Flow Measurement Handbook

INDUSTRIAL DESIGNS, OPERATING PRINCIPLES, PERFORMANCE, AND APPLICATIONS

ROGER C. BAKER

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK http://www.cup.cam.ac.uk 40 West 20th Street, New York, NY 10011-4211, USA http://www.cup.org 10 Stamford Road, Oakleigh, Melbourne 3166, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain

© Cambridge University Press 2000

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2000

Printed in the United States of America

Typeface Stone Serif 9/12.5 pt. System $\[MT_FX 2_{\mathcal{E}}\]$ [TB]

A catalog record for this book is available from the British Library.

Library of Congress Cataloging in Publication Data Baker, R. C.

Flow measurement handbook: industrial designs, operating principles, performance, and applications / Roger C. Baker.

p. cm. Includes bibliographical references. ISBN 0-521-48010-8 1. Flow meters – Handbooks, manuals, etc. I. Title. TA357.5.M43B35 2000 681'.28 – dc21 99-14190 CIP

ISBN 0 521 48010 8 hardback

DISCLAIMER

Every effort has been made in preparing this book to provide accurate and up-to-date data and information that is in accord with accepted standards and practice at the time of publication and has been included in good faith. Nevertheless, the author, editors, and publisher can make no warranties that the data and information contained herein is totally free from error, not least because industrial design and performance is constantly changing through research, development, and regulation. Data, discussion, and conclusions developed by the author are for information only and are not intended for use without independent substantiating investigation on the part of the potential users. The author, editors, and publisher therefore disclaim all liability or responsibility for direct or consequential damages resulting from the use of data, designs, or constructions based on any of the information supplied or materials described in this book. Readers are strongly advised to pay careful attention to information provided by the manufacturer of any equipment that they plan to use and should refer to the most recent standards documents relating to their application. The author, editors, and publisher wish to point out that the inclusion or omission of a particular device, design, application, or other material in no way implies anything about its performance with respect to other devices, etc.

Contents

Preface		page xix
Acknow	wledgments	xxi
Nomer	ıclature	xxiii
CHAP	TER 1 Introduction	1
1.1	Initial Considerations	1
1.2	Do We Need a Flowmeter?	2
1.3	How Accurate?	4
1.4	A Brief Review of the Evaluation of Standard Uncertainty	7
1.5	Sensitivity Coefficients	9
1.6	What Is a Flowmeter?	9
1.7	Chapter Conclusions (for those who plan to skip the mathematics!)	13
1.8	Mathematical Postscript	15
	APPENDIX 1.A Statistics of Flow Measurement	15
	1.A.1 Introduction	15
	1.A.2 The Normal Distribution	16
	1.A.3 The Student <i>t</i> Distribution	17
	1.A.4 Practical Application of Confidence Level	19
	1.A.5 Types of Error	20
	1.A.6 Combination of Uncertainties	21
	1.A.7 Uncertainty Range Bars, Transfer Standards,	
	and Youden Analysis	21
CHAP	TER 2 Fluid Mechanics Essentials	24
2.1	Introduction	24
2.2	Essential Property Values	24
2.3	Flow in a Circular Cross-Section Pipe	24
2.4	Flow Straighteners and Conditioners	27
2.5	Essential Equations	30
2.6	Unsteady Flow and Pulsation	32
2.7	Compressible Flow	34
2.8	Multiphase Flow	36
2.9	Cavitation, Humidity, Droplets, and Particles	38
2.10	Gas Entrapment	39

2.11	Steam	39
2.12	Chapter Conclusions	41
СПУР	TER 3 Specification, Selection, and Audit	42
3.1	Introduction	42
3.2	Specifying the Application	42
3.3	Notes on the Specification Form	43
3.4	Flowmeter Selection Summary Tables	46
3.5	Other Guides to Selection and Specific Applications	53
3.6	Draft Questionnaire for Flowmeter Audit	55
3.7	Final Comments	55
	APPENDIX 3.A Specification and Audit Questionnaires	56
	3.A.1 Specification Questionnaire	56
	3.A.2 Supplementary Audit Questionnaire	58
CHAP	TER 4 Calibration	61
4.1	Introduction	61
	4.1.1 Calibration Considerations	61
	4.1.2 Typical Calibration Laboratory Facilities	64
	4.1.3 Calibration from the Manufacturer's Viewpoint	65
4.2	Approaches to Calibration	66
4.3	Liquid Calibration Facilities	69
	4.3.1 Flying Start and Stop	69
	4.3.2 Standing Start and Stop	72
	4.3.3 Large Pipe Provers	74
4.4	4.3.4 Compact Provers Gas Calibration Facilities	74
4.4	4.4.1 Volumetric Measurement	77 77
	4.4.2 Mass Measurement	79
	4.4.3 Gas/Liquid Displacement	80
	4.4.4 <i>pvT</i> Method	80
	4.4.5 Critical Nozzles	81
	4.4.6 Soap Film Burette Method	81
4.5	Transfer Standards and Master Meters	82
4.6	In Situ Calibration	84
4.7	Calibration Uncertainty	91
4.8	Traceability and Accuracy of Calibration Facilities	92
4.9	Chapter Conclusions	93
CHAP	TER 5 Orifice Plate Meters	95
5.1	Introduction	95
5.2	Essential Background Equations	97
5.3	Design Details	100
5.4	Installation Constraints	102
5.5	Other Orifice Plates	106

