
     

 

 

Getting Started with JsonServer 2016   •   1 
 

 

Introduction to JSON Server 

Welcome to JSON Server, a middleware that helps you use widely-used 

SQL databases to manage JSON documents. In this document, we provide 

a quick introduction to the library on design philosophy, basic concepts, 

functionality and programming APIs. We refer readers to our papers and 

technical reports to understand detailed algorithms and implementations.  

What is JSON Server 

JSON Server is a library that connects to a SQL database instance, stores 

JSON documents in tables and queries JSON documents through a JSON 

query language. It currently supports SQL Server and MariaDB as the 

underlying database. JSON Server is not an independent database, but a 

middleware that accepts operations against JSON documents and translates 

them to SQL queries executed in the underlying system. As such, JSON 

Server can be viewed as a special connector to SQL databases. Developers 

will experience no differences than the default SQL connector provided by 

the .NET framework (i.e., IDbConnection), only except that this new 

connector accepts JSON-oriented statements. 

Design philosophy 

JSON data is popular among web applications. While today’s solutions for 

managing JSON have been mostly centered on the concept of NoSQL, we 

adopt a different approach, advocating that old SQL technologies have great 

values in managing JSON data and can deliver abundant functionality and 

exceptional performance. The goal of JSON Server is to augment SQL 

databases with efficient JSON processing, so that SQL users enjoy superior 

performance and functionality, compared with other NoSQL alternatives.  

The design of JSON Server is driven by two observations. The first 

observation is drawn from the history of semi-structured data, in particular 

the rise and fall of XML databases. XML emerged in early 2000’s and major 

database vendors quickly stepped up and released XML databases, in 

addition to a number of native XML databases developed from scratch. 

While providing great functions, XML databases commonly suffered from 

poor performance. One of the major lessons we learned is that a strongly-



Introduction to JSON Server 

2  
 

 

typed data store is a must to deliver good performance. Weakly-typed data 

stores, e.g., representing all values as strings, are not an option, even if we 

use many query processing techniques, such as indexes and views, as 

compensations. This philosophy is at the core of JSON Server, in which 

JSON documents are stored in strongly-typed tables and a JSON 

query/statement is executed by the SQL execution engine using strongly-

typed objects, such as tables, indexes and histograms.  

Storing JSON documents in strongly-typed tables is inherently difficult. 

One of the major characteristics of JSON is its flexibility. Being flexible 

means that it is hard to derive a fixed schema and therefore contradicts the 

requirement of relational tables that demand data format upfront. In JSON 

Server, we overcome this challenge by using a patented mapping 

technology that presents to upper layers a view of logical tables that can be 

evolved economically. Both logical tables and their physical counterparts 

are strongly-typed, providing almost same performance as if logical tables 

are materialized as usual tables. The mapping enables us to host JSON 

documents in strongly-typed tables, without suffering much pain of JSON’s 

flexibility.  

The second observation that drives our design is that SQL databases are 

products of years of research and development. When we examined today’s 

JSON offerings, we found that most of their functions have counterparts in 

SQL databases. Missing functions can too be found in SQL. We believe that 

it is a waste to abandon mature SQL technologies and re-invent them in the 

context of JSON. Hence, JSON Server is built on top of SQL databases, 

aiming to re-use SQL DB’s functions whenever possible. By using SQL 

functions appropriately, the physical data representation and runtime 

behavior of JSON Server closely resemble those of native JSON databases. 

In fact, SQL databases provide many more sophisticated optimizations that 

have been neglected by native JSON databases, giving JSON Server 

unparallel performance advantages.  

Features 

JSON Server is a DLL library through which you manage JSON documents 

in SQL Server (version 2012 and onward) or MariaDB (10.0 and onward). 

It provides features a standard JSON database is expected to have. In 

addition, since JSON Server relies on SQL DBs, it inherits many features 

in the relational world that are rarely supported in native JSON databases.  



     

 

 

Getting Started with JsonServer 2016   •   3 
 

 

JSON Server offers the following major features:  

 Databases and collections. A database in JSON Server is a conventional 

SQL database instance, within which one or more document collections are 

created through JSON Server’s API’s. Unlike most JSON databases in 

which operations must be bound to a single collection, JSON Server 

supports cross-collection operations. 

