Organic

 Structures from Spectra
FOURTH EDITION

L. D. Field
S. Sternhell
J. R. Kalman

Solutions Manual

Please Keep Absolutely

Confidential

1	0
	2-butanone
	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}$
2	
	propionic acid
	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{2}$
3	
	ethyl acetate
	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$
4	
	methyl propionate
	$\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$

ORGANIC STRUCTURES FROM SPECTRA - 4th EDITION
L D Field, S Sternhell and J R Kalman

5	$\mathrm{BrCH}_{2}-\mathrm{CH}_{2} \mathrm{Br}$ 1,2-dibromoethane $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{Br}_{2}$	9	 pinacol $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{2}$
6	 1,2-butanedione (biacetyl) $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}$	10	 1,4-cyclohexanedione $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{2}$
7	 succinonitrile $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~N}_{2}$	11	 cyclopentanone $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}$
8	 2,2,3,3-tetramethylbutane $\mathrm{C}_{8} \mathrm{H}_{18}$	12	$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{I}$ iodoethane $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{I}$

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

Please Keep Absolutely

Confidential

17	$\mathrm{Br}_{\sim}^{\sim \mathrm{Br}}$
	1,3-dibromopropane
	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{Br}_{2}$
18	Br \sim Cl
	1-bromo-3-chloropropane
	$\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{BrCl}$
19	$\mathrm{Br} \sim \mathrm{C} \equiv \mathrm{N}$
	4-bromobutyronitrile
	$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{NBr}$
20	
	alanine
	$\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}_{2}$

ORGANIC STRUCTURES FROM SPECTRA - 4th EDITION
L D Field, S Sternhell and J R Kalman

21	 4-aminobutyric acid $\mathrm{C}_{4} \mathrm{H}_{9} \mathrm{NO}_{2}$	25	 benzyl cyanide $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}$
22	 anisole $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}$	26	 benzylamine $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}$
23	 benzyl alcohol $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}$	27	 2-phenylethanol $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}$
24	 benzyl bromide $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{Br}$	28	 1-phenylethanol $\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{O}$

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

Please Keep Absolutely

Confidential
33

ORGANIC STRUCTURES FROM SPECTRA - 4th EDITION

L D Field, S Sternhell and J R Kalman

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

Please Keep Absolutely
Confidential
ORGANIC STRUCTURES FROM SPECTRA - 4th EDITION
L D Field, S Sternhell and J R Kalman
(49
51
52
54

Copyright: Copying or duplicating these solutions in any form is strictly prohibited
62

Please Keep Absolutely
Confidential

65	
66	
	acetamide
	$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{NO}$

67 ethyl glycolate

$68 \quad$| $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{O}$ |
| :---: |
| ethyl cyanoacetate |
| $\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{NO}_{2}$ |

ORGANIC STRUCTURES FROM SPECTRA - 4th EDITION
L D Field, S Sternhell and J R Kalman

69	 3-hydroxybutanone (acetoin) $\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$	73	 2-methyl-2-butanol (t-amyl alcohol) $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$
70	 4-hydroxy-4-methyl-2pentanone $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$	74	 hexylamine $\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~N}$
71	 isobutyl acetate $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$	75	 ethyl 2-bromopropionate $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{Br}$
72	 3,3-dimethylbutyric acid $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{2}$	76	 4,4-dimethoxy-2-butanone $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{3}$

Copyright: Copying or duplicating these solutions in any form is strictly prohibited
81

Please Keep Absolutely

Confidential
ORGANIC STRUCTURES FROM SPECTRA - 4th EDITION
L D Field, S Sternhell and J R Kalman

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

Please Keep Absolutely

Confidential
98

ORGANIC STRUCTURES FROM SPECTRA - 4th EDITION
L D Field, S Sternhell and J R Kalman
101
103

104
benzyl acetate
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{2}$

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

Please Keep Absolutely
Confidential
113

$\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{3}$

ORGANIC STRUCTURES FROM SPECTRA - 4th EDITION
L D Field, S Sternhell and J R Kalman

117	 o-nitrobenzaldehyde $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{NO}_{3}$	121	 ethyl p-aminobenzoate $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}$
118	 4-methoxybenzaldehyde $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2}$	122	 p-ethoxybenzamide $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NO}_{2}$
119	 4-nitrophenylacetylene $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{NO}_{2}$	123	 4-methylacetanilide $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}$
120	 4-acetoxybenzoic acid $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$	124	 4-aminoacetophenone $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}$

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

125	 p-ethoxyacetanilide (phenacetin) $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}_{2}$
126	 p-hydroxyacetanilide (paracetamol) $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}$
127	 ethyl p-ethoxybenzoate $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}$
128	 methyl (p-methoxyphenyl)propionionate $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{3}$