5.6	Deflection of Orifice Plate at High Pressure	106
5.7	Effect of Pulsation	109
5.8	Effects of More Than One Flow Component	113
5.9	Accuracy Under Normal Operation	117
5.10	Industrially Constructed Designs	118
5.11	Pressure Connections	119
5.12	Pressure Measurement	122
5.13	Temperature and Density Measurement	124
5.14	Flow Computers	124
5.15	Detailed Studies of Flow Through the Orifice Plate, Both	
	Experimental and Computational	124
5.16	Application, Advantages, and Disadvantages	127
5.17	Chapter Conclusions	127
	APPENDIX 5.A Orifice Discharge Coefficient	128
СНАР	TER 6 Venturi Meter and Standard Nozzles	130
6.1	Introduction	130
6.2	Essential Background Equations	130
6.3	Design Details	134
6.4	Commercially Available Devices	135
6.5	Installation Effects	135
6.6	Applications, Advantages, and Disadvantages	137
6.7	Chapter Conclusions	138
	1	
CHAP	TER 7 Critical Flow Venturi Nozzle	140
7.1	Introduction	140
7.2	Design Details of a Practical Flowmeter Installation	141
7.3	Practical Equations	143
7.4	Discharge Coefficient C	145
7.5	Critical Flow Function C _*	146
7.6	Design Considerations	147
7.7	Measurement Uncertainty	148
7.8	Example	149
7.9	Industrial and Other Experience	151
7.10	Advantages, Disadvantages, and Applications	152
7.11	Chapter Conclusions	152
CHAP	TER 8 Other Momentum-Sensing Meters	153
8.1	Introduction	153
8.2	Variable Area Meter	153
	8.2.1 Operating Principle and Background	154
	8.2.2 Design Variations	154
	0.2.2 Design variations	154
	8.2.3 Remote Readout Methods	154
	-	

ix

	8.2.6	Installation	157
	8.2.7	Unsteady and Pulsating Flows	158
	8.2.8	Industrial Types, Ranges, and Performance	158
	8.2.9	Computational Analysis of the Variable Area Flowmeter	159
	8.2.10	Applications	159
8.3	Spring	-Loaded Diaphragm (Variable Area) Meters	159
8.4	Target	(Drag Plate) Meter	162
8.5	Integra	l Orifice Meters	163
8.6	Dall Tu	ibes and Devices that Approximate to Venturis	
	and No	ozzles	163
8.7	Wedge	and V-Cone Designs	165
8.8	Differe	ntial Devices with a Flow Measurement Mechanism	
	in the	Bypass	167
8.9	Slotted	Orifice Plate	168
8.10	Pipewo	ork Features – Inlets	168
8.11	Pipewo	ork Features – Bend or Elbow Used as a Meter	169
8.12	Averag	ing Pitot	170
8.13	Lamina	ar or Viscous Flowmeters	173
8.14	Chapte	er Conclusions	176
	APPENI	DIX 8.A History, Equations, and Accuracy Classes	
	for the	e VA Meter	177
	8.A.1	Some History	177
	8.A.2	Equations	178
	8.A.3	Accuracy Classes	180
CHAPT	TER 9	Positive Displacement Flowmeters	182
9.1	Introd	uction	182
	9.1.1	Background	182
	9.1.2	Qualitative Description of Operation	183
9.2	Princip	bal Designs of Liquid Meters	184
	9.2.1	Nutating Disk Meter	184
	9.2.2	Oscillating Circular Piston Meter	184
	9.2.3	Multirotor Meters	185
	9.2.4	Oval Gear Meter	185
	9.2.5	Sliding Vane Meters	187
	9.2.6	Helical Rotor Meter	189
	9.2.7	Reciprocating Piston Meters	190
	9.2.8	Precision Gear Flowmeters	190
9.3		ation, Environmental Compensation, and Other Factors	
		g to the Accuracy of Liquid Flowmeters	191
	9.3.1	Calibration Systems	192
	9.3.2	Clearances	194
	9.3.3	Leakage Through the Clearance Gap Between Vane	
		and Wall	194
	9.3.4	Slippage Tests	196
	9.3.5	The Effects of Temperature and Pressure Changes	197
	9.3.6	The Effects of Gas in Solution	197

