ORGANIC STRUCTURES FROM SPECTRA – 4th EDITION

L D Field, S Sternhell and J R Kalman

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

Solutions Manual

Pleas	se Keep Absolutely Confidential	ORGA	NIC STRUCTURES FRC L D Field, S Sternhe				Copyright: Copying or duplicating these solutions in any form is strictly prohibited
1		5	BrCH ₂ -CH ₂ Br	9	$\begin{array}{c} OH OH \\ CH_3 - \begin{array}{c} C \\ C \\ C \\ H_3 \\ CH_3 \\ CH_3 \end{array} \\ CH_3 \end{array} \\ CH_3 \\ CH_3 \end{array}$	13	Cl ₂ CH-CH ₃
	2-butanone C₄H ₈ O		1,2-dibromoethane $C_2H_4Br_2$		pinacol C ₆ H ₁₄ O ₂		1,1-dichloroethane $C_2H_4Cl_2$
2	СН ₃ СН ₂ ОН О	6	CH ₃ O CH ₃ CH ₃	10	0=	14	CH ₃ H OH
	propionic acid $C_3H_6O_2$		1,2-butanedione (biacetyl) C ₄ H ₆ O ₂		1,4-cyclohexanedione $C_6H_8O_2$		2-propanol C₃H ₈ O
3	$CH_3 O CH_2CH_3$	7	$CH_2C\equiv N$ $CH_2C\equiv N$	11	⊂)=0	15	CH ₃ H Br
	ethyl acetate C ₄ H ₈ O ₂		succinonitrile C ₄ H ₄ N ₂		cyclopentanone $C_5H_8O_2$		2-bromopropane C₃H7Br
4	CH ₃ O CH ₂ CH ₃	8	$CH_3 CH_3 - H_3 - C - C - CH_3 CH_3 - C - C - CH_3 - H_3 CH_3 CH_3 CH_3 - CH_3 CH_3 - CH$	12	CH ₃ CH ₂ -I	16	CI
	methyl propionate		2,2,3,3-tetramethylbutane		iodoethane		1,4-dichlorobutane
	$C_4H_8O_2$		C ₈ H ₁₈		C_2H_5I		C ₄ H ₈ Cl ₂

Please Keep Absolutely Confidential ORGANIC STRUCTURES FROM SPEC L D Field, S Sternhell and J						Copyright: Copying or duplicating these solutions in any form is strictly prohibited	
17	Br Br	21	H ₂ N ^{COOH}	25	⊂ CH ₂ C≡N	29	CH ₂ -C-CH ₃
	1,3-dibromopropane $C_3H_6Br_2$		4-aminobutyric acid $C_4H_9NO_2$		benzyl cyanide C ₈ H ₇ N		benzyl methyl ketone $C_9H_{10}O$
18	Br Cl	22	OCH3	26	CH ₂ NH ₂	30	
	1-bromo-3-chloropropane C ₃ H ₆ BrCl		anisole C ₇ H ₈ O		benzylamine C ₇ H ₉ N		propiophenone C ₉ H ₁₀ O
19	BrC≡N	23	СH ₂ ОН	27	OH	31	СН ₃ – СН–С–Н – СН–С–Н
	4-bromobutyronitrile C₄H ₆ NBr		benzyl alcohol C ₇ H ₈ O		2-phenylethanol $C_8H_{10}O$		2-phenylpropionaldehyde $C_9H_{10}O$
20	+ NH₃ CH₃ + COO ⁻	24	CH ₂ Br	28	OH H CH ₃	32	
	alanine C ₃ H ₇ NO ₂		benzyl bromide C ₇ H ₇ Br		1-phenylethanol C ₈ H ₁₀ O		butyrophenone C ₁₀ H ₁₂ O

