
Discovering Sparse Interpretable Dynamics from Partial Observations

Peter Y. Lu,1, ∗ Joan Ariño,1, 2 and Marin Soljačić1

1Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2Department of Physics, Universitat Politècnica de Catalunya, Barcelona, Spain

(Dated: July 26, 2021)

Identifying the governing equations of a nonlinear dynamical system is key to both understanding
the physical features of the system and constructing an accurate model of the dynamics that general-
izes well beyond the available data. We propose a machine learning framework for discovering these
governing equations using only partial observations, combining an encoder for state reconstruction
with a sparse symbolic model. Our tests show that this method can successfully reconstruct the full
system state and identify the underlying dynamics for a variety of ODE and PDE systems.

Introduction.—Analyzing data from a nonlinear dy-
namical system to understand its qualitative behavior
and accurately predict future states is a ubiquitous prob-
lem in science and engineering. In many instances, this
problem is further compounded by a lack of available
data and only partial observations of the system state,
e.g. forecasting fluid flow driven by unknown sources or
predicting optical signal propagation without phase mea-
surements. This means that, in addition to identifying
and modeling the underlying dynamics, we must also re-
construct the hidden or unmeasured variables of the sys-
tem state. While traditional approaches to system identi-
fication have had significant success with linear systems,
nonlinear system identification and state reconstruction
is a much more difficult and open problem [1]. More-
over, modeling nonlinear dynamics in a way that pro-
vides interpretability and physical insight is also a major
challenge.

Modern machine learning approaches have made sig-
nificant strides in black box predictive performance on
many tasks [2], such as data-driven prediction of nonlin-
ear dynamics [3–5] including methods that only use par-
tial observations [6–9]. However, because deep learning
models often fail to take into account known physics, they
require vast quantities of data to train and tend to gener-
alize poorly outside of their training distribution. Stan-
dard deep learning models also lack the interpretability
necessary for developing a detailed physical understand-
ing of the system, although recent unsupervised learning
approaches can help mitigate this problem [10]. Intro-
ducing physical priors and building physics-informed in-
ductive biases, such as symmetries, into neural network
architectures can significantly improve the performance
of deep learning models and provide a greater degree of
interpretability [10–13].

Recent data-driven nonlinear system identification
methods based on Koopman operator theory offer a com-
pelling alternative to deep learning approaches as well
as a theoretical framework for incorporating neural net-
works into system identification methods [14–17]. How-
ever, these approaches still run into barriers when dealing
with chaotic dynamics and other forms of nonlinear dy-

namics that lead to a problematic continuous spectrum
for the Koopman operator, although some progress has
been made in addressing these limitations as well [17–19].

In this work, we focus on directly learning the govern-
ing equations of motion, which are often sparse and pro-
vide a highly interpretable representation of the dynami-
cal system that also generalizes extremely well. Previous
work has shown that, by imposing a sparsity prior on the
governing equations, it is possible to obtain interpretable
and parsimonious models of nonlinear dynamics [20–22].
This sparsity prior, in combination with an autoencoder
architecture, can also aid in extracting interpretable co-
ordinates or state variables from high dimensional data
[23].

Rather than working in a generic high dimensional set-
ting, we consider the common situation where a visible
portion of the system state is known and observed but
additional hidden states as well as the underlying dynam-
ics are unknown. To deal with having only partial state
information, we propose a machine learning method that
combines an encoder, for reconstructing the full system
state, and a sparse symbolic model, which learns the sys-
tem dynamics, providing a flexible framework for both
system identification and state reconstruction (Fig. 1).
The full architecture is trained by matching the higher
order time derivatives of the symbolic model with fi-
nite difference estimates from the data. As illustrated in
our numerical experiments, this approach can be easily
adapted for specific applications by incorporating known
constraints into the architecture of the encoder and the
design of the symbolic model.

Problem Formulation.—Consider a nonlinear dynami-
cal system defined by the first order ODE

dx

dt
= F(x). (1)

The visible or measured state is given by a known “pro-
jection” function xv = g(x) while the hidden states xh
must be reconstructed such that a(xv,xh) = x, where
a is a known aggregation function. The goal is to de-
termine the governing equations defined by F(x) while
simultaneously reconstructing the hidden state xh.

ar
X

iv
:2

10
7.

10
87

9v
1

 [
cs

.L
G

]
 2

2
Ju

l 2
02

1

2

Full System x(t)

w

uv

u

v

Encoder

Symbolic
Model

Visible States g(x(t))
Reconstructed
Hidden States

Finite Difference
Time Derivatives

Symbolic
Time Derivatives

dg/dt

d2g/dt2

⋮

Δg/Δt

Δ2g/Δt2

⋮

FIG. 1. A machine learning framework for simultaneous system identification and state reconstruction. With only a visible
portion of the full state available xv = g(x), an encoder is first used to reconstruct the hidden states. The fully reconstructed
state x̂, including the visible and hidden states, is then passed into a symbolic model of the governing equations. Using
automatic differentiation, multiple symbolic time derivatives dpg(x̂)/dtp of the visible states are generated from the symbolic
model and compared with finite difference derivatives ∆pg(x)/∆tp computed directly from the sequence of visible states. The
entire architecture is trained end-to-end using the mean squared error (MSE) loss between the symbolic and finite difference
derivatives.