υ	N	I	E	N	I	5		

xi

9.4	Accuracy	y and Calibration	198
9.5	Principa	l Designs of Gas Meters	199
	9.5.1	Wet Gas Meter	199
	9.5.2	Diaphragm Meter	200
	9.5.3	Rotary Positive Displacement Gas Meter	202
9.6	Positive	Displacement Meters for Multiphase Flows	203
9.7		sing Liquid Plugs to Measure Low Flows	205
9.8		ions, Advantages, and Disadvantages	205
9.9	Chapter	Conclusions	206
	APPENDI	X 9.A Theory for a Sliding Vane Meter	207
	9.A.1	Flowmeter Equation	207
	9.A.2	Expansion of the Flowmeter Due to Temperature	209
	9.A.3	Pressure Effects	210
	9.A.4	Meter Orientation	210
	9.A.5	Analysis of Calibrators	211
	9.A.6	Application of Equations to a Typical Meter	213
CHAP	TER 10	Turbine and Related Flowmeters	215
10.1	Introduc	ction	215
	10.1.1	Background	215
	10.1.2	Qualitative Description of Operation	215
	10.1.3	Basic Theory	216
10.2	Precision	n Liquid Meters	221
	10.2.1	Principal Design Components	221
	10.2.2	Bearing Design Materials	223
	10.2.3	Strainers	224
	10.2.4	Materials	224
	10.2.5	Size Ranges	225
	10.2.6	Other Mechanical Design Features	225
	10.2.7	Cavitation	226
	10.2.8	Sensor Design and Performance	227
	10.2.9	Characteristics	228
	10.2.10	Accuracy	228
	10.2.11	Installation	229
	10.2.12	Maintenance	231
	10.2.13	Viscosity, Temperature, and Pressure	232
	10.2.14	Unsteady Flow	232
	10.2.15	Multiphase Flow	232
	10.2.16	Signal Processing	233
	10.2.17	Applications	233
	10.2.18	Advantages and Disadvantages	234
10.3	Precision	n Gas Meters	234
	10.3.1	Principal Design Components	234
	10.3.2	Bearing Design	235
	10.3.3	Materials	236
	10.3.4	Size Range	236
	10.3.5	Accuracy	236

	10.3.6	Installation	237
	10.3.7	Sensing	238
	10.3.8	Unsteady Flow	238
	10.3.9	Applications	240
	10.3.10	Advantages and Disadvantages	241
10.4	Water M	feters	241
	10.4.1	Principal Design Components	241
	10.4.2	Bearing Design	242
	10.4.3	Materials	243
	10.4.4	Size Range	243
	10.4.5	Sensing	243
	10.4.6	Characteristics and Accuracy	243
	10.4.7	Installation	244
	10.4.8	Special Designs	244
10.5	Other P	ropeller and Turbine Meters	244
	10.5.1	Quantum Dynamics Flowmeter	244
	10.5.2	Pelton Wheel Flowmeters	244
	10.5.3	Bearingless Flowmeter	245
	10.5.4	Vane-Type Flowmeters	245
10.6	Chapter	Conclusions	245
	APPEND	IX 10.A Turbine Flowmeter Theory	246
	10.A.1	-	246
	10.A.2	Transient Analysis of Gas Turbine Flowmeter	251
CHAF	PTER 11	Vortex-Shedding, Swirl, and Fluidic Flowmeters	253
11.1	Introdu	ction	253
11.2		Shedding	253
11.3		al Developments of Vortex-Shedding Flowmeters	254
	11.3.1	Experimental Evidence of Performance	255
	11.3.2	Bluff Body Shape	257
	11.3.3	Standardization of Bluff Body Shape	259
	11.3.4	Sensing Options	260
	11.3.5	Cross Correlation and Signal Interrogation Methods	263
	11.3.6	Other Aspects Relating to Design and Manufacture	264
	11.3.7	Accuracy	264
	11.3.8	Installation Effects	264
	11.3.8 11.3.9	Installation Effects Effect of Pulsation and Pipeline Vibration	264 267
	11.3.8 11.3.9 11.3.10	Effect of Pulsation and Pipeline Vibration	264 267 267
	11.3.9 11.3.10	Effect of Pulsation and Pipeline Vibration Two-Phase Flows	267
	11.3.9	Effect of Pulsation and Pipeline Vibration Two-Phase Flows Size and Performance Ranges and Materials	267
	11.3.9 11.3.10	Effect of Pulsation and Pipeline Vibration Two-Phase Flows Size and Performance Ranges and Materials in Industrial Designs	267 267
	11.3.9 11.3.10 11.3.11	Effect of Pulsation and Pipeline Vibration Two-Phase Flows Size and Performance Ranges and Materials in Industrial Designs Computation of Flow Around Bluff Bodies	267 267 268
	11.3.9 11.3.10 11.3.11 11.3.12	Effect of Pulsation and Pipeline Vibration Two-Phase Flows Size and Performance Ranges and Materials in Industrial Designs Computation of Flow Around Bluff Bodies Applications, Advantages, and Disadvantages	267 267 268 269
11.4	11.3.9 11.3.10 11.3.11 11.3.12 11.3.13 11.3.14	Effect of Pulsation and Pipeline Vibration Two-Phase Flows Size and Performance Ranges and Materials in Industrial Designs Computation of Flow Around Bluff Bodies Applications, Advantages, and Disadvantages	267 267 268 269 270 271
11.4	11.3.9 11.3.10 11.3.11 11.3.12 11.3.13 11.3.14	Effect of Pulsation and Pipeline Vibration Two-Phase Flows Size and Performance Ranges and Materials in Industrial Designs Computation of Flow Around Bluff Bodies Applications, Advantages, and Disadvantages Future Developments eter – Industrial Design	267 267 268 269 270 271 272
11.4	11.3.9 11.3.10 11.3.11 11.3.12 11.3.13 11.3.14 Swirl Mo	Effect of Pulsation and Pipeline Vibration Two-Phase Flows Size and Performance Ranges and Materials in Industrial Designs Computation of Flow Around Bluff Bodies Applications, Advantages, and Disadvantages Future Developments	267 267 268 269 270

