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ABSTRACT. We analyze existing random graph models and the structure of the graphs that they
produce. Using a graph decomposition we call a box decomposition, we compare random graphs
to datasets representing actual networks. We demonstrate that existing random graph models fail to
capture properties found by the box decomposition in real data sets. We propose a new graph model,
the “density column” model, and show that the new model generates random graphs with properties
more similar to those of real-world networks.

1. INTRODUCTION

In this work, we use the box decomposition (section 1.2), originally studied in [BIM+12], to
analyze the structure of simple undirected graphs: the Barabási-Albert random graph model and
actual data sets (section 3). We propose and analyze a random graph model which better resembles
real-world data in section 2.2.

1.1. Notation. Let G be a directed graph where V (G) denotes the set of vertices of G and E(G)
denotes the set of edges. If v ∈ V (G), then δ(v) denotes the total degree of v, δ+(v) denotes the
indegree of v, and δ−(v) is the outdegree of v.

1.2. Box Decomposition for a Directed Graph. Let G be a directed graph, and let k be the
maximum indegree of G.

Definition 1.1. Let Bk, also called the top box, be the set of all vertices of indegree k, along with
all vertices which have a directed path to a vertex of indegree k. For all ` < k, we define:

B` =

{
v ∈V (G)\

k⋃
i=`+1

Bi | v has indegree ` or has a directed path to a vertex of indegree `

}

Definition 1.2. The rank of a graph G, written Rank(G), is maxv∈V (G){δ+(v)}.

For an arbitrary directed graph, this decomposition does not yield much information, but for
directed graphs with certain properties it does. One such property is used to define the box decom-
position on an undirected graph.
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1.3. Box Decomposition for an Undirected Graph. The box decomposition for an undirected
graph G is the box decomposition of a directed version of G whose indegrees have minimum
lexicographic order.

Definition 1.3. A directed graph H has minimum lexicographic order if δ+(v) for all v ∈ V (H),
sorted from highest to lowest, is lexicographically less than or equal to δ+(h) of all vertices h ∈
V (H ′), sorted from highest to lowest, where H ′ = H after a set of edges is reversed.

To find such an orientation, we used an algorithm called PATH-REVERSAL [BIM+12]. The
process goes as follows: suppose there is a procedure called ORIENT that takes an undirected
graph and orients the edges arbitrarily. A directed path from u to v in G is called reversible if
δ+(u) < δ+(v)− 1. FIND-REVERSIBLE-PATH returns a reversible path. The pseudocode of the
algorithm itself follows:

PATH-REVERSAL(G)

1 ORIENT(G)� Assume G starts undirected
2 while HAS-REVERSIBLE-PATH(G)
3 do p← FIND-REVERSIBLE-PATH(G)
4 REVERSE-PATH(p)

When a directed graph has minimum lexicographic order, the box decomposition has been
shown to have the following properties [BIM+12]:

(1) The top box contains the densest subgraph.
(2) All edges between vertices in different boxes will be directed from a box B j to Bi where

j > i.
(3) The box decomposition is the same for any orientation with minimum lexicographic order.

Since the box decomposition is the same for any graph orientation of minimum lexicographic
order, the box decomposition for an undirected graph is unique. This decomposition can then be
used to obtain information about the structure of graphs. We used this decomposition to analyze
the structure of some random graph models.

1.4. Random Graph Models. Generating simple graphs randomly is a problem that has appeared
in numerous situations. One of the first models of random graphs that was studied is the random
G(n, p) graph model, also known as the Erdős-Rényi model, after its creators, Paul Erdős and
Alfréd Rényi [ER59]. In a graph on n vertices, there are

(n
2

)
possible edges. The G(n, p) model

simply adds each of these possible edges to the graph with probability p. This model has significant
limitations for mimicking real world graphs because many graph properties and structures which
arise in real life do not commonly appear in G(n, p) graphs, such as

Definition 1.4. The degree distribution of a graph G is a probability mass function f (x) where

f (x) =
δ(x)

∑v∈G δ(v)
for x ∈ G.

The expected degree distribution of a graph generated with the G(n, p) graph model is bino-
mial, however many real-world graphs do not exhibit that degree distribution. For this reason, the
random G(n, p) is not a useful model of real-world networks.

To overcome this limitation, researchers have proposed other random graph models. One these is
the Barabási-Albert model, which generates graphs which have an expected power law distribution
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— similar to many graphs that arise in the real world [AB02]. A random graph is generated in this
model by starting with a seed graph on m0 vertices. Further vertices are added iteratively with
each new vertex attached to m existing vertices chosen with a probability that is proportional to
the degree of the existing vertices. This is also known as a preferential attachment model since
vertices with higher degrees will be attached to more often than vertices with lower degrees.