Without prior knowledge detailing the structure of the
dynamical system, we can generically choose the visi-
ble state xv = (x1, x2, . . . , xk) to be a subset of the
full state x = (x1, x2, . . . , xk, xk+1, . . . , xn), i.e. g is a
simple projection of x onto the subset xv. The re-
maining components would then form the hidden state
xh = (xk+1, xk+2, . . . , xn), and the aggregation func-
tion a just concatenates of the two states xv,xh. When
additional information about the dynamical system is
available, g and a can be chosen appropriately to re-
flect the structure of the dynamics (e.g. see our nonlinear
Schrödinger phase reconstruction example).

Proposed Machine Learning Framework.—Our pro-
posed framework consists of an encoder, which uses the
visible states to reconstruct the corresponding hidden
states, and an interpretable symbolic model, which rep-
resents the governing equations of the dynamical sys-
tem. The encoder eη, typically a neural network architec-
ture with learnable parameters η, takes as input the se-
quence of visible states {xv(t0),xv(t0 + ∆t), . . . ,xv(tN)}
and reconstructs the hidden states {x̂h(t0), x̂h(t0 +
∆t), . . . , x̂h(tN)}. We can then obtain a reconstruction
of the full state by applying the aggregation function
x̂ = a(xv, x̂h). The fully reconstructed state x̂ allows
us to compute symbolic time derivatives defined by a
symbolic model of the governing equations

dx̂

dt
= F̂θ(x̂) := θ1f1(x̂) + θ2f2(x̂) + · · ·+ θmfm(x̂), (2)

where θ1, θ2, . . . , θm are learnable coefficients and
f1, f2, . . . , fm are predefined terms, such as monomial
expressions or linear combinations representing spatial
derivatives (for PDE systems).

To jointly train the encoder and symbolic model using
only partial observations, we match not only the first or-
der time derivatives but also higher order time derivatives
of the visible states with finite difference estimates from
the data. These time derivatives are implicitly defined by

the symbolic model (Eq. S1), so we develop and use an
algorithmic trick that allows standard automatic differ-
entiation methods [24] to automatically compute higher
order symbolic time derivatives of the reconstructed visi-
ble states g(x̂) (see Supplemental Materials for details).
These symbolic derivatives can then be compared with fi-
nite difference time derivatives ∆pg(x)/∆tp = ∆pxv/∆t

p

computed directly from the visible states xv.
We train the entire architecture in an end-to-end fash-

ion by optimizing the mean squared error (MSE) loss

L(η, θ) =
1

N

N∑
i=1

M∑
p=1

αp

(
dpg(x̂(ti))

dtp
− ∆pxv(ti)

∆tp

)2

,

(3)
where αp are hyperparameters that determine the im-
portance of each derivative order in the loss function.
This loss implicitly depends on the encoder eη through

the reconstructed state x̂ and the symbolic model F̂θ
through the symbolic time derivatives. To achieve spar-
sity in the symbolic model, we use a simple thresholding
approach—commonly used in sparse linear regression ap-
plications [20]—which sets a coefficient θi to zero if its
absolute value falls below a chosen threshold θthres. We
implement this sparsification at regular intervals during
training. See the Supplemental Materials for additional
model architecture and training details.

The code for implementing our framework and repro-
ducing our results is available at https://github.com/

peterparity/symder.
ODE Experiments.—To demonstrate our method, we

use data from two standard examples of chaotic nonlinear
dynamics: the Rössler system (Fig. 2a) and the Lorenz
system (Fig. 2b). Both systems have a three-dimensional
phase space (u, v, w), and we take the first two dimen-
sions (u, v) to be the visible state with the remaining
dimension w as the hidden state. In both cases, we are
able to accurately identify the governing equations and

https://github.com/peterparity/symder
https://github.com/peterparity/symder

3

0 20 40 60 80 100
Time

0

10

20

30

40

50

Hi
dd

en
 S

ta
te

 w

True
Reconstructed

0 10 20 30 40 50
True w

0

10

20

30

40

50

Re
co

ns
tru

ct
ed

 w

u
0

20
v20

0
20

w
20

40

Full System

0 20
u

20

10

0

10

20

v

Visible State (u, v)

u
0

20
v20

0
20

w
20

40

Full System

0 20
u

20

10

0

10

20

v

Visible State (u, v)

