
Chapter 5

Sampling-Based Motion Planning

Steven M. LaValle

University of Illinois

Copyright Steven M. LaValle 2006

Available for downloading at http://planning.cs.uiuc.edu/

Published by Cambridge University Press

Chapter 5

Sampling-Based Motion Planning

There are two main philosophies for addressing the motion planning problem, in
Formulation 4.1 from Section 4.3.1. This chapter presents one of the philosophies,
sampling-based motion planning, which is outlined in Figure 5.1. The main idea is
to avoid the explicit construction of Cobs, as described in Section 4.3, and instead
conduct a search that probes the C-space with a sampling scheme. This probing
is enabled by a collision detection module, which the motion planning algorithm
considers as a “black box.” This enables the development of planning algorithms
that are independent of the particular geometric models. The collision detection
module handles concerns such as whether the models are semi-algebraic sets, 3D
triangles, nonconvex polyhedra, and so on. This general philosophy has been very
successful in recent years for solving problems from robotics, manufacturing, and
biological applications that involve thousands and even millions of geometric prim-
itives. Such problems would be practically impossible to solve using techniques
that explicitly represent Cobs.

Notions of completeness It is useful to define several notions of completeness
for sampling-based algorithms. These algorithms have the drawback that they
result in weaker guarantees that the problem will be solved. An algorithm is
considered complete if for any input it correctly reports whether there is a solu-

Sampling−Based
Motion Planning AlgorithmCollision

Detection
Geometric
Models

Discrete
Searching

C−Space
Sampling

Figure 5.1: The sampling-based planning philosophy uses collision detection as
a “black box” that separates the motion planning from the particular geometric
and kinematic models. C-space sampling and discrete planning (i.e., searching)
are performed.

185

186 S. M. LaValle: Planning Algorithms

tion in a finite amount of time. If a solution exists, it must return one in finite
time. The combinatorial motion planning methods of Chapter 6 will achieve this.
Unfortunately, such completeness is not achieved with sampling-based planning.
Instead, weaker notions of completeness are tolerated. The notion of denseness
becomes important, which means that the samples come arbitrarily close to any
configuration as the number of iterations tends to infinity. A deterministic ap-
proach that samples densely will be called resolution complete. This means that
if a solution exists, the algorithm will find it in finite time; however, if a solution
does not exist, the algorithm may run forever. Many sampling-based approaches
are based on random sampling, which is dense with probability one. This leads
to algorithms that are probabilistically complete, which means that with enough
points, the probability that it finds an existing solution converges to one. The
most relevant information, however, is the rate of convergence, which is usually
very difficult to establish.

Section 5.1 presents metric and measure space concepts, which are funda-
mental to nearly all sampling-based planning algorithms. Section 5.2 presents
general sampling concepts and quality criteria that are effective for analyzing the
performance of sampling-based algorithms. Section 5.3 gives a brief overview of
collision detection algorithms, to gain an understanding of the information avail-
able to a planning algorithm and the computation price that must be paid to
obtain it. Section 5.4 presents a framework that defines algorithms which solve
motion planning problems by integrating sampling and discrete planning (i.e.,
searching) techniques. These approaches can be considered single query in the
sense that a single pair, (qI , qG), is given, and the algorithm must search until it
finds a solution (or it may report early failure). Section 5.5 focuses on rapidly
exploring random trees (RRTs) and rapidly exploring dense trees (RDTs), which
are used to develop efficient single-query planning algorithms. Section 5.6 covers
multiple-query algorithms, which invest substantial preprocessing effort to build a
data structure that is later used to obtain efficient solutions for many initial-goal
pairs. In this case, it is assumed that the obstacle region O remains the same for
every query.

5.1 Distance and Volume in C-Space

Virtually all sampling-based planning algorithms require a function that measures
the distance between two points in C. In most cases, this results in a metric
space, which is introduced in Section 5.1.1. Useful examples for motion planning
are given in Section 5.1.2. It will also be important in many of these algorithms
to define the volume of a subset of C. This requires a measure space, which is
introduced in Section 5.1.3. Section 5.1.4 introduces invariant measures, which
should be used whenever possible.

5.1. DISTANCE AND VOLUME IN C-SPACE 187

5.1.1 Metric Spaces

It is straightforward to define Euclidean distance in Rn. To define a distance
function over any C, however, certain axioms will have to be satisfied so that it
coincides with our expectations based on Euclidean distance.

The following definition and axioms are used to create a function that converts
a topological space into a metric space.1 A metric space (X, ρ) is a topological
space X equipped with a function ρ : X ×X → R such that for any a, b, c ∈ X:

1. Nonnegativity: ρ(a, b) ≥ 0.

2. Reflexivity: ρ(a, b) = 0 if and only if a = b.

3. Symmetry: ρ(a, b) = ρ(b, a).

4. Triangle inequality: ρ(a, b) + ρ(b, c) ≥ ρ(a, c).

The function ρ defines distances between points in the metric space, and each
of the four conditions on ρ agrees with our intuitions about distance. The final
condition implies that ρ is optimal in the sense that the distance from a to c will
always be less than or equal to the total distance obtained by traveling through
an intermediate point b on the way from a to c.

Lp metrics The most important family of metrics over Rn is given for any p ≥ 1
as

ρ(x, x′) =

(n
∑

i=1

|xi − x′
i|p
)1/p

. (5.1)

For each value of p, (5.1) is called an Lp metric (pronounced “el pee”). The three
most common cases are

1. L2: The Euclidean metric, which is the familiar Euclidean distance in Rn.

2. L1: The Manhattan metric, which is often nicknamed this way because in
R2 it corresponds to the length of a path that is obtained by moving along
an axis-aligned grid. For example, the distance from (0, 0) to (2, 5) is 7 by
traveling “east two blocks” and then “north five blocks”.

3. L∞: The L∞ metric must actually be defined by taking the limit of (5.1) as
p tends to infinity. The result is

L∞(x, x′) = max
1≤i≤n

{|xi − x′
i|}, (5.2)

which seems correct because the larger the value of p, the more the largest
term of the sum in (5.1) dominates.

1Some topological spaces are notmetrizable, which means that no function exists that satisfies
the axioms. Many metrization theorems give sufficient conditions for a topological space to be
metrizable [75], and virtually any space that has arisen in motion planning will be metrizable.

188 S. M. LaValle: Planning Algorithms

An Lp metric can be derived from a norm on a vector space. An Lp norm over
Rn is defined as

‖x‖p =
(n
∑

i=1

|xi|p
)1/p

. (5.3)

The case of p = 2 is the familiar definition of the magnitude of a vector, which is
called the Euclidean norm. For example, assume the vector space is Rn, and let
‖ · ‖ be the standard Euclidean norm. The L2 metric is ρ(x, y) = ‖x − y‖. Any
Lp metric can be written in terms of a vector subtraction, which is notationally
convenient.

Metric subspaces By verifying the axioms, it can be shown that any subspace
Y ⊂ X of a metric space (X, ρ) itself becomes a metric space by restricting the
domain of ρ to Y ×Y . This conveniently provides metrics on any of the manifolds
and varieties from Chapter 4 by simply using any Lp metric on Rm, the space in
which the manifold or variety is embedded.

Cartesian products of metric spaces Metrics extend nicely across Cartesian
products, which is very convenient because C-spaces are often constructed from
Cartesian products, especially in the case of multiple bodies. Let (X, ρx) and
(Y, ρy) be two metric spaces. A metric space (Z, ρz) can be constructed for the
Cartesian product Z = X × Y by defining the metric ρz as

ρz(z, z
′) = ρz(x, y, x

′, y′) = c1ρx(x, x
′) + c2ρy(y, y

′), (5.4)

in which c1 > 0 and c2 > 0 are any positive real constants, and x, x′ ∈ X and
y, y′ ∈ Y . Each z ∈ Z is represented as z = (x, y).

Other combinations lead to a metric for Z; for example,

ρz(z, z
′) =

(

c1
[

ρx(x, x
′)
]p

+ c2
[

ρy(y, y
′)
]p
)1/p

, (5.5)

is a metric for any positive integer p. Once again, two positive constants must be
chosen. It is important to understand that many choices are possible, and there
may not necessarily be a “correct” one.

5.1.2 Important Metric Spaces for Motion Planning

This section presents some metric spaces that arise frequently in motion planning.

Example 5.1 (SO(2) Metric Using Complex Numbers) If SO(2) is repre-
sented by unit complex numbers, recall that the C-space is the subset of R2 given
by {(a, b) ∈ R2 | a2 + b2 = 1}. Any Lp metric from R2 may be applied. Using the
Euclidean metric,

ρ(a1, b1, a2, b2) =
√

(a1 − a2)2 + (b1 − b2)2, (5.6)

5.1. DISTANCE AND VOLUME IN C-SPACE 189

for any pair of points (a1, b1) and (a2, b2). �

Example 5.2 (SO(2) Metric by Comparing Angles) You might have noticed
that the previous metric for SO(2) does not give the distance traveling along the
circle. It instead takes a shortcut by computing the length of the line segment in
R2 that connects the two points. This distortion may be undesirable. An alterna-
tive metric is obtained by directly comparing angles, θ1 and θ2. However, in this
case special care has to be given to the identification, because there are two ways
to reach θ2 from θ1 by traveling along the circle. This causes a min to appear in
the metric definition:

ρ(θ1, θ2) = min
{

|θ1 − θ2|, 2π − |θ1 − θ2|
}

, (5.7)

for which θ1, θ2 ∈ [0, 2π]/ ∼. This may alternatively be expressed using the com-
plex number representation a+ bi as an angle between two vectors:

ρ(a1, b1, a2, b2) = cos−1(a1a2 + b1b2), (5.8)

for two points (a1, b1) and (a2, b2). �

Example 5.3 (An SE(2) Metric) Again by using the subspace principle, a
metric can easily be obtained for SE(2). Using the complex number representa-
tion of SO(2), each element of SE(2) is a point (xt, yt, a, b) ∈ R4. The Euclidean
metric, or any other Lp metric on R4, can be immediately applied to obtain a
metric. �

Example 5.4 (SO(3) Metrics Using Quaternions) As usual, the situation be-
comes more complicated for SO(3). The unit quaternions form a subset S3 of R4.
Therefore, any Lp metric may be used to define a metric on S3, but this will not be
a metric for SO(3) because antipodal points need to be identified. Let h1, h2 ∈ R4

represent two unit quaternions (which are being interpreted here as elements of
R4 by ignoring the quaternion algebra). Taking the identifications into account,
the metric is

ρ(h1, h2) = min
{

‖h1 − h2‖, ‖h1 + h2‖
}

, (5.9)

in which the two arguments of the min correspond to the distances from h1 to h2

and −h2, respectively. The h1 + h2 appears because h2 was negated to yield its
antipodal point, −h2.

As in the case of SO(2), the metric in (5.9) may seem distorted because it
measures the length of line segments that cut through the interior of S3, as opposed
to traveling along the surface. This problem can be fixed to give a very natural

190 S. M. LaValle: Planning Algorithms

metric for SO(3), which is based on spherical linear interpolation. This takes
the line segment that connects the points and pushes it outward onto S3. It is
easier to visualize this by dropping a dimension. Imagine computing the distance
between two points on S2. If these points lie on the equator, then spherical linear
interpolation yields a distance proportional to that obtained by traveling along
the equator, as opposed to cutting through the interior of S2 (for points not on
the equator, use the great circle through the points).

It turns out that this metric can easily be defined in terms of the inner product
between the two quaternions. Recall that for unit vectors v1 and v2 in Rn, v1 ·v2 =
cos θ, in which θ is the angle between the vectors. This angle is precisely what is
needed to give the proper distance along S3. The resulting metric is a surprisingly
simple extension of (5.8). The distance along S3 between two quaternions is

ρs(h1, h2) = cos−1(a1a2 + b1b2 + c1c2 + d1d2), (5.10)

in which each hi = (ai, bi, ci, di). Taking identification into account yields the
metric

ρ(h1, h2) = min
{

ρs(h1, h2), ρs(h1,−h2)
}

. (5.11)

�

Example 5.5 (Another SE(2) Metric) For many C-spaces, the problem of re-
lating different kinds of quantities arises. For example, any metric defined on
SE(2) must compare both distance in the plane and an angular quantity. For
example, even if c1 = c2 = 1, the range for S1 is [0, 2π) using radians but [0, 360)
using degrees. If the same constant c2 is used in either case, two very different met-
rics are obtained. The units applied to R2 and S1 are completely incompatible. �

Example 5.6 (Robot Displacement Metric) Sometimes this incompatibility
problem can be fixed by considering the robot displacement. For any two config-
urations q1, q2 ∈ C, a robot displacement metric can be defined as

ρ(q1, q2) = max
a∈A

{

‖a(q1)− a(q2)‖
}

, (5.12)

in which a(qi) is the position of the point a in the world when the robot A is at
configuration qi. Intuitively, the robot displacement metric yields the maximum
amount inW that any part of the robot is displaced when moving from configura-
tion q1 to q2. The difficulty and efficiency with which this metric can be computed
depend strongly on the particular robot geometric model and kinematics. For a
convex polyhedral robot that can translate and rotate, it is sufficient to check
only vertices. The metric may appear to be ideal, but efficient algorithms are not
known for most situations. �

5.1. DISTANCE AND VOLUME IN C-SPACE 191

Example 5.7 (Tn Metrics) Next consider making a metric over a torus Tn.
The Cartesian product rules such as (5.4) and (5.5) can be extended over every
copy of S1 (one for each parameter θi). This leads to n arbitrary coefficients c1,
c2, . . ., cn. Robot displacement could be used to determine the coefficients. For
example, if the robot is a chain of links, it might make sense to weight changes in
the first link more heavily because the entire chain moves in this case. When the
last parameter is changed, only the last link moves; in this case, it might make
sense to give it less weight. �

Example 5.8 (SE(3) Metrics) Metrics for SE(3) can be formed by applying
the Cartesian product rules to a metric for R3 and a metric for SO(3), such as
that given in (5.11). Again, this unfortunately leaves coefficients to be specified.
These issues will arise again in Section 5.3.4, where more details appear on robot
displacement. �

Pseudometrics Many planning algorithms use functions that behave somewhat
like a distance function but may fail to satisfy all of the metric axioms. If such
distance functions are used, they will be referred to as pseudometrics. One general
principle that can be used to derive pseudometrics is to define the distance to be
the optimal cost-to-go for some criterion (recall discrete cost-to-go functions from
Section 2.3). This will become more important when differential constraints are
considered in Chapter 14.

In the continuous setting, the cost could correspond to the distance traveled
by a robot or even the amount of energy consumed. Sometimes, the resulting
pseudometric is not symmetric. For example, it requires less energy for a car to
travel downhill as opposed to uphill. Alternatively, suppose that a car is only
capable of driving forward. It might travel a short distance to go forward from
q1 to some q2, but it might have to travel a longer distance to reach q1 from q2
because it cannot drive in reverse. These issues arise for the Dubins car, which is
covered in Sections 13.1.2 and 15.3.1.

An important example of a pseudometric from robotics is a potential function,
which is an important part of the randomized potential field method, which is
discussed in Section 5.4.3. The idea is to make a scalar function that estimates
the distance to the goal; however, there may be additional terms that attempt
to repel the robot away from obstacles. This generally causes local minima to
appear in the distance function, which may cause potential functions to violate
the triangle inequality.

192 S. M. LaValle: Planning Algorithms

5.1.3 Basic Measure Theory Definitions

This section briefly indicates how to define volume in a metric space. This provides
a basis for defining concepts such as integrals or probability densities. Measure
theory is an advanced mathematical topic that is well beyond the scope of this
book; however, it is worthwhile to briefly introduce some of the basic definitions
because they sometimes arise in sampling-based planning.

Measure can be considered as a function that produces real values for subsets
of a metric space, (X, ρ). Ideally, we would like to produce a nonnegative value,
µ(A) ∈ [0,∞], for any subset A ⊆ X. Unfortunately, due to the Banach-Tarski
paradox, if X = Rn, there are some subsets for which trying to assign volume
leads to a contradiction. If X is finite, this cannot happen. Therefore, it is hard
to visualize the problem; see [145] for a construction of the bizarre nonmeasurable
sets. Due to this problem, a workaround was developed by defining a collection of
subsets that avoids the paradoxical sets. A collection B of subsets of X is called
a sigma algebra if the following axioms are satisfied:

1. The empty set is in B.

2. If B ∈ B, then X \B ∈ B.

3. For any collection of a countable number of sets in B, their union must also
be in B.

Note that the last two conditions together imply that the intersection of a count-
able number of sets in B is also in B. The sets in B are called the measurable
sets.

A nice sigma algebra, called the Borel sets, can be formed from any metric
space (X, ρ) as follows. Start with the set of all open balls in X. These are the
sets of the form

B(x, r) = {x′ ∈ X | ρ(x, x′) < r} (5.13)

for any x ∈ X and any r ∈ (0,∞). From the open balls, the Borel sets B are
the sets that can be constructed from these open balls by using the sigma algebra
axioms. For example, an open square in R2 is in B because it can be constructed
as the union of a countable number of balls (infinitely many are needed because
the curved balls must converge to covering the straight square edges). By using
Borel sets, the nastiness of nonmeasurable sets is safely avoided.

Example 5.9 (Borel Sets) A simple example of B can be constructed for R.
The open balls are just the set of all open intervals, (x1, x2) ⊂ R, for any x1, x2 ∈ R

such that x1 < x2. �

Using B, a measure µ is now defined as a function µ : B → [0,∞] such that
the measure axioms are satisfied:

5.1. DISTANCE AND VOLUME IN C-SPACE 193

1. For the empty set, µ(∅) = 0.

2. For any collection, E1, E2, E3, . . ., of a countable (possibly finite) number of
pairwise disjoint, measurable sets, let E denote their union. The measure µ
must satisfy

µ(E) =
∑

i

µ(Ei), (5.14)

in which i counts over the whole collection.

Example 5.10 (Lebesgue Measure) The most common and important mea-
sure is the Lebesgue measure, which becomes the standard notions of length in R,
area in R2, and volume in Rn for n ≥ 3. One important concept with Lebesgue
measure is the existence of sets of measure zero. For any countable set A, the
Lebesgue measure yields µ(A) = 0. For example, what is the total length of the
point {1} ⊂ R? The length of any single point must be zero. To satisfy the mea-
sure axioms, sets such as {1, 3, 4, 5} must also have measure zero. Even infinite
subsets such as Z and Q have measure zero in R. If the dimension of a set A ⊆ Rn

is m for some integer m < n, then µ(A) = 0, according to the Lebesgue measure
on Rn. For example, the set S2 ⊂ R3 has measure zero because the sphere has
no volume. However, if the measure space is restricted to S2 and then the surface
area is defined, then nonzero measure is obtained. �

Example 5.11 (The Counting Measure) If (X, ρ) is finite, then the counting
measure can be defined. In this case, the measure can be defined over the entire
power set of X. For any A ⊂ X, the counting measure yields µ(A) = |A|, the
number of elements in A. Verify that this satisfies the measure axioms. �

Example 5.12 (Probability Measure) Measure theory even unifies discrete
and continuous probability theory. The measure µ can be defined to yield prob-
ability mass. The probability axioms (see Section 9.1.2) are consistent with the
measure axioms, which therefore yield a measure space. The integrals and sums
needed to define expectations of random variables for continuous and discrete
cases, respectively, unify into a single measure-theoretic integral. �

Measure theory can be used to define very general notions of integration that
are much more powerful than the Riemann integral that is learned in classical
calculus. One of the most important concepts is the Lebesgue integral. Instead
of being limited to partitioning the domain of integration into intervals, virtually
any partition into measurable sets can be used. Its definition requires the notion
of a measurable function to ensure that the function domain is partitioned into
measurable sets. For further study, see [55, 96, 145].

194 S. M. LaValle: Planning Algorithms

5.1.4 Using the Correct Measure

Since many metrics and measures are possible, it may sometimes seem that there is
no “correct” choice. This can be frustrating because the performance of sampling-
based planning algorithms can depend strongly on these. Conveniently, there is a
natural measure, called the Haar measure, for some transformation groups, includ-
ing SO(N). Good metrics also follow from the Haar measure, but unfortunately,
there are still arbitrary alternatives.

The basic requirement is that the measure does not vary when the sets are
transformed using the group elements. More formally, let G represent a matrix
group with real-valued entries, and let µ denote a measure on G. If for any
measurable subset A ⊆ G, and any element g ∈ G, µ(A) = µ(gA) = µ(Ag), then
µ is called the Haar measure2 for G. The notation gA represents the set of all
matrices obtained by the product ga, for any a ∈ A. Similarly, Ag represents all
products of the form ag.

Example 5.13 (Haar Measure for SO(2)) The Haar measure for SO(2) can
be obtained by parameterizing the rotations as [0, 1]/ ∼ with 0 and 1 identified,
and letting µ be the Lebesgue measure on the unit interval. To see the invariance
property, consider the interval [1/4, 1/2], which produces a set A ⊂ SO(2) of
rotation matrices. This corresponds to the set of all rotations from θ = π/2 to
θ = π. The measure yields µ(A) = 1/4. Now consider multiplying every matrix
a ∈ A by a rotation matrix, g ∈ SO(2), to yield Ag. Suppose g is the rotation
matrix for θ = π. The set Ag is the set of all rotation matrices from θ = 3π/2
up to θ = 2π = 0. The measure µ(Ag) = 1/4 remains unchanged. Invariance
for gA may be checked similarly. The transformation g translates the intervals
in [0, 1]/ ∼. Since the measure is based on interval lengths, it is invariant with
respect to translation. Note that µ can be multiplied by a fixed constant (such as
2π) without affecting the invariance property.

