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CHAPTER 1

Introduction

1.1 INITIAL CONSIDERATIONS

Some years ago at Cranfield, where we had set up a flow rig for testing the effect
of upstream pipe fittings on certain flowmeters, a group of senior Frenchmen were
being shown around and visited this rig. The leader of the French party recalled a
similar occasion in France when visiting such a rig. The story goes something like
this.

A bucket at the end of a pipe seemed particularly out of keeping with the remain-
ing high tech rig. When someone questioned the bucket’s function, it was explained
that the bucket was used to measure the flow rate. Not to give the wrong impression
in the future, the bucket was exchanged for a shiny new high tech flowmeter. In due
course, another party visited the rig and observed the flowmeter with approval. “And
how do you calibrate the flowmeter?” one visitor asked. The engineer responsible
for the rig then produced the old bucket!

This book sets out to guide those who need to make decisions about whether
to use a shiny flowmeter, an old bucket, nothing at all, or a combination of these!
It also provides information for those whose business is the design, manufacture,
or marketing of flowmeters. I hope it will, therefore, be of value to a wide variety
of people, both in industry and in the science base, who range across the whole
spectrum from research and development through manufacturing and marketing.
In my earlier book on flow measurement (Baker 1988/9), I provided a brief statement
on each flowmeter to help the uninitiated. This book attempts to give a much more
thorough review of published literature and industrial practice.

This first chapter covers various general points that do not fit comfortably else-
where. In particular, it reviews recent guidance on the accuracy of flowmeters (or
calibration facilities).

The second chapter reviews briefly some essentials of fluid mechanics necessary
for reading this book. The reader will find a fuller treatment in Baker (1996), which
also has a list of books for further reading.

A discussion of how to select a flowmeter is attempted in Chapter 3, and some
indication of the variety of calibration methods is given in Chapter 4, before going
in detail in Chapters 5–17 into the various high (and low) tech meters available.
Chapter 18 deals with probes, Chapter 19 gives a brief note on modern control
systems, and Chapter 20 provides some reflections on manufacturing and markets.
Finally, Chapter 21 raises some of the interesting directions in which the technology
is likely to go in the future.

1
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2 INTRODUCTION

In this book, I have tried to give a balance between the laboratory ideal, the
manufacturer’s claims, the realities of field experience, and the theory behind the
practice. I am very conscious that the development and calibration laboratories are
sometimes misleading places, which omit the problems encountered in the field
(Stobie 1993), and particularly so when that field happens to be the North Sea. In
the same North Sea Flow Measurement Workshop, there was an example of the un-
expected problems encountered in precise flow measurement (Kleppe and Danielsen
1993), resulting, in this case, from a new well being brought into operation. It had
significant amounts of barium and strontium ions, which reacted with sulfate ions
from injection water and caused a deposit of sulfates from the barium sulfate and
strontium sulfate that were formed.

With that salutary reminder of the real world, we ask an important – and perhaps
unexpected – question.

1.2 DO WE NEED A FLOWMETER?

Starting with this question is useful. It may seem obvious that anyone who looks to
this book for advice on selection is in need of a flowmeter, but for the process engi-
neer it is an essential question to ask. Many flowmeters and other instruments have
been installed without careful consideration being given to this question and with-
out the necessary actions to ensure proper documentation, maintenance, and cali-
bration scheduling being taken. They are now useless to the plant operator and may
even be dangerous components in the plant. Thus before a flowmeter is installed,
it is important to ask whether the meter is needed, whether there are proper main-
tenance schedules in place, whether the flowmeter will be regularly calibrated, and
whether the company has allocated to such an installation the funds needed to
achieve this ongoing care. Such care will need proper documentation.

The water industry in the United Kingdom has provided examples of the prob-
lems associated with unmaintained instruments. Most of us who are involved in
the metering business will have sad stories of the incorrect installation or misuse
of meters. Reliability-centered maintenance recognizes that the inherent reliability
depends on the design and manufacture of an item, and if necessary this will need
improving (Dixey 1993). It also recognizes that reliability is preferable in critical
situations to extremely sophisticated designs, and it uses failure patterns to select
preventive maintenance.

In some research into water consumption and loss in urban areas, Hopkins et al.
(1995) found that obstacles to accurate measurements were

❑ buried control valves,
❑ malfunctioning valves,
❑ valve gland leakage,
❑ hidden meters that could not be read, and
❑ locked premises denying access to meters.

They commented that “water supply systems are dynamic functions having to
be constantly expanded or amended. Consequently continuous monitoring, revi-
sions and amendments of networks records is imperative. Furthermore, a proper
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programme of inspection, maintenance and subsequent recording must be opera-
tive in respect of inter alia:

❑ networks,
❑ meters,
❑ control valves,
❑ air valves,
❑ pressure reducing valves,
❑ non-return valves.”

