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Dynamic discrete choice models

Discrete choice models seen in previous chapter are static.

This course: dynamic discrete choice ⇒ individuals consider the e�ect of today's
decisions on tomorrow's outcomes.

Many examples in economics of forward-looking individuals:

Labor: human capital/career decisions/migration.

Macro/�nance: investment decisions.

IO: engine replacement/patents/market entry-stay-exit.

Family economics: marriage/fertility.

Health: smoking/going on a diet.

Micro: social interactions.

Seminal work by Miller (1984), Wolpin (1984), Pakes (1986), and Rust (1987).
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General Framework
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Model primitives and decision problem

Time is discrete, t = 1, ..., T (with T �nite or in�nite).

Choices: dt = {j : j ∈ D = {1, 2, ..., J}}, and djt = 1{dt = j} with
∑

j∈D djt = 1.

State variables: st = {xt, εt}, where xt is observable (by the econometrician) and
εt = (ε1t, ..., εJt)

′ is unobservable.

State variables evolve as choice-speci�c Markovian process:

st+1 ∼ F (st+1|st, dt).
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Model primitives and decision problem (cont'd)

Intertemporal payo�s:

Et

[
T−t∑
l=0

βlU(st+l, dt+l)

]
.

The primitives of the model {U,F, β} are known by the econometrician up to a
parameter vector θ.

Agents are expected utility maximizers:

d∗t (st) = arg max
dt∈D

Et

[
T−t∑
l=0

βlU(st+l, dt+l)

]
.
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Baseline assumptions

Assumption 1 (additive separability, AS):

U(dt,xt, εt) = u(dt,xt) + εt(dt).

where εt(dt) ≡
∑

j∈D djtεjt. We also de�ne u(dt,xt) ≡
∑

j∈D djtujt(xt).

Assumption 2 (iid unobservables):

εt|xt ∼ i.i.d. Fε(εt) (i.i.d across individuals and over time).

Assumption 3 (conditional independence of future x):

Fx(xt+1|dt, xt, εt) = Fx(xt+1|dt, xt).

Assumptions 2+3 lead to conditional independence (CI):

F (xt+1, εt+1|dt, xt, εt) = Fx(xt+1|dt, xt)Fε(εt+1).

Assumption 4 (conditional logit, CLOGIT):

{εjt : j ∈ D} Independent across alternatives + Type I extreme value.
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Value function

Let Vt(xt) denote the ex-ante value function in period t:

Vt(xt) ≡ Et−1

T−t∑
l=0

∑
j∈D

βld∗jt+l(ujt+l(xt+l) + εjt+l)

∣∣∣∣xt
 .

This function is sometimes referred to as Emax.

Appealing to Bellman's optimality principle:

Vt(xt) = Et−1

∑
j∈D

d∗jt

(
ujt(xt) + εjt + β

∫
Vt+1(xt+1)dFx(xt+1|xt, d∗t )

) ∣∣∣∣xt


=
∑
j∈D

∫
d∗jt

(
ujt(xt) + εjt + β

∫
Vt+1(xt+1)dF (xt+1|xt, d∗t )

)
dFε(εt).
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Conditional choice probabilities
De�ne the conditional value function vjt(xt) as:

vjt(xt) ≡ ujt(xt) + β

∫
Vt+1(xt+1)dFx(xt+1|xt, j).

The individual chooses j in period t if and only if:

vjt(xt) + εjt ≥ vkt(xt) + εkt ∀k 6= j.

Given CLOGIT, the conditional choice probabilities (CCP) pjt(xt) are conditional logit type:

pjt(xt) =
evjt(xt)∑

h∈D e
vht(xt)

.

We need to solve the model to get vjt(xt) as a function of primitives (backwards induction or
�xed point). CLOGIT implies:

Vt+1(x) = ln
∑
j∈D

exp{vjt+1(x)}+ γ,

where γ is the Euler-Mascheroni constant.
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The likelihood function

We have longitudinal data {dit,xit}t=1,2,...,Ti

i=1,...,N .

