
Advanced	practical	Programming
for	Scientists

SS2017

Thorsten Koch
Zuse Institute Berlin

TU Berlin

The	Zen	of Python,	by Tim	Peters	(Part	2)

There	should	be	one-- and	preferably	only	one	--obvious	way	to	do	it.
Although	that	way	may	not	be	obvious	at	first	unless	you're	Dutch.
Now	is	better	than	never.
Although	never	is	often	better	than	*right*	now.
If	the	implementation	is	hard	to	explain,	it's	a	bad	idea.
If	the	implementation	is	easy	to	explain,	it	may	be	a	good	idea.

Advanced	Programming 116

Advanced	Programming 117

Advanced	Programming 118

Advanced	Programming 119

Advanced	Programming 120

Advanced	Programming 121

GB

]

seconds

Advanced	Programming 122

Experiment

An	experiment is	a	procedure	carried	out	to	support,	refute,	or	validate	a	
hypothesis.	Experiments	provide	insight	into	cause-and-effect by	
demonstrating	what	outcome	occurs	when	a	particular	factor	is	
manipulated.	Experiments	vary	greatly	in	goal	and	scale,	but	always	rely	on	
repeatable	procedure	and	logical	analysis	of	the	results.	

An	experiment	usually	tests	a	hypothesis,	which	is	an	expectation	about	how	a	
particular	process	or	phenomenon	works.	However,	an	experiment	may	also	aim	to	
answer	a	“what-if”	question,	without	a	specific	expectation	about	what	the	
experiment	reveals,	or	to	confirm	prior	results.	If	an	experiment	is	carefully	
conducted,	the	results	usually	either	support	or	disprove	the	hypothesis.	[…] An	
experiment	must	also	control	the	possible	confounding	factors—any	factors	that	
would	mar	the	accuracy	or	repeatability	of	the	experiment	or	the	ability	to	
interpret	the	results.	Confounding	is	commonly	eliminated	through	scientific	
controls and/or,	in	randomized	experiments,	through	random	assignment.	

https://en.wikipedia.org/w/index.php?title=Experiment&oldid=781092819

Advanced	Programming 123

Automatize!

• You	have	to	computational	results	again,	anyway.
• Try	to	automatize	them	as	much	as	possible.
• Check	whether	the	results	of	successive	runs	fit.
• Sample	if	neccessary

resident	set	size (RSS)	is	the	portion	of	memory	occupied	by	a	process that	
is	held	in	main	memory (RAM).	The	rest	of	the	occupied	memory	exists	in	
the	swap	space or	file	system,	either	because	some	parts	of	the	occupied	
memory	were	paged	out,	or	because	some	parts	of	the	executable	were	
never	loaded.[

https://en.wikipedia.org/w/index.php?title=Resident_set_size&oldid=767184487

Advanced	Programming 124

1;1;1797693134862315708145274237317043567980705675258449965989174768
0315726078002853876058955863276687817154045895351438246423432132688
9464182768467546703537516986049910576551282076245490090389328944075
8685084551339423045832369032229481658085593321233482747978262041447
23168738177180919299881250404026184124858368.000000
2;1;1.797693e+308
3;1;0.000000
4;1;2147483647
5;1;9223372036854775807
6;1;0.0000000000000001
7;1;1e-307
8;1;1e-308
9;1;0.9e-307
10;1;0.3e-307
11;1;0.2e-307

Advanced	Programming 125

Line 3: Invalid value
Line 8: Invalid value
Line 11: Invalid value
File: test4.dat with 11 lines
Valid values Loc0: 8 with GeoMean: 0.000000
Valid values Loc1: 0 with GeoMean: 1.000000

Advanced	Programming 126

1;1;17976931348623157081452742373170435679807056752584499
65989174768031572607800285387605895586327668781715404589
53514382464234321326889464182768467546703537516986049910
57655128207624549009038932894407586850845513394230458323
69032229481658085593321233482747978262041447231687381771
80919299881250404026184124858369.000000

Advanced	Programming 127

File: test5.dat with 1 lines
Valid values Loc0: 1 with GeoMean:
17976931348623157081452742373170435679807056752584499659
89174768031572607800285387605895586327668781715404589535
14382464234321326889464182768467546703537516986049910576
55128207624549009038932894407586850845513394230458323690
32229481658085593321233482747978262041447231687381771809
19299881250404026184124858368.000000
Valid values Loc1: 0 with GeoMean: 1.000000

File: test5.dat with 1 lines
ex1b: ex1b.c:68: geom_mean_log: Assertion
`!fetestexcept(FE_INVALID | FE_DIVBYZERO | FE_OVERFLOW |
FE_UNDERFLOW)' failed.
Aborted (core dumped)

