
CHAPTER 3

Counting

It may seem peculiar that a college-level text has a chapter on counting.
At its most basic level, counting is a process of pointing to each object

in a collection and calling off “one, two, three,...” until the quantity of
objects is determined. How complex could that be? Actually, counting
can become quite subtle, and in this chapter we explore some of its more
sophisticated aspects. Our goal is still to answer the question “How many?”
but we introduce mathematical techniques that bypass the actual process
of counting individual objects.

Almost every branch of mathematics uses some form of this “sophisti-
cated counting.” Many such counting problems can be modeled with the
idea of a list, so we start there.

3.1 Counting Lists
A list is an ordered sequence of objects. A list is denoted by an opening
parenthesis, followed by the objects, separated by commas, followed by a
closing parenthesis. For example (a,b, c,d, e) is a list consisting of the first
five letters of the English alphabet, in order. The objects a,b, c,d, e are
called the entries of the list; the first entry is a, the second is b, and so
on. If the entries are rearranged we get a different list, so, for instance,

(a,b, c,d, e) 6= (b,a, c,d, e).

A list is somewhat like a set, but instead of being a mere collection of
objects, the entries of a list have a definite order. Note that for sets we
have {

a,b, c,d, e
}= {

b,a, c,d, e
}
,

but—as noted above—the analogous equality for lists does not hold.
Unlike sets, lists are allowed to have repeated entries. For example

(5,3,5,4,3,3) is a perfectly acceptable list, as is (S,O,S). The number of
entries in a list is called its length. Thus (5,3,5,4,3,3) has length six, and
(S,O,S) has length three.
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Occasionally we may get sloppy and write lists without parentheses
and commas; for instance, we may express (S,O,S) as SOS if there is no
danger of confusion. But be alert that doing this can lead to ambiguity.
Is it reasonable that (9,10,11) should be the same as 91011? If so, then
(9,10,11)= 91011= (9,1,0,1,1), which makes no sense. We will thus almost
always adhere to the parenthesis/comma notation for lists.

Lists are important because many real-world phenomena can be de-
scribed and understood in terms of them. For example, your phone number
(with area code) can be identified as a list of ten digits. Order is essential,
for rearranging the digits can produce a different phone number. A byte is
another important example of a list. A byte is simply a length-eight list of
0’s and 1’s. The world of information technology revolves around bytes.

To continue our examples of lists, (a,15) is a list of length two. Likewise
(0, (0,1,1)) is a list of length two whose second entry is a list of length three.
The list (N,Z,R) has length three, and each of its entries is a set. We
emphasize that for two lists to be equal, they must have exactly the same
entries in exactly the same order. Consequently if two lists are equal, then
they must have the same length. Said differently, if two lists have different
lengths, then they are not equal. For example, (0,0,0,0,0,0) 6= (0,0,0,0,0).
For another example note that

( g, r, o, c, e, r, y, l, i, s, t )
bread
milkeggs
mustard
coffee

6=
( )

because the list on the left has length eleven but the list on the right has
just one entry (a piece of paper with some words on it).

There is one very special list which has no entries at all. It is called
the empty list, and is denoted (). It is the only list whose length is zero.

One often needs to count up the number of possible lists that satisfy
some condition or property. For example, suppose we need to make a list of
length three having the property that the first entry must be an element
of the set

{
a,b, c

}
, the second entry must be in

{
5,7

}
and the third entry

must be in
{
a, x

}
. Thus (a,5,a) and (b,5,a) are two such lists. How many

such lists are there all together? To answer this question, imagine making
the list by selecting the first element, then the second and finally the third.
This is described in Figure 3.1. The choices for the first list entry are
a,b or c, and the left of the diagram branches out in three directions, one
for each choice. Once this choice is made there are two choices (5 or 7)
for the second entry, and this is described graphically by two branches
from each of the three choices for the first entry. This pattern continues
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for the choice for the third entry, which is either a or x. Thus, in the
diagram there are 3 ·2 ·2= 12 paths from left to right, each corresponding
to a particular choice for each entry in the list. The corresponding lists
are tallied at the far-right end of each path. So, to answer our original
question, there are 12 possible lists with the stated properties.

first choice second choice third choice
Resulting list

a

b

c

5

7

5

7

5

7

a
x
a
x
a
x

x
a
x
a
x
a

(a,5,a)
(a,5, x)
(a,7,a)
(a,7, x)
(b,5,a)
(b,5, x)
(b,7,a)
(b,7, x)
(c,5,a)
(c,5, x)
(c,7,a)
(c,7, x)

Figure 3.1. Constructing lists of length 3

We summarize the type of reasoning used above in an important fact
called the multiplication principle.

Fact 3.1 (Multiplication Principle) Suppose in making a list of length
n there are a1 possible choices for the first entry, a2 possible choices for
the second entry, a3 possible choices for the third entry and so on. Then
the total number of different lists that can be made this way is the product
a1 ·a2 ·a3 · · · · ·an.

So, for instance, in the above example we had a1 = 3,a2 = 2 and a3 = 2,
so the total number of lists was a1 ·a2 ·a3 = 3 ·2 ·2 = 12. Now let’s look at
some additional examples of how the multiplication principle can be used.

Example 3.1 A standard license plate consists of three letters followed
by four numbers. For example, JRB-4412 and MMX-8901 are two standard
license plates. (Vanity plates such as LV2COUNT are not included among
the standard plates.) How many different standard license plates are
possible?
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To answer this question, note that any standard license plate such as
JRB-4412 corresponds to a length-7 list (J,R,B,4,4,1,2), so the question
can be answered by counting how many such lists are possible. We use the
multiplication principle. There are a1 = 26 possibilities (one for each letter
of the alphabet) for the first entry of the list. Similarly, there are a2 = 26
possibilities for the second entry and a3 = 26 possibilities for the third
entry. There are a4 = 10 possibilities for the fourth entry, and likewise
a5 = a6 = a7 = 10. Therefore there are a total of a1 ·a2 ·a3 ·a4 ·a5 ·a6 ·a7 =
26 ·26 ·26 ·10 ·10 ·10 ·10= 175,760,000 possible standard license plates.