The Barabási-Albert model has been used to model many types of networks, such as social
networks [BDML06]. The reason the Barabási-Albert model is used in social networks is that the
more people someone knows, the more likely it is that they will meet someone new. There are
many networks with this property making this model useful for modeling real-world data.

Between the G(n, p) graph model and the Barabási-Albert model, there are only two degree dis-
tributions, the binomial and power law distributions, which can be modeled by randomly generated
graphs. This points out a major limitation in those models: arbitrary degree distribution. Some re-
searchers have suggested models which will generate graphs with an arbitrary degree distribution.
A survey of models used to generate graphs with arbitrary degree distributions by Britton, Deijfen,
and Martin-Löf found four basic types of random graph models to generate a given degree distri-
bution [BDML06]. One of these is a generalization of the random G(n, p) model. We propose a
modification of the generalized G(n, p) model, the iterated G(n, p) discussed in section 2.1, which
converges to the given distribution faster than the model give by Britton et al.

Another model for generating random graphs is the probabilistic planted model, another gen-
eralization of the G(n, p) [Rou10, p. 6-8]. The planted model partitions vertices in a graph into
separate sets Si. There is then a set of probabilities P where each element pi j represents the prob-
ability of an edge existing between a vertex in Si and a vertex in S j. By doing this, each set Si
induces a G(n, p) model subgraph and these graphs are then connected to generate a graph with
a more complicated degree distribution. We analyze a specific instance of this model, the density
column model (section 2.2), as a method to generate random graphs with a given box decomposi-
tion.

We analyze the random graph models mentioned above for the box decompositions found in
those graphs. Along with this, we analyze actual data sets and compare their box decompositions
to those of the random graphs to see if the box decomposition shows a structural difference between
the random graphs and the actual data sets. We find that the density column model that is analyzed
best reproduces the structures found by the box decomposition.

2. RESULTS

2.1. Iterated G(n, p) Graph. Let P be a matrix used to calculate the iterated G(n, p) graph de-
fined below in 2.1.1. Each element pi j of P is the probability the edge between vertices i and j
exists.

2.1.1. Defining P. Let δ0 be a vector with n elements representing the desired degree distribution

of vertices in the random graph with the distribution satisfying
δ2

0 j

∑
k
i=0 δ0i

≤ 1
2

. Let Si be a sequence

of matrices defined below. Let δi be a vector defined by the diagonal of Si where the element
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δik = Sikk . Now the sequence Si is inductively defined by

S1 =
δ0δT

0
1 ·δ

S2 =
δ1δT

1
1 ·δ1

=
δ1δT

1
tr(S1)

...

Sk =
δk−1δT

k−1

1 ·δk−1
=

δk−1δT
k−1

tr(Sk−1)
...

Then for every pi j in P

pi j =

 ∑
∞
k=1 Sni j if i 6= j

0 if i = j

2.1.2. Properties of P. The matrix P has properties that allow it to produce a distribution that is
the original distribution: the probabilities should be symmetric (pi j = p ji), pi j < 1 for all i and j,
and should give the desired degree distribution (δ0 j = ∑

k
i=0 pi j).

To show that pi j = p ji, we note that Si is a product of a vector with its transpose and so is semidef-
inite and therefore symmetric. Since P is just a sum of these matrices, P is symmetric.

To show the last two properties note Si j j = ∑
n
k=0 Si+1 jk :

Si j j = δi j = δi j

∑
n
k=0 δik

∑
n
m=0 δim

=
n

∑
k=0

δi jδik

∑
n
m=0 δim

=
n

∑
k=0

Si+1k j

To show that pi j ≤ 1, Si j j = ∑
n
k=0 Si+1 jk implies that pi j ≤ Ski j + Sk j j . For k = 0, S0i j <

1
2

and

S0 j j <
1
2

because of the limitations on δ0. So pi j ≤
1
2
+

1
2
= 1.

To show that ∑
n
i=0 pi j = δ0 j :

δ0 j = ∑
n
i=0 S1i j = ∑

n
i6= j S1i j +S1ii = ∑

n
i 6= j S1i j +∑

n
i 6= j S2i j

= ∑
n
i6= j(S1i j +S2i j)+S2ii = ∑

n
i6= j ∑

∞
k=1 Ski j = ∑

n
i=0 pi j =

2.1.3. Convergence of P.

Theorem 2.1. P converges at least as fast as
1

22k .

