| Introduction | Basic Notions of MM | The KS-FAM | Experimental Results | Conclusion |
|--------------|---------------------|------------|----------------------|------------|
| 0000000      | 0000                | 000000     | 000000               | 0          |

# An Introduction to the Kosko Subsethood FAM

#### Peter Sussner Estevão Esmi

Department of Applied Mathematics Institute of Mathematics, Statistics, and Scientific Computing State University of Campinas

5th International Conference on Hybrid Artificial Intelligence Systems

(日)

### Organization of this talk



- 2 Basic Notions of Mathematical Morphology
- The KS-FAM: Motivation and Definition
- Experimental Results Using Gray-Scale Images

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで



Basic Notions of MM

The KS-FAM

Experimental Results

Conclusion o

# Fuzzy Associative Memories (FAMs)

FAMs are fuzzy neural networks that serve as associative memories.

#### Examples of FAM models:

- Kosko's max-min and max-product FAMs;
- Generalized FAMs of Chung and Lee;
- Max-min FAM of Junbo et al.;
- Liu's max-min FAM with threshold;
- Fuzzy logical bidirectional associative memory of Bělohlávek;
- Implicative fuzzy associative memories.

A new FAM model called Kosko Subsethood FAM (KS-FAM) is based on ideas of Mathematical Morphology (MM).

Introduction Ba

Basic Notions of MM

The KS-FAM

Experimental Results

Conclusion o

## Mathematical Morphology

Mathematical Morphology (MM) is a theory for the processing and analysis of images using structuring elements (SEs).

#### Applications of MM include

- noise removal;
- skeletonizing;
- edge detection;
- automatic target recognition;
- image segmentation;
- image restauration.

| Introduction |
|--------------|
| 0000000      |

Basic Notions of MM

The KS-FAM

Experimental Results

Conclusion o

# Elementary Operations of MM

Erosion, dilation, anti-erosion, anti-dilation.

### MM from two different points of view:

- MM in the intuitive or geometrical sense: based on inclusion e intersection measures;
- MM in the algebraic sense: defined in a complete lattice setting.

#### MM in the intuitive or geometrical sense

- Erosion: yields the (crisp or fuzzy) degree of inclusion of the translated SE at every pixel;
- Dilation: yields the (crisp or fuzzy) degree of intersection of the image with the (reflected and) translated SE at every pixel.

| Introduction | Basic Notions of MM | The KS-FAM | Experimental Results | Conclusion<br>o |
|--------------|---------------------|------------|----------------------|-----------------|
| Binary E     | Example             |            |                      |                 |







c) Erode image



b) Structuring element



d) Dilate image

A D MARKA E MARKA E MARKA

Basic Notions of MM

The KS-FAM

Experimental Results

Conclusion o

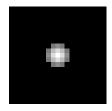
## Fuzzy/Grayscale Example



a) Original image (256x256)



c) Erode image (256x256)



b) Structuring element (21x21)



d) Dilate image (256x256)

AURADRAERAER E OQQ

Basic Notions of MM

The KS-FAM

Experimental Results

(日)

Conclusion o

### Fuzzy Morphological Associative Memories

A FAM model is called a fuzzy morphological associative memory (FMAM) if its neurons perform elementary operations of MM.

Many well-known FAM models - including the ones mentioned above - belong to the class of FMAMs (in the algebraic sense).

The KS-FAM introduced in this talk can be viewed as an FMAM model in the intuitive sense.

Basic Notions of MM

The KS-FAM

Experimental Results

Conclusion o

### The Complete Lattice Framework of MM

The algebraic framework of MM is given by complete lattices.

A complete lattice is a partially ordered set  $\mathbb{L}$  such that every  $Y \subseteq \mathbb{L}$  has an infimum, denoted by  $\bigwedge Y$  and a supremum, denoted by  $\bigvee Y$  in  $\mathbb{L}$ .

Examples of complete lattices include  $\mathbb{R}_{\pm\infty} = \mathbb{R} \cup \{+\infty, -\infty\}$ ,  $\mathbb{R}_{\pm\infty}^n = (\mathbb{R}_{\pm\infty})^n$ , [0, 1] and [0, 1]<sup>X</sup>, the class of fuzzy sets over the universe **X**.