0 20 40 60 80 100
Time

0
2
4
6
8

10
12
14
16
18

Hi
dd

en
 S

ta
te

 w

True
Reconstructed

0 2 4 6 8 10 12 14 16 18
True w

0
2
4
6
8

10
12
14
16
18

Re
co

ns
tru

ct
ed

 w

u
0

10
v

10
5
0
5

w

5
10
15

Full System

5 0 5 10
u

10

5

0

5

v

Visible State (u, v)

u
0

10
v

10
5
0
5

w

5
10
15

Full System

5 0 5 10
u

10

5

0

5

v

Visible State (u, v)

u
0

10
v

10
5
0
5

w

5
10
15

Full System

5 0 5 10
u

10

5

0

5

v

Visible State (u, v)

(a) Rössler System

True
Governing
Equations

Reconstructed
Governing
Equations

True
Governing
Equations

Reconstructed
Governing
Equations

(b) Lorenz System

FIG. 2. System identification and hidden state reconstruction for the (a) Rössler and (b) Lorenz systems. In both numerical
experiments, the u and v components are visible while the w component is hidden. The true and reconstructed hidden states
w are shown as a function of time and also plotted directly against each other for comparison.

reconstruct the hidden state w (Fig. 2). We achieve a
relative reconstruction error of 4.6×10−4 (relative to the
range of the hidden state) for the Rössler system and
1.7× 10−3 for the Lorenz system.

PDE Experiments.—To test our method in a more
challenging setting, we use data from two PDE systems:
a 2D diffusion system with an exponentially decaying
source term (Fig. 3a) and a 2D diffusive Lokta–Volterra
predator–prey system (Fig. 3b)—commonly used for eco-
logical modeling [25–27]. For the diffusion system, we
observe a diffusing visible state u(x, y, t) and must recon-
struct the hidden dynamic source term v(x, y, t). Simi-
larly, for the diffusive Lokta–Volterra system, one of the
two components is visible u(x, y, t) while the other is hid-
den v(x, y, t). We accurately identify the governing equa-
tions and reconstruct the hidden component for both sys-
tems (Fig. 3), achieving a relative error of 1.4 × 10−4

for the diffusion system and 1.0 × 10−3 for the diffu-
sive Lokta–Volterra system. The neural network encoder
has more difficulty with the more complex and nonlinear
diffusive Lokta–Volterra system, resulting in a slightly
blurry reconstruction.

Phase Reconstruction.—As a final example, we con-

sider the phase retrieval or reconstruction problem for
the 1D nonlinear Schrödinger equation—a model for light
propagation through a nonlinear fiber [28]—to demon-
strate the breadth of our approach and its ability to han-
dle a more difficult and structured problem. Using only
visible amplitude data |ψ(x, t)|, we aim to identify the
underlying dynamics and reconstruct the hidden phase
ϕ(x, t) = arg(ψ(x, t)). For this system, we also assume
that we have some prior knowledge about the structure
of the dynamics, namely that we have a complex wave
equation with a global phase shift symmetry and only
odd nonlinearities in order to model an optical material
with inversion symmetry [28]. This allows us to limit the
library of predefined terms used by our symbolic model.
Our prior knowledge also informs our choice of projection
g(ψ) = |ψ| and aggregation functions a(|ψ|, ϕ) = |ψ|eiϕ.

Our method successfully identifies the governing equa-
tion for the nonlinear Schrödinger data and roughly cap-
tures the correct phase profile. Although the overall
phase reconstruction seems somewhat poor, with a rel-
ative error of 0.35, this also includes an accumulated
drift of the phase over time. The spatial derivative of
the phase ∂ϕ/∂x has a much more reasonable relative

4

Visible State u

40

60

80

Time

TrueReconstructed

6
8
10
12
14
16
18

Re
co
ns
tru
ct
ed
w

Visible State u

(a) Diffusion with Source
True

Governing
Equations

Reconstructed
Governing
Equations

True
Governing
Equations

Reconstructed
Governing
Equations

(b) Diffusive Lotka–Volterra

Visible State u

40

60

80

100

Time

TrueReconstructed

0
2
4
6
8 10 12 14 16 18

True w

0
2
4
6
8
10
12
14
16
18

Re
co
ns
tru
ct
ed
w

Visible State u

FIG. 3. System identification and hidden state reconstruction for the (a) diffusion system with a decaying source term v and
(b) diffusive Lokta–Volterra system. In both numerical experiments, the u component is visible while the v component is
hidden. The true and reconstructed hidden states v are shown at time t = 0 and are also plotted directly against each other
for comparison.

error of 0.057. Furthermore, given the governing equa-
tions extracted by our method, other more specialized
algorithms for nonlinear phase retrieval can be used as a
post-processing step to significantly improve the quality
of the phase reconstruction [29].