	11.4.3	Materials	273
	11.4.4	Installation Effects	273
	11.4.5	Applications, Advantages, and Disadvantages	273
11.5	Fluidic I	Flowmeter	274
	11.5.1	Design	274
	11.5.2	Accuracy	275
	11.5.3	Installation Effects	276
	11.5.4	Applications, Advantages, and Disadvantages	276
11.6	Other P	roposed Designs	276
11.7		Conclusions	276
	APPEND	IX 11.A Vortex-Shedding Frequency	278
	11.A.1	Vortex Shedding from Cylinders	278
	11.A.2	Order of Magnitude Calculation of Shedding Frequency	279
CHAP	TER 12	Electromagnetic Flowmeters	282
12.1	Introdu		282
12.1		ng Principle	282
12.2	-	ons of the Theory	282
12.3	Design	-	286
12.1	12.4.1	Sensor or Primary Element	286
	12.4.1	Transmitter or Secondary Element	289
12.5		ion and Operation	292
12.6		al and Other Designs	293
12.0		tion Constraints – Environmental	295
12.7	12.7.1	Surrounding Pipe	296
	12.7.1	Temperature and Pressure	296
12.8		tion Constraints – Flow Profile Caused by Upstream Pipework	297
12.0	12.8.1	Introduction	297
	12.8.2	Theoretical Comparison of Meter Performance Due to	
	12.0.2	Upstream Flow Distortion	297
	12.8.3	Experimental Comparison of Meter Performance Due to	<u> </u>
	12.0.0	Upstream Flow Distortion	298
	12.8.4	Conclusions on Installation Requirements	299
12.9		tion Constraints – Fluid Effects	300
	12.9.1	Slurries	300
		Change of Fluid	300
	12.9.3	Nonuniform Conductivity	300
12.10		ase Flow	301
	-	y Under Normal Operation	301
		tions, Advantages, and Disadvantages	302
	12.12.1	Applications	302
		Advantages	303
		Disadvantages	303
12.13		· Conclusions	304
	APPEND	IX 12.A Brief Review of Theory	305
	12.A.1	Introduction	305

	12.A.2	Electric Potential Theory	307
	12.A.3	Development of the Weight Vector Theory	307
	12.A.4	Rectilinear Weight Function	308
	12.A.5	Axisymmetric Weight Function	310
	12.A.6	Performance Prediction	310
	12.A.7	Further Extensions to the Theory	311
CHAP	TER 13	Ultrasonic Flowmeters	312
13.1	Introdu	ction	312
13.2	Transit-	Time Flowmeters	315
	13.2.1	Simple Explanation	315
	13.2.2	Flowmeter Equation and the Measurement of	
		Sound Speed	316
	13.2.3	Effect of Flow Profile and Use of Multiple Paths	319
13.3	Transdu	cers	322
13.4	Size Rar	nges and Limitations	325
13.5	Signal P	rocessing and Transmission	325
13.6	Accurac	у	327
	13.6.1	Reported Accuracy – Liquids	327
	13.6.2	Reported Accuracy – Gases	327
	13.6.3	•	328
	13.6.4	Special Considerations for Clamp-On Transducers	328
13.7	Installat	tion Effects	330
	13.7.1	2 I 0	330
	13.7.2	Unsteady and Pulsating Flows	334
	13.7.3	Multiphase Flows	335
13.8	General	Published Experience in Transit-Time Meters	335
	13.8.1	Experience with Liquid Meters	335
	13.8.2		338
13.9	Applicat	tions, Advantages, and Disadvantages	344
13.10	Doppler	Flowmeter	345
	13.10.1	Simple Explanation of Operation	345
		Operational Information	346
		Applications, Advantages, and Disadvantages	346
13.11		tion Flowmeter	346
	13.11.1	Operation of the Correlation Flowmeter	346
		Installation Effects	347
		Other Published Work	348
		Applications, Advantages, and Disadvantages	349
		Iltrasonic Applications	349
13.13	Chapter	Conclusions	350
		IX 13.A Simple Mathematical Methods and Weight	
		on Analysis Applied to Ultrasonic Flowmeters	351
	13.A.1	Simple Path Theory	351
	13.A.2	Use of Multiple Paths to Integrate Flow Profile	353
	13.A.3	Weight Vector Analysis	355
	13.A.4	Doppler Theory	355

		Mass Flow Measurement Using Multiple Sensors nd Multiphase Flows	357
14.1	Introdu	•	357
14.2		le Differential Pressure Meters	357
1 1.2	-	Hydraulic Wheatstone Bridge Method	359
		Theory of Operation	359
		Industrial Experience	360
		Applications	361
14.3		le Sensor Methods	361
14.4	Multipl	le Sensor Meters for Multiphase Flows	362
	14.4.1	Background	362
	14.4.2	Categorization of Multiphase Flowmeters	363
	14.4.3	Multiphase Metering for Oil Production	365
14.5	Chapte	r Conclusions	367
		What to Measure If the Flow Is Mixed	367
	14.5.2	Usable Physical Effects for Density Measurement	368
	14.5.3	Separation or Multicomponent Metering	369
	14.5.4	Calibration	369
	14.5.5	Accuracy	370
CHAP	TER 15	Thermal Flowmeters	371
15.1	Introdu	iction	371
15.2	Capilla	ry Thermal Mass Flowmeter – Gases	371
	15.2.1	Description of Operation	371
	15.2.2	Operating Ranges and Materials for Industrial Designs	374
	15.2.3	Accuracy	374
	15.2.4	Response Time	374
	15.2.5	Installation	375
		Applications	376
15.3		tion of Very Low Flow Rates	376
15.4		al Mass Flowmeter – Liquids	376
		Operation	376
		Typical Operating Ranges and Materials for Industrial Designs	377
		Installation	378
		Applications	378
15.5		on and In-Line Thermal Mass Flowmeters	378
		Insertion Thermal Mass Flowmeter	379
		In-Line Thermal Mass Flowmeter	381
		Range and Accuracy	381
		Materials	381
		Installation	381
15 6	15.5.6	Applications	382
15.6	Chapte	r Conclusions	383
		DIX 15.A Mathematical Background to the Thermal	
		lowmeters	384
		Dimensional Analysis Applied to Heat Transfer	384
	15.A.2	Basic Theory of ITMFs	385