Proof. We start by showing

(1)
Sk j j

∑
n
i=0 δki

<
1

22k
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Base Case:

S1 j j

∑
n
i=0 δki

=
S1 j j

∑
n
i=0 S1ii

=

δ2
0 j

∑
n
k=0 δ2

0k

∑
n
i=0

δ2
0i

∑
n
k=0 δ2

0k

=
δ2

0 j

∑
n
i=0 δ2

0i

<
1
2

because this distribution is achievable by a simple graph
Inductive Step:

1
22k >

Sk j j

∑
n
i=0 δki

=⇒ 1
22k+1 >

S2
k j j

(∑n
i=0 δki)

2 =
S2

k j j

∑
n
i=0 δ2

ki

∑
n
i=0 δ2

ki

(∑n
i=0 δki)

2

≥
S2

k j j

(∑n
i=0 δki)

2 =
S2

k+1 j j

(∑n
i=0 δk+1i)

2

This proves equation 1. Consider the sum of all the elements of a row.

δ0 j =
n

∑
i=0

pi j =
n

∑
i6= j

k

∑
m=0

Ski j +Sk j j

Therefore Sk j j is the error between δ0 j and ∑
n
i 6= j ∑

k
m=0 Ski j . So:

Sk j j = Sk−1 j j

Sk−1 j j

∑
n
i=0 Sk−1ii

<
1

22k−1

�

2.2. The Density Column Model. The probabilistic planted model suggests many variations on
the basic G(n, p) idea. Here we will present a special case of the planted model that can pro-
duce graphs with a variety of degree distributions and box decompositions by choosing the input
parameters appropriately. Suppose that we are given a sequence of m ordered pairs of the form
(ni,ki). Each of these indicates that we want ni vertices of expected degree ki in our final graph.
The idea is that, if we can generate such a graph, then appropriate choices of n and k values can
be used to obtain varying degree distributions with the same model. We wish to find probabilities
p1, p2, . . . , pm such that we can perform the following procedure and get a graph with the desired
properties:

(1) Create a graph on N =
m
∑

i=1
ni vertices with no edges.

(2) Begin on layer i = 1.
(3) For each vertex in layer i , join it with an edge to each vertex of layer i or higher with

probability pi.
(4) Increment i and repeat the process until the top layer is reached.

A little bit of background is in order at this point. This model began as an attempt to generate a
graph with a desired box decomposition, motivated by the following conjecture:

Conjecture 2.2. Let G be a G(n, p) random graph that has been oriented by path reversal. Then
E(Rank(G)) = np/2+o(1) when p = o(1).
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If this conjecture holds, we can let the desired lower boxes be the lower layers in this model. We
can use the expected rank, plus the fact that edges between boxes must always point to the lower
one, to get:

`=
n`p`

2
+ p`

k

∑
i=`+1

ni

and then solve for p` to get

p` =
2`

n`+2
k
∑

i=`+1
ni

in order to give the desired box decomposition. This model has promise, yet the conjecture re-
mains unproven, however, given that we know how to find the degree distributions of G(n, p)
graphs and generalizations of them, this method can be used to generate graphs of different degree
distributions.

We can now return to the newer model and solve for p`. Note that the existence of each possible
edge in the graph is simply a Bernoulli trial, with the probability of success defined by the p`
values and our algorithm. Keeping the Bernoulli trial nature of the events in mind and thinking in
terms of how the algorithm builds the graph, we can work backwards and compute the expected
degree of the vertices of a particular layer:

k` = p`

(
m

∑
i=`

ni−1

)
+

`−1

∑
i=1

pini

Now, we just solve for p` to get:

(2) p` =

(
k`−

`−1

∑
i=1

pini

)/(
m

∑
i=`

ni−1

)
Note that p` depends on p1, p2, . . . , p`−1, so this method allows us to find the needed probabilities
recursively.

Now we wish to find the overall distribution of the resulting random graph. To do so, we can
employ the law of total probability.

P(δ(v) = x) =
m

∑
i=1

P(v in layer i)P(δ(v) = x | v in layer i)

If we’re wondering about an arbitrary vertex v chosen uniformly, then we have:

P(v in layer i) =
ni

N
Now we just need to find the conditional probability of δ(v) taking a particular value given that v
is in layer i. Let P(i) ∈ [0,1]N−1 be a vector whose components are the probabilities of attachment
between a vertex in layer i and all other vertices in the graph, not necessarily in any particular
order. Let P(i) j denote the jth component of P(i). Furthermore, let:

Sn = {A ∈ P ({0,1, . . . ,N−1}) | |A|= n}
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FIGURE 1. Degree Distribution of Power Grid Graph.