From now on, the symbols L and M denote complete lattices.

| Introduction<br>0000000 |   | Basic Notions of MM | The KS-FAM | Experimental Results | Conclusion<br>o |
|-------------------------|---|---------------------|------------|----------------------|-----------------|
|                         | _ |                     |            |                      |                 |

### Basic Operators of MM

#### Erosion

An operator  $\varepsilon : \mathbb{L} \to \mathbb{M}$  represents an (algebraic) erosion if

$$\varepsilon\left(igwedge {\mathsf{Y}}
ight) = igwedge_{{\mathsf{Y}}\in{\mathsf{Y}}} \varepsilon({\mathsf{Y}})\,, \quad \forall\,{\mathsf{Y}}\subseteq \mathbb{L}\,.$$

#### Dilation

An operator  $\delta : \mathbb{L} \to \mathbb{M}$  represents a (algebraic) dilation if

$$\delta\left(\bigvee \mathsf{Y}\right) = \bigvee_{\mathsf{y}\in\mathsf{Y}} \delta(\mathsf{y}), \quad \forall \mathsf{Y}\subseteq\mathbb{L}.$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 >

| Introduction | Basic Notions of MM | The KS-FAM<br>000000 | Experimental Results | Conclusion<br>o |
|--------------|---------------------|----------------------|----------------------|-----------------|
| Negatio      | ons                 |                      |                      |                 |

A negation on  $\mathbb{L}$  is an involutive bijection  $\nu_{\mathbb{L}} : \mathbb{L} \to \mathbb{L}$  that reverses the partial ordering.

#### **Examples of Negation**

For L = [0, 1]:  

$$\nu_{\mathbb{L}}(x) = \bar{x} = 1 - x.$$

For L = R<sub>±∞</sub> = R ∪ {-∞, +∞}:  

$$\nu_{\mathbb{L}}(x) = x^* = \begin{cases} -x, & \text{if } x \in \mathbb{R}, \\ +\infty, & \text{if } x = -\infty, \\ -\infty, & \text{if } x = \infty. \end{cases}$$

For L = R<sup>m×n</sup><sub>±∞</sub> = (R<sub>±∞</sub>)<sup>m×n</sup>:  
( $\nu_{\mathbb{L}}(X)$ )<sub>ij</sub> = (X<sup>\*</sup>)<sub>ij</sub> = (x<sub>ji</sub>)<sup>\*</sup> ∀i = 1,..., n, j = 1,..., m.

Basic Notions of MM

The KS-FAM

Experimental Results

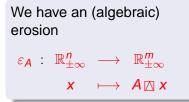
Conclusion o

## Max Product and Min Product

Let  $A \in \mathbb{R}^{m \times n}$  e  $B \in \mathbb{R}^{n \times p}_{\pm \infty}$ . We have:

•  $C = A \boxtimes B$  - max product of A and B:  $c_{ij} = \bigvee_{k=1}^{n} (a_{ik} + b_{kj})$ . •  $D = A \boxtimes B$  - min product of A and B:  $d_{ij} = \bigwedge_{k=1}^{n} (a_{ik} + b_{kj})$ .

•  $D = A \boxtimes B$  - min product of A and B:  $d_{ij} = \bigwedge_{k=1}^{n} (a_{ik} + b_{kj})$ .



| We have an (algebraic) dilation |   |                            |               |                            |  |
|---------------------------------|---|----------------------------|---------------|----------------------------|--|
| $\delta_{\mathcal{A}}$          | : | $\mathbb{R}^n_{\pm\infty}$ | $\rightarrow$ | $\mathbb{R}^m_{\pm\infty}$ |  |
|                                 |   | X                          | $\mapsto$     | <i>A</i> ⊠ <i>x</i>        |  |

| Introduction |  |
|--------------|--|
| 0000000      |  |

Basic Notions of MM

The KS-FAM

Experimental Results

Conclusion o

### Morfological Associative Memories (MAMs)

#### **Original Models**

Let  $X = [\mathbf{x}^1, \dots, \mathbf{x}^k] \in \mathbb{R}^{n \times k}$  and  $Y = [\mathbf{y}^1, \dots, \mathbf{y}^k] \in \mathbb{R}^{m \times k}$ . Define the synaptic weight matrices  $W_{XY}$  and  $M_{XY}$  as follows:

• 
$$W_{XY} = Y \boxtimes X^* = \bigwedge_{\xi=1}^k \mathbf{y}^{\xi} \boxtimes (\mathbf{x}^{\xi})^*$$

$$M_{XY} = Y \boxtimes X^* = \bigvee_{\xi=1}^k \mathbf{y}^{\xi} \boxtimes (\mathbf{x}^{\xi})^*$$