	15.A.3	General Vector Equation	386
	15.A.4	Hastings Flowmeter Theory	388
	15.A.5	Weight Vector Theory for Thermal Flowmeters	389
CHAP	TER 16	Angular Momentum Devices	391
16.1	Introdu	iction	391
16.2	The Fu	el Flow Transmitter	392
	16.2.1	Qualitative Description of Operation	394
	16.2.2	Simple Theory	394
	16.2.3	Calibration Adjustment	395
	16.2.4	Meter Performance and Range	396
	16.2.5	Application	396
16.3	Chapte	er Conclusions	397
CHAP	TER 17	Coriolis Flowmeters	398
17.1	Introdu	action	398
	17.1.1	Background	398
	17.1.2	Qualitative Description of Operation	400
	17.1.3	Experimental Investigations	402
17.2	Industr	ial Designs	402
		Principal Design Components	404
		Materials	407
		Installation Constraints	407
		Vibration Sensitivity	408
		Size and Flow Ranges	408
		Density Range and Accuracy	409
		Pressure Loss	410
		Response Time	410
17.0		Zero Drift	410
17.3		cy Under Normal Operation	412
17.4		nance in Two-Component Flows	413
	17.4.1	Air-Liquid	414
		Sand in Water	414
		Pulverized Coal in Nitrogen	414
175		Water-in-Oil Measurement	414
17.5 17.6	Calibra	ial Experience	415 416
17.0		ations, Advantages, Disadvantages, and Cost Considerations	416
1/./	17.7.1	Applications	416
	17.7.2	Advantages	418
		Disadvantages	419
	17.7.4	Cost Considerations	419
17.8		er Conclusions	420
	-	DIX 17.A A Brief Note on the Theory of Coriolis Meters	421
	17.A.1	Simple Theory	421
	17.A.2	Note on Hemp's Weight Vector Theory	423
	17.A.3	Theoretical Developments	424

and C	Gases	, .	427
18.1	Introdu	iction	427
18.2	Differe	ntial Pressure Probes – Pitot Probes	428
18.3	Differe	ntial Pressure Probes – Pitot-Venturi Probes	430
18.4	Insertio	on Target Meter	431
18.5	Insertio	on Turbine Meter	431
	18.5.1	General Description of Industrial Design	431
	18.5.2	Flow-Induced Oscillation and Pulsating Flow	433
	18.5.3	Applications	434
18.6	Insertio	on Vortex Probes	435
18.7	Insertio	on Electromagnetic Probes	435
18.8	Insertio	on Ultrasonic Probes	436
18.9	Therma	al Probes	437
18.10	Chapte	er Conclusions	437
CHAP	FER 19	Modern Control Systems	438
19.1	Introdu	action	438
	19.1.1	Analogue Versus Digital	439
	19.1.2	Present and Future Innovations	439
	19.1.3	Industrial Implications	440
	19.1.4	Chapter Outline	440
19.2	Instrun	nent	441
	19.2.1	Types of Signal	441
	19.2.2	Signal Content	442
19.3	Interfa	ce Box Between the Instrument and the System	443
19.4	Comm	unication Protocol	444
	19.4.1	Bus Configuration	444
	19.4.2	Bus Protocols	445
19.5	Comm	unication Medium	446
	19.5.1	Existing Methods of Transmission	446
	19.5.2	Present and Future Trends	446
	19.5.3	Options	447
19.6	Interfa	ce Between Communication Medium and the Computer	448
19.7	The Co	omputer	448
19.8	Contro	l Room and Work Station	448
19.9	Hand-H	Held Interrogation Device	449
19.10	An Ind	ustrial Application	449
19.11	Future	Implications of Information Technology	449
СНАР	FB 20	Some Reflections on Flowmeter Manufacture.	

