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Chapter 1

Introduction

Overview
Software is the basis of all applications. Whether for entertainment, gaming, 
communications, or medicine, many of the products people use today began as a software 
model or prototype. Based on the performance and programmability constraints of the 
system, the software engineer is tasked with determining the best implementation platform 
to get a project to market. To accomplish this task, the software engineer is aided by both 
programming techniques and a variety of hardware processing platforms.

On the programming side, previous decades yielded advances in object-oriented 
programming for code reuse and parallel computing paradigms for boosting algorithm 
performance. The advancements in programming languages, frameworks, and tools 
allowed the software engineer to quickly prototype and test different approaches to solve 
a particular problem. This need to quickly prototype a solution leads to two interesting 
questions. The first question of how to analyze and quantify one algorithm against another 
is extensively discussed in other works and is not the focus of this guide. The second 
question of where to execute the algorithm is addressed in this guide in relation to field 
programmable gate arrays (FPGAs).

Regarding where to run an algorithm, there is an increasing focus on parallelization and 
concurrency. Although the interest in the parallel and concurrent execution of software 
programs is not new, the renewed and increased interest is aided by certain trends in 
processor and application-specific integrated circuit (ASIC) design. In the past, the software 
engineer faced two choices for getting more performance out of a software algorithm: a 
custom-integrated circuit or an FPGA.

The first and most expensive option is to turn the algorithm over to a hardware engineer for 
a custom circuit implementation. The cost of this option is based on:

• Cost to fabricate the circuit

• Time to translate the algorithm into hardware

Despite advancements in fabrication process node technology that have yielded significant 
improvements in power consumption, computational throughput, and logic density, the 
cost to fabricate a custom-integrated circuit or ASIC for an application is still high. At each 
processing node, the cost of fabrication continues to increase to the point where this 
Introduction to FPGA Design with Vivado HLS 5
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Chapter 1: Introduction
approach is only economically viable for applications that ship in the range of millions of 
units.

The second option is to use an FPGA, which addresses the cost issues inherent in ASIC 
fabrication. FPGAs allow the designer to create a custom circuit implementation of an 
algorithm using an off-the-shelf component composed of basic programmable logic 
elements. This platform offers the power consumption savings and performance benefits of 
smaller fabrication nodes without incurring the cost and complexity of an ASIC 
development effort. Similar to an ASIC, an algorithm implemented in an FPGA benefits from 
the inherent parallel nature of a custom circuit.

Programming Model
The programming model of a hardware platform is one of the driving factors behind its 
adoption. Software algorithms are typically captured in C/C++ or some other high-level 
language, which abstracts the details of the computing platform. These languages allow for 
quick iteration, incremental improvements, and code portability, which are critical to the 
software engineer. For the past few decades, the fast execution of algorithms captured in 
these languages have fueled the development of processors and software compilers.

Initially, improving the runtime of software was based on two central concepts: increasing 
processor clock frequency and using specialized processors. For many years, it was common 
practice to wait a year for the next generation processor as a way to speed up execution. At 
every new higher clock frequency, the software program ran faster. Although this was 
acceptable in some cases, for a large set of applications, incremental speedup through 
processor clock frequency is not enough to deliver a viable product to market.

For this type of application, the specialized processor was created. Although there are many 
kinds of specialized processors, such as the digital signal processor (DSP) and graphics 
processing unit (GPU), all of these processors are capable of executing an algorithm written 
in a high-level language, such as C, and have function-specific accelerators to improve the 
execution of their target software applications.

With the recent paradigm shift in the design of standard and specialized processors, both 
types of processors stopped relying on clock frequency increases for program speedup and 
added more processing cores per chip. Multicore processors put program parallelization at 
the forefront of techniques used to boost software performance. The software engineer 
must now structure algorithms in a way that leads to efficient parallelization for 
performance. The techniques required in algorithm design use the same base elements of 
FPGA design. The main difference between an FPGA and a processor is the programming 
model.
Introduction to FPGA Design with Vivado HLS 6
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Chapter 1: Introduction
Historically, the programming model of an FPGA was centered on register-transfer level 
(RTL) descriptions instead of C/C++. Although this model of design capture is completely 
compatible with ASIC design, it is analogous to assembly language programming in 
software engineering. Figure 1-1 shows a traditional FPGA design flow with RTL as the 
design capture method, which illustrates how the programming model difference affects 
implementation time and achievable performance for different computation platforms.

As shown in Figure 1-1, arriving at an initial working version of a software program occurs 
relatively quickly in the project design cycle for both standard and specialized processors. 
After the initial working version, additional development effort must be allotted to achieve 
maximum performance on any implementation platform. 

This figure also shows the time it takes to develop the same software application for an 
FPGA platform. Both the initial and optimized versions of an application provide significant 
performance when compared against the same stages for both standard and specialized 
processors. RTL coding and an FPGA optimized application result in the highest 
performance implementation.

However, the development time required to arrive at this implementation is beyond the 
scope of a typical software development effort. Therefore, FPGAs were traditionally used 
only for those applications requiring a performance profile that could not be achieved by 
any other means, such as designs with multiple processors.

X-Ref Target - Figure 1-1

Figure 1-1: Design Time vs. Application Performance with RTL Design Entry
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Chapter 1: Introduction
Recent technological advances by Xilinx® remove the difference in programming models 
between a processor and an FPGA. Just as there are compilers from C and other high-level 
languages to different processor architectures, the Xilinx Vivado® High-Level Synthesis 
(HLS) compiler provides the same functionality for C/C++ programs targeted to Xilinx 
FPGAs. Figure 1-2 compares the result of the Vivado HLS compiler against other processor 
solutions available to a software engineer.

Guide Organization
There is a significant difference between the performance of an FPGA and other processors 
for the same C/C++ application. The following chapters in this guide describe the reasons 
behind this dramatic performance difference and introduce how the Vivado HLS compiler 
works.

Chapter 2: What is an FPGA?
Chapter 2, What is an FPGA? introduces the computational elements available in an FPGA 
and how they compare to a processor. It covers topics such as FPGA memory hierarchy, 
logic elements, and how these elements interrelate.

Chapter 3: Basic Concepts of Hardware Design
The difference between the hardware of a processor and an FPGA affects how a compiler for 
each target works. Chapter 3, Basic Concepts of Hardware Design covers fundamental 

X-Ref Target - Figure 1-2

Figure 1-2: Design Time vs. Application Performance with Vivado HLS Compiler
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Chapter 1: Introduction
hardware concepts that apply to both FPGA and processor-based designs. Understanding 
these concepts assists the designer in guiding the Vivado HLS compiler to create the best 
processing architecture.

Chapter 4: Vivado High-Level Synthesis
Chapter 4, Vivado High-Level Synthesis introduces the Xilinx Vivado HLS compiler. Using 
concepts from the preceding two chapters, this section describes how a C/C++ program is 
compiled for an FPGA. This chapter focuses on how the compiler extracts parallelism, 
organizes memory, and connects multiple programs within an FPGA. 

Chapter 5: Computation-Centric Algorithms
Although there is extensive literature on algorithm analysis, the nuances of computation- 
versus control-centric algorithms are largely dependent on the implementation platform. 
Chapter 5, Computation-Centric Algorithms defines computation-centric algorithms for an 
FPGA and provides examples and best practice recommendations.

Chapter 6: Control-Centric Algorithms
Control-centric algorithms can be implemented on both processors and FPGAs. The 
implementation choice depends on the reaction time required of the algorithm. Chapter 6, 
Control-Centric Algorithms provides an overview of control-centric algorithm 
implementation options and provides a networking example for user datagram protocol 
(UDP) packet processing.

Chapter 7: Software Verification and Vivado HLS
As with all compilers, the quality and correctness of the Vivado HLS compiler output 
depends on the input software. Chapter 7, Software Verification and Vivado HLS reviews 
recommended software quality techniques that apply to the Vivado HLS compiler. It 
presents examples of typical coding errors and their effect on Vivado HLS compilation as 
well as possible solutions to each problem. It also includes a section on what to do when 
program behavior cannot be fully verified at the C level.

Chapter 8: Integration of Multiple Programs
Just as most processors run multiple programs to execute an application, an FPGA can also 
build multiple programs or modules to execute a specific application. Chapter 8, 
Integration of Multiple Programs describes how to connect multiple modules in an FPGA 
and how to control these modules with a processor. It highlights the Xilinx Zynq®-7000 
System on a Chip (SoC), which combines FPGA fabric with Arm® Cortex™-A9 processors. 
Using both a consumer and producer example, this chapter also demonstrates complete 
system development, integration, and design trade-offs.
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Chapter 1: Introduction
Chapter 9: Verification of a Complete Application
With an FPGA, a complete application creates a hardware system. This system can have one 
or more modules in the FPGA fabric as well as code executing on a processor. Chapter 9, 
Verification of a Complete Application provides recommendations and best practices to 
ensure correct execution of the target application.
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Chapter 2

What is an FPGA?

Overview
An FPGA is a type of integrated circuit (IC) that can be programmed for different algorithms 
after fabrication. Modern FPGA devices consist of up to two million logic cells that can be 
configured to implement a variety of software algorithms. Although the traditional FPGA 
design flow is more similar to a regular IC than a processor, an FPGA provides significant 
cost advantages in comparison to an IC development effort and offers the same level of 
performance in most cases. Another advantage of the FPGA when compared to the IC is its 
ability to be dynamically reconfigured. This process, which is the same as loading a program 
in a processor, can affect part or all of the resources available in the FPGA fabric.

When using the Vivado® HLS compiler, it is important to have a basic understanding of the 
available resources in the FPGA fabric and how they interact to execute a target application. 
This chapter presents fundamental information about FPGAs, which is required to guide 
Vivado HLS to the best computational architecture for any algorithm.

FPGA Architecture
The basic structure of an FPGA is composed of the following elements:

• Look-up table (LUT): This element performs logic operations.

• Flip-Flop (FF): This register element stores the result of the LUT.

• Wires: These elements connect elements to one another.

• Input/Output (I/O) pads: These physically available ports get data in and out of the 
FPGA.
Introduction to FPGA Design with Vivado HLS 11
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Chapter 2: What is an FPGA?
The combination of these elements results in the basic FPGA architecture shown in 
Figure 2-1. Although this structure is sufficient for the implementation of any algorithm, 
the efficiency of the resulting implementation is limited in terms of computational 
throughput, required resources, and achievable clock frequency.

X-Ref Target - Figure 2-1

Figure 2-1: Basic FPGA Architecture

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

CLB CLB CLB CLB

X13468
Introduction to FPGA Design with Vivado HLS 12
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=12


Chapter 2: What is an FPGA?
Contemporary FPGA architectures incorporate the basic elements along with additional 
computational and data storage blocks that increase the computational density and 
efficiency of the device. These additional elements, which are discussed in the following 
sections, are:

• Embedded memories for distributed data storage

• Phase-locked loops (PLLs) for driving the FPGA fabric at different clock rates

• High-speed serial transceivers

• Off-chip memory controllers

• Multiply-accumulate blocks

The combination of these elements provides the FPGA with the flexibility to implement any 
software algorithm running on a processor and results in the contemporary FPGA 
architecture shown in Figure 2-2.

X-Ref Target - Figure 2-2

Figure 2-2: Contemporary FPGA Architecture
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Chapter 2: What is an FPGA?
LUT
The LUT is the basic building block of an FPGA and is capable of implementing any logic 
function of N Boolean variables. Essentially, this element is a truth table in which different 
combinations of the inputs implement different functions to yield output values. The limit 
on the size of the truth table is N, where N represents the number of inputs to the LUT. For 
the general N-input LUT, the number of memory locations accessed by the table is:

Equation 2-1

which allows the table to implement the following number of functions:

Equation 2-2

Note: A typical value for N in Xilinx FPGA devices is 6.

The hardware implementation of a LUT can be thought of as a collection of memory cells 
connected to a set of multiplexers. The inputs to the LUT act as selector bits on the 
multiplexer to select the result at a given point in time. It is important to keep this 
representation in mind, because a LUT can be used as both a function compute engine and 
a data storage element. Figure 2-3 shows this functional representation of the LUT.

X-Ref Target - Figure 2-3

Figure 2-3: Functional Representation of a LUT as Collection of Memory Cells
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Chapter 2: What is an FPGA?
Flip-Flop
The flip-flop is the basic storage unit within the FPGA fabric. This element is always paired 
with a LUT to assist in logic pipelining and data storage. The basic structure of a flip-flop 
includes a data input, clock input, clock enable, reset, and data output. During normal 
operation, any value at the data input port is latched and passed to the output on every 
pulse of the clock. The purpose of the clock enable pin is to allow the flip-flop to hold a 
specific value for more than one clock pulse. New data inputs are only latched and passed 
to the data output port when both clock and clock enable are equal to one. Figure 2-4 
shows the structure of a flip-flop.

X-Ref Target - Figure 2-4

Figure 2-4: Structure of a Flip-Flop
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Chapter 2: What is an FPGA?
DSP Block
The most complex computational block available in a Xilinx FPGA is the DSP block, which is 
shown in Figure 2-5. The DSP block is an arithmetic logic unit (ALU) embedded into the 
fabric of the FPGA, which is composed of a chain of three different blocks. The 
computational chain in the DSP is composed of an add/subtract unit connected to a 
multiplier connected to a final add/subtract/accumulate engine. This chain allows a single 
DSP unit to implement functions of the form:

Equation 2-3

or

Equation 2-4

Storage Elements
The FPGA device includes embedded memory elements that can be used as random-access 
memory (RAM), read-only memory (ROM), or shift registers. These elements are block 
RAMs (BRAMs), UltraRAM blocks (URAMS), LUTs, and shift registers (SRLs).

The BRAM is a dual-port RAM module instantiated into the FPGA fabric to provide on-chip 
storage for a relatively large set of data. The two types of BRAM memories available in a 
device can hold either 18 k or 36 k bits. The number of these memories available is device 
specific. The dual-port nature of these memories allows for parallel, same-clock-cycle 
access to different locations.

In terms of how arrays are represented in C/C++ code, BRAMs can implement either a RAM 
or a ROM. The only difference is when the data is written to the storage element. In a RAM 

X-Ref Target - Figure 2-5

Figure 2-5: Structure of a DSP Block
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Chapter 2: What is an FPGA?
configuration, the data can be read and written at any time during the runtime of the 
circuit. In contrast, in a ROM configuration, data can only be read during the runtime of the 
circuit. The data of the ROM is written as part of the FPGA configuration and cannot be 
modified in any way.

The UltraRAM blocks are dual-port, synchronous 288 Kb RAM with a fixed configuration of 
4,096 bits deep and 72 bits wide. They are available on UltraScale+ Devices and provide 8 
times more storage capacity than the BRAM.

As previously discussed, the LUT is a small memory in which the contents of a truth table are 
written during device configuration. Due to the flexibility of the LUT structure in Xilinx 
FPGAs, these blocks can be used as 64-bit memories and are commonly referred to as 
distributed memories. This is the fastest kind of memory available on the FPGA device, 
because it can be instantiated in any part of the fabric that improves the performance of the 
implemented circuit. 

The shift register is a chain of registers connected to each other. The purpose of this 
structure is to provide data reuse along a computational path, such as with a filter. For 
example, a basic filter is composed of a chain of multipliers that multiply a data sample 
against a set of coefficients. By using a shift register to store the input data, a built-in data 
transport structure moves the data sample to the next multiplier in the chain on every clock 
cycle. Figure 2-6 shows an example shift register.

FPGA Parallelism Versus Processor Architectures
When compared with processor architectures, the structures that comprise the FPGA fabric 
enable a high degree of parallelism in application execution. The custom processing 
architecture generated by the Vivado HLS compiler for a software program presents a 
different execution paradigm, which must be taken into account when deciding to port an 
application from a processor to an FPGA. To examine the benefits of the FPGA execution 
paradigm, this section provides a brief review of processor program execution.

