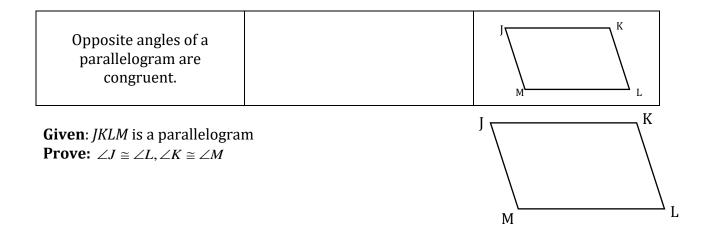
Unit 6 - Quadrilaterals

Day	Classwork	Day	Homework
Friday 11/9	Unit 5 Test		
Monday 11/12	No School		
Tuesday 11/13	Properties of a Parallelogram	1	HW 6.1
Wednesday 11/14	Proving a Parallelogram	2	HW 6.2
Thursday 11/15	Rectangle	3	HW 6.3
Friday 11/16	Rhombus & Square Unit 6 Quiz 1	4	HW 6.4
Monday 11/19	Trapezoid & Isosceles Trapezoid	5	HW 6.5
Tuesday 11/20	Kites Unit 6 Quiz 2	6	HW 6.6
11/21 - 11/23	Thanksgiving Break		
Monday 11/26	Coordinate Proof Formulas	7	HW 6.7
Tuesday 11/27	Symmetry in Quadrilaterals Unit 6 Quiz 3	9	HW 6.9
Wednesday 11/28	Coordinate Proofs	8	HW 6.8
Thursday 11/29	Review	10	Review Sheet
Friday 11/30	Review	11	Review Sheet
Monday 12/3	Review	12	Review Sheet
Tuesday 12/4	Unit 6 Test	13	

PARALLELOGRAMS

A **parallelogram** is a quadrilateral with both pairs of opposite sides parallel. In parallelogram ABCD, **BC** || **AD** and **AB** || **DC** by definition.

Properties of Parallelograms			
Theorems	Example	Figure	
Opposite sides of a parallelogram are congruent.		J K M L	
Given : <i>JKLM</i> is a parallelogram Prove : $\overline{JK} \cong \overline{LM}, \overline{JM} \cong \overline{LK}$	n J _J	K M L	

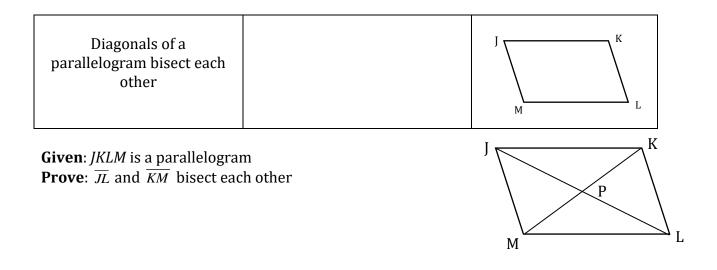


2

	К	
Consecutive Angles in a		
parallelogram are		
supplementary.		L
	1.1	

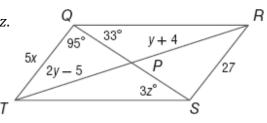
Examples

- 1. In parallelogram *ABCD*, $m \angle A = (2x 60)^\circ$ and $m \angle B = (x + 30)^\circ$. Find $m \angle A$.
- 2. In parallelogram *ABCD*, $m \angle A = (x + 20)^\circ$ and $m \angle C = (6x 50)^\circ$. Find x.
- 3. In parallelogram *ABCD*, AB = 7x 3 and CD = 2x + 22. Find the value of *x*.

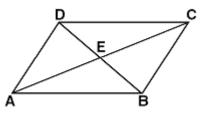


Examples

1. If *QRST* is a parallelogram, find the value of *x*, *y*, and *z*.



2. In parallelogram *ABCD*, diagonals \overline{AC} and \overline{BD} intersect at *E*. If AE = x + 4 and AC = 5x - 10, find the value of *x*.

