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To the Student

There may be more material presented in this book than is required
in your course. Look for the material in your text to make sure that
you are responsible for each subject. If necessary, ask your instructor
what to concentrate on.

Cover the solutions to the Examples and try to solve them
yourself. Then look at the answer given to see if you are correct. Do
not merely read the solutions; you must do the problems to really
understand the principles. Do not try to memorize chemistry. A
given problem can be asked in many different ways, and you must
understand what you are doing in order to succeed.

Key terms are presented in boldface type. These terms are de-
fined in the Glossary.

Some of the Supplementary Problems are presented more than
once, in slightly different forms. For example, a problem may be
presented in parts, then the same problem (perhaps with different
numbers) is presented as a single problem such as might be asked
on an examination. These are designed to get you to be able to do
complicated problems (you have already done them) one step at a
time without being coached in what to do next.
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Chapter 1

Introduction

1.1 Scientific Calculations
One of the principal ways science courses are distinguished from
other courses is that scientists use quantitative results—the results
of measurements. The results are presented with a number and a
unit or combination of units. The unit is as important as the number.
For example, it is very important to the mail carrier to know whether
a new customer has a dog that is 5 inches tall or 5 feet tall! Always
use units. Moreover, as we will see in Section 1.2, the units actually
help us figure out how to solve many problems.

Chemistry involvesmany symbols—for elements, for variables,
for constants, for units. We try to have a different symbol for each
one of these, but there are more things to represent than different
letters. It is extremely important to use the standard symbol for each
of the items to be represented. For example, the symbol Co repre-
sents cobalt, but CO represents carbon monoxide. The capitalization
is critical. As another example, 1 mg (milligram) is 1-billionth the
mass of 1 Mg (megagram), as introduced in Section 2.1. Do not get
confused; we must take the tiny amount of extra time to do things
correctly from the beginning of our study of chemistry.

Chemists (and chemistry teachers) did not invent new ways to
do calculations to make their lives more difficult. When we learn
a new subject, it might seem hard at first, but remember that it is
presented to enable us to do more things or to do the things we
already know more easily.

Don’t make the mistake of falling behind. Keep up with the
work if at all possible. Science builds on itself. Missing the back-
ground material makes it more difficult to understand the present
material, especially to learn without an instructor. Try to attend ev-
ery class, and before class skim the material to be covered to get an
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idea what it is about. Use this book and other study aids to learn
missing material without a teacher.

When a new principle is taught, be sure to understand where
it applies. There is no use knowing something and applying it to
the wrong thing. For example, we will learn that seven elements
are diatomic when they are uncombined with other elements. It is
a mistake to think that hydrogen must be written H2 in all of its
compounds. The equation M1V1 = M2V2 is perfectly fine for dilution
problems, but don’t use it for titration problems with a balanced
equation for reagents not in a 1:1 mole ratio (Chapter 6).

How to Approach a Word Problem

Working word problems requires understanding the principles in-
volved and being able to apply them to the case at hand. The best
way to ensure success is to practice, practice, practice.

To do a word problem, follow these steps:

1. Read the problem carefully.
2. List all the values given, complete with units. Some problems

have values to be determined elsewhere, as from tables of data or
the periodic table (which is always supplied when needed). Make
a note that these values have to be obtained, or actually write
down these values.

3. Look for implied relationships. For example, if a binary com-
pound of A and B is 25% by mass element A, there is (25 g A)/(100
g total) by definition. In addition, there is (75 g B)/(100 g total)
and also there is (25 g A)/(75 g B).

4. Write down the quantity to be found, complete with units.
5. Think of the relationships (equations, rules, etc.) that we know

which might connect the values given and desired. Think how
the data can be manipulated so that the proper units result for
the answer.

6. Solve the problem using the correct relationship. (If one equation
won’t work, try a different equation.)

7. Check the answer to see that it is reasonable. Some problems have
reasonable checks built in, like the percent composition problems
in Section 4.3. If the percentages don’t add up to 100%, there is
a mistake somewhere. For others, we can use the answer to cal-
culate one of the original values, as in empirical formula prob-
lems (Section 4.4). Still others require that we know the range
of possibilities for our answer. For example, if we get a molar-
ity of 10,000 M (Section 6.1) we know there is a mistake, because
10,000 moles of anything cannot fit into a liter. We cannot get an
atomic mass of less than 1 amu or more than a couple of hundred
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amu; they don’t come that way. For most problems, just consider
if the answer is about the right size.

How to Approach a Complicated-Looking Problem

If a problem seems too difficult to see how to do the whole thing, do
as much as possible. Perhaps the partial answer will lead to further
steps that will end in a complete solution. Consider the following fa-
ble: A boy scout troop went on an all-day excursion. The bus stopped
at the parking lot, and the troop marched up the “mountain” past
the rock that looked like a lion, down the other side, waded across
the shallow stream, and walked up the next hill past the broken-
off tree. They ran down the other side to the play area and picnic
grounds. They spent the morning playing, had lunch, took a swim
in the pond, and undertook numerous other activities. When it was
time to head back, the troop leader did not remember how to get
back. What to do? He did not panic, especially where the boys could
see him. He knew that he could see the bus from the top of some
peak, but where was it? He looked around and saw the broken-off
tree. He marched his troop up the hill, from where he saw the small
stream and the “lion” rock. Down the hill and up the “mountain”
and from there he saw the bus in the parking lot. No one knew that
he had not known all along how to get back. What is the moral to this
fable? If we can’t see our way through to the end of a chemistry
problem, at least we will do as much as we can. The answer to the
first part might suggest what to do next. Also, we can think about
what we need for the final answer. If we know what we need, that
might give us a clue as to what to calculate next. (At least, a partial
answer might get some credit and some feeling of accomplishment.)

Here is a problem from the world outside chemistry: “A hunter
aims his rifle due south directly at a bear. The bear moves 30 feet
due east. The hunter fires his rifle due south and kills the bear. What
color is the bear?” Don’t assume that this puzzle cannot be logically
solved. Let’s dowhatwe can do. The original direction of aim and the
final direction are both due south, but the bear moved. The hunter
may be standing directly on the north pole, so every horizontal di-
rection is due south. Therefore, the bear is a polar bear, and is white.
(The hunter may also be standing very near the south pole, so that
the bear’s path took it in a complete circle, and the hunter fired with-
out moving his rifle. In this case also, the bear must be a polar bear.)

We must try to understand the material as we progress. Memo-
rizing specifics instead of understanding principles might enable us
to pass one exam, but it won’t get us to the point to be able to under-
stand the next course. There are enough details in chemistry that we
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must memorize. Besides, there are many problems that sound alike
but are completely different, and many that sound different but are
really the same.

Sometimes it helps to assume a value to work with, especially
with intensive properties such as concentrations. We will encounter
problems of this type later, for example in molality to mole fraction
conversions (Section 6.4).

To remember the value of a constant in an equation, we often
can use the equation with known values and solve for the constant.
[For example, to get the value for the ideal gas law constant (Section
7.2), put the values 1.00 mol sample of gas at STP with a volume
of 22.4 L into the ideal gas law equation.] We can then use that
constant in the problem we are trying to solve.

Designation of Variables

In algebra, unknowns are represented by letters such as x, y, and z. In
science we could also use such variables, but we find it much easier
to use letters that remind us what the letter stands for. For example,
we use V for an unknown volume and m for an unknown mass.
We then can write an equation for density, d, in terms of mass and
volume as d = m/V. We could have written x = y/z to represent the
relationship among mass, volume, and density, but then we would
have to remember what x stands for, and so on. We solve these
equations in the same way that we solve algebraic equations (and
we don’t often use more than simple algebra). One problem with
the use of letters to identify the type of unknown that our variable
represents is that we have more types of unknowns than letters. We
attempt to expand our list of symbols in the following ways:

Method Example
1. By using capital letters for T for absolute temperature

one purpose and lowercase and t for Celsius
letters for another. temperature

2. By using italic symbols for m for mass and m for meter
one purpose and Roman
symbols for another.

3. By using different subscripts V1 for one volume and
to distinguish between V2 for a second
variables of the same kind.

4. By using combinations of MM for molar mass
letters.

5. By using Greek letters for µ (Greek mu) for micro-
some variables.
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Each such symbol may be treated like an ordinary algebraic
variable.

1.2 Dimensional Analysis
An extremely useful tool for scientific calculations (for everyday cal-
culations too) is dimensional analysis, also called the factor label
method. This system enables us to convert from a quantity in one
set of units to the same quantity in another set, or from a quantity
of one thing to an equivalent quantity of another. For example, if
we have $2.00 or 200 cents, we have the same amount of money. We
can change from one of these to the other with a factor—a ratio—of
100 cents divided by 1.00 dollar, or the reciprocal of that ratio.

EXAMPLE 1 Convert 2.25 dollars to cents using dimensional an-
alysis.

Solution

2.25 ✥✥✥✥dollars
(

100 cents
1 ✥✥✥dollar

)
= 225 cents

The method starts by putting down the quantity given, com-
plete with its unit, and multiplying it by a ratio (the factor) that has
the given unit in its denominator and the unit desired in its numerator.
We multiply all the numbers in the numerator and divide by each of
the numbers in the denominator. In this example, the given quan-
tity was 2.25 dollars, and the ratio had dollars in the denominator.
In this method, it does not matter if the unit is singular (dollar) or
plural (dollars)—they cancel anyway. (In fact, we use the same ab-
breviations for singular and plural, and often do not know whether
our answer will be greater than one or not.) The units are treated
like algebraic variables (x, y, and so forth); a unit divided by the
same unit cancels out. This method tells us to multiply dollars by
100 to convert to cents. The method is presented here with dollars
and cents to get us familiar with the system using conversions we
already know. �

We can use the reciprocal of that factor to convert cents to
dollars.

EXAMPLE 2 Convert 1535 cents to dollars.

Solution Again we put down the quantity given, and this
time multiply it by a ratio with cents in the denominator:

1535 ✥✥✥cents
(

1 dollar
100 ✥✥✥cents

)
= 15.35 dollars
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We see that the conversion factor used here is the inverse of
the one used in Example 1. In each case, we used the one we needed
to convert from the unit that we had to the one that we wanted.

�

We can use more than one factor to do conversions that are a
little more complicated.

EXAMPLE 3 Change 1.660 hours to seconds.

Solution We know that there are exactly 60 minutes in an
hour, and exactly 60 seconds in each minute:

1.660 hours
(

60minutes
1 hour

)
= 99.60minutes

99.60 minutes
(

60 seconds
1 minute

)
= 5976 seconds

Alternatively, we can do both operations without solving for
the intermediate answer in minutes:

1.660 ✥✥✥hours
(

60 ✭✭✭✭✭minutes
1 ✥✥✥hour

)(
60 seconds
1 ✭✭✭✭minute

)
= 5976 seconds

(If we know that there are 3600 seconds in an hour, we do not
need two factors, but there will be many problems in chemistry later
in this book in which more than one factor is needed, so it is well
that we learned how to handle more than one factor here.) �

Working dimensional analysis problems with familiar prob-
lems will enable us to use the methods with the less familiar prob-
lems still to come. We can’t make the mistake of not learning the
method here because we don’t need it yet.

We can use percentages as factors in working with dimensional
analysis. For example if an elementary school class is 40% girls and
60% boys, we can tell how many children are in a class with 48 boys:

48 boys
(

100 children
60 boys

)
= 80 children

In chemistry, if a compound of elements A and B is 25% by mass
element A, there is (25 g A)/(100 g total) by definition. But also,
there is (75 g B)/(100 g total) and also there is (25 g A)/(75 g B).
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EXAMPLE 4 Calculate the number of people in an audience if 45
people vote. The percentage of voters is 75%.

Solution

45 voters
(

100 people total
75 voters

)
= 60 people �

It is also possible to use the factor label method to convert from
one ratio to an equivalent ratio, using one factor at a time.

EXAMPLE 5 Convert the speed of a car going 45.0 miles per hour
into its speed in feet per second.

Solution The word per means divided by. Thus 45.0 miles per
hour is 45.0 miles divided by 1 hour.

45.0 ✥✥✥miles
1 ✥✥✥hour

(
5280 feet
1 ✥✥✥mile

)(
1 ✥✥✥hour

60 ✭✭✭✭✭minutes

) (
1 ✭✭✭✭minute

60 seconds

)

= 66.0 feet
1 second

= 66.0 feet/second

Here we needed three factors to convert our ratio to an equiva-
lent ratio with different units. (Don’t worry about not remembering
that there are 5280 feet in 1 mile. We don’t use English system mea-
surements much at all in science, although they are used some in
engineering.) �

We will use dimensional analysis throughout this book, and
indeed we will use it throughout our chemistry careers.

1.3 The Scientific Calculator
A scientific calculator can save countless hours of calculation time,
and (if it is permitted) valuable minutes on examinations. However,
it is critical that we know how to use the calculator without think-
ing about it too much while we are thinking about the chemistry
problems! Read the instruction booklet about how the calculator
works. We don’t have to read about every function; we will learn
about those that we will use first, delay those that we will use only
later, and ignore those that we will never use. Chemistry requires

principally the arithmetic operations keys ( + , − , × , ÷ ), EE

or EXP , FLO , SCI , the reciprocal key 1/x , x2 ,
√
x , x3 , 3

√
x ,

LOG , the natural logarithm key LN , the antilogarithm key 10x ,

7



the natural antilogarithm key ex , and perhaps yx . Begin with
the first of these and add the others later (but before we use them
in chemistry class). We must practice with each operation using
simple numbers until we are sure that we know how the calculator
works. For example, we know that 12

12 = 1, so enter the following
calculation on the calculator to see what it gives:

4 × 3
6 × 2

If the calculator displays 1, the problem has been done correctly
and the calculator is suitable for this course. If it displays 4, read
the subsection on precedence rules below.

In general, there are more functions on the calculator than
keys. There is a special key, called variously 2nd , 2nd F , SHIFT ,

or ALT depending on the model calculator. In addition on some

calculators, there is a key labeled MODE that acts similarly. Some-
what like the SHIFT key on a typewriter, pressing this key first makes
the next key pressed perform a different operation than it normally
would. (Some do exactly the opposite operation—antilogarithm in-
stead of logarithm, for example.)

The following keys are among those that operate immediately

on whatever value is displayed: FLO , SCI , 1/x , x2 ,
√
x , x3 ,

3
√
x , LOG , LN , 10x , and ex . We do not need to press the =

key to get the desired value. For example, if 2 is in the display and

we push the x2 key twice, we get 16 as an answer. The first press
yielded 4, and the second squared that value.

Precedence Rules

In calculations that involve more than one operation to be per-
formed, we must know which one to do first. The order is called
the order of precedence. For example, in algebra, in the absence of
any other indication, we always multiply or divide before we add
or subtract. [An exception states that in a division using a built-up
fraction, whatever operation(s) is(are) in the numerator and/or in
the denominator is(are) done before the division. Thus

2 + 3
1 + 9

has a value of 0.5, because both additions are done before the di-
vision. (Note the difference from 2 + 3/1 + 9, which follows the
normal precedence rules.) Multiplication and division have higher
8



Table 1-1 Order of Precedence

Highest
Parentheses
Exponentiation or unary minus
Multiplication or division
Addition or subtraction
Lowest

precedence than do addition or subtraction. The orders of prece-
dence are presented in Table 1-1.

Operations of equal precedence are done from left to right ex-
cept for exponentiation and unaryminus, which are done from right
to left. (Unary minus is a minus sign that denotes a negative number
rather than a subtraction.)

EXAMPLE 6 Calculate each answer on the calculator:

(a) 2 + 3 × 4 − 5
(b) ab/cd, where a = 6, b = 3, c = 2, and d = 4
(c) 2x2

with x = 3
(d) −32

(e) (−3)2

Solution

(a) The answer displayed is 9, corresponding to 2 + 12 − 5. (Themul-
tiplication is done first.)

(b) The answer displayed is 2.25, corresponding to 18
8 . If the answer

displayed was 36, the 9 in the display was multiplied by the 4.
Because the calculator has a different precedence rule for division
and multiplication than we follow in the algebraic expression
ab/cd, where both multiplications are done first, we must divide
the 18 by 2 and then divide that answer by 4. Alternatively, we
may place parentheses around the (2 × 4).

6 × 3 ÷ 2 ÷ 4 =

or 6 × 3 ÷ ( 2 × 4 ) =

(c) 512. This answer is equivalent to 29 rather than 82 since expo-
nentiation is done right to left.

(d) −9. The squaring is done on the 3, not on −3, because expo-
nentiation and unary minus are done right to left.

9



(e) +9. The parentheses instruct the calculator to square the neg-
ative number. �

The EE or EXP Key

To enter an exponential number (see Section 2.3) into the calculator,

enter the coefficient and then press the EE or EXP key (whichever

is on the calculator) followed by the exponent. The EE or EXP key
represents “times 10 to the power.” Do not press the multiply key or

the 1 and 0 keys! The display of exponential numbers on the cal-
culator reserves the last three columns for the exponent—a space
or a minus sign followed by two digits. (Some calculators have the
exponent raised and in smaller numbers.) Thus the following expo-
nential numbers are shown in the display as follows:

Number Display
4 × 103 4 03
4 × 10−3 4 − 03

−4 × 103 −4 03
−4 × 10−3 −4 − 03

EXAMPLE 7 (a) How do we enter 1.66 × 105 into the calculator?
(b) What does the display show?

Solution

(a) Enter 1 . 6 6 EE or EXP 5 . If we mistakenly enter

1 . 6 6 × 1 0 EE or EXP 5 we will get the equivalent
of 1.66 × 10 × 105.

(b) 1.66 05 �

The Change Sign Key

The change sign key +/− is used to convert a positive number to a
negative number or vice versa. Do not use the subtract key to try to
change the sign of a value in the display! For exponential numbers,
to change the sign of the coefficient, press the change sign key before

the EE or EXP key. To change the sign of the exponent, press the

change sign key after the EE or EXP key.

The Reciprocal Key

This key takes the reciprocal of whatever is in the display. It is not
absolutely essential, but it can save storing a value in memory. For
example, to solve a/(b+ c), if we have the value for b+ c in the
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display, we merely press the 1/x key and then multiply the result
by a. [The reciprocal of (b+ c) is 1/(b+ c), which then is multiplied
by a.]

The Logarithm Keys

Four functions are available on scientific calculators to take common
logarithms LOG , natural logarithms LN , common antilogarithms

10x , and natural antilogarithms ex . Each key operates immediately
on the value on display. The common logarithm is the exponent
of the power of 10 that is equal to a number. For example, the
logarithm of 2 is 0.30103 because 100.30103 is equal to 2. The natural
logarithm is the exponent of the power of e that is equal to a num-
ber: ln 2 = 0.69317. (The number e is the base of natural growth.)
The antilogarithms reverse the process; they give the value of 10 or
e raised to that power. For example, antilogarithm 2 = 100 because
102 = 100. Natural logarithms are as easy to use on the calculator
as common logarithms, and are often more intimately connected
to a chemistry problem.

Supplementary Problems

1. There were 20.0% boys and 27.5% girls in a certain class. The rest of
the class was made up of adults. One day, 6 boys and 2 adults were
absent, and only 2 boys attended. How many adults attended?

2. Calculate the number of hours in 7992 seconds.
3. If we spent $1000 per day, how many years would it take us to spend

(a) 1.00 million dollars? (b) 1.00 billion dollars?
4. If a bank advertises a special discount of 25% on their regular 16%

rate for a personal loan, what is the rate that they will actually
charge?

5. Use the calculator to compute the value of each of the following
expressions:

(a) 5 × 7 − 7 × 6 (b)
6 × 7
4 × 14

(c) 3x 2 where x = 5

(d ) 5.11 × 7.20 − 7.13 × 6.00 (e)
6.52 × 7.11
4.92 × 14.1

( f ) 3.02x 2 where x = 5.15
6. Use the calculator to compute the value of each of the following

expressions:
(a) 5.00 × 1014 − 4.30 × 1015 (b) 5.00 × 1014 ÷ 4.30 × 1015

(c) 5.00 × 10−14 − 4.30 × 10−15 (d ) (96,500)/(6.02 × 1023)
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7. Determine the value of x in each of the following:
(a) log x = 2.0000 (b) x = log(2.95 × 104)
(c) ln x = 2.0000 (d ) x = ln(2.95 × 104)

8. Determine the value of (a) 1/2.65 (b) (7.43)2 (c) 100.699

(d ) antilogarithm of 3.09
9. Show the calculator display in floating-point format for the logarithm

of each of the following numbers and state which digits in the
answers are the significant digits:
(a) 2.59 × 10−1 (b) 2.59 × 10−4

(c) 2.59 × 10−10 (d ) 2.59 × 10−14

Solutions to Supplementary Problems

1. In a complicated problem, be sure to label the work to know exactly
what each term means. In this problem, it is straightforward to
determine that 52.5% of the class were adults and 8 class members
were boys. Therefore the number of adults enrolled was

8 boys
(
100 people
20.0 boys

)(
52.5 adults enrolled

100 people

)
= 21 adults enrolled

Since 2 adults were absent, 19 attended.
Alternatively, we could have determined:

8 boys enrolled
(
52.5 adults enrolled (per hundred)
20.0 boys enrolled (per hundred)

)
= 21 adults enrolled

Probably, few of us knew how to do this entire problem before
starting any calculations at all.

2. 7992 seconds
(

1 minute
60 seconds

) (
1 hour

60 minutes

)
= 2.220 hours

3. (a) 1,000,000 dollars
(

1 day
1000 dollars

) (
1 year

365 days

)
= 2.74 years

(b) 1,000,000,000 dollars
(

1 day
1000 dollars

) (
1 year

365 days

)
= 2740 years = 2.74 × 103 years

4. The 16% is 16% of the amount of the loan; the 25% is 25% of the
amount of the interest. (We must be sure to label the work so that
we know exactly what each term means.)
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Thus they will be charging 75% of their regular rate:

16 dollars (regular)
100 dollars of loan

(
75 dollars (special)
100 dollars (regular)

)

= 12 dollars (special)
100 dollars of loan

= 12%

5. (a) −7 (b) 0.75 (c) 75
(d ) −6.0 (The subtraction left only two significant digits.)
(e) 0.668 [Not too different from answer (b) because the values

were not too different.]
(f ) 80.1 [Not too different from answer (c) because the values were

not too different.]
6. (a) −3.80 × 1015 (Watch the minus sign and the significant digits.)

(b) 0.116 (c) 4.57 × 10−14 (Note that −14 is larger than −15.)
(d ) 1.60 × 10−19 (We never touched the multiply key!)

7. (a) 100.0 (b) 4.470 (c) 7.389 (d ) 10.292
8. Each model calculator is different, so read the instruction booklet if

the instructions here are not applicable.
(a) 0.377 (Use the 1/x key.)
(b) 55.2 (Use the x 2 key or another method on a more powerful

calculator.)
(c) 5.00 (Use the 2nd F and LOG keys.)
(d ) 1.2 × 103 (Use the 2nd F and LOG keys; use only two

significant digits, since the 3 shows the magnitude of this number.)
9. Each model calculator is different, so the results may be slightly

different from these.
(a) −0.586700236 (b) −3.586700236 (c) −9.586700236
(d ) −13.58670024
The only difference among the numbers given are the powers of 10.
The only difference in the logarithms are the integer portions
[except for a round-off in part (d )]. The characteristic (integer
portion) of the logarithm shows only the magnitude of the original
number, and the first three digits of the mantissa (the decimal
fractional part) are the significant digits (reflecting the three
significant digits in the numbers given). We should report the values
(a) −0.587 (b) −3.587 (c) −9.587 (d ) −13.587
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Chapter 2

Measurement

2.1 Metric System Calculations
Themetric system along with its newer counterpart, the SI (system
internationale) system of measurement, was designed to make
our measurements and our calculations as easy as possible. Once
we have learned it, it is much easier to use than the English
system, as we will see later. It is possible to learn more than 90%
of the metric system needed in a beginning chemistry course
using only the seven terms and their abbreviations in Table 2-1.
The units will be introduced in the three following subsections.
The prefixes will also be introduced there, but will be intensively
used in the metric conversion subsection. Please note carefully the
abbreviations, and use the proper one for each term. Note that
the abbreviation for meter and for milli- are both the same—m.
It is easy to tell the difference because milli- is a prefix, so an m
before another letter means milli-. If the m is not before another
letter, it means meter. Please note that of the abbreviations in
Table 2-1, only the L for liter is capitalized. We must use the
proper capitalization from the start or we will mix ourselves up.
For example, capital M stands for another quantity (molarity) or
another prefix (mega-).

Length or Distance

The unit of length or distance in the metric system is the
meter. The meter was originally defined as 1 ten-millionth of the
distance from the north pole to the equator through Paris, France.
That is a rather difficult measurement to make, so later the meter
was defined as the distance between two scratches in a special bar
kept in a vault in Sevres, France. There is an even later definition,
but we will be satisfied that it is the distance between those two

14



Table 2-1 Most Important Metric Terms and Abbreviations

Unit Abbreviation Prefix Abbreviation

meter m kilo- k
gram g deci- d
liter L centi- c

milli- m

scratches. The symbol for the meter is m. The meter is about 10%
longer than a yard, but that statement is merely to give us some idea
of its length. It is not too important to convert from meters to yards
(unless instructed otherwise).

The meter can be divided into subunits (Fig. 2-1), and multiples
of themeter can be defined. Themetric systemuses the same prefixes
to define the subunits and multiples for the meter as it does for all its
other units, which is a great advantage. The most important prefixes
for us to learn in the metric system are presented in Table 2-2, along
with their meanings.

The only real use that we will make of the prefix deci- is with
volume measurements, where a cubic decimeter is a useful sized
volume. We rarely use the prefix centi- except with meters.

Mass

The unit of mass is the gram. However, the gram is such a small
unit, about the mass of a paper clip, that both SI and the United
States Congress have designated as the standard of mass the

10 20 30

1 cm

1 mm

40

1 dm

50 60 70 80 90 cm

Fig. 2-1 The meter is divided into 10 dm, each of which is divided
into 10 cm, each of which is divided into 10 mm.

15



Table 2-2 Metric Prefixes∗

Prefix Symbol Meaning Example

mega- M- 1,000,000 1Mg = 1 × 106 g
kilo- k- 1000 1km = 1000 m
deci- d- 0.1 1dm = 0.1 m
centi- c- 0.01 1 cm = 0.01 m
milli- m- 0.001 1mm = 0.001 m
micro- µ- 0.000001 1µm = 0.000001 m
nano- n- 0.000000001 1ng = 1 × 10−9 g
pico- p- 1 × 10−12 1 pm = 1 × 10−12 m

∗The prefixes in boldfaced type are the most important for us to learn first.

kilogram—1000 grams. The gram is the unit—the name that the
prefixes are added to—and the kilogram is the mass against which
all other masses are compared. (A certain metal bar in Sevres, France,
is the worldwide standard of mass.)

The same prefixes are used with mass as with distance, and
they have the same meanings. That is one facet that makes the met-
ric system so easy. In the English system, the subdivisions of a yard
are a foot—one-third of a yard—and an inch—one-thirty-sixth of a
yard. The subdivision of an Avoirdupois pound is an ounce, one-
sixteenth of a pound. The subdivision of a Troy pound is an ounce,
one-twelfth of that pound. (Gold and silver are measured in Troy
ounces.) Each type of measurement has a different subdivision, and
none is a multiple of 10. The metric system uses the same prefixes
for all types of measurements, they are all multiples of 10, and they
always mean the same thing. The symbols for the units and prefixes
are easier to learn than those for the English system units. For ex-
ample, pound is abbreviated lb and ounce is oz, whereas the metric
prefixes are almost always closely related to their names. It is easier
to convert metric measurements because the prefixes mean some
multiple of 10 times the fundamental unit.

EXAMPLE 1 (a) Convert 1.275 miles to feet. (b) Convert 1.275 km
to meters.

Solution

(a) 1.275 miles
(

5280 feet
1mile

)
= 6732 feet

(b) 1.275 km
(

1000m
1km

)
= 1275 m
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The first calculation requires pencil and paper or a calculator; the
second can be done in our heads by moving the decimal point three
places to the right. �

Volume

The metric unit of volume is the liter, abbreviated L, originally de-
fined as the volume of a cube 1 dm on each edge. The SI unit of vol-
ume is the cubic meter, m3. That volume is too large for ordinary
laboratory work, so smaller related units are used—the cubic decime-
ter (equal to a liter), or the cubic centimeter (equal to a milliliter). A
comparison of these units is presented in Table 2-3.

Some textbooks use the classical metric unit, the liter, and its
related volumes; others use the SI unit, cubic meters, and its related
volumes. We must know both. For simplicity, after this chapter, we
will use liters (L) in this book rather than cubic decimeters, because
almost everyone is familiar with liters and its subdivisions from ev-
eryday use. (How much does a 2-liter bottle of cola cost?)

Figure 2-2 shows the relationships among the various units
of volume. Please note that to convert from cubic meters to cubic
centimeters does not involve a factor of 100, but (100)3.

Metric Conversions

We can use dimensional analysis to convert a measurement
from one metric unit to another. We recognize that by definition
1 dollar = 100 cents, and also that 1 cent = 0.01 dollar. We can use
a factor corresponding to either of those equalities. Note that cent is
related to centi-, the metric prefix for 0.01. We can simply substitute
0.01 for the c of cm, 0.001 for the m of mm, and 1000 for the k of km.

EXAMPLE 2 Convert 1.49 m to (a) km. (b) cm. (c)mm.

Solution

(a) 1.49m
(

1km
1000m

)
= 0.00149km (substitute 1000 for the k)

Table 2-3 Comparison of Classical Metric and SI Units
of Volume

SI Metric Equivalent

1m3 1kL 1000L
1dm3 1L 1L
1 cm3 1mL 0.001L
1mm3 1µL 0.000001L
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Cubic centimeterCubic decimeter
MilliliterLiter

Cubic meter

100 cm
1 m

100 cm
1 m

Volume: (100 cm)3

1,000,000 cm3

(10 cm)3

1,000 cm3

(1 cm)3

1 cm3

100 cm
1 m

10 cm

10 cm

10 cm
1 dm

1 cm

1 cm
1 cm

Fig. 2-2 Relationships of SI and Metric Units of Volume. (Not
drawn to scale.)

(b) 1.49 m
(

1 cm
0.01m

)
= 149 cm (substitute 0.01 for the c)

(c) 1.49m
(

1mm
0.001m

)
= 1490mm (substitute 0.001 for

the first m) �

EXAMPLE 3 Convert 2.50 m3 to cubic centimeters.

Solution

2.50m3
(

1,000,000 cm3

1m3

)
=2,500,000 cm3 =2.50 × 106 cm3

Note that 1 cubic meter is equal to 1 million cubic centimeters! (See
Fig. 2-2.) �
EXAMPLE 4 Convert 2.50 m3 to liters.

Solution We know that 1 cubic meter is equal to 1000 cubic
decimeters (Fig. 2-2) and that it is also 1000L.

2.50m3
(

1000L
1m3

)
= 2500L �

18



Units in Scientific Calculations

When arithmetic operations are done with measurements, some-
times the units must be adjusted. (1) In addition or subtraction
problems, the units of the measurements must be the same. For
example, to add 2.00 m and 10.0 cm, we must change one of the
values to the units of the other: 200 cm + 10.0 cm, is one possibility.
(2) In multiplication or division of lengths, the square of lengths,
and/or the cube of lengths, the length units must be the same. For
example, to divide 2 cm3 by a length, the length must be in cen-
timeters. To multiply 2.00 m and 10.0 cm, again we should change
one to the units of the other: 200 cm×10.0 cm, is one possibility.
(3) Otherwise, in multiplication or division, the units do not have to
be the same. To divide 40.0 g by 23.0 cm3, we do not have to change
any units because grams is not a unit of length.

2.2 Significant Digits
No measurement can be made perfectly. Every measuring instru-
ment has a limit as to how precisely it can be read. For example,
we would never try to measure the length of our shadow with an
automobile odometer (mileage indicator). Scientists attempt to read
every instrument to one-tenth the smallest scale division. Thus a
meter stick with 1000 division marks (that is, 100 centimeters, with
each centimeter divided into 10 parts) can be estimated to 0.1mm.
When a scientist reports the results of the measurement, the scien-
tist uses as many digits as necessary to indicate how precisely the
measurement was made. The scientist might report 0.0531 m to re-
port a length. We have to recognize which of these digits record
the precision of the measurement, which are present only to specify
the magnitude of the answer, and which do both. If the digit helps
report the precision, it is called a significant digit or a significant
figure. The word significant in this sense does not mean important; it
means having to do with precision! Every digit serves to report either
the magnitude or the precision of the measurement, or both. If the
digit reports the magnitude only, it is nonsignificant.

Significant Digits in Reported Values

First we must learn to recognize which digits in a properly reported
number are significant. They include all nonzero digits. Zeros are
determined to be significant or not according to the following rules:

1. All zeros to the right of all other digits and to the right of the
decimal point are significant. For example, in 1.200 cm, the zeros
are significant.
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2. All zeros between significant digits are significant. For example,
in 1.003 cm, the zeros are significant.

3. All zeros to the left of all other digits are not significant. For
example, in 0.022 cm, the zeros are not significant.

4. All zeros to the right of all other digits in an integer cannot be
determined merely by inspection to be significant or not. For ex-
ample, in 1200 cm, the zeros are undetermined without further
information. (Some texts assume that these zeros are not signifi-
cant, and they add a decimal point at the end to signify that all
the trailing zeros are significant.)

EXAMPLE 5 Underline the significant digits in each of the follow-
ing measurements, and place a question mark below each digit that
is undetermined.

(a) 0.0220 m (b) 10.4 kg (c) 12.0 L (d) 100 cm

Solution (a) 0.0220m (b) 10.4 kg (c) 12.0 L
(d) 10

?
0
?

cm

In (a), the zero to the right of the second 2 is right of all other
digits and the decimal point, and is significant (rule 1), but the
zeros to the left of the first 2 are not (rule 3). In (b), the zero be-
tween the 1 and 4 is significant (rule 2). In (c), the zero to the
right of the 2 and the decimal point is significant (rule 1). In (d),
the zeros to the right of the other digits in an integer cannot be
determined to be significant or not. See Example 7 in the next
subsection. �

Significant Digits in Calculations

Warning: Electronic calculators do not consider the rules of signifi-
cant digits. If they give the proper numbers of significant digits, it
is just by chance.

There are two different rules for significant digits in an answer
determined by calculation. In multiplication and/or division, the
number of significant digits in the answer is the number of signifi-
cant digits in the least precise measurement in the calculation (the
measurement with the fewest significant digits). In addition and/or
subtraction, the number of significant digits in the measurements
is not the deciding factor but their positions are critical. We can-
not keep any digit in the final answer that is farther to the right
than the digit least far to the right in any of the values added or
subtracted.
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EXAMPLE 6 Determine the answer in each of the following to
the proper number of significant digits: (a) 1.20 cm × 3.52 cm (b)
5.92 cm + 13.921 cm (c) (12.95 g − 11.42 g)/(1.866mL)

Solution

(a) The calculator gives the answer 4.224 cm2, but because there are
only three significant digits in each factor, we must limit the
answer to three significant digits: 4.22 cm2.

(b) 5.92 cm
+ 13.921 cm

19.841 cm → 19.84 cm
The 2 in 5.92was an estimated value, and the 4 in the answer thus
is an estimated value. The digit after that represents an estimated
1 in the second measurement added to a completely unknown
value in the first, and thus is completely unknown.

(c) (12.95 g − 11.42 g)/(1.866mL) = 0.820 g/mL

Subtracting the values in the numerator of this fraction yields an
answer of 1.53 g, a value with three significant digits. Dividing this
value by the measurement in the denominator yields an answer
with only three significant digits: 0.820 g/mL. Despite the fact that
each measurement was done to four significant digits, the difference
between two almost equal values has fewer significant digits, and
thus so does our answer. �

The number of significant digits in the answer is determined
by the numbers in our measurements, not in defined values like the
number of millimeters in a meter.

EXAMPLE 7 (a) How many significant digits are present in each
of the following measurements? 1.2 m, 1.20 m, 1.200 m. (b) Con-
vert each of those measurements to millimeters, and determine the
number of significant digits in each answer. Can we tell the number
of significant digits in each answer just by looking at the result or
from the value from which it was calculated?

Solution

(a) Two, three, and four, respectively.

(b) 1.2m
(

1mm
0.001m

)
= 1200mm 1.20m

(
1mm

0.001m

)
= 1200mm

1.200 m
(

1mm
0.001m

)
= 1200mm
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Multiplying measurements by defined conversion factors does not
change the precision with which they were made. The values still
have two, three, and four significant digits, respectively, but they all
look the same. The only way we can tell is by knowing where they
came from. Just by looking at these values we cannot tell if the
zeros are significant or not; they are undetermined. The problem of
undetermined numbers of significant digits can be overcome by use
of scientific notation (Section 2.3). �

Rounding Off

When we do calculations that give us too many digits to be kept,
we must reduce the number to reflect only the significant digits. We
do that by rounding off. We drop any extra decimal place digits and
convert any extra integral digits to nonsignificant zeros. If the first
digit that we drop is 5 or greater, we increase the last digit retained
by 1. If the first digit dropped is less than 5, we do not change the
last digit retained.

A more elegant method of rounding involves only the case in
which the digit 5 only or a 5 with only zeros is dropped. In this
method, we do not change the last digit retained if it initially is
even, but round it up if initially it is odd. For example, if we are
rounding to one decimal place:

14.05, 14.050, 14.0500, . . . would all round to 14.0.
14.15, 14.150, 14.1500, . . . would all round to 14.2.
14.25, 14.250, 14.2500, . . . would all round to 14.2.

Note that 14.050000001 would round to 14.1, because it is not cov-
ered by this rule. (It has a digit other than zero after the 5 to be
dropped.) Most courses do not use this rule, and if the first digit to
be dropped is 5, they merely round the last retained digit to the next
higher digit whether it is even or odd. In this book, we will follow
that general practice.

EXAMPLE 8 Round off the following numbers to three significant
digits each: (a) 12.34 g (b) 1234 g (c) 12.39 g
(d) 0.02233 g (e) 0.24648 g

Solution (a) 12.3 g (b) 1230 g (c) 12.4 g
(d) 0.0223 g (e) 0.246 g
(a) The 4 is merely dropped. (b) The 4 must be changed to a non-
significant 0 so that we don’t change the magnitude of the num-
ber very much. The incorrect answer 123 g, resulting from merely
dropping the 4, would be very far from the measured value. (c) We
drop the 9, but since it is greater than 5, we increase the 3 to 4.
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(d) We merely drop the last 3, leaving us three significant digits. Do
not confuse the number of significant digits with the number of dec-
imal place digits. (e) We drop the 48, since the 4 is less than 5. We do
not drop one digit at a time. We do not round the 4 to 5 by dropping
the last digit and then change the 6 to 7 by dropping that 5. The 48
is less than 50, so we do not round up the last remaining digit. �

Sometimes it is necessary to add digits to obtain the proper
number of significant digits in our answer.

EXAMPLE 9 Divide 7.86 cm2 by 3.93 cm.

Solution The answer on our calculator is 2 (cm), but the an-
swer must contain three significant digits, so we add two zeros to
the calculator’s result to get 2.00 cm. �

The question is often asked “How many significant digits
should we use?” The answer is that we determine how many by
using the measurements given in the problem. For example, if the
products in a multiplication all have four significant digits, then
we use four in the final answer. If a quantitative problem has no
numeric data in its statement, as in a percent composition problem
(Section 4.3), then we use at least three significant digits in its
solution so that rounding errors don’t give incorrect results.

2.3 Scientific Notation
Scientists report numbers from literally astronomical to almost in-
finitesimal. In order to do so conveniently, we use scientific no-
tation, also known as standard exponential notation. Scientific
notation is a form of a number with a decimal coefficient times a
power of 10. The following number is in scientific notation, with its
parts identified:

base exponent
\ /

1.246 × 103︸︷︷︸
/ /

coefficient exponential part

A number in scientific notation has a coefficient that is 1 or more
but less than 10, and it has an integral exponent, which may be
positive, zero, or negative.

EXAMPLE 10 Which one(s) of the following numbers are in scien-
tific notation?
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(a) 1.246 × 103 (b) 0.246 × 103 (c) 10.246 × 103

(d) 1.246 × 103.5 (e) 1.246 × 100 ( f ) 10.0 × 10−3

(g) 1.00 × 10−3

Solution The numbers in (a), (e), and (g) are in scientific no-
tation; (b) is not because its coefficient is not as great as 1; (c) and
( f ) are not because their coefficients have two integral digits each;
(d) is not because it has a fractional exponent. �

All digits in the coefficient of a properly reported value in sci-
entific notation are significant, because the exponential part of the
number gives the magnitude. The electronic calculator will do the
arithmetic with numbers in scientific notation, but we still have to
know how the process works because the calculator does not con-
sider significant digits. See Section 1.3 for a discussion of calculator
processing of numbers in exponential form.

EXAMPLE 11 Perform the following arithmetic operations with ex-
ponential numbers, giving the answers in scientific notation and
with the proper number of significant digits:
(a) 2.67 × 102 cm + 2.29 × 101 cm
(b) 2.67 × 10−2 cm + 2.29 × 10−1 cm
(c) (2.67 × 102 cm)(2.29 × 101 cm)
(d) (2.67 × 102 cm2)/(2.29 × 101 cm)

Solution

(a) 2.90 × 102 cm. We change 2.29 × 101 to 0.229 × 102 before
adding. If we are not convinced, we can change each number to
a decimal number and add:

267 cm

22.9 cm

290 cm

(b) 0.256 cm = 2.56 × 10−1 cm. Again watch the significant digits.
(c) 6.11 × 103 cm2. Three significant digits are required because

there are three in each measurement. Caution: We must watch
out for the units even while considering a completely different
part of the problem.

(d) 11.7 cm. See the comments in part (c). �
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2.4 Density
The density of a sample is defined as its mass per unit volume
d = m/V. To get density, we merely divide the mass by the volume.
Density is an intensive property of matter (it doesn’t matter how
much sample is present), so density is useful to identify substances.
The subject is used here to review all the material covered in Sections
2.1 though 2.3.

EXAMPLE12 Aprospector in the oldwest brought a sample of shiny
metal into the assayer’s office to see if the sample was gold (which
has a density of 19.3 g/cm3). The assayer found the mass to be 256 g
and the volume to be 51 cm3. Was the sample gold?

Solution The density of the sample was (256 g)/(51 cm3)=
5.0 g/cm3. The sample was not gold. (It was iron pyrite, known as
“fool’s gold.”) �

Because density is a ratio, it can be used as a factor in dimen-
sional analysis problems.

EXAMPLE 13 (a) Calculate the volume of 255 g of gold
(density = 19.3 g/mL). (b) Calculate the mass of 153mL of mercury
(density = 13.6 g/mL).

Solution

(a) 255 g
(

1mL
19.3g

)
= 13.2mL

(b) 153mL
(

13.6g
1mL

)
= 2080 g = 2.08kg �

2.5 Time, Temperature, and Energy

Time

The basic unit of time is the second. Longer periods of time are
measured in minutes and hours (instead of kiloseconds, etc.), but
shorter periods use the regular metric prefixes. Thus a millisecond
is 0.001 second. We should not have any trouble with time because
we are so familiar with the longer periods and now have become
familiar with the subunits. However, watch out for times stated in
two units, such as “an hour and 15 minutes.”

EXAMPLE 14 How many seconds are there in exactly 1 hour and
15minutes?
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Solution Note that an hour and 15 minutes is not 1.15 hours.
We need to convert each part of the time separately.

1 hour
(

60minutes
1hour

)(
60 seconds
1minute

)
= 3600 seconds

15 minutes
(

60 seconds
1 minute

)
= 900 seconds

The total time is exactly 4500 seconds. �

Temperature and Energy

Temperature and energy are not the same. We can prove this to
ourselves by heating a pan with 1 inch of water in it on a burner at
home for 2.00 minutes. With a thermometer, we measure the rise in
temperature. We discard that water, cool the pan, and fill it almost
full with water at the same original temperature and heat it on the
same burner at the same setting for an equal 2.00 minutes. Again we
measure the temperature before and after. The pan with less water
was warmed to a higher temperature by the same quantity of heat.

There are three temperature scales in use in the world
(Table 2-4). The Fahrenheit scale is in common use in the United
States. The freezing point of water on this scale is 32◦F and its nor-
mal boiling point is 212◦F. The metric system scale is the Celsius
scale, on which the freezing point of water is 0◦C and its normal
boiling point is 100◦C. The SI scale is the Kelvin scale, on which
these same two points are 273.15 K and 373.15K, respectively. These
latter temperatures are often rounded to three significant digits for
ease of use. We must remember the values 273 K and 373 K. On the
Kelvin scale, the “degree” sign is not used, and the units are called
kelvins. Chemists use t to represent Celsius temperature and T to
represent Kelvin temperature.

Table 2-4 Temperature Scales

Freezing Point Normal Boiling
of Water Point of Water

Fahrenheit (F ) 32◦F 212◦F
Celsius (t) 0◦C 100◦C
Kelvin (T) 273 K 373 K
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To convert from Fahrenheit to Celsius or back, use the follow-
ing equation, where F stands for the Fahrenheit temperature:

t = (F − 32◦)/(1.8)

Although the Fahrenheit scale is in common everyday use in the
United States, it is not used often by scientists. Ask the instructor
if the conversions between Fahrenheit and Celsius are necessary to
learn.

To convert from the Celsius scale to the Kelvin scale or back,
use the following simple equation:

T = t + 273◦

Energy is measured in joules (J). A joule is the energy required
to move a force of 1 Newton through a distance of 1 meter, and a
Newton is the force required to accelerate a 1 kg mass 1meter per
second every second. The important part of these definitions for us
is the units that result by multiplying 1 Newton by a meter:

1 J = 1kg · m2
/s2

It takes 4.184 J to heat 1.000 g of water 1.000◦C.
Kinetic energy (KE) is the energy of motion. The kinetic energy

of a body is

KE = 1
2mv2

These energy and temperature relationships will be developed more
fully in later chapters, where they are used.

Leading Questions

1. What is the SI equivalent of (a) 1 L? (b) 1mL? (c) 1000 L?
2. How many significant digits and how many decimal place digits are

present in each of the following measurements? Is there any
apparent relationship between the two? (a) 0.0987 g (b) 1.100 g
(c) 9.1 g (d ) 0.991 g

3. Calculate the sum of exactly 1m + 2 dm + 3 cm + 4mm.
4. What is the difference between 2mg and 2Mg?
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5. Units of what variable are obtained when a mass is divided by a
length times a width times a depth?

6. Which ones of the following sets of units are the dimensions of
density?

g/cm3 g/mL mg/mL kg/m3 kg/L kg/dm3 g/cm

Answers to Leading Questions

1. (a) 1 dm3 (b) 1 cm3 (c) 1m3

2. (a) 3 significant digits, 4 decimal place digits
(b) 4 significant digits, 3 decimal place digits
(c) 2 significant digits, 1 decimal place digit
(d) 3 each. As we can see, there is no apparent relationship.

3. The answer is any of the following:
1.234m = 12.34 dm = 123.4 cm = 1234mm

4. 2 mg = 0.002 g; 2 Mg = 2,000,000 g = 2 metric tons
5. Density
6. All but g/cm (which might be the basis for pricing a gold chain for a

necklace).