X-Ref Target - Figure 2-6

Figure 2-6: Structure of an Addressable Shift Register
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Chapter 2: What is an FPGA?
Program Execution on a Processor
A processor, regardless of its type, executes a program as a sequence of instructions that 
translate into useful computations for the software application. This sequence of 
instructions is generated by processor compiler tools, such as the GNU Compiler Collection 
(GCC), which transform an algorithm expressed in C/C++ into assembly language 
constructs that are native to the processor. The job of a processor compiler is to take a C 
function of the form:

Equation 2-5

and transform it into assembly code as follows:

The assembly code in Figure 2-7 defines the addition operation to compute the value of z 
in terms of the internal registers of a processor. The code states that the input values for the 
computation are stored in registers R1 and R2, and the result of the computation is stored 
in register R3. This code is simple, and it does not express all the instructions needed to 
compute the value of z. This code only handles the computation after the data has arrived 
at the processor. Therefore, the compiler must create additional assembly language 
instructions to load the registers of the processor with data from a central memory and to 
write back the result to memory. The complete assembly program to compute the value of 
z is as follows:

The code in Figure 2-8 shows that even a simple operation, such as the addition of two 
values, results in multiple assembly instructions. The computational latency of each 
instruction is not equal across instruction types. For example, depending on the location of 
a and b, the LD operations take a different number of clock cycles to complete. If the values 
are in the processor cache, these load operations complete within a few tens of clock cycles. 
If the values are in the main, double data rate (DDR) memory, the operations take between 
hundreds and thousands of clock cycles to complete. If the values are in a hard drive, the 
load operations take even longer to complete. This is why software engineers with cache hit 
traces spend so much time restructuring their algorithms to increase the spatial locality of 
data in memory to increase the cache hit rate and decrease the processor time spent per 
instruction.

X-Ref Target - Figure 2-7

Figure 2-7: Computation Expressed Assembly Code

X-Ref Target - Figure 2-8

Figure 2-8: Complete Assembly Program to Compute Z

z a b;+=

ADD $R1,$R2,$R3

LD     a, $R1
LD     b, $R2
ADD    $R1,$R2,$R3
ST     $R3, c
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Chapter 2: What is an FPGA?
IMPORTANT: The level of effort required by the software engineer in restructuring algorithms to better 
fit the available processor cache is not required when the same operation is implemented in an FPGA.

Program Execution on an FPGA
The FPGA is an inherently parallel processing fabric capable of implementing any logical 
and arithmetic function that can run on a processor. The main difference is that the Vivado 
HLS compiler, which is used to transform software descriptions into RTL, is not hindered by 
the restrictions of a cache and a unified memory space. 

The computation of z is compiled by Vivado HLS into several LUTs required to achieve the 
size of the output operand. For example, assume that in the original software program the 
variable a, b, and z are defined with the short data type. This type, which defines a 16-bit 
data container, gets implemented as 16 LUTs by Vivado HLS.

Note: As a general rule, 1 LUT is equivalent to 1 bit of computation. 

The LUTs used for the computation of z are exclusive to this operation only. Unlike a 
processor, where all computations share the same ALU, an FPGA implementation 
instantiates independent sets of LUTs for each computation in the software algorithm.

In addition to assigning unique LUT resources per computation, the FPGA differs from a 
processor in both memory architecture and the cost of memory accesses. In an FPGA 
implementation, the Vivado HLS compiler arranges memories into multiple storage banks 
as close as possible to the point of use in the operation. This results in an instantaneous 
memory bandwidth, which far exceeds the capabilities of a processor. For example, the 
Xilinx Kintex®-7 410T device has a total of 1,590 18 k-bit BRAMs available. In terms of 
memory bandwidth, the memory layout of this device provides the software engineer with 
the capacity of 0.5M-bits per second at the register level and 23T-bits per second at the 
BRAM level.

With regard to computational throughput and memory bandwidth, the Vivado HLS 
compiler exercises the capabilities of the FPGA fabric through the processes of scheduling, 
pipelining, and dataflow. Although transparent to the user, these processes are integral 
stages of the software compilation process that extract the best possible circuit-level 
implementation of the software application.

Scheduling

Scheduling is the process of identifying the data and control dependencies between 
different operations to determine when each will execute. In traditional FPGA design, this is 
a manual process also referred to as parallelizing the software algorithm for a hardware 
implementation. 

Vivado HLS analyzes dependencies between adjacent operations as well as across time. This 
allows the compiler to group operations to execute in the same clock cycle and to set up the 
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Chapter 2: What is an FPGA?
hardware to allow the overlap of function calls. The overlap of function call executions 
removes the processor restriction that requires the current function call to fully complete 
before the next function call to the same set of operations can begin. This process is called 
pipelining and is covered in detail in the following section and remaining chapters.

Pipelining

Pipelining is a digital design technique that allows the designer to avoid data dependencies 
and increase the level of parallelism in an algorithm hardware implementation. The data 
dependence in the original software implementation is preserved for functional 
equivalence, but the required circuit is divided into a chain of independent stages. All 
stages in the chain run in parallel on the same clock cycle. The only difference is the source 
of data for each stage. Each stage in the computation receives its data values from the result 
computed by the preceding stage during the previous clock cycle. For example, to compute 
the following function the Vivado HLS compiler instantiates one multiplier and two adder 
blocks:

Equation 2-6

Figure 2-9 shows this compute structure and the effects of pipelining. It shows two 
implementations of the example function. The top implementation is the datapath required 
to compute the result y without pipelining. This implementation behaves similarly to the 
corresponding C/C++ function in that all input values must be known at the start of the 
computation, and only one result y can be computed at a time. The bottom implementation 
shows the pipelined version of the same circuit.

y a x×( ) b c+ +=
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Chapter 2: What is an FPGA?
The boxes in the datapath in Figure 2-9 represent registers that are implemented by 
flip-flop blocks in the FPGA fabric. Each box can be counted as a single clock cycle. 
Therefore, in the pipelined version, the computation of each result y takes three clock 
cycles. By adding the register, each block is isolated into separate compute sections in time. 
This means that the section with the multiplier and the section with the two adders can run 
in parallel and reduce the overall computational latency of the function. By running both 
sections of the datapath in parallel, the block is essentially computing the values y and y’ in 
parallel, where y’ is the result of the next execution of Equation 2-6. The initial computation 
of y, which is also referred to as the pipeline fill time, takes three clock cycles. After this 
initial computation, a new value of y is available at the output on every clock cycle, because 
the computation pipeline contains overlapped data sets for the current and subsequent y 
computations.

Figure 2-10 shows a pipelined architecture in which raw data (dark gray), semi-computed 
data (white), and final data (light gray) exist simultaneously, and each stage result is 
captured in its own set of registers. Thus, although the latency for such computation is in 
multiple cycles, with every cycle a new result can be produced.

X-Ref Target - Figure 2-9

Figure 2-9: FPGA Implementation of a Compute Function
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Chapter 2: What is an FPGA?
Dataflow

Dataflow is another digital design technique, which is similar in concept to pipelining. The 
goal of dataflow is to express parallelism at a coarse-grain level. In terms of software 
execution, this transformation applies to parallel execution of functions within a single 
program.

Vivado HLS extracts this level of parallelism by evaluating the interactions between different 
functions of a program based on their inputs and outputs. The simplest case of parallelism 
is when functions work on different data sets and do not communicate with each other. In 
this case, Vivado HLS allocates FPGA logic resources for each function and then runs the 
blocks in independently. The more complex case, which is typical in software programs, is 
when one function provides results for another function. This case is referred to as the 
consumer-producer scenario.

Vivado HLS supports two use models for the consumer-producer scenario. In the first use 
model, the producer creates a complete data set before the consumer can start its 
operation. Parallelism is achieved by instantiating a pair of BRAM memories arranged as 
memory banks ping and pong. Each function can access only one memory bank, ping or 
pong, for the duration of a function call. When a new function call begins, the 
HLS-generated circuit switches the memory connections for both the producer and the 
consumer. This approach guarantees functional correctness but limits the level of 
achievable parallelism to across function calls.

In the second use model, the consumer can start working with partial results from the 
producer, and the achievable level of parallelism is extended to include execution within a 
function call. The Vivado HLS-generated modules for both functions are connected through 
the use of a first in, first out (FIFO) memory circuit. This memory circuit, which acts as a 

X-Ref Target - Figure 2-10

Figure 2-10: Pipelined Architecture
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Chapter 2: What is an FPGA?
queue in software programming, provides data-level synchronization between the modules. 
At any point during a function call, both hardware modules are executing their 
programming. The only exception is that the consumer module waits for some data to be 
available from the producer before beginning computation. In Vivado HLS terminology, the 
wait time of the consumer module is referred to as the interval or initiation interval (II).
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Chapter 3

Basic Concepts of Hardware Design

Overview
One of the key differences between a processor and an FPGA is whether the processing 
architecture is fixed. This difference directly affects how a compiler for each target works. 
With a processor, the computation architecture is fixed, and the job of the compiler is to 
determine how to best fit the software application in the available processing structures. 
Performance is a function of how well the application maps to the capabilities of the 
processor and the number of processor instructions needed for correct execution.

In contrast, an FPGA is similar to a blank slate with a box of building blocks. The job of the 
Vivado® HLS compiler is to create a processing architecture from the box of building blocks 
that best fits the software program. The process of guiding the Vivado HLS compiler to 
create the best processing architecture requires fundamental knowledge about hardware 
design concepts.

This chapter covers general design concepts that apply to both FPGA and processor-based 
designs and explains how these concepts are related. This chapter does not cover detailed 
aspects of FPGA design. As with processor compilers, the Vivado HLS compiler handles the 
low-level details of the algorithm implementation into the FPGA logic fabric.

Clock Frequency
The processor clock frequency is one of the first items to consider when determining the 
execution platform of a specific algorithm. A commonly used guideline is that a high clock 
frequency translates into a higher performance execution rate of an algorithm. Although 
this might be a good first order rule for choosing between processors, it is actually 
misleading and can lead the designer to make the wrong choice when selecting between a 
processor and an FPGA.
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Chapter 3: Basic Concepts of Hardware Design
The reason this general guideline is misleading is related to the nominal difference in clock 
frequency between a processor and an FPGA. For example, when comparing the clock 
frequencies of processors and FPGAs, it is not uncommon to face the comparison shown in 
Table 3-1.

A simple analysis of the values in Table 3-1 can mislead a designer to assume the processor 
has four times the performance of the FPGA. This simple analysis incorrectly assumes that 
the only difference between the platforms is clock frequency. However, the platforms have 
additional differences.

The first major difference between a processor and an FPGA is how a software program is 
executed. A processor is able to execute any program on a common hardware platform. This 
common platform comprises the core of the processor and defines a fixed architecture onto 
which all software must be fitted. The compiler, which has a built-in understanding of the 
processor architecture, compiles the user software into a set of instructions. The resulting 
set of instructions is always executed in the same fundamental order, as shown in 
Figure 3-1.

Regardless of the type of processor, standard versus specialized, the execution of an 
instruction is always the same. Each instruction of the user application must go through the 
following stages:

1. Instruction fetch (IF)

2. Instruction decode (ID)

3. Execute (EXE)

4. Memory operations (MEM)

5. Write back (WB)

Table 3-1: Maximum Clock Frequency Examples

Processor FPGA

2 GHz 500 MHz

X-Ref Target - Figure 3-1

Figure 3-1: Processor Instruction Execution Stages
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Chapter 3: Basic Concepts of Hardware Design
The purpose of each stage is summarized in Table 3-2.

Most modern processors include multiple copies of the instruction execution path and are 
capable of running instructions with some degree of overlap. Because instructions in a 
processor usually depend on each other, the overlap between copies of the instruction 
execution hardware is not perfect. In the best of cases, only the overhead stages introduced 
by using a processor can be overlapped. The EXE stages, which are responsible for 
application computation, execute sequentially. The reasons for this sequential execution are 
related to limited resources in the EXE stage and dependence between instructions. 

Figure 3-2 shows a processor with multiple instructions executing in a semi-parallel order. 
This is the best case for a processor in which all instructions are executing as quickly as 
possible. Even in this best case, the processor is limited to only one EXE stage per clock 
cycle. This means that the user application moves forward by one operation per clock cycle. 
Even if the compiler determined that all five EXE stages could execute in parallel, the 
structure of the process would prevent it.

Table 3-2: Instruction Processing Stages

Stage Description

IF Get the instruction from program memory.

ID Decode the instruction to determine the operation and the operators.

EXE Execute the instruction on the available hardware. In a standard processor, this means the 
arithmetic logic unit (ALU) or floating point unit (FPU). A specialized processor adds on 
fixed function accelerators to the capabilities of the standard processor at this stage of 
instruction processing.

MEM Fetch data for the next instruction using memory operations.

WB Write the results of the instruction either to local registers or global memory.

X-Ref Target - Figure 3-2

Figure 3-2: Processor with Multiple Instruction Execution Units
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Chapter 3: Basic Concepts of Hardware Design
An FPGA does not execute all software on a common computation platform. It executes a 
single program at a time on a custom circuit for that program. Therefore, changing the user 
application changes the circuit in the FPGA. Unlike Figure 3-1, the EXE stage appears as 
shown in Figure 3-3 when processing in an FPGA. The presence of the MEM stage is 
application dependent.

Given this flexibility, the Vivado HLS compiler does not need to account for overhead stages 
in the platform and can find ways of maximizing instruction parallelism. Working with the 
same assumptions as in Figure 3-2, the execution profile of the same software in an FPGA is 
shown in Figure 3-4.

Based on the comparison of Figure 3-2 and Figure 3-4, the FPGA has a nominal 
performance advantage of 9x compared to the processor. Actual numbers are always 
application specific, but FPGAs generally demonstrate at least 10x the performance of a 
processor for computationally intensive applications.

Another issue hidden by only focusing on the clock frequency is the power consumption of 
a software program. The approximation to power consumption is given by:

Equation 3-1

As shown in Equation 3-1, the relationship between power consumption and clock 
frequency is supported by empirical data, which shows higher power usage in a processor 
than an FPGA for the same computational workload. By creating a custom circuit per 
software program, an FPGA is able to run at a lower clock frequency with maximum 
parallelism between operations and without the instruction interpretation overhead found 
in a processor.

X-Ref Target - Figure 3-3

Figure 3-3: FPGA Instruction Execution Stages
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Figure 3-4: FPGA with Multiple Instruction Execution Units
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Chapter 3: Basic Concepts of Hardware Design
RECOMMENDED: When selecting between a processor and an FPGA, it is recommended that 
application requirements and computational workload are analyzed based on throughput and latency 
instead of a maximum clock frequency.

Latency and Pipelining
Latency is the number of clock cycles it takes to complete an instruction or set of 
instructions to generate an application result value. Using the basic processor architecture 
shown in Figure 3-1, the latency of an instruction is five clock cycles. If the application has 
a total of five instructions, the overall latency for this simple model is 25 clock cycles. That 
is, the result of the application is not available until 25 clock cycles expire.

Application latency is a key performance metric in both FPGAs and processors. In both 
cases, the problem of latency is resolved through the use of pipelining. In a processor, 
pipelining means that the next instruction can be launched into execution before the 
current instruction is complete. This allows the overlap of overhead stages required in 
instruction set processing. The best case result of pipelining for a processor is shown in 
Figure 3-2. By overlapping the execution of instructions, the processor achieves a latency of 
nine clock cycles for the five instruction application.

In an FPGA, the overhead cycles associated with instruction processing are not present. The 
latency is measured by how many clock cycles it takes to run the EXE stage of the original 
processor instruction. For the case in Figure 3-3, the latency is one clock cycle. Parallelism 
also plays an important role in latency. For the full five instruction application, the FPGA 
latency is also one clock cycle, as shown in Figure 3-4. With the one clock cycle latency of 
the FPGA, it might not be clear why pipelining is advantageous. However, the reason for 
pipelining in an FPGA is the same as in a processor, that is, to improve application 
performance.

As previously explained, the FPGA is a blank slate with building blocks that must be 
connected to implement an application. The Vivado HLS compiler can connect the blocks 
directly or through registers. Figure 3-5 shows an implementation of the EXE stage in 
Figure 3-3 that is implemented using five building blocks.