There are two types of list-counting problems. On one hand, there are
situations in which the same symbol or symbols may appear multiple times
in different entries of the list. For example, license plates or telephone
numbers can have repeated symbols. The sequence CCX-4144 is a perfectly
valid license plate in which the symbols C and 4 appear more than once.
On the other hand, for some lists repeated symbols do not make sense or
are not allowed. For instance, imagine drawing 5 cards from a standard
52-card deck and laying them in a row. Since no 2 cards in the deck
are identical, this list has no repeated entries. We say that repetition is
allowed in the first type of list and repetition is not allowed in the second
kind of list. (Often we call a list in which repetition is not allowed a
non-repetitive list.) The following example illustrates the difference.
Example 3.2 Consider making lists from symbols A, B, C, D, E, F, G.
(a) How many length-4 lists are possible if repetition is allowed?
(b) How many length-4 lists are possible if repetition is not allowed?
(c) How many length-4 lists are possible if repetition is not allowed and
the list must contain an E?
(d) How many length-4 lists are possible if repetition is allowed and the
list must contain an E?

Solutions:
(a) Imagine the list as containing four boxes that we fill with selections
from the letters A,B,C,D,E,F and G, as illustrated below.

, , ,( )
7 choices

7 choices
7 choices

7 choices

There are seven possibilities for the contents of each box, so the total
number of lists that can be made this way is 7 ·7 ·7 ·7= 2401.
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(b) This problem is the same as the previous one except that repetition is
not allowed. We have seven choices for the first box, but once it is filled
we can no longer use the symbol that was placed in it. Hence there are
only six possibilities for the second box. Once the second box has been
filled we have used up two of our letters, and there are only five left to
choose from in filling the third box. Finally, when the third box is filled
we have only four possible letters for the last box.

, , ,( )
7 choices

6 choices
5 choices

4 choices

Thus the answer to our question is that there are 7 ·6 ·5 ·4= 840 lists in
which repetition does not occur.
(c) We are asked to count the length-4 lists in which repetition is not
allowed and the symbol E must appear somewhere in the list. Thus E
occurs once and only once in each such list. Let us divide these lists into
four categories depending on whether the E occurs as the first, second,
third or fourth entry. These four types of lists are illustrated below.

, , , , , , , , , , , ,E E E E

Type 1 Type 2 Type 3 Type 4

( ( ( () ) ) )
6 choices 6 choices 6 choices 6 choices

5 choices 5 choices 5 choices 5 choices
4 choices 4 choices 4 choices 4 choices

Consider lists of the first type, in which the E appears in the first entry.
We have six remaining choices (A,B,C,D,F or G) for the second entry, five
choices for the third entry and four choices for the fourth entry. Hence
there are 6 ·5 ·4= 120 lists having an E in the first entry. As indicated
in the above diagram, there are also 6 ·5 ·4= 120 lists having an E in the
second, third or fourth entry. Thus there are 120+120+120+120= 480
such lists all together.

(d) Now we must find the number of length-four lists where repetition
is allowed and the list must contain an E. Our strategy is as follows.
By Part (a) of this exercise there are 7 ·7 ·7 ·7 = 74 = 2401 lists where
repetition is allowed. Obviously this is not the answer to our current
question, for many of these lists contain no E. We will subtract from
2401 the number of lists that do not contain an E. In making a list that
does not contain an E, we have six choices for each list entry (because
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we can choose any one of the six letters A,B,C,D,F or G). Thus there
are 6 ·6 ·6 ·6= 64 = 1296 lists that do not have an E. Therefore the final
answer to our question is that there are 2401−1296 = 1105 lists with
repetition allowed that contain at least one E.

Perhaps you wondered if Part (d) of Example 3.2 could be solved with
a setup similar to that of Part (c). Let’s try doing it that way. We want
to count the length-4 lists (with repetition allowed) that contain at least
one E. The following diagram is adapted from Part (c), the only difference
being that there are now seven choices in each slot because we are allowed
to repeat any of the seven letters.

, , , , , , , , , , , ,E E E E

Type 1 Type 2 Type 3 Type 4

( ( ( () ) ) )
7 choices 7 choices 7 choices 7 choices

7 choices 7 choices 7 choices 7 choices
7 choices 7 choices 7 choices 7 choices

This gives a total of 73 + 73 + 73 + 73 = 1372 lists, an answer that is
substantially larger than the (correct) value of 1105 that we got in our
solution to Part (d) above. It is not hard to see what went wrong. The
list (E,E, A,B) is of type 1 and type 2, so it got counted twice. Similarly
(E,E,C,E) is of type 1, 3 and 4, so it got counted three times. In fact, you
can find many similar lists that were counted multiple times.

In solving counting problems, we must always be careful to avoid this
kind of double-counting or triple-counting, or worse.

Exercises for Section 3.1

Note: A calculator may be helpful for some of the exercises in this chapter. This
is the only chapter for which a calculator may be helpful. (As for the exercises in
the other chapters, a calculator makes them harder.)

1. Consider lists made from the letters T,H,E,O,R,Y, with repetition allowed.
(a) How many length-4 lists are there?
(b) How many length-4 lists are there that begin with T ?
(c) How many length-4 lists are there that do not begin with T ?

2. Airports are identified with 3-letter codes. For example, the Richmond, Virginia
airport has the code RIC, and Portland, Oregon has PDX. How many different
3-letter codes are possible?

3. How many lists of length 3 can be made from the symbols A,B,C,D,E,F if...
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(a) ... repetition is allowed.
(b) ... repetition is not allowed.
(c) ... repetition is not allowed and the list must contain the letter A.
(d) ... repetition is allowed and the list must contain the letter A.

4. Five cards are dealt off of a standard 52-card deck and lined up in a row. How
many such line-ups are there in which all 5 cards are of the same suit?