CHAPTER 18	Probes for Local Velocity Measurement in Liquids
and Gases	

e, Production. and Markets

Production, and Markets		451
20.1	Introduction	451
20.2	Instrumentation Markets	451
20.3	Making Use of the Science Base	453
20.4	Implications for Instrument Manufacture	454
20.5	The Special Features of the Instrumentation Industry	454

20.6	Manufa	acturing Considerations	455
	20.6.1	Production Line or Cell?	455
	20.6.2	Measures of Production	456
20.7	The Eff	ect of Instrument Accuracy on Production Process	456
	20.7.1	General Examples of the Effect of Precision of Construction	
		on Instrument Quality	457
	20.7.2	Theoretical Relationship Between Uncertainty in	
		Manufacture and Instrument Signal Quality	457
	20.7.3	Examples of Uncertainty in Manufacture Leading to	
		Instrument Signal Randomness	459
20.8		tion of the Finished Flowmeters	461
20.9	Actions	s for a Typical Flowmeter Company	461
CHAP	TER 21	Future Developments	463
21.1	Market	Developments	463
21.2		g and New Flow Measurement Challenges	463
21.3	New D	evices and Methods	465
	21.3.1	Devices Proposed but Not Exploited	465
	21.3.2	New Applications for Existing Devices	467
	21.3.3	Microengineering Devices	467
21.4	New G	eneration of Existing Devices	469
21.5	Implica	ations of Information Technology	470
	21.5.1	Signal Analysis	470
	21.5.2	Redesign Assuming Microprocessor Technology	470
	21.5.3	Control	470
	21.5.4	Records, Maintenance, and Calibration	471
21.6	Changi	ing Approaches to Manufacturing and Production	471
21.7	The Wa	ay Ahead	471
	21.7.1	For the User	471
	21.7.2	For the Manufacturer	471
		For the Incubator Company	471
		For the R&D Department	472
		For the Inventor/Researcher	472
21.8	Closin	g Remarks	472
Bibliog	Bibliography		473
A Sele	ction of I	nternational Standards	475
Confer	Conferences		479
Referen	References		483
Index	Index		515
Ma	ain Index		515
Flowmeter Index		518	
Flo	Flowmeter Application Index		521

Introduction

1.1 INITIAL CONSIDERATIONS

Some years ago at Cranfield, where we had set up a flow rig for testing the effect of upstream pipe fittings on certain flowmeters, a group of senior Frenchmen were being shown around and visited this rig. The leader of the French party recalled a similar occasion in France when visiting such a rig. The story goes something like this.

A bucket at the end of a pipe seemed particularly out of keeping with the remaining high tech rig. When someone questioned the bucket's function, it was explained that the bucket was used to measure the flow rate. Not to give the wrong impression in the future, the bucket was exchanged for a shiny new high tech flowmeter. In due course, another party visited the rig and observed the flowmeter with approval. "And how do you calibrate the flowmeter?" one visitor asked. The engineer responsible for the rig then produced the old bucket!

This book sets out to guide those who need to make decisions about whether to use a shiny flowmeter, an old bucket, nothing at all, or a combination of these! It also provides information for those whose business is the design, manufacture, or marketing of flowmeters. I hope it will, therefore, be of value to a wide variety of people, both in industry and in the science base, who range across the whole spectrum from research and development through manufacturing and marketing. In my earlier book on flow measurement (Baker 1988/9), I provided a brief statement on each flowmeter to help the uninitiated. This book attempts to give a much more thorough review of published literature and industrial practice.

This first chapter covers various general points that do not fit comfortably elsewhere. In particular, it reviews recent guidance on the accuracy of flowmeters (or calibration facilities).

The second chapter reviews briefly some essentials of fluid mechanics necessary for reading this book. The reader will find a fuller treatment in Baker (1996), which also has a list of books for further reading.

A discussion of how to select a flowmeter is attempted in Chapter 3, and some indication of the variety of calibration methods is given in Chapter 4, before going in detail in Chapters 5–17 into the various high (and low) tech meters available. Chapter 18 deals with probes, Chapter 19 gives a brief note on modern control systems, and Chapter 20 provides some reflections on manufacturing and markets. Finally, Chapter 21 raises some of the interesting directions in which the technology is likely to go in the future.

In this book, I have tried to give a balance between the laboratory ideal, the manufacturer's claims, the realities of field experience, and the theory behind the practice. I am very conscious that the development and calibration laboratories are sometimes misleading places, which omit the problems encountered in the field (Stobie 1993), and particularly so when that field happens to be the North Sea. In the same North Sea Flow Measurement Workshop, there was an example of the un-expected problems encountered in precise flow measurement (Kleppe and Danielsen 1993), resulting, in this case, from a new well being brought into operation. It had significant amounts of barium and strontium ions, which reacted with sulfate ions from injection water and caused a deposit of sulfates from the barium sulfate and strontium sulfate that were formed.

With that salutary reminder of the real world, we ask an important – and perhaps unexpected – question.

1.2 DO WE NEED A FLOWMETER?

Starting with this question is useful. It may seem obvious that anyone who looks to this book for advice on selection is in need of a flowmeter, but for the process engineer it is an essential question to ask. Many flowmeters and other instruments have been installed without careful consideration being given to this question and without the necessary actions to ensure proper documentation, maintenance, and calibration scheduling being taken. They are now useless to the plant operator and may even be dangerous components in the plant. Thus before a flowmeter is installed, it is important to ask whether the meter is needed, whether there are proper maintenance schedules in place, whether the flowmeter will be regularly calibrated, and whether the company has allocated to such an installation the funds needed to achieve this ongoing care. Such care will need proper documentation.

The water industry in the United Kingdom has provided examples of the problems associated with unmaintained instruments. Most of us who are involved in the metering business will have sad stories of the incorrect installation or misuse of meters. Reliability-centered maintenance recognizes that the inherent reliability depends on the design and manufacture of an item, and if necessary this will need improving (Dixey 1993). It also recognizes that reliability is preferable in critical situations to extremely sophisticated designs, and it uses failure patterns to select preventive maintenance.