 Data manipulations. JSON Server provides API’s to insert JSON documents 

to a collection. Document deletion is done by issuing a DELETE statement 

specifying documents matching criteria. JSON Server does not support 

modifying an existing document at the moment, a feature that will be 

supported in a future release. Currently, document modifications can be 

done by first deleting the document from the collection, modifying it in the 

application, and then inserting the new document back to the collection. 

Note that JSON Server provides transaction guarantees. The three steps can 

be wrapped in one transaction, resulting in no intermediate states in case 

some steps fail.   

 Queries. JSON Server provides a query language to query JSON documents. 

The language is akin to XQuery, providing much more expressive power 

than the languages of other alternatives. JSON Server also supports two 

other popular languages, MongoDB and Azure DocumentDB.  

 Transactions. All operations in JSON Server are transaction-safe. What is 

more, a transaction’s scope can span more than one document, in the same 

collection or separate collections.  

 SQL-related features. JSON Server inherits many features from the SQL 

database it connects to. Below is a short list of features that are crucial to 

administration tasks: 

 Security. JSON Server uses the authentication mechanism of the 

SQL DB it connects to for access control. A user can access a 

database if SQL DB says so. At this point, JSON Server does not 

provide collection- or document-level access control. This is a 

feature that will be added in the future. JSON Server also enjoys 

other security features of SQL DBs, e.g., encryption. 

 Replication. JSON Server stores JSON documents in SQL databases. 

A replication of the database will result in a replication of all JSON 



Introduction to JSON Server 

4  
 

 

data. As such, it is convenient to deliver a JSON solution for various 

application needs. 

 Backup. JSON Server maintains SQL databases that are visible to 

SQL DB administrators. Administrators can apply backup 

operations to the database explicitly.  

  



     

 

 

Getting Started with JsonServer 2016   •   5 
 

 

JSON Databases and Collections 

JSON Server uses SQL databases to host JSON data. JSON Server connects 

to an existing SQL database using a connection string. It does not provide 

any API’s to manage the database. Any database-level management, such 

as creating the database, setting the database properties and adding user 

accounts, should be done by executing SQL statements through the 

corresponding console of SQL Server and MariaDB.   

JSON Server maintains all data and meta-data using SQL objects such as 

tables, indexes and stored procedures. These objects are visible to SQL 

users with appropriate permissions. As a middleware, JSON Server does 

not prevent you from modifying these objects. It is advised that you apply 

database operations, such as replication and backup, to the entire database 

and do not change these SQL objects. Doing so will result in an 

inconsistent/corrupted state of data, from which JSON Server is not able to 

recover.   

Opening/closing a JSON database 

You open a JSON database by instantiating a JsonServerConnection 

object. JsonServerConnection is similar to IDbConnection and 

is instantiated by a connection string of the SQL database.   

using JsonServer; 

……  

string connectionString = “Data Source= (local); Initial 

Catalog=JsonTesting; Integrated Security=true;”; 
 

JsonServerConnection jdb =  

new JsonServerConnection(connectionString); 

 

try { 

    // Connects to a database. Creates objects needed by 

    // JSON Server if they do not exist.  

    jdb.Open(true); 

} 

catch(DatabaseException e) { 

    // Exception handling goes here 

} 

 



JSON Databases and Collections 

6  
 

 

To connec to a MariaDB database, replace the connection string with a 

MariaDB one and use Mariadb to indicate the database type when creating 

JsonServerConnection.  

using JsonServer; 

……  

string connectionString =  

"server=127.0.0.1;uid=root;pwd=xxx;database=jsontesting;"; 

 

JsonServerConnection jdb =  

new JsonServerConnection(connectionString,DatabaseType.Mariadb); 

 

try { 

    // Connects to a database. Creates objects needed by 

    // JSON Server if they do not exist.  

    jdb.Open(true); 

} 

catch(DatabaseException e) { 

    // Exception handling goes here 

} 

Note that when connecting to MariaDB, you must have the .NET driver for 

MySQL installed.   

JSON Server maintains a number of SQL objects in the SQL database to 

host data and meta-data of JSON documents. When a JSON database is 

opened, JSON Server automatically checks if these objects exist. A 

DatabaseException exception will be thrown, if some of them are 

missing, unless the flag of Open() is set to be true, in which case missing 

objects will be created.  

You close a JSON database by invoking   

JsonServerConnection.Close() or 

JsonServerConnection.Dispose(). The method internally 

closes the IDbConnection object associated with the connection. You 

should expect the same behavior/result when invoking 

JsonServerConnection.Close() in unusual circumstances as 

invoking IDbConnection.Close().  For instance, when the 

connection is closed, any uncommitted changes will be lost. And a closed 

connection cannot be re-opened. Once closed, a new connection to the 

JSON database needs to be instantiated.   

using JsonServer; 

……  

try { 

jdb.Open(true); 

// Data manipulations go here 

jdb.Close(); 



     

 

 

Getting Started with JsonServer 2016   •   7 
 

 

} 

catch(DatabaseException e) { 

    // Exception handling goes here 

} 

Creating/deleting a document collection 

Inside each JSON database, JSON documents are organized by 

collections. You create a collection with a specified name by 

JsonServerConnection.CreateCollection().  

using JsonServer; 

……  

try { 

jdb.Open(true); 

// Create a collection named “MovieRepo”. If the collection 

// already exists, an exception will be thrown. 

jdb.CreateCollection(“MovieRepo”); 

…… 

} 

catch(JSONCollectionException e) { 

    // Exception handling goes here 

} 

Similar to JSON databases, each collection in JSON Server maintains some 

SQL objects. When CreateCollection() is invoked, these objects 

are created/modified. A JsonCollectionException exception will 

be thrown, if any error pops up when creating or modifying the SQL objects. 

For example, if your account has read-only permission, JSON Server cannot 

create tables under your account and therefore cannot create a new 

document collection.  

A JSON collection is uniquely identified by its name. If there is already a 

collection with the same name, a JsonCollectionException 

exception will be thrown.  

A JSON collection can be deleted by invoking 

JsonServerConnection.DeleteCollection(). The same 

exception will be thrown if you don’t have the permission of deleting SQL 

objects or the specified collection does not exist.   

Inserting documents to a collection 



JSON Databases and Collections 

8  
 

 

Given a collection name, you insert JSON documents to the collection 

through JsonServerConnection.InsertJson(). The method 

accepts both a single JSON document (as a string) or a set of documents (as 

a list of strings). For the former, each insertion is a separate transaction; for 

the latter all insertions are wrapped in one transaction, meaning either all 

documents or none of them are persisted to the database. In both cases, the 

transaction commits when the method returns.  

using JsonServer; 

……  

try  

{ 

jdb.Open(); 

string doc1 = @“{““id””:1, ““title””:““Kong Fu Panda””}”; 

string doc2 = @“{““id””:2, ““title””:““Shrek””}”; 

 

// Insert two documents separately 

// Each insertion is a separate transaction 

jdb.InsertJson(doc1, “MovieRepo”); 

jdb.InsertJson(doc2, “MovieRepo”); 

…… 

} 

catch(JsonDmlException e) { 

    // Exception handling goes here 

} 

When a JSON document is inserted, JSON Server first parses the string 

using a JSON parser (i.e., Json.NET). An exception will be thrown by the 

JSON parser if the input string is not a valid JSON object. And the whole 

transaction will be aborted.  

The parsed JSON string is transformed (or serialized) into a full-fidelity 

table representation, which is eventually persisted to the SQL database. 

JsonServerConnection.InsertJson() provides a boolean 

parameter keepDocument to specify whether or not to keep the original 

JSON string in the database. The default value of keepDocument is false.  

using JsonServer; 

……  

try { 

jdb.Open(); 

List<string> docs = new List<string>(2); 

docs.Add(@“{““id””:1, ““title””:““Kong Fu Panda””}”); 

docs.Add(@“{““id””:2, ““title””:““Shrek””}”); 

// Insert two documents in one transaction. 

// The two strings are stored in the database, so that  

// the original document strings can be retrieved later. 

jdb.InsertJson(docs, “MovieRepo”, true); 

…… 

} 



     

 

 

Getting Started with JsonServer 2016   •   9 
 

 

catch(JsonDmlException e) { 

    // Exception handling goes here 

} 

Not storing the original document will lead to better performance of 

document insertion. In return, the document will be deserialized or 

reconstructed at runtime, incurring slight query execution overhead. More 

importantly, you need to be aware that the document reconstructed from the 

table representation may be different from the original one by string 

comparison. This is because by semantics a JSON object is an associative 

array and all its key-value pairs have no orders. JSON Server disrecards pair 

orders and white spaces in the JSON string during serialization and will re-

shuffle the object’s pairs by their keys alphabetically upon deserialization. 

JSON Server only maintains orders of array elements, so that when they are 

deserialized the array order stays the same. In case your application needs 

the exact JSON string when retrieved from the database, set 

keepDocument to true.  

When a document is persisted to the underlying tables, it may leave a 

footprint in the collection-level meta-data. Inserting a document may 

occastionally fail if this insertion causes a meta-data conflict w.r.t. other 

concurrent insertions. In such cases, you start a new transaction to re-insert 

the document(s).  

Best practices for bulk insertion 

It is a common need to load a large amount of documents into a collection. 

To achieve best performance of bulk insertion, consider the following 

practices:  

 Concurrent insertion. Inserting JSON document(s) in JSON Server is a 

CPU-intensive process. Internally, the process not only persists the string to 

disk, but involves a few steps that interprets records serialized from JSON 

documents and inserts them to tables. It is a good practice to initiate multiple 

insertion threads, maximizing the CPU utilization. JSON Server and the 

underlying SQL database are designed as multi-user environments and all 

insertions will be synchronized correctly.  

 Multiple documents as a batch. The insert method accepts a single 

document or a list of documents. Since each invocation of the method is 

wrapped in one transaction, inserting multiple documents in one transaction 



JSON Databases and Collections 

10  
 

 

leaves fewer footprints in the transaction log and therefore achieves better 

performance than loading them separately. Further, inserting multiple 

documents at a time incurs less overhead on accessing collection-level 

meta-data. While the optimal parameter may be data-wise, a few thousand 

documents in one invocation is a reasonable number. 

  



     

 

 

Getting Started with JsonServer 2016   •   11 
 

 

Querying JSON 

Once JSON documents are loaded to the database, you use a query language 

to retrieve them. JSON Server supports 3 query languages: MongoDB query 

language, Azure DocumentDB query language and JSON Server query 

language. The former two are languages of today’s two pouplar JSON 

stores. If you are familiar with them, you may directly go to Chapter “Query 

Execution” to learn the API’s to execute queries and retrieve results.  

JSON Server also provides its own query language, a language that is akin 

to XQuery (and LINQ) with slight adjustments to fit the JSON semantics 

and application needs. The goal is to provide high expressive power to allow 

applications to express complex business logic. This chapter gives an 

introduction of the language with numerous examples. It is still helpful to 

review XQuery materials, as there are many excellent resources online.  

A JSON query block is analogous to XQuery’s FLWOR expression. It is 

based on the tree representation of JSON documents. A basic query block 

consists of the following clauses: 

 FOR clause defines an iterative variable and binds it to a collection 

of JSON fields/values. The result set is the Cartesian product of 

binding values of all iterative variables, while satisfying the 

condition specified in the WHERE clause. 

 LET clause defines a local variable and binds it to JSON 

fields/values in a specific iteration. 

 WHERE clause specifies a boolean expression to filter the iteration. 

A boolean expression is a combination of primitive predicates, 

connected by the boolean operators AND, OR and NOT. Currently 

supported primitive predicates resemble those in SQL, including 

value comparisons, EXISTS, IN and LIKE.  

 ORDER-BY and GROUP-BY clauses specify a list of JSON 

primitive values by which the result set produced by the iteration(s) 

is ordered or grouped by. A GROUP-BY clause must be coupled with 

at least one aggregation function. Available aggregation functions 



Querying JSON 

12  
 

 

include those natively supported in SQL, such as SUM, COUNT and 

AVG. 

 SELECT clause specifies the returned expression. The expression 

defines the result set in the tabular format. A field name is optional; 

it is either specified by the user or the default string "(No column 

name)" if not provided. A field value is a JSON primitive value or 

a string representation of a JSON document or a sub-document.  

To give an overview of the query syntax, the following query retrieves first 

name(s) of the director(s) of “Kung Fu Panda” from movie documents:  

FOR md IN (“MovieCollection”) 

FOR fn IN md.director.*.firstName 

WHERE md.title = “Kung Fu Panda” 

SELECT fn AS DirectorFirstName 

In the following, we walk through each query construct and provide detailed 

examples, showing how to use the language to query JSON data to fit 

various application needs. We use the following document as a document 

example.  

{ 

  “movieID”:101, 

  “title”:“Kung Fu Panda”, 

  “releaseDate”:6/06/2008, 

  “directorList”:[ 

    { 

      “directorID”:9999,  

      “firstName”:“John”,  

      “lastName”:“Stevenson” 

    }, 

    { 

      “directorID”:7777,  

      “firstName”:“Mark”,  

      “lastName”:“Osborne”, 

      “DOB”:9/17/1970 

    } 

  ] 

} 

Collection variables 



     

 

 

Getting Started with JsonServer 2016   •   13 
 

 

A collection variable is a variable defined in a FOR clause and bound to 

the JSON documents in the specified collection. The collection name is 

given in the quotes following the IN keyword. A 

JsonQueryCompileException exception will be thrown if the 

specified collection name does not exist in the database. 

Other variables will be defined based on collection variables to navigate 

down to fields or values inside documents. Two collection variables can be 

defined over the same collection, creating pairwise associations of any two 

documents in a collection. Two collection variables can also be bound to 

different collections. 

Function Doc() is a system-reserved function that returns the string 

representation of document or sub-document rooted at the binding values of  

the input variable. When the input is a collection variable, it returns the 

entire JSON document.  

FOR m1 IN (“MovieCollection”) 

FOR m2 IN (“MovieCollection”) 

SELECT Doc(m1) AS mov1, Doc(m2) AS mov2 

Path expressions 

Path expressions are a central construct to locate fields/values inside JSON 

documents. A path expression starts with a head variable, followed by a 

sequence of field names separated by dots. The field-name sequence is 

evaluated w.r.t. a collection of context objects, objects that are binding 

values of the head variable of the path. Starting from a context object, the 

segment [.nodeName] navigates to all the fields of the object and selects 

those whose names match nodeName. The nodeName can be wildcard *, 

meaning any field is a match. 

FOR m1 IN (“MovieCollection”) 

FOR fn IN md.directorList.*.firstName 

WHERE md.title = “Kung Fu Panda” 

SELECT fn AS DirectorFirstName 

In this query, the first iterator variable m1 is bound to JSON documents in 

the movie collection. Variable fn is bound to values specified by a path 

expression. Its head variable, md, establishes the context objects—all the 



Querying JSON 

14  
 

 

documents. The remaining path expression navigates to the great 

grandchildren of the document roots through three segments: 

directorList, * and firstName. Here we use the wild card to 

navigate to director objects in the director array. The binding values of 

variable fn are returned through the SELECT clause. 

FOR md IN (“MovieCollection”) 

LET dir := md.directorList.* 

WHERE dir.firstName = “John” 

SELECT Doc(md) 

This query returns movies directed by someone whose first name is “John”. 

The LET clause is a clause defining temporary variables. In this example, 

variable dir is bound to the elements of the array directorList. This 

temporary variable establishes the context objects of the path expression in 

the WHERE clause. Semantically, this path expression is equivalent to the 

one that replaces the head variable dir with its full name:  

FOR md IN (“MovieCollection”) 

WHERE md.directorList.*.firstName = “John” 

SELECT Doc(md) 

Types 

The JSON data model loosely defines a few data types, such as string, 

boolean and number. Due to the flexibility of JSON, a path expression may 

be bound to values of different types. An example is that two documents 

have the same field, but the field values are of different data types, with one 

being a string and the other being a number. Such type ambiguity may lead 

to unexpected results and/or query semantics. For instance, inequality 

comparison has quite different semantics when applying to strings and 

numbers.  

In this query language, you can include type information in path expressions 

to disambiguate data types. The conventional [.nodeName] navigation 

in a path expression can be coupled with the type specification, in the form 

of [.nodeName:$typeName]. From a context object, only the child 

field whose name and type match nodeName and typeName will be 

selected.  

FOR md IN (“MovieCollection”) 

LET dir := md.directorList.[*:$Object] 

WHERE dir.firstName = “John” 



     

 

 

Getting Started with JsonServer 2016   •   15 
 

 

SELECT Doc(md) 

In this example, the path expression becomes 

md.directorList.[*:$Object], selecting only array members 

that are objects (note that a JSON array may contain elements of 

heterogeneous types).  

Currently-supported data types in the type specification are: 

 Number 

 Int 

 Long 

 Float 

 Double 

 Boolean 

 Bytes 

 String 

 ShortString (length <= 8000) 

 LongString (length > 8000) 

 Date 

 Array 

 Object  

Some of the above types are from JSON, while other are defined in the 

query language. The type Number is a superset of Int, Long, Float and 

Double. And the type String is a superset of ShortString and 

LongString. You can use whichever type that fits the need.  



Querying JSON 

16  
 

 

While the language provides type specifications, you can opt not to use 

them. When type specifications are missing and there is ambiguity, JSON 

Server will locate all types of data matching path expressions. The runtime 

behavior is then determined by the underlying SQL database: at runtime 

SQL DB will try to perform type casting when needed. We refer you to 

other online resources for details on rules of type casting in SQL Server and 

MariaDB. If type casting causes no issues, the query will be executed 

successfully. If type casting fails, a runtime exception will be thrown by 

SQL Server or MariaDB.  

Joins 

Joins are a cornerstone for expressing relationships. They are a product of 

expressiveness and are unavoidable in expressive query languages. In JSON 

Server, you can express two types of joins: structural joins and value joins. 

A structural join is a join that specifies the structural relationship of two 

variables in a nested document. It is implicitly described by the intersections 

of the variables' path expressions. A value join specifies a relationship 

between two variables based on a comparison of their values. This type of 

joins is similar to relational joins in SQL and are expressed in the WHERE 

clause using boolean expressions. 

FOR md IN (“MovieCollection”) 

LET fn := md.directorList.*.firstName 

LET ln := md.directorList.*.lastName 

WHERE fn = “John” AND ln = “Stevenson” 

SELECT md.movieID AS MovieID 

The above query matches movie documents against two predicates on the 

first and last names of directors. In each iteration (or for each movie), the 

two variables fn and ln are bound to first and last names of the movie’s 

director(s).  The subtlety is that the first and last names are not necessarily 

from the same director, as directorList is an array field and fn and 

ln may be bound to different array elements. A movie directed by two 

directors with one named “John Doe” and the other named “Alan 

Stevenson”' is also a match to the query. 

FOR md IN (“MovieCollection”) 

FOR dir IN md.directorList.* 

LET fn := dir.firstName 

LET ln := dir.lastName 

WHERE fn = “John” AND ln = “Stevenson” 



     

 

 

Getting Started with JsonServer 2016   •   17 
 

 

SELECT md.movieID AS MID, dir.directorID AS DID 

This query finds movies directed by “John Stevenson”'. Now fn and ln are 

defined inside every iteration of directors, so their binding values refer to 

the same person. 

In addition to structural joins, you can use boolean expressions to express 

value-based joins.  

FOR md IN (“MovieCollection”) 

LET dir := md.directorList.* 

WHERE dir.DOB + 40 >= md.releaseDate 

SELECT Doc(md) 

In this query, the search criterion is that at least one director is more than 40 

years old when the movie is released.  

Nested queries 

JSON Server’s query language supports nesting in two ways: EXISTS and 

IN clauses, and path expressions. EXISTS and IN clauses are no strangers 

to people who are familiar with SQL. The usage of path expressions in the 

WHERE clause also achieve similar semantics. Specifically, when a path 

expression is used as a scalar expression in the WHERE clause, it is bound 

to one or more fields/values in a specific iteration. As long as one such value 

satisfies the predicates, values of iterative variables in the current iteration 

survive. 

FOR md IN (“MovieCollection”) 

WHERE md.directorList.*.firstName = “John” 

SELECT Doc(md) 

This query returns movies directed by someone whose first name is “John”. 

While there may be more than one director of a movie, as long as one of 

them is named “John”, the movie will be returned. The same query can be 

expressed using a sub-query as follows: 

FOR md IN (“MovieCollection”) 

WHERE EXISTS ( 

  FOR dir IN md.directorList.* 

  WHERE dir.firstName = “John” 

  SELECT "director ID":dir.directorID 

) 



Querying JSON 

18  
 

 

SELECT Doc(md) 

By using EXISTS and IN clauses, you can easily express cross-document 

or cross-collection joins.  

Array functions 

Two fuctions associated with JSON arrays are Position() and 

Array(). Position() takes input as a variable or a path expression and 

outputs the position of an array element. For either input format, only if the 

binding values are array members does the function have semantics. When 

a binding value of the input variable/expression is not an array member, the 

evaluation of the function is null.  

FOR md IN (“MovieCollection”) 

LET dir := md.directorList.* 

WHERE EXISTS ( 

  FOR dir in md.directorList.* 

  Where Position(dir)>1 AND Position(dir)<=3 AND  

        dir.firstName = “John” 

  SELECT dir 

) 

SELECT Doc(md) 

In this example, the variable dir is bound to directors in the array field 

directorList in a subquery. By using the function Pos(), the 

subquery targets directors whose array positions are within a specific range. 

Array() is a scalar function that takes input as a subquery selecting array 

elements and their positions and outputs the string representation of a 

newly-constructed JSON array. Array() can be used to slice an array or 

re-order array elements by other properties.  

FOR m IN ('MovieCollection') 

select Array( 

    FOR dir IN md.directorList.* 

    WHERE Position(dir) > 1 AND Position(dir) <= 3 

SELECT Doc(dir), Position(n) 

) AS SliceArray 

This query returns a sliced director array for each movie. The input 

subquery of Array() must project two columns, the first specifying array 

elements and the other specifying the property by which array elements are 

ordered. In this example, array elements are sub-documents of directors, 



     

 

 

Getting Started with JsonServer 2016   •   19 
 

 

i.e., Doc(dir). They are arranged by the order of Position(n)–

directors’ positions in the orginal array.  

It is also possible to arrange directors by their last names. 

FOR m IN ('MovieCollection') 

select Array( 

    FOR dir IN md.directorList.* 

    WHERE Position(dir) > 1 AND Position(dir) <= 3 

SELECT Doc(dir), dir.lastName 

) AS SliceArray 

Deleting documents 

JSON Server’s API’s to insert documents are simple; the inputs of the 

insertion method are document string(s) and the collection name. But to 

delete documents, you need a full query language to specify the matching 

criteria. The DELETE statement is similar to the SELECT statement, except 

that there is only one FOR clause defining a collection variable and that the 

SELECT clause is replaced with the DELETE clause. By semantics, 

documents bound to the collection variable and satisfying the WHERE clause 

will be deleted from the database.  

FOR md IN (““MovieCollection””) 

LET dir := md.directorList.*  

WHERE Position(dir) > 3 

DELETE md 

This statement deletes all movie documents that have more than 3 directors.  

When there are multiple FOR variables in a DELETE statement, a 

compilation exception will be thrown. The statement is executed as one 

statement in the SQL database. So the operation is transaction-safe; either 

all or none of the matching documents are deleted from the collection.   



Query Execution 

20  
 

 

Query Execution 

In JSON Server, you use 

JsonServerConnection.ExecuteReader() and 

JsonServerConnection.ExecuteNonReader() to execute 

read-only and data modification queries respectively. The input of the two 

methods is a query/statement string. The output of ExecuteReader() 

is the standard data reader IDataReader from .NET, by which you 

iterate through results and retrieve values. 

using JsonServer; 

……  

try { 

  jdb.Open(); 

  string query = @“  

    FOR md IN (““MovieCollection””) 

    FOR fn IN md.directorList.*.firstName 

    WHERE md.title = “Kung Fu Panda” 

    SELECT ““director FN””:fn”; 

  IDataReader dataReader = jdb.ExecuteReader(query); 

  while(dataReader.Read()) { 

    // retrieves results 

  } 

  dataReader.Close(); 

  jdb.Close(); 

} 

catch(Exception e) { 

  // Exception handling goes here 

} 

Below is an example of executing DELETE statement through 

ExecuteNonReader().  

using JsonServer; 

try { 

  …… 

  string deleteQuery = @“ 

FOR md IN (““MovieCollection””) 

LET dir := md.directorList.*  

WHERE Pos(dir) > 3 

DELETE md”; 

  jdb.ExecuteNonQuery(deleteQuery); 

  jdb.Close(); 

  …… 

} 

catch (Exception e) { 

  // Exception handling 

} 



     

 

 

Getting Started with JsonServer 2016   •   21 
 

 

Executing MongoDB and Azure Document query languages 

In addition to the default query language described in last chapter, JSON 

Server also supports two other languages from MongoDB and Azure 

DocumentDB, two popular JSON stores. To execute queries other than the 

default the query language, use QueryType to indicate the type of the 

query to be executed. 

var q = @"db.MovieCollection.find( { title: 'Kung Fu Panda' } )"; 

IDataReader reader = jdb.ExecuteReader(q, QueryType.MongoDB); 

while (reader.Read()) 

{ 

    Console.WriteLine(reader[0]); 

} 

reader.Close(); 
 