Supplementary Problems

1. Convert (a) 2.44 m to centimeters. (b) 2.44 m3 to cubic
centimeters.

2. Convert (a) 4.852 km to meters. (b) 6.66mm to meters
(c) 10.3 cm to meters.

3. Convert (a) 4.852 kilowatts to watts (W). (b) 4.2 megahertz to
hertz (Hz).

4. Convert 3.50 L (a) to cubic meters. (b) to cubic decimeters.
(c) to cubic centimeters.

5. Convert 331 cm3 to liters.
6. Convert 4.68 km to (a) centimeters. (b) millimeters.
7. Multiply 3.55 cm2 times 2.22 cm.
8. Divide 117.0 g by 23.5 cm3.
9. Calculate the volume in cubic centimeters of a rectangular solid

0.200 cm by 8.20 cm by 11.5mm. (Be sure to convert the
millimeters to centimeters before multiplying.)

10. Calculate the volume of a rectangular solid 0.200 cm by 8.20 cm by
11.5mm.

11. Underline the significant digits in each of the following. If a digit is
uncertain, place a question mark below it. (a) 2.400 kg
(b) 0.721 cm (c) 22.402 m (d ) 300 L (e) 0.0◦C
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12. How many significant digits are present in the Kelvin scale
equivalent of 0◦C?

13. What is the sum, to the proper number of significant digits,
of 1.83 × 1011 m and 6.74 × 109 m?

14. What is the sum, to the proper number of significant digits, of
1.83 × 1011 cm and 6.74 × 109 m?

15. Calculate the density of a rectangular solid that is 40.0 cm by
10.0 cm by 5.00 cm and has a mass of 4.50 kg.

16. Which has a greater density, a sample of oxygen gas at 2.00 g/dm3

or a sample of water at 1.00 g/cm3? Explain.
17. A rectangular drinking trough for animals is 2.10 m long, 43.1 cm

wide, and 21.7 cm deep. A 2.60 × 105 g sample of liquid with
density 1.73 kg/dm3 is placed in it. (a) To find the depth of the
liquid, what should we do to the measurements with regard to their
units? (b) How can we calculate the volume of the trough? (c) What
can we calculate from the density and the mass of liquid? (d ) Do we
expect the volumes of the trough and the liquid to be the same?
(e) How can we calculate the height of the liquid from its volume,
length, and width?

18. If light travels 3.00 × 108 m/s, what distance can light travel in
1.00 year?

19. If light travels 3.00 × 108 m/s and it takes light about 500 s to get
from the sun to the earth, how far away is the sun?

20. It takes light about 4 years to get from the nearest big star to the
earth, and light travels 3.00 × 108 m/s. How far away is the
star?

21. A rectangular drinking trough for animals is 2.10m long, 43.1 cm
wide, and 21.7 cm deep. A 2.60 × 105 g sample of liquid with
density 1.73 kg/dm3 is placed in it. (a) Convert the length to
centimeters and the density to grams per cubic centimeter.
(b) Calculate the volume of the trough. (c) Calculate the volume of
the liquid. (d ) Are the volumes of the trough and the liquid the
same? (e) Calculate the height of the liquid.

22. Calculate the volume of 2.50 kg of mercury (density 13.6 g/mL).
23. Calculate the mass of 1.75 L of iron (density 7.86 g/mL).
24. A sample of a pure substance has a mass of 329 g and a volume of

41.9mL. Use a table of densities to determine the identity of the
substance.

25. Convert 35◦C to the Kelvin scale.
26. Convert 422 K to Celsius.
27. Convert the density 5.94 kg/m3 (a) to g/cm3. (b) to kg/dm3.
28. Under certain conditions, air has a density of about 1.3 kg/m3.
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Calculate the mass of air in a lecture room 10.0 m by 15.0 m
by 3.0m.

29. A rectangular drinking trough for animals is 1.90 m long, 53.1 cm
wide, and 30.7 cm deep. A 1.95 × 105 g sample of liquid with
density 1.55 kg/dm3 is placed in it. Calculate the height of the liquid
in the trough.

30. A certain ore is made up of 17.5% by mass of an iron compound,
and the compound contains 69.9% iron. Calculate the percentage of
iron in the ore.

Solutions to Supplementary Problems

1. (a) 2.44m
(

1 cm
0.01m

)
= 244 cm

(b) 2.44m3

(
1,000,000 cm3

1m3

)
= 2,440,000 cm3 = 2.44× 106 cm3

2. (a) 4.852 km
(
1000m
1 km

)
= 4852m

(b) 6.66mm
(
0.001m
1mm

)
= 0.00666m

(c) 10.3 cm
(
0.01m
1 cm

)
= 0.103m

3. The metric prefixes mean the same thing no matter what unit they
are attached to.

(a) 4.852 kW
(
1000W
1kW

)
= 4852W [Compare to Problem 2(a).]

(b) 4.2MHz
(
1,000,000Hz

1MHz

)
= 4.2 × 106 Hz

4. (a) 3.50 L
(

1m3

1000 L

)
= 0.00350m3

(b) 3.50 L
(
1 dm3

1 L

)
= 3.50 dm3

(c) 3.50 L
(
1000 cm3

1 L

)
= 3500 cm3 = 3.50 × 103 cm3

5. 331 cm3

(
1 L

1000 cm3

)
= 0.331 L
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6. (a) 4.68 km
(
1000m
1 km

) (
1 cm
0.01m

)
= 468,000 cm= 4.68× 105 cm

(b) 4.68 km
(
1000m
1 km

) (
1mm

0.001m

)
= 4,680,000mm

= 4.68 × 106 mm

7. (3.55 cm2)(2.22 cm) = 7.88 cm3 (Watch out for units and
significant digits.)

8. (117.0 g)/(23.5 cm3) = 4.98 g/cm3 (Watch out for units and
significant digits.)

9. (0.200 cm)(8.20 cm)(1.15 cm) = 1.89 cm3

10. This is the same problem as Problem 9, but without a hint about
the units.

11. (a) 2.400 kg (b) 0.721 cm (c) 22.402m (d ) 30
?
0
?
L

(e) 0.0◦C
12. Three (0◦C + 273.15K = 273 K)
13. 1.83 × 1011 m + 0.0674 × 1011 m = 1.90 × 1011 m
14. 1.83 × 1011 cm + 6.74 × 109 m = 1.83 × 109 m + 6.74 × 109 m

= 8.57 × 109 m
15. The volume is (40.0 cm)(10.0 cm)(5.00 cm) = 2000 cm3 = 2.00 dm3

The density is the mass divided by the volume:

(4.50 kg)/(2.00 dm3) = 2.25 kg/dm3

(We changed to cubic decimeters to show the number of significant
digits explicitly, not because the density had to be in these units.)

16. Watch out for the units! The oxygen is in grams per cubic
decimeter; its density in grams per cubic centimeter is given by

2.00 g

1 dm3

(
1 dm3

1000 cm3

)
= 0.00200 g/cm3

The oxygen is less dense.
17. (a) Having the units of all the measurements comparable is

necessary to solve the problem. Because the lengths are given in
different units, we must convert them to comparable units.
(b) Multiply the length times the width times the height (all in
centimeters). (c) The volume of the liquid. (d ) There is no reason to
expect the trough to be full, so they could very well have different
volumes. (e) Solve the equation V = lwh for h.

18. 1.00 year
(
365 days
1 year

) (
24 hours
1 day

) (
3600 s
1 hour

) (
3.00× 108 m

1 s

)
= 9.46×1015 m
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19. 500 s
(
3.00 × 108 m

1 s

)
= 2 × 1011 m

(“About” indicates 1 significant digit.)

20. 4 years
(
365 days
1 year

) (
24 hours
1 day

) (
3600 s
1 hour

) (3.00 × 108 m
1 s

)
= 4 × 1016 m (about 25 thousand billion miles)

21. (a) 2.10m
(

1 cm
0.01m

)
= 2.10 × 102 cm

1.73 kg
1 dm3

(
1000 g
1 kg

) (
1 dm3

1000 cm3

)
= 1.73 g/cm3

(b) V trough = (2.10 × 102 cm)(43.1 cm)(21.7 cm) = 1.96 × 105 cm3

(c) V liquid = 2.60 × 105 g
(
1 cm3

1.73 g

)
= 1.50 × 105 cm3

(d) The volumes are not the same.
(e) h = V/lw = (1.50 × 105 cm3)/(2.10 × 102 cm)(43.1 cm)

= 16.6 cm

22. 2.50 kg
(
1000 g
1 kg

) (
1mL
13.6 g

)
= 184mL

23. 1.75 L
(
1000mL

1 L

) (
7.86 g
1mL

)
= 13,800 g = 13.8 kg

24. d = (329 g)/(41.9mL) = 7.85 g/mL (The substance is iron.)

25. 35◦C + 273◦ = 308K

26. 422K − 273◦ = 149◦C

27. (a)
5.94 kg
1m3

(
1000 g
1 kg

) (
1m3

1 × 106 cm3

)
= 5.94 × 10−3 g/cm3

(b)
5.94 kg
1 m3

(
1 m3

1 × 103 dm3

)
= 5.94 × 10−3 kg/dm3

28. V = (10.0m)(15.0m)(3.0m) = 450 m3 (two significant digits)

450m3

(
1.3 kg
1m3

)
= 590 kg (over half a metric ton)

29. 1.90m
(

1 cm
0.01m

)
= 1.90 × 102 cm

1.55 kg

1 dm3

(
1000 g
1 kg

) (
1 dm3

1000 cm3

)
= 1.55 g/cm3
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V liquid = 1.95 × 105 g
(
1 cm3

1.55 g

)
= 1.26 × 105 cm3

h = V/lw= (1.26× 105 cm3)/(1.90× 102 cm)(53.1 cm)= 12.5 cm
The steps of Supplementary Problem 21 are followed, except that
the volume of the trough need not be calculated because it is not
equal to the volume of the liquid.

30.
17.5 g compound

100 g ore

(
69.9 g iron

100 g compound

)
= 12.2 g iron

100 g ore
= 12.2% iron
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Chapter 3

Classical Laws of
Chemical Combination

3.1 The Law of Conservation of Mass
The law of conservation of mass states that in any chemical reac-
tion, mass is neither gained nor lost. That means that the total mass
of the reactants is equal to the total mass of the products.

EXAMPLE 1 Calculate the mass of the product of reaction of 6.54 g
of zinc with 3.21 g of sulfur.

Solution The compound produced has a mass equal to the
total mass of the reactants:

6.54 g + 3.21 g = 9.75 g �
The law of conservation of mass is important especially for

reactants or products that are hard to weigh. Also, this law can be
used to solve for the masses of reactants as well as those of products,
just as the algebraic equation x = a + b can be solved for x if a and
b are given as well as it can be solved for b if a and x are given.

EXAMPLE2 Calculate themass of the oxygen that reactswith 1.24 g
of methane (natural gas) to form 3.41 g of carbon dioxide and 2.79 g
of water. (The mass of each product was also determined using the
law of conservation of mass. See Supplementary Problem 2.)

Solution The total mass of the products is 3.41 g + 2.79 g =
6.20 g. The total mass of the reactants must also be 6.20 g, so the
oxygen has a mass of 6.20 g − 1.24 g = 4.96 g. �
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EXAMPLE 3 What mass of aluminum oxide must be electrolyzed
with carbon electrodes to yield 1.59×106 g of aluminum and
2.48×106 g of carbon monoxide in the Hall process for the indus-
trial production of aluminum. The carbon electrodes lost a total of
1.06×106 g of mass.

Solution

(1.59×106 g) + (2.48×106 g) − (1.06×106 g)

= 3.01×106 g aluminum oxide �

3.2 The Law of Definite Proportions
The law of definite proportions states that the elements in any
given compound are in definite proportions by mass. That is, the
ratio of mass of each element to that of every other element in the
compound is a constant.

EXAMPLE 4 If 6.537 g of zinc reacts with exactly 7.0906 g of chlo-
rine to form the only compound of chlorine and zinc, how much
zinc will react with (a) 14.18 g of chlorine? (b) with 28.36 g of chlo-
rine? (c) with 100.0 g of chlorine?

Solution

(a) With twice the mass of chlorine, twice the mass of zinc must
react: 13.07 g.

(b) With four times the mass of chlorine, four times the mass of zinc
must react: 26.15 g.

(c) With (100.0)/(7.0906) times the mass of chlorine, (100.0)/
(7.0906) times the mass of zinc must react:

6.537 g
(

100.0
7.0906

)
= 92.19 g zinc

In each case, the ratio of mass of zinc to mass of chlorine is the same!

7.0906 g
6.537 g

= 14.18 g
13.07 g

= 28.36 g
26.15 g

= 100.0g
92.19 g

= 1.085 �

EXAMPLE 5 The reaction of 6.54 g of zinc and 3.20 g of oxygen
produces 9.74 g of zinc oxide, the only compound of these elements.
(a) How much zinc oxide would be produced if 6.54 g of zinc and
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5.00 g of oxygen were mixed and allowed to react? (b) What law
enables us to answer this question?

Solution (a) 9.74 g. (Zinc and oxygen react in a ratio of 6.54 g
to 3.20 g, no matter how much extra oxygen is present.) (b) The law
of definite proportions. �
EXAMPLE 6 (a) In the experiment of Example 5, how much oxygen
did not react? (b) What law enables us to answer this question?

Solution (a) Since 3.20 g of the 5.00 g reacted, 1.80 g did not
react. (b) The law of conservation of mass. �
EXAMPLE 7 From the data of Example 5, calculate the mass of zinc
that would react with 1.00 g of oxygen.

Solution

1.00 g oxygen
(

6.54 g zinc
3.20 g oxygen

)
= 2.04 g zinc �

3.3 The Law of Multiple Proportions
The law ofmultiple proportions states thatwhen twoormore com-
pounds consist of the same elements, for a given mass of one of the
elements, the masses of the other elements are in small, whole num-
ber ratios. For example, carbon monoxide and carbon dioxide both
consist of carbon and oxygen only. In a certain sample of carbon
monoxide, 1.00 g of carbon is combined with 1.33 g of oxygen. In a
sample of carbon dioxide containing 1.00 g of carbon, there is 2.66 g
of oxygen. Thus, for a given mass of carbon (1.00 g), there is a ratio
of oxygen equal to (1.33 g) : (2.66 g) = 1 : 2. That is a small, whole
number ratio. Note well, it is not the ratio of mass of carbon to mass
of oxygen that is a small whole number according to the law of mul-
tiple proportions, but the masses of oxygen in the two compounds.

EXAMPLE 8 A sample of a compound of sodium, chlorine, and oxy-
gen contains 2.00 g of sodium, 3.08 g of chlorine, and 1.39 g of oxy-
gen. A second compound made with these same elements contains
1.00 g of sodium, 1.54 g of chlorine, and 2.78 g of oxygen. Show that
these data support the law of multiple proportions.

Solution First wemust get a fixedmass of one of the elements.
(Any one will do.) It might be easiest to take half the masses of each
element in the first compound, to get 1.00 g of sodium in each.

1.00 g sodium,1.54 g of chlorine, and0.695 g of oxygen
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For the fixed mass (1.00 g) of sodium, there are

Chlorine Oxygen
Compound 1
Compound 2

1.54 g
1.54 g

= 1g
1 g

0.695 g
2.78 g

= 1g
4 g

The ratios of masses are small whole number ratios, as required by
the law of multiple proportions. �

EXAMPLE 9 Show that the following data are in accord with the
law of multiple proportions:

Element 1 Element 2 Element 3
Compound 1 29.1% 40.5% 30.4%
Compound 2 32.4% 22.6% 45.0%

Solution Assume that we have 100.0 g of compound, in
which case each percentage is equal to the number of grams of that
element in our sample. To get a fixed mass of one of the elements, it
is easiest to divide each mass in each compound by the magnitude
of the mass of one of the elements in that compound. Use the same
element in each compound as the divisor! Taking the element with
the smallest percentage in one or both compounds is perhaps best.

Element 1 Element 2 Element 3
Compound 1 29.1 g/29.1 = 1.00 g 40.5 g/29.1 = 1.39 g 30.4 g/29.1 = 1.04 g
Compound 2 32.4 g/32.4 = 1.00 g 22.6 g/32.4 = 0.698 g 45.0 g/32.4 = 1.39 g

The ratio of masses of element 2 in the two compounds is
1.39 g : 0.698 g = 2 : 1. (Never round off more than 1% or 2%.)

The ratio of masses of element 3 in the two compounds is
1.04 g : 1.39 g = 0.75 : 1.0. This is not a whole number ratio, but it can
be made into a whole number ratio of equal value by multiplying
both numerator and denominator by 4:

0.75
1.0

= 3
4

Thus, for a given mass of the first element, the ratios of the other
two elements are whole number ratios, in accord with the law of
multiple proportions. �

To convert ratios containing decimal fractions to whole num-
ber ratios, convert them to common fractions and multiply the
numerator and denominator by the denominator of the common
fraction. For example, 0.75 is 3

4 , so we can multiply the 0.75 and the
1 in the ratio 0.75

1 by 4 (the denominator of the common fraction) to
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Table 3-1 Some Common Fraction Equivalents
to Decimal Fractions

0.5 1
2 0.2 1

5

0.250 1
4 0.4 2

5

0.333 1
3 0.6 3

5

0.667 2
3 0.8 4

5

0.750 3
4

get the ratio 3 : 4. (We also in simple cases merely use the common
fraction, 3

4 .) A set of some common fraction equivalents is given in
Table 3-1.

EXAMPLE 10 Convert each of the following ratios to an integral
ratio: (a) (0.50 g)/(1 g); (b) (1.50 g)/(1 g); (c) (2.667 g)/(1 g).

Solution

(a) (0.50 g)/(1 g) = 1
2

(b) (1.50 g)/(1 g) = 3
2 (The fractional part is 1

2 , so multiply by 2.)

(c) (2.667 g)/(1 g) = 22
3 = 8

3 (The fractional part is 2
3 or 8

3 ,
so multiply by 3.) �

Leading Questions

1. What mass of an element is present in a 100.0-g sample if the
element is 29.1% of the compound?

2. In Example 9, when we divide the mass of each element of compound
2 by 32.4, what happens to our 100.0-g sample of the compound?

Answers to Leading Questions

1. 100.0 g
(
29.1 g
100 g

)
= 29.1 g. (The number of grams is equal in

magnitude to the percentage.)
2. We have reduced the 100.0-g mass to (100.0 g)/(32.4) = 3.09 g. Note

that after the divisions, the sum of the masses of all the elements is
3.09 g.
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Supplementary Problems

1. How much oxygen is required to convert 11.24 g of cadmium to
12.84 g of cadmium oxide?

2. In a certain experiment, when 0.547 g of methane is burned in
excess oxygen, carbon dioxide and water vapor are formed. The
water is absorbed by phosphorus pentoxide, and the carbon dioxide
is absorbed by slaked lime. The tube containing the phosphorus
pentoxide increases in mass by 1.23 g and the tube containing the
slaked lime increases 1.50 g. How much oxygen reacted?

3. A 10.0-g sample of sodium chloride consists of 39.3% sodium and
the rest chlorine. (a) What is the percentage of sodium in a 4.00-g
sample? (b) What is the mass of sodium in a 4.00-g sample?

4. Show that the following data support the law of multiple
proportions:

Compound 1 Compound 2
Element 1 1.00 g 4.88 g
Element 2 2.00 g 7.32 g
Element 3 4.00 g 9.76 g

5. Show that the following data support the law of multiple
proportions:

Compound 1 Compound 2 Compound 3
Element 1 15.8% 18.4% 13.8%
Element 2 28.1% 32.7% 49.3%
Element 3 56.1% 48.9% 36.9%

6. When 5.40 g of aluminum reacts with 9.62 g of sulfur, it forms
15.02 g of the only compound of just these two elements. In a
second experiment, if the mass of aluminum is increased, what will
happen to it? How can we tell?

7. Convert each of the following ratios to integral ratios:
(a) (1.50 g A)/ (1.00 g B); (b) (2.50 g A)/(1.00 g B);
(c) (3.50 g A)/(1.00 g B).

8. Convert each of the following ratios to integral ratios:
(a) (2.67 g A)/ (1.00 g B); (b) (4.75 g A)/(1.00 g B);
(c) (1.60 g A)/(1.00 g B).

9. (a) Would a set of mixtures of carbon monoxide (42.9% carbon,
57.1% oxygen) and carbon dioxide (27.3% carbon, 72.7% oxygen)
be expected to have a definite composition? (b) What are the
extreme limits on the percentage of carbon in such a set of
mixtures?
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10. Show that the compounds in the prior problem obey the law of
multiple proportions.

11. Consider the following data about two compounds consisting of the
same three elements:

Element 1 Element 2 Element 3
Compound 1 7.53 g 627mg 1.67 g
Compound 2 50.0% 5.56% 44.4%

(a) What should we do about the units in the data of compound 1
to simplify any calculations to be done? (b) How can we get mass
ratios from percentages? (c) How can we get a fixed mass of one
element in the two compounds? (d ) Do we consider the mass ratio
of element 1 to element 2 in each compound to establish the law of
multiple proportions? (e) What ratios do we consider?

12. Consider the following data about two compounds consisting of the
same three elements:

Element 1 Element 2 Element 3
Compound 1 7.53 g 627mg 1.67 g
Compound 2 50.0% 5.56% 44.4%

(a) Calculate the mass in grams of element 2 in compound 1.
(b) Convert the percentages in compound 2 to masses.
(c) Calculate the mass of elements 1 and 3 in each compound per
gram of element 2. (d ) Show that these data support the law of
multiple proportions.

13. Consider the following data about three compounds consisting of
the same three elements:

Element 1 Element 2 Element 3
Compound 1 0.1279 kg 10.66 g 28.43 g
Compound 2 62.07% 10.34% 27.59%
Compound 3 10.68 g 1.334 g 7.117 g

Show that these data support the law of multiple proportions.

Solutions to Supplementary Problems

1. The law of conservation of mass requires that
12.84 g − 11.24 g = 1.60 g of oxygen has reacted.

2. The law of conservation of mass requires that
1.23 g + 1.50 g − 0.547 g = 2.18 g of oxygen reacted.
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3. (a) 39.3%. (All samples contain this percentage, according to the
law of definite proportions.)

(b) 4.00 g NaCl
(

39.3 g Na
100 g NaCl

)
= 1.57 g Na

4. Dividing each element in compound 2 by 4.88 to get a fixed (1.00 g)
mass of element 1 in the two compounds yields

Compound 1 Compound 2
Element 1 1.00 g 1.00 g
Element 2 2.00 g 1.50 g
Element 3 4.00 g 2.00 g

The ratio of element 2 in the two compounds is 2.00 g : 1.50 g =
4 g : 3 g, an integral ratio. The ratio of element 3 is 4.00 g : 2.00 g =
2 g : 1 g, again an integral ratio.

5. First we change each percentage to a mass in grams. Then we divide
each element in each compound by the magnitude of the mass of
element 1 in the compound to get a fixed (1.00 g) mass of element
1 in the three compounds:

Compound 1 Compound 2 Compound 3
Element 1 1.00 g 1.00 g 1.00 g
Element 2 1.78 g 1.78 g 3.57 g
Element 3 3.55 g 2.66 g 2.67 g

For the fixed mass (1.00 g) of element 1, there is a ratio of
1 g : 1 g : 2 g of element 2 and 1.33 g : 1.00 g : 1.00 g of element 3 in
the compounds. That last ratio can be made integral merely by
multiplying by 3, to get 4 : 3 : 3.

6. The extra aluminum will not react, because the law of definite
proportions states that the elements in a given compound have
definite proportions by mass (in this case, 5.40 g of aluminum to
9.62 g of sulfur).

7. Because 0.5 is equal to 1
2 , multiply each ratio by 2, to get

(a) (3 g A)/ (2 g B); (b) (5 g A)/(2 g B);
(c) (7 g A)/(2 g B).

8. (a) (2.67 g A)/(1.00 g B)
0.67 is equivalent to 2

3 so multiply numerator and denominator
by 3:

(8.01 g A)/(3.00 g B) = (8 g A)/(3 g B)
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(b) (4.75 g A)/(1.00 g B)
0.75 is equivalent to 3

4 so multiply numerator and denominator
by 4:

(19.0 g A)/(4.00 g B)

(c) (1.60 g A)/(1.00 g B)
0.60 is equivalent to 3

5 so multiply numerator and denominator
by 5:

(8.00 g A)/(5.00 g B)

9. (a) No, mixtures do not obey the law of definite proportions.
(b) A given mixture might be anywhere from 99.99% carbon
monoxide, with 42.9% carbon, to 99.99% carbon dioxide, with 27.3%
carbon.

10. Carbon monoxide Carbon dioxide
Carbon 42.9 g 27.3 g
Oxygen 57.1 g 72.7 g

Per gram of carbon in each compound:

Carbon monoxide Carbon dioxide
Carbon 1.00 g 1.00 g
Oxygen 1.33 g 2.66 g

Per gram of carbon, the ratio of masses of oxygen in the two
compounds is an integral ratio: (2.66 g) : (1.33 g) = 2 g : 1 g

11. (a) We should convert the mass of element 2 in compound
1 to grams. (b) Assuming that we have 100.0 g of compound, we
merely change the percent signs to grams. (c) We divide each mass
by the mass of element 2, the smallest mass in each compound.
(d ) No. (e) With a fixed mass of element 2, the mass ratios of
element 1 in one compound to element 1 in the other compound
and of element 3 in one compound to element 3 in the other
compound are used to establish the law of multiple proportions.

12. (a) 627mg
(
0.001 g
1mg

)
= 0.627 g

(b) Assuming a 100-g sample, we merely change the percent signs to
g for grams. These conversions yield:
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Element 1 Element 2 Element 3
Compound 1 7.53 g 0.627 g 1.67 g
Compound 2 50.0 g 5.56 g 44.4 g

(c) Element 1 Element 2 Element 3
Compound 1 12.0 g 1.00 g 2.66 g
Compound 2 8.99 g 1.00 g 7.99 g

(d) For a fixed (1.00 g) mass of element 2, the mass ratio of element
1 in the two compounds is 12.0 g : 8.99 g = 4 g : 3 g, and that
of element 3 in the two compounds is 2.66 g : 7.99 g = 1 g : 3 g.

13. This problem is the similar to the prior problem, except that it is
not presented in parts.

0.1279 kg
(
1000 g
1 kg

)
= 127.9 g

Element 1 Element 2 Element 3
Compound 1 127.9 g 10.66 g 28.43 g
Compound 2 62.07 g 10.34 g 27.59 g
Compound 3 10.68 g 1.334 g 7.117 g

Element 1 Element 2 Element 3
Compound 1 12.00 g 1.000 g 2.667 g
Compound 2 6.003 g 1.000 g 2.668 g
Compound 3 8.006 g 1.000 g 5.335 g

For a fixed (1.000 g) mass of element 2, the mass ratio of element 1
in the three compounds is

12.00 g : 6.003 g : 8.006 g = 2 g : 1 g : 1.334 g

which is equal to 6 : 3 : 4. That of element 3 in the three compounds is

2.667 g : 2.668 g : 5.335 g = 1 g : 1 g : 2 g.
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Chapter 4

Formula Calculations

4.1 Atomic and Formula Masses

Atomic Mass

The atomic mass of an element is the weighted average of the
masses of its atoms. The unit of atomic mass is called, fittingly
enough, the atomic mass unit. It is defined as one-twelfth the mass
of the 12C atom, and it is abbreviated amu in most books but u in
some. (A few chemists use the dalton as the unit of atomic mass, in
honor of John Dalton.) Although John Dalton in his atomic theory
postulated that all atoms of the same element had the same mass,
we now know that the different isotopes of an element have differ-
ent masses. For example, 12C atoms have a mass of exactly 12 amu
each, whereas 13C atoms have a mass of 13.00335 amu each. It turns
out that the ratio of isotopes of each of the elements in all naturally
occurring samples is very constant (to three or more significant
digits), so the weighted average of the masses of the atoms of an
element is constant, which is why Dalton’s hypotheses worked.

Please note that atomic mass, called atomic weight in some
texts, is different from mass number. The mass number refers to
a specific isotope, and is an integer—the number of protons plus
neutrons in each atom. The atomic mass is based on the naturally
occurring mixture of isotopes, and is not an integer. Atomic masses
for almost all the elements are presented in the periodic table; mass
numbers are presented there only for elements that do not occur
naturally. Note that atomic masses vary from about 1 for hydrogen
to a little over 250 for the largest elements. If we ever solve a problem
and get an atomic mass outside this range, we know we have likely
made a mistake. Also note that no atom has an atomic mass in the
range of 1 to 250 grams. That might be the mass of a mole of atoms
(Section 4.2).
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The weighted average of several sets of items is the average
with regard to the number in each set. For example, if the Jones
family has triplet boys, each weighing 90 pounds, and one girl, who
weighs 50 pounds, the average of one boy and the girl is 70 pounds,
but the weighted average of all the children is 80 pounds:

90 pounds

90 pounds or 3(90 pounds) + 50 pounds = 320 pounds

90 pounds

50 pounds

320 pounds

Weighted average = (320 pounds)/(4 children) = 80 pounds

The atomic mass of each element can be determined in two dif-
ferent ways: (1) as was done historically, by comparing the naturally
occurring mixture versus a standard (now 12C), or (2) as presently
done with the modern mass spectrometer, by measuring the mass of
each isotope and the percentage abundance of each.

EXAMPLE 1 (a) The atoms of a certain element have a mass 2.026
times the mass of an equal number of 12C atoms. What is the atomic
mass of the element? (b)Which element is it? (c)What is the bestway
to make sure that we get equal numbers of atoms of two elements
to compare total masses?

Solution

(a) The mass of the average atom is 2.026 times that of a 12C atom:

2.026(12.00 amu) = 24.31 amu

(b) Magnesium (see the periodic table).
(c) The best way to get equal numbers of atoms is to make

a compound of the two elements that has them in a 1 : 1
ratio. �

EXAMPLE 2 Naturally occurring magnesium consists 78.70% of
24Mg, with atoms of mass 23.98504 amu, 10.13% of 25Mg, with
atoms of mass 24.98584 amu, and 11.17% 26Mg, with atoms of mass
25.98259 amu. Calculate the atomic mass of magnesium.
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Table 4-1 Types of Formula Masses

Formula Unit Name Example

Atom Atomic mass Hg 200.6 amu
Molecule Molecular mass NH3 17.0 amu
Molecule Molecular mass H2 2.0 amu

(a diatomic
Formula unit of an element)

ionic compound Formula mass MgCl2 95.2 amu

Solution

(78.70%)(23.98504 amu) + (10.13%)(24.98584 amu) + (11.17%)(25.98259 amu)
100.0%

= 24.31 amu �
Atomic masses are used to describe combined as well as un-

combined atoms.

Formula Masses

The subscripts in the formula of a compound give the ratio of the
number of atoms of each element to the number of atoms of each
other element in the formula. The collection of atoms written to rep-
resent the compound is defined as one formula unit. That is, the
formula unit of ammonium sulfide, (NH4)2S, contains two atoms
of nitrogen, eight atoms of hydrogen, and one atom of sulfur. The
term formula mass (sometimes called formula weight) refers to the
sum of the atomic masses of every atom (not merely every element)
in a formula unit. There are several names for formula masses corre-
sponding to different kinds of formulas. For uncombined atoms, the
formula mass is the atomic mass. For covalent compounds, which
consist of molecules, the formula mass can be called the molecular
mass. For ionic compounds, there is no special name for formula
mass. These terms are summarized in Table 4-1.

It turns out that determining formula masses does not depend
on the nature of the formula unit; merely add the atomic masses of
each atom present no matter what the nature of the formula unit.

EXAMPLE 3 Determine the formula mass for each of the following:
(a) AlCl3 (b) U (c) H2O (d) Br2 (e) U in UF6

Solution (a) 26.98 amu + 3(35.453 amu) = 133.34 amu
(b) 238.0 amu (c) 18.02 amu (d) 159.8 amu
(e) 238.0 amu
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Calculations for (c) and (d) are done the same way that the calcula-
tion for (a) is done. The values for (b) and (e) show that the atomic
mass does not depend on whether the atom is in a compound or
not. �

4.2 The Mole
Atoms, most molecules, and formula units of ionic compounds are
extremely tiny. Their formula masses are measured in atomic mass
units, which are useful for comparison purposes only. In order to get
weighable quantities of matter, a huge collection of formula units
is required. The mole is defined as the number of 12C atoms in
exactly 12 grams of 12C. A millimole is 0.001 mol, and is useful
for calculations with small quantities of substances. The mole is
abbreviated mol, not m or M, which are used for related quantities,
and millimole is abbreviated mmol.

That is, one 12C atom has a mass of 12 amu;
one mole of 12C atoms has a mass of 12 grams;
one millimole of 12C atoms has a mass of 12 mg.

The number of 12C atoms in 12.0 g is 6.02 × 1023; this number is
called Avogadro’s number, and must be memorized. It turns out
that this number is the number of atomic mass units in 1.00 gram:

6.02 × 1023 12C atoms
1mol 12C

(
1mol 12C

12.0 g

) (
12.000 amu
1 12C atom

)

= 6.02 × 1023 amu/g

Avogadro’s number may be used in chemistry problems the way
a dozen is used in everyday problems, to convert back and forth
between the number of individual items and the number of moles
of those items.

EXAMPLE 4 Calculate the number of (a) lemons in 3.50 dozen
lemons. (b) atoms in 3.50 mol of atoms.

Solution

(a) 3.50 dozen
(

12 lemons
1 dozen

)
= 42 lemons

(b) 3.50 mol
(

6.02 × 1023 atoms
1 mol

)
= 2.11 × 1024 atoms �

Just as with dozens, the mass of a mole of atoms depends on
which atoms are specified.
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Numbers of
individual

atoms

Avogadro's
number Moles

Atomic
mass

Total
mass

EXAMPLE 5 (a) Which is heavier, two dozen lemons or two dozen
watermelons? (b) Which has a greater mass, 2 mol of uranium atoms
or 2 mol of lithium atoms?

Solution (a) The watermelons weigh more, despite there be-
ing an equal number, because each watermelon weighs more than
each lemon. (b) The mole of uranium has a greater mass despite
there being equal numbers of atoms, because each uranium atom
has a greater mass than each lithium atom. �

To convert masses to moles or vice versa, we use the molar
mass of the substance. Molar mass has the same numeric value as
the number of atomicmass units in a formula unit, but it is expressed
in units of grams per mole. For example, the molar mass of water is
18.0 g/mol because the formula mass of water is 18.0 amu/molecule.
Because molar mass is a ratio, it can be used as a factor in problem
solving.

EXAMPLE 6 Calculate (a) the weight of 3.50 dozen lemons, assum-
ing that the average weight is 3.00 pounds per dozen. (b) the mass
of 3.50 mol of uranium atoms.

Solution

(a) 3.50 dozen
(

3.00pounds
1dozen

)
= 10.5 pounds

(b) The atomic mass of uranium is found on the periodic table.

3.50 mol U
(

238 g U
1 mol U

)
= 833 g U �

In summary, remember that we can use the molar mass to con-
vert to or from masses, and Avogadro’s number to convert to or from
numbers of individual formula units. The following figure may help
us remember how to convert moles to numbers of individual items
or to mass, or vice versa.

Mass Moles Numbers of
formula units

 Molar 
mass

Avogadro's 
number

EXAMPLE 7 (a) Calculate the number of molecules in 5.00 mol of
NH3. (b) Calculate the mass of 5.00 mol of NH3.
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Solution

(a) 5.00mol NH3

(
6.02 × 1023 molecules NH3

1mol NH3

)
= 3.01 × 1024 molecules NH3

(b) 5.00mol NH3

(
17.0g NH3

1mol NH3

)
= 85.0g NH3 �

To convert from masses to numbers of individual formula units
or vice versa, use two steps in the figure above.

EXAMPLE 8 Calculate the number of molecules in 56.7g NH3.

Solution

56.7g NH3

(
1mol NH3

17.0g NH3

)
= 3.34mol NH3

3.34mol NH3

(
6.02 × 1023 molecules NH3

1mol NH3

)

= 2.01 × 1024 molecules NH3

Once we get more experience doing these types of problems, we may
solve them in a single step:

56.7g NH3

(
1mol NH3

17.0g NH3

)(
6.02 × 1023 molecules NH3

1mol NH3

)

= 2.01 × 1024 molecules NH3 �
The subscripts in the chemical formula tell us how many moles

of atoms of each element are present in a mole of the compound.
For example, there are 8 moles of carbon atoms, 18 moles of hy-
drogen atoms, and 1 mole of oxygen atoms in each mole of oc-
tanol, C8H18O. In doing problems involving the numbers of moles
of atoms in a given number of moles of compound, be sure to iden-
tify the substance after writing the unit involved.

EXAMPLE 9 How many moles of potassium are present in 1.40mol
of K3PO4, a compound used as a fertilizer?

Solution

1.40mol K3PO4

(
3mol K

1mol K3PO4

)
= 4.20mol K

from the
chemical formula �
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4.3 Percent Composition
The subscripts in the formula of a compound give the mole ratio of
atoms of the elements in the compound. For example, H2SO4 has a
mole ratio of 2 mol of hydrogen atoms to 1 mol of sulfur atoms to
4 mol of oxygen atoms. The percent composition refers to the mass
ratio of the elements converted to percentage. To get the percent
composition, take an arbitrary quantity of the compound (1.00 mol
is easiest), convert each number of moles of the elements to grams
with the molar masses of the atoms, then calculate the percentage
by dividing the mass of each element by the total mass in the given
quantity of compound (in this case, 1.00 mol).

EXAMPLE 10 Calculate the percent composition of NH4NO3, an-
other fertilizer.

Solution The masses are calculated as shown above:

2mol N
(

14.01 g N
1mol N

)
= 28.02 g N

4mol H
(

1.008 g H
1mol H

)
= 4.032 g H

3mol O
(

16.00 g O
1mol O

)
= 48.00 g O

Total = 80.05 g

(Note that we use 16.00 g/mol of oxygen atoms; this problem has
nothing to do with oxygen molecules, O2.)

The percentage of each element is the mass of the element
divided by the total mass, times 100% to convert to percent:

4.032 g H
80.05 g

× 100.0% = 5.037% H

28.02 g N
80.05 g

× 100.0% = 35.00% N

48.00 g O
80.05 g

× 100.0% = 59.95% O

Total = 99.99%
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We should always check our answer to see that it is reasonable! A total
between 99.5% and 100.5% is reasonable. �

4.4 Empirical Formulas
Empirical formula problems should be done with at least three sig-
nificant digits in each value. If fewer significant digits are used,
rounding errors may yield an incorrect formula.

We have learned how to convert a formula to percent compo-
sition; we will now do the opposite—convert a percent composition
to the empirical formula. The empirical formula of a compound is
its simplest formula, having the smallest possible set of integral sub-
scripts. Thus CH2 is an empirical formula, but C2H4 is not, because
its subscripts can both be divided by 2. The empirical formula tells
the mole ratio of the atoms of each element to those of every other
element in the compound. If we start with a set of masses for the ele-
ments in the compound, we can change them to moles as shown in
Section 4.2. We then have to make that set of moles into an integral
set of moles, and use those integers as subscripts in our formula.

EXAMPLE 11 Calculate the empirical formula of glucose, a simple
sugar, if a certain sample contains 393.4 g of carbon, 66.07 g of
hydrogen, and 524.2 g of oxygen.

Solution We first change each of the masses to moles:

393.4 g C
(

1mol C
12.01 g C

)
= 32.76mol C

66.07 g H
(

1mol H
1.008 g H

)
= 65.55mol H

524.2 g O
(

1mol O
16.00 g O

)
= 32.76mol O

We now have a mole ratio of these elements, but it is not an integer
ratio. The easiest way to get an integer ratio is to divide all of these
moles by the magnitude of the smallest:

32.76mol C
32.76

= 1.000mol C
32.76mol O

32.76
= 1.000mol O

65.55mol H
32.76

= 2.001mol H
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The ratio is close enough to a 1 : 2 : 1 ratio to deduce the
empirical formula to be CH2O. �

Two complications often arise. Instead of masses of the ele-
ments, a problem is usually stated in terms of percentages of the
elements. If we assume that we have a 100.0-g sample, the percent-
ages are equal to the masses in grams. Then we proceed as above. The
second complication is the division by the magnitude of the small-
est number of moles may not give all integers, but some decimal
fractions in addition to integers. We can change the fractional part
of the decimal fraction to a common fraction, then multiply every
number of moles by the denominator of that fraction. (We had the
same problem in Section 3.3 with the law of multiple proportions.)

EXAMPLE 12 Calculate the empirical formula of a compound com-
posed of 52.9% carbon and 47.1% oxygen.

Solution We first change each of the percentages to masses
and those to moles:

52.9 g C
(

1mol C
12.0 g C

)
= 4.41mol C

47.1 g O
(

1mol O
16.0 g O

)
= 2.94mol O

The attempt to get integral numbers of moles produces

4.41mol C
2.94

= 1.50mol C
2.94mol O

2.94
= 1.00mol O

The 1.50 is equal to 11
2 or 3

2 , so we multiply every number of moles
by 2 (the denominator of 3

2 ).

1.50mol C × 2
1.00mol O × 2

= 3mol C
2mol C

and the empirical formula is C3O2 (for carbon suboxide). �

4.5 Molecular Formulas
Covalent compounds exist as molecules, and their (molecular) for-
mulas have some integral multiple of the set of subscripts in the
empirical formula. Themolecular formula gives all the information
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that the empirical formula gives, and in addition it gives the ratio
of the number of moles of every element to the number of moles
of the compound as a whole. To get the molecular formula from
the empirical formula and the molecular mass, determine the mass
corresponding to the empirical formula and divide that into the
molecular mass. Use the integral result to multiply each subscript in
the empirical formula (including the understood values equal to 1).

EXAMPLE 13 Determine the molecular formula of a compound
with empirical formula CH2 and molecular mass 98.0 amu.

Solution
The empirical formula mass is 12.0 amu + 2(1.0 amu)

= 14.0 amu.
There are (98.0 amu)/(14.0 amu) = 7 empirical formula units

in each molecule. The molecular formula is thus C7H14. �

On examinations, the empirical formula is often not given, but
a percentage composition is given instead along with a molecular
mass. Then we have a two-step solution; first find the empirical for-
mula as in Section 4.4 and then find the molecular formula as just
shown.

Leading Questions

1. One oxygen atom has a mass 1.33 times that of a carbon atom. What
is the ratio of masses of (a) 2 oxygen atoms to 2 carbon atoms?
(b) 1 dozen oxygen atoms to 1 dozen carbon atoms? (c) 200 oxygen
atoms to 200 carbon atoms? (d ) 1 mol of oxygen atoms to 1 mol of
carbon atoms?

2. (a) Calculate the number of dozens of oranges in 60 oranges.
(b) Calculate the number dozens of pairs of socks in 60 pairs of
socks. (c) Calculate the number of moles of Al atoms in 3.01 × 1024

Al atoms. (d ) Calculate the number of moles of H2 molecules in
3.01 × 1024 H2 molecules.

3. What is the molar mass of (a) oxygen atoms? (b) oxygen gas?
4. Which section of Chapter 4 is limited to only one type of formula

unit?

Answers to Leading Questions

1. All these ratios are 1.33 to 1.
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2. (a) 60 oranges
(
1 dozen oranges

12 oranges

)
= 5 dozen oranges

(b) 60 pairs of socks
(
1 dozen pairs of socks

12 pairs of socks

)
= 5 dozen pairs of socks

(c) 3.01 × 1024 Al atoms
(

1mol Al
6.02 × 1023 Al atoms

)
= 5.00mol Al

(d) 3.01 × 1024 H2 molecules
(

1mol H2

6.02 × 1023 H2 molecules

)
= 5.00mol H2

3. (a) 16.0 g/mol (b) 32.0 g/mol (of O2 molecules)
4. Section 4.5. It calculates molecular formulas that exist only for

covalent compounds that form molecules.

Supplementary Problems

1. In a 5.00-g sample of carbon, how many of the atoms have a mass of
12.01 amu?

2. Calculate the atomic mass of an element if its average atom has a
mass (a) 2.25 times that of carbon. (b) 2.42 times that of the
element in part (a).

3. Calculate the atomic mass of an element if 60.4% of the atoms have
a mass of 68.9257 amu and the rest have a mass of 70.9249 amu.

4. Calculate the percentage of bromine atoms that have a mass of
78.9183 amu and the percentage that have a mass of 80.9163 amu.
The atomic mass of bromine is 79.909 amu, and these are the only
two naturally occurring isotopes.

5. Calculate the formula mass of (a) (NH4)2HPO4 (one type of
fertilizer); (b) C2H5OH (ethyl alcohol); (c) P4 (one form of
elemental phosphorus).

6. Determine the molar mass of (a) (NH4)2HPO4; (b) C2H5OH; (c) P4.
7. (a) Calculate the number of dozens of oranges in 84 oranges.

(b) Calculate the number of moles of Al atoms in
5.75 × 1024 Al atoms. (c) Calculate the number of moles of H2

molecules in 5.75 × 1024 H2 molecules. (d ) Calculate the number of
moles of H atoms in 5.75 × 1024 H2 molecules.

8. Calculate the number of aluminum atoms in a can containing 25.0 g
of aluminum.
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9. Calculate the number of moles of ethylene glycol, C2H6O2, used as
antifreeze in cars, that are in 47.7 g of C2H6O2.

10. Calculate the mass in grams of 5.00 × 1020 H2Omolecules.
11. Calculate the number of moles of hydrogen atoms in 17.4 g

of (NH4)2SO4.

12. Calculate the percent composition of borax, Na2B2O7, used in
commercial laundry processes.

13. Calculate the empirical formula of “hypo,” used in photographic
development, consisting of 29.1% Na, 40.5% S, and 30.4% O.

14. Calculate the percent composition of rubbing alcohol, C3H8O.
15. Calculate the molecular formula of a compound with molar mass

104 g/mol composed of 92.3% carbon and 7.7% hydrogen.
16. Consider the formula of hydrazinium nitrate, N2H6(NO3)2.

(a) Calculate its molar mass. (b) Calculate the number of moles of
the compound in 17.4 g of it. (c) Calculate the number of moles
of nitrogen atoms in that quantity of compound. (d ) Calculate the
number of individual nitrogen atoms in that quantity.

17. Calculate the number of individual nitrogen atoms in 151 g of
ammonium azide, NH4N3.

Solutions to Supplementary Problems

1. None. The 12.01 amu is the atomic mass—the weighted average of
all the isotopes of carbon. (The same reasoning tells us that no
American family has 2.3 children.)

2. (a) 2.25(12.01 amu) = 27.0 amu
(b) 2.42(27.0 amu) = 65.3 amu

3. (60.4%)(68.9257 amu) + (39.6%)(70.9249 amu)
100% = 69.7 amu

4. Let x = the percentage of the 78.9183 amu isotope,
then (100 − x ) = the percentage of the other isotope.

x (78.9183 amu) + (100 − x )(80.9163 amu)
100

= 79.909 amu

78.9183x + 8091.63 − 80.9163x = 7990.9
−1.998x = −100.7

x = 50.40%
and (100 − x ) = 49.60%

5. (a) 2(14.0 amu) + 9(1.0 amu) + 31.0 amu + 4(16.0 amu)
= 132.0 amu (b) 46.0 amu (c) 4(31.0 amu) = 124 amu
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6. (a) 132.0 g/mol (b) 46.0 g/mol (c) 124 g/mol
(The numbers are the same as those in the prior problem, but the
units of molar mass are grams per mole.)

7. (a) 84 oranges
(
1 dozen oranges

12 oranges

)
= 7 dozen oranges

(b) 5.75 × 1024 Al atoms
(

1mol Al
6.02 × 1023 Al atoms

)
= 9.55mol Al

(c) 5.75 × 1024 H2 molecules
(

1mol H2

6.02 × 1023 H2 molecules

)
= 9.55mol H2

(d) 5.75 × 1024 H2 molecules
(

2H atoms
1H2 molecule

)
×(

1mol H atoms
6.02 × 1023 H atoms

)
= 19.1mol H atoms

There are Avogadro’s number of particles in a mole of particles, no
matter what type of particles they are.