In some research into water consumption and loss in urban areas, Hopkins et al. (1995) found that obstacles to accurate measurements were

- □ buried control valves,
- □ malfunctioning valves,
- □ valve gland leakage,
- □ hidden meters that could not be read, and
- locked premises denying access to meters.

They commented that "water supply systems are dynamic functions having to be constantly expanded or amended. Consequently continuous monitoring, revisions and amendments of networks records is imperative. Furthermore, a proper programme of inspection, maintenance and subsequent recording must be operative in respect of inter alia:

- □ networks,
- □ meters,
- □ control valves,
- □ air valves,
- □ pressure reducing valves,
- □ non-return valves."

They also commented on the poor upstream pipework at the installation of many domestic meters.

So I make no apology for emphasizing the need to assess whether a flowmeter is actually needed in any specific application.

If the answer is yes, then there is a need to consider the type of flowmeter and whether the meter should be measuring volume or mass. In most cases, the most logical measure is mass. However, by tradition and industrial usage, there are places where volume measurement may be the norm, and as a result, the regulations have been written for volume measurement. This results in a Catch-22 situation. The industry and the regulations may, reasonably, resist change to mass flow measurement until there is sufficient industrial experience, but industrial experience is not possible until the industry and the regulations allow. The way forward is for one or more forward-looking companies to try out the new technology and obtain field experience, confidence in the technology, and approval.

In this book, I have made no attempt to alert the reader to the industry-specific regulations and legal requirements, although some are mentioned. Some regulations are touched on by the various authors, and Miller (1996) is a source of information on many documents. The main objective of the Organisation International de Métrologie Légale (OIML) is to prevent any technical barriers to international trade resulting from conflicting regulations for measuring instruments. With regard to flow measurement, it is particularly concerned with the measurement of domestic supplies and industrial supplies of water and gas (Athane 1994). This is because there are two parties involved, the supplier and the consumer, and the consumer is unlikely to be able to ascertain the correct operation of the meter. In addition these measurements are not monitored continually by the supplier, the meters may fail without anyone knowing, the usage is irregular and widely varying in rate, the measurements are not repeatable, and the commodities have increased in value considerably in recent years.

In order to reduce discussions and interpretation problems between manufacturers and authorized certifying institutes, the European Commission is mandating the European standardization body (CEN/CENELEC) to develop harmonized standards that will give the technical details and implementation of the requirements based on OIML recommendations. These are such that a measuring instrument complies with essential requirements, assuming that the manufacturer has complied with them (Nederlof 1994).

The manufacturer will also be fully aware of the electromagnetic compatibility (EMC), which relates to electromagnetic interference. In particular, the EMC

4 INTRODUCTION

characteristics of a product are that

- □ the level of electromagnetic disturbance generated by the instrument will not interfere with other apparatus, and
- □ the operation of the instrument will not be adversely affected by electromagnetic interference from its environment.

In order to facilitate free movement within the European area the CE mark identifies products that conform to the European essential requirements, and all products must be so marked within the European Economic Area (DTI 1993, Chambers 1994).

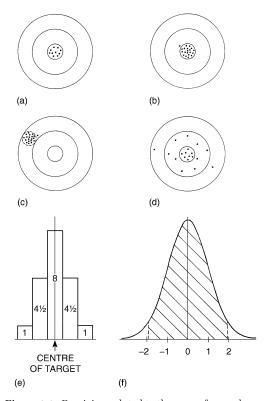
First, we consider the knotty problem of how accurate the meter should be.

1.3 HOW ACCURATE?

There continues to be inconsistency about the use of terms that relate to accuracy and precision. This stems from a slight mismatch between the commonly used terms and those that the purists and the standards use. Thus we commonly refer to an accurate measurement, when strictly we should refer to one with a small value of uncertainty. We should reserve the use of the word accurate to refer to the instrument. A high quality flowmeter, carefully produced with a design and construction to tight tolerances and with high quality materials as well as low wear and fatigue characteristics, is a precise meter with a quantifiable value of repeatability. Also, it will, with calibration on an accredited facility, be an accurate meter with a small and quantifiable value of measurement uncertainty. In the context of flowmeters, the word *repeatability* is preferred to *reproducibility*. The meanings are elaborated on later, and I regret the limited meaning now given to precision, which I have used more generally in the past and shall slip back into in this book from time to time! In the following chapters, I have attempted to be consistent in the use of these words. However, many claims for accuracy may not have been backed by an accredited facility, but I have tended to use the phrase "measurement uncertainty" for the claims made.

Hayward (1977) used the story of William Tell to illustrate precision. William Tell had to use his cross-bow to fire an arrow into an apple on his little son's head. This was a punishment for failing to pay symbolic homage to an oppressive Austrian ruler. Tell succeeded because he was an archer of great skill and high accuracy.

