Solutions to December and January Team Selection Tests

United States of America
57th IMO 2016, Hong Kong

§1 Solution to December TST, Problem 1

This problem was proposed by Maria Monks Gillespie.
Let us denote $s(g)=n-c(g)$ for every permutation g. Thus, the problem is equivalent to showing that

$$
s\left(f_{1} \circ f_{2} \circ \cdots \circ f_{n}\right) \leq s\left(f_{1}\right)+\cdots+s\left(f_{n}\right) .
$$

Now, the critical claim is that:
Claim. For a permutation $g \in S_{n}, s(g)$ is the minimal number of transpositions t_{1}, t_{2}, \ldots, t_{k} for which $g=t_{1} \circ \cdots \circ t_{k}$.

Proof. This is a standard fact. Note $s(\mathrm{id})=n-n=0$. Now remark that applying a transposition to a permutation either joins two disjoint orbits or splits one orbit into two, so we certainly need at least $s(g)$ permutations. Moreover we can explicitly construct a cycle of length ℓ using $\ell-1$ transpositions, which completes the proof.

The conclusion of the problem now follows as a "triangle inequality".

§2 Solution to December TST, Problem 2

This problem was proposed by Evan Chen.

First solution

Assume for simplicity $A B<A C$. Let K be the contact point of the A-excircle on $B C$; also let ray $T D$ meet Ω again at L. From the fact that $\angle F T L=\angle F T D=180^{\circ}-\angle F E D$, we can deduce that $\angle F T L=\angle A C F$, meaning that F is the reflection of A across the perpendicular bisector ℓ of $B C$. If we reflect T, D, L over ℓ, we deduce A, K and the reflection of T across ℓ are collinear, which implies that $\angle B A T=\angle C A K$.

Now, consider the reflection point K across line $A I$, say S. Since ray $A I$ passes through the A-excenter, S lies on the A-excircle. Since $\angle B A T=\angle C A K, S$ also lies on ray $A T$. But the circumcircles of triangles $D E F$ and $E F K$ are congruent (from $D F=K F$), so S lies on the circumcircle of $\triangle D E F$ too. Hence S is the desired intersection point.

Second solution

It's known that T is the touch-point of the A-mixtilinear incircle. Let K be contact point of A-excircle on $B C$. Now the circumcircles of $\triangle D E F$ and $\triangle E F K$ are congruent, since $D F=F K$ and the angles at E are supplementary. Let S be the reflection of K across line $E F$, which by the above the above comment lies on the circumcircle of $\triangle D E F$. Since $E F$ passes through the A-excenter, S also lies on the A-excircle. But S also lies on line $A T$, since lines $A T$ and $A K$ are isogonal (the mixtilinear cevian is isogonal to the Nagel line). Thus S is the desired intersection point.

§3 Solution to December TST, Problem 3

This problem was proposed by Mark Sellke.
Let $\beth \subseteq \mathbb{F}_{p}[x]$ denote the set of polynomials in the image of Ψ. Thus $\Psi: \mathbb{F}_{p}[x] \rightarrow \beth$ is a bijection on the level of sets.

Claim. If $A, B \in \beth$ then $\operatorname{gcd}(A, B) \in \beth$.
Proof. It suffices to show that if A and B are monic, and $\operatorname{deg} A>\operatorname{deg} B$, then the remainder when A is divided by B is in \beth. Suppose $\operatorname{deg} A=p^{k}$ and $B=x^{p^{k-1}}-$ $c_{2} x^{p^{k-2}}-\cdots-c_{k}$. Then

$$
\begin{aligned}
x^{p^{k}} & \equiv\left(c_{2} x^{p^{k-2}}+c_{3} x^{p^{k-3}}+\cdots+c_{k}\right)^{p} \quad(\bmod B) \\
& \equiv c_{2} x^{p^{k-1}}+c_{3} x^{p^{k-2}} \cdots+c_{k} \quad(\bmod B)
\end{aligned}
$$

since exponentiation by p commutes with addition in \mathbb{F}_{p}. This is enough to imply the conclusion. The proof if $\operatorname{deg} B$ is smaller less than p^{k-1} is similar.