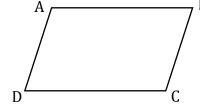


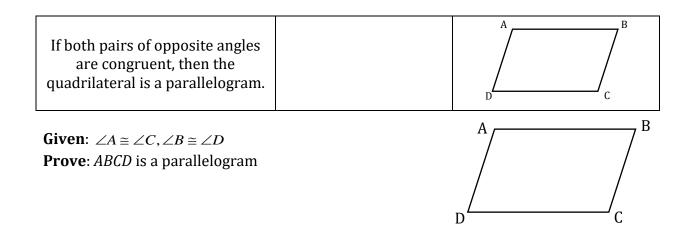
PROVING PARALLELOGRAMS

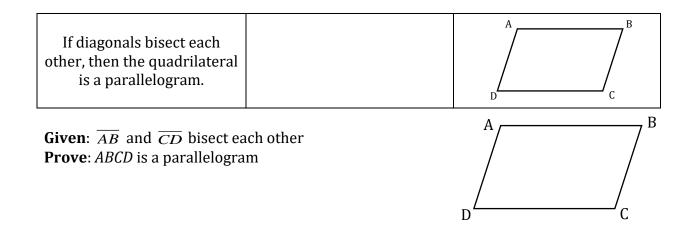
If a quadrilateral has each pair of opposite sides parallel, it is a parallelogram by definition. This is not the only test, however, that can be used to determine if a quadrilateral is a parallelogram.

Conditions for Parallelograms			
Theorem	Example	Figure	
If both pairs of opposite sides are congruent, then the quadrilateral is a parallelogram.		D D D D D D D D D D D D D D D D D D D	
Given : $\overline{AB} \cong \overline{CD}, \overline{BC} \cong \overline{DA}$		A B	

Prove: *ABCD* is a parallelogram



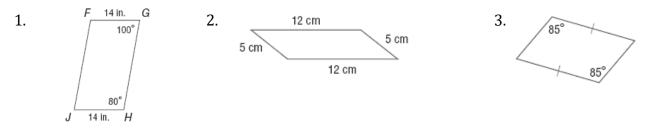




If one pair of opposite sides is congruent and parallel, then the quadrilateral is a parallelogram.			C B
Given : $\overline{AB} \cong \overline{CD}$, $\overline{AB} \parallel \overline{CD}$ Prove : <i>ABCD</i> is a parallelogra	m	D	B C

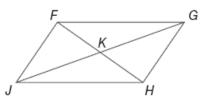
Examples

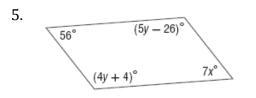
Determine whether each quadrilateral is a parallelogram. Justify your answer.

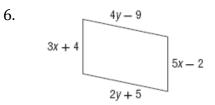


Find x and y so that each of the following quadrilaterals are parallelograms.

4. FK = 3x - 1, KG = 4y + 3, JK = 6y - 2, and KH = 2x + 3





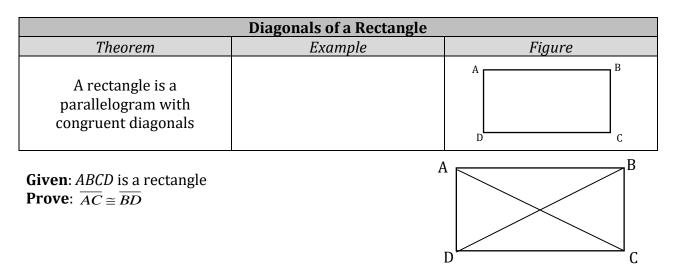


RECTANGLES

By definition, a **rectangle** is a parallelogram with four right angles.

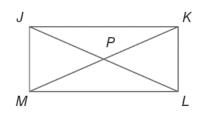
- 1. All four angles are right angles
- 4. Consecutive angles are supplementary
- 2. Opposite sides are \parallel and \cong
- 3. Opposite angles are \cong

- 5. Diagonals bisect each other
- 6. Diagonals of a rectangle are \cong



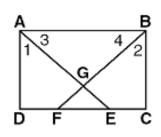
Examples

1. In rectangle *JKLM*, JL = 2x + 15 and KM = 4x - 5. Find MP.



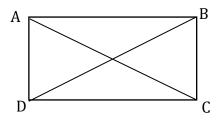
2. Quadrilateral JKLM is a rectangle. If $m \angle KJL = 2x + 4$ and $m \angle JLK = 7x + 5$, find x.

3. **Given**: *ABCD* is a rectangle. $\overline{DF} \cong \overline{EC}$ **Prove**: $\angle 1 \cong \angle 2$ $\overline{AG} \cong \overline{GB}$



Proving Parallelograms are Rectangles			
Abbreviation	Example	Figure	
If a parallelogram has one right angle, then it has four right angles.		A B D C	
If diagonals of a parallelogram are congruent, then the parallelogram is a rectangle.		A B C C	

Given: $\overline{AC} \cong \overline{BD}$, *ABCD* is a parallelogram **Prove**: *ABCD* is a rectangle



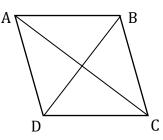
RHOMBI AND SQUARES

A **rhombus** is a parallelogram with all four sides congruent. A rhombus has all the properties of a parallelogram.