X-Ref Target - Figure 3-5

Figure 3-5: FPGA Implementation without Pipelining
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Chapter 3: Basic Concepts of Hardware Design
Operation timing in an FPGA is the length of time it takes a signal to travel from a source 
register to a sink register. Assuming each building block in Figure 3-5 requires 2 ns to 
execute, the current design requires 10 ns to implement the functionality. The latency is still 
one clock cycle, but the clock frequency is limited to 100 MHz. The 100 MHz frequency limit 
is derived from the definition of clock frequency in an FPGA. For the case of an FPGA circuit, 
the clock frequency is defined as the longest signal travel time between source and sink 
registers.

Pipelining in an FPGA is the process of inserting more registers to break up large 
computation blocks into smaller segments. This partitioning of the computation increases 
the latency in absolute number of clock cycles but increases performance by allowing the 
custom circuit to run at a higher clock frequency.

Figure 3-6 shows the implementation of the processing architecture in Figure 3-5 after 
complete pipelining. Complete pipelining means that a register is inserted between each 
building block in the FPGA circuit. The addition of registers reduces the timing requirement 
of the circuit from 10 ns to 2 ns, which results in a maximum clock frequency of 500 MHz. In 
addition, by separating the computation into separate register-bounded regions, each 
block is allowed to always be busy, which positively impacts the application throughput.

One issue with pipelining is the latency of the circuit. The original circuit of Figure 3-5 has 
a latency of one clock cycle at the expense of a low clock frequency. In contrast, the circuit 
of Figure 3-6 has a latency of five clock cycles at a higher clock frequency.

IMPORTANT: The latency caused by pipelining is one of the trade-offs to consider during FPGA design.

Throughput
Throughput is another metric used to determine overall performance of an implementation. 
It is the number of clock cycles it takes for the processing logic to accept the next input data 
sample. With this value, it is important to remember that the clock frequency of the circuit 
changes the meaning of the throughput number.

X-Ref Target - Figure 3-6

Figure 3-6: FPGA Implementation with Pipelining

A B

R
egister

Sink/
Source

C

R
egister

Sink/
Source

D

R
egister

Sink/
Source

E

R
egister

Sink/
Source

R
egister

Sink

Time is Measured from 
Source to Sink Register

R
egister

Source

X13478
Introduction to FPGA Design with Vivado HLS 28
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=29


Chapter 3: Basic Concepts of Hardware Design
For example, both Figure 3-5 and Figure 3-6 show implementations that require one clock 
cycle between input data samples. The key difference is that the implementation in 
Figure 3-5 requires 10 ns between input samples, whereas the circuit in Figure 3-6 only 
requires 2 ns between input data samples. After the time base is known, it is clear that the 
second implementation has higher performance, because it can accept a higher input data 
rate. 

Note: The definition of throughput described in this section can also be used when analyzing 
applications executing on a processor.

Memory Architecture and Layout
The memory architecture of the selected implementation platform is one of the physical 
elements that can affect the performance of a software application. Memory architecture 
determines the upper bound on achievable performance. At some performance point, all 
applications on either a processor or an FPGA become memory bound regardless of the 
type and number of available computational resources. One strategy in FPGA design is 
understanding where the memory bound is and how it can be affected by data layout and 
memory organization.

In a processor-based system, the software engineer must fit the application on essentially 
the same memory architecture regardless of the specific type of processor. This 
commonality simplifies the process of application migration at the expense of performance. 
Common memory architecture familiar to software engineers consists of memories that are 
slow, medium, or fast based on the number of clock cycles it takes to get the data to the 
processor. These memory classifications are defined in Table 3-3.

The memory architecture shown in this table assumes that the user is presented with a 
single large memory space. Within this memory space, the user allocates and deallocates 
regions to store program data. The physical location of data and how it moves between the 
different levels in the hierarchy is handled by the computation platform and is transparent 
to the user. In this kind of system, the only way to boost performance is to reuse data in the 
cache as much as possible. 

Table 3-3: Memory Type Definitions

Memory Type Definition

Slow Mass storage devices, such as hard drives

Medium DDR memories

Fast On-chip cache memories of different sizes depending on the specific processor
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Chapter 3: Basic Concepts of Hardware Design
To achieve this goal, the software engineer must spend large amounts of time looking at 
cache traces, restructuring the software algorithm to increase data locality, and managing 
memory allocation to minimize the instantaneous memory footprint of the program. 
Although all of these techniques are portable across processors, the results are not. A 
software program must be tuned for each processor it runs on to maximize performance.

With experience in working with processor-based memory, the first difference a software 
engineer encounters when working with memory in an FPGA is the lack of fixed on-chip 
memory architecture. FPGA-based systems can be attached to slow and medium memories 
but exhibit the greatest degree of differentiation in terms of available fast memories. That 
is, instead of restructuring the software to best use an existing cache, the Vivado HLS 
compiler builds a fast memory architecture to best fit the data layout in the algorithm. The 
resulting FPGA implementation can have one or more internal banks of different sizes that 
can be accessed independently from one another.

The code examples in Figure 3-7 show best practice recommendations for addressing the 
memory requirements of a program. 

The FPGA code might surprise a seasoned software engineer with its lack of dynamic 
memory allocation. The use of dynamic memory allocation has long been part of the best 
practice guidelines for processor-based systems due to the underlying fixed memory 
architecture.

In contrast to this approach, the Vivado HLS compiler builds a memory architecture that is 
tailored to the application. This tailored memory architecture is shaped both by the size of 
the memory blocks in the program as well as by how the data is used throughout program 
execution. Current state-of-the-art compilers for FPGAs, such as Vivado HLS, require that 
the memory requirements of an application are fully analyzable at compile time.

The benefit of static memory allocation is that Vivado HLS can implement the memory for 
array A in different ways. Depending on the computation in the algorithm, the Vivado HLS 
compiler can implement the memory for A as registers, shift registers, FIFOs, or BRAMs.

Note: Despite the restriction on dynamic memory allocation, pointers are fully supported by the 
Vivado HLS compiler. For details on pointer support, see Pointers in Chapter 4.

X-Ref Target - Figure 3-7

Figure 3-7: Processor and FPGA Code Examples

Processor Code FPGA Code

void foo(......)
{
   int *A = (int *)malloc(10 * sizeof(int));
   ....
   free(A);
}

void foo(......)
{
   int A[10];
   ....

}
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Chapter 3: Basic Concepts of Hardware Design
Registers
A register implementation of a memory is the fastest possible memory structure. In this 
implementation style, each entry of A becomes an independent entity. Each independent 
entity is embedded into the computation where it is used without the need to address logic 
or additional delays.

Shift Register
In processor programming terms, a shift register can be thought of as a special case of a 
queue. In this implementation, each element of A is used multiple times in different parts of 
the computation. The key characteristic of a shift register is that every element of A can be 
accessed on every clock cycle. In addition, moving all data items to the next adjacent 
storage container requires only one clock cycle.

FIFO
A FIFO can be thought of as a queue with a single point of entry and a single point of exit. 
This kind of structure is typically used to transmit data between program loops or functions. 
There is no addressing logic involved, and the implementation details are completely 
handled by the Vivado HLS compiler.

BRAM
A BRAM is a random-access memory that is embedded into the FPGA fabric. A Xilinx FPGA 
device includes many of these embedded memories. The exact number of memories is 
device specific. In processor programming terms, this kind of memory can be thought of as 
a cache with the following limitations:

• Does not implement cache coherency, collision, and cache miss tracking logic typically 
found in a processor cache.

• Holds its values only as long as the device is powered on.

• Supports parallel same cycle access to two different memory locations.
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Chapter 4

Vivado High-Level Synthesis

Overview
The Xilinx® Vivado® High-Level Synthesis (HLS) compiler provides a programming 
environment similar to those available for application development on both standard and 
specialized processors. Vivado HLS shares key technology with processor compilers for the 
interpretation, analysis, and optimization of C/C++ programs. The main difference is in the 
execution target of the application.

By targeting an FPGA as the execution fabric, Vivado HLS enables a software engineer to 
optimize code for throughout, power, and latency without the need to address the 
performance bottleneck of a single memory space and limited computational resources. 
This allows the implementation of computationally intensive software algorithms into 
actual products, not just functionality demonstrators. This chapter introduces how the 
Vivado HLS compiler works and how it differs from a traditional software compiler.

Application code targeting the Vivado HLS compiler uses the same categories as any 
processor compiler. Vivado HLS analyzes all programs in terms of:

• Operations

• Conditional statements

• Loops

• Functions

IMPORTANT: Vivado HLS can compile almost any C/C++ program. The only coding limitation for 
Vivado HLS is with dynamic language constructs typical in processors with a single memory space. 
When using Vivado HLS, the main dynamic constructs to consider are memory allocation and pointers 
as described in this chapter.
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Chapter 4: Vivado High-Level Synthesis
Operations
Operations refer to both the arithmetic and logical components of an application that are 
involved in computing a result value. This definition intentionally excludes comparison 
statements, because these are handled in Conditional Statements. 

When working with operations, the main difference between Vivado HLS and other 
compilers is in the restrictions placed on the designer. With a processor compiler, the fixed 
processing architecture means that the user can only affect performance by limiting 
operation dependency and manipulating memory layout to maximize cache performance. 
In contrast, Vivado HLS is not constrained by a fixed processing platform and builds an 
algorithm-specific platform based on user input. This allows an HLS designer to affect 
application performance in terms of throughput, latency, and power as shown in the 
examples in this section.

Figure 4-1 shows a set of three operations involved in the computation of result F[i].

Using a processor, the resulting execution profile is similar to Figure 4-2. This application 
profile focuses only on the EXE stage of instruction processing in a central processing unit 
(CPU). This is the only stage in instruction processing that is shared between processors and 
FPGAs. In this example, the execution trace is sequential due to the execution platform, not 
the algorithm. Based on the algorithm, the values of A[i] and D[i] can be computed in 
any order or at the same time. The only algorithmic restriction is that both of these values 
must be computed before F[i].

X-Ref Target - Figure 4-1

Figure 4-1: Example Code for Three Operations

A[i] = B[i] * C[i];
D[i] = B[i] * E[i];
F[i] = A[i] + D[i];
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X-Ref Target - Figure 4-2

Figure 4-2: Execution of Example Code on a Processor
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Chapter 4: Vivado High-Level Synthesis
Figure 4-3 shows the result of compiling the code in Figure 4-1 to an FPGA using the 
default settings in Vivado HLS. The resulting execution profile is similar to that of the 
processor in that the multiplications and addition occur in sequential order. The reason for 
this default behavior is to minimize the number of building blocks required to implement 
the user application. Although an FPGA does not have a fixed processing architecture, each 
device has a maximum number of building blocks it can sustain. Therefore, the designer can 
evaluate FPGA resources versus application performance versus the number of applications 
per device.

Even with the default behavior, the implementation outperforms the processor execution 
due to the custom memory architecture created for the algorithm. On the processor, arrays 
A, B, C, D, E, and F are stored in a single memory space and can only be accessed one at a 
time. In contrast, HLS detects these memories and creates an independent memory bank for 
each array, which results in an overlap between the read operations of array B and array C.

The scheduling of the read operation of array E in clock cycle 1 shows one of the automatic 
resource optimizations from Vivado HLS. For memory operations, Vivado HLS analyzes the 
banks containing the data and where the value is consumed during computation. Although 
the read of array E can occur during clock cycle 0, Vivado HLS automatically places the 
memory operation as close as possible to the location where the data is consumed to 
reduce the amount temporary data storage in the circuit. Because the multiplier using the 
value of E does not run until clock cycle 2, there is no benefit in scheduling the read access 
to occur sooner than clock cycle 1.

X-Ref Target - Figure 4-3

Figure 4-3: Default Execution of HLS Code on an FPGA
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Chapter 4: Vivado High-Level Synthesis
Another way in which Vivado HLS helps the user control the size of the generated circuit is 
by providing data types for the sizing of variables. Similar to all compilers, Vivado HLS 
offers the user access to integer, single precision, and double precision data types. This 
enables rapid migration of software onto the FPGA but might mask algorithm inefficiencies, 
which are a result of the 32-bit and 64-bit datapaths available in processors.

For example, assume that the code in Figure 4-1 only requires 20-bit values in arrays B, C, 
and E. In the original processor code, these bit sizes would require arrays A, D, and F to be 
capable of storing 64-bit values to avoid any loss of precision. Vivado HLS can compile the 
code as is, but this results in an inefficient 64-bit datapath that consumes more resources 
than is required by the algorithm.

Figure 4-4 shows an example of how to rewrite the code in Figure 4-1 with the Vivado HLS 
arbitrary precision data types. The use of these data types enables rapid software-level 
exploration and validation of the minimum required precision needed for algorithm 
correctness. Besides reducing the number of resources required to implement a 
computation, the use of arbitrary precision data types reduces the number of levels of logic 
required to complete an operation. This in turn reduces the latency of a design.

 

As mentioned in Chapter 3, Basic Concepts of Hardware Design, pipelining, or the division 
of computation into smaller register-bound regions, is an essential FPGA design technique 
for achieving a target clock frequency. Based on the size of operations, this optimization is 
automatically implemented by Vivado HLS. Vivado HLS divides large operators into multiple 
computation stages with a corresponding increase in circuit latency.

Conditional Statements
Conditional statements are program control flow statements that are typically implemented 
as if, if-else, or case statements. These coding structures are an integral part of most 
algorithms and are fully supported by all compilers, including HLS. The only difference 
between compilers is how these types of statements are implemented.

X-Ref Target - Figure 4-4

Figure 4-4: Coding Example Using HLS Arbitrary Precision Types

ap_int<40> A[10], D[10];
ap_int<41> F[10];
ap_int<20> B[10], C[10], E[10];
...
A[i] = B[i] * C[i];
D[i] = B[i] * E[i];
F[i] = A[i] + D[i];
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Chapter 4: Vivado High-Level Synthesis
With a processor compiler, conditional statements are translated into branch operations 
that might or might not result in a context switch. The introduction of branches disrupts the 
maximum instruction execution packing shown in Figure 3-2 by introducing a dependence 
that affects which instruction is fetched next from memory. This uncertainty results in 
bubbles in the processor execution pipeline and directly affects program performance.

In an FPGA, a conditional statement does not have the same potential impact on 
performance as in a processor. Vivado HLS creates all the circuits described by each branch 
of the conditional statement. Therefore, the runtime execution of a conditional software 
statement involves the selection between two possible results rather than a context switch.

Loops
Loops are a common programming construct for expressing iterative computation. One 
common misconception is that loops are not supported when working with compilers like 
HLS. Although this might be true with early versions of compilers for FPGAs, HLS fully 
supports loops and can even do transformations that are beyond the capabilities of a 
standard processor compiler. Figure 4-5 shows an example of a simple loop.

For illustration purposes, assume that the loop takes four clock cycles per iteration 
regardless of the implementation platform. On a processor, the compiler is forced to 
schedule loop iterations sequentially for a total run time of 40 cycles, as shown in 
Figure 4-6.

HLS does not have this limitation. Because HLS creates the hardware for the algorithm, it 
can alter the execution profile of a loop by pipelining iterations. Loop iteration pipelining 
extends the concept of operation parallelization from within loop iterations to across 
iterations.

X-Ref Target - Figure 4-5

Figure 4-5: Loop Code

X-Ref Target - Figure 4-6

Figure 4-6: Loop Iteration Scheduling on a Processor

for(i=0; i < 10; i++)
{
     A = A + (B[i] * C[i]);
}
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Chapter 4: Vivado High-Level Synthesis
To reduce iteration latency, the first automatic optimization applied by Vivado HLS is 
operator parallelization to the loop iteration body. The second optimization is loop 
iteration pipelining. This optimization requires user input, because it affects the resource 
consumption and input data rates of the FPGA implementation.

The default behavior of HLS is to execute loops in the same schedule as a processor, as 
shown in Figure 4-6. This means that the code in Figure 4-5 has a processing latency of 40 
cycles and an input data rate of once every 4 cycles. In this example, the input data rate is 
defined by how quickly the values of B and C can be sampled from the input.

