays between keystrokee are
so closely related to what is being typed that it is possible to tokenize the
input using only the inter-keystroke timing information to determine the breaks
between tokens. The algorithm listed above accomplishes this. The algorithm
hae a time (join-time) below which it will not make a break and a time
(breøk-time) above which it will always make a break. For intermediate time
intervals, breaks are made if the time is greater than twice the average of the
inter-keystroke intervals since the last break.

Figure lo6: Experiment 23: Timing tokenizer algorithm.

Here is the output from the tokeni zer for the input listed earlier in which the
user rvas typing a mail message.
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Here is another example. In this extract, the user types a series of DCL
comma¡rds interspersed with a few commands to a scroll program. Here is the
start of the timing file.
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Here is what the timing tokenizer program made of the command stream.
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Conclusions: The timing information in user input is closely linked to the fine
structure of the inpult When typing in English texì, the user paused at the end of
words and phrases. The same effect *., 

".rrid"nt 
for comm.nd ürr" input in which

the user paused after commands and between words in the 
"o**arrãs. In these

experiments the relationship between the input and the timing information was so
strong that the input could almost be tokenized based on the"timing information
alone.



APPENDIX D

FURTHER RESEARCH
This appendix contains ideas for further research that arose as a result of this

research.

Experiment 8
In contrast,

r27 Binary predictions can
decomposition (e.g. a binary

D.1 The SAKDC Algorithm
Prediction data structure: Section 1.11 showed how important the predic-
tion/sample data structure is in a Markov compressor. F\rrthLr improvements to
this structure could be made. For example, time and space p"rfor*urrce might

selecting a prediction data structure for each sample
the sample; high entropy samples could use an array
, medium entropy samples a binary tree, and low en-

tropy samples a hard-coded linear search. Another alternativè is to use a small
hash table with linked list overflow.

Grouped prediction data structure: Langdon and Rissanents discovery of
the efficiency of approximating binary predictións by powers of two[Langaonst]
suggests that the same principle could be applied to predictions of more than two
symbols.l2? Predictions could be represented by k 

-e 
Zl2,er 10] disjoint sets of

symbols that partition the set of symbols. The probabiliiy .pu"" (niO,1]) would
be divided unevenly among the sets. T re probaUitity aloãatèd to àaËn'set would
be d-ivided evenly among its member symbols. As instances arrive, their symbols
would be moved probabilistically from set to set. The allocation of probability
between the sets ãould change dynamic elly as well. It might be possible to prove
a tight upper bound on the inefficiency of such a techniqul
Fstimation: Experiment 2 (Section 4.
À in accordance with the flatnese of a sa
improvement in compression. This result
of compression performance to the estim
for further improvement in estimation
avenue is the use of non-linear function
estimate of the rate of arrival of novel instances instead of the asymptotic one
currently used.

Credibility thresholds: Although Experiment B (Section 4.12.5) showed thatcredibility thresholds are detrimental [o PPM blÀding, it also'showed thatcredibility thresholds can improve DHpc blending by . fé* percent. As DHpc
blending is applicable whenever execution speed i, i*portu,rrt, one research avenue
is to investigate more sophisticated credibiùty threshåt¿r. tt might be possible to
improve DHPC blending by_ varying the credibility threshold wih theãepth andpossibly with the entropy of samples.

D_ ecaying: The effect of decaying on compression is a little unclear.
(section 4.77.77) indicated thatlhere is little benefit in decaying.

be applied to sets of more than two symbols using the technique of
tree of Q-Coders). Here a more direct generalizatiã., i. propo.ä.
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other researchers have found that it improves compression [Witten87](p. 586)
[Motrat88](table a) [AbrahamsonSg](figure 2). F\rrther ,"."u,r"Ë could resòive thiÁ
discrepancy.

Hashing: Section 4.11 mentioned that if hashing was used to access nodes, it
might be possible to dispense with the explicit tree structure. Instead, there
would be just a collection of nodes, each corresponding to a particular context
string. This would allow non-leaf nodes to be removed without restricting access
to their descendants. This in turn would allow leaf nodes and non-leaf nãdes to
be mixed freely in an LRU list.

Longcut pointers: One of the reasons that dictionary techniques are faster than
Markov techniques is that they parse and code whole strings of instances at a time.
In contrast, Markov techniques parse and code each instance separately. One idea
for speeding up Markov algorithms is dynamically to identify sequences of low
entropy transitions in the tree and replace them by longcut pointers. Longcut
pointers would be similar to shortcut pointers but would be labelled by a string
rather than by a single symbol. The idea here is to harness the speed of di"tiott*]
techniques for the phrase structureil ("comma dependent"[LangdonSa]) parts of
the source, while retaining the instance-level granularity of the Markov i""hniqn",
for the non-phrase structured (comma independent) parts. Initial exploration of
this idea indicates that complicated data structures'might be requireá.

