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About Me
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Trivadian since April 2000

– Senior Principal Consultant, Partner

– Member of the Board of Directors

– @phsalvisberg

– https://www.salvis.com/blog

– https://github.com/PhilippSalvisberg

Database centric development with Oracle database

Model Driven Software Development

Author of free SQL Developer Extensions PL/SQL Unwrapper, PL/SQL Cop, 

utPLSQL, plscope-utils, oddgen and Bitemp Remodeler
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https://twitter.com/phsalvisberg
https://www.salvis.com/blog
https://github.com/PhilippSalvisberg
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Testing with utPLSQL – Made Easy with SQL Developer4 22.11.2018

1. Introduction

2. Installation

3. Build & Run Tests in SQL Developer

4. Run Code Coverage Reports in SQL Developer
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Introduction



Why?
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Does it 

work?

Do we get 

the expected 

results?

Are the 

requirements 

met?

Is it 

complete?

Can I 

reproduce 

the bug?
Is the bug 

fixed?

Are there 

side-effects by 

the change?

"Unit"
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utPLSQL Test Scope
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GUI

API

Integration

Components

Unit

Source: Miško Hevery, The Clean Code Talks, Unit Testing, October 30, 2008,

https://www.youtube.com/watch?v=wEhu57pih5w&t=991

https://www.youtube.com/watch?v=wEhu57pih5w&t=991


utPLSQL Units Under Test
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Primary

Types

Packages

Procedures

Functions

Secondary

Non-PL/SQL Units

Views

Triggers

Tables



utPLSQL Suite – Open Source – Apache 2.0 License
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Mandatory

Core Testing Framework

– Schema installed in Oracle DB

– No repository

– Annotation based tests

Optional

Command Line Client

Maven Plugin

SQL Developer Extension



Test Declaration
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CREATE OR REPLACE PACKAGE test_package_name AS

--%suite

--%test

PROCEDURE procedure_name;

END;

--%suite(<description>)

--%suitepath(<path>)

--%displayame(<description>)

--%beforeall([…])

--%afterall([…])

--%beforeeach([…])

--%aftereach([…])

--%rollback(manual)

--%disabled

--%context

--%endcontext

--%displayname(<description>)

--%test(<description>)

--%throws(<exception>[,...])

--%beforeall

--%afterall

--%beforeeach

--%aftereach

--%beforetest([…])

--%aftertest([…])

--%rollback(manual)

--%disabled



Test Implementation
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CREATE OR REPLACE PACKAGE BODY test_package_name AS

PROCEDURE procedure_name IS

l_actual INTEGER := 0;

l_expected INTEGER := 1;

BEGIN

ut.expect(l_actual).to_equal(l_expected);

END procedure_name;

END;

Matcher:

be_between, be_empty, be_false, 

be_greater_than, be_greater_or_equal, 

be_less_or_equal, be_less_than, be_like, 

be_not_null, be_null, be_true, equal, 

have_count, match

Extended options for refcursor, object 

type, nested table and varray:

- include(<items>)

- exclude(<items>)

- unordered

- join_by(<items>)



Test Run
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test_package_name

procedure_name [.003 sec] (FAILED - 1)

Failures:

1) procedure_name

Actual: 0 (number) was expected to equal: 1 (number)

at "TEST_PACKAGE_NAME.PROCEDURE_NAME", line 7 ut.expect(l_actual).to_equal(l_expected);

Finished in .007015 seconds

1 tests, 1 failed, 0 errored, 0 disabled, 0 warning(s)

SET SERVEROUTPUT ON SIZE UNLIMITED

EXEC ut.run('test_package_name')
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Installation



Install utPLSQL Core Testing Framework 
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Download utPLSQL.zip from https://github.com/utPLSQL/utPLSQL/releases

Unzip utPLSQL.zip

cd source

sqlplus / as sysdba @install_headless.sql

– User UT3

– Password XNtxj8eEgA6X6b6f

– Tablespace USERS 

https://github.com/utPLSQL/utPLSQL/releases


Install utPLSQL for SQL Developer
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Download utplsql_for_SQLDev_*.zip 

from https://github.com/utPLSQL/utPLSQL-SQLDeveloper/releases

Start SQL Developer

Select "Check for Updates…" in the help menu

Use the "Install From Local File" option to install the previously downloaded 

"utplsql_for_SQLDev_*.zip" file

– User must have read/write access to SQL Developer installation directory

(run as Administrator, if required)

Restart SQL Developer

https://github.com/utPLSQL/utPLSQL-SQLDeveloper/releases
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Build & Run Tests

in SQL Developer



Starting Point?
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1 2



Test First – Create Test from Template
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Test First – Complete Test & Run
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Configure utPLSQL
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Test Last – Create Test from Existing Code
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Test Last – Generate Multiple Test Skeletons 
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Run Code Coverage Reports

in SQL Developer



Code Coverage – Defintion
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A measure used to describe the 

degree to which the source code of a program is executed

when a particular test suite runs.

Source: https://en.wikipedia.org/wiki/Code_coverage

https://en.wikipedia.org/wiki/Code_coverage


Line Coverage
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CREATE OR REPLACE FUNCTION f(a IN INTEGER) RETURN INTEGER IS

BEGIN

IF a IS NULL THEN 

RETURN 0;

ELSE 

RETURN a*a; 

END IF;

END f;

/

Two test cases for 

100% coverage



Code Block Coverage (12.2 and higher)
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CREATE OR REPLACE FUNCTION f(a IN INTEGER) RETURN INTEGER IS

BEGIN

IF a IS NULL THEN RETURN 0; ELSE RETURN a*a; END IF;

END f;

/

CREATE OR REPLACE FUNCTION f(a IN INTEGER) RETURN INTEGER IS

BEGIN

RETURN coalesce(a*a, 0);

END f;

/

Two test cases for 

100% coverage

One test case for 

100% coverage

when passing NULL



utPLSQL Combines Line & Code Block Coverage
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1 of 2 

code blocks 

covered



Run Code Coverage Report
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Code Coverage Report
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Core Messages



The First Step Is the Hardest
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Set up a test-friendly environment

– Install utPLSQL core testing framework

– Install SQL Developer for utPLSQL

Start with tests

– to reproduce bugs

– for new requirements



Trivadis @ DOAG 2018
#opencompany

Booth: 3rd floor – next to the escalator

We share our know how!
Simply drop by, live presentations
and documents archive

T-Shirts, contest and much more

We look forward to your visit
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