Diagonals of a Rhombus			
Theorem	Example	Figure	
If a parallelogram is a rhombus, then its diagonals are perpendicular			
Given : <i>ABCD</i> is a rhombus Prove : $\overline{AC} \perp \overline{BD}$		A P D	

If a parallelogram is a rhombus, then each diagonal bisects a pair of opposite angles.	A B D C
---	------------

Given: *ABCD* is a rhombus **Prove**: \overline{AC} bisects $\angle BAD$ and $\angle BCD$ \overline{BD} bisects $\angle ABC$ and $\angle ADC$



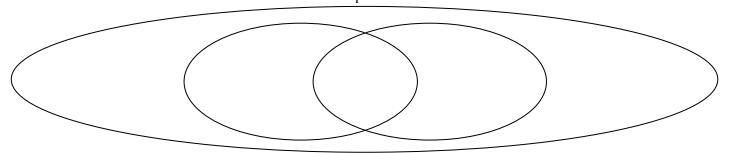
Examples

The diagonals of rhombus FGHI intersect at K. Use the given information to find each measure or value.

a. If $m \angle FJH = 82$, find $m \angle KHJ$.

b. If *KH* = *x* + 5, *KG* = *x* – 2, and *FG* = 17. Find *KH*.

A **square** is a parallelogram with four congruent sides and four right angles. Recall that a parallelogram with four right angles is a rectangle, and a parallelogram with four congruent sides is a rhombus. Therefore, a parallelogram that is both a rectangle and a rhombus is also a square.



Conditions for Rhombi and Squares			
Theorem	Example	Figure	
If the diagonals of a parallelogram are perpendicular, then the parallelogram is a rhombus.		J M L	
If one pair of consecutive sides of a parallelogram are congruent, then the parallelogram is a rhombus.		D C B	
If a quadrilateral is b	ooth a rectangle and a rhombu	s, then it is a square.	

TRAPEZOIDS

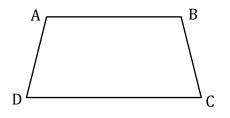
A **trapezoid** is a quadrilateral with **at least** one pair of parallel sides. The parallel sides are called **bases**. The nonparallel sides are called **legs**. The **base angles** are formed by the base and one of the legs. By a definition, an isosceles trapezoid is a trapezoid with at least one pair of opposite sides congruent.

Isosceles Trapezoids			
Theorem	Example	Figure	
If a trapezoid is isosceles, then each pair of base angles are congruent		A B C	
If a trapezoid has one pair of congruent base angles, then it is an isosceles trapezoid.		A D C	
A trapezoid is isosceles if and only if its diagonals are congruent.		A D C	
Given : ARCD is an isosceles tr	range of with $\overline{AD} = \overline{DC}$	A	

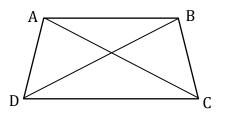
Given: *ABCD* is an isosceles trapezoid with $\overline{AD} \cong \overline{BC}$ **Prove**: $\angle A \cong \angle B, \angle C \cong \angle D$

D

Given: *ABCD* is a trapezoid and $\angle C \cong \angle D$ **Prove**: *ABCD* is an isosceles trapezoid

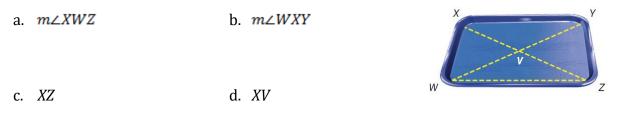


Given: *ABCD* is a trapezoid and $\overline{AC} \cong \overline{BD}$ **Prove**: *ABCD* is an isosceles trapezoid



Examples

- 1. The speaker shown is an isosceles trapezoid. If $m \angle FJH = 85$, FK = 8 inches, and JG = 19 inches, find each measure.
 - c. *m∠FGH*
 - d. KH
- To save space at a square table, cafeteria trays often incorcorate trapezoids into their design. If *WXYZ* is an isosceles trapezoid and *m∠YZW* = 45, *WV* = 15 cm, and *VY* = 10 cm, find each measure below.