Please Keep Absolutely

Confidential
132

ORGANIC STRUCTURES FROM SPECTRA - 4th EDITION

L D Field, S Sternhell and J R Kalman

133	 hydroquinone dipropionate $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$	137 1,3-dihydroxyphenyl dipropionate $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$	
134	 diethyl terephthalate $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$	138	 dimethyl o-phthalate $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}$
135	 diethyl o-phthalate $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$	139	 cycloheptanone $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}$
136	 diethyl isophthalate $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{4}$	140	 cycloheptatriene $\mathrm{C}_{7} \mathrm{H}_{8}$

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

141

cyclopropyl methyl ketone
$\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}$

142

cyclopropane carboxylic acid
$\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2}$

143

benzoylcylopropane
$\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}$

144

ethyl cyclobutanecarboxylate $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{2}$

Please Keep Absolutely

Confidential
145
148 N

1,5-diaminopentane
$\mathrm{C}_{5} \mathrm{H}_{14} \mathrm{~N}_{2}$

ORGANIC STRUCTURES FROM SPECTRA - 4th EDITION
L D Field, S Sternhell and J R Kalman

149	 benzyl benzoate $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{O}_{2}$	153	 N, N-diethyl-m-toluamide $\mathrm{C}_{12} \mathrm{H}_{17} \mathrm{NO}$
150		154	 2-bromophenol $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OBr}$
151	 p-cresyl phenylacetate $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{2}$	155	 acetylsalicylic acid (aspirin) $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$
152	 1,3-bis(trichloromethyl)benzene $\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{Cl}_{6}$	156	 2,6-dibromoaniline $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{NBr}_{2}$

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

Please Keep Absolutely
Confidential
161
163

2,4,5-trichloroaniline
$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NCl}_{3}$

164

4,6-diiodo-1,3dimethoxybenzene
$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{I}_{2}$

ORGANIC STRUCTURES FROM SPECTRA - 4th EDITION
L D Field, S Sternhell and J R Kalman

165 2-cyclohexene-1-one $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}$	169	 indane $\mathrm{C}_{9} \mathrm{H}_{10}$
166 2-hydroxycyclohex-1-en-3-one $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{2}$	170	 3,3-dimethylindan-1-one $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{O}$
167 1-acetyl-1-cylohexene $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}$	171	 1-indanone $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}$
168 4-methylpent-3-en-2-one (mesityl oxide) $\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}$	172	 2-indanone $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}$

Copyright: Copying or duplicating these solutions in any form is strictly prohibited
(173

Please Keep Absolutely

Confidential
ORGANIC STRUCTURES FROM SPECTRA - 4th EDITION
L D Field, S Sternhell and J R Kalman
177

181	 4-ethyl-4-methyl-2,6piperidinedione $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{2}$
182	 1,2,2,6,6-pentamethylpiperidine $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{~N}$
183	 2,5-dimethyl-3-hexyne- 2,5-diol $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{O}_{2}$
184	 (Z)-3-methylpent-2-en-4-ynal $\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{O}$

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

Please Keep Absolutely
Confidential
dibenzyl sulfoxide
$\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{OS}$

194

(E)-3-(phenylthio)acrylic
acid
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{2} \mathrm{~S}$

ethyl p-toluenesulfonate
$\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{~S}$

p-tolyl methyl sulfoxide
$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{OS}$

ORGANIC STRUCTURES FROM SPECTRA - 4th EDITION
L D Field, S Sternhell and J R Kalman

197	 p-aminobenzenesulfonamide $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
198	 divinyl sulfone $\mathrm{C}_{4} \mathrm{H}_{6} \mathrm{O}_{2} \mathrm{~S}$
199	 allyl p-anisyl thioether $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{OS}$
200	 tetraethylene glycol ditosylate $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{9} \mathrm{~S}_{2}$

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

Please Keep Absolutely
Confidential

ORGANIC STRUCTURES FROM SPECTRA - 4th EDITION
L D Field, S Sternhell and J R Kalman
(E)-p-nitro- β-bromostyrene
$\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrNO}_{2}$

3-benzyloxy-1-propanol

$$
\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}
$$

homophthallic acid
$\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$
212

5,6-dimethoxy-2coumaranone $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}$