An invariant metric can be defined from the Haar measure on SO(2). For any
points x1, x2 ∈ [0, 1], let ρ = µ([x1, x2]), in which [x1, x2] is the shortest length
(smallest measure) interval that contains x1 and x2 as endpoints. This metric was
already given in Example 5.2.

To obtain examples that are not the Haar measure, let µ represent probability
mass over [0, 1] and define any nonuniform probability density function (the uni-
form density yields the Haar measure). Any shifting of intervals will change the
probability mass, resulting in a different measure.

Failing to use the Haar measure weights some parts of SO(2) more heavily
than others. Sometimes imposing a bias may be desirable, but it is at least as
important to know how to eliminate bias. These ideas may appear obvious, but
in the case of SO(3) and many other groups it is more challenging to eliminate

2Such a measure is unique up to scale and exists for any locally compact topological group
[55, 145].

5.2. SAMPLING THEORY 195

this bias and obtain the Haar measure. �

Example 5.14 (Haar Measure for SO(3)) For SO(3) it turns out once again
that quaternions come to the rescue. If unit quaternions are used, recall that
SO(3) becomes parameterized in terms of S3, but opposite points are identified.
It can be shown that the surface area on S3 is the Haar measure. (Since S3 is a 3D
manifold, it may more appropriately be considered as a surface “volume.”) It will
be seen in Section 5.2.2 that uniform random sampling over SO(3) must be done
with a uniform probability density over S3. This corresponds exactly to the Haar
measure. If instead SO(3) is parameterized with Euler angles, the Haar measure
will not be obtained. An unintentional bias will be introduced; some rotations in
SO(3) will have more weight than others for no particularly good reason. �

5.2 Sampling Theory

5.2.1 Motivation and Basic Concepts

The state space for motion planning, C, is uncountably infinite, yet a sampling-
based planning algorithm can consider at most a countable number of samples.
If the algorithm runs forever, this may be countably infinite, but in practice we
expect it to terminate early after only considering a finite number of samples.
This mismatch between the cardinality of C and the set that can be probed by
an algorithm motivates careful consideration of sampling techniques. Once the
sampling component has been defined, discrete planning methods from Chapter
2 may be adapted to the current setting. Their performance, however, hinges on
the way the C-space is sampled.

Since sampling-based planning algorithms are often terminated early, the par-
ticular order in which samples are chosen becomes critical. Therefore, a distinction
is made between a sample set and a sample sequence. A unique sample set can
always be constructed from a sample sequence, but many alternative sequences
can be constructed from one sample set.

Denseness Consider constructing an infinite sample sequence over C. What
would be some desirable properties for this sequence? It would be nice if the
sequence eventually reached every point in C, but this is impossible because C is
uncountably infinite. Strangely, it is still possible for a sequence to get arbitrarily
close to every element of C (assuming C ⊆ Rm). In topology, this is the notion of
denseness. Let U and V be any subsets of a topological space. The set U is said
to be dense in V if cl(U) = V (recall the closure of a set from Section 4.1.1). This
means adding the boundary points to U produces V . A simple example is that
(0, 1) ⊂ R is dense in [0, 1] ⊂ R. A more interesting example is that the set Q of

196 S. M. LaValle: Planning Algorithms

rational numbers is both countable and dense in R. Think about why. For any
real number, such as π ∈ R, there exists a sequence of fractions that converges to
it. This sequence of fractions must be a subset of Q. A sequence (as opposed to a
set) is called dense if its underlying set is dense. The bare minimum for sampling
methods is that they produce a dense sequence. Stronger requirements, such as
uniformity and regularity, will be explained shortly.

A random sequence is probably dense Suppose that C = [0, 1]. One of
the simplest ways conceptually to obtain a dense sequence is to pick points at
random. Suppose I ⊂ [0, 1] is an interval of length e. If k samples are chosen
independently at random,3 the probability that none of them falls into I is (1−e)k.
As k approaches infinity, this probability converges to zero. This means that the
probability that any nonzero-length interval in [0, 1] contains no points converges
to zero. One small technicality exists. The infinite sequence of independently,
randomly chosen points is only dense with probability one, which is not the same as
being guaranteed. This is one of the strange outcomes of dealing with uncountably
infinite sets in probability theory. For example, if a number between [0, 1] is
chosen at random, the probably that π/4 is chosen is zero; however, it is still
possible. (The probability is just the Lebesgue measure, which is zero for a set of
measure zero.) For motion planning purposes, this technicality has no practical
implications; however, if k is not very large, then it might be frustrating to obtain
only probabilistic assurances, as opposed to absolute guarantees of coverage. The
next sequence is guaranteed to be dense because it is deterministic.

The van der Corput sequence A beautiful yet underutilized sequence was
published in 1935 by van der Corput, a Dutch mathematician [164]. It exhibits
many ideal qualities for applications. At the same time, it is based on a simple
idea. Unfortunately, it is only defined for the unit interval. The quest to extend
many of its qualities to higher dimensional spaces motivates the formal quality
measures and sampling techniques in the remainder of this section.

To explain the van der Corput sequence, let C = [0, 1]/ ∼, in which 0 ∼ 1,
which can be interpreted as SO(2). Suppose that we want to place 16 samples in
C. An ideal choice is the set S = {i/16 | 0 ≤ i < 16}, which evenly spaces the
points at intervals of length 1/16. This means that no point in C is further than
1/32 from the nearest sample. What if we want to make S into a sequence? What
is the best ordering? What if we are not even sure that 16 points are sufficient?
Maybe 16 is too few or even too many.

The first two columns of Figure 5.2 show a naive attempt at making S into
a sequence by sorting the points by increasing value. The problem is that after
i = 8, half of C has been neglected. It would be preferable to have a nice covering
of C for any i. Van der Corput’s clever idea was to reverse the order of the bits,
when the sequence is represented with binary decimals. In the original sequence,

3See Section 9.1.2 for a review of probability theory.

5.2. SAMPLING THEORY 197

Naive Reverse Van der
i Sequence Binary Binary Corput Points in [0, 1]/ ∼
1 0 .0000 .0000 0
2 1/16 .0001 .1000 1/2
3 1/8 .0010 .0100 1/4
4 3/16 .0011 .1100 3/4
5 1/4 .0100 .0010 1/8
6 5/16 .0101 .1010 5/8
7 3/8 .0110 .0110 3/8
8 7/16 .0111 .1110 7/8
9 1/2 .1000 .0001 1/16
10 9/16 .1001 .1001 9/16
11 5/8 .1010 .0101 5/16
12 11/16 .1011 .1101 13/16
13 3/4 .1100 .0011 3/16
14 13/16 .1101 .1011 11/16
15 7/8 .1110 .0111 7/16
16 15/16 .1111 .1111 15/16

Figure 5.2: The van der Corput sequence is obtained by reversing the bits in the
binary decimal representation of the naive sequence.

the most significant bit toggles only once, whereas the least significant bit toggles
in every step. By reversing the bits, the most significant bit toggles in every step,
which means that the sequence alternates between the lower and upper halves of
C. The third and fourth columns of Figure 5.2 show the original and reversed-
order binary representations. The resulting sequence dances around [0, 1]/ ∼ in a
nice way, as shown in the last two columns of Figure 5.2. Let ν(i) denote the ith
point of the van der Corput sequence.

In contrast to the naive sequence, each ν(i) lies far away from ν(i + 1). Fur-
thermore, the first i points of the sequence, for any i, provide reasonably uniform
coverage of C. When i is a power of 2, the points are perfectly spaced. For other
i, the coverage is still good in the sense that the number of points that appear in
any interval of length l is roughly il. For example, when i = 10, every interval of
length 1/2 contains roughly 5 points.

The length, 16, of the naive sequence is actually not important. If instead
8 is used, the same ν(1), . . ., ν(8) are obtained. Observe in the reverse binary
column of Figure 5.2 that this amounts to removing the last zero from each binary
decimal representation, which does not alter their values. If 32 is used for the naive
sequence, then the same ν(1), . . ., ν(16) are obtained, and the sequence continues
nicely from ν(17) to ν(32). To obtain the van der Corput sequence from ν(33) to
ν(64), six-bit sequences are reversed (corresponding to the case in which the naive
sequence has 64 points). The process repeats to produce an infinite sequence that

198 S. M. LaValle: Planning Algorithms

does not require a fixed number of points to be specified a priori. In addition to
the nice uniformity properties for every i, the infinite van der Corput sequence is
also dense in [0, 1]/ ∼. This implies that every open subset must contain at least
one sample.

You have now seen ways to generate nice samples in a unit interval both ran-
domly and deterministically. Sections 5.2.2–5.2.4 explain how to generate dense
samples with nice properties in the complicated spaces that arise in motion plan-
ning.

5.2.2 Random Sampling

Now imagine moving beyond [0, 1] and generating a dense sample sequence for any
bounded C-space, C ⊆ Rm. In this section the goal is to generate uniform random
samples. This means that the probability density function p(q) over C is uniform.
Wherever relevant, it also will mean that the probability density is also consistent
with the Haar measure. We will not allow any artificial bias to be introduced by
selecting a poor parameterization. For example, picking uniform random Euler
angles does not lead to uniform random samples over SO(3). However, picking
uniform random unit quaternions works perfectly because quaternions use the
same parameterization as the Haar measure; both choose points on S3.

Random sampling is the easiest of all sampling methods to apply to C-spaces.
One of the main reasons is that C-spaces are formed from Cartesian products, and
independent random samples extend easily across these products. If X = X1×X2,
and uniform random samples x1 and x2 are taken from X1 and X2, respectively,
then (x1, x2) is a uniform random sample for X. This is very convenient in im-
plementations. For example, suppose the motion planning problem involves 15
robots that each translate for any (xt, yt) ∈ [0, 1]2; this yields C = [0, 1]30. In
this case, 30 points can be chosen uniformly at random from [0, 1] and combined
into a 30-dimensional vector. Samples generated this way are uniformly randomly
distributed over C. Combining samples over Cartesian products is much more
difficult for nonrandom (deterministic) methods, which are presented in Sections
5.2.3 and 5.2.4.

Generating a random element of SO(3) One has to be very careful about
sampling uniformly over the space of rotations. The probability density must
correspond to the Haar measure, which means that a random rotation should be
obtained by picking a point at random on S3 and forming the unit quaternion. An
extremely clever way to sample SO(3) uniformly at random is given in [151] and
is reproduced here. Choose three points u1, u2, u3 ∈ [0, 1] uniformly at random.
A uniform, random quaternion is given by the simple expression

h = (
√
1− u1 sin 2πu2,

√
1− u1 cos 2πu2,

√
u1 sin 2πu3,

√
u1 cos 2πu3). (5.15)

A full explanation of the method is given in [151], and a brief intuition is given
here. First drop down a dimension and pick u1, u2 ∈ [0, 1] to generate points

5.2. SAMPLING THEORY 199

on S2. Let u1 represent the value for the third coordinate, (0, 0, u1) ∈ R3. The
slice of points on S2 for which u1 is fixed for 0 < u1 < 1 yields a circle on S2

that corresponds to some line of latitude on S2. The second parameter selects
the longitude, 2πu2. Fortunately, the points are uniformly distributed over S2.
Why? Imagine S2 as the crust on a spherical loaf of bread that is run through a
bread slicer. The slices are cut in a direction parallel to the equator and are of
equal thickness. The crusts of each slice have equal area; therefore, the points are
uniformly distributed. The method proceeds by using that fact that S3 can be
partitioned into a spherical arrangement of circles (known as the Hopf fibration);
there is an S1 copy for each point in S2. The method above is used to provide
a random point on S2 using u2 and u3, and u1 produces a random point on S1;
they are carefully combined in (5.15) to yield a random rotation. To respect
the antipodal identification for rotations, any quaternion h found in the lower
hemisphere (i.e., a < 0) can be negated to yield −h. This does not distort the
uniform random distribution of the samples.

Generating random directions Some sampling-based algorithms require choos-
ing motion directions at random.4 From a configuration q, the possible directions
of motion can be imagined as being distributed around a sphere. In an (n + 1)-
dimensional C-space, this corresponds to sampling on Sn. For example, choosing
a direction in R2 amounts to picking an element of S1; this can be parameter-
ized as θ ∈ [0, 2π]/ ∼. If n = 4, then the previously mentioned trick for SO(3)
should be used. If n = 3 or n > 4, then samples can be generated using a
slightly more expensive method that exploits spherical symmetries of the multi-
dimensional Gaussian density function [54]. The method is explained for Rn+1;
boundaries and identifications must be taken into account for other spaces. For
each of the n + 1 coordinates, generate a sample ui from a zero-mean Gaussian
distribution with the same variance for each coordinate. Following from the Cen-
tral Limit Theorem, ui can be approximately obtained by generating k samples
at random over [−1, 1] and adding them (k ≥ 12 is usually sufficient in practice).
The vector (u1, u2, . . . , un+1) gives a random direction in Rn+1 because each ui

was obtained independently, and the level sets of the resulting probability density
function are spheres. We did not use uniform random samples for each ui because
this would bias the directions toward the corners of a cube; instead, the Gaussian
yields spherical symmetry. The final step is to normalize the vector by taking
ui/‖u‖ for each coordinate.

Pseudorandom number generation Although there are advantages to uni-
form random sampling, there are also several disadvantages. This motivates the
consideration of deterministic alternatives. Since there are trade-offs, it is impor-

4The directions will be formalized in Section 8.3.2 when smooth manifolds are introduced. In
that case, the directions correspond to the set of possible velocities that have unit magnitude.
Presently, the notion of a direction is only given informally.

200 S. M. LaValle: Planning Algorithms

tant to understand how to use both kinds of sampling in motion planning. One
of the first issues is that computer-generated numbers are not random.5 A pseu-
dorandom number generator is usually employed, which is a deterministic method
that simulates the behavior of randomness. Since the samples are not truly ran-
dom, the advantage of extending the samples over Cartesian products does not
necessarily hold. Sometimes problems are caused by unforeseen deterministic de-
pendencies. One of the best pseudorandom number generators for avoiding such
troubles is the Mersenne twister [127], for which implementations can be found
on the Internet.

To help see the general difficulties, the classical linear congruential pseudo-
random number generator is briefly explained [109, 134]. The method uses three
integer parameters, M , a, and c, which are chosen by the user. The first two,
M and a, must be relatively prime, meaning that gcd(M,a) = 1. The third pa-
rameter, c, must be chosen to satisfy 0 ≤ c < M . Using modular arithmetic, a
sequence can be generated as

yi+1 = ayi + c mod M, (5.16)

by starting with some arbitrary seed 1 ≤ y0 ≤ M . Pseudorandom numbers in
[0, 1] are generated by the sequence

xi = yi/M. (5.17)

The sequence is periodic; therefore, M is typically very large (e.g., M = 231 − 1).
Due to periodicity, there are potential problems of regularity appearing in the
samples, especially when applied across a Cartesian product to generate points in
Rn. Particular values must be chosen for the parameters, and statistical tests are
used to evaluate the samples either experimentally or theoretically [134].

Testing for randomness Thus, it is important to realize that even the “ran-
dom” samples are deterministic. They are designed to optimize performance on
statistical tests. Many sophisticated statistical tests of uniform randomness are
used. One of the simplest, the chi-square test, is described here. This test mea-
sures how far computed statistics are from their expected value. As a simple
example, suppose C = [0, 1]2 and is partitioned into a 10 by 10 array of 100 square
boxes. If a set P of k samples is chosen at random, then intuitively each box
should receive roughly k/100 of the samples. An error function can be defined to
measure how far from true this intuition is:

e(P) =
100
∑

i=1

(bi − k/100)2, (5.18)

in which bi is the number of samples that fall into box i. It is shown [91] that
e(P) follows a chi-squared distribution. A surprising fact is that the goal is not to

5There are exceptions, which use physical phenomena as a random source [143].

5.2. SAMPLING THEORY 201

minimize e(P). If the error is too small, we would declare that the samples are
too uniform to be random! Imagine k = 1, 000, 000 and exactly 10, 000 samples
appear in each of the 100 boxes. This yields e(P) = 0, but how likely is this to
ever occur? The error must generally be larger (it appears in many statistical
tables) to account for the irregularity due to randomness.

(a) 196 pseudorandom samples (b) 196 pseudorandom samples

Figure 5.3: Irregularity in a collection of (pseudo)random samples can be nicely
observed with Voronoi diagrams.

This irregularity can be observed in terms of Voronoi diagrams, as shown in
Figure 5.3. The Voronoi diagram partitions R2 into regions based on the samples.
Each sample x has an associated Voronoi region Vor(x). For any point y ∈
Vor(x), x is the closest sample to y using Euclidean distance. The different sizes
and shapes of these regions give some indication of the required irregularity of
random sampling. This irregularity may be undesirable for sampling-based motion
planning and is somewhat repaired by the deterministic sampling methods of
Sections 5.2.3 and 5.2.4 (however, these methods also have drawbacks).

5.2.3 Low-Dispersion Sampling

This section describes an alternative to random sampling. Here, the goal is to
optimize a criterion called dispersion [134]. Intuitively, the idea is to place samples
in a way that makes the largest uncovered area be as small as possible. This
generalizes of the idea of grid resolution. For a grid, the resolution may be selected
by defining the step size for each axis. As the step size is decreased, the resolution
increases. If a grid-based motion planning algorithm can increase the resolution
arbitrarily, it becomes resolution complete. Using the concepts in this section,
it may instead reduce its dispersion arbitrarily to obtain a resolution complete

202 S. M. LaValle: Planning Algorithms

(a) L2 dispersion (b) L∞ dispersion

Figure 5.4: Reducing the dispersion means reducing the radius of the largest
empty ball.

algorithm. Thus, dispersion can be considered as a powerful generalization of the
notion of “resolution.”

Dispersion definition The dispersion6 of a finite set P of samples in a metric
space (X, ρ) is7

δ(P) = sup
x∈X

{

min
p∈P

{

ρ(x, p)
}}

. (5.19)

Figure 5.4 gives an interpretation of the definition for two different metrics.
An alternative way to consider dispersion is as the radius of the largest empty
ball (for the L∞ metric, the balls are actually cubes). Note that at the boundary
of X (if it exists), the empty ball becomes truncated because it cannot exceed
the boundary. There is also a nice interpretation in terms of Voronoi diagrams.
Figure 5.3 can be used to help explain L2 dispersion in R2. The Voronoi vertices
are the points at which three or more Voronoi regions meet. These are points in
C for which the nearest sample is far. An open, empty disc can be placed at any
Voronoi vertex, with a radius equal to the distance to the three (or more) closest
samples. The radius of the largest disc among those placed at all Voronoi vertices
is the dispersion. This interpretation also extends nicely to higher dimensions.

Making good grids Optimizing dispersion forces the points to be distributed
more uniformly over C. This causes them to fail statistical tests, but the point
distribution is often better for motion planning purposes. Consider the best way
to reduce dispersion if ρ is the L∞ metric and X = [0, 1]n. Suppose that the
number of samples, k, is given. Optimal dispersion is obtained by partitioning

6The definition is unfortunately backward from intuition. Lower dispersion means that the
points are nicely dispersed. Thus, more dispersion is bad, which is counterintuitive.

7The sup represents the supremum, which is the least upper bound. If X is closed, then the
sup becomes a max. See Section 9.1.1 for more details.

5.2. SAMPLING THEORY 203

(a) 196-point Sukharev grid (b) 196 lattice points

Figure 5.5: The Sukharev grid and a nongrid lattice.

[0, 1] into a grid of cubes and placing a point at the center of each cube, as shown
for n = 2 and k = 196 in Figure 5.5a. The number of cubes per axis must be
⌊k 1

n ⌋, in which ⌊·⌋ denotes the floor. If k 1

n is not an integer, then there are leftover
points that may be placed anywhere without affecting the dispersion. Notice that
k

1

n just gives the number of points per axis for a grid of k points in n dimensions.
The resulting grid will be referred to as a Sukharev grid [158].

The dispersion obtained by the Sukharev grid is the best possible. Therefore,
a useful lower bound can be given for any set P of k samples [158]:

δ(P) ≥ 1

2
⌊

k
1

d

⌋
. (5.20)

This implies that keeping the dispersion fixed requires exponentially many points
in the dimension, d.

At this point you might wonder why L∞ was used instead of L2, which seems
more natural. This is because the L2 case is extremely difficult to optimize (except
in R2, where a tiling of equilateral triangles can be made, with a point in the center
of each one). Even the simple problem of determining the best way to distribute
a fixed number of points in [0, 1]3 is unsolved for most values of k. See [40] for
extensive treatment of this problem.

Suppose now that other topologies are considered instead of [0, 1]n. Let X =
[0, 1]/ ∼, in which the identification produces a torus. The situation is quite
different because X no longer has a boundary. The Sukharev grid still produces
optimal dispersion, but it can also be shifted without increasing the dispersion.
In this case, a standard grid may also be used, which has the same number of
points as the Sukharev grid but is translated to the origin. Thus, the first grid
point is (0, 0), which is actually the same as 2n − 1 other points by identification.
If X represents a cylinder and the number of points, k, is given, then it is best to
just use the Sukharev grid. It is possible, however, to shift each coordinate that

204 S. M. LaValle: Planning Algorithms

g1

g2

(a) (b)

Figure 5.6: (a) A distorted grid can even be placed over spheres and SO(3) by
putting grids on the faces of an inscribed cube and lifting them to the surface
[170]. (b) A lattice can be considered as a grid in which the generators are not
necessarily orthogonal.

behaves like S1. If X is rectangular but not a square, a good grid can still be made
by tiling the space with cubes. In some cases this will produce optimal dispersion.
For complicated spaces such as SO(3), no grid exists in the sense defined so far.
It is possible, however, to generate grids on the faces of an inscribed Platonic solid
[44] and lift the samples to Sn with relatively little distortion [170]. For example,
to sample S2, Sukharev grids can be placed on each face of a cube. These are
lifted to obtain the warped grid shown in Figure 5.6a.