8. 25.0 g Al
(
1mol Al
27.0 g Al

) (
6.02 × 1023 atoms Al

1mol Al

)
= 5.57 × 1023 atoms Al

9. 47.7 g C2H6O2

(
1mol C2H6O2

62.0 g C2H6O2

)
= 0.769mol C2H6O2

10. 5.00 × 1020 H2Omolecules

 1mol H2O
6.02 × 1023 H2Omolecules




Avogadro′s number

×


18.0 g H2O
1mol H2O




molar mass

= 0.0150 g H2O

11. 17.4 g (NH4)2SO4


1mol (NH4)2SO4

132 g (NH4)2SO4




molar mass


 8mol H
1mol (NH4)2SO4




from chemical formula
= 1.05mol H atoms

12. 2Na 2mol× 22.99 g/mol = 45.98 g

2 B 2mol× 10.81 g/mol = 21.62 g

7O 7mol× 16.00 g/mol = 112.0 g

Total = 179.6 g

%Na = 45.98 g Na
179.6 g total

× 100%= 25.60%Na
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%B = 21.62 g B
179.6 g total

× 100%= 12.04%B

%O = 112.0 g O
179.6 g total

× 100%= 62.36%O

Total = 100.00%

13. Assume 100.0 g of sample:

29.1 g Na
(
1mol Na
23.0 g Na

)
= 1.27mol Na

40.5 g S
(
1mol S
32.1 g S

)
= 1.26mol S

30.4 g O
(
1mol O
16.0 g O

)
= 1.90mol O

Dividing each of these numbers of moles by the smallest magnitude
yields

1.27mol Na
1.26

= 1.01mol Na
1.26mol S

1.26
= 1.00mol S

1.90mol O
1.26

= 1.51mol O

The ratio of 1 : 1 : 1.5 is equal to 2 : 2 : 3, and the empirical formula is
Na2S2O3.

14. 3C 3mol × 12.01 g/mol = 36.03 g C

8H 8mol × 1.008 g/mol = 8.064 g H

1O 1mol × 16.00 g/mol = 16.00 g O

Total = 60.09 g

%C = 36.03 g C
60.09 g total

× 100% = 59.96%C

%H = 8.064 g H
60.09 g total

× 100% = 13.42%H

%O = 16.00 g O
60.09 g total

× 100% = 26.63%O

Total = 100.01%
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15. Assume 100.0 g of sample:

92.3 g C
(
1mol C
12.0 g C

)
= 7.69mol C

7.7 g H
(
1mol H
1.0 g H

)
= 7.7mol H

Since these numbers of moles are equal, the mole ratio is 1 : 1; the
empirical formula is CH. The empirical formula mass is therefore
13 amu, which divides into 104 amu exactly 8 times. The molecular
formula is C8H8.

16. (a) 4mol N(14.0 g/mol) + 6mol H(1.0 g/mol) +
6mol O(16.0 g/mol) = 158 g

(b) 17.4 g N2H6(NO3)2

(
1mol N2H6(NO3)2
158 g N2H6(NO3)2

)
= 0.110mol N2H6(NO3)2

(c) 0.110mol N2H6(NO3)2

(
4mol N

1mol N2H6(NO3)2

)
= 0.440mol N

(d ) 0.440mol N
(
6.02 × 1023 N atoms

1mol N

)
= 2.65 × 1023 N atoms

17. This problem is similar to the prior problem, but is not stated in
steps.

4mol N(14.0 g/mol) + 4mol H(1.008 g/mol) = 60.0 g

151 g NH4N3

(
1mol NH4N3

60.0 g NH4N3

)(
4mol N

1mol NH4N3

)
×

(
6.02 × 1023 N atoms

1mol N

)
= 6.06 × 1024 N atoms
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Chapter 5

Stoichiometry

5.1 Mole Relationships in Chemical Reactions
Stoichiometry is the subject that tells the quantity of one sub-
stance that reacts with some quantity of anything else in a chemical
reaction. The coefficients of the balanced chemical equation give
the mole ratios of every substance in the reaction to every other
substance. Therefore it is imperative to write a balanced chemi-
cal equation for every problem involving a chemical reaction. The
equation

6 Li + N2 → 2 Li3N

states that lithium and nitrogen gas react in a 6 mol to 1 mol ratio,
and that for every 6 mol of lithium used up, 2 mol of lithium nitride
is produced. The ratio of coefficients of any two substances in a
chemical equation can be used as a factor to solve a problem.

EXAMPLE 1 (a) How many moles of Mg3N2 will be produced by
reaction of 1.50 mol of Mg with excess N2? (b) How many moles of
Mg are required to react with 3.50 mol of oxygen gas?

Solution

(a) 3 Mg(s) + N2(g) → Mg3N2(s)
We use the ratio of moles of Mg3N2 to moles of Mg because moles
of magnesium are given and moles of Mg3N2 are asked for:

1.50 mol Mg
(

1 mol Mg3N2

3 mol Mg

)
= 0.500 mol Mg3N2
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(b) We must remember that oxygen gas is diatomic: O2.

2 Mg(s) + O2(g) → 2 MgO(s)

3.50 mol O2

(
2 mol Mg
1 mol O2

)
= 7.00 mol Mg �

5.2 Mass Relationships
Conversions of moles of one substance to moles of any other in the
balanced chemical equation is straightforward; just remember that
it is moles not mass that is related to the coefficients in the equation.
However, stoichiometry problems often give students more trouble
than they should because the problems are often asked in terms of
masses or other quantities that can be related to moles of reactant
or product. These problems are multistep problems, but should not
present too much difficulty because each individual step is straight-
forward.

EXAMPLE 2 What mass of Li3N will be produced by the reaction of
2.75 g of lithium metal with excess nitrogen gas?

Solution The balanced chemical equation (6 Li + N2 →
2 Li3N) gives the mole ratio. We must first change the mass to moles,
as we did in Section 4.2. Note well: The coefficient in the balanced
chemical equation has nothing to do with the conversion of mass
to moles or vice versa. Indeed, we did such conversions before we
learned how to balance equations!

2.75 g Li
(

1 mol Li
6.94 g Li

)
= 0.396 mol Li

(Note: We use 1 mol of Li in the factor, not the number in the bal-
anced equation.) Then we convert the number of moles of Li used to
moles of Li3N produced, using the ratio from the balanced equation:

0.396 mol Li
(

2 mol Li3N
6 mol Li

)
= 0.132 mol Li3N

Finally we convert that number of moles of Li3N to mass, again as
in Section 4.2:

0.132 mol Li3N
(

34.8 g Li3N
1 mol Li3N

)
= 4.59 g Li3N �
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We can diagram the overall process as we did in Chapter 4.

Mass
of Li

Moles
of Li

Molar
mass of Li

Balanced
chemical
equation Moles of

Li3N

Molar
mass of Li3N Mass

of Li3N

5.3 Other Conversions
Any quantity that can be converted to moles of reactant or product
may be presented in the statement of a problem. Examples are num-
ber of formula units of reactant or product, or number of moles of
an element in one of the reactants or products, as well as data on
solutions or gases that will be presented later (in Chapters 6 and 7).
In any case, merely convert the quantity given to moles, use the bal-
anced chemical equation as presented in Section 5.1 to determine
the number of moles of reactant or product that was asked about,
and finish the problem as required.

EXAMPLE 3 Calculate the mass of oxygen gas produced by the
thermal decomposition of 9.97 × 1021 formula units of KClO3. KCl
is the other product.

Solution

2 KClO3(s)
heat−→ 2 KCl(s) + 3 O2(g)

9.97 × 1021 formula units KClO3 ×(
1 mol KClO3

6.02 × 1023 formula units of KClO3

)
= 0.0166 mol KClO3

Next, find the number of moles of oxygen, the substance that was
asked about:

0.0166 mol KClO3

(
3 mol O2

2 mol KClO3

)
= 0.0249 mol O2

Finally, find the mass of oxygen:

0.0249 mol O2

(
32.0 g O2

1 mol O2

)
= 0.797 g O2
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As we gain experience, we may want to combine all three steps into
one, which may help precision by minimizing rounding errors:

9.97 × 1021 units KClO3

(
1 mol KClO3

6.02 × 1023 units KClO3

)
×

Avogadro’s number(
3 mol O2

2 mol KClO3

)(
32.0 g O2

1 mol O2

)
= 0.795 g O2

equation molar mass
stoichiometry �

EXAMPLE 4 Calculate the number of moles of nitrogen atoms in
the NH4NO3 produced by the reaction of 2.10 mol of NH3 with
HNO3.

Solution

NH3(aq) + HNO3(aq) → NH4NO3(aq)

2.10 mol NH3

(
1 mol NH4NO3

1 mol NH3

)(
2 mol N

1 mol NH4NO3

)
= 4.20 mol N atoms �

5.4 Limiting Quantities Problems
So far, the quantity of only one reactant or product has been given
in the statement of the problem. We have assumed or have been
told that a sufficient or more than sufficient quantity has been
present of any other reactant(s). If the quantities of two (or more)
quantities of reactants are specified, however, there is no assurance
that they all will react completely. For example, if we are making
baloney sandwiches with a slab of baloney and two slices of bread
for each, how many sandwiches can we make (a) with 10 slabs
of baloney and 16 slices of bread? (b) with 10 slabs of baloney
and 24 slices of bread? In case (a), we run out of bread before
we run out of baloney, and we can make only eight sandwiches
(despite the fact that we have more slices of bread than slabs of
baloney). We have two slabs of baloney in excess. In case (b), we can
make 10 sandwiches before we run out of baloney. We have four
slices of bread left over. These are examples of limiting quantities
problems, and the same principles apply to chemical reactions.
When one of the reactants is used up, the reaction stops and no
more product can be produced. That reactant is called the limiting
quantity, and the reactant that is left over is said to have been
present in excess.
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EXAMPLE 5 Consider the equation 2 Na(s) + Cl2(g) → 2 NaCl(s).
Calculate the quantity of sodium chloride that can be prepared
by the reaction of (a) 0 mol of sodium and 1 mol chlorine.
(b) 2 mol of sodium and 1 mol of chlorine. (c) 2 mol sodium
and 2 mol chlorine.

Solution

(a) No NaCl can be prepared if there is no sodium.
(b) 2 mol, exactly as predicted by the balanced equation.
(c) 2 mol, which is the sum of the quantities of parts (a) and (b).

That is, after the 2 mol Na reacts with 1 mol Cl2, as in part (b),
there is no sodium left to react with the second mole of Cl2. We
then have the situation described in part (a). �

To solve limiting quantities problems, the first step is to recog-
nize that it is such a problem. In these problems, the quantities of
two (or more) reactants are given. Make sure that all the quantities
are in moles, or convert them to moles. Select one of the quantities
and calculate how much of the other(s) will react with that quantity,
as we did in Section 5.1. If we calculated that we need more moles
of the second reactant than is present, then the second reactant is
in limiting quantity. If we calculated that we have more moles of
the second reactant than is needed, the first reactant is in limiting
quantity. We use the number of moles of limiting reactant to calculate
the quantity of reaction that will occur.

Note that the balanced chemical equation gives the mole ratios
that react, not necessarily the ratios present at the start of the reaction.

EXAMPLE 6 Calculate the number of moles of Na2SO4 that will be
produced by the reaction of 7.50 mol of NaOH with 3.50 mol of
H2SO4.

Solution

H2SO4(aq) + 2 NaOH(aq) → Na2SO4(aq) + 2 H2O(l)

We can start with the quantity of either reactant.

3.50 mol H2SO4

(
2 mol NaOH
1 mol H2SO4

)
= 7.00 mol NaOH required

Since 7.00 mol of NaOH is needed to react with all the acid, and 7.50
mol of NaOH is present in the beginning, the NaOH is in excess and
the H2SO4 is in limiting quantity. We base further calculations on
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the limiting quantity:

3.50 mol H2SO4

(
1 mol Na2SO4

1 mol H2SO4

)
= 3.50 mol Na2SO4

If we had started our calculation with the 7.50 mol of NaOH, we
would have come to the same conclusion. Try it. �

Leading Questions

1. What can be calculated for a chemical reaction from the knowledge
of the number of moles of the first reactant that reacts?

2. How can we recognize a limiting quantities problem?
3. What is the importance of the balanced chemical equation in solving

stoichiometry problems?

Answers to Leading Questions

1. We can calculate the number of moles of every other substance
involved in the reaction.

2. Quantities of two or more reactants are given.
3. The equation gives the mole ratios of all the substances that react or

are produced in the reaction.

Supplementary Problems

1. Calculate the number of moles of titanium(IV) oxide for paint
pigments that can be produced by the reaction of 4.18 mol of
oxygen gas with excess titanium.

2. Calculate the number of moles of sodium required to react with
17.56 mol of liquid bromine.

3. Calculate the number of moles of each reagent required to yield
3.32 mol of NO according to the following equation, one step in
the industrial production of nitric acid:

4NH3(g ) + 5 O2(g) → 4NO(g) + 6H2O(l)

4. Write the equation for the reaction in which 1.00 mol of H3PO4

reacts with exactly 2.00 mol of KOH.
5. Calculate the mass of aluminum chloride that can be produced by

the reaction of 293 g of chlorine gas with excess aluminum.
6. Calculate the mass of sodium required to react with 2.788 kg of

liquid bromine.
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7. Calculate the mass of each reagent required to yield 99.6 g of NO
according to the following equation, one step in the industrial
production of nitric acid:

4NH3(g) + 5 O2(g) → 4NO(g) + 6H2O(l)

8. Calculate the number of moles of aluminum chloride that can be
produced by the reaction of 7.11 × 1024 molecules of chlorine gas
with excess aluminum.

9. Calculate the mass of sodium required to react with 1.62 × 1020

molecules of liquid bromine.
10. Calculate the number of molecules of each reagent required to

yield 1.23 g of NO according to the following equation:

4NH3(g) + 5 O2(g) → 4NO(g) + 6 H2O(l)

11. Calculate the number of moles of Na2SO4 that will be produced by
the reaction of 1.40 mol of Na2O and 1.76 mol of SO3.

12. Calculate the mass of Na2SO4 that will be produced by the reaction
of 4.40 mol of aqueous NaOH and 1.76 mol of aqueous H2SO4.

13. Calculate the mass of Na2SO4 that will be produced by the reaction
of 89.7 g of aqueous NaOH and 64.8 g of aqueous H2SO4.

14. Calculate the mass of H3PO4 that can be produced by reaction of
water with the quantity of P4O10 that contains 5.00 mol of
phosphorus atoms.

15. A sample of 4.50 g of Ba(OH)2 is treated with a sample of HCl
containing 4.44 × 1021 molecules. (a) What can we tell from the
mass of Ba(OH)2 and its molar mass? (b) What can we tell from the
number of molecules of HCl and Avogadro’s number? (c) What
equation can we predict for a reaction of these compounds from
their formulas? (d ) What can we tell from the results of (a) to (c)?
(e) What final conclusions can we draw?

16. A sample of 4.50 g of Ba(OH)2 is treated with a sample of HCl
containing 4.44 × 1021 molecules. (a) Calculate the number of
moles of Ba(OH)2. (b) Calculate the number of moles of HCl.
(c) Write a balanced equation for the reaction that takes place.
(d ) Which reactant is in limiting quantity? (e) How much excess
reactant will remain after any reaction?

17. A sample of 4.50 g of Ba(OH)2 is treated with a sample of HCl
containing 4.44 × 1021 molecules. How much excess reactant will
remain after any reaction?
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18. When 15.0 mg of an unknown compound of carbon, hydrogen, and
oxygen was burned in excess oxygen gas, water and carbon dioxide
were formed. The water was trapped in one cylinder (by reaction
with a certain compound) and the carbon dioxide was trapped in
another. The water cylinder gained 12.3 mg of mass, and the carbon
dioxide cylinder gained 30.0 mg. (a) What mass of carbon dioxide
was produced by the reaction? (b) What mass of water was
produced by the reaction? (c) How many millimoles of each was
produced? (d ) How many millimoles of carbon was in the original
sample? (e) How many millimoles of hydrogen was in the original
sample? ( f ) How many milligrams of each element was in the
original sample? (g ) How many milligrams of oxygen was there in
the original sample. (h) What is the empirical formula of the sample?

19. When 25.0 mg of an unknown compound of carbon, hydrogen, and
oxygen was burned in excess oxygen gas, water and carbon dioxide
were formed. The water was trapped in one cylinder (by reaction
with a certain compound) and the carbon dioxide was trapped in
another. The water cylinder gained 23.7 mg of mass, and the carbon
dioxide cylinder gained 43.4 mg. What is the empirical formula of
the sample?

20. (a) Calculate the number of grams of CaCO3 that react with 25.0 g
of HClO4 according to the equation

CaCO3(s)+ 2HClO4(aq)→Ca(ClO4)2(aq)+H2O(l)+CO2(g)

(b) Explain why the mass ratio in this reaction is equal to the ratio of
moles of reactants.

21. Explain why many of the problems in this chapter seem similar to
others.

22. Calculate the number of grams of carbon that react with 2.50
metric tons (2.50 × 106 g) of Al2O3 in the industrial production of
aluminum at high temperature according to the following equation:
Al2O3(special solution) + 3 C(s) → 2 Al(l) + 3 CO(g).

23. Calculate the mass of sulfuric acid (the chemical produced in the
largest tonnage in the world) produced by the reaction of
5.00 metric tons (5.00 × 106 g) of sulfur in the following sequence
of reactions:

S(s) + O2(g) → SO2(g)

SO2(g) + 1
2 O2(g) → SO3(g)

SO3(g) + H2O(l) → H2SO4(l)
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24. Calculate the mass of an iron ore containing 13.7% Fe2O3 that
requires 2.00 × 106 g of carbon to reduce the Fe2O3 to iron metal
at high temperature:

Fe2O3(s) + 3 C(s) → 2 Fe(l) + 3 CO(g)

Solutions to Supplementary Problems

1. Ti(s) + O2(g) → TiO2(s)

4.18 mol O2

(
1 mol TiO2

1 mol O2

)
= 4.18 mol TiO2

2. 2 Na(s) + Br2(l) → 2 NaBr(s)

17.56 mol Br2

(
2 mol Na
1 mol Br2

)
= 35.12 mol Na

3. 3.32mol NO
(
4 mol NH3

4 mol NO

)
= 3.32 mol NH3

3.32 mol NO
(

5 mol O2

4 mol NO

)
= 4.15 mol O2

4. Note that these two reagents are stated to have reacted, not
merely to have been mixed. The equation represents the reacting
ratio, therefore the coefficient of H3PO4 is 1 and that of KOH is 2:

H3PO4(aq) + 2KOH(aq) → K2HPO4(aq) + 2 H2O(l)

5. 2 Al(s) + 3 Cl2(g) → 2 AlCl3(s)

293 g Cl2

(
1 mol Cl2
70.9 g Cl2

)
= 4.13 mol Cl2

4.13mol Cl2

(
2mol AlCl3
3 mol Cl2

)(
133 g AlCl3
1mol AlCl3

)
= 366 g AlCl3

Alternatively, a complete solution in one step may be obtained:

293 g Cl2

(
1 mol Cl2
70.9 g Cl2

)(
2 mol AlCl3
3 mol Cl2

)(
133 g AlCl3
1 mol AlCl3

)
= 366 g AlCl3
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6. 2 Na(s) + Br2(l) → 2 NaBr(s)

2788 g Br2

(
1 mol Br2
158.8 g Br2

)
= 17.56 mol Br2

This problem is now related to Supplementary Problem 2.

17.56 mol Br2

(
2 mol Na
1 mol Br2

)(
22.99 g Na
1 mol Na

)
= 807.4 g Na

7. 99.6 g NO
(
1 mol NO
30.0 g NO

)
= 3.32 mol NO

This problem is now related to Supplementary Problem 3.

3.32 mol NO
(
4 mol NH3

4 mol NO

)
= 3.32 mol NH3

3.32 mol NO
(

5 mol O2

4 mol NO

)
= 4.15 mol O2

To get the masses:

3.32 mol NH3

(
17.0 g NH3

1 mol NH3

)
= 56.4 g NH3

4.15 mol O2

(
32.0 g O2

1 mol O2

)
= 133 g O2

8. 2 Al(s) + 3 Cl2(g) → 2 AlCl3(s)

7.11 × 1024 molecules Cl2

(
1 mol Cl2

6.02 × 1023 molecules Cl2

)
= 11.8 mol Cl2

11.8 mol Cl2

(
2 mol AlCl3
3 mol Cl2

)
= 7.87 mol AlCl3

9. 2 Na(s) + Br2(l) → 2 NaBr(s)

1.62 × 1020 molecules Br2

(
1 mol Br2

6.02 × 1023 molecules Br2

)

= 2.69 × 10−4 mol Br2

2.69 × 10−4 mol Br2

(
2 mol Na
1 mol Br2

)
= 5.38 × 10−4 mol Na
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5.38 × 10−4 mol Na
(
23.0 g Na
1 mol Na

)
= 0.0124 g Na

10.
1.23 g NO

(
1 mol NO
30.0 g NO

)(
4 mol NH3

4 mol NO

)
×

(
6.02× 1023 moleculesNH3

1molNH3

)
= 2.47× 1022 moleculesNH3

1.23 g NO
(
1 mol NO
30.0 g NO

)(
5 mol O2

4 mol NO

)
×

(
6.02 × 1023 molecules O2

1 mol O2

)
= 3.09 × 1022 molecules O2

11. Na2O(s) + SO3(g) → Na2SO4(s)
Because the equation has a 1 : 1 mole ratio of reactants, and there is
more SO3 than Na2O, the Na2O is limiting. It is therefore used for
the rest of the problem:

1.40 mol Na2O
(
1mol Na2SO4

1mol Na2O

)
= 1.40 mol Na2SO4

12. 2 NaOH(aq) + H2SO4(aq) → Na2SO4(aq) + 2 H2O(l)

4.40 mol NaOH
(
1 mol H2SO4

2 mol NaOH

)
= 2.20 mol H2SO4 needed

There are 1.76 mol of H2SO4 present, but 2.20 needed to react
with all the base, so the H2SO4 is in limiting quantity.

1.76 mol H2SO4

(
1 mol Na2SO4

1 mol H2SO4

)(
142 g Na2SO4

1 mol Na2SO4

)

= 2.50 × 102 g Na2SO4

13. 89.7 g NaOH
(
1 mol NaOH
40.0 g NaOH

)
= 2.24 mol NaOH

64.8 g H2SO4

(
1 mol H2SO4

98.0 g H2SO4

)
= 0.661 mol H2SO4
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2.24 mol NaOH
(
1 mol H2SO4

2 mol NaOH

)
= 1.12 mol H2SO4 needed

The H2SO4 is limiting, so:

0.661 mol H2SO4

(
1 mol Na2SO4

1 mol H2SO4

)(
142 g Na2SO4

1 mol Na2SO4

)
= 93.9 g Na2SO4

14. P4O10(s) + 6 H2O(l) → 4 H3PO4(aq)

5.00 mol P
(
1 mol P4O10

4 mol P

)(
4 mol H3PO4

1 mol P4O10

)(
98.0 g H3PO4

1 mol H3PO4

)

= 4.90 × 102 g H3PO4

(This problem could have been stated as a chemical formula
problem, as in Section 4.2. Because the phosphorus atoms must go
into the phosphoric acid, and there is one mole of phosphorus
atoms in each mole of the acid, it is obvious that the phosphorus
can make 5.00 mol of the acid.)

15. (a) The number of moles of Ba(OH)2. (b) The number of moles of
HCl. (c) Ba(OH)2 + 2 HCl → BaCl2 + 2 H2O.
They will react because one is an acid and the other a base, and
they will react in a 1 : 2 ratio. (d ) From the numbers of moles of
each and the balanced chemical equation, we can tell the reactant
that is in limiting quantity. (e) The numbers of moles of each
substance produced and of the excess reactant.

16. (a) 4.50 g Ba(OH)2

(
1 mol Ba(OH)2
171 g Ba(OH)2

)
= 0.0263 mol Ba(OH)2

(b) 4.44× 1021moleculesHCl
(

1molHCl
6.02× 1023 moleculesHCl

)
= 0.00738mol HCl

(c) Ba(OH)2(aq) + 2 HCl(aq) → BaCl2(aq) + 2H2O(l)

(d) 0.00738 mol HCl
(
1 mol Ba(OH)2

2 mol HCl

)
= 0.00369 mol Ba(OH)2 needed

The HCl is limiting.
(e) 0.0263 mol of Ba(OH)2 present− 0.00369 mol Ba(OH)2 used up

= 0.0226 mol Ba(OH)2 excess
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17. This problem is the same as Problem 16, but it is not stated in parts.
18. (a) 30.0 mg (b) 12.3 mg

(c) 30.0 mg CO2

(
1 mmol CO2

44.0 mg CO2

)
= 0.682 mmol CO2

12.3 mg H2O
(
1 mmol H2O
18.0 mg H2O

)
= 0.683 mmol H2O

(d ) The same number of millimoles of carbon is in the reactant as in
the CO2 produced.

0.682 mmol CO2

(
1 mmol C

1 mmol CO2

)
= 0.682 mmol C

(e) The same number of millimoles of hydrogen atoms are in the
reactant as in the H2O produced. That is twice the number of
millimoles of water:

0.683 mmol H2O
(

2 mmol H
1 mmol H2O

)
= 1.37 mmol H

( f ) 0.682 mmol C
(
12.0 mg C
1 mmol C

)
= 8.18 mg C

1.37 mmol H
(
1.008 mg H
1 mmol H

)
= 1.38 mg H

(g ) 15.0 mg − 8.18 mg − 1.38 mg = 5.4 mg oxygen

(h) 5.4 mg O
(
1 mmol O
16.0 mg O

)
= 0.34 mmol O

There are 0.682 mmol C, 1.37 mmol H, and 0.34 mmol O in the
sample, which gives a ratio of 2 mmol C to 4 mmol H to 1 mmol O
and an empirical formula C2H4O.

19. This problem is similar to the prior problem except that it is not
stated in steps.

43.4 mg CO2

(
1 mmol CO2

44.0 mg CO2

)(
1 mmol C

1 mmol CO2

)
= 0.986 mmol C

23.7 mg H2O
(
1 mmol H2O
18.0 mg H2O

)(
2 mmol H

1 mmol H2O

)
= 2.63 mmol H

0.986 mmol C
(
12.0 mg C
1 mmol C

)
= 11.8 mg C
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2.63 mmol H
(
1.008 mg H
1 mmol H

)
= 2.65 mg H

25.0 mg − 11.8 mg − 2.65 mg = 10.6 mg oxygen

10.6 mg O
(
1 mmol O
16.0 mg O

)
= 0.663 mmol O

There are 0.986 mmol C, 2.63 mmol H, and 0.663 mmol O in the
sample, which gives a ratio of 1.5 mmol C to 4 mmol H to 1 mmol
O and an empirical formula C3H8O2.

20. (a) 25.0 g HClO4

(
1 mol HClO4

100 g HClO4

)(
1 mol CaCO3

2 mol HClO4

)
×

(
100 g CaCO3

1 mol CaCO3

)
= 12.5 g CaCO3

(b) The mass ratio is the same as the mole ratio because the molar
masses just happen to be equal.

21. Many problems in this set of problems seem the same because
essentially they are the same with some review problem steps
added. The set is intended to demonstrate to us that once we
understand the material, there is not as much to learn as we might
have thought.

22. 2.50 × 106 g Al2O3

(
1 mol Al2O3

102 g Al2O3

)(
3 mol C

1 mol Al2O3

)(
12.0 g C
1 mol C

)

= 8.82 × 105 g C

23. 5.00 × 106 g S
(
1 mol S
32.1 g S

)(
1 mol H2SO4

1 mol S

)(
98.1 g H2SO4

1 mol H2SO4

)

= 1.53 × 107 gH2SO4

24. 2.00 × 106 g C
(
1 mol C
12.0 g C

)(
1 mol Fe2O3

3 mol C

)(
160 g Fe2O3

1 mol Fe2O3

)

= 8.89 × 106 g Fe2O3

8.89 × 106 g Fe2O3

(
100 g ore

13.7 g Fe2O3

)
= 6.49 × 107 g ore
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Chapter 6

Concentration Calculations

6.1 Molarity
The most common unit of concentration in chemistry is molarity,
defined as the number of moles of solute dissolved per liter (or cubic
decimeter) of solution. It can also be defined as the number of mil-
limoles of solute per milliliter of solution. The symbol for molarity is
an italic capital M; its unit ismolar, symbolized M. (Some books use
M for both.) Do not use lowercase letters for either! We use mol as an
abbreviation formole; we do not use either capital M or lowercase m.

We must be sure to understand the difference between concen-
tration and quantity of solute.

EXAMPLE 1 A cup labeled A has two lumps of sugar in it and is
filled with tea. A cup labeled B has one lump of sugar, and is half
filled. (a) Which cup, if either, has more sugar in it? (b) In which
cup, if either, is the tea sweeter?

Solution (a) Cup A has more sugar. (Two lumps is more than
one.) (b) The tea is equally sweet in each, because the concentra-
tion of sugar is the same in each. Be sure to note in each chemistry
problem the difference between quantity of solute and concentration
of solute! �

EXAMPLE 2 If 2.00 L of solution contains 4.50 mol of solute, what
is the molarity of the solution?

Solution The molarity (concentration) is defined as the num-
ber of moles of solute per liter of solution:

M = moles of solute
L of solution

= 4.50 mol
2.00 L

= 2.25 M �
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EXAMPLE 3 Show that a solution containing 4.50 mmol of solute
in 2.00 mL of solution is also 2.25 M.

Solution

4.50 mmol
2.00 mL

(
1 mol

1000 mmol

) (
1000 mL

1 L

)
= 2.25 mol

1.00 L

= 2.25 M �
Because molarity is a ratio, it can be used as a factor in solving

problems. Wherever the symbol M appears, it can be replaced by
mol/L or mmol/mL, and for 1/M, their reciprocals can be substi-
tuted.

EXAMPLE 4 Calculate the number of moles of solute contained in
3.00 L of 4.00 M solution.

Solution As with most factor label method solutions, put
down the quantity first, then multiply it by the appropriate ratio:

3.00 L
(

4.00 mol
1 L

)
= 12.0 mol

We can see from Fig. 6-1 that this answer is correct. �
EXAMPLE 5 Calculate the volume of a 2.80 M solution that con-
tains 4.00 mol of solute.

Solution The reciprocal of the ratio corresponding to molar-
ity is used:

4.00 mol
(

1 L
2.80 mol

)
= 1.43 L �

4.00
mol

4.00
mol

4.00
mol

3 L

2 L

1 L

Fig. 6-1 Number of Moles of Solute in a Solution. The number of
moles is the molarity times the volume. There are 12.0 mol in 3.00 L
of this solution.
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If a solution is diluted with solvent, its number of moles of
solute does not change, but its molarity gets lower.

EXAMPLE 6 Calculate the molarity of 1.50 L of a 2.50 M solution
after it has been diluted to 4.50 L.

Solution The initial number of moles of solute is calculated
just as in Example 4.

1.50L
(

2.50 mol
1 L

)
= 3.75 mol

Addition of more solvent does not change the number of moles of
solute, so that same number of moles of solute is used for the final so-
lution. The 3.75 mol of solute is now dissolved in 4.50 L of solution:

3.75 mol
4.50 L

= 0.833 M

It should be noted that tripling the volume has caused the molarity
to be reduced to one-third its original value. �

6.2 Titration
The method used most often for determining the molarity of a so-
lution (as well as numbers of moles of solid reagents) is titration.
For example, a solution of HCl, whose concentration is known, and
a solution of NaOH, whose concentration is to be determined, are
titrated. The NaOH solution is added to a carefully measured volume
of HCl solution, the addition being stopped when exactly the correct
stoichiometric quantity has been added according to the balanced
chemical equation, and the volume of the NaOH solution is care-
fully measured. An indicator, a chemical that changes color at the
point where the proper quantity of one chemical has been added to
the other, signals the end of the titration. An acid-base indicator is a
compound that has a very intense color in acidic or basic solution,
or a different intense color in each. The end point is a point in the
titration at the point where the ratio of moles of the reactants added
is the same as that ratio in the balanced chemical equation.

EXAMPLE 7 If 45.70 mL of NaOH has been added to 25.00 mL of a
solution of 3.000 M HCl when the end point is reached, what is the
concentration of the base?

Solution The balanced equation for the reaction is

HCl(aq) + NaOH(aq) → NaCl(aq) + H2O(l)
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The number of millimoles of acid is

25.00 mL HCl
(

3.000 mmol
1 mL

)
= 75.00 mmol HCl

The titration is stopped when the number of millimoles of NaOH is
equal to the number of millimoles of HCl, so the concentration of
the base is

75.00 mmol NaOH
45.70 mL

= 1.641 M NaOH �

EXAMPLE 8 If 45.70 mL of NaOH has been added to 25.00 mL of a
solution of 3.000 M H2SO4 when the acid is completely neutralized,
what is the concentration of the base?

Solution The balanced equation for the reaction is

H2SO4(aq) + 2 NaOH(aq) → Na2SO4(aq) + 2 H2O(l)

The number of millimoles of acid is

25.00 mL
(

3.000 mmol
1 mL

)
= 75.00 mmol H2SO4

According to the balanced chemical equation, the titration is
stopped when the number of millimoles of NaOH is twice the num-
ber of millimoles of H2SO4, so the concentration of the base is

150.0 mmol NaOH
45.70 mL

= 3.282 M NaOH

Note that in this case the molarity times the volume of the
acid is not equal to the molarity times the volume of the base:
M1V1 �= M2V2 �

EXAMPLE 9 A 0.200 M solution of NaOH is treated with a 0.200 M
solution of HCl. At the equivalence point (where the reaction is just
completed), (a) what would be the concentration of NaOH if no
reaction had occurred? (b) What is the concentration of the NaCl
produced?

Solution (a) Because the concentrations of acid and base are
equal, the volume has been doubled by the addition of the HCl
solution. Therefore, the concentration would have been halved, to
0.100M. (b) The concentration of NaCl is 0.100M.

Alternate solution: V liters of each solution are used, contain-
ing 0.200V mol of each reactant. Therefore 0.200V mol of NaCl is

76



produced, in the 1 : 1 : 1 : 1 ratio of reactants and products:

HCl(aq) + NaOH(aq) → NaCl(aq) + H2O(l)

The concentration is

0.200V mol
2.00V liters

= 0.100 M

(The volume V cancels out, no matter what its value. If we try using
10.0 mL, 24.0 mL, 2.00 L or any other volume for each solution, we
get the same result each time.) �

6.3 Molality
Another concentration unit used by chemists is molality, symbol-
ized by an italic, lowercase m. It is defined as the number of moles
of solute per kilogram of solvent. The unit of molality is molal, sym-
bolized by a regular (not italic) m. (Some texts use regular m for
both.) Note well the differences between molarity and molality; the
denominator of molality involves a mass not a volume, and it is the
mass of the solvent, not the solution. Great care must be taken to
avoid confusing molarity and molality because their names as well
as their units and symbols are so similar. We must be sure to use the
standard notation so that we do not confuse ourselves!

Many molality problems do not differ in solving technique
from molarity problems. As usual, be very careful with the units.

EXAMPLE 10 Calculate the molality of a solution containing
0.500 mol of solute in 250 g of solvent.

Solution

m = 0.500 mol
0.250 kg

= 2.00 m �

EXAMPLE 11 Calculate the mass of water required to prepare a
4.00 m aqueous solution of NH3 using 25.0 g of NH3.

Solution

25.0 g NH3

(
1 mol NH3

17.0 g NH3

) (
1 kg H2O

4.00 mol NH3

)
= 0.368 kg H2O �

6.4 Mole Fraction
Another way to measure concentration is with mole fraction, de-
fined as the number of moles of a given component of a solution
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divided by the total number of moles in the solution. No component
needs to be defined as the solvent with mole fraction. The mole frac-
tion of component A is symbolized XA; it has no units because the
unit moles in the numerator and the unit moles in the denominator
cancel each other.

EXAMPLE 12 Calculate the mole fraction of alcohol and of water
in a solution containing 2.00 mol of alcohol and 8.00 mol of water.

Solution

Xalcohol = 2.00 mol alcohol
10.00 mol total

= 0.200

Xwater = 8.00 mol water
10.00 mol total

= 0.800 �

As is evident from Example 12, the total of all mole fractions
in any given solution is 1.00 (just as the total of all percentages in a
given sample is 100%).

Both molality and mole fraction are intensive properties,
which is useful for an easy method to convert from one to the other.
In such a problem, we can assume that we have any quantity of so-
lution that will make our solving process easiest.

EXAMPLE 13 Calculate the mole fraction of ammonia in a 2.00 m
solution of NH3 in water.

Solution Assume 1.00 kg of water. Then there are 2.00 mol of
ammonia and

1.00 kg H2O
(

1000 g H2O
1 kg H2O

)(
1 mol H2O
18.0 g H2O

)
= 55.6 mol H2O

XNH3 = 2.00 mol NH3

57.6 mol total
= 0.0347 �

For ease of solution of such problems, we should always assume
a quantity of solution such that the value of the concentration is
equal in magnitude to the number of moles of one of the compo-
nents, as in the last example (2.00 m and 2.00 mol because 1.00 kg
was selected) and in the next.

EXAMPLE 14 The mole fraction of alcohol in water is 0.100. Calcu-
late its molality.
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Solution Assume a total of 1.000 mol of solution. Then there
are 0.100 mol of alcohol and 0.900 mol of water. The mass of water
(in kilograms) is

0.900 mol H2O
(

18.0 g H2O
1 mol H2O

) (
1 kg H2O

1000 g H2O

)
= 0.0162 kg H2O

malcohol = 0.100 mol
0.0162 kg

= 6.17 m �

Leading Questions

1. List the differences between molarity and molality.
2. Explain why molality is not used with titrations.

Answers to Leading Questions

1. The one-letter difference in the spelling, the capital letters for
molarity and molar in contrast to the lowercase designations for
molality and molal, the volume for molarity as opposed to mass for
molality, and the fact that solution is designated for molarity and
solvent for molality are the major differences.

2. Titrations are done by volume, and molality does not deal easily with
volumes.

Supplementary Problems

1. Calculate the molarity of a 250-mL solution containing 80.0 mmol
of solute.

2. Calculate the concentration of a 500-mL solution containing
1.71 mol of solute.

3. Calculate the volume of a 2.00 M solution containing 4.22 mol of
solute.

4. Calculate the number of moles of solute required to make
50.00 mL of 1.500 M solution.

5. Calculate the molarity of a solution after 1.70 L of 2.06 M solution
is diluted to 2.50 L.

6. Calculate the concentration of HCl if 25.00 mL of the solution takes
41.72 mL of 4.000 M NaOH to neutralize it.

7. Calculate the concentration of H3PO4 if 25.00 mL of the solution
takes 38.98 mL of 4.000 M NaOH to completely neutralize it.
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8. (a) Calculate the number of moles of a solid unknown acid, HA,
that is present if 17.40 mL of 3.00 M NaOH is required to
neutralize it. (b) Calculate the molar mass of the acid if 4.17 g of the
acid was used in part (a).

9. Calculate the molarity, molality, and mole fraction of a solution of
0.0150 mol of NaCl in 50.0 g of water if the solution has a density
of 1.02 g/mL.

10. Calculate the mole fraction of each component in a solution of
50.0 g CH3OH and 75.0 g of H2O.

11. A 0.100 M solution of NaOH is treated with a 0.100 M solution of
HNO3. At the equivalence point (where the reaction is just
completed), what is the concentration of the NaNO3 produced?

12. Calculate the molar mass of an acid, H2A, if 6.66 g of the acid
required 22.22 mL of 3.000 M NaOH to completely neutralize it.

13. A solution was 2.40 m and contained 245 g of solvent. Calculate the
molality of the solution after dilution with 125 g more of solvent.

14. Calculate the molality of an alcohol in aqueous solution if the mole
fraction of the alcohol is 0.150.

15. Calculate the molar mass of an unknown base, B, with molecules
that each react with two hydrogen ions, if 7.99 g of the base is
neutralized by 41.44 mL of 3.000 M HCl.

B(s) + 2 HCl(aq) → BH2Cl2(aq)

16. Calculate the molality of an aqueous solution 2.24 M in sucrose,
C12H22O11. (Assume that the density of the solution is 2.05 g/mL.)

Solutions to Supplementary Problems

1.
80.0 mmol
250 mL

= 0.320 M

2.
1.71 mol
0.500 L

= 3.42 M (Watch the units!)

3. 4.22 mol
(

1 L
2.00 mol

)
= 2.11 L

4. 50.00 mL
(
1.500 mmol

1 mL

) (
0.001 mol
1 mmol

)
= 0.07500 mol

5. The number of moles of solute in the initial solution is calculated
first:

1.70 L
(
2.06 mol

1 L

)
= 3.50 mol
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The same number of moles of solute is present in the final solution:

3.50 mol
2.50 L

= 1.40 M

6. The number of millimoles of base is

41.72 mL
(
4.000 mmol NaOH

1 mL

)
= 166.9 mmol NaOH

HCl(aq) + NaOH(aq) → NaCl(aq) + H2O(l)

According to the balanced chemical equation, the same number of
millimoles of acid is needed, so the concentration of the acid is:

166.9 mmol HCl
25.00 mL

= 6.676 M HCl

In a one-step solution:

41.72 mL
(
4.000 mmol NaOH

1 mL

)(
1 mmol HCl

1 mmol NaOH

)
25.00 mL HCl

= 6.675 M HCl

7. The number of millimoles of base is

38.98 mL
(
4.000 mmol NaOH

1 mL

)
= 155.9 mmolNaOH

H3PO4(aq) + 3 NaOH(aq) → Na3PO4(aq) + 3 H2O(l)

According to the balanced chemical equation, one-third the number
of millimoles of acid is needed, so the concentration of the acid is:

51.97 mmol H3PO4

25.00 mL
= 2.079 M H3PO4

8. (a) 17.40 mL
(
3.00 mmol NaOH

1 mL

)
= 52.2 mmol NaOH

Because the acid has only one ionizable hydrogen atom, as
denoted by the formula HA,

HA(s) + NaOH(aq) → NaA(aq) + H2O(l)

the quantity of HA is also 52.2 mmol.
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(b)
4170 mg HA

52.2 mmol HA
= 79.9 mg/mmol = 79.9 g/mol

9. The molality may be calculated immediately:

m = 0.0150 mol
0.0500 kg

= 0.300 m

The mole fraction requires that the mass of water be changed to
moles first:

50.0 g
(
1 mol
18.0 g

)
= 2.78 mol

XNaCl = 0.0150 mol
(2.78 mol + 0.0150 mol)

= 0.00536

(Note the significant digits
in the denominator.)

The molarity requires the volume of the solution, which can be
calculated from the density of the solution and its total mass. The
mass of the NaCl is

0.0150 mol
(
58.5 g NaCl
1 mol NaCl

)
= 0.878 g

The total mass is 50.9 g, and the volume is

50.9 g
(

1 mL
1.02 g

)
= 49.9 mL

M = (0.0150 mol)/(0.0499 L) = 0.301 M

10. The numbers of moles must be calculated first:

50.0 g CH3OH
(
1 mol CH3OH
32.0 g CH3OH

)
= 1.56 mol CH3OH

75.0 g H2O
(
1 mol H2O
18.0 g H2O

)
= 4.17 mol H2O

4.17 mol H2O + 1.56 mol CH3OH = 5.73 mol total

XH2O = 4.17 mol H2O
5.73 mol total

= 0.728

XCH3OH = 1.000 − 0.728 = 0.272

82



11. HNO3(aq) + NaOH(aq) → NaNO3(aq) + H2O(l)
The volumes of acid and base must be equal at the equivalence point
because the concentrations are equal and the numbers of moles are
the same. Therefore the volume of the solution has doubled, and
the concentrations of the sodium ion and the nitrate ion have each
been halved to 0.0500 M. The hydrogen ion and hydroxide ion have
been completely used up, so the sodium nitrate is 0.0500 M.

12. Because the acid has two ionizable hydrogen atoms, as denoted by
the formula H2A, the equation is

H2A(s) + 2 NaOH(aq) → Na2A(aq) + 2 H2O(l)

22.22 mL
(
3.000 mmol NaOH

1 mL

)
= 66.66 mmol NaOH

The quantity of H2A is

66.66 mmol NaOH
(

1 mmol H2A
2 mmolNaOH

)
= 33.33mmol H2A

6.66 g H2A
0.03333 mol H2A

= 200 g/mol H2A = 2.00 × 102 g/mol H2A

13. The number of moles of solute in the initial solution was

0.245 kg solvent
(
2.40 mol solute
1 kg solvent

)
= 0.588 mol solute

After the dilution, there is still that same 0.588 mol of solute, but
now it is in 0.370 kg of solvent. The new molality is

0.588 mol solute
0.370 kg solvent

= 1.59 m

14. Assume that we have a total of 1.000 mol of solute plus solvent.
Then there are 0.150 mol alcohol and

0.850 mol H2O
(
18.0 g H2O
1 mol H2O

)
= 15.3 g H2O = 0.0153 kg H2O

The molality is
0.150 mol alcohol
0.0153 kg H2O

= 9.80 m alcohol
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15. This is similar to Problem 12.

41.44 mL
(
3.000 mmol HCl

1 mL

)
= 124.3 mmol HCl

The quantity of B is

124.3 mmol HCl
(

1 mmol B
2 mmol HCl

)
= 62.15 mmol B

7.99 g B
0.06215 mol B

= 129 g/mol B

16. Assuming that we have 1.00 L of solution, we have 2.05 kg = 2050 g
of solution and 2.24 mol of sucrose.

2.24 mol C12H22O11

(
344 g C12H22O11

1 mol C12H22O11

)
= 771 g C12H22O11

The mass of water then is 2050 g − 771 g = 1280 g = 1.28 kg.
The molality of the sucrose is (2.24 mol)/(1.28 kg) = 1.75 m.
Note the large difference between the molarity and the molality in
this relatively concentrated solution.
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Chapter 7

Gas Laws

7.1 Laws for a Given Sample of Gas
The gas laws require us for the first time to use algebraic equations
in solving problems. (We could have used equations earlier, for ex-
ample, as early as density calculations in Section 2.4, but the factor
label method proved to be easier in most cases.)

It would be good to review the section Scientific Calculations
(Section 1.1) before attempting this chapter. Pay careful attention
to the units. In solving elementary gas law equations, the units of
volume and of pressure must be the same every place they appear in
each equation; the units of temperature not only must be the same,
but must be kelvins!

Be sure to read each example carefully. It makes a great deal of
difference if the problem states that the volume increased 5.0 L or
increased to 5.0 L. In contrast, there is no essential difference in the
following statements:

A 1.00-L sample of gas at 150 kPa and 25◦C is compressed to 0.500 L
at 25◦C.

A 1.00-L sample of gas at 150 kPa and 25◦C is compressed to 0.500 L
at constant temperature.