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

209	 (E)-p-nitro- β-bromostyrene $\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{BrNO}_{2}$		 1,1-di-(p-chlorophenyl)-2,2,2trichloroethane (DDT) $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{Cl}_{5}$		 diethyl isopropylidenemalonate $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{O}_{4}$	221	 malonaldehyde dimethyl acetal $\mathrm{C}_{7} \mathrm{H}_{16} \mathrm{O}_{4}$
210	 3-benzyloxy-1-propanol $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{O}_{2}$		 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{O}_{3} \mathrm{Cl}_{3}$	218		222	 2-chloroacetaldehyde diethylacetal $\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{O}_{2} \mathrm{Cl}$
211	 homophthallic acid $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}$		 methyl 2,3-dibromo-3(p-nitrophenyl)propionate $\mathrm{C}_{10} \mathrm{H}_{9} \mathrm{NO}_{4} \mathrm{Br}_{2}$	219	 methyl (E)-3-methylacrylate $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{O}_{2}$	223	 1,3-dibenzyIglycerol $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{3}$
212	 5,6-dimethoxy-2coumaranone $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{4}$		 2,3-di-(p-anisyl)butyronitrile $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{NO}_{2}$	220	 2,5-dimethyl-2,4-hexadiene $\mathrm{C}_{8} \mathrm{H}_{14}$	224	 pyridine $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$

Please Keep Absolutely

Confidential
225
227

3-acetylpyridine
$\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{NO}$

ORGANIC STRUCTURES FROM SPECTRA - 4th EDITION
L D Field, S Sternhell and J R Kalman
239

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

Please Keep Absolutely

Confidential
241

243
243 CoO

244

tetramethyl-1,3cyclobutanedione
$\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{O}_{2}$

ORGANIC STRUCTURES FROM SPECTRA - 4th EDITION
L D Field, S Sternhell and J R Kalman
coctahydroanthracene

Copyright: Copying or duplicating these solutions in any form is strictly prohibited
253

Please Keep Absolutely
Confidential
ORGANIC STRUCTURES FROM SPECTRA - 4th EDITION
L D Field, S Sternhell and J R Kalman
257

258

	N -acetylhomocysteine thiolactone $\mathrm{C}_{6} \mathrm{H}_{9} \mathrm{NO}_{2} \mathrm{~S}$
$\mathbf{2 6 0}$	$\mathrm{HO}-\mathrm{C}_{1}-\mathrm{CH}_{2} \mathrm{CH}_{2}-\mathrm{CH}-\mathrm{COOH}$ O
	NH_{2}
	glutamic acid
$\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{NO}_{4}$	

261	 3-methylbutyraldehyde $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{O}$
262	 acrolein diethyl acetal $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}$
263	 allylamine $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{~N}$
264	adamantine $\mathrm{C}_{10} \mathrm{H}_{16}$

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

Please Keep Absolutely

Confidential

ORGANIC STRUCTURES FROM SPECTRA - 4th EDITION
L D Field, S Sternhell and J R Kalman

Copyright: Copying or duplicating these solutions in any form is strictly prohibited

273	 2,3-naphthalenedicarboxylic acid $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{O}_{4}$	277	 2-chloronaphthalene $\mathrm{C}_{10} \mathrm{H}_{7} \mathrm{Cl}$	281	 ethyl 4-piperidone- N carboxylate $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{NO}_{3}$
274	 1-methoxy-4-nitronaphthalene $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NO}_{3}$	278	 sec-butylbenzene $\mathrm{C}_{10} \mathrm{H}_{14}$	282	 N -acetyl-2-amino-4-phenyl- (E)-but-2-enoic acid $\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{3}$
275	 1,5-dimethylnaphthalene $\mathrm{C}_{12} \mathrm{H}_{12}$	279		283	 3-hydroxy-3-methyl-5,8-dimethoxy-1-coumarinone $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}$
276	 1,3-dimethylnaphthalene $\mathrm{C}_{12} \mathrm{H}_{12}$	280	 diethyl 2-(1,1dimethylheptyl)malonate $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{4}$		

Chapter 9.2 - The Analysis of MixturesProblem 284

Problem 284

Compound	Mole \%
ethanol	57
bromoethane	43

Problem 286

Compound	Mole \%
benzene	24
ethyl acetate	59
dioxane	17

Problem 285

Compound	Mole \%
benzene	15
diethyl ether	46
dichoromethane	39

Problem 287

Compound	Mole \%
ethanol	41
bromoethane	59

Problem 288

Compound	Mole \%
benzene	13
diethyl ether	22
dichoromethane	65

Problem 290

Compound	Mole \%
fluorene	75
fluorenone	25

Problem 291

Compound	Mole \%
4-nitroanisole	38
2-nitroanisole	62

Chapter 9.3 - Problems in 2D NMR

Problem 292 1-propanol

Proton	Chemical Shift ($\mathbf{\delta})$ in ppm	Carbon	Chemical Shift ($\mathbf{\delta})$ in ppm
H1	3.49	C1	64.0
H2	1.50	C2	25.5
H3	0.85	C3	9.9
H4	2.95		

Problem 293 1-iodobutane

Problem 294 isobutanol

Problem 296
δ-valerolactone

Proton	Chemical Shift (δ) in ppm	Carbon	Chemical Shift (δ) in ppm
H2	2.08	C1	170.0
H3	1.16	C2	29.9
H4	1.08	C3	22.2
H5	3.71	C4	19.0