Advanced	Programming 128

Advanced	Programming 129

Errors	should never pass	silently
(unless explicitly silenced)

Advanced	Programming 130

Ariane	5

On	4	June	1996	the	maiden	flight	of	the	Ariane 5	launcher	ended	in	a	failure,	about	
40	seconds	after	initiation	of	the	flight	sequence.	At	an	altitude	of	about	3700	m,	
the	launcher	veered	off	its	flight	path,	broke	up	and	exploded.	The	failure	was	
caused	by	"complete	loss	of	guidance	and	attitude	information"	30	seconds	after	
liftoff.	
The	problem	was	caused	by	an	`Operand	Error'	in	converting	data	in	a	subroutine	
from	64-bit	floating	point	to	16-bit	signed	integer.	One	value	was	too	large	to	be	
converted,	creating	the	Operand	Error.	This	was	not	explicitly	handled	in	the	
program	(although	other	potential	Operand	Errors	were)	and	so	the	computer,	the	
Inertial	Reference	System	(SRI)	halted,	as	specified	in	other	requirements.	There	are	
two	SRIs,	one	`active',	one	`hot	back-up'	and	the	active	one	halted	just	after	the	
backup,	from	the	same	problem.	Since	no	inertial	guidance	was	now	available,	and	
the	control	system	depends	on	it,	we	can	say	that	the	destructive	consequence	was	
the	result	of	`Garbage	in,	garbage	out'	(GIGO).	The	conversion	error	occurred	in	a	
routine	which	had	been	reused	from	the	Ariane 4	vehicle,	whose	launch	trajectory	
was	different	from	that	of	the	Ariane 5.	The	variable	containing	the	calculation	of	
Horizontal	Bias	(BH),	a	quantity	related	to	the	horizontal	velocity,	thus	went	out	of	
`planned'	bounds	(`planned'	for	the	Ariane 4)	and	caused	the	Operand	Error.	

Advanced	Programming 131

Requirements and Testing

a) The	operand	range	in	the	module	was	deliberately	not	protected;	
b) this	was	because	engineering	analysis	for	its	use	in	Ariane 4	had	shown	the	

operand	would	never	go	out	of	bounds;	
c) the	range	requirement	stemming	from	this	analysis	was	not	transferred	to	the	

requirements	for	the	Ariane 5;	
d) testing	was	done	against	requirements

this	is	more	properly	classified	as	a	requirements	error	rather	than	a	programming	
error.	The	program	was	written	against	Ariane 4	requirements;	these	requirements	
were	not	transferred	to	the	Ariane 5	requirements	spec;	the	Ariane 5	requirements	
therefore	did	not	state	the	range	requirement;	the	(implicit	in	Ariane 5)	range	
requirement	was	in	conflict	with	the	behavior	of	Ariane 5	(as	in	fact	explicated	in	
other	Ariane 5	requirements);	requirements	came	up	against	behavior	and	the	
rocket	was	destroyed.	(It	is	not	surprising	that	it	was	a	requirements	error	- over	
90%	of	safety-critical	systems	failures	are	requirements	errors,	according	to	a	JPL	
study	that	has	become	folklore)

Advanced	Programming 132

Ariane	5

Advanced	Programming 133

Static Software	Analysis

C/C++
http://cppcheck.sourceforge.net/
https://clang.llvm.org/docs/index.html
http://valgrind.org/
http://www.gimpel.com/html/flex.htm (commercial)
https://www.grammatech.com/products/codesonar (commercial)
http://ltp.sourceforge.net/coverage/lcov.php

Python
https://coverage.readthedocs.io/en/coverage-4.4.1/
https://www.pylint.org/
https://blog.codacy.com/review-of-python-static-analysis-tools-
ff8e7e27f972

C/C++,	Java,	Python,	etc.
https://scan.coverity.com/ (commercial,	free use)

Ada
http://www.adacore.com/codepeer

Advanced	Programming 134

Exercise	

Read	http://matt.might.net/articles/intro-to-make/ and	have	a	
look	at	http://berrendorf.inf.h-brs.de/sonstiges/make.html

1. Ex1:
a. check	for	consecutive	sequence	numbers
b. check	boundary	values

2. Ex1,Ex2:
a. document	using	doxygen or	similar
b. write	makefile to	generate	documentation	with:	make doc
c. Write	makefile to	generate	coverage	with:	make coverage
d. Write	makefile to	run	static	checks:	make check

3. Ex3:
We	will	write	a	program	to	predict	a	time	series
you	will	find	data	on	Monday	on	github.
Write	a	program	that	reads	in	the	data	and	predicts	the	next	24	values.

Advanced	Programming 137