HLS can parallelize or pipeline the iterations of a loop to reduce computation latency and 
increase the input data rate. The user controls the level of iteration pipelining by setting the 
loop initialization interval (II). The II of a loop specifies the number of clock cycles between 
the start times of consecutive loop iterations. Figure 4-7 shows the resulting loop schedule 
after setting the value of II to 1.

To achieve this result, HLS analyzes the data dependencies and resource contentions 
between loop iterations 0 and 1 and automatically resolves issues as follows:

• To resolve data dependencies, HLS alters one of the operations in the loop body or 
queries the user for algorithm changes.

• To resolve resource contentions, HLS instantiates more copies of the resource or 
queries the user for algorithm changes.

The effect of loop pipelining on execution characteristics is summarized in Table 4-1.

X-Ref Target - Figure 4-7

Figure 4-7: Loop Iteration Scheduling with II = 1

Table 4-1: Loop Execution Profile on Different Compilers

Compiler Loop Execution Latency Input Data Rate

Processor 40 Every 4 clock cycles

Default HLS 40 Every 4 clock cycles

HLS, II = 1 14 Every clock cycle
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Functions
Functions are a programming hierarchy that can contain operators, loops, and other 
functions. The treatment of functions in both HLS and processor compilers is similar to that 
of loops.

In HLS, the main difference between loops and functions is related to terminology. HLS can 
parallelize the execution of both loops and functions. With loops, this transformation is 
typically referred to as pipelining, because there is a clear hierarchy difference between 
operators and loop iterations. With functions, operations outside of a loop body and within 
loops are in the same hierarchical context, which might lead to confusion if the term 
pipelining is used. To avoid potential confusion when working with HLS, the parallelization 
of function call execution is referred to as dataflow optimization.

The dataflow optimization instructs HLS to create independent hardware modules for all 
functions at a given level of program hierarchy. These independent hardware modules are 
capable of concurrent execution and self-synchronize during data transfer.

Dynamic Memory Allocation
Dynamic memory allocation is one of the memory management techniques available in the 
C and C++ programming languages. In this method, the user can allocate as much memory 
as necessary during program runtime. The size of the allocated memory can vary between 
executions of the program and is allocated from a central physical pool of memory as 
described in Chapter 3, Basic Concepts of Hardware Design. The function calls typically 
associated with dynamic memory allocation are shown in Table 4-2.

As discussed in Chapter 3, Basic Concepts of Hardware Design, an FPGA does not have a 
fixed memory architecture onto which the HLS compiler must fit the user application. 
Instead, HLS synthesizes the memory architecture based on the unique requirements of the 
algorithm. Therefore, all code provided to the HLS compiler for implementation in an FPGA 
must use compile time analyzable memory allocation only.

Table 4-2: Functions Used in Dynamic Memory Management

C C++

malloc() new()

calloc() delete()

free()
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Chapter 4: Vivado High-Level Synthesis
To aid the user in ensuring that all code provided to HLS is synthesizable, the compiler 
executes a coding compliance pass before analyzing the design. This code compliance pass 
flags all coding styles that are not suitable for HLS. It is the responsibility of the user to 
manually change the code and remove all instances of dynamic memory allocation.

The code in Figure 4-8 allocates a region in memory to store 10 values of 32 bits each. 

Although this coding example clearly states a constant memory allocation, the HLS code 
compliance stage does not analyze the contents of the malloc statement. HLS cannot 
synthesize code that includes any of the keywords in Table 4-2 even if the allocation is 
constant, as in the example shown in Figure 4-8. There are two possible methods of 
modifying this code to comply with HLS. The following code examples show these methods 
and explain their implications on the FPGA implementation.

The code in Figure 4-9 shows automatic memory allocation by a C/C++ program. HLS 
implements this memory style in strict accordance with the behavior stipulated by C/C++. 
This means that the memory created to store array A only stores valid data values during 
the duration of the function call containing this array. Therefore, the function call is 
responsible for populating A with valid data before each use.

The code in Figure 4-10 shows static memory allocation by a C/C++ program. The behavior 
for this type of memory allocation dictates that the contents of array A are valid across 
function calls until the program is completely shut down. When working with HLS, the 
memory that is implemented for array A contains valid data as long as there is power to the 
circuit.

Both automatic and static memory allocation techniques can increase the overall software 
memory footprint of an algorithm running on a processor. When specifying algorithms in 
C/C++ for FPGA implementation, the most important consideration is the overall goal of 
the user application. That is, the main goal when compiling to an FPGA is not creating the 
best software algorithm implementation. Instead, when using tools like HLS, the goal is to 
capture the algorithm in a way that allows the tool to infer the best possible hardware 
architecture, which results in the best possible implementation.

X-Ref Target - Figure 4-8

Figure 4-8: Dynamic Memory Allocation

X-Ref Target - Figure 4-9

Figure 4-9: HLS-Compliant Automatic Memory Allocation

X-Ref Target - Figure 4-10

Figure 4-10: HLS-Compliant Static Memory Allocation

int *A = malloc(10*sizeof(int));  

int A[10];

static int A[10];
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Chapter 4: Vivado High-Level Synthesis
Pointers
A pointer is an address to a location in memory. Some of the common uses for pointers in 
a C/C++ program are function parameters, array handling, pointer to pointer, and type 
casting. The inherent flexibility of this language construct makes it a useful and popular 
element of C/C++ code. The HLS compiler supports pointer usage that can be completely 
analyzed at compile time. An analyzable pointer usage is usage that can be fully expressed 
and computed in a pen and paper computation without the need for runtime information. 

The code in Figure 4-8 shows the use of a pointer to reference a dynamically allocated 
region in memory. As previously described, this usage is not supported with HLS, because 
the destination address of the pointer is only known during program execution. This does 
not mean that pointer usage for memory management is unsupported when using the HLS 
compiler. Figure 4-11 shows a valid coding style in which pointers are used to access a 
memory.

This code is valid, because all uses of pointer pA can be analyzed and mapped back to array 
A. Because array A is created by automatic memory allocation, HLS can fully determine the 
properties of A.

Another supported model for memories and pointers is in accessing external memory. 
When using HLS, any pointer access on function parameters implies either a variable or an 
external memory. HLS defines an external memory as any memory outside of the scope of 
the compiler-generated RTL. This means that the memory might be located in another 
function in the FPGA or in part of an off-chip memory, such as DDR.

X-Ref Target - Figure 4-11

Figure 4-11: Managing Array Access with a Pointer

int A[10];
int *pA;

pA = A;
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Chapter 4: Vivado High-Level Synthesis
In the code shown in Figure 4-12, function foo is a top-level module for HLS with data_in 
as a parameter. Based on the multiple pointer access on data_in, HLS infers that this 
function parameter is an external memory module, which must be accessed through a bus 
protocol at the hardware level. A bus protocol, such as Advanced eXtensible Interface (AXI) 
protocol, specifies how multiple functions can connect and communicate with each other.

X-Ref Target - Figure 4-12

Figure 4-12: Pointer to External Memory

void foo(int *data_in,...)
{
   int item1, item2, item3;

  item1 = *data_in;
  item2 = *(data_in + 1);
  item3 = *(data_in + 2);
  ...
}
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Chapter 5

Computation-Centric Algorithms

Overview
Although there is a large body of literature on algorithm analysis, the nuances of 
computation- versus control-centric algorithms are largely dependent on the 
implementation platform. This chapter defines computation-centric algorithms in the 
context of the Vivado® HLS compiler and FPGAs. It also includes examples and best 
practice recommendations to maximize the performance of the HLS-generated 
implementation.

A computation-centric algorithm is an algorithm that is configured once per task and 
cannot change its behavior for the duration of a task. A task in hardware is the same as a 
function call in a C/C++ program. The size of the task is under the control of the HLS user. 

RECOMMENDED: In general, it is recommended that the size of a task be based on the natural work 
division in the algorithm.

Figure 5-1 shows the code for a Sobel edge detection operation. This is an example of a 
computation-centric algorithm that can be divided into tasks of different sizes. This 
algorithm is a two-dimensional filtering operation that computes the edge of a region in an 
image by computing the gradient of each pixel in the x and y directions. As currently 
written, this code can be compiled by HLS into an FPGA implementation.

X-Ref Target - Figure 5-1

Figure 5-1: Sobel Edge Detection Algorithm—Task Choice 1

for(i = 0; i < height; i++){
     for(j = 0; j < width; j++){
          x_dir = 0;
          y_dir = 0;
          if((i > 0) && (i < (height-1)) && (j > 0) && (j<(width-1))){
          for(rowOffset = -1; rowOffset <= 1; rowOffset++){
             for(colOffset= -1; colOffset <= 1; colOffset++){
                x_dir = x_dir + input_image[i+rowOffset][j+colOffset] * Gx[1+rowOffset][1+colOffset];
                y_dir = y_dir + input_image[i+rowOffset][j+colOffset] * Gy[1+rowOffset][1+colOffset];
             }
          }
     edge_weight = ABS(x_dir) + ABS(y_dir);
     output_image[i][j] = edge_weight;
}
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Chapter 5: Computation-Centric Algorithms
To properly optimize this algorithm, the designer must first decide the size of a task. The 
size of a task determines how often the generated hardware module needs to be configured 
and how often it needs to receive a new batch of data. Figure 5-2 and Figure 5-3 show two 
possible task definitions for the code in Figure 5-1. An alternate choice is to define the code 
in Figure 5-1 as a task.

Task Choice 2 (Figure 5-2) creates a hardware module for only the gradient computation. 
The gradient computation works on a 3x3 pixel window and does not support the concept 
of a line or an image frame. The problem with this choice is the mismatch between the 
amount of work executed by this choice and the natural work division of the algorithm. The 
Sobel edge detection works at the scope of complete images. This means that for this 
choice of task size, the designer must determine how to partition the image into the 3x3 
pixel slices required by the task processor built with HLS. Either a processor or additional 
hardware modules are needed to complete the functionality of the algorithm.

Task Choice 3 (Figure 5-3) handles a full pixel line per task. This is an improvement over Task 
Choice 1, because it requires fewer additional modules to implement the complete 
functionality of the algorithm. This approach also reduces the interaction with a control 
processor to once per line. The problem with sizing a task to handle a single line at a time 
is that the underlying operation requires multiple lines to compute a result. With this 
choice, a complex control mechanism might be needed to sequence image lines into the 
HLS-generated hardware module.

X-Ref Target - Figure 5-2

Figure 5-2: Task Choice 2 for the Sobel Edge Detection Algorithm

for(rowOffset = -1; rowOffset <= 1; rowOffset++){
      for(colOffset= -1; colOffset <= 1; colOffset++){
                   x_dir = x_dir + input_image[i+rowOffset][j+colOffset] * Gx[1+rowOffset][1+colOffset];
                   y_dir = y_dir + input_image[i+rowOffset][j+colOffset] * Gy[1+rowOffset][1+colOffset];
      }
}                                                                                                         

X-Ref Target - Figure 5-3

Figure 5-3: Task Choice 3 for the Sobel Edge Detection Algorithm

for(j = 0; j < width; j++){
        x_dir = 0;
        y_dir = 0;
        if((i > 0) && (i < (height-1)) && (j > 0) && (j<(width-1))){
        for(rowOffset = -1; rowOffset <= 1; rowOffset++){
            for(colOffset= -1; colOffset <= 1; colOffset++){
               x_dir = x_dir + input_image[i+rowOffset][j+colOffset] * Gx[1+rowOffset][1+colOffset];
               y_dir = y_dir + input_image[i+rowOffset][j+colOffset] * Gy[1+rowOffset][1+colOffset];
            }
         }
      edge_weight =ABS(x_dir) + ABS(y_dir);
      output_image[i][j] = edge_weight;
}                                                                                                       
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Chapter 5: Computation-Centric Algorithms
Task Choice 1 (Figure 5-1) is the best selection for this algorithm, because it matches the 
full image per function call expressed in the code shown in Figure 5-1. This choice is a 
computation-centric task, because the configuration of the generated FPGA 
implementation is fixed for the duration of an image frame. The size of the processed image 
can be changed between frames but not after the task starts.

After the proper size of a task is determined, the user must optimize the algorithm 
implementation using HLS compiler options. For the code in Figure 5-1, the FPGA 
implementation has a target image size of 1080 pixels at 60 frames per second. This 
translates into a hardware module capable of processing 1920 x 1080 pixels at a clock 
frequency of 150 MHz with an incoming data rate of 1 pixel per clock cycle.

Data Rate Optimization
In the HLS compiler, code optimization begins with the baseline compilation. The purpose 
of the baseline compilation is to determine where the implementation bottlenecks are 
located and to set a reference point for measuring the effect of different optimizations. The 
baseline compilation builds the algorithm implementation with as few FPGA resources as 
possible and with the lowest input data rate. In the example in this chapter, the baseline 
compilation results in an incoming data rate of 1 pixel every 40 clock cycles.

When using the HLS compiler, pipeline optimization is the way to increase the input data 
rate and the parallelism in the generated implementation. As discussed in Chapter 2, What 
is an FPGA? and Chapter 3, Basic Concepts of Hardware Design, pipelining divides a large 
computation into smaller stages that can execute concurrently. When applied to a loop, 
pipelining sets the initiation interval (II) of the loop.

The loop II controls the input data rate of a loop by affecting the number of clock cycles it 
takes to start the i+1 iteration. The designer can choose where to apply the pipeline 
optimization in the algorithm code. Figure 5-4 shows the application of the pipeline 
pragma to the window computation.

Note: For details on the pragmas available in the HLS compiler, see the Vivado Design Suite User 
Guide: High-Level Synthesis (UG902) [Ref 1].
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Chapter 5: Computation-Centric Algorithms
The example in Figure 5-4 shows the pipeline optimization applied directly into the 
algorithm source as a compiler pragma. At this level in the code, the effect of the pipeline 
pragma is to compute one field in the 3x3 filter window per clock cycle. Therefore, nine 
clock cycles are required to compute the multiplications in the 3x3 window as well as one 
additional clock cycle to generate the result pixel. At the application level, this means that 
the input sample rate becomes 1 pixel every 10 clock cycles, which is not sufficient to satisfy 
the application requirements.

Figure 5-5 shows the application of the pipeline pragma to the j loop, which spans the 
columns of an image. By applying the pipeline pragma on this loop, the HLS 
implementation can achieve a 1 pixel per clock cycle input data rate. To achieve this new 
input data rate, the compiler first completely unrolls the window computation loops so that 
all gradient multiplications can occur in parallel. The unrolling procedure instantiates 
additional hardware and increases the memory bandwidth requirements to nine memory 
operations on the input image per clock cycle.

X-Ref Target - Figure 5-4

Figure 5-4: Loop Pipeline Pragma to the Window Computation

for(i = 0; i < height; i++){
     for(j = 0; j < width; j++){
          x_dir = 0;
          y_dir = 0;
          if((i > 0) && (i < (height-1)) && (j > 0) && (j<(width-1))){
          for(rowOffset = -1; rowOffset <= 1; rowOffset++){
              for(colOffset= -1; colOffset <= 1; colOffset++){
#pragma HLS PIPELINE
                 x_dir = x_dir + input_image[i+rowOffset][j+colOffset] * Gx[1+rowOffset][1+colOffset];
                 y_dir = y_dir + input_image[i+rowOffset][j+colOffset] * Gy[1+rowOffset][1+colOffset];
              }
          } 
     edge_weight =ABS(x_dir) + ABS(y_dir);
     output_image[i][j] = edge_weight;

}                                                                                                           

X-Ref Target - Figure 5-5

Figure 5-5: Loop Pipeline Pragma to the J Loop

for(i = 0; i < height; i++){
     for(j = 0; j < width; j++){
#pragma HLS PIPELINE
          x_dir = 0;
          y_dir = 0;
          if((i > 0) && (i < (height-1)) && (j > 0) && (j<(width-1))){
          for(rowOffset = -1; rowOffset <= 1; rowOffset++){
              for(colOffset= -1; colOffset <= 1; colOffset++){
                 x_dir = x_dir + input_image[i+rowOffset][j+colOffset] * Gx[1+rowOffset][1+colOffset];
                 y_dir = y_dir + input_image[i+rowOffset][j+colOffset] * Gy[1+rowOffset][1+colOffset];
              }
          } 
     edge_weight =ABS(x_dir) + ABS(y_dir);
     output_image[i][j] = edge_weight;

}                                                                                                         
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Chapter 5: Computation-Centric Algorithms
Although the HLS compiler can detect the need for a higher memory bandwidth than is 
expressed in an algorithm, the compiler cannot automatically introduce any changes that 
affect algorithm correctness. In this example, the nine concurrent memory accesses 
required by the pipeline optimization cannot be satisfied by a memory that is beyond the 
boundaries of the HLS-generated module.