Pleas	se Keep Absolutely Confidential	ORG	ANIC STRUCTURES FRO L D Field, S Sternhe				Copyright: Copying or duplicating these solutions in any form is strictly prohibited
33		37		41		45	$\begin{array}{c} CH_3 \\ H_3 \\ O_{H_3} \\ CH_3 \\ O_{H_3} \\ O_{H_3} \\ CH_3 \\ O_{H_3} \\ $
	<i>t</i> -butyl acetoacetate C ₈ H ₁₄ O ₃		dibenzylamine $C_{14}H_{15}N$		propionic anhydride $C_6H_{10}O_3$		1,1-diacetoxyethane $C_6H_{10}O_4$
34	СН ₃ СН ₂ -О-С-Н О	38	CH ₃ CH ₃ CH ₃ CH ₃ CH ₃ CH ₃	42		46	CH ₃ OOC H CH ₃
	ethyl formate $C_3H_6O_2$		N, N, N, N-tetramethyl-1,2- ethanediamine $C_6H_{16}N_2$		diethyl oxalate $C_6H_{10}O_4$		dimethyl methylmalonate $C_6H_{10}O_4$
35		39		43	CH ₃ O O CH ₃	47	$CH_3 \xrightarrow{\bigcirc} O \xrightarrow{CH_3} O \xrightarrow{\bigcirc} OCH_3$
	benzil		2,5-hexanedione		ethylene glycol diacetate		methyl acetyllactate
	$C_{14}H_{10}O_2$		$C_{6}H_{10}O_{2}$		$C_6H_{10}O_4$		C ₆ H ₁₀ O ₄
36		40	CH ₃ CH ₂ O OCH ₂ CH ₃	44		48	
	1,2-diphenylethane		diethyl carbonate		dimethyl succinate		diethyl succinate
	C ₁₄ H ₁₄		$C_5H_{10}O_3$		$C_{6}H_{10}O_{4}$		C ₈ H ₁₄ O ₄

Copyright: Copying or duplicating Please Keep Absolutely these solutions in any form is **ORGANIC STRUCTURES FROM SPECTRA** – 4th EDITION Confidential strictly prohibited L D Field, S Sternhell and J R Kalman 65 69 73 77 CH₃ CH_3 OH OH HOOC COOH CH_3 CH₃ CH₃ CH_3 CH₃ CH_3 CH_3 CH_3 CH₃ H 1,2,3,4,5,-3-hydroxybutanone 2-methyl-2-butanol 3,3-dimethylglutaric acid pentamethylcyclopentadiene (acetoin) (t-amyl alcohol) C₁₀H₁₆ $C_4H_8O_2$ $C_7H_{12}O_4$ $C_5H_{12}O$ 70 74 78 66 CH₃ $_{>}NH_{2}$ COOH HOOC NH₂ Ô Ô 4-hydroxy-4-methyl-2hexylamine 2,2-dimethylpentanedioc acetamide pentanone acid C₂H₅NO $C_6H_{12}O_2$ $C_6H_{15}N$ $C_7H_{12}O_4$ 67 71 75 79 CH₃ CH₃ \cap CH₃CH₂ CH₃ HO. CH₃ Br tetramethylurea ethyl glycolate isobutyl acetate ethyl 2-bromopropionate $C_4H_8O_3$ $C_6H_{12}O_2$ $C_5H_9O_2Br$ $C_5H_{12}N_2O$ 68 72 76 80 OCH₃ ,COOH O О C≡N CH₃CH₂O Ô OCH₃ ethyl cyanoacetate 3,3-dimethylbutyric acid 4,4-dimethoxy-2-butanone 1,3-dioxan $C_5H_7NO_2$ $C_6H_{12}O_2$ $C_6H_{12}O_3$ $C_4H_8O_2$

