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Chapter 1

Introduction to the Natural Numbers

Solutions to Selected Exercises

1. Show that the following are composite numbers:

(c) 20,101,116

Answer: 20,101,116 is divisible by 2.

2. Which of the following are prime numbers?

(c) 537

Answer: Since 537 is divisible by 3, it is not prime.

6. Find a prime number p such that the number (2 ·3 ·5 ·7 · · · p)+1 is not prime.

Answer: The smallest such prime is p = 13. Note that 2 ·3 · · ·13 = 30030 and
30031 = 59 ·509.

7. Suppose that p, p+ 2, and p+ 4 are prime numbers. Prove that p = 3. [Hint:
Why can’t p be 5 or 7?]

Answer: If p = 3, then p, p+2 = 5 and p+4 = 7 are all prime. Conversely,
suppose p 6= 3. Then, since p is prime, p is not divisible by 3. Thus, p leaves
a remainder of 1 or 2 when divided by 3. If p leaves a remainder of 1 when
divided by 3, then p = 3m+ 1 for some nonnegative integer m, so p+ 2 =
3m+ 3 is divisible by 3. Since p+ 2 is greater than 3, this contradicts the
fact that p+2 is prime. If p leaves a remainder of 2 when divided by 3, then
p = 3m+2 for some nonnegative integer m, and so p+4 = 3m+6 is divisible
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2 1 Introduction to the Natural Numbers

by 3, which contradicts the fact that p+4 is prime. Therefore, for p, p+2 and
p+4 to all be prime, p must equal 3.

8. Prove that, for every natural number n > 2, there is a prime number between n
and n!. (Recall that n! is defined to be n(n�1)(n�2) · · ·2 ·1.) [Hint: There is a
prime number that divides n!�1.]
Note that this gives an alternate proof that there are infinitely many prime num-
bers.

Answer: Let n be a natural number greater than 2. Let p be any prime number
that divides n!� 1. Since p divides n!� 1, p does not divide n!. It follows
that p is not any natural number less than or equal to n, and so p is a natural
number greater than n. Also, p is less than or equal to n!�1, since p divides
n!�1. It follows that n < p < n!, so there is a prime between n and n!.

9. Prove that, for every natural number n, there are n consecutive composite num-
bers. [Hint: (n+1)!+2 is a composite number.]

Answer: Let n be any natural number. For any natural number k  n+1, (n+
1)! is a multiple of k. Then (n+1)!+k is k more than a multiple of k, so (n+
1)!+ k is a multiple of k as well. Thus (n+1)!+2, (n+1)!+3, (n+1)!+4,
. . . , (n+1)!+n+1 are n consecutive numbers all of which are composite.

10. Show that a natural number has an odd number of different factors if and only if
it is a perfect square (i.e., it is the square of another natural number).

Answer: Let m be a natural number whose distinct factors are a1, . . . ,an. For
each ai, there is an a j such that ai ·a j = m. So each factor can be paired with
its complement, and if m is not a perfect square then each ai is paired with a
different a j, so there are an even number of factors. If m is a perfect square,
then there is an ak such that a2

k = m. All the other ai can be paired with their
complements, but as ak only appears once in the list of factors, it follows that
there are an odd number of different factors.



Chapter 2

Mathematical Induction

Solutions to Selected Exercises

2. Prove, using induction, that for every natural number n:

1
1 ·2 +

1
2 ·3 + · · ·+ 1

n · (n+1)
=

n
n+1

Answer: This is true when n = 1, since 1
1·2 = 1

1+1 . Suppose it is true for n = k,
i.e.:

1
1 ·2 +

1
2 ·3 + · · ·+ 1

k · (k+1)
=

k
k+1

Then:

1
1 ·2 +

1
2 ·3 + · · ·+ 1

k · (k+1)
+

1
(k+1) · (k+2)

=
k

k+1
+

1
(k+1)(k+2)

=
k(k+2)+1
(k+1)(k+2)

=
k2 +2k+1

(k+1)(k+2)

=
(k+1)(k+1)
(k+1)(k+2)

=
k+1
k+2

Therefore, the formula holds for n = k + 1, and it follows by mathematical
induction that the formula is true for all natural numbers n.

7. Prove by mathematical induction that 3 divides n3 + 2n, for every natural num-
ber n.
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4 2 Mathematical Induction

Answer: For the case n = 1, n3 + 2n = 1+ 2 = 3, so the statement holds in
this case. Suppose it holds for the natural number k. Then (k+ 1)3 + 2(k+
1) = (k3 + 3k2 + 3k+ 1)+ (2k+ 2) = k3 + 2k+ 3k+ 3k2 + 3 = (k3 + 2k)+
3(k+k2 +1). Since k3 +2k is divisible by 3, by the inductive hypothesis, and
3(k+ k2 + 1) is divisible by 3, (k+ 1)3 + 2(k+ 1) is divisible by 3, and the
result follows by induction.

8. Show that 3n > n2 for every natural number n.

Answer: For n = 1, 3n = 3 while n2 = 1, so the inequality holds in this case.
For n = 2, 3n = 9 > 4 = n2, so it is true in this case as well. Suppose it is true
for a natural number k � 2, that is, 3k > k2. Then 3k+1 = 3 · 3k > 3k2, while
(k + 1)2 = k2 + 2k + 1. What remains is to show that 3k2 > k2 + 2k + 1 or,
equivalently, 2k2 > 2k+1. This is equivalent to 2k2 �2k > 1, but 2k2 �2k =
2k(k�1), which is clearly greater than 1 for k � 2.

12. Prove the Well-Ordering Principle using the Principle of Complete Mathematical
Induction.

Answer: It must be shown that the only set without a smallest element is the
empty set. Let T be a set of natural numbers without a smallest element. Then
1 is not in T , or else 1 would be the smallest element. Suppose the numbers
1 through k are not in T . Then k+1 is also not in T , or else k+1 would be
the smallest element in T . So if S is the set of natural numbers that are not
in T , then 1 is in S and k+1 is in S whenever the numbers 1 through k are
in S . It follows from the Principle of Complete Mathematical Induction that
S is the set of all natural numbers. Therefore, there are no natural numbers
in T ; that is, T is the empty set.

14. Define the nth Fermat number, Fn, by Fn = 22n
+1 for n = 0,1,2,3, . . . . The first

few Fermat numbers are F0 = 3, F1 = 5, F2 = 17, F3 = 257.

(a) Prove by induction that F0 ·F1 · · ·Fn�1 +2 = Fn, for n � 1.
(b) Use the formula in part (a) to prove that there are an infinite number of primes,

by showing that no two Fermat numbers have any prime factors in common.
[Hint: For each Fn, let pn be a prime divisor of Fn and show that pn1 6= pn2 if
n1 6= n2.]

Answer: (a) For n = 1 the left hand side is 3+2 while the right hand side is 5,
so the statement holds. Suppose the statement is true for a natural number m.
Then F0 ·F1 · · ·Fm�1 +2 = Fm, so:



2 Mathematical Induction 5

F0 ·F1 · · ·Fm�1 = Fm �2
= 22m

+1�2
= 22m �1

It follows that:

F0 ·F1 · · ·Fm�1 ·Fm = (22m �1) ·Fm
= (22m �1)(22m

+1)
= 22m+1 �1
= Fm+1 �2

Therefore:
F0 ·F1 · · ·Fm�1 ·Fm +2 = Fm+1

and the statement holds for m+1.

(b) Let n and m be two different natural numbers, and suppose that Fn and
Fm share the prime factor p. One of n and m is greater than the other; assume
n > m. Then, by the formula from part (a):

Fn = F0 ·F1 · · ·Fn�1 +2

Since Fm is one of the Fi on the right hand side of this equation, p divides
the product on the right hand side. Since p also divides Fn, it follows that p
divides 2, and hence p = 2. On the other hand, every Fermat number is odd,
so 2 is not a factor of any Fermat number. Since no two Fermat numbers have
a common prime factor, this provides another proof that there are an infinite
number of primes.

15. The sequence of Fibonacci numbers is defined as follows: x1 = 1, x2 = 1, and,
for n > 2, xn = xn�1 + xn�2. Prove that:

xn =
1p
5

" 

1+
p

5
2

!n

�
 

1�
p

5
2

!n#

for every natural number n. [Hint: Use the fact that x = 1+
p

5
2 and x = 1�

p
5

2 both
satisfy 1+ x = x2.]

Answer: To verify the hint, note that
⇣

1+
p

5
2

⌘2
= 6+2

p
5

4 = 3+
p

5
2 = 1+ 1+

p
5

2 ,

and
⇣

1�
p

5
2

⌘2
= 6�2

p
5

4 = 3�
p

5
2 = 1+ 1�

p
5

2 .

For the base case of the induction, x1 = 1 by definition and:

1p
5

" 

1+
p

5
2

!

�
 

1�
p

5
2

!#

=
1p
5

 

2
p

5
2

!

= 1



6 2 Mathematical Induction

Suppose the formula holds for all natural numbers less than or equal to k.
Then:

xk+1 = xk + xk�1

=
1p
5

2

4

 

1+
p

5
2

!k

�
 

1�
p

5
2

!k

+

 

1+
p

5
2

!k�1

�
 

1�
p

5
2

!k�1
3

5

=
1p
5

2

4

 

1+
p

5
2

!k�1 

1+
1+

p
5

2

!

�
 

1�
p

5
2

!k�1 

1+
1�

p
5

2

!

3

5

and, by the hint, this equals:

1p
5

2

4

 

1+
p

5
2

!k�1 
1+

p
5

2

!2

�
 

1�
p

5
2

!k�1 
1�

p
5

2

!2
3

5

Since this is equal to the right hand side of the formula for n = k+1, the result
follows by induction.



Chapter 3

Modular Arithmetic

Solutions to Selected Exercises

1. Find a solution x to each of the following congruences. (“Solution” means integer
solution.)

(a) 2x ⌘ 7 (mod 11)

Answer: If there is a solution, there would have to be a solution within the set
{0,1, . . . ,10}. Trying each of those numbers gives the solution x = 9.

2. For each of the following congruences, either find a solution or prove that no
solution exists.

(a) 39x ⌘ 13 (mod 5)
(b) 95x ⌘ 13 (mod 5)
(e) 4x3 +2x ⌘ 7 (mod 5)

Answer: (a) Note that if there is a solution to a congruence modulo 5, there
would have to be a solution among the set {0,1,2,3,4}, since every integer
is congruent to one of those numbers modulo 5. Since 39 ⌘ 4 (mod 5), and
13 ⌘ 3 (mod 5), the equation is equivalent to 4x ⌘ 3 (mod 5). Trying each
number from {0,1,2,3,4} yields the solution x = 2.

(b) No solution exists. None of the numbers from {0,1,2,3,4} satisfy the con-
gruence. Another solution is as follows. For any x, 95x ⌘ 0 (mod 5), because
95 ⌘ 0 (mod 5). Since 13 ⌘ 3 (mod 5), there is no solution.

(e) No solution exists. None of the numbers from {0,1,2,3,4} satisfy the
congruence.

7



8 3 Modular Arithmetic

3. Find the remainder when:

(c) 243101 is divided by 8.
(g) 5! ·181�866 ·332 is divided by 6.

Answer: (c) First note that 243⌘ 3 (mod 8), so 2432 ⌘ 32 ⌘ 1 (mod 8). Then
243100 ⌘ 1 (mod 8), so 243101 ⌘ 243 ⌘ 3 (mod 8). Therefore the remainder
is 3.

(g) The remainder is 2. To see this, note that 866 ⌘ 2 (mod 6) and 332 ⌘ 2
(mod 6), so �866 ·332⌘�4⌘ 2 (mod 6). Since 5!= 20 ·6, 5!⌘ 0 (mod 6),
therefore 5! ·181 ⌘ 0 (mod 6). Then, 5! ·181�866 ·332 ⌘ 2 (mod 6).