Variable-sized history buffer¡ SAKDC implements windowed local adaptivity
by removing instances from the tree once they a,re K instances old (Sectioi +.5.+,
Section 4.13). Because each arriving instance is capable of adding rn nodes to the
tree, the supply of nodes can run out if there u,tã l"r, lhan Kln nodes. When
this happens, the SAKDC algorithm switches to a different growth regime and
recycles the least recently used nodes. A better approach is to work forwards from
the oldest part of the history removing instance. fl* the tree until enough nodes
have been freed up to continue. This uould result in a variable lengtÈ history
whose length would be determined by its entropy. This scheme is simi-lar to, bui
not identical to, SAKDC's LRU recycling scheme.

Measuring trends: Chapter 3 showed how a weight function could be used
to characterize the adaptivity of a zero-order Markov model. Each instance was
multiplied by a weight and summed into a sample. Apart from the emphasis that
the weight function placed on each instance, the orderlng of the instancäs was lost.
such ordering information might turn out to be useful ir *"urrrring trends.

- ,By treating each frequency in a sample as a signal source, predictions could
be based upon the rate of change of a sample railer than on its average past
behaviour. The rate of chattg" 

"on1d 
be calculated from estimates of the p.ot.bìfity

taken from recent and not-so-recent stretches of the history.

Rlndom Supply: Although the one, it
suffers from a very bad worst case uristic
has a poorer average performance might
b.e wgfh testing this and other heuristics in the supply system of the SAKDC
algorithm.
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An Optimized Compressor: The generality of the SAKDC algorithm precluded
many optimizations. One research avenue is to construct a highly optimized
variant of the SAKDC(Opt1) algorithm (Section 4.17.20). Among the possible
optimizations are: 

^the 
unrolling of loops, the use of strict local ãdaptivity (or

decaying)-to keep frequency counts down (so as to simplify coding),ìh" nr"'of
four-byte hashing to eliminate the tree links, the use of OHpC or LAùi estimation
to avoid exclusions, and the use of decomposition and binary arithmetic coding.

D.2 The MMDC Algorithm
The multimodal algorithm presented in this thesis resulted from the reasoning

about adaptivity developed in Chapter 3. However, the detailed mechanics of the
algorithm were arrived at through experimentation and there is much scope for
improvement. Some avenues for further research are listed below,

Formal analysis of MMDC: MMDC is an algorithm looking for a theory.
Theoretical analysis could be used to determine the circumstancãs under whiãh
the algorithm is applicable. It could also be used to determine the best parameters
under a given set of conditions. One approach is to model the transitions between
modes in a multimodal source using a Markov chain. Each state in the chain would
correspond to a simple source. Associated with each state would be a distribution
describing how long the source is likely to stay in that state. There would be a
performance matrix to indicate how well the sources compress each other. Finall¡
a negative exponential learning curve could be assumed.

Model Management and Memory: The MMDC algorithm uses a fixed number
of models, each of which receives an equal share of tie available memory. This
organization has two disadvantages:

¡ If the source has more modes than there are slots, the compressor will
thrash.

o If the source has fewer modes than there are slots, some of the
compressorts memory will be wasted on unused model slots.

These problems could be solved by using a variable number of models and
varying the allocation of memory depending on each model's performance and
activity. A danger here is that the removal ol m"*ory from a *ãd"l will degrade
its performance, causing a unstable feedback loop.

In the case of a source that has a single mode, a more sophisticated algorithm
should allocate all its memory to a singlã model.

Creation threshold: The major tension in tuning MMDC is between the desireto react quickly when the source moves, and the desire to avoid the spurious
creation of models. The trial period serves well here. However, further researchmight reveal better techniques.

ues: Although the MMDC algorithm is
mpression, it does not rely upon it. The

are the maintenance of many models
dels on the basis of their performance.
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Neither of these components require specific mechanisms. All that is required of a
submodel is that it come in locally adaptive and asymptotically adaptivã forms. A
possible avenue of future research is the construction of a high-speãd multimodal
Ziv and Lempel compressor.

Contamination¡ In the MMDC algorithm only the local and active models are
updated. When a source changes mode, the algorithm responds by switching to
a different model. However, because of the negative u*pottur,tial smoothing of-the
performance measure, there is a delay between the arrival of a new mode ãnd the
change of models. During this period, the previous model is exposed to hundreds
of instances generated by the new source mode. We call this contamination.
Fbrther research might find ways of avoiding contamination. If the exact position
of the source change could be detected (even in retrospect), the instances used to
update the old model could be transferr d to the new moáel.
TiT." slicing and Model compilation: on a sequential computer, the
multimodal algorithm will take longer to execute than a, monomodal algoríthm.
Two techniques could be used to reduce this cost.