Problem 297				
	4	3	2	1
1-bromobutane	$\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br}$			

Proton	Chemical Shift (8) in ppm	Carbon	Chemical Shift (8) in ppm
H1	3.39	C1	33.4
H2	1.82	C2	34.7
H3	1.45	C3	21.4
H4	0.91	C4	13.2

Problem 298

$$
\begin{aligned}
& \text { 3-octanone } \mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{3} \\
& 0
\end{aligned}
$$

Proton	Chemical Shift (δ) in ppm	Carbon	Chemical Shift (δ) in ppm
H1	0.92	C1	7.8
H2	1.92	C2	35.4
		C3	209.0
H4	1.94	C4	42.1
H5	1.47	C5	23.7
H6	1.11	C6	31.7
H7	1.19	C7	22.7
H8	0.82	C8	14.0

Problem 299

Proton	Chemical Shift $\mathbf{(\delta)}$ in ppm	Carbon	Chemical Shift ($\mathbf{~})$ in ppm
\mathbf{H}_{a}	1.19	\mathbf{C}_{a}	14.0
$\mathbf{H}_{\mathbf{b}}$	4.13	$\mathbf{C}_{\mathbf{b}}$	60.8
	0.76	$\mathbf{C}_{\mathbf{c}}$	171.9
\mathbf{H}_{d}	1.88	$\mathbf{C}_{\mathbf{d}}$	8.1
$\mathbf{H}_{\mathbf{e}}$	$\mathbf{C}_{\mathbf{e}}$	24.5	
	1.88	$\mathbf{C}_{\mathbf{f}}$	58.0
$\mathbf{H}_{\mathbf{g}}$	0.76	$\mathbf{C}_{\mathbf{g}}$	24.5
$\mathbf{H}_{\mathbf{h}}$	4.13	$\mathbf{C}_{\mathbf{h}}$	8.1
	1.19	$\mathbf{C}_{\mathbf{i}}$	171.9
$\mathbf{H}_{\mathbf{j}}$	\mathbf{C}_{k}	60.8	
$\mathbf{H}_{\mathbf{k}}$		14.0	

L D Field, S Sternhell and J R Kalman

Problem 301

$$
\begin{aligned}
& \text { butyl butyrate }
\end{aligned}
$$

Proton	Chemical Shift (δ) in ppm	Carbon	Chemical Shift (δ) in ppm
$\mathbf{H}_{\mathbf{a}}$	0.75	$\mathbf{C}_{\mathbf{a}}$	13.9
$\mathbf{H}_{\mathbf{b}}$	1.19	$\mathbf{C}_{\mathbf{b}}$	19.5
$\mathbf{H}_{\mathbf{c}}$	1.40	$\mathbf{C}_{\mathbf{c}}$	31.2
$\mathbf{H}_{\mathbf{d}}$	3.97	$\mathbf{C}_{\mathbf{d}}$	64.0
		$\mathbf{C}_{\mathbf{e}}$	172.8
$\mathbf{H}_{\mathbf{f}}$	2.08	$\mathbf{C}_{\mathbf{f}}$	36.2
$\mathbf{H}_{\mathbf{g}}$	1.52	$\mathbf{C}_{\mathbf{g}}$	19.0
$\mathbf{H}_{\mathbf{h}}$	0.79	$\mathbf{C}_{\mathbf{h}}$	13.9

Problem 302

1-iodobutane

1-butanol

1-iodobutane	${ }^{1} \mathrm{H}$ Chemical Shift (δ) in ppm	1-butanol	${ }^{1} \mathrm{H}$ Chemical Shift (δ) in ppm
H1	2.70	H1	3.41
H2	1.40	H2	1.27
H3	1.08	H3	1.39
H4	0.64	H4	0.84
		-OH	1.95

Problem 303

(E)- and (Z)-2-butene

Problem 304

(Z)-3-methyl-2-penten-4-ynol

Problem 305

1-nitronaphthalene	
Proton	Chemical Shift (δ) in ppm
H2	8.22
H3	7.53
H4	8.10
H5	7.95
H6	7.62
H7	7.71
H8	8.56

Problem 306

ethyl diethylmalonate

Problem 307
butyl valerate
 11
0

Problem 308
nerol

$$
\mathrm{H}_{2} \mathrm{OH}
$$

Problem 309

geraniol

Chapter 9.4 - Analysis of NMR Spectra

Problem 310

Structure	Number of 1H environments	Number of 13C environments
$\mathrm{CH}_{3}-\mathrm{CO}-\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	4	5
$\mathrm{CH}_{3} \mathrm{CH}_{2}-\mathrm{CO}-\mathrm{CH}_{2} \mathrm{CH}_{3}$	2	3
$\mathrm{CH}_{2}=\mathrm{CHCH}_{2} \mathrm{CH}_{3}$	5	4
cis- $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$	2	2
trans-CH3CH=CHCH3	2	

Problem 311

This ratio is much greater than 3 so a $1^{\text {st }}$ order analysis is justified.