Memorize the values of the constants that enable the conver-
sions between kilopascals (kPa) and atmospheres (atm) as well as
other units of pressure, and between Celsius and Kelvin tempera-
tures:

1.000 atm = 101.3 kPa = 760.0 torr = 760.0 mm Hg

K = ◦C + 273 or T = t + 273

Problems relating pressure and volume (Boyle’s law problems),
those relating temperature and volume (Charles’ law problems), and
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those involving all three (combined gas law problems) are generally
stated with all but one of the variables given. We are to determine
that variable. For solving these types of problems, it is very useful
to tabulate the quantities, especially if any of the units need to be
converted. Know the conditions applicable for each of these types
of problems:

Boyle’s law given sample of gas,
temperature constant P1V1 = P2V2

Charles’ law given sample of gas,
pressure constant,
temperature in kelvins V1/T1 = V2/T2

combined gas law given sample of gas,
temperature in kelvins

P1V1/T1 = P2V2/T2

Every gas law that includes temperature must have the temperature
in kelvins—absolute temperature!

InBoyle’s law, pressure and volume are inversely proportional.
That means that when the pressure goes down, the volume goes up,
and vice versa:

Up

P1V1 = P2V2

Down

In Charles’ law, when the temperature goes up, the volume goes
up, and vice versa:

Up

Up

V1/T1 = V2/T2

Both these generalities tend to happen for the combined
gas law.

EXAMPLE 1 (a) Calculate the final volume if a 1.50-L sample of
gas at 105 kPa is changed to 1.22 atm at constant temperature. (b)
Calculate the final volume if a 1.50-L sample of gas at 788 torr is
changed to 1.22 atm at constant temperature.

Solution

(a) Using Boyle’s law: P1V1 = P2V2
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Dividing both sides by P2 yields:
P1V1

P2
= P2V2

P2
= V2

P V
1 105 kPa 1.50 L
2 1.22 atm = 124 kPa V2

V2 = P1V1/P2 = (105 kPa)(1.50 L)/(124 kPa) = 1.27 L

This volume is reasonable, since the volume will decrease be-
cause of the increased pressure.

(b) Using Boyle’s law: P1V1 = P2V2

Dividing both sides by P2 yields:
P1V1

P2
= P2V2

P2
= V2

P V
1 788 torr 1.50 L
2 1.22 atm = 927 torr V2

V2 = P1V1/P2 = (788 torr)(1.50 L)/(927 torr) = 1.28 L

This volume is essentially the same as in part (a) because the pres-
sure and volume are both about the same, despite the difference
in units. �

From now on, we will follow our usual practice of using liters
rather than cubic decimeters, but we will use some pressures in kilo-
pascals and some in torr, as well as some in atmospheres.

EXAMPLE 2 Calculate the initial volume if a sample of gas at 75◦C
is changed to 1.50 L at 25◦C at constant pressure.

Solution Using Charles’ law:

T V
1 75◦C = 348 K V1

2 25◦C = 298 K 1.50 L

V1 = T1V2/T2 = (348 K)(1.50 L)/(298 K) = 1.75 L

This volume is reasonable, since the volume will decrease because of
the decreased temperature. Note that the volume is not decreased to
one-third of its initial value because the volume is not proportional
to the Celsius temperature. �
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EXAMPLE 3 Calculate the final volume if a 1.50-L sample of gas at
905 torr and 10◦C is changed to 1.000 atm at 100◦C.

Solution Using the combined gas law:

P V T
1 905 torr 1.50 L 10◦C = 283 K
2 1.000 atm = 760.0 torr V2 100◦C = 373 K

V2 = P1V1T2

P2T1
= (905 torr)(1.50 L)(373 K)

(760.0 torr)(283 K)
= 2.35 L

This volume is reasonable, since the volume will increase because
of the decreased pressure and also because of the increased temper-
ature. �

EXAMPLE 4 An 8.00-L sample of gas at 99.0 kPa and 25◦C is com-
pressed. What is its final pressure at 25◦C if the gas (a) is compressed
2.00 L? (b) is compressed to 2.00 L?

Solution

(a) Since the volume is compressed 2.00 L and it started at 8.00 L,
V2 is 8.00 L − 2.00 L = 6.00 L. P2 is given by Boyle’s law:

P2 = P1V1

V2
= (99.0 kPa)(8.00 L)

(6.00 L)
= 132 kPa

(b) V2 is 2.00 L. Again P2 is given by Boyle’s law:

P2 = P1V1

V2
= (99.0 kPa)(8.00 L)

(2.00 L)
= 396 kPa �

7.2 Moles of Gas
There are at least two distinct methods of calculating the number of
moles in a sample of gas. The first involves the combined gas law,
and the second the ideal gas law.

Molar Volume Calculations

A gas at 0◦C and 1.000 atm = 101.3 kPa is said to be at standard tem-
perature and pressure, abbreviated STP. Under these conditions,
1.00 mol of an ideal gas occupies 22.4 L. All real gases occupy ap-
proximately 22.4 L at STP. This volume is called the molar volume
of a gas, but the word molar here means per mole, and has nothing to
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do with molarity (Section 6.1). Thus measurement at STP of the vol-
ume of a sample of gas enables calculation of the number of moles
of gas in the sample, and vice versa.

EXAMPLE 5 (a) Calculate the volume occupied by 0.750 mol of O2

at STP. (b) Calculate the number of moles of N2 that occupies 7.00 L
at STP.

Solution

(a) 0.750 mol
(

22.4 L (at STP)
1.00 mol

)
= 16.8 L

(b) 7.00 L
(

1 mol
22.4 L (at STP)

)
= 0.313 mol �

If the sample of gas is not at STP, we can use the combined gas
law to calculate what its volume would be at STP, then convert that
volume to number of moles. Similarly, if the number of moles are
given, we can use the molar volume to calculate the volume at STP
and then convert that with the combined gas law to any temperature
and pressure required. (See Fig. 7-1.)

EXAMPLE 6 Calculate the number of moles of O2 that occupies
17.2 L at 25◦C and 751 torr.

Moles of
gas

Molar
volume

Combined
gas law

Volume
at STP

Volume
at any

pressure and
temperature

Fig. 7-1 Two Step Mole-Volume Problem. To convert moles of
a gas to a volume at any temperature and pressure, first convert
the moles to volume at STP with the molar volume (first arrow),
then convert the volume to the required volume at the given con-
ditions with the combined gas law. If given the P -V-T data, use
the combined gas law first, then the molar volume. Where do we
start? Where the complete data are given. Work toward the answer
required.
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Solution First, calculate the volume that the gas would oc-
cupy at STP:

V2 = P1V1T2

P2T1
= (751 torr)(17.2 L)(273 K)

(760 torr)(298 K)
= 15.6 L

Then calculate the number of moles:

15.6 L
(

1.00 mol
22.4 L (at STP)

)
= 0.696 mol �

EXAMPLE 7 Calculate the volume occupied by 0.151 mol of Cl2 at
100◦C and 73.7 kPa.

Solution At STP:

0.151 mol
(

22.4 L (at STP)
1.00 mol

)
= 3.38 L

Under the specified conditions:

V2 = P1V1T2

P2T1
= (101.3 kPa)(3.38 L)(373 K)

(73.7 kPa)(273 K)
= 6.35 L �

The Ideal Gas Law

The ideal gas law

PV = nRT

applies to any sample of any gas at any temperature and pres-
sure. (Real gases obey this law best under low-pressure and high-
temperature conditions.) The constant R in the equation is often
given in units L·atm/mol·K, so it is best to express the volume in
liters and the pressure in atmospheres. If R is given in L·kPa/mol·K,
we will express the volume in liters and the pressure in kilopascals.
As usual, the temperature must be in kelvins! Memorize the value of
R in the ideal gas law equation in metric units, and convert to the
value in kilopascals by multiplying by 101.3 kPa/atm.

R = 0.0821 L·atm/mol·K (note well the zero after the
decimal point)

R = 8.31 L·kPa/mol·Kor

The typical ideal gas law problem gives three of the four vari-
ables (P , V, n, T) and asks for the fourth. (See Fig. 7-2.)
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Moles of
gas

Molar
volume

Combined
gas law

Volume
at STP

Volume
at any

pressure and
temperature

Ideal
gas

law

Fig. 7-2 Conversion of Moles of Gas to Volume at Any Temper-
ature and Pressure. In addition to the method in Fig. 7-1, we may
use the ideal gas equation to do either conversion—moles of gas to
volume or vice versa.

EXAMPLE 8 Calculate the number of moles of gas in a sample oc-
cupying 245 mL at 409 torr at 38◦C.

Solution

P = 409 torr = 0.538 atm V = 245 mL = 0.245 L

T = 38◦C + 273◦ = 311 K

Dividing both sides of PV = nRT by RT to isolate the n yields:

PV
RT

= nRT
RT

= n

n = PV
RT

= (0.538 atm)(0.245 L)
(0.0821 L·atm/mol·K)(311 K)

= 0.00516 mol �

EXAMPLE 9 Calculate the number of moles of gas in a sample oc-
cupying 532 mL at 0.555 atm at −14◦C.

Solution

P = 0.555 atm V = 532 mL = 0.532 L

T = −14◦C + 273◦ = 259 K

n = PV
RT

= (0.555 atm)(0.532 L)
(0.0821L·atm/mol·K)(259 K)

= 0.0139 mol �
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Fig. 7-3 Additional Conversions. Moles of a gas may be deter-
mined from other data, such as moles of another reagent in a chem-
ical reaction or mass and molar mass. Conversely, these values may
be determined from gas data by working in the opposite direction
on the figure. Again, start with the data provided and work toward
the answer required. (Remember the boy scouts.)

Using the Number of Moles of Gas

We can use the number of moles of gas, calculated from these gas
laws, as we would use moles of any substance. For example, we can
use it in a stoichiometry problem. (See Fig. 7-3.)

EXAMPLE 10 Calculate the number of moles of KClO3 that must
be decomposed to produce 45.0 L of oxygen at STP.

Solution The number of moles of oxygen can be calculated
from the molar volume of oxygen or from the ideal gas law as

45.0 L
(

1 mol O2

22.4 L (at STP)

)
= 2.01 mol O2

or n = PV
RT

= (1.00 atm)(45.0 L)
(0.0821 L·atm/mol·K)(273 K)

= 2.01 mol O2

To find the number of moles of KClO3 from the number of moles of
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oxygen requires the balanced chemical equation (Section 5.1):

2 KClO3(s) → 3 O2(g) + 2 KCl(s)

2.01 mol O2

(
2 mol KClO3

3 mol O2

)
= 1.34 mol KClO3 �

Sometimes it is necessary to use the ideal gas law twice in the
same problem.

EXAMPLE 11 On a space station, a 10.0-L steel drum of oxygen gas
at 25◦C and 101.3 kPa pressure springs a leak, and 8.00 g of gas
escapes before the leak is plugged. What is the final pressure of the
oxygen in the drum at 25◦C?

Solution Even if we cannot see how to complete this prob-
lem, we do know that from the initial P -V-T data, we can solve for
the initial number of moles of oxygen:

n = PV
RT

= (101.3 kPa)(10.0 L)
(8.31 L·kPa/mol·K)(298 K)

= 0.409 mol

We also can tell what fraction of a mole of oxygen escaped:

8.00 g O2

(
1 mol O2

32.0 g O2

)
= 0.250 mol O2

Knowing the original number of moles of O2 and the number of
moles that escaped enables us to calculate how much oxygen re-
mains in the tank:

0.409 mol − 0.250 mol = 0.159 mol

Because the drum is steel, it does not change volume; it is still 10.0 L,
and

P = nRT
V

= (0.159 mol)(8.31 L·kPa/mol·K)(298 K)
(10.0 L)

= 39.4 kPa �

7.3 Dalton’s Law of Partial Pressures
When gases are mixed, the volumes of the individual gases assume
the total volume of the mixture, and therefore they are equal to each
other and to the volume of the mixture. The temperatures of the
individual gases are also the same as the temperature of the mixture.
However, the pressures of the individual gases add up to the total
pressure of the mixture, and the numbers of moles of the individual
gases add up to the total number of moles of the mixture. This is
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a statement of Dalton’s law of partial pressures. For example, for
a mixture of two gases, using the subscripts 1 and 2 to denote the
individual gases:

V1 = V2 = Vtotal P1 + P2 = Ptotal

T1 = T2 = Ttotal n1 + n2 = ntotal

The ideal gas law can be used with any individual gas in the
mixture or with the mixture as a whole. The pressure of the mixture
gives the total number of moles in the mixture, but if a partial pres-
sure (pressure of an individual gas, Pi) is used, the number of moles
of that gas (ni) is calculated:

PtotalV = ntotalRT or PiV = ni RT

(i is a number such as 1, 2, 3 . . .)
EXAMPLE 12 In a mixture of argon and helium, the volume of the
argon is 2.00 L, the temperature of the helium is 27◦C, and the total
pressure is 725 torr. (a) What is the volume of the mixture? (b) What
is the temperature of the mixture? (c) What is the number of moles
of gas in the mixture?

Solution (a) Since gases in a mixture each have the volume
of the mixture, in this case the volume of the mixture is equal to
the volume of the argon, 2.00 L. (b) The temperature of the mixture
(and of the argon) is the same as that of the helium, 27◦C. (c) The
number of moles of mixture is given by the pressure, volume, and
temperature of the mixture:

725 torr
(

1 atm
760 torr

)
= 0.954 atm

n = PV
RT

= (0.954 atm)(2.00 L)
(0.0821 L·atm/mol·K)(300 K)

= 0.0775 mol �

EXAMPLE 13 Show that the ratio of the pressures of two gases in a
mixture is equal to the ratio of their numbers of moles.

Solution Dividing the ideal gas law equation for one gas by
that for another (or for the whole mixture) enables us to cancel
variables with equal values.
Since V1 = V2 = V and T1 = T2 = T:

P1

P2

V
V

= n1

n2

RT
RT

= P1

P2
= n1

n2

And similarly, starting with PtotalVtotal = ntotalRTtotal instead of
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P2V2 = n2RT2: P1

Ptotal
= n1

ntotal
�

EXAMPLE 14 Calculate the oxygen pressure in a mixture of
0.500 mol of oxygen and 0.750 mol of nitrogen with a total pressure
of 40.0 kPa.

Solution
Poxygen

Ptotal
= noxygen

ntotal

Poxygen

40.0 kPa
= 0.500 mol

1.250 mol
Poxygen = 16.0 kPa �

When a gas is collected over water, some of the water evapo-
rates and its vapor forms a mixture with the other gas. Evaporation
continues until the rate of evaporation of the liquid water equals
the rate at which the water vapor condenses, and a state of physical
equilibrium is achieved.

A mixture of a normal gas and water vapor behaves just like any
other gas mixture as long as no more water can evaporate and no water
vapor can condense. But when the gas mixture is in equilibrium with
liquid water, any attempt to reduce the pressure of the water vapor
will result in more liquid water evaporating. Any attempt at increas-
ing the water vapor pressure (by reducing the volume, for example)
will result in water vapor condensing. Thus the vapor pressure of
water in equilibrium with liquid water is a constant at any given
temperature. Tables of water vapor pressure at various temperatures
are given in texts and typically the water vapor pressure at a specified
temperature is given on exams.

EXAMPLE 15 (a) A mixture of oxygen and water vapor at a total
pressure of 107 kPa is in equilibrium with liquid water at 25◦C, at
which temperature the water vapor pressure is 3.2 kPa. Calculate the
pressure of the oxygen. (b) Oxygen is collected over water at 25◦C
under a barometric pressure of 107 kPa. (PH2O = 3.2 kPa) Calculate
the pressure of the oxygen.

Solution

(a) The pressure of the oxygen is the total pressure minus the water
vapor pressure:

Poxygen = 107 kPa − 3.2 kPa = 104 kPa
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(b) This problem is merely another statement of the problem of
part (a).

Poxygen = 104 kPa �

7.4 The Law of Combining Volumes
The law of combining volumes states that if all the gases involved
in a chemical reaction are measured (separately) at the same temper-
ature and pressure, their volumes will be in the same ratio as their
numbers of moles in the balanced chemical equation. It turns out
that this law was very important historically, but is not really needed
now. However, it can help do certain problems quickly.

Using the ideal gas law, we can prove that equal volumes of
two separate samples of gases, both at the same temperature and
pressure, will have equal numbers of moles:

Let V = volume of each gas
and T = absolute temperature of each gas
and P = pressure of each gas
Then n = PV/RT for each gas.

Because every term on the right side of the last equation is the same
for the two gases, the number of moles is the same also. Please note
that this conclusion is true for separate samples of gas; there is no gas
mixture in this discussion. Under these conditions, if the numbers
of moles of two gases in a chemical reaction are equal, their volumes
would be the same. If there were twice the number of moles of one
gas than the other, the volume of that gas would be double that of
the other. Because this is true, then the gases in a chemical reaction
involving separate gases at equal temperature and equal pressure
have their volumes proportional to the number of moles of gas—
the coefficients in the balanced equation. For example,

N2(g) + 3 H2(g) → 2 NH3(g)

If all three gases are separate samples at the same temperature and
pressure, the volume of the ammonia that is produced will be twice
the volume of the nitrogen that reacts, and the volume of the hy-
drogen that reacts will be three times the volume of the nitrogen
that reacts.

EXAMPLE 16 (a) If 6.00 L of hydrogen gas reacts with oxygen gas
to form liquid water, what volume of oxygen will react, assuming
that the oxygen is measured at the same temperature and pressure
as the hydrogen. (b) Can the volume of the water be determined?
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Solution
2 H2(g) + O2(g) → 2 H2O(l)

(a) Two types of solution are possible. The law of combining vol-
umes states that the ratio of volumes of hydrogen to oxygen
under these conditions is 2 : 1, the same as the coefficients in the
balanced equation, so the volume of oxygen is 3.00 L.

We can also determine the ratio of the number of moles of
hydrogen to the number of moles of oxygen in terms of the ideal
gas law:

nH2

nO2

= VH2(P/RT)
VO2(P/RT)

= 6.00 L
VO2

= 2 mol H2

1 mol O2

VO2 = 3.00 L

(See Supplementary Problem 6 if the use of variables for the pres-
sure and temperature is difficult.)

(b) The volume of the water cannot be determined because, in this
problem, it is not a gas. Again, it is important not only to re-
member the rules, but also when to use each one! �

7.5 Graham’s Law
Effusion is the escape of a gas through small pores in its container.
Diffusion is the passage of molecules of one gas through another
gas. (For example, ammonia gas diffuses through air, and can be
smelled on the far side of a room from where it is allowed to escape.)

Graham’s Law states that, under equal conditions of tempera-
ture and pressure, the rate of effusion or diffusion of a gas is inversely
proportional to the square root of its molar mass. The most useful
mathematical form of this law involves the rates of two gases:

r1
r2

=
√

MM2

MM1

The usual problem involving Graham’s law asks for the ratio of rates
of effusion or diffusion of two gases, or it gives the rate for one gas
and asks the rate for another.

EXAMPLE 17 How many times faster does hydrogen gas effuse from
a porous cup compared to oxygen gas under the same conditions of
temperature and pressure?
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Solution

rhydrogen

roxygen
=

√
MMoxygen

MMhydrogen
=

√
32.0 g/mol
2.02 g/mol

=
√

15.8 = 3.98

rhydrogen = 3.98(roxygen)

Hydrogen effuses about four times as fast as oxygen under the same
conditions of temperature and pressure. �

EXAMPLE 18 In a certain experiment, argon effuses from a porous
cup at 4.00 mmol/minute. How fast would chlorine effuse under the
same conditions?

Solution

rchlorine

rargon
=

√
MMargon

MMchlorine
=

√
39.9 g/mol
70.9 g/mol

= 0.750

rchlorine = (0.750)(4.00 mmol/minute) = 3.00 mmol/minute

Hints:

1. Once again, it is important to remember that hydrogen, nitrogen,
oxygen, fluorine, and chlorine, when uncombined with other
elements, are gases that exist as diatomic molecules.

2. For ease of solution, let the unknown rate appear in the numera-
tor.

3. The proportion is inverse; if the rate of a given gas appears in
the numerator, its molar mass is in the denominator, and vice
versa. �

The time it takes for a gas to diffuse a certain distance is inversely
proportional to its rate of diffusion. (The faster something moves,
the less time it takes to reach its destination.) If a Graham’s law
problem asks for a time, the problem may be solved in terms of
rates, and that information used to get the final answer.

EXAMPLE 19 If escaping ammonia gas can be smelled across a room
in 5.00 minutes, how long would it take to smell chlorine gas under
identical conditions?

Solution The rate ratio is calculated as usual:

rammonia

rchlorine
=

√
MMchlorine

MMammonia
=

√
70.9 g/mol
17.0 g/mol

= 2.04
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Because the ammonia diffuses 2.04 times as fast, the chlorine will
take 2.04 times as long to get there:

Time = (2.04) (5.00 minutes) = 10.2 minutes

Note that the heavier gas (chlorine) takes longer to arrive
(because it diffuses more slowly). �

7.6 Kinetic Molecular Theory Calculations
One of the postulates of the kinetic molecular theory (KMT) states
that the average kinetic energy of the molecules of a gas is directly
proportional to the absolute temperature.

KE = 3RT/2N

where R is expressed in joules per mole per kelvin (1 J = 1 L·kPa). T
is absolute temperature and N is Avogadro’s number. A line (called
a bar) over a variable designates the quantity as an average. Thus KE
means the average kinetic energy.

If two samples of gas are at the same temperature, the average
kinetic energies of their molecules are equal. That does not mean
that the average velocities of their molecules are equal, however. If
the gases are not the same, their molecules have different molecular
masses. Because the kinetic energy is equal to half the mass times
the square of the velocity, their velocities must be different.

KE = 1
2mv2

Since KE for the two gases is the same, but m is different, v2 must
also be different. Thus the lighter gas molecules must travel faster
on average. (This is the basis for Graham’s law.)

EXAMPLE 20 Samples of hydrogen and nitrogen are at the same
temperature. (a) Compare the average kinetic energies of their
molecules. (b) Compare qualitatively the average velocities of their
molecules.

Solution

(a) Since the temperatures are the same, the average kinetic energies
are the same.

(b) Since the mass of each hydrogen molecule is less than that
of each nitrogen molecule, the average velocity of hydrogen
molecules must be greater than that of nitrogen molecules. �
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Leading Questions

1. State two ways to convert the number of moles of a gas to its
volume, given all other factors.

2. To get the volume of a sample of gas given its temperature and
pressure, does it matter which gas is under consideration (a) if the
number of moles of gas is given? (b) if the mass of gas is given?

3. What calculation differences are there between two gases in a
mixture and two gases in a chemical reaction measured separately?

4. What is the difference between a 2.00-L sample of gas being
expanded (a) 5.00 L or (b) to 5.00 L?

5. Explain why Boyle’s law cannot be used to solve Example 11.
6. Write equations like those in the text before Example 12 relating the

pressures of three gases in a mixture, their temperatures, their
numbers of moles, and their volumes.

Answers to Leading Questions

1. (a) Use the molar volume with the combined gas law or (b) use the
ideal gas law.

2. (a) No. (b) Yes. The molar mass must be used to convert the mass to
the number of moles.

3. Two gases in a mixture must have equal volumes and equal
temperatures. Two separate samples of gas may have equal pressures
and equal temperatures (as in problems involving the law of
combining volumes).

4. (a) The final volume is 7.00 L. (b) The final volume is 5.00 L.
5. Boyle’s law cannot be used because there is not a given sample of gas.
6. V1 = V2 = V3 = V total P1 + P2 + P3 = P total

T1 = T2 = T3 = Ttotal n1 + n2 + n3 = n total

Supplementary Problems

1. (a) Calculate the final pressure of a gas if a 22.4-mL sample of the
gas at 78.0 kPa is expanded to 0.255 L at constant temperature.
(b) Calculate the final pressure of a gas if a 49.1-mL sample of the
gas at 755 torr is expanded to 0.123 L at constant
temperature.

2. Calculate the initial temperature of a gas if a 0.380-L sample of the
gas is changed at constant pressure to 555 mL at −25◦C.
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3. Calculate the final pressure of a gas if a 953-mL sample of the gas at
1.25 atm and 50◦C is changed to 1.55 L at 75◦C.

4. A 0.790-L sample of gas at 255 kPa and 25◦C is compressed. What
is its final pressure at 75◦C if the volume (a) was lowered by
0.200 L? (b) was lowered 0.200 L? (c) was lowered to 0.200 L?

5. Calculate the pressure of 0.444 mol of gas in a sample occupying
666 mL at −8◦C.

6. To show that the law of combining volumes works, do each of the
following parts by calculating the number of moles of each reactant.
(a) If 6.00 L of hydrogen gas reacts with oxygen gas to form liquid
water, what volume of oxygen will react, assuming that the oxygen
and hydrogen are both measured at 25◦C and 785 torr. (b) If 6.00 L
of hydrogen gas reacts with oxygen gas to form liquid water, what
volume of oxygen will react, assuming that the oxygen and hydrogen
are both measured at 53◦C and 805 torr. (c) Repeat the process
with other arbitrary values of temperature and pressure to be
convinced that the law is true for any such values.

7. What pressure is exhibited by 0.250 mol of a gas in 10.0 L at 23◦C?

8. Explain why in Dalton’s law problems
n1

n2
= P1

P2

but in combining volume problems
n1

n2
= V1

V2

9. If 4.88 g of a gas occupies 2.75 L at 103 kPa and 22◦C, (a) calculate
the number of moles of gas present. (b) Calculate the molar mass.

10. Calculate the volume at STP of 26.7 g of oxygen gas.
11. Calculate the volume occupied by 7.00 g of nitrogen gas at 25◦C

and 1.03 atm.
12. Calculate the pressure of oxygen in a mixture at 105.9 kPa

containing 0.400 mol of oxygen and 0.200 mol of nitrogen.
13. (a) Calculate the number of moles in 4.00 L of a gas mixture at

25◦C if the total pressure is 0.995 atm. (b) What difference does
it make, if any, that the sample is a mixture and not a pure
substance?

14. Calculate the rate of effusion of helium from a porous cup under
the same conditions that CH4 effuses at a rate of
20.0 mmol/minute.

15. Calculate the relative rates of effusion of 235UF6 and 238UF6 from a
mixture of the two. The molar masses of 235U and 238U are
235.04 g/mol and 238.05 g/mol, respectively.
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16. Calculate the time it would take for SO2 to diffuse across a room
under the same conditions that it takes an equal number of moles
of NH3 5.00 minutes to diffuse.

17. (a) Calculate the average kinetic energy of hydrogen molecules at
295 K. (b) Calculate their “average” velocities (u), using

KE = 1
2 mu

2 and 1 J = 1 kg·m2/s2

18. Calculate the volume of oxygen that reacts with CO to produce
4.00 L of CO2, all measured at the same temperature and pressure.

19. As far as possible, determine the relative volumes of the substances
involved in the following reaction in the open atmosphere
at 500◦C:

2 C(s) + O2(g) → 2 CO(g)

20. Determine the volume of oxygen collected over water at 25◦C and
762 torr barometric pressure by decomposition of 1.00 g of KClO3

(PH2O = 24 torr).
21. Calculate the molar mass of 4.88 g of a gas that occupies 2.75 L at

1.02 atm and 22◦C.
22. Determine the molar mass of a gas whose density at 25◦C and

1.00 atm pressure is 1.72 g/L.
23. Using the ideal gas law equation, the volume of a mole of gas at STP,

and the value of R , determine the value of standard pressure
(in kilopascals).

24. A 5.00-g sample of gas is contained in a 2.51-L vessel at 25◦C and
1.10 atm pressure. The gas contains 81.8% carbon and the rest
hydrogen. (a) What can be calculated from the pressure-volume-
temperature data? (b) What can be calculated from the mass and
the answer to part (a)? (c) What can be calculated from the
percent composition data? (d ) What can be calculated from the
answers to parts (b) and (c)?

25. A 5.00-g sample of gas is contained in a 2.51-L vessel at 25◦C and
1.10 atm pressure. The gas contains 81.8% carbon and the rest
hydrogen. (a) Calculate the number of moles of gas in the sample.
(b) Calculate the molar mass of the sample. (c) Calculate the
empirical formula of the sample. (d ) Calculate the molecular
formula of the sample.

26. Calculate the molecular formula of a 4.70-g sample of gas contained
in a 2.51-L vessel at 25◦C and 1.09 atm pressure. The gas contains
85.7% carbon and the rest hydrogen.
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Solutions to Supplementary Problems

1. (a) P V
1 78.0 kPa 22.4 mL
2 P2 0.255 L = 255 mL

P2 = P1V1/V2 = (78.0 kPa)(22.4 mL)/(255 mL) = 6.85 kPa

This pressure is reasonable, since the volume increased because
of the decreased pressure.

(b) P V
1 755 torr 49.1 mL = 0.0491 L
2 P2 0.123 L

P2 = P1V1/V2 = (755 torr)(0.0491 L)/(0.123 L) = 301 torr

This pressure is reasonable, since the volume increased because
of the decreased pressure.

2. T V
1 T1 0.380 L
2 −25◦C = 248 K 555 mL = 0.555 L

T1 = T2V1/V2 = (248 K)(0.380 L)/(0.555 L) = 1.70 × 102 K

This temperature is reasonable, since the volume will increase
because of the increasing temperature.

3. P V T
1 1.25 atm 953 mL 50◦C = 323 K
2 P2 1550 mL 75◦C = 348 K

P2 = P1V1T2
V2T1

= (1.25 atm)(953 mL)(348 K)
(1550 mL)(323 K)

= 0.828 atm

This pressure is reasonable, since the volume will increase
because of the decreased pressure and also because of the
increased temperature.

4. Note the wording of the three parts: “(a) was lowered by 0.200 L?
(b) was lowered 0.200 L? (c) was lowered to 0.200 L?” “Lowered by
0.200 L” and “lowered 0.200 L” mean the same thing. “Lowered to
0.200 L” gives a new final volume.
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(a) V2 is 0.790 L − 0.200 L = 0.590 L. P2 is given by the combined
gas law:

P2 = P1V1T2
V2T1

= (255 kPa)(0.790 L)(348 K)
(0.590 L)(298 K)

= 399 kPa

(b) V2 is again 0.790 L − 0.200 L = 0.590 L. P2 is again 399 kPa.
(c) V2 is 0.200 L. P2 is again given by the combined gas law:

P2 = P1V1T2
V2T1

= (255 kPa)(0.790 L)(348 K)
(0.200 L)(298 K)

= 1180 kPa

5. n = 0.444 mol V = 666 mL = 0.666 L
T = −8◦C + 273◦ = 265 K

P = n R T
V

= (0.444 mol)(8.31 L·kPa/mol·K)(265 K)
(0.666 L)

= 1470 kPa

6. (a) The number of moles of hydrogen is given by

n = PV
RT

= [(785/760) atm](6.00 L)
(0.0821 L·atm/mol·K)(298 K)

= 0.253 mol

According to the balanced chemical equation, the number of
moles of oxygen is half that, 0.127 mol. The volume of oxygen is

V = nRT
P

= (0.127mol)(0.0821 L·atm/mol·K)(298K)
[(785/760) atm]

= 3.01 L

(b) The number of moles of hydrogen is given by

n = PV
RT

= [(805/760) atm](6.00 L)
(0.0821 L·atm/mol·K)(326 K)

= 0.237 mol

According to the balanced chemical equation, the number of
moles of oxygen is half that, 0.119 mol. The volume of oxygen is

V = nRT
P

= (0.119mol)(0.0821 L·atm/mol·K)(326K)
(805/760) atm

= 3.01 L
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(c) No matter what values are chosen, the same answer is found
each time (within rounding error).

7. P = nRT/V = (0.250 mol)(0.0821 L·atm/mol·K)(296 K)/(10.0 L)
= 0.608 atm

Alternatively, at STP, the gas would occupy

0.250 mol
(
22.4 L (at STP)

1 mol

)
= 5.60 L

The pressure is

P2 = P1V1T2
V2T1

= (1.00 atm)(5.60 L)(296 K)
(10.0 L)(273 K)

= 0.607 atm

8. Dalton’s law involves a mixture of gases, in which the volumes and
temperatures must be the same; the law of combining volumes
involves separate gases, with pressures and temperatures specified as
equal.

9. (a) n = PV
RT

= (103 kPa)(2.75 L)
(8.31 L·kPa/mol·K)(295 K)

= 0.116 mol

(b) MM = 4.88 g
0.116 mol

= 42.1 g/mol

10. The molar volume is 22.4 L at STP. If we know the number of moles,
we can immediately calculate the volume at STP. The number of
moles is calculated from the mass with the molar mass:

26.7 g O2

(
1 mol O2

32.0 g O2

)
= 0.834 mol O2 (Remember that

oxygen gas is O2!)

0.834 mol O2

(
22.4 L (at STP)

1 mol O2

)
= 18.7 L

11. The number of moles of nitrogen gas is given by

7.00 g N2

(
1 mol N2

28.0 g N2

)
= 0.250 mol N2 (Remember that

nitrogen gas is N2!)

The volume is given by the ideal gas law:

V = nRT
P

= (0.250 mol)(0.0821 L·atm/mol·K)(298K)
1.03 atm

= 5.94 L
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or by the molar volume and the combined gas law:

0.250 mol
(
22.4 L (at STP)

1 mol

)
= 5.60 L

V2 = P1V1T2
P2T1

= (1.00 atm)(5.60 L)(298 K)
(1.03 atm)(273 K)

= 5.93 L

12. PO2

P total
= nO2

n total

PO2 = (105.9 kPa)(0.400 mol O2)
0.600 mol total

= 70.6 kPa

13. (a) VSTP = P2V2TSTP
P STPT2

= (0.995 atm)(4.00 L)(273 K)
(1.00 atm)(298 K)

= 3.65 L

3.65 L
(

1 mol
22.4 L(at STP)

)
= 0.163 mol

(b) It does not make any difference.

14.
rHe

rCH4

=
√

MMCH4

MMHe
=

√
16.0 g/mol
4.00 g/mol

=
√
4.00 = 2.00

rHe = (2.00)(20.0 mmol/minute) = 40.0 mmol/minute

15. MM235 = 235.04 g/mol+ 6(18.998 g/mol)= 349.03 g/mol for 235UF6
MM238 = 238.05 g/mol+ 6(18.998 g/mol)= 352.04 g/mol for 238UF6

r235
r238

=
√

352.04 g/mol
349.03 g/mol

=
√
1.0086 = 1.0043

This very small difference is sufficient to separate the isotopes with
repeated effusions.

16.
rNH3

r SO2

=
√

MMSO2

MMNH3

=
√

64.1 g/mol
17.0 g/mol

=
√
3.77 = 1.94

Since the NH3 travels 1.94 times as fast, the SO2 will take 1.94
times as long:

1.94(5.00 minutes) = 9.70 minutes
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17. (a) KE = 3RT
2N

= 3(8.31 J/mol·K)(295 K)
2(6.02 × 1023/mol)

= 6.11 × 10−21 J

(b) The mass of a molecule in kilograms is

2.016 amu
(

1 g
6.02 × 1023 amu

)(
1 kg

1000 g

)
= 3.35 × 10−27 kg

u =
√

2KE
m

=
√

2(6.11 × 10−21 J)
3.35 × 10−27 kg

= 1910 m/s

(about 4300 miles per hour)

18. 2 CO(g) + O2(g) → 2 CO2(g)
The law of combining volumes requires 2.00 L of O2 to react to
produce the 4.00 L of CO2:

4.00 L CO2

(
1 L O2

2 L CO2

)
= 2.00 L O2

19. The ratio of volumes of O2 to CO is 1 : 2, according to the law of
combining volumes. The ratio of volume of carbon to volume of
oxygen or carbon monoxide cannot be determined because carbon
is a solid.

20. The oxygen pressure is

PO2 = Pbarometric − PH2O = 762 torr − 24 torr = 738 torr

= 0.971 atm

1.00 g KClO3

(
1 mol KClO3

122 g KClO3

)(
3 mol O2

2 mol KClO3

)
= 0.0123 mol O2

The volume of oxygen gas at STP is determined from its number of
moles:

0.0123 mol O2

(
22.4 L (at STP)

1 mol O2

)
= 0.276 L

The volume at the specified temperature and pressure is given by
the combined gas law:

V2 = PSTPVSTPT2
P2TSTP

= (760 torr)(0.276 L)((298 K)
(738 torr)(273 K)

= 0.310 L
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The ideal gas law may be used in place of the last two steps:

V = nRT
P

= (0.0123 mol)(0.0821 L·atm/mol·K)(298 K)
0.971 atm

= 0.310 L

21. n = PV
RT

= (1.02 atm)(2.75 L)
(0.0821 L·atm/mol·K)(295 K)

= 0.116 mol

MM = 4.88 g
0.116 mol

= 42.1 g/mol

This is the same problem as Supplementary Problem 9, but is stated
in atmospheres and is not stated in steps.

22. Assume a 1.00-L volume. The mass of gas in this volume is 1.72 g.
The number of moles is given by the ideal gas law:

n = PV
RT

= (1.00 atm)(1.00 L)
(0.0821 L·atm/mol·K)(298 K)

= 0.0409 mol

The molar mass is thus

MM = 1.72 g
0.0409 mol

= 42.1 g/mol

23. The value is given by

P = nRT/V = (1.00 mol)(8.31 L·kPa/mol·K)(273 K)/(22.4 L)

= 101 kPa

24. (a) The number of moles of gas.
(b) The molar mass of the gas.
(c) The empirical formula.
(d ) The molecular formula. (See the next two problems.)

25. (a) n = PV
RT

= (1.10 atm)(2.51 L)
(0.0821 L·atm/mol·K)(298 K)

= 0.113 mol

(b) MM = m/n = (5.00 g)/(0.113 mol) = 44.2 g/mol

(c) 81.8 g C
(
1 mol C
12.0 g C

)
= 6.82 mol C
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18.2 g H
(

1 mol H
1.008 g H

)
= 18.1 mol H

The mole ratio of H to C is

18.1 mol H
6.82 mol C

= 2.65 mol H
1 mol C

= 2.65 mol H × 3
1 mol C × 3

= 8 mol H
3 mol C

The empirical formula is C3H8.
(d ) The empirical formula mass is 44.0 g/mol, equal within two

significant digits to the molar mass, so the molecular formula
is C3H8.

26. This problem is similar to Problem 25, but it is not stated in parts.
The number of moles is given by

n = PV
RT

= (1.09 atm)(2.51 L)
(0.0821 L·atm/mol·K)(298 K)

= 0.112 mol

The molar mass is

MM = m/n = (4.70 g)/(0.112 mol) = 42.0 g/mol

The empirical formula and molecular formula are calculated as in
Chapter 4.

85.7 g C
(
1 mol C
12.0 g C

)
= 7.14 mol C

14.3 g H
(

1 mol H
1.008 g H

)
= 14.2 mol H

The mole ratio of C to H is 1 : 2, so the empirical formula is CH2.
The empirical formula mass is 14.0 g/mol, and the molar mass is
42.0 g/mol, so there are (42.0/14.0) = 3 empirical formula units per
molecule. The molecular formula is C3H6.
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Chapter 8

Thermochemistry

8.1 Calorimetry
Measurement of heat is an indirect process; we measure heat by its
effect on material samples. The heat required to change the temper-
ature of a sample by a certain number of degrees is given by

q = mc�t

where q is the heat added to the sample. If heat is removed from
the sample, q has a negative value. The m is the mass of the sample,
c is its specific heat capacity, called specific heat for short, and �t
is the change in temperature. (The Greek letter ∆ is used generally in
chemistry to mean “change in,” so �t means change in temperature,
�V means change in volume, and �m means change in mass, for
example.) The change is always defined as the final value minus the
initial value:

�t = tfinal − tinitial or �t = t2 − t1

The system is defined as the portion of the universe under investi-
gation. The rest of the universe is known as the surroundings. When
heat is added to a system and the temperature rises, �t is positive,
and therefore q is positive because m and c are always positive.
If heat is removed, the temperature falls, �t is negative, and q is
also negative. Heat added to a system is positive; heat removed from a
system is negative. We must be especially careful in this chapter to
make sure that we use the correct signs and the correct units.

The specific heat of a substance is defined as the heat required
to raise the temperature of 1 gram of the substance 1◦C. (See Table
8-1.) It takes 4.184 J to raise the temperature of 1.000 g of water from
14.5◦C to 15.5◦C, so the specific heat of water (at that temperature) is
4.184 J/g·◦C. The specific heat of liquid water at other temperatures
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Table 8-1 Specific Heat Capacities

Metals c ( J/g·◦C)
Aluminum 0.90
Chromium 0.45
Copper 0.385
Gold 0.129
Iron 0.442
Monel metal 0.427 (66% Ni, 31.5% Cu)
Platinum 0.130
Silver 0.24
Zinc 0.388

Water

Solid (ice) 2.089
Liquid 4.184
Vapor 2.042

is very nearly the same, so we will use that value no matter what
the temperature, except in the most precise work (where the precise
specific heat will be given). Remember the value 4.184 J/g·◦C.
(Perhaps a more familiar unit of heat is the calorie; 1 calorie is
defined as 4.184 J, so the heat capacity of water is 1.000 cal/g·◦C.)

The equation for heat can be used to calculate heat capacities,
changes in temperature or final or initial temperatures, masses, or
heat, if all of the others are given. Be sure to distinguish between
the change in temperature and the individual temperatures, as well
as between heat and specific heat!

Differences in temperature or changes in temperature are the
same on the Celsius scale and the Kelvin scale.

EXAMPLE 1 Calculate the difference in temperature between the
freezing point of water and the normal boiling point of water on
the Celsius scale and on the Kelvin scale.

Solution
�t = 100◦C − 0◦C = 100◦C

�T = 373 K − 273 K = 100 K �
EXAMPLE 2 Calculate the quantity of heat required to raise the
temperature of 2.00 g of water 4.00◦C.

Solution

q = mc�t = (2.00 g)(4.184 J/g·◦C)(4.00◦C) = 33.5 J
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Note that it is the change in temperature that is included in this equa-
tion. �

EXAMPLE 3 Calculate the quantity of heat required to raise the
temperature of 2.00 g of water from 21.00◦C to 25.00◦C.

Solution The change in temperature is 4.00◦C, so this exam-
ple is the same as the prior one. �

EXAMPLE 4 Calculate the quantity of heat required to change the
temperature of 2.00 g of water from 25.00◦C to 21.00◦C.

Solution This time, the change in temperature is 21.00◦C −
25.00◦C = −4.00◦C, so the quantity of heat is

q = mc�t = (2.00 g)(4.184 J/g·◦C)(−4.00◦C) = −33.5 J

The minus sign means that heat must be removed from the
water. �

EXAMPLE 5 (a) Calculate the temperature change when 55.7 J of
heat is added to 12.0 g of water at 22.0◦C. (b) What is the final
temperature?

Solution

(a) q = mc�t = (12.0 g)(4.184 J/g·◦C)(�t) = 55.7 J
�t = 1.11◦C

(b) The final temperature is 1.11◦C higher than the initial tempera-
ture, or

t f = 22.0◦C + 1.11◦C = 23.1◦C

Note the difference between the change in temperature and the
final temperature! �

To what temperature would the water in Example 5 be warmed
if 55.7 J of electrical energy or 55.7 J of energy from a chemical
reaction had been added? It doesn’t matter to the water what form
of energy has been used; just the quantity of energy is important.
(See Supplementary Problems 13, 21, and 22.)

EXAMPLE 6 What mass of water is heated 2.30◦C when 87.4 J of
heat is added to it?
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Solution

q = mc�t = (m)(4.184 J/g·◦C)(2.30◦C) = 87.4 J

m = 9.08 g �
EXAMPLE 7 Calculate the heat capacity of a metal if 157 J raises the
temperature of a 53.1-g sample of the metal from 15.7◦C to 21.8◦C.

Solution

q = mc�t = (53.1 g)(c)(21.8◦C − 15.7◦C) = 157 J

c = 0.48 J/g·◦C
(The temperature change has only two significant digits.) �

If two samples at different temperatures are placed in thermal
contact, the hotter one will be cooled and the colder one will be
warmed. They will both wind up at the same temperature. The heat
lost by one will be gained by the other, and no heat will be ex-
changed with the surroundings.

EXAMPLE 8 Calculate its specific heat if a 35.9-g sample of a metal
at 58.0◦C is immersed in 52.1 g of water at 16.3◦C, warming the
water to 20.7◦C.

Solution The final temperature of the metal is also 20.7◦C.

q = 0 = mwatercwater�twater + mmetalcmetal�tmetal

0 = (52.1 g)(4.184 J/g·◦C)(20.7◦C − 16.3◦C)

+ (35.9 g)(c)(20.7◦C − 58.0◦C)

Doing the subtractions and canceling some of the units yields

0 = (52.1)(4.184 J)(4.4) + (35.9 g)(c)(−37.3◦C)

c = 0.72 J/g·◦C Watch the signs. �
EXAMPLE 9 Calculate the final temperature after 30.0 g of a metal
(c = 0.950 J/g·◦C) at 71.3◦C is immersed in 155 g of water at 21.3◦C.

Solution Note that both samples have the same final tem-
perature, t, and that the final temperature must be between the two
initial temperatures. (Since the two terms add up to zero, one must
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be positive and the other negative.)

q = 0 = mwatercwater�twater + mmetalcmetal�tmetal

0 = (155 g)(4.184 J/g·◦C)(t − 21.3◦C)

+ (30.0 g)(0.950 J/g·◦C)(t − 71.3◦C)

Canceling the units grams in each term and dividing the entire equa-
tion by joules yields an equation that looks easier to work with:

0 = (155)(4.184/◦C)(t−21.3◦C)+ (30.0)(0.950/◦C)(t−71.3◦C)

Using the distributive law of algebra {ab(c − d) = abc − abd} yields

0 = (649/◦C)t − 13,800 + (28.5/◦C)t − 2030

Then
(678/◦C)t = 15,800

t = 23.3◦C

(Ask the instructor if all the units can be ignored in solving this
equation, and merely add the ◦C at the end, since a temperature is
required.)

Check:

0 = (155 g)(4.184 J/g·◦C)(23.3◦C − 21.3◦C)

+ (30.0 g)(0.950 J/g·◦C)(23.3◦C − 71.3◦C)

0 = 1300 J − 1370 J

(The two significant digits in 23.3 − 21.3 limits the accuracy of this
check, but the answer is acceptable.) �

8.2 Energies of Phase Change
When we heat a sample of matter, we generally expect that the
sample will get warmer. That happens most of the time, but not
when a pure substance is heated at a temperature at which it will
change phase. For example, when heat is added to pure ice at 0◦C,
the ice melts and the system remains at 0◦C until all the ice is melted.
(It takes some energy to rearrange the particles that constitute the
substance—it takes some potential energy rather than the kinetic
energy of heat.)

When a sample changes phase, the heat involved is given a
name associated with that particular phase change. For example,
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fusion

solidification

gas

solid liquid

sublimation condensation vaporization

Fig. 8-1 Names of Phase Changes.

when sublimation occurs (a solid is changed directly to the gas
phase), the heat involved is called the heat of sublimation. The
most common changes of phase are shown in Fig. 8-1. Note that
melting is formally called fusion, and evaporation is formally called
vaporization. The word for changing from gas to either liquid or
solid is condensation.

EXAMPLE 10 What is the name for the heat associated with the
melting of a solid substance?

Solution Heat of fusion. �
Some heats of phase change are presented in Table 8-2. Two

phase changes that are exactly opposite processes have heats with
exactly the same magnitude but opposite signs. For example, the
heat of fusion of water at 0◦C is 6.00 kJ/mol; the heat of solidifica-
tion of liquid water to ice at 0◦C is −6.00 kJ/mol. Tabulated heats
of phase change often have units different from those in a given
problem; as usual, be careful with the units! Also note that since

Table 8-2 Heats of Phase Change

Heat Temperature
Substance Process (kJ/mol) (◦C)

Water Melting 6.00 0
Water Boiling 40.6 100
Carbon dioxide Subliming 162 −90
Ammonia Boiling 23.3 −33
Phosphorus Boiling 29.5 78

trichloride
Sodium chloride Melting 28.5 801
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the phase change takes place at constant temperature, there is no
◦C as part of the unit and there is no �t term in the equation to
calculate the associated heat.