7. Suppose that 722 is written out in the ordinary way. What is its last digit?

Answer: Note that the last digit (i.e., the units’ digit) of every natural number
is the remainder that the natural number leaves upon division by 10. In the
present case, since 72 ⌘ 9 (mod 10), it follows that 73 ⌘ 63 ⌘ 3 (mod 10)
and 74 ⌘ 21 ⌘ 1 (mod 10). Then 720 ⌘ 1 and so 722 ⌘ 72 ⌘ 9 (mod 10).
Therefore, the remainder upon division by 10 is 9, hence, the last digit is 9.

13. Find the units’ digit of 274936782.

Answer: This is equivalent to finding the remainder that 274936782 leaves upon
division by 10. To find this, first note that 27493 ⌘ 3 (mod 10), so 274932 ⌘
9 ⌘ �1 (mod 10), and 274934 ⌘ 1 (mod 10). It follows that 274936780 ⌘ 1
(mod 10), since 6780 is a multiple of 4. Therefore, 274936782 ⌘ (274936780)(274932)⌘
9 ·1 (mod 10) and the units’ digit is 9.

15. Prove that, for every pair of natural numbers m and n, m2 is congruent to n2

modulo (m+n).

Answer: Since m2 � n2 = (m� n)(m+ n), it follows that m2 � n2 is divisible
by m+n. Thus, m2 ⌘ n2 (mod m+n).

17. Prove that 7 divides 82n+1 +62n+1, for every natural number n.

Answer: Note that 8 ⌘ 1 (mod 7), so 82n+1 ⌘ 1 (mod 7). Also, 6 ⌘ �1
(mod 7), so 62n+1 ⌘ (�1)2n+1 ⌘ �1 (mod 7). Thus, 82n+1 + 62n+1 ⌘ 1 +
(�1)⌘ 0 (mod 7).
Alternatively, this can be shown by induction. Since 83 + 63 = 512+ 216 =
728 = 7 ·104, the formula holds for n = 1. Now assume that 82k+1 +62k+1 is



3 Modular Arithmetic 9

divisible by 7. Then 82(k+1)+1 + 62(k+1)+1 = 82(82k+1 + 62k+1)� 28(62k+1),
which is congruent to (0+ 0) modulo 7. Therefore the statement is true for
k+1.

18. Prove that a natural number that is congruent to 2 modulo 3 has a prime factor
that is congruent to 2 modulo 3.

Answer: Let m be an integer greater than 1 such that m ⌘ 2 (mod 3). If m
is prime, then m itself is the prime factor congruent to 2 modulo 3. If m is
not prime, then m can be factored into primes q1 ·q2 · · ·qn. If all of the prime
factors were congruent to 1 mod 3, then m would be congruent to 1n ⌘ 1
mod 3, and if any prime factor was congruent to 0 mod 3 then m would be
congruent to 0 as well. Thus, there must be at least one prime factor of m that
is not congruent to 1 mod 3 and that prime factor cannot be congruent to 0
mod 3. Since every number is congruent to one of 0, 1, 2 modulo 3, it follows
that at least one prime factor must be congruent to 2 mod 3.

22. Show that there do not exist natural numbers x and y such that x2 + y2 = 4003.
[Hint: Begin by determining which of the numbers {0,1,2,3} can be congruent
to x2 (mod 4).]

Answer: Suppose there were such x and y. Then x2 +y2 ⌘ 4003 ⌘ 3 (mod 4).
However, since 02 ⌘ 0, 12 ⌘ 1, 22 ⌘ 0 and 32 ⌘ 1 modulo 4, the only possible
numbers in {0,1,2,3} that x2 + y2 could be congruent to modulo 4 are 0,1,2.

24. Prove that there are an infinite number of primes of the form 4k + 3 with k
a natural number. [Hint: If p1, p2, . . . , pn are n such primes, show that (4 · p1 ·
p2 · · · pn)�1 has at least one prime divisor of the given form.]

Answer: We first prove the equivalent statement for primes of the form 4k+3
where k is any nonnegative integer (thus including the case k = 0). Since 4 ·
1+3 = 7, and 7 is prime, there is at least one prime of that form. Let p1, . . . , pn
be primes of the given form. Factor 4(p1 · · · pn)� 1 into primes q1 · · ·q j. For
each pi, 4(p1 · · · pn)� 1 is one less than a multiple of pi, so there are no pi
and qt with pi = qt . Also 4(p1 · · · pn)�1 ⌘�1 ⌘ 3 (mod 4), so q1 · · ·q j ⌘ 3
(mod 4). If none of the qt ’s were congruent to 3 modulo 4, then each would
be congruent to 0, 1, or 2 modulo 4, and their product would be congruent to
0, 1, or 2 modulo 4. So one of the qt ’s must be congruent to 3 modulo 4, and
so qt = 4k+3 for some integer k. Therefore, given any n primes of the given
form, it is always possible to find another one. Thus, there are infinitely many
of them. In particular, there are infinitely many where k is a natural number
(since the case k = 0 only gives one prime, 3).
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27. Show that, if x, y and z are integers such that x2 + y2 = z2, then at least one of
{x,y,z} is divisible by 2, at least one of {x,y,z} is divisible by 3, and at least one
of {x,y,z} is divisible by 5.

Answer: Suppose that none are divisible by 2. Then each of x, y and z is con-
gruent to 1 modulo 2, so x2 ⌘ y2 ⌘ z2 ⌘ 1 (mod 2). However x2 + y2 ⌘ z2

(mod 2), giving the equation 1+ 1 ⌘ 1 (mod 2), a contradiction. Therefore
at least one is divisible by 2. Suppose none are divisible by 3. Then each is
congruent to 1 or 2 modulo 3. Since 22 ⌘ 1 ⌘ 12 (mod 3), it follows that
each of x2, y2 and z2 is congruent to 1 modulo 3, and the equation x2+y2 ⌘ z2

(mod 3) gives 1+1 ⌘ 1 (mod 3), a contradiction. Finally, suppose none are
divisible by 5. Then each is congruent to 1, 2, 3, or 4 modulo 5. Since 12 ⌘ 1
(mod 5), 22 ⌘ 4 (mod 5), 32 ⌘ 4 (mod 5) and 42 ⌘ 1 (mod 5), it follows
that each of x2, y2 and z2 is congruent to 1 or 4 modulo 5. Substituting these
into the equation x2 + y2 ⌘ z2 (mod 5) shows that this is not possible, as
1+1 ⌘ 2 (mod 5), 1+4 ⌘ 4+1 ⌘ 0 (mod 5), and 4+4 ⌘ 3 (mod 5).



Chapter 4

The Fundamental Theorem of Arithmetic

Solutions to Selected Exercises

1. Find the canonical factorization into primes of each of the following:

(a) 52
(c) 47
(e) 122 ·54
(h) 112+224

Answer: (a) 52 = 22 ·13.

(c) 47, since 47 is prime.

(e) 122 ·54 = (2 ·61) · (2 ·33) = 22 ·33 ·61.

(h) 112+224 = 112 · (1+2) = 24 ·3 ·7.

2. Find natural numbers x, y and z such that

(b) 50 ·2y ·7z = 5x ·23 ·14

Answer: 50 · 2y · 7z = (2 · 52) · 2y · 7z = 2y+1 · 52 · 7z and 5x · 23 · 14 = 5x · 23 ·
(2 ·7) = 24 ·5x ·7. Therefore, by the uniqueness of prime factorization, x = 2,
y = 3, z = 1.

5. Find the smallest natural numbers x and y such that

(a) 72x = 53y

Answer: By the uniqueness of prime factorization (Theorem 4.1.1), x must
have 53 as a factor and y must have 72 as a factor. So the smallest pair (x,y) is
(53,72) = (125,49).

11



12 4 The Fundamental Theorem of Arithmetic

6. Find nonnegative integers w,x,y and z such that 1722522z = 10x34y7w.

Answer: Factoring both sides into primes gives 2z54172 = 2x+y5x7w17y. On
the left hand side there is no 7, so w= 0. Comparing the powers of 5 shows that
x = 4, and comparing the powers of 17 shows that y = 2. Then z = x+ y = 6.

7. Suppose that p is a prime number and p does not divide a. Prove that the con-
gruence ax ⌘ 1 (mod p) has a solution. (This proves that a has a multiplicative
inverse modulo p.)

Answer: This is an immediate consequence of Fermat’s Theorem (5.1.2). It
can also be proved directly using ideas similar to those used in the proof of
Fermat’s Theorem. To see this, consider the set of numbers {a,a ·2,a ·3, . . . ,a ·
(p� 1)}. We first show that no two of these numbers are congruent to each
other. For if ax1 ⌘ ax2 (mod p), then a(x1 � x2) ⌘ 0 (mod p). Since p is
prime and p does not divide a, this implies p divides (x1 � x2) by Corollary
4.1.3, which is impossible since both x1 and x2 are strictly between 0 and p.
Similarly, it is impossible that ax ⌘ 0 (mod p) for any x strictly between 0
and p, since p does not divide a or x. Then, by Theorem 3.1.4, every element
of the set {a,a · 2,a · 3, . . . ,a · (p� 1)} is congruent to a number in the set
{1,2, . . . , p�1}. Since no two of the ax’s are congruent to each other, there is
some x such that ax ⌘ 1 (mod p).

9. Prove that x2 ⌘ 1 (mod p) implies x ⌘ 1 (mod p) or x ⌘ (p�1) (mod p), for
every prime p.

Answer: The congruence x2 ⌘ 1 (mod p) implies that p divides x2 �1. Since
x2 �1 = (x�1)(x+1), this implies that p divides x�1 or x+1 by Corollary
4.1.3. That is, either x ⌘ 1 (mod p) or x ⌘�1 ⌘ p�1 (mod p).



Chapter 5

Fermat’s Theorem and Wilson’s Theorem

Solutions to Selected Exercises

1. Find the remainder when 24103 is divided by 103.

Answer: Since 103 is prime, it follows from the corollary to Fermat’s Theorem
(5.1.3) that 24103 ⌘ 24 (mod 103), so the remainder is 24.

2. Find a solution x to each of the following congruences:

(b) 16! · x ⌘ 5 (mod 17)

Answer: By Wilson’s Theorem (5.2.1), 16!+ 1 ⌘ 0 (mod 17), so 16! ⌘ �1
(mod 17). Thus, the congruence is equivalent to �x ⌘ 5 (mod 17), or x ⌘�5
(mod 17).

4. Suppose that p is a prime greater than 2 and a ⌘ b2 (mod p) for some natural
number b that is not divisible by p. Prove that a

p�1
2 ⌘ 1 (mod p).

Answer: Since p is a prime greater than 2, p is odd and p � 3. Thus, p�1
2

is a natural number, so a
p�1

2 is an integer. Since a ⌘ b2 (mod p), a
p�1

2 ⌘
(b2)

p�1
2 ⌘ bp�1 (mod p), and since b is not divisible by p, bp�1 ⌘ 1 (mod p),

by Fermat’s Theorem (5.1.2). So a
p�1

2 ⌘ 1 (mod p).

5. Find three different prime factors of 1012 �1.

Answer: By Fermat’s Theorem (5.1.2), 1012 � 1 is divisible by 13. Also
1012 �1 = (106 �1)(106 +1), and, using Fermat’s Theorem again, 106 �1 is

13



14 5 Fermat’s Theorem and Wilson’s Theorem

divisible by 7. Finally, since 106 �1 = (103 �1)(103 +1) and 103 �1 = 999
is divisible by 3, 1012�1 is divisible by 3. Thus, the prime numbers 13, 7, and
3 all divide 1012 �1. Also, since 10 ⌘�1 (mod 11), it follows that 1012 ⌘ 1
(mod 11), i.e., 1012 � 1 ⌘ 0 (mod 11). Therefore 11 is another prime fac-
tor. Similarly, the prime 101 is a factor, since 102 ⌘ �1 (mod 101) yields
1012 ⌘ 1 (mod 101). (Although it is not so easy to establish, the other prime
factors of 1012 �1 are 37 and 9901.)

8. Find the remainder when:

(a) (9! ·16+4311)8603 is divided by 11.

Answer: By Wilson’s Theorem (5.2.1), 10! ⌘ �1 (mod 11), or equivalently
10 ·9!⌘ 10 (mod 11). Thus, �9!⌘ 10 (mod 11), or 9!⌘�10⌘ 1 (mod 11).
Since 16 ⌘ 5 (mod 11), it follows that 9! · 16 ⌘ 5 (mod 11), and, since
4311 ⌘ 10 (mod 11) (one way to see this is to simply divide by 11), 9! ·
16+4311 ⌘ 5+10 ⌘ 4 (mod 11). So (9! ·16+4311)8603 ⌘ 48603 (mod 11).
Note that Fermat’s Theorem (5.1.2) yields 410 ⌘ 1 (mod 11). Thus, 48600 =
(410)860 ⌘ 1 (mod 11). Therefore, 48603 ⌘ 48600 ·43 ⌘ 1 ·43 ⌘ 64⌘ 9 (mod 11),
so the remainder is 9.

12. Show that if p is a prime number and a and b are natural numbers, then

(a+b)p ⌘ ap +bp (mod p)

Answer: By the corollary to Fermat’s Theorem (5.1.3), (a + b)p ⌘ a + b
(mod p). Similarly, ap ⌘ a (mod p) and bp ⌘ b (mod p), so (a + b)p ⌘
ap +bp (mod p).

13. For which prime numbers p is (p�2)! ⌘ 1 (mod p)?

Answer: For all primes p, (p � 1)! ⌘ �1 (mod p) by Wilson’s Theorem
(5.2.1). Therefore, (p�1)(p�2)!⌘�1 (mod p). Since p�1⌘�1 (mod p),
it follows that �1 · (p� 2) ⌘ �1 (mod p), so (p� 2)! ⌘ 1 (mod p). Thus,
the equation holds for all primes.

15. Is there a prime number p such that (p�1)!+6 is divisible by p?
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Answer: By Wilson’s Theorem (5.2.1), (p� 1)!+ 6 ⌘ �1+ 6 ⌘ 5 (mod p).
Thus, p divides (p�1)!+6 if and only if p divides 5, and, hence, if and only
if p = 5.

17. Suppose 2k +1 is a prime number. Prove that k has no prime divisors other than
2. [Hint: If k = ab with b odd, consider 2k +1 modulo 2a +1.]

Answer: Suppose k = ab with b odd and b > 1. Modulo 2a+1, 2a is congruent
to �1. Thus 2ab +1 ⌘ (�1)b +1 ⌘�1+1 ⌘ 0 (mod 2a +1). It follows that
2ab+1 is divisible by 2a+1, so 2ab+1 is not prime, which is a contradiction.
Therefore if 2k + 1 is prime, then k has no prime divisors other than 2. Note
that this shows that 2k +1 prime implies that k is a power of 2 (k could be 0).
Thus any prime of the form 2k +1 must be a Fermat Prime (see page 151).



Chapter 6

Sending and Receiving Secret Messages

Solutions to Selected Exercises

1. You are to receive a message using the RSA system. You choose p = 5, q = 7
and E = 5. Verify that D = 5 is a decryptor. The encrypted message you receive
is 17. What is the actual (decrypted) message?

Answer: Here f(N) = 4 ·6= 24, and ED= 25= 1+f(N), so D is a decryptor.
The message is then an M such that 0  M < N = 35 and 175 ⌘ M (mod 35).
Now 172 ⌘ 289 ⌘ 9 (mod 35), so 174 ⌘ 81 ⌘ 11 (mod 35) and 175 ⌘ 11 ·
17 ⌘ 187 ⌘ 12 (mod 35). It follows that the message is 12.

16



Chapter 7

The Euclidean Algorithm and Applications

Solutions to Selected Exercises

1. Find the greatest common divisor of each of the following pairs of integers in two
different ways, by using the Euclidean Algorithm and by factoring both numbers
into primes:

(a) 252 and 198
(d) 52 and 135

Answer: (a) First by the Euclidean Algorithm,

252 = 198 ·1+54
198 = 54 ·3+36

54 = 36 ·1+18
36 = 18 ·2

so the greatest common divisor is 18. By factoring, 252 = 22 ·32 ·7 and 198 =
2 ·32 ·11, so the greatest common divisor is 2 ·32 = 18.

(d) By the Euclidean Algorithm,

135 = 52 ·2+31
52 = 31 ·1+21
31 = 21 ·1+10
21 = 10 ·2+1
10 = 1 ·10

so the greatest common divisor is 1.
By factoring, 135 = 33 ·5 and 52 = 22 ·13, so the greatest common divisor is
1.

17
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2. For each of the pairs in Problem 1 above, write the greatest common divisor as a
linear combination of the given numbers.

Answer: (a) Working our way backwards from the solution to Problem 1(a),

18 = 54�36
= 54� (198�54 ·3)
= 54 ·4�198
= (252�198) ·4�198
= 252 ·4�198 ·5

(d) From the solution to Problem 1(d),

1 = 21�10 ·2
= 21� (31�21) ·2
= 21 ·3�31 ·2
= (52�31) ·3�31 ·2
= 52 ·3�31 ·5
= 52 ·3� (135�52 ·2) ·5
= 52 ·13�135 ·5

4.(a) Find a formula for all integer solutions of the Diophantine equation 3x+4y =
14.

(b) Find all pairs of natural numbers that solve the above equation.

Answer: (a) The greatest common divisor of 3 and 4 is 1, and 1 = 4 � 3.
Thus 14 = 14 · 4� 14 · 3, and x = �14, y = 14 is an integer solution. Then
by Theorem 7.2.10, the integral solutions are all pairs x and y of the form
x =�14+m ·4, y = 14�m ·3, where m is an integer.

(b) Using the expression from part (a), for x to be a natural number m must
satisfy �14+m ·4 > 0, which is equivalent to m ·4 > 14, which is equivalent
to m > 3. Similarly, for y to be a natural number, 14�m · 3 must be greater
than 0, which requires m to be less than 5. The only m satisfying both of these
inequalities is m = 4, so the only pair is (2,2).

5. Let f be Euler’s f -function. Find:

(a) f(12)
(e) f(97)
(g) f(101 ·37)
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(h) f(3100)

Answer: (a) The only natural numbers less than 12 that are relatively prime to
12 are 1, 5, 7 and 11, so f(12) = 4.

(e) Since 97 is prime, f(97) = 96.

(g) Since 101 and 37 are each prime, f(101 ·37) = 100 ·36 = 3600.

(h) The natural numbers less than 3100 that are relatively prime to 3100 are
those which are not divisible by 3. As two thirds of the natural numbers less
than or equal to 3100 are not divisible by 3, it follows that f(3100) = 2

3 ·3
100 =

2 ·399.

6. Use the Euclidean Algorithm to find the decryptors in Problems 1, 2, and 3 in
Chapter 6.

Answer: 3. Here E = 7 and N = 15 = 3 ·5, so f(N) = 2 ·4 = 8. Then

8 = 7 ·1+1
7 = 1 ·7

Thus, 1 = 8� 7, and so, 1+ 8(�1) = 7(�1). Adding �8 · 7m to both sides
gives

1+8(�1�7m) = 7(�1�8m).

Taking m =�1, we get 1+8(6) = 7(7). Therefore, 7 is a decryptor.

8. Find the smallest natural number x such that 24x leaves a remainder of 2 upon
division by 59.

Answer: The solution x satisfies the equation 24x� 59y = 2. Using the Eu-
clidean Algorithm,

59 = 24 ·2+11
24 = 11 ·2+2
11 = 2 ·5+1
2 = 1 ·2

so gcd(24,59) = 1. Then
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1 = 11�2 ·5
= 11� (24�11 ·2) ·5
= 11 ·11�24 ·5
= (59�24 ·2) ·11�24 ·5
= 59 ·11�24 ·27

Therefore, 24 · (�27)�59 · (�11) = 1, so 24 · (�54)�59 · (�22) = 2. It fol-
lows by Theorem 7.2.10 that the integral solutions of the equation are pairs of
numbers of the form

(x,y) = (�54+m · (�59),�22�m ·24)

where m is an integer. For x to be positive, m must be less than 0. If m =�1,
then x = 5, and if m is any smaller integer, then the corresponding x will be
greater than 5. Thus, the smallest natural number x is 5.

10. A liquid comes in 17 liter and 13 liter cans. Someone needs exactly 287 liters of
the liquid. How many cans of each size should the person buy?

Answer: If x is the number of 17 liter cans and y is the number of 13 liter
cans, then x and y satisfy the equation 17x+ 13y = 287. By the Euclidean
Algorithm,

17 = 13 ·1+4
13 = 4 ·3+1

Thus, gcd(17,13) = 1, and it follows that the equation does have integral so-
lutions (by Theorem 7.2.10). Working our way back up,

1 = 13�4 ·3
= 13� (17�13) ·3
= 13 ·4�17 ·3.

Hence, 17 · (�3)+13 ·4 = 1. Multiplying by 287, we have 17 · (�861)+13 ·
1148 = 287. Therefore, the integer solutions are all pairs of the form (x,y) =
(�861+13m,1148�17m), for integers m (Theorem 7.2.10). However, x and
y have to be nonnegative for (x,y) to be a solution of the actual problem. For
x to be nonnegative, m has to be greater than 66. For y to be nonnegative, m
has to be less than 68. Thus, the only possible choice is m = 67, which gives
x = 10, y = 9. Therefore, the person should buy 10 of the 17 liter cans and 9
of the 13 liter cans.
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12. Let a, b, m and n be natural numbers with m and n greater than 1. Assume that m
and n are relatively prime. Prove that if a ⌘ b (mod m) and a ⌘ b (mod n), then
a ⌘ b (mod mn).

Answer: Since a ⌘ b (mod m), there is an integer k such that (a� b) = km.
Since n also divides (a� b), n divides km. Since n is relatively prime to m,
it follows from Lemma 7.2.9 that n divides k, so k = dn for some integer d.
Therefore, (a�b) = dnm, so a ⌘ b (mod mn).

13. Let a and b be natural numbers.

(a) Suppose there exist integers m and n such that am+bn = 1. Prove that a and
b are relatively prime.

Answer: If d divides a and d divides b, then d divides am+bn, so d divides 1.
Hence a and b have no prime factors in common.

14. Let p be a prime number. Prove that f(p2) = p2 � p.

Answer: If m is a natural number less than p2, then m has a factor in common
with p2 if and only if p is a factor of m. This is the case if and only if m is a
multiple of p. There are p2 �1 many natural numbers less than p2, and there
are p�1 multiples of p less than p2. Therefore, f(p2) = p2 �1� (p�1) =
p2 � p.

15. The public key N = 55 and E = 7 is announced. The encrypted message 5 is
received.

(a) Find a decryptor, D, and prove that D is a decryptor.
(b) Decrypt 5 to find the original message.

Answer: (a) Here N = 11 ·5, and f(N) = 10 ·4 = 40. Then
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40 = 7 ·5+5
7 = 5 ·1+2
5 = 2 ·2+1

and, working backwards,

1 = 5�2 ·2
= 5�2 · (7�5)
= 3 ·5�2 ·7
= 3 · (40�7 ·5)�2 ·7
= 3 ·40�17 ·7

Thus, 1�3 ·40 =�17 ·7, and therefore for any integer m, 1� (3+7m) ·40 =
(�17�40m) ·7. Taking m = �1 gives 1+4 ·40 = 23 ·7, and so D = 23 is a
decryptor.

(b) The message is the natural number less than 55 that is congruent to 523

modulo 55. First, 53 ⌘ 125⌘ 15 (mod 55), so 56 ⌘ 152 ⌘ 225⌘ 5 (mod 55).
Then 518 ⌘ 53 ⌘ 15 (mod 55), and 521 ⌘ 15 ·53 ⌘ 152 ⌘ 5 (mod 55). Thus,
523 ⌘ 5 ·52 ⌘ 15 (mod 55), and the original message is 15.

19. Show that if m and n are relatively prime and a and b are any integers, then there
is an integer x that simultaneously satisfies the two congruences x ⌘ a (mod m)
and x ⌘ b (mod n).

Answer: Since m and n are relatively prime, there are integers c and d such
that md +nc = 1 (see page 49). Then multiplying both sides by (b�a) gives
integers k and j such that mk+ n j = b� a. Let x = mk+ a = b� n j. Then
x� a = mk and x� b = �n j, so x ⌘ a (mod m) and x ⌘ b (mod n). This is
a special case of the Chinese Remainder Theorem, the general statement of
which is Problem 20 in this chapter.

22. Let a and b be relatively prime natural numbers greater than or equal to 2. Prove
that af(b) +bf(a) ⌘ 1 (mod ab).

Answer: By Euler’s Theorem (7.2.17), there are integers k1 and k2 such that
af(b) � 1 = bk1 and af(a) � 1 = ak2. Then abk1k2 = af(b)bf(a) � af(b) �
bf(a)+1, and so �abk1k2 =�af(b)bf(a)+af(b)+bf(a)�1. Hence, ab divides
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�af(b)bf(a) + af(b) + bf(a)� 1, and, since ab divides �af(b)bf(a), it follows
that ab divides af(b) +bf(a)�1.

25. Suppose that a and m are relatively prime and that k is the smallest natural num-
ber such that ak is congruent to 1 modulo m. Prove that k divides f(m).

Answer: Since af(m) ⌘ 1 (mod m) by Euler’s Theorem (7.2.17), it follows
that k is less than or equal to f(m). Suppose k does not divide f(m). Then k
is less than f(m), and f(m) = kq+ r for natural numbers q and r, with r less
than k. Therefore, 1⌘ af(m) ⌘ akq+r ⌘ akqar ⌘ (ak)qar ⌘ 1qar ⌘ ar (mod m).
However, r is a natural number less than k, so this contradicts the assumption
that k is the smallest natural number such that ak ⌘ 1 (mod m). That is, k
divides f(m).

26. For p a prime and k a natural number, show that f(pk) = pk � pk�1.

Answer: There are pk �1 natural numbers less than pk, and a natural number
is not relatively prime to pk if and only if it is a multiple of p. The natural
numbers less than pk which are multiples of p are the numbers of the form
p ·m where m is a natural number less than pk�1. Since there are pk�1 � 1
natural numbers less than pk�1, there are pk�1 � 1 multiples of p which are
less than pk. Thus, f(pk) = pk �1� (pk�1 �1) = pk � pk�1.

27. If the canonical factorization of the natural number n into primes is n = pk1
1 · pk2

2 ·
· · pkm

m , prove that

f(n) =
⇣

pk1
1 � pk1�1

1

⌘

·
⇣

pk2
2 � pk2�1

2

⌘

· · ·
⇣

pkm
m � pkm�1

m

⌘

Answer: We first show that the Euler phi-function is multiplicative on rela-
tively prime natural numbers. That is, if a and b are relatively prime, then
f(ab) = f(a) ·f(b).

To see this, fix relatively prime natural numbers a and b. Let A be the set
of natural numbers less than a that are relatively prime to a, let B be the set of
natural numbers less than b that are relatively prime to b, and let S be the set of
natural numbers less than ab that are relatively prime to ab. Then the number
of elements in A is f(a), the number of elements in B is f(b), and the number
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of elements in S is f(ab). Let A⇥B be the set of all pairs of natural numbers
(c,d) such that c is in A and d is in B. The number of elements in A⇥B is
f(a) ·f(b), as there are f(a) choices for c and f(b) choices for d in making
a pair (c,d). To show that f(ab) = f(a) ·f(b), we show that S has the same
number of elements as A⇥B does. For each element s of S let f (s) be the
pair of nonnegative integers (r1,r2) such that r1 < a and r1 ⌘ s (mod a), and
r2 < b and r2 ⌘ s (mod b). We prove that the function f pairs the elements
of S with those of A⇥B. That is, we establish that f (s) is in A⇥B for every
s in S, that distinct elements of S are sent to distinct elements of A⇥B, and,
finally, that every element of A⇥B has the form f (s) for some s in S.

We first prove that f (s) is in A⇥B, for each s in S. To see this, let s
in S be given, and let f (s) = (r1,r2). We must establish that r1 and a are
relatively prime. Since r1 ⌘ s (mod a), a divides r1 � s. Thus, if p is a prime
that divides a and r1, then p divides r1 and r1 � s, from which it follows that
p divides s, contradicting the fact that s is relatively prime to ab. Therefore,
we have shown that r1 and a are relatively prime, so r1 is in A. The same
proof establishes that r2 and b are relatively prime, so r2 is in B. It follows
that (r1,r2) is in A⇥B. This shows that the function f takes S into A⇥B.

Suppose f (s) = f (t) for some s and t in S. Then s and t are both simul-
taneous solutions of the congruences x ⌘ r1 (mod a) and x ⌘ r2 (mod b),
so s ⌘ t (mod a) and s ⌘ t (mod b). Since a and b are relatively prime, it
follows from Problem 12 above that s ⌘ t (mod ab). Then, as s and t are
both nonnegative integers less than ab, s = t. Therefore, f does not send two
different elements of S to the same element of A⇥B.

All that remains to be shown is that for each element of A⇥B there is an
element of S which is sent onto it by f . Given (r1,r2) in A⇥B, the special case
of the Chinese Remainder Theorem (Problem 19) shows that there exists some
integer x such that x ⌘ r1 (mod a) and x ⌘ r2 (mod b). Take the nonnegative
integer s less than ab such that s ⌘ x (mod ab). Since s�x is divisible by ab,
s� x is also divisible by a. Thus, s ⌘ x ⌘ r1 (mod a). Similarly, s ⌘ x ⌘ r2
(mod b). If s is not relatively prime to ab, then there is some prime p which
divides both ab and s. Then p divides a or b (Corollary 4.1.3 or Lemma 7.2.2).
Suppose p divides a. Since p divides s and s�r1, p divides r1. This contradicts
the fact that r1 is relatively prime to a. Similarly, it is not possible that p
divides b. Therefore, s must be relatively prime to ab, so s is in S. Since s ⌘ r1
(mod a) and s ⌘ r2 (mod b), f (s) = (r1,r2).

This shows that f gives a pairing of the elements of S with the elements
of A⇥B, so there are the same number of elements in S as are in A⇥B. Thus,
f(ab) = f(a) ·f(b) whenever a and b are relatively prime natural numbers.

Repeated application of this result (or, more precisely, induction on m),
shows that

f(pk1
1 · pk2

2 · · · pkm
m ) = f(pk1

1 ) ·f(pk2
2 ) · · ·f(pkm

m )

It follows from the previous problem (Problem 26) that
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f(pk1
1 · pk2

2 · · · pkm
m ) =

⇣

pk1
1 � pk1�1

1

⌘

·
⇣

pk2
2 � pk2�1

2

⌘

· · ·
⇣

pkm
m � pkm�1

m

⌘

.



Chapter 8

Rational Numbers and Irrational Numbers

Solutions to Selected Exercises

1. Use the Rational Roots Theorem (8.1.9) to find all rational roots of each of the
following polynomials (some may not have any rational roots at all):

(a) x2 +5x+2
(b) 2x3 �5x2 +14x�35

Answer: (a) By the Rational Roots Theorem, if m
n is a root then m divides 2 and

n divides 1. The possible values for m are 2,�2,1,�1, and the possible values
of n are 1,�1. Therefore, the possible values for m

n are 2,�2,1,�1. None of
these are roots (as can be seen by substituting them into the polynomial), so
the polynomial has no rational roots. (Of course, this problem could be solved
using the quadratic formula.)

(b) By the Rational Roots Theorem, if m
n is a root then m divides 35 and n

divides 2, so m is one of ±1,±5,±7,±35 and n is ±1 or ±2. The possible
values of m

n are then ±1,±5,±7,±35,± 1
2 ,±

5
2 ,±

7
2 ,±

35
2 . Trying these possi-

bilities shows that 5
2 is the only rational root.

4. Must the sum of an irrational number and a rational number be irrational?

Answer: Yes. Let a be rational and c be irrational and let a+c = b. Suppose b
was rational. Then b�a would be rational since both a and b are, but b�a= c,
which is irrational. Therefore, b cannot be rational.

6. Must the sum of two irrational numbers be irrational?

Answer: No. For example,
p

2 and 7�
p

2 are both irrational but their sum is
7, which is rational.

26
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9. Determine whether each of the following numbers is rational or irrational and
prove that your answer is correct:

(e)
p

63p
28

(g) 7
q

8
9

Answer: (e) This is rational, since
p

63p
28

=
p

7·9p
4·7 = 3

p
7

2
p

7
= 3

2 .

(g) This is irrational. For suppose that 7
q

8
9 = m

n for integers m and n with

n 6= 0. Then 8
9 = m7

n7 , so n7 · 8 = m7 · 9. In the prime factorization of the left-
hand side 3 occurs to a power which is a multiple of 7, while in the prime
factorization of the right-hand side 3 occurs to a power which is 2 more than a
multiple of 7. This contradicts the Fundamental Theorem of Arithmetic (4.1.1
or 7.2.4).

10. Prove that 3
p

3+
p

11 is irrational.

Answer: Suppose 3
p

3+
p

11 = r for some rational number r. Cubing both
sides, it follows that 3+

p
11 = r3, so

p
11 = r3 � 3. This would imply thatp

11 is rational. However,
p

11 is irrational since 11 is a prime (Theorem
8.2.6).

11. Prove that the following numbers are irrational:

(d)
p

3+
p

5+
p

7

Answer: Let
p

3+
p

5+
p

7 = r, and suppose that r is rational. It follows thatp
3+

p
5 = r�

p
7, and, squaring both sides,

8+2
p

3
p

5 = r2 �2r
p

7+7

so 1+2(
p

3
p

5+ r
p

7) = r2, and r2�1
2 =

p
3
p

5+ r
p

7. Therefore,

r2 �1
2

�
p

3
p

5 = r
p

7

Squaring both sides of this equation yields

7r2 =

✓

r2 �1
2

◆2

� (r2 �1)
p

3
p

5+15
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Therefore, 7r2 � ( r2�1
2 )2 � 15 = �(r2 � 1)

p
3
p

5, so (r2 � 1)
p

3
p

5 is ratio-
nal. Note that

p
3
p

5 =
p

15 is irrational (as follows, for example, from The-
orem 8.2.8). Thus, by Problem 8 in this chapter, (r2 � 1)

p
3
p

5 is irrational
(r is greater than 1, so r2 �1 is not 0). This contradiction establishes that r is
irrational.

12. Suppose that a and b are odd natural numbers and a2 + b2 = c2. Prove that c is
irrational.

Answer: Suppose c is rational. Since c2 is a natural number, it follows that
c is an integer (Theorem 8.2.8). Also, since a and b are odd, a2 and b2 are
odd and thus c2 is even. Therefore, the prime factorization of c2 includes 2,
so the prime factorization of c also includes 2. Since a and b are odd natural
numbers, there are nonnegative integers k1 and k2 such that a = 2k1 + 1 and
b = 2k2 + 1. Then a2 = 4k2

1 + 4k1 + 1 and b2 = 4k2
2 + 4k2 + 1, so a2 + b2 ⌘

4(k2
1 + k1 + k2

2 + k2)+ 2 ⌘ 2 (mod 4). However, since c is divisible by 2, c2

is divisible by 4. That is, c2 ⌘ 0 (mod 4), so a2 + b2 is not congruent to c2

modulo 4, contradicting a2 +b2 = c2.



Chapter 9

The Complex Numbers

Solutions to Selected Exercises

1. Write the following complex numbers in a+ bi form, where a and b are real
numbers:

(a)
⇣

1p
2
+ ip

2

⌘10

(f) i574

Answer: (a) The modulus of 1p
2
+ ip

2
is
q

( 1p
2
)2 +( 1p

2
)2 =

q

1
2 +

1
2 = 1. An

argument is p
4 , since cos p

4 = 1p
2
= sin p

4 . That is, 1p
2
+ ip

2
= cos p

4 + isin p
4 .

Thus, by De Moivre’s Theorem (9.2.6), ( 1p
2
+ ip

2
)10 = cos 10p

4 + isin 10p
4 =

cos(2+ 1
2 )p + isin(2+ 1

2 )p = cos 1
2 p + isin 1

2 p = 0 + i(1) = i. Therefore,
✓

1p
2
+

ip
2

◆10
= i.

(f) There are at least two easy approaches to this problem. First, i2 = �1
implies that i4 = 1 and, therefore, that i4k = 1 for every natural number k. In
particular, i572 = 1, so i574 = 1 · i2 =�1.

Alternately, note that an argument of i is p
2 , from which it follows by

De Moivre’s Theorem that an argument of i574 is 287p , and as arguments are
determined modulo 2p , p is also an argument of i574. Since |i|= 1, |i574|= 1,
and it follows that i574 = cosp + isinp =�1.

4. Find the cube roots of the following numbers:

(b) 8
p

3+8i

29



30 9 The Complex Numbers

Answer: First, |8
p

3+8i|=
q

(8
p

3)2 +82 =
p

4 ·64 =
p

4
p

64 = 16. There-
fore, 8

p
3 + 8i = 16(cosq + isinq) for q satisfying 16cosq = 8

p
3 and

16sinq = 8, so cosq =
p

3
2 and sinq = 1

2 . It follows that q = p
6 is an argument

of 8
p

3+8i.
Now if z3 = 8

p
3+ 8i, then |z3| = 16, so |z| = 3p16 and an argument

of z3 is 1
6 p . Therefore, if the argument of z is q , then 3q = (2k + 1

6 )p , for
some integer k. If k = 0, this gives 3q = 1

6 p so q = 1
18 p , and a cube root

is z1 = 3p16(cos 1
18 p + isin 1

18 p). If k = 1, then q = ( 2
3 + 1

18 )p = 13
18 p and

z2 = 3p16(cos 13
18 p + isin 13

18 p) is another cube root. If k = 2, then q = ( 4
3 +

1
18 )p = 25

18 p and so a third cube root is z3 = 3p16(cos 25
18 p + isin 25

18 p). For
any other integer value of k, q differs from one of the above arguments by a
multiple of 2p , and thus no new values of z are obtained. Therefore, z1,z2 and
z3 are the cube roots. (Of course, since a polynomial of degree 3 has at most 3
roots (Theorem 9.3.8), every complex number has at most three cube roots.)

9. Find all the complex roots of the polynomial z6 + z3 +1.

Answer: Let x = z3. Then z is a root if and only if x2 + x+ 1 = 0. By the
quadratic formula (see Problem 6 in this chapter), x is a root of x2 + x+ 1
if and only if x = �1±

p
1�4

2 = � 1
2 ±

p
�3
2 = � 1

2 ±
i
p

3
2 . Then the 6 roots of

the original polynomial are the cube roots of � 1
2 +

p
3

2 i and the cube roots of
� 1

2 �
p

3
2 i.

Both x1 =� 1
2 +

p
3

2 i and x2 =� 1
2 �

p
3

2 i have modulus
q

1
4 +

3
4 = 1. An

argument of x1 is the angle q with 0  q < 2p and cosq = � 1
2 , sinq =

p
3

2 ,
which gives q = 2p

3 . If z is a cube root of x1, then |z| = 1 and an argument q
of z satisfies 3q = (2k+ 2

3 )p , where k is an integer. Thus, q = 2
9 p or 8

9 p or
14
9 p . Therefore, cos 2

9 p + isin 2
9 p , cos 8

9 p + isin 8
9 p and cos 14

9 p + isin 14
9 p are

three roots of the original polynomial.
An argument of x2 is an angle q with 0  q < 2p and cosq = � 1

2

and sinq = �
p

3
2 , giving q = 4p

3 . If z is a cube root of x2, then |z| = 1 and
an argument of z is any q satisfying 3q = 2k + 4p

3 . Possible values for q
are 4

9 p , 10
9 p , and 16

9 p . Therefore, cos 4
9 p + isin 4

9 p , cos 10
9 p + isin 10

9 p and
cos 16

9 p + isin 16
9 p are the other three roots of the original polynomial. (Note

that Theorem 9.3.8 implies that the polynomial has at most six distinct roots.)

13. Let p be a polynomial with real coefficients. Prove that the complex conjugate of
each root of p is also a root of p.
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Answer: We begin by showing that the conjugate of a sum of two complex
numbers is the sum of the conjugates and the conjugate of a product of two
complex numbers is the product of the conjugates. This follows from the very
straightforward computations below.
For sums:

(a+bi)+(c+di) = a+ c+(b+d)i = a+ c� (b+d)i,

and
a+bi+ c+di = (a�bi)+(c�di) = a+ c� (b+d)i.

For products:

(a+bi)(c+di) = ac�bd +(bc+ad)i = ac�bd � (bc+ad)i,

and

(a+bi)(c+di) = (a�bi)(c�di) = ac�bd +(�bc�ad)i.

Now let p(z) = anzn + · · ·+a1z+a0 and suppose that a+bi is a root of
p. Then

an(a+bi)n + · · ·+a1(a+bi)+a0 = 0,

so
an(a+bi)n + · · ·+a1(a+bi)+a0 = 0 = 0.

Repeatedly applying the above computations concerning sums and products
yields

an(a+bi)n + · · ·+a1(a+bi)+a0 = an(a+bi)n + · · ·+a1(a+bi)+a0.

Since the ai are real numbers, ai = ai for each ai. Thus,

an(a+bi)n + · · ·+a1(a+bi)+a0 = an(a+bi)n + · · ·+a1(a+bi)+a0 = 0.

But, p(a+bi) = an(a+bi)n + · · ·+a1(a+bi)+a0, so p(a+bi) = 0.



Chapter 10

Sizes of Infinite Sets

Solutions to Selected Exercises

1. Show that the set of all polynomials with rational coefficients is countable.

Answer: A polynomial with rational coefficents can be written in the form
anxn + an�1xn�1 + · · ·+ a1x+ a0, where the ai are rational numbers and n is
a natural number or 0. We use the Enumeration Principle (10.3.16). Let L =
Q[{xn : n2N}[{+}. Then L is a union of a finite number of countable sets
and is therefore countable (Theorem 10.2.10). Each polynomial is uniquely
labeled by a finite sequence of elements of L by simply writing it in the
usual way. The Enumeration Principle then gives the result.

2. Suppose that the sets S , T and U satisfy S ⇢ T ⇢ U , and that |S | = |U |.
Show that T has the same cardinality as S .

Answer: Let f : S ! T be defined by f (s) = s for all s 2 S . Then f is a
one-to-one function from S into T , so |S | |T |. Similarly if g : T ! U
is defined by g(t) = t, then g is a one-to-one function from T into U , so
|T | |U |. Therefore, |S | |T | |U |. Since |S |= |U | this is equivalent
to |S | |T | |S |. By the Cantor-Bernstein Theorem (10.3.5), this implies
that |S |= |T |.

4. Assume that |A1|= |B1| and |A2|= |B2|. Prove:

a. |A1 ⇥A2|= |B1 ⇥B2|.

Answer: (a) By the hypothesis, there exist functions f : A1 ! B1 and g :
A2 ! B2 that are both one-to-one and onto. Let h : A1 ⇥A2 ! B1 ⇥B2 be

32
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defined by h((a1,a2)) = ( f (a1),g(a2)). To show that h is one-to-one, sup-
pose that h((a1,a2)) = h((a3,a4)). Then f (a1) = f (a3), so a1 = a3, since
f is one-to-one. Similarly, g(a2) = g(a4), so a2 = a4 since g is one-to-one.
Thus, (a1,a2) = (a3,a4), and so h is one-to-one. To show that h is onto, let
(b1,b2) be any element of B1 ⇥ B2. Then there exist a1 2 A1 and a2 2 A2
such that f (a1) = b1 and g(a2) = b2, since f and g are both onto. Therefore
h((a1,a2)) = (b1,b2), which proves that h is onto. Thus, h is one-to-one and
onto.

6. What is the cardinality of the set of all functions from N to {1,2}?

Answer: We show that the cardinality is c, by observing that this set is essen-
tially the set of characteristic functions. As shown in Theorem 10.3.32, the set
of characteristic functions with domain N has the same cardinality as P(N).
The given set has the same cardinality as the set of characteristic functions
on N since a one-to-one onto function is given by sending a characteristic
function f to the function g defined by g(x) = 1 if f (x) = 0 and g(x) = 2
if f (x) = 1. The proof is completed by noting that |P(N)| = c (Theorem
10.3.28).

9. Suppose that S and T each have cardinality c. Show that S [T also has
cardinality c.

Answer: We use T \S to denote the set of all x in T such that x is not
in S . Note that the set S [T is equal to the set S [ (T \S ). (We use
T \S rather than T because T \S is always disjoint from S .) Since S has
cardinality c, there is a one-to-one function f mapping S onto [0,1] (Theorem
10.3.8). As T \S is a subset of T , it has cardinality at most c. Thus, there
is a one-to-one function g mapping T \S into [2,3].

Since [0,1][ [2,3] ⇢ R,
�

�[0,1][ [2,3]
�

�  c. A one-to-one function from
S [ (T \S ) into [0,1][ [2,3] is given by sending x to f (x) if x is in S and
x to g(x) if x is in T \S . (This is where we use the fact that S and T \S
are disjoint; otherwise, the new function would not be well-defined.) Thus,
�

�S [(T \S )
�

� c. Since S is a subset of S [(T \S ),
�

�S [(T \S )
�

�� c.
Therefore, by the Cantor-Bernstein Theorem (10.3.5),

�

�S [ (T \S )
�

�= c.

10. What is the cardinality of R2 =
�

(x,y) : x,y 2 R
 

(the Euclidean plane)?



34 10 Sizes of Infinite Sets

Answer: We have already seen that the cardinality of the unit square, [0,1]⇥
[0,1], is c (Theorem 10.3.30) and that |R| =

�

�[0,1]
�

� (Theorem 10.3.8). It fol-
lows from Problem 4(a) that

�

�R2
�

�= |R⇥R|=
�

�[0,1]⇥ [0,1]
�

�= c.

11. What is the cardinality of the set of all complex numbers?

Answer: A one-to-one function mapping R2 onto C is given by f (a,b) = a+
bi. Thus,

�

�R2
�

�= |C|, and it follows from Problem 10 that |C|= c.

14. What is the cardinality of the unit cube, where the unit cube is
�

(x,y,z) : x,y,z 2
[0,1]

 

?

Answer: We have seen that the cardinality of the unit square, [0,1]⇥ [0,1], is
c (Theorem 10.3.30), which is also the cardinality of [0,1] (Theorem 10.3.8).
The unit cube can be regarded as

�

[0,1]⇥ [0,1]
�

⇥ [0,1]. Therefore, it follows
from Problem 4(a) that the cardinality of the unit cube is c.

15. What is the cardinality of R3 =
�

(x,y,z) : x,y,z 2 R
 

?

Answer: The cardinality of R3 is c. By Problem 10, the cardinality of R2 is
c. Since R3 = R2 ⇥R, it follows from Problem 4(a) that

�

�R3
�

� =
�

�R2 ⇥R
�

� =
�

�R⇥R
�

�= c.

19. Find the cardinality of the set
�

(x,y) : x 2 R, y 2Q
 

.

Answer: The cardinality is c. To see this, let S = {(x,y) : x 2R, y 2Q}. Since
S ⇢R2, |S| c. However, {(x,0) : x 2R} is a subset of S and it has cardinality
c (since the mapping f that sends (x,0) to x is clearly a one-to-one mapping of
this set onto R). Therefore, c  |S| c and it follows by the Cantor-Bernstein
Theorem (10.3.5) that |S|= c.

20. What is the cardinality of the set of all numbers in the interval [0,1] that have
decimal expansions that end with an infinite sequence of 7’s?
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Answer: There are two easy natural proofs of the fact that the cardinality of
this set is ¿0. For the first proof, simply note that every element of the set is
rational, so the set is a subset of the set of rational numbers, which finishes
the proof. Alternately, the result is a very straightforward application of the
Enumeration Principle (10.3.16), since each element x in the set can be labeled
.a1a2a3 . . .an, where an is the last digit in the decimal expansion of x before
the infinite sequence of 7’s, and each ai is in {0,1,2,3,4,5,6,7,8,9}.

22. Suppose that T is an infinite set and S is a countable set. Show that S [T has
the same cardinality as T .

Answer: Since T is infinite, it has a countably infinite subset (Theorem
10.3.24). Denote one such by A = {a1,a2, . . .}. Since S is countable, it can
be enumerated S = {b1,b2, . . .}. Assume first that S and T are disjoint. A
one-to-one onto function f : T ! T [S can then be defined by f (x) = x
if x 62 A , f (ai) = a i

2
if i is even, and f (ai) = b i+1

2
if i is odd. To show that

f is onto, first note that if x is in T but is not in A , then f (x) = x. If x is an
element ai of A, then f (a2i) = x. If x is an element bi of S, then f (a2i�1) = x.
Thus f is onto. To see that f is also one-to-one, suppose f (x) = f (y). If f (x)
and f (y) are both in T \A , then f (x) = x and f (y) = y, so x = y. If f (x) and
f (y) are both in A , then f (x) = ai for some ai, in which case x = y = a2i. If
f (x) and f (y) are both in S , then f (x) = bi for some bi, and x = y = a2i�1.
This proves the result in the case that S and T are disjoint.
If S and T are not disjoint, then S [T = T [ (S \T ), and the result
follows from the disjoint case. (The set S \T is disjoint from T , and it is
countable since it is a subset of the countable set S .)

23. Let S be the set of real numbers t such that cos t is algebraic. Prove that S is
countably infinite.

Answer: Since cosine is one-to-one on [0,p], the set of all t 2 [0,p] such that
cos t is algebraic is in one-to-one correspondence with a subset of the set of all
algebraic numbers, and is therefore countable (Theorem 10.3.20). Similarly,
for each integer m, the set of all t 2

⇥

(m�1)p,mp
⇤

such that cos t is algebraic
is countable. Therefore, S is a countable union of countable sets, and thus
S is countable (Theorem 10.2.10). Moreover, S is not finite since for any
integer k, cos2pk = cos0 = 1, and so there are infinitely many t with cos t
algebraic.
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26. Prove that there does not exist a set with a countably infinite power set.

Answer: Let S be any set. If S is finite, then |P(S )| = 2|S | (Theorem
10.3.26), which is finite. If S is infinite, then |S | � ¿0 (Theorem 10.3.24).
Thus, |P(S )| � |P(N)|. Since |P(N)| = c (Theorem 10.3.28), it follows
that P(S ) is not countable. Therefore it is not possible for a set to have a
power set with cardinality ¿0.

27. Find a one-to-one function mapping the interval (�p
2 ,

p
2 ) onto R.

Answer: The trigonometric function tan is a one-to-one mapping of (�p
2 ,

p
2 )

onto R.

28. (a) Prove directly that the cardinality of the closed interval [0,1] is equal to the
cardinality of the open interval (0,1) by constructing a function f : [0,1]! (0,1)
that is one-to-one and onto.

Answer: A suitable function f can be defined as follows. Let f (x) = x for all
x which are not equal to 0 or 1

n for any natural number n, and for each natural
number n, let f ( 1

n ) =
1

n+2 . Then, f (1) = 1
3 , and there is not yet any element

which is sent to 1
2 . We can therefore define f (0) = 1

2 . It is clear that f is a
one-to-one function mapping [0,1] onto (0,1).

29. Prove that a set is infinite if and only if it has the same cardinality as a proper
subset of itself.

Answer: If S is a finite set, then its cardinality is n for some natural number
n. Every proper subset of S has cardinality strictly less than n, so S does not
have the same cardinality as any proper subset of itself. Now assume that S
is infinite; we must prove that S has the same cardinality as a proper subset
of itself. By Theorem 10.3.24, S has a countably infinite subset. Call such
a subset A = {a1,a2, . . .}. We show that S has the same cardinality as its
proper subset S \ {a1}. A one-to-one onto function f from S to S \ {a1}
can be defined by letting f (x) = x if x 62 A and f (ai) = ai+1 for every ai in
A .
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32. What is the cardinality of the set of all countable sets of real numbers?

Answer: We show that the cardinality is c. We begin by proving that the set
of all countable subsets of [0,1] has cardinality c. For this, we show that each
countable subset can be specified by one real number.
For each countable subset S of [0,1], there is a one-to-one function fS from
N onto S . Thus, S can be written { fS (1), fS (2), . . .}. Writing each fS (n)
as an infinite decimal, we can list the elements of S , as follows:

fS (1) = .a11a12a13 · · ·

fS (2) = .a21a22a23 · · ·

fS (3) = .a31a32a33 · · ·
...

Let F be the function which sends each such set S to .a11a12a21a31a22a13a14 . . . .
That is, each S is assigned to an infinite decimal created by zigzagging
through the array given by fS , where the decimal is extended by an infinite
number of 0’s if the set S is finite. (This is similar to the proof that Q is count-
able (Theorem 10.1.14).) Now F is a one-to-one mapping of the collection of
all countable subsets of [0,1] into [0,1]. Therefore, the set of all countable
subsets of [0,1] has cardinality less than or equal to

�

�[0,1]
�

� = c. Conversely,
the set of all countable subsets of [0,1] contains the set of all singleton sets.
Thus, the set of all countable subsets of [0,1] has a subset with cardinality c.
Therefore, the cardinality of the set of all countable subsets of [0,1] is at least
c. By the Cantor-Bernstein Theorem (10.3.5), the cardinality is equal to c.
We must extend the above to countable subsets of R. Let g be any one-to-
one mapping of R onto [0,1]. Then g induces a mapping of subsets of R to
subsets of [0,1], sending each subset S of R to {g(s) : s 2 S }. That induced
mapping sends countable subsets to countable subsets. Therefore, it is a one-
to-one mapping that sends the collection of countable subsets of R onto the
collection of countable subsets of [0,1].

33. Find the cardinality of the set of all lines in the plane.

Answer: The cardinality is c. First note that the set S of vertical lines (that
is, the lines parallel to the y-axis) has cardinality c, since there is an obvious
one-to-one correspondence between those lines and the x-axis, where each
line corresponds to its point of intersection with the x-axis.
We now consider the set of all lines in the plane that are not vertical. Each
such line has some real number, say m, as its slope. Moreover, each such
line meets the y-axis in some point (0,b). Thus if T denotes the set of all
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non-vertical lines in the plane, then T is in one-to-one correspondence with
{(b,m) : b,m 2 R}. Therefore, T has the same cardinality as R2, and this
cardinality is c (by Problem 10). It now follows that the set of all lines in the
plane, equal to S [T , has cardinality c, by Problem 9.

34. Show that the set of all functions mapping R⇥R into Q has cardinality 2c.

Answer: Let F denote the set of functions mapping R⇥R into Q. Since
|R⇥R|= c (by Problem 10), the set of characteristic functions of R⇥R has
cardinality 2c (by Theorem 10.3.32 it is the same as the cardinality of the
set of subsets of R⇥R, and a one-to-one function mapping R⇥R onto R
induces a one-to-one function mapping P(R⇥R) onto P(R)). Since the set
of characteristic functions is a subset of F , |F |� 2c.
To show that |F |  2c, note that each function f from R⇥R to Q defines a
subset H f of R3 by H f = {(a,b,c) : a,b 2 R and f (a,b) = c}. The mapping
from f to H f is one-to-one since if H f1 = H f2 , then f1(a,b) = f2(a,b) for
every (a,b)2R⇥R, and so f1 = f2. Thus, there is a one-to-one function map-
ping F into the power set of R3, from which it follows that |F | 

�

�P(R3
�

�.
Since

�

�R3
�

�= c (by Problem 15),
�

�P(R3)
�

�= 2c. Therefore, |F | 2c, and so,
by the Cantor-Bernstein Theorem (10.3.5), |F |= 2c.

35. Prove the following: If n is the smallest natural number such that a polynomial of
degree n with integer coefficients has x0 as a root, and if p and q are polynomials
of degree n with integer coefficients that have the same leading coefficients (i.e.,
coefficients of xn) and each have x0 as a root, then p = q.

Answer: Let p(x) = anxn +an�1xn�1 + · · ·+a0 and q(x) = anxn +bn�1xn�1 +
· · ·+b0. Since p(x0) = 0 = q(x0):

0 = p(x0)�q(x0)

= (anxn
0 +an�1xn�1

0 + · · ·+a0)� (anxn
0 +bn�1xn�1

0 + · · ·+b0)

= (an�1 �bn�1)xn�1
0 + · · ·+(a0 �b0)

Therefore, x0 is a root of the polynomial (an�1 �bn�1)xn�1 + · · ·+(a0 �b0).
This latter polynomial has integer coefficients and has degree smaller than n.
Moreover, it has x0 as a root. Since n is the smallest natural number such that
a polynomial of degree n with integer coefficients has x0 as a root, it follows
that all of the coefficients of this latter polynomial are 0. Thus, ai = bi for all
i, and so p = q.

40. Prove that the union of c sets that each have cardinality c has cardinality c.
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Answer: The union clearly has a subset of cardinality c (any one of the original
c sets), so the union has cardinality greater than or equal to c. We will show
that the union also has cardinality less than or equal to c.
The idea is to show that there is a one-to-one mapping of the union into R2.
Let U be the union, and let C be the collection of sets (so the elements of C
are the original c sets). Since the cardinality of C is c, there is a one-to-one
onto mapping F : C ! R. This gives a labeling of each element of C by an
element of R, by labeling each set S in C by F(S ). Thus, C = {Sr : r 2R}
(where r = F(S )).
Each set Sr has cardinality c, so for each r there is a one-to-one mapping fr
taking Sr onto R. Each x 2 U is in some Sr, and we would like to send each
such x to (r, fr(x)). This would send U onto R2. However, since the sets Sr
may not be disjoint, this mapping may not be well-defined. To deal with this
issue, let C 0 be the collection of all sets of the form {(r,s) : s 2 Sr}. That
is, C 0 is the collection of all {r}⇥Sr for Sr in C . Let U 0 be the union of
all the sets in C 0. A one-to-one onto (and well-defined) mapping from U 0 to
R2 is given by sending each (r,x) to (r, fr(x)). Since R2 has cardinality c (by
Problem 10), U 0 has cardinality c. Next we show that |U |  |U 0|. For each
x 2 U , let h(x) be some r such that x 2 Sr, and let H : U ! U 0 be defined
by H(x) = (h(x),x). Since H is one-to-one, |U |  |U 0| = c. Since we also
have |U |� c, the Cantor-Bernstein Theorem (10.3.5) implies that |U |= c.



Chapter 11

Fundamentals of Euclidean Plane Geometry

Solutions to Selected Exercises

3. In the given diagram, the line segment BD is perpendicular to the line segment
AC, the length of AM is equal to the length of MC, the measure of \C is 35� and
the measure of \FAD is 111�.

(a) Prove that triangle ABM is congruent to triangle CBM.

AF B

M

CD

Answer: (a) It is given that CM = MA, and the triangles ABM and CBM
have the side MB in common. Since DB is perpendicular to CA, \CMB =
90� = \AMB. Therefore, by side-angle-side (11.1.2), 4ABM is congruent to
4CBM.

4. Prove that two right triangles are congruent if they have equal hypotenuses and a
pair of equal legs.

Answer: If h is the length of the hypotenuses and a is the length of the equal
legs, then, by the Pythagorean Theorem (11.3.7), the lengths of the other legs
are both equal to the square root of h2 �a2. Thus, by side-side-side (Theorem
11.1.8), the triangles are congruent.

40
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5. A quadrilateral is a four-sided figure in the plane. Prove that the sum of the
angles of a quadrilateral is 360 degrees.

Answer: Connect two opposite vertices of the quadrilateral by a line segment,
dividing the quadrilateral into two triangles.

It is apparent that the sum of the angles of the quadrilateral is equal to the
sum of the angles of the two triangles. Since the sum of the angles of each
of the triangles is 180 degrees (Theorem 11.2.5), the sum of the angles of the
quadrilateral is 360 degrees.

7. Prove that if two angles of a triangle are equal, then the sides opposite those
angles are equal.

Answer: Let ABC be a triangle with \ABC = \ACB. Draw the bisector of
\BAC and let its point of intersection with BC be D.

B C

A

D

Then triangles BAD and CAD have two pairs of equal angles and also have a
side in common, AD. It follows that these triangles are congruent by angle-
angle-side (Corollary 11.2.7) and, thus, that the corresponding sides AB and
AC are equal.

9. A parallelogram is a four-sided figure in the plane whose opposite sides are
parallel to each other. Prove the following:
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(b) The area of a parallelogram is the product of the length of any side and the
length of a perpendicular to that side from a vertex not on that side.

Answer: (b) Let the parallelogram be ABCD, as pictured below. Drop a per-
pendicular from B to the side AD and call E the point of intersection with the
side. Drop a perpendicular from C to the extension of the side AD and call the
point of intersection F .

A

B C

DE F

Since AD is parallel to BC, the length BE is equal to the length CF (Lemma
11.3.9). Also, since AB is parallel to DC, the corresponding angles BAE and
CDF are equal to each other (Theorem 11.2.3). Thus, triangles ABE and CDF
are right triangles that are congruent to each other by angle-angle-side (Corol-
lary 11.2.7). It follows that the area of triangle ABE is equal to the area of
triangle CDF , and therefore that the area of the original parallelogram ABCD
is equal to the area of the rectangle BCFE, and this is the product of the length
of BC and the length of CF .

11. A square is a four-sided figure in the plane all of whose sides are equal to each
other and all of whose angles are right angles. The diagonals of the square are
the lines joining opposite vertices. Prove that the diagonals of a square are per-
pendicular to each other.

Answer: Let the vertices of the square be A,B,C,D. Draw the diagonals, which
are line segments AC and BD, and label their intersection by O, as shown in
the diagram below.

A

B C

D

O
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Then 4ABD is isosceles, so \ABD = \ADB (Theorem 11.1.4), and, since
\BAD = 90�, \ABD = 45� (since the sum of the angles of triangle ABD is
180�). The same argument applied to the isosceles triangles ACB, CDA and
BDC shows that the triangles BCO, BAO, CDO, and DAO, all have both of
their “base angles” (those angles for which one side is a side of the square)
equal to 45�. Therefore, the remaining angle in each triangle is 90�, from
which it follows that each of the angles BOC, BOA, DOC, and DOA is 90
degrees.

13. Give an example of two triangles that agree in “angle-side-side” but are not con-
gruent to each other.

Answer: Start with an isosceles triangle, ABC, where AB = BC. Extend AC
past C to a point D. Connect D and B.

B

A C D

Then triangles ABD and CBD share the angle ADB and the side BD. Since
BA = BC, the triangles ABD and CBD agree in angle-side-side. However, they
are obviously not congruent.

15. Prove the converse of the Pythagorean Theorem; i.e., show that if the lengths of
the sides of a triangle satisfy the equation a2+b2 = c2, then the triangle is a right
triangle.
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A B

C

a

b

Answer: Let a triangle be given with sides a, b, and c satisfying the equation.
Take a line segment AB such that the length of AB is a. Then draw a line
segment perpendicular to AB at the point B and extend it to a point C such
that the length of BC is b. Connecting C to A by a line segment creates a
right triangle ABC (since \ABC is 90� by construction). By the Pythagorean
Theorem (11.3.7), the square of the length of the side of CA is c2, so the length
of CA is c. Thus, 4ABC agrees with the originally given triangle in side-side-
side, so those two triangles are congruent (Theorem 11.1.8). Therefore the
angles of the two triangles are equal to each other and, in particular, one of
the angles of the original triangle is 90 degrees.

17 . (This problem generalizes the result of Theorem 11.3.12.) Prove that the measure
of an angle inscribed in a circle is one half the measure of the arc cut off by the
angle. That is, in the diagram below, the number of degrees of \BAC is half the
number of degrees in the arc BC. (The number of degrees in a full circle is 360,
and the number of degrees in any arc of a circle is the product of 360 and the
length of that arc divided by the circumference of the circle.)

A

B

C

Answer: First consider the special case where AC is a diameter of the circle.
Let O be the midpoint of AC, which is the center of the circle. Draw a line
segment connecting O to B. Then \BOC+\BOA =\BAO+\BOA+\ABO
(since the sums are both 180�). It follows that \BOC =\BAO+\ABO. Since
AC is a diameter, BO = AO, as they are both radii of the circle. Thus, 4ABO
is isosceles, from which it follows that \BAO = \ABO (Theorem 11.1.14).
Therefore \BOC is twice \BAO.
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A

B

C
O

Thus we have shown that \BAC is half of \BOC. The proof of this special
case, where one side is a diameter, will be complete if we show that the mea-
sure of \BOC is the same as the measure of the arc BC. But this follows
immediately from the fact that the measure of the central angle BOC is the
same fraction of a full rotation of 360 degrees as the fraction that the measure
of the arc BC is of the full circle of 360 degrees. This establishes the special
case where one side of the angle is a diameter of the circle.

We now consider the case where AC is not a diameter of the circle, which
we divide into several sub-cases. Draw a diameter of the circle from A. Sup-
pose that this diameter is below AC, so that it intersects the circle across from
A at a point D below C and below B (that is, outside of the angle BAC).

A

B

C

D

By the previous case, the number of degrees of \BAD is half the number
of degrees in the arc BD, and the number of degrees of \CAD is half the
number of degrees in the arc CD. Since \BAC =\BAD�\CAD, the number
of degrees in \BAC is half the number of degrees in the arc BD minus half
the number of degrees in the arc CD, which is half the number of degrees in
BD�CD, which is half the number of degrees in BC. Since rotating, flipping,
and interchanging B and C does not change the angle, this proof also applies
to the case where D is above both C and B.

The remaining case to consider is the one in which the diameter is above
AC but below AB, intersecting the circle at a point D between B and C.
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A

B

C

D

Then the measure of the angle BAC is the measure of \BAD plus the measure
of \DAC, which is one half of the number of degrees in the arc BD plus one
half the number of degrees in the arc DC, which is one half of the number of
degrees in the arc BC. Thus, in all cases, the measure of an angle inscribed in
a circle is one half of the measure of the arc cut off by the angle.



Chapter 12

Constructability

Solutions to Selected Exercises

1. Determine which of the following numbers are constructible.

(a) 1p
3+

p
2

(b) 6p79

(d) 16p79

(j) cos51�

(l) cos10�

(n) 11
3
2

Answer:
(a) First, 3+

p
2 is constructible since it is in Q(

p
2). Since square roots and

quotients of constructible numbers are constructible (Theorem 12.2.15 and
Corollary 12.2.7), 1p

3+
p

2
is constructible.

(b) It is not constructible. Suppose it was. Then 79
1
6 · 79

1
6 = 79

1
3 would be

constructible (since the constructible numbers are a field (Theorem 12.2.10)),
which would imply that the cubic polynomial x3�79 has a constructible root.
But then x3 �79 would have a rational root (Theorem 12.3.22) and, using the
Rational Roots Theorem (8.19), any rational root would have to be an integer.
However, this is impossible since 33 is less than 79 and 43 is greater than 79,
so x3 �79 has no integer roots.
(d) This is constructible. Since 79 is constructible, repeatedly applying the fact
that the square root of a constructible number is constructible (see Theorem
12.2.15) shows that 16p79 is constructible.
(j) This is constructible, since cos51� is constructible if 51� is a constructible
angle (Theorem 12.3.13), and 51� is a constructible angle since 51 is a multi-
ple of 3 (Theorem 12.4.13).
(l) This is not constructible, since, if it was, then 10� would be a constructible
angle (Theorem 12.3.13), but 10� is not a constructible angle since 10 is not a
multiple of 3.

47
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(n) This is constructible. Since 113 is an integer, it is constructible, and then,
since the square root of a constructible number is constructible (Theorem
12.2.15), 11

3
2 is constructible.

2. Determine which of the following angles are constructible.

(a) 6� (i) 92.5� (j) 37.5�

Answer:
(a) This is constructible, since 6 is a multiple of 3 (Theorem 12.4.13)
(i) This angle is not constructible. Suppose it was. Then doubling this would
produce a constructible angle (Corollary 12.1.7), but an angle of 185� is not
constructible, since 185 is not a multiple of 3 (Theorem 12.4.13).
(j) This angle is constructible. A 75� angle is constructible because it is a mul-
tiple of 3 (Theorem 12.4.13). Since 37.5� is half of 75�, it is also constructible
(Theorem 12.1.4).

3. Determine which of the following angles can be trisected.

(a) 12�

Answer: (a) This angle cannot be trisected. Suppose it could. Then, since an
angle of 12� is constructible, trisecting it would show that an angle of 4�
is constructible. However, 4 is not a multiple of 3, so it is not possible to
construct an angle of 4� (Theorem 12.4.13).

4. Determine which of the following polynomials have at least one constructible
root.

(a) x4 �3
(c) x4 +

p
7x2 �

p
3�1

(f) x3 �2x�1
(j) 2x3 �4x2 +1
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Answer:
(a) This polynomial has a constructible root. Since 3 is constructible and the
square root of a constructible number is constructible (Theorem 12.2.15), it
follows that

p
3 is constructible and x =

pp
3 = 4p3 is constructible, which

satisfies x4 �3 = 0.
(c) This polynomial has a constructible root. To see this, note that x is a root of
this polynomial if y = x2 and y is a root of the polynomial y2 +

p
7y�

p
3�1.

By the Quadratic Formula (Problem 6 in Chapter 9), y0 = �
p

7+
p

11+4
p

3
2 is

a root of this new polynomial. Since the square root of a constructible num-
ber is constructible (Theorem 12.2.15) and the constructible numbers form a
field (Theorem 12.2.10), y0 is constructible. Also, y0 is positive. The positive
square root of y0 is then a constructible root of the original polynomial.
(f) Clearly, �1 is a constructible root of this polynomial. (If it has a con-
structible root, it must have a rational root (Theorem 12.3.22). By the Rational
Roots Theorem (8.1.9), such a root would have to be ±1.)
(j) If it had a constructible root, then it would have a rational root (Theorem
12.3.22). By the Rational Roots Theorem (8.1.9), such a root would have to be
±1 or ± 1

2 . Substituting these numbers into the polynomial shows that none of
them are roots. Therefore the polynomial does not have a constructible root.

5. Determine which of of the following regular polygons can be constructed with
straightedge and compass.

(a) A regular polygon with 14 sides.
(d) A regular polygon with 240 sides.

Answer:
(a) Such a polygon cannot be constructed. If it could, then a regular polygon
with 7 sides would be constructible (Theorem 12.4.7)). However, a regular
polygon with 7 sides is not constructible (Theorem 12.4.12).
(d) Such a regular polygon can be constructed. First note that a regular poly-
gon with 120 sides can be constructed, since its central angle is 360

120 = 3 de-
grees, and so it is constructible (the central angle is constructible by The-
orem 12.4.13, and this implies that the polygon is constructible, by Theo-
rem 12.4.5). Thus, a regular polygon with 2(120) = 240 sides is constructible
(Theorem 12.4.7).

7. True or False:
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(a) If the angle of q degrees is constructible and the number x is constructible,
then the angle of x ·q degrees is constructible.

(d) There is an angle q such that cosq is constructible, but sinq is not con-
structible.

Answer:
(a) False. For example, an angle of 30 degrees is constructible, and the number
2
3 is constructible, but an angle of 20 degrees is not constructible (Theorem
12.3.23).
(d) This is false. Suppose cosq is constructible. Then, since the constructible
numbers are a field, 1�cos2 q is also constructible. Since sin2 q = 1�cos2 q ,
it follows that sin2 q is constructible. Since the square root of a constructible
number is constructible, sinq is constructible (both

p

sin2 q and �
p

sin2 q
are constructible).

9. Determine which of the following numbers are constructible.

(b) sin75�

Answer:
(b) This is constructible. Since 75 is a multiple of 3, 75� is a constructible
angle (Theorem 12.4.13), and therefore cos(75�) is a constructible number
(Theorem 12.3.13). Since sin2(75�) = 1�cos2(75�), it follows that sin2(75�)
is constructible, and so sin(75�) is constructible as well.

10. Determine which of the following numbers are constructible. (The angles below
are in radians.)

(b) cosp

Answer:
(b) Since cosp =�1, it is a constructible number.

11.(b) Prove that the side of a cube with volume a natural number n is constructible
if and only if n

1
3 is a natural number.
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Answer:
(b) If the side of a cube with volume n is constructible, then n

1
3 is a con-

structible number, so x
1
3 � n has a constructible root, and therefore it has a

rational root (Theorem 12.3.22). By the Rational Roots Theorem (8.1.9), such
a root must have denominator 1 (if it is in lowest terms), so it has to be an
integer. It also has to be positive, since n is positive. Therefore, if x

1
3 �n has a

constructible root, then it has a root which is a natural number, so n
1
3 (the real

cube root of n) is a natural number.

12. Using mathematical induction, prove that, for every integer n � 1, a regular poly-
gon with 3 ·2n sides can be constructed with straightedge and compass.

Answer: For the case n = 1, the central angle of a regular polygon with 6 sides
is 360

6 = 60 degrees which is constructible (Theorem 12.3.14). Therefore a
regular polygon with 6 sides is constructible (Theorem 12.4.5). Now let k
be any natural number and assume that a regular polygon of 3 · 2k sides is
constructible. Then, by Theorem 12.4.7, a regular polygon of 2 · (3 · 2k) =
3 ·2k+1 sides is constructible, and the result follows by induction.

13. Prove that, given a regular polygon, its center can be constructed using only a
straightedge and compass.

Answer:
Let two adjacent sides of the polygon be labelled AB and BC. As shown in
the diagram below, construct perpendicular bisectors of the two sides. Let D
denote the midpoint between A and B, and let E denote the midpoint between
between B and C. Let O be the point of intersection of the two perpendicular
bisectors.

A C

B
D E

O

We will show that O is the center of the polygon (i.e., it has the same
distance from each vertex). Join O to B by a line segment. This creates tri-
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angles DOB and EOB as shown in the diagram. Each of these triangles is a
right triangle. They share the side BO, and the length of BE is the same as
the length of BD (each is half of a side of the given regular polygon). By the
Pythagorean Theorem (11.3.7), their third sides have equal length. Thus these
two triangles are congruent (by side-side-side, Theorem 11.1.8). Join O to C
by a line segment. This creates a right triangle EOC which is congruent to the
triangle EOB since they share the side EO and have second sides BE and EC
of equal length. Thus OC = OB.

A C

B
D E

O

F

G

Let the other vertex of the regular polygon which is adjacent to C be F , and
let G be the midpoint of CF . We must show that OF is equal to OC. From
the congruence of triangles DOB and EOB, we have \OBD = \OBE. Thus
\OBE is one half of the angle between adjacent sides of the original polygon.
Moreover, from the congruence of triangles EOC and EOB, it follows that
\OCE is also half of the angle of the regular polygon. Therefore, \OCG
is equal to \OCE. Then by side-angle-side (11.1.2), 4EOC is congruent to
4GOC. It follows that \OGC = 90�, and since \OGF sums with \OGC
to a straight angle, it is also 90�. Since the right triangles GOC and GOF
share the side OG, and have second sides CG and GF of equal length, they
are congruent to each other. Thus, OF = OC, and all the right triangles DOB,
EOB, EOC, GOC, and GOF are congruent to each other. This process can
then be continued by letting H be the other vertex adjacent to F , and repeating
the above.

14. Prove that an acute angle cannot be trisected with straightedge and compass if its
cosine is:

(a) 3
7

Answer:
(a) Since the cosine of the given angle is a constructible number, it follows
that the angle itself is constructible (Theorem 12.3.13). If the angle could
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be trisected, then there would be a constructible acute angle q such that
cos3q = 3

7 . We use the trigonometric identity cos3q = 4cos3 q � 3cosq
(Theorem 12.3.16). If q were constructible, then cosq would be a con-
structible root of 4x3 � 3x� 3

7 . Then 4x3 � 3x� 3
7 would have a rational root

(by Theorem 12.3.22). Multiplying the polynomial by 7, it follows that the
polynomial 28x3 �21x�3 would have a rational root. By the Rational Roots
Theorem (8.1.9), such a root (in lowest terms) would have to have numerator
±1 or ±3 and denominator ±1, ±2, ±4, ±7, ±14, or ±28. Checking all the
possibilities individually shows that none of them are roots.

15. Can a polynomial of degree 4 with rational coefficients have a constructible root
without having a rational root?

Answer: Yes. An example is the polynomial x4 �2. Since square roots of con-
structible numbers are constructible, 2

1
2 is constructible, and then (2

1
2 )

1
2 = 2

1
4

is constructible. Thus, the polynomial x4 � 2 has a constructible root. By the
Rational Roots Theorem (8.1.9), if x4 �2 has a rational root it must be ±1 or
±2, but none of these are roots, so it has no rational roots.

16. Prove that the following equation has no constructible solutions:

x3 �6x+2
p

2 = 0.

[Hint: You can use Theorem 12.3.22 if you make an appropriate substitution.]

Answer:
Suppose r is a constructible solution. Since

p
2 is constructible and the

constructible numbers form a field, rp
2

would then be constructible. Let

t = rp
2
. Then r = t

p
2, and so there is a constructible number t such that

(t
p

2)3 � 6t
p

2 + 2
p

2 = 0. It follows that t32
p

2 � 6t
p

2 + 2
p

2 = 0, sop
2(2t3 � 6t + 2) = 0, and thus 2t3 � 6t + 2 = 0. Therefore the polynomial

2x3 � 6x+ 2 has a constructible root, and so it has a rational root (Theorem
12.3.22). The Rational Roots Theorem (8.1.9) implies that such a root has to
be ±1, ±2, or ± 1

2 . Substituting these numbers into the equation shows that
none of them are roots. It follows that there can be no such r.
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17. Let t be a transcendental number. Prove that
�

(a+bt) : a,b 2Q
 

is not a subfield
of R.

Answer:
Suppose it was a subfield of R. The set contains t = 0+1 ·t, so if it was a field,
it would also contain t2. Then t2 = a+bt for some a,b 2Q. This implies that
t2 �bt �a = 0, so t is a root of the polynomial x2 �bx�a. Since this polyno-
mial has rational coefficients, this contradicts the fact that t is transcendental
(multiplying through by the product of the denominators of b and a gives a
polynomial with integer coefficients which has t as a root).

20. Is
n

a
p

2 : a 2Q
o

a subfield of R?

Answer: No. For example, it does not contain 1. For if 1= a
p

2 with a rational,
then a 6= 0 and 1

a =
p

2, which contradicts the fact that
p

2 is not rational
(Theorem 8.2.2).

21. Is the set of all towers countable? (Recall that a tower is a finite sequence of
subfields of R, the first of which is Q, such that the other subfields are obtained
from their predecessors by adjoining square roots.)

Answer: Yes, by the Enumeration Principle (10.3.16). Each tower can be la-
belled by a finite sequence from the set {0,1,2, . . . ,9,

p
,/,�,+, ,}. Begin by

putting the first square root adjoined, then a comma, then the second square
root adjoined (which may be a square root of any positive number already in
the tower), then a comma, and then the third and so on.

22. Prove the following.

(a) If x0 is a root of a polynomial with coefficients in F (
p

r), then x0 is a root of
a polynomial with coefficients in F .

(b) Every constructible number is algebraic.

Answer:
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(a) Let x0 be a root of a polynomial with coefficients in F (
p

r). Then there
are ai and bi in F and a natural number n such that

(an +bn
p

r)xn
0 + · · ·+(a1 +b1

p
r)x0 +(a0 +b0

p
r) = 0.

Then

anxn
0 + · · ·+a1x0 +a0 =�(bn

p
rxn

0 + · · ·+b1
p

rx1 +b0
p

r)

=�
p

r(bnxn
0 + · · ·+b1 +b0)

so
(anxn

0 + · · ·+a1x0 +a0)
2 = r(bnxn

0 + · · ·+b1x+b0)
2.

Since r is in F and all the ai and bi are in F , then squaring both sides,
bringing everything over to one side, collecting terms, and replacing x0 by a
variable x gives a polynomial with coefficients in F which has x0 as a root.

(b) If x0 is a constructible number, then either it is rational (in which case we
are done) or it is in some field F (

p
r) which is at the end of a tower (Theorem

12.3.12). Then x0 is a root of the polynomial x� x0, which has coefficients in
that F (

p
r). Applying part (a) of this problem shows that x0 is also a root

of a polynomial that has coefficients in F . If F is not Q, then we can apply
part (a) again to show that x0 is a root of a polynomial with coefficients in
the predecessor of F in the tower. Continuing this process a finite number of
times shows that x0 is a root of a polynomial with coefficients in Q, and hence
x0 is algebraic. (A more formal proof would use induction on the length of the
tower.)

27. Suppose that regular polygons with m sides and n sides can be constructed, and
m and n are relatively prime. Prove that a regular polygon of mn sides can be
constructed.
[Hint: Use central angles and use the fact that a linear combination of m and n is
1.]

Answer: By Theorem 12.4.5, the central angles of the two given regular
polygons are constructible. That is, angles of 360

m and 360
n degrees are con-

structible. Since m and n are relatively prime, there are integers s and t such
that sm+ tn = 1 (see page 50 of Chapter 7). Then one of s and t is positive and
the other is negative. Assume that s is positive (if not, simply interchange the
roles of s and t, and m and n, in the proof below). By placing s angles of size
360

n appropriately adjacent to each other, it is possible to construct an angle of
360

n ·s degrees. Similarly, it is possible to construct an angle of 360
m · |t| degrees.
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Since 360
mn = 360(sm+tn)

mn = 360sm+360tn
mn = 360

n s+ 360
m t = 360

n · s� 360
m · |t|, it fol-

lows that it is possible to construct an angle of 360
mn degrees (by “subtracting”

an angle of 360
m · |t| degrees from one of 360

n · s degrees). Therefore, the central
angle of a regular polygon with mn sides is constructible, and thus, a regular
polygon of mn sides is constructible (Theorem 12.4.5).

29. (Very challenging) Prove that you cannot trisect an angle by trisecting the side
opposite the angle in a triangle containing it. That is, prove that, if ABC is any
triangle, there do not exist two lines through A such that those lines trisect both
the side BC of the triangle and the angle BAC of the triangle.
[Hint: Suppose that there do exist two such lines. The lines then divide the trian-
gle into three sub-triangles. One approach uses the easily established fact that all
three sub-triangles have the same area.]

Answer: Let an arbitrary triangle ABC be given. Suppose there exist lines AD
and AE, as pictured in the diagram, so that \BAD is equal to \DAE and
\EAC. Also suppose that the line segment BD is equal to the line segments
DE and EC.

B C

A

D E

We want to show that this is impossible. To establish that, we will show that
the above would imply that the three triangles ABD, ADE, and AEC are all
congruent to each other, after which we will demonstrate that that is not pos-
sible.

Take the base of each sub-triangle to be its side along BC so that its height
is the height of triangle ABC. Then the length of the base of each sub-triangle
is 1

3 of BC, and the heights are the same, so the sub-triangles all have the same
area.

We now want to show that if two triangles agree in angle-side and have
equal areas, then they are congruent. Suppose we are given fixed points G and
H, and an angle at G, as pictured below.
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G I

H

h

Each point I on the other side of G determines a unique triangle GHI. Let h
denote the height of the triangle to the base GI. The height h is the same re-
gardless of the position of I on the line. Since the area of the triangle GHI is 1

2
of the product of h and the length of GI, the length GI is uniquely determined
by the area of the triangle. Thus, any two triangles that agree in angle-side
and area also have the same second side, GI, and therefore are congruent by
side-angle-side (11.1.2).

The triangles ABD and AEC both agree in angle-side with the triangle
ADE, so it follows from what we have shown so far that all three triangles
are congruent. Therefore, \ADE is equal to either \ABD or \ADB. It is not
possible that \ADE = \ABD, since \ADE sums with \ADB to a straight
angle, while \ABD sums with \ADB and \DAB to a straight angle. Thus,
\ADE =\ADB. Similarly, \AED=\AEC. Since \ADE+\ADB= 180� =
\AED+\AEC, it follows that \ADE = \ADB = \AED = \AEC = 90�.
However, \ADE and \AED are two angles in the triangle AED, so their sum
plus \DAE is a straight angle. This contradicts the fact that their sum was
already 180�.