The log-likelihood of this sample is given by:

LN(θ) =

N∑
i=1

ln Pr(di1, di2, ..., diTi , xi1, xi2, ..., xiTi ;θ) ≡
N∑
i=1

`i(θ).

Given Markovian structure and CI, we can factorize:

`i(θ) =

Ti∑
t=1

ln Pr(dit|xit;θ) +

Ti∑
t=2

ln Pr(xit|xit−1, dit−1;θ) + ln Pr(xi1;θ).
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Motivational Example: Rust's Engine
Replacement Model
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Rust (Econometrica 1987)

Analyzes the behavior of Harold Zurcher, superintendent of maintenance at Madison
Metropolitan Bus Company (Madison, Wisconsin).

Decision: every month t, to replace or to keep the engine of each bus i:

dt =

{
1 if replaces

0 if keeps.

Trade-o�: replacing ⇒ replacement cost, lower maintenance cost; keeping ⇒ saves the
replacement cost, larger maintenance cost:

U(dt, xt, εt) =

{
−[θR + θM0] + ε1t if dt = 1

−θMxt + ε0t if dt = 0.

State variables: xt is mileage, εt = (ε0t, ε1t)
′ is a vector of state variables unobserved by

the econometrician.
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Transition probabilities

Support of x is discrete {xt = x : x ∈ X; t = 1, ..., T}.

F 1
xt+1,xt

is degenerate.

F 0
xt+1,xt

is a transition matrix whose elements we estimate:

F 0
xt+1,xt

=



ϕ0 ϕ1 ϕ2 0 0 . . . 0 0 0
0 ϕ0 ϕ1 ϕ2 0 . . . 0 0 0
0 0 ϕ0 ϕ1 ϕ2 . . . 0 0 0
...

...
...

...
...

. . .
...

...
...

0 0 0 0 0 . . . ϕ0 ϕ1 ϕ2

0 0 0 0 0 . . . 0 ϕ0 1− ϕ0

0 0 0 0 0 . . . 0 0 1


.
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Value function

Baseline assumptions apply.

The conditional value function is:

vjt(xt) = ujt(xt) + β
∑
x∈X

ln

(∑
h∈D

exp{vht+1(x)}

)
F j
x,xt

+ βγ,

which, given in�nite horizon describes vjt(xt) ≡ vj(xt) for all t as the solution of
a �xed point:

vj(xt) = uj(xt) + β
∑
x∈X

ln

(∑
h∈D

exp{vh(x)}

)
F j
x,xt

+ βγ.
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Estimation
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Rust's NFXP Algorithm
Consider the division of the parameter vector in two subsets: θ = (θ′U ,θ

′
x)′.

Recall the there are three of components of the likelihood:

Pr(dit|xit;θ) = Pr(dit|xit;θU ,θx).

Pr(xit|xit−1, dit−1;θ) = Pr(xit|xit−1, dit−1;θx).

Pr(xi1;θ): This term can be ignored given CI.

A two-step algorithm estimates the two subsets separately:

θ̂x = arg maxθx
∑N

i=1

∑Ti
t=2 ln Pr(xit|xit−1, dit−1;θx), (solution not required)

θ̂U = arg maxθU
∑N

i=1

∑Ti
t=1 ln Pr(dit|xit;θU , θ̂x).

A third step with a single iteration of BHHH�see next slide� with (θ̂U , θ̂x) gives results that
are asymptotically equivalent to FIML.
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Rust's NFXP Algorithm (cont'd): BHHH

Rust proposes a nested �xed point algorithm (a BHHH algorithm combined with
the solution of the DP):

Inner loop: Solve the DP for each parameter evaluation θmU .

Outer loop: A BHHH optimization routine iterates over θU to maximize the log-
likelihood of the sample.

The BHHH is similar to Newton-Raphson except that avoids computing the Hes-
sian:

θm+1 = θm −

(
N∑
i=1

Ti∑
t=1

∂`it(θ
m)

∂θ

∂`it(θ
m)

∂θ′

)−1( N∑
i=1

Ti∑
t=1

∂`it(θ
m)

∂θ′

)
.