Regardless of the number of ports on the external memory, an HLS-generated module can 
only connect to a single port that is capable of one transaction per clock cycle. Therefore, 
the algorithm must be modified to move the memory bandwidth requirement away from 
the module input ports and to a memory that is generated by the HLS compiler. This 
internal memory is similar to a cache in a processor. For image processing algorithms like 
Sobel edge detection, this local memory is referred to as a line buffer.

The line buffer is a multi-bank internal memory that provides the generated 
implementation with concurrent access to pixels from three different lines per clock cycle. 
Before any computation can begin, algorithms that implement a line buffer must allocate 
time to fill the structure with enough data to cover the requirements of the computation. 
This means that to satisfy the memory requirement of nine accesses per computed result, 
the algorithm must account for the movement of data through the line buffer as well as the 
additional bandwidth generated by the algorithm change.

Figure 5-6 shows the movement of image pixels through a line buffer.

The light gray boxes indicate the pixels currently stored by this memory structure. The 
purpose of this block is to store only the minimum number of pixels required for functional 
correctness and not to store the entire image. As previously mentioned, the addition of this 
memory structure introduces a delay between input pixel sampling and output pixel 
computation. For a 3x3 window operation, such as in the code shown in Figure 5-5, the line 
buffer must store two complete image lines and the first three pixels of the third line before 

X-Ref Target - Figure 5-6

Figure 5-6: Data Movement in a Line Buffer
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Chapter 5: Computation-Centric Algorithms
the first output pixel can be computed. The dark gray and black boxes indicate this latency. 
The black box highlights where the next input pixel from the source image is written. The 
dark gray box shows the location of the current computed pixel in the output image.

HLS implements a line buffer using BRAM resources from the FPGA fabric. These dual-port 
memory elements are arranged in banks in which one bank corresponds to one line. 
Therefore, the memory bandwidth available for algorithm computation triples to 3 pixels 
per clock cycle from the original 1 pixel per clock cycle. This is still not sufficient to satisfy 
the requirement of 9 pixels per clock cycle.

To meet the 9-pixel-per-clock-cycle requirement, the designer must add a memory window 
to the algorithm source code in addition to the line buffer. A memory window is a storage 
element implemented using the FF resources from the FPGA fabric. Each register in this 
memory can be accessed independently of and simultaneously to all other registers. In 
logical terms, a memory composed of FF elements can take on any shape that best fits the 
algorithm description in C/C++. 

Figure 5-7 shows a memory window for the Sobel edge detection algorithm.

The center pixel in gray highlights the pixel for which the gradient is computed. The black 
column represents the 3 pixels provided by the line buffer. At each clock cycle, the contents 
of the window shift left to make room for a new column from the line buffer. The data reuse 
and distributed implementation of the window memory provides the nine memory 
operations required by the algorithm. No additional latency is introduced into the design 
by this memory. The window data movement operations occur concurrently with those of 
the line buffer.

X-Ref Target - Figure 5-7

Figure 5-7: Memory Window
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Chapter 5: Computation-Centric Algorithms
The overall data movement from input to computation through a tiered memory 
architecture is shown in Figure 5-8.

Figure 5-9 shows the algorithm code changes required to implement the tiered memory 
architecture. This tiered architecture allows the HLS-generated implementation to achieve a 
1-pixel-per-clock-cycle input data rate. In this code example, the computation kernel of the 
algorithm is in the sobel_operator function. The main change in this code is the 
extension of the rows and columns loops by one iteration each. This extension accounts for 
the additional task execution time introduced by the line buffer. In addition, the write 
operations into the line buffer are guarded by if conditions that are based on the original 
image boundaries. The algorithm output write operations are based on the output image 
positioning, which is offset by 1 row and 1 column from the original image.

As shown in Figure 5-9, a computation-centric application can have embedded control 
statements in the form of for-loops, if-else statements, and so forth. The key characteristic 
of this kind of algorithm is that its function and behavior are fixed for the duration of a task. 
The HLS-generated module processes a batch of data based on a given configuration. The 
configuration can change between every task, but never during a task.

TIP: Line buffer manipulation libraries are part of the video libraries available with the HLS compiler. 
For more information, see the Vivado Design Suite User Guide: High-Level Synthesis (UG902) [Ref 1].

X-Ref Target - Figure 5-8

Figure 5-8: Data Movement from Input to Computation
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X-Ref Target - Figure 5-9

Figure 5-9: Sobel Edge Detection Code with Line Buffering

for(row = 0; row < rows+1; row++){
     for(col = 0; col < cols+1; col++){
          if(col < cols){
                     buff_A.shift_up(col);
                     temp = buff_A.getval(0,col);
          }
          if(col < cols & row < rows) {
                buff_A.insert_bottom(rgb2y(input_pixel[row][col]),col);
          }
          buff_C.shift_right();
          if(col < cols){
                 buff_C.insert(buff_A.getval(2,col),0,2);
                 buff_C.insert(temp,1,2);
                 buff_C.insert(rgb2y(tempx),2,2);
          }
          if( row <= 1 || col <= 1 || row > (rows-1) || col > (cols-1)){
                 edge.R = edge.G = edge.B = 0;
          } 
          else{
                 edge = sobel_operator(&buff_C);
          }
          if(row > 0 && col > 0){ 
                  AXI_PIXEL output_pixel;
                  output_pixel.data = (edge.B, edge.G);
                  output_pixel.data = (output_pixel.data, edge.R);
                  out_pix[row-1][col-1] = output_pixel;
         }
       }
     }
}
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Chapter 6

Control-Centric Algorithms

Overview
A control-centric algorithm is an algorithm that can be changed during task execution 
based on system-level factors. Whereas a computation-centric algorithm applies the same 
operations to all input data values for the duration of a task, a control-centric algorithm 
determines its operation based on the current input port status. This chapter describes the 
best practices for optimizing these types of applications with the Vivado® HLS compiler.

Expressing Control in C/C++
Before describing best practices, it is important to review how control is expressed in the C 
and C++ languages.

Loops
Loops are a fundamental programming construct for expressing iterative computation. Like 
all compilers, HLS allows loops to be expressed as for-loops, while-loops, and do-while 
loops. This construct is supported in all types of applications compiled with Vivado HLS. As 
demonstrated in the Sobel edge detection example in Chapter 5, Computation-Centric 
Algorithms, loops are essential to the capture of computation-intensive algorithms in 
C/C++. 
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Chapter 6: Control-Centric Algorithms
Figure 6-1 shows an example of a for-loop and the effects of Vivado HLS compilation. It 
illustrates how the Vivado HLS compilation generates both computation and control logic 
as part of a single FPGA implementation. Unlike previous generations of code compilers for 
FPGA fabrics, the Vivado HLS compiler does not distinguish between control and 
computation language constructs. For the code in this figure, HLS generates a pipelined 
datapath for the mathematical operations in the loop. This kind of implementation reduces 
execution latency by parallelizing computations both within and across loop iterations. In 
addition to this logic, the Vivado HLS implementation also embeds the loop controller 
logic. The loop controller logic dictates how many times the hardware is executed to 
compute the value of y.

X-Ref Target - Figure 6-1

Figure 6-1: Loop Example
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int a,b,c,x,y;
for(int i = 0; i < 20; i++)  {
  x = get();
  y = a*x + b + c;
  send(y);
}
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Chapter 6: Control-Centric Algorithms
Conditional Statements
Conditional statements are typically expressed as if-else statements in C and C++. In 
hardware implementation, this results in a choice between two results or two execution 
paths based on a trigger value. This useful construct allows the designer to exert control 
over an algorithm at either a variable or function level. Both of these use cases are fully 
supported by the HLS compiler. 

Figure 6-2 shows an example of an if-else statement in which the if statement selects 
between two different functions in an algorithm. The Vivado HLS compiler-generated 
implementation allocates FPGA resources for both function_a and function_b. Both of 
these hardware circuits run in parallel and are balanced to generate a result on the same 
clock cycle. The condition trigger in the original source code is used to select between the 
two computed results.

X-Ref Target - Figure 6-2

Figure 6-2: If-Else Example
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if (condition1) {
  result = function_a();
}
  else {
  result = function_b();
}
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Case Statements
Case statements define a specific sequence of operations or events in a program based on 
the value of an input variable. Although this construct can be used in computation-centric 
algorithms, it is more prevalent in control-centric applications where changes at the system 
level directly affect module execution. Also, in a majority of use models, case statements 
explicitly define the transition from one program control region to another.

Figure 6-3 shows an example case statement and the results of compilation with Vivado 
HLS. The compiler converts case statements into a hardware finite state machine (FSM). The 
arrays of the FSM denote the transitions between states and correspond to the case 
transitions in the code sample. Each state in the FSM also includes the computation logic 
within a program control region.

Control System Classification
After a control-centric application is captured using code constructs, the next decision 
facing the designer is the platform on which to run the application. In the past, a processor 
was often chosen as the most suitable platform. As the Zynq®-7000 SoC demonstrates, 
there are still many use cases where a processor is the best choice. However, the HLS 
compiler eliminates the issue of state machine optimization and complexity as a bottleneck 
to implementing a control algorithm in the FPGA fabric. The designer has the option of 
running the same control algorithm either on the processor or as an HLS-generated 
customer controller in the FPGA fabric. The choice between these options is then based on 
algorithm response time requirements and the consumption of FPGA fabric resources.

X-Ref Target - Figure 6-3

Figure 6-3: Case Statement Example

HLS Compilation

S1

S3

S2

X13488

switch (X){
  case S1: ... X = S2; break;
  case S2: ... X = S3; break;
  case S3: ... X = S1; break;
}
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Chapter 6: Control-Centric Algorithms
Table 6-1 shows control algorithms classified by the response time to external events.

For designs that require a very slow response time, the best implementation choice is a 
processor. This choice allows more room for computation-centric algorithms to be 
compiled into the FPGA fabric. Figure 6-4 shows an example of a system with a very slow 
control response time.

Table 6-1: Control System Classification

Control Type Execution Budget in Clock Cycles Recommended Implementation

Very slow ≥ 1,000,000 X86 processor, DSP, or Zynq-7000 
SoC

Slow 100,000 – 1,000,000 X86 processor, DSP, or Zynq-7000 
SoC with HLS-generated 
accelerators

Medium 1,000 – 100,000 Zynq-7000 SoC with HLS-generated 
accelerators

Fast ≤ 1,000 HLS-generated custom controller

X-Ref Target - Figure 6-4

Figure 6-4: Example of Very Slow Control
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Chapter 6: Control-Centric Algorithms
For designs that require an intermediate level of speed, as shown in the slow or medium 
categories, the implementation choice can either be more processors or custom logic in the 
FPGA fabric. In these cases, the control algorithm has a critical function that must be 
implemented as a hardware module. For these types of systems, the purpose of the 
hardware co-processor is to make up for communication latency or lack of processing 
speed in the control processor. Figure 6-5 shows an example of a system that requires a 
hardware co-processing element.

The final class of control-centric applications is the fast response time category. This 
category refers to control applications that require a response time and computation 
throughput higher than a processor can provide. Since the introduction of the HLS 
compiler, the scope of algorithms that fall into this category has expanded. For example, the 
HLS compiler is increasingly used to generate processor accelerator modules for the 
Zynq-7000 SoC.

UDP Packet Processing
User datagram protocol (UDP) is a stateless data transfer protocol used in computer 
networking applications. This protocol does not guarantee packet delivery nor does it 
handle lost packet recovery. Instead, it transmits packets as fast as possible on either a 
wired or wireless channel. The data rate achievable by this protocol makes it a standard for 
Internet telephony, video streaming, and other applications where data rate is more 
important than receiving every packet in the transmission.

X-Ref Target - Figure 6-5

Figure 6-5: Example System with HLS-Generated Co-Processor
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Chapter 6: Control-Centric Algorithms
Although this protocol does not keep track of packet delivery and state, it is still a 
control-centric application. The control aspects of a UDP packet processor are:

• Parsing incoming data packets at the line transmission rate

• Responding to control packets from the network

• Formatting data packets for transfer

• Handling transport channel interruptions

All of these control aspects result in the complex state machine shown in Figure 6-6. Before 
the introduction of the HLS compiler, this level of complex control was always targeted at a 
processor, even at the cost of sacrificing performance. The main reason for this 
implementation choice is the difficulty in efficiently expressing and balancing an FSM of 
this size in a manual design flow.

As shown in Figure 6-6, the UDP packet processing FSM is a complex network of 
interconnected states. Each state handles a different phase of packet processing. In addition 
to the complex interactions between states, every state can be interrupted by system-level 
events. These events might trigger a request for status information from the application or 
reconfigure how the next packet is processed. Unlike a computation-centric application, 

X-Ref Target - Figure 6-6

Figure 6-6: UDP Packet Processing FSM
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Chapter 6: Control-Centric Algorithms
there is not a well-defined task size for packet processing. Every packet must be analyzed, 
which means the duration of a task is infinite as long as there is power to the device. The 
implementation of the UDP processing FSM begins with the top-level function signature.

Figure 6-7 shows the top-level function signature of a UDP packet processing engine 
targeted for FPGA implementation using the HLS compiler. In this function, the arrays are 
used to model physical communication buffers between this module and the rest of the 
system. Also important to note is the use of the volatile keyword to mark every function 
variable that is not an array. As shown in Figure 6-6, this controller must be able to handle 
interrupts from the system during any stage of execution. The problem with this 
requirement is the function variable behavior as specified in both C and C++.

In C and C++, function variables are sampled and stored in a local copy inside the function 
memory space when the function call is issued. This means that in addition to potentially 
storing the same variable in multiple memory spaces, a C/C++ program does not detect a 
change in the value of a variable until the next function call. The volatile keyword is the 
language solution to this problem. This construct, which is familiar to the embedded 
software developer, informs the C/C++ compiler that a variable can change value during 
the duration of a function call. Therefore, the volatile variable must be accessed directly 
from the function ports every time it is used in the code. Although this language construct 
fixes the data access problem, it does not remove the internal copy of the variable.

The issue of potential duplication of data across memory spaces is resolved by the const 
qualifier. When this qualifier is applied to a function port, the compiler avoids creating the 
local copy of the variable within the function memory space. Instead, the read or write 
operation happens directly on the variable port. In the hardware, the usage of a const 
volatile qualifier allows the system to react to external inputs during a task and reduces 
the latency of the reaction.

X-Ref Target - Figure 6-7

Figure 6-7: UDP Processor Function Signature

bool udp_proc(const Xuint8 device_mac[6],
                           const Xuint32 rxdescriptor[RX_DESCRIPTOR_RAM_SIZE],
                           const Xuint8 rxram[MAX_RX_RAM],
                           const volatile bool *dma_start_ack,
                           const volatile bool *rx_irq,
                           const volatile bool Xuint8 *rx_status,
                           const volatile bool *tx_rts,
                           volatile bool *dma_start,
                           volatile bool *rx_irq_ack,
                           volatile bool *rx_lock_page)
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Chapter 6: Control-Centric Algorithms
Figure 6-8 shows the code that encapsulates the main processing of the UDP control FSM.

The execution of the UDP control FSM is divided into an initialization and normal execution 
phase. The initialization phase occurs as soon as the FPGA implementation comes out of 
reset. In this phase, status flags are set to default values and the media access control (MAC) 
address of the block is loaded from memory. The MAC address is the unique network 
identifier onto which a dynamic host configuration protocol (DHCP) address is assigned. 
After the UDP controller can broadcast its address, it starts to process network control 
packets to request and register an internet protocol (IP) address with the network. After the 
controller is properly registered in the network, it switches into a normal operating mode 
and starts generating UDP packets. Aside from the specific functionality, this code 
demonstrates how control and computational coding elements can be combined within a 
single control-centric application.