They also commented on the poor upstream pipework at the installation of many
domestic meters.

So I make no apology for emphasizing the need to assess whether a flowmeter is
actually needed in any specific application.

If the answer is yes, then there is a need to consider the type of flowmeter and
whether the meter should be measuring volume or mass. In most cases, the most
logical measure is mass. However, by tradition and industrial usage, there are places
where volume measurement may be the norm, and as a result, the regulations have
been written for volume measurement. This results in a Catch-22 situation. The in-
dustry and the regulations may, reasonably, resist change to mass flow measurement
until there is sufficient industrial experience, but industrial experience is not pos-
sible until the industry and the regulations allow. The way forward is for one or
more forward-looking companies to try out the new technology and obtain field
experience, confidence in the technology, and approval.

In this book, I have made no attempt to alert the reader to the industry-specific
regulations and legal requirements, although some are mentioned. Some regulations
are touched on by the various authors, and Miller (1996) is a source of informa-
tion on many documents. The main objective of the Organisation International
de Métrologie Légale (OIML) is to prevent any technical barriers to international
trade resulting from conflicting regulations for measuring instruments. With regard
to flow measurement, it is particularly concerned with the measurement of domes-
tic supplies and industrial supplies of water and gas (Athane 1994). This is because
there are two parties involved, the supplier and the consumer, and the consumer
is unlikely to be able to ascertain the correct operation of the meter. In addition
these measurements are not monitored continually by the supplier, the meters may
fail without anyone knowing, the usage is irregular and widely varying in rate, the
measurements are not repeatable, and the commodities have increased in value con-
siderably in recent years.

In order to reduce discussions and interpretation problems between manufactur-
ers and authorized certifying institutes, the European Commission is mandating the
European standardization body (CEN/CENELEC) to develop harmonized standards
that will give the technical details and implementation of the requirements based
on OIML recommendations. These are such that a measuring instrument complies
with essential requirements, assuming that the manufacturer has complied with
them (Nederlof 1994).

The manufacturer will also be fully aware of the electromagnetic compatibil-
ity (EMC), which relates to electromagnetic interference. In particular, the EMC



P1: FLR

CB281-Baker CB281-01 February 16, 2000 11:7 Char Count= 0

4 INTRODUCTION

characteristics of a product are that

❑ the level of electromagnetic disturbance generated by the instrument will not
interfere with other apparatus, and

❑ the operation of the instrument will not be adversely affected by electromagnetic
interference from its environment.

In order to facilitate free movement within the European area the CE mark identifies
products that conform to the European essential requirements, and all products must
be so marked within the European Economic Area (DTI 1993, Chambers 1994).

First, we consider the knotty problem of how accurate the meter should be.

1.3 HOW ACCURATE?

There continues to be inconsistency about the use of terms that relate to accuracy
and precision. This stems from a slight mismatch between the commonly used terms
and those that the purists and the standards use. Thus we commonly refer to an
accurate measurement, when strictly we should refer to one with a small value of
uncertainty. We should reserve the use of the word accurate to refer to the instrument.
A high quality flowmeter, carefully produced with a design and construction to
tight tolerances and with high quality materials as well as low wear and fatigue
characteristics, is a precise meter with a quantifiable value of repeatability. Also, it
will, with calibration on an accredited facility, be an accurate meter with a small
and quantifiable value of measurement uncertainty. In the context of flowmeters,
the word repeatability is preferred to reproducibility. The meanings are elaborated on
later, and I regret the limited meaning now given to precision, which I have used
more generally in the past and shall slip back into in this book from time to time! In
the following chapters, I have attempted to be consistent in the use of these words.
However, many claims for accuracy may not have been backed by an accredited
facility, but I have tended to use the phrase “measurement uncertainty” for the
claims made.

Hayward (1977) used the story of William Tell to illustrate precision. William
Tell had to use his cross-bow to fire an arrow into an apple on his little son’s head.
This was a punishment for failing to pay symbolic homage to an oppressive Austrian
ruler. Tell succeeded because he was an archer of great skill and high accuracy.

An archer’s ability to shoot arrows into a target provides a useful illustration
of some of the words related to precision. So Figure 1.1(a) shows a target with all
the shots in the bull’s-eye. Let us take the bull’s-eye to represent ±1%, within the
first ring ±3%, and within the second ring ±5%. Ten shots out of ten are on target,
but how many will the archer fire before one goes outside the bull’s-eye? If the
archer, on average, achieves 19 out of 20 shots within the bull’s-eye [Figure 1.1(b)], we
say that the archer has an uncertainty of±1% (the bull’s-eye) with a 95% confidence
level (19 out of 20 on the bull’s-eye: 19÷ 20 = 0.95 = 95÷ 100 = 95%).