5. Five cards are dealt off of a standard 52-card deck and lined up in a row. How
many such line-ups are there in which all 5 cards are of the same color (i.e.,
all black or all red)?

6. Five cards are dealt off of a standard 52-card deck and lined up in a row. How
many such line-ups are there in which exactly one of the 5 cards is a queen?

7. This problem involves 8-digit binary strings such as 10011011 or 00001010
(i.e., 8-digit numbers composed of 0’s and 1’s).
(a) How many such strings are there?
(b) How many such strings end in 0?
(c) How many such strings have the property that their second and fourth

digits are 1’s?
(d) How many such strings have the property that their second or fourth digits

are 1’s?
8. This problem concerns lists made from the symbols A,B,C,D,E.

(a) How many such length-5 lists have at least one letter repeated?
(b) How many such length-6 lists have at least one letter repeated?

9. This problem concerns 4-letter codes made from the letters A,B,C,D,...,Z.
(a) How many such codes can be made?
(b) How many such codes have no two consecutive letters the same?

10. This problem concerns lists made from the letters A,B,C,D,E,F,G,H,I,J.
(a) How many length-5 lists can be made from these letters if repetition is not

allowed and the list must begin with a vowel?
(b) How many length-5 lists can be made from these letters if repetition is not

allowed and the list must begin and end with a vowel?
(c) How many length-5 lists can be made from these letters if repetition is not

allowed and the list must contain exactly one A?
11. This problem concerns lists of length 6 made from the letters A,B,C,D,E,F,G,H.

How many such lists are possible if repetition is not allowed and the list
contains two consecutive vowels?

12. Consider the lists of length six made with the symbols P, R, O, F, S, where
repetition is allowed. (For example, the following is such a list: (P,R,O,O,F,S).)
How many such lists can be made if the list must end in an S and the symbol
O is used more than once?
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3.2 Factorials
In working the examples from Section 3.1, you may have noticed that often
we need to count the number of non-repetitive lists of length n that are
made from n symbols. In fact, this particular problem occurs with such
frequency that a special idea, called a factorial, is introduced to handle it.

The table below motivates this idea. The first column lists successive
integer values n (beginning with 0) and the second column contains a
set

{
A,B, · · ·} of n symbols. The third column contains all the possible

non-repetitive lists of length n which can be made from these symbols.
Finally, the last column tallies up how many lists there are of that type.
Notice that when n = 0 there is only one list of length 0 that can be made
from 0 symbols, namely the empty list ( ). Thus the value 1 is entered in
the last column of that row.

n Symbols Non-repetitive lists of length n made from the symbols n!

0
{}

( ) 1

1
{
A

}
(A) 1

2
{
A,B

}
(A,B), (B, A) 2

3
{
A,B,C

}
(A,B,C), (A,C,B), (B,C, A), (B, A,C), (C, A,B), (C,B, A) 6

4
{
A,B,C,D

} (A,B,C,D), (A,B,D,C), (A,C,B,D), (A,C,D,B), (A,D,B,C), (A,D,C,B)
(B,A,C,D), (B,A,D,C), (B,C,A,D), (B,C,D,A), (B,D, A,C), (B,D,C,A)
(C,A,B,D), (C,A,D,B), (C,B,A,D), (C,B,D,A), (C,D,A,B), (C,D,B,A)
(D,A,B,C), (D,A,C,B), (D,B,A,C), (D,B,C,A), (D,C,A,B), (D,C,B,A)

24

...
...

...
...

For n > 0, the number that appears in the last column can be computed
using the multiplication principle. The number of non-repetitive lists of
length n that can be made from n symbols is n(n−1)(n−2) · · ·3·2·1. Thus, for
instance, the number in the last column of the row for n = 4 is 4 ·3 ·2 ·1= 24.

The number that appears in the last column of Row n is called the
factorial of n. It is denoted as n! (read “n factorial”). Here is the definition:

Definition 3.1 If n is a non-negative integer, then the factorial of n,
denoted n!, is the number of non-repetitive lists of length n that can
be made from n symbols. Thus 0! = 1 and 1! = 1. If n > 1, then n! =
n(n−1)(n−2) · · ·3 ·2 ·1.
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It follows that 0! = 1
1! = 1
2! = 2 ·1= 2
3! = 3 ·2 ·1= 6
4! = 4 ·3 ·2 ·1= 24
5! = 5 ·4 ·3 ·2 ·1= 120
6! = 6 ·5 ·4 ·3 ·2 ·1= 720, and so on.

Students are often tempted to say 0!= 0, but this is wrong. The correct
value is 0!= 1, as the above definition and table tell us. Here is another
way to see that 0! must equal 1: Notice that 5!= 5 ·4 ·3 ·2 ·1= 5 · (4 ·3 ·2 ·1)=
5 ·4!. Also 4!= 4 ·3 ·2 ·1= 4 · (3 ·2 ·1)= 4 ·3!. Generalizing this reasoning, we
have the following formula.

n!= n · (n−1)! (3.1)

Plugging in n = 1 gives 1!= 1·(1−1)!= 1·0!, that is, 1!= 1·0!. If we mistakenly
thought 0! were 0, this would give the incorrect result 1!= 0.

We round out our discussion of factorials with an example.

Example 3.3 This problem involves making lists of length seven from
the symbols 0,1,2,3,4,5 and 6.

(a) How many such lists are there if repetition is not allowed?
(b) How many such lists are there if repetition is not allowed and the
first three entries must be odd?

(c) How many such lists are there in which repetition is allowed, and
the list must contain at least one repeated number?

To answer the first question, note that there are seven symbols, so the
number of lists is 7! = 5040. To answer the second question, notice that
the set

{
0,1,2,3,4,5,6

}
contains three odd numbers and four even numbers.

Thus in making the list the first three entries must be filled by odd numbers
and the final four must be filled with even numbers. By the multiplication
principle, the number of such lists is 3 ·2 ·1 ·4 ·3 ·2 ·1= 3!4!= 144.