Conclusion.—On a wide variety of dynamical sys-
tems, we have demonstrated that our proposed machine
learning framework can successfully identify sparse inter-
pretable dynamics and reconstruct hidden states using
only partial observations. Our method is also straight-
forward to implement and use, easily adapting to differ-
ing levels of prior knowledge about the unknown hidden
states and dynamics.

Compared with methods that require explicit integra-
tion [6, 8], our approach can be significantly more compu-
tational efficient since we only need to compute symbolic
and finite difference derivatives. Methods that rely on
explicit integration may also need to deal with stiffness
and other issues that are relevant to choosing an appro-
priate integration scheme [11]. However, methods us-
ing explicit integration also have the advantage of being
much more robust to noise. Because we require higher or-
der finite difference time derivative estimates from data,

our approach—like other derivative-based methods—is
generally more susceptible to noise. Careful tuning of
our sparsity method helps mitigate this to some extent
in a similar fashion to methods like SINDy [20, 21], and
promising new methods for identifying the noise distri-
bution alongside the dynamics [30] could be incorporated
into our framework in the future.

Our framework offers a strong foundation for design-
ing interpretable machine learning methods to deal with
partial observations and solve the combined system iden-
tification and state reconstruction task. We hope to con-
tinue developing more robust encoders and more flexi-
ble symbolic models that will work within our proposed
framework. For example, the encoder (described in the
Supplemental Materials) used in our final experiment on
phase reconstruction has similarities with variational ap-
proaches used for PDE discovery [3, 22], and we believe
that these variational methods could be incorporated into
our framework to provide a smoother encoding and im-
prove robustness to noise. In future work, we will also
study symbolic models that have multiple layers of com-
posable units designed for symbolic regression tasks [31–
33]. These alternative symbolic architectures provide

5

True
Governing
Equations

Reconstructed
Governing
Equations

(a)

(b)

(c)

(d)

0.0 0.1 0.2 0.3 0.4 0.5
Time

2

0

x

Visible State | |

0
1
2
3

0.0 0.1 0.2 0.3 0.4 0.5
Time

2

0

x

True Phase

0

2

0.0 0.1 0.2 0.3 0.4 0.5
Time

2

0

x

Reconstructed Phase

0

2

0.0 0.1 0.2 0.3 0.4 0.5
Time

2

0

x

True / x

0.25
0.00
0.25

0.0 0.1 0.2 0.3 0.4 0.5
Time

2

0

x

Reconstructed / x

0.25
0.00
0.25

FIG. 4. System identification (a) and phase reconstruction
(c,d) for the nonlinear Schrödinger system. The magnitude
|ψ| of the wave is visible (b) while the phase ϕ = arg(ψ) is
hidden (c) and must be reconstructed. The spatial derivative
of the phase ∂ϕ/∂x (d) and its reconstruction are also shown.

more powerful and flexible models with a sparse sym-
bolic prior without requiring large libraries of predefined
terms.

We would like to acknowledge useful discussions with
Samuel Kim, Rumen Dangovski, Charlotte Loh, Andrew
Ma, and Ileana Rugina. This research is supported in
part by the U.S. Department of Defense through the
National Defense Science & Engineering Graduate Fel-
lowship (NDSEG) Program. This work is further sup-
ported in part by the the National Science Foundation
under Cooperative Agreement PHY-2019786 (The NSF
AI Institute for Artificial Intelligence and Fundamental
Interactions, http://iaifi.org/). It is also based upon
work supported in part by the U.S. Army Research Of-
fice through the Institute for Soldier Nanotechnologies at
MIT, under Collaborative Agreement Number W911NF-
18-2-0048. Research was also sponsored in part by the
United States Air Force Research Laboratory and the
United States Air Force Artificial Intelligence Accelera-
tor and was accomplished under Cooperative Agreement
Number FA8750-19-2-1000. The views and conclusions

contained in this document are those of the authors and
should not be interpreted as representing the official poli-
cies, either expressed or implied, of the United States
Air Force or the U.S. Government. The U.S. Govern-
ment is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright
notation herein.

∗ lup@mit.edu
[1] L. Ljung, System Identification: Theory for the User, 2nd

ed. (Pearson, 1999).
[2] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learn-

ing (MIT Press, 2016) http://www.deeplearningbook.

org.
[3] M. Raissi, P. Perdikaris, and G. Karniadakis, Physics-

informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations, Journal of Computational
Physics 378, 686 (2019).

[4] J. Berg and K. Nyström, Data-driven discovery of PDEs
in complex datasets, Journal of Computational Physics
384, 239 (2019).

[5] M. Raissi, Deep hidden physics models: Deep learning of
nonlinear partial differential equations, Journal of Ma-
chine Learning Research 19, 1 (2018).

[6] I. Ayed, E. d. Bézenac, A. Pajot, and P. Gallinari, Learn-
ing the spatio-temporal dynamics of physical processes
from partial observations, in ICASSP 2020 - 2020 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP) (2020) pp. 3232–3236.