EXAMPLE 11 Calculate the heat required to melt 14.7 g of ice
at 0◦C.

Solution The problem is given in grams and the value from
Table 8-2 is in moles, so a conversion factor is used:

14.7 g
(

1 mol
18.0 g

)(
6.00 kJ
1 mol

)
= 4.90 kJ �

EXAMPLE 12 If it takes 439 J of heat to warm 14.7 g of ice to 0◦C,
how much heat would it take to warm the ice to the freezing point
and then melt it? (See prior example.)

Solution The total heat required is the heat for the warming
process plus the heat of fusion. As usual, watch out for the units and
the significant digits!

4.90 kJ + 439 J = 4.90 kJ + 0.439 kJ = 5.34 kJ �

The last example indicates that to calculate the total heat re-
quired to heat a sample and to change its phase requires a separate
calculation for each. For example, to calculate the heat required to
change liquid water at 80◦C to water vapor at 110◦C, we have to
calculate the heat required to warm the liquid to 100◦C, the heat
required to vaporize the water at 100◦C, and the heat required to
warm the vapor. Then we add the three terms to get the total heat
for the process.

EXAMPLE 13 Calculate the heat required to change 45.0 g of liquid
water at 80.0◦C to water vapor at 110.0◦C. Use the data of Tables 8-1
and 8-2.

Solution To calculate the heat used to warm the liquid water
to 100◦C takes a specific heat calculation:

q = mc�t = (45.0 g)(4.184 J/g·◦C)(20.0◦C) = 3770 J

To calculate the heat used to vaporize the water takes a heat of va-
porization calculation:

45.0 g
(

1 mol
18.0 g

)(
40.6 kJ
1 mol

)
= 102 kJ
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To calculate the heat used to warm the water vapor takes a specific
heat calculation:

q = mc�t = (45.0 g)(2.042 J/g·◦C)(10.0◦C) = 919 J

The total heat required is 3.77 kJ + 102 kJ + 0.919 kJ = 107 kJ.
Note that we cannot even combine the two specific heat calcu-

lations because liquid water and water vapor have different specific
heat capacities. �

8.3 Enthalpy of Reaction
We are greatly interested in determining the energy associated with
chemical reactions. Chemical manufacturers need to know how
much energy it will take to produce their products, or how much
energy they need to dissipate as their reactions proceed. Even bet-
ter, they would like to use the energy produced by some reactions to
make other reactions go so that they will not have to pay for extra
fuel nor dump unwanted heat into the ecosphere. Everyone pays for
energy sources—fuel for the furnace at home or the car, batteries for
our portable electrical apparatus, and electricity for home and office
use, for example. The price we pay for manufactured goods includes
a good percentage for the energy that is used in the production and
transportation of the goods.

Enthalpy change,∆H, is a formal term for the heat associated
with a process done at constant pressure with no energy exchange
with the surroundings except expansion work. We loosely use the
terms heat and enthalpy change interchangeably. For example, in the
first sections of this chapter, we could have used �H instead of q in
our equations. The enthalpy change of a process is named for the
process; for example, the enthalpy of fusion is the enthalpy change
associated with a fusion (melting) process. We need to define explic-
itly two enthalpy terms: enthalpy of combustion and enthalpy of
formation. Enthalpy of combustion is the enthalpy of the burning
process. If a substance can undergo two or more combustion reac-
tions, the enthalpy of the reaction that goes furthest is by defini-
tion called the enthalpy of combustion. For example, carbon burns
in limited oxygen supply to yield carbon monoxide, and in excess
oxygen it produces carbon dioxide. Therefore, by definition, the en-
thalpy of combustion of carbon is the enthalpy change associated
with the formation of carbon dioxide (in which more oxygen is
combined).
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The enthalpy of the reaction

CO(g) + 1
2 O2(g) → CO2(g)

is the enthalpy of combustion of CO.
The standard enthalpy of formation, ∆Ho

f , of a substance is
the enthalpy change associated with the reaction of the elements of
the substance in their standard states to produce the substance in its
standard state. Thus the enthalpy of formation of carbon monoxide
is the enthalpy change associated with the reaction

C(s) + 1
2 O2(g) → CO(g)

and that of carbon dioxide is the enthalpy change associated with
the reaction

C(s) + O2(g) → CO2(g)

The term standard state signifies the condition inwhich a substance
is most stable at the temperature of the problem. (It has nothing to
do with the standard temperature of the gas law problems, presented
in Chapter 7.) Thus oxygen at 25◦C is in its standard state as a gas in
diatomic molecules. Ozone, O3, is not the standard state of oxygen,
nor is a sample of O atoms or liquid O2.

There can be more than one name associated with the enthalpy
change of a single reaction.

EXAMPLE 14 What names are associated with the enthalpy change
of the following reaction?

H2(g) + 1
2 O2(g) → H2O(l)

Solution The enthalpy change for this reaction can be called
the enthalpy of formation of water, the enthalpy of combustion
of hydrogen, or the enthalpy of the reaction of hydrogen and
oxygen. �

Enthalpy of formation data such as are presented in Table 8-3
allow us to calculate the enthalpy change of any reaction having its
substances listed. There is no need to tabulate enthalpies of forma-
tion of elements in their standard states, however, because they are
zero by definition. (The enthalpy required to change an element in
its standard state to the element in its standard state is zero.)
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Table 8-3 Enthalpies of Formation (kJ/mol)

BaO(s) −559

BaCO3(s) −1217

BaSO4(s) −1465

CO(g) −110

CO2(g) −393

H2O(l) −286

H2O(g) −242

HCl(g) −92

NaCl(s) −411

NaHCO3(s) −710

Na2CO3(s) −1430

SO2(g) −297

SO3(g) −395

CH4(g) −74.5

C2H6(g) −83.7

To calculate the enthalpy change of a chemical reaction, sub-
tract the sum of the enthalpies of formation of the reactants from
the sum of the enthalpies of formation of the products:

�H = �Hf (products) − �Hf (reactants)

EXAMPLE 15 Calculate the enthalpy change for the reaction of one
mole of CH4 with oxygen to yield carbon dioxide and water.

Solution

CH4(g) + 2O2(g) → CO2(g) + 2H2O(l)

�H = �Hf (products) − �Hf (reactants)

= �Hf (CO2) + 2�Hf (H2O) − �Hf (CH4) − 2�Hf (O2)

= (−393 kJ)+2(−286 kJ)− (−74.5 kJ) − 2(0 kJ) = −891 kJ

The enthalpy of formation of oxygen gas is zero by definition, since
it is an element in its standard state. The other enthalpies of for-
mation are obtained from Table 8-3. As usual, we must be careful
with the signs and the units. Note specifically that the enthalpy of
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formation of water is −286 kJ/mol and that there are two moles
present in the equation. Also note that when a sum is subtracted, it
is equivalent to subtracting each member in the sum:

(a + b) − (c + d) = a + b− c − d �

If a different quantity from the number of moles in the equa-
tion is specified in the problem, calculate the value using the number
of moles in the equation, then compute the value for the quantity
specified in the problem.

EXAMPLE 16 Calculate the enthalpy change for the reaction of
23.7 g of CH4 with oxygen to yield carbon dioxide and water.

Solution The number of kilojoules is calculated for 1 mol,
just as was done in Example 15. Then �H is calculated for the 23.7 g
specified in the problem:

�H = 23.7 g CH4

(
1 mol CH4

16.0 g CH4

)( −891 kJ
1 mol CH4

)
= −1320 kJ

from the
prior problem �

EXAMPLE 17 Calculate the enthalpy change for the reaction of CH4

with oxygen to yield carbon dioxide and 75.9 g of water.

Solution Again the result of Example 15 is used:

75.9 g H2O
(

1 mol H2O
18.0 g H2O

)( −891 kJ
2 mol H2O

)
= −1880 kJ

Note that the −891 kJ enthalpy change of Example 15 is associated
with 2 mol of water in the balanced chemical equation! �

Hess’s Law

If enthalpy of formation data are not available but other types of
enthalpy data are, and if we can combine the chemical equations for
the available reactions to give the desired reaction, we can combine
the enthalpy changes in the same way. This is a statement of Hess’s
law. For example, consider the general reactions

A + 2 B → C + 2 D �H = −20 kJ
C + 2 D → E �H = 15 kJ

We can add these equations and add their associated enthalpy
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changes to get the enthalpy change for the reaction

A + 2B + C
∖

+ ✏✏2 D → E + C
∖

+ ✏✏2 D
A + 2B → E �H = −5 kJ

If we are given equations that add up to the one desired, it is
simple to add them and their associated enthalpy changes. If the
equations are not given in the form necessary, we may have to mul-
tiply them and their associated enthalpy changes by the same value,
and/or reverse one or more of the equations and change the signs
of the associated enthalpy changes.

EXAMPLE 18 Calculate the enthalpy change for the reaction

3 C2H2(g) → C6H6(l)

given the enthalpies of combustion of these compounds:

C2H2(g) − 1305 kJ/mol

C6H6(l) − 3273 kJ/mol

Solution Note that the data given are not enthalpies of forma-
tion; we cannot merely subtract the enthalpy of the reactants from
the enthalpy of the products. However, we can write equations for
the combustion reactions of the reagents given, both multiplied by
factors to get the same integral numbers of moles of products:

∆H

(1) 6C2H2(g)+15O2(g)→12CO2(g)+6H2O(l) 6(−1305 kJ)

(2) 2C6H6(l)+15O2(g) →12CO2(g)+6H2O(l) 2(−3273 kJ)

We reverse the second of these equations, changing the sign of the
�H value, then adding to the first equation, yielding

∆H

(1) 6C2H2(g)+15O2(g) →12CO2(g)+6H2O(l) 6(−1305kJ)

(−2) 12CO2(g)+6H2O(l)→2C6H6(l)+15O2(g) 2(+3273kJ)

(sum) 6C2H2(g)→2C6H6(l) −1284kJ

Dividing this equation and its enthalpy change by 2 yields the
answer required:

3C2H2(g) → C6H6(l) �H = −642 kJ �

121



Leading Questions

1. What are the two main mathematical equations presented in this
chapter?

2. From the data of Table 8-2, determine the heat of condensation of
water vapor to liquid water at 100◦C.

3. When a warm metal bar is placed in cold water, is the value of q
positive, negative, or zero (a) for the metal? (b) for the water?
(c) for the whole system (metal plus water)?

Answers to Leading Questions

1. q = mc�t and �H = �H f (products) −�H f (reactants)
2. The heat of vaporization is given in the table as +40.6 kJ/mol, so the

heat of condensation is −40.6 kJ/mol. (It is negative because heat is
removed from the vapor to condense it to liquid.)

3. (a) The metal loses heat; q is negative. (b) The water gains heat;
q is positive. (c) q is zero.

Supplementary Problems

1. Calculate the value in Kelvin of (a) 35◦C. (b) 15◦C. (c) Calculate the
difference between these temperatures on each scale.

2. Calculate the quantity of heat required to raise the temperature of
42.7 g of iron 5.00◦C.

3. Calculate the quantity of heat required to raise the temperature of
52.9 g of water vapor from 121◦C to 135◦C.

4. Calculate the final temperature after 935 J of heat is added to 112 g
of water at 19.0◦C.

5. Calculate the final temperature after 127 g of a metal
(c = 0.880 J/g·◦C) at 21.4◦C is immersed in 338 g of water at
55.5◦C.

6. Calculate the heat required to vaporize 138 g of water at 100◦C.
7. If it took 533 J of heat to warm 138 g of water to 100◦C, how much

heat would it take to warm the water and vaporize it? (See prior
problem.)

8. Calculate the specific heat of a metal if 18.5 g of the metal at 62.1◦C
is immersed in 77.4 g of water at 19.3◦C, warming the water to
21.9◦C.

9. Calculate the heat required to change 35.0 g of liquid water at
22.0◦C to ice at −10.0◦C. Use the data of Tables 8-1 and 8-2.
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10. Write an equation to represent each of the following: (a) formation
of PCl3. (b) fusion of ice. (c) combustion of CH4. (d ) sublimation of
CO2(s) (dry ice).

11. Calculate the enthalpy change for the reaction of one mole of C2H6

with oxygen to yield carbon dioxide and water.
12. Calculate the quantity of heat required to raise 100.0 g of water

from 273.15 K to 293.15 K.
13. A chemical reaction raised the temperature of 200.0 g of a solution

(c = 4.17 J/g·◦C) by 1.43◦C. (a) Calculate the quantity of heat
added to the solution. (b) Calculate the quantity of heat released by
the chemical reaction.

14. What mass of water rises 10.3◦C in temperature when 1.24 kJ of
heat is added to it?

15. Calculate the enthalpy change for the reaction of barium oxide with
carbon dioxide to yield barium carbonate.

16. Calculate the enthalpy change for the reaction of 175 g of barium
oxide with carbon dioxide to yield barium carbonate.

17. Calculate the enthalpy of combustion of carbon monoxide from the
enthalpies of formation of carbon monoxide and carbon dioxide.

18. Calculate the enthalpy of the following reaction given the enthalpies
of combustion in equations 1 to 3 below:

C2H2(g) + 2 H2(g) → C2H6(g)
(1) C2H2(g) + 2.5 O2(g) → 2 CO2(g)+H2O(l) �H = −1305 kJ
(2) H2(g) + 1

2 O2(g) → H2O(l) �H = −286 kJ
(3) C2H6(g) + 3.5 O2(g) → 2 CO2(g)+ 3 H2O(l) �H = −1560 kJ

19. Calculate the enthalpy change for the reaction of C2H6 with 46.9 g
of oxygen to yield carbon dioxide and water.

20. Calculate the final temperature of the water if 100.0 g of water at
20.0◦C and 100.0 g of water at 68.0◦C are mixed.

21. The enthalpy of neutralization of a strong acid with a strong base is
−55.2 kJ/mol of water formed. If 100.0 mL of 1.00 M NaOH and
100.0 mL of 1.00 M HCl, both at 25.0◦C, are mixed, assume that
the heat capacity of the resulting solution is 4.18 J/g·◦C and that the
density of that solution is 1.02 g/mL. (a) Write a balanced chemical
equation for the reaction. (b) Determine the number of moles of
water that will be formed. (c) Determine the quantity of heat that
the reaction will release. (d ) How much heat is absorbed by the
resulting solution? (e) Calculate the mass of the solution.
( f ) Calculate the change in temperature of the solution.
(g ) Calculate the final temperature of the solution.
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22. The enthalpy of neutralization of a strong acid with a strong base is
−55.2 kJ/mol of water formed. If 100.0 mL of 1.00 M NaOH at
27.0◦C and 100.0 mL of 1.00 M HCl at 23.0◦C, are mixed, calculate
the temperature of the final solution. Assume that the heat capacity
of each initial solution and of the final solution is 4.18 J/g·◦C and
that the density of the final solution is 1.02 g/mL.

23. Calculate the enthalpy change of the metal in Example 9.

Solutions to Supplementary Problems

1. (a) 308 K (b) 288 K (c) 20◦C = 20 K difference in
temperature.

2. q = mc�t = (42.7 g)(0.442 J/g·◦C)(5.00◦C)= 94.4 J
3. Note that the specific heat of water vapor is not the same as that of

liquid water (Table 8-1):
q = mc�t = (52.9 g)(2.042 J/g·◦C)(14◦C) = 1500 J = 1.5 kJ

4. q = mc�t = (112 g)(4.184 J/g·◦C)(�t) = 935 J
�t = 2.00◦C
The final temperature is 2.00◦C higher than the initial temperature,
or

19.0◦C + 2.00◦C = 21.0◦C

5. q = 0 = mwatercwater�twater + mmetalcmetal�tmetal

0 = (338 g)(4.184 J/g·◦C)(t − 55.5◦C) +
(127 g)(0.880 J/g·◦C)(t − 21.4◦C)

t = 53.2◦C

6. 138 g
(
1 mol
18.0 g

)(
40.6 kJ
1 mol

)
= 311 kJ

7. 311 kJ + 533 J = 311 kJ + 0.533 kJ = 312 kJ
8. q = 0 = mwatercwater�twater + mmetalcmetal�tmetal

0 = (77.4 g)(4.184 J/g·◦C)(21.9◦C − 19.3◦C) +
(18.5 g)(cmetal)(21.9◦C − 62.1◦C)

0 = (77.4)(4.184 J)(2.6) + (18.5 g)(cmetal)(−40.2◦C)

cmetal = 1.1 J/g·◦C
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9. To calculate the value of q for cooling the liquid water to the
freezing point takes a specific heat calculation:

q = mc�t = (35.0 g)(4.184 J/g·◦C)(−22.0◦C) = −3220 J

To calculate value of q to freeze the water takes a heat of
solidification calculation:

35.0 g
(
1 mol
18.0 g

)(−6.00 kJ
1 mol

)
= −11.7 kJ

To calculate the value of q for cooling the ice takes a specific heat
calculation:

q = mc�t = (35.0 g)(2.089 J/g·◦C)(−10.0◦C) = −731 J

The total heat required is q = −3.22 kJ+ (−11.7 kJ )+ (−0.731 kJ )
= −15.7 kJ

10. (a) P(s) + 3
2 Cl2(g) → PCl3(l)

(b) H2O(s) → H2O(l)
(c) CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(l)
(d ) CO2(s) → CO2(g)

11. C2H6(g) + 7
2 O2(g) → 2 CO2(g) + 3 H2O(l)

�H = �H f (products) − �H f (reactants)

= 2�H f (CO2) + 3�H f (H2O) − �H f (C2H6) − 7
2�H f (O2)

= 2(−393 kJ) + 3(−286 kJ) − (−83.7 kJ) − 7
2 (0 kJ) = −1560 kJ

Alternatively,

2 C2H6(g) + 7 O2(g) → 4 CO2(g) + 6 H2O(l)

�H = �H f (products) − �H f (reactants)

= 4�H f (CO2) + 6�H f (H2O) − 2�H f (C2H6) − 7�H f (O2)

= 4(−393 kJ) + 6(−286 kJ) − 2(−83.7 kJ) − 7(0 kJ) = −3120 kJ

This �H is for two moles of C2H6, so we divide this value by 2 to
get the value per mole, −1560 kJ. Either method gives the same
result.
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12. q = mc�t = (100.0 g)(4.184 J/g·◦C)(293.15 K − 273.15 K) = 8368 J
(The temperature change in kelvins is equal to the temperature
change in degrees Celsius.)

13. (a) q = mc�t = (200.0 g)(4.17 J/g·◦C)(1.43◦C) = 1190 J
(b) q = −1190 J (The heat gained by the water, and therefore
positive, was released by the chemical reaction, a loss of heat, with
q having a negative value.)

14. Again, watch the units!

q = mc�t = (m)(4.184 J/g·◦C)(10.3◦C) = 1240 J

m = 28.8 g

15. BaO(s) + CO2(g) → BaCO3(s)
The data are from Table 8-3:

�H = �H f (products) − �H f (reactants)

= �H f (BaCO3) − �H f (BaO) − �H f (CO2)

= (−1217 kJ) − (−559 kJ) − (−393 kJ) = −265 kJ

16. The enthalpy change for 1 mol of BaO was calculated in the prior
problem.

For 175 g of BaO, 175 g
(
1 mol BaO
153 g BaO

)( −265 kJ
1 mol BaO

)
=−303 kJ

17. CO(g) + 1
2 O2(g) → CO2(g)

�H = �H f (products) − �H f (reactants)

= (−393 kJ) − (−110 kJ) − (0 kJ) = −283 kJ

18. We need C2H2(g) on the left and we have it there in equation (1),
so we leave equation (1) unchanged. We need 2 mol of hydrogen on
the left, so we double equation (2) and its �H value. We need
C2H6(g) on the right, so we reverse equation (3) and change the sign
of its �H value. We then add the three resulting �H values to get

(−1305 kJ) + 2(−286 kJ) + (+1560 kJ) = −317 kJ

(We could manipulate the equations and cancel the species that
appear on both sides to reassure ourselves that the required
equation is actually obtained.)
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19. C2H6(g) + 3.5 O2(g) → 2 CO2(g) + 3 H2O(l)
For 1 mol of C2H6:

�H = �H f (products) − �H f (reactants)

= 2(−393 kJ) + 3(−286 kJ) − (−83.7 kJ) − 3.5(0 kJ)

= −1560 kJ

For 46.9 g of O2:

46.9 g O2

(
1 mol O2

32.0 g O2

)( −1560 kJ
3.5 mol O2

)
= −653 kJ

20. 0 = mhotchot�thot + mcoldccold�tcold
Since the masses are the same and the specific heats are the same,
the magnitudes of the changes in temperatures must be the same:
�thot = −�tcold. The temperature is the average of those of the
two samples, 44.0◦C.

21. (a) HCl(aq) + NaOH(aq) → NaCl(aq) + H2O(l)
(b) There are present 0.100 mol of NaOH and 0.100 mol of HCl,

so 0.100 mol of water will be formed.
(c) (0.100 mol)(−55.2 kJ/mol) = −5.52 kJ
(d) The heat absorbed by the solution is that released by the

reaction, that is, q = +5.52 kJ.
(e) (200.0mL)(1.02 g/mL) = 204 g
(f) The change in temperature is given by

q = mc�t = (204 g)(4.18 J/g·◦C)�t = 5520 J

�t = 6.47◦C

(g) The final temperature is 25.0◦C + 6.47◦C = 31.5◦C
22. The two solutions have equal masses and equal specific heats, so

their temperature on mixing in the absence of any reaction would
be 25.0◦C. After that, this is the same problem as Problem 21.

23. �H =mmetalcmetal�tmetal = (30.0 g)(0.950 J/g·◦C)(23.3◦C − 71.3◦C)
= −1370 J
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Chapter 9

Electrochemistry

There are two inherently different methods by which an electric
current interacts with matter: (1) An electric current can cause a
chemical reaction. (2) A chemical reaction can produce an electric
current. The first of these is done in an electrolysis cell, and the sec-
ond in a voltaic cell, also called a galvanic cell. Two entirely differ-
ent sorts of calculations are generally used for the two kinds of cells.
(Although the same type of calculations done for electrolysis cells
can be done for voltaic cells, they are practically never asked for.)

To calculate the quantities of electricity and electrical en-
ergy interacting with matter, we must learn the electrical units
involved:

1. The coulomb, C, is the unit of electric charge. The charge on
1.00 mol of electrons, called a Faraday (F), is 96,487 C, usually
rounded to 96,500 C (a value to remember), and the charge on
one electron is 1.60 × 10−19 C.

2. The ampere, A, is the unit of electric current. One ampere is the
current involved in the passage past any point of 1 coulomb per
second: 1 A = 1 C/s.

3. A joule of energy is required to move a coulomb of charge through
a potential of 1 volt. The volt, V, is the unit of potential, which is
the “driving force” that causes charge to flow: 1 J = (1 V)(1 C) =
(1 V)(1 A)(1 s).

9.1 Electrolysis Cells
In the middle of the nineteenth century, Michael Faraday discovered
that in the electrolytic reduction of metals from their compounds,
the mass of metal produced was directly proportional to the electric
charge that passed, directly proportional to the atomic mass of the
metal, and inversely proportional to the oxidation state of the metal
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in the compound. Thus, for a reaction

Mn+ + n e− → M

(1) the more electricity that passed, the greater was the mass of metal
produced. (2) the greater the atomic mass of M, the greater was the
mass of metal produced. (3) the higher the value of n, the lower was
the mass of metal produced.

These generalities are known as Faraday’s laws. Fortunately, we
do not have to worry about learning Faraday’s laws in order to solve
problems involving electrolysis cell reactions. All that we need to
be able to do is to write net ionic equations for the reactions and
remember the values for the constants listed above. As usual, we use
dimensional analysis, starting with the quantity given.

EXAMPLE 1 Calculate the mass of copper metal produced from
CuSO4 solution by passage of a 3.00-A current for 7250 seconds.

Solution

Cu2+(aq) + 2 e− → Cu(s)

7250 s
(

3.00 C
1 s

)(
1 mol e−

96,500 C

)(
1 mol Cu
2 mol e−

)(
63.5 g Cu
1 mol Cu

)
= 7.16 g Cu

3.00 A from the from the atomic
definition equation mass �

EXAMPLE 2 Calculate the time required to deposit 7.00 g of silver
from a solution of AgNO3 with a current of 4.00 A.

Solution

Ag+(aq) + e− → Ag(s)

7.00 gAg
(

1 mol Ag
108 g Ag

)(
1 mol e−

1 mol Ag

)(
96,500 C

1 mol e−

)(
1 s

4.00 C

)

= 1560 s (26.1 minutes) �

If two quantities are given and the current is to be calculated,
we convert the quantities given to coulombs and seconds and divide
them to get the answer.

EXAMPLE 3 Calculate the current required to deposit 40.0 g of gold
from AuCl3 solution in 7.00 hours.
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Solution

Au3+(aq) + 3 e− → Au(s)

40.0 g Au
(

1 mol Au
197 g Au

)(
3 mol e−

1 mol Au

)(
96,500 C

1 mol e−

)
= 58,800 C

7.00 hours
(

3600 s
1 hour

)
= 25,200 s

The current is (58,800 C)/(25,200 s) = 2.33 A �

Even if a metal is not produced, the ratio of moles of electrons
involved in the reaction to moles of a chemical substance can be
used to calculate the extent of the chemical reaction given in the
balanced chemical equation.

EXAMPLE 4 Calculate the time required with a current of 10.5 A
to reduce 50.0 g of PbO2 to PbSO4 in the lead storage cell (found in
most automobile batteries).

PbO2 + 4 H+ + SO4
2− + 2 e− → PbSO4 + 2 H2O

Solution

50.0 g PbO2

(
1 mol PbO2

239 g PbO2

)(
2 mol e−

1 mol PbO2

)(
96,500 C

1 mol e−

)
×

(
1 s

10.5 C

)
= 3850 s

Note that despite the oxidation state of lead in the reactant being
+4, the ratio of moles of electrons to moles of lead(IV) oxide is 2 : 1
because the final product is not free lead. The number of moles
of electrons involved is clearly given in the balanced equation no
matter what the final product. �

The only new concepts that we used in solving these problems
were the number of coulombs per mole of electrons and the fact
that 1 A = 1 C/s.

9.2 Voltaic Cells
If we place a metal electrode in a solution of its ions, and suitably
connect it to another such combination of a different metal, we can
produce an electric current. These combinations are called either

130



Light
bulb

Salt
bridge

e�

SO4
2�

Zn2�

SO4
2�

Cu2�

CuZn

e�

K� NO3
�

e�
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half-cells or, somewhat ambiguously, electrodes. The Daniell cell
is a simple example of two electrodes connected to yield electricity
(Fig. 9-1). Because different metals have different tendencies to lose
electrons, one metal transfers electrons to the other, with the salt
bridge serving to complete the electric circuit and prevent build-up
of charge in any solution.

The quantitative measure of the tendency of a metal to lose
electrons is the potential of that electrode. Potential is symbolized
by ε or E . However, there cannot be a loss of electrons by any
species unless there is a simultaneous gain of electrons by another.
Thus it is impossible to measure the potential of a single electrode.
Therefore, by convention, we set the potential of a standard hydro-
gen/hydrogen ion electrode at 0.000 V by definition, and determine
the potential of other electrodes with it. This standard hydrogen elec-
trode consists of hydrogen gas at 1.000 atm in contact with a 1.000 M
solution of hydrogen ions, but neither of these can be connected to
a wire, so an inert piece of metal (usually platinum) is used as the
electrode. (See Fig. 9-2.) In general, the potential of a cell is the dif-
ference in the reduction potentials of the two electrodes. When the
standard hydrogen half-cell is used with another half-cell, the cell
potential is equal to the potential of the other half-cell, because the
standard hydrogen half-cell potential is zero.

For example, the potential of a cell consisting of a copper elec-
trode immersed in 1.000 M Cu2+ solution suitably connected to a
standard hydrogen electrode just described has a potential of 0.34 V,
with the copper ions being reduced. We assign the standard reduc-
tion potential of the Cu2+/Cu half-cell to be 0.34 V. The potential
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of a cell consisting of a zinc electrode immersed in 1.000 M Zn2+

solution suitably connected to a standard hydrogen electrode has
a potential of 0.76 V, with the zinc metal being oxidized to Zn2+.
We assign the standard oxidation potential of the Zn2+/Zn half-cell
to be +0.76 V. When we reverse the direction of the chemical reaction,
we change the sign of the potential. The standard reduction potential of
the zinc half-cell is therefore −0.76 V.

The concentrations of its components affect the potential of a
half-cell. We define a standard half-cell, denoted εo or E o, to have
all its components at unit activity:

1. Any solute in 1.000 M concentration is at unit activity.
2. Any gas at 1.000 atm (101.3 kPa) pressure is at unit activity.
3. Any pure solid is at unit activity.
4. Any pure liquid is at unit activity.

(Water in dilute aqueous solution is included as at unit
activity.)

We can make a table of standard reduction potentials, and use its
values to calculate the potential of any cell consisting of two of its
half-cells. See Table 9-1. The table of standard reduction potentials
is a quantitative measure of the “activity series” learned earlier to
enable us to predict whether a substitution reaction would proceed
spontaneously. However, not only reductions of cations to metals,
but any reduction half-reaction can be included in the table of stan-
dard reduction potentials.

To get an equation and corresponding potential for a complete
reaction, we must add the equations for a reduction half-reaction
and an oxidation half-reaction and add their corresponding
potentials.
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Table 9-1 Standard Reduction Potentials at 25◦C

εo (V)

F2(g) + 2 e− → 2 F−(aq) 2.87
MnO4

−(aq) + 8 H+(aq) + 5 e− → Mn2+(aq) + 4 H2O(l) 1.51
Ag+(aq) + e− → Ag(s) 0.80
Fe3+(aq) + e− → Fe2+(aq) 0.771
Cu2+(aq) + 2 e− → Cu(s) 0.34
2 H+(aq) + 2 e− → H2(g) 0.0000
2 H2O(l) + 2 e− → H2(g) + 2 OH−(aq) (pure water) −0.414
Fe2+(aq) + 2 e− → Fe(s) −0.44
Zn2+(aq) + 2 e− → Zn(s) −0.76
2 H2O(l) + 2 e− → H2(g) + 2 OH−(aq) (1 M OH−) −0.828
Na+(aq) + e− → Na(s) −2.71

To calculate standard cell potentials from the half-cell poten-
tials in Table 9-1, there are four principles that we must know: (1)
When we reverse the direction of the chemical reaction, we change
the sign of the potential. (2) If we multiply the coefficients in the
equation by some number, we do NOT change the potential. Potential
is an intensive property, and does not depend on the quantity of
reagents. (3) When we add chemical equations for half-cells, we add
the corresponding potentials. (4) A positive potential for a complete
cell reaction means that the reaction proceeds spontaneously in the
direction of the equation, and a negative potential means that the
reaction goes spontaneously in the opposite direction.

To get an equation for an overall reaction with a positive po-
tential from two half-reactions, reverse the half-reaction from the
table with the smaller (or more negative) potential before adding
the half-reactions. That is, reverse the equation lower in the table.
In a table of reduction potentials listed in order of decreasing po-
tentials, the reactants in a higher equation react spontaneously with
the products in any equation below. For example, F2 reacts sponta-
neously with Na. Also, Fe3+ reacts spontaneously with Cu when the
species are at unit activity.

EXAMPLE 5 (a) Calculate the standard potential of the cell pro-
duced when the permanganate/manganese(II) half-cell is combined
with the silver ion/silver half-cell. (b) State in which direction the
spontaneous reaction occurs.
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Solution

(a) The two half-cells from the table are

MnO4
−(aq)+8 H+(aq)+5 e− → Mn2+(aq)+4 H2O(l) 1.51 V

Ag+(aq)+ e− → Ag(s) 0.80 V

We reverse the equation with the lower potential, and change
the sign of the potential:

Ag(s) → Ag+(aq) + e− −0.80 V

We must multiply this equation by 5 to get the same number of
electrons as are present in the reduction half-reaction. We do not
change the potential:

5 Ag(s) → 5 Ag+(aq) + 5 e− −0.80 V

All that is left to do is to add these equations, and add the cor-
responding potentials:

5 Ag(s) + MnO4
−(aq) + 8 H+(aq) →

Mn2+(aq) + 4 H2O(l) + 5 Ag+(aq) 0.71 V

(b) Since the potential is positive, the reaction goes spontaneously
as written. �

The Nernst Equation

The actual potential of a cell (ε) depends not only on the standard
potential (εo) but also on the concentrations of the reactants and
products in solution or their pressures in the gas phase (the things
that can vary). Since the concentration of its components affects
the potential of a cell, we can use a voltaic cell to measure a concen-
tration if we know its standard potential and we measure its actual
potential for the reaction. The pH meter is based on this principle.
For either a cell or a half-cell, the potential is given by the Nernst
equation. The Nernst equation for the general reaction

a A + b B → c C + d D + n e−

at 25◦C is

ε = εo − 0.0592
n

log
[C]c[D]d

[A]a[B]b
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where ε is the potential (often designated E in textbooks), εo is the
standard potential, and n is the number of moles of electrons in
either the oxidation half-reaction or the reduction half-reaction. The
value 0.0592 is (RT/F )ln 10. The value of n for a complete reaction
is the number of moles of electrons in either half-reaction, since
the same electrons are involved in both. The electrons do not ap-
pear explicitly in the equation for the complete reaction, but they
are present. The number of moles of electrons can be calculated by
determining the total change in oxidation number for either the
oxidizing agent or the reducing agent. The square brackets in the
Nernst equation signify “concentration of,” so [A] means the con-
centration of A, and has a numeric value. Each concentration is
raised to the power equal to its coefficient in the balanced chemical
equation.

EXAMPLE 6 What is the value of n in each of the following equa-
tions?

(a) Fe3+ + e− → Fe2+

(b) 5 Fe2+ → 5 Fe3+ + 5 e−

(c) MnO4
− + 8 H+ + 5 e− → Mn2+ + 4 H2O

(d) MnO4
− + 8 H+ + 5 Fe2+ → Mn2+ + 4 H2O + 5 Fe3+

Solution (a) n = 1 (b) n = 5 (c) n = 5 (d) n = 5

It doesn’t matter to n if the equation represents an oxidation,
a reduction, or a complete reaction. �

EXAMPLE 7 Calculate the value of ε for the oxidation of iron(II) to
iron(III) in a solution of 0.100 M Fe2+ and 0.500 M Fe3+ according
to each of the following equations:

(a) Fe2+ → Fe3+ + e−

(b) 5 Fe2+ → 5 Fe3+ + 5 e−

Solution

(a) ε = εo − 0.0592
1

log
[Fe3+]

[Fe2+]

= −0.771 − 0.0592 log
(0.500)
(0.100)

= −0.771 − 0.0414

= −0.812 V
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(b)
ε = εo − 0.0592

5
log

[Fe3+]5

[Fe2+]5

= −0.771 − 0.0592
5

log
(0.500)5

(0.100)5

= −0.771 − 0.0592
5

log 55

= −0.771 − 0.0414 = −0.812 V

As is apparent, there is no difference in the final potential. (This
result stems from the algebraic identity log xa = a log x.) ε is an in-
tensive property. �

9.3 Relationship of Potential and Electrolysis
The tendency of an oxidation or reduction half-reaction to proceed
can tell us what products to expect in an electrolysis reaction. For
example, the reduction potential of sodium is far less (more nega-
tive) than that of water, so when we electrolyze a solution of sodium
chloride, for example, water is reduced and not sodium ion. Electrol-
ysis of a concentrated solution of sodium chloride produces chlorine
along with the hydrogen, whereas electrolysis of a dilute solution
of sodium chloride produces oxygen and hydrogen. To get sodium
metal, we need to electrolyze molten (melted) sodium chloride in
the absence of water altogether. Do not forget that aqueous solutions
contain water as well as any solutes.

EXAMPLE 8 Calculate the mass of sodium produced from electro-
lysis of 10.0 g of sodium chloride dissolved in water by passage of
1.00 A for 40.0 minutes.

Solution None. Hydrogen will be produced instead. �

Leading Questions

1. What is the difference between ε and εo?
2. Calculate the ratio of the charge on a mole of electrons to the

charge on one electron.
3. In the equation

MnO4
− + 8 H+ + 5 e− → Mn2+ + 4 H2O

is the hydrogen ion concentration in the standard solution 1 M, 8 M,
or 5 M?
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Answers to Leading Questions

1. ε is the actual potential, εo is the potential if all the reagents are 1 M
(for solutes) or 1 atm (for gases).

2.
96,500 C/mol

1.60 × 10−19 C/electron
= 6.03 × 1023 electrons/mol

(Avogadro’s number, within rounding error)
3. 1 M. Standard solutions are always 1 M in solute no matter what the

coefficients are in the balanced chemical equation.

Supplementary Problems

1. Calculate the mass of copper metal produced from CuCl42−

solution by passage of a 2.75-A current for 3.55 hours.

CuCl42−(aq) + 2 e− → Cu(s) + 4 Cl−(aq)

2. Calculate the current required to deposit 145 g of gold from
AuCl4− solution in (a) 225.0 minutes. (b) 3 hours and 45.0 minutes.

3. Calculate the standard potential of the cell composed of iron(III)
and iron(II) half-cell suitably connected with an iron(II) and iron
metal half-cell. Does the spontaneous reaction produce or use
up iron(II)?

4. Calculate the value at 25◦C of 2.303(RT/F ), where 2.303 is the
conversion factor between natural and common logarithms.

5. If the following half-cells combine to give a cell with a large positive
potential, is the copper(I) ion stable in aqueous solution?

Cu+(aq) → Cu2+(aq) + e−

Cu+(aq) + e− → Cu(s)

6. Calculate the standard cell potential of a cell composed of the zinc
and silver half-cells.

7. Is hydrogen more easily produced from 1 M hydrogen ion solution,
from 1 M hydroxide ion solution, or from pure water?

8. Calculate the concentration of silver ion necessary to get a cell
potential of 0.00 V when connected to a standard copper electrode.

9. Calculate the concentration of hydrogen ions in a solution in
contact with hydrogen gas at 1.000 atm if the half-cell reduction
potential is 0.040 V.

10. Two electrolysis cells are connected in series to the same source of
electricity. (The same electricity that passes through one then
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passes through the other.) If 10.0 g of copper is deposited from
CuSO4 in the first, what mass of silver is deposited from silver
nitrate from the second?

11. Calculate the time required to reduce 17.0 g of Sn2+ to tin metal
with a current of 4.45 A.

12. A 1% change in concentration of which of the species in the
following half-reaction will make the greatest change in potential?

Cr2O7
2− + 14 H+ + 6 e− → 2 Cr3+ + 7 H2O

Solutions to Supplementary Problems

1. 3.55 hours
(
3600 s
1 hour

)(
2.75 C
1 s

)(
1 mol e−

96,500 C

)(
1 mol Cu
2 mol e−

)
×

(
63.5 g Cu
1 mol Cu

)
= 11.6 g Cu

2. (a) AuCl4−(aq) + 3 e− → Au(s) + 4 Cl−(aq)

145 gAu
(
1mol Au
197 g Au

)(
3 mol e−

1 mol Au

)(
96,500C
1mol e−

)
= 213,000C

225.0 minutes
(

60 s
1 min

)
= 13,500 s

213,000 C
13,500 s

= 15.8 A

(b) Since 3 hours is 180 minutes, 3 hours and 45.0 minutes is
225.0 minutes, so this problem is exactly the same as that in
part (a).

3. Fe3+(aq) + e− → Fe2+(aq) 0.771 V
Fe2+(aq) + 2 e− → Fe(s) −0.44 V
Reversing the second of these equations yields

Fe(s) → Fe2+(aq) + 2 e− +0.44 V

Multiplying the first equation by 2 to get two moles of electrons in
each equation, without changing its potential, then adding this
equation to the second yields:

2 Fe3+(aq) + Fe(s) → 3 Fe2+(aq) 1.21 V

Since the potential is positive, the reaction goes spontaneously as
written; iron(II) is produced.
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4. 2.303(RT/F) = (2.303)(8.31 J)(298 K)/(96,500 C) = 0.0591 V
(The constant in the Nernst equation is essentially equal to this
ratio.)

5. Cu+ is not stable in aqueous solution. It reacts spontaneously with
itself to produce copper metal and copper(II) ion.

6. Ag+(aq) + e− → Ag(s) 0.80 V
Zn2+(aq) + 2 e− → Zn(s) − 0.76 V
Doubling the silver half-reaction and reversing the zinc one, then
adding, yields:

2 Ag+(aq) + 2 e− → 2 Ag(s) 0.80 V

Zn(s)→Zn2+(aq) + 2 e− +0.76 V

2 Ag+(aq) + Zn(s)→Zn2+(aq) + 2 Ag(s) 1.56 V

7. Hydrogen is most easily produced from 1 M H+ because the
reduction potential of this half-reaction is highest of the three.

8. Cu(s) + 2 Ag+(aq) → Cu2+(aq) + 2 Ag(s)

εo = 0.80 V − 0.34 V = 0.46 V

ε = εo − 0.0592
2

log
[Cu2+]
[Ag+]2

0.00 = 0.46 − 0.0592
2

log(1.000/[Ag+]2)

log (1/[Ag+]2) = 15.5

[Ag+]2 = 3 × 10−16 (Watch the signs!)

[Ag+] = 2 × 10−8 M

9. The Nernst equation enables us to calculate the concentration:

H+(aq) + e− → 1
2 H2(g)

ε = εo − 0.0592 log
P 0.5
H2

[H+]

0.040 = 0.000 − 0.0592 log{1.000/[H+]}

log {1.000/[H+]} = −0.040
0.0592

= −0.68

log [H+] = +0.68 (Watch the signs!)

[H+] = 4.8 M
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10. Cu2+(aq) + 2 e− → Cu(s)

Ag+(aq) + e− → Ag(s)

Since the same number of moles of electrons pass through each
one,

10.0 g Cu
(
1 mol Cu
63.5 g Cu

)(
2 mol e−

1 mol Cu

)(
1 mol Ag
1 mol e−

)(
108 g Ag
1 mol Ag

)
= 34.0 g Ag

11. 17.0 g Sn2+
(
1 mol Sn2+

119 g Sn2+

)(
2 mol e−

1 mol Sn2+

)(
96,500 C
1 mol e−

)(
1 s

4.45 C

)
= 6200 s

12. A change in the H+ concentration will affect the potential most
because of the 14 power for H+ in the Nernst equation.
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Chapter 10

Equilibrium

Before studying this chapter, review Section 5.4 on limiting quan-
tities problems and, before Section 10.2, Acid-Base Equilibrium, re-
view net ionic equations from the textbook.

10.1 Equilibrium Constant Calculations
Chemical equilibrium is a state in which two exactly opposite
chemical reactions occur in the same system at the same rate. Be-
cause the reactions do the opposite of each other, nothing appears
to be happening.

Equilibrium constant calculations are rather straightforward,
but we must keep several things in mind. (1) The values in the equi-
librium constant expression are the concentrations at equilibrium. (2)
The equilibrium constant expression has no addition or subtraction
within it. (3) All the substances involved in the equilibrium con-
stant expression are in the same solution (or the same gas mixture),
and so have the same volume. (4) Pure solids and liquids, and the
solvents for dilute solutions, do not appear in the equilibrium con-
stant expression. (5) The equilibrium constant expression is written
for a specific equilibrium equation; if we reverse the equation, the
value of the new K is the reciprocal of the original one.

The equilibrium constant expression for a general equilib-
rium reaction

a A + b B ⇀↽ c C + d D

is

K = [C]c[D]d

[A]a[B]b

The square brackets mean “concentration of,” so [A] means the con-
centration of A, and so on. All the terms in the equilibrium constant

141



expression are numbers. Equilibrium constant problems are ordinar-
ily done without expressly writing the units; only occasionally is it
necessary to specify the units.

EXAMPLE 1 Determine the equilibrium constant expression for
each of the following reactions:

(a) 2 CO(g) + O2(g) ⇀↽ 2 CO2(g)

(b) 2 C(s) + O2(g) ⇀↽ 2 CO(g)

(c) CH3OH + HCOOH ⇀↽ HCOOCH3 + H2O (all in alcohol
solution)

Solution

(a) K = [CO2]2

[CO]2[O2]

(b) K = [CO]2

[O2]
(Since carbon is solid, it is not included.)

(c) K = [HCOOCH3][H2O]
[CH3OH][HCOOH]

(Water is included because the

reaction is not in aqueous solution.) �

In general, if we add up two or more chemical equations, the
resulting equation will have an equilibrium constant equal to the
product of the equilibrium constants of the original equations.

EXAMPLE 2 (a) Write equilibrium constant expressions for equa-
tions 1 to 3 below. (b) Determine the relationship of the K value for
equation 3 to those of equations 1 and 2.

1. X + Y ⇀↽ Z
2. Z ⇀↽ W + Q
3. X + Y ⇀↽ W + Q

Solution

(a) (1) K1 = [Z]
[X][Y]

(2) K2 = [W][Q]
[Z]

(3) K3 = [W][Q]
[X][Y]

(b) Adding equations 1 and 2 yields equation 3, for which K3 =
K1K2. In multiplying the values of K1 times K2, the [Z] term
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cancels out and the product is equal to K3. This is a general
result, no matter what equations are added. �

Calculation of Values of K

EXAMPLE 3 Calculate the value of the equilibrium constant for the
reaction

A + 2 B ⇀↽ C

if the concentrations at equilibrium are [A] = 2.0 M, [B] = 1.5 M,
and [C] = 0.010 M.

Solution The equilibrium concentrations are given, so all we
need do is write the equilibrium constant expression and substitute
these values into it:

K = [C]
[A][B]2

= (0.010)
(2.0)(1.5)2

= 0.0022 �

EXAMPLE 4

(a) Using the data of Example 3, calculate the value of the equilib-
rium constant for the reaction

C ⇀↽ A + 2 B

(b) What is the relationship between the value of K in Example 3
and the value of this K?

Solution

(a) Again, the equilibrium concentrations are given, so all we need
do is write the equilibrium constant expression and substitute
the values into it:

K = [A][B]2

[C]
= (2.0)(1.5)2

(0.010)
= 4.5 × 102

(b) The two equilibrium constants are reciprocals of each other. �
In these examples, equilibrium concentrations were given.

Much more often, initial concentrations for the reactants are given
along with the equilibrium concentration of one substance, so we
must calculate the equilibrium concentrations for all the other sub-
stances from the data given.

EXAMPLE 5 Calculate the value of the equilibrium constant for

A + 2 B ⇀↽ C + 2 D
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if 1.20 mol of A and 1.70 mol of B are dissolved in 1.00 L of solution,
whereupon 0.100 mol of C is produced at equilibrium.

Solution Because all the substances are dissolved in the same
solution, they all have the same volume, and therefore their num-
bers of moles are proportional to their molarities. Therefore, we can
calculate the molarity ratios from the balanced chemical equation.
First we write the balanced chemical equation and put under it rows
for “Initial concentrations,” “Change due to reaction,” and “Equi-
librium concentrations.” We then put the data given in the problem
into our table. We assume that there is no C or D present initially,
since none was mentioned.

A + 2 B ⇀↽ C + 2 D
Initial

concentration (M) 1.20 1.70 0.000 0.000
Change due to

reaction (M)
Equilibrium

concentration (M) 0.100

It is obvious that the 0.100 mol/L of C must have been produced
by the reaction, since there was none present before the reaction.
As soon as we place that 0.100 in the “Change due to reaction”
row, we know enough to calculate every other value in that row,
because the change due to a reaction is governed by the coefficients in the
balanced chemical equation. The ratio of coefficients in this problem is
1 : 2 : 1 : 2, so the ratio of changes of concentrations in this problem
is 0.100 : 0.200 : 0.100 : 0.200.