Please Keep Absolutely Confidential		ORG					Copyright: Copying or duplicating these solutions in any form is strictly prohibited
81		85	Br OH O	89	HO HCH ₂	93	
	1,4-dioxan		2-bromohexanoic acid		2-methylbut-3-en-2-ol		dibutyl ether
82	$ \begin{array}{c} C_4H_8O_2 \\ \hline O & O \\ O & O \\ O & O \\ O & O \\ \hline O & O \\ O & O \\ \hline \hline O & O \\ \hline \hline \hline \hline \hline \hline O & O \\ \hline \hline$	86	$C_6H_{11}O_2Br$	90	C₅H ₁₀ O H NH ₃ ⁺ CH ₃ C O ⁻ H OH Ö	94	C ₈ H ₁₈ O
	18-crown-6 C ₁₂ H ₂₄ O ₆		2-ethylmalononitrile $C_5H_6N_2$		threonine C₄H ₉ NO ₃		butylbenzene $C_{10}H_{14}$
83	$H_2C = C CH_2CI$	87	CN	91	Br	95	C(CH ₃)3
	2,3-dichloropropene $C_3H_4Cl_2$		3-methylbutyronitrile C₅H ₉ N		1-bromo-3-phenylpropane C₀H ₁₁ Br		<i>t</i> -butylbenzene C ₁₀ H ₁₄
84	CIO ^L CH ₃	88	H_2N $C \equiv C-H$	92	NO ₂	96	
	4-chlorobutyl acetate $C_6H_{11}O_2CI$		5-amino-1-pentyne C₅H ₉ N		1-nitropropane C ₃ H ₇ NO ₂		sec-butylbenzene C ₁₀ H ₁₄

Copyright: Copying or duplicating Please Keep Absolutely these solutions in any form is **ORGANIC STRUCTURES FROM SPECTRA** – 4th EDITION Confidential strictly prohibited L D Field, S Sternhell and J R Kalman 165 161 169 173 CH₃ NO_2 CH₂ 3-nitro-o-xylene 2-cyclohexene-1-one indane α -tetralone C₆H₈O C_9H_{10} $C_8H_9NO_2$ $C_{10}H_{10}O$ 162 166 170 174 CH_3 CI C CI OH 2-hydroxycyclohex-2,4,5-trichlorotoluene 3,3-dimethylindan-1-one β-tetralone 1-en-3-one $C_7H_5CI_3$ $C_{11}H_{12}O$ $C_6H_8O_2$ $C_{10}H_{10}O$ 163 167 171 175 0 NH_2 CI -CH3 CI CH_3 2,4,5-trichloroaniline 1-acetyl-1-cylohexene 1-indanone 9-methylfluorene $C_6H_4NCI_3$ C₈H₁₂O C₉H₈O $C_{14}H_{12}$ 164 172 176 OCH₃ CH₃O 168 CH_3 O CH_3^{\prime} CHá \cap 4,6-diiodo-1,3-4-methylpent-3-en-2-one fluorenone 2-indanone dimethoxybenzene (mesityl oxide) C₁₃H₈O $C_8H_8O_2I_2$ C₆H₁₀O C_9H_8O

Copyright: Copying or duplicating Please Keep Absolutely these solutions in any form is **ORGANIC STRUCTURES FROM SPECTRA** – 4th EDITION **Confidential** strictly prohibited L D Field, S Sternhell and J R Kalman 197 193 201 ,0 205 0 CI н $-NH_2$ NH_2 S 0 Ô dibenzyl sulfoxide vinyl 2-chloroethyl ether cinnamaldehyde p-aminobenzenesulfonamide $C_{14}H_{14}OS$ C₄H₇OCI C₉H₈O $C_6H_8N_2O_2S$ 198 194 202 206 0 CH₂OH O COOH (E)-3-(phenylthio)acrylic divinyl sulfone N-(p-tolyl)succinimide cinnamyl alcohol acid $C_9H_{10}O$ $C_9H_8O_2S$ $C_4H_6O_2S$ $C_{11}H_{11}NO_2$ 195 199 203 207 0 CI Н -H -OCH₂CH₃ $CH_2 - CH$ CH₃O C(CH₃)₃ Ô ethyl p-toluenesulfonate phenylacetaldeyde (E)-3-chloro-4,4-dimethyl-1allyl p-anisyl thioether phenyl-1-pentene ethylene glycol acetal Ć₁₃H₁₇CI $C_9H_{12}O_3S$ $C_{10}H_{12}OS$ $C_{10}H_{12}O_2$ 0 o^{≝ٌs} CH₂CH₂O 196 200 .0 204 208 CH(CH₃)₂ S-CH3 CH 0 Br CH₃ ĊH*p*-tolyl methyl sulfoxide tetraethylene glycol (E)-1-phenyl-4-methyl-1-(Z)- β -bromostyrene ditosylate penten-3-one $C_8H_{10}OS$ $C_{22}H_{30}O_9S_2$ C₁₂H₁₄O C₈H₇Br