Problem 315 Spin System AMX

Chemical Shifts
$\delta_{\mathrm{A}}=501 \mathrm{~Hz} / 100 \mathrm{MHz}=5.01 \mathrm{ppm}$ $\delta_{\mathrm{M}}=439 \mathrm{~Hz} / 100 \mathrm{MHz}=4.39 \mathrm{ppm}$

$$
\delta_{\mathrm{x}}=408 \mathrm{~Hz} / 100 \mathrm{MHz}=4.08 \mathrm{ppm}
$$

Coupling constants $\quad J_{A M}=3.1 \mathrm{~Hz}$

$$
\begin{aligned}
& J_{\mathrm{AX}}=20.1 \mathrm{~Hz} \\
& J_{\mathrm{MX}}=1.1 \mathrm{~Hz}
\end{aligned}
$$

1st Order Analysis $\quad \Delta v_{\mathrm{AM}}=v_{\mathrm{A}}-v_{\mathrm{M}}=501-439=62 \mathrm{~Hz}$
$\Delta v_{\mathrm{AE}}=v_{\mathrm{A}}-v_{\mathrm{X}}=501-408=93 \mathrm{~Hz}$
$\Delta v_{\mathrm{ME}}=v_{\mathrm{M}}-v_{\mathrm{X}}=439-408=31 \mathrm{~Hz}$
$\Delta \nu_{\mathrm{AM}} / J_{\mathrm{AM}}=62 / 3.1=20.0$
$\Delta v_{\mathrm{AE}} / J_{\mathrm{AX}}=93 / 20.1=4.6$
$\Delta v_{\mathrm{ME}} / J_{\mathrm{MX}}=31 / 2.1=14.7$
All ratios are greater than 3 so a $1^{\text {st }}$ order analysis is justified.

Problem 316 Spin System AMX

1st Order Analysis $\quad \Delta v_{\mathrm{AM}}=v_{\mathrm{A}}-v_{\mathrm{M}}=460-394=66 \mathrm{~Hz}$
$\Delta v_{\mathrm{A} E}=v_{\mathrm{A}}-v_{\mathrm{X}}=460-442=18 \mathrm{~Hz}$
$\Delta v_{\mathrm{ME}}=v_{\mathrm{M}}-v_{\mathrm{X}}=442-394=48 \mathrm{~Hz}$
$\Delta v_{\mathrm{AM}} / J_{\mathrm{AM}}=66 / 1.7=38.8$
$\Delta v_{\mathrm{A} \Xi} / J_{\mathrm{AX}}=18 / 0.85=21.2$
$\Delta v_{M E} / J_{M X}=48 / 3.65=13.2$
All ratios are greater than 3 so a $1^{\text {st }}$ order analysis is justified.
Problem 317 Spin System AMX

1st Order Analysis $\quad \Delta v_{34}=v_{4}-v_{3}=719-673=46 \mathrm{~Hz}$
$\Delta v_{46}=v_{6}-v_{4}=777-719=58 \mathrm{~Hz}$
$\Delta v_{36}=v_{6}-v_{3}=777-673=104 \mathrm{~Hz}$
$\Delta v_{34} / J_{34}=46 / 8.8=5.2$
$\Delta v_{46} / J_{46}=58 / 2.3=25.2$
$\Delta v_{36} / J_{36}=104 /<1=>104$
All ratios are greater than 3 so a $1^{\text {st }}$ order analysis is justified.

$$
\begin{array}{ll}
\text { Chemical Shifts } & \delta_{\mathrm{A}}=628 \mathrm{~Hz} / 100 \mathrm{MHz}=6.28 \mathrm{ppm} \\
& \delta_{\mathrm{B}}=527 \mathrm{~Hz} / 100 \mathrm{MHz}=5.27 \mathrm{ppm} \\
& \delta_{\mathrm{C}}=592 \mathrm{~Hz} / 100 \mathrm{MHz}=5.92 \mathrm{ppm} \\
\text { Coupling constants } & J_{\mathrm{AB}}=2.1 \mathrm{~Hz} ; J_{\mathrm{AC}}=17.5 \mathrm{~Hz} ; J_{\mathrm{BC}}=9.9 \mathrm{~Hz} \\
\text { 1st Order Analysis } & \Delta v_{\mathrm{AB}}=v_{\mathrm{A}}-v_{\mathrm{B}}=628-527=101 \mathrm{~Hz} \\
& \Delta v_{\mathrm{AC}}=v_{\mathrm{A}}-v_{\mathrm{C}}=628-592=36 \mathrm{~Hz} \\
& \Delta v_{\mathrm{BC}}=v_{\mathrm{C}}-v_{\mathrm{B}}=592-527=65 \mathrm{~Hz} \\
& \Delta v_{\mathrm{AB}} / J_{\mathrm{AB}}=101 / 2.1=48.1 \\
& \Delta v_{\mathrm{AC}} / J_{\mathrm{AC}}=36 / 17.5=2.1 \\
& \Delta v_{\mathrm{BC}} / J_{\mathrm{BC}}=65 / 9.9=6.6
\end{array}
$$