The first technique is time slicing. Rather than obtaining predictions from
every model all the time, models that are not active could takJ turns to generate
predictions in (say) hundred byte slots. If a model performs particulally well
during its time slot, it could be run in competition with the iocal and active
model. In the general case, the models could be organized into a performance-
ordered heap, with the active model at the top. Moáels would p"r"olut" up and
down the heap according to their performance. The height oi a model would
determine the proportion of time that it is run, with modãl, ,r"u, the top of the
heap being allocated the most time. One possible time allocation is one CpU
pov¡er unit per heap level so that the active model at the top of the heap is run
continually, the two models one level down are run half the time, the next four
one quarter of the time, and so on. This would require time logarith¡nic in the
number of models.

The second technique is model compilation. Most of the models in a
multimodal algorithm will be inactive *ort of the time. It might be possible
to speed optimize models that have just become inactive on the aisrrmpti,on that
they will remain static for a while.
Anticipating mode changes: In some situations, a pattern might arise in
the switching between models. By using a Markov model to mode-l the mode
transitions of the sourcer it might be possible to predict when transitions will occur
and what the next model will be. This could be used to avoid contamination. A
danger with this technique is that it might produce self-fulfilli"g ft"fh;"i"r.
Zonesz Section 5.7.5 introduced the concept of tree zones to explain the
behaviour of the multimodal algorithm. The prã."rr"" of zoning, orr"rlup'urrd crossfertilization leads to the notion of a more nnlly grained multimodal model. Onepossibility is to maintain a single Markov t.e" ihãt not only branches backwards(to the left) in ('two dimensioñs" but "upwards" as well, ãhe upwards direction

branch. Each of the vertical branchings
the group numbers correlated somehow.
d cross fertilization while still allowing
created.
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D.3 Ljser fnterfaces

Construction: Chapter 6 of this thesis showed how the data compression
techniques described in this thesis could be used to construct a user p"ãdi"tiott
system. The next stage is to build such a system and use it. F\rrther ãvenues of
research will then become obvious.



APPENDIX E

SUMMARY OF NOTATION
This appendix contains a summary of the mathematical notation used in this

thesis. Only notation that carries meaning across a large part of the thesis is
listed. Local notation is omitted. The reader is cautioneã tËat in some parts of
the thesis, symbols with global meanings are used temporarily as local symbols.

Symbol Description

a
p
e

)

;
A
o,

C
D
d
H
h
K
I
M
n'¿

n
P
a
R
^9
Sr
s

w
11)

x
fr

v
z
a

Extensibility threshold.
Credibility threshold.
The empty string.
Confidence parameter for estimation functions.
Set of all estimation functions (.
Estimation function, mapping samples to predictions.
The set of n symbols {ø1 . . . on}.
An arbitrary symbol.
Set of all sources/compression methods.
Set of all finite-context sources/compression methods.
An arbitrary source.
The entropy of a source,
The history string (h1 is oldest element).
An arbitrary constant.
Length of a string (usually the message) in instances.
The set of integers in the range (1 . . .-).
Maximum context length. Maximum depth of a Markov tree.
Number of symbols in the source alphabet.
Set of all predictions.
Set of all states in a Markov chain.
Set of all real numbers.
Set of all finite strings (of instances of symbols).
Set of all finite strings of length /.
An arbitrary string.
Adaptivity weighting function.
Mean of a given adaptivity weighting curve.
The set of all samples.
A sample of y instances organized as n frequencies.
An abbreviation for lor¿æ(a).
Set of all integers.
Maximum number of nodes allowed in a tree.
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kinds (by mapping), 105
representation, 102
splay, 96

trial, 256
trial period, 256,257, 261
trie, 25
trust

in sarnple, 120
trust in sample, 76
Tirfte83, 17
tuning models, 300
Tìrrbo Lightning, 294
T\rrner75, 110, 113
tutor, 319
twelve days of Christmae, 288n.
twilight period, 175
two colour LRU problem, L7L

heap solution, L72
typesetting, 16
typist session, 289
typists, 303

U.S. Air Force, 62
UMC algorithm, 83, 190
unary, 35
unbalanced trees, 26
uncertainty principle, 145
undo, 294
unification

through MMDC algorithm, 288
uuiform prediction, 126
uniforrn sample, 126
uniformly furcated, 26
uniformly k-furcated, 2G



INDEX

vagrant source, 145
validity

of shortcut pointer, 181
variable order Markov models, ZB
variable order Markov techniques, 142
Variable order techniques, 7g
variable-to-fixed, 29
variable-to-variable, 2g
Yax, 267, 288

Vax computer, 191
vertical axis, 194
vertical lines, 264
vine pointers, 85, 104, 190
viruses, 20

Yannakoudakis82, 43
youngest, 159
youngest enum

experiment, 236

Wagner73, 39,42
Wasserman82,292
Waters82, 29O,292,293
WEB preprocessor, 191
weight function, 140
Weiss78, 42
Welch84, 46,54
Western reading conventions, 125
white noise, 94
white noise source, 145
White67, 41
whole, 162
whole enum

experiment, 208
WilliamsSS, 86, 105, 113, 119
window systems, 299
windowed local adaptivity, 157, 158, 162,
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