To answer the third question, notice that there are 77 = 823,543 lists
in which repetition is allowed. The set of all such lists includes lists
that are non-repetitive (e.g., (0,6,1,2,4,3,5)) as well as lists that have
some repetition (e.g., (6,3,6,2,0,0,0)). We want to compute the number of
lists that have at least one repeated number. To find the answer we can
subtract the number of non-repetitive lists of length seven from the total
number of possible lists of length seven. Therefore the answer is 77 −7!=
823,543−5040= 818,503.
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We close this section with a formula that combines the ideas of the first
and second sections of the present chapter. One of the main problems of
Section 3.1 was as follows: Given n symbols, how many non-repetitive lists
of length k can be made from the n symbols? We learned how to apply the
multiplication principle to obtain the answer

n(n−1)(n−2) · · · (n−k+1).

Notice that by cancellation this value can also be written as

n(n−1)(n−2) · · · (n−k+1)(n−k)(n−k−1) · · ·3 ·2 ·1
(n−k)(n−k−1) · · ·3 ·2 ·1 = n!

(n−k)!
.

We summarize this as follows:

Fact 3.2 The number of non-repetitive lists of length k whose entries
are chosen from a set of n possible entries is n!

(n−k)! .

For example, consider finding the number of non-repetitive lists of
length five that can be made from the symbols 1,2,3,4,5,6,7,8. We will do
this two ways. By the multiplication principle, the answer is 8 ·7 ·6 ·5 ·4=
6720. Using the formula from Fact 3.2, the answer is 8!

(8−5)! = 8!
3! = 40,320

6 =
6720.

The new formula isn’t really necessary, but it is a nice repackaging of
an old idea and will prove convenient in the next section.

Exercises for Section 3.2

1. What is the smallest n for which n! has more than 10 digits?
2. For which values of n does n! have n or fewer digits?
3. How many 5-digit positive integers are there in which there are no repeated

digits and all digits are odd?
4. Using only pencil and paper, find the value of 100!

95! .
5. Using only pencil and paper, find the value of 120!

118! .
6. There are two 0’s at the end of 10! = 3,628,800. Using only pencil and paper,

determine how many 0’s are at the end of the number 100!.
7. Compute howmany 9-digit numbers can be made from the digits 1,2,3,4,5,6,7,8,9

if repetition is not allowed and all the odd digits occur first (on the left) followed
by all the even digits (i.e. as in 137598264, but not 123456789).

8. Compute how many 7-digit numbers can be made from the digits 1,2,3,4,5,6,7 if
there is no repetition and the odd digits must appear in an unbroken sequence.
(Examples: 3571264 or 2413576 or 2467531, etc., but not 7234615.)
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9. There is a very interesting function Γ : [0,∞)→R called the gamma function.
It is defined as Γ(x)= ∫ ∞

0 tx−1e−tdt. It has the remarkable property that if x ∈N,
then Γ(x)= (x−1)!. Check that this is true for x = 1,2,3,4.
Notice that this function provides a way of extending factorials to numbers other
than integers. Since Γ(n)= (n−1)! for all n ∈N, we have the formula n!=Γ(n+1).
But Γ can be evaluated at any number in [0,∞), not just at integers, so we
have a formula for n! for any n ∈ [0,∞). Extra credit: Compute π!.

10. There is another significant function called Stirling’s formula that provides an
approximation to factorials. It states that n!≈p

2πn
( n

e
)n. It is an approximation

to n! in the sense that n!p
2πn

( n
e
)n approaches 1 as n approaches ∞. Use Stirling’s

formula to find approximations to 5!, 10!, 20! and 50!.

3.3 Counting Subsets
The previous two sections were concerned with counting the number of
lists that can be made by selecting k entries from a set of n possible entries.
We turn now to a related question: How many subsets can be made by
selecting k elements from a set with n elements?

To highlight the differences between these two problems, look at the set
A = {

a,b, c,d, e
}
. First, think of the non-repetitive lists that can be made

from selecting two entries from A. By Fact 3.2 (on the previous page),
there are 5!

(5−2)! = 5!
3! = 120

6 = 20 such lists. They are as follows.

(a,b), (a, c), (a,d), (a, e), (b, c), (b,d), (b, e), (c,d), (c, e) (d, e)
(b,a), (c,a), (d,a), (e,a), (c,b), (d,b), (e,b), (d, c), (e, c) (e,d)

Next consider the subsets of A that can made from selecting two ele-
ments from A. There are only ten such subsets, as follows.{

a,b
}
,

{
a, c

}
,

{
a,d

}
,

{
a, e

}
,

{
b, c

}
,

{
b,d

}
,

{
b, e

}
,

{
c,d

}
,

{
c, e

}
,

{
d, e

}
.

The reason that there are more lists than subsets is that changing the
order of the entries of a list produces a different list, but changing the
order of the elements of a set does not change the set. Using elements
a,b ∈ A, we can make two lists (a,b) and (b,a), but only one subset

{
a,b

}
.

In this section we are concerned not with counting lists, but with
counting subsets. As was noted above, the basic question is this: How
many subsets can be made by choosing k elements from an n-element
set? We begin with some notation that gives a name to the answer to this
question.
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Definition 3.2 If n and k are integers, then
(n

k
)
denotes the number

of subsets that can be made by choosing k elements from a set with n
elements. The symbol

(n
k
)
is read “n choose k.” (Some textbooks write

C(n,k) instead of
(n

k
)
.)