Suppose that another archer clusters all the arrows, but not in the bull’s-eye,
Figure 1.1(c). This second archer is very consistent (all the shots are within the same
size circle as the bull’s-eye), but this archer needs to adjust his aim to correct the
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Figure 1.1. Precision related to the case of an archery
target. (a) Good shooting – 10 out of 10 arrows
have hit the bull’s-eye. An accurate archer? (b) Good
shooting? – 19 out of 20 arrows have hit the bull’s-eye.
An accurate archer and a low value of uncertainty
(±1%) with a 95% confidence level. (c) Shots all fall
in a small region but not the bull’s-eye. Good repeata-
bility (±1%) but a persistent bias of 4%. (d) Shots,
all but one, fall on the target – 19 out of 20 have
hit the target. A ±5% uncertainty with 95% confi-
dence level. (e) Distribution of shots in (d) on a linear
plot, assuming that we can collapse the shots in a ring
semicircle onto the axis. (f) The Normal distribution,
which is a good approximation for the distribution of
flowmeter readings.

offset. We could say that the second archer
has achieved high repeatability of±1%, but
with a bias of 4%. We might even find that
19 out of 20 shots fell within the top left
circle so that we could say that this archer
achieved a repeatability within that circle
of ±1% with a 95% confidence. Suppose
this archer had fired one shot a day, and
they had all fallen onto a small area [Figure
1.1(c)], despite slight changes in wind, sun-
shine, and archer’s mood, then we term this
good day-to-day repeatability. But how well
can we depend on the archer’s bias? Is there
an uncertainty related to it?

Finally, a third archer shoots 20 shots
and achieves the distribution in Figure
1.1(d). One has missed entirely, but 19 out
of 20 have hit the target somewhere. The
archer has poor accuracy, and the uncer-
tainty in this archer’s shots is about five
times greater than for the first, even though
the confidence level at which this archer
performs is still about 95%.

If the third archer has some skill, then
the bunching of the arrows will be greater
in the bull’s-eye than in the next circle
out, and the distribution by ring will be as
shown in Figure 1.1(e).

We shall find that the distribution of
readings of a flowmeter results in a curve
approximating a Normal distribution with
a shape similar to that for the shots. Figure
1.1(f) shows such a distribution where 95%
of the results lie within the shaded area and
the width of that area can be calculated to
give the uncertainty, ±1% say, of the read-
ings with a 95% confidence level. In other
words, 19 of every 20 readings fall within the shaded area.

With this simplistic explanation, we turn to the words that relate to precision.

Accuracy
It is generally accepted that accuracy refers to the truthfulness of the instrument. An
instrument of high accuracy more nearly gives a true reading than an instrument of
low accuracy. Accuracy, then, is the quality of the instrument. It is common to refer
to a measurement as accurate or not, and we understand what is meant. However,
the current position is that accuracy should be used as a qualitative term and that
no numerical value should be attached to it. It is, therefore, incorrect to refer to
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a measurement’s accuracy of, say, 1%, when, presumably, this is the instrument’s
measurement uncertainty, as is explained later.

Repeatability
In a process plant, or other control loop, we may not need to know the accuracy of a
flowmeter as we would if we were buying and selling liquid or gas, but we may require
repeatability within bounds defined by the process. Repeatability is the value below
which the difference between any two test results, taken under constant conditions
with the same observer and with a short elapsed time, are expected to lie with 95%
confidence.

Precision
Precision is the qualitative expression for repeatability. It should not take a value and
should not be used as a synonym for accuracy.

Uncertainty
Properly used, uncertainty refers to the quality of the measurement, and we can cor-
rectly refer to an instrument reading having an uncertainty of ±1%. By this we
mean that the readings will lie within an envelope ±1% of the true value. Each
reading will, of course, have an individual error that we cannot know in practice,
but we are interested in the relationship of the readings to the true value. Because
uncertainty is referred to the true value, by implication it must be obtained using
a national standard document or facility. However, because it is a statistical quan-
tity, we need also to define how frequently the reading does, in fact, lie within the
envelope; hence the confidence level.

Confidence level
The confidence level, which is a statement of probability, gives this frequency, and it
is not satisfactory to state an uncertainty without it. Usually, for flow measurement,
this is 95%. We shall assume this level in this book. A confidence level of 95% means
that we should expect on average that 19 times out of 20 (19/20 = 95/100 = 95%)
the reading of the meter will fall within the bracket specified (e.g., ±1% of actual
calibrated value).

Linearity
Linearity may be used for instruments that give a reading approximately propor-
tional to the true flow rate over their specified range. It is a special case of con-
formity to a curve. Note that both terms really imply the opposite. Linearity refers
to the closeness within which the meter achieves a truly linear or proportional
response. It is usually defined by stating the maximum deviation (or nonconformity,
e.g., ±1% of flow rate) within which the response lies over a stated range. With
modern signal processing, linearity is probably less important than conformity
to a general curve. Linearity is most commonly used with such meters as the turbine
meter.