Why is it an approximation?
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Results in the Rust example

Table: First Stage Estimation: Transition Function for Mileage

Parameter Group 1, 2, 3 Group 4 Group 1, 2, 3, 4

ϕ0 0.29 0.40 0.33
(0.01) (0.01) (0.01)

ϕ1 0.70 0.59 0.66
(0.01) (0.01) (0.01)

ϕ2 0.01 0.01 0.01
(0.00) (0.00) (0.00)

Courtesy of José García-Louzao, Sergi Marin Arànega, Alex Tagliabracci, and Alessandro Rug-

gieri, who replicated Rust's paper for the replication exercise in the Microeconometrics IDEA

PhD course in Fall 2014.
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Results in the Rust example

Table: Second Stage Estimation: Cost Function Parameters

Method Parameter Group 1, 2, 3 Group 4 Group 1, 2, 3, 4

NFXP θR 11.87 10.12 9.75
(1.95) (1.36) (0.89)

θM 5.02 1.18 1.37
(1.40) (0.28) (0.24)

Courtesy of José García-Louzao, Sergi Marin Arànega, Alex Tagliabracci, and Alessandro Rug-

gieri, who replicated Rust's paper for the replication exercise in the Microeconometrics IDEA

PhD course in Fall 2014.
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Extensions/Departures from the Rust Framework
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Unobserved Heterogeneity

Motivational example: Keane and Wolpin (1997).

They analyze career decisions of young U.S. male.

Every year individuals decide one of:

Stay home (dt = 0).

Work in blue collar (dt = 1), white collar (dt = 2) or military (dt = 3).

Attend school (dt = 4).

State variables are zt ≡ (et, x1t, x2t, x3t)
′, ω, and εt ∼ i.i.d.N (0,Σ).

Utilities are:

U(dt,zt,ω, εt) =


ω0 + ε0t if dt = 0

rj exp{ωj + θ1jet + θ2jxjt + θ3jx
2
jt + εjt} if dt = 1, 2, 3

ω4 + θ4 1{et ≥ 12}+ θ5 1{et ≥ 16}+ ε4t if dt = 4.
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How does it depart from Rust?

Transitions of the observable state variables: Deterministic!

Implications?

Some assumptions for the unobservables are relaxed:

AS (because of wage equations).

CLOGIT (εt jointly normal+potentially correlated across alternatives).

IID (over time correlation through ω).

The �rst two add complication to computate Emax and CCPs.

The third one implies maximizing the integrated log-likelihood, which integrates
over ω, as εt satis�es IID (as in duration or RPL).
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Maximum Likelihood Estimation

De�ne Ω ≡ {ωk : k = 1, 2, ...,K}.

The log-likelihood is be:

LN(θ) =

N∑
i=1

ln

{
K∑
k=1

Pr(di1, di2, ..., diTi , zi1, zi2, ...,ziTi |ωk;θ)πk|zi1

}
,

where πk|zi1
≡ Pr(ωi = ωk|zi1).

What are the two inconveniences generated by this complication?

Computational burden.

Pr(zi1;θ).
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Estimation of competitive equilibrium models

Motivational example: Lee and Wolpin (2006).

As Keane-Wolpin, but rj becomes an equilibrium object rjt.

We add a labor demand, and rjt clears the market.

Very connected to macro GE heterogeneous agents models.

Entails several complications:

Solution of DP is a function of {rjt}j∈D (state space aug.).

Market clearing with labor demand to �nd r∗jt (equil. FXP).

Individuals have to forecast future skill prices (aggregate shock).

Estimation requires lots of data (given equilibrium and non-stationarity)⇒ Simulated
Minimum Distance.
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Using experimental data to validate the model
Motivational example: Todd and Wolpin (2006).

The goal of the paper is to estimate a model of child education and fertility to evaluate alternative
subsidies.

Make use of PROGRESA randomized implementation.

Advantage with respect to treatment e�ects: evaluate alternative subsidies and predict long-
run e�ects of the subsidy.

Empirical strategy: estimate the model using only the control group (individuals from villages
in which the subsidy was not implemented).

Assumptions:

Identi�cation of the e�ect of the subsidy comes from wages of children and the structure of
the model.

