ME 481/581 Chapter 3 HW February 6, 2012

Chapter 3 HW Solution

Problem 1. Here you're given a lead network—often used in control systems to improve the transient response—which
adds around 60° of phase angle at about w; = 3 rad/s. The lead network transfer function is

s+1

H(s) = 0ls+1 (1)

(a) The phase angle of the continuous system at 3 rad/sec is ¢ = 54.87°. You can get the H(z) and phase angles
using MATLAB c24d and bode (except for the rectangular integration rules) or you can get the H(z) “manually” and
evaluate its angle with z = /17 with T = 0.25 (2 = 0.73 + j0.68). My results were

(i) FORWARD rectangular (F):

z—1 10(z — 0.75)

= = H = ———— UNSTABLE! 2
s F(2) 115 (2)

(ii) BACKWARD rectangular (B):

z—1 3.5714(z — 0.8)
_ Hp(z) = 220222 —0-°) = 38.92° (QUITE L
s T, — B(2) 02857 ¢ = 38.92° (QU OowW) (3)
(iii) TRAPEZOIDAL (T):
22z—1 z—1 5(z —0.7777)
= — — = — = ° |

=TT 82 1 = Hrp(z) PR RERT] = ¢ = 54.90° (VERY CLOSE!) (4)

(iv) PREWARPED trapezoidal (P): here we have A = wy/tan (w1 T/2) = 7.6214...

-1 -1 4.8926(z — 0.7680)
— 7.6214 — Hp(z) = — ¢p = 54.87° (EXACT!! 5
211 211 r(2) 2+ 0.1350 or () (5)

s=A

(v) POLE-ZERO mapping (PZ):

_ 4.1496(> — 0.7788)

Map poles and zeros using z = e*7 = Hpy(z) = ~— 0.0801 = ¢pz =47.57° (LOW) (6)
20 25
—— Continuous — Continuous
18} | —— Backward — Trapezoidal
— Trapezoidal ! —— Parabolic
16} | = = = Prewarped \ 20+
- - -Pole-Zero
14 ﬂ
8 12} /\ : S 15
S 8
3 10r 3
g E
g sf & 10r
= =
6,
4 5+
ol
o ‘ ‘ ok i i
10" 10° 10" 10° 107 10° 10" 107
Frequency (rad/sec) Frequency (rad/sec)
(a) Continuous and discrete versions. (b) Continuous, trapezoidal, and parabolic.

Figure 1: Bode plots of the various lead networks.

Referring to Figure 1(a), the two best methods appear to be TRAPEZOIDAL and PREWARPED, with POLE-ZERO
Mapping not too bad. It is no coincidence that MATLAB c2d supports these three methods, but not FORWARD

ME 481/581 Chapter 3 HW February 6, 2012

or BACKWARD rectangular. FORWARD in particular is dangerous, since it can result in an unstable discrete transfer
function (it did in this problem).

(b) Bode amplitude plots of the original continuous system and all the simulations (except F) are also shown in
Figure 1. Note the degeneration of all discrete systems at higher frequencies.

(c) Here I speculated on a “parabolic rule” based on our Chapter 2 HW problem on parabolic integration. Following
the derivation of the trapezoidal rule in Section 3.2.3, we get a parabolic substitution rule as:

12 —1
o2 2=l (7)
T 522+82—1
As expected, this rule is somewhat more complex than the other integration-based substitution rules. Also, I would
not attempt solving (7) for z = f(s).
Use of the parabolic rule of (7) in our lead network produces the discrete system

Hpu(2) — D:A082(2 — 0T789)(z + 0.0242)
Parals) (2 270.1955) (2 + 0.522)

— ¢Pa7'a = 55670 (CLOSE) (8)

For all the work involved in the parabolic rule, it’s not quite as accurate (at least at w = 3) as the trapezoidal (unless I
made a mistake—quite likely!) As another check, I compared the Bode magnitude plots of the continuous, trapezoidal,
and parabolic in Figure 1(b). It appears that the parabolic rule “sticks with” the continuous a little longer than the
trapezoidal rule, but...considering the additional hassle, the parabolic rule is probably not worth it!