Copyright: Copying or duplicating Please Keep Absolutely these solutions in any form is **ORGANIC STRUCTURES FROM SPECTRA** – 4th EDITION Confidential strictly prohibited L D Field, S Sternhell and J R Kalman 0 229 225 233 237 О CH₃ CH(CH₃)₂ H₃C \cap \cap CH(CH₃)₂ н 4-picoline isopropyl nicotinate citraconic anhydride 2-(5-nitrothienyl) isopropyl ketone C₈H₉NO₃S $C_9H_{11}NO_2$ C_6H_7N $C_5H_4O_3$ 226 230 234 CH_3 238 COOH Ν CH_3 NH₂ 2-picoline 2-methyl-6-aminopyridine 2-furoic acid 4-methylimidazole $C_4H_6N_2$ C_6H_7N $C_6H_8N_2$ $C_5H_4O_3$ 227 231 235 239 CH_3 $C(CH_3)_3$ Ν 0 3-picoline 4-methylpyrimidine 2-furyl t-butyl ketone benzothiophene C_6H_7N $C_5H_6N_2$ $C_9H_{12}O_2$ C_8H_6S 228 232 240 236 0 O_2N C `CH₃ NO_2 3-acetylpyridine styrene epoxide 2,4-dinitrothiophene 2,3,4,9-tetrahydrocarbazole C₇H₇NO C₈H₈O $C_4H_2N_2O_4S$ $C_{12}H_{13}N$

Copyright: Copying or duplicating Please Keep Absolutely these solutions in any form is **ORGANIC STRUCTURES FROM SPECTRA** – 4th EDITION Confidential strictly prohibited L D Field, S Sternhell and J R Kalman 245 241 249 253 OH N-CH₃ CH₃ $N(CH_3)_2$ HO. octahydroanthracene N-methylmorpholine N,N-dimethyl-2,3-dihydroxy- α -angelicalactone 1-propylamine $C_{14}H_{18}$ $C_5H_{11}NO$ $C_5H_{13}NO_2$ $C_5H_6O_2$ 0 242 246 250 254 OH CH_3 CH₃ OH 0 2-methylanthraquinone cyclopentanone oxime pseudoephedrine tetrahydrofuran-3-one $C_5H_8O_2$ $C_{14}H_8O_2$ C₅H₉NO $C_{10}H_{15}NO$ 243 247 251 255 OH ≈0 C(CH₃)₃ butyrolactone dodecahydrotriphenylene cyclohexanone oxime t-butylformamide $C_4H_6O_2$ $C_{18}H_{24}$ C₆H₁₁NO $C_5H_{11}NO$ 244 248 252 256 н CH_3 CH_3 HS-CH₂-CH-N-C-CH₃ соон о CH_3 CH₃ \cap tetramethyl-1,3triphenylene N-acetylcysteine ε-caprolactam cyclobutanedione $C_{18}H_{12}$ $C_8H_{12}O_2$ C₆H₁₁NO $C_5H_9NO_3S$

