
JAVA: THE FUNDAMENTALS
OF OBJECTS AND CLASSES
DAVID ETHERIDGE

DOWNLOAD FREE TEXT BOOKS AT

BOOKBOON.COM
in association with

TEXTBOOKS FOR STUDENTS WWW.BOOKBOON.COM

TEXTBOOK TORRENTS

In cooperation with textbooktorrents.com

TEXTBOOK TORRENTS

Download free books at BookBooN.com

2

David Etheridge

Java: The Fundamentals of
Objects and Classes
– An Introduction to Java Programming

In cooperation with textbooktorrents.com

TEXTBOOK TORRENTS

Download free books at BookBooN.com

3

Java: The Fundamentals of Objects and Classes
– An Introduction to Java Programming
© 2009 David Etheridge & Ventus Publishing ApS
ISBN 978-87-7681-475-5

In cooperation with textbooktorrents.com

TEXTBOOK TORRENTS

Download free books at BookBooN.com

Java: The Fundamentals of
Objects and Classes

4

Contents

Contents

1. Object-Oriented Programming: What is an Object?
1.1 Introduction to Objects
1.2 Comparison of OOP and Non-OOP
1.3 Object-Oriented Analysis and Design (OOA & D)

2. A First Java Programme: From Class Diagram to Source Code
2.1 Introduction
2.2 The Class Diagram for the Member Class
2.3 The Java Source Code for the Member Class
2.4 Using Member Objects
2.5 Summary

3. Language Basics: Some Syntax and Semantics
3.1 Introduction
3.2 Identifi ers
3.3 Primitive Data Types
3.4 Variables
3.5 Operators
3.6 Summary

6
6
6
9

21
21
21
22
30
35

44
44
44
46
49
58
59

what‘s missing in this equation?

maeRsK inteRnationaL teChnoLogY & sCienCe PRogRamme

You could be one of our future talents

Are you about to graduate as an engineer or geoscientist? Or have you already graduated?
If so, there may be an exciting future for you with A.P. Moller - Maersk.

www.maersk.com/mitas

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/pdf/117887/4

In cooperation with textbooktorrents.com

TEXTBOOK TORRENTS

Download free books at BookBooN.com

Java: The Fundamentals of
Objects and Classes

5

Contents

4. Methods: Invoking an Object’s Behavior
4.1 How do we get Data Values into a Method?
4.2 How do we get Data Values out of a Method?
4.3 Method Overloading
4.4 The Structure of a Typical Class Defi nition

5. Classes and Objects: Creating and Using Objects
5.1 Invoking an Object’s Constructor
5.2 Object Construction and Initialisation of an Object’s State
5.3 Overloading Constructors
5.4 Initialisation Blocks

6. Collecting Data I
6.1 An Introduction to Arrays
6.2 Arrays as Data Structures
6.3 Declaring Arrays
6.4 Creating Arrays
6.5 Populating Arrays
6.6 Accessing Array Elements
6.7 Arguments Passed to the main Method

60
60
67
68
70

72
72
73
75
77

78
78
79
81
81
82
87
90

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/pdf/117887/5

In cooperation with textbooktorrents.com

TEXTBOOK TORRENTS

Download free books at BookBooN.com

Java: The Fundamentals of
Objects and Classes

6

Object-Oriented Programming: What is an Object?

1. Object-Oriented Programming: What is an
Object?

1.1 Introduction to Objects

While there is a study guide (available from Ventus) that focuses largely on objects and their
characteristics, it will be instructive to the learner (of the Java programming language) to understand how
the concept of an object is applied to their construction and use in Java applications. Therefore, Chapter
One (of this guide) introduces the concept of an object from a language-independent point of view and
examines the essential concepts associated with object-oriented programming (OOP) by briefly comparing
how OOP and non-OOP approach the representation of data and information in an application. The
chapter goes on to explain classes, objects and messages and concludes with an explanation of how a class
is described with a special diagram known as a class diagram.

1.2 Comparison of OOP and Non-OOP

Despite the wide use of OOP languages such as Java, C++ and C#, non-OOP languages continue to be
used in specific domains such as for some categories of embedded applications. In a conventional,
procedural language such as C, data is sent to a procedure for processing; this paradigm of information
processing is illustrated in Figure 1.1 below.