Thus, if we view $\mathbb{F}_{p}[x]$ and \beth as partially ordered sets under polynomial division, then gcd is the "greatest lower bound" or "meet" in both partially ordered sets. We will now prove that Ψ is an isomorphism of the posets. This requires two parts:

Claim. If $P \mid Q$ then $\Psi(P) \mid \Psi(Q)$.
Proof. Observe that Ψ is also a linear map of \mathbb{F}_{p} vector spaces, and that $\Psi(x P)=\Psi(P)^{p}$ for any $P \in \mathbb{F}_{p}[x]$.

Set $Q=P R$, where $R=\sum_{i=0}^{k} r_{i} x^{i}$. Then

$$
\begin{aligned}
\Psi(Q) & =\Psi\left(P \sum_{i=0}^{k} r_{i} x^{i}\right) \\
& =\sum_{i=0}^{k} \Psi\left(P \cdot r_{i} x^{i}\right) \\
& =\sum_{i=0}^{k} r_{i} \Psi(P)^{p^{i}}
\end{aligned}
$$

which is divisible by $\Psi(P)$.
Claim. If $\Psi(P) \mid \Psi(Q)$ then $P \mid Q$.
Proof. Suppose $\Psi(P) \mid \Psi(Q)$, but $Q=P A+B$ where $\operatorname{deg} B<\operatorname{deg} P$. Thus $\Psi(P) \mid$ $\Psi(P A)+\Psi(B)$, hence $\Psi(P) \mid \Psi(B)$, but $\operatorname{deg} \Psi(P)>\operatorname{deg} \Psi(B)$ hence $\Psi(B)=0 \Longrightarrow$ $B=0$.

This completes the proof.
Remark. In fact $\psi: \mathbb{F}_{p}[x] \rightarrow \beth$ is a ring isomorphism if we equip \beth with function composition as the ring multiplication.

§4 Solution to January TST, Problem 1

This problem was proposed by Iurie Boreico.
Assume the contrary, so that for some integer k we have

$$
k<2^{n-1} \sqrt{3}<k+\frac{1}{2^{n-1}}
$$

Squaring gives

$$
\begin{aligned}
k^{2}<3 \cdot 2^{2 n-2} & <k^{2}+\frac{k}{2^{n}}+\frac{1}{2^{2 n+2}} \\
& \leq k^{2}+\frac{2^{n-1} \sqrt{3}}{2^{n}}+\frac{1}{2^{2 n+2}} \\
& =k^{2}+\frac{\sqrt{3}}{2}+\frac{1}{2^{2 n+2}} \\
& \leq k^{2}+\frac{\sqrt{3}}{2}+\frac{1}{16} \\
& <k^{2}+1
\end{aligned}
$$

and this is a contradiction.

§5 Solution to January TST, Problem 2

This problem was proposed by Zilin Jiang.
Of course, $W(k, k)$ is arbitrary for $k \in[n]$. We claim that $W(a, b)= \pm 1$ for any $a \neq b$, with the sign fixed. (These are all solutions.)

First, let $X_{a b c}=W(a, b) W(b, c)$ for all distinct a, b, c, so the given condition is

$$
\sum_{a, b, c \in A \times B \times C} X_{a b c}=|A||B \| C|
$$

Consider the given equation with the particular choices

- $A=\{1\}, B=\{3\}, C=\{2,4, \ldots, n\}$.
- $A=\{2\}, B=\{3\}, C=\{1,4, \ldots, n\}$.
- $A=\{1,2\}, B=\{3\}, C=\{4, \ldots, n\}$.

Adding the first two and subtracting the second gives $X_{132}+X_{231}=2$. Similarly, $X_{132}+X_{312}=2$, and in this way, we get that $X_{231}=X_{312}$. Then, $W(2,3) W(3,1)=$ $W(3,1) W(1,2)$, Clearly, $W(3,1) \neq 0$, or else take $A=\{3\}, B=\{1\}$ in the original given to get a contradiction. Thus, $W(1,2)=W(2,3)$.

Analogously, for any distinct a, b, c we have $W(a, b)=W(b, c)$. For $n \geq 4$ this is enough to imply $W(a, b)= \pm 1$ for $a \neq b$ where the choice of sign is the same for all a and b.

Surprisingly, the $n=3$ case has "extra" solutions for $W(1,2)=W(2,3)=W(3,1)=$ $\pm 1, W(2,1)=W(3,2)=W(1,3)=\mp 1$ 。

§6 Solution to January TST, Problem 3

This problem was proposed by Ivan Borsenco.
The locus of points is three points: the incenter I, the circumcenter O and the orthocenter H of triangle $A B C$, and they clearly satisfy the given conditions. So we show they are the only ones.

First solution

In complex numbers with $A B C$ the unit circle, it is equivalent to solving the following two cubic equations in p and $q=\bar{p}$:

$$
\begin{aligned}
(p-a)(p-b)(p-c) & =(a b c)^{2}(q-1 / a)(q-1 / b)(q-1 / c) \\
0 & =\prod_{\mathrm{cyc}}(p+c-b-b c q)+\prod_{\mathrm{cyc}}(p+b-c-b c q)
\end{aligned}
$$

Viewing this as two cubic curves in $(p, q) \in \mathbb{C}^{2}$, by Bézout's Theorem it follows there are at most nine solutions (unless both curves are not irreducible, but it's easy to check the first one cannot be factored). Moreover it is easy to name nine solutions (for $A B C$ scalene): the three vertices, the three excenters, and the aforementioned I, O, H. Hence the answer is just those three triangle centers I, O and H.

Second solution

Set

$$
x_{1}=\frac{1}{2} \angle P A B, y_{1}=\frac{1}{2} \angle P B C, z_{1}=\frac{1}{2} \angle P C A \text {, }
$$

and

$$
x_{2}=\frac{1}{2} \angle P A C, y_{2}=\frac{1}{2} \angle P B A, z_{2}=\frac{1}{2} \angle P C B .
$$

Because $A P, B P, C P$ are concurrent at point P, from trigonometric version of Ceva's Theorem, we have

$$
\begin{equation*}
\sin \frac{x_{1}}{2} \sin \frac{y_{1}}{2} \sin \frac{z_{1}}{2}=\sin \frac{x_{2}}{2} \sin \frac{y_{2}}{2} \sin \frac{z_{2}}{2} . \tag{1}
\end{equation*}
$$

Using Ceva's Theorem for cevians $A A_{1}, B B_{1}, C C_{1}$, we get

$$
1=\frac{B A_{1}}{C A_{1}} \cdot \frac{C B_{1}}{A B_{1}} \cdot \frac{A C_{1}}{B C_{1}}=\frac{\tan \frac{y_{1}}{2}}{\tan \frac{z_{2}}{2}} \cdot \frac{\tan \frac{z_{1}}{2}}{\tan \frac{x_{2}}{2}} \cdot \frac{\tan \frac{x_{1}}{2}}{\tan \frac{y_{2}}{2}} .
$$

from which we combine with (1) to get

$$
\begin{equation*}
\cos \frac{x_{1}}{2} \cos \frac{y_{1}}{2} \cos \frac{z_{1}}{2}=\cos \frac{x_{2}}{2} \cos \frac{y_{2}}{2} \cos \frac{z_{2}}{2} . \tag{2}
\end{equation*}
$$

If we square (1) and (2) while multiplying both sides by 8 , we then obtain

$$
\begin{align*}
& \left(1-\cos x_{1}\right)\left(1-\cos y_{1}\right)\left(1-\cos z_{1}\right)=\left(1-\cos x_{2}\right)\left(1-\cos y_{2}\right)\left(1-\cos z_{2}\right), \tag{3}\\
& \left(1+\cos x_{1}\right)\left(1+\cos y_{1}\right)\left(1+\cos z_{1}\right)=\left(1+\cos x_{2}\right)\left(1+\cos y_{2}\right)\left(1+\cos z_{2}\right) . . \tag{4}
\end{align*}
$$

From now on, define

$$
\begin{aligned}
p_{i} & =\cos x_{i}+\cos y_{i}+\cos z_{i} \\
q_{i} & =\cos x_{i} \cos y_{i}+\cos y_{i} \cos z_{i}+\cos z_{i} \cos x_{i} \\
r_{i} & =\cos x_{i} \cos y_{i} \cos z_{i}
\end{aligned}
$$

for $i=1,2$. The sum and difference of (3) and (4) then gives

$$
\begin{align*}
q_{1} & =q_{2} \tag{5}\\
p_{1}+r_{1} & =p_{2}+r_{2} . \tag{6}
\end{align*}
$$

From the fact that $x_{1}+y_{1}+z_{1}=x_{2}+y_{2}+z_{2}=180^{\circ}$, we find one more relation between angles x_{1}, y_{1}, z_{1} and x_{2}, y_{2}, z_{2} :

$$
\begin{align*}
1=\cos 180^{\circ} & =\cos ^{2} x_{1}+\cos ^{2} y_{1}+\cos ^{2} z_{1}+2 \cos x_{1} \cos y_{1} \cos z_{1} \\
& =\cos ^{2} x_{2}+\cos ^{2} y_{2}+\cos ^{2} z_{2}+2 \cos x_{2} \cos y_{2} \cos z_{2} \\
\Longrightarrow 1 & =p_{1}^{2}-2 q_{1}+2 r_{1}=p_{2}^{2}-2 q_{2}+2 r_{2} . \tag{7}
\end{align*}
$$

If we combine (5), (6), (7) we easily obtain $p_{1}^{2}-2 p_{1}=p_{2}^{2}-2 p_{2} \Longrightarrow\left(p_{1}-1\right)^{2}=\left(p_{2}-1\right)^{2}$. But it is well known that $p_{i}>1$, and hence $p_{1}=p_{2}$. Then $q_{1}=q_{2}$ and $r_{1}=r_{2}$.

From this it follows that $\left(\cos x_{1}, \cos y_{1}, \cos z_{1}\right)$ and $\left(\cos x_{2}, \cos y_{2}, \cos z_{2}\right)$ are permutations of each other, by considering the polynomial $t^{3}-p_{i} t^{2}+q_{i} t-r_{i}$. Because $0<x_{1}, y_{1}, z_{1}, x_{2}, y_{2}, z_{2}<180^{\circ}$, we conclude that angles (x_{1}, y_{1}, z_{1}) are a permutation of angles $\left(x_{2}, y_{2}, z_{2}\right)$.

Consider the following cases:

- Suppose $x_{1}=x_{2}$. Then if $y_{1}=z_{2}$ and $z_{1}=y_{2}$, we obtain triangle $A B C$ is isosceles. Hence $y_{1}=y_{2}, z_{1}=z_{2}$ and $P=I$.
- Suppose $x_{1}=y_{2}$. Then if $y_{1}=x_{2}$, we obtain triangle $A B C$ is isosceles. Hence $y_{1}=z_{2}, z_{1}=x_{2}$ and $P=O$.
- Suppose $x_{1}=z_{2}$. Then if $z_{1}=x_{2}$, we obtain triangle $A B C$ is isosceles. Hence $z_{1}=y_{2}, y_{1}=x_{2}$ and $P=H$.

This completes the proof.