Please Keep Absolutely ORGANIC STRUCTURES FROM SPECTRA – 4th EDITION Confidential L D Field, S Sternhell and J R Kalman 277 273 COOH 281 CI COOH O-CH₂CH₃ 2,3-naphthalene-2-chloronaphthalene ethyl 4-piperidone-Ndicarboxylic acid carboxylate C₁₀H₇Cl $C_{12}H_8O_4$ $C_8H_{13}NO_3$ 274 OCH₃ 278 282 COOH CH_3 N-C 0 H NO₂ 1-methoxy-4-nitrosec-butylbenzene N-acetyl-2-amino-4-phenyl-(E)-but-2-enoic acid naphthalene $C_{10}H_{14}$ $C_{11}H_9NO_3$ $C_{12}H_{13}NO_{3}$ CH_3 275 279 283 CH₃O CH₃ O 0 N -CH₃ н OH CH_3 OCH₃ N-(1-methyl-1-phenylethyl)-1,5-dimethylnaphthalene 3-hydroxy-3-methyl-5,8dimethoxy-1-coumarinone butyramide $C_{12}H_{12}$ $C_{12}H_{17}NO$ Č₁₃H₁₆O₄ 276 280 CH_3 OCH₂CH₃ OCH₂CH₃ CH_3 ő 1,3-dimethylnaphthalene diethyl 2-(1,1dimethylheptyl)malonate $C_{12}H_{12}$ C₁₆H₃₀O₄

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

L D Field, S Sternhell and J R Kalman

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

Chapter 9.2 – The Analysis of MixturesProblem 284

Problem 286

Problem 284

Compound	Mole %
ethanol	57
bromoethane	43

Compound	Mole %
benzene	24
ethyl acetate	59
dioxane	17

Problem 285

Compound	Mole %
benzene	15
diethyl ether	46
dichoromethane	39

Problem 287

Compound	Mole %
ethanol	41
bromoethane	59

L D Field, S Sternhell and J R Kalman

Problem 288

Compound	Mole %
benzene	13
diethyl ether	22
dichoromethane	65

Compound	Mole %
fluorene	75
fluorenone	25

Problem 291

Problem 290

Problem 289

Compound	Mole %
benzene	23
ethyl acetate	51
dioxane	26

Compound	Mole %
4-nitroanisole	38
2-nitroanisole	62

L D Field, S Sternhell and J R Kalman

Chapter 9.3 – Problems in 2D NMR

Problem 292 1-propanol

Proton	Chemical Shift (δ) in ppm	Carbon	Chemical Shift (δ) in ppm
H1	3.49	C1	64.0
H2	1.50	C2	25.5
H3	0.85	C3	9.9
H4	2.95		

Problem 293 1-iodobutane

ORGANIC STRUCTURES FROM SPECTRA – 4th EDITION

L D Field, S Sternhell and J R Kalman

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

Problem 295

3-heptanone

1	2	3	4	5	6	7	
CH ₃ -	CH ₂ -	-C- 0	-CH ₂ -	-CH ₂ -	-CH ₂	- CH ₃	

Proton	Chemical Shift (δ) in ppm
H1	0.91
H2	1.94
H4	1.97
H5	1.44
H6	1.14
H7	0.79

Problem 296 δ -valerolactone

Proton	Chemical Shift (δ) in ppm	Carbon	Chemical Shift (δ) in ppm
		C1	170.0
H2	2.08	C2	29.9
H3	1.16	C3	22.2
H4	1.08	C4	19.0
H5	3.71	C5	68.8

Problem 297

1-bromobutane

4

1

2

Proton	Chemical Shift (δ) in ppm	Carbon	Chemical Shift (δ) in ppm
114		C1	
H1	3.39	C1	33.4
H2	1.82	C2	34.7
H3	1.45	C3	21.4
H4	0.91	C4	13.2

Problem 298

3-octanone

$$\begin{array}{c} \mathsf{CH}_3-\mathsf{CH}_2-\mathsf{C}-\mathsf{CH}_2-\mathsf{CH}_2-\mathsf{CH}_2-\mathsf{CH}_2-\mathsf{CH}_2-\mathsf{CH}_3\\ \\ \mathsf{O}\\ \end{array}$$