SQRT

output 2

4
input

SQRT

output 2

4
input

Source: R. A. Clarke, BCU.

Figure 1.1 Passing data to a procedure

The figure shows that the number 4 is passed to the function (SQRT) which is ‘programmed’ to calculate
the result and output it (to the user of the procedure). In general, we can think of each procedure in an
application as ready and waiting for data items to be sent to them so that they can do whatever they are
programmed to do on behalf of the user of the application. Thus an application written in C will typically
comprise a number of procedures along with ways and means to pass data items to them.

In cooperation with textbooktorrents.com

TEXTBOOK TORRENTS

Download free books at BookBooN.com

Java: The Fundamentals of
Objects and Classes

7

Object-Oriented Programming: What is an Object?

The way in which OOP languages process data, on the other hand, can be thought of as the inverse of the
procedural paradigm. Consider Figure 1.2 below.

4

return

sqrt

press this
button

2

4

return

sqrt

press this
button

2
Source: R. A. Clarke, BCU.

Figure 1.2 Passing a message to an object

In the figure, the data item – the number 4 – is represented by the box (with the label ‘4’ on its front face).
This representation of the number 4 can be referred to as the object of the number 4. This simple object
doesn’t merely represent the number 4, it includes a button labeled sqrt which, when pressed, produces
the result that emerges from the slot labeled return.

Whilst it is obvious that the object-oriented example is expected to produce the same result as that for the
procedural example, it is apparent that the way in which the result is produced is entirely different when
the object-oriented paradigm considered. In short, the latter approach to producing the result 2 can be
expressed as follows.

Send the following message to the object 4: “press the sqrt button”

A message is sent to the object to tell it what to do. Other messages might press other buttons associated
with the object. However for the present purposes, the object that represents the number 4 is a very simple
one in that it has only one button associated with it. The result of sending a message to the object to press
its one and only button ‘returns’ another object. Hence in Figure 1.2, the result that emerges from the
‘return’ slot - the number 2 – is an object in its own right with its own set of buttons.

Despite the apparent simplicity of the way in which the object works, the question remains: how does it
calculate the square root of itself? The answer to this question enshrines the fundamental concept
associated with objects, which is to say that objects carry their programming code around with them.
Applying this concept to the object shown in Figure 1.2, it has a button which gives access to the
programming code which calculates the square root (of the number represented by the object). This
amalgam of data and code is further illustrated by an enhanced version of the object shown in Figure
1.3 below.

In cooperation with textbooktorrents.com

TEXTBOOK TORRENTS

Download free books at BookBooN.com

Java: The Fundamentals of
Objects and Classes

8

Object-Oriented Programming: What is an Object?

4

return

sqrt

press this
button

+

3

7

4

return

sqrtsqrt

press this
button

+

33

7
Source: R. A. Clarke, BCU

Figure 1.3 The object with two buttons.

The enhanced object (representing the number 4) has two buttons: one to calculate the square root of itself
– as before - and a second button that adds a number to the object. In the figure, a message is sent to the
object to press the second button – the button labeled ‘+’ – to add the object that represents the number 3
to the object that represents the number 4. For the ‘+’ button to work, it requires a data item to be sent to it
as part of the message to the object. This is the reason why the ‘+’ button is provided with a slot into
which the object representing the number 3 is passed. The format of the message shown in the figure can
be expressed as follows.

Send a message that carries the object 3 to the object 4: “press the
+ button”

When this message is received and processed by the object, it returns an object that represents the number
7. In this case, the message has accessed the code associated with the ‘+’ button. The enhanced object can
be thought of as having two buttons, each of which is associated with its own programming code that is
available to users of the object.

Extrapolating the principal of sending messages to the object depicted in Figure 1.3 gives rise to the
notion that an object can be thought of as comprising a set of buttons that provide access to operations
which are carried out depending on the details in the messages sent to that object.

In summary:

in procedural programming languages, data is sent to a procedure;
in an object-oriented programming language, messages are sent to an object;
an object can be thought of as an amalgam of data and programming code: this is known as
encapsulation.

