Cheatography

Chapter 1 - Basics

Electric current = (i): time rate of change of charge, measured in amperes (A).
Charge =(q): integral of i

- Voltage (or potential
difference) $=(\mathrm{V})$: energy required to move a unit charge through an element
Power $=(W)$: vi $=\left(i^{\wedge} 2\right) R$
Passive sign convention: when the current enters through the positive terminal of an element ($\mathrm{p}=$ +vi)

Remember:

+Power absorbed = -Power supplied --> sum of power in a circuit $=0$
Energy (J) = integral of P

Chapter 2

Ohms Law: $v=i \mathrm{R}$
Conductance (G) $=1 / R=i / v$
Branch: single element such as a voltage source or a resistor.
Node: point of connection between two or more branches
Loop: any closed path in a circuit.
Kirchhoff's current law (KCL): algebraic sum of currents entering a node (or a closed boundary) is zero.

Chapter 2 (cont)
Kirchhoff's voltage law (KVL): algebraic sum of all voltages around a closed path (or loop) is zero.
Voltage D : v1 = (R 1) / (R1 + R2) $)$ * v

Voltage D: v2 = ((R2 / (R1 + R2)) * v
Current D: i1 = (R2 *i) / (R1 + R2)
Current D: i2 = (R1 *i) / (R1 + R2)

Chapter 3 - Methods of Analysis

Nodal Analysis: want to fine the node voltages
Step 1:
select reference node

- assign voltages v1 --> vn to
remaining nodes
Step 2:
apply KCL to each node
- want to express branch currents in
terms of voltage
Step 3:
solve for unknowns
Important:
current flows from high to low
(+ ==> -)

SuperNode Properties

1. The voltage source inside the supernode provides a constraint equation needed to solve for the node voltages
2. Supernode had no voltage of its own
3. Supernode requires the application of both KCL and KVL Mesh Analysis

Step 1:
Assign mesh currents or loops
Step 2:
Apply KVL

- use OHMS LAW to express voltages in terms of the mesh current
Step 3:
Solve for the unknown
Supermesh
- when two meshes have an independent or dependent CURRENT source between them

Chapter 4 - Circuit Theorems

Superposition

principal states that the VOLTAGE ACROSS or CURRENT
THROUGH an element in a linear circuit is the SUM of the
VOLTAGES OR CURRENTS that are caused after solving for each INDEPENDENT source separately How to solve a superposition circuit
Step 1: Turn OFF ALL
independent sources except for
ONE ==> find voltage or current
Step 2: Repeat above for all other independent sources
Step 3: Add all voltages/currents together to find final value
Thevenin's Theorem
$\mathrm{V}(\mathrm{th})=\mathrm{V}(\mathrm{oc})$

Chapter 4 - Circuit Theorems
 (cont)

circuit with Load: $I(L)=V$ (th) / (R(th)
$+R(L))=\Rightarrow V(L)=R(L) I(L)=\Rightarrow$
$(R(L) /((R(t h)+R(L)) V($ th $))$

Norton's Theorem

$R(n)=R(t h)$
$I(n)=i(s c)==>(s c)=$ short circuit
$I(n)=V($ th $) / R($ th $)$
Maximum Power Transfer
max power is transferred to the
LOAD RESISTOR when the LOAD
RESISTOR is EQUAL to the
THEVENIN RESISTANCE:
$R(L)=R($ th $)$
$p(\max)=V(\text { th })^{2} / 4 R($ th $)$

Chapter 6 - Capacitors and Inductors

Capacitors

$q=C$ *
capacitance: ratio of the charge on one plate to the voltage difference between the two plates $\mathrm{i}(\mathrm{t})=\mathrm{C}(\mathrm{dv} / \mathrm{dt})$
$v(t)=1 / C[$ Integral: $i(T) d T+v(t 0))]$
$\mathrm{T}=$ time constant
energy $(w)=.5 C v^{2}$
Important:
VOLTAGE of a capacitor cannot change instantaneously
Capacitors in Series: $1 / \mathrm{Ceq}=$
$1 / C 1+1 / C 2+1 / C n$
Capacitors in Parallel: Ceq = C1
$+\mathrm{C} 2+\mathrm{Cn}$
Inductors
$\mathrm{v}=\mathrm{L}(\mathrm{di} / \mathrm{dt})$

Published 8th May, 2015.
Last updated 8th May, 2015.
Page 1 of 3 .