To illustrate this definition, the following table computes the values of(4
k
)
for various values of k by actually listing all the subsets of the 4-element

set A = {
a,b, c,d

}
that have cardinality k. The values of k appear in the

far-left column. To the right of each k are all of the subsets (if any) of A of
size k. For example, when k = 1, set A has four subsets of size k, namely{
a
}
,
{
b
}
,
{
c
}
and

{
d
}
. Therefore

(4
1
)= 4. Similarly, when k = 2 there are six

subsets of size k so
(4
2
)= 6.

k k-element subsets of
{
a,b, c,d

} (4
k
)

−1
( 4
−1

)= 0

0 ; (4
0
)= 1

1
{
a
}
,
{
b
}
,
{
c
}
,
{
d
} (4

1
)= 4

2
{
a,b

}
,
{
a, c

}
,
{
a,d

}
,
{
b, c

}
,
{
b,d

}
,
{
c,d

} (4
2
)= 6

3
{
a,b, c

}
,
{
a,b,d

}
,
{
a, c,d

}
,
{
b, c,d

} (4
3
)= 4

4
{
a,b, c,d

} (4
4
)= 1

5
(4
5
)= 0

6
(4
6
)= 0

When k = 0, there is only one subset of A that has cardinality k, namely
the empty set, ;. Therefore (4

0
)= 1.

Notice that if k is negative or greater than |A|, then A has no subsets
of cardinality k, so

(4
k
)= 0 in these cases. In general

(n
k
)= 0 whenever k < 0

or k > n. In particular this means
(n

k
)= 0 if n is negative.

Although it was not hard to work out the values of
(4
k
)
by writing out

subsets in the above table, this method of actually listing sets would not
be practical for computing

(n
k
)
when n and k are large. We need a formula.

To find one, we will now carefully work out the value of
(5
3
)
in such a way

that a pattern will emerge that points the way to a formula for any
(n

k
)
.
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To begin, note that
(5
3
)
is the number of 3-element subsets of

{
a,b, c,d, e

}
.

These are listed in the following table. We see that in fact
(5
3
)= 10.

{
a,b,c

}{
a,b,d

}{
a,b,e

} {
a,c,d

} {
a,c,e

} {
a,d,e

}{
b,c,d

} {
b,c,e

} {
b,d,e

} {
c,d,e

}
(5
3
)

3!

The formula will emerge when we expand this table as follows. Taking
any one of the ten 3-element sets above, we can make 3! different non-
repetitive lists from its elements. For example, consider the first set

{
a,b, c

}
.

The first column of the following table tallies the 3!= 6 different lists that
can be the letters

{
a,b, c

}
. The second column tallies the lists that can be

made from
{
a,b,d

}
, and so on.

abc abd abe acd ace ade bcd bce bde cde
acb adb aeb adc aec aed bdc bec bed ced
bac bad bae cad cae dae cbd cbe dbe dce
bca bda bea cda cea dea cdb ceb deb dec
cba dba eba dca eca eda dcb ecb edb edc
cab dab eab dac eac ead dbc ebc ebd ecd

3!

(5
3
)

This table has
(5
3
)
columns and 3! rows, so it has a total of 3!

(5
3
)
lists.

But notice also that the table consists of every non-repetitive length-3 list
that can be made from the symbols

{
a,b, c,d, e

}
. We know from Fact 3.2

that there are 5!
(5−3)! such lists. Thus the total number of lists in the table

is 3!
(5
3
)= 5!

(5−3)! . Dividing both sides of this equation by 3!, we get(
5
3

)
= 5!

3!(5−3)!
.

Working this out, you will find that it does give the correct value of 10.
But there was nothing special about the values 5 and 3. We could

do the above analysis for any
(n

k
)
instead of

(5
3
)
. The table would have

(n
k
)

columns and k! rows. We would get(
n
k

)
= n!

k!(n−k)!
.

We summarize this as follows:
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Fact 3.3 If n,k ∈Z and 0≤ k ≤ n, then
(
n
k

)
= n!

k!(n−k)!
. Otherwise

(
n
k

)
= 0.

Let’s now use our new knowledge to work some exercises.
Example 3.4 How many 4-element subsets does

{
1,2,3,4,5,6,7,8,9

}
have?

The answer is
(9
4
)= 9!

4!(9−4)! = 9!
4!5! = 9·8·7·6·5!

4!5! = 9·8·7·6
4! = 9·8·7·6

24 = 126.
Example 3.5 A single 5-card hand is dealt off of a standard 52-card deck.
How many different 5-card hands are possible?

To answer this, think of the deck as being a set D of 52 cards. Then a
5-card hand is just a 5-element subset of D. For example, here is one of
many different 5-card hands that might be dealt from the deck.{

7

♣ ,
2

♣ ,
3

♥ ,
A

♠ ,
5

♦

}
The total number of possible hands equals the number of 5-element

subsets of D, that is(
52
5

)
= 52!

5! ·47!
= 52 ·51 ·50 ·49 ·48 ·47!

5! ·47!
= 52 ·51 ·50 ·49 ·48

5!
= 2,598,960.

Thus the answer to our question is that there are 2,598,960 different
five-card hands that can be dealt from a deck of 52 cards.
Example 3.6 This problem concerns 5-card hands that can be dealt off
of a 52-card deck. How many such hands are there in which two of the
cards are clubs and three are hearts?

Solution: Think of such a hand as being described by a list of length
two of the form ( { ∗

♣ ,
∗

♣

}
,
{ ∗

♥ ,
∗

♥ ,
∗

♥

} )
,

where the first entry is a 2-element subset of the set of 13 club cards, and
the second entry is a 3-element subset of the set of 13 heart cards. There
are

(13
2
)
choices for the first entry and

(13
3
)
choices for the second entry, so

by the multiplication principle there are
(13

2
)(13

3
)= 13!

2!11!
13!

3!10! = 22,308 such
lists. Answer: There are 22,308 possible 5-card hands with two clubs
and three hearts.
Example 3.7 Imagine a lottery that works as follows. A bucket contains
36 balls numbered 1,2,3,4, ...,36. Six of these balls will be drawn randomly.
For $1 you buy a ticket that has six blanks: ääääää . You fill in the
blanks with six different numbers between 1 and 36. You win $1,000,000
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if you chose the same numbers that are drawn, regardless of order. What
are your chances of winning?

Solution: In filling out the ticket you are choosing six numbers from
a set of 36 numbers. Thus there are

(36
6
) = 36!