Then we have:
P(δ(v) = x | v in layer i) = ∑

A∈Sx

∏
a∈A

P(i)a ∏
a∈AC

(1−P(i)a)

So, finally, this gives us:

P(δ(v) = x) =
m

∑
i=1

ni

N ∑
A∈Sx

∏
a∈A

P(i)a ∏
a∈AC

(1−P(i)a)

As necessitated by the nature of the distribution, this is not the easiest expression to work with.
However, it does give us some idea of the structure of the resulting overall degree distribution.

3. ADVANTAGES OF THE DENSITY COLUMN MODEL

Our new model has practical value in terms of generating random graphs that are useful for
studying real-life networks. For example, let’s consider a graph representing the power grid of
the western US assembled and analyzed by Watts and Strogatz in [WS98]. The graph’s degree
distribution (without normalization, as in all of our figures) is shown in figure 1. As it turns out,
this graph has an interesting box decomposition:

i |Bi|
1 1571
2 3313
3 57

Here we have a concrete example of a graph representing a real-world network that would be an
interesting object of study. How can we generate random graphs with similar properties in order
to analyze these networks further? The most popular idea currently would be to use some sort of
preferential attachment scheme. The Barabási-Albert model, as previously discussed, generates
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FIGURE 2. Degree Distribution of a Barabási-Albert Graph (n = 5000 and m = 2).
The tail has been truncated to make the graph more legible.

graphs with a power law distribution (as seen in many datasets, including this one) and comes
along with a nice story about how the model mimics the growth of real-life networks [AB02].
So, how well does this model actually simulate the data? We can get a similar size and degree
distribution by creating a Barabási-Albert graph with n = 5000 and m = 2. The degree distribution
of the resulting graph is shown in figure 2.

The degree distribution does, in fact, appear similar. The one notable difference is the distribu-
tion of low degree vertices — note that the actual power grid data doesn’t quite obey a power law
in this respect. Now, in order to gain further insight to the structure of the graph we have generated,
we can look at its box decomposition:

i |Bi|
1 0
2 5000

Clearly, we are missing something. The box decomposition captures certain elements of the
graph’s overall structure, so this dissimilarity in box decompositions indicates that there is a corre-
sponding dissimilarity between the empirically-obtained graph and the random one.

Next, we can compare this to a density column graph generated with appropriate parameters.
We can approximate a power law distribution with the following n and k values:

n k
1000 2
250 4
111 6
63 8

Using equation 2, we can compute the necessary probability values and generate a corresponding
random graph. The degree distribution of this graph is shown in figure 3. Note that the distribution
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FIGURE 3. Degree Distribution of our Density Column Graph.

still falls off in a power law-like fashion, but through our choice of parameters, we were able to
more accurately model the distribution of low-degree vertices.

Now, we can perform the same test as earlier with the box decomposition. For this graph, we
have:

i |Bi|
0 121
1 312
2 991

So, just like in the power grid data, we have a nontrivial box decomposition. This indicates that
we have made progress in terms of replicating the structure of real-world networks.

4. CONCLUSION

We have made progress in developing interesting new random graph models that are motivated
by a desire to replicate the structure of real-world networks. These models generalize the existing
family of Erdős - Rényi models in interesting ways and produce properties that the basic G(n, p)
model typically does not produce. We were ultimately able to justify the one model that did come
to fruition through demonstrating its application to modeling real-world networks.

4.1. Further Work. There are numerous directions we can pursue with this problem. For one
thing, a better understanding of the box decomposition is needed — it clearly says something
about the structure of a graph, but a clearer understanding of what sort of structure is needed. In
particular, a non-algorithmic definition of the box decomposition for an undirected graph would
be useful.

Furthermore, we could develop a method which takes an arbitrary “target” degree distribution
and finds appropriate parameters for the density column model to approximate that distribution.
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Finally, we might be able to take insights from this work to reassess the path reversal algorithm
and the original problem of finding dense subgraphs through the use of the box decomposition.
While work in this particular area was not terribly fruitful in the few weeks that we had, the work
that we did do together with some of the other work suggested in this section might open the door
to further progress.
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degree distribution. Journal of Statistical Physics, 124:1377–1397, 2006. 10.1007/s10955-006-9168-x.

[BIM+12] Glencora Borradaile, Jennifer Iglesias, Theresa Migler, Antonio Ochoa, Gordon Wilfong, and Lisa Zhang.
Egalitarian graph orientations. Manuscript, 2012.

[CL02] Fan Chung and Linyuan Lu. Connected components in random graphs with given expected degree se-
quences. Annals of Combinatorics, (6):125–145, 2002.
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