Sponsored by CrosswordCheats.com Learn to solve cryptic crosswords!
http://crosswordcheats.com

Cheatography

Chapter 6 - Capacitors and
Inductors (cont)
$\mathrm{i}=(1 / \mathrm{L})$ [Integral: $(\mathrm{v}(\mathrm{T}) \mathrm{dT}+\mathrm{i}(\mathrm{t} 0)$] energy $(w)=.5 \mathrm{~L}^{2}$

Important:
CURRENT through an inductor cannot change instantaneously Inductors in Series:

Leq $=\mathrm{L} 1+\mathrm{L} 2+\mathrm{Ln}$ Inductors in Parallel:
$1 /$ Leq $=1 /$ L1 $+1 /$ L2 $+1 /$ Ln

Chapter 7 - First Order Circuits

Source Free RC Circuits
$\mathrm{V}(\mathrm{t})=\mathrm{V} 0$ * $\mathrm{e}^{-\mathrm{t} / \mathrm{T}} \Rightarrow \mathrm{T}=\mathrm{RC}$
How to Solve SOURCE FREE RC CIRCUITS

Step 1: Find v0 = V0 across the capacitor
Step 2: Find T (time constant)

Source Free RL Circuits

$i(t)=10^{*} e^{-t / T} \Rightarrow T=L / R$
$\operatorname{vr}(\mathrm{t})=\mathrm{iR}=10$ * $\mathrm{Re}^{-\mathrm{t} / \mathrm{T}}$
How to Solve SOURCE FREE RL

CIRCUITS

Step 1: Find $\mathrm{i}(0)=10$ through the inductor
Step 2: Find T (time constant)
Step response of an RC circuit
$\mathrm{v}(\mathrm{t})=\mathrm{V} 0$ when $\mathrm{t}<0$
$\mathrm{v}(\mathrm{t})=\mathrm{Vs}+(\mathrm{V} 0-\mathrm{Vs}) \mathrm{e}^{-\mathrm{t} / \mathrm{T}}$ when t\rangle
0
$\mathrm{v}=\mathrm{vn}+\mathrm{vf}==>\mathrm{vn}=\mathrm{V} 0 \mathrm{e}^{\mathrm{t} / \mathrm{T}}, \mathrm{vf}=$
$\mathrm{Vs}\left(1-e^{-t / T}\right)$
OR
$v(t)=v($ infinity $)+[(v(0)-$
v (infinity)] $\mathrm{e}^{-\mathrm{t} / \mathrm{T}}$

Chapter 7 - First Order Circuits
 (cont)

How to solve a STEP RESPONSE OF AN RC CIRCUIT

Step 1: Find initial capacitor
voltage v0 ($\mathrm{t}<0$)
Step 2: Find final capacitor voltage $v($ in) $(\mathrm{t}>0$)
Step 3: Find T (time constant) ($\mathrm{t}>$ 0)

Step response of an RL circuit
$i(t)=i($ infiniti $)+[i(0)-i($ infinity $)] e^{-}$ t/T

How to solve a STEP RESPONSE OF AN RL CIRCUIT
Step 1: Find initial inductor current i0 ($\mathrm{t}=0$)

Step 2: Find final final inductor current i(inf) $==>(\mathrm{t}>0)$
Step 3: Find T (time constant) ($\mathrm{t}>$
0)

Chapter 8 - Second Order Circuits

Source Free RLC Circuits
$v(0)=1 / C$ [integral (idt = v0) from
0 to -infinity]
$i(0)=I(0)$
Determining Dampness
(a/pha) $=R /(2 L)$
(omega w0) = $1 /$ sqrt(LC)
1 - Overdamped ($\mathrm{a}>\mathrm{w} 0$)
$i(t)=A e^{s 1 t}+B e^{s 2 t}$
2 - Critically Damped ($\mathrm{a}=\mathrm{w} 0$)
$s 1=s 2=a$
$i(t)=(A+B t) e^{-a t}$
3 - Underdamped (a<w0)
$i(t)=e^{-a t}(A \cos (w 0 t)+B \sin (w 0 t))$

Chapter 8 - Second Order Circuits (cont)

Source Free Parallel Circuits roots of characteristic euqation
s1,2 $=-\mathrm{a}(+-) \operatorname{sqrt}\left(\mathrm{a}^{2}+w 0^{2}\right)$
$a=1 /(2 R C)$
w0 = 1/sqrt(LC)
1 - Overdamped ($\mathrm{a}>\mathrm{w} 0$)
$i(t)=A e^{s 1 t}+B e^{s 2 t}$
2 - Critically Damped ($\mathrm{a}=\mathrm{w} 0$)
$\mathrm{s} 1=\mathrm{s} 2=\mathrm{a}$
$i(t)=(A+B t) e^{-a t}$
3 - Underdamped ($\mathrm{a}<\mathrm{w} 0$)
$i(t)=e^{-\mathrm{at}}(A \cos (\mathrm{wd}(\mathrm{t}))+$
Bsin(wd(t)))
Step Response of a SERIES RLC Circuit