[7] S. Ouala, D. Nguyen, L. Drumetz, B. Chapron, A. Pas-
cual, F. Collard, L. Gaultier, and R. Fablet, Learning
latent dynamics for partially observed chaotic systems,
Chaos 30, 103121 (2020).

[8] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and
D. K. Duvenaud, Neural ordinary differential equations,
in Advances in Neural Information Processing Systems,
Vol. 31, edited by S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett (Curran
Associates, Inc., 2018).

[9] P. Saha, S. Dash, and S. Mukhopadhyay, Physics-
incorporated convolutional recurrent neural networks for
source identification and forecasting of dynamical sys-
tems (2020), arXiv:2004.06243.

[10] P. Y. Lu, S. Kim, and M. Soljačić, Extracting inter-
pretable physical parameters from spatiotemporal sys-
tems using unsupervised learning, Phys. Rev. X 10,
031056 (2020).

[11] C. Rackauckas, Y. Ma, J. Martensen, C. Warner,
K. Zubov, R. Supekar, D. Skinner, A. Ramadhan, and
A. Edelman, Universal differential equations for scientific
machine learning (2020), arXiv:2001.04385.

[12] Y. Yin, V. L. Guen, J. Dona, E. de Bezenac, I. Ayed,
N. Thome, and P. Gallinari, Augmenting physical models
with deep networks for complex dynamics forecasting,
in International Conference on Learning Representations
(2021).

[13] M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković,
Geometric deep learning: Grids, groups, graphs,

http://iaifi.org/
mailto:lup@mit.edu
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/https://doi.org/10.1016/j.jcp.2018.10.045
https://doi.org/https://doi.org/10.1016/j.jcp.2019.01.036
https://doi.org/https://doi.org/10.1016/j.jcp.2019.01.036
http://jmlr.org/papers/v19/18-046.html
http://jmlr.org/papers/v19/18-046.html
https://doi.org/10.1109/ICASSP40776.2020.9053035
https://doi.org/10.1109/ICASSP40776.2020.9053035
https://doi.org/10.1109/ICASSP40776.2020.9053035
https://doi.org/10.1063/5.0019309
https://proceedings.neurips.cc/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://arxiv.org/abs/arXiv:2004.06243
https://doi.org/10.1103/PhysRevX.10.031056
https://doi.org/10.1103/PhysRevX.10.031056
https://arxiv.org/abs/arXiv:2001.04385
https://openreview.net/forum?id=kmG8vRXTFv

6

geodesics, and gauges (2021), arXiv:2104.13478.
[14] A. Mauroy, Y. Susuki, and I. Mezić, The Koopman Op-

erator in Systems and Control: Concepts, Methodolo-
gies, and Applications (Springer International Publish-
ing, Cham, 2020).

[15] C. Folkestad, D. Pastor, I. Mezic, R. Mohr,
M. Fonoberova, and J. Burdick, Extended dynamic
mode decomposition with learned koopman eigenfunc-
tions for prediction and control, in 2020 American
Control Conference (ACC) (2020) pp. 3906–3913.

[16] N. Takeishi, Y. Kawahara, and T. Yairi, Learning Koop-
man invariant subspaces for dynamic mode decomposi-
tion, in Advances in Neural Information Processing Sys-
tems, Vol. 30, edited by I. Guyon, U. V. Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett (Curran Associates, Inc., 2017).

[17] S. L. Brunton, M. Budǐsić, E. Kaiser, and J. N. Kutz,
Modern koopman theory for dynamical systems (2021),
arXiv:2102.12086.

[18] S. L. Brunton, B. W. Brunton, J. L. Proctor, E. Kaiser,
and J. N. Kutz, Chaos as an intermittently forced linear
system, Nature Communications 8, 19 (2017).

[19] B. Lusch, J. N. Kutz, and S. L. Brunton, Deep learning
for universal linear embeddings of nonlinear dynamics,
Nature Communications 9, 4950 (2018).

[20] S. L. Brunton, J. L. Proctor, and J. N. Kutz, Discov-
ering governing equations from data by sparse identifi-
cation of nonlinear dynamical systems, Proceedings of
the National Academy of Sciences 113, 3932 (2016),
https://www.pnas.org/content/113/15/3932.full.pdf.

[21] K. Kaheman, J. N. Kutz, and S. L. Brunton, SINDy-PI:
a robust algorithm for parallel implicit sparse identifi-
cation of nonlinear dynamics, Proceedings of the Royal
Society A: Mathematical, Physical and Engineering Sci-
ences 476, 20200279 (2020).

[22] Z. Chen, Y. Liu, and H. Sun, Physics-informed learn-
ing of governing equations from scarce data (2020),
arXiv:2005.03448.

[23] K. Champion, B. Lusch, J. N. Kutz, and S. L.
Brunton, Data-driven discovery of coordinates
and governing equations, Proceedings of the Na-
tional Academy of Sciences 116, 22445 (2019),
https://www.pnas.org/content/116/45/22445.full.pdf.

[24] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M.
Siskind, Automatic differentiation in machine learning:
a survey, Journal of Machine Learning Research 18, 1
(2018).

[25] D. M. Dubois, A model of patchiness for prey—predator
plankton populations, Ecological Modelling 1, 67 (1975).

[26] H. N. Comins and D. W. Blatt, Prey-predator models in
spatially heterogeneous environments, Journal of Theo-
retical Biology 48, 75 (1974).

[27] T. Kmet’ and J. Holč́ık, The diffusive Lotka-Volterra
model as applied to the population dynamics of the Ger-
man carp and predator and prey species in the Danube
River basin, Ecological Modelling 74, 277 (1994).

[28] M. J. Ablowitz, Nonlinear Dispersive Waves: Asymp-
totic Analysis and Solitons, Cambridge Texts in Applied
Mathematics (Cambridge University Press, 2011).

[29] C.-H. Lu, C. Barsi, M. O. Williams, J. N. Kutz, and J. W.
Fleischer, Phase retrieval using nonlinear diversity, Appl.
Opt. 52, D92 (2013).

[30] K. Kaheman, S. L. Brunton, and J. N. Kutz, Automatic
differentiation to simultaneously identify nonlinear dy-

namics and extract noise probability distributions from
data (2020), arXiv:2009.08810.

[31] S. Kim, P. Y. Lu, S. Mukherjee, M. Gilbert, L. Jing,
V. Čeperić, and M. Soljačić, Integration of neural
network-based symbolic regression in deep learning for
scientific discovery, IEEE Transactions on Neural Net-
works and Learning Systems , 1 (2020).

[32] A. Costa, R. Dangovski, O. Dugan, S. Kim, P. Goyal,
M. Soljačić, and J. Jacobson, Fast neural models for sym-
bolic regression at scale (2020), arXiv:2007.10784.

[33] S.-M. Udrescu and M. Tegmark, Ai feynman: A physics-
inspired method for symbolic regression, Science Ad-
vances 6, 10.1126/sciadv.aay2631 (2020).

[34] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson,
C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. Van-
derPlas, S. Wanderman-Milne, and Q. Zhang, JAX: com-
posable transformations of Python+NumPy programs
(2018).

[35] M. Innes, Don’t unroll adjoint: Differentiating SSA-form
programs (2018), arXiv:1810.07951.

[36] J. Zhuang, T. Tang, Y. Ding, S. C. Tatikonda,
N. Dvornek, X. Papademetris, and J. Duncan, Adabelief
optimizer: Adapting stepsizes by the belief in observed
gradients, in Advances in Neural Information Processing
Systems, Vol. 33, edited by H. Larochelle, M. Ranzato,
R. Hadsell, M. F. Balcan, and H. Lin (Curran Associates,
Inc., 2020) pp. 18795–18806.

https://arxiv.org/abs/arXiv:2104.13478
https://doi.org/10.1007/978-3-030-35713-9_1
https://doi.org/10.1007/978-3-030-35713-9_1
https://doi.org/10.1007/978-3-030-35713-9_1
https://doi.org/10.23919/ACC45564.2020.9147729
https://doi.org/10.23919/ACC45564.2020.9147729
https://proceedings.neurips.cc/paper/2017/file/3a835d3215755c435ef4fe9965a3f2a0-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3a835d3215755c435ef4fe9965a3f2a0-Paper.pdf
https://arxiv.org/abs/arXiv:2102.12086
https://doi.org/10.1038/s41467-017-00030-8
https://doi.org/10.1038/s41467-018-07210-0
https://doi.org/10.1073/pnas.1517384113
https://doi.org/10.1073/pnas.1517384113
https://arxiv.org/abs/https://www.pnas.org/content/113/15/3932.full.pdf
https://doi.org/10.1098/rspa.2020.0279
https://doi.org/10.1098/rspa.2020.0279
https://doi.org/10.1098/rspa.2020.0279
https://arxiv.org/abs/arXiv:2005.03448
https://doi.org/10.1073/pnas.1906995116
https://doi.org/10.1073/pnas.1906995116
https://arxiv.org/abs/https://www.pnas.org/content/116/45/22445.full.pdf
http://jmlr.org/papers/v18/17-468.html
http://jmlr.org/papers/v18/17-468.html
https://doi.org/https://doi.org/10.1016/0304-3800(75)90006-X
https://doi.org/https://doi.org/10.1016/0022-5193(74)90180-5
https://doi.org/https://doi.org/10.1016/0022-5193(74)90180-5
https://doi.org/https://doi.org/10.1016/0304-3800(94)90123-6
https://doi.org/10.1017/CBO9780511998324
https://doi.org/10.1017/CBO9780511998324
https://doi.org/10.1364/AO.52.000D92
https://doi.org/10.1364/AO.52.000D92
https://arxiv.org/abs/arXiv:2009.08810
https://doi.org/10.1109/TNNLS.2020.3017010
https://doi.org/10.1109/TNNLS.2020.3017010
https://arxiv.org/abs/arXiv:2007.10784
https://doi.org/10.1126/sciadv.aay2631
http://github.com/google/jax
http://github.com/google/jax
https://arxiv.org/abs/arXiv:1810.07951
https://proceedings.neurips.cc/paper/2020/file/d9d4f495e875a2e075a1a4a6e1b9770f-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d9d4f495e875a2e075a1a4a6e1b9770f-Paper.pdf