2 out of 3 ratios are greater than 3 so this is borderline $1^{\text {st }}$ order. The main deviation from $1^{\text {st }}$ order is that intensities are severely distorted - a $1^{\text {st }}$ order spectrum would have all lines of equal intensity. $J_{\mathrm{AC}}=17.5 \mathrm{~Hz}$ indicates that H_{A} and H_{C} must be trans. $J_{\mathrm{BC}}=9.9 \mathrm{~Hz}$ indicates H_{A} and H_{C} are cis.

Chemical Shifts $\quad \delta_{\mathrm{A}}=160 \mathrm{~Hz} / 60 \mathrm{MHz}=2.67 \mathrm{ppm}$

$$
\begin{aligned}
& \delta_{\mathrm{A}}=160 \mathrm{~Hz} / 60 \mathrm{MHz}=2.6 / \mathrm{ppm} \\
& \delta_{\mathrm{X}}=280 \mathrm{~Hz} / 60 \mathrm{MHz}=4.67 \mathrm{ppm}
\end{aligned}
$$

Problem 320 Spin System $A X_{3}$
$\underbrace{v_{A X}}_{A}=5 \mathrm{~Hz}$

Chemical Shifts	$\delta_{\mathrm{A}}=199 \mathrm{~Hz} / 100 \mathrm{MHz}=1.99 \mathrm{ppm}$
	$\delta_{\mathrm{X}}=99 \mathrm{~Hz} / 100 \mathrm{MHz}=0.99 \mathrm{ppm}$
Coupling constants	$J_{\mathrm{AX}}=5 \mathrm{~Hz}$
1st Order Analysis	$\Delta v_{\mathrm{AX}}=v_{\mathrm{A}}-v_{\mathrm{X}}=199-99=100 \mathrm{~Hz}$ $v_{\mathrm{AX}} / J_{\mathrm{AX}}=100 / 5=20.0$

$\Delta v_{\mathrm{AX}} / J_{\mathrm{AX}}$ is much greater than 3 so a $1^{\text {st }}$ order analysis is justified.

Problem 3214 Spin System AMX_{2}

$\begin{array}{ll}\text { Chemical Shifts } & \delta_{\mathrm{A}}=340 \mathrm{~Hz} / 60 \mathrm{MHz}=5.67 \mathrm{ppm} \\ \delta_{\mathrm{M}}=240 \mathrm{~Hz} / 60 \mathrm{MHz}=4.00 \mathrm{ppm} \\ \delta_{\mathrm{X}}=100 \mathrm{~Hz} / 60 \mathrm{MHz}=1.67 \mathrm{ppm}\end{array}$

Problem 3224 Spin System $A M_{2} X$

$\begin{array}{ll}\text { Chemical Shifts } & \delta_{\mathrm{A}}=110 \mathrm{~Hz} / 60 \mathrm{MHz}=1.83 \mathrm{ppm} \\ \delta_{\mathrm{M}}=200 \mathrm{~Hz} / 60 \mathrm{MHz}=3.33 \mathrm{ppm} \\ \delta_{\mathrm{X}}=290 \mathrm{~Hz} / 60 \mathrm{MHz}=4.83 \mathrm{ppm}\end{array}$

$$
\begin{aligned}
& \delta_{\mathrm{M}}=200 \mathrm{~Hz} / 60 \mathrm{MHz}=3.33 \mathrm{ppm} \\
& \delta_{\mathrm{X}}=290 \mathrm{~Hz} / 60 \mathrm{MHz}=4.83 \mathrm{ppm}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Chemical Shifts } \quad \begin{array}{l}
\delta_{\mathrm{A}}=279 \mathrm{~Hz} / 100 \mathrm{MHz}=2.79 \mathrm{ppm} \\
\delta_{\mathrm{M}}=149 \mathrm{~Hz} / 100 \mathrm{MHz}=1.49 \mathrm{ppm}
\end{array} \\
& \delta_{x}=39 \mathrm{~Hz} / 100 \mathrm{MHz}=0.39 \mathrm{ppm} \\
& \text { Coupling constants } \quad J_{A M}=4.5 \mathrm{~Hz} ; J_{A X}=7.5 \mathrm{~Hz} ; J_{\mathrm{MX}}=11.0 \mathrm{~Hz} ; \\
& \text { 1st Order Analysis } \quad \Delta v_{A X}=v_{A}-v_{X}=279-39=240 \mathrm{~Hz} \\
& \Delta v_{\mathrm{AM}}=v_{\mathrm{A}}-v_{\mathrm{M}}=279-149=130 \mathrm{~Hz} \\
& \Delta v_{M X}=v_{M}-v_{X}=149-39=110 \mathrm{~Hz} \\
& \Delta v_{\mathrm{AX}} / J_{\mathrm{AX}}=240 / 7.5=32.0 \\
& \Delta v_{A M} / J_{A M}=130 / 4.5=28.9 \\
& \Delta v_{\mathrm{MX}} / J_{\mathrm{MX}}=110 / 11=10.0
\end{aligned}
$$