In cooperation with textbooktorrents.com

TEXTBOOK TORRENTS

Download free books at BookBooN.com

Java: The Fundamentals of
Objects and Classes

9

Object-Oriented Programming: What is an Object?

Whilst the concept of encapsulation is likely to appear rather strange to learners who are new to OOP,
working with objects is a much more natural way of designing applications compared to designing them
with procedures. Objects can be constructed to represent anything in the world around us and, as such,
they can be easily re-used or modified. Given that we are surrounded by things or objects in the world
around us, it seems natural and logical that we express this in our programming paradigm.

The next section takes the fundamental concepts explored in this section and applies them to a simple
object. Before doing so, however, it is worth making the point that this section is not meant to be an
exhaustive exploration of OO concepts: a separate study guide achieves this objective. Suffice it to say
that the main purpose of this section is to explain the key concept of encapsulation.

Finally (in this section) it is also worth making the point that, in Java, data - such as the numbers discussed
above - do not have to be represented by (Java) objects. They can be, but data such as integers are
represented by primitive data types, much as in procedural languages. However representing data such as
the number 4 as an object provides an opportunity to explain encapsulation.

The next section explores a simple object, in preparation to writing a first Java programme in
Chapter Two.

1.3 Object-Oriented Analysis and Design (OOA & D)

1.3.1 What are my Objects?

As might be expected, given that the Java programming language is object-oriented, objects expressed in
Java exhibit encapsulation of data values and operations on those values. Therefore because Java is object-
oriented, elements of Java differ in their syntax compared with a procedural language such as C. Despite
this difference, there are language elements in the Java code that Java objects carry about with them – as a
consequence of encapsulation - that are common to other programming languages, whether they are
object-oriented or not. Consequently as this guide begins to explore and apply the syntax of Java, some
learners may recognize language elements in Java that are similar to their equivalents in other languages.
Language elements such as the following may be familiar, depending on the programming experience of
the learner:

declaring and initializing primitive date types;
manipulating variables;
making decisions in an if…then type of construct;
carrying out repetitions in for…next and do…while types of constructs;
passing arguments to operations (known as methods in Java);
working with arrays and other data structures;
and so forth.

In fact, much of the semantics and syntax of Java is derived from languages such as C and C++, to the
extent that learners with previous experience in non-OO or other OO languages are likely to be familiar
with much of it. The principal difference, when using an OO language such as Java to write application
logic, is that the language elements, such as those exemplified in the list above are encapsulated in an
entity known as an object.

In cooperation with textbooktorrents.com

TEXTBOOK TORRENTS

Download free books at BookBooN.com

Java: The Fundamentals of
Objects and Classes

10

Object-Oriented Programming: What is an Object?

Embarking on a course in Java will require a learner who is experienced in a procedural language to make
the transition from a non-object-oriented language to an object-oriented one. Learners who have some
experience of procedural languages should not be alarmed: this transition is not as difficult as it may seem!
For the novice programmer, this guide begins with objects from the outset. In either case, once some of
the essential concepts of object-oriented programming in Java have been grasped, they can be applied to
almost any Java object. In short, the way that most objects are structured is common to them all. In other
words, we can extrapolate from a relatively small number of concepts and apply them to any Java object.

The next few sub-sections work towards the description of a simple object in a language-independent way;
actual Java code does not appear until Chapter Two. This approach is intended to make the point that
OOA & D is language-independent. When the objects associated with an application are analysed,
described and documented, including diagrammatic documentation, the analysis can be turned into any
target OO language. In this guide, of course, the outcome of analysis and design will be translated into
Java source code.

1.3.2 How do I know what my Objects are?

As has been established, object oriented analysis and design (OOA & D) models everything in the world
around us in terms of software entities called objects. For example, we could model a banking application
as comprising a number of objects including:

www.job.oticon.dk

In cooperation with textbooktorrents.com

TEXTBOOK TORRENTS

Download free books at BookBooN.com

Java: The Fundamentals of
Objects and Classes

11

Object-Oriented Programming: What is an Object?

a customer object;
a current account object associated with a particular customer object;
a savings account object associated with the same customer object;
the single bank object associated with customer objects;
and so on.

