
Testing with utPLSQL –
Made Easy with SQL Developer

Philipp Salvisberg

phsalvisberg DOAG2018



About Us – Added Value from Data

Testing with utPLSQL – Made Easy with SQL Developer2 22.11.2018



About Me

3

Trivadian since April 2000

– Senior Principal Consultant, Partner

– Member of the Board of Directors

– @phsalvisberg

– https://www.salvis.com/blog

– https://github.com/PhilippSalvisberg

Database centric development with Oracle database

Model Driven Software Development

Author of free SQL Developer Extensions PL/SQL Unwrapper, PL/SQL Cop, 

utPLSQL, plscope-utils, oddgen and Bitemp Remodeler

Testing with utPLSQL – Made Easy with SQL Developer22.11.2018

https://twitter.com/phsalvisberg
https://www.salvis.com/blog
https://github.com/PhilippSalvisberg


Agenda

Testing with utPLSQL – Made Easy with SQL Developer4 22.11.2018

1. Introduction

2. Installation

3. Build & Run Tests in SQL Developer

4. Run Code Coverage Reports in SQL Developer

5. Core Messages



Testing with utPLSQL – Made Easy with SQL Developer5 22.11.2018

Introduction



Why?

Testing with utPLSQL – Made Easy with SQL Developer6 22.11.2018

Does it 

work?

Do we get 

the expected 

results?

Are the 

requirements 

met?

Is it 

complete?

Can I 

reproduce 

the bug?
Is the bug 

fixed?

Are there 

side-effects by 

the change?

"Unit"



u
tP

L
S

Q
L

utPLSQL Test Scope

Testing with utPLSQL – Made Easy with SQL Developer7 22.11.2018

GUI

API

Integration

Components

Unit

Source: Miško Hevery, The Clean Code Talks, Unit Testing, October 30, 2008,

https://www.youtube.com/watch?v=wEhu57pih5w&t=991

https://www.youtube.com/watch?v=wEhu57pih5w&t=991


utPLSQL Units Under Test

Testing with utPLSQL – Made Easy with SQL Developer8 22.11.2018

Primary

Types

Packages

Procedures

Functions

Secondary

Non-PL/SQL Units

Views

Triggers

Tables



utPLSQL Suite – Open Source – Apache 2.0 License

Testing with utPLSQL – Made Easy with SQL Developer9 22.11.2018

Mandatory

Core Testing Framework

– Schema installed in Oracle DB

– No repository

– Annotation based tests

Optional

Command Line Client

Maven Plugin

SQL Developer Extension



Test Declaration

Testing with utPLSQL – Made Easy with SQL Developer10 22.11.2018

CREATE OR REPLACE PACKAGE test_package_name AS

--%suite

--%test

PROCEDURE procedure_name;

END;

--%suite(<description>)

--%suitepath(<path>)

--%displayame(<description>)

--%beforeall([…])

--%afterall([…])

--%beforeeach([…])

--%aftereach([…])

--%rollback(manual)

--%disabled

--%context

--%endcontext

--%displayname(<description>)

--%test(<description>)

--%throws(<exception>[,...])

--%beforeall

--%afterall

--%beforeeach

--%aftereach

--%beforetest([…])

--%aftertest([…])

--%rollback(manual)

--%disabled



Test Implementation

Testing with utPLSQL – Made Easy with SQL Developer11 22.11.2018

CREATE OR REPLACE PACKAGE BODY test_package_name AS

PROCEDURE procedure_name IS

l_actual INTEGER := 0;

l_expected INTEGER := 1;

BEGIN

ut.expect(l_actual).to_equal(l_expected);

END procedure_name;

END;

Matcher:

be_between, be_empty, be_false, 

be_greater_than, be_greater_or_equal, 

be_less_or_equal, be_less_than, be_like, 

be_not_null, be_null, be_true, equal, 

have_count, match

Extended options for refcursor, object 

type, nested table and varray:

- include(<items>)

- exclude(<items>)

- unordered

- join_by(<items>)



Test Run

Testing with utPLSQL – Made Easy with SQL Developer12 22.11.2018

test_package_name

procedure_name [.003 sec] (FAILED - 1)

Failures:

1) procedure_name

Actual: 0 (number) was expected to equal: 1 (number)

at "TEST_PACKAGE_NAME.PROCEDURE_NAME", line 7 ut.expect(l_actual).to_equal(l_expected);

Finished in .007015 seconds

1 tests, 1 failed, 0 errored, 0 disabled, 0 warning(s)