Transactions 

Transactions are an integral part of JSON Server. Every operation is 

transactional-safe. In prior discussions, transactions are implicit; they are 

committed when InsertJson(), ExecuteReader() or 

ExecuteNonReader() returns. But you can control transactions 

explicitly. In JSON Server, you start a transaction by instantiating a 

JsonTransaction object. The object has similar methods as 

IDbTransaction, such as Commit(), Rollback() and 

Dispose(). This object is passed into InsertJson(), 

ExecuteReader() or ExecuteNonReader() to execute the 

statement within the specified transaction. 

using JsonServer; 

……  

try  

{ 

jdb.Open(); 

JSONTransaction jtx = jdb.BeginTransaction(); 

jdb.InsertJSON(doc1, “MovieRepo”, jtx); 

jdb.InsertJSON(doc2, “MovieRepo”, jtx); 

jtx.Commit(); 

} 

catch(Exception e1) { 

try { 

  jtx.Rollback(); 

} 

catch(Exception e2) { 



Query Execution 

22  
 

 

  // Roll-back exception handling goes here 

} 

} 

Among all operations, document insertion may change the schema of the 

physical SQL objects that hold the data and the meta-data of JSON 

documents. When the schema of a SQL object has been changed, the 

transaction cannot proceed and JSON Server will abort this transaction 

automatically. In such cases, you need to re-try the transaction. Since all 

needed physical changes have been persisted, new attempts will succeed 

eventually.   

  



     

 

 

Getting Started with JsonServer 2016   •   23 
 

 

Indexes 

Indexing is an important mechanism to accelerate query processing. This 

chapter introduces statements to create indexes and their limitations. JSON 

Server provides a means to create indexes on desirable fields and values in 

JSON documents to improve query performance. Internally, JSON Server 

identifies table values of corresponding JSON fields/values and create SQL 

indexes. During execution, the underlying SQL database determines if the 

indexes are beneficial for a query and if so, produces an execution plan that 

uses indexes. Once created, indexes will be maintained automatically, when 

new documents are added and/or old documents are deleted.  

One-dimensional indexes 

A one-dimensional index is defined for binding values of a FOR variable in 

a JSON query block. Since JSON variables are specified by path 

expressions, this JSON variable is bound to fields or values of either 

homogeneous or heterougenous types. Depending on the binding values, 

one or more SQL indexes will be created physically. 

FOR md IN (“MovieCollection”) 

FOR fn IN md.directorList.*.firstName 

CREATE INDEX fname_index ON (fn) 
The statement creates an index on first names of directors of movie 

documents. Similar to the DELETE statement, you execute the index 

statement through ExecuteNonReader(). 

using JsonServer; 

try { 

  …… 

  string indexStatement = @“ 

    FOR md IN (“MovieCollection”) 

    FOR fn IN md.directorList.*.firstName 

    CREATE INDEX fname_index ON fn”; 

  jdb.ExecuteNonQuery(indexStatement); 

  jdb.Close(); 

  …… 

} 

catch (Exception e) { 

  // Exception handling 

} 
 



Indexes 

24  
 

 

Multi-dimensional indexes  

A multi-dimensional index is an index on more than one JSON variable. 

Though similar to multi-column indexes in SQL, an important limitation for 

JSON is that for each combination of indexed values, they must NOT satisfy 

one of the following conditions:   

 Indexed values come from more than one document 

 Indexed values come from two elements of an array or separate arrays 

When one of the above conditions holds, the indexed value combinations 

will be Cartesian product of binding values of individual variables, 

producing many value combinations that do not physically appear in the 

original JSON documents, thereby exploding index sizes and complicating 

index maintenance. This is analogous to SQL indexes in that you can create 

a multi-dimensional index on columns from the same table, but not on 

columns from more than one table.  

FOR md IN (“MovieCollection”) 

FOR dir IN md.directorList.* 

LET fn := dir.firstName 

LET ln := dir.lastName 

CREATE INDEX name_index ON (fn, ln) 
This statement creates an index on first and last names of directors. Since 

both fn and ln variables are bound to the same director element in the 

directorList array, this two-dimensional index is legitimate.  

FOR md IN (“MovieCollection”) 

FOR fn := md.directorList.*.firstName 

FOR ln := md.directorList.*.lastName 

CREATE INDEX name_index ON (fn, ln) 

Note that in this statement there is no intermediate variable dir, and fn 

and ln may be bound to different directors. As a result, the (fn, ln) 

pair will create first-last name combinations that do not physically appear 

in JSON documents. When you try to create such an index through 

ExecuteNonQuery(), a JSONQueryCompileException 

exception will be thrown. 

 