Similarly for an on-line media store, analysis might show that the following objects exist:

a registered member of the Media Store: there will be many of these objects;
the Media Store itself: there will be only one of these objects;
each member’s virtual membership card;
a DVD object: there will be many of these objects;
a games object: there will be many of these objects;
a CD object: there will be many of these objects;
a book object: there will be many of these objects;
and so forth.

An application that supports the business operations of such a media store will be used throughout this
guide to illustrate how Java can be used to meet the requirements of a realistic business application and
provide examples of concepts and language elements. Throughout the guide, the author’s Media Store
application will be referred to as the guide’s ‘themed application’.

In general, the outcome of the OOA & D process for a set of business requirements results in expressing
the design as encapsulating data (attributes) and operations on these data (behavior) into objects. The
details of OOA & D methodologies are outside the scope of this guide, apart from the use of a simple
diagrammatic technique to describe objects; this chapter and will conclude with such a diagram for one of
the objects of the themed application.

Returning, for a moment, to the bank example outlined at the beginning of this sub-section, let us assume
that the current account object has an attribute called overdraftLimit and that its behaviour is used to set
this attribute to a value of £500. Similarly, let us assume that the customer object has an attribute called
name and that its behaviour is used to set the value of the attribute to “David Etheridge”. Thus an object’s
attributes (or data) and hehaviour (or operations on these data) are closely linked. This linking or bonding
of data and operations is, as we have already established, known as encapsulation.

There is a further implication of encapsulation that hasn’t been explained as yet. The nature of the bond
between data and operations is such that an object’s data values are (usually) only manipulated by using
the object’s behaviour. In other words, an object’s data values are not directly accessed; instead they are
accessed via the object’s behaviour. In short, a useful way of summarising the access to an object’s data
values is to think of an object as comprising private data values and public behaviour to manipulate these
data values.

In cooperation with textbooktorrents.com

TEXTBOOK TORRENTS

Download free books at BookBooN.com

Java: The Fundamentals of
Objects and Classes

12

Object-Oriented Programming: What is an Object?

Another consequence of the OOA & D approach is that the implementation details of an object’s data are
hidden from other objects that wish to use the data values of the object. This means that a user object only
needs to know the behaviour that the provider object offers. Thus, we can think of the provider object’s
behaviour as a kind of a contract that the object offers to its user objects. As we will see in due course, the
behaviour that an object offers to its user objects is known as its interface. All that a user object needs to
know is what behaviour the provider object provides to manipulate its data values; user objects do not
need to know how the provider object’s behaviour is implemented. This means that implementation details
can change, without changing the provider object’s interface.

This property of objects is known as information hiding, another manifestation of encapsulation. This
means that although an object may know how to communicate with another object, via the other object’s
interface, the object does not need to know how the attributes and behaviour of the other object are
implemented: i.e. implementation details are hidden within the provider object. Consider an analogy: one
might know how to drive a car without knowing how the internal combustion engine works! Or, in the
example shown in Figure 1.3, the user object – the object for the number 3 – does not need to know how
the provider object – the object for the number 4 – implements its ‘+’ operation; all that it needs to know
is that the operation is available to the outside world – i.e. it is public - and it needs a value to be passed to
it in the message that asks the provider object to press its ‘+’ button. This means that a further outcome of
OOA & D is a model of the communication amongst objects. For example, the bank object might wish to
send a message to the current account object to alter the value of overdraftLimit.

To summarize and, perhaps, simplify the OOA & D methodology, any application domain can be
analysed and modelled in terms of the objects it comprises, where each object (in that domain) has
attributes and behaviour.

1.3.3 Classes and Objects

Just when the learner thinks that they have grasped the, perhaps new, concept of an object, along comes a
heading that introduces another new term: that of the class. The purpose of this section is to refine and
define these two terms: they operate, as it were, in tandem.

Consider a simple analogy: David and Annette Etheridge’s cat – called Jasmine - can be regarded as an
object or instance of the class Cat, where the instance name is jasmine and where the class is a template
or blueprint for all cats of the species of animal known as ‘cat’. Thus, Mother Nature uses her class Cat as
a template to create every domestic cat in existence. The distinction between a class and an instance or
object of that class is an important one: a class is the blueprint for all objects (or instances) of that class.
Similarly, Mother Nature uses her one and only Aardvark class to create all aardvarks, that is all instances
of aardvarks that walk the earth.