The code in Figure 6-8 shows a single level of control hierarchy based on two execution 
phases. In practice, control-centric applications are more complex than this example and 
exhibit a hierarchical control structure. The ability to capture a control hierarchy in the same 
way it is expressed for a processor is one of the key differences between HLS and other 
software compilers for hardware. 

X-Ref Target - Figure 6-8

Figure 6-8: UDP FSM Main Function

if(!server_init){
           *dma_start = false;

    *rx_irq_ack = false;
           *rx_lock_page = false;
           cs_trigger = false;
           U0:for(int i = 0; i < 6; i++) local_mac[i] = device_mac[i];
            server_init = setup_lan(rx_irq, rxdescriptor,rxram,rx_status,rx_lock_page);

Packet Engine Initialization

}else{
            tx_bc = servlet(dma_start,dma_start_ack,rx_irq,rx_irq_ack,                    
                                   rxdescriptor,rxram,rx_status,rx_lock_page,tx_rts,
                                   &cs_trigger);
            if(tx_bc > 0){ 
                  temac_0:for(tx_a = 0; tx_a < tx_bc; tx_a++){
                                     if(tx_a == (tx_bc – 1))
                                          temac_din = 0xFF00 | txram[tx_a];
                                     else
                                          temac_din = txram[tx_a];
                                   temac_txif.write(temac_din);
            }
          }
}

Normal Execution

Transmit Complete Packet
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Chapter 6: Control-Centric Algorithms
Figure 6-9 shows an example of how hierarchical control can be expressed for the HLS 
compiler. This figure is a segment of the servlet function in Figure 6-8. The servlet 
function controls all operation phases of the UDP controller after initialization. As this code 
shows, the module has constant interaction with system-level signals to determine the next 
operation. In addition, this coding style maintains the nested case statements and mix of 
computation functions typical of processor code. This facilitates the capture of functionality 
in C/C++ and aids in code migration from a processor to an FPGA.

Control-centric applications, such as the UDP processor, can be compiled and implemented 
on an FPGA with the HLS compiler. Therefore, the decision to implement this type of code 
is reduced to a resource trade-off between the needs of control code versus the needs of all 
the other functions in the application. By developing the entire application using the HLS 
compiler, the user can determine how many resources both the control- and data-centric 
functions in the design require at different performance points. The capability of the HLS 
compiler to produce multiple what-if scenarios allows the exploration of design variables, 
such as throughput versus area versus latency.

X-Ref Target - Figure 6-9

Figure 6-9: Hierarchical Control Regions in UDP Processing

case IDLE :
           *dma_start = false;
           *rx_lock_page = false;
           *rx_irq_ack = false;
           *cs_trigger = false;
            
           if(*tx_rts) state = TXFIFO_0;
           else if(*rx_irq){
                 switch(*rx_status){
                             case 0x00: state = UDP_0; break;
                             case 0x40: state = DHCP_0; break;
                             case 0x20: state = ARP_0; break;
                             default: state = ERROR_0; break;
                             }
           }
           break;
case UDP_0:
           digest_rxdescriptor(rxdescriptor);
           ... 
           break;
...

Setting of system-level control flags

Nested case statements
create hierarchical control regions

Computation and control functions are
intertwined as in any processor program
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Chapter 7

Software Verification and Vivado HLS

Overview
As with processor compilers, the quality and correctness of the Vivado® HLS compiler 
output depends on the input software. This chapter reviews the recommended software 
quality assurance techniques that apply to the Vivado® HLS compiler. It presents examples 
of typical coding errors and their effect on HLS compilation as well as possible solutions to 
each problem. It also includes a section on what to do when the behavior of a program 
cannot be fully verified at the C/C++ simulation level.

Software Test Bench
Verification of any HLS-generated module requires a software test bench. The software test 
bench serves the following important functions:

• To prove that the software targeted for FPGA implementation runs and does not create 
a segmentation fault

• To prove the functional correctness of the algorithm

Segmentation faults are an issue in HLS as they are in any other compiler. However, there is 
a difference in how the coding error that caused the issue is detected. In a processor-based 
execution, segmentation faults are caused by a program trying to access a memory location 
that is not known to the processor. The most frequent cause for this error is a user program 
trying to access a location in memory associated with a pointer address before the memory 
has been allocated and attached to the pointer. Detection of this error is relatively 
straightforward at runtime based on the following sequence of events:

1. Processor detects a memory access violation and notifies the operating system (OS).

2. OS signals the program or process causing the error.

3. After receiving the error signal from the OS, the program terminates and generates a 
core dump file for analysis.
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In an HLS-generated implementation, it is difficult to detect a segmentation fault, because 
there is no processor and no operating system monitoring program execution. The only 
indicator of a segmentation fault is the appearance of incorrect result values generated by 
the circuit. This alone is not sufficient to determine the root cause of a segmentation fault, 
because there are multiple issues that can trigger incorrect result computation.

RECOMMENDED: When working with HLS, it is recommended that the designer ensure that the 
software test bench compiles and executes the function without issues on a processor. This guarantees 
that the HLS-generated implementation will not result in a segmentation fault.

The other purpose of the software test bench is to prove the functional correctness of an 
algorithm targeted towards FPGA execution. For the generated hardware implementation, 
the HLS compiler guarantees only functional equivalence with the original C/C++ code. 
Therefore, the existence of a good software test bench is required to minimize efforts in 
hardware verification and validation.

A good software test bench is characterized by the execution of thousands or millions of 
data set tests on the software implementation of an algorithm. This allows the designer to 
assert with a high level of confidence that the algorithm was captured properly. However, 
even with many test vectors, it is sometimes still possible to detect errors in the 
HLS-generated output during hardware verification of an FPGA design. Detecting 
functional errors during hardware verification means that the software test bench was 
incomplete. Applying the offending test vector to the C/C++ execution reveals the incorrect 
statement in the algorithm.

IMPORTANT: Errors must not be fixed directly in the generated RTL. Any issues with functional 
correctness are a direct result of the functional correctness of the software algorithm.

TIP: The software test bench used to exercise an algorithm targeted for FPGA implementation with HLS 
does not have any coding style restrictions. The software engineer is free to use any valid C/C++ coding 
style or construct to thoroughly test the functional correctness of an algorithm. 
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Code Coverage
Code coverage indicates what percentage of the statements in a design are exercised by the 
test bench code. This metric, which can be generated by tools like gcov, gives an idea of the 
quality of the test vectors used to exercise the algorithm. 

At a minimum, a test bench must receive a 90% code coverage score to be considered an 
adequate test of an algorithm. This means that the test vectors trigger all branches in case 
statements, conditional if-else statements, and for loops. Aside from the overall coverage 
metric, the report generated by code coverage tools provide insight into which parts of a 
function are executed and which are not.

Figure 7-1 shows an example application that was tested with gcov.

Running gcov requires that the code is compiled with additional flags that generate the 
information needed for profiling the execution of a program. Assuming that the code from 
Figure 7-1 is present in the file example.c, gcov can be run with the command sequence 
shown in Figure 7-2.

X-Ref Target - Figure 7-1

Figure 7-1: Example Application for Code Coverage

int main()
{
   int i;
   int B[10];
   int C[10];
   int result;

   for(i=0; i < 10; i++){
        B[i] = i;
        C[i] = i;
   }
   result = example(B,C);
   return result;
}

int example(int B[10], int C[10])
{
   int i;
   int A=0;

   for(i=0; i < 10; i++){
         A += B[i] * C[i];
         if(i == 11)
              A = 0;
   }
   return A;
}

Test Bench Code Algorithm Code

X-Ref Target - Figure 7-2

Figure 7-2: gcov Command Sequence

gcc –fprofile-arcs –ftest-coverage example.c
./a.out
gcov example.c
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The gcov results indicate that 92.31% of program lines were executed, which satisfies the 
minimum 90% code coverage requirement for HLS. However, the more interesting result 
from gcov is the number of times each line of code is executed, as shown in Table 7-1.

The results show that the assignment A = 0, which occurs within the for-loop, is never 
executed. This statement alerts the user to a possible issue with the conditional statement 
gating the assignment. The gating conditional statement, i == 11, can never be true with 
the loop boundaries expressed in Figure 7-1. The algorithm must check whether this is 
expected behavior or not. HLS detects unreachable statements in C/C++, such as the 
assignment of A to 0, as dead code to be eliminated from the circuit.

Uninitialized Variables
Uninitialized variables are a result of a poor coding style in which the designer does not 
initialize variables to 0 at the point of declaration. Figure 7-3 shows an example code 
fragment with uninitialized variables.

Table 7-1: gcov Analysis of the Example Code

Number of Times Executed Code Line

- int example(int B[10], int C[10])

1 {

- int i;

1 int A = 0;

11 for(i=0; i < 10; i++){

10 A += B[i] * C[i];

10 if(i == 11)

NEVER A = 0;

- }

1 return A;

- }

X-Ref Target - Figure 7-3

Figure 7-3: Uninitialized Variable Code Fragment

int A;
int B;
...
A = B * 100;
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In this code fragment example, variable A never poses an issue because it is assigned before 
it is ever read. The issue is created by variable B, which is used in a computation before it is 
assigned a value. This usage of B falls into the category of undefined behavior in both C and 
C++. Although some processor compilers resolve the problem by automatically assigning 0 
to B at the point of declaration, HLS does not use this type of solution.

HLS assumes that any undefined behavior in the user code can be optimized out of the 
resulting implementation. This triggers an optimization cascade effect that can reduce the 
circuit to nothing. A user can detect this type of error by noticing the empty RTL files for the 
generated implementation.

A better way to detect this type of error is to use code analysis tools, such as valgrind and 
Coverity. Both of these tools flag uninitialized variables in the user program. Like all 
software quality issues, uninitialized variables must be resolved before the code is compiled 
with HLS.

Out-of-Bounds Memory Access
In HLS, memory accesses are expressed either as operations on an array or as operations on 
an external memory through a pointer. In the case of out-of-bounds memory access, the 
focus is on arrays that are converted into memory blocks by HLS. Figure 7-4 shows a code 
example with out-of-bounds memory access.

This code attempts to write data into array A at a location beyond the allocated memory 
range. In a processor compiler, this type of address overflow triggers the address counter to 
reset to 0. This means that in a processor execution of the code in Figure 7-4, the contents 
of location A[0] are 15 instead of 5. Although the result is functionally incorrect, this kind 
of error does not usually result in a program crash.

X-Ref Target - Figure 7-4

Figure 7-4: Example of Out-of-Bounds Memory Access

int A[10];
...
for(i = 0; i < 11; i++){
      A[i] = i + 5;
}
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With HLS, accessing an invalid address triggers a series of events that result in an 
irrecoverable runtime error in the generated circuit. Because the HLS implementation 
assumes that the software algorithm was properly verified, error recovery logic is not 
included in the generated FPGA implementation. Therefore, an invalid memory address is 
generated by the implementation of the code in Figure 7-4 to the BRAM resource element 
storing the value of array A. The BRAM then issues an error condition that is not expected 
by the HLS implementation, and the error is left unattended. The unattended error from the 
BRAM causes the system to hang and can only be resolved with a device reboot.

To catch cases like this before circuit compilation, it is recommended that the tool is 
executed through a dynamic code checker such as valgrind. Valgrind is a suite of tools 
designed to check and profile the quality of a C/C++ program. The valgrind Memcheck tool 
executes a compiled C/C++ program and monitors all memory operations during 
execution. This tool flags the following critical issues:

• Use of uninitialized variables (Figure 7-3)

• Invalid memory access requests (Figure 7-4)

RECOMMENDED: Before using HLS to compile a software function for FPGA execution, it is 
recommended that all of the issues flagged by a dynamic code checker are resolved by the designer.

Co-Simulation
Tools for C/C++ program analysis and functionality testing catch most of the issues that 
affect an HLS implementation. However, these tools are unable to verify whether a 
sequential C/C++ program maintains functional correctness after parallelization. This issue 
is resolved in the HLS compiler by the process of co-simulation.

Co-simulation is a process in which the generated FPGA implementation is exercised by the 
same C/C++ test bench used during software simulation. HLS handles the communication 
between the C/C++ test bench and the generated RTL in a manner that is transparent to the 
user. As part of this process, HLS invokes a hardware simulator, such as the Vivado simulator, 
to emulate how the RTL will function on the device. The main purpose of this simulation is 
to check that the parallelization guidance provided by the user did not break the functional 
correctness of the algorithm.
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By default, HLS obeys all algorithm dependencies before parallelization to ensure functional 
equivalence with the original C/C++ representation. In cases where an algorithm 
dependence cannot be fully analyzed, HLS takes a conservative approach and obeys 
dependence. This can lead the compiler to generate a conservative implementation that 
does not achieve the target performance goals of the application. Figure 7-5 shows an 
example of the code that triggers the conservative behavior in HLS.

The code shows a loop operating on arrays A and B, and the analysis issue occurs on array 
A. The index into array A depends on loop variable i and variable k. In this example, 
variable k represents a function parameter of unknown value at compile time. Therefore, 
HLS cannot prove that the write into A[k+i] occurs at a different location than the read of 
A[i] used in computing B[i]. Based on this uncertainty, HLS assumes an algorithmic 
dependence that forces the computation of A[k+i] and B[i] to occur in sequential order 
as expressed in the original C/C++ source. The user has the ability to override this 
dependence and force HLS to generate a circuit in which A[k+i] and B[i] are computed 
in parallel. The effects of this override only affect the generated circuit and can therefore 
only be verified by co-simulation.

When using co-simulation, it is important to remember that this is a simulation of parallel 
hardware being executed on a processor. Therefore, it is approximately 10,000 times slower 
than C/C++ simulation. It is also important to remember that the purpose of co-simulation 
is not to verify the functional correctness of an algorithm. Instead, the purpose is to check 
that the algorithm was not broken by user guidance to the HLS compiler.

RECOMMENDED: It is recommended that co-simulation only be run on a subset of the test vectors used 
during algorithm functional verification.

X-Ref Target - Figure 7-5

Figure 7-5: Dependence Example that Triggers Conservative HLS Implementation

for(i=0; i < M; i++){
      A[k+i] = A[i] + .....;
       B[i] = A[i] * .....;
}
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Chapter 7: Software Verification and Vivado HLS
When C/C++ Verification Is Not Possible
The majority of use cases for HLS are in algorithms that can be fully verified for functional 
correctness with a C/C++ simulation. However, there are still some cases where the C/C++ 
representation of an algorithm cannot be fully verified before HLS compilation. Figure 7-6 
shows an example of this type of code.

This code shows a snippet of a UDP packet processing engine described in C. In this 
example, all the pointers are declared with the volatile keyword. The usage of the 
volatile keyword, which is common in device driver development, alerts the compiler 
that the pointers are connected to storage elements that might change during the 
execution of the function. This kind of pointer must be read or written every time it is 
specified in the source code. Traditional compiler optimizations to coalesce pointer 
accesses are also turned off by the volatile keyword.

The issue with volatile data is that the behavior of the code cannot be fully verified in a 
C/C++ simulation. C/C++ simulation does not have the ability to change the value of a 
pointer in the middle of the execution of the function under test. Therefore, this type of 
code can only be fully verified in an RTL simulation after HLS compilation. The user must 
write an RTL test bench to test the generated circuit in all possible cases for each volatile 
pointer in the C/C++ source. The use of co-simulation is not applicable in this case, because 
it is limited by the test vectors that can be used in a C/C++ simulation. 