6!(36−6)! = 1,947,792 different
combinations of numbers you might write. Only one of these will be a
winner. Your chances of winning are one in 1,947,792.

Exercises for Section 3.3

1. Suppose a set A has 37 elements. How many subsets of A have 10 elements?
How many subsets have 30 elements? How many have 0 elements?

2. Suppose A is a set for which |A| = 100. How many subsets of A have 5 elements?
How many subsets have 10 elements? How many have 99 elements?

3. A set X has exactly 56 subsets with 3 elements. What is the cardinality of X?
4. Suppose a set B has the property that

∣∣{X : X ∈P(B), |X | = 6
}∣∣= 28. Find |B|.

5. How many 16-digit binary strings contain exactly seven 1’s? (Examples of such
strings include 0111000011110000 and 0011001100110010, etc.)

6.
∣∣{X ∈P(

{
0,1,2,3,4,5,6,7,8,9

}
) : |X | = 4

}∣∣=
7.

∣∣{X ∈P(
{
0,1,2,3,4,5,6,7,8,9

}
) : |X | < 4

}∣∣=
8. This problem concerns lists made from the symbols A,B,C,D,E,F,G,H,I.

(a) How many length-5 lists can be made if repetition is not allowed and the
list is in alphabetical order? (Example: BDEFI or ABCGH, but not BACGH.)

(b) How many length-5 lists can be made if repetition is not allowed and the
list is not in alphabetical order?

9. This problem concerns lists of length 6 made from the letters A,B,C,D,E,F,
without repetition. How many such lists have the property that the D occurs
before the A?

10. A department consists of 5 men and 7 women. From this department you select
a committee with 3 men and 2 women. In how many ways can you do this?

11. How many positive 10-digit integers contain no 0’s and exactly three 6’s?
12. Twenty-one people are to be divided into two teams, the Red Team and the

Blue Team. There will be 10 people on Red Team and 11 people on Blue Team.
In how many ways can this be done?

13. Suppose n and k are integers for which 0≤ k ≤ n. Use the formula
(n

k
)= n!

k!(n−k)!
to show that

(n
k
)= ( n

n−k
)
.

14. Suppose n,k ∈Z, and 0≤ k ≤ n. Use Definition 3.2 alone (without using Fact 3.3)
to show that

(n
k
)= ( n

n−k
)
.
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3.4 Pascal’s Triangle and the Binomial Theorem
There are some beautiful and significant patterns among the numbers

(n
k
)
.

This section investigates a pattern based on one equation in particular. It
happens that (

n+1
k

)
=

(
n

k−1

)
+

(
n
k

)
(3.2)

for any integers n and k with 1≤ k ≤ n.
To see why this is true, recall that

(n+1
k

)
equals the number of k-element

subsets of a set with n+1 elements. Now, the set A = {
0,1,2,3, . . . ,n

}
has

n+1 elements, so
(n+1

k
)
equals the number of k-element subsets of A. Such

subsets can be divided into two types: those that contain 0 and those that
do not contain 0. To make a k-element subset that contains 0 we can start
with

{
0
}
and then append to this set an additional k−1 numbers selected

from
{
1,2,3, . . . ,n

}
. There are

( n
k−1

)
ways to make this selection, so there

are
( n
k−1

)
k-element subsets of A that contain 0. Concerning the k-element

subsets of A that do not contain 0, there are
(n

k
)
of these sets, for we can

form them by selecting k elements from the n-element set
{
1,2,3, . . . ,n

}
. In

light of all this, Equation (3.2) just expresses the obvious fact that the
number of k-element subsets of A equals the number of k-element subsets
that contain 0 plus the number of k-element subsets that do not contain 0.

(0
0
)(1

0
) (1

1
)(2

0
) (2

1
) (2

2
)(3

0
) (3

1
) (3

2
) (3

3
)(4

0
) (4

1
) (4

2
) (4

3
) (4

4
)(5

0
) (5

1
) (5

2
) (5

3
) (5

4
) (5

5
)(6

0
) (6

1
) (6

2
) (6

3
) (6

4
) (6

5
) (6

6
)(7

0
) (7

1
) (7

2
) (7

3
) (7

4
) (7

5
) (7

6
) (7

7
)
. . .

...
...

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
1 7 21 35 35 21 7 1 . . .

...
...

Figure 3.2. Pascal’s triangle

Now that we have seen why Equation (3.2) is true, we are going to
arrange the numbers

(n
k
)
in a triangular pattern that highlights various

relationships among them. The left-hand side of Figure 3.2 shows numbers(n
k
)
arranged in a pyramid with

(0
0
)
at the apex, just above a row containing(1

k
)
with k = 0 and k = 1. Below this is a row listing the values of

(2
k
)
for

k = 0,1,2. In general, each row listing the numbers
(n

k
)
is just above a row

listing the numbers
(n+1

k
)
.
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Any number
(n+1

k
)
for 0 < k < n in this pyramid is immediately below

and between the the two numbers
( n
k−1

)
and

(n
k
)
in the previous row. But

Equation 3.2 says
(n+1

k
)= ( n

k−1
)+(n

k
)
, and therefore any number (other than 1)

in the pyramid is the sum of the two numbers immediately above it.
This pattern is especially evident on the right of Figure 3.2, where

each
(n

k
)
is worked out. Notice how 21 is the sum of the numbers 6 and 15

above it. Similarly, 5 is the sum of the 1 and 4 above it and so on.
The arrangement on the right of Figure 3.2 is called Pascal’s triangle.

(It is named after Blaise Pascal, 1623–1662, a French mathematician and
philosopher who discovered many of its properties.) Although we have
written only the first eight rows of Pascal’s triangle (beginning with Row 0
at the apex), it obviously could be extended downward indefinitely. We
could add an additional row at the bottom by placing a 1 at each end and
obtaining each remaining number by adding the two numbers above its
position. Doing this would give the following row:

1 8 28 56 70 56 28 8 1

This row consists of the numbers
(8
k
)
for 0≤ k ≤ 8, and we have computed

them without the formula
(8
k
)= 8!

k!(8−k)! . Any
(n

k
)
can be computed this way.