A single class is used to create as many instances (or objects) of
that class as are needed in an application.

In cooperation with textbooktorrents.com

TEXTBOOK TORRENTS

Download free books at BookBooN.com

Java: The Fundamentals of
Objects and Classes

13

Object-Oriented Programming: What is an Object?

For example, referring again to the bank application, we could use the class called Customer to create or
instantiate as many customers as are needed, such that each customer object can subsequently be given
values of the attributes defined in the class.

Similarly let us assume that one of the attributes of the class called Cat is called mood and that one of its
behaviour elements is used to set the value of the attribute named mood of a particular cat. Thus we can
use the template for a cat, i.e. the class called Cat, to create an instance of the class Cat with the name
jasmine and make use of its behaviour to set the value of its attribute mood to “grumpy”. Similarly, we
can use the class Cat to create another instance of the class Cat with the instance name florence and use its
behaviour to set the value of its attribute mood to “cool”. This second instance of the class Cat has a
different value of the attribute called mood. As we will discover in due course, two (or more) objects can
have the same values of some or all of their attributes. However for the purposes of the present example,
our two cat objects (named jasmine and florence) – created from the same class - differ in the value of
their mood attribute. Thus, in terms of encapsulation, our two cat objects carry about with them the ‘code’
to express the value of their attribute named mood to be “grumpy” and “cool” respectively. Finally, it
should be noted that our two objects of the class Cat are given different instance names to distinguish one
from the other and to affirm their separate existence.

The next sub-section will analyse a simple class in order to show how its analysis is documented.

1.3.4 Analysis and Design of the Member Class

In this section, we will work with one of the classes of the themed application introduced in the previous
section. The class is given the name (known as its identifier) Member to distinguish it from other classes
in the application.

Based upon the discussion in the previous sub-section, we know that the class called Member can be used,
in some way as yet to be explained, to create objects of the class Member. Before we work with the class
called Member, let us return to our analogy. Remember that David and Annette Etheridge have a cat called
Jasmine, created from the class called Cat. Thus the class is of type Cat and the particular instance of the
class Cat is an object called jasmine (the reason for the lower case ‘j’ will be explained in a moment).
David and Annette Etheridge used to have a cat called Florence: (Florence has gone through the great cat
flap in the sky!) If both cats were alive today, David and Annette Etheridge would have two instances of
the class Cat called jasmine and florence respectively. Thus the template for the two cats jasmine and
florence is the class Cat (which has been used, by Mother Nature, to create two cats). Note that class type
names begin with a capital letter: this is a convention used by the Java developer community. Thus we
have the class Cat, not cat. Whilst class names always begin with a capital letter, instances of a class
begin with a lower case letter. Thus we have florence and jasmine, not Florence and Jasmine, as
identifiers for the two instances of the class Cat. The example that follows will further illustrate these
naming conventions.

In cooperation with textbooktorrents.com

TEXTBOOK TORRENTS

Download free books at BookBooN.com

Java: The Fundamentals of
Objects and Classes

14

Object-Oriented Programming: What is an Object?

Returning to the class called Member, our task is to define (some of) the attributes and behaviour of the
class, so that when objects (or instances) of the class Member are created (or instantiated) we can give
values to these attributes by making use of the behaviour of the class.

For the purposes of our example, we will identify (some of) the attributes and behaviour of the class
named Member as follows.

Attributes of the Member Class

N. B. Attributes are categorized as one of a type: this can be a primitive data type or a class type as shown
in the table on the next page.

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/pdf/117887/14

In cooperation with textbooktorrents.com

TEXTBOOK TORRENTS

Download free books at BookBooN.com

Java: The Fundamentals of
Objects and Classes

15

Object-Oriented Programming: What is an Object?

