Parallel Programming
for the Web

Stephan Herhut, Richard L.

Hudson, Tatiana Shpeisman,
Jaswanth Sreeram

HotPar ‘12, June, 7th 2012

JavaScript® - What You Need To Know

« Itis not Java*

« Blend of many programming paradigms
Object oriented with prototypes
Higher-order functions and first class function objects
Dynamically typed and interpreted

« Safety and security built in
Requirement for web programming
Managed runtime
No pointers, no overflows, ...

« Designed for portability
Fully abstracts hardware capabilities

Concurrency in JavaScript®

Cooperative multi-tasking
Scripts compete with the browser for computing resources
Event driven execution model

Concurrent programming mindset
Asynchronous call-backs for latency hiding

Fully deterministic
Run-to-completion semantics
No concurrent side effects

No support for concurrent execution
Single threaded evaluation of JavaScript

Yet Another Parallel Programming API?

Multilisp S

-I-D o
“OpenCLop ¥

enACC
Parlog

XIO‘Ug

W

Design
Considerations

Language Design with the Web in Mind

1. Ease of use
Build on developer’s existing knowledge
Allow for mash-up of sequential and parallel code

“Meant to be a scripting language [...]
for the designer, the amateur
programmer, the beginner
programmer”

Brendan Eich, CTO Mozilla

Language Design with the Web in Mind

1. Ease of use
Build on developer’s existing knowledge
Allow for mash-up of sequential and parallel code

2. Platform independent
Support all kinds of platforms, parallel or not
Perform well on different parallel architectures (multi-core,
GPUs, ...)
3. Suitable for the Open Web
Meet existing safety and security promises

Needs to be reasonably easy to implement in JavaScript JIT
engines

Challenge: meet these criteria and get good performance

Design Choices

« Performance portability
Use High-Level Parallel Patterns

« Deterministic execution model
No side effects: shared state is immutable
Require commutative and associative operators
No magic: floating point anomalies may still occur

« Support mash-up coding

All code still written purely in JavaScript
Looks like JavaScript*, behaves like JavaScript*

« Maintain JavaScript*’s Safety and Security
Use fully managed runtime

River Trail API

Three Pillar Approach

- Data structure: ParallelArray
Immutable, dense and homogeneous

« Six Methods: map, combine, reduce, scan, filter, scatter

Provide the basic skeletons for parallel computing
Typically creates a freshly minted ParallelArray

« Elemental functions (kernel functions)
Written purely in JavaScript
Side effect free

pa = new ParallelArray([1, 2, 3, 4]);

pa.map (function (v) { return v+l; })

An Example: Grayscale Conversion

pixelData.map (toGrayScale)
.map (function toRGBA (color) {
return [color,color,color,255];

}

Prototype
Implementation

Compiling River Trail (Prototype)

Type inference
« Infers array types and shapes
« Checks for side effects

« Representation analysis
« Computes bounds on local
variables
« Updates type information of
known Integer numbers

« Static memory allocation
River hrail « Bounds check elimination

Ceomipiler « Code generation
« Emits OpenCL code

Compiling River Trail (Prototype)

Ope“CL “ multi-core
Kermel CPUs

RIVEF el
Clompller

-

SIMD
instructions

Performance Results: Particle Physics

60

50

40

30

20

Frames/Second

10

1 2 3 4 5 6 7

of runtime threads

Particle model (O(n2)) computed using River Trail on a 2nd
Generation Core i7 with 4 cores

http://github.com/RiverTrail/RiverTrail/wiki

Performance Results: Matrix Matrix Multiply

12 10.99

10

2 1
]

JavaScript seq. C seq. ParallelArray

O(n3) dense matrix matrix multiplication on 1000 x 1000 element matrices;
dual-core 2"d Generation Core i5 with HyperThreading enabled and 4GB RAM;
JavaScript* benchmarks use Firefox 8

Status Quo

« Open source Firefox prototype available on GitHub
Pre-built binary extension for Firefox 12
Sequential library fall back for other browsers

« ECMAScript proposal of the full API published
Removes many limitations of the prototype

* First sequential implementation for SpiderMonkey
Lives in Mozilla’s IonMonkey branch
Intended as API testing vehicle

http://github.com/RiverTrail/RiverTrail/wiki

http://wiki.ecmascript.org/doku.php?id=strawm
an:data parallelism