Upon presentation of  $\mathbf{x} \in \mathbb{R}^n_{\pm\infty}$  the the MAM  $W_{XY}$  and the dual MAM  $M_{XY}$  yield the following outputs:

| Introduction |  |
|--------------|--|
| 0000000      |  |

Basic Notions of MM

The KS-FAM o●oooo Experimental Results

Conclusion o

### Properties of Autoassociative MAMs

#### Advantages:

- Infinite absolute storage capacity;
- One-step convergence if empoyed with feedback.
- Tolerance of W<sub>XX</sub> w.r.t. erosive noise;
- Tolerance of M<sub>XX</sub> w.r.t. dilative noise;

#### Disadvantages:

- Both W<sub>XX</sub> and M<sub>XX</sub> are not able to deal with arbitrary noise;
- 2 Large number of spurious memories.

| Introduction | Basic Notions of MM | The KS-FAM<br>00●000 | Experimental Results | Conclusion<br>O |
|--------------|---------------------|----------------------|----------------------|-----------------|
| 14 1 1       |                     | -                    |                      |                 |

### Kosko's *Subsethood* Measure

Let **X** be a finite set and let  $\mathbf{a}, \mathbf{b} : \mathbf{X} \to [0, 1]$  be fuzzy sets. Suppose that  $\sum_{x \in \mathbf{X}} \mathbf{a}(x) > 0$ :

$$S(\mathbf{a}, \mathbf{b}) = 1 - \frac{\sum_{x \in \mathbf{X}} \mathbf{0} \lor (\mathbf{a}(x) - \mathbf{b}(x))}{\sum_{x \in \mathbf{X}} \mathbf{a}(x)} = \frac{\sum_{x \in \mathbf{X}} \mathbf{a}(x) \land \mathbf{b}(x)}{\sum_{x \in \mathbf{X}} \mathbf{a}(x)}$$

Kosko's subsethood measures the degree of inclusion of **a** in **b**.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

| Introduction | Basic Notions of MM | <b>The KS-FAM</b><br>000●00 | Experimental Results | Conclusion<br>o |
|--------------|---------------------|-----------------------------|----------------------|-----------------|
| Fuzzy I      | Min Product         |                             |                      |                 |

Fuzzy Min Product

Let  $M \in [0, 1]^{m \times n}$  and  $\mathbf{x} \in [0, 1]^n$ . Let  $\mathbf{m}_i$  denote the *i*-th row of M. The fuzzy min product  $\mathbf{y} = M \, \tilde{\boxtimes} \, \mathbf{x}$  is given by

 $y_i = S(\bar{\mathbf{m}}_i, \mathbf{x}), \ i = 1, \dots, m.$ 

Let  $X \in \{0,1\}^{n \times k}$  and  $\mathbf{x} \in [0,1]^n$ . Consider the binary model  $\tilde{\square} - \mathcal{T}MAM$  given by

input  $\mathbf{x} \to M_{XX} \, \tilde{\boxtimes} \, \mathbf{x} \to \text{Defuzzification} \, \mathcal{T} \to \text{output} \, \mathbf{y}$ 

#### Main advantage:

Inexistence of spurious memories.

#### Main disadvantage:

Requires an additional defuzzification phase (T).

Basic Notions of MM

The KS-FAM

Experimental Results

Conclusion o

# Example of a Fuzzy Min Product $M_{XX} \tilde{\square} \mathbf{x}$



Figure: Original Patterns Stored in  $M_{XX}$ .



(a) Input x



(b) *M<sub>XX</sub>* ⊢ x̃ x̃

(日)

| Introduction | Basic Notions of MM | The KS-FAM | Experimental Results | Conclusion |
|--------------|---------------------|------------|----------------------|------------|
| 0000000      | 0000                | 000000     | 000000               | 0          |
|              |                     |            |                      |            |

### FAM based on Kosko's Subsethood Measure

Let  $\mathbf{h} : [0,1]^p \to \{0,1\}^p$  with  $\mathbf{h}(\mathbf{x}) = (h(x_1), \dots, h(x_p))^t$  be such that

$$h(x_i) = \left\{ egin{array}{ccc} 1 & ext{if } x_i \geq \bigvee_{j=1}^p x_j \\ 0 & ext{else} \end{array} 
ight., ext{ for } i=1,\ldots,p$$