Attribute Identifier Type Comments

first name firstName string A string will be used to store the value of this
attribute

last name lastName string Similarly, a string is used

user name userName string

password password string

membership card card MembershipCard The type is a class, because the member’s card
is an object in its own right: note, therefore, the
capital ‘M’ in the type MembershipCard

The first column lists the properties or attributes of the class, expressed in a natural language. The second
column implies that each attributes is given a name, known as its identifier. Note the convention for
identifiers: for example, firstName, not firstname. In short, identifiers that comprise compound words
begin with a lower case letter and all subsequent words in the compound word are capitalised. The third
column gives the type of the attribute, i.e. what kind of data value it represents.

A critically important consequence of identifying types in an OOP language is that they can either be of
the primitive data type, such as integer or string and so on as in a typical procedural programming
language, or they can be a class types. For example, the list of attributes above includes one which is a
class type. The reason for this is that, intuitively, a member’s membership card is an object in its own right,
with its own attributes and behaviour. We cannot represent such a complex entity in a procedural language
by using primitive data types. Thus, the third column illustrates that OO design represents the non-
primitive data types in an application as objects of one of a type. This feature is one of the key differences
between a non-OO programming language and an OO programming language and gives that latter vastly
superior flexibility compared to the former when it comes to identifying the attributes of the complex
entities associated with an application.

Behaviour Elements of the Member Class

In order to represent a real-world instance of the class Member, we need to identify the behaviour that is
used to manipulate the values of its attributes. The syntax that is used to describe behaviour in a language-
independent way is as follows:

behaviourName(a comma-separated list of parameterName: parameterType): returnType

where behaviourName is an arbitrary but meaningful name for the behaviour; note that it begins with a
lower case letter.

In cooperation with textbooktorrents.com

TEXTBOOK TORRENTS

Download free books at BookBooN.com

Java: The Fundamentals of
Objects and Classes

16

Object-Oriented Programming: What is an Object?

The terms parameter and return type are explained more fully later. For the time being, the
parameterName can be thought of as an arbitrary (but meaningful) name of the parameterType, whose
value is passed as an argument to the behaviour when a message is sent to the object to ask for the
behaviour to be executed. The returnType is the type (if any) that the behaviour supplies when it
completes its execution. In this sense, the behaviour is said to return a type when it is executed. For
example, figures 1.2 and 1.3 show an object whose behaviour returns an object that represents a number.

In the context of behaviour, a very important consequence of the OO approach is that parameters and
return types can be primitive data types or class types. Thus, behaviour can be designed so that primitive
data types and/or objects can be passed to it as arguments. An argument that is an object is passed to the
behaviour using the same mechanism as is used to pass a primitive data type to it. Similarly, behaviour
can return an object or a primitive data type, but not both at the same time. For example, Figure 1.3 shows
an object passed as an argument to the ‘+’ behaviour. Similarly, the ‘+’ behaviour could have been
designed to accept an integer argument passed to it and even return an integer when the button is pressed
to execute the behaviour. In practice, actual objects are not passed as arguments; instead, a reference to
the object is passed. We will return to this concept in a later chapter.

Before we go any further, let us use the syntax for expressing behaviour to consider an example of using
or executing behaviour by passing an argument to it. Let us assume that one of the behaviour elements of
our Member class is defined as setPassword(pword: string) – note that there is no return type - where
setPassword is the name of the behaviour, and pword is the identifier (i.e. the name) of its only parameter
which is of the string data type. Thus, when the behaviour is executed, it will expect a value of the string
type to be passed to it in the form of a message. A programming statement such as the following illustrates
the concept of passing such a value to the behaviour when it is executed:

setPassword(“abc999”);

The programming statement above sends a message to the Member object and asks its run-time system to
execute the behaviour and, in doing so, the statement is used to pass the argument to the behaviour. In
such a statement, we can think of the pair of brackets () as acting as a ‘payload’ for the behaviour in that
it provides a simple mechanism to pass values of data or (references to) objects to the behaviour so that
they can be used by the code associated with that behaviour.

Behaviour can be defined such that it does not expect arguments to be passed to it. In such a case,
the payload is empty when the behaviour is executed. Consider, for example, the following
programming statement:

getPassword();

The message to the Member object to request the execution of the behaviour getPassword has been
written so as not to expect value(s) of argument(s) to be passed to it. The behaviour getPassword is
merely programmed to ‘get’ the current value of an attribute; it does not need any data or objects to do this.