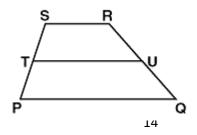


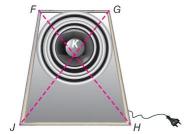
The **midsegment of a trapezoid** is the segment that connects the midpoints of the legs of the trapezoid. The theorem below relates the midsegment and the bases of a trapezoid.

Trapezoid Midsegment Theorem			
Theorem Example		Figure	
The midsegment of a trapezoid is parallel to each base and its measure is one half the sum of the lengths of the bases.			

Examples

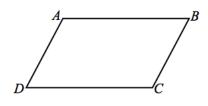
1. In the figure, *PQRS* is a trapezoid. \overline{TU} is the median. If SR = 2x - 3, PQ = 2x + 11, and TU = 14, what is the length of \overline{SR} ?



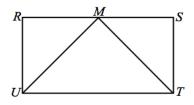


ADDITIONAL PRACTICE PROOFS

1. **Given:** $\overline{AB} \parallel \overline{CD}, \overline{AD} \cong \overline{AB}, \overline{CD} \cong \overline{CB}$. **Prove:** ABCD is a rhombus

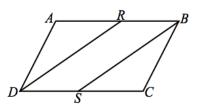


Given: Rectangle *RSTU*, *M* is the midpoint of *RS*.
 Prove: △ *UMT* is isosceles.

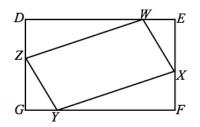


Given: ABCD is a parallelogram, RD bisects ∠ADC,
 SB bisects ∠CBA.

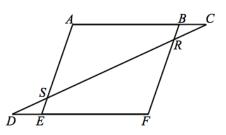
Prove: *DRBS* is a parallelogram.



4. **Given:** DEFG is a rectangle, $\overline{WE} \cong \overline{YG}$, $\overline{WX} \cong \overline{YZ}$. **Prove:** WXYZ is a parallelogram.



5. **Given:** Parallelogram *ABFE*, $\overline{CR} \cong \overline{DS}$. **Prove:** $\overline{BR} \cong \overline{SE}$.



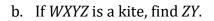
KITES

A **kite** is a quadrilateral with at least two pairs of consecutive congruent sides. Unlike a parallelogram, the opposite sides of a kite are not congruent or parallel.

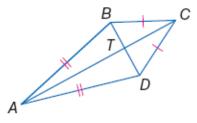
Theorem	Example	Figure
If a quadrilateral is a kite, then its diagonals are perpendicular.		
If a quadrilateral is a kite, then at least one pair of opposite angles are congruent.		J K L

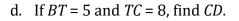
Examples

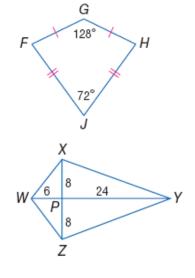
a. If *FGHJ* is a kite, find $m \angle GFJ$.



c. If $m \angle BAD = 38$ and $m \angle BCD = 50$, find $m \angle ADC$.



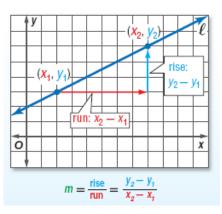




SLOPES OF LINES

Slope can be interpreted as **rate of change**, describing how a quantity y changes in relationship to quantity x. The slope of a line can also be used to identify the coordinates of any point on the line.

Parallel and Perpendicular Lines		
	Description	Example
Slopes of Parallel Lines		
Slopes of Perpendicular Lines		



Examples

1. Determine whether \overrightarrow{AB} and \overrightarrow{CD} are *parallel*, *perpendicular*, or *neither* for A(1, 1), B(-1, -5), C(3, 2), and D(6, 1).

- 2. Given A(1,1), B(2,4), C(4,1), and D(3, k)
 a) Find the slope of AB.
 - b) Express the slope of \overrightarrow{CD} in terms of *k*.
 - c) If $\overrightarrow{AB} \perp \overrightarrow{CD}$, find the value of *k*.

Distance

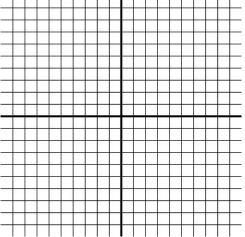
The *distance* between two points is the length of the segment with those points as its endpoints.