Example 5.15 (Sukharev Grid) Suppose that n = 2 and k = 9. IfX = [0, 1]2,
then the Sukharev grid yields points for the nine cases in which either coordinate
may be 1/6, 1/2, or 5/6. The L∞ dispersion is 1/6. The spacing between the points
along each axis is 1/3, which is twice the dispersion. If instead X = [0, 1]2/ ∼,
which represents a torus, then the nine points may be shifted to yield the stan-
dard grid. In this case each coordinate may be 0, 1/3, or 2/3. The dispersion and
spacing between the points remain unchanged. �

One nice property of grids is that they have a lattice structure. This means
that neighboring points can be obtained very easily be adding or subtracting
vectors. Let gj be an n-dimensional vector called a generator. A point on a lattice
can be expressed as

x =
n

∑

j=1

kjgj (5.21)

for n independent generators, as depicted in Figure 5.6b. In a 2D grid, the gen-
erators represent “up” and “right.” If X = [0, 100]2 and a standard grid with
integer spacing is used, then the neighbors of the point (50, 50) are obtained by
adding (0, 1), (0,−1), (−1, 0), or (1, 0). In a general lattice, the generators need

5.2. SAMPLING THEORY 205

not be orthogonal. An example is shown in Figure 5.5b. In Section 5.4.2, lattice
structure will become important and convenient for defining the search graph.

Infinite grid sequences Now suppose that the number, k, of samples is not
given. The task is to define an infinite sequence that has the nice properties of
the van der Corput sequence but works for any dimension. This will become the
notion of a multi-resolution grid. The resolution can be iteratively doubled. For a
multi-resolution standard grid in Rn, the sequence will first place one point at the
origin. After 2n points have been placed, there will be a grid with two points per
axis. After 4n points, there will be four points per axis. Thus, after 2ni points for
any positive integer i, a grid with 2i points per axis will be represented. If only
complete grids are allowed, then it becomes clear why they appear inappropriate
for high-dimensional problems. For example, if n = 10, then full grids appear
after 1, 210, 220, 230, and so on, samples. Each doubling in resolution multiplies
the number of points by 2n. Thus, to use grids in high dimensions, one must be
willing to accept partial grids and define an infinite sequence that places points in
a nice way.

The van der Corput sequence can be extended in a straightforward way as
follows. Suppose X = T2 = [0, 1]2/ ∼. The original van der Corput sequence
started by counting in binary. The least significant bit was used to select which
half of [0, 1] was sampled. In the current setting, the two least significant bits
can be used to select the quadrant of [0, 1]2. The next two bits can be used to
select the quadrant within the quadrant. This procedure continues recursively to
obtain a complete grid after k = 22i points, for any positive integer i. For any
k, however, there is only a partial grid. The points are distributed with optimal
L∞ dispersion. This same idea can be applied in dimension n by using n bits at
a time from the binary sequence to select the orthant (n-dimensional quadrant).
Many other orderings produce L∞-optimal dispersion. Selecting orderings that
additionally optimize other criteria, such as discrepancy or L2 dispersion, are
covered in [118, 122]. Unfortunately, it is more difficult to make a multi-resolution
Sukharev grid. The base becomes 3 instead of 2; after every 3ni points a complete
grid is obtained. For example, in one dimension, the first point appears at 1/2.
The next two points appear at 1/6 and 5/6. The next complete one-dimensional
grid appears after there are 9 points.

Dispersion bounds Since the sample sequence is infinite, it is interesting to
consider asymptotic bounds on dispersion. It is known that for X = [0, 1]n and
any Lp metric, the best possible asymptotic dispersion is O(k−1/n) for k points
and n dimensions [134]. In this expression, k is the variable in the limit and n
is treated as a constant. Therefore, any function of n may appear as a constant
(i.e., O(f(n)k−1/n) = O(k−1/n) for any positive f(n)). An important practical
consideration is the size of f(n) in the asymptotic analysis. For example, for the
van der Corput sequence from Section 5.2.1, the dispersion is bounded by 1/k,

206 S. M. LaValle: Planning Algorithms

which means that f(n) = 1. This does not seem good because for values of k
that are powers of two, the dispersion is 1/2k. Using a multi-resolution Sukharev
grid, the constant becomes 3/2 because it takes a longer time before a full grid is
obtained. Nongrid, low-dispersion infinite sequences exist that have f(n) = 1/ ln 4
[134]; these are not even uniformly distributed, which is rather surprising.

5.2.4 Low-Discrepancy Sampling

In some applications, selecting points that align with the coordinate axis may
be undesirable. Therefore, extensive sampling theory has been developed to de-
termine methods that avoid alignments while distributing the points uniformly.
In sampling-based motion planning, grids sometimes yield unexpected behavior
because a row of points may align nicely with a corridor in Cfree. In some cases, a
solution is obtained with surprisingly few samples, and in others, too many sam-
ples are necessary. These alignment problems, when they exist, generally drive the
variance higher in computation times because it is difficult to predict when they
will help or hurt. This provides motivation for developing sampling techniques
that try to reduce this sensitivity.

Discrepancy theory and its corresponding sampling methods were developed to
avoid these problems for numerical integration [134]. Let X be a measure space,
such as [0, 1]n. Let R be a collection of subsets of X that is called a range space.
In most cases, R is chosen as the set of all axis-aligned rectangular subsets; hence,
this will be assumed from this point onward. With respect to a particular point
set, P , and range space, R, the discrepancy [166] for k samples is defined as (see
Figure 5.7)

D(P,R) = sup
R∈R

{∣

∣

∣

∣

|P ∩R|
k

− µ(R)

µ(X)

∣

∣

∣

∣

}

, (5.22)

in which |P ∩ R| denotes the number of points in P ∩ R. Each term in the
supremum considers how well P can be used to estimate the volume of R. For
example, if µ(R) is 1/5, then we would hope that about 1/5 of the points in P
fall into R. The discrepancy measures the largest volume estimation error that
can be obtained over all sets in R.

Asymptotic bounds There are many different asymptotic bounds for discrep-
ancy, depending on the particular range space and measure space [126]. The most
widely referenced bounds are based on the standard range space of axis-aligned
rectangular boxes in [0, 1]n. There are two different bounds, depending on whether
the number of points, k, is given. The best possible asymptotic discrepancy for a
single sequence is O(k−1 logn k). This implies that k is not specified. If, however,
for every k a new set of points can be chosen, then the best possible discrepancy
is O(k−1 logn−1 k). This bound is lower because it considers the best that can be
achieved by a sequence of points sets, in which every point set may be completely

5.2. SAMPLING THEORY 207

R

Figure 5.7: Discrepancy measures whether the right number of points fall into
boxes. It is related to the chi-square test but optimizes over all possible boxes.

different. In a single sequence, the next set must be extended from the current
set by adding a single sample.

Relating dispersion and discrepancy Since balls have positive volume, there
is a close relationship between discrepancy, which is measure-based, and disper-
sion, which is metric-based. For example, for any P ⊂ [0, 1]n,

δ(P,L∞) ≤ D(P,R)1/d, (5.23)

which means low-discrepancy implies low-dispersion. Note that the converse is
not true. An axis-aligned grid yields high discrepancy because of alignments with
the boundaries of sets in R, but the dispersion is very low. Even though low-
discrepancy implies low-dispersion, lower dispersion can usually be obtained by
ignoring discrepancy (this is one less constraint to worry about). Thus, a trade-off
must be carefully considered in applications.

Low-discrepancy sampling methods Due to the fundamental importance of
numerical integration and the intricate link between discrepancy and integration
error, most sampling literature has led to low-discrepancy sequences and point sets
[134, 153, 159]. Although motion planning is quite different from integration, it
is worth evaluating these carefully constructed and well-analyzed samples. Their
potential use in motion planning is no less reasonable than using pseudorandom
sequences, which were also designed with a different intention in mind (satisfying
statistical tests of randomness).

Low-discrepancy sampling methods can be divided into three categories: 1)
Halton/Hammersley sampling; 2) (t,s)-sequences and (t,m,s)-nets; and 3) lattices.
The first category represents one of the earliest methods, and is based on extending
the van der Corput sequence. The Halton sequence is an n-dimensional generaliza-
tion of the van der Corput sequence, but instead of using binary representations,

208 S. M. LaValle: Planning Algorithms

a different basis is used for each coordinate [71]. The result is a reasonable de-
terministic replacement for random samples in many applications. The resulting
discrepancy (and dispersion) is lower than that for random samples (with high
probability). Figure 5.8a shows the first 196 Halton points in R2.

Choose n relatively prime integers p1, p2, . . . , pn (usually the first n primes,
p1 = 2, p2 = 3, . . ., are chosen). To construct the ith sample, consider the base-p
representation for i, which takes the form i = a0 + pa1 + p2a2 + p3a3 + The
following point in [0, 1] is obtained by reversing the order of the bits and moving
the decimal point (as was done in Figure 5.2):

r(i, p) =
a0
p

+
a1
p2

+
a2
p3

+
a3
p4

+ · · · . (5.24)

For p = 2, this yields the ith point in the van der Corput sequence. Starting from
i = 0, the ith sample in the Halton sequence is

(

r(i, p1), r(i, p2), . . . , r(i, pn)
)

. (5.25)

Suppose instead that k, the required number of points, is known. In this case,
a better distribution of samples can be obtained. The Hammersley point set [72]
is an adaptation of the Halton sequence. Using only d − 1 distinct primes and
starting at i = 0, the ith sample in a Hammersley point set with k elements is

(

i/k, r(i, p1), . . . , r(i, pn−1)
)

. (5.26)

Figure 5.8b shows the Hammersley set for n = 2 and k = 196.
The construction of Halton/Hammersley samples is simple and efficient, which

has led to widespread application. They both achieve asymptotically optimal
discrepancy; however, the constant in their asymptotic analysis increases more
than exponentially with dimension [134]. The constant for the dispersion also
increases exponentially, which is much worse than for the methods of Section
5.2.3.

Improved constants are obtained for sequences and finite points by using (t,s)-
sequences, and (t,m,s)-nets, respectively [134]. The key idea is to enforce zero
discrepancy over particular subsets of R known as canonical rectangles, and all
remaining ranges in R will contribute small amounts to discrepancy. The most
famous and widely used (t,s)-sequences are Sobol’ and Faure (see [134]). The
Niederreiter-Xing (t,s)-sequence has the best-known asymptotic constant, (a/n)n,
in which a is a small positive constant [135].

The third category is lattices, which can be considered as a generalization of
grids that allows nonorthogonal axes [126, 153, 165]. As an example, consider
Figure 5.5b, which shows 196 lattice points generated by the following technique.
Let α be a positive irrational number. For a fixed k, generate the ith point
according to (i/k, {iα}), in which {·} denotes the fractional part of the real value
(modulo-one arithmetic). In Figure 5.5b, α = (

√
5 + 1)/2, the golden ratio.

5.3. COLLISION DETECTION 209

(a) 196 Halton points (b) 196 Hammersley points

Figure 5.8: The Halton and Hammersley points are easy to construct and provide
a nice alternative to random sampling that achieves more regularity. Compare
the Voronoi regions to those in Figure 5.3. Beware that although these sequences
produce asymptotically optimal discrepancy, their performance degrades substan-
tially in higher dimensions (e.g., beyond 10).

This procedure can be generalized to n dimensions by picking n − 1 distinct
irrational numbers. A technique for choosing the α parameters by using the roots
of irreducible polynomials is discussed in [126]. The ith sample in the lattice is

(

i

k
, {iα1}, . . . , {iαn−1}

)

. (5.27)

Recent analysis shows that some lattice sets achieve asymptotic discrepancy
that is very close to that of the best-known nonlattice sample sets [73, 160].
Thus, restricting the points to lie on a lattice seems to entail little or no loss in
performance, but has the added benefit of a regular neighborhood structure that
is useful for path planning. Historically, lattices have required the specification
of k in advance; however, there has been increasing interest in extensible lattices,
which are infinite sequences [74, 160].

5.3 Collision Detection

Once it has been decided where the samples will be placed, the next problem is to
determine whether the configuration is in collision. Thus, collision detection is a
critical component of sampling-based planning. Even though it is often treated as
a black box, it is important to study its inner workings to understand the informa-
tion it provides and its associated computational cost. In most motion planning
applications, the majority of computation time is spent on collision checking.

210 S. M. LaValle: Planning Algorithms

A variety of collision detection algorithms exist, ranging from theoretical algo-
rithms that have excellent computational complexity to heuristic, practical algo-
rithms whose performance is tailored to a particular application. The techniques
from Section 4.3 can be used to develop a collision detection algorithm by defining
a logical predicate using the geometric model of Cobs. For the case of a 2D world
with a convex robot and obstacle, this leads to an linear-time collision detection
algorithm. In general, however, it can be determined whether a configuration is
in collision more efficiently by avoiding the full construction of Cobs.

5.3.1 Basic Concepts

As in Section 3.1.1, collision detection may be viewed as a logical predicate. In
the current setting it appears as φ : C → {true, false}, in which the domain is
C instead of W . If q ∈ Cobs, then φ(q) = true; otherwise, φ(q) = false.

Distance between two sets For the Boolean-valued function φ, there is no
information about how far the robot is from hitting the obstacles. Such informa-
tion is very important in planning algorithms. A distance function provides this
information and is defined as d : C → [0,∞), in which the real value in the range
of f indicates the distance in the world, W , between the closest pair of points
over all pairs from A(q) and O. In general, for two closed, bounded subsets, E
and F , of Rn, the distance is defined as

ρ(E,F) = min
e∈E

{

min
f∈F

{

‖e− f‖
}}

, (5.28)

in which ‖ · ‖ is the Euclidean norm. Clearly, if E ∩ F 6= ∅, then ρ(E,F) = 0.
The methods described in this section may be used to either compute distance
or only determine whether q ∈ Cobs. In the latter case, the computation is often
much faster because less information is required.

Two-phase collision detection Suppose that the robot is a collection of m
attached links, A1, A2, . . ., Am, and that O has k connected components. For this
complicated situation, collision detection can be viewed as a two-phase process.

1. Broad Phase: In the broad phase, the task is to avoid performing expensive
computations for bodies that are far away from each other. Simple bound-
ing boxes can be placed around each of the bodies, and simple tests can be
performed to avoid costly collision checking unless the boxes overlap. Hash-
ing schemes can be employed in some cases to greatly reduce the number
of pairs of boxes that have to be tested for overlap [133]. For a robot that
consists of multiple bodies, the pairs of bodies that should be considered for
collision must be specified in advance, as described in Section 4.3.1.

5.3. COLLISION DETECTION 211

(a) (b) (c) (d)

Figure 5.9: Four different kinds of bounding regions: (a) sphere, (b) axis-aligned
bounding box (AABB), (c) oriented bounding box (OBB), and (d) convex hull.
Each usually provides a tighter approximation than the previous one but is more
expensive to test for overlapping pairs.

2. Narrow Phase: In the narrow phase, individual pairs of bodies are each
checked carefully for collision. Approaches to this phase are described in
Sections 5.3.2 and 5.3.3.

5.3.2 Hierarchical Methods

In this section, suppose that two complicated, nonconvex bodies, E and F , are
to be checked for collision. Each body could be part of either the robot or the
obstacle region. They are subsets of R2 or R3, defined using any kind of geometric
primitives, such as triangles in R3. Hierarchical methods generally decompose
each body into a tree. Each vertex in the tree represents a bounding region that
contains some subset of the body. The bounding region of the root vertex contains
the whole body.

There are generally two opposing criteria that guide the selection of the type
of bounding region:

1. The region should fit the intended body points as tightly as possible.

2. The intersection test for two regions should be as efficient as possible.

Several popular choices are shown in Figure 5.9 for an L-shaped body.
The tree is constructed for a body, E (or alternatively, F) recursively as fol-

lows. For each vertex, consider the set X of all points in E that are contained in
the bounding region. Two child vertices are constructed by defining two smaller
bounding regions whose union covers X. The split is made so that the portion
covered by each child is of similar size. If the geometric model consists of primi-
tives such as triangles, then a split could be made to separate the triangles into
two sets of roughly the same number of triangles. A bounding region is then
computed for each of the children. Figure 5.10 shows an example of a split for the
case of an L-shaped body. Children are generated recursively by making splits
until very simple sets are obtained. For example, in the case of triangles in space,

212 S. M. LaValle: Planning Algorithms

Figure 5.10: The large circle shows the bounding region for a vertex that covers
an L-shaped body. After performing a split along the dashed line, two smaller
circles are used to cover the two halves of the body. Each circle corresponds to a
child vertex.

a split is made unless the vertex represents a single triangle. In this case, it is
easy to test for the intersection of two triangles.

Consider the problem of determining whether bodies E and F are in collision.
Suppose that the trees Te and Tf have been constructed for E and F , respectively.
If the bounding regions of the root vertices of Te and Tf do not intersect, then it
is known that Te and Tf are not in collision without performing any additional
computation. If the bounding regions do intersect, then the bounding regions of
the children of Te are compared to the bounding region of Tf . If either of these
intersect, then the bounding region of Tf is replaced with the bounding regions
of its children, and the process continues recursively. As long as the bounding
regions overlap, lower levels of the trees are traversed, until eventually the leaves
are reached. If triangle primitives are used for the geometric models, then at the
leaves the algorithm tests the individual triangles for collision, instead of bounding
regions. Note that as the trees are traversed, if a bounding region from the vertex
v1 of Te does not intersect the bounding region from a vertex, v2, of Tf , then no
children of v1 have to be compared to children of v1. Usually, this dramatically
reduces the number of comparisons, relative in a naive approach that tests all
pairs of triangles for intersection.

It is possible to extend the hierarchical collision detection scheme to also com-
pute distance. The closest pair of points found so far serves as an upper bound
that prunes aways some future pairs from consideration. If a pair of bounding
regions has a distance greater than the smallest distance computed so far, then
their children do not have to be considered [117]. In this case, an additional re-
quirement usually must be imposed. Every bounding region must be a proper
subset of its parent bounding region [142]. If distance information is not needed,
then this requirement can be dropped.

5.3. COLLISION DETECTION 213

V

V

V

E

E

E

V

E

E

V

Figure 5.11: The Voronoi regions alternate between being edge-based and vertex-
based. The Voronoi regions of vertices are labeled with a “V” and the Voronoi
regions of edges are labeled with an “E.”

5.3.3 Incremental Methods

This section focuses on a particular approach called incremental distance com-
putation, which assumes that between successive calls to the collision detection
algorithm, the bodies move only a small amount. Under this assumption the
algorithm achieves “almost constant time” performance for the case of convex
polyhedral bodies [115, 132]. Nonconvex bodies can be decomposed into convex
components.

These collision detection algorithms seem to offer wonderful performance, but
this comes at a price. The models must be coherent, which means that all of
the primitives must fit together nicely. For example, if a 2D model uses line
segments, all of the line segments must fit together perfectly to form polygons.
There can be no isolated segments or chains of segments. In three dimensions,
polyhedral models are required to have all faces come together perfectly to form
the boundaries of 3D shapes. The model cannot be an arbitrary collection of 3D
triangles.

The method will be explained for the case of 2D convex polygons, which are
interpreted as convex subsets of R2. Voronoi regions for a convex polygon will be
defined in terms of features. The feature set is the set of all vertices and edges
of a convex polygon. Thus, a polygon with n edges has 2n features. Any point
outside of the polygon has a closest feature in terms of Euclidean distance. For a
given feature, F , the set of all points in R2 from which F is the closest feature is
called the Voronoi region of F and is denoted Vor(F). Figure 5.11 shows all ten
Voronoi regions for a pentagon. Each feature is considered as a point set in the
discussion below.

For any two convex polygons that do not intersect, the closest point is deter-

214 S. M. LaValle: Planning Algorithms

mined by a pair of points, one on each polygon (the points are unique, except in
the case of parallel edges). Consider the feature for each point in the closest pair.
There are only three possible combinations:

• Vertex-Vertex Each point of the closest pair is a vertex of a polygon.

• Edge-Vertex One point of the closest pair lies on an edge, and the other
lies on a vertex.

• Edge-Edge Each point of the closest pair lies on an edge. In this case, the
edges must be parallel.

Let P1 and P2 be two convex polygons, and let F1 and F2 represent any feature
pair, one from each polygon. Let (x1, y1) ∈ F1 and (x2, y2) ∈ F2 denote the closest
pair of points, among all pairs of points in F1 and F2, respectively. The following
condition implies that the distance between (x1, y1) and (x2, y2) is the distance
between P1 and P2:

(x1, y1) ∈ Vor(F2) and (x2, y2) ∈ Vor(F1). (5.29)

If (5.29) is satisfied for a given feature pair, then the distance between P1 and P2

equals the distance between F1 and F2. This implies that the distance between P1

and P2 can be determined in constant time. The assumption that P1 moves only
a small amount relative to P2 is made to increase the likelihood that the closest
feature pair remains the same. This is why the phrase “almost constant time” is
used to describe the performance of the algorithm. Of course, it is possible that
the closest feature pair will change. In this case, neighboring features are tested
using the condition above until the new closest pair of features is found. In this
worst case, this search could be costly, but this violates the assumption that the
bodies do not move far between successive collision detection calls.