A + 2 B ⇀↽ C + 2 D
Initial

concentration (M) 1.20 1.70 0.000 0.000
Change due to

reaction (M) 0.100 0.200 0.100 0.200
Equilibrium

concentration (M) 0.100

The equilibrium concentration of each reactant is its initial con-
centration minus the change, since the reactants are used up by the
reaction. The equilibrium concentration of each product is its initial
concentration plus the change, since the products are produced by
the reaction. We now have all the equilibrium concentrations:
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A + 2 B ⇀↽ C + 2 D
Initial

concentration (M) 1.20 1.70 0.000 0.000
Change due to

reaction (M) 0.100 0.200 0.100 0.200
Equilibrium

concentration (M) 1.10 1.50 0.100 0.200

We put the equilibrium concentrations into the equilibrium con-
stant expression and solve:

K = [C][D]2

[A][B]2
= (0.100)(0.200)2

(1.10)(1.50)2
= 0.00162

Note that the concentrations of B and D are squared, as required
by the equilibrium constant expression. Note also that we got those
concentrations from the stoichiometry of the problem, and we did
not double the B or D concentration. The D concentration happens
to be twice the C concentration, but it is the D concentration that
we square. Please also note that the “Change due to reaction” row
in the final table is the only row that is in the ratio of the balanced
chemical equation. �

EXAMPLE 6 Calculate the value of the equilibrium constant for

2 Z + Q ⇀↽ 2 E

if 1.20 mol of Z and 1.70 mol of Q are placed in a 2.00-L solution and
allowed to come to equilibrium, at which point the concentration
of E is 0.400 M.

Solution Note specifically that the volume is 2.00 L so the
initial concentrations of Z and Q are 0.600 M and 0.850 M, respec-
tively. The equilibrium concentration of E was given in the problem,
so we don’t have to calculate that using the volume of the solution.
The rest of the problem is just like the one in Example 5.

2 Z + Q ⇀↽ 2 E
Initial concentration (M) 0.600 0.850 0.000
Change due to reaction (M) 0.400 0.200 0.400
Equilibrium concentration (M) 0.200 0.650 0.400

K = [E]2

[Z]2[Q]
= (0.400)2

(0.200)2(0.650)
= 6.15 �
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Calculating Equilibrium Concentrations Using the Value of K

We can calculate all the equilibrium concentrations from initial con-
centration values if we are given the value of K . We let one of the
equilibrium concentrations be represented by an unknown variable,
say x, and solve the equilibrium constant expression algebraically.

EXAMPLE 7 For the reaction A + B ⇀↽ 2 Z, K = 4.0 × 10−4, calculate
the equilibrium concentration of Z if 0.500 mol of A and 0.500 mol
of B are dissolved in 1.00 L of solution and allowed to come to
equilibrium.

Solution

A + B ⇀↽ 2 Z
Initial concentration 0.500 0.500 0.000
Change due to reaction x x 2x
Equilibrium concentrations 0.500−x 0.500−x 2x

K = [Z]2

[A][B]
= (2x)2

(0.500 − x)2
= 4.0 × 10−4

We could solve this equation using the quadratic formula, but it is
easier to notice that the left side is a perfect square, so we can take
the square root of both sides, giving:

(2x)
(0.500 − x)

= 0.020

2x = (0.500 − x)(0.020) = 0.010 − 0.020x

2.020x = 0.010

x = 0.0050

2x = [Z] = 0.010

Check:

K = [Z]2

[A][B]
= [2(0.0050)]2

(0.500 − 0.0050)2
= 4.1 × 10−4

The value is 4.1 × 10−4 (to two significant digits), so the pro-
cess works. Please note carefully that we squared (2x), which is the
concentration of Z. (It happens to be twice something else, but that
does not matter.) Also note that we did not finish the problem when
we found the value of x, because we had let [Z] equal 2x. (We did
that so that the change in concentration of A and B would not be

146



fractional. See the table above.) Also note that a check is a very good
idea to see that our calculation is correct. �

Taking the square root of an equation generally loses one of
the roots, but in chemistry problems the root that is lost is gen-
erally an impossible answer anyway, like a negative concentration.
However, we are not always so lucky to have an equation that we
can take the square root of. Rather than go through the process of
solving quadratic equations (or cubic or higher-order equations), we
generally use an approximation method to solve for unknown con-
centrations. We will neglect very small quantities when added to or
subtracted from larger quantities, but not when the small quantity
is multiplied or divided. In general, we should attempt to neglect
small values when added to or subtracted from larger ones, then
check to see that our approximation is valid. An error less than 5%
(or even somewhat more) is generally acceptable.

EXAMPLE 8 Consider the general reaction: A + 2 B ⇀↽ C, with K =
1.00 × 10−8. Calculate the equilibrium concentration of A, B, and
C after 1.50 mol of A and 2.50 mol of B are dissolved in 1.00 L of
solution and allowed to come to equilibrium.

Solution

A + 2 B ⇀↽ C
Initial concentration (M) 1.50 2.50 0.00
Change due to reaction (M) x 2x x
Equilibrium concentrations 1.50 − x 2.50 − 2x x

K = [C]
[A][B]2

= x
(1.50 − x)(2.50 − 2x)2

= 1.00 × 10−8

With a value of K so low, it is expected that the numerator of the
equilibrium constant expression will be very small. That is, x, and
even 2x, should be negligible compared to 1.50 or 2.50, so we will
neglect them and get

K = [C]
[A][B]2

= x
(1.50)(2.50)2

= 1.00×10−8

x = 9.38×10−8 M = [C]

[A] = 1.50 − 9.38×10−8 = 1.50 M

[B] = 2.50 − 2(9.38×10−8) = 2.50 M
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The value of x (and even 2x) is certainly negligible when subtracted
from the larger quantities.
Check:

K = [C]
[A][B]2

= 9.38×10−8

[1.50 − 9.38×10−8][2.50 − 2(9.38×10−8)]2

= 1.00 × 10−8

The agreement is almost exact. �

10.2 Acid-Base Equilibrium

It is a good idea to review the textbook discussion of net ionic equa-
tions if necessary before attempting this section.

Weak acids and weak bases undergo equilibrium reactions with
water. In dilute aqueous solution, the reaction can be represented in
either of the following ways, with acetic acid used as an example:

HC2H3O2(aq) + H2O(l) ⇀↽ C2H3O2
−(aq) + H3O+(aq)

or in shortened form:

HC2H3O2(aq) ⇀↽ C2H3O2
−(aq) + H+(aq)

The H3O+ ion is called the hydronium ion. (It is a hydrogen ion
attached to a water molecule, and is more real than a free hydrogen
ion in aqueous solution, because the hydrogen ion has no electrons.)
We will regard H+ and H3O+ to be two different ways to represent
the same ion. Use whichever form the textbook uses.

Weak acids react only to a slight extent with water; that is, their
equilibria lie far toward the un-ionized form. Most acids are weak;
the only common strong acids are HCl, HBr, HI, HClO3, HClO4,
HNO3, and H2SO4. If an acid has an equilibrium constant with a
value less than 1, it is a weak acid. Constants are not given for strong
acids because they can be regarded as 100% ionized.

Tabulated values of equilibrium constants for weak acids and
bases, by definition, correspond to the equation with the un-ionized
molecules on the left side of the equation. That is not to say that
the reverse reactions cannot proceed; indeed they proceed to a far
greater extent than the forward reaction, but the tabulated values
are for the un-ionized molecules reacting to form ions.

We write equilibrium constant expressions for the reactions
of weak acids with water, just as we did for regular equilibria, but
remember that liquids such as water in dilute solutions are not in-
cluded in the equilibrium constant expression. The expressions for
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the two forms of the equations for the ionization of acetic acid are

Ka = [C2H3O2
−][H3O+]

[HC2H3O2]
or Ka = [C2H3O2

−][H+]
[HC2H3O2]

Note that neither expression has the concentration of water in it.
The concentration of pure water is 55.6 M, and in a dilute solution
that might drop to 55.4 M. Thus the concentration of water might
be thought to be a constant that has been incorporated into the
equilibrium constant. The constant for the ionization of a weak acid
is called the acid dissociation constant, and is symbolized Ka.

A weak base like ammonia in water also is in equilibrium to a
slight extent:

NH3(aq) + H2O(l) ⇀↽ NH4
+(aq) + OH−(aq)

Its equilibrium constant, the base dissociation constant, is sym-
bolized Kb, with the subscript denoting base. This constant also has
no concentration of water included:

Kb = [NH4
+][OH−]

[NH3]

We can do equilibrium constant calculations with acid-base
equilibria just as we did with regular equilibria. (It turns out that
these equilibria are inherently easier because there are few coef-
ficients different from 1 in the balanced equations.)

EXAMPLE 9 Calculate the value of the equilibrium constant for
the dissociation of acetic acid if the hydrogen ion concentration in
0.100 M acetic acid solution is 1.35 × 10−3 M.

Solution

HC2H3O2(aq) ⇀↽ C2H3O2
−(aq) + H+(aq)

Initial
concentrations (M) 0.100 0.000 0.000

Change due
to reaction (M) 1.35×10−3 1.35×10−3 1.35×10−3

Equilibrium
concentrations (M) 0.099 1.35×10−3 1.35×10−3

Ka = [C2H3O2
−][H+]

[HC2H3O2]
= (1.35 × 10−3)2

0.099
= 1.84 × 10−5

The accepted value of Ka for acetic acid is 1.8 × 10−5. �

The equilibria of weak bases can be handled in the same way.
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EXAMPLE 10 Calculate the value of the equilibrium constant for
the ionization of ammonia if 0.100 M NH3 has a hydroxide ion
concentration of 1.35 × 10−3 M.

Solution

H2O(l) + NH3(aq) ⇀↽ NH4
+(aq) + OH−(aq)

Initial
concentrations (M) 0.100 0.000 0.000

Change due
to reaction (M) 1.35×10−3 1.35×10−3 1.35×10−3

Equilibrium
concentrations (M) 0.099 1.35×10−3 1.35×10−3

Kb = [NH4
+][OH−]

[NH3]
= (1.35 × 10−3)2

0.099
= 1.84 × 10−5

Just by coincidence, acetic acid and ammonia have the same values
for their dissociation constants, 1.8 × 10−5. �

EXAMPLE 11 Calculate the hydroxide ion concentration of a
0.350 M solution of ammonia: Kb = 1.8 × 10−5.

Solution

H2O(l) + NH3(aq) ⇀↽ NH4
+(aq) + OH−(aq)

Initial
concentrations (M) 0.350 0.000 0.000

Change due
to reaction (M) x x x

Equilibrium
concentrations (M) 0.350− x x x

Kb = [NH4
+][OH−]

[NH3]
= x2

0.350 − x
= 1.8×10−5

Neglecting x when subtracted from a larger number, just as we did
with regular equilibria, yields

x2

0.350
= 1.8 × 10−5

So

x2 = 6.3 × 10−6 and x = 2.5 × 10−3 = [OH−]

The approximation caused an error of less than 1%. �
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What would LeChatelier’s principle predict about adding
0.200 M NH4Cl to the solution of Example 11? This salt is composed
of ammonium ions and chloride ions. The ammonium ions ought
to shift the equilibrium of the ammonia ionization to the left,
decreasing the hydroxide ion concentration.

EXAMPLE 12 Calculate the hydroxide ion concentration of a
0.350 M solution of ammonia that also has 0.200 M ammonium
chloride in it. For NH3, Kb = 1.8 × 10−5.

Solution The equilibrium that we are considering is still the
ionization of the ammonia. The only difference here is that there is
a nonzero initial concentration of ammonium ion.

H2O(l) + NH3(aq) ⇀↽ NH4
+(aq) + OH−(aq)

Initial
concentrations (M) 0.350 0.200 0.000

Change due
to reaction (M) x x x

Equilibrium
concentrations (M) 0.350− x 0.200 + x x

Neglecting x when added to or subtracted from a larger quan-
tity yields

Kb = [NH4
+][OH−]

[NH3]
= x(0.200)

0.350
= 1.8×10−5

x = [OH−] = 3.2×10−5 M

The approximations are valid. Just as predicted by
LeChatelier’s principle, the hydroxide ion concentration drop-
ped from 1.3×10−3 M to 3.2 × 10−5 M by addition of the
ammonium chloride.

Note that although the salt affected the problem significantly,
the salt and the base did not react with each other in the normal
sense. The cation of the salt repressed the ionization of the base. Do
not write an equation with both the base and the salt on the same side of
the arrow! �

10.3 Water Autoionization
The Bronsted theory designates water as an acid in its reactions
with bases and as a base in its reactions with acids. Thus it should
not be too surprising that water can react with itself, acting both as
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an acid and a base:

H2O(l) + H2O(l) ⇀↽ H3O+(aq) + OH−(aq)

It also should be no surprise that this reaction goes only to a very
small extent. Its equilibrium constant expression, with its value, is

Kw = [H3O+][OH−] = 1.0×10−14

Again, there is no concentration of water term. This equation means
that in every dilute aqueous solution, there is at least some hydro-
nium ion and some hydroxide ion. If the hydrogen ion concentra-
tion is greater than the hydroxide ion concentration, the solution is
acidic. If the hydroxide ion concentration is greater than the hydro-
gen ion concentration, the solution is basic. If their concentrations
are equal, the solution is neutral.

EXAMPLE 13 Calculate the hydronium ion concentration in pure
water.

Solution Pure water has equal concentrations of hydronium
and hydroxide ions. Let each equal x:

Kw = [H3O+][OH−] = x2 = 1.0 × 10−14

x = [H3O+] = 1.0×10−7 M �

EXAMPLE 14 (a) Calculate the hydrogen ion concentration in
0.100 M NaOH. (b) Calculate the hydroxide ion concentration in
0.100 M HCl.

Solution (a) Since NaOH is a strong base, 0.100 M NaOH is
0.100 M in OH−.

Kw = [H+][OH−] = [H+](0.100) = 1.0×10−14

[H+] = 1.0×10−13 M

(b) Since HCl is a strong acid, 0.100 M HCl is 0.100 M in H+.

Kw = [H+][OH−] = (0.100)[OH−] = 1.0×10−14

[OH−] = 1.0 × 10−13 M �

EXAMPLE 15 Calculate the hydronium ion concentration in
0.350 M NH3.

Solution NH3 is a weak base, so we have to calculate the hy-
droxide ion concentration using Kb. We did that for 0.350 M NH3
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in Example 11, and found [OH−] to be 2.5×10−3 M. Then,

Kw = [H3O+][OH−] = [H3O+](2.5 × 10−3) = 1.0 × 10−14

[H3O+] = 4.0 × 10−12 M �

What is the hydrogen ion concentration of 0.100 M NaCl?
Since neither the sodium ion nor the chloride ion appears in the Kw

expression, the hydrogen ion concentration and the hydroxide ion
concentration are equal, and each is equal to 1.0 × 10−7 M, just as
in pure water.

10.4 The pH Scale
pH is calculated with the equation

pH = − log[H+]

Note that pH is related to the hydrogen or hydronium ion concentra-
tion, not to the hydroxide ion concentration, the sodium ion con-
centration, or any other concentration. Also note that the pH, since
it is a logarithm, has as many decimal place digits as the hydrogen
ion concentration has significant digits.

EXAMPLE 16 Calculate the pH of (a) 0.100 M H+; (b) 0.100 M HCl;
(c) 0.100 M NaOH.

Solution

(a) pH = − log[H+] = − log(0.100) = 1.000
(b) Since HCl is a strong acid, [H+] = 0.100 and the pH is the same

as in part (a).
(c) The hydronium ion concentration was calculated in Exam-

ple 14(a) to be 1.0 × 10−13 M. The pH therefore is 13.00. �

The value of the pH tells us the relative acidity of the solution:

[H+] > 1 × 10−7 acidic pH < 7

[H+] = 1 × 10−7 neutral pH = 7

[H+] < 1 × 10−7 basic pH > 7

EXAMPLE 17 Calculate the hydrogen ion concentration of solu-
tions with the following pH values: (a) 7.50; (b) 2.44; (c) 12.70.
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Solution Take the antilogarithm of the negative of each
value, being careful with the significant digits. (See Section 1.3.)

(a) pH = 7.50; log[H+] = −7.50; [H+] = 3.2 × 10−8;

(b) 3.6 × 10−3; (c) 2.0 × 10−13 �

10.5 Buffer Solutions
A buffer solution is a solution of an un-ionized weak acid and its
conjugate base or an un-ionized weak base and its conjugate acid.
We must know three things about buffer solutions: (1) their main
characteristic, (2) how they are made, and (3) how they work.

1. Buffer solutions resist charges in their pH values even on addition
of reasonable quantities of strong acid or strong base.

2. They are most often prepared by dissolving in the same solution
a weak acid and a salt of that acid (containing the conjugate base
of the acid) or a weak base and a salt of that base. They can also be
prepared by carrying out a limiting quantities reaction in solution
to result in one of the same combinations of reagents.

HC2H3O2 + NaC2H3O2 NH3 + NH4Cl
HC2H3O2 + NaOH in limiting NH3 + HCl in limiting

quantity quantity
NaC2H3O2 + HCl in limiting NH4Cl + NaOH in limiting

quantity quantity

3. The buffer solution maintains a relatively constant pH by shifting
according to LeChatelier’s principle:

HC2H3O2(aq) + H2O(l) ⇀↽ C2H3O2
−(aq) + H3O+(aq)

Large Huge Large Tiny
concentration concentration concentration concentration

If H3O+ is added from a strong acid, there is enough acetate ion
present to cause this equilibrium to shift to the left, using up
most of the added H3O+ and keeping the pH relatively constant.
If OH− is added from a strong base, it reacts with the H3O+ pro-
ducing water. This lowering of the H3O+ concentration causes
the equilibrium to shift to the right, replacing H3O+ used up and
again maintaining a relatively constant pH. If not too much base
is added, there is enough un-ionized acid to replace almost all the
hydronium ion used up by the base.

EXAMPLE 18 What compounds remain in solution after 0.200 mol
of HC2H3O2 is treated with 0.100 mol of NaOH?
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Solution

HC2H3O2(aq) + NaOH(aq) → NaC2H3O2(aq) + H2O(l)

Since the reagents react in a 1 : 1 ratio, the 0.100 mol of NaOH re-
acts with 0.100 mol of HC2H3O2 leaving 0.100 mol of HC2H3O2

and producing 0.100 mol of NaC2H3O2. The weak acid and its salt,
containing the conjugate base, C2H3O2

−, are left in the solution.
�

EXAMPLE 19 (a) Calculate the pH of 1.00 L of a buffer solution
containing 0.125 mol of NH3 and 0.125 mol of NH4Cl. (b) Recalcu-
late the pH after 0.010 mol of HCl is added to this buffer solution.
Assume no change in volume.

Solution
(a) H2O(l) + NH3(aq) ⇀↽ NH4

+(aq) + OH−(aq)
Initial

concentrations (M) 0.125 0.125 0.000
Change due

to reaction (M) x x x
Equilibrium

concentrations (M) 0.125 − x 0.125 + x x

Neglecting x when added to or subtracted from a larger quan-
tity yields

Kb = [NH4
+][OH−]

[NH3]
= x(0.125)

0.125
= 1.8 × 10−5

x = [OH−] = 1.8×10−5 M

pH = 9.26

(b) HCl reacts with NH3 whether or not any ammonium ion is
already present. The easiest way to do a problem like this is to assume
that the acid and base react completely, and then do the equilibrium
problem with the resulting concentrations as initial concentrations
for that problem:

HCl(aq) + NH3(aq) ⇀↽ NH4
+(aq) + Cl−(aq)

Beginning
concentrations (M) 0.010 0.125 0.125

Change due
to reaction (M) 0.010 0.010 0.010

End of acid-base reaction
concentrations (M) 0.000 0.115 0.135
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Now the equilibrium reaction is considered:

H2O(l) + NH3(aq) ⇀↽ NH4
+(aq) + OH−(aq)

Initial
concentrations (M) 0.115 0.135 0.000

Change due
to reaction (M) x x x

Equilibrium
concentrations (M) 0.115 − x 0.135 + x x

Neglecting x when added to or subtracted from a larger quan-
tity yields

Kb = [NH +
4 ][OH−]
[NH3]

= x(0.135)
0.115

= 1.8×10−5

x = [OH−] = 1.5×10−5 M

pH = 9.18

Because of the buffering action of the system, the pH drops only
from 9.26 to 9.18 despite the addition of strong acid. �

10.6 Equilibrium Constants for Hydrolysis
Hydrolysismay be defined as the reaction with water of the conjugate
base of a weak molecular acid or the conjugate acid of a weak molec-
ular base. For example, the acetate ion reacts with water according
to the following equilibrium:

C2H3O2
−(aq) + H2O(l) ⇀↽ HC2H3O2(aq) + OH−(aq)

The equilibrium constant expression for this reaction is written as
usual for an ionic equilibrium:

Kh = [HC2H3O2][OH−]
[C2H3O2

−]

where Kh is the hydrolysis constant. Note the difference between
this reaction and the reverse of the ionization of HC2H3O2:

C2H3O2
−(aq) + H3O+(aq) ⇀↽ HC2H3O2(aq) + H2O(l)

The value of K for this reaction is the reciprocal of that for the
ionization of HC2H3O2, 1/Ka, because the equation is the reverse of
the ionization reaction. The Kh for the hydrolysis reaction is equal
to Kw/Ka. This value may be obtained by combining the equations
for the ionization and the hydrolysis, as was done in general in
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Example 2:

HC2H3O2(aq) + H2O(l) ⇀↽ C2H3O2
−(aq) + H3O+(aq)

Ka = [C2H3O2][H3O+]
[HC2H3O2]

C2H3O2
−(aq) + H2O(l) ⇀↽ HC2H3O2(aq) + OH−(aq)

Kh = [HC2H3O2][OH−]
[C2H3O2

−]

When these chemical equations are added,

2 H2O(l) ⇀↽ H3O+(aq) + OH−(aq)

their equilibrium constant expressions are multiplied (just as in Ex-
ample 2), yielding:

KaKh = [H3O+][OH−] = Kw

Thus,

Kh = Kw/Ka

We do not need to derive this expression every time we do a hydrol-
ysis problem; we merely must remember to use the correct value for
the equilibrium constant. For the hydrolysis of the conjugate acid
of a weak base,

Kh = Kw/Kb

How do we recognize a hydrolysis problem? It is a problem in
which there is no molecular weak acid or weak base present initially
(just a “salt”). (If any molecular weak acid or weak base is present,
we may have a buffer solution problem.)

EXAMPLE 20 Calculate the hydroxide ion concentration in a solu-
tion of 0.100 M NaC2H3O2.

Solution The sodium ion is a spectator ion. The acetate ion
hydrolyzes according to the equation

H2O(l) + C2H3O2
−(aq) ⇀↽ HC2H3O2(aq) + OH−(aq)

Initial
concentrations (M) 0.100 0.000 0.000

Change due
to reaction (M) x x x

Equilibrium
concentration (M) 0.100 − x x x
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Kh = [HC2H3O2][OH−]
[C2H3O2

−]
= x2

(0.100)
= 1.0×10−14

1.8×10−5
=5.6×10−10

x2 = 5.6×10−11

x = 7.5×10−6 M = [OH−] �

EXAMPLE 21 Calculate the pH of a solution of 0.100 M NH4Cl.

Solution The chloride ion is a spectator ion. The ammonium
ion hydrolyzes according to the equation

H2O(l) + NH +
4 (aq) ⇀↽ NH3(aq) + H3O+(aq)

Initial
concentrations (M) 0.100 0.000 0.000

Change due
to reaction (M) x x x

Equilibrium
concentrations (M) 0.100 − x x x

Ka = [NH3][H3O+]
[NH4

+]
= x2

(0.100)
= 1.0 × 10−14

1.8 × 10−5
= 5.6×10−10

x2 = 5.6×10−11

x = 7.5×10−6 M = [H3O+]

pH = 5.12 �

Leading Questions

1. The equilibrium constant for a certain reaction has a value of
2.5 × 10−13. What is the value of the constant for the reverse
reaction?

2. When is there a term for the concentration of water in an
equilibrium constant expression?

3. For which kind of calculation do we use an algebraic variable like
x—calculation of the value of K or calculation using the value of K ?

4. In 0.100 M acetic acid solution, the acid is 1.3% ionized and 98.7% in
the un-ionized form. Determine the percentage of products of each
of the following reactions, assuming each reactant to be 0.100 M
before any reaction occurs:
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(a) C2H3O −
2 (aq) + H+(aq) ⇀↽ HC2H3O2(aq)

(b) NaC2H3O2(aq) + HCl(aq) ⇀↽ HC2H3O2(aq) + NaCl(aq)
5. Which of the following reactions proceeds more than 50% to

completion?

(a) HC2H3O2(aq) + H2O(l) ⇀↽ C2H3O2
−(aq) + H3O+(aq)

HC2H3O2(aq) + OH−(aq) ⇀↽ C2H3O2
−(aq) + H2O(l)

(b) C2H3O2
−(aq) + H2O(l) ⇀↽ HC2H3O2(aq) + OH−(aq)

C2H3O2
−(aq) + H3O+(aq) ⇀↽ HC2H3O2(aq) + H2O(l)

Answers to Leading Questions

1. The value of this K is 1/(2.5 × 10−13) = 4.0 × 1012.
2. Whenever water is involved in a reaction but is not the solvent for

the reaction. For example, when the reaction is a gas-phase reaction
or a reaction in another solvent, the concentration of water is
included.

3. Calculation using the value of K . (Remember, we calculated values
of K before we used x .)

4. (a) The ions react to form 98.7% of un-ionized acid, leaving 1.3% in
the ionic form. It doesn’t make any difference which way we write
the equation or if we add reactants or products, the system shifts
until the same equilibrium mixture is established. (b) The net ionic
equation for this reaction is that given in part (a), so the answer is
the same.

5. (a) The first equation represents an equilibrium reaction of a weak
acid, that proceeds to the right only a tiny percentage. The
second equation represents a reaction of an acid and a base that
proceeds almost to completion.

(b) The first equation represents an equilibrium reaction of the
conjugate of a weak acid with water that proceeds to the right
only a tiny percentage. (The reverse reaction of an acid with a
strong base proceeds almost to completion.) The second
equation proceeds extensively, since its reverse is the ionization
of a weak acid in water, which we know proceeds only slightly.

Supplementary Problems

1. From the value of the equilibrium constant for

A + B ⇀↽ 2 C K = 16.0
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calculate the value of the equilibrium constant for each of the
following equilibria:

(a) 1
2 A + 1

2 B ⇀↽ C

(b) 2 C ⇀↽ A + B

(c) C ⇀↽
1
2 A + 1

2 B

2. Write the equilibrium constant expression for the following
reaction:

CaCO3(s) ⇀↽ CaO(s) + CO2(g)

3. Calculate the value of the equilibrium constant for

A(aq) + 2 B(aq) ⇀↽ C(aq) + 2 D(s)

if 1.20 mol of A and 1.70 mol of B are dissolved in 1.00 L of
solution, whereupon 0.100 mol of C is produced at equilibrium.

4. The following system at equilibrium

A + 2 B ⇀↽ 2 C

had equilibrium concentrations [A] = 0.220 M, [B] = 0.456 M, and
[C] = 3.22 M. The temperature was raised, causing the equilibrium
to shift and changing the C concentration to 3.02 M. (a) Calculate
the value of the original equilibrium constant. (b) Calculate the
value of the new equilibrium constant. (c) Determine if the reaction
is exothermic or endothermic.

5. Calculate the value of the equilibrium constant for the dissociation
of formic acid (HCHO2) if the hydrogen ion concentration in
0.100 M formic acid solution is 4.2 × 10−3 M.

6. Calculate the hydrogen ion concentration of a 0.250 M solution of
HC2H3O2 that also has 0.150 M NaC2H3O2 in it. K a = 1.8 × 10−5.

7. Which one of the following equilibria proceeds farthest to the
right?

(a) HC2H3O2(aq) ⇀↽ C2H3O2
−(aq) + H+(aq)

(b) C2H3O2
−(aq) + H+(aq) ⇀↽ HC2H3O2(aq)

(c) C2H3O2
−(aq) + H2O(l) ⇀↽ HC2H3O2(aq) + OH−(aq)

8. Calculate the pH of a solution containing 0.150 M NH3 and 0.150 M
NH4Cl. K b = 1.8× 10−5.

9. Calculate the hydrogen ion concentration of each of the following
solutions: (a) pH = 7.123; (b) pH = 9.90.

10. Calculate the pH of 0.100 M boric acid, HBH2O3.
K a = 7.3 × 10−10.
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11. Which ones of the following solutions would make buffer solutions?

(a) 0.500 mol HCl + 1.00 mol NaC2H3O2 in 1.00 L of solution

(b) 0.500 mol HCl + 1.00 mol NaCl in 1.00 L of solution

(c) 0.500 mol NaCl + 1.00 mol NaC2H3O2 in 1.00 L of solution

(d ) 0.500 mol HC2H3O2 + 1.00 mol NaC2H3O2 in 1.00 L of
solution

12. Calculate the value of the equilibrium constant for the dissociation
of methyl amine, CH3NH2, which reacts with water just as
ammonia does (but to a different extent). The hydroxide ion
concentration in 0.100 M methyl amine solution is 6.6 × 10−3 M.

13. (a) State qualitatively which of the following aqueous solutions, in
sufficient water to make 1.00 L of solution, has the highest pH:

(i) 0.500 mol HCHO2 and 0.250 mol NaCHO2.
(ii) 0.480 mol HCHO2 and 0.270 mol NaCHO2.
(iii) 0.460 mol HCHO2 and 0.290 mol NaCHO2.
(iv) 0.440 mol HCHO2 and 0.310 mol NaCHO2.

(b) How much NaOH do we need to convert solution (i) to
solution (ii)? solution (ii) to solution (iii)? solution (iii) to
solution (iv)?

(c) If that much NaOH were added to 1.00 L of solution containing
3.6 × 10−5 M HCl, what would be the final pH?

14. Calculate the value of K b for a base (B) if a 0.100 M solution has a
pH of 10.28.

15. Calculate the value of K a for an acid if a solution of 0.100 M HA
and 0.150 M NaA has a pH of 5.22.

16. Calculate the acetate ion concentration in a solution containing
0.100 M HC2H3O2 and 0.150 M HCl. K a = 1.8 × 10−5.

17. When 0.100 mol of NH3 and 0.150 mol of NH4Cl are dissolved in
enough water to make 1.00 L of solution, (a) is a limiting quantities
problem being presented? (b) What ions are present in greater than
0.010 M concentration? (c) What other ions are present? (d ) What
is the principal equilibrium reaction? (e) What effect does each of
the ions of part (b) have on the equilibrium of part (d )? ( f ) What is
the hydroxide ion concentration of the solution? (g ) What is the
pH of the solution?

18. Calculate the pH of the solution that results after 0.050 mol of
NaOH is added to the buffer solution of Problem 17. Assume no
change in volume.

19. Which of the following 1.00-L solutions involve the use of a
hydrolysis constant for the determination of equilibrium
concentrations?

161



(a) 0.100 mol NaC2H3O2

(b) 0.100 mol NH4Cl

(c) 0.100 mol NaCl

(d ) 0.100 mol NaOH + 0.100 mol HC2H3O2

(e) 0.100 mol HCl + 0.100 mol NH3

20. Calculate the hydroxide ion concentration of a solution prepared by
adding 0.100 L of 0.200 M NaOH to 0.100 L of 0.200 M
HC2H3O2.

21. Calculate the pH of a solution prepared by adding 0.100 L of
0.200 M HCl to 0.100 L of 0.200 M NH3.

Solutions to Supplementary Problems

1. For the given reaction, the equilibrium constant expression is

K = [C]2

[A][B]
= 16.0

(a) K = [C]

[A]
1
2 [B]

1
2

Since this expression is the square root of the one given, the
value of K is 4.00.

(b) K = [A][B]
[C]2

so K = 1/(16.0) = 0.0625.

(c) K = [A]
1
2 [B]

1
2

[C]

which is the square root of the value in part (b), or 0.250. (Note
that the square root of a number smaller than 1 is larger than
the number.)

2. K = [CO2] (Neither solid is included.)
3. A(aq) + 2 B(aq) ⇀↽ C(aq) + 2 D(s)

Initial
concentration (M) 1.20 1.70 0.000

Change due to
reaction (M) 0.100 0.200 0.100

Equilibrium
concentration (M) 1.10 1.50 0.100

162



K = [C]
[A][B]2

= (0.100)
(1.10)(1.50)2

= 0.0404

Compare this solution to that of Example 5, and notice the great
difference made by the fact that D is a solid and therefore its
concentration is not included in the equilibrium constant
expression.

4. (a) K = [C]2

[A][B]2
= (3.22)2

(0.220)(0.456)2
= 227

(b) A + 2 B ⇀↽ 2 C
Initial concentrations (M) 0.220 0.456 3.22
Change due to reaction (M) +0.10 +0.20 −0.20
Equilibrium concentrations (M) 0.32 0.66 3.02

K = [C]2

[A][B]2
= (3.02)2

(0.32)(0.66)2
= 65

(c) Since the rise in temperature caused the equilibrium to shift left
(the K is smaller, so the concentration of product is smaller), it
is an exothermic reaction.

5. HCHO2(aq) ⇀↽ CHO −
2 (aq) + H+(aq)

Initial
concentrations (M) 0.100 0.0000 0.0000

Change due
to reaction (M) 4.2× 10−3 4.2× 10−3 4.2× 10−3

Equilibrium
concentrations (M) 0.096 4.2× 10−3 4.2× 10−3

K a = [CHO2
−][H+]

[HCHO2]
= (4.2 × 10−3)2

0.096
= 1.8 × 10−4

6. HC2H3O2(aq) ⇀↽ C2H3O2
−(aq) + H+(aq)

Initial
concentrations (M) 0.250 0.150 0.000

Change due
to reaction (M) x x x

Equilibrium
concentrations (M) 0.250 − x 0.150 + x x
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Neglecting x when added to or subtracted from a larger
number, just as we did with regular equilibria, yields

K a = [C2H3O2
−][H+]

[HC2H3O2]
= (0.150)x

0.250
= 1.8× 10−5

x = 3.0× 10−5 M

7. Reaction (b) proceeds farthest to the right. It has a constant
(5.6 × 10+3) equal to the reciprocal of that of reaction (a) because
it is the opposite reaction. Reaction (c) proceeds much less than
reaction (b) because water is much less strong an acid than H+ is.

8. The equilibrium that we are considering is still the ionization of the
ammonia.

H2O(l) + NH3(aq) ⇀↽ NH +
4 (aq) + OH−(aq)

Initial
concentrations (M) 0.150 0.150 0.000

Change due
to reaction (M) x x x

Equilibrium
concentrations (M) 0.150 − x 0.150 + x x

Neglecting x when added to or subtracted from a larger
quantity yields

K b = [NH4
+][OH−]

[NH3]
= x (0.150)

0.150
= 1.8 × 10−5

x = [OH−] = 1.8 × 10−5 M

[H+] = (1.0 × 10−14)/(1.8 × 10−5) = 5.6 × 10−10

pH = 9.25

9. (a) 7.53 × 10−8 M; (b) 1.3 × 10−10 M.

10. HBH2O3(aq) ⇀↽ BH2O −
3 (aq) + H+(aq)

Initial
concentrations (M) 0.100 0.000 0.000

Change due
to reaction (M) x x x

Equilibrium
concentrations (M) 0.100 − x x x

K a = [BH2O3
−][H+]

[HBH2O3]
= x 2

0.100
= 7.3 × 10−10

x 2 = 7.3 × 10−11
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x = 8.5 × 10−6 M = [H+]

pH = 5.07

11. (a) and (d ).

(a) All the HCl will react with half the C2H3O −
2 from the sodium

salt, yielding HC2H3O2 and leaving half the C2H3O −
2 , so this is a

buffer solution.
(b) A strong acid and its conjugate do not make a buffer solution.
(c) Two salts do not make a buffer solution.
(d ) A weak acid, HC2H3O2, and its conjugate, C2H3O −

2 , make a
buffer solution.

12. H2O(l) + CH3NH2(aq) ⇀↽ CH3NH +
3 (aq) + OH−(aq)

Initial
concentrations (M) 0.100 0.000 0.000

Change due
to reaction (M) 6.6 × 10−3 6.6 × 10−3 6.6 × 10−3

Equilibrium
concentrations (M) 0.093 6.6 × 10−3 6.6 × 10−3

K b = [CH3NH3
+][OH−]

[CH3NH2]
= (6.6 × 10−3)2

0.093
= 4.7 × 10−4

13. (a) Solution (iv) is the most basic. It has the lowest concentration of
acid and the highest of conjugate base. (b) We convert from each
solution to the next by adding 0.020 mol of NaOH. (c) That much
base would completely neutralize the HCl and still be 0.020 M, with
a pH of 12.30.

14. We use the pH to calculate the hydrogen ion concentration, and
use that and Kw to determine the OH− concentration:

[H+] = 5.2 × 10−11

[OH−] = (1.0 × 10−14)/(5.2 × 10−11) = 1.9 × 10−4

H2O(l) + B(aq) ⇀↽ BH+(aq) + OH−(aq)
Initial

concentration (M) 0.100 0.000 0.000
Change due

to reaction (M) 1.9 × 10−4 1.9 × 10−4 1.9 × 10−4

Equilibrium
concentration (M) 0.100 1.9 × 10−4 1.9 × 10−4
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K b = [BH+][OH−]
[B]

= (1.9 × 10−4)2

(0.100)
= 3.6× 10−7

15. [H+] = 6.0× 10−6

HA(aq) ⇀↽ H+(aq) + A−(aq)
Initial

concentration (M) 0.100 0.000 0.150
Change due

to reaction (M) 6.0 × 10−6 6.0 × 10−6 6.0 × 10−6

Equilibrium
concentration (M) 0.100 6.0 × 10−6 0.150

K a = [H+][A−]
[HA]

= (6.0 × 10−6)(0.150)
(0.100)

= 9.0× 10−6

16. The H+ from the ionization of HCl (a strong acid) represses the
ionization of the acetic acid, so the concentration of H+ is 0.150 M,
entirely from the HCl.

HC2H3O2(aq) ⇀↽ C2H3O −
2 (aq) + H+(aq)

Initial
concentration (M) 0.100 0.000 0.150

Change due
to reaction (M) x x x

Equilibrium
concentration (M) 0.100 − x x 0.150 + x

Neglecting x when added to or subtracted from larger values
yields

K a = [H+][C2H3O2
−]

[HC2H3O2]
= (0.150)[C2H3O2

−]
(0.100)

= 1.8× 10−5

[C2H3O −
2 ] = 1.2 × 10−5

In 0.100 M acetic acid alone, the acetate ion concentration (equal to
the hydrogen ion concentration) is 1.3 × 10−3 M. The hydrogen ion
from the strong acid has lowered it to 1.2 × 10−5 M, as predicted
by LeChatelier’s principle. The presence of any stronger acid will
repress the ionization of any weaker acid in the same solution.

17. (a) This is not a limiting quantities problem because the two do not
react. (b) NH4

+ and Cl−. (c) H+ and OH−, as in every aqueous
solution. (d ) H2O(l) + NH3(aq) ⇀↽ NH +

4 (aq) + OH−(aq) (e) The
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ammonium ion from ammonium chloride affects the equilibrium
reaction of the ammonia with water. The chloride ion has no effect.

( f ) H2O(l) + NH3(aq) ⇀↽ NH +
4 (aq) + OH−(aq)

Initial
concentrations (M) 0.100 0.150 0.000

Change due
to reaction (M) x x x

Equilibrium
concentrations (M) 0.100 − x 0.150 + x x

Neglecting x when added to or subtracted from a larger
quantity yields

K b = [NH +
4 ][OH−]
[NH3]

= x (0.150)
0.100

= 1.8× 10−5

x = [OH−] = 1.2 × 10−5 M

(g ) pH = 9.08

18. OH−(aq) + NH +
4 (aq) ⇀↽ NH3(aq) + H2O(l)

Beginning (mol) 0.050 0.150 0.100
Change due

to reaction (mol) 0.050 0.050 0.050
End of acid-base

reaction (mol) 0.000 0.100 0.150

Now the equilibrium reaction is considered:

H2O(l) + NH3(aq) ⇀↽ NH +
4 (aq) + OH−(aq)

Initial
concentrations (M) 0.150 0.100 0.000

Change due
to reaction (M) x x x

Equilibrium
concentrations (M) 0.150 − x 0.100 + x x

Neglecting x when added to or subtracted from a larger
quantity yields

K b = [NH4
+][OH−]

[NH3]
= x (0.100)

0.150
= 1.8× 10−5

x = [OH−] = 2.7 × 10−5 M

pH = 9.43
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The pH increased from 9.08 before the addition of NaOH to 9.43
after the addition. The small value of the increase is caused by the
buffering action of the equilibrium.

19. All but (c). In (a), the acetate ion hydrolyzes. In (b), the
ammonium ion hydrolyzes. In (d ), the acid and base
react completely to form sodium acetate, and the solution is the
same as in (a). In (e), the acid and base react completely to form
NH4Cl, and the solution is the same as in (b).

20. The number of moles of each reactant is

0.100 L
(
0.200 mol

1 L

)
= 0.0200 mol

The total volume is 0.200 L. The acid and base react to form
0.0200 mol NaC2H3O2, so the solution contains 0.100 M acetate
ion (plus sodium ion):

0.0200 mol
0.200 L

= 0.100 M

The hydroxide ion concentration is 7.5× 10−6 M, as shown in
Example 20.

21. The number of moles of each reactant is

0.100 L
(
0.200 mol

1 L

)
= 0.0200 mol

The total volume is 0.200 L. The acid and base react to form
0.0200 mol NH4Cl, so the solution contains 0.100 M ammonium
ion (plus chloride ion):

0.0200 mol
0.200 L

= 0.100 M

The pH is 5.12, as shown in Example 21.

168



Chapter 11

Colligative Properties

Colligative properties are properties of solutions that depend on
the nature of the solvent and the concentrations of the solute par-
ticles, but not on the nature of those particles. There are four
such properties, and they utilize three different concentration units
(Chapter 6); be sure to use the correct unit with each one. With con-
centrations and colligative property data, it is possible to calculate
the number of moles of substance present, and once the number of
moles is established, all the calculations using moles (Chapter 4) are
possible.

11.1 Vapor-Pressure Lowering
The presence of a solute causes vapor-pressure lowering of a sol-
vent. If the solute is nonvolatile (nonevaporating), the solution
has a lower vapor pressure than the pure solvent does. (Review
vapor pressure in Chapter 7.) From a molecular view, the solute
particles at the surface of the liquid inhibit the movement of sol-
vent molecules from going into the vapor phase, but do not inhibit
solvent molecules in the vapor phase from returning to the liquid
phase, so the rate of evaporation is lower than the rate of conden-
sation until there are fewer solvent molecules in the vapor phase.
For solving problems, the vapor pressure of any component (call it
A) in the solution, PA, is related to the vapor pressure of the pure
substance, P o

A , by Raoult’s law:

PA = XA P o
A

where XA is the mole fraction of component A. Raoult’s law is ap-
proximate for many solutions, and is exact only for “ideal solu-
tions.” Since XA must be less than 1 in any solution, the vapor
pressure of the component in the solution must be lower than its
vapor pressure when pure—the vapor pressure has been lowered.
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Solvents generally are volatile (evaporate easily) whereas solutes may
be volatile or nonvolatile. In many problems, the vapor pressure of
the solvent is the only one of interest.

EXAMPLE 1 (a) Calculate the vapor pressure of benzene in a so-
lution of naphthalene (a nonvolatile solute) in benzene at 21.3◦C
in which the mole fraction of benzene is 0.900. The vapor pressure
of pure benzene at that temperature is 10.7 kPa. (b) Calculate the
vapor-pressure lowering. (c) What is the vapor pressure of the solu-
tion?

Solution

(a) Psolvent = Xsolvent P o
solvent = (0.900)(10.7 kPa) = 9.63kPa

(b) 10.7 kPa − 9.63 kPa = 1.1 kPa
(c) 9.63 kPa. (Since the solute is nonvolatile, it has no

vapor pressure.) �
We can also use another form of Raoult’s law for a solution of

two components:

�Psolvent = Xsolute P o
solvent

instead of

Psolvent = Xsolvent P o
solvent

where �Psolvent is the vapor-pressure lowering. These equations look
very similar; do not confuse them. Note that it is the mole fraction
of the solute in the new equation as opposed to the mole fraction of
solvent in the first one we introduced. The new equation can give a
more precise answer than the first.

EXAMPLE 2 Calculate the vapor-pressure lowering of benzene in
a solution of 0.200 mol of naphthalene in 1.80 mol of benzene at
21.3◦C. The vapor pressure of pure benzene at that temperature is
10.7 kPa.

Solution First we find the mole fraction of naphthalene:

Xnaphthalene = 0.200 mol
2.00 mol total

= 0.100

�Pbenzene = Xnaphthalene P o
benzene

= (0.100)(10.7 kPa) = 1.07 kPa

This result is the same as that for Example 1, since the mole fractions
are the same, except that this answer is more precise. �
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11.2 Freezing-Point Depression
and Boiling-Point Elevation
The freezing point of a solvent is depressed by the presence of a
solute. The freezing-point depression is directly proportional to
the molality of the solute particles:

�t f = k f m
where �t f is the freezing-point depression, k f is the freezing-point-
depression constant, and m is the molality of the solution. The de-
pression of the freezing point could well be stated with a minus sign
to denote the lowering, and the constant then would also have a
negative value. It is customary, however, to report both as positive
values. Therefore, it is necessary for us to remember that the solu-
tion has a lower freezing point than does the pure solvent. A set
of freezing-point-depression constants along with freezing points is
given in Table 11-1.

EXAMPLE 3 (a) Calculate the freezing-point depression of a 0.100 m
solution of naphthalene in benzene. (b) Calculate the freezing point
of the solution.

Solution The freezing point of benzene (the solvent) and its
freezing-point constant are taken from Table 11-1.

(a) �t f = k f m = (5.12◦C/m)(0.100 m) = 0.512◦C
(b) t = 5.5◦C − 0.512◦C = 5.0◦C

Note well the difference between freezing point and freezing-point
depression! Also note that the freezing point of the solution is below
that of the solvent. �

EXAMPLE 4 Which of the following has (a) the greatest freezing-
point depression? (b) the highest freezing point?

1 m aqueous CH3OH, 2 m aqueous CH3OH,
or 3 m aqueous CH3OH

Table 11-1 Freezing-Point Data

Solvent Freezing Point (◦C) k f (◦C/m)

Benzene 5.5 5.12
Bromoform 7.8 14.4
Cyclohexane 6.5 20.0
Naphthalene 80.2 6.9
Water 0.00 1.86
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Solution (a) 3 m CH3OH. The solution of highest concentra-
tion has the greatest freezing-point depression. (b) 1 m CH3OH. The
greater the depression of the freezing point, the lower is the freezing
point, so the solution with smallest freezing-point depression has
the highest freezing point. �

The boiling point of a substance is the temperature at which
its vapor pressure is equal to that of the surroundings. The boiling
point of a solvent is elevated by the presence of a nonvolatile solute.
This boiling-point elevation, like the freezing-point depression, is
directly proportional to the molality of the solute particles:

�tb = kbm

where �tb is the boiling-point elevation, kb is the boiling-point-
elevation constant, and m is the molality. A set of boiling-point-
elevation constants, along with normal boiling points, are given in
Table 11-2.