6

7

8

3 4 5

Proton	Chemical Shift (δ) in ppm	Carbon	Chemical Shift (δ) in ppm
H1	0.92	C1	7.8
H2	1.92	C2	35.4
		C3	209.0
H4	1.94	C4	42.1
H5	1.47	C5	23.7
H6	1.11	C6	31.7
H7	1.19	C7	22.7
H8	0.82	C8	14.0

ORGANIC STRUCTURES FROM SPECTRA – 4th EDITION

D Field S Sternhell and J R Kalman

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

LL) Field,	S	Sternnell	and	J	к	K

Problem 299

diethyl diethylmalonate

Proton	Chemical Shift (δ) in ppm	Carbon	Chemical Shift (δ) in ppm
Ha	1.11	Ca	15.0
H _b	3.29	C _b	66.0
H _c	3.27	C _c	70.1
H _d	1.52	C _d	32.1
H _e	1.36	C _e	19.4
H _f	0.87	C _f	13.5

а

Proton	Chemical Shift (δ) in ppm	Carbon	Chemical Shift (δ) in ppm
Ha	1.19	Ca	14.0
H _b	4.13	C _b	60.8
		C _c	171.9
H _d	0.76	C _d	8.1
H _e	1.88	C _e	24.5
		C _f	58.0
H _g	1.88	Cg	24.5
H _h	0.76	C _h	8.1
		Ci	171.9
Hj	4.13	Cj	60.8
H _k	1.19	C _k	14.0

butyl ethyl ether

b c d e f $CH_3 - CH_2 - O - CH_2 - CH_2 - CH_2 - CH_3$

December 2007

ORGANIC STRUCTURES FROM SPECTRA – 4th EDITION

L D Field, S Sternhell and J R Kalman

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

Problem 301

butyl butyrate

a b c d e f g h

$$CH_3 - CH_2 - CH_2 - CH_2 - O - C - CH_2 - CH_2 - CH_3$$

1-iodobutane

 4 3 2 1 CH₃-CH₂-CH₂-CH₂-I

1-butanol

1-iodobutane	¹ H Chemical Shift (δ) in ppm	1-butanol	¹ H Chemical Shift (δ) in ppm
H1	2.70	H1	3.41
H2	1.40	H2	1.27
H3	1.08	H3	1.39
H4	0.64	H4	0.84
		-OH	1.95

Proton	Chemical Shift (δ) in ppm	Carbon	Chemical Shift (δ) in ppm
Ha	0.75	Ca	13.9
H _b	1.19	Сь	19.5
H _c	1.40	Cc	31.2
H _d	3.97	C _d	64.0
		C _e	172.8
H _f	2.08	C _f	36.2
H _g	1.52	Cg	19.0
H _h	0.79	C _h	13.9

ORGANIC STRUCTURES FROM SPECTRA – 4th EDITION

L D Field, S Sternhell and J R Kalman

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

CH₂OH

Н

ORGANIC STRUCTURES FROM SPECTRA – 4th EDITION

L D Field, S Sternhell and J R Kalman

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

Chapter 9.4 – Analysis of NMR Spectra

Problem 310

Structure		Number of 1H environments	Number of 13C environments	
CH ₃ -CO-CH ₂ CH ₂ CH ₃		4	5	
CH ₃ CH ₂ -CO-CH ₂ CH ₃		2	3	
CH ₂ =CHCH ₂ CH ₃		5	4	
cis-CH ₃ CH=CHCH ₃		2	2	
trans-CH ₃ CH=CHCH ₃		2	2	
		1	1	
CI		3	4	
Br		2	3	
CI		3	4	
Br		1	2	
Br-Cl		2	4	
CIOCH3		5	7	
	slow chair- chair	2	1	
	fast chair- chair	1	1	
H CI	rigid	7	4	

ORGANIC STRUCTURES FROM SPECTRA – 4th EDITION

L D Field, S Sternhell and J R Kalman

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

This ratio is much greater than 3 so a 1st order analysis is justified.

L D Field, S Sternhell and J R Kalman

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

L D Field, S Sternheil and J

All ratios are greater than 3 so a 1st order analysis is justified.