Problem 2. The transfer function of a second-order system with ¢ = 0.2, w,, = 50 rad/s (= 8 Hz), and unity DC
gain is:
w2 2500

Gols) = n = 9
o) = T 5Cmns 1wl 55 205 + 2500 ©)

(a) We can do the TRAPEZOIDAL and PREWARPED discrete simulations using MATLAB, since it supports these, but
the MATLAB “MATCHED” (similar to POLE-ZERO mapping) is not quite the same as I present in my notes, so we
have to do that one “manually.” Using 7' = 0.01 (100 Hz sampling), my results are:

(i) TRAPEZOIDAL (T):

~0.05382% 4 0.1075z +0.0538 0.0538(22 + 2z + 1)
© 22-1.61292+0.8280 22— 1.6129z + 0.8280

Gr(z) (poles z = 0.8065 + j0.4214) (10)

(ii) PREWARPED (P) at frequency wy,:

_0.05592% 4+ 0.1117z +0.0559 0.0559(z% 4+ 2z + 1)

- les z = 0.8008 =+ j0.42 11
Gr(2) 22— 1.60162 + 0.8250 2 1.60165 1 0.8250 \(Poles # = 08008 & j0.4286) (11)
(iii) POLE-ZERO mapping (PZ):
0.05552% + 0.11102 + 0.0555 0.0555(22 + 22 + 1) ,
_ - les 2 = 0.7984 + §0.42 12
Grz(2) 22 —1.5968z + 0.8187 2 15068, 1 0.817 \(Poles # = 079844 j0.4257) (12)

The three simulations are quite similar, with only minor deviations in numerator gain and pole locations. The zero
locations of all three are exactly the samel!

(b) The Bode amplitude plots of the continuous and all three discrete simulations from 0.1 to 100 Hz are shown in
Figure 2(a). They all work pretty well (relatively fast sampling), but again the discrete systems go crazy at higher
frequencies. The resonant peak of the continuous system is

1

|Gc‘peak = \/T?

All three discrete simulations show a resonant peak which is virtually identical to the continuous system.

=3.5355 = 10.97 dB (13)

(c) Unit step responses of the continuous and prewarped are shown in Figure 2(b). Pretty good agreement.

ME 481/581 Chapter 3 HW February 6, 2012

20 1.6 i :
—— Continuous
— Prewarped | |

141

-60F| — Continuous
_go|-| — Trapezoidal|
— Prewarped
- - - Pole-Zero
-120 ! o ! 1
10 10 10 10
Frequency (Hz)

Magnitude (dB)

System output

Phase angle (deg)

-270— = n , 0 ‘ ‘ ‘
10 10 10 10 0 0.1 0.2 0.3 0.4 05

Frequency (Hz) Time (seconds)

(a) Bode plots. (b) Step responses.

Figure 2: Bode plots and step responses of Problem 2.

Problem 3. A notch filter is used to remove a given frequency from a signal. Since power-line noise is a common
component, consider a notch filter that removes 60 Hz from the input. The transfer function of a second-order notch
filter at frequency w, is

Y (s) s2 + w?

Hols) = U(s) T 5% + 2Cwos + w2 (14)

where the damping ratio is ¢ = v/2/2 = 0.707.

(a) Frequency f, = 60 Hz corresponds to w, = 27 f, = 376.9911 rad/s. The notch filter at this frequency is simply
equation (14) evaluated at this w, and the given ¢. This H¢(s) should be entered into MATLAB.

(b) Sampling frequency fs = 500 Hz corresponds to 7" = 0.002 seconds, or 2 msec. The prewarped substitution is

-1 o 2 :
s=AZ @ = 952.1709 (T = 1000 for companson) (15)

2+ 17 :tan%

When this substitution is used (or use MATLAB c2d using ’prewarp’), the resulting Hp(z) is given by
~0.67382% —0.98242 + 0.6738 0.6738(2% — 1.4579 4 1)

H = = 16
r(2) 22 —0.9824z + 0.3477 22 —0.9824z + 0.3477 (16)
It is interesting to examine the zero and pole locations of Hp(z), which are

Zeros: z = 0.7290 £ j0.6845, Poles: z = 0.4912 + 50.3262 (17)

The zeros are right on the unit circle, corresponding to the the jw axis in the s-plane. This is the notch! The angle
of these zeros is § = 0.7540 rad, and so

0
0=07540=wl = w= T = 376.9911 (18)

which corresponds ezactly to 60 Hz.

(c) Bode magnitude plots of both He(s) and Hp(z) over 1 < f <1000 Hz are shown in Figure 3(a). The prewarped
Hp(z) displays almost exactly the same notch as the original continuous system, with inaccuracy at higher frequencies.
It would perform very well at filtering out the 60 Hz frequency component.