We will use programming statements such as those above in the next chapter, when we write the class
definition for the Member class.

In cooperation with textbooktorrents.com

TEXTBOOK TORRENTS

Download free books at BookBooN.com

Java: The Fundamentals of
Objects and Classes

17

Object-Oriented Programming: What is an Object?

In the case of the behaviour setPassword(pword: string), we have assumed, intuitively, that the
behaviour does not return a value of a type when it is executed. On the other hand, let us assume that the
behaviour getPassword does return a value when it is executed and that it is correctly described as
getPassword(): string to imply that the behaviour returns a value of the type string. Thus, the statement

getPassword();

actually produces a result in that it returns a string value that we should be able to output in some way.

The behaviour setPassword(pword: string) and getPassword(): string (discussed above) leads to a
fuller description of the behaviour of the class Member. The general syntax used to describe behaviour can
be used to describe the specific behaviour of the Member class as shown on the next page, where the name
of the behaviour is followed by its parameters in parenthesis and its return type (if any) following a colon.

Always aiming for higher ground.
Just another day at the office for a Tiger.

©
2009 Accenture. All rights reserved.

Visit student.accentureforum.dk

Join the Accenture High Performance Business Forum

On Thursday, April 23rd, Accenture invites top students
to the High Performance Business Forum where you
can learn how leading Danish companies are using
the current economic downturn to gain competitive
advantages. You will meet two of Accenture’s global
senior executives as they present new original research
and illustrate how technology can help forward
thinking companies cope with the downturn.

Visit student.accentureforum.dk to see the program
and register

P
le

as
e

cl
ic

k
th

e
ad

ve
rt

http://bookboon.com/count/pdf/117887/17

In cooperation with textbooktorrents.com

TEXTBOOK TORRENTS

Download free books at BookBooN.com

Java: The Fundamentals of
Objects and Classes

18

Object-Oriented Programming: What is an Object?

setFirstName(firstName: string)
getFirstName(): string
setLastName(lastName: string)
getLastName(): string
setUserName(username: string)
getUserName(): string
setPassword(pword: string)
getPassword(): string
setCard(card: MembershipCard)
getCard(): MembershipCard

Note that as a general –but not universal – rule, each attribute has associated with it a pair of behaviour
elements setXxx and getXxx, where Xxx is the capitalized name of the attribute. Broadly speaking, the
reason for this is so that we have sufficient behaviour to be able to set the value of an attribute and also to
get (i.e. find out) the value of the attribute at any point in a programme.

Note, again, the way that behaviour names are written: they begin with a lower case letter and can be
compound words, where words other than the first begin with a capital letter.

Referring to the list above, the setFirstName behaviour can be used to pass an argument of type string

with an identifier firstName to an object of the class Member with the purpose of setting the value of the
object’s firstName attribute to the value of the argument. The getFirstName behaviour can be used to find
out the current value of the attribute firstName in that the behaviour is defined to return the value of the
attribute firstName as a string. A similar analysis applies to the next six behaviour elements in the list.

The purpose of setCard is to pass the object reference card, of the class type MembershipCard, as an
argument to the method in order to set the value of the attribute with the identifier card to refer to a
MembershipCard object. Invoking this method sets the value of the attribute card to the reference to a
previously-created MembershipCard object passed as the only argument to the behaviour. In effect, this
behaviour element associates a member of the Media Store with a membership card. We will see, as the
themed application develops in later chapters, that the behaviour setCard is used to give a member his or
her (virtual) membership card.

The purpose of getCard is to return the current value of the attribute card as an object reference of the
MembershipCard type. Invoking getCard, therefore, returns a reference to a MembershipCard object. In
effect, this behaviour retrieves the member’s membership card so that transactions can be carried out
with it.

It should be noted that the list of behaviour elements of the class Member, shown above, illustrates that a
behaviour element can work with values of primitive data types and/or class types when passed as
arguments. Similarly a behaviour’s return type can be a primitive data types or a class types. In short, the
use of objects as attributes, arguments and return types gives OO programming languages an enormous
advantage over non-OO programming languages in that the former are more easily and readily used to
represent actual things or entities in the world around us compared to the latter. In practice, as we will find
out in due course, an OO language can also represent abstract entities in an application.

