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EXTENSION PROBLEMS FOR (C(K)-SPACES AND
TWISTED SUMS

N. J. KALTON

1. INTRODUCTION

This article can be regarded as an update on the handbook article by Zippin
[27]. In this article Zippin drew attention to problems surrounding extensions
of linear operators with values in C(K)-spaces. The literature on this subject
may be said to start with the work of Nachbin, Goodner and Kelley on the
case when K is extremally disconnected around 1950. Thus the subject is
over fifty years old, but it still seems that comparatively little is known in
the general case. We are particularly interested in extending operators on
separable Banach spaces when we can assume the range is C(K) for K a
compact metric space. In this article we will sketch some recent progress on
these problems.

2. LINEAR EXTENSION PROBLEMS

It is, by now, a very classical result that a Banach space X is l-injective
if and only if X is isometric to a space C(K) where K is extremally discon-
nected; this is due to Nachbin, Goodner and Kelley [22], [11} and [17]. For
a general compact Hausdorff space K the space C(K) is usually not injective
(and, in particular, never if K is metrizable). However it is a rather inter-
esting question to determine conditions when linear operators into arbitrary
C(K)—spaces can be extended. This problem was first considered in depth by
Lindenstrauss in 1964 [18].

Let us introduce some notation. Suppose X is a Banach space and E is a
closed subspace. Then, for A > 1, we will say that the pair (E,X) has the
(X, C)-extension property if whenever Ty : E — C(K) is a bounded operator
then there is an extension T : X — C(K) with ||T'|| < A||Tol|. We say that X
has the (), C)-extension property if (E, X) has the (), C)-extension property
for every closed subspace E. We will use the term C-extension property to
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160 N. J. KALTON

denote the (A, C)-extension property for some A > 1.
X —— C(K)

To

E

Usually we will want to suppose that X is separable and in this case it ob-
viously suffices to take K metrizable; indeed since every C(K) for K metriz-
able is a contractively complemented subspace of C[0,1] we may even take
K = [0,1]. Notice that ¢ is separably injective by Sobczyk’s theorem [23].
This implies that if one chooses K to be the one-point compactification of N
so that C(K) = c = ¢g then one always has extensions when X is separable.
A deep result of Zippin [25] shows that ¢y is the unique separably injective
separable Banach space.

The spaces C(K) are L, —spaces, which means that locally they behave
like £, and so are injective in a local sense. In 1964, Lindenstrauss [18] showed
that if we restrict the operator Ty to be compact then indeed an extension
always exists and we can choose A = 1 + ¢ for any ¢ > 0. However the
extension of bounded operators is more delicate. Indeed consider the Cantor
set A = {0,1}N and ¢ : A — [0, 1] be the canonical surjection

o0

P(t)e) = Y o2
n=1

Then C[0,1] can be isometrically embedded into C(A) via the embedding
J — [ o . For this embedding, C[0, 1] is uncomplemented in C(A) (much
more is true, cf. [3] p. 21). Thus the identity map on C[0, 1] cannot be ex-
tended to C(A) i.e. C(A) fails the C-extension property. The existence of this
counterexample already implies that ¢, fails the C-extension property. Indeed
let @ : 41 — C(A) be a quotient map and let E = Q~1C[0,1]. Then the map
Q : E — C[0,1] cannot be extended to an operator T': E — CJ[0,1]. Indeed if
such an extension exists then T" = SQ where S : C(A) — C(A) is a bounded
operator, which is a projection of C(A) onto C[0, 1]. Thus any space that con-
tains ¢; fails the C-extension property. However in 1971, Lindenstrauss and
Pelczynski [19] gave a positive result:

Theorem 2.1. The space cy has the (1 + ¢,C)-extension property for every
e > 0.

For a discussion of which spaces can replace C(K)-spaces in this theorem
see [8]. Twenty years later Zippin [26] gave a stronger result for £, when
p>1.

Theorem 2.2. For p > 1 the spaces £, have the (1,C)-extension property.

The characterization of spaces with the C-extension property remains mys-
terious. It is for example not known if L, for 1 < p < oo has the C-extension
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property but it is known that if p # 2 then L, fails the (1,C)—extension prop-
erty [12]. Recently the author [15] has characterized separable Banach spaces
with the (1+ ¢,C)-extension property in terms of properties of types. We will
not discuss this in detail, but we note the following application:

Theorem 2.3. Let X be a separable Orlicz sequence space not containing ¢1.
Then X has the C-extension property.