EXAMPLE 5 Determine the boiling point of a 0.100 m solution of
sugar in water at 1.00 atm pressure.

Solution

�tb = kbm = (0.512◦C/m)(0.100 m) = 0.0512◦C

t = 100.00◦C + 0.0512◦C = 100.05◦C

This problem, like the one in Example 3, must be done in two steps.
Note that here the change in temperature was added to the normal
boiling point (it is an elevation) whereas the change was subtracted
in Example 3 (where a depression was observed). �

EXAMPLE 6 Calculate the molality of a solution of a nonionic so-
lute if its solution in naphthalene freezes at 77.7◦C.

Table 11-2 Boiling-Point Data

Solvent Normal Boiling Point (◦C) kb (◦C/m)

Benzene 80.12 2.53
Bromobenzene 155.83 6.26
Cyclohexane 80.88 2.79
Naphthalene 218 5.65
Water 100.00 0.512
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Solution Using data from Table 11-1, we calculate that the
freezing-point depression is

80.2◦C − 77.7◦C = 2.5◦C

and

�t f = k f m = (6.9◦C/m)(m) = 2.5◦C

m = 0.36 m �

EXAMPLE 7 Calculate the value of the boiling-point-elevation con-
stant for a solvent that boils at 53.8◦C and for which a 0.359 m
solution boils at 55.8◦C.

Solution

�tb = 55.8◦C − 53.8◦C = 2.0◦C

�tb = kbm = (kb)(0.359 m) = 2.0◦C

kb = 5.6◦C/m �

Since these equations can get us molalities, we can use them
with other data to determine molar masses.

EXAMPLE 8 Calculate the molar mass of a nonionic solute if 1.50 g
of the solute in 55.2 g of benzene freezes at 4.3◦C.

Solution The freezing-point depression is 5.5◦C − 4.3◦C =
1.2◦C. The molality of the solution is given by

�t f = k f m = (5.12◦C/m)(m) = 1.2◦C

m = 0.23 m

That means that there is 0.23 mol of solute in 1.00 kg of benzene.
The data of the problem enable us to calculate the number of grams
of solute in 1.00 kg of benzene:

1.50 g solute
55.2 g benzene

(
1000 g benzene
1 kg benzene

)
= 27.2 g solute

1 kg benzene

That means that 0.23 mol is 27.2 g, and the molar mass is

(27.2 g)/(0.23 mol) = 120 g/mol = 1.2 × 102 g/mol �

11.3 Osmotic Pressure
When a solution is separated from a sample of its pure solvent
by a semipermeable membrane (Fig. 11-1), an osmotic pressure
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Semipermeable membrane

SolutionPure solvent

h

Fig. 11-1 Osmotic Pressure.

develops. This pressure stems from the fact that the solvent can pass
through the membrane, but solute particles cannot. The solute par-
ticles partially block passage of solvent molecules from the solution
into the pure solvent, but not the other way. The passage of more
solvent into the solution tends to dilute the solution, even if it has to
raise the level of the solution with respect to that of the solvent. An
external piston can be used to keep the levels the same and prevent
dilution of the solution (Fig. 11-2). This added pressure is the os-
motic pressure of the solution. Osmotic pressure may be calculated
with an equation very similar to the ideal gas equation (Chapter 7):

πV = nRT

where π is the osmotic pressure of the solution, and the other
symbols have the same meanings they had earlier.

EXAMPLE 9 Calculate the osmotic pressure of a 0.100 M solution
of a nonionic solute at 25◦C.

Solution

πV = nRT

Dividing both sides of this equation by V yields an equation
with molarity as one of the variables:

π =
( n

V

)
(RT) = (0.100 M)(8.31 L·kPa/mol·K)(298 K) = 248 kPa

Piston

Pressure

Pure solvent Solution

Fig. 11-2 Measurement of Osmotic Pressure.
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This is a very large pressure indeed! Compared to other colligative
properties, osmotic pressure measurements allow very precise deter-
minations of molar masses. �

EXAMPLE 10 Determine the molar mass of a solute if 2.00 g in
100.0 mL of solution at 25◦C has an osmotic pressure of 5.77 kPa.

Solution

πV = nRT

π

RT
= n

V
= M = 5.77 kPa

(8.31 L·kPa/mol·K)(298 K)
= 0.00233 M

There is 0.00233 mol per liter and 20.0 g per liter:

2.00 g solute
100.0 mL solution

(
1000 mL

1 L

)
= 20.0 g

1 L

so the molar mass is
20.0 g

0.00233 mol
= 8580 g/mol = 8.58 × 103 g/mol

It would be impossible to determine the molar mass of this solute
with a freezing-point depression experiment. (See Supplementary
Problems 11 and 19.) �

11.4 Ionic Solutes
Ionic solutes are dissociated in solution into cations and anions.
Thus a 1 m aqueous solution of NaCl contains 1 mol of Na+ ions
and 1 mol of Cl− ions per kilogram of solvent. There are 2 mol
of particles per kilogram of solvent, and therefore the colligative
properties of the solution are greater than those of a 1 m solution of
nonionic solute. In very dilute solutions, the colligative properties of
solutions of ionic solutes are a multiple of the analogous properties
of nonionic solutes. For example,

No. of Particles
Compound Constitution Formula Unit

CH3OH 1 molecule/formula unit 1
NaCl 2 ions/formula unit 2
MgCl2 3 ions/formula unit 3
AlCl3 4 ions/formula unit 4
MgSO4 2 ions/formula unit 2
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EXAMPLE 11 Which of the following 0.00100m solutions has the
greatest freezing-point depression?

NaCl MgCl2 AlCl3 MgSO4 CH3OH

Solution The 0.00100 m AlCl3, which has four ions per for-
mula unit, has the greatest freezing-point depression. It is 0.00400 m
in particles. �

A solution of 0.00100 m NaCl has about twice the colligative
properties as a solution of 0.00100 m CH3OH, because there are
twice the number of particles per kilogram of solvent. However, as
the concentration of the ionic solution increases, the interionic at-
tractions increase markedly, and the particles become less indepen-
dent of each other. The solutions of ionic solutes still have greater
colligative properties than solutions of equal concentrations of non-
ionic solutes, but not as great a factor as the factor of the number of
ions per formula unit. Thus NaCl might have 1.7 times the effect as
CH3OH (instead of 2 times the effect) in a certain more concentrated
solution.

Leading Questions

1. Add the subscript “solvent” or “solute” to each term in each of the
following equations for a two-component solution:
(a) P = (X )(P o )
(b) �P = (X )(P o )

2. State the difference between each pair:
(a) Vapor pressure and vapor-pressure lowering
(b) Freezing point and freezing-point depression
(c) Boiling point and boiling-point elevation

3. Does the liquid phase extend over a wider temperature range for a
solution or for its pure solvent?

Answers to Leading Questions

1. P solvent = Xsolvent P osolvent

�P solvent = Xsolute P osolvent

2. The first item in each part is a property of a substance or a solution;
the second is the colligative property of the solution—the difference
between the property of the pure substance and that in the solution.
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3. Since the freezing point is depressed and the boiling point is raised by
the presence of a solute, the solution has a wider liquid range. (This
fact might be useful to remind us which phase change is lowered and
which is raised.)

Supplementary Problems

1. (a) Calculate the vapor pressure of ethyl alcohol containing glucose
(a sugar) at 25◦C in which the mole fraction of glucose is 0.0500.
The vapor pressure of pure ethyl alcohol at 25◦C is 59.0 torr.
(b) Calculate the vapor-pressure lowering.

2. (a) Calculate the freezing-point depression of a 0.150 m solution of
sucrose (table sugar) in water. (b) Calculate the freezing point of
the solution.

3. Calculate the molality of a solution of a nonionic solute if its
solution in cyclohexane freezes at 3.3◦C.

4. Calculate the osmotic pressure of a solution of 0.225 mol of
sucrose (sugar) in 1550 mL of aqueous solution at 25◦C.

5. Determine the molar mass of a solute if 1.12 g in 157 mL of
solution at 25◦C has an osmotic pressure of 0.145 atm.

6. Calculate the freezing point of an aqueous solution of a nonvolatile
solute with a boiling point of 101.55◦C at 1.000 atm pressure.

7. Calculate the molar mass of a nonionic solute if 4.31 g of the solute
in 155 g of cyclohexane freezes at 2.7◦C.

8. Calculate the molar mass of a nonvolatile solute if a solution of
1.44 g of the solute in 55.0 g of cyclohexane, C6H12, has a vapor
pressure of 0.103 atm at 20.7◦C. The vapor pressure of pure
cyclohexane at that temperature is 0.106 atm.

9. Calculate the freezing point of a solution of glucose (a simple sugar)
in water with mole fraction of glucose equal to 0.0555.

10. Calculate the vapor-pressure lowering in a solution of 2.00 m
aqueous sucrose (table sugar) at 25◦C. The vapor pressure of pure
water at that temperature is 3.20 kPa.

11. Calculate the freezing point of a solution of sucrose (C12H22O11) in
water if the density of the solution is 1.01 g/mL and its osmotic
pressure at 25◦C is 55.5 kPa.

12. Calculate the vapor pressure of a solution of sucrose (table sugar)
in 1550 mL of aqueous solution at 25◦C if its freezing point could
be measured to be 0.00010◦C. The vapor pressure of pure water at
that temperature is 24.0 torr. (Assume that the density of the
solution is 1.00 g/mL.)
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13. Calculate the osmotic pressure of a solution of 0.00200 mol of
NaCl in 345 mL of aqueous solution at 25◦C.

14. Calculate the osmotic pressure of a solution of 0.00200 mol of
AlCl3 in 0.550 L of aqueous solution at 25◦C.

15. Calculate the freezing point of a solution of 0.100 mol of KNO3 in
0.500 kg of water at 25◦C.

16. A solution of 4.31 g of solute in 149 g of cyclohexane freezes at
2.7◦C. The solute contains 40.0% carbon, 6.67% hydrogen, and
53.3% oxygen. (a) What can we calculate from the change in
freezing point and tabulated data? (b) What can we calculate from
the masses and the answer to part (a)? (c) What can we calculate
from the percent composition data? (d ) What can we calculate
from the answers to parts (b) and (c)?

17. A solution of 4.31 g of solute in 149 g of cyclohexane freezes at
2.7◦C. The solute contains 40.0% carbon, 6.67% hydrogen, and
53.3% oxygen. (a) Calculate the molality of the solute. (b) Calculate
the molar mass of the sample. (c) Calculate the empirical formula of
the sample. (d ) Calculate the molecular formula of the sample.

18. Calculate the molecular formula of 5.02 g of solute in 165 g of
cyclohexane that freezes at 3.1◦C. The solute contains 40.0%
carbon, 6.67% hydrogen, and 53.3% oxygen.

19. Calculate the freezing-point depression of a solution containing
2.00 g of a solute (MM = 8580 g/mol) in 100.0 g (a) of water;
(b) of bromoform (Table 11-1).

20. Calculate the molality of 0.00224 M aqueous sucrose.
(Assume that the density of the solution is 1.01 g/mL.)

Solutions to Supplementary Problems

1. (a) The mole fraction of solvent is 1.0000 − 0.0500 = 0.9500.

P solvent = Xsolvent P osolvent

= (0.9500)(59.0 torr) = 56.1 torr

(b) 59.0 torr − 56.1 torr = 2.9 torr
or

�Psolvent = Xsolute P osolvent = 0.0500(59.0 torr) = 2.95 torr

2. (a) �t f = k f m = (1.86◦C/m)(0.150 m) = 0.279◦C

(b) t = 0.000◦C− 0.279◦C = −0.279◦C
Be careful. The freezing point of the solution is equal in
magnitude to the freezing-point depression, because the freezing
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point of water is 0.000◦C. No other solvent has a freezing point
of zero, so don’t expect the magnitude of the freezing point to
be equal to the magnitude of the freezing-point depression in
general.

3. Using data from Table 11-1, we find that the freezing-point
depression is

�t f = 6.5◦C− 3.3◦C = 3.2◦C

= k f m = (20.0◦C/m)(m) = 3.2◦C

m = 0.16 m

4. πV = nRT

π = nRT
V

= (0.225 mol)(0.0821 L·atm/mol·K)(298 K)
1.55 L

= 3.55 atm

5. πV = nRT

π

RT
= n

V
= M = 0.145 atm

(0.0821 L·atm/mol·K)(298 K) = 0.00593 M

1.12 g solute
157 mL solution

(
1000 mL
1 L

)
= 7.13 g

1 L

There is 0.00593 mol of solute per liter and 7.13 g per liter, so the
molar mass is

7.13 g
0.00593 mol

= 1200 g/mol = 1.20× 103 g/mol

6. First we calculate the molality from the �tb :

�tb = kbm = 1.55◦C = (0.512◦C/m)(m)

m = 3.03 m

Then we calculate the �t f from the molality:

�t f = k f m = (1.86◦C/m)(3.03 m) = 5.64◦C

The freezing point is 0.00◦C− 5.64◦C = −5.64◦C

7. �t f = k f m = (20.0◦C/m)(m) = 6.5◦C− 2.7◦C = 3.8◦C

= m(20.0◦C/m)

m = 0.19 m
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The number of grams of solute per kilogram of solvent is

4.31 g solute
155 g solvent

(
1000 g solvent
1 kg solvent

)
= 27.8 g solute

1 kg solvent

27.8 g
0.19 mol

= 150 g/mol = 1.5× 102 g/mol

8. 55.0 gC6H12

(
1 mol C6H12

84.0 g C6H12

)
= 0.655 mol C6H12

P solvent = Xsolvent P osolvent

0.103 atm = (Xsolvent)(0.106 atm)

Xsolvent = 0.972 = 0.655 mol
0.655 mol+ y mol

0.637+ 0.972y = 0.655

0.972y = 0.018

y = 0.019 mol solute

MM = (1.44 g)/(0.019mol)= 76 g/mol

9. Freezing-point depression is directly proportional to molality, so we
first change the mole fraction of glucose to molality of glucose.
Assuming that we have 1.0000 mol total, there are present
0.0555 mol of glucose and

0.9445 mol H2O
(
18.0 g H2O
1 mol H2O

)(
1 kg H2O
1000 g H2O

)
= 0.0170 kg H2O

The molality of glucose is then
(0.0555 mol)/(0.0170 kg H2O) = 3.26 m.

�t f = k f m = (1.86◦C/m)(3.26 m) = 6.06◦C

t = −6.06◦C

10. Vapor-pressure lowering is directly proportional to mole fraction of
solute, so we first change the molality of the sucrose to mole
fraction of sucrose:

Assuming that we have 1.00 kg of water, we have 2.00 mol of
sucrose and

1000 g H2O
(
1 mol H2O
18.0 g H2O

)
= 55.6 mol H2O

180



The mole fraction of sucrose is then (2.00 mol)/(57.6 mol total) =
0.0347.

�P solvent = Xsolute P osolvent = (0.0347)(3.20 kPa) = 0.111 kPa

11. The osmotic pressure can get us the molarity:

πV = nRT

M = π

RT
= n

V
= 55.5 kPa
(8.31 L·kPa/mol·K)(298 K) = 0.0224 M

Assume that we have 1.00 L, that is 1.01 kg of solution and
0.0224 mol sucrose.

0.0224 mol C12H22O11

(
344 g C12H22O11

1 mol C12H22O11

)
= 7.71 g C12H22O11

The mass of water then is 1.01 kg − 0.00771 kg = 1.00 kg
The molality of the sucrose is 0.0224 m, and its freezing-point
depression is

�t f = k f m = (1.86◦C/m)(0.0224 m) = 0.0417◦C

t = −0.0417◦C

Notice how a solution with a significant osmotic pressure has an
extremely tiny freezing-point depression. Osmotic pressure is much
more sensitive a measure of solute concentration than
freezing-point depression is.

12. �t f = k f m = (1.86◦C/m)(m) = 0.00010◦C
m = 5.4× 10−5 m

If we assume that we have 1.00 kg of water, we have 55.6 mol of
water and 5.4× 10−5 mol of sucrose. The mole fraction of
sucrose is

(5.4× 10−5 mol)/(55.6 mol total) = 9.7× 10−7

and the vapor-pressure depression is

�P solvent = Xsolute P osolvent = (9.7× 10−7)(24.0 torr) = 2.3× 10−5 torr

Vapor-pressure lowering is not significantly more precise than
freezing-point depression is.
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13. πV = nRT
In such a dilute solution, the ions act almost independently. There
are 0.00200 mol of sodium ions and 0.00200 mol of chloride ions in
the solution, for a total of 0.00400 mol of solute particles:

π = nRT
V

= (0.00400 mol)(0.0821 L·atm/mol·K)(298 K)
0.345 L

= 0.284 atm

14. The AlCl3 solution is dilute enough to expect four moles of
completely independent ions (1 mol of Al3+ and 3 mol of Cl−) in
each mole of AlCl3. Therefore, there are 0.00800 mol of ions.

πV = nRT

π = nRT
V

= (0.00800 mol)(0.0821 L·atm/mol·K)(298 K)
0.550 L

= 0.356 atm

15. The KNO3 dissociates into 2 mol of ions (1 mol K+ and 1 mol
NO −

3 ) for each mole of salt. The molality of particles is
(0.200 mol)/(0.500 kg) = 0.400 m. Neglecting the interionic
attractions,

�t f = k f m = (1.86◦C/m)(0.400 m) = 0.744◦C

The freezing point is −0.744◦C (or perhaps a little higher due to
interionic attractions).

16. (a) The molality of the solute.
(b) The molar mass of the solute.
(c) The empirical formula.
(d) The molecular formula. (See the next two problems.)

17. (a) �t f = k f m = (20.0◦C/m)(m) = 6.5◦C− 2.7◦C = 3.8◦C

= m(20.0◦C/m)

m = 0.19 m

(b) The number of grams of solute per kilogram of solvent is

4.31 g solute
149 g solvent

(
1000 g solvent
1 kg solvent

)
= 28.9 g solute

1 kg solvent
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MM= 28.9 g/kg solvent
0.19 mol/kg solvent

= 150 g/mol= 1.5× 102 g/mol

(c) 40.0 g C
(
1 mol C
12.0 g C

)
= 3.33 mol C

6.67 g H
(
1 mol H
1.008 g H

)
= 6.62 mol H

53.3 g O
(
1 mol O
16.0 g O

)
= 3.33 mol O

The mole ratio is 1 mol C : 2 mol H : 1 mol O.
The empirical formula is CH2O.

(d) The empirical formula mass is 30.0 g/mol, the molar mass is
150 g/mol, so there are five empirical formula units per
molecule, and the molecular formula is C5H10O5.

18. This problem is similar to Problem 17, but it is not stated in parts.
The molecular formula is C6H12O6.

19. The number of moles of solute is

2.00 g
(
1 mol
8580 g

)
= 2.33× 10−4 mol

The molality is (2.33× 10−4 mol)/(0.1000 kg) = 2.33× 10−3 m

(a) �t f = k f m = (1.86◦C/m)(2.33× 10−3 m) = (4.33× 10−3)◦C

(b) �t f = k f m = (14.4◦C/m)(2.33× 10−3 m) = (3.36× 10−2)◦C
These changes in temperature would be very difficult to measure.

20. Assume that we have 1.00 L, that is 1.01 kg of solution and
0.00224 mol sucrose.

0.00224 mol C12H22O11

(
344 g C12H22O11

1 mol C12H22O11

)
= 7.71 g C12H22O11

The mass of water then is 1.01 kg − 0.00771 kg = 1.00 kg
The molality of the sucrose is 0.0224 m.
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Chapter 12

Thermodynamics

Before studying this chapter, review the measurement of enthalpy
change (Chapter 8), potential (Chapter 9), and equilibrium (Chapter
10). As usual with quantities of energy, we must be very careful with
both units and signs. For example, Tables 12-1 and 12-2 include
entropy in units including joules and free energy change in units
including kilojoules.

12.1 Entropy
Entropy, denoted S, is a quantitative measure of randomness.
(Be careful with this word; it sounds very much like enthalpy,
introduced in Chapter 8.) In order to confirm that our answers to
problems are reasonable, we must know (1) that greater numbers
of moles, especially of gases, have greater randomness than smaller
numbers of moles (other factors being equal), (2) that gases have
much greater randomness than liquids, which have greater ran-
domness than solids, (3) that greater volumes of gases have greater
randomness than smaller volumes (other factors being equal),
and (4) similarly, higher temperatures imply greater randomness.
Unlike enthalpy change (Chapter 8), entropy is not a relative
quantity. Absolute entropy, is a measure of the actual randomness
of a substance or a system. The standard absolute entropies, S◦, of
selected substances are presented in Table 12-1. Standard means the
substance is at unit activity, where the activity of a pure solid or
liquid is defined as 1, the activity of a solute is equal to its molarity,
and that of a gas is equal to its pressure in atmospheres or its
number of moles per liter. The entropy of a pure, crystalline solid at
0 K is zero. Warming the substance to room temperature gives it an
entropy above zero. No substance can have a negative randomness,
so none can have a negative absolute entropy (but entropy changes
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Table 12-1 Absolute Entropies of Selected Substances
at 298 K

S◦ S◦

Substance State (J/mol·K) Substance State (J/mol·K)
C s 5.69 NO g 210.62
CO g 197.9 NO2 g 240.45
CO2 g 213.6 H2O g 188.83
Cl2 g 222.96 H2O l 69.91
Ca s 41.4 H2O2 l 109.6
H2 g 130.58 Na s 51.45
HCl g 186.69 NaCl s 72.33
O2 g 205.0 N2 g 191.50

can be negative). Note especially that the entropies of elements are
not zero at room temperature, as are their enthalpies of formation by
definition.

For a chemical reaction, we calculate the entropy change by
subtracting the total absolute entropy of the reactants from the total
absolute entropy of the products:

�S◦ = S◦(products) − S◦(reactants)

The units of �S for a given equation are J/K since the units mole
cancel out.

EXAMPLE 1 Calculate the standard entropy change for the reac-
tion of a mole of carbon monoxide with oxygen to produce carbon
dioxide at 25◦C.

Solution The absolute entropies are taken from Table 12-1.
Note the units.

CO(g) + 1
2 O2(g) → CO2(g)

�S◦ = S◦(products)− S◦(reactants)

= (1molCO2)(213.6 J/mol·K)− (1molCO)(197.9 J/mol·K)

−
(

1
2 molO2

)
(205.0 J/mol·K) = −86.8 J/K

The negative value signifies that there is a lowering of the random-
ness (because the reaction has reduced the number of moles of gas).
Note that the units include kelvins. Note also that the element in
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its standard state has a finite (nonzero) entropy, unlike its enthalpy
of formation (Chapter 8). �

12.2 Gibbs Free Energy Change
The free energy change, �G, is equal to the enthalpy change minus
the product of the absolute temperature times the entropy change.
Its value enables us to predict in which direction an equation will
proceed, or if the system is at equilibrium. It is defined as

�G = �H − T�S

We will use this equation extensively.

EXAMPLE 2 Calculate the free energy change for a reaction at 25◦C
in which the enthalpy change is 24.4 kJ and the entropy change is
35.1 J/K.

Solution

�G = �H − T�S

= 24.4kJ − (298K)(0.0351kJ/K) = 13.9kJ

Note that it was necessary to convert joules to kilojoules (or vice
versa) and also that the kelvins in the second term canceled. �

The free energy of a substance, like its enthalpy, is a relative
quantity. Standard free energy of formation, �G◦

f , of a substance
is the free energy change of the reaction of the elements in their
standard states to produce the substance in its standard state, quite
analogous to the enthalpy of formation. Also analogous is the
fact that the free energy of formation of an element in its standard
state is zero by definition. Standard free energy changes of selected
substances are presented in Table 12-2. The equation given above
for �G, with all quantities in their standard states, becomes:

�G◦ = �H◦ − T�S◦

We must be very careful to use the degree sign where and only
where it is supposed to be used; that sign on the thermodynamic
functions means that all substances are in their standard states
(Chapter 8). Any equation that is true for �G in general is also
true for �G◦ (under the special conditions of unit activities for all
reactants and products). The reverse is not true.
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Table 12-2 Standard Free Energies of Formation of Selected
Substances at 298 K

∆G◦
f ∆G◦

f

Substance State (kJ/mol) Substance State (kJ/mol)

CO g −137.2 NO g 86.71
CO2 g −394.4 NO2 g 51.84
HCl g −95.27 H2O g −228.57
NaCl s −384.0 H2O l −237.13
Na2CO3 s −1048 H2O2 l −120.4
CH4 g −50.8

EXAMPLE 3 Calculate the standard enthalpy of formation of NO(g)
at 298 K from data in Tables 12-1 and 12-2.

Solution

1
2 N2(g) + 1

2 O2(g) → NO(g)

�S◦ = (1 mol NO)(210.62 J/mol·K) − (1
2 mol N2

)
(191.50 J/mol·K)

− (1
2 molO2

)
(205.0 J/mol·K)=12.4 J/K

Since this reaction represents the formation of a compound from its
elements in their standard states,

�G◦ = �G◦
f (NO) = 86.71kJ

�G◦ = �H◦ − T�S◦ = �H◦ − (298K)(12.4 J/K)

= �H◦ − (298K)(0.0124kJ/K)

�H◦ = 86.71kJ + 3.70kJ = 90.41kJ

Note that S◦(NO) is not �Sf , and cannot be used directly in the
equation for �G. �

We can determine the free energy change of any reaction if
we have the free energies of formation of all the substances in the
reaction, analogous to �H◦:

�G◦ = �G◦
f (products) − �G◦

f (reactants)

The principles of Hess’s law (Chapter 8) also apply to free energy
change calculations.
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EXAMPLE 4 Calculate the value of �G◦ at 25◦C for the reaction of
125 g of NO with O2 to produce NO2.

Solution

NO(g) + 1
2O2(g) → NO2(g)

For 1 mol of NO(g):

�G◦ = �G◦
f (products)−�G◦

f (reactants)

= �G◦
f (NO2) − �G◦

f (NO)

= 51.84kJ − (86.71kJ) = −34.87kJ

For 125 g of NO:

125 g NO
(

1 mol NO
30.0 g NO

) ( −34.87kJ
1 mol NO

)
= −145kJ

Note that �G◦
f of O2 is zero, because O2 is an element in its standard

state. �

The sign of the free energy change enables us to predict if a
reaction (or other process) proceeds as written, goes in the opposite
direction, or neither (because the system is at equilibrium).

∆G Direction of Spontaneous Reaction

Negative Spontaneous as written
Zero At equilibrium
Positive Spontaneous in the opposite direction

There are two tendencies that tend to make a process spontaneous:
(1) change to a lower energy and (2) change to a greater random-
ness. In a given process, if the energy of a system decreases (�H is
negative) and its randomness increases (�S is positive), the process
is spontaneous as written at all temperatures (because �G is always
negative).

�G
negative

= �H
negative

−
minus

T�S
(positive × positive)

If the energy of a system increases and its randomness decreases, the
process is spontaneous in the opposite direction at all temperatures
(�G is always positive). If both �H and �S increase or both decrease,
the term with the larger magnitude determines in which direction
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the process is spontaneous, and that depends on the temperature.
For example, consider ice and water at 0◦C.

H2O(s) → H2O(l)

The randomness increases as the solidmelts, but the energy increases
also. At 0◦C, the two balance each other and the system is at equi-
librium. �G is 0. If we raise the temperature slightly,

�G = �H − T�S

since T increases, the randomness term (T�S) becomes greater in
magnitude, �G becomes negative, the process becomes sponta-
neous, and the ice melts. In contrast, if we decrease the tempera-
ture from 0◦C slightly, the randomness term decreases, making the
energy term more important, �G becomes positive, and the equilib-
rium shifts to the left (toward lower energy). The liquidwater freezes.

Neither �H nor �S change much with temperature. We can
use that fact to estimate values of �G at temperatures other than
25◦C with the data from Table 12-2.

EXAMPLE 5 Given the following values for a certain reaction at
25◦C: �H = −10.00kJ and �S = −25.0 J/K. Calculate the value of
�G for the reaction at (a) 25◦C; (b) 125◦C.

Solution

(a) �G = �H − T�S = −10.00kJ − (298K)(−25.0 J/K)

= −10.00kJ− (298K)(−0.0250kJ/K)

= −10.00kJ + 7.45kJ = −2.55kJ

(Note the conversion of joules to kilojoules.)

(b) �G = �H − T�S = −10.00kJ − (398K)(−25.0 J/K)

= −10.00kJ + 9.95kJ = −0.05kJ

The same values of �H and �S were used at the higher temper-
ature, but a very different value of �G was obtained. �

12.3 Relationship of ∆G◦ to K
The free energy change of a chemical reaction is dependent on the
activities of the substances in the chemical equation (Section 12-1
and Chapter 9). The relationship is

�G = �G◦ + RT ln Q
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where R and T have their usual meanings and Q is the concentration
ratio as described in Chapter 9.

EXAMPLE 6 Determine the value of �G at 25◦C for the general
reaction

A(aq) + 2B(aq) → 2C(aq)

for which �G◦ = −11.0kJ, if the A concentration is 0.500 M, the B
concentration is 0.150 M, and the C concentration is 2.00 M.

Solution

�G = �G◦ + RT ln Q

= �G◦ + (8.31 J/K)(298K) ln
[C]2

[A][B]2

= −11.0kJ + (8.31 J/K)(298K) ln
(2.00)2

(0.500)(0.150)2
= 3.5kJ �

EXAMPLE 7 Determine if the following reaction is spontaneous at
25◦C:

CH4(g) + 2 O2(g) → CO2(g) + 2H2O(l)

Solution We can determine the value of �G◦ from the data of
Table 12-2:

�G◦ = �G◦
f (products) − �G◦

f (reactants)

= �G◦
f (CO2) + 2�G◦

f (H2O) − �G◦
f (CH4) − 2�G◦

f (O2)

= (−394.4kJ) + 2mol(−237.13kJ/mol) − (−50.8kJ)

−2mol(0 kJ/mol) = −817.9kJ

Since the value of �G◦ is so highly negative, �G must also be neg-
ative, and the reaction is spontaneous as written. �

We can derive another useful relationship if we solve the equa-
tion for �G for the special case of a reaction at equilibrium. At that
point, the value of �G (but not �G◦) is zero, and the value of Q is K :

In general: �G = �G◦ + RT ln Q
At equilibrium: 0 = �G◦ + RT ln K
or �G◦ = −RT ln K

This equation relates the free energy change under standard conditions
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to the molarity ratio at equilibrium! If �G◦ is positive, ln K is nega-
tive, and K is less than 1.

EXAMPLE 8 Calculate the value of the equilibrium constant for a
reaction with �G◦ equal to 255 J at 25◦C. Comment on the magni-
tude of the constant.

Solution

�G◦ = −RT ln K = 255 J = −(8.31 J/K)(298K) ln K

ln K = −0.103

K = 0.902

The positive value of �G◦ means that the equilibrium constant has
a value less than 1 since it suggests that the equation would spon-
taneously shift left from its concentrations at unit activity (all 1).

�

12.4 Relationship of ∆G to Potential
We have seen that a negative value of �G means that a reaction may
proceed spontaneously in the direction of the equation as written
and, in Chapter 9, that an electrochemical reaction will proceed as
written if the potential is positive. We may wonder if there is any
connection between free energy change and potential, and indeed
there is:

�G = −εnF

where ε is the potential, n is the number of moles of electrons, and F
is the Faraday constant, 96,500 C/mol e−. The minus sign is easy to
remember, since the potential is positive and the free energy change
is negative for spontaneous reactions.

EXAMPLE 9 Calculate the free energy change for a two-electron
reaction in which the potential is −5.00V.

Solution

�G = −εnF = −(−5.00V)(2mol e−)(96,500C/mol e−)

= 965,000 J = 965kJ

Note that 1 C times 1 V equals 1 J (and that the answer has been
converted to kilojoules for significant digit purposes). A negative
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potential has produced a positive free energy change, both indicat-
ing that the reverse reaction is spontaneous. �

Leading Questions

1. Simplify the following equation for standard conditions:

�G = �G ◦ + RT ln Q

2. In the equation �G = �G ◦ + RT ln Q (Section 12.3), substitute
−εn F and −ε◦n F for �G and �G ◦, respectively. What equation
results?

Answers to Leading Questions

1. At standard conditions, the value of Q is 1, its natural log (ln) is 0,
and �G = �G ◦, as expected, leading to the identity �G ◦ = �G ◦.

2. �G = �G ◦ + RT ln Q
−εn F = −ε◦n F + RT ln Q

Dividing each side by −n F yields

ε = ε◦ − RT
n F

ln Q

which is the Nernst equation (in the form of its natural logarithm
instead of its common logarithm).

Supplementary Problems

1. (a) Calculate the value of �S◦ for the reaction of carbon with
oxygen to produce carbon dioxide. (b) Explain why this �S◦ has a
lower magnitude than does the �S◦ calculated in Example 1 for
carbon monoxide and oxygen.

2. Calculate the �G ◦ of vaporization of a mole of water at 25◦C.
3. Calculate the free energy change for a reaction at 80◦C in which

the enthalpy change is 14.88 kJ and the entropy change is 7.44 J/K.
4. Calculate the enthalpy of combustion of NO(g) to NO2(g) at 298 K

from data in Tables 12-1 and 12-2.
5. Calculate the value of �G ◦ for the reaction at 25◦C of 2.65 g of

CH4 with O2 to produce CO2(g) and H2O(l).
6. Given the following values for a certain reaction at 25◦C:

�H = 4.22 kJ and �S = −6.10 J/K. Calculate the value of �G for
the reaction at 125◦C.
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7. Determine the value of �G at 25◦C for the general reaction

2 A(aq) + B(aq) → C(aq)

for which �G ◦ = −877 J, if the A concentration is 0.750 M, the B
concentration is 1.75 M, and the C concentration is 0.330 M.

8. Calculate the potential for a three-electron reaction in which the
free energy change is −12.7 kJ.

9. Calculate the value of Q at which a reaction with �G ◦ = −1.000 kJ
would not be spontaneous at 25◦C.

10. Calculate the value of T at which a reaction with �H = −5.01 kJ
and �S = −10.0 J/K would not be spontaneous.

11. A two-electron reaction in a voltaic cell has a standard potential at
25◦C of 0.130 V. Calculate the value of the equilibrium constant for
the reaction.

12. A voltaic cell

3M(s) + 2AuCl −
4 (aq) → 8Cl−(aq) + 3M2+(aq) + 2Au(s)

operating at 25◦C has a potential of −0.250 V when
[AuCl −

4 ] = 0.110M, [Cl−] = 1.00M, and [M2+] = 0.500M.
(a) How many electrons are involved in the reaction?
(b) Calculate the value of ε◦. (c) Calculate the value of �G ◦.
(d ) Calculate the value of K .

13. A voltaic cell

3M(s) + 2AuCl −
4 (aq) → 8Cl−(aq) + 3M2+(aq) + 2Au(s)

operating at 25◦C has a potential of −0.25 V when
[AuCl4−] = 0.110M, [Cl−] = 1.00M, and [M2+] = 0.500M.
Calculate the value of K .

14. Derive one equation relating the variables of the voltaic cell of the
prior problem to its equilibrium constant.

15. Calculate the value of K for the following reaction at 25◦C:

CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(l)

16. Calculate the value of K for a two-electron electrochemical
reaction at 25◦C in which

ε◦ = −0.00100 V

17. Calculate the value of K for each of the following reactions at
25◦C:

(a) 2CH4(g) + 3 O2(g) → 2CO(g) + 4H2O(l)
(b) CH4(g) + 1.5O2(g) → CO(g) + 2 H2O(l)
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18. Compare the values of K in the two parts of Problem 17, and
explain the results.

Solutions to Supplementary Problems

1. (a) C(s) + O2(g) → CO2(g)

�S◦ = S◦(products) − S◦(reactants)

= (1mol CO2)(213.6 J/mol·K) − (1mol C)(5.69 J/mol·K) −
(1mol O2)(205.0 J/mol·K) = 2.9 J/K

(b) The number of moles of gas is the same on each side of the
equation (and the total number of moles decreases).

2. H2O(l) → H2O(g)

�G ◦ = �G ◦
f (products) − �G ◦

f (reactants)

= �G ◦
f {H2O(g)} − �G ◦

f {H2O(l)}
= (−228.57 kJ) − (−237.13 kJ) = +8.56 kJ

3. �G = �H−T�S = 14.88 kJ−(353K)(0.00744 kJ/K) = 12.25 kJ
4. NO(g) + 1

2 O2(g) → NO2(g)
First we calculate �S◦, then �G ◦, and finally �H ◦:

�S◦= (1molNO2)(240.45 J/mol·K)− (1molNO)(210.62 J/mol·K) −( 1
2 mol O2

)
(205.0 J/mol·K) = −72.7 J/K

�G ◦ = �G ◦
f (products) − �G ◦

f (reactants)

= �G ◦
f (NO2) − �G ◦

f (NO) − 1
2�G

◦
f (O2)

= (51.84 kJ) − (86.71 kJ) − 0 kJ = −34.87 kJ

�G ◦ = �H ◦ − T�S◦ = �H ◦ − (298K)(−72.7 J/K) = −34.87 kJ

�H ◦ = (−34.87 kJ) − 21.7 kJ = −56.6 kJ

5. For 1mol of CH4(g):

CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(l)
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�G ◦ = �G ◦
f (products) − �G ◦

f (reactants)

= �G ◦
f (CO2)+ 2�G ◦

f (H2O)− �G ◦
f (CH4)− 2�G ◦

f (O2)

= (−394.4 kJ) + 2mol(−237.13 kJ/mol) − (−50.8 kJ) −
2mol(0 kJ/mol) = −817.9 kJ

For 2.65 g of CH4:

2.65 g CH4

(
1mol CH4

16.0 g CH4

)( −817.9 kJ
1mol CH4

)
= −135 kJ

6. Because �H and �S do not change much with temperature, we
can use their 25◦C values at 125◦C:

�G = �H − T�S = 4.22 kJ − (398K)(−6.10 J/K)

= 4.22 kJ + 2.43 kJ = 6.65 kJ

7. �G = �G ◦ + RT ln Q

= �G ◦ + (8.31 J/K)(298K) ln
[C]

[A]2[B]

= (−877 J)+ (8.31 J/K)(298K) ln
(0.330)

(0.750)2(1.75)
= −3580 J

8. �G = −εn F

−12,700 J = −(ε)(3mol e−)(96,500C/mol e−)

ε = +0.0439 V

Note that 1 J divided by 1C equals 1 V.

9. For the reaction to be nonspontaneous, �G must be zero
(or positive).

�G = 0 = �G ◦ + RT ln Q

0 = −1000 J + (8.31 J/K)(298K) ln Q

ln Q = 0.404

Q = 1.50

10. For the reaction to be nonspontaneous, �G must be zero
(or positive).

�G = �H − T�S

0 = (−5010 J) − T (−10.0 J/K)

T = 501K
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11. �G ◦ = −ε◦n F = −(0.130 V)(2mol e−)(96,500C/mol e−)

= −25,100 J

�G ◦ = −RT ln K = −25,100 J = −(8.31 J/K)(298K) ln K

ln K = 10.1

K = 2× 104

12. (a) 6 (equal to the total change in oxidation number of M or Au)

(b) ε = ε◦−0.0592
n

log
[Cl−]8[M2+]3

[AuCl −
4 ]2

−0.250 = ε◦−0.0592
6

log
(1.00)8(0.500)3

(0.110)2

= ε◦ − (0.00987)(1.01)

ε◦ = −0.240 V

(c) �G ◦ = − ε◦n F

= + (0.240 V)(6mol e−)(96,500C/mol e−) = 139 kJ

(d) �G ◦ = −RT ln K

ln K = −�G ◦/RT

= − (139,000 J)/(8.31 J/mol·K)(298K) = −56.1

K = 4× 10−25

13. This is the same problem as the prior problem, but not stated in
parts.

14.
ε = ε◦ − RT

n F
ln Q

ε = −�G ◦

n F
− RT
n F

ln Q

ε = +RT
n F

ln K − RT
n F

ln Q = RT
n F

ln
K
Q

ln(K/Q ) = εn F/RT

15. �G ◦ = −817.9 kJ, as calculated in Supplementary Problem 5.
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�G ◦ = −RT ln K

ln K = − (−817,900 J)
(8.31 J/K)(298K)

= 330

log K = (ln K )/(ln 10) = 330/(2.303) = 143

K = 10143

This huge value of K corresponds to the very large magnitude of�G ◦.

16. �G ◦ = −RT ln K = −ε◦n F

ln K = ε◦n F
RT

= (−0.00100 V)(2)(96,500C)
(8.31 J/K)(298K)

= −0.0779

K = 0.925

17. (a) For 2mol of CH4(g):

2CH4(g) + 3O2(g) → 2CO(g) + 4H2O(l)

�G ◦ = �G ◦
f (products) − �G ◦

f (reactants)

= 2�G ◦
f (CO)+ 4�G ◦

f (H2O)− 2�G ◦
f (CH4)+ 3�G ◦

f (O2)

= 2(−137.2 kJ) + 4(−237.13 kJ) − 2(−50.8 kJ) − 3(0 kJ)

= −1121.3 kJ

�G ◦ = −RT ln K

ln K = 1,121,300 J
(8.31 J/K)(298K)

= 453

log K = (ln K )/(ln 10) = 453/2.303 = 197

K = 10197

(b) For 1mol of CH4(g):

CH4(g) + 1.5O2(g) → CO(g) + 2H2O(l)

�G ◦ = �G ◦
f (products) − �G ◦

f (reactants)

= �G ◦
f (CO) + 2�G ◦

f (H2O) − �G ◦
f (CH4)+ 1.5�G ◦

f (O2)

= (−137.2 kJ) + 2(−237.13 kJ) − (−50.8 kJ) − 1.5(0 kJ)

= −560.7 kJ
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�G ◦ = −RT ln K

ln K = 560,700 J
(8.31 J/K)(298K)

= 226

log K = (ln K )/(ln 10) = 226/2.303 = 98.1

K = 1× 1098

18. Within rounding error, the answer of part (b) is the square root of
that in part (a), as predictable from the equilibrium constant
expressions:

(a) K = [CO]2

[CH4]2[O2]3
(b) K = [CO]

[CH4][O2]1.5
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Chapter 13

Miscellaneous Problems

Use the Periodic Table When Necessary.

1. The key to dimensional analysis is knowing the units associated
with each quantity or constant. What are the units of (a) molar
mass? (b) density? (c) molarity? (d) specific heat? (e) mole frac-
tion? ( f ) vapor pressure of water? (g) entropy? (h) freezing-point
lowering constant? (i) R, the ideal gas law constant?

2. What can we calculate from each of the following sets of data?
Tell the law or principle that we would use.

(a) Density of a gas at a given temperature and pressure
(b) Molarity of a solution and its volume
(c) Mass of each reactant in a reaction and mass of all but one

product
(d) Density of a solution and its mass
(e) Mass and volume of a sample
(f) Formula of a compound and the atomic masses of its ele-

ments
(g) Percent composition of a compound and the atomic masses

of its elements
(h) Empirical formula of a compound and its molar mass
(i) Concentration and volume of one reactant in a titration and

volume of the other
(j) Concentration and volume of both reactants in a reaction

3. Tell how we can calculate each of the following:

(a) Molar mass from a formula
(b) Molar mass from experimental data (several methods)
(c) Molecular formula from empirical formula and molar mass
(d) Density of a sample of liquid
(e) Density of a particular gas at known pressure and

temperature
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4. Calculate the density of ammonia gas at 373 K and 1.00 atm.
5. Calculate the freezing point of a solution containing 1.76 g

of a solute (MM = 133 g/mol) in 50.0 g of cyclohexane (k f =
20.0◦C/m, f.p. = 6.5◦C).

6. Calculate the molar mass of an acid, HA, if 4.30 g neutralizes
25.72 mL of 4.000 M NaOH.

7. (a) Calculate the number of grams of magnesium in 14.0 g
of Mg(ClO3)2. (b) Calculate the percentage of magnesium in
Mg(ClO3)2.

8. Calculate the number of liters in 2.50 m3.
9. Write the balanced chemical equation for the reaction of

50.00 mL of 2.110 M H3PO4 with 43.00 mL of 2.453 M NaOH.
10. Calculate the freezing point of a solution of 0.0200 mol of K2SO4

in 0.350 kg of water.
11. Calculate the volume of oxygen collected over water at 25◦C

and 110.0 kPa barometric pressure prepared by thermal decom-
position of 1.70 g of HgO. (PH2O = 3.2 kPa)

12. Calculate the volume of 12.5 g of H2O at 25◦C and 1.00 atm
pressure.

13. Calculate the mass of KClO3 that must be decomposed to pro-
duce 3.00 L of oxygen at STP.

14. Calculate the molar mass of a 21.1-g sample of a gas that oc-
cupies 10.7 L at 25◦C and 121 kPa.

15. Two light sources emit energy. The first emits 2.0 × 106 photons
of energy 1.0 × 10−14 J/photon, and the second 1.0 × 106 pho-
tons of energy 2.0 × 10−14 J/photon. (a) Which source, if either,
emits more energy? (b) Which source, if either, emits photons
with lower wavelength?

16. Calculate the mass of K2SO4 that will be produced by the
reaction of 156 g of (aqueous) KOH and 262 mL of 3.00 M
H2SO4.

17. Calculate, to the proper number of significant digits, the density
of a liquid if a beaker plus 25.00 mL of the liquid has a mass of
107.4 g, and the beaker itself has a mass of 52.00 g.

18. Calculate the mass of Li2CO3 that will be produced by the reac-
tion of 38.8 mL of 5.00 M LiOH and 1.46 L of CO2 at 25◦C and
1.00 atm pressure.

19. Calculate the mass of copper metal produced fromCuCl42−

solution by passage of a 4.15-A current for 12.0 hours.

CuCl42−
(aq) + Fe(s) → Cu(s) + 4 Cl−(aq) + Fe2+

(aq)

20. State in another way the fact that red light consists of photons
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having less energy than photons of violet light. Use the word
“wavelength,” but do not use the word “energy.”

21. Can all light be detected by the human eye? Explain.
22. Consider the general reaction: A + 2 B ⇀↽ 2 C, with K = 1.00 ×

10−6. Calculate the equilibrium concentrations of A, B, and C
after 1.20 mol of A and 2.30 mol of B are dissolved in 1.00 L of
solution and allowed to come to equilibrium.

23. Calculate the enthalpy change for the reaction of 19.6 g of CO
with oxygen to yield carbon dioxide: �Hf (CO) = −110 kJ/mol;
�Hf (CO2) = −393 kJ/mol

24. Calculate the molar mass of ammonia at 373 K and 1.00 atm.
25. Determine the new volume of a 1.000-L sample of gas if the

pressure was increased at constant temperature (a) 13.0%. (b)
100%.

26. Calculate the final temperature after 43.9 g of a metal alloy (c =
0.451 J/g·◦C) at 59.3◦C is immersed in 242 g of water at 14.5◦C.

27. Calculate the standard potential of the cell produced when the
copper(II)/copper half-cell (ε◦ = 0.34 V) is combined with the
iron(III)/iron(II) half-cell (ε◦ = 0.77 V).

28. Calculate the number of mercury atoms in 1.50 L of mercury,
(density = 13.6 g/mL).

29. Calculate the heat involved in the conversion of 51.7 g of liq-
uid water at 50.3◦C to ice at −5.4◦C : cliquid = 4.184 J/g·◦C;
cice = 2.089 J/g·◦C; �Hfusion = 335 J/g.