All ratios are significantly greater than 3 so a $1^{\text {st }}$ order analysis is justified.

Problem 3254 Spin System
$A M X_{2}$
,

Chemical Shifts
$\delta_{\mathrm{A}}=302 \mathrm{~Hz} / 100 \mathrm{MHz}=3.02 \mathrm{ppm}$
$\delta_{\mathrm{M}}=160 \mathrm{~Hz} / 100 \mathrm{MHz}=1.60 \mathrm{ppm}$
$\delta_{\mathrm{X}}=37 \mathrm{~Hz} / 100 \mathrm{MHz}=0.37 \mathrm{ppm}$

Coupling constants $\quad J_{A M}=12.0 \mathrm{~Hz} ; J_{A X}=5.0 \mathrm{~Hz} ; J_{M X}=8.0 \mathrm{~Hz}$;
1st Order Analysis
$\Delta v_{\mathrm{AX}}=v_{\mathrm{A}}-v_{\mathrm{X}}=302-37=265 \mathrm{~Hz}$
$\Delta v_{\mathrm{AM}}=v_{\mathrm{A}}-v_{\mathrm{M}}=302-160=142 \mathrm{~Hz}$
$\Delta \mathrm{v}_{\mathrm{MX}}=v_{\mathrm{M}}-v_{\mathrm{X}}=160-37=123 \mathrm{~Hz}$
$\Delta v_{A X} / J_{A X}=265 / 5.0=53.0$
$\Delta v_{\mathrm{AM}} / J_{\mathrm{AM}}=142 / 12.0=11.8$
$\Delta v_{\mathrm{MX}} / J_{\mathrm{MX}}=123 / 8.0=15.4$
All ratios are significantly greater than 3 so a $1^{\text {st }}$ order analysis is justified.

All ratios are significantly greater than 3 so a $1^{\text {st }}$ order analysis is justified.

Chemical Shifts | $\delta_{\mathrm{A}}=710 \mathrm{~Hz} / 100 \mathrm{MHz}=7.10 \mathrm{ppm}$ |
| :--- |
| $\delta_{\mathrm{M}}=585 \mathrm{~Hz} / 100 \mathrm{MHz}=5.85 \mathrm{ppm}$ |
| $\delta_{\mathrm{X}}=192 \mathrm{~Hz} / 100 \mathrm{MHz}=1.92 \mathrm{ppm}$ |

Coupling constants $\quad J_{A M}=15.3 \mathrm{~Hz} ; J_{A X}=6.9 \mathrm{~Hz} ; J_{M X}=1.6 \mathrm{~Hz}$;
1st Order Analysis $\quad \Delta v_{A X}=v_{A}-v_{X}=710-192=518 \mathrm{~Hz}$
$\Delta v_{\mathrm{AM}}=v_{\mathrm{A}}-v_{\mathrm{M}}=710-585=125 \mathrm{~Hz}$
$\Delta v_{M X}=v_{M}-v_{X}=585-192=393 \mathrm{~Hz}$
$\Delta v_{\mathrm{AX}} / \mathrm{J}_{\mathrm{AX}}=518 / 6.9=84.7$
$\Delta v_{\mathrm{AM}} / J_{\mathrm{AM}}=125 / 15.3=8.2$
$\Delta v_{M X} / J_{M X}=393 / 1.6=245.6$
All ratios are significantly greater than 3 so a $1^{\text {st }}$ order analysis is justified. $J_{\mathrm{AM}}=15.3 \mathrm{~Hz}$ is typical of a coupling between vinylic protons which are trans to each other (see Section 5.7)

Chemical Shifts
$\delta_{\mathrm{A}}=956 \mathrm{~Hz} / 100 \mathrm{MHz}=9.56 \mathrm{ppm} ;$
$\delta_{\mathrm{D}}=695 \mathrm{~Hz} / 100 \mathrm{MHz}=6.95 \mathrm{ppm}$;
$\delta_{\mathrm{M}}=619 \mathrm{~Hz} / 100 \mathrm{MHz}=6.19 \mathrm{ppm} ;$
$\delta_{\mathrm{x}}=205 \mathrm{~Hz} / 100 \mathrm{MHz}=2.05 \mathrm{ppm}$;
Coupling constants $J_{A D}=<1 \mathrm{~Hz} ; J_{\mathrm{AM}}=8.2 \mathrm{~Hz} ; J_{\mathrm{AX}}=<1 \mathrm{~Hz}$;
$J_{D M}=15.8 \mathrm{~Hz} ; J_{D X}=6.9 \mathrm{~Hz} ; J_{M X}=1.6 \mathrm{~Hz} ;$