Households in control villages do not anticipate the subsidy.
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Application: Llull (2018)

Chapter 3: Dynamic Discrete Choice Models I: Full Solution Approaches 26



Labor Market Impacts of Immigration

In Llull (2018), I analyze how natives respond to in�ows of immigrants, and what are the
e�ects on wages.

Labor supply and human capital decisions in the model as follows:

Individuals decide yearly on participation, education and occupation from age 16
(or upon entry) to 65 (no return migration).

Immigration and capital process are speci�ed outside of the model, but allowed to
be endogenous to aggregate conditions.

An aggregate �rm combines labor skill units with capital to produce a single output.

Labor skill rental prices are determined in equilibrium. The wage of an individual
i at time t in occupation j:

wji,t = rjt × si ≡ price
j
t × skill unitsi.
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Labor Supply

Choice set:

Working in a blue-collar job (da = B)

Working in a white-collar job (da = W )

Attending school (da = S)

Staying at home (da = H)

They are not allowed to save, so they consume all their net income each period.

Imperfect forecasting of future labor market conditions.

State variables include l, E, XB , XW , XF , n, da−1, εa, rt, and t.
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Labor Supply

Individuals solve the following dynamic programming problem:

Va,t,l(Ωa,t) = max
da

Ua,l(Ωa,t, da) + βE [Va+1,t+1,l(Ωa+1,t+1) | Ωa,t, da, l]

U j
a,t,l = wj

a,t,l + δBW
g 1{da−1 6= {B,W}}, wj

a,t,l = rjt × s
j
a,l, j = B,W

wj
a,t,l = rjt exp{ωj

0,l + ωj
1,isEa + ωj

2XBa + ωj
3X

2
Ba + ωj

4XWa + ωj
5X

2
Wa + ωj

6XFa + εja}(
εBa

εWa

)
∼ i.i.N

([
0

0

]
,

[
(σB

g )2 ρBWσB
g σ

W
g

ρBWσB
g σ

W
g (σW

g )2

])
US

a,l = δS0,l−δS1,g1{da−1 6= S}−τ11{Ea ≥ 12} − τ21{Ea ≥ 16}+σS
g ε

S
a

UH
a,t,l = δH0,l + δH1,gna + δH2,gt+ σH

g ε
H
a

Notation: a ≡ age; l ≡ ability type (gender×region of origin); t ≡ time; g ≡ gender; is ≡
immigrant/native.
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Labor Demand
The labor demand is given by an aggregate production function:

Aggregate �rm produces with the following technology:

Yt = ztK
λ
St{αS

ρ
Bt + (1− α)[θSγWt + (1− θ)Kγ

Et]
ρ/γ}(1−λ)/ρ.

Two types of labor: blue- and white-collar. Workers within an occupation are also
heterogeneous in skills.

Imperfect substitutability between natives and immigrants is endogenously gener-
ated through individual choices.

The nested CES is included to capture the capital-skill complementarity and
SBTC (Krusell et al., 2000).

zt is an aggregate productivity shock assumed to evolve according to:

ln zt+1 − ln zt = φ0 + φ1(ln zt − ln zt−1) + εzt+1

εzt+1 ∼ N (0, σz).
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Equilibrium

In equilibrium:

Demands of skill units are given by the �rst order conditions on �rm's problem.

The aggregate supply of skill units is given by:

Sjt =

65∑
a=16

N∑
i=1

sja,i1{da,i = j} j = B,W

⇒ The equilibrium is given by the skill prices that equate the supply and the demand
of skill units (market clearing).

Expectations are approximated with a VAR rule, in line with Lee and Wolpin (2006,
2010), and in the same spirit of Krusell and Smith (1998) ⇒ �xed point.
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Results

Counterfactual: keep immigrants so that the share is constant to 1965 levels.

Two types of exercises: �xed capital and �xed interest rates.

Main results:

Equilibrium adjustments are important to mitigate initial impacts on wages.

Overall e�ects on education are very close to zero: strong heterogeneous e�ects that
compensate each other.

Participation margin matters for the e�ects along the native wage distribution.
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