The 2D ideas extend to 3D convex polyhedra [43, 115, 132]. The primary
difference is that three kinds of features are considered: faces, edges, and vertices.
The cases become more complicated, but the idea is the same. Once again, the
condition regarding mutual Voronoi regions holds, and the resulting incremental
collision detection algorithm has “almost constant time” performance.

5.3.4 Checking a Path Segment

Collision detection algorithms determine whether a configuration lies in Cfree, but
motion planning algorithms require that an entire path maps into Cfree. The
interface between the planner and collision detection usually involves validation
of a path segment (i.e., a path, but often a short one). This cannot be checked
point-by-point because it would require an uncountably infinite number of calls
to the collision detection algorithm.

Suppose that a path, τ : [0, 1]→ C, needs to be checked to determine whether
τ([0, 1]) ⊂ Cfree. A common approach is to sample the interval [0, 1] and call the

5.3. COLLISION DETECTION 215

A x

y

ar

r

Figure 5.12: The furthest point on A from the origin travels the fastest when A
is rotated. At most it can be displaced by 2πr, if xt and yt are fixed.

collision checker only on the samples. What resolution of sampling is required?
How can one ever guarantee that the places where the path is not sampled are
collision-free? There are both practical and theoretical answers to these questions.
In practice, a fixed ∆q > 0 is often chosen as the C-space step size. Points t1, t2 ∈
[0, 1] are then chosen close enough together to ensure that ρ(τ(t1), τ(t2)) ≤ ∆q, in
which ρ is the metric on C. The value of ∆q is often determined experimentally.
If ∆q is too small, then considerable time is wasted on collision checking. If ∆q
is too large, then there is a chance that the robot could jump through a thin
obstacle.

Setting ∆q empirically might not seem satisfying. Fortunately, there are sound
algorithmic ways to verify that a path is collision-free. In some applications the
methods are still not used because they are trickier to implement and they often
yield worse performance. Therefore, both methods are presented here, and you
can decide which is appropriate, depending on the context and your personal
tastes.

Ensuring that τ([0, 1]) ⊂ Cfree requires the use of both distance information
and bounds on the distance that points on A can travel in R. Such bounds can
be obtained by using the robot displacement metric from Example 5.6. Before
expressing the general case, first we will explain the concept in terms of a rigid
robot that translates and rotates in W = R2. Let xt, yt ∈ R2 and θ ∈ [0, 2π]/ ∼.
Suppose that a collision detection algorithm indicates that A(q) is at least d
units away from collision with obstacles in W . This information can be used to
determine a region in Cfree that contains q. Suppose that the next candidate
configuration to be checked along τ is q′. If no point on A travels more than
distance d when moving from q to q′ along τ , then q′ and all configurations between
q and q′ must be collision-free. This assumes that on the path from q to q′, every
visited configuration must lie between qi and q′i for the ith coordinate and any i
from 1 to n. If the robot can instead take any path between q and q′, then no
such guarantee can be made).

216 S. M. LaValle: Planning Algorithms

When A undergoes a translation, all points move the same distance. For
rotation, however, the distance traveled depends on how far the point on A is
from the rotation center, (0, 0). Let ar = (xr, yr) denote the point on A that
has the largest magnitude, r =

√

x2
r + y2r . Figure 5.12 shows an example. A

transformed point a ∈ A may be denoted by a(xt, yt, θ). The following bound is
obtained for any a ∈ A, if the robot is rotated from orientation θ to θ′:

‖a(xt, yt, θ)− a(xt, yt, θ
′)‖ ≤ ‖ar(xt, yt, θ)− ar(xt, yt, θ

′)‖ < r|θ − θ′|, (5.30)

assuming that a path in C is followed that interpolates between θ and θ′ (using
the shortest path in S1 between θ and θ′). Thus, if A(q) is at least d away from
the obstacles, then the orientation may be changed without causing collision as
long as r|θ − θ′| < d. Note that this is a loose upper bound because ar travels
along a circular arc and can be displaced by no more than 2πr.

Similarly, xt and yt may individually vary up to d, yielding |xt − x′
t| < d and

|yt − y′t| < d. If all three parameters vary simultaneously, then a region in Cfree
can be defined as

{(x′
t, y

′
t, θ

′) ∈ C | |xt − x′
t|+ |yt − y′t|+ r|θ − θ′| < d}. (5.31)

Such bounds can generally be used to set a step size, ∆q, for collision checking
that guarantees the intermediate points lie in Cfree. The particular value used
may vary depending on d and the direction8 of the path.

For the case of SO(3), once again the displacement of the point on A that
has the largest magnitude can be bounded. It is best in this case to express the
bounds in terms of quaternion differences, ‖h−h′‖. Euler angles may also be used
to obtain a straightforward generalization of (5.31) that has six terms, three for
translation and three for rotation. For each of the three rotation parts, a point
with the largest magnitude in the plane perpendicular to the rotation axis must
be chosen.

If there are multiple links, it becomes much more complicated to determine the
step size. Each point a ∈ Ai is transformed by some nonlinear function based on
the kinematic expressions from Sections 3.3 and 3.4. Let a : C → W denote this
transformation. In some cases, it might be possible to derive a Lipschitz condition
of the form

‖a(q)− a(q′)‖ < c‖q − q′‖, (5.32)

in which c ∈ (0,∞) is a fixed constant, a is any point on Ai, and the expression
holds for any q, q′ ∈ C. The goal is to make the Lipschitz constant, c, as small as
possible; this enables larger variations in q.

A better method is to individually bound the link displacement with respect
to each parameter,

‖a(q1, . . . , qi−1, qi, qi+1, . . . , qn)− a(q1, . . . , qi−1, q
′
i, qi+1, . . . , qn)‖ < ci|qi − q′i|,

(5.33)

8To formally talk about directions, it would be better to define a differentiable structure on
C. This will be deferred to Section 8.3, where it seems unavoidable.

5.4. INCREMENTAL SAMPLING AND SEARCHING 217

to obtain the Lipschitz constants c1, . . ., cn. The bound on robot displacement
becomes

‖a(q)− a(q′)‖ <
n

∑

i=1

ci|qi − q′i|. (5.34)

The benefit of using individual parameter bounds can be seen by considering a long
chain. Consider a 50-link chain of line segments in R2, and each link has length
10. The C-space is T50, which can be parameterized as [0, 2π]50/ ∼. Suppose that
the chain is in a straight-line configuration (θi = 0 for all 1 ≤ i ≤ 50), which
means that the last point is at (500, 0) ∈ W . Changes in θ1, the orientation of
the first link, dramatically move A50. However, changes in θ50 move A50 a smaller
amount. Therefore, it is advantageous to pick a different ∆qi for each 1 ≤ i ≤ 50.
In this example, a smaller value should be used for ∆θ1 in comparison to ∆θ50.

Unfortunately, there are more complications. Suppose the 50-link chain is
in a configuration that folds all of the links on top of each other (θi = π for
each 1 ≤ i ≤ n). In this case, A50 does not move as fast when θ1 is perturbed,
in comparison to the straight-line configuration. A larger step size for θ1 could
be used for this configuration, relative to other parts of C. The implication is
that, although Lipschitz constants can be made to hold over all of C, it might be
preferable to determine a better bound in a local region around q ∈ C. A linear
method could be obtained by analyzing the Jacobian of the transformations, such
as (3.53) and (3.57).

Another important concern when checking a path is the order in which the
samples are checked. For simplicity, suppose that ∆q is constant and that the path
is a constant-speed parameterization. Should the collision checker step along from
0 up to 1? Experimental evidence indicates that it is best to use a recursive binary
strategy [59]. This makes no difference if the path is collision-free, but it often
saves time if the path is in collision. This is a kind of sampling problem over
[0, 1], which is addressed nicely by the van der Corput sequence, ν. The last
column in Figure 5.2 indicates precisely where to check along the path in each
step. Initially, τ(1) is checked. Following this, points from the van der Corput
sequence are checked in order: τ(0), τ(1/2), τ(1/4), τ(3/4), τ(1/8), The
process terminates if a collision is found or when the dispersion falls below ∆q.
If ∆q is not constant, then it is possible to skip over some points of ν in regions
where the allowable variation in q is larger.

5.4 Incremental Sampling and Searching

5.4.1 The General Framework

The algorithms of Sections 5.4 and 5.5 follow the single-query model, which means
(qI , qG) is given only once per robot and obstacle set. This means that there are no
advantages to precomputation, and the sampling-based motion planning problem

218 S. M. LaValle: Planning Algorithms

can be considered as a kind of search. The multiple-query model, which favors
precomputation, is covered in Section 5.6.

The sampling-based planning algorithms presented in the present section are
strikingly similar to the family of search algorithms summarized in Section 2.2.4.
The main difference lies in step 3 below, in which applying an action, u, is replaced
by generating a path segment, τs. Another difference is that the search graph, G,
is undirected, with edges that represent paths, as opposed to a directed graph in
which edges represent actions. It is possible to make these look similar by defining
an action space for motion planning that consists of a collection of paths, but this
is avoided here. In the case of motion planning with differential constraints, this
will actually be required; see Chapter 14.

Most single-query, sampling-based planning algorithms follow this template:

1. Initialization: Let G(V,E) represent an undirected search graph, for which
V contains at least one vertex and E contains no edges. Typically, V con-
tains qI , qG, or both. In general, other points in Cfree may be included.

2. Vertex Selection Method (VSM): Choose a vertex qcur ∈ V for expan-
sion.

3. Local Planning Method (LPM): For some qnew ∈ Cfree that may or
may not be represented by a vertex in V , attempt to construct a path
τs : [0, 1]→ Cfree such that τ(0) = qcur and τ(1) = qnew. Using the methods
of Section 5.3.4, τs must be checked to ensure that it does not cause a
collision. If this step fails to produce a collision-free path segment, then go
to step 2.

4. Insert an Edge in the Graph: Insert τs into E, as an edge from qcur to
qnew. If qnew is not already in V , then it is inserted.

5. Check for a Solution: Determine whether G encodes a solution path.
As in the discrete case, if there is a single search tree, then this is trivial;
otherwise, it can become complicated and expensive.

6. Return to Step 2: Iterate unless a solution has been found or some ter-
mination condition is satisfied, in which case the algorithm reports failure.

In the present context, G is a topological graph, as defined in Example 4.6.
Each vertex is a configuration and each edge is a path that connects two configu-
rations. In this chapter, it will be simply referred to as a graph when there is no
chance of confusion. Some authors refer to such a graph as a roadmap; however,
we reserve the term roadmap for a graph that contains enough paths to make any
motion planning query easily solvable. This case is covered in Section 5.6 and
throughout Chapter 6.

A large family of sampling-based algorithms can be described by varying the
implementations of steps 2 and 3. Implementations of the other steps may also

5.4. INCREMENTAL SAMPLING AND SEARCHING 219

qI
qG

qI qG

(a) (b)

qG
qI

qG
qI

(c) (d)

Figure 5.13: All of these depict high-dimensional obstacle regions in C-space. (a)
The search must involve some sort of multi-resolution aspect, otherwise, that al-
gorithm may explore too many points within a cavity. (b) Sometimes the problem
is like a bug trap, in which case bidirectional search can help. (c) For a double
bug trap, multi-directional search may be needed. (d) This example is hard to
solve even for multi-directional search.

vary, but this is less important and will be described where appropriate. For
convenience, step 2 will be called the vertex selection method (VSM) and step 3
will be called the local planning method (LPM). The role of the VSM is similar to
that of the priority queue, Q, in Section 2.2.1. The role of the LPM is to compute
a collision-free path segment that can be added to the graph. It is called local
because the path segment is usually simple (e.g., the shortest path) and travels a
short distance. It is not global in the sense that the LPM does not try to solve the
entire planning problem; it is expected that the LPM may often fail to construct
path segments.

It will be formalized shortly, but imagine for the time being that any of the
search algorithms from Section 2.2 may be applied to motion planning by ap-
proximating C with a high-resolution grid. The resulting problem looks like a
multi-dimensional extension of Example 2.1 (the “labyrinth” walls are formed
by Cobs). For a high-resolution grid in a high-dimensional space, most classical
discrete searching algorithms have trouble getting trapped in a local minimum.
There could be an astronomical number of configurations that fall within a con-

220 S. M. LaValle: Planning Algorithms

cavity in Cobs that must be escaped to solve the problem, as shown in Figure
5.13a. Imagine a problem in which the C-space obstacle is a giant “bowl” that
can trap the configuration. This figure is drawn in two dimensions, but imagine
that the C has many dimensions, such as six for SE(3) or perhaps dozens for a
linkage. If the discrete planning algorithms from Section 2.2 are applied to a high-
resolution grid approximation of C, then they will all waste their time filling up
the bowl before being able to escape to qG. The number of grid points in this bowl
would typically be on the order of 100n for an n-dimensional C-space. Therefore,
sampling-based motion planning algorithms combine sampling and searching in a
way that attempts to overcome this difficulty.

As in the case of discrete search algorithms, there are several classes of algo-
rithms based on the number of search trees.

Unidirectional (single-tree) methods: In this case, the planning ap-
pears very similar to discrete forward search, which was given in Figure 2.4.
The main difference between algorithms in this category is how they imple-
ment the VSM and LPM. Figure 5.13b shows a bug trap9 example for which
forward-search algorithms would have great trouble; however, the problem
might not be difficult for backward search, if the planner incorporates some
kind of greedy, best-first behavior. This example, again in high dimensions,
can be considered as a kind of “bug trap.” To leave the trap, a path must
be found from qI into the narrow opening. Imagine a fly buzzing around
through the high-dimensional trap. The escape opening might not look too
difficult in two dimensions, but if it has a small range with respect to each
configuration parameter, it is nearly impossible to find the opening. The tip
of the “volcano” would be astronomically small compared to the rest of the
bug trap. Examples such as this provide some motivation for bidirectional
algorithms. It might be easier for a search tree that starts in qG to arrive in
the bug trap.

Bidirectional (two-tree) methods: Since it is not known whether qI or
qG might lie in a bug trap (or another challenging region), a bidirectional
approach is often preferable. This follows from an intuition that two prop-
agating wavefronts, one centered on qI and the other on qG, will meet after
covering less area in comparison to a single wavefront centered at qI that
must arrive at qG. A bidirectional search is achieved by defining the VSM
to alternate between trees when selecting vertices. The LPM sometimes
generates paths that explore new parts of Cfree, and at other times it tries
to generate a path that connects the two trees.

Multi-directional (more than two trees) methods: If the problem
is so bad that a double bug trap exists, as shown in Figure 5.13c, then it

9This principle is actually used in real life to trap flying bugs. This analogy was suggested
by James O’Brien in a discussion with James Kuffner.

5.4. INCREMENTAL SAMPLING AND SEARCHING 221

might make sense to grow trees from other places in the hopes that there are
better chances to enter the traps in the other direction. This complicates
the problem of connecting trees, however. Which pairs of trees should be
selected in each iteration for possible connection? How often should the same
pair be selected? Which vertex pairs should be selected? Many heuristic
parameters may arise in practice to answer these questions.

Of course, one can play the devil’s advocate and construct the example in Figure
5.13d, for which virtually all sampling-based planning algorithms are doomed.
Even harder versions can be made in which a sequence of several narrow corridors
must be located and traversed. We must accept the fact that some problems are
hopeless to solve using sampling-based planning methods, unless there is some
problem-specific structure that can be additionally exploited.

5.4.2 Adapting Discrete Search Algorithms

One of the most convenient and straightforward ways to make sampling-based
planning algorithms is to define a grid over C and conduct a discrete search using
the algorithms of Section 2.2. The resulting planning problem actually looks very
similar to Example 2.1. Each edge now corresponds to a path in Cfree. Some edges
may not exist because of collisions, but this will have to be revealed incrementally
during the search because an explicit representation of Cobs is too expensive to
construct (recall Section 4.3).

Assume that an n-dimensional C-space is represented as a unit cube, C =
[0, 1]n/ ∼, in which ∼ indicates that identifications of the sides of the cube are
made to reflect the C-space topology. Representing C as a unit cube usually
requires a reparameterization. For example, an angle θ ∈ [0, 2π) would be replaced
with θ/2π to make the range lie within [0, 1]. If quaternions are used for SO(3),
then the upper half of S3 must be deformed into [0, 1]3/ ∼.

Discretization Assume that C is discretized by using the resolutions k1, k2,. . .,
and kn, in which each ki is a positive integer. This allows the resolution to be
different for each C-space coordinate. Either a standard grid or a Sukharev grid
can be used. Let

∆qi = [0 · · · 0 1/ki 0 · · · 0], (5.35)

in which the first i − 1 components and the last n − i components are 0. A grid
point is a configuration q ∈ C that can be expressed in the form10

n
∑

i=1

ji∆qi, (5.36)

in which each ji ∈ {0, 1, . . . , ki}. The integers j1, . . ., jn can be imagined as array
indices for the grid. Let the term boundary grid point refer to a grid point for

10Alternatively, the general lattice definition in (5.21) could be used.

222 S. M. LaValle: Planning Algorithms

which ji = 0 or ji = ki for some i. Due to identifications, boundary grid points
might have more than one representation using (5.36).

Neighborhoods For each grid point q we need to define the set of nearby grid
points for which an edge may be constructed. Special care must be given to
defining the neighborhood of a boundary grid point to ensure that identifications
and the C-space boundary (if it exists) are respected. If q is not a boundary grid
point, then the 1-neighborhood is defined as

N1(q) = {q +∆q1, . . . , q +∆qn, q −∆q1, . . . , q −∆qn}. (5.37)

For an n-dimensional C-space there at most 2n 1-neighbors. In two dimensions,
this yields at most four 1-neighbors, which can be thought of as “up,” “down,”
“left,” and “right.” There are at most four because some directions may be blocked
by the obstacle region.

A 2-neighborhood is defined as

N2(q) = {q ±∆qi ±∆qj | 1 ≤ i, j ≤ n, i 6= j} ∪N1(q). (5.38)

Similarly, a k-neighborhood can be defined for any positive integer k ≤ n. For
an n-neighborhood, there are at most 3n − 1 neighbors; there may be fewer due
to boundaries or collisions. The definitions can be easily extended to handle the
boundary points.

Obtaining a discrete planning problem Once the grid and neighborhoods
have been defined, a discrete planning problem is obtained. Figure 5.14 depicts
the process for a problem in which there are nine Sukharev grid points in [0, 1]2.
Using 1-neighborhoods, the potential edges in the search graph, G(V,E), appear
in Figure 5.14a. Note that G is a topological graph, as defined in Example 4.6,
because each vertex is a configuration and each edge is a path. If qI and qG do not
coincide with grid points, they need to be connected to some nearby grid points,
as shown in Figure 5.14b. What grid points should qI and qG be connected to?
As a general rule, if k-neighbors are used, then one should try connecting qI and
qG to any grid points that are at least as close as the furthest k-neighbor from a
typical grid point.

Usually, all of the vertices and edges shown in Figure 5.14b do not appear in
G because some intersect with Cobs. Figure 5.14c shows a more typical situation,
in which some of the potential vertices and edges are removed because of colli-
sions. This representation could be computed in advance by checking all potential
vertices and edges for collision. This would lead to a roadmap, which is suited
for multiple queries and is covered in Section 5.6. In this section, it is assumed
that G is revealed “on the fly” during the search. This is the same situation that
occurs for the discrete planning methods from Section 2.2. In the current setting,
the potential edges of G are validated during the search. The candidate edges to

5.4. INCREMENTAL SAMPLING AND SEARCHING 223

(a) (b)

(c) (d)

Figure 5.14: A topological graph can be constructed during the search and can
successfully solve a motion planning problem using very few samples.

evaluate are given by the definition of the k-neighborhoods. During the search,
any edge or vertex that has been checked for collision explicitly appears in a data
structure so that it does not need to be checked again. At the end of the search,
a path is found, as depicted in Figure 5.14d.

Grid resolution issues The method explained so far will nicely find the solu-
tion to many problems when provided with the correct resolution. If the number
of points per axis is too high, then the search may be too slow. This motivates
selecting fewer points per axis, but then solutions might be missed. This trade-off
is fundamental to sampling-based motion planning. In a more general setting, if
other forms of sampling and neighborhoods are used, then enough samples have
to be generated to yield a sufficiently small dispersion.

There are two general ways to avoid having to select this resolution (or more
generally, dispersion):

1. Iteratively refine the resolution until a solution is found. In this case, sam-

224 S. M. LaValle: Planning Algorithms

pling and searching become interleaved. One important variable is how
frequently to alternate between the two processes. This will be presented
shortly.

2. An alternative is to abandon the adaptation of discrete search algorithms
and develop algorithms directly for the continuous problem. This forms the
basis of the methods in Sections 5.4.3, 5.4.4, and 5.5.

The most straightforward approach is to iteratively improve the grid resolution.
Suppose that initially a standard grid with 2n points total and 2 points per axis
is searched using one of the discrete search algorithms, such as best-first or A∗. If
the search fails, what should be done? One possibility is to double the resolution,
which yields a grid with 4n points. Many of the edges can be reused from the
first grid; however, the savings diminish rapidly in higher dimensions. Once the
resolution is doubled, the search can be applied again. If it fails again, then the
resolution can be doubled again to yield 8n points. In general, there would be a
full grid for 2ni points, for each i. The problem is that if n is large, then the rate
of growth is too large. For example, if n = 10, then there would initially be 1024
points; however, when this fails, the search is not performed again until there are
over one million points! If this also fails, then it might take a very long time to
reach the next level of resolution, which has 230 points.