The very top row (containing only 1) is called Row 0. Row 1 is the
next down, followed by Row 2, then Row 3, etc. With this labeling, Row n
consists of the numbers

(n
k
)
for 0≤ k ≤ n.

Notice that Row n appears to be a list of the coefficients of (x+ y)n.
For example (x+ y)2 = 1x2 +2xy+1y2, and Row 2 lists the coefficients 1 2 1.
Similarly (x+ y)3 = 1x3 +3x2 y+3xy2 +1y3, and Row 3 is 1 3 3 1. Pascal’s
triangle is shown on the left of Figure 3.3 and on the right are the
expansions of (x+ y)n for 0≤ n ≤ 5. In every case (at least as far as you care
to check) the numbers in Row n match up with the coefficients of (x+ y)n.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1
. . .

...
...

1

1x + 1y

1x2 + 2xy + 1y2

1x3 + 3x2 y + 3xy2 + 1y3

1x4 + 4x3 y +6x2 y2 + 4xy3 + 1y4

1x5 + 5x4 y +10x3 y2+10x2 y3+ 5xy4 + 1y5

. . .
...

...

Figure 3.3. The nth row of Pascal’s triangle lists the coefficients of (x+ y)n
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In fact this turns out to be true for every n. This result is known as
the binomial theorem, and it is worth mentioning here. It tells how to
raise a binomial x+ y to a non-negative integer power n.
Theorem 3.1 (Binomial Theorem) If n is a non-negative integer, then
(x+ y)n = (n

0
)
xn + (n

1
)
xn−1 y+ (n

2
)
xn−2 y2 + (n

3
)
xn−3 y3 +·· ·+ ( n

n−1
)
xyn−1 + (n

n
)
yn.

For now we will be content to accept the binomial theorem without
proof. (You will be asked to prove it in an exercise in Chapter 10.) You
may find it useful from time to time. For instance, you can apply it if you
ever need to expand an expression such as (x+ y)7. To do this, look at Row
7 of Pascal’s triangle in Figure 3.2 and apply the binomial theorem to get

(x+ y)7 = x7 +7x6 y+21x5 y2 +35x4 y3 +35x3 y4 +21x2 y5 +7xy6 + y7.

For another example,

(2a−b)4 = ((2a)+ (−b))4

= (2a)4 +4(2a)3(−b)+6(2a)2(−b)2 +4(2a)(−b)3 + (−b)4

= 16a4 −32a3b+24a2b2 −8ab3 +b4.

Exercises for Section 3.4
1. Write out Row 11 of Pascal’s triangle.
2. Use the binomial theorem to find the coefficient of x8 y5 in (x+ y)13.
3. Use the binomial theorem to find the coefficient of x8 in (x+2)13.
4. Use the binomial theorem to find the coefficient of x6 y3 in (3x−2y)9.
5. Use the binomial theorem to show ∑n

k=0

(n
k
)= 2n.

6. Use Definition 3.2 (page 74) and Fact 1.3 (page 12) to show ∑n
k=0

(n
k
)= 2n.

7. Use the binomial theorem to show ∑n
k=0 3k(n

k
)= 4n.

8. Use Fact 3.3 (page 76) to derive Equation 3.2 (page 78).
9. Use the binomial theorem to show

(n
0
)− (n

1
)+ (n

2
)− (n

3
)+ (n

4
)−·· ·+ (−1)n(n

n
)= 0.

10. Show that the formula k
(n

k
)= n

(n−1
k−1

)
is true for all integers n,k with 0≤ k ≤ n.

11. Use the binomial theorem to show 9n =∑n
k=0(−1)k(n

k
)
10n−k.

12. Show that
(n

k
)( k

m
)= (n

m
)(n−m

k−m
)
.

13. Show that
(n
3
)= (2

2
)+ (3

2
)+ (4

2
)+ (5

2
)+·· ·+ (n−1

2
)
.

14. The first five rows of Pascal’s triangle appear in the digits of powers of 11:
110 = 1, 111 = 11, 112 = 121, 113 = 1331 and 114 = 14641. Why is this so? Why
does the pattern not continue with 115?
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3.5 Inclusion-Exclusion
Many counting problems involve computing the cardinality of a union A∪B
of two finite sets. We examine this kind of problem now.

First we develop a formula for |A∪B|. It is tempting to say that |A∪B|
must equal |A|+ |B|, but that is not quite right. If we count the elements
of A and then count the elements of B and add the two figures together,
we get |A|+ |B|. But if A and B have some elements in common, then we
have counted each element in A∩B twice.

A B

Therefore |A| + |B| exceeds |A ∪B| by |A ∩B|, and consequently |A ∪B| =
|A|+ |B|− |A∩B|. This can be a useful equation.

|A∪B| = |A|+ |B|− |A∩B| (3.3)

Notice that the sets A, B and A∩B are all generally smaller than A∪B, so
Equation (3.3) has the potential of reducing the problem of determining
|A ∪B| to three simpler counting problems. It is sometimes called an
inclusion-exclusion formula because elements in A∩B are included (twice)
in |A|+|B|, then excluded when |A∩B| is subtracted. Notice that if A∩B =;,
then we do in fact get |A∪B| = |A|+ |B|; conversely if |A∪B| = |A|+ |B|, then
it must be that A∩B =;.
Example 3.8 A 3-card hand is dealt off of a standard 52-card deck. How
many different such hands are there for which all 3 cards are red or all
three cards are face cards?

Solution: Let A be the set of 3-card hands where all three cards are
red (i.e., either ♥ or ♦). Let B be the set of 3-card hands in which all three
cards are face cards (i.e., J,K or Q of any suit). These sets are illustrated
below.