In cooperation with textbooktorrents.com

TEXTBOOK TORRENTS

Download free books at BookBooN.com

Java: The Fundamentals of
Objects and Classes

19

Object-Oriented Programming: What is an Object?

The list of behaviour elements of the Member class shows that the (arbitrary but meaningful) identifiers of
the parameters associated with behaviour elements may be the same as those of the attributes that the
behaviour manipulates. We will address this apparent clash when the OOA & D of our Member class is
translated into Java source code in the next chapter. However it should be noted that it is not mandatory
for identifiers of parameters and attributes to be the same.

Let us define some terms at this point.

Parameter names are arbitrary but meaningful identifiers for the types that are
passed to behaviour. Behaviour may or may not have parameters.
Arguments represent actual values passed to behaviour when it is executed so that it
can use them for some specific purpose within the implementation of that behaviour.
The type of an argument can be one of the primitive data types, defined in the
implementation language of the class, or it can be a class type.

 The return type is the type that the behaviour returns when the behaviour is
executed. The type can be one of the primitive data types, defined in the
implementation language of the class, or can be a class type. On the other hand,
behaviour may have no return type; i.e. it does not return a value when it is
executed.

It can be seen that the first behaviour shown in the list for the Member class has no return type, the second
returns a primitive type and the last returns a class type. It seems reasonably intuitive that the
setFirstName behaviour is likely to need an argument to do its work and that the getPassword behaviour
is not likely to need an argument but it is likely to return a value – in this case, a string value.

Remember that the attributes and behaviour in the lists above are a language-independent way of
describing these two aspects of the class Member. However they are merely lists: what we need now is a
diagram that helps us to design the class of our Member objects.

The next section summarises the attributes and behaviour of the class Member in terms of a diagram
known as a Class Diagram. Class diagrams are part of the Unified Modeling Language methodology
(UML) for OOA & D and are a language-independent way of describing a class.

1.3.5 The Class Diagram of the Member Class

Up to this point in the chapter, we have side-stepped any discussion about exactly how an object is created
from its class. Just as Mother Nature knows how to create objects of the class Cat from her template for
the species that we call ‘cat’, the OOP run-time system needs a way of making or constructing objects of
the class Member and storing them in some convenient place in (computer) memory. An OOP language
uses an entity known as a constructor to construct objects of a class. Thus in addition to attributes and
behaviour, one or more constructors form part of a class diagram. We will explore constructors in more
detail in later chapters. For the time being, we will make the constructor for the Member class
straightforward.

In cooperation with textbooktorrents.com

TEXTBOOK TORRENTS

Download free books at BookBooN.com

Java: The Fundamentals of
Objects and Classes

20

Object-Oriented Programming: What is an Object?

The first section of a class diagram contains the class name, the second section lists the attributes and the
third section lists constructors and behaviour. Thus, the class diagram of the Member class derives directly
from the attributes and behaviour discussed earlier in this chapter, with the addition of a no-arguments
constructor: it is shown below.

Member

- firstName: string
- lastName: string
- userName: string
- password: string
- card: MembershipCard

+ Member()
+ setFirstName(firstName: string)
+ getFirstName(): string
+ setLastName(lastName: string)
+ getLastName(): string
+ setUserName(userName: string)
+ getUserName(): string
+ setPassword(pword: string)
+ getPassword(): string
+ setCard(card: MembershipCard)
+ getCard(): MembershipCard

Note that constructors are underlined in class diagrams.

In the diagram, the qualifier ‘-‘ mean private and the qualifier ‘+’ means public, so that access to data
values conforms to the principal of encapsulation discussed earlier.

A further point about class diagrams should be borne in mind at this point: a class diagram identifies types,
parameter and attribute in a language-independent way; its purpose is not to give implementation details
of behaviour – this aspect of OOA & D is language specific and it outside the scope of a class diagram.
However, as we will se in the next chapter, a class diagram contains sufficient information to enable the
programmer to declare attributes, constructors and behaviour elements. The details about the
implementation of the elements of a class are obtained from other aspects of OOA & D and the business
requirements of the application.

The next chapter takes the class diagram above and explains how the information in it translated into Java
source code.