A method similar to iterative deepening from Section 2.2.2 would be preferable.
Simply discard the efforts of the previous resolution and make grids that have in

points per axis for each iteration i. This yields grids of sizes 2n, 3n, 4n, and so on,
which is much better. The amount of effort involved in searching a larger grid is
insignificant compared to the time wasted on lower resolution grids. Therefore, it
seems harmless to discard previous work.

A better solution is not to require that a complete grid exists before it can
be searched. For example, the resolution can be increased for one axis at a time
before attempting to search again. Even better yet may be to tightly interleave
searching and sampling. For example, imagine that the samples appear as an
infinite, dense sequence α. The graph can be searched after every 100 points are
added, assuming that neighborhoods can be defined or constructed even though
the grid is only partially completed. If the search is performed too frequently,
then searching would dominate the running time. An easy way make this efficient
is to apply the union-find algorithm [41, 144] to iteratively keep track of connected
components in G instead of performing explicit searching. If qI and qG become part
of the same connected component, then a solution path has been found. Every
time a new point in the sequence α is added, the “search” is performed in nearly11

constant time by the union-find algorithm. This is the tightest interleaving of
the sampling and searching, and results in a nice sampling-based algorithm that

11It is not constant because the running time is proportional to the inverse Ackerman function,
which grows very, very slowly. For all practical purposes, the algorithm operates in constant
time. See Section 6.5.2.

5.4. INCREMENTAL SAMPLING AND SEARCHING 225

Random Walk BacktrackBest First

Stuck and i < K

Stuck
and i=K

Reset i to 1

Increment i

Initialization (i=1)

Figure 5.15: The randomized potential field method can be modeled as a three-
state machine.

requires no resolution parameter. It is perhaps best to select a sequence α that
contains some lattice structure to facilitate the determination of neighborhoods
in each iteration.

What if we simply declare the resolution to be outrageously high at the outset?
Imagine there are 100n points in the grid. This places all of the burden on the
search algorithm. If the search algorithm itself is good at avoiding local minima
and has built-in multi-resolution qualities, then it may perform well without the
iterative refinement of the sampling. The method of Section 5.4.3 is based on
this idea by performing best-first search on a high-resolution grid, combined with
random walks to avoid local minima. The algorithms of Section 5.5 go one step
further and search in a multi-resolution way without requiring resolutions and
neighborhoods to be explicitly determined. This can be considered as the limiting
case as the number of points per axis approaches infinity.

Although this section has focused on grids, it is also possible to use other
forms of sampling from Section 5.2. This requires defining the neighborhoods
in a suitable way that generalizes the k-neighborhoods of this section. In every
case, an infinite, dense sample sequence must be defined to obtain resolution com-
pleteness by reducing the dispersion to zero in the limit. Methods for obtaining
neighborhoods for irregular sample sets have been developed in the context of
sampling-based roadmaps; see Section 5.6. The notion of improving resolution
becomes generalized to adding samples that improve dispersion (or even discrep-
ancy).

5.4.3 Randomized Potential Fields

Adapting the discrete algorithms from Section 2.2 works well if the problem can
be solved with a small number of points. The number of points per axis must
be small or the dimension must be low, to ensure that the number of points, kn,
for k points per axis and n dimensions is small enough so that every vertex in
g can be reached in a reasonable amount of time. If, for example, the problem
requires 50 points per axis and the dimension is 10, then it is impossible to search
all of the 5010 samples. Planners that exploit best-first heuristics might find the
answer without searching most of them; however, for a simple problem such as

226 S. M. LaValle: Planning Algorithms

that shown in Figure 5.13a, the planner will take too long exploring the vertices
in the bowl.12

The randomized potential field [14, 16, 102] approach uses random walks to
attempt to escape local minima when best-first search becomes stuck. It was
one of the first sampling-based planners that developed specialized techniques
beyond classical discrete search, in an attempt to better solve challenging motion
planning problems. In many cases, remarkable results were obtained. In its time,
the approach was able to solve problems up to 31 degrees of freedom, which was
well beyond what had been previously possible. The main drawback, however,
was that the method involved many heuristic parameters that had to be adjusted
for each problem. This frustration eventually led to the development of better
approaches, which are covered in Sections 5.4.4, 5.5, and 5.6. Nevertheless, it is
worthwhile to study the clever heuristics involved in this earlier method because
they illustrate many interesting issues, and the method was very influential in the
development of other sampling-based planning algorithms.13

The most complicated part of the algorithm is the definition of a potential
function, which can be considered as a pseudometric that tries to estimate the
distance from any configuration to the goal. In most formulations, there is an
attractive term, which is a metric on C that yields the distance to the goal, and
a repulsive term, which penalizes configurations that come too close to obstacles.
The construction of potential functions involves many heuristics and is covered
in great detail in [102]. One of the most effective methods involves constructing
cost-to-go functions over W and lifting them to C [15]. In this section, it will be
sufficient to assume that some potential function, g(q), is defined, which is the
same notation (and notion) as a cost-to-go function in Section 2.2.2. In this case,
however, there is no requirement that g(q) is optimal or even an underestimate of
the true cost to go.

When the search becomes stuck and a random walk is needed, it is executed for
some number of iterations. Using the discretization procedures of Section 5.4.2, a
high-resolution grid (e.g., 50 points per axis) is initially defined. In each iteration,
the current configuration is modified as follows. Each coordinate, qi, is increased
or decreased by ∆qi (the grid step size) based on the outcome of a fair coin toss.
Topological identifications must be respected, of course. After each iteration, the
new configuration is checked for collision, or whether it exceeds the boundary of
C (if it has a boundary). If so, then it is discarded, and another attempt is made
from the previous configuration. The failures can repeat indefinitely until a new
configuration in Cfree is obtained.

The resulting planner can be described in terms of a three-state machine,
which is shown in Figure 5.15. Each state is called a mode to avoid confusion with

12Of course, that problem does not appear to need so many points per axis; fewer may be
used instead, if the algorithm can adapt the sampling resolution or dispersion.

13The exciting results obtained by the method even helped inspire me many years ago to work
on motion planning.

5.4. INCREMENTAL SAMPLING AND SEARCHING 227

earlier state-space concepts. The VSM and LPM are defined in terms of the mode.
Initially, the planner is in the best first mode and uses qI to start a gradient
descent. While in the best first mode, the VSM selects the newest vertex,
v ∈ V . In the first iteration, this is qI . The LPM creates a new vertex, vn, in a
neighborhood of v, in a direction that minimizes g. The direction sampling may
be performed using randomly selected or deterministic samples. Using random
samples, the sphere sampling method from Section 5.2.2 can be applied. After
some number of tries (another parameter), if the LPM is unsuccessful at reducing
g, then the mode is changed to random walk because the best-first search is
stuck in a local minimum of g.

In the random walk mode, a random walk is executed from the newest
vertex. The random walk terminates if either g is lowered or a specified limit
of iterations is reached. The limit is actually sampled from a predetermined
random variable (which contains parameters that also must be selected). When
the random walk mode terminates, the mode is changed back to best first. A
counter is incremented to keep track of the number of times that the random walk
was attempted. A parameter K determines the maximum number of attempted
random walks (a reasonable value is K = 20 [15]). If best first fails after K
random walks have been attempted, then the backtrack mode is entered. The
backtrack mode selects a vertex at random from among the vertices in V that
were obtained during a random walk. Following this, the counter is reset, and the
mode is changed back to best first.

Due to the random walks, the resulting paths are often too complicated to
be useful in applications. Fortunately, it is straightforward to transform a com-
puted path into a simpler one that is still collision-free. A common approach is
to iteratively pick pairs of points at random along the domain of the path and
attempt to replace the path segment with a straight-line path (in general, the
shortest path in C). For example, suppose t1, t2 ∈ [0, 1] are chosen at random, and
τ : [0, 1] → Cfree is the computed solution path. This path is transformed into a
new path,

τ ′(t) =

τ(t) if 0 ≤ t ≤ t1
aτ(t1) + (1− a)τ(t2) if t1 ≤ t ≤ t2
τ(t) if t2 ≤ t ≤ 1,

(5.39)

in which a ∈ [0, 1] represents the fraction of the way from t1 to t2. Explicitly,
a = (t2 − t)/(t2 − t1). The new path must be checked for collision. If it passes,
then it replaces the old path; otherwise, it is discarded and a new pair t1, t2, is
chosen.

The randomized potential field approach can escape high-dimensional local
minima, which allow interesting solutions to be found for many challenging high-
dimensional problems. Unfortunately, the heavy amount of parameter tuning
caused most people to abandon the method in recent times, in favor of newer
methods.

228 S. M. LaValle: Planning Algorithms

5.4.4 Other Methods

Several influential sampling-based methods are given here. Each of them appears
to offer advantages over the randomized potential field method. All of them use
randomization, which was perhaps inspired by the potential field method.

Ariadne’s Clew algorithm This approach grows a search tree that is biased
to explore as much new territory as possible in each iteration [129, 128]. There are
two modes, search and explore, which alternate over successive iterations. In
the explore mode, the VSM selects a vertex, ve, at random, and the LPM finds
a new configuration that can be easily connected to ve and is as far as possible
from the other vertices in G. A global optimization function that aggregates the
distances to other vertices is optimized using a genetic algorithm. In the search
mode, an attempt is made to extend the vertex added in the explore mode to
the goal configuration. The key idea from this approach, which influenced both
the next approach and the methods in Section 5.5, is that some of the time must
be spent exploring the space, as opposed to focusing on finding the solution. The
greedy behavior of the randomized potential field led to some efficiency but was
also its downfall for some problems because it was all based on escaping local
minima with respect to the goal instead of investing time on global exploration.
One disadvantage of Ariadne’s Clew algorithm is that it is very difficult to solve
the optimization problem for placing a new vertex in the explore mode. Genetic
algorithms were used in [128], which are generally avoided for motion planning
because of the required problem-specific parameter tuning.

Expansive-space planner This method [79, 148] generates samples in a way
that attempts to explore new parts of the space. In this sense, it is similar to
the explore mode of the Ariadne’s Clew algorithm. Furthermore, the planner
is made more efficient by borrowing the bidirectional search idea from discrete
search algorithms, as covered in Section 2.2.3. The VSM selects a vertex, ve,
from G with a probability that is inversely proportional to the number of other
vertices of G that lie within a predetermined neighborhood of ve. Thus, “isolated”
vertices are more likely to be chosen. The LPM generates a new vertex vn at
random within a predetermined neighborhood of ve. It will decide to insert vn
into G with a probability that is inversely proportional to the number of other
vertices of G that lie within a predetermined neighborhood of vn. For a fixed
number of iterations, the VSM repeatedly chooses the same vertex, until moving
on to another vertex. The resulting planner is able to solve many interesting
problems by using a surprisingly simple criterion for the placement of points. The
main drawbacks are that the planner requires substantial parameter tuning, which
is problem-specific (or at least specific to a similar family of problems), and the
performance tends to degrade if the query requires systematically searching a long
labyrinth. Choosing the radius of the predetermined neighborhoods essentially
amounts to determining the appropriate resolution.

5.5. RAPIDLY EXPLORING DENSE TREES 229

Random-walk planner A surprisingly simple and efficient algorithm can be
made entirely from random walks [31]. To avoid parameter tuning, the algorithm
adjusts its distribution of directions and magnitude in each iteration, based on the
success of the past k iterations (perhaps k is the only parameter). In each iteration,
the VSM just selects the vertex that was most recently added to G. The LPM
generates a direction and magnitude by generating samples from a multivariate
Gaussian distribution whose covariance parameters are adaptively tuned. The
main drawback of the method is similar to that of the previous method. Both
have difficulty traveling through long, winding corridors. It is possible to combine
adaptive random walks with other search algorithms, such as the potential field
planner [30].

5.5 Rapidly Exploring Dense Trees

This section introduces an incremental sampling and searching approach that
yields good performance in practice without any parameter tuning.14 The idea
is to incrementally construct a search tree that gradually improves the resolution
but does not need to explicitly set any resolution parameters. In the limit, the tree
densely covers the space. Thus, it has properties similar to space filling curves
[147], but instead of one long path, there are shorter paths that are organized
into a tree. A dense sequence of samples is used as a guide in the incremental
construction of the tree. If this sequence is random, the resulting tree is called
a rapidly exploring random tree (RRT). In general, this family of trees, whether
the sequence is random or deterministic, will be referred to as rapidly exploring
dense trees (RDTs) to indicate that a dense covering of the space is obtained. This
method was originally developed for motion planning under differential constraints
[105, 108]; that case is covered in Section 14.4.3.

5.5.1 The Exploration Algorithm

Before explaining how to use these trees to solve a planning query, imagine that
the goal is to get as close as possible to every configuration, starting from an
initial configuration. The method works for any dense sequence. Once again, let
α denote an infinite, dense sequence of samples in C. The ith sample is denoted
by α(i). This may possibly include a uniform, random sequence, which is only
dense with probability one. Random sequences that induce a nonuniform bias are
also acceptable, as long as they are dense with probability one.

An RDT is a topological graph, G(V,E). Let S ⊂ Cfree indicate the set of all
points reached by G. Since each e ∈ E is a path, this can be expressed as the

14The original RRT [103] was introduced with a step size parameter, but this is eliminated in
the current presentation. For implementation purposes, one might still want to revert to this
older way of formulating the algorithm because the implementation is a little easier. This will
be discussed shortly.

230 S. M. LaValle: Planning Algorithms

SIMPLE RDT(q0)
1 G.init(q0);
2 for i = 1 to k do
3 G.add vertex(α(i));
4 qn ← nearest(S(G), α(i));
5 G.add edge(qn, α(i));

Figure 5.16: The basic algorithm for constructing RDTs (which includes RRTs
as a special case) when there are no obstacles. It requires the availability of a
dense sequence, α, and iteratively connects from α(i) to the nearest point among
all those reached by G.

q0

qn

α(i)

q0

(a) (b)

Figure 5.17: (a) Suppose inductively that this tree has been constructed so far
using the algorithm in Figure 5.16. (b) A new edge is added that connects from
the sample α(i) to the nearest point in S, which is the vertex qn.

swath, S, of the graph, which is defined as

S =
⋃

e∈E

e([0, 1]). (5.40)

In (5.40), e([0, 1]) ⊆ Cfree is the image of the path e.
The exploration algorithm is first explained in Figure 5.16 without any obsta-

cles or boundary obstructions. It is assumed that C is a metric space. Initially, a
vertex is made at q0. For k iterations, a tree is iteratively grown by connecting
α(i) to its nearest point in the swath, S. The connection is usually made along

qn

α(i)q0

Figure 5.18: If the nearest point in S lies in an edge, then the edge is split into
two, and a new vertex is inserted into G.

5.5. RAPIDLY EXPLORING DENSE TREES 231

45 iterations 2345 iterations

Figure 5.19: In the early iterations, the RRT quickly reaches the unexplored parts.
However, the RRT is dense in the limit (with probability one), which means that
it gets arbitrarily close to any point in the space.

the shortest possible path. In every iteration, α(i) becomes a vertex. Therefore,
the resulting tree is dense. Figures 5.17–5.18 illustrate an iteration graphically.
Suppose the tree has three edges and four vertices, as shown in Figure 5.17a. If
the nearest point, qn ∈ S, to α(i) is a vertex, as shown in Figure 5.17b, then an
edge is made from qn to α(i). However, if the nearest point lies in the interior
of an edge, as shown in Figure 5.18, then the existing edge is split so that qn
appears as a new vertex, and an edge is made from qn to α(i). The edge splitting,
if required, is assumed to be handled in line 4 by the method that adds edges.
Note that the total number of edges may increase by one or two in each iteration.

The method as described here does not fit precisely under the general frame-
work from Section 5.4.1; however, with the modifications suggested in Section
5.5.2, it can be adapted to fit. In the RDT formulation, the nearest function
serves the purpose of the VSM, but in the RDT, a point may be selected from
anywhere in the swath of the graph. The VSM can be generalized to a swath-point
selection method, SSM. This generalization will be used in Section 14.3.4. The
LPM tries to connect α(i) to qn along the shortest path possible in C.

Figure 5.19 shows an execution of the algorithm in Figure 5.16 for the case
in which C = [0, 1]2 and q0 = (1/2, 1/2). It exhibits a kind of fractal behavior.15

Several main branches are first constructed as it rapidly reaches the far corners of
the space. Gradually, more and more area is filled in by smaller branches. From
the pictures, it is clear that in the limit, the tree densely fills the space. Thus,

15If α is uniform, random, then a stochastic fractal [101] is obtained. Deterministic fractals
can be constructed using sequences that have appropriate symmetries.

232 S. M. LaValle: Planning Algorithms

qn

q0

Cobs

qs

α(i)

Figure 5.20: If there is an obstacle, the edge travels up to the obstacle boundary,
as far as allowed by the collision detection algorithm.

RDT(q0)
1 G.init(q0);
2 for i = 1 to k do
3 qn ← nearest(S, α(i));
4 qs ← stopping-configuration(qn,α(i));
5 if qs 6= qn then
6 G.add vertex(qs);
7 G.add edge(qn, qs);

Figure 5.21: The RDT with obstacles.

it can be seen that the tree gradually improves the resolution (or dispersion) as
the iterations continue. This behavior turns out to be ideal for sampling-based
motion planning.

Recall that in sampling-based motion planning, the obstacle region Cobs is not
explicitly represented. Therefore, it must be taken into account in the construction
of the tree. Figure 5.20 indicates how to modify the algorithm in Figure 5.16 so
that collision checking is taken into account. The modified algorithm appears
in Figure 5.21. The procedure stopping-configuration yields the nearest
configuration possible to the boundary of Cfree, along the direction toward α(i).
The nearest point qn ∈ S is defined to be same (obstacles are ignored); however,
the new edge might not reach to α(i). In this case, an edge is made from qn to qs,
the last point possible before hitting the obstacle. How close can the edge come to
the obstacle boundary? This depends on the method used to check for collision,
as explained in Section 5.3.4. It is sometimes possible that qn is already as close
as possible to the boundary of Cfree in the direction of α(i). In this case, no new
edge or vertex is added that for that iteration.

5.5.2 Efficiently Finding Nearest Points

There are several interesting alternatives for implementing the nearest function
in line 3 of the algorithm in Figure 5.16. There are generally two families of
methods: exact or approximate. First consider the exact case.

5.5. RAPIDLY EXPLORING DENSE TREES 233

Exact solutions Suppose that all edges in G are line segments in Rm for some
dimension m ≥ n. An edge that is generated early in the construction process will
be split many times in later iterations. For the purposes of finding the nearest
point in S, however, it is best to handle this as a single segment. For example, see
the three large branches that extend from the root in Figure 5.19. As the number
of points increases, the benefit of agglomerating the segments increases. Let each
of these agglomerated segments be referred to as a supersegment. To implement
nearest, a primitive is needed that computes the distance between a point and a
line segment. This can be performed in constant time with simple vector calculus.
Using this primitive, nearest is implemented by iterating over all supersegments
and taking the point with minimum distance among all of them. It may be possible
to improve performance by building hierarchical data structures that can eliminate
large sets of supersegments, but this remains to be seen experimentally.

In some cases, the edges of G may not be line segments. For example, the short-
est paths between two points in SO(3) are actually circular arcs along S3. One
possible solution is to maintain a separate parameterization of C for the purposes
of computing the nearest function. For example, SO(3) can be represented as
[0, 1]3/ ∼, by making the appropriate identifications to obtain RP3. Straight-line
segments can then be used. The problem is that the resulting metric is not con-
sistent with the Haar measure, which means that an accidental bias would result.
Another option is to tightly enclose S3 in a 4D cube. Every point on S3 can be
mapped outward onto a cube face. Due to antipodal identification, only four of
the eight cube faces need to be used to obtain a bijection between the set of all
rotation and the cube surface. Linear interpolation can be used along the cube
faces, as long as both points remain on the same face. If the points are on different
faces, then two line segments can be used by bending the shortest path around
the corner between the two faces. This scheme will result in less distortion than
mapping SO(3) to [0, 1]3/ ∼; however, some distortion will still exist.

Another approach is to avoid distortion altogether and implement primitives
that can compute the distance between a point and a curve. In the case of SO(3),
a primitive is needed that can find the distance between a circular arc in Rm

and a point in Rm. This might not be too difficult, but if the curves are more
complicated, then an exact implementation of the nearest function may be too
expensive computationally.

Approximate solutions Approximate solutions are much easier to construct,
however, a resolution parameter is introduced. Each path segment can be approx-
imated by inserting intermediate vertices along long segments, as shown in Figure
5.22. The intermediate vertices should be added each time a new sample, α(i),
is inserted into G. A parameter ∆q can be defined, and intermediate samples are
inserted to ensure that no two consecutive vertices in G are ever further than ∆q
from each other. Using intermediate vertices, the interiors of the edges in G are
ignored when finding the nearest point in S. The approximate computation of

234 S. M. LaValle: Planning Algorithms

qn

q0 α(i)

Figure 5.22: For implementation ease, intermediate vertices can be inserted to
avoid checking for closest points along line segments. The trade-off is that the
number of vertices is increased dramatically.

13

12

14

11
8

9
10

7

4

5

6

2 3

1

7

8

3 1 10 11

2 4 6 9 13 14

12

5

Figure 5.23: A Kd-tree can be used for efficient nearest-neighbor computations.

nearest is performed by finding the closest vertex to α(i) in G. This approach
is by far the simplest to implement. It also fits precisely under the incremental
sampling and searching framework from Section 5.4.1.