1 - Overdamped ($\mathrm{a}>\mathrm{w} 0$)
$\mathrm{v}(\mathrm{t})=\mathrm{Vs}+\mathrm{Ae}^{\mathrm{s} 1 \mathrm{t}}+\mathrm{Be}^{\mathrm{s} 2 \mathrm{t}}$
2 - Critically Damped ($\mathrm{a}=\mathrm{w} 0$)
$\mathrm{s} 1=\mathrm{s} 2=\mathrm{a}$
$v(t)=V s+(A+B t) e^{-a t}$
3 - Underdamped (a < w0)
$\mathrm{v}(\mathrm{t})=\mathrm{Vs}+\mathrm{e}^{-\mathrm{at}}(\mathrm{Acos}(\mathrm{wd}(\mathrm{t}))+$
Bsin(wd(t)))
Step Response of a PARALLEL
RLC Circuit
1-Overdamped ($\mathrm{a}>\mathrm{w} 0$)
$i(t)=I s+A e^{s 1 t}+B e^{s 2 t}$
2-Critically Damped ($\mathrm{a}=\mathrm{w} 0$)
$\mathrm{s} 1=\mathrm{s} 2=\mathrm{a}$
$i(t)=I s+(A+B t) e^{-a t}$
3 - Underdamped ($\mathrm{a}<\mathrm{w} 0$)
$\mathrm{i}(\mathrm{t})=\mathrm{I} \mathrm{s}+\mathrm{e}^{-\mathrm{at}}(\mathrm{Acos}(\mathrm{wd}(\mathrm{t}))+$
$B \sin (w d(t)))$

Chapter 9 - Sinusoids and Phasors

w = omega
 $T=2^{*}$ pie $/ w$

freq $=1 / T$ (Hertz)
$v(t)=v(m)^{*} \sin (w t+$ theta)
$v 1(t)=v(m)^{*} \sin (w t)$
$v 2(t)=v(m)^{*} \sin (w t+$ theta $)$
$\sin (A+-B)=\sin A \cos B+-\cos A \sin B$
$\cos (A+-B)=\cos A \cos B+-$
$\sin A \sin B$
$A \cos (w t)+B \sin (w t)=C^{*} \cos (w t-$
theta)
$C=\operatorname{sqrt}\left(A^{2}+B^{2}\right)$
theta $=\tan ^{-1}(\mathrm{~B} / \mathrm{A})$
Complex Numbers
rectangular form: $z=x+j y$
polar: $z=r<($ theta)
expolar: $z=r e j$ (theta)
$\sin : r\left(\cos (\right.$ theta $)+j^{*} \sin ($ theta $\left.)\right)$
$z=x+j y$
$\mathrm{z} 1=\mathrm{x} 1+\mathrm{jy} 1==\mathrm{r} 1<$ (theta) 1
z2 = x2 + jy2 == r2 < (theta) 2
operations
addition: $\mathrm{z} 1+\mathrm{z} 2==(\mathrm{x} 1+\mathrm{x} 2)+\mathrm{j}^{*}$ ($\mathrm{y} 1+\mathrm{y} 2$)
subtraction: $z 1-z 2==(x 1-x 2)+j^{*}$ (y1-y2)
multiplication: z1z2 == r1r2 <
((theta)1 + (theta)2)
division: $z 1 / z 2==r 1 / r 2<((t h e t a) 1$ (theta)2)
reciprocal: $1 / z=1 / r<-($ theta)
square: $\operatorname{sqrt}(z)=\operatorname{sqrt}(r)<($ theta $) / 2$

cheatography.com/lini/

Published 8th May, 2015.
Last updated 8th May, 2015.
Page 2 of 3 .

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

```
Chapter 9-Sinusoids and Phasors (cont)
complex conjugate: z* = x - jy = r <-(theta) = re-j(theta)
real vs. imaginary
e+-j(theta) = cos(theta) +- j*sin(theta)
cos(theta) = REAL
jsin(theta) = IMAGINARY
voltage-current relationship
Rv=Ri (time domain) v=RI (frequency domain)
L v = L(di/dt) (time) v = jwLI
C i = C(dv/dt) (time) V = I / jwC
Impedance vs. admittance
R Z = R (impedance) Y = 1/R
IZ = jwL Y = 1/ jwL
CZ = 1/ jwC Y = jwC
Complex Numbers with Impedance
Z = R + jx = |Z < (theta)
|Z = sqrt(R2 + X2)
(theta) = tan-1(X/R)
R= |Z|** cos(theta)
X= |Z|** sin(theta)
```


Chapter 10-AC Circuits

Analyzing AC Circuits

Step 1: Transform circuit to phasor or frequency domain
Step 2: Solve Using Circuit Techniques
Step 3: Transform phasor ==> time domain

By Lini
cheatography.com/lini/

Published 8th May, 2015.
Last updated 8th May, 2015.
Page 3 of 3 .

Sponsored by CrosswordCheats.com
Learn to solve cryptic crosswords!
http://crosswordcheats.com