1

Supplemental Materials: Discovering Sparse Interpretable Dynamics from Partial
Observations

AUTOMATIC COMPUTATION OF SYMBOLIC
DERIVATIVES

The time derivatives can be derived by repeated dif-
ferentiation of the symbolic model

dx̂

dt
= F̂θ(x̂), (S1)

substituting back in previously computed derivatives to
obtain expressions only in terms of the reconstructed
state x̂. For example, the first and second time deriva-
tives can be written in index notation as

dgi
dt

=
∑
j

dgi
dx̂j

dx̂j
dt

=
∑
j

dgi
dx̂j

F̂θj (S2)

d2gi
dt2

=
∑
j,k

d2gi
dx̂jdx̂k

F̂θjF̂θk +
dgi
dx̂j

dF̂θj
dx̂k

F̂θk. (S3)

The expressions for the symbolic time derivatives (Eqs.
S2 & S3) quickly grow more and more unwieldy for
higher order derivatives. Implementing these expressions
by hand is likely to be both time-consuming and error-
prone, especially for more complex symbolic models such
as those used in our PDE experiments. To address this is-
sue, we develop an automated approach that takes advan-
tage of powerful modern automatic differentiation soft-
ware (in our case, the JAX library [34]).

Automatic differentiation is the algorithmic backbone
of modern deep learning [24], and a new generation of
source-to-source automatic differentiation libraries are
quickly becoming available [34, 35]. Automatic differ-
entiation uses a library of custom derivative rules de-
fined on a set of primitive functions which can then be
arbitrarily composed to form more complex expressions.
The algorithm normally requires a forward evaluation of
a function that sets up a backward pass which computes
the gradient of the function. In our case, the appropri-
ate forward step is integrating the symbolic model (Eq.
S1) using an ODE solver, which makes the time vari-
able and its derivatives explicit rather than being implic-
itly defined by the governing equations. This, however,
would introduce significant overhead and would not pro-
duce the exact expressions that we derived earlier. In
fact, integration should not be necessary at all for effi-
ciently implementing symbolic differentiation. Instead,
we propose a simple algorithmic trick that allows stan-
dard automatic differentiation to compute symbolic time
derivatives without explicit integration.

Consider a function I(x̂, ε) that propagates the state x̂
forward by a time ε according to the governing equations
(Eq. S1), i.e.

I(x̂(t), ε) = x̂(t+ ε). (S4)

As ε→ 0, I(x̂(t), 0) = x̂(t) reduces to the identity. Tak-
ing a derivative with respect to ε, we find that

∂I(x̂(t), ε)

∂ε
=
dx̂(t+ ε)

dε

= F̂θ(x̂(t+ ε))

= F̂θ(I(x̂(t), ε)),

(S5)

which reduces to ∂I(x̂, ε)/∂ε|ε=0 = dx̂/dt = F̂θ(x̂) as
ε → 0. This generalizes to higher order derivatives, al-
lowing us to compute time derivatives of x̂ as

dpx̂

dtp
=
∂pI(x̂, ε)

∂εp

∣∣∣∣
ε=0

. (S6)

Since we only ever evaluate at ε = 0, this formulation
makes the time variable explicit without having to inte-
grate the governing equations. To implement this trick
using an automatic differentiation algorithm, we define a
wrapper function I0(x̂, ε) := x̂ that acts as the identity
on the state x̂ but has a custom derivative rule

∂I0(x̂, ε)

∂ε
:= F̂θ(I0(x̂, ε)). (S7)

This allows standard automatic differentiation to cor-
rectly compute exact symbolic time derivatives of our
governing equations, including higher order derivatives.
Our code for implementing this algorithmic trick and
for reproducing the rest of our results is available at
https://github.com/peterparity/symder.

The proposed algorithmic trick for computing higher
order time derivatives, which exploits modern automatic
differentiation, further simplifies the implementation of
our method and allows the user to focus on designing an
appropriate encoder and choosing a reasonable library of
predefined terms for the sparse symbolic model.

