
1

Parallel Programming
for the Web

Stephan Herhut, Richard L.
Hudson, Tatiana Shpeisman,
Jaswanth Sreeram

HotPar ‘12, June, 7th 2012

2

JavaScript* – What You Need To Know

• It is not Java*

• Blend of many programming paradigms

• Object oriented with prototypes

• Higher-order functions and first class function objects

• Dynamically typed and interpreted

• Safety and security built in

• Requirement for web programming

• Managed runtime

• No pointers, no overflows, …

• Designed for portability

• Fully abstracts hardware capabilities

3

Concurrency in JavaScript*

• Cooperative multi-tasking

• Scripts compete with the browser for computing resources

• Event driven execution model

• Concurrent programming mindset

• Asynchronous call-backs for latency hiding

• Fully deterministic

• Run-to-completion semantics

• No concurrent side effects

• No support for concurrent execution

• Single threaded evaluation of JavaScript

4

Yet Another Parallel Programming API?

Design
Considerations

5

6

Language Design with the Web in Mind

1. Ease of use

– Build on developer’s existing knowledge

– Allow for mash-up of sequential and parallel code

“Meant to be a scripting language […]
for the designer, the amateur
programmer, the beginner
programmer”

Brendan Eich, CTO Mozilla

7

Language Design with the Web in Mind

1. Ease of use

– Build on developer’s existing knowledge

– Allow for mash-up of sequential and parallel code

2. Platform independent

– Support all kinds of platforms, parallel or not

– Perform well on different parallel architectures (multi-core,
GPUs, …)

3. Suitable for the Open Web

– Meet existing safety and security promises

– Needs to be reasonably easy to implement in JavaScript JIT
engines

Challenge: meet these criteria and get good performance

8

Design Choices

• Performance portability

⇒ Use High-Level Parallel Patterns

• Deterministic execution model

⇒ No side effects: shared state is immutable

⇒ Require commutative and associative operators

⇒ No magic: floating point anomalies may still occur

• Support mash-up coding

⇒ All code still written purely in JavaScript

⇒ Looks like JavaScript*, behaves like JavaScript*

• Maintain JavaScript*’s Safety and Security

⇒ Use fully managed runtime

9

River Trail API

10

Three Pillar Approach

• Data structure: ParallelArray

• Immutable, dense and homogeneous

• Six Methods: map, combine, reduce, scan, filter, scatter

• Provide the basic skeletons for parallel computing

• Typically creates a freshly minted ParallelArray

• Elemental functions (kernel functions)

• Written purely in JavaScript

• Side effect free

pa = new ParallelArray([1, 2, 3, 4]);

pa.map(function (v) { return v+1; })

11

An Example: Grayscale Conversion

pixelData.map(toGrayScale)

 .map(function toRGBA(color) {

 return [color,color,color,255];

 }

)

Prototype
Implementation

13

• Type inference
• Infers array types and shapes
• Checks for side effects

• Representation analysis
• Computes bounds on local

variables
• Updates type information of

known Integer numbers

• Static memory allocation

• Bounds check elimination

• Code generation
• Emits OpenCL code

Compiling River Trail (Prototype)

JavaScript Engine

14

Compiling River Trail (Prototype)

JavaScript Engine OpenCL Runtime Hardware

multi-core

CPUs

SIMD

instructions

GPU

15

Performance Results: Particle Physics

Particle model (O(n2)) computed using River Trail on a 2nd
Generation Core i7 with 4 cores

http://github.com/RiverTrail/RiverTrail/wiki

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

F
r
a
m

e
s
/

S
e
c
o

n
d

of runtime threads

16

Performance Results: Matrix Matrix Multiply

O(n3) dense matrix matrix multiplication on 1000 x 1000 element matrices;

dual-core 2nd Generation Core i5 with HyperThreading enabled and 4GB RAM;

JavaScript* benchmarks use Firefox 8

1

5.421

10.99

0

2

4

6

8

10

12

JavaScript seq. C seq. ParallelArray

17

Status Quo

• Open source Firefox prototype available on GitHub

• Pre-built binary extension for Firefox 12

• Sequential library fall back for other browsers

• ECMAScript proposal of the full API published

• Removes many limitations of the prototype

• First sequential implementation for SpiderMonkey

• Lives in Mozilla’s IonMonkey branch

• Intended as API testing vehicle

http://github.com/RiverTrail/RiverTrail/wiki

http://wiki.ecmascript.org/doku.php?id=strawm

an:data_parallelism