X-Ref Target - Figure 7-6

Figure 7-6: Code Example Using Volatile Types

case IDLE :
           *dma_start = false;
           *rx_lock_page = false;
           *rx_irq_ack = false;
           *cs_trigger = false; 
            
           if(*tx_rts) state = TXFIFO_0;
           else if(*rx_irq){
                 switch(*rx_status){
                             case 0x00: state = UDP_0; break;
                             case 0x40: state = DHCP_0; break;
                             case 0x20: state = ARP_0; break;
                             default: state = ERROR_0; break;
                 }
           }
           break;
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Chapter 8

Integration of Multiple Programs

Overview
Just as most processors run multiple programs to execute an application, an FPGA 
instantiates multiple programs or modules to execute an application. This chapter focuses 
on how to connect multiple modules in an FPGA and how to control these modules using a 
processor. The example in this chapter uses the Xilinx® Zynq®-7000 SoC to demonstrate 
interconnection between a processor and FPGA fabric.

The Zynq-7000 SoC is the first in a new class of devices targeted at low power software 
execution. This device combines an Arm® Cortex™-A9 multi-core processor with FPGA 
fabric in a single chip. The level of integration in this device eliminates the communication 
latencies and bottlenecks associated with co-processor or acceleration solutions. This 
device also eliminates the need for a PCIe® bridge to transfer data between the code 
running on the processor and the code compiled by Vivado® HLS for the FPGA. Instead, the 
interconnection of these two computation domains is through the use of the Advanced 
eXtensible Interface (AXI) protocol.

AXI
AXI is part of the Arm Advanced Microcontroller Bus Architecture (AMBA®) family of 
microcontroller buses. This standard defines how modules in a system transfer data 
between one another. The AXI communication use cases that apply to an application 
running on the Zynq-7000 SoC are:

• Memory mapped slave

• Memory mapped master

• Direct point-to-point stream

Note: For more information on AXI and how it is implemented for Xilinx FPGAs, see the AXI 
Reference Guide (UG761) [Ref 2].
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Chapter 8: Integration of Multiple Programs
Memory Mapped Slave
AXI4-Lite is a memory mapped slave connection that uses the same communication 
mechanism as a device driver in a processor-based system. The processor code accesses a 
slave accelerator core by issuing a function call to the device driver. The device driver, which 
Vivado HLS generates automatically, accesses registers in the accelerator to configure and 
trigger task execution. These registers, which can also be accessed directly without the 
driver, reside in the memory space of the processor.

A slave accelerator in the FPGA fabric cannot initiate any data transfer on its own. 
Specifically, this type of interface does not allow an accelerator to initiate data transfers 
with main memory to complete its task. The transaction diagram for this interface is shown 
in Figure 8-1. This diagram shows where clock cycles are spent during a transaction. 
Understanding the transaction sequence and timing budget enables a designer to properly 
determine the suitability and impact of this interface on application performance.

X-Ref Target - Figure 8-1

Figure 8-1: AXI4-Lite Transaction Diagram
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Memory Mapped Master
AXI4 is a memory mapped master interface, which allows an HLS-generated module to 
initiate data transactions to devices such as DDR memory without the intervention of the 
processor. A block with this interface can increase the application computational 
throughput by eliminating the time it takes for a processor to copy and transfer data from 
main memory.

It is important to remember that the function ports associated with an AXI4 interface are 
not accessible from the processor. Therefore, it is a recommended best practice for modules 
with AXI4 interfaces to include some function parameters connected to an AXI4-Lite 
interface. The slave interface allows the processor to communicate a base address from 
which the function should fetch its task data. After the transaction base address is set, the 
processor can be removed from the data transfer between memory and the acceleration 
module.

Figure 8-2 shows the transaction timing diagram for an AXI4 interface. This diagram shows 
the transaction sequence and associated overhead, which enables the designer to 
determine how suitable this interface is for a specific application.

X-Ref Target - Figure 8-2

Figure 8-2: AXI4 Transaction Diagram
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Direct Point-to-Point Stream
AXI4-Stream is a direct point-to-point communication channel between two modules in the 
FPGA fabric. As in the case of AXI4, this transmission channel is not visible in the memory 
space of the processor. It also does not have any of the overhead associated with 
addressing and fetching data from memory. Instead, data is transmitted between modules 
through a FIFO.

Analogous to a queue between functions in software development, AXI4-Stream is the 
preferred data transfer channel between functions compiled onto the FPGA fabric. 
Functions connected to this type of data transport channel run in parallel and 
self-synchronize based on the state of the channel. The function connected at the stream 
input, called the producer, transmits data as long as there is space in the channel. The 
function connected at the stream output, called the consumer, receives data as long as the 
channel reports that it is not empty.

Both consumer and producer independently interact with the AXI4-Stream channel. 
Depending on the state of the channel, a function completes a transaction or waits until the 
channel is ready. Data is never lost or skipped over, provided that the aggregate throughput 
capability of the function meets the system-level requirements.

Figure 8-3 shows the transaction timing diagram for the AXI4-Stream data transport 
channel. This channel does not provide addressing logic and has a user-defined amount of 
storage. By default, an AXI4-Stream has a depth of 1, which places the producer and the 
consumer in lockstep with each other. The degree of coupling between producer and 
consumer can be affected by changing the amount of storage in the AXI4-Stream channel.

X-Ref Target - Figure 8-3

Figure 8-3: AXI4-Stream Transaction Diagram
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Chapter 8: Integration of Multiple Programs
Design Example: Application Running on a 
Zynq-7000 SoC
This design example shows how to take processor code and transform it into an application 
that runs on a Zynq-7000 SoC. This example walks through the following steps in the 
migration process:

• Analyzing and partitioning the processor code

• Compiling the program in Vivado HLS

• Composing the system in Vivado IP integrator

• Connecting processor code and FPGA fabric functions

Note: The Arm Cortex-A9 processor inside the Zynq-7000 device can support both single program 
execution and complete operating systems, such as Linux. In either operating case, the steps 
required to build the application are the same. Therefore, this example focuses on the single 
program execution model, which demonstrates the application migration process.

Analyzing and Partitioning the Processor Code

Most software applications targeted for a Zynq-7000 device begin as applications executing 
on either a standard x86 processor or a DSP processor. Therefore, the first step in migrating 
a design is to compile the program for the Arm Cortex-A9 processor and analyze its 
performance. The performance analysis data of a program running on the Arm processor 
guides the designer in choosing how to partition the original code between processor and 
FPGA fabric.
Introduction to FPGA Design with Vivado HLS 73
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=74


Chapter 8: Integration of Multiple Programs
Figure 8-4 shows the original processor code for this example.

This design consists of a main function that calls on two sub-functions: producer and 
consumer. After compilation to the Arm processor, there are two ways of analyzing program 
performance:

• Measuring timing

This method involves instrumenting the code with timers and timing the execution of 
each sub-function on the processor.

• Using code profiling tools

This less intrusive method uses tools, such as gprof, to measure the amount of time 
spent on a function and to provide statistics on the number of times the function is 
called.

X-Ref Target - Figure 8-4

Figure 8-4: Processor Code

#include <iostream>
#include “strm_test.h”

using namespace std;

int main(void)
{
   unsigned err_cnt = 0;
   data_out_t hw_result, expected =0
   strm_data strm_array[MAX_STRM_LEN];
   strm_param_t strm_len = 42;

   // Generate expected result
   for(int i = 0; i < strm_len; i++){
         expected += i + 1;
    }

    producer(strm_array,strm_len);
    consumer(&hw_result,strm_array,strm_len);

    // Test result
    if(hw_result != expected){
        cout << “!!!ERROR”;
        err_cnt++;
    }else{
         cout << “*** Test Passed”;
    } 
    cout << “-expected:” << expected;
    cout << “ Got:” << hw_result << endl;
    return err_cnt;
}
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In this example, the results of gprof indicate that the producer and consumer functions are 
the performance bottlenecks in the application. Therefore, the decision is made to 
implement both functions in the FPGA fabric. After a function is marked for FPGA 
implementation, the function ports must be analyzed to determine the most suitable 
hardware interface.

Figure 8-5 shows the signature of the producer function.

 

The producer function includes the following ports:

• strm_out

This port is an array used for function output and is connected to the corresponding 
input in the consumer function. Because both the producer and consumer functions 
access this array as a sequential queue, the best hardware interface is the AXI4-Stream. 

• strm_len

This function parameter is an input, which must be provided by the processor. Therefore, 
this port must be mapped on an AXI4-Lite interface.

X-Ref Target - Figure 8-5

Figure 8-5: Producer Function Signature

void producer(strm_data_t strm_out[MAX_STRM_LEN],strm_param_t strm_len)
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Chapter 8: Integration of Multiple Programs
Figure 8-6 shows the function signature for the consumer function.

 

The consumer function includes the following ports:

• strm_in

This array port is connected to the same array as the producer function. Therefore, this 
port must be connected to an AXI4-Stream interface. 

• strm_len

This function parameter serves the same purpose as in the producer function. As in the 
producer function, this port is implemented as an AXI4-Lite interface.

• dout

This is an output port. Because there are no additional FPGA fabric modules in the 
design, the only choice is for the value to be transferred back to the processor. The 
transfer of data from the FPGA fabric directly to the processor occurs by issuing a 
processor interrupt. After an interrupt is acknowledged, the processor queries its 
memory space for data. The dout function parameter must be mapped into an 
AXI4-Lite interface to be accessible from the processor program.

Compiling the Program in Vivado HLS

After identifying the functions to run in the FPGA fabric, the designer prepares the source 
code for Vivado HLS compilation. In this example, the producer and consumer functions are 
implemented as independent modules in the FPGA fabric. One compilation project results 
in one module in the FPGA fabric. Therefore, in this example, the designer must run HLS 
twice to generate the corresponding modules.

RECOMMENDED: When working with multiple projects or modules, it is recommended that the source 
code is separated into different files. This simple technique prevents issues with one module 
compilation affecting the other module in the design.

HLS compilation can be controlled using a Tool Command Language (Tcl) script file. A Tcl 
script file, which is analogous to a compilation Makefile, instructs the compiler which 
function to implement and FPGA device to target.

X-Ref Target - Figure 8-6

Figure 8-6: Consumer Function Signature

void strm_consumer(data_out_t *dout, strm_data_t 
strm_in[MAX_STRM_LEN], strm_param_t strm_len)
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Chapter 8: Integration of Multiple Programs
Figure 8-7 shows the Tcl script file for the HLS compilation of the producer function.

The script is divided into the following sections:

• Project setup

This section includes the source files and the name of the function to be compiled. 
Guiding the Vivado HLS compiler is an iterative process of applying directives or 
pragmas to the design source code. Each successive refinement of a design is called a 
solution. All projects have at least one solution.

• Solution setup 

This section establishes the clock frequency and device for which the software function 
is compiled. If the designer is guiding the compiler through the use of directives, the 
solution directives are included in this section of the script.

• Compilation 

This section drives the RTL generation and packaging. The assembly of HLS programs 
into a complete Zynq-7000 device application requires the use of the Vivado IP 
integrator, which is a system composition tool. IP integrator requires modules to be 
packed in the equivalent of a software object file. 

Note: For more information on IP and IP integrator, see the Vivado Design Suite User Guide: 
Designing with IP (UG896) [Ref 3] and Vivado Design Suite User Guide: Designing IP Subsystems 
Using IP Integrator (UG994) [Ref 4].

X-Ref Target - Figure 8-7

Figure 8-7: Producer Function Example HLS Script File

## Project Setup
open_project producer_prj
set_top producer
add_file strm_producer.cpp
add_file –tb strm_consumer.cpp
add_file –tb strm_test.cpp

### Solution Setup
open_solution “solution1”
set_part {xc7z020clg484-1}
create_clock –period 5

### Compilation
csynth_design
export_design –format ipxact
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Chapter 8: Integration of Multiple Programs
The optimization of the producer and consumer functions requires pragmas to determine 
the parallelization of the generated modules and its interfaces. Figure 8-8 shows the 
optimized code for the producer function.

The producer function is parallelized by the pipeline pragma. This creates an 
implementation in which the start time of the i and i+1 iteration is separated by one clock 
cycle. In addition to the pipeline pragmas, the code shows the use of interface pragmas.

Interface pragmas define how the module is connected in the FPGA fabric. The definition 
process is separated into interface behavior and interface mapping. In this example, the 
following occurs:

1. The ap_fifo interface pragma for the strm_out port transforms an array into a 
hardware FIFO. 

2. The physical FIFO is mapped into an AXI4-Stream interface with the resource pragma. 

3. The strm_len function parameter is first assigned to an ap_none interface behavior 
and then mapped into an AXI4-Lite interface. 

Note: The AXI4-Lite interface handles the correct sequencing of the strm_len value from the 
processor. Therefore, the HLS-generated module does not need to enforce additional 
synchronization on this port.

X-Ref Target - Figure 8-8

Figure 8-8: Optimized Version of Producer Function

#include “strm_test.h”

void producer(strm_data_t strm_out[MAX_STRM_LEN],strm_param_t strm_len)
{
//Interface Behavior
#pragma HLS INTERFACE ap_none port=strm_len
#pragma HLS INTERFACE ap_fifo port=strm_out

//Interface Mapping
#pragma HLS RESOURCE variable=strm_out core=AXIS metadata=“-bus_bundle OUTPUT_STREAM”
#pragma HLS RESOURCE variable=strm_len core=AXIS4LiteS metadata=“-bus_bundle CONTROL_BUS”

for(int i = 0; i < strm_len; i++){
#pragma HLS PIPELINE
     strm_out[i] = i + 1;
    }
}
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Chapter 8: Integration of Multiple Programs
Figure 8-9 shows the code for the consumer function. This function has the same 
optimizations and pragmas as the producer function.

Composing the System in Vivado IP Integrator

Vivado IP integrator is a Xilinx FPGA design tool for system composition. One use of this 
tool is to take the blocks generated by the HLS compiler and connect them into the 
processing platform that executes the user application. In software development terms, IP 
integrator is analogous to a linker that combines all program objects into a single bitstream. 
A bitstream is the binary file used to program the FPGA fabric.

X-Ref Target - Figure 8-9

Figure 8-9: Optimized Version of Consumer Function

#include “strm_test.h”

void consumer(data_out_t *dout, strm_data_t strm_in[MAX_STRM_LEN],
                           strm_param_t strm_len)
{
//Interface Behavior
#pragma HLS INTERFACE ap_none port=dout
#pragma HLS INTERFACE ap_none port=strm_len
#pragma HLS INTERFACE ap_fifo port=strm_in

//Interface Mapping
#pragma HLS RESOURCE variable=strm_in core=AXIS metadata=“-bus_bundle OUTPUT_STREAM”
#pragma HLS RESOURCE variable=strm_len core=AXIS4LiteS metadata=“-bus_bundle CONTROL_BUS”
#pragma HLS RESOURCE variable=dout core=AXIS4LiteS metadata=“-bus_bundle CONTROL_BUS”

data_out_t accum = 0;

    for(int i = 0; i < strm_len; i++){
#pragma HLS PIPELINE
     accum += strm_in[i];
    }
    *dout = accum;
}
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Chapter 8: Integration of Multiple Programs
Connecting Processor Code and FPGA Fabric Functions

After the FPGA fabric programming binary is created in IP integrator, the designer must 
create the software that runs on the processor. The purpose of this software is to initialize 
the FPGA fabric functions, launch execution, and receive results from the fabric. For the 
overall application to be functionally equivalent to the original processor code, each 
function running in the FPGA fabric requires the following functionality in the code running 
on the Arm Cortex-A9 processor:

• Address mapping

• Initialization

• Start function

• Interrupt service routine (ISR)

• Interrupt registration in the processor exception table

• New main function to run the system

This functionality applies to both the producer and consumer functions, which are running 
in the FPGA fabric. Therefore, only the code for the producer function is shown in 
Figure 8-10.

This code shows the configuration of the producer hardware module in the processor 
program space. The first parameter states which instance of the producer function is being 
accessed in the fabric. Because there is only one instantiation of producer in the fabric, the 
value for this parameter is 0. The base address definition is provided by the system 
composition step in IP integrator. This address represents the location of the memory 
mapped accelerator within the memory space that is accessible from the processor.

X-Ref Target - Figure 8-10

Figure 8-10: Configuration of a Hardware Function in Processor Program Space

XStrm_producer_Config producer_config={
             0,
             XPAR_STRM_PRODUCER_TOP_0_S_AXI_CONTROL_BUS_BASEADDR
};
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Chapter 8: Integration of Multiple Programs
Figure 8-11 shows the initialization function required to make the producer hardware 
module available to the program running on the processor.