When using intermediate vertices, the trade-offs are clear. The computation
time for each evaluation of nearest is linear in the number of vertices. Increasing
the number of vertices improves the quality of the approximation, but it also
dramatically increases the running time. One way to recover some of this cost is
to insert the vertices into an efficient data structure for nearest-neighbor searching.
One of the most practical and widely used data structures is the Kd-tree [46, 58,
137]. A depiction is shown in Figure 5.23 for 14 points in R2. The Kd-tree can
be considered as a multi-dimensional generalization of a binary search tree. The
Kd-tree is constructed for points, P , in R2 as follows. Initially, sort the points
with respect to the x coordinate. Take the median point, p ∈ P , and divide
P into two sets, depending on which side of a vertical line through p the other
points fall. For each of the two sides, sort the points by the y coordinate and find
their medians. Points are divided at this level based on whether they are above
or below horizontal lines. At the next level of recursion, vertical lines are used
again, followed by horizontal again, and so on. The same idea can be applied in
Rn by cycling through the n coordinates, instead of alternating between x and y,
to form the divisions. In [9], the Kd-tree is extended to topological spaces that
arise in motion planning and is shown to yield good performance for RRTs and
sampling-based roadmaps. A Kd-tree of k points can be constructed in O(nk lg k)
time. Topological identifications must be carefully considered when traversing

5.5. RAPIDLY EXPLORING DENSE TREES 235

the tree. To find the nearest point in the tree to some given point, the query
algorithm descends to a leaf vertex whose associated region contains the query
point, finds all distances from the data points in this leaf to the query point, and
picks the closest one. Next, it recursively visits those surrounding leaf vertices
that are further from the query point than the closest point found so far [7, 9].
The nearest point can be found in time logarithmic in k.

Unfortunately, these bounds hide a constant that increases exponentially with
the dimension, n. In practice, the Kd-tree is useful in motion planning for prob-
lems of up to about 20 dimensions. After this, the performance usually degrades
too much. As an empirical rule, if there are more than 2n points, then the Kd-tree
should be more efficient than naive nearest neighbors. In general, the trade-offs
must be carefully considered in a particular application to determine whether ex-
act solutions, approximate solutions with naive nearest-neighbor computations,
or approximate solutions with Kd-trees will be more efficient. There is also the
issue of implementation complexity, which probably has caused most people to
prefer the approximate solution with naive nearest-neighbor computations.

5.5.3 Using the Trees for Planning

So far, the discussion has focused on exploring Cfree, but this does not solve a
planning query by itself. RRTs and RDTs can be used in many ways in plan-
ning algorithms. For example, they could be used to escape local minima in the
randomized potential field planner of Section 5.4.3.

Single-tree search A reasonably efficient planner can be made by directly using
the algorithm in Figure 5.21 to grow a tree from qI and periodically check whether
it is possible to connect the RDT to qG. An easy way to achieve this is to start
with a dense sequence α and periodically insert qG at regularly spaced intervals.
For example, every 100th sample could be qG. Each time this sample is reached,
an attempt is made to reach qG from the closest vertex in the RDT. If the sample
sequence is random, which generates an RRT, then the following modification
works well. In each iteration, toss a biased coin that has probability 99/100 of
being heads and 1/100 of being tails. If the result is heads, then set α(i), to be
the next element of the pseudorandom sequence; otherwise, set α(i) = qG. This
forces the RRT to occasionally attempt to make a connection to the goal, qG. Of
course, 1/100 is arbitrary, but it is in a range that works well experimentally. If the
bias is too strong, then the RRT becomes too greedy like the randomized potential
field. If the bias is not strong enough, then there is no incentive to connect the tree
to qG. An alternative is to consider other dense, but not necessarily nonuniform
sequences in C. For example, in the case of random sampling, the probability
density function could contain a gentle bias towards the goal. Choosing such a
bias is a difficult heuristic problem; therefore, such a technique should be used
with caution (or avoided altogether).

236 S. M. LaValle: Planning Algorithms

RDT BALANCED BIDIRECTIONAL(qI , qG)
1 Ta.init(qI); Tb.init(qG);
2 for i = 1 to K do
3 qn ← nearest(Sa, α(i));
4 qs ← stopping-configuration(qn,α(i));
5 if qs 6= qn then
6 Ta.add vertex(qs);
7 Ta.add edge(qn, qs);
8 q′n ← nearest(Sb, qs);
9 q′s ← stopping-configuration(q′n,qs);
10 if q′s 6= q′n then
11 Tb.add vertex(q′s);
12 Tb.add edge(q′n, q

′
s);

13 if q′s = qs then return SOLUTION;
14 if |Tb| > |Ta| then SWAP(Ta, Tb);
15 return FAILURE

Figure 5.24: A bidirectional RDT-based planner.

Balanced, bidirectional search Much better performance can usually be ob-
tained by growing two RDTs, one from qI and the other from qG. This is particu-
larly valuable for escaping one of the bug traps, as mentioned in Section 5.4.1. For
a grid search, it is straightforward to implement a bidirectional search that en-
sures that the two trees meet. For the RDT, special considerations must be made
to ensure that the two trees will connect while retaining their “rapidly exploring”
property. One additional idea is to make sure that the bidirectional search is
balanced [99], which ensures that both trees are the same size.

Figure 5.24 gives an outline of the algorithm. The graph G is decomposed
into two trees, denoted by Ta and Tb. Initially, these trees start from qI and
qG, respectively. After some iterations, Ta and Tb are swapped; therefore, keep in
mind that Ta is not always the tree that contains qI . In each iteration, Ta is grown
exactly the same way as in one iteration of the algorithm in Figure 5.16. If a new
vertex, qs, is added to Ta, then an attempt is made in lines 10–12 to extend Tb.
Rather than using α(i) to extend Tb, the new vertex qs of Ta is used. This causes
Tb to try to grow toward Ta. If the two connect, which is tested in line 13, then a
solution has been found.

Line 14 represents an important step that balances the search. This is partic-
ularly important for a problem such as the bug trap shown in Figure 5.13b or the
puzzle shown in Figure 1.2. If one of the trees is having trouble exploring, then
it makes sense to focus more energy on it. Therefore, new exploration is always
performed for the smaller tree. How is “smaller” defined? A simple criterion is to
use the total number of vertices. Another reasonable criterion is to use the total
length of all segments in the tree.

5.6. ROADMAP METHODS FOR MULTIPLE QUERIES 237

An unbalanced bidirectional search can instead be made by forcing the trees
to be swapped in every iteration. Once the trees are swapped, then the roles are
reversed. For example, after the first swap, Tb is extended in the same way as
an integration in Figure 5.16, and if a new vertex qs is added then an attempt is
made to connect Ta to qs.

One important concern exists when α is deterministic. It might be possible
that even though α is dense, when the samples are divided among the trees, each
may not receive a dense set. If each uses its own deterministic sequence, then this
problem can be avoided. In the case of making a bidirectional RRT planner, the
same (pseudo)random sequence can be used for each tree without encountering
such troubles.

More than two trees If a dual-tree approach offers advantages over a single
tree, then it is natural to ask whether growing three or more RDTs might be
even better. This is particularly helpful for problems like the double bug trap in
Figure 5.13c. New trees can be grown from parts of C that are difficult to reach.
Controlling the number of trees and determining when to attempt connections
between them is difficult. Some interesting recent work has been done in this
direction [18, 156, 157].

These additional trees could be started at arbitrary (possibly random) configu-
rations. As more trees are considered, a complicated decision problem arises. The
computation time must be divided between attempting to explore the space and
attempting to connect trees to each other. It is also not clear which connections
should be attempted. Many research issues remain in the development of this and
other RRT-based planners. A limiting case would be to start a new tree from
every sample in α(i) and to try to connect nearby trees whenever possible. This
approach results in a graph that covers the space in a nice way that is independent
of the query. This leads to the main topic of the next section.

5.6 Roadmap Methods for Multiple Queries

Previously, it was assumed that a single initial-goal pair was given to the planning
algorithm. Suppose now that numerous initial-goal queries will be given to the
algorithm, while keeping the robot model and obstacles fixed. This leads to a
multiple-query version of the motion planning problem. In this case, it makes
sense to invest substantial time to preprocess the models so that future queries
can be answered efficiently. The goal is to construct a topological graph called
a roadmap, which efficiently solves multiple initial-goal queries. Intuitively, the
paths on the roadmap should be easy to reach from each of qI and qG, and the
graph can be quickly searched for a solution. The general framework presented
here was mainly introduced in [90] under the name probabilistic roadmaps (PRMs).
The probabilistic aspect, however, is not important to the method. Therefore, we

238 S. M. LaValle: Planning Algorithms

BUILD ROADMAP
1 G.init(); i← 0;
2 while i < N
3 if α(i) ∈ Cfree then
4 G.add vertex(α(i)); i← i+ 1;
5 for each q ∈ neighborhood(α(i),G)
6 if ((not G.same component(α(i), q)) and connect(α(i), q)) then
7 G.add edge(α(i), q);

Figure 5.25: The basic construction algorithm for sampling-based roadmaps. Note
that i is not incremented if α(i) is in collision. This forces i to correctly count the
number of vertices in the roadmap.

call this family of methods sampling-based roadmaps. This distinguishes them
from combinatorial roadmaps, which will appear in Chapter 6.

5.6.1 The Basic Method

Once again, let G(V,E) represent a topological graph in which V is a set of vertices
and E is the set of paths that map into Cfree. Under the multiple-query philosophy,
motion planning is divided into two phases of computation:

Preprocessing Phase: During the preprocessing phase, substantial effort
is invested to build G in a way that is useful for quickly answering future
queries. For this reason, it is called a roadmap, which in some sense should
be accessible from every part of Cfree.

Query Phase: During the query phase, a pair, qI and qG, is given. Each
configuration must be connected easily to G using a local planner. Following
this, a discrete search is performed using any of the algorithms in Section
2.2 to obtain a sequence of edges that forms a path from qI to qG.

Generic preprocessing phase Figure 5.25 presents an outline of the basic
preprocessing phase, and Figure 5.26 illustrates the algorithm. As seen throughout
this chapter, the algorithm utilizes a uniform, dense sequence α. In each iteration,
the algorithm must check whether α(i) ∈ Cfree. If α(i) ∈ Cobs, then it must
continue to iterate until a collision-free sample is obtained. Once α(i) ∈ Cfree,
then in line 4 it is inserted as a vertex of G. The next step is to try to connect α(i)
to some nearby vertices, q, of G. Each connection is attempted by the connect

function, which is a typical LPM (local planning method) from Section 5.4.1.
In most implementations, this simply tests the shortest path between α(i) and
q. Experimentally, it seems most efficient to use the multi-resolution, van der
Corput–based method described at the end of Section 5.3.4 [59]. Instead of the
shortest path, it is possible to use more sophisticated connection methods, such

5.6. ROADMAP METHODS FOR MULTIPLE QUERIES 239

α(i)

Cobs

Cobs

Figure 5.26: The sampling-based roadmap is constructed incrementally by at-
tempting to connect each new sample, α(i), to nearby vertices in the roadmap.

as the bidirectional algorithm in Figure 5.24. If the path is collision-free, then
connect returns true.

The same component condition in line 6 checks to make sure α(i) and q are in
different components of G before wasting time on collision checking. This ensures
that every time a connection is made, the number of connected components of G is
decreased. This can be implemented very efficiently (near constant time) using the
previously mentioned union-find algorithm [41, 144]. In some implementations this
step may be ignored, especially if it is important to generate multiple, alternative
solutions. For example, it may be desirable to generate solution paths from differ-
ent homotopy classes. In this case the condition (not G.same component(α(i), q))
is replaced with G.vertex degree(q) < K, for some fixed K (e.g., K = 15).

Selecting neighboring samples Several possible implementations of line 5 can
be made. In all of these, it seems best to sort the vertices that will be considered
for connection in order of increasing distance from α(i). This makes sense because
shorter paths are usually less costly to check for collision, and they also have a
higher likelihood of being collision-free. If a connection is made, this avoids costly
collision checking of longer paths to configurations that would eventually belong
to the same connected component.

Several useful implementations of neighborhood are

1. Nearest K: The K closest points to α(i) are considered. This requires
setting the parameter K (a typical value is 15). If you are unsure which
implementation to use, try this one.

2. Component K: Try to obtain up to K nearest samples from each con-
nected component of G. A reasonable value is K = 1; otherwise, too many
connections would be tried.

3. Radius: Take all points within a ball of radius r centered at α(i). An
upper limit, K, may be set to prevent too many connections from being

240 S. M. LaValle: Planning Algorithms

attempted. Typically, K = 20. A radius can be determined adaptively by
shrinking the ball as the number of points increases. This reduction can
be based on dispersion or discrepancy, if either of these is available for α.
Note that if the samples are highly regular (e.g., a grid), then choosing the
nearest K and taking points within a ball become essentially equivalent.
If the point set is highly irregular, as in the case of random samples, then
taking the nearest K seems preferable.

4. Visibility: In Section 5.6.2, a variant will be described for which it is
worthwhile to try connecting α to all vertices in G.

Note that all of these require C to be a metric space. One variation that has not yet
been given much attention is to ensure that the directions of the neighborhood
points relative to α(i) are distributed uniformly. For example, if the 20 closest
points are all clumped together in the same direction, then it may be preferable
to try connecting to a further point because it is in the opposite direction.

Query phase In the query phase, it is assumed that G is sufficiently complete
to answer many queries, each of which gives an initial configuration, qI , and a goal
configuration, qG. First, the query phase pretends as if qI and qG were chosen from
α for connection to G. This requires running two more iterations of the algorithm
in Figure 5.25. If qI and qG are successfully connected to other vertices in G, then
a search is performed for a path that connects the vertex qI to the vertex qG. The
path in the graph corresponds directly to a path in Cfree, which is a solution to the
query. Unfortunately, if this method fails, it cannot be determined conclusively
whether a solution exists. If the dispersion is known for a sample sequence, α,
then it is at least possible to conclude that no solution exists for the resolution of
the planner. In other words, if a solution does exist, it would require the path to
travel through a corridor no wider than the radius of the largest empty ball [104].

Some analysis There have been many works that analyze the performance of
sampling-based roadmaps. The basic idea from one of them [13] is briefly pre-
sented here. Consider problems such as the one in Figure 5.27, in which the con-
nect method will mostly likely fail in the thin tube, even though a connection
exists. The higher dimensional versions of these problems are even more difficult.
Many planning problems involve moving a robot through an area with tight clear-
ance. This generally causes narrow channels to form in Cfree, which leads to a
challenging planning problem for the sampling-based roadmap algorithm. Finding
the escape of a bug trap is also challenging, but for the roadmap methods, even
traveling through a single corridor is hard (unless more sophisticated LPMs are
used [83]).

Let V (q) denote the set of all configurations that can be connected to q using
the connectmethod. Intuitively, this is considered as the set of all configurations
that can be “seen” using line-of-sight visibility, as shown in Figure 5.28a

5.6. ROADMAP METHODS FOR MULTIPLE QUERIES 241

qGqI

Figure 5.27: An example such as this is difficult for sampling-based roadmaps (in
higher dimensional C-spaces) because some samples must fall along many points
in the curved tube. Other methods, however, may be able to easily solve it.

V (q)

q

(a) Visibility definition (b) Visibility roadmap

Figure 5.28: (a) V (q) is the set of points reachable by the LPM from q. (b) A
visibility roadmap has two kinds of vertices: guards, which are shown in black,
and connectors, shown in white. Guards are not allowed to see other guards.
Connectors must see at least two guards.

242 S. M. LaValle: Planning Algorithms

The ǫ-goodness of Cfree is defined as

ǫ(Cfree) = min
q∈Cfree

{

µ(V (q))

µ(Cfree)

}

, (5.41)

in which µ represents the measure. Intuitively, ǫ(Cfree) represents the small frac-
tion of Cfree that is visible from any point. In terms of ǫ and the number of vertices
in G, bounds can be established that yield the probability that a solution will be
found [13]. The main difficulties are that the ǫ-goodness concept is very conserva-
tive (it uses worst-case analysis over all configurations), and ǫ-goodness is defined
in terms of the structure of Cfree, which cannot be computed efficiently. This
result and other related results help to gain a better understanding of sampling-
based planning, but such bounds are difficult to apply to particular problems to
determine whether an algorithm will perform well.

5.6.2 Visibility Roadmap

One of the most useful variations of sampling-based roadmaps is the visibility
roadmap [152]. The approach works very hard to ensure that the roadmap rep-
resentation is small yet covers Cfree well. The running time is often greater than
the basic algorithm in Figure 5.25, but the extra expense is usually worthwhile if
the multiple-query philosophy is followed to its fullest extent.

The idea is to define two different kinds of vertices in G:

Guards: To become a guard, a vertex, q must not be able to see other
guards. Thus, the visibility region, V (q), must be empty of other guards.

Connectors: To become a connector, a vertex, q, must see at least two
guards. Thus, there exist guards q1 and q2, such that q ∈ V (q1) ∩ V (q2).

The roadmap construction phase proceeds similarly to the algorithm in Figure
5.25. The neighborhood function returns all vertices in G. Therefore, for each new
sample α(i), an attempt is made to connect it to every other vertex in G.

The main novelty of the visibility roadmap is using a strong criterion to deter-
mine whether to keep α(i) and its associated edges in G. There are three possible
cases for each α(i):

1. The new sample, α(i), is not able to connect to any guards. In this case,
α(i) earns the privilege of becoming a guard itself and is inserted into G.

2. The new sample can connect to guards from at least two different connected
components of G. In this case, it becomes a connector that is inserted into
G along with its associated edges, which connect it to these guards from
different components.

5.6. ROADMAP METHODS FOR MULTIPLE QUERIES 243

3. Neither of the previous two conditions were satisfied. This means that the
sample could only connect to guards in the same connected component. In
this case, α(i) is discarded.

The final condition causes a dramatic reduction in the number of roadmap vertices.
One problem with this method is that it does not allow guards to be deleted in

favor of better guards that might appear later. The placement of guards depends
strongly on the order in which samples appear in α. The method may perform
poorly if guards are not positioned well early in the sequence. It would be better
to have an adaptive scheme in which guards could be reassigned in later iterations
as better positions become available. Accomplishing this efficiently remains an
open problem. Note the algorithm is still probabilistically complete using random
sampling or resolution complete if α is dense, even though many samples are
rejected.

5.6.3 Heuristics for Improving Roadmaps

The quest to design a good roadmap through sampling has spawned many heuris-
tic approaches to sampling and making connections in roadmaps. Most of these
exploit properties that are specific to the shape of the C-space and/or the partic-
ular geometry and kinematics of the robot and obstacles. The emphasis is usually
on finding ways to dramatically reduce the number or required samples. Several
of these methods are briefly described here.

Vertex enhancement [90] This heuristic strategy focuses effort on vertices
that were difficult to connect to other vertices in the roadmap construction algo-
rithm in Figure 5.25. A probability distribution, P (v), is defined over the vertices
v ∈ V . A number of iterations are then performed in which a vertex is sampled
from V according to P (v), and then some random motions are performed from v
to try to reach new configurations. These new configurations are added as ver-
tices, and attempts are made to connect them to other vertices, as selected by
the neighborhood function in an ordinary iteration of the algorithm in Figure
5.25. A recommended heuristic [90] for defining P (v) is to define a statistic for
each v as nf/(nt + 1), in which nt is the total number of connections attempted
for v, and nf is the number of times these attempts failed. The probability P (v)
is assigned as nf/(nt +1)m, in which m is the sum of the statistics over all v ∈ V
(this normalizes the statistics to obtain a valid probability distribution).

Sampling on the Cfree boundary [3, 5] This scheme is based on the intuition
that it is sometimes better to sample along the boundary, ∂Cfree, rather than
waste samples on large areas of Cfree that might be free of obstacles. Figure 5.29a
shows one way in which this can be implemented. For each sample of α(i) that
falls into Cobs, a number of random directions are chosen in C; these directions can
be sampled using the Sn sampling method from Section 5.2.2. For each direction,

244 S. M. LaValle: Planning Algorithms

1
α(i)

Cobs

4

2
3

Cobs Cobs

(a) (b)

Figure 5.29: (a) To obtain samples along the boundary, binary search is used
along random directions from a sample in Cobs. (b) The bridge test finds narrow
corridors by examining a triple of nearby samples along a line.

a binary search is performed to get a sample in Cfree that is as close as possible
to Cobs. The order of point evaluation in the binary search is shown in Figure
5.29a. Let τ : [0, 1] denote the path for which τ(0) ∈ Cobs and τ(1) ∈ Cfree. In the
first step, test the midpoint, τ(1/2). If τ(1/2) ∈ Cfree, this means that ∂Cfree lies
between τ(0) and τ(1/2); otherwise, it lies between τ(1/2) and τ(1). The next
iteration selects the midpoint of the path segment that contains ∂Cfree. This will
be either τ(1/4) or τ(3/4). The process continues recursively until the desired
resolution is obtained.

Gaussian sampling [23] The Gaussian sampling strategy follows some of the
same motivation for sampling on the boundary. In this case, the goal is to obtain
points near ∂Cfree by using a Gaussian distribution that biases the samples to be
closer to ∂Cfree, but the bias is gentler, as prescribed by the variance parameter
of the Gaussian. The samples are generated as follows. Generate one sample,
q1 ∈ C, uniformly at random. Following this, generate another sample, q2 ∈ C,
according to a Gaussian with mean q1; the distribution must be adapted for any
topological identifications and/or boundaries of C. If one of q1 or q2 lies in Cfree
and the other lies in Cobs, then the one that lies in Cfree is kept as a vertex in the
roadmap. For some examples, this dramatically prunes the number of required
vertices.

Bridge-test sampling [78] The Gaussian sampling strategy decides to keep a
point based in part on testing a pair of samples. This idea can be carried one step
further to obtain a bridge test, which uses three samples along a line segment.
If the samples are arranged as shown in Figure 5.29b, then the middle sample
becomes a roadmap vertex. This is based on the intuition that narrow corridors
are thin in at least one direction. The bridge test indicates that a point lies in a
thin corridor, which is often an important place to locate a vertex.

5.6. ROADMAP METHODS FOR MULTIPLE QUERIES 245

Figure 5.30: The medial axis is traced out by the centers of the largest inscribed
balls. The five line segments inside of the rectangle correspond to the medial axis.

Medial-axis sampling [76, 114, 167] Rather than trying to sample close
to the boundary, another strategy is to force the samples to be as far from the
boundary as possible. Let (X, ρ) be a metric space. Let a maximal ball be a ball
B(x, r) ⊆ X such that no other ball can be a proper subset. The centers of all
maximal balls trace out a one-dimensional set of points referred to as the medial
axis. A simple example of a medial axis is shown for a rectangular subset of R2

in Figure 5.30. The medial axis in Cfree is based on the largest balls that can be
inscribed in cl(Cfree). Sampling on the medial axis is generally difficult, especially
because the representation of Cfree is implicit. Distance information from collision
checking can be used to start with a sample, α(i), and iteratively perturb it to
increase its distance from ∂Cfree [114, 167]. Sampling on the medial axis of W \O
has also been proposed [76]. In this case, the medial axis in W \ O is easier to
compute, and it can be used to heuristically guide the placement of good roadmap
vertices in Cfree.

Further Reading

Unlike the last two chapters, the material of Chapter 5 is a synthesis of very recent re-
search results. Some aspects of sampling-based motion planning are still evolving. Early
approaches include [14, 25, 35, 48, 49, 52, 53, 125, 138]. The Gilbert-Johnson-Keerthi al-
gorithm [62] is an early collision detection approach that helped inspire sampling-based
motion planning; see [80] and [102] for many early references. In much of the early
work, randomization appeared to be the main selling point; however, more recently it
has been understood that deterministic sampling can work at least as well while ob-
taining resolution completeness. For a more recent survey of sampling-based motion
planning, see [119].

Section 5.1 is based on material from basic mathematics books. For a summary
of basic theorems and numerous examples of metric spaces, see [131]. More material
appears in basic point-set topology books (e.g., [75, 86]) and analysis books (e.g., [55]).
Metric issues in the context of sampling-based motion planning are discussed in [2, 106].
Measure theory is most often introduced in the context of real analysis [55, 70, 96, 145,

246 S. M. LaValle: Planning Algorithms

146]. More material on Haar measure appears in [70].

Section 5.2 is mainly inspired by literature on Monte Carlo and quasi–Monte Carlo
methods for numerical integration and optimization. An excellent source of material
is [134]. Other important references for further reading include [34, 94, 126, 159, 160].
Sampling issues in the context of motion planning are considered in [60, 98, 104, 118,
170]. Comprehensive introductions to pure Monte Carlo algorithms appear in [54, 89].
The original source for the Monte Carlo method is [130]. For a survey on algorithms
that compute Voronoi diagrams, see [10].

For further reading on collision detection (beyond Section 5.3), see the surveys in
[84, 116, 117, 133]. Hierarchical collision detection is covered in [66, 117, 132]. The
incremental collision detection ideas in Section 5.3.3 were inspired by the algorithm [115]
and V-Clip [43, 132]. Distance computation is covered in [28, 50, 61, 66, 67, 132, 142]. A
method suited for detecting self-collisions of linkages appears in [124]. A combinatorial
approach to collision detection for motion planning appears in [150]. Numerous collision
detection packages are available for use in motion planning research. One of the most
widely used is PQP because it works well for any mess of 3D triangles [161].

The incremental sampling and searching framework was synthesized by unifying
ideas from many planning methods. Some of these include grid-based search [15, 97, 110]
and probabilistic roadmaps (PRMs) [90]. Although the PRM was developed for multiple
queries, the single-query version developed in [22] helped shed light on the connection
to earlier planning methods. This even led to grid-based variants of PRMs [20, 104].
Another single-query variant is presented in [149].

RDTs were developed in the literature mainly as RRTs, and were introduced in
[103, 107]. RRTs have been used in several applications, and many variants have been
developed [18, 24, 26, 37, 38, 42, 47, 57, 65, 85, 88, 87, 92, 113, 120, 121, 156, 157, 162,
168, 169]. Originally, they were developed for planning under differential constraints,
but most of their applications to date have been for ordinary motion planning. For
more information on efficient nearest-neighbor searching, see the recent survey [81], and
[6, 7, 8, 9, 19, 39, 58, 82, 93, 137, 155, 171].

Section 5.6 is based mainly on the PRM framework [90]. The “probabilistic” part
is not critical to the method; thus, it was referred to here as a sampling-based roadmap.
A related precursor to the PRM was proposed in [63, 64]. The PRM has been widely
used in practice, and many variants have been proposed [1, 4, 11, 12, 22, 27, 32, 42,
83, 95, 104, 111, 112, 136, 139, 140, 152, 154, 163, 167, 168, 172]. An experimental
comparison of many of these variants appears in [60]. Some analysis of PRMs appears
in [13, 79, 100]. In some works, the term PRM has been applied to virtually any
sampling-based planning algorithm (e.g., [79]); however, in recent years the term has
been used more consistently with its original meaning in [90].

Many other methods and issues fall outside of the scope of this chapter. Several
interesting methods based on approximate cell decomposition [25, 51, 123, 125] can be
considered as a form of sampling-based motion planning. A sampling-based method of
developing global potential functions appears in [21]. Other sampling-based planning
algorithms appear in [36, 56, 68, 69, 77]. The algorithms of this chapter are generally
unable to guarantee that a solution does not exist for a motion planning problem. It
is possible, however, to use sampling-based techniques to establish in finite time that
no solution exists [17]. Such a result is called a disconnection proof. Parallelization

5.6. ROADMAP METHODS FOR MULTIPLE QUERIES 247

issues have also been investigated in the context of sampling-based motion planning
[18, 29, 33, 45, 141].

Exercises

1. Prove that the Cartesian product of a metric space is a metric space by taking a
linear combination as in (5.4).

2. Prove or disprove: If ρ is a metric, then ρ2 is a metric.

3. Determine whether the following function is a metric on any topological space:
X: ρ(x, x′) = 1 is x 6= x′; otherwise, ρ(x, x′) = 0.

4. State and prove whether or not (5.28) yields a metric space on C = SE(3),
assuming that the two sets are rigid bodies.

5. The dispersion definition given in (5.19) is based on the worst case. Consider
defining the average dispersion:

δ̄(P) =
1

µ(X)

∫

X
min
p∈P
{ρ(x, p)}dx. (5.42)

Describe a Monte Carlo (randomized) method to approximately evaluate (5.42).

6. Determine the average dispersion (as a function of i) for the van der Corput
sequence (base 2) on [0, 1]/ ∼.

7. Show that using the Lebesgue measure on S3 (spreading mass around uniformly
on S3) yields the Haar measure for SO(3).

8. Is the Haar measure useful in selecting an appropriate C-space metric? Explain.

9. Determine an expression for the (worst-case) dispersion of the ith sample in the
base-p (Figure 5.2 shows base-2) van der Corput sequence in [0, 1]/ ∼, in which 0
and 1 are identified.

10. Determine the dispersion of the following sequence on [0, 1]. The first point is
α(1) = 1. For each i > 1, let ci = ln(2i − 3)/ ln 4 and α(i) = ci − ⌊ci⌋. It turns
out that this sequence achieves the best asymptotic dispersion possible, even in
terms of the preceding constant. Also, the points are not uniformly distributed.
Can you explain why this happens? [It may be helpful to plot the points in the
sequence.]

11. Prove that (5.20) holds.

12. Prove that (5.23) holds.

13. Show that for any given set of points in [0, 1]n, a range space R can be designed
so that the discrepancy is as close as desired to 1.

248 S. M. LaValle: Planning Algorithms

14. Suppose A is a rigid body in R3 with a fixed orientation specified by a quaternion,
h. Suppose that h is perturbed a small amount to obtain another quaternion, h′

(no translation occurs). Construct a good upper bound on distance traveled by
points on A, expressed in terms of the change in the quaternion.

15. Design combinations of robots and obstacles in W that lead to C-space obstacles
resembling bug traps.

16. How many k-neighbors can there be at most in an n-dimensional grid with 1 ≤
k ≤ n?

17. In a high-dimensional grid, it becomes too costly to consider all 3n−1 n-neighbors.
It might not be enough to consider only 2n 1-neighbors. Determine a scheme for
selecting neighbors that are spatially distributed in a good way, but without
requiring too many. For example, what is a good way to select 50 neighbors for
a grid in R10?

18. Explain the difference between searching an implicit, high-resolution grid and
growing search trees directly on the C-space without a grid.

19. Improve the bound in (5.31) by considering the fact that rotating points trace
out a circle, instead of a straight line.

20. (Open problem) Prove there are n+1 main branches for an RRT starting from the
center of an “infinite” n-dimensional ball in Rn. The directions of the branches
align with the vertices of a regular simplex centered at the initial configuration.

Implementations

21. Implement 2D incremental collision checking for convex polygons to obtain “near
constant time” performance.

22. Implement the sampling-based roadmap approach. Select an appropriate family
of motion planning problems: 2D rigid bodies, 2D chains of bodies, 3D rigid
bodies, etc.

(a) Compare the roadmaps obtained using visibility-based sampling to those
obtained for the ordinary sampling method.

(b) Study the sensitivity of the method with respect to the particular neigh-

borhood method.

(c) Compare random and deterministic sampling methods.

(d) Use the bridge test to attempt to produce better samples.

23. Implement the balanced, bidirectional RRT planning algorithm.

(a) Study the effect of varying the amount of intermediate vertices created along
edges.

5.6. ROADMAP METHODS FOR MULTIPLE QUERIES i

(b) Try connecting to the random sample using more powerful descent functions.

(c) Explore the performance gains from using Kd-trees to select nearest neigh-
bors.

24. Make an RRT-based planning algorithm that uses more than two trees. Carefully
resolve issues such as the maximum number of allowable trees, when to start a
tree, and when to attempt connections between trees.

25. Implement both the expansive-space planner and the RRT, and conduct compar-
ative experiments on planning problems. For the full set of problems, keep the
algorithm parameters fixed.

26. Implement a sampling-based algorithm that computes collision-free paths for a
rigid robot that can translate or rotate on any of the flat 2D manifolds shown in
Figure 4.5.

ii S. M. LaValle: Planning Algorithms

Bibliography

[1] D. Aarno, D. Kragic, and H. I. Christensen. Artificial potential biased prob-
abilistic roadmap method. In Proceedings IEEE International Conference
on Robotics & Automation, 2004.

[2] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo. Choosing
good distance metrics and local planners for probabilistic roadmap methods.
In Proceedings IEEE International Conference on Robotics & Automation,
pages 630–637, 1998.

[3] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo. OBPRM:
An obstacle-based PRM for 3D workspaces. In Proceedings Workshop on
Algorithmic Foundations of Robotics, pages 155–168, 1998.

[4] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo. Choosing
good distance metrics and local planners for probabilistic roadmap methods.
IEEE Transactions on Robotics & Automation, 16(4):442–447, Aug 2000.

[5] N. M. Amato and Y. Wu. A randomized roadmap method for path and
manipulation planning. In Proceedings IEEE International Conference on
Robotics & Automation, pages 113–120, 1996.

[6] S. Arya and D. M. Mount. Algorithms for fast vector quantization. In IEEE
Data Compression Conference, pages 381–390, March 1993.

[7] S. Arya and D. M. Mount. Approximate nearest neighbor queries in fixed
dimensions. In Proceedings ACM-SIAM Symposium on Discrete Algorithms,
pages 271–280, 1993.

[8] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu. An
optimal algorithm for approximate nearest neighbor searching. Journal of
the ACM, 45:891–923, 1998.

[9] A. Atramentov and S. M. LaValle. Efficient nearest neighbor searching for
motion planning. In Proceedings IEEE International Conference on Robotics
and Automation, pages 632–637, 2002.

[10] F. Aurenhammer. Voronoi diagrams – A survey of a fundamental geometric
structure. ACM Computing Surveys, 23:345–405, 1991.

iii

iv BIBLIOGRAPHY

[11] B. Baginski. The Z3 method for fast path planning in dynamic environ-
ments. In Proceedings IASTED Conference on Applications of Control and
Robotics, pages 47–52, 1996.

[12] B. Baginski. Motion Planning for Manipulators with Many Degrees of Free-
dom – The BB-Method. PhD thesis, Technical University of Munich, 1998.

[13] J. Barraquand, L. Kavraki, J.-C. Latombe, T.-Y. Li, R. Motwani, and
P. Raghavan. A random sampling scheme for robot path planning. In
G. Giralt and G. Hirzinger, editors, Proceedings International Symposium
on Robotics Research, pages 249–264. Springer-Verlag, New York, 1996.

[14] J. Barraquand and J.-C. Latombe. A Monte-Carlo algorithm for path plan-
ning with many degrees of freedom. In Proceedings IEEE International
Conference on Robotics & Automation, pages 1712–1717, 1990.

[15] J. Barraquand and J.-C. Latombe. Nonholonomic multibody mobile robots:
Controllability and motion planning in the presence of obstacles. In Pro-
ceedings IEEE International Conference on Robotics & Automation, pages
2328–2335, 1991.

[16] J. Barraquand and J.-C. Latombe. Robot motion planning: A dis-
tributed representation approach. International Journal of Robotics Re-
search, 10(6):628–649, December 1991.

[17] J. Basch, L. J. Guibas, D. Hsu, and A. T. Nguyen. Disconnection proofs for
motion planning. In Proceedings IEEE International Conference on Robotics
& Automation, pages 1765–1772, 2001.

[18] K. E. Bekris, B. Y. Chen, A. Ladd, E. Plaku, and L. E. Kavraki. Multi-
ple query probabilistic roadmap planning using single query primitives. In
Proceedings IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2003.

[19] A. Beygelzimer, S. M. Kakade, and J. Langford. Cover trees
for nearest neighbor. University of Pennsylvania, Available from
http://www.cis.upenn.edu/∼skakade/papers/ml/cover tree.pdf, 2005.

[20] R. Bohlin. Path planning in practice; lazy evaluation on a multi-resolution
grid. In Proceedings IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2001.

[21] R. Bohlin. Robot Path Planning. PhD thesis, Chalmers University, Gothen-
burg, Sweden, 2002.

[22] R. Bohlin and L. Kavraki. Path planning using Lazy PRM. In Proceedings
IEEE International Conference on Robotics & Automation, 2000.

BIBLIOGRAPHY v

[23] V. Boor, M. H. Overmars, and A. F. van der Stappen. The Gaussian sam-
pling strategy for probabilistic roadmap planners. In Proceedings IEEE In-
ternational Conference on Robotics & Automation, pages 1018–1023, 1999.

[24] M. S. Branicky, M. M. Curtiss, J. Levine, and S. Morgan. RRTs for non-
linear, discrete, and hybrid planning and control. In Proceedings IEEE
Conference Decision & Control, 2003.

[25] R. A. Brooks and T. Lozano-Pérez. A subdivision algorithm in configuration
space for findpath with rotation. IEEE Transactions on Systems, Man, &
Cybernetics, SMC-15(2):224–233, 1985.

[26] J. Bruce and M. Veloso. Real-time randomized path planning for robot nav-
igation. In Proceedings IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2002.

[27] B. Burns and O. Brock. Sampling-based motion planning using predictive
models. In Proceedings IEEE International Conference on Robotics & Au-
tomation, 2005.

[28] S. Cameron. A comparison of two fast algorithms for computing the distance
between convex polyhedra. IEEE Transactions on Robotics & Automation,
13(6):915–920, December 1997.

[29] S. Carpin and E. Pagello. On parallel RRTs for multi-robot systems. In Pro-
ceedings 8th Conference of the Italian Association for Artificial Intelligence,
pages 834–841, 2002.

[30] S. Carpin and G. Pillonetto. Merging the adaptive random walks planner
with the randomized potential field planner. In Proceedings IEEE Interna-
tional Workshop on Robot Motion and Control, pages 151–156, 2005.

[31] S. Carpin and G. Pillonetto. Robot motion planning using adaptive random
walks. IEEE Transactions on Robotics & Automation, 21(1):129–136, 2005.

[32] S. Caselli and M. Reggiani. ERPP: An experience-based randomized path
planner. In Proceedings IEEE International Conference on Robotics & Au-
tomation, 2000.

[33] D. Challou, D. Boley, M. Gini, and V. Kumar. A parallel formulation of
informed randomized search for robot motion planning problems. In Pro-
ceedings IEEE International Conference on Robotics & Automation, pages
709–714, 1995.

[34] B. Chazelle. The Discrepancy Method. Cambridge University Press, Cam-
bridge, U.K., 2000.

vi BIBLIOGRAPHY

[35] P. C. Chen and Y. K. Hwang. SANDROS: A motion planner with perfor-
mance proportional to task difficulty. In Proceedings IEEE International
Conference on Robotics & Automation, pages 2346–2353, 1992.

[36] P. C. Chen and Y. K. Hwang. SANDROS: A dynamic search graph algo-
rithm for motion planning. IEEE Transactions on Robotics & Automation,
14(3):390–403, 1998.

[37] P. Cheng and S. M. LaValle. Resolution complete rapidly-exploring ran-
dom trees. In Proceedings IEEE International Conference on Robotics and
Automation, pages 267–272, 2002.

[38] P. Choudhury and K. Lynch. Trajectory planning for second-order underac-
tuated mechanical systems in presence of obstacles. In Proceedings Workshop
on Algorithmic Foundations of Robotics, 2002.

[39] K. L. Clarkson. Nearest neighbor searching in metric spaces: Ex-
perimental results for sb(s). Bell Labs. Available from http://cm.bell-
labs.com/who/clarkson/Msb/readme.html, 2003.

[40] J. H. Conway and N. J. A. Sloane. Sphere Packings, Lattices, and Groups.
Springer-Verlag, Berlin, 1999.

[41] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms (2nd Ed.). MIT Press, Cambridge, MA, 2001.

[42] J. Cortés. Motion Planning Algorithms for General Closed-Chain Mecha-
nisms. PhD thesis, Institut National Polytechnique de Toulouse, Toulouse,
France, 2003.

[43] M. G. Coutinho. Dynamic Simulations of Multibody Systems. Springer-
Verlag, Berlin, 2001.

[44] H. S. M. Coxeter. Regular Polytopes. Dover, New York, 1973.

[45] L. K. Dale and N. M. Amato. Probabilistic roadmap methods are embarrass-
ingly parallel. In Proceedings IEEE International Conference on Robotics &
Automation, 1999.

[46] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Compu-
tational Geometry: Algorithms and Applications, 2nd Ed. Springer-Verlag,
Berlin, 2000.

[47] M. J. de Smith. Distance and Path: The Development, Interpretation and
Application of Distance Measurement in Mapping and Modelling. PhD the-
sis, University College, University of London, London, 2003.

BIBLIOGRAPHY vii

[48] B. R. Donald. Motion planning with six degrees of freedom. Technical
Report AI-TR-791, Artificial Intelligence Lab., Massachusetts Institute of
Technology, Cambridge, MA, 1984.

[49] B. R. Donald. A search algorithm for motion planning with six degrees of
freedom. Artificial Intelligence Journal, 31:295–353, 1987.

[50] S. Ehmann and M. C. Lin. Accurate and fast proximity queries between
polyhedra using convex surface decomposition. In Proceedings Eurographics,
2001.

[51] B. Faverjon. Obstacle avoidance using an octree in the configuration space of
a manipulator. In Proceedings IEEE International Conference on Robotics
& Automation, pages 504–512, 1984.

[52] B. Faverjon. Hierarchical object models for efficient anti-collision algorithms.
In Proceedings IEEE International Conference on Robotics & Automation,
pages 333–340, 1989.

[53] B. Faverjon and P. Tournassoud. A local based method for path plan-
ning of manipulators with a high number of degrees of freedom. In Pro-
ceedings IEEE International Conference on Robotics & Automation, pages
1152–1159, 1987.

[54] G. F. Fishman. Monte Carlo: Concepts, Algorithms, and Applications.
Springer-Verlag, Berlin, 1996.

[55] G. B. Folland. Real Analysis: Modern Techniques and Their Applications.
Wiley, New York, 1984.

[56] M. Foskey, M. Garber, M. Lin, and D. Manocha. A Voronoi-based hybrid
motion planner. In Proceedings IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2001.

[57] E. Frazzoli, M. A. Dahleh, and E. Feron. Real-time motion planning for agile
autonomous vehicles. AIAA Journal of Guidance and Control, 25(1):116–
129, 2002.

[58] J. H. Friedman, J. L. Bentley, and R.A. Finkel. An algorithm for finding best
matches in logarithmic expected time. ACM Transactions on Mathematical
Software, 3(3):209–226, September 1977.

[59] R. Geraerts and M. Overmars. Sampling techniques for probabilistic
roadmap planners. In Proceedings International Conference on Intelligent
Autonomous Systems, 2004.

viii BIBLIOGRAPHY

[60] R. Geraerts and M. H. Overmars. A comparative study of probabilistic
roadmap planners. In Proceedings Workshop on Algorithmic Foundations of
Robotics, December 2002.

[61] E. G. Gilbert and D. W. Johnson. Distance functions and their application
to robot path planning in the presence of obstacles. IEEE Transactions on
Robotics & Automation, 1(1):21–30, March 1985.

[62] E. G. Gilbert, D. W. Johnson, and S. S. Keerth. A fast procedure for
computing the distance between complex objects in three-dimensional space.
IEEE Journal of Robotics & Automation, RA-4(2):193–203, Apr 1988.

[63] B. Glavina. Solving findpath by combination of goal-directed and random-
ized search. In Proceedings IEEE International Conference on Robotics &
Automation, pages 1718–1723, May 1990.

[64] B. Glavina. Planning collision free motions for manipulators through a com-
bination of goal oriented search and the creation of intermediate random
subgoals. PhD thesis, Technical University of Munich, 1991. In German.

[65] J. Go, T. Vu, and J. J. Kuffner. Autonomous behaviors for interactive
vehicle animations. In Proceedings SIGGRAPH Symposium on Computer
Animation, 2004.

[66] S. Gottschalk, M. C. Lin, and D. Manocha. Obbtree: A hierarchical struc-
ture for rapid interference detection. In Proceedings ACM SIGGRAPH,
1996.

[67] L. J. Guibas, D. Hsu, and L. Zhang. H-Walk: Hierarchical distance com-
putation for moving convex bodies. In Proceedings ACM Symposium on
Computational Geometry, pages 265–273, 1999.

[68] K. Gupta and Z. Guo. Motion planning with many degrees of freedom:
Sequential search with backtracking. IEEE Transactions on Robotics &
Automation, 6(11):897–906, 1995.

[69] K. Gupta and X. Zhu. Practical motion planning for many degrees of free-
dom: A novel approach within sequential framework. Journal of Robotic
Systems, 2(12):105–118, 1995.

[70] P. R. Halmos. Measure Theory. Springer-Verlag, Berlin, 1974.

[71] J. H. Halton. On the efficiency of certain quasi-random sequences of points
in evaluating multi-dimensional integrals. Numerische Mathematik, 2:84–90,
1960.

[72] J. M. Hammersley. Monte-Carlo methods for solving multivariable problems.
Annals of the New York Academy of Science, 86:844–874, 1960.

BIBLIOGRAPHY ix

[73] F. J. Hickernell. Lattice rules: How well do they measure up? In P. Bickel,
editor, Random and Quasi-Random Point Sets, pages 109–166. Springer-
Verlag, Berlin, 1998.

[74] F. J. Hickernell, H. S. Hong, P. L’Ecuyer, and C. Lemieux. Extensible lattice
sequences for quasi-monte carlo quadrature. SIAM Journal on Scientific
Computing, 22:1117–1138, 2000.

[75] J. G. Hocking and G. S. Young. Topology. Dover, New York, 1988.

[76] C. Holleman and L. E. Kavraki. A framework for using the workspace medial
axis in PRM planners. In Proceedings IEEE International Conference on
Robotics & Automation, pages 1408–1413, 2000.

[77] T. Horsch, F. Schwarz, and H. Tolle. Motion planning for many degrees
of freedom: Random reflections at C-space obstacles. In Proceedings IEEE
International Conference on Robotics & Automation, pages 3318–3323, San
Diego, CA, April 1994.

[78] D. Hsu, T. Jiang, J. Reif, and Z. Sun. The bridge test for sampling nar-
row passages with probabilistic roadmap planners. In Proceedings IEEE
International Conference on Robotics & Automation, 2003.

[79] D. Hsu, J.-C. Latombe, and R. Motwani. Path planning in expansive con-
figuration spaces. International Journal Computational Geometry & Appli-
cations, 4:495–512, 1999.

[80] Y. K. Hwang and N. Ahuja. Gross motion planning–A survey. ACM Com-
puting Surveys, 24(3):219–291, September 1992.

[81] P. Indyk. Nearest neighbors in high-dimensional spaces. In J. E. Goodman
and J. O’Rourke, editors, Handbook of Discrete and Computational Geom-
etry, 2nd Ed., pages 877–892. Chapman and Hall/CRC Press, New York,
2004.

[82] P. Indyk and R. Motwani. Approximate nearest neighbors: Towards remov-
ing the curse of dimensionality. In Proceedings ACM Symposium on Theory
of Computing, pages 604–613, 1998.

[83] P. Isto. Constructing probabilistic roadmaps with powerful local planning
and path optimization. In Proceedings IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 2323–2328, 2002.

[84] P. Jiménez, F. Thomas, and C. Torras. Collision detection algorithms for
motion planning. In J.-P. Laumond, editor, Robot Motion Planning and
Control, pages 1–53. Springer-Verlag, Berlin, 1998.

x BIBLIOGRAPHY

[85] S. Kagami, J. Kuffner, K. Nishiwaki, and K. Okada M. Inaba. Humanoid
arm motion planning using stereo vision and RRT search. In Proceed-
ings IEEE/RSJ International Conference on Intelligent Robots and Systems,
2003.

[86] D. W. Kahn. Topology: An Introduction to the Point-Set and Algebraic
Areas. Dover, New York, 1995.

[87] M. Kallmann, A. Aubel, T. Abaci, and D. Thalmann. Planning collision-free
reaching motions for interactive object manipulation and grasping. Euro-
graphics, 22(3), 2003.

[88] M. Kallmann and M. Mataric. Motion planning using dynamic roadmaps.
In Proceedings IEEE International Conference on Robotics & Automation,
2004.

[89] M. H. Kalos and P. A. Whitlock. Monte Carlo Methods. Wiley, New York,
1986.

[90] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic
roadmaps for path planning in high-dimensional configuration spaces. IEEE
Transactions on Robotics & Automation, 12(4):566–580, June 1996.

[91] J. F. Kenney and E. S. Keeping. Mathematics of Statistics, Part 2, 2nd ed.
Van Nostrand, Princeton, NJ, 1951.

[92] J. Kim and J. P. Ostrowski. Motion planning of aerial robot using rapidly-
exploring random trees with dynamic constraints. In Proceedings IEEE
International Conference on Robotics & Automation, 2003.

[93] J. M. Kleinberg. Two algorithms for nearest-neighbor search in high di-
mensions. In Proceedings ACM Symposium on Theory of Computing, pages
599–608, May 1997.

[94] D. E. Knuth. The Art of Computer Programming, Volume 2: Seminumerical
Algorithms, 3rd Ed. Addison-Wesley, Reading, MA, 1998.

[95] Y. Koga, K. Kondo, J. Kuffner, and J.-C. Latombe. Planning motions with
intentions. Proceedings ACM SIGGRAPH, pages 395–408, 1994.

[96] A. N. Kolmogorov and S. V. Fomin. Introductory Real Analysis. Dover,
New York, 1975.

[97] K. Kondo. Motion planning with six degrees of freedom by multistrate-
gic bidirectional heuristic free-space enumeration. IEEE Transactions on
Robotics & Automation, 7(3):267–277, 1991.

BIBLIOGRAPHY xi

[98] J. J. Kuffner. Effective sampling and distance metrics for 3D rigid body
path planning. In Proceedings IEEE International Conference on Robotics
& Automation, 2004.

[99] J. J. Kuffner and S. M. LaValle. An efficient approach to path planning
using balanced bidirectional RRT search. Technical Report CMU-RI-TR-05-
34, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, August
2005.

[100] A. Ladd and L. E. Kavraki. Measure theoretic analysis of probabilistic path
planning. IEEE Transactions on Robotics & Automation, 20(2):229–242,
2004.

[101] A. Lasota and M. C. Mackey. Chaos, Fractals, and Noise: Stochastic Aspects
of Dynamics, 2nd Ed. Springer-Verlag, Berlin, 1995.

[102] J.-C. Latombe. Robot Motion Planning. Kluwer, Boston, MA, 1991.

[103] S. M. LaValle. Rapidly-exploring random trees: A new tool for path plan-
ning. Technical Report 98-11, Computer Science Dept., Iowa State Univer-
sity, Oct. 1998.

[104] S. M. LaValle, M. S. Branicky, and S. R. Lindemann. On the relation-
ship between classical grid search and probabilistic roadmaps. International
Journal of Robotics Research, 23(7/8):673–692, July/August 2004.

[105] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. In
Proceedings IEEE International Conference on Robotics and Automation,
pages 473–479, 1999.

[106] S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress
and prospects. In Proceedings Workshop on the Algorithmic Foundations of
Robotics, 2000.

[107] S. M. LaValle and J. J. Kuffner. Randomized kinodynamic planning. Inter-
national Journal of Robotics Research, 20(5):378–400, May 2001.

[108] S. M. LaValle and J. J. Kuffner. Rapidly-exploring random trees: Progress
and prospects. In B. R. Donald, K. M. Lynch, and D. Rus, editors, Algo-
rithmic and Computational Robotics: New Directions, pages 293–308. A K
Peters, Wellesley, MA, 2001.

[109] D. H. Lehmer. Mathematical methods in large-scale computing units. In
Proceedings 2nd Symposium on Large-Scale Digital Computing Machinery,
pages 141–146, Cambridge, MA, 1951. Harvard University Press.

xii BIBLIOGRAPHY

[110] J. Lengyel, M. Reichert, B. R. Donald, and D. P. Greenberg. Real-time robot
motion planning using rasterizing computer graphics hardware. Computer
Graphics, 24(4):327–335, August 1990.

[111] P. Leven and S. A. Hutchinson. Real-time path planning in changing envi-
ronments. IEEE Transactions on Robotics & Automation, 21(12):999–1030,
December 2002.

[112] P. Leven and S. A. Hutchinson. Using manipulability to bias sampling
during the construction of probabilistic roadmaps. IEEE Transactions on
Robotics & Automation, 19(6):1020–1026, December 2003.

[113] T.-Y. Li and Y.-C. Shie. An incremental learning approach to motion plan-
ning with roadmap management. In Proceedings IEEE International Con-
ference on Robotics & Automation, 2002.

[114] J.-M. Lien, S. L. Thomas, and N. M. Amato. A general framework for sam-
pling on the medial axis of the free space. In Proceedings IEEE International
Conference on Robotics & Automation, 2003.

[115] M. C. Lin and J. F. Canny. Efficient algorithms for incremental distance
computation. In Proceedings IEEE International Conference on Robotics &
Automation, 1991.

[116] M. C. Lin and D. Manocha. Collision and proximity queries. In J. E. Good-
man and J. O’Rourke, editors, Handbook of Discrete and Computational
Geometry, 2nd Ed., pages 787–807. Chapman and Hall/CRC Press, New
York, 2004.

[117] M. C. Lin, D. Manocha, J. Cohen, and S. Gottschalk. Collision detection:
Algorithms and applications. In J.-P. Laumond and M. H. Overmars, edi-
tors, Algorithms for Robotic Motion and Manipulation, pages 129–142. A.K.
Peters, Wellesley, MA, 1997.

[118] S. R. Lindemann and S. M. LaValle. Incremental low-discrepancy lattice
methods for motion planning. In Proceedings IEEE International Conference
on Robotics and Automation, pages 2920–2927, 2003.

[119] S. R. Lindemann and S. M. LaValle. Current issues in sampling-based mo-
tion planning. In P. Dario and R. Chatila, editors, Proceedings International
Symposium on Robotics Research. Springer-Verlag, Berlin, 2004.

[120] S. R. Lindemann and S. M. LaValle. Incrementally reducing dispersion
by increasing Voronoi bias in RRTs. In Proceedings IEEE International
Conference on Robotics and Automation, 2004.

[121] S. R. Lindemann and S. M. LaValle. Steps toward derandomizing RRTs. In
IEEE Fourth International Workshop on Robot Motion and Control, 2004.

BIBLIOGRAPHY xiii

[122] S. R. Lindemann, A. Yershova, and S. M. LaValle. Incremental grid sampling
strategies in robotics. In Proceedings Workshop on Algorithmic Foundations
of Robotics, pages 297–312, 2004.

[123] F. Lingelbach. Path planning using probabilistic cell decomposition. In Pro-
ceedings IEEE International Conference on Robotics & Automation, 2004.

[124] I. Lotan, F. Schwarzer, D. Halperin, and J.-C. Latombe. Efficient mainte-
nance and self-collision testing for kinematic chains. In Proceedings ACM
Symposium on Computational Geometry, pages 43–52, 2002.

[125] T. Lozano-Pérez. A simple motion-planning algorithm for general robot
manipulators. IEEE Journal of Robotics & Automation, RA-3(3):224–238,
Jun 1987.

[126] J. Matousek. Geometric Discrepancy. Springer-Verlag, Berlin, 1999.

[127] M. Matsumoto and T. Nishimura. Mersenne twister: A 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Transac-
tions on Modeling and Computer Simulation, 8(1):3–30, January 1998.

[128] E. Mazer, J. M. Ahuactzin, and P. Bessière. The Ariadne’s clew algorithm.
Journal of Artificial Intelligence Research, 9:295–316, November 1998.

[129] E. Mazer, G. Talbi, J. M. Ahuactzin, and P. Bessière. The Ariadne’s clew
algorithm. In Proceedings International Conference of Society of Adaptive
Behavior, Honolulu, 1992.

[130] N. C. Metropolis and S. M. Ulam. The Monte-Carlo method. Journal of
the American Statistical Association, 44:335–341, 1949.

[131] A. N. Michel and C. J. Herget. Applied Algebra and Functional Analysis.
Dover, New York, 1993.

[132] B. Mirtich. V-Clip: Fast and robust polyhedral collision detection. Technical
Report TR97-05, Mitsubishi Electronics Research Laboratory, 1997.

[133] B. Mirtich. Efficient algorithms for two-phase collision detection. In
K. Gupta and A.P. del Pobil, editors, Practical Motion Planning in Robotics:
Current Approaches and Future Directions, pages 203–223. Wiley, New York,
1998.

[134] H. Niederreiter. Random Number Generation and Quasi-Monte-Carlo Meth-
ods. Society for Industrial and Applied Mathematics, Philadelphia, 1992.

[135] H. Niederreiter and C. P. Xing. Nets, (t,s)-sequences, and algebraic geom-
etry. In P. Hellekalek and G. Larcher, editors, Random and Quasi-Random
Point Sets, pages 267–302. Springer-Verlag, Berlin, 1998. Lecture Notes in
Statistics, 138.

xiv BIBLIOGRAPHY

[136] D. Nieuwenhuisen and M. H. Overmars. Useful cycles in probabilistic
roadmap graphs. In Proceedings IEEE International Conference on Robotics
& Automation, pages 446–452, 2004.

[137] M. H. Overmars and J. van Leeuwen. Dynamic multidimensional data struc-
tures based on Quad- and K-D trees. Acta Informatica, 17:267–285, 1982.

[138] B. Paden, A. Mees, and M. Fisher. Path planning using a Jacobian-based
freespace generation algorithm. In Proceedings IEEE International Confer-
ence on Robotics & Automation, pages 1732–1737, 1989.

[139] J. Pettré, J.-P. Laumond, and T. Siméon. A 2-stages locomotion planner
for digital actors. In Proceedings Eurographics/SIGGRAPH Symposium on
Computer Animation, pages 258–264, 2003.

[140] C. Pisula, K. Hoff, M. Lin, and D. Manocha. Randomized path planning
for a rigid body based on hardware accelerated Voronoi sampling. In Pro-
ceedings Workshop on Algorithmic Foundations of Robotics, 2000.

[141] E. Plaku and L. E. Kavraki. Distributed sampling-based roadmap of trees for
large-scale motion planning. In Proceedings IEEE International Conference
on Robotics & Automation, 2005.

[142] S. Quinlan. Efficient distance computation between nonconvex objects.
In Proceedings IEEE International Conference on Robotics & Automation,
pages 3324–3329, 1994.

[143] M. Rabin. Transaction protection by beacons. Journal of Computation
Systems Science, 27(2):256–267, 1983.

[144] E. M. Reingold, J. Nievergelt, and N. Deo. Combinatorial Algorithms. Pren-
tice Hall, Englewood Cliffs, NJ, 1977.

[145] H. L. Royden. Real Analysis. MacMillan, New York, 1988.

[146] W. Rudin. Real Analysis. McGraw-Hill, New York, 1987.

[147] H. Sagan. Space-Filling Curves. Springer-Verlag, Berlin, 1994.

[148] G. Sánchez and J.-C. Latombe. A single-query bi-directional probabilistic
roadmap planner with lazy collision checking. In Proceedings International
Symposium on Robotics Research, 2001.

[149] G. Sánchez and J.-C. Latombe. On delaying collision checking in PRM
planning: Application to multi-robot coordination. International Journal
of Robotics Research, 21(1):5–26, 2002.

BIBLIOGRAPHY xv

[150] F. Schwarzer, M. Saha, and J.-C. Latombe. Exact collision checking of robot
paths. In J.-D. Boissonnat, J. Burdick, K. Goldberg, and S. Hutchinson,
editors, Algorithmic Foundations of Robotics V (WAFR 2002). Springer-
Verlag, Berlin, 2002.

[151] K. Shoemake. Uniform random rotations. In D. Kirk, editor, Graphics Gems
III, pages 124–132. Academic, New York, 1992.

[152] T. Siméon, J.-P. Laumond, and C. Nissoux. Visibility based probabilistic
roadmaps for motion planning. Advanced Robotics, 14(6), 2000.

[153] I. H. Sloan and S. Joe. Lattice Methods for Multiple Integration. Oxford
Science, Englewood Cliffs, NJ, 1994.

[154] G. Song and N. M. Amato. Using motion planning to study protein folding
pathways. Journal of Computational Biology, 26(2):282–304, 2002.

[155] R. L Sproull. Refinements to nearest-neighbor searching in k-dimensional
trees. Algorithmica, 6:579–589, 1991.

[156] M. Strandberg. Augmenting RRT-planners with local trees. In Proceed-
ings IEEE International Conference on Robotics & Automation, pages 3258–
3262, 2004.

[157] M. Strandberg. Robot Path Planning: An Object-Oriented Approach. PhD
thesis, Royal Institute of Technology (KTH), Stockholm, Sweden, 2004.

[158] A. G. Sukharev. Optimal strategies of the search for an extremum. U.S.S.R.
Computational Mathematics and Mathematical Physics, 11(4), 1971. Trans-
lated from Russian, Zh. Vychisl. Mat. i Mat. Fiz., 11, 4, 910-924, 1971.

[159] S. Tezuka. Uniform Random Numbers: Theory and Practice. Kluwer,
Boston, MA, 1995.

[160] S. Tezuka. Quasi-Monte Carlo: The discrepancy between theory and prac-
tice. In K.-T. Fang, F. J. Hickernell, and H. Niederreiter, editors, Monte
Carlo and Quasi-Monte Carlo Methods 2000, pages 124–140. Springer-
Verlag, Berlin, 2002.

[161] University of North Carolina. PQP: A proximity query package. GAMMA
Research Group, Available from http://www.cs.unc.edu/∼geom/SSV/,
2005.

[162] C. Urmson and R. Simmons. Approaches for heuristically biasing RRT
growth. In Proceedings IEEE/RSJ International Conference on Intelligent
Robots and Systems, 2003.

xvi BIBLIOGRAPHY

[163] J. van den Berg and M. Overmars. Roadmap-based motion planing in dy-
namic environments. In Proceedings IEEE/RSJ International Conference
on Intelligent Robots and Systems, pages 1598–1605, 2004.

[164] J. G. van der Corput. Verteilungsfunktionen I. Akademie van Wetenschap-
pen, 38:813–821, 1935.

[165] X. Wang and F. J. Hickernell. An historical overview of lattice point sets. In
K.-T. Fang, F. J. Hickernell, and H. Niederreiter, editors, Monte Carlo and
Quasi-Monte Carlo Methods 2000, pages 158–167. Springer-Verlag, Berlin,
2002.

[166] H. Weyl. Über die Gleichverteilung von Zahlen mod Eins. Mathematische
Annalen, 77:313–352, 1916.

[167] S. A. Wilmarth, N. M. Amato, and P. F. Stiller. MAPRM: A probabilistic
roadmap planner with sampling on the medial axis of the free space. In Pro-
ceedings IEEE International Conference on Robotics & Automation, pages
1024–1031, 1999.

[168] J. Yakey, S. M. LaValle, and L. E. Kavraki. Randomized path planning for
linkages with closed kinematic chains. IEEE Transactions on Robotics and
Automation, 17(6):951–958, December 2001.

[169] A. Yershova, L. Jaillet, T. Simeon, and S. M. LaValle. Dynamic-domain
RRTs: Efficient exploration by controlling the sampling domain. In Pro-
ceedings IEEE International Conference on Robotics and Automation, 2005.

[170] A. Yershova and S. M. LaValle. Deterministic sampling methods for spheres
and SO(3). In Proceedings IEEE International Conference on Robotics and
Automation, 2004.

[171] P. N. Yianilos. Data structures and algorithms for nearest neighbor search in
general metric spaces. In ACM-SIAM Symposium on Discrete Algorithms,
pages 311–321, 1993.

[172] Y. Yu and K. Gupta. On sensor-based roadmap: A framework for mo-
tion planning for a manipulator arm in unknown environments. In Proceed-
ings IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 1919–1924, 1998.