A =
{{

5

♥ ,
K

♦ ,
2

♥

}
,

{
K

♥ ,
J

♥ ,
Q

♥

}
,

{
A

♦ ,
6

♦ ,
6

♥

}
, . . .

}
(Red cards)

B =
{{

K

♠ ,
K

♦ ,
J

♣

}
,

{
K

♥ ,
J

♥ ,
Q

♥

}
,

{
Q

♦ ,
Q

♣ ,
Q

♥

}
, . . .

}
(Face cards)
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We seek the number of 3-card hands that are all red or all face cards,
and this number is |A ∪B|. By Formula (3.3), |A ∪B| = |A| + |B| − |A ∩B|.
Let’s examine |A|, |B| and |A ∩B| separately. Any hand in A is formed
by selecting three cards from the 26 red cards in the deck, so |A| = (26

3
)
.

Similarly, any hand in B is formed by selecting three cards from the 12
face cards in the deck, so |B| = (12

3
)
. Now think about A∩B. It contains all

the 3-card hands made up of cards that are red face cards.

A∩B =
{{

K

♥ ,
K

♦ ,
J

♥

}
,

{
K

♥ ,
J

♥ ,
Q

♥

}
,

{
,

Q

♦ ,
J

♦ ,
Q

♥

}
, . . .

}
(Red face

cards)

The deck has only 6 red face cards, so |A∩B| = (6
3
)
.

Now we can answer our question. The number of 3-card hands that
are all red or all face cards is |A∪B| = |A|+ |B|− |A∩B| = (26

3
)+ (12

3
)− (6

3
) =

2600+220−20= 2800.

There is an analogue to Equation (3.3) that involves three sets. Consider
three sets A, B and C, as represented in the following Venn Diagram.

A B

C

Using the same kind of reasoning that resulted in Equation (3.3), you can
convince yourself that

|A∪B∪C| = |A|+ |B|+ |C|− |A∩B|− |A∩C|− |B∩C|+ |A∩B∩C|. (3.4)

There’s probably not much harm in ignoring this one for now, but if you
find this kind of thing intriguing you should definitely take a course in
combinatorics. (Ask your instructor!)

As we’ve noted, Equation (3.3) becomes |A∪B| = |A|+ |B| if it happens
that A∩B =;. Also, in Equation (3.4), note that if A∩B =;, A∩C =; and
B∩C =;, we get the simple formula |A∪B∪C| = |A|+ |B|+ |C|. In general,
we have the following formula for n sets, none of which overlap. It is
sometimes called the addition principle.

Fact 3.4 (Addition Principle) If A1, A2, . . . , An are sets with A i∩A j =;
whenever i 6= j, then |A1 ∪ A2 ∪·· ·∪ An| = |A1|+ |A2|+ · · ·+ |An|.
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Example 3.9 How many 7-digit binary strings (0010100, 1101011, etc.)
have an odd number of 1’s?

Solution: Let A be the set of all 7-digit binary strings with an odd
number of 1’s, so the answer to the question will be |A|. To compute |A|,
we break A up into smaller parts. Notice any string in A will have either
one, three, five or seven 1’s. Let A1 be the set of 7-digit binary strings
with only one 1. Let A3 be the set of 7-digit binary strings with three 1’s.
Let A5 be the set of 7-digit binary strings with five 1’s, and let A7 be the
set of 7-digit binary strings with seven 1’s. Therefore A = A1∪ A3∪ A5∪ A7.
Notice that any two of the sets A i have empty intersection, so Fact 3.4
gives |A| = |A1|+ |A3|+ |A5|+ |A7|.

Now the problem is to find the values of the individual terms of this
sum. For instance take A3, the set of 7-digit binary strings with three 1’s.
Such a string can be formed by selecting three out of seven positions for
the 1’s and putting 0’s in the other spaces. Therefore |A3| =

(7
3
)
. Similarly

|A1| =
(7
1
)
, |A5| =

(7
5
)
, and |A7| =

(7
7
)
. Finally the answer to our question is

|A| = |A1|+ |A3|+ |A5|+ |A7| =
(7
1
)+ (7

3
)+ (7

5
)+ (7

7
) = 7+35+21+1 = 64. There

are 64 seven-digit binary strings with an odd number of 1’s.

You may already have been using the Addition Principle intuitively,
without thinking of it as a free-standing result. For instance, we used it
in Example 3.2(c) when we divided lists into four types and computed the
number of lists of each type.

Exercises for Section 3.5

1. At a certain university 523 of the seniors are history majors or math majors
(or both). There are 100 senior math majors, and 33 seniors are majoring in
both history and math. How many seniors are majoring in history?

2. How many 4-digit positive integers are there for which there are no repeated
digits, or for which there may be repeated digits, but all are odd?

3. How many 4-digit positive integers are there that are even or contain no 0’s?
4. This problem involves lists made from the letters T,H,E,O,R,Y, with repetition

allowed.
(a) How many 4-letter lists are there that don’t begin with T, or don’t end in

Y?
(b) How many 4-letter lists are there in which the sequence of letters T,H,E

appears consecutively?
(c) How many 5-letter lists are there in which the sequence of letters T,H,E

appears consecutively?
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5. How many 7-digit binary strings begin in 1 or end in 1 or have exactly four 1’s?
6. Is the following statement true or false? Explain. If A1 ∩ A2 ∩ A3 = ;, then

|A1 ∪ A2 ∪ A3| = |A1|+ |A2|+ |A3|.
7. This problem concerns 4-card hands dealt off of a standard 52-card deck. How

many 4-card hands are there for which all 4 cards are of the same suit or all 4
cards are red?

8. This problem concerns 4-card hands dealt off of a standard 52-card deck. How
many 4-card hands are there for which all 4 cards are of different suits or all 4
cards are red?

9. A 4-letter list is made from the letters L,I,S,T,E,D according to the following
rule: Repetition is allowed, and the first two letters on the list are vowels or
the list ends in D. How many such lists are possible?

10. A 5-card poker hand is called a flush if all cards are the same suit. How many
different flushes are there?