Figure 8-12 sets up the producer hardware module to begin task execution. This function is 
responsible for setting the module interrupts into a known state and starting task 
execution.

The ISR shown in Figure 8-13 describes how the processor reacts to an interrupt from the 
producer function in the FPGA fabric. The contents of an ISR are application specific. This 
code shows the minimum ISR required to properly interact with an HLS-generated module 
in the Zynq-7000 device.

X-Ref Target - Figure 8-11

Figure 8-11: Initialization of a Hardware Function

X-Ref Target - Figure 8-12

Figure 8-12: Hardware Function Start

X-Ref Target - Figure 8-13

Figure 8-13: Interrupt Service Routine

int ProducerSetup(){
       return XStrm_producer_Initialize(&producer,&producer_config);
}

void ProducerStart(void *InstancePtr){
         XStrm_producer *pProducer = (XStrm_producer *)InstancePtr;
         XStrm_producer_InterruptEnable(pProducer,1);
         XStrm_producer_InterruptGlobalEnable(pProducer);
         XStrm_producer_Start(pProducer);
}

void Producer(void *InstancePtr){
         XStrm_producer *pProducer = (XStrm_producer *)InstancePtr;

         //Disable the global interrupt from the producer
         XStrm_producer_InterruptGlobalDisable(pProducer);
         XStrm_producer_InterruptDisable(pProducer,0xffffffff);

         //clear the local interrupt
         XStrm_producer_InterruptClear(pProducer,1);

         ProducerDone = 1;
         //restart the core if it should be run again
         if(RunProducer){
             ProducerStart(pProducer);
         }
}
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Chapter 8: Integration of Multiple Programs
All interrupt service routines must be registered in the processor exception table. After the 
processor interrupt controller is initialized, the main program can start executing the user 
application. Figure 8-14 shows how to configure the exception table for the Zynq-7000 
device.

X-Ref Target - Figure 8-14

Figure 8-14: Configuration of the Processor Exception Table

int SetupInterrupt()
{
   //This function sets up the interrupt on the ARM
   int result;
   XScuGic_Config *pCfg = 
   XScuGic_LookupConfig(XPAR_SCUGIC_SINGLE_DEVICE_ID);
   if(pCfg == NULL){
          print(“Interrupt Configuration Lookup Failed\n\r”);
          return XST_FAILURE;
   }
   result = XScuGic_CfgInitialize(&ScuGic,pCfg,pCfg->CpuBaseAddress);
   if(result != XST_SUCCESS){
            return result;
   }
   //self test
   result = XScuGic_SelfTest(&ScuGic);
   if(result != XST_SUCCESS){
              return result;
   }
   // Initialize the exception handler
   Xil_ExceptionInit();
   //Register the exception handler
   Xil_ExceptionRegisterHandler(XIL_EXCEPTION_ID_INT,(Xil_ExceptionHandler)XScuGic_InterruptHandler,&ScuGic);
   //Enable the exception handler
   Xil_ExceptionEnable();
   //Connect the Producer ISR to the exception table
   result = XScuGic_Connect(&ScuGic,XPAR_FABRIC_STRM_PRODUCER_TOP_0_INTERRUPT_INT,
                                                   (Xil_InterruptHandler)ProducerIsr,&producer);
   if(result != XST_SUCCESS){
                  return result;
    }
    //Connect the Consumer ISR to the exception table
    result = XScuGic_Connect(&ScuGic,XPAR_FABRIC_STRM_CONSUMER_TOP_0_INTERRUPT_INTR,
                                                  (Xil_InterruptHandler)ConsumerIsr,&consumer);
    if(result != XST_SUCCESS){
                  return result;
    }
    //Enable the interrupts for the Producer and Consumer
    XScuGic_Enable(&ScuGic,XPAR_FABRIC_STRM_PRODUCER_TOP_0_INTERRUPT_INTR);
    XScuGic_Enable(&ScuGic,XPAR_FABRIC_STRM_CONSUMER_TOP_0_INTERRUPT_INTR);
     return XST_SUCCESS;
}

Introduction to FPGA Design with Vivado HLS 82
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=83


Chapter 8: Integration of Multiple Programs
Figure 8-15 shows the new main program for the application. After the hardware is set up 
and the processor environment is configured, there is no computation left on the processor 
for this example. All the computation was moved into the FPGA fabric through the use of 
HLS compilation. The purpose of the processor in this case is to launch a task on each 
hardware module and gather the results after the modules complete a task.

X-Ref Target - Figure 8-15

Figure 8-15: Processor Main Function

int main()
{
  Init_platform();

  print(“Producer Consumer Example\n\r”);
  int length;
  int status;
  int result;
  length = 50;
  printf(“Length of stream = %d\n\r”,length);
  
  status = ProducerSetup();
  if(status != XST_SUCCESS){
     print(“Producer setup failed\n\r”);
  }
  status = ConsumerSetup();
  if(status != XST_SUCCESS){
      print(“Consumer setup failed\n\r”);
  }
  //Setup the interrupt
  status = SetupInterrupt();
  if(status != XST_SUCCESS){
       print(“Interrupt setup failed\n\r”);
   }

  XStrm_consumer_SetStrm_len(&consumer, length);
  XStrm_producer_Set_Strm_len(&producer,length);

  ProducerStart(&producer);
  ConsumerStart(&consumer);

  while(!ProducerDone) print(“waiting for producer to finish\n\r”);
  while(!ConsumerResult) print(“waiting for consumer to finish\n\r”);

  result = XStrm_consumer_GetDout(&consumer);
  printf(“Consumer result = %d\n\r”,result);
  print(“Finished\n\r”);

  cleanup_platform();

  return 0;
}
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Chapter 9

Verification of a Complete Application

Overview
In FPGA design, a complete application refers to a hardware system that implements the 
functionality captured by the software representation of a design. There are two main 
categories of systems that can be built on an FPGA using the Vivado® HLS compiler:

• Standalone compute systems

• Processor-based systems

Standalone Compute Systems
The standalone compute system is an FPGA implementation created by one or more 
HLS-generated modules connected together to implement a software application. In these 
types of systems, the configuration of the algorithm is fixed and loaded during device 
configuration. The modules generated by the HLS compiler are connected to external FPGA 
pins for data transmit and receive transactions. This is the easiest kind of system to verify. 
The verification of a standalone system is divided into the following stages:

• Module verification

• Connectivity verification

• Application verification

• Device validation

Module Verification
Module verification of an HLS-generated block is covered in detail in Chapter 7, Software 
Verification and Vivado HLS. After the block is fully verified for functional correctness in 
both software and co-simulation, the designer must test the block for in system error 
tolerance.
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Chapter 9: Verification of a Complete Application
Both software simulation and co-simulation are focused on testing the functional 
correctness of an algorithm in isolation. That is, the algorithm and compiled module are 
tested to ensure correct functionality when all inputs and outputs are handled in an ideal 
manner. This thorough level of testing helps to ensure correctness after data is supplied to 
the module. It also helps to reduce the verification burden of later stages by eliminating the 
internal processing core of a module as a possible source of error. The only module-level 
issue that is not handled by this methodology is verification that the module can recover 
fully from incorrect handshaking at its interfaces.

In-system testing tests how the HLS-generated module reacts to incorrect toggling of its 
input and output ports. The purpose of this testing is to eliminate I/O behavior as an error 
source that can crash or otherwise adversely affect the module under test. The types of 
improper use cases tested in this methodology are:

• Erratic clock signal toggling

• Reset operation and random reset pulsing

• Input ports receiving data at different rates

• Output ports being sampled at different rates

• Interface protocol violations

These tests, which are examples of system-level behavior, ensure that the HLS-generated 
module functions as expected under all circumstances. The amount of testing required at 
this stage depends on the types of interfaces and the integration methodology. By using 
HLS default settings to generate AXI-compliant interfaces, the designer can avoid writing 
an exhaustive test bench of incorrect system-level behavior. AXI-compliant interfaces are 
fully tested and verified by the developers of the HLS compiler.

Connectivity Verification
Connectivity verification is a sequence of tests to check that the modules in an application 
are properly connected to each other. As with module verification, the amount of testing 
required depends on the system integration methodology. As discussed in Chapter 8, 
Integration of Multiple Programs, applications can be assembled either manually or with 
the assistance of FPGA design tools.

FPGA design tool assistance is provided in both the Xilinx® System Generator and Vivado IP 
integrator design flows. These graphical module connection tools handle all the aspects 
related to module connection. As part of these flows, each tool checks the port types and 
protocol compliance of each module in the application. If each module has undergone 
module verification, there is no need for additional user-directed connectivity testing with 
either of these flows.
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Chapter 9: Verification of a Complete Application
The manual integration flow requires the user to write an application top-level module in 
RTL and manually connect the RTL ports of every module that makes up an application. This 
is the most error-prone flow and must be verified. The amount of testing required can be 
decreased by using HLS compiler defaults and generating AXI interfaces for every module 
port.

For systems built around AXI interfaces, the connectivity can be verified through the use of 
a bus functional model (BFM). The BFM provides the Xilinx-verified behavior of AXI buses 
and point-to-point connections. These models can be used for traffic generators, which 
help prove the correct connection of HLS-generated modules as part of an RTL simulation. 

IMPORTANT: It is important to remember that the purpose of this simulation is only to check 
connectivity and the proper flow of data through the system. The connectivity verification step does not 
verify the functional correctness of the application.

Application Verification
Application verification is the final step before running the application on the FPGA device. 
The previous steps in the flow focused on checking the quality of the individual algorithms 
that compose an application as well as checking that everything is connected properly. 
Application verification focuses on checking that the original software model matches the 
results of the FPGA implementation. If the application is composed of a single 
HLS-generated module, this stage is the same as module verification. In cases where the 
application is composed of two or more HLS-generated modules, the verification process 
starts with the original software model.

The designer must extract application input and output test vectors from the software 
model to be used in an RTL simulation. Because the construction of the hardware 
implementation is verified in multiple stages, the application verification does not need to 
be an exhaustive simulation. The simulation can run as many test vectors as needed for the 
designer to feel confident in the FPGA implementation.

Device Validation
After an application is assembled in RTL using either automated or manual integration 
flows, the design goes through an additional compilation stage to generate the binary or 
bitstream required to program the FPGA. In the terminology of FPGA design, the 
compilation of RTL into a bitstream is referred to as logic synthesis, implementation, and 
bitstream generation. After the bitstream is generated, the FPGA device can be 
programmed. The application is validated after the hardware runs correctly for an amount 
of time specified by the designer.
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Chapter 9: Verification of a Complete Application
Processor-Based Systems
For the module and connectivity verification stages, the verification flow for a 
processor-based system is the same as the standalone system. The major difference is that 
a portion of the application is running on the processor. In the Zynq®-7000 SoC, this means 
that part of the application runs on the embedded Arm® Cortex™-A9 processors and part 
is compiled by HLS to execute on the FPGA fabric. This partitioning presents a verification 
challenge that can be addressed through the use of the following technologies:

• Hardware in the loop (HIL) verification

• Virtual platform (VP) verification

Hardware in the Loop Verification
HIL verification is a verification methodology in which the simulation of part of the system 
under test is executed in the FPGA fabric. In the Zynq-7000 SoC, the application code 
targeted for the processor is executed on the actual Arm Cortex-A9 processor in the device. 
The code compiled with HLS is executed in an RTL simulation.

Figure 9-1 shows an overview of HIL verification for the Zynq-7000 device. The system in 
this figure is an experimental setup that includes the ZC702 evaluation board, which is a 
currently available commercial board, and the Vivado simulator. This figure also introduces 
the concept of a processing system (PS) and a programmable logic (PL) unit. The PS refers 
to the dual Arm Cortex-A9 processor, which is also called the processing subsystem. The PL 
refers to the FPGA logic inside the Zynq-7000 device, which is the portion of the device 
onto which the HLS-generated modules are mapped.

TIP: HIL verification requires a board to gain access to the processor, and this technology works on any 
Zynq-7000 SoC board.
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Chapter 9: Verification of a Complete Application
The main advantages of HIL verification versus verification are:

• No simulation inconsistencies between a processor model and the actual processor

• Code running on the processor is executed at the speed of the FPGA device

• Full visibility into how each generated module operates through RTL simulation

When using HIL verification, it is important to remember the performance characteristics of 
this technology. Although the processor code runs in the actual hardware, the FPGA fabric 
is fully simulated on the designer’s workstation. As discussed in Chapter 8, Integration of 
Multiple Programs, RTL simulation is a relatively slow process. Therefore, HIL verification is 
only recommended for verifying the major interactions between the processor and the 
FPGA fabric, not every use case in the application. The key application behaviors to check 
with HIL verification are:

• Vivado HLS driver integration into the processor code

• Writing configuration parameters from the PS to the PL

• Interrupt from the PL to the PS

X-Ref Target - Figure 9-1

Figure 9-1: HIL Verification Overview for the Zynq-7000 SoC
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Chapter 9: Verification of a Complete Application
Along with the RTL implementation of a software algorithm, the Vivado HLS compiler 
generates the software drivers needed for the processor to communicate with the 
generated hardware modules. The driver from Vivado HLS handles accelerator start and 
stop, configuration, and data transfer. This driver is available for both Linux and standalone 
software applications.

Note: A standalone software application is a system in which the processor only executes a single 
program and does not require OS support.

Virtual Platform Verification
Virtual platform technology is an established method of overlapping software and 
hardware development and is available for the Zynq-7000 SoC. A virtual platform is a 
software simulation of both the application and the hardware platform on which it runs. The 
models used for the PL portion of the design can be in C, C++, SystemC, or RTL. This 
simulation platform can be used as a proxy for the other recommended verification stages 
with varying degrees of fidelity to the hardware implementation.

In the fastest use case of the virtual platform, the application modules targeted to the PL 
are simulated from the C/C++ source code provided to the Vivado HLS compiler. This setup 
results in a functionally correct simulation that allows the designer to test the algorithm for 
correct computation. As modules are optimized and compiled with Vivado HLS, the 
generated RTL can replace the software version of the module to enable connectivity 
testing and timing driver simulation.

IMPORTANT: It is important to remember that adding RTL modules impacts the runtime on the virtual 
platform and slows down execution.

Device Validation
The purpose of device validation is to check all the application use cases in which the 
processor interacts with the FPGA fabric. As in the case of standalone execution, this 
process involves running the complete application for a certain amount of time on the 
Zynq-7000 SoC. The purpose of this test is to check all the application corner cases with 
regard to the interaction between the PS and PL portions of the design.
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Appendix A

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx 
Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual 
property at all stages of the design cycle. Topics include design assistance, advisories, and 
troubleshooting tips. 

Documentation Navigator and Design Hubs
Xilinx® Documentation Navigator provides access to Xilinx documents, videos, and support 
resources, which you can filter and search to find information. To open the Xilinx 
Documentation Navigator (DocNav): 

• From the Vivado® IDE, select Help > Documentation and Tutorials.

• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.

• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other 
topics, which you can use to learn key concepts and address frequently asked questions. To 
access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.

• On the Xilinx website, see the Design Hubs page.

Note: For more information on Documentation Navigator, see the Documentation Navigator page 
on the Xilinx website.
Introduction to FPGA Design with Vivado HLS 90
UG998 (v1.1) January 22, 2019 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG998&Title=Introduction%20to%20FPGA%20Design%20with%20Vivado%20High-Level%20Synthesis&releaseVersion=1.1&docPage=91


Appendix A: Additional Resources and Legal Notices
References
1. Vivado® Design Suite User Guide: High-Level Synthesis (UG902)

2. AXI Reference Guide (UG761)

3. Vivado Design Suite User Guide: Designing with IP (UG896)

4. Vivado Design Suite User Guide: Designing IP Subsystems Using IP Integrator (UG994)

5. Vivado Design Suite Documentation 
(www.xilinx.com/support/index.html/content/xilinx/en/supportNav/design_tools/
vivado_design_suite.html)
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