
1

• The basic idea of EM in this context is to pretend that we know the
parameters of the model and then to infer the probability that each
data point belongs to each component

• After that, we refit the components to the data,
• where each component is fitted to the entire data set with each

point weighted by the probability that it belongs to that
component

• The process iterates until convergence
• Essentially we are “completing” the data by inferring probability

distributions over the hidden binary variables :

=
1, if datum was generated by the : th component
0, otherwise

13-Mar-14MAT-75006 Artificial Intelligence, Spring 2014 255

• For the mixture of Gaussians, we initialize the mixture-model
parameters arbitrarily and then iterate the following two steps:

1. E-step: Compute the probability that datum was generated by
component ,)
– By Bayes rule we have)
– The term) is just the probability at of the :th

Gaussian
–) is just the weight parameter for the :th Gaussian
– Define , the effective number of data points currently

assigned to component
2. M-step: Compute the new parameter values:

– –)

13-Mar-14MAT-75006 Artificial Intelligence, Spring 2014 256

2

• The E-step can be viewed as computing the expected values of
hidden indicator variables

• The M-step finds the new values of the parameters that maximize
the log likelihood of the data, given the expected values of the
hidden indicator variables

• EM increases the log likelihood of the data at every iteration
• Under certain (common) conditions, EM can be proven to reach a

local maximum in likelihood (obs. no “step size”)
• Possible problems:

– One Gaussian component may shrink to cover just one data
point, variance = 0 likelihood =

– Two components can “merge,” acquiring identical means and
variances and sharing their data points

13-Mar-14MAT-75006 Artificial Intelligence, Spring 2014 257

13-Mar-14MAT-75006 Artificial Intelligence, Spring 2014 258

3

• In a Bayesian network hidden variables are the values of non-
observed variables in each example

• In a hidden Markov model (HMM) the latent variables are the
transition probabilities between states

• Hence, we get different instantiations of the EM algorithm for
different probability models

• In its most general form the algorithm reduces to the update rule
) = arg max)),

is all observed values in all the examples,
denotes all the hidden variables for all the examples,
is all the parameters for the probability model

• The E-step is the computation of the summation, which is the
expectation of the log likelihood

• The M-step is the maximization of this expected log likelihood with
respect to the parameters

13-Mar-14MAT-75006 Artificial Intelligence, Spring 2014 259

21 REINFORCEMENT LEARNING
• The task of reinforcement learning is to use the observed rewards

to learn an optimal (or nearly optimal) policy for the environment
• A utility-based agent learns a utility function on states and uses it to

select actions that maximize the expected outcome utility
– Requires a model of the environment in order to make

decisions, because it must know the states to which its actions
will lead

– E.g., a chess program must know what its legal moves are and
how they affect the board position

• Q-learning
• An agent learns the expected utility of taking a given action in a

given state
– Now it is enough to know the moves, it is not necessary to know

the board position
13-Mar-14MAT-75006 Artificial Intelligence, Spring 2014 260

4

21.2 Passive Reinforcement Learning

• The agent’s policy is fixed: in state , it always executes the
action)

• Its goal is simply to learn the utility function)
• The agent does not know the transition model) nor the

reward function)
• The agent executes a set of trials in the 4 × 3 grid
• In each trial, the agent starts in state [1, 1] and experiences a

sequence of state transitions until it reaches one of the terminal
states

• The utility is defined to be the expected sum of discounted rewards
obtained if policy is followed:

13-Mar-14MAT-75006 Artificial Intelligence, Spring 2014 261

+1

1

0.812 0.868 0.918 +1

0.762 0.660 1

0.705 0.655 0.611 0.388

13-Mar-14MAT-75006 Artificial Intelligence, Spring 2014 262

5

Direct utility estimation (DUE)
• Widrow & Hoff (1960)
• The utility of a state is the expected total reward from that state

onward (reward-to-go)
• Each trial provides a sample of this quantity for each state

visited
• For example the trial

[1,1] [1,2] [1,3] [1,2]
[1,3] [2,3] [3,3] [4,3]

provides a sample total reward of 0.72 for state [1,1], two
samples of 0.76 and 0.84 for [1,2], two samples of 0.80 and
0.88 for [1,3], and so on

• At the end of each sequence, the algorithm calculates the
observed reward-to-go for each state and updates the estimated
utility for that state accordingly
• just by keeping a running average for each state in the table

13-Mar-14MAT-75006 Artificial Intelligence, Spring 2014 263

• In the limit of infinitely many trials, the sample average will converge
to the true expectation

• DUE is just an instance of supervised learning where each example
has the state as input and the observed reward-to-go as output

• DUE, however, misses the fact that utilities of states are not
independent

• The utility of each state equals its own reward plus the expected
utility of its successor states (Bellman equations)

• For example if a trial reaches state [3,2] for the first time,
transitioning to [3,3] – already visited and known to have high utility
– should tell that also [3,2] is likely to have a high utility, like Bellman
equations suggest immediately

• The algorithm often converges very slowly

13-Mar-14MAT-75006 Artificial Intelligence, Spring 2014 264

6

Adaptive Dynamic Programming (ADP)

• An ADP agent solves the corresponding Markov decision process
using a dynamic programming method

• Plugging the learned transition model and the observed rewards into
the Bellman equations

) =) +)))
lets one calculate the utilities of states

• Because the policy is fixed, the transition model)) is
easy to learn

• Just keep track of each action occurs and estimate the transition
probability from the frequency with which is reached
when executing in

• The equations are linear (no maximization) and can be solved using
any linear algebra package

• Intractable for large state spaces
– E.g., backgammon 1050 equations and unknowns to solve

13-Mar-14MAT-75006 Artificial Intelligence, Spring 2014 265

Temporal-difference learning (TD)
• Assume that (1, 3) = 0.84 and (2, 3) = 0.92
• If transition [1,3] [2,3] occurred all the time, then we would

expect (1, 3) = 0.04 + (2, 3) = 0.88, so the current estimate
0.84 might be a little low and should be increased

• Use observed transitions to adjust the utilities of observed states
) +) +)),

where is the learning rate parameter
• The ideal equilibrium given by the Bellman equations is not

reached with this update rule
• However, the average value of) will converge to the correct

value
• If we change to decrease with the number of times a state has

been visited, then itself will converge
• TD does not need a transition model at all!

13-Mar-14MAT-75006 Artificial Intelligence, Spring 2014 266

7

• Whereas TD makes a single adjustment per observed transition,
ADP makes as many as it needs to restore the consistency between
the utility estimates and the environment model

• TD could use an environment model to generate several
pseudoexperiences – imaginary transitions

• In this way, the resulting utility estimates will approximate more and
more closely those of ADP

• Similarly, ADP could take into account only part of the transitions in
adjusting the state utilities in order to come up with an efficient
approximation algorithm

• Prioritized sweeping heuristic prefers to make adjustments to
states whose likely successors have undergone a large adjustment
in their own utility estimates

• Fast + efficient (time + training sequences)

13-Mar-14MAT-75006 Artificial Intelligence, Spring 2014 267

21.3 Active Reinforcement Learning

• As opposed to a passive agent, an active agent must determine:
– What actions to take
– What consequences does it have on the environment
– How does it affect the rewards

• The utilities of the optimal policy obey the Bellman equations:
· max)

and can be solved using the value iteration or policy iteration
algorithms

• What to do at each step?
• Having obtained a utility function that is optimal for the learned

model, the agent should simply execute an optimal action (given by
one-step look-ahead or policy)

• Or should it?
13-Mar-14MAT-75006 Artificial Intelligence, Spring 2014 268

8

Exploration

• The optimal policy for the
learned model is not
necessarily the true optimal
policy

• Sticking to the false policy
means never learning utilities of
other states and never finding
the optimal route

• This agent is the greedy one
• Greedy agent very seldom

converges to the optimal policy
for the environment

13-Mar-14MAT-75006 Artificial Intelligence, Spring 2014 269

+1

1

• Actions do more than provide rewards according to the current
learned model

• They also contribute to learning the true model by affecting the
percepts that are received

• By improving the model, the agent will receive greater rewards in the
future

• An agent therefore must make a tradeoff between exploitation to
maximize its reward and exploration to maximize its long-term well-
being

• Pure exploitation risks getting stuck in a rut
• Pure exploration to improve one’s knowledge is of no use if one

never puts that knowledge into practice
• With greater understanding, less exploration is necessary

13-Mar-14MAT-75006 Artificial Intelligence, Spring 2014 270

9

• To promote exploration one can assign a higher utility estimate
to relatively unexplored state-action pairs

• Essentially this amounts up to an optimistic prior over the
possible environments

• Let) denote the optimistic estimate of the utility of state ,
and let be the number of times action has been tried
in state

• Now the update rule can be written as
· max +),)

•) is called the exploration function. It determines how
greed () is traded off against curiosity ()

• The function should be increasing in and decreasing in
• A simple alternative:

where is an optimistic estimate of the best possible reward
and is a fixed parameter

13-Mar-14MAT-75006 Artificial Intelligence, Spring 2014 271

= if
otherwise

Exploration and Bandits

• A formal model of the exploitation/exploration dilemma
• An -armed bandit has levers
• The player must choose which lever to play on each successive coin

– the one that has paid off best, or maybe one that has not been
tried

• Differs from the expert setting in that we only get to know the payoff
of the chosen lever

• Exploration is risky, expensive, and has uncertain payoffs
• On the other hand, failure to explore at all means that one never

discovers any actions that are worthwhile
• In the bandit problem the aim is to maximize the expected total

reward obtained over the agent’s lifetime

13-Mar-14MAT-75006 Artificial Intelligence, Spring 2014 272

10

Learning an action-utility function

• An alternative TD method called Q-learning learns an action-utility
representation instead of learning utilities

• Let denote the value of doing action in state
• Q-values are directly related to utility values:

) = max)

• A TD agent that learns a Q-function does not need a model of the
form either for learning or for action selection

• Therefore, Q-learning is called a model-free method
• At equilibrium, when the Q-values are correct, it must hold

) =) +)
• This equation could be used directly as an update rule, but it would

require a model of the environment
• The temporal-difference approach, on the other hand, requires no

model of state transition

13-Mar-14MAT-75006 Artificial Intelligence, Spring 2014 273

• The update equation for TD Q-learning is
) +) + max))

which is calculated whenever action is executed in state
leading to state

• A close relative to Q-learning is SARSA in which the update
equation uses the action actually taken in the state reached

rather than the best Q-value
) +))

• For a greedy agent that always takes the action with best Q-
value, the two algorithms are identical

• When exploration is happening, they differ significantly

13-Mar-14MAT-75006 Artificial Intelligence, Spring 2014 274

11

• Because Q-learning uses the best Q-value, it pays no attention to
the actual policy being followed, whereas SARSA takes it into
account

• Q-learning is more flexible than SARSA; it can learn how to behave
well even when guided by a random or adversarial exploration policy

• On the other hand, SARSA is more realistic
• If, for example, the overall policy is even partly controlled by other

agents, it is better to learn a Q-function for what will actually happen
rather than what the agent would like to happen

• Whether to maintain a model or not is a fundamental question of the
whole field of AI

13-Mar-14MAT-75006 Artificial Intelligence, Spring 2014 275