DATASET, ARCHITECTURE, AND TRAINING
DETAILS

ODE Systems

Each system is sampled for 10000 time steps of size
∆t = 10−2, and the resulting time series data and com-
puted finite difference derivatives are normalized to unit
variance.

The encoder takes a set of nine visible states {xv(t −
4∆t),xv(t − 3∆t), . . . ,xv(t + 4∆t)} as input to recon-
struct each hidden state x̂h(t) and is implemented as a
sequence of three 1D time-wise convolutional layers with
kernel sizes 9–1–1 and layer sizes 128–128–1. This ar-
chitecture enforces locality in time, allowing the neural

https://github.com/peterparity/symder

2

network to learn a simpler and more interpretable map-
ping. The predefined terms of the symbolic model consist
of constant, linear, and quadratic monomial terms, i.e. 1,
u, v, w, u2, v2, w2, uv, uw, and vw, for each governing
equation.

We also scale the effective time step of the symbolic
model by a factor of 10 to improve training by precondi-
tioning the model coefficients. We then train for 50000
steps using the AdaBelief optimizer [36] with learning
rate 10−3 and with hyperparameters α1 = α2 = 1 to
equally weight the first two time derivative terms in the
loss function (αp = 0 for p > 2). Every 5000 training
steps, we sparsify the symbolic model, setting coefficients
to zero if their absolute value is below θthres = 10−3.

One additional caveat is that the equation and hidden
state obtained by our approach is not exactly the same
as the original and instead corresponds to the correct
governing equations for an affine transformation of the
hidden state w′ = aw+b. In order to make a direct com-
parison, we use linear regression to fit the reconstructed
hidden states to the original hidden states and show the
resulting transformed equations.

PDE Systems

Each system is sampled on a 64×64 spatial mesh with
grid spacing ∆x = ∆y = 1 for 1000 time steps of size
∆t = 5 × 10−2, and the resulting data and estimated
derivatives are normalized to unit variance.

The encoder is a sequence of three 3D spatiotempo-
ral convolutional layers with kernel sizes 5–1–1 and layer
sizes 64–64–1, which enforces locality in both time and
space. The predefined terms of the symbolic model con-
sist of constant, linear, and quadratic terms as well as up
to second order spatial derivative terms, e.g. ∂xu, ∂yu,
∂xxu, ∂yyu, ∂xyu, and similarly for v.

We scale the effective time step and spatial grid spac-
ing of the symbolic model by a factor of 10 and

√
10,

respectively, to precondition the model coefficients. For
the diffusion system, we train for 50000 steps with learn-
ing rate 10−4 and hyperparameters α1 = 1 and α2 = 10,

and we sparsify the symbolic model every 1000 training
steps with θthres = 5 × 10−3. For the diffusive Lokta–
Volterra system, we train for 100000 steps with learning
rate 10−3 and hyperparameters α1 = α2 = 1, and we
sparsify the symbolic model every 1000 training steps
with θthres = 2× 10−3.

Phase Reconstruction

The system is sampled on a size 64 mesh with spacing
∆x = 2π/64 for 500 time steps of size ∆t = 10−3.

Using the available prior knowledge, we allow the
symbolic model to use spatial derivative terms ∂pxψ for
p ∈ {1, 2, 3, 4} and nonlinearity terms |ψ|qψ for q =
{2, 4, 6, 8}. We scale the effective time step by a fac-
tor of 10 to precondition the model coefficients and train
for 100000 time steps with learning rate 10−4 and hy-
perparameters α1 = α2 = 1 and β = 103. We spar-
sify the symbolic model every 10000 training steps with
θthres = 10−3.

Unlike the previous examples, reconstructing the phase
is a much trickier problem that cannot be done using a
local spatiotemporal encoder. Instead of using a neural
network mapping, we use a direct embedding of the phase
as function of time, i.e. for each point in the spatiotempo-
ral grid of the original data, we learn a parameter for the
phase ϕ̂(x, t). This simple approach has the advantage of
being incredibly flexible but also more difficult to train,
requiring an additional encoder regularization term

Renc = β

(
∂ψ̂

∂t
− ∆ψ̂

∆t

)2

(S8)

that ensures the symbolic time derivatives match the fi-
nite difference time derivatives of the reconstructed state
ψ̂ = a(|ψ|, ϕ̂). Unlike the compact neural network en-
coders from the previous experiments, this encoder also
must scale with the dataset size and does not provide a
useful mapping that can be used for future hidden state
reconstruction.

	Discovering Sparse Interpretable Dynamics from Partial Observations
	Abstract
	 Acknowledgments
	 References
	 Automatic Computation of Symbolic Derivatives
	 Dataset, Architecture, and Training Details
	 ODE Systems
	 PDE Systems
	 Phase Reconstruction

