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§1 Solution to December TST, Problem 1

This problem was proposed by Maria Monks Gillespie.
Let us denote s(g) = n− c(g) for every permutation g. Thus, the problem is equivalent

to showing that
s (f1 ◦ f2 ◦ · · · ◦ fn) ≤ s(f1) + · · ·+ s(fn).

Now, the critical claim is that:

Claim. For a permutation g ∈ Sn, s(g) is the minimal number of transpositions t1, t2,
. . . , tk for which g = t1 ◦ · · · ◦ tk.

Proof. This is a standard fact. Note s(id) = n − n = 0. Now remark that applying a
transposition to a permutation either joins two disjoint orbits or splits one orbit into two,
so we certainly need at least s(g) permutations. Moreover we can explicitly construct a
cycle of length ` using `− 1 transpositions, which completes the proof.

The conclusion of the problem now follows as a “triangle inequality”.

§2 Solution to December TST, Problem 2

This problem was proposed by Evan Chen.

First solution

Assume for simplicity AB < AC. Let K be the contact point of the A-excircle on BC;
also let ray TD meet Ω again at L. From the fact that ∠FTL = ∠FTD = 180◦−∠FED,
we can deduce that ∠FTL = ∠ACF , meaning that F is the reflection of A across the
perpendicular bisector ` of BC. If we reflect T , D, L over `, we deduce A, K and the
reflection of T across ` are collinear, which implies that ∠BAT = ∠CAK.

Now, consider the reflection point K across line AI, say S. Since ray AI passes through
the A-excenter, S lies on the A-excircle. Since ∠BAT = ∠CAK, S also lies on ray AT .
But the circumcircles of triangles DEF and EFK are congruent (from DF = KF ), so
S lies on the circumcircle of 4DEF too. Hence S is the desired intersection point.
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Second solution

It’s known that T is the touch-point of the A-mixtilinear incircle. Let K be contact point
of A-excircle on BC. Now the circumcircles of 4DEF and 4EFK are congruent, since
DF = FK and the angles at E are supplementary. Let S be the reflection of K across
line EF , which by the above the above comment lies on the circumcircle of 4DEF .
Since EF passes through the A-excenter, S also lies on the A-excircle. But S also lies on
line AT , since lines AT and AK are isogonal (the mixtilinear cevian is isogonal to the
Nagel line). Thus S is the desired intersection point.

§3 Solution to December TST, Problem 3

This problem was proposed by Mark Sellke.
Let i ⊆ Fp[x] denote the set of polynomials in the image of Ψ. Thus Ψ : Fp[x]→ i is

a bijection on the level of sets.

Claim. If A,B ∈ i then gcd(A,B) ∈ i.

Proof. It suffices to show that if A and B are monic, and degA > degB, then the
remainder when A is divided by B is in i. Suppose degA = pk and B = xp

k−1 −
c2x

pk−2 − · · · − ck. Then

xp
k ≡

(
c2x

pk−2
+ c3x

pk−3
+ · · ·+ ck

)p
(mod B)

≡ c2xp
k−1

+ c3x
pk−2 · · ·+ ck (mod B)
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since exponentiation by p commutes with addition in Fp. This is enough to imply the
conclusion. The proof if degB is smaller less than pk−1 is similar.

Thus, if we view Fp[x] and i as partially ordered sets under polynomial division, then
gcd is the “greatest lower bound” or “meet” in both partially ordered sets. We will now
prove that Ψ is an isomorphism of the posets. This requires two parts:

Claim. If P | Q then Ψ(P ) | Ψ(Q).

Proof. Observe that Ψ is also a linear map of Fp vector spaces, and that Ψ(xP ) = Ψ(P )p

for any P ∈ Fp[x].

Set Q = PR, where R =
∑k

i=0 rix
i. Then

Ψ(Q) = Ψ

(
P

k∑
i=0

rix
i

)

=
k∑

i=0

Ψ
(
P · rixi

)
=

k∑
i=0

riΨ(P )p
i
.

which is divisible by Ψ(P ).

Claim. If Ψ(P ) | Ψ(Q) then P | Q.

Proof. Suppose Ψ(P ) | Ψ(Q), but Q = PA + B where degB < degP . Thus Ψ(P ) |
Ψ(PA) + Ψ(B), hence Ψ(P ) | Ψ(B), but deg Ψ(P ) > deg Ψ(B) hence Ψ(B) = 0 =⇒
B = 0.

This completes the proof.

Remark. In fact ψ : Fp[x] → i is a ring isomorphism if we equip i with function
composition as the ring multiplication.

§4 Solution to January TST, Problem 1

This problem was proposed by Iurie Boreico.
Assume the contrary, so that for some integer k we have

k < 2n−1
√

3 < k +
1

2n−1
.

Squaring gives

k2 < 3 · 22n−2 < k2 +
k

2n
+

1

22n+2

≤ k2 +
2n−1

√
3

2n
+

1

22n+2

= k2 +

√
3

2
+

1

22n+2

≤ k2 +

√
3

2
+

1

16
< k2 + 1

and this is a contradiction.
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§5 Solution to January TST, Problem 2

This problem was proposed by Zilin Jiang.
Of course, W (k, k) is arbitrary for k ∈ [n]. We claim that W (a, b) = ±1 for any a 6= b,

with the sign fixed. (These are all solutions.)
First, let Xabc = W (a, b)W (b, c) for all distinct a, b, c, so the given condition is∑

a,b,c∈A×B×C
Xabc = |A||B||C|.