#### Definition of KS-FAM:

- Let  $X \in [0, 1]^{n \times k}$  and  $Y \in [0, 1]^{m \times k}$ ;
- Choose  $Z = [\mathbf{z}^1, \dots, \mathbf{z}^k] \in \{0, 1\}^{p \times k}$  such that  $\bigvee_{\xi=1}^k \mathbf{z}^{\xi} = \mathbf{1}$ ,  $\mathbf{z}^{\xi} \not\leq \mathbf{z}^{\gamma}$  and  $\mathbf{z}^{\xi} \wedge \mathbf{z}^{\gamma} = \mathbf{0}$  for  $\gamma \neq \xi$ ;
- For an input pattern x ∈ [0, 1]<sup>n</sup> the output pattern y ∈ [0, 1]<sup>m</sup> is given by:

 $\mathbf{y} = W_{ZY} \boxtimes \mathbf{w}$ , where  $\mathbf{w} = \mathbf{h}(M_{XZ} \,\tilde{\boxtimes} \, \mathbf{x})$ 

| Introduction<br>0000000 | Basic Notions of MM | The KS-FAM | Experimental Results | Conclusion<br>o |
|-------------------------|---------------------|------------|----------------------|-----------------|
|                         |                     |            |                      |                 |



◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQで

#### Models Used in the Experiments

- KS-FAM with  $Z = I_4$  (4 × 4 identity matrix);
- Hamming Net;
- MAM *W<sub>XX</sub>*;
- MAM  $W_{XX} + \nu$ ;
- Kosko's Max-Min FAM;
- KAM with Gaussian Kernel Function;
- OLAM;

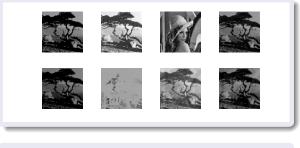
Basic Notions of MM

The KS-FAM

Experimental Results

Conclusion o

## Variations in Brightness





Basic Notions of MM

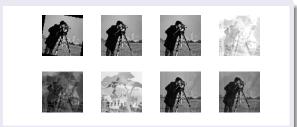
The KS-FAM

Experimental Results

Conclusion o

## Variations in Orientation





| Introduction | Basic Notions of MM | The KS-FAM | Experimental Results | Conclusio |
|--------------|---------------------|------------|----------------------|-----------|
| 0000000      | 0000                | 000000     | 000000               | 0         |
|              |                     |            |                      |           |

NRMSEs- Variations in Brightness and Orientation

|                | Tree   | Lena   | Church | Cameraman |
|----------------|--------|--------|--------|-----------|
| KS-FAM         | 0      | 0      | 0      | 0         |
| Hamming Net    | 0.6347 | 0.8414 | 0      | 0         |
| $W_{XX}$       | 0.4771 | 0.7354 | 1.6015 | 0.9509    |
| $W_{XX} + \nu$ | 0.6032 | 0.4615 | 0.6168 | 0.4765    |
| Kosko's FAM    | 0.4302 | 0.8937 | 1.1586 | 0.7300    |
| KAM            | 0.1945 | 0.1499 | 0.0566 | 0.0784    |
| OLAM           | 0.4986 | 0.6810 | 0.2892 | 0.1937    |

Basic Notions of MM

The KS-FAM

Experimental Results

Conclusion o

### **Gaussian Noise**



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Basic Notions of MM

The KS-FAM

Experimental Results

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Conclusion o

# **NRMSEs - Noisy Patterns**

|                | Gaussian Noise ( $\sigma^2 = 0.03$ ) |
|----------------|--------------------------------------|
| KS-FAM         | 0                                    |
| Hamming        | 0                                    |
| $W_{XX}$       | 0.9005                               |
| $W_{XX} + \nu$ | 0.2770                               |
| Kosko's FAM    | 0.8185                               |
| KAM            | 0.0137                               |
| OLAM           | 0.0365                               |

| Introduction<br>0000000 | Basic Notions of MM | The KS-FAM | Experimental Results | Conclusion<br>• |
|-------------------------|---------------------|------------|----------------------|-----------------|
| <b>•</b> •              |                     |            |                      |                 |

### **Concluding Remarks**

- We presented the Kosko subsethood FAM (KS-FAM) on the basis of ideas from MM.
- The KS-FAM outperformed other AM models in preliminary experiments on gray-scale image recognition.
- Experiments indicate potential utility for applications in pattern recognition.

Thank you!

(日)