DISTANCE FORMULA (Coordinate Plane)				
WORDS	SYMBOLS	PICTURE		
If <i>P</i> has coordinates (x_1, y_1) and <i>Q</i> has coordinates (x_2, y_2) , then		$P(x_1, y_1)$ $Q(x_2, y_2)$ $P(x_1, y_1)$ x		

Examples

1. Find the distance between C(1, 1) and D(3, -3). Check using the Pythagorean Theorem.

2. Given the points A(6, 7) and B(14, -1). Find the length of \overline{AB} .



3. What is the length of the diameter of a circle whose center is at (6,0) and passes through (2,-3)?

4. A triangle has vertices *D*(2,3), *E*(5,5), and *F*(4,0). Determine if the triangle is scalene, isosceles, or equilateral.

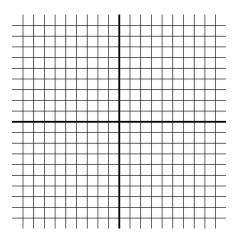
Midpoint

The *midpoint* of a segment is the point halfway between the endpoints of the segment.

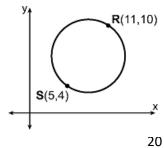
Midpoint Formula (Coordinate Plane)				
WORDS	SYMBOLS	PICTURE		
If \overline{PQ} has endpoints at $P(x_1, y_1)$ and $Q(x_2, y_2)$ in the coordinate plane, then the midpoint M of \overline{PQ} is		$\begin{array}{c} y \\ y_{1} \\ y_{1} \\ y_{2} \\ y_{3} \\ y_{4} \\ y_{2} \\ y_{2} \\ y_{2} \\ y_{3} \\ y_{4} \\ y_{4} \\ y_{2} \\ y_{2} \\ y_{3} \\ y_{4} \\ y_{$		

Examples

- 1. Find the coordinates of *M*, the midpoint of *ST*, for *S*(-6, 3) and *T*(2, 1).
- 2. Find the midpoint when given the endpoints (-1,-4) and (3, -2).
- 3. Find the coordinates of *J* if *M*(-1, 2) is the midpoint of \overline{JL} and *L* has coordinates (3, -5).



4. \overline{RS} is the diameter of the circle shown in the accompanying diagram. What are the coordinates of the center of this circle?



COORDINATE PROOF

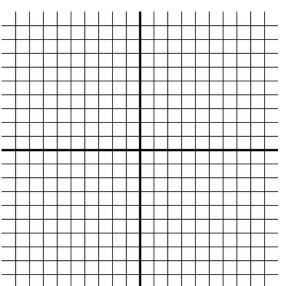
Parallel Lines (|| **)** – If two lines have equal slopes, then the lines are parallel.

Perpendicular Lines (\perp **)** – If two non-vertical lines have slopes that are negative reciprocals of one another, then the lines are perpendicular.

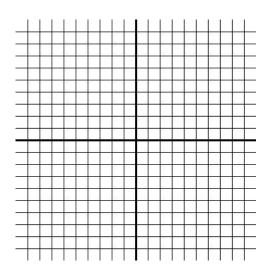
Examples:

- 1. Given the points A(6, 9) and B(14, -1).
 - a. Find the slope of \overline{AB} .
 - b. Find the slope of the line perpendicular to AB
 - c. Find the slope of the line parallel to AB
- 2. Consider the line segments \overline{AB} and \overline{CD} , with A(-3,-2), B(2,1), C(-7,-1), and D(-2,2). a. **Prove** that $\overline{AB} \parallel \overline{CD}$.

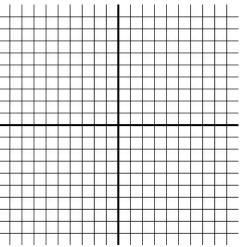
b. Determine if $\overline{BC} \parallel \overline{AB}$.



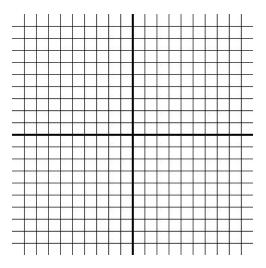
3. If X(5,0), Y(3,4), and Z(-1,2), prove $\overline{XY} \perp \overline{YZ}$.



4. The vertices of triangle WIN are W(2, 1), I(4, 7) and N(8, 3). Using coordinate geometry, show that Δ WIN is an isosceles triangle and state the reasons for your conclusion.