SET SERVEROUTPUT ON SIZE UNLIMITED

EXEC ut.run('test_package_name')



Testing with utPLSQL – Made Easy with SQL Developer13 22.11.2018

Installation



Install utPLSQL Core Testing Framework 

Testing with utPLSQL – Made Easy with SQL Developer14 22.11.2018

Download utPLSQL.zip from https://github.com/utPLSQL/utPLSQL/releases

Unzip utPLSQL.zip

cd source

sqlplus / as sysdba @install_headless.sql

– User UT3

– Password XNtxj8eEgA6X6b6f

– Tablespace USERS 

https://github.com/utPLSQL/utPLSQL/releases


Install utPLSQL for SQL Developer

Testing with utPLSQL – Made Easy with SQL Developer15 22.11.2018

Download utplsql_for_SQLDev_*.zip 

from https://github.com/utPLSQL/utPLSQL-SQLDeveloper/releases

Start SQL Developer

Select "Check for Updates…" in the help menu

Use the "Install From Local File" option to install the previously downloaded 

"utplsql_for_SQLDev_*.zip" file

– User must have read/write access to SQL Developer installation directory

(run as Administrator, if required)

Restart SQL Developer

https://github.com/utPLSQL/utPLSQL-SQLDeveloper/releases


Testing with utPLSQL – Made Easy with SQL Developer16 22.11.2018

Build & Run Tests

in SQL Developer



Starting Point?

Testing with utPLSQL – Made Easy with SQL Developer17 22.11.2018

1 2



Test First – Create Test from Template

Testing with utPLSQL – Made Easy with SQL Developer18 22.11.2018



Test First – Complete Test & Run

Testing with utPLSQL – Made Easy with SQL Developer19 22.11.2018



Configure utPLSQL

Testing with utPLSQL – Made Easy with SQL Developer20 22.11.2018



Test Last – Create Test from Existing Code

Testing with utPLSQL – Made Easy with SQL Developer21 22.11.2018



Test Last – Generate Multiple Test Skeletons 

Testing with utPLSQL – Made Easy with SQL Developer22 22.11.2018



Testing with utPLSQL – Made Easy with SQL Developer23 22.11.2018

Run Code Coverage Reports

in SQL Developer



Code Coverage – Defintion

Testing with utPLSQL – Made Easy with SQL Developer24 22.11.2018

A measure used to describe the 

degree to which the source code of a program is executed

when a particular test suite runs.

Source: https://en.wikipedia.org/wiki/Code_coverage

https://en.wikipedia.org/wiki/Code_coverage


Line Coverage

Testing with utPLSQL – Made Easy with SQL Developer25 22.11.2018

CREATE OR REPLACE FUNCTION f(a IN INTEGER) RETURN INTEGER IS

BEGIN

IF a IS NULL THEN 

RETURN 0;

ELSE 

RETURN a*a; 

END IF;

END f;

/

Two test cases for 

100% coverage



Code Block Coverage (12.2 and higher)

Testing with utPLSQL – Made Easy with SQL Developer26 22.11.2018

CREATE OR REPLACE FUNCTION f(a IN INTEGER) RETURN INTEGER IS

BEGIN

IF a IS NULL THEN RETURN 0; ELSE RETURN a*a; END IF;

END f;

/

CREATE OR REPLACE FUNCTION f(a IN INTEGER) RETURN INTEGER IS

BEGIN

RETURN coalesce(a*a, 0);

END f;

/

Two test cases for 

100% coverage

One test case for 

100% coverage

when passing NULL



utPLSQL Combines Line & Code Block Coverage

Testing with utPLSQL – Made Easy with SQL Developer27 22.11.2018

1 of 2 

code blocks 

covered



Run Code Coverage Report

Testing with utPLSQL – Made Easy with SQL Developer28 22.11.2018



Code Coverage Report

Testing with utPLSQL – Made Easy with SQL Developer29 22.11.2018



Testing with utPLSQL – Made Easy with SQL Developer30 22.11.2018

Core Messages



The First Step Is the Hardest

Testing with utPLSQL – Made Easy with SQL Developer31 22.11.2018

Set up a test-friendly environment

– Install utPLSQL core testing framework

– Install SQL Developer for utPLSQL

Start with tests

– to reproduce bugs

– for new requirements



Trivadis @ DOAG 2018
#opencompany

Booth: 3rd floor – next to the escalator

We share our know how!
Simply drop by, live presentations
and documents archive

T-Shirts, contest and much more

We look forward to your visit

22.11.2018 Testing with utPLSQL – Made Easy with SQL Developer32