30. Calculate the value of �G◦ for a reaction with the equilibrium
constant equal to 4.44 at 25◦C.

31. Calculate the value of ε for the reduction of permanganate ion to
manganese(II) ion in a solution of 0.100 M H+, 0.750 M Mn2+,
and 1.11 M MnO4

− (ε◦ = 1.51 V).
32. Calculate the pH of 1.00 L of a buffer solution contain-

ing 0.175 mol of HC2H3O2 and 0.175 mol of KC2H3O2 after
0.010 mol of HCl is added to the solution. Assume no change
in volume.

33. A 1.00-L solution contains 0.0200 mol of a weak acid, HA. The
solution has an osmotic pressure of 0.528 atm at 25◦C. Calculate
the value of Ka for the acid.

34. Calculate the free energy change for a reaction at 80◦C in which
the enthalpy change is 14.88 kJ and the entropy change is
7.44 J/K.

35. Calculate the hydrogen ion concentration of solutions with the
following pH values: (a) 3.96; (b) 13.31; (c) 1.55.

36. Calculate the concentration of nitrate ions in a solution pro-
duced by diluting 15.00 mL of 2.000 M Al(NO3)3 to 50.00 mL.
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37. Show that the following data are in accord with the law of mul-
tiple proportions:

Compound A Compound B
Element 1 40.0% 52.2%
Element 2 6.67% 13.0%
Element 3 53.3% 34.8%

38. Calculate the molecular formula of a compound consisting of
40.0% carbon, 6.67% hydrogen, and 53.3% oxygen if 10.00 g of
the compound in 100.0 g of water freezes at −1.24◦C.

39. Calculate the time it takes ammonia to diffuse across a room if
it takes sulfur trioxide 4.20 minutes to diffuse there under the
same conditions.

40. Calculate the osmotic pressure at 25◦C of an aqueous solution
of a nonionic solute with molar mass 80.0 g/mol that freezes at
−4.11◦C. The density of the solution is 1.11 g/mL.

41. Calculate the value of K for the reaction A + B ⇀↽ C, in which
�G is −25.3 kJ when [A] = 2.00 M, [B] = 4.00 M, and [C] =
0.100 M.

42. Which of the following solutions require the use of a hydro-
lysis constant to calculate its pH? (a) 0.100 mol NaOH +
0.100 mol HC2H3O2. (b) 0.100 mol HCl + 0.100 mol NaC2H3O2.
(c) 0.100 mol HCl + 0.100 molNH3. (d) 0.100 mol NaOH +
0.200 mol HC2H3O2. (e) 0.100mol HCl+0.200molNaC2H3O2.
( f ) 0.100molHCl+0.200 mol NH3.

43. (a) When 4.03 g of element A and 11.8 g of element B completely
react with each other to produce the only compound of A and
B, what mass of the compound is produced? (b) What law allows
calculation of this quantity? (c) When 4.03 g of element A and
15.5 g of element B are treated with each other, what mass of
the compound is produced? (d) What law allows calculation of
this quantity?

44. Calculate the mass of magnesium chloride produced and the
mass of excess reactant left unreacted after 92.4 g of magnesium
carbonate is treated with 86.1 g of hydrochloric acid (in water).

45. Calculate the mole fraction of 1.62 M sucrose (C12H22O11) in
water if the density of the solution is 1.21 g/mL.

46. After a 2.50m solution containing 0.500mol of solutewas added
to a 1.40 m solution of the same two substances, a 1.95 m so-
lution was produced. Calculate the mass of solvent in the sec-
ond solution. (Hint: Let x equal the mass of solvent in the final
solution.)

47. Calculate the average kinetic energy of a gas molecule in a sam-
ple at 25◦C.
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48. Calculate the root mean square speed (u) of the nitrogen
molecules in a sample of the gas at 298 K.

49. Calculate the freezing point of 0.0100 m aqueous NaCl.
50. Determine the number of moles of nitrogen atoms in 146 g of

ammonium nitrate.
51. Calculate the potential of a one-electron electrochemical re-

action with a value of �G◦ = −15.2 kJ and a value of �G =
−16.6 kJ.

Solutions to Miscellaneous Problems

1. (a) grams/mole; (b) grams/milliliter, kilograms/liter, and others;
(c) moles/liter; (d ) joules/gram·degree; (e) no units; ( f ) torr,
atmospheres, or kilopascals; (g ) joules/kelvin or joules/mol·kelvin;
(h) degrees/molal; (i ) L·atm/mol·K, L·kPa/mol·K, or other
equivalent sets of units.

2. (a) The molar mass. Assume a volume, calculate the number of
moles of the gas (with the ideal gas law, for example), and divide
that into the number of grams in the selected volume of
gas.

(b) The number of moles of solute. Definition of molarity.
(c) The mass of the last product. The law of conservation of mass.
(d) The volume of the solution. Definition of density.
(e) Density. Definition of density.
(f) The molecular mass (molar mass) and also the percent

composition. Multiply the numbers of atoms of each element in
a formula unit by the atomic mass, sum these values to get the
molecular mass. Divide the mass of each element (not each
atom) by the total mass and multiply by 100% to get the percent
composition.

(g) The empirical formula. Convert percentages to masses and then
to moles; calculate the simplest mole ratio.

(h) The molecular formula. Divide the molecular mass (the molar
mass in amu) by the empirical formula mass to get the number
of empirical formula units in a molecule, then multiply the
subscripts in the empirical formula by that value.

(i) The concentration of the other reactant, assuming that a
balanced chemical equation is available.

(j) The mole ratio, and thus the balanced equation. For example, it
might be necessary to do this type of calculation to determine if
one or two hydrogen atoms in H2SO4 have been replaced in its

203



reaction with NaOH:

H2SO4(aq) + NaOH(aq) → NaHSO4(aq) + H2O(l)

H2SO4(aq) + 2 NaOH(aq) → Na2SO4(aq) + 2 H2O(l)

3. (a) Add the atomic masses for each atom (not merely each
element), and report the sum in grams per mole.

(b) Divide the mass by the number of moles. The number
of moles may be calculated with the ideal gas law, colligative
properties data, titration data, or other methods.

(c) Add the atomic masses for each atom in the empirical formula
and divide the sum into the molecular mass. That yields the
number of empirical formula units per molecule. Multiply
each subscript in the empirical formula (including the
assumed values of one) by that number to get the molecular
formula.

(d) Divide the mass of the sample by the volume.
(e) Assume a volume (like 1.00 L), calculate the number of moles in

that sample, and divide the number of grams in the sample by
that number of moles.

4. Assume 1.00 L of gas. The number of moles of ammonia is

n = PV
RT

= (1.00 atm)(1.00 L)
(0.0821 L·atm/mol·K)(373K )

= 0.0327 mol

The mass of that quantity of ammonia is

0.0327 mol
(
17.0 g
1 mol

)
= 0.556 g

The density of ammonia under these conditions is therefore
0.556 g/L.

5. The number of moles of solute is

1.76 g
(
1 mol
133 g

)
= 0.0132 mol

The molality is (0.0132 mol)/(0.0500 kg) = 0.264 m

�t f = k f m = (20.0◦C/m)(0.264 m) = 5.28◦C

Freezing point = 6.5◦C − 5.28◦C = 1.2◦C
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6. We can immediately calculate the number of millimoles of NaOH:

25.72 mL
(
4.000 mmol

1 mL

)
= 102.9 mmol

Since they react in a 1 : 1 mol ratio, that is also the number of
millimoles of HA. Its molar mass is

(4.30 g)/(0.1029 mol) = 41.8 g/mol

7. (a) 14.0 g Mg(ClO3)2

(
1molMg(ClO3)2
191 gMg(ClO3)2

)(
1molMg

1molMg(ClO3)2

)
×

(
24.3 g Mg
1mol Mg

)
= 1.78 g Mg

(b)
1.78 g Mg

14.0 g Mg(ClO3)2
× 100% = 12.7%

8. 2.50 m3

(
1000 L
1m3

)
= 2500 L = 2.50 × 103 L

9. The numbers of millimoles of each reactant can easily be
calculated:

50.00 mL
(
2.110mmol

1mL

)
= 105.5 mmol H3PO4

43.00 mL
(
2.453mmol

1mL

)
= 105.5 mmol NaOH

Since there is a 1 : 1 mole ratio, the equation is

H3PO4(aq) + NaOH(aq) → NaH2PO4(aq) + H2O(l)

10. The K2SO4 dissociates into three moles of ions (2 mol K+ and
1 mol SO 2−

4 ) for each mole of salt. The molality of the ions is
(0.0600 mol)/(0.350 kg) = 0.171 m. Neglecting the interionic
attractions,

�t f = k f m = (1.86◦C/m)(0.171 m) = 0.318◦C

The freezing point is −0.318◦C (or perhaps a little higher due to
interionic attractions).

11. The pressure of oxygen is

PO2 = Pbarometric − PH2O = 110.0 kPa − 3.2 kPa = 106.8 kPa
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The number of moles of oxygen gas is determined:

2HgO(s) → 2Hg(l) + O2(g)

1.70 g HgO
(

1mol HgO
216.6 g HgO

)(
1mol O2

2molHgO

)
= 0.00392mol O2

The volume of oxygen is then given by the ideal gas law:

V = nRT
P

= (0.00392mol)(8.31 L·kPa/mol·K)(298K)
106.8 kPa

= 0.0909 L

12. Be careful not to use a gas law for water at 25◦C and 1.00 atm,
where it is a liquid. The volume is found from the mass and density!
(We must not only know the rules, but when to use each one!)

V = 12.5 g
(

1 mL
1.00 g

)
= 12.5 mL

(The actual density is 0.997 g/mL, but 1.00 g/mL is sufficiently close
for most purposes.)

13. 2 KClO3(s) → 2 KCl(s) + 3 O2(g)

3.00 L O2

(
1mol O2 (at STP)

22.4 L O2

)(
2mol KClO3

3mol O2

)(
122 g KClO3

1mol KClO3

)
= 10.9 g KClO3

14. Use the ideal gas law (or the molar mass and the combined gas law)
to determine the number of moles of gas. Then divide the mass by
that number of moles.

n = PV
RT

= (121 kPa)(10.7 L)
(8.31 L·kPa/mol·K)(298K)

= 0.523 mol

MM = (21.1 g)/(0.523mol) = 40.3 g/mol

15. (a) The total energy of each source is the product of the number of
photons times the energy of each:
First source: E 1 = (2.0 × 106 photons)(1.0 × 10−14 J/photon)

= 2.0 × 10−8 J
Second source: E 2 = (1.0× 106 photons)(2.0× 10−14 J/photon)

= 2.0× 10−8 J

Both sources emit the same total energy.
(b) The wavelength is inversely proportional to the energy of each

photon, so the second source (with higher-energy photons) has
the shorter wavelength.
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16. 2KOH(aq) + H2SO4(aq) → K2SO4(aq) + 2 H2O(l)

156 g KOH
(
1mol KOH
56.0 g KOH

)
= 2.79mol KOH

0.262 L H2SO4

(
3.00mol H2SO4

1 L H2SO4

)
= 0.786mol H2SO4

Less than 1mol of H2SO4 will react with less than 2mol of KOH,
but there is more than 2 mol of KOH present, so the H2SO4 is
limiting.

0.786mol H2SO4

(
1mol K2SO4

1mol H2SO4

)(
174 g K2SO4

1mol K2SO4

)
= 137 g K2SO4

17. The mass of the liquid is 107.4 g − 52.00 g = 55.4 g. The density is
therefore (55.4 g)/(25.00mL) = 2.22 g/mL.

If you do this problem in one step, the subtraction still yields a
value with three significant digits, so the density has only three
significant digits.

18. 2 LiOH(aq) + CO2(g) → Li2CO3(aq) + H2O(l)

0.0388 L LiOH
(
5.00mol LiOH

1 L LiOH

)
= 0.194mol LiOH

n = PV
RT

= (1.00 atm)(1.46 L)
(0.0821 L·atm/mol·K)(298K)

= 0.0597mol CO2

There is more than twice as much LiOH present as CO2, so the
CO2 is limiting:

0.0597mol CO2

(
1mol Li2CO3

1mol CO2

)(
74.0 g Li2CO3

1mol Li2CO3

)
= 4.42 g Li2CO3

19. 12.0 hours
(
3600 s
1 hour

)(
4.15C
1 s

)(
1mol e−

96,500C

)(
1mol Cu
2mol e−

)
×

(
63.5 g Cu
1mol Cu

)
= 59.0 g Cu

20. “Red light has a longer wavelength than violet light does.”
21. Only “visible light” can be detected by the human eye. The word

“light” is often used to mean the entire electromagnetic spectrum,
so not all light can be detected by the human eye.
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22. A + 2B ⇀↽ 2C
Initial concentration (M) 1.20 2.30 0.000
Change due to reaction (M) x 2x 2x
Equilibrium concentrations (M) 1.20 − x 2.30 − 2x 2x

K = [C]2

[A][B]2
= (2x )2

(1.20)(2.30)2
= 1.00 × 10−6

4x 2 = 6.35 × 10−6

x = 1.26 × 10−3

[C] = 2x = 2.52 × 10−3 M

[A] = 1.20 − 1.26 × 10−3 = 1.20 M

[B] = 2.30 − 2(1.26 × 10−3) = 2.30 M

The approximations are valid.
23. 2 CO(g) + O2(g) → 2 CO2(g)

The number of kilojoules is calculated for reaction of 2 mol of CO:

�H = 2�H f (CO2) − 2�H f (CO) = 2(−393 kJ) − 2(−110 kJ)

= −566 kJ

For 19.6 g of CO:

�H = 19.6 g CO
(
1mol CO
28.0 g CO

)( −566 kJ
2mol CO

)
= −198 kJ

24. The molar mass of ammonia is 17.0 g/mol (the sum of the atomic
masses of all four atoms), no matter what the conditions.

25.
(a) P V

1 1.00P1 1.000 L
2 P2 = 1.13P1 V2

V2 = P1V1

P2
= (1.00P1)(1.000 L)

1.13P1
= 0.885 L

Note that the increase in pressure of 13.0% did not decrease the
volume 13.0%, but only 11.5%. The ratio 1.00/1.13 is not equal
to 87.0/100.

(b) In the same manner,

V2 = (1.00P1)(1.00 L)
2.00P1

= 0.500 L
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Note that the increase in pressure of 100.0% did not decrease
the volume 100.0%.

26. q = 0 = mwater cwater �twater + mmetal cmetal �tmetal

0 = (242 g)(4.184 J/g·◦C)(t − 14.5◦C) +
(43.9 g)(0.451 J/g·◦C)(t − 59.3◦C)

t = 15.4◦C

27. The two reduction half-cells are

Cu2+(aq) + 2 e− → Cu(s) 0.34 V
Fe3+(aq) + e− → Fe2+(aq) 0.77 V

We reverse the equation with the lower potential, and change the
sign of the potential:

Cu(s) → Cu2+(aq) + 2 e− − 0.34 V

We multiply the other equation by 2 to get equal numbers of
electrons, without changing the potential:

2 Fe3+(aq) + 2 e− → 2 Fe2+(aq) 0.77 V

All that is left to do is to add these equations, and add the
corresponding potentials:

Cu(s) + 2 Fe3+(aq) → Cu2+(aq) + 2 Fe2+(aq) 0.43 V

28. 1.50 L
(
1000mL

1 L

)(
13.6 g
1mL

)(
1mol Hg
200.6 g

)(
6.02 × 1023 atoms

1mol

)

= 6.12 × 1025 atoms

29. The total heat involved is the sum of the heats of three steps:

q = mc�t = (51.7 g)(4.184 J/g·◦C)(−50.3◦C) = −10.9 kJ

51.7 g
(−335 J

1 g

)
= −17.3 kJ

q = mc�t = (51.7 g)(2.089 J/g·◦C)(−5.4◦C) = − 0.58 kJ

The total heat required is
(−10.9 kJ) + (−17.3 kJ) + (−0.58 kJ) = −28.8 kJ

30. �G ◦ = −RT ln K
= −(8.31 J/K)(298K) ln(4.44)= −3.69× 103 J = −3.69 kJ
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31. MnO −
4 (aq) + 8 H+(aq) + 5 e− → Mn2+(aq) + 4 H2O(l)

ε = ε◦ − 0.0592
5

log
[Mn2+]

[H+]8[MnO4
−]

= 1.51 − 0.0592
5

log
(0.750)

(0.100)8(1.11)
= 1.51 − 0.0927= 1.42 V

32. HCl reacts with C2H3O2
− to give HC2H3O2 (in addition to that

already present). If the acid and base react completely:

HCl(aq) + C2H3O2
−(aq) → HC2H3O2(aq) + Cl−(aq)

Beginning number
of moles 0.010 0.175 0.175

Change due to
reaction (mol) 0.010 0.010 0.010

End of acid-base
reaction (mol) 0.000 0.165 0.185

Now the equilibrium reaction is considered:

H2O(l) + HC2H3O2(aq) ⇀↽ C2H3O2
−(aq) + H3O+(aq)

Initial
concentrations (M) 0.185 0.165 0.000

Change due
to reaction (M) x x x

Equilibrium
concentrations (M) 0.185− x 0.165+ x x

Neglecting x when added to or subtracted from a larger quantity
yields

K a = [C2H3O −
2 ][H3O+]

[HC2H3O2]
= (0.165)x

0.185
= 1.8 × 10−5

x = [H3O+] = 2.0 × 10−5 M

pH = 4.70

33. The osmotic pressure gives the total concentration of solute
particles—molecules plus ions:

πV = n R T

n = (0.528 atm)(1.00 L)
(0.0821 L·atm/mol·K)(298 K)

= 0.0216 mol of particles
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With 0.0200 mol of acid and 0.0216 mol of particles (un-ionized
acid molecules, hydronium ions, and anions), the increase in
concentration corresponds to the number of each type of ion
produced, since two ions are produced from each molecule.
There is 0.0016 mol/L of HA ionized, as seen in the following
table:

Total solute
HA == H+ + A− particles

Initial 0.0200 0.0000 0.0000 0.0200
concentrations (M)

Change due to −0.0016 +0.0016 +0.0016 +0.0016
reaction (M)

Final 0.0184 0.0016 0.0016 0.0216
concentrations (M)

K a = (0.0016)2

0.0184
= 1.4 × 10−4

It does not matter that H2O is not included in the equation, since
the H2O molecules are solvent particles, not solute particles.

34. �G = �H − T�S = 14.88 kJ − (353 K)(0.00744 kJ/K) = 12.25 kJ
35. (a) 1.1 × 10−4 M (b) 4.9 × 10−14 M (c) 2.8 × 10−2 M
36. Number of millimoles of nitrate ion in initial solution:

15.00 mL
(
2.000 mmol Al(NO3)3

1 mL

)(
3 mmol NO3

−

1 mmol Al (NO3)3

)

= 90.00 mmol NO3
−

In final solution:

90.00 mmol NO3
−

50.00 mL
= 1.800 M NO3

−

37. Changing each percentage to grams and dividing each by the
magnitude of the mass of element 2 yields:

Compound A Compound B
Element 1 6.00 g 4.02 g
Element 2 1.00 g 1.00 g
Element 3 7.99 g 2.68 g

The ratio of masses of element 1 is 3 : 2, and that of element 3
is 3 : 1.
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38. 40.0 g C
(
1 mol C
12.0 g C

)
= 3.33 mol C

6.67 g H
(

1 mol H
1.008 g H

)
= 6.62 mol H

53.3 g O
(
1 mol O
16.0 g O

)
= 3.33 mol O

The mole ratio is 1 : 2 : 1, and the empirical formula is CH2O.

�t f = mk f = 1.24◦C = m(1.86◦C/m)

m = 0.667 m

In 1.000 kg of solvent, there are 0.667 mol of solute and 100.0 g of
solute, so the molar mass is (100.0 g)/(0.667 mol) = 150 g/mol, and
the molecular mass is 150 amu. The empirical formula mass is
30.0 amu, so the molecular formula is C5H10O5.

39.
r SO3

rNH3

=
√

MMNH3

MMSO3

=
√

17.0 g/mol
80.0 g/mol

= 0.461

r SO3 = (0.461)rNH3

The rate of diffusion of SO3 is less than that of NH3, so it takes the
NH3 less time:

(0.461)(4.20 minutes) = 1.94 minutes

40. m = �t f /k f = (4.11◦C)/(1.86◦C/m) = 2.21 m
Assuming that we have 1.000 kg of solvent, we then have 2.21 mol
of solute.

2.21 mol
(
80.0 g
1 mol

)
= 177 g solute = 0.177 kg solute

There is 1.177 kg of solution, and

1.177 kg
(

1 L
1.11 kg

)
= 1.06 L of solution
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The osmotic pressure is thus

π = nRT
V

= (2.21 mol)(0.0821 L·atm/mol·K)(298 K)
1.06 L

= 51.0 atm

41. We must find �G ◦ first, because that is related to K :

�G = �G ◦ + RT ln
[C]

[A][B]

= �G ◦ + (8.31 J/K)(298 K) ln
0.100

(2.00)(4.00)

−25.3 kJ = �G ◦ − 10.9 kJ

�G ◦ = −14.4 kJ

ln K = −�G ◦

RT
= +14,400 J

(8.31 J/K)(298 K)
= 5.81

K = 3.3 × 102

42. (a) 0.100 mol NaOH + 0.100 mol HC2H3O2 produces 0.100 mol
NaC2H3O2, which requires a hydrolysis constant.

(b) 0.100 mol HCl + 0.100 mol NaC2H3O produces (NaCl plus)
0.100 mol HC2H3O2, a weak acid problem which does not
require a hydrolysis constant.

(c) 0.100 mol HCl + 0.100 mol NH3 produces 0.100 mol NH4Cl,
which requires a hydrolysis constant.

(d) 0.100 mol NaOH + 0.200 mol HC2H3O2 produces 0.100 mol
NaC2H3O2 and leaves 0.100 mol HC2H3O2 in excess, a buffer
solution problem.

(e) 0.100 mol HCl + 0.200 mol NaC2H3O2 produces 0.100 mol
HC2H3O2 and leaves 0.100 mol NaC2H3O2 in excess, a buffer
solution problem.

(f) 0.100 mol HCl + 0.200 mol NH3 produces 0.100 mol NH4Cl
and leaves 0.100 mol NH3 in excess, a buffer solution
problem.

43. (a) 15.8 g. (b) The law of conservation of mass. (All of the reactants
combine to form the product.) (c) 15.8 g. (d ) The law of definite
proportions. (The same ratio of elements must be present in the
compound. Some of the B is left unreacted.)

44. MgCO3 + 2 HCl → MgCl2 + CO2 + H2O

92.4 g MgCO3

(
1 mol MgCO3

84.3 g MgCO3

)
= 1.10 mol MgCO3
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86.1 g HCl
(
1 mol HCl
36.5 g HCl

)
= 2.36 mol HCl

The quantity of HCl required to react with 1.10 mol MgCO3 is

1.10 mol MgCO3

(
2 mol HCl

1 mol MgCO3

)
= 2.20 mol HCl

Since there is more HCl than that present, the MgCO3 is limiting.

1.10 mol MgCO3

(
1 mol MgCl2
1 mol MgCO3

)(
95.2 g MgCl2
1 mol MgCl2

)
= 105 g MgCl2

2.36 mol HCl present − 2.20 mol reacting = 0.16 mol excess HCl

0.16 mol HCl
(
36.5 g HCl
1 mol HCl

)
= 5.8 g HCl excess

45. Assume 1.00 L of solution. There are thus 1.62 mol of sucrose and
1210 g of solution. The mass of the sucrose is

1.62 mol C12H22O11

(
342 g C12H22O11

1 mol C12H22O11

)
= 554 g C12H22O11

The mass of the water is 1210 g − 554 g = 660 g = 0.66 kg.
The molality of the sucrose is (1.62 mol)/(0.66 kg) = 2.5 m

46. The first solution contained 0.500 mol of solute and

0.500 mol solute
(

1 kg solvent
2.50 mol solute

)
= 0.200 kg solvent

The final solution contains x kg of solvent and

x kg solvent
(
1.95 mol solute
1 kg solvent

)
= 1.95x mol solute

The second solution thus contained (x − 0.200) kg solvent and
(1.95x − 0.500) mol solute. Its molality is

1.40 m = (1.95x − 0.500) mol solute
(x − 0.200) kg solvent
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1.95x − 0.500 = 1.40(x − 0.200)

x = 0.40 kg

The mass of solvent in the second solution is thus
0.40 kg − 0.200 kg = 0.20 kg.

47. KE = 3RT
2N

= 3(8.31 J/K)(298 K)
2(6.02 × 1023)

= 6.17 × 10−21 J

48. The average kinetic energy is obtained from the prior problem. The
value of u is obtained from KE = 1

2mu
2

u =
√

2KE
m

=
√

2(6.17 × 10−21 J)
(28.0 amu)

(
6.02 × 1026 amu

1 kg

)
= 515 m/s

49. Since NaCl is ionic, the solution is 0.0200 m in ions. Since the
solution is dilute, the ions act more or less independently.

�t f = k f m = (1.86◦C/m)(0.0200 m) = 0.0372◦C

t f = −0.0372◦C

50. 146 g NH4NO3

(
1 mol NH4NO3

80.0 g NH4NO3

)(
2 mol N atoms
1 mol NH4NO3

)
= 3.65 mol N

51. �G = −εn F (The value of�G ◦ does not matter.)

�G = −16,600 J = −ε(1 mol e−)(96,500 C/mol e−)

ε = 0.172 V
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List of Important Equations

The student must know the conditions, if any, under which each
equation is applicable.

Chapter 2

d = m/V

t = (F − 32◦)/1.8

T = t + 273◦

KE = 1
2 mv2

Chapter 6

M = (moles of solute)/(liter of solution)

m = (moles of solute)/(kilogram of solvent)

XA = (moles of A)/(total number of moles)

Chapter 7

P1V1 = P2V2 (constant T)

V1/T1 = V2/T2 (constant P )

P1V1/T1 = P2V2/T2

PV = nRT

Pi
Ptotal

= ni
ntotal

(constant V and T)
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Vi
Vtotal

= ni
ntotal

(constant P and T)

r1
r2

=
√

MM2

MM1

KE = 3RT/2N

Chapter 8

q = �H = mc�t

�H = �Hf (products) − �Hf (reactants)

Chapter 9

ε = εo − 0.0592
n

log
[C]c[D]d

[A]a[B]b

Chapter 10

K = [C]c[D]d

[A]a[B]b

Ka = [A−][H3O+]
[HA]

or Ka = [A−][H+]
[HA]

Kb = [BH+][OH−]
[B]

Kw = [H3O+][OH−] = 1.0 × 10−14

pH = − log[H3O+] or pH = − log[H+]

Chapter 11

PA = XAP o
A

�PA = XBP o
A (two components)

�t f = k fm

�tb = kbm

πV = nRT
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Chapter 12

�So = So(products) − So(reactants)

�G = �H − T�S

�G = �Gf (products) − �Gf (reactants)

�G = �Go + RT ln Q

�Go = −RT ln K

�G = −εnF
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Constants with Values That Must Be Remembered

Chapter
Constant Identification Value Introduced

dH2O density of water (4◦C) 1.00 g/mL 2
mass of 12C atom 12.0000 amu 4

N Avogadro’s number 6.02 × 1023 4
R ideal gas law constant 0.0821 L·atm/mol·K 7
R ideal gas law constant 8.31 L·kPa/mol·K 7
R ideal gas law constant 8.31 J/K 12

standard temperature 0◦C = 273 K 7
standard pressure 1 atm, 101.3 kPa,

760 torr 7
cH2O specific heat of water 4.184 J/g·◦C 8
εo
H2

potential of standard
hydrogen electrode 0.000 V 9

Nernst equation
constant 0.0592 V 9

Kw water ionization
constant 1.0 × 10−14 10

pHH2O pH of pure water 7.00 10
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Glossary

Absolute temperature. A temperature on the Kelvin temperature
scale (with zero equal to −273◦C).

Acid dissociation constant. The equilibrium constant for the reac-
tion of a weak acid with water to form its anion and hydronium
(hydrogen) ion.

Activity. Tendency to react chemically.
Ampere. The unit of electric current, equal to 1 coulomb per

second.
amu. Atomic mass unit.
Atomic mass. The weighted average of the masses of the naturally

occurring mixture of isotopes of an element.
Atomic mass unit. The unit of atomic, molecular, and formula

masses.
Atomic weight. Atomic mass.
Avogadro’s number. The number of carbon-12 atoms in exactly

12 g of carbon-12: 6.02 × 1023.
Base dissociation constant. The equilibrium constant for the reac-

tion of a weak base with water to form its cation and hydroxide
ion.

Boiling-point elevation. The rise of the boiling point of a solution
(compared to the pure solvent) due to the presence of a solute.

Boyle’s law. At constant temperature, the volume of a given sample
of gas is inversely proportional to its pressure.

Bronsted theory. A theory that defines acids as proton donors and
bases as proton acceptors.

Buffer solution. A solution of a weak acid or base plus its conjugate;
it resists change in its pH even on addition of strong acid or
base.

Charles’ law. The volume of a given sample of gas at constant pres-
sure is directly proportional to its absolute temperature.

Colligative properties. Properties of a solution that depend on
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the nature of the solvent and the concentration of solute
particles.

Combined gas law. The volume of a given sample of gas is directly
proportional to its absolute temperature and inversely propor-
tional to its pressure.

Concentration. The quantity of solute per unit quantity of solution
or solvent. (See molarity, molality, mole fraction.)

Condensation. The conversion of a gas to a liquid or solid.
Coulomb. The unit of electric charge.
Cubic meter. The unit of volume in SI.
Dalton’s law of partial pressures. The sum of the partial pressures

of the gases in a mixture is equal to the total pressure of the
mixture.

∆ (Greek delta). Change in.
∆G. Free energy change.
∆G◦

f . Standard free energy of formation.
∆H. Enthalpy change.
∆H◦

f . Standard enthalpy of formation.
Density. The mass per unit volume of a sample.
Diffusion. The passage of gas molecules of one substance through

the molecules of other gaseous substances in a mixture of
gases.

Dimensional analysis. A system to solve problems using the units
to determine whether to multiply or divide to convert a quan-
tity to an equal or equivalent quantity.

Effusion. The passage of gas molecules through the pores of a
porous container.

Electrode. (1) The electrical conductor (usually a metal or graphite)
at which the electric current in a circuit is changed from a
movement of electrons to or from a movement of ions. (2) A
half-cell.

Electrolysis cell. A cell in which electric current is used to cause
chemical reaction.

Empirical formula. The simplest formula for a compound, in
which the subscripts are at their lowest integral ratios.

End point. The point in a titration at which the indicator signals
an end to the process (at a point as close to the stoichiometric
ratio of reactants as possible to that in the balanced equation).

Enthalpy change. The heat of a process carried out at constant
pressure with no work other than expansion against the atmos-
phere.

Entropy. A measure of the randomness of a system.
ε. The symbol for the potential of a cell.
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Equilibrium. A state in which two exactly opposite processes occur
at equal rates, resulting in no net change.

Equilibrium constant expression. The mathematical equation in-
cluding the constant ratio of concentrations of products to con-
centrations of reactants, all raised to the appropriate powers,
at equilibrium.

Excess quantity. The quantity of one reagent greater than required
by the balanced chemical equation to react with all of another
reagent.

Factor label method. Dimensional analysis.
Formula mass. The sum of the atomic masses of each atom in a

formula.
Formula unit. The collection of bonded atoms represented by the

formula of a substance. For example, the formula unit of SCl2
contains one sulfur atom and two chlorine atoms.

Free energy change. The free energy of the products of a process
minus that of the reactants, equal to the enthalpy change mi-
nus the product of the absolute temperature times the entropy
change.

Free energy of formation. The free energy change in a process of
forming a substance in its standard state from its elements in
their standard states.

Freezing-point depression. The lowering of the freezing point of
a solution (compared to that of the pure solvent) due to the
presence of a solute.

Fusion. Melting.
Galvanic cell. A cell in which a chemical reaction can produce an

electric current; a voltaic cell.
Graham’s law. The rate of effusion or diffusion of a gas is inversely

proportional to the square root of its molar mass.
Gram. The basic unit of mass in the metric system.
Half-cell. The combination of oxidizing and reducing agents that

make half a galvanic cell.
Heat capacity. The heat required to raise a specified quantity (usu-

ally one gram or one mole) of a substance 1◦C.
Heat of sublimation. The heat required to change a specified quan-

tity (one gram or one mole) of a substance from solid to gas.
Hess’s law. When chemical reactions or physical processes are com-

bined, their enthalpy changes can be added to yield the en-
thalpy change of the total process.

Hydrogen electrode. The half-cell consisting of hydrogen gas and
hydrogen ions with an inert electrode such as platinum.

Hydronium ion. H3O+.

222



Ideal gas law. PV = nRT.
Indicator (acid-base). A compound that is one color in acid solu-

tion and a different color in base solution, used to signal the
end point of an acid-base titration.

Joule. The SI unit of energy.
Kelvin. The unit of the absolute (Kelvin) temperature scale.
Kinetic molecular theory. The theory that explains the behavior

of gases (and other phases) in terms of the properties of their
molecules.

KMT. Kinetic molecular theory.
Law of combining volumes. The ratio of the volumes of gases in a

given chemical reaction, all measured at the same temperature
and pressure, are in the ratio of the coefficients of the balanced
chemical equation.

Law of conservation of mass. In any chemical reaction (or
physical change), mass cannot be created or destroyed.

Law of definite proportions. Each (pure) compound is composed
of the same percentage by mass of its elements. For example,
every sample of pure water is 88.8% oxygen and 11.2% hydro-
gen by mass.

Law of multiple proportions. For two or more compounds con-
sisting of the same elements, for a given mass of one of the
elements, the masses of the other element(s) are in a small,
integral ratio.

LeChatelier’s principle. If a stress is applied to a system at equilib-
rium, the equilibrium will tend to shift in an effort to reduce
the stress.

Limiting quantity. The quantity of one reactant in a chemical reac-
tion that is not sufficient to react with all the other reactant(s)
present.

Liter. The unit of volume in the (older) metric system.
Meter. The basic unit of length in the metric system.
Metric system. The system of units used by scientists in which mul-

tiples or subdivisions of units are powers of 10 times the unit,
and all such multiples or subdivisions are designated by the
same prefix no matter what unit is involved.

Millimole. One-thousandth of a mole.
Molal. The unit of molality.
Molality. The number of moles of solute per kilogram of solvent in

a solution.
Molar. The unit of molarity.
Molarmass. The formulamass of any substance, expressed in grams

per mole.
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Molar volume. The volume of one mole of a gas measured at stan-
dard temperature and pressure: 22.4 L.

Molarity. The number of moles of solute per liter of solution.
Mole. The unit of chemical quantity; Avogadro’s number of formula

units.
Mole fraction. The number of moles of a substance in a solution

divided by the total number of moles in the solution.
Molecular formula. The formula for a molecule of a substance,

telling the ratio of the number of moles of each element to
the number of moles of the substance.

Molecular mass. The sum of the atomic masses of the atoms in a
molecule.

Nernst equation. Themathematical equation relating the potential
of a cell or half-cell to its standard potential.

Nonvolatile. Not (easily) convertible to the gaseous state.
Of. Multiplied by. (For example, “20 is one-half of 40” means

20 = 1
2 × 40.)

Osmotic pressure. The pressure exerted by a solution because of
the presence of a solute.

Per. Divided by.
pH. −log [H+].
Phase. The solid, liquid, or gaseous state.
Physical equilibrium. A state in which two opposite physical pro-

cesses occur at equal rates, resulting in no net change.
π. The symbol for osmotic pressure.
Potential. The “driving force” of an electrochemical reaction.
Precedence. The required order of operations in a mathematical

expression or equation. Operations with higher precedence are
done before operations with lower precedence.

Proton acceptor. A compound that accepts hydrogen ions from an-
other substance (a Bronsted base).

Proton donor. A compound that provides hydrogen ions to an-
other substance (a Bronsted acid).

Raoult’s law. The vapor pressure of a component in a solution is
equal to the mole fraction of that component times the vapor
pressure of the pure substance.

S. Entropy.
S◦. Standard absolute entropy.
Scientific notation. The form of a number stated as a coeffi-

cient of 1 or more but less than 10, times 10 to an integral
power.

SI, system internationale. The modern version of the metric sys-
tem. (Differences from the older metric system include the
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cubic meter as the unit of volume rather than the liter, and
pascals used for pressure.)

Significant digit. A digit in a properly reported value that indicates
the precision with which a measurement was made.

Significant figure. Significant digit.
Specific heat. The heat required to raise one gram of a substance

1◦C.
Standard. The defined quantity against which all other quantities

are compared. For example, the standard of mass (in SI as well
as legally in the United States) is the kilogram, whereas the
gram is the unit of mass.

Standard absolute entropy. The entropy of a substance compared
to its entropy when crystalline and at 0 K.

Standard enthalpy of formation. The enthalpy change in a pro-
cess of forming a substance in its standard state from its ele-
ments in their standard states.

Standard exponential notation. Scientific notation.
Standard free energy of formation. Free energy of formationwhen

each substance is at unit activity.
Standard half-cell. A half-cell in which each substance is at unit

activity.
Standard reduction potential. The reduction potential of a half-

cell in which each substance is at unit activity.
Standard state. A state in which each substance is at unit

activity.
Standard temperature and pressure. 0◦C and 1 atm pressure.
Stoichiometry. The study of the quantitative relationships among

substances in a chemical reaction.
STP. Standard temperature and pressure.
Sublimation. The passage of a substance from the solid state di-

rectly to the gaseous state.
System internationale. SI—the modern version of the metric sys-

tem.
Titration. The technique in which a measured volume of one so-

lution is treated with a measured volume of another, in which
the known molarity of one solution allows the calculation of
the molarity of the other.

Unit activity. Pure solids and liquid, 1 M solute, and/or gas at 1 atm
pressure.

Vaporization. Passage of a liquid into the gas phase.
Vapor-pressure lowering. The reduction of the vapor pressure of a

solution (compared to the pure solvent) due to the presence of
the solute.
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Volt. The unit of potential.
Voltaic cell. A galvanic cell.
Water dissociation constant. Kw, the equilibrium constant for the

reaction of water with itself to produce hydronium and hy-
droxide ions.

Weighted average. The average of several sets of values taking into
account the number of items in each set. For example, the
atomic mass of an element is a weighted average of the masses
of its isotopes, taking into account the relative abundance of
each isotope.
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Index

The items in this index that have (t) attached refer to tables, those with (f) refer to
figures, and those with (g) refer to the glossary.

absolute temperature, 86, 99, 220(g)
acid(s):

strong, 148
weak, 148

acid-base equilibrium, 148–151
acid dissociation constant, 149, 220(g)
activity, 220(g)
activity series, 132
algebra, distributive law of, 114
ampere, 128, 220(g)
amu, 44, 220(g)
approximation method, for equilibrium

constant calculations, 147
atmospheres, 85
atomic mass, 44, 46(t), 220(g)
atomic mass unit, 44, 220(g)
atomic weight, 44, 220(g)
average kinetic energy, 99
Avogadro’s number, 47, 220(g)

balanced chemical equation, mole
ratios in, 59–60

bar, 99
base, of exponential number, 23
base, weak, 149
base dissociation constant, 149, 220(g)
boiling-point elevation, 171–173,

172(t), 220(g)
boy scouts, 3
Boyle’s law, 85–87, 220(g)
Bronsted theory, 151–152, 220(g)
buffer solution(s), 154–156, 220(g)
built-up fraction, 8

c, 110–114, 111(t)
calculations, scientific, 1–5
calculator, scientific, 7–11
calorimetry, 110–114

cell, electrolysis, 128–130
galvanic, 128
voltaic, 128

Celsius temperature scale, 26–27,
26(t), 85

change in, 110
change sign key, 10
Charles’ law, 85–88, 220(g)
chemical combination, calculations for,

34–43
chemical equilibrium, 141–168
chemical reactions, moles in, 59–60
coefficient, of exponential number, 23
coefficients, in equations, 59
colligative properties, 169–183, 220(g)
combination of equilibrium constants,

142–143, 156–157
combined gas law, 86–88, 221(g)
combining volumes, law of, 96–97
concentration, 221(g)

calculations involving, 73–84
units of, 73, 77, 78

condensation, 115, 115(f), 221(g)
conservation of mass, law of, 34–35
constants, important, 219
conversions, for stoichiometry, 61–62
coulomb, 128, 221(g)
cubic decimeter, 17
cubic meter, 17, 221(g)

Dalton’s law, 93–96, 221(g)
Daniell cell, 131, 131(f)
defined values, significant digits and, 21
definite proportions, law of, 35–36
�(Greek delta), 110, 221(g)
�G, 186, 221(g)
�G◦, 186, 221(g)
�Gf , 186, 221(g)
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�H, 117, 221(g)
�Hf , 221(g)
�H◦

f , 221(g)
�tb, 171
�t f , 171
density, 25, 221(g)
diffusion, 97–99, 221(g)
dilution problems, 75
dimensional analysis, 5–7, 199,

221(g)
distance, 14–15
distributive law of algebra, 114

EE, 10
effusion, 97–99, 221(g)
electrochemistry, 128–140
electrode, 130–136, 221(g)
electrolysis, potential and, 136
electrolysis cell, 128–130, 221(g)
electronic calculator, significant digits

on, 22, 24
empirical formula, 51–52, 221(g)
end point, 75, 221(g)
energy, 26, 27

of phase change, 114–117,
115(t), 115(f)

enthalpy, 117
enthalpy change, 117, 221(g)
enthalpy of combustion, 117
enthalpy of formation, 118, 119(t),

221(g)
of elements, 118

enthalpy of reaction, 117–121
entropy, 184–186, 221(g)
ε (Greek epsilon), 131, 221(g)
ε◦, 134
equations, list of important, 216–218,
equilibrium, 141–168, 222(g)

physical, 95
equilibrium constant(s), 141

combination of, 142–143, 156–157
for hydrolysis, 156–158

equilibrium constant expression,
141–142, 222(g)

�G and, 189–191
calculation of, 143–145
calculation using, 146–148

equivalence point, 76
excess quantity, 62–63, 222(g)
EXP, 10
exponent, 23
exponential part, of exponential

number, 23

factor, 5
factor label method, 5–7, 222(g)
Fahrenheit scale, 26–27, 26(t)

Faraday’s laws, 128–129
formula calculations, 44–58
formula mass(es), 46–47, 46(t), 222(g)

types of, 46(t)
formula unit(s), 46, 46(t), 61–62, 222(g)
formula weight, 46
free energy change, 186–189, 222(g)

potential and, 191–192
spontaneous reaction and, 188–189

free energy of formation, 186–188,
187(t), 222(g)

freezing-point data, 171(t)
freezing-point depression, 171–173,

222(g)
fusion, 115, 115(f), 222(g)

galvanic cell, 128, 222(g)
gas laws, 85–109
Gibbs free energy change, 186–189
Graham’s law, 97–99, 222(g)
gram, 15, 15(t), 222(g)

half-cell, 130–136, 222(g)
heat, 110–114
heat capacity, 110–114, 111(t), 222(g)
heat of condensation, 115, 115(t)
heat of fusion, 115, 115(t)
heat of sublimation, 115, 222(g)
heat of vaporization, 115, 115(t)
Hess’s law, 187, 120–121, 222(g)
hydrogen electrode, 222(g)
hydrolysis, 156–158
hydronium ion, 148, 222(g)

ideal gas law, 90–92, 223(g)
ideal solution, 169
indicator (acid-base), 75, 223(g)
ionic solutions, colligative properties of,

175–176
ionization of water, 151–153

joule, 27, 128, 223(g)

K , 141
Ka, 149
Kb, 149
KE, 99
kelvin, 223(g)
kelvin temperature scale, 26–27,

26(t), 85
kf , 171
Kh, 156
kilogram, 15–16
kilopascals, 85
kinetic energy, 27
kinetic molecular theory, 99, 223(g)
KMT, 99, 223(g)

228



law of combining volumes, 96–97,
223(g)

law of conservation of mass, 34–35,
223(g)

law of definite proportions, 35–36,
223(g)

law of multiple proportions, 36–38,
223(g)

law of partial pressures, 93–96
LeChatelier’s principle, 151, 154,

223(g)
length, 14–15
limiting quantity(ies), 62–63, 223(g)

problems, 62–64
liter, 15(t), 17, 223(g)
logarithm keys, 11

m, 77
m, 77
M, 73
M, 73
mass(es), 15–17

in chemical reactions, 60–61
unit of, 15, 15(t)

mass number, 44
mass spectrometer, 45
measurement, 14–33
meter, 14, 15(t), 223(g)
metric conversions, 17–19
metric prefixes, 15, 15(t)
metric system, 14–19, 223(g)
milli-, 14
millimole, 47, 223(g)
molal, 77, 223(g)
molality, 77, 223(g)
molar, 73, 88, 223(g)
molar mass, 47, 223(g)
molar volume, 88–89, 224(g)
molarity, 73–75, 224(g)
mole(s), 47–49, 224(g)

in chemical reactions, 59–60
of gas, 88–93

conversions for, 91(f)
mole fraction, 77–79, 224(g)
mole ratios in chemical reactions,

59–60
molecular formula, 52–53, 224(g)
molecular mass, 46(t), 224(g)
multiple proportions, law of, 36–38

n, 134–135
Nernst equation, 134–136, 192, 224(g)
nonvolatile, 169, 224(g)

of, 224(g)
osmotic pressure, 173–175, 224(g)
ounce, 16

partial pressures, law of, 93–96
per, 7, 224(g)
percent, 2, 6–7
percent composition, 50–51
pH, 153–154, 224(g)

significant digits in, 153
phase, 224(g)
phase change(s), energy of, 114–117,

115(t), 115(f)
heat of, 114–117, 115(t)
names of, 115, 115(f)

physical equilibrium, 95, 224(g)
π(osmotic pressure), 174, 224(g)
potential, 131, 224(g)

�G and, 191–192
electrolysis and, 136

pound, 16
precedence, 224(g)
precedence rules, 8–10, 9(t)
prefixes, metric, 15, 15(t)
proton acceptor, 224(g)
proton donor, 224(g)

q, 110

R, 90
randomness, 184
Raoult’s law, 169, 224(g)
reciprocal key, 10–11
rounding off, 22–23

S, 184, 224(g)
S◦, 184, 224(g)
scientific calculations, 1–5

units in, 19
scientific calculator, 7–11
scientific notation, 23–24, 224(g)
semipermeable, 173, 174(f)
SI (system internationale), 14,

224–225(g)
significant digit(s), 19–23, 225(g)

in calculations, 20–22
and defined values, 21
electronic calculator and, 22, 24
in exponential numbers, 153
in pH values, 153

significant figure, 19–23, 225(g). See also
significant digit(s).

solution, ideal, 169
specific heat (capacity), 110–114, 111(t),

225(g)
spontaneous reaction, 132

�G and, 188–189
square brackets, 135, 141
standard, 15–16, 225(g)
standard absolute entropy, 184, 185(t),

225(g)
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standard enthalpy of formation,
118–120, 119(t)

standard exponential notation, 23–24,
225(g)

standard free energy change, 186
standard free energy of formation,

225(g)
standard half-cell, 132, 225(g)
standard hydrogen electrode, 131–132,

132(f)
standard reduction potential, 132–133,

133(t), 225(g)
standard state, 118, 225(g)
standard temperature and pressure, 88,

225(g)
stoichiometry, 59–72, 225(g)
STP (standard temperature and

pressure), 88, 118, 225(g)
strong acids, 148
sublimation, 115, 115(f), 225(g)
subscripts, 47
surroundings, 110
symbol, 1
system, 110
system internationale, 14, 224–225(g)

temperature, 26–27, 26(t)
temperature change, 111
temperature difference, