
AT010

1

Programming for Failure:
When Programs Faw Down and Go Boom

Gary E. Schlegelmilch, US Bureau of the Census, Suitland MD

ABSTRACT

Programs fail.

Despite the best efforts of the best
programmers, a non-working
combination of data, software, and
processing is invariably going to happen
- and the program is not going to run.
Typical result is a sometimes
instantaneous, sometimes arduous effort
to find where the program has failed -
and fixing it.

This paper attempts to cover two major
topics: (1) a few ideas for finding the
elusive bug, and (2) planning and
structuring a SAS� program so that
perhaps a few less of them happen.

IN SEARCH OF PROGRAM
FAILURE

Program failure is addressed in virtually
every advanced programming class, and
at least mentioned in beginning classes.
It’s called other things, but the bottom
line is this: programs fail, be ready for it.

When learning to code, our first
programs are always pretty simple.
Read a file, accept data from the screen,
or get data from a dataset. Based on that
data, perform some kind of test or
calculation, and output it. Simple
enough. The sad truth is that too many
people stop with that approach, and go

on to write programs for years,
sometimes decades.

However, over the years, I’ve come to
the following three simple rules for data
processing:

1. Data is not always what you expect.
2. It’s tough to program for every

contingency - and it can be fun to
try.

3. Go back and read Rule 1 and Rule 2
again.

In support of another paper, Ian
Whitlock kindly gave me this small gem
of software design, innocuously called
the ‘jiggle’ test. Put simply, when he is
handed a program requirement or
specification, he ‘jiggles’ it a little to see
what the impact would be. If a small
potential change down the road would
disrupt the whole theory of how the
program would function; then, it’s time
to reexamine how the process is done, to
allow it greater flexibility for both
functionality and in maintenance.

Another important aspect to problem
solving of any kind was given us by Sir
Arthur Conan Doyle, via his Sherlock
Holmes character. He said, in The Sign
of Four, "When you have eliminated the
impossible, whatever remains, however
improbable, must be the truth." It’s a
good philosophy to keep in mind.

I would imagine that every programmer
since Ada Byron Lovelace and Charles
Babbage have probably, at one time or

Advanced TutorialsNESUG 16

AT010

2

another, uttered the words, “It’s not
supposed to do that”. It is also true that,
no matter how many times we utter
those mystical words – the program
never seems to realize that it’s making
the mistake, and correct itself. No, once
the elusive program bug manifests, we
have to swallow that bitter pill.
Somewhere along the way, we have told
the computer to do something – and it’s
doing what it’s told. Therefore, Watson,
it falls to us to find the problem and
repair it.

First, we’ll look at a few sample
problems, which were not obvious at
first glance. Then, I offer a few ideas on
how to keep them from happening in the
first place.

A PROBLEM, OR NOT?

I had a recent instance where a program
was to read in a series of three numbers
from a source that was ostensibly
providing three integers, and sum them.
Yet, printing out the three numbers
showed that each of them was 3 - but the
result was consistently 10.

Why?

After staring at the simple formula, and
trying things like the SUM function, it
occurred that perhaps there was nothing
wrong with the code. I looked at the
data, and it read as follows: 3, 3, 3.
However, PUTing it out with an 8.4
format made it read 3.16, 3.37, 3.468.
Sum, 9.998, and displayed as 10.

Solutions: (a) do an INT(n) function to
reduce the input fields to their integer
values, thus reducing the sum to the
integer value; (b) do a ROUND(n) on
the input fields, rounding to the nearest

integer, which will provide an integer
sum; or (c) use the ROUND(n) or
INT(n) on the resulting sum. Which is
correct?

Answer: unknown. Sounds evasive, but
true. This is a case where it is not a case
of the data being correct or incorrect -
but the concept behind the data. Is the
data supposed to be rounded or truncated
to an integer when it arrives? Use the
appropriate function. If the resulting
sum is integer, ensure that it is. That
way, later uses of the resulting data will
not experience the same problems.

Another thing to remember; the SUM
function will save you heartache when
adding numbers, when you are not
absolutely sure if the numbers are there.
Given A=5, B=<missing>, C=10;
X=A+B+C gives a value of <missing>
for X, but X=sum(A,B,C) yields the
correct value of 15. Oddly enough –
should you overzealously type
X=sum(A+B+C) – it still tries to do the
add, and the result is <missing>!

When searching for program error,
remember that there are three places to
look:
1. Operating system
2. SAS
3. Data

Here’s an example of a glitch via the
operating system. I had a short program
that built several directories on a UNIX
platform, and then placed files in them.
When I went to go to the next module,
which read those files, the program
failed to find them. After chasing the
SAS code fruitlessly for a while, an

Advanced TutorialsNESUG 16

AT010

3

experienced UNIX programmer
identified the problem.

I needed test files numbered 1 through
10, so I wrote the following simplified
code:

%macro BUILDFLS;
 %do I=1 %to 10;
 length FN $ 10;
 data _null_;
 FN = ‘test’||&I||’.dat’;
 file FN;
 put ‘This is test file ‘
“&I”;
 run;
 %end;
%mend BUILDFLS;

Looked right to me. A directory listing
showed me that there were indeed files
FILE1.DAT, FILE2.DAT, et al, on the
appropriate directories. However, SAS
couldn’t find any except FILE10.DAT;
neither could the UNIX editor, when I
went to examine them. My UNIX expert
showed me that the files could be found
with wildcards, proving they did indeed
exist. But, I had created them in a $10.
formatted field, so they were being
written as “FILE1.DAT�”,
“FILE2.DAT�”, and so on.

Solution:

%macro BUILDFLS;
 %do I=1 %to 10;
 data _null_;
 FN&I =
compress('test'||&I||'.dat');
 file FN&I;
 put 'This is test file '
"&I" '!';
 run;
 %end;
%mend BUILDFLS;

Each filename would now be built into
an individual dataname, FNn. As it was
the initial use of the field, SAS would set

it to the exact length needed, since the
COMPRESS function would eliminate
any blanks. FN1 through FN9 would be
9 characters long; FN10 would be 10.
And the files were built without the
trailing space, so UNIX could find them
just fine.

Lesson Learned: Be sure of the data
you’re outputting - just eyeballing it isn’t
always enough.

Sometimes, an error can be caused by
the most innocent conflicts. Case in
point; a recent incident at the office had
a program getting erratic results from a
process, an external macro which had
been used by a number of other
programs for quite some time. It turned
out that, by coincidence, one of the
external macro’s being INCLUDEd and
called was using the same macro
variable name as the calling routine.

(c:\macros\testmacro.sas)

%macro GETNEWVAR(NBR);
 ..
 data WORK.FACILITY;
 ..
 %let TEMPVAR=_n_;
 ..
 run;
 ..
%mend GETNEWVAR;

(calling program)

%let TEMPVAR=7;
%include
‘c:\macros\TESTMACRO.SAS’;
%GETNEWVAR(TEMPVAR);

data _null_;
 XVAR = &TEMPVAR + 15;
 put XVAR;
run;

 Both programs were actually accurate
in what they were doing; however, since

Advanced TutorialsNESUG 16

AT010

4

both were coincidentally using the same
macro variable name, a routine that had
been running without problems for a
year was now providing incorrect data
for one survey.

Solution: the %LOCAL statement was
added to the %MACRO GETNEWVAR
to define the local variable. That way,
the values set for the variable remained
static within the individual macro
routines being run.

CONFLICTING REQUIREMENTS

In a program originally developed on a
VMS platform, the requirements stated
that the system store a numeric date
field, and display it in YYMMDD6.
format. Easy enough. Easily a dozen
places in different programs, batch and
interactive, saw the changes.

And just as surely, once the programs
started to run – they started to crash.

I dutifully reported to the user that we
were getting bad data in, and how would
she like it handled?

She looked at the reports, smiled, and
said that the ‘D’ in the field was
perfectly valid, and it represented,
“Don’t Know”.

I pointed out a ‘D’ was an alpha
character. She agreed. So I should
make the incoming field alphanumeric?
No, she wanted it numeric.

Solution: accept that we needed an alpha
field to represent a numeric missing
field, like so:

data WORK.DATEFILE;
 format DATEREP YYMMDD6.;
 missing D;

 input @1 NAME $40.
 @32 DATEREP YYMMDD6.;
run;

Results; the program accepted that a ‘D’
in this numeric field was a specific
representation of a missing value, and
there by intent. Any program that read
this dataset, however, had to have the
missing statement in it, or the program
would abort on finding the non-numeric
value.

Just specifying the format of the
DATEREP field in the INPUT statement
isn’t as complete as it could be, either.
If a PROC PRINT followed the DATA
step, it would have simply reflected the
numeric value of the SAS date. By
adding the FORMAT statement, the date
format does into the dataset, and prints
out in exactly the format we’d expect.

Now, use of the MISSING statement is
fine when the potential non-numeric
value is known. But if you want to
ensure that you process only numeric
values, here’s a different approach:

data WORK.DATEFILE
 (drop=DATEREPX);
 format DATEREP YYMMDD6.
 DATEREPX $6.;
 input @1 NAME $30.
 @32 DATEREPX $6.;
 DATEREP=
 input(DATEREPX,?? YYMMDD6.);
 if DATEREP eq . then put
'Invalid date in observation '
 n;
 else output;

run;

This protects you overall from any bad
data. If the date field is in the proper
format, it’s converted and stored. If not,
it leaves a missing value in DATEREP.
The ‘??’ in the INPUT function tells
SAS to suppress any error messages in

Advanced TutorialsNESUG 16

AT010

5

the log, and to not set the _ERROR_
variable. That allows the program to
handle all the error handling, and to
continue to process data. A single ‘?’
would suppress the error messages to the
log, but the _ERROR_ flag would still
be set to 1, potentially stopping the
process.

SOMETHING YOU CAN COUNT
ON

SAS programmers often use the _n_
variable, usually as a counter of how
many observations were read. The
common misconception is that the _n_
represents the number of observations
that have been read. Not so. _n_ always
represents the number of iterations of
the DATA step. If one SET statement is
performed on each iteration of the
DATA step, you’re safe because the
number of iterations and the number of
observations should match. However, in
the example:

/* add up the SUBTOT for each of
 the five regions, and
 output the summary for each
 product where the sales quota
 has been met. */

data WORK.SUMMARY
 (keep=REGION TOTAL);
 set WORK.SALES; TOTAL+SUBTOT;
 set WORK.SALES; TOTAL+SUBTOT;
 set WORK.SALES; TOTAL+SUBTOT;
 set WORK.SALES; TOTAL+SUBTOT;
 set WORK.SALES; TOTAL+SUBTOT;
 if TOTAL > 400000 then
output;
run;

In this case, _n_ would equal neither the
number of observations in the input
dataset, nor necessarily the output
dataset. It should equal the total
number of observations in the
WORK.SALES dataset, divided by 5,

truncated to the next higher integer
value. Not a particularly useful number,
so a PUT _n_ statement to use in
determining the place of an error
wouldn’t be much help.

Notice too that we use the implicit ADD
to good use here. On each iteration of
the DATA step, TOTAL will reset to
missing. If we had said
TOTAL=TOTAL+SUBTOT, the result
would always have been missing, since
one of the variables in the equation was
missing. Since we used the implicit add,
the missing was simply ignored. It could
also have been coded
TOTAL=sum(TOTAL,SUBTOT).

“CHECK THE DOCMENTATION”
DOESN’T ALWAYS MEAN READ
THE BOOK

Here’s one that drove us crazy for a little
while:

/* This is a new routine */

* check on the value of the
 input field */

%macro TEST1;
 %if “&NEWVAL” eq “FNL” %then
%do;
 %ACCEPT_FINAL;
 %end;
 %else %do;
 %ACCEPT_PRELIM;
 %end;
%mend TEST1;

However, a run of %TEST1 resulted in
the following error:

����������������	�
�������
�����

��

��������������
������	�����������

���������
�������������

��

�������	����� ��!�

Advanced TutorialsNESUG 16

AT010

6

"�����������#$%�&'()#��*�#+%)#�

����
����!�

�,,-,.������/+���	����
�����
���

�	�����
����
�����0

Several eyes looked at it before we
realized that it had not a thing to do with
the perfectly-valid %IF statement. Nor
was the problem in the %MACRO
statement, which would allow the use of
the %IF. No, the guilty culprit here was
a comment line prior!

Had it begun with a “/*”, the code would
have run without incident. Or, had it
terminated with the semi-colon, fine.
But since the comment line began with
an asterisk, it continued to read until it
found a semicolon – and the first one it
found was at the end of the %MACRO
statement. So, to the program’s “eyes”,
the user was still in open code, because
the %MACRO statement was part of the
comment; and the %IF was indeed
illegal.

MAKE THE BUGS EASIER TO
FIND

In any program, be it ten lines or a
thousand; the easier the program is to
read, the easier it is to locate points for
update, and to find program failures.
Notice, I never said that all of the
problems would stick out – just make
them a bit easier to see.

Structuring a program is, to say the least,
an art form. If you ask 100
programmers the correct way to
structure a program, I would estimate at
least 150 different philosophies would
come to light. As such, I do not
advocate any hard-and-fast rules; just a
few things that I use (and have shown in
all the programming examples here) to
make my programs a little easier to read.

First, user-defined terms are capitalized
or in all-caps; SAS terms are in lower-
case. In e-Speak, the sub-language of e-
mail and the Internet, anyone speaking
in all-caps is “shouting”. Well, when
you’re searching for potential problems
in a program, I always found it easier
that the terms we define as programmers
“shout” at you as potential problems;
lower-case are the SAS language items,
and are not typically the source of a
problem.

Indentation; again, a lot of opinions here.
I indent only to show subordination.
The steps enclosed within a %MACRO
routine, the steps only executed within
an IF… DO, and so on.

Some language constructs lend
themselves well to structure. As an
example; you have to test a field for a
number of potential values, to ensure
validity. If there are only a few, a
simple IF will suffice;

if INDTYPE eq “A” or INDTYPE eq
“D” then do;

but if there are a large number of values,
the IF… AND… AND… AND… can
become cumbersome and difficult to
follow. In this case the IN becomes
more useful;

if INDTYPE in(‘A’, ‘C’, ‘F’-‘Q’)
then do;

Note here that a range can also be used
in the IN statement, cutting down on
extra typing even more.

If there are many observations to
process, and a different action is
required for each type, then the IF could
be used as follows;

Advanced TutorialsNESUG 16

AT010

7

if INDTYPE eq ‘A’ then %TYPEA;
else if INDTYPE eq ‘B’ then
%TYPEB;

and so on. You might even enclose a
last ELSE statement, in the event that
none of the expected values are in
INDTYPE. Or, you could make use of
the SELECT statement, which lends
itself to structure, readability, and
flexibility for multiple values.

select (INDTYPE);
 when(‘A’) %TYPEA;
 when(‘B’) %TYPEB;
 ..
 ..
 otherwise put ‘PROGRAM NOTE:
ID ‘ ID ‘ had no valid INDTYPE’;
end;

Another relatively painless, but
informative, way to code a line; use the
‘=’ sign only for assignments, as in
X=20; use the letter equivalents for
comparisons, as in if X eq 20. Again, it
gives the quick advantage of being able
to see at a glance where you’re assigning
data values, and when you’re doing
comparisons, because only the
assignments will contain symbols.

The simplest overall advice for
structuring a program, of course, is one
of simplicity. If you can read your
program at a glance, you probably are
already using your own structure tools
and techniques. Ah, but if you can put
that code in a drawer, not look at it for a
year, and then be able to tell at a glance
where to look to update or modify it; the
structures are good ones for you.

Invariably, however, there will be
programs that will not be yours during
the entire software life cycle. Once you
inherit someone else’s programs, you’ll

recognize just how valuable simple
structuring techniques are.

USING ALL THE TOOLS IN THE
TOOLBOX

The /DEBUG statement is an extremely
effective tool for debugging DATA
steps, and one not to be ignored. Many
good papers and workshops have been
written on the techniques available, so I
will not elaborate here. However, here
is a good way to incorporate debugging
into a live program so that it need not be
modified in order to debug it in
Production.

If there are no existing parameters to the
program, set the system default of
SYSPARM to ‘/DEBUG’. Then, in the
trouble spots of your program;

data WORK.NEWFILE &SYSPARM;
 set PROD.DATAFILE;
 ..
 ..
run;

You will be able to run the same
program in Production, with your live
data, and yet only run the debugger
when you wish. In a program with
numerous potential spots for review,
perhaps this would work more
effectively, by setting SYSPARM to a
number, and coding it like this;

%if “&SYSPARM” eq “1” %then %let
DEBUG1=”/DEBUG”;
%if “&SYSPARM” eq “2” %then %let
DEBUG2=”/DEBUG”;
%if “&SYSPARM” eq “3” %then %let
DEBUG3=”/DEBUG”;

data WORK.FILE1 &DEBUG1;
 ..
 ..
run;

data WORK.FILE2 &DEBUG2;

Advanced TutorialsNESUG 16

AT010

8

 ..
 ..
run;

data WORK.FILE3 &DEBUG3;
 ..
 ..
run;

Another useful tool is the argument
CANCEL to the RUN statement. Yes,
that same RUN statement we use to end
all the DATA steps has an argument
string available. Keying RUN CANCEL
at the end of the DATA step allows the
DATA step to be checked for syntax, but
to take no other action. This becomes
valuable in a case where two DATA
steps run in sequence; but the second
should not run unless the first creates a
specific condition. So:

/* only run the report if */
/* over 100 valid records */
/* are found */

data WORK.NEWDATA;
 set PROD.OLDDATA;
 where ERR ge 1;
 if _n_ gt 100 then
call symput(‘CANX’,’CANCEL’);
run;

proc print data=WORK.NEWDATA;
run &CANX;

CONCLUSIONS

When you combine the number of
requirements that go into the design of a
program, factor in the number of data
possibilities one might encounter, and
the near infinite diversity in infinite
combinations of a computer language;
it’s remarkable that we get as much done
as we do. However, on any given day,
we get a little more skilled, and a little
more knowledgeable; not only on how to
find and fix computer errors – but to

learn to program so they won’t happen at
all.

REFERENCES

Aster, Rick, Professional SAS
Programmer’s Pocket Reference, 3nd
Edition, 2000, Breakfast Books.
Riba, S. David, Jade Tech, Inc., SAS
Debugging Techniques, SESUG ’98.
Doyle, Sir Arthur Conan, The Complete
Sherlock Holmes, Vol. 1, Doubleday,
1960.

CONTACT INFORMATION

Gary E. Schlegelmilch
U.S. Dept. of Commerce, Bureau of the
Census, ESMPD/MCDIB
Suitland Federal Center, Rm. 1200-4
4700 Silver Hill Road, Suitland MD
20746
Email
Gary.E.Schlegelmilch@census.gov

SAS and all other SAS Institute Inc.
product and service names are registered
trademarks or trademarks of SAS
Institute Inc. in the USA and other
countries.

UNIX® is a registered trademark of The
Open Group.

Advanced TutorialsNESUG 16