1st Order Analysis $\quad \Delta v_{A D}=v_{A}-v_{D}=956-695=261 \mathrm{~Hz}$
$\Delta v_{\mathrm{AM}}=v_{\mathrm{A}}-v_{\mathrm{M}}=956-619=337 \mathrm{~Hz}$
$\Delta v_{\mathrm{AX}}=v_{\mathrm{A}}-v_{\mathrm{X}}=956-205=751 \mathrm{~Hz}$
$\Delta v_{D M}=v_{D}-v_{M}=695-619=76 \mathrm{~Hz}$
$\Delta v_{D X}=v_{D}-v_{\mathrm{X}}=695-205=490 \mathrm{~Hz}$
$\Delta v_{\mathrm{MX}}=v_{\mathrm{M}}-v_{\mathrm{X}}=619-205=414 \mathrm{~Hz}$
$\Delta v_{\text {AD }} / J_{A D}=261 /<1=>261$
$\Delta v_{\mathrm{AM}} / J_{\mathrm{AM}}=337 / 8.2=41.1$
$\Delta v_{\mathrm{AX}} / J_{\mathrm{AX}}=751 /<1=>751$
$\Delta v_{D M} / J_{D M}=76 / 15.8=4.8$
$\Delta v_{D X} / J_{D X}=490 / 6.9=71.0$
$\Delta v_{M X} / J_{M X}=414 / 1.6=258.8$
All ratios are significantly greater than 3 so a $1^{\text {st }}$ order analysis is justified.
The critical coupling constant is $J_{D M}=15.8 \mathrm{~Hz}$ which is typical of a coupling between vinylic protons which are trans to each other (see Section 5.7),

The compound is:

M

Problem 3295 Spin System AMX_{3}

Chemical Shifts

$$
\begin{aligned}
& \delta_{\mathrm{A}}=80 \mathrm{~Hz} / 60 \mathrm{MHz}=1.33 \mathrm{ppm} \\
& \delta_{\mathrm{M}}=220 \mathrm{~Hz} / 60 \mathrm{MHz}=3.67 \mathrm{ppm} \\
& \delta_{\mathrm{X}}=320 \mathrm{~Hz} / 60 \mathrm{MHz}=5.33 \mathrm{ppm}
\end{aligned}
$$

Problem 3303 Spin System $A_{2} X$

$\sim_{A X}=7.7 \mathrm{~Hz}$

Of the 6 isomeric anilines, only compounds 4 and 6 have the correct symmetry to give a spectrum with only two chemical shifts in the aromatic region, in the ratio 2:1.

Both 4 and 6 would give $A_{2} X$ spin systems. The measured coupling constant is 7.7 Hz which is in the range for protons which are ortho to each other. Compound 4 is the correct answer.

Problem 331

The spectrum is obtained after $\mathrm{D}_{2} \mathrm{O}$ exchange so the carboxylic acid and phenolic protons will not be present and the spectrum only contains the aromatic and vinylic protons.

The spectrum shows 6 distinct resonances therefore compounds 5 and 6 can be eliminated because they would each have only 4 resonances (on symmetry grounds).

The proton at about $\delta 7.1$ shows no large coupling (> 7 Hz), this means that it has no protons ortho to it. This eliminates compounds $\mathbf{1}$ and $\mathbf{2}$ since all protons in these compounds will have at least one large ortho coupling.

Compounds 3 and 4 differ by the stereochemistry at the double bond. The proton at $\delta 6.4$ is clearly one of the vinylic protons and it is coupled to the other vinylic proton at $\delta 7.6$. The coupling constant is 16 Hz and this characteristic of vinylic protons which are trans to each other.

The correct answer is compound 3 .

Problem 332

All of the protons in the ${ }^{1} \mathrm{H}$ spectrum 1,5-dichoronaphthalene have protons which are ortho to them. This means that every proton must have at least one large ($>7 \mathrm{~Hz}$) ortho coupling. The spectrum has one proton (at $\delta 7.1$) which has only a small coupling so this cannot be the spectrum of 1,5-dichloronaphthalene.

The spectrum is an AMX spectrum with couplings between A and X of about 8.3 Hz (typical of an ortho coupling) and coupling between M and X of about 2.7 Hz (typical of a meta coupling). Two possible structure are given below.

2,7-dichloronaphthalene

2,6-dichloronaphthalene