All ratios are greater than 3 so a 1st order analysis is justified.

2 out of 3 ratios are greater than 3 so this is borderline 1st order. The main deviation from 1st order is that intensities are severely distorted - a 1st order spectrum would have all lines of equal intensity. $J_{AC} = 17.5$ Hz indicates that H_A and H_C must be *trans*. $J_{BC} = 9.9$ Hz indicates H_A and H_C are *cis*.

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

Chemical Shifts

 $\delta_A = 340 \text{ Hz} / 60 \text{ MHz} = 5.67 \text{ ppm}$ δ_{M} = 240 Hz / 60 MHz = 4.00 ppm $\delta_x = 100 \text{ Hz} / 60 \text{ MHz} = 1.67 \text{ ppm}$

Chemical SI	hifts
-------------	-------

 $\delta_A = 110 \text{ Hz} / 60 \text{ MHz} = 1.83 \text{ppm}$ δ_{M} = 200 Hz / 60 MHz = 3.33 ppm $\delta_{X} = 290 \text{ Hz} / 60 \text{ MHz} = 4.83 \text{ ppm}$

ORGANIC STRUCTURES FROM SPECTRA – 4th EDITION

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

L D Field, S Sternhell and J R Kalman

 $J_{AX} = 7.5 \text{ Hz}$ $J_{AM} = 4.5 \text{ Hz}$ $J_{MX} = 11.0 \text{ Hz}$ $J_{AM} = 4.5 \text{ Hz}$ $J_{MX} = 11.0 \text{ Hz}$ $J_{AX} = 7.5 \text{ Hz}$ 1H 1H 100 50 (Hz from TMS) 200 150 $\delta_A = 279 \text{ Hz} / 100 \text{ MHz} = 2.79 \text{ ppm}$ $\delta_{M} = 149 \text{ Hz} / 100 \text{ MHz} = 1.49 \text{ ppm}$ $\delta_x = 39 \text{ Hz} / 100 \text{ MHz} = 0.39 \text{ ppm}$ $J_{AM} = 4.5 \text{ Hz}; J_{AX} = 7.5 \text{ Hz}; J_{MX} = 11.0 \text{ Hz};$ $\Delta v_{AX} = v_A - v_X = 279 - 39 = 240 \text{ Hz}$ $\Delta v_{AM} = v_A - v_M = 279 - 149 = 130 \text{ Hz}$ $\Delta v_{MX} = v_M - v_X = 149 - 39 = 110 \text{ Hz}$ $\Delta v_{AX} / J_{AX} = 240 / 7.5 = 32.0$ $\Delta v_{AM} / J_{AM} = 130 / 4.5 = 28.9$ $\Delta v_{MX} / J_{MX} = 110 / 11 = 10.0$

A₂MX

All ratios are significantly greater than 3 so a 1st order analysis is justified.

December 2007

ORGANIC STRUCTURES FROM SPECTRA – 4th EDITION

L D Field, S Sternhell and J R Kalman

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

All ratios are significantly greater than 3 so a 1st order analysis is justified.

December 2007

ORGANIC STRUCTURES FROM SPECTRA – 4th EDITION

L D Field, S Sternhell and J R Kalman

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

All ratios are significantly greater than 3 so a 1st order analysis is justified. $J_{AM} = 15.3$ Hz is typical of a coupling between vinylic protons which are *trans* to each other (see Section 5.7)

December 2007

ORGANIC STRUCTURES FROM SPECTRA – 4th EDITION

L D Field, S Sternhell and J R Kalman

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

Coupling constants $J_{AD} = < 1 \text{ Hz}; J_{AM} = 8.2 \text{ Hz}; J_{AX} = < 1 \text{ Hz}; J_{DM} = 15.8 \text{ Hz}; J_{DX} = 6.9 \text{ Hz}; J_{MX} = 1.6 \text{Hz};$