An archer's ability to shoot arrows into a target provides a useful illustration of some of the words related to precision. So Figure 1.1(a) shows a target with all the shots in the bull's-eye. Let us take the bull's-eye to represent $\pm 1\%$, within the first ring $\pm 3\%$, and within the second ring $\pm 5\%$. Ten shots out of ten are on target, but how many will the archer fire before one goes outside the bull's-eye? If the archer, on average, achieves 19 out of 20 shots within the bull's-eye [Figure 1.1(b)], we say that the archer has an uncertainty of $\pm 1\%$ (the bull's-eye) with a 95% confidence level (19 out of 20 on the bull's-eye: $19 \div 20 = 0.95 = 95 \div 100 = 95\%$).


Suppose that another archer clusters all the arrows, but not in the bull's-eye, Figure 1.1(c). This second archer is very consistent (all the shots are within the same size circle as the bull's-eye), but this archer needs to adjust his aim to correct the

offset. We could say that the second archer has achieved high repeatability of $\pm 1\%$, but with a bias of 4%. We might even find that 19 out of 20 shots fell within the top left circle so that we could say that this archer achieved a repeatability within that circle of $\pm 1\%$ with a 95% confidence. Suppose this archer had fired one shot a day, and they had all fallen onto a small area [Figure 1.1(c)], despite slight changes in wind, sunshine, and archer's mood, then we term this good day-to-day repeatability. But how well can we depend on the archer's bias? Is there an uncertainty related to it?

Finally, a third archer shoots 20 shots and achieves the distribution in Figure 1.1(d). One has missed entirely, but 19 out of 20 have hit the target somewhere. The archer has poor accuracy, and the uncertainty in this archer's shots is about five times greater than for the first, even though the confidence level at which this archer performs is still about 95%.

If the third archer has some skill, then the bunching of the arrows will be greater in the bull's-eye than in the next circle out, and the distribution by ring will be as shown in Figure 1.1(e).

We shall find that the distribution of readings of a flowmeter results in a curve approximating a Normal distribution with a shape similar to that for the shots. Figure 1.1(f) shows such a distribution where 95% of the results lie within the shaded area and the width of that area can be calculated to give the uncertainty, $\pm 1\%$ say, of the readings with a 95% confidence level. In other

Figure 1.1. Precision related to the case of an archery target. (a) Good shooting -10 out of 10 arrows have hit the bull's-eye. An accurate archer? (b) Good shooting? -19 out of 20 arrows have hit the bull's-eye. An accurate archer and a low value of uncertainty ($\pm 1\%$) with a 95% confidence level. (c) Shots all fall in a small region but not the bull's-eye. Good repeatability ($\pm 1\%$) but a persistent bias of 4%. (d) Shots, all but one, fall on the target -19 out of 20 have hit the target. A $\pm 5\%$ uncertainty with 95% confidence level. (c) Distribution of shots in (d) on a linear plot, assuming that we can collapse the shots in a ring semicircle onto the axis. (f) The Normal distribution, which is a good approximation for the distribution of flowmeter readings.

words, 19 of every 20 readings fall within the shaded area. With this simplistic explanation, we turn to the words that relate to precision.

Accuracy

It is generally accepted that *accuracy* refers to the truthfulness of the instrument. An instrument of high accuracy more nearly gives a true reading than an instrument of low accuracy. Accuracy, then, is the quality of the instrument. It is common to refer to a measurement as accurate or not, and we understand what is meant. However, the current position is that accuracy should be used as a qualitative term and that no numerical value should be attached to it. It is, therefore, incorrect to refer to

INTRODUCTION

6

a measurement's accuracy of, say, 1%, when, presumably, this is the instrument's measurement uncertainty, as is explained later.

Repeatability

In a process plant, or other control loop, we may not need to know the accuracy of a flowmeter as we would if we were buying and selling liquid or gas, but we may require repeatability within bounds defined by the process. *Repeatability* is the value below which the difference between any two test results, taken under constant conditions with the same observer and with a short elapsed time, are expected to lie with 95% confidence.

Precision

Precision is the qualitative expression for repeatability. It should not take a value and should not be used as a synonym for accuracy.

Uncertainty

Properly used, *uncertainty* refers to the quality of the measurement, and we can correctly refer to an instrument reading having an uncertainty of $\pm 1\%$. By this we mean that the readings will lie within an envelope $\pm 1\%$ of the true value. Each reading will, of course, have an individual error that we cannot know in practice, but we are interested in the relationship of the readings to the true value. Because *uncertainty* is referred to the true value, by implication it must be obtained using a national standard document or facility. However, because it is a statistical quantity, we need also to define how frequently the reading does, in fact, lie within the envelope; hence the confidence level.

Confidence level

The *confidence level*, which is a statement of probability, gives this frequency, and it is not satisfactory to state an uncertainty without it. Usually, for flow measurement, this is 95%. We shall assume this level in this book. A confidence level of 95% means that we should expect on average that 19 times out of 20 (19/20 = 95/100 = 95%) the reading of the meter will fall within the bracket specified (e.g., $\pm 1\%$ of actual calibrated value).

Linearity

Linearity may be used for instruments that give a reading approximately proportional to the true flow rate over their specified range. It is a special case of *conformity* to a curve. Note that both terms really imply the opposite. *Linearity* refers to the closeness within which the meter achieves a truly linear or proportional response. It is usually defined by stating the maximum deviation (or nonconformity, e.g., $\pm 1\%$ of flow rate) within which the response lies over a stated range. With modern signal processing, linearity is probably less important than conformity to a general curve. *Linearity* is most commonly used with such meters as the turbine meter.