Note that we do not claim the (1,C) or (1 + ¢,C)-extension property; this
is a renorming theorem, so that X can be renormed to have the (1 + ¢,C)-
extension property.

3. EXTENSIONS BY C(K)-SPACES

An eztension of a Banach space X by a space Y is a short exact sequence:
0 Y A X 0.

More informally we refer to Z as an extension of X by Y if Z is a Banach
space with a subspace isometric to Y so that Z/Y is isometric to X. Such an
extension splits if it reduces to a direct sum, i.e. Y is complemented in Z. We
write Ext (X,C) = {0} if every extension of X by a C(K)—space splits.

Now suppose 1p : Y — C(K) is a bounded linear operator. Then we can
construct an extension of X by C(K) by the pushout construction. Then Tj
has a bounded extension T': Z — C(K) if and only if this extension splits:

0 - Y -7 - X -0

X 0

This means that Ext (X,C) = {0} if and only if whenever Y is a Banach
space and E is a subspace of Y with Y/E ~ X then (E,Y) has the C-
extension property. For the special case when Y = /; one obtains a complete
classification of subspaces of £; with the C-extension property (first noted by
Johnson and Zippin [12]):

Theorem 3.1. Let E be a subspace of {1; then (E,¥f1) has the C-extension
property if and only if Ext (¢1/E,C) = {0}.

Johnson and Zippin [12] went on to prove:

Theorem 3.2. Let E be a subspace of €1 which is weak*-closed as a subspace
of ¢; then (E,£1) has the C-extension property.

Recently the author [15] refined their arguments to show that in fact under
these hypotheses (F, £1) has the (1 + ¢, C)-extension property for every € > 0.
(The original argument yielded only 3 + ¢ in general.)

In terms of extensions this means:

Corollary 3.3. If X is the dual of a subspace of cg then Ext (X,C) = {0}.
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This suggests a natural problem:

Problem 1. Let X be a separable Banach space. Is it true that Ext (X,C) =
{0} if and only if X is isomorphic to the dual of a subspace of cy?

This is equivalent (via the automorphism results of Lindenstrauss and
Rosenthal [20]) to asking if whenever (E,#;) has the C-extension property
if and only if there is an automorphism U : ¢; — ¢; such that U(F) is weak*-
closed. There is some evidence for a positive answer to Problem 1. The author
proved the following results in [14]:

Theorem 3.4. Let X be a separable Banach space such that Ext (X,C) = {0}.
Then

(i) X has the Schur property.

(it) If X has a (UFDD) then X is isomorphic to the dual of a subspace of co.

The method of proof revolved around taking one non-trivial extension of
C(K) namely the example created in §2, and performing a pullback construc-
tion for an arbitrary operator T': X — cp:

0 — C[0,1] - 7

- X - (0
s T
T
.
0 Cl0, 1] —— C(A) - o . 0

The existence of T: X — C (A) which lifts T is equivalent to the splitting
of the pullback sequence. Thus if Ext (X,C) = {0} one can always lift T and
this allows us to make deductions about the structure of X.

For a characterization of spaces X such that Ext (X,C) = {0} see [7]. We
also remark that if K is a fixed countable compact metric space one may
expect that Ext (X,C(K)) = {0} more often. The first non-trivial case is
K = w® which is discussed in [5].

4. UNIVERSAL EXTENSIONS AND AUTOMORPHISMS

In a recent paper Castillo and Moreno [6] related extension properties with
the Lindenstrauss-Rosenthal automorphism theorems [20]. In their paper,
Lindenstrauss and Rosenthal showed that if £ and F are two isomorphic
subspaces of cg of infinite codimension then there is an automorphism U :
co — ¢g so that U(E) = F. In somewhat less exact language, one can say that
there is at most one embedding, up to automorphism, of a separable Banach
space into cg. This is related to Sobczyk’s theorem. They also investigated
embeddings of separable spaces into £, and proved dual results for £; (which
we have already mentioned).

Now by Miljutin’s theorem [21] all C(K)-spaces are isomorphic for K un-
countable and compact metric. The classical Banach-Mazur theorem states
that every separable Banach space embeds into C[0,1] isometrically. The
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problem of obtaining automorphism results in C(K)-spaces is clearly related
to the extension problem; we will now make this relationship precise.

Let us say that a separable Banach space has the separable universal C-
extension property if (X,Y) has the C-extension property whenever Y is a
separable Banach space containing X. In effect one may always suppose that
Y = C[0,1]. The following result is a more precise version of a theorem of
Castillo-Moreno [6] (see [16]):

Theorem 4.1. Let X be a separable Banach space. The following conditions
on X are equivalent:

(i) X has the separable universal C-extension property.

(i) If X1 and X2 are two subspaces of C[0,1] with X ~ X1 =~ Xy then there
is an automorphism U : C[0,1] — C[0, 1] with U(X1) = Xo.

Given this it becomes rather interesting to determine which spaces have
the separable universal C-extension property. It is a trivial consequence of
Sobezyk’s theorem [23] that ¢y has this property; in fact it has the separa-
ble universal (2,C)-extension property with the obvious meaning. It is then
a consequence of Theorem 2.1 that every subspace of ¢y has the separable
universal (2 + €,C)-extension property. To see this we observe that if X is a
subspace of ¢y which is also a subspace of a separable Banach space Y then
we can form a separable superspace Z so that X C ¢ C Zand X CY C Z;
just let Z be the quotient of co @1 Y by the subspace {(z, —z): = € X} and
identify X with the subspace of Z spanned by the cosets of {(z,0) : z € X}.

The obvious place to start looking for more spaces is to consider space
with the separable universal (1,C)-extension property. However, in 1964, Lin-
denstrauss [18] showed that these spaces are exactly the finite-dimensional
polyhedral spaces. There are no infinite-dimensional examples. The next ob-
vious try is to consider the separable universal (1 4 €, C)-extension property
for every € > 0. This was first done by Speegle [24], whose main result is
that such a space cannot have a uniformly smooth norm. Speegle also asked
whether /; has this property.

In fact we have recently shown that the answer to Speegle’s question is
positive:

Theorem 4.2. Let X be almost isometric to the dual of a subspace of co.
Then X has the separable universal (1 + ¢,C)-extension property for every
e>0.

This extends Theorem 3.2 because a weak*-closed subspace of ¢; is the dual
of a quotient of ¢y, and Alspach [1] showed that a quotient of ¢y is almost
isometric to a subspace of cg. Let us notice here a connection with Problem
1. Tt is a result of Bourgain [4] that ¢; contains an uncomplemented copy X
of £1. Now (X, £;) has the C-extension property and so Ext (£,/X,C) = {0}.

Problem 2. Suppose X is a subspace of £1 which is isomorphic to £1; is £1/X
the dual of a subspace of co?
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Unfortunately, Bourgain’s construction in local in nature and so if one
creates the example in a natural way the space £; /X is simply an #; —sum of
finite-dimensional spaces. This Problem asks for a global construction.

Theorem 4.2 is not the complete answer to the characterization of spaces
with the (1 + ¢, C)-extension property for every ¢ > 0. We also have:

Theorem 4.3. Let X be a Subspace of L1(0,1) whose unit ball is compact for
the topology of convergence in measure. Then X has the separable universal
(1 +¢,C)-extension property for every e > 0.

In [10] an example is given of a subspace of L; where the unit ball is
compact for convergence in measure and yet X is not almost isometric to the
dual of a subspace of cg. Another example constructed in [15] is a Nakano
space £, where lim, o, p, = 1.

We now have a fairly rich class of spaces for which the equivalent conditions
of Theorem 4.1 hold; this class includes all weak*-closed subspaces of #; and
all subspaces of ¢o. It is not hard to see we can expand the class by taking
direct sums (e.g. co @ ¢1) and with slightly more work, extensions. Thus any
extension of cy by #; satisfies Theorem 4.1. The fact that there are non-trivial
extensions of ¢y by #; is proved in [5].

5. HOMOGENEOUS ZIPPIN SELECTORS

Suppose E is a subspace of a Banach space X. Then Zippin [26,27] in-
troduced a criterion for (E, X) to have the (), C)-extension property. We say
that a map ® : Bg« — X* is a Zippin selector of ® is weak*-continuous and
®(e*)|g = e* for every e* € Bg-. Then [26] (F, X) has the (\,C) extension
property if and only if there is a Zippin selector ® : Bg= — ABx-.

In certain special cases one can find a homogeneous selector, i.e. one can
choose ® so that ®(ae*) = a®(e*) for every e* € E*. Indeed suppose X = £,
where 1 < p < oo and F is any closed subspace. Define ®(e*) to be the
unique norm-preserving extension of e* to £,. Then ® is homogeneous and
weak*-continuous. To see this suppose (e}:) is a sequence in Bg- so that e*
converges weak™ to e*. To show that (®(e}))S2; converges weak* to ®(e*)
it suffices to show this for some subsequence. We therefore select e, € By
so that e}, (en) = [le;]| and suppose, by passing to a subsequence that (e,)
weakly converges to some e € E. Then using the special properties of £y it
is quite clear that ®(e;,) converges weak* to some z* so that ||z*| = [|e]|P?
and z*(e) = |le[|P. Now z*|g = e* and, if e* = 0 we have e = 0 and z* = 0; if
! not [le*|| > e*(e)/llell = [le|P~" = [lz*|| so that B(e*) = z*.

If we have a homogeneous Zippin selector for (E, X) we can extend ® to
be defined on homogeneous on E* and continuous for the bounded weak*-
topology (equivalently weak*-continuous on bounded sets). We define

121 = sup{[|@(e")]| - lle*|| < 1}.

Now consider the embedding of ¢; into C(By,,). It is shown in [16] that there
is a homogeneous Zippin selector ||®|| selector for (¢1,C(B,_)) with ||®| = 1.
It follows that:
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Theorem 5.1. Suppose X is a separable Banach space containing £,. Then
for any € > 0 there is a homogeneous Zippin selector ® so that ||®|| <1 +e.

To see this, use Theorem 4.2. There is a linear operator T : X — C(Be,,)
with |T]| < 1+¢e¢and Tz = z for z € £;. Define ¥ : £/ — X* by ¥ =770 ®.

In the general the (), C)-extension property on a pair (E, X) does not imply
the existence of a homogeneous Zippin selector ® with ||®|| = A. In fact if E
is non-separable there are examples where no homogeneous Zippin selector
exists [9]. However Castillo and Suarez [9] recently applied an old result of
Benyamini [2] to obtain:

Theorem 5.2. If E is a separable subspace of a Banach space X so that
(E,X) has the C-extension property then there is a homogeneous Zippin’s
selector ® : E* — X*.

It turns out that the existence of homogeneous Zippin selectors is important
for ¢o—products. In fact we can now prove [16]:

Theorem 5.3. If X has the separable universal C-extension property then
co(X) also has the separable universal C-extension property. The space co (41)
has the separable universal (2 + €,C)-extension property.

The space cg(£1) is the space with the most complicated structure that we
know satisfies Theorem 4.1. We now turn to the question raised by Castillo
and Moreno [6]: does a separable Hilbert space satisfy this Theorem? Indeed
Speegle’s theorem [24] shows that £ fails the separable universal (1 + ¢,C)-
extension property but, as the example of ¢y shows, this cannot resolve the
question in general. Let us start by considering the canonical inclusion £, C
C(Bgy). Theorem 5.2 implies:

Theorem 5.4. Suppose 1 < p < oco. Then there is a homogeneous Zippin
selector for (£p, C(Byx)).

This does not seem to immediately help us decide whether £, has the
separable universal C-extension property. However if £, is embedded in some
X so that (¢, X) has the C-extension property then the argument of Theorem
5.1 shows that (£,,X) has a homogeneous Zippin selector ®. This allows to
make a renorming of X by setting, for example:

|z| = sup{|(z, ®(e"))| : € € Bes}
and then
Izl = (Gll=l? + 3lzP)V*.

Thus || - ||; is an equivalent norm on X which agrees with the original norm
on £,. However it has an additional property. There exists a constant ¢ > 0
so that

lim |2+ un|ff > [/l + ¢ lim [Jun||]

n—00 n—o
whenever z € X, (u,)22; is a weakly null sequence in £, and all the limits
exist. This condition as it turns out is also sufficient for the C-extension
property:
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Theorem 5.5. Suppose 1 < p < co. Suppose £, C X where X is a separable
Banach space. In order that (¢, X) has the C-extension property it is neces-
sary and sufficient that there is an equivalent norm || - |1 on X £, so that for
some ¢ > 0,

lim [z +un [ 2 [Jzllf + ¢ lim |lun|?
n—od0 . n—co

whenever x € X, (un)ply 5 a weakly null sequence in £, and all the limits
ertst.

Thus our problem is reduced to a renorming question. Let us note here
that we do not require that the new norm || - ||; coincides with the original
norm on £,. To see what this means let us suppose we have 1 < p < co and H
is an Hilbertian subspace of L,,. Then if p > 2, H is complemented by a result
of Kadets and Pelczyniski [13] and so (H, L,) has the C-extension property.
On the other hand, if 1 < p < 2 then the hypothesis of Theorem 5.5 holds for
the original norm on L. To see this, observe first that for a suitable constant
a > 0 we have an inequality

|1 +¢[” > 1+ pt + amin(|¢]?, [¢|?) — 00 <t < 00.

Then suppose || f|l, = 1 and (gn)52; is a weakly null sequence with ||g, ||, < 1.
Let sgn t = t/|t| if t # 0 and let sgn 0 = 0.

/ I+ gulPdt
>14p / P (sgn fgn dt +a / P2 lgn 2t + / lgnlPdt

lgn|<|f] lgn |21

2/p 2/p
>1 +p/ |fP~ (sgn f)gndt +a / Ignlpdt> +a </ Ignlpdt>
lgnl<|£] lgnl>|f]

- a
> 145 [ 17 sgn Fgn e+ 2l

Note that
i [ 1P~ s f)gn d = 0

From this it follows easily that the norm on L, has the property that for some
c > 0 we have

. 2 2 . . 2
Tim (£ + gnll2 > £+ lim [lga

whenever f € Ly, (gn)5%; is a weakly null sequence in L, and all the limits
exist. In fact it easy to see via renorming that any Banach space with a 2-
concave unconditional basis satisfies a similar condition. These considerations
are, however, a form of overkill. We do not require a condition on every weakly
null sequence; instead we need the conditions for weakly null sequences in the
given Hilbertian subspace.

Surprisingly when one attempts a more delicate analysis one finds that the
(UMD)-property of Burkholder begins to play a role. Recall that a Banach
space X has the (UMD)-property if for some (respectively, every) 1 < p < oo
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there is a constant C = C(p) so that for any finite X-valued martingale
(M,)!_, one has an estimate
N
(E] S e;dM;|P)V? < CE|My|P)VP ¢ =+#1,j=12,...,N
i=1 -
where dM; = M; — M;_1.
The connection is expressed in the following theorem:

Theorem 5.6. Suppose 1 < p < 0o and £, C X where X 1is a Banach space
with (UM D). Then X can be given an equivalent morm so that

Tim (312 -+ unl? + 3l = wnll?) 2 2]+ ¢ Jim_ un?

whenever z € X, (ur)22; is a weakly null sequence in £, and all the limits
exist.

This is not quite what we need but one quickly gets:

Theorem 5.7. Suppose 1 < p < oo and £, C X where X is a Banach
space with (UMD). If X has an unconditional basis (or even a (UFDD))
then (£p, X) has the C-extension property.

This result applies when X = L, for some 1 < r < oo or is a reflexive
Schatten ideal. We do not know whether the result remains true if one removes
the (UFDD) hypothesis: however the (UMD) hypothesis is necessary:

Theorem 5.8. If 1 < p < 0o there is a super-reflexive Banach space X with
unconditional basis containing £, so that (£, X) fails to have the C-extension

property.
This answers the question of Castillo and Moreno negatively. There must

be at least two non-automorphic embeddings of a Hilbert space into C[0,1].
However the methods are very specific to £,-spaces and it is natural to ask:

Problem 3. Is there any super-reflezive example of a separable Banach space
with the separable universal C-extension property?

Of course we can eliminate any space which contains a complemented copy
of £, for 1 < p < oo (such as Lp). The example in Theorem 5.8 proves
that there are super-reflexive spaces failing the C-extension property (thus
answering a question of Zippin [27]). However we may still ask:

Problem 4. Does every separable Banach space with (UMD) have the C-
extension property?

We do not even know the answer for L, when 1 < p < 0o. See also [27].
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