Consider the given equation with the particular choices

• A = {1}, B = {3}, C = {2, 4, . . . , n}.

• A = {2}, B = {3}, C = {1, 4, . . . , n}.

• A = {1, 2}, B = {3}, C = {4, . . . , n}.

Adding the first two and subtracting the second gives X132 + X231 = 2. Similarly,
X132 + X312 = 2, and in this way, we get that X231 = X312. Then, W (2, 3)W (3, 1) =
W (3, 1)W (1, 2), Clearly, W (3, 1) 6= 0, or else take A = {3}, B = {1} in the original given
to get a contradiction. Thus, W (1, 2) = W (2, 3).

Analogously, for any distinct a, b, c we have W (a, b) = W (b, c). For n ≥ 4 this is
enough to imply W (a, b) = ±1 for a 6= b where the choice of sign is the same for all a
and b.

Surprisingly, the n = 3 case has “extra” solutions for W (1, 2) = W (2, 3) = W (3, 1) =
±1, W (2, 1) = W (3, 2) = W (1, 3) = ∓1.

§6 Solution to January TST, Problem 3

This problem was proposed by Ivan Borsenco.
The locus of points is three points: the incenter I, the circumcenter O and the

orthocenter H of triangle ABC, and they clearly satisfy the given conditions. So we
show they are the only ones.

First solution

In complex numbers with ABC the unit circle, it is equivalent to solving the following
two cubic equations in p and q = p:

(p− a)(p− b)(p− c) = (abc)2(q − 1/a)(q − 1/b)(q − 1/c)

0 =
∏
cyc

(p+ c− b− bcq) +
∏
cyc

(p+ b− c− bcq).

Viewing this as two cubic curves in (p, q) ∈ C2, by Bézout’s Theorem it follows there
are at most nine solutions (unless both curves are not irreducible, but it’s easy to check
the first one cannot be factored). Moreover it is easy to name nine solutions (for ABC
scalene): the three vertices, the three excenters, and the aforementioned I, O, H. Hence
the answer is just those three triangle centers I, O and H.

4



Solutions to December and January Team Selection Tests

Second solution

Set

x1 =
1

2
∠PAB, y1 =

1

2
∠PBC, z1 =

1

2
∠PCA,

and

x2 =
1

2
∠PAC, y2 =

1

2
∠PBA, z2 =

1

2
∠PCB.

Because AP , BP , CP are concurrent at point P , from trigonometric version of Ceva’s
Theorem, we have

sin
x1
2

sin
y1
2

sin
z1
2

= sin
x2
2

sin
y2
2

sin
z2
2
. (1)

Using Ceva’s Theorem for cevians AA1, BB1, CC1, we get

1 =
BA1

CA1
· CB1

AB1
· AC1

BC1
=

tan y1
2

tan z2
2

·
tan z1

2

tan x2
2

·
tan x1

2

tan y2
2

.

from which we combine with (1) to get

cos
x1
2

cos
y1
2

cos
z1
2

= cos
x2
2

cos
y2
2

cos
z2
2
. (2)

If we square (1) and (2) while multiplying both sides by 8, we then obtain

(1− cosx1)(1− cos y1)(1− cos z1) = (1− cosx2)(1− cos y2)(1− cos z2), (3)

(1 + cosx1)(1 + cos y1)(1 + cos z1) = (1 + cosx2)(1 + cos y2)(1 + cos z2).. (4)

From now on, define

pi = cosxi + cos yi + cos zi

qi = cosxi cos yi + cos yi cos zi + cos zi cosxi

ri = cosxi cos yi cos zi

for i = 1, 2. The sum and difference of (3) and (4) then gives

q1 = q2 (5)

p1 + r1 = p2 + r2. (6)

From the fact that x1 + y1 + z1 = x2 + y2 + z2 = 180◦, we find one more relation between
angles x1, y1, z1 and x2, y2, z2:

1 = cos 180◦ = cos2 x1 + cos2 y1 + cos2 z1 + 2 cosx1 cos y1 cos z1

= cos2 x2 + cos2 y2 + cos2 z2 + 2 cosx2 cos y2 cos z2

=⇒ 1 = p21 − 2q1 + 2r1 = p22 − 2q2 + 2r2. (7)

If we combine (5), (6), (7) we easily obtain p21−2p1 = p22−2p2 =⇒ (p1−1)2 = (p2−1)2.
But it is well known that pi > 1, and hence p1 = p2. Then q1 = q2 and r1 = r2.

From this it follows that (cosx1, cos y1, cos z1) and (cosx2, cos y2, cos z2) are permu-
tations of each other, by considering the polynomial t3 − pit

2 + qit − ri. Because
0 < x1, y1, z1, x2, y2, z2 < 180◦, we conclude that angles (x1, y1, z1) are a permutation of
angles (x2, y2, z2).

Consider the following cases:

• Suppose x1 = x2. Then if y1 = z2 and z1 = y2, we obtain triangle ABC is isosceles.
Hence y1 = y2, z1 = z2 and P = I.
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• Suppose x1 = y2. Then if y1 = x2, we obtain triangle ABC is isosceles. Hence
y1 = z2, z1 = x2 and P = O.

• Suppose x1 = z2. Then if z1 = x2, we obtain triangle ABC is isosceles. Hence
z1 = y2, y1 = x2 and P = H.

This completes the proof.
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