1st Order Analysis	$\begin{array}{l} \Delta v_{AD} = v_A - v_D = 956 - 695 = 261 \mbox{ Hz} \\ \Delta v_{AM} = v_A - v_M = 956 - 619 = 337 \mbox{ Hz} \\ \Delta v_{AX} = v_A - v_X = 956 - 205 = 751 \mbox{ Hz} \\ \Delta v_{DM} = v_D - v_M = 695 - 619 = 76 \mbox{ Hz} \\ \Delta v_{DX} = v_D - v_X = 695 - 205 = 490 \mbox{ Hz} \\ \Delta v_{MX} = v_{M} - v_X = 619 - 205 = 414 \mbox{ Hz} \end{array}$
	$\begin{array}{l} \Delta v_{AD} \ / \ J_{AD} = 261 \ / \ <1 = \ >261 \\ \Delta v_{AM} \ / \ J_{AM} = 337 \ / \ 8.2 = 41.1 \\ \Delta v_{AX} \ / \ J_{AX} = 751 \ / \ <1 = \ >751 \\ \Delta v_{DM} \ / \ J_{DM} = 76 \ / \ 15.8 = 4.8 \\ \Delta v_{DX} \ / \ J_{DX} = 490 \ / \ 6.9 = \ 71.0 \end{array}$

All ratios are significantly greater than 3 so a 1st order analysis is justified.

 $\Delta v_{MX} / J_{MX} = 414 / 1.6 = 258.8$

The critical coupling constant is $J_{DM} = 15.8$ Hz which is typical of a coupling between vinylic protons which are *trans* to each other (see Section 5.7).

The compound is:

ORGANIC STRUCTURES FROM SPECTRA – 4th EDITION

L D Field, S Sternhell and J R Kalman

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

Chemical Shifts

 $\begin{array}{l} \delta_{\text{A}} = 80 \; \text{Hz} \; / \; 60 \; \text{MHz} = 1.33 \; \text{ppm} \\ \delta_{\text{M}} = 220 \; \text{Hz} \; / \; 60 \; \text{MHz} = 3.67 \; \text{ppm} \\ \delta_{\text{X}} = 320 \; \text{Hz} \; / \; 60 \; \text{MHz} = 5.33 \; \text{ppm} \end{array}$

Of the 6 isomeric anilines, only compounds **4** and **6** have the correct symmetry to give a spectrum with only two chemical shifts in the aromatic region, in the ratio 2:1.

Both **4** and **6** would give A_2X spin systems. The measured coupling constant is 7.7 Hz which is in the range for protons which are *ortho* to each other. Compound **4** is the correct answer.

ORGANIC STRUCTURES FROM SPECTRA – 4th EDITION

L D Field, S Sternhell and J R Kalman

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

Problem 331

The spectrum is obtained after D_2O exchange so the carboxylic acid and phenolic protons will not be present and the spectrum only contains the aromatic and vinylic protons.

The spectrum shows 6 distinct resonances therefore compounds **5** and **6** can be eliminated because they would each have only 4 resonances (on symmetry grounds).

The proton at about δ 7.1 shows no large coupling (> 7 Hz), this means that it has no protons *ortho* to it. This eliminates compounds **1** and **2** since all protons in these compounds will have at least one large *ortho* coupling.

Compounds **3** and **4** differ by the stereochemistry at the double bond. The proton at δ 6.4 is clearly one of the vinylic protons and it is coupled to the other vinylic proton at δ 7.6. The coupling constant is 16 Hz and this characteristic of vinylic protons which are *trans* to each other.

The correct answer is compound 3.

Problem 332

All of the protons in the ¹H spectrum 1,5-dichoronaphthalene have protons which are *ortho* to them. This means that every proton must have at least one large (>7 Hz) *ortho* coupling. The spectrum has one proton (at δ 7.1) which has only a small coupling so this cannot be the spectrum of 1,5-dichloronaphthalene.

The spectrum is an AMX spectrum with couplings between A and X of about 8.3 Hz (typical of an *ortho* coupling) and coupling between M and X of about 2.7 Hz (typical of a *meta* coupling). Two possible structure are given below.