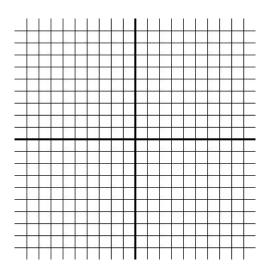


5. Triangle NAQ has coordinates N(2, 3), A(6, 0) and Q(12, 8). Using coordinate geometry, show that Δ NAQ is a right triangle and state the reasons for your conclusion

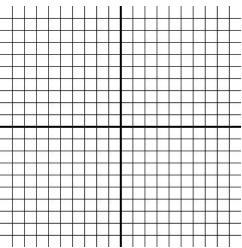


CLASSIFYING QUADRILATERALS USING COORDINATE GEOMETRY

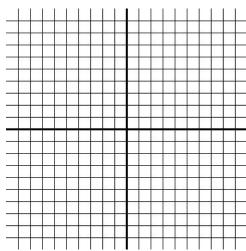
1. Determine the coordinates of the intersection of the diagonals of parallelogram *FGHI* with vertices *F*(-2, 4), *G*(3, 5), *H*(2, -3), and *J*(-3, -4). Prove *FGHI* is a parallelogram.



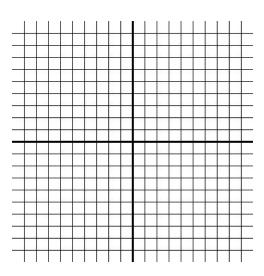
2. Graph quadrilateral *KLMN* with vertices *K*(2, 3), *L*(8, 4), *M*(7, -2), and *N*(1, -3). Prove the quadrilateral is a parallelogram. Justify your answer using the Slope Formula *and* Distance formula.



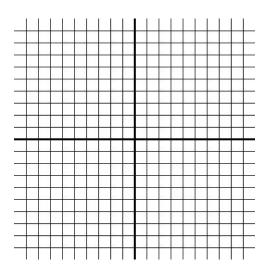
3. Quadrilateral *PQRS* has vertices *P*(-5, 3), *Q*(1, -1), *R*(-1, -4), and *S*(-7, 0). Prove *PQRS* is a rectangle.



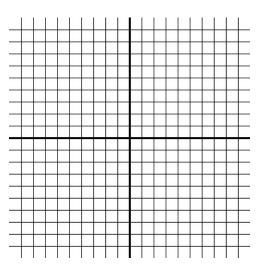
4. Prove that parallelogram *JKLM* with vertices *J* (-7, -2), *K* (0, 4), *L* (9, 2), and *M* (2, -4) is a rhombus. Is it a rectangle and/or square also?



5. *A*(-3, 4), *B*(2, 5), *C*(3,3), *D*(-1,0). Prove *ABCD* is a trapezoid. Is the trapezoid isosceles?



6. *F*(-2, 4), *G*(3, 5), *H*(2, -3), *J*(-3, -4). Prove that quadrilateral *FGHJ* is a parallelogram.



SYMMETRY IN QUADRILATERALS

RECALL: A figure has **symmetry** if there exists a rigid motion – reflection, translation, rotation, or glide-reflection – that maps the figure onto itself.

A figure in the plane has line symmetry if the figure can be mapped onto itself by a reflection in a line, called a line of symmetry.	
A <i>nontrivial rotational symmetry</i> of a figure is a rotation of the plane that maps the figure back to itself such that the rotation is greater than 0° but less than 360°.	

- 1. Determine whether each figure has line symmetry and/or rotational symmetry. If so, draw all lines of symmetry and/or give the angle of rotational symmetry.
 - a. Rectangle b. Isosceles Trapezoid

c. Parallelogram

d. Regular Hexagon

2. Suppose *ABCD* is a quadrilateral for which there is exactly one rotation, through an angle larger than 0 degrees and less than 360 degrees, which maps it to itself. Further, no reflections map *ABCD* to itself. What shape is *ABCD*?

3. Draw an example of a trapezoid that does *not* have line symmetry.

4. Jennifer draws the rectangle *ABCD* below.

Explain.

a. Find all rotations and reflections that carry rectangle *ABCD* onto itself.

 b. Lisa draws a different rectangle and she finds a larger number of symmetries (than Jennifer) for her rectangle. What can you conclude about Lisa's rectangle?

D

5. There is exactly one reflection and no rotation that sends the convex quadrilateral *ABCD* onto itself. What shape(s) could quadrilateral ABCD be? Explain.

6. Draw an example of a parallelogram that has exactly two lines of symmetry. Draw the lines of symmetry and give the most specific name for the parallelogram you drew.

C

B