(d) To test the notch filter, create an input consisting of 11 Hz sinusoid plus a 60 hz sinusoid, both of unity magnitude.
I assumed that three periods of the 11 Hz sinusoid would be long enough to reach steady-state, and that’s about 0.3
seconds. Thus I created a time vector of 0.3 seconds in length with a time step of 7' (0.002). The complete MATLAB
code is shown below (including the discretization of the notch filter):

ME 481/581 Chapter 3 HW February 6, 2012

.

—-151

Input, Output
o

Magnitude (dB)
B

-0.51
_357 -
1t
_407 -
—45 | —— Continuous 1 -15f
—— Prewarped
-505 = = 5 2 | | | | |
10 10 10 10 0 0.05 0.1 0.15 0.2 0.25 0.3
Frequency (Hz) Time (seconds)
(a) Bode plots showing 60 Hz notch. (b) Passing 11 Hz, filtering out 60 Hz.

Figure 3: Behavior of notch filter.

>> fo = 60; % Notch frequency in Hz

>> wo = 2xpi*fo; 7 Convert notch frequency to rad/sec

>> zeta = sqrt(2)/2; % Damping ratio

>> numc = [1 0 wo™2]; % Continuous numerator s~ 2+wo~2

>> denc = [1 2*zeta*wo wo~2]; % Continuous denominator s~ 2+2*zeta*wn*s+wn~2
>> Hc = tf(numc,denc); % Form continuous LTI notch filter

>> T = 0.002; % Define sampling period

>> Hd = c2d(Hc,T,’prewarp’,wo); % Get prewarped simulation of notch filter
>> tmax = 0.3; % Maximum time of simulation

>> t = 0:T:tmax; % Time vector from O -> tmax at spacing T

>> f1 = 11; % Frequency (Hz) of first input component

>> f2 = 60; % Frequency (Hz) of second input component

>> u = sin(2xpixfil*t)+sin(2*pi*f2*t); 7% Construct the input (frequencies in rad/s)
>> y = lsim(Hd,u,t); % Get the output using the MATLAB lsim function

>> plot(t,u,’r-’,t,y,’k-"); 7% Plot input (red) and output (black)

>> xlabel(’Time (seconds)’); % Label X axis

>> ylabel(’Input, Output’); 7% Label Y axis

(e) It so happens that the notch filter transfer function Hp(z) is in ezactly the same form as the example in the notes
in equation (3.33). So the block diagram for optimal realization of the notch filter will be exactly like Figure 3.7, and
the “pseudo-code” to generate this filter is exactly that on page 48. T’ll reproduce both of those here for the sake of
completeness.

The notch filter transfer function is

_ 0.67382% — 0.9824z + 0.6738 _ 0.6738 — 0.9824271 +0.6738272 _bo+ biz7t + byz?

H = =
P(2) 22 —0.9824z + 0.3477 1—0.98242=1 4 0.34772—2 1—ajz7! —agz=2

(19)

and the (observer canonical) block diagram is (next page):

ME 481/581 Chapter 3 HW February 6, 2012
Uk
ba b1 bo
+ = T2 4+ Y+ = xt ”
+ + +
ay an

10
20
30
40
50
60
70
80
90

Figure 4: Observer canonical block diagram of notch filter.

read difference equation parameters and initialize variables;
set FLAG = O;

select sample period, start clock;

if (FLAG == 1) print ("sampling period too short") and exit;
while (FLAG == 0) wait;

u = adc_inQ);

y = x1 + bOx*u;

dac_out (y);

x1 = x2 + bl*xu + alxy;

100 x2 = b2*u + al2xy;
130 goto 40;

The code above from line 60 to line 130 contains the following operations:

e A /D conversion — varies depending on resolution, but around 10 pusec.

e D/A conversion — also dependent on resolution, but much faster, say 2 usec.

5 floating point multiplies — on my “ancient” Apple 1.5 GHz G4 PowerBook FMUL = 9 nsec.
4 floating point additions — on the G4 PowerBook FADD = 9 nsec.
3 floating point assignments — same computer, FASSIGN = 8 nsec.

Miscellaneous other operations (integer — float & float — integer conversion, etc.)

So I could compute this notch filter algorithm much faster than 500 Hz (the IBM G4 PowerPC processor has pretty
fast floating-point operations). Most of the time is spent in A/D conversion. There are very fast A/D converters —
they just cost more. Also, DSP chips are built for fast floating point multiplies and adds. These days, many industrial
and consumer communication and control devices (cell phones, military communications, etc.) have embedded DSP
chips. It’s a different world than in 1979 when I first developed this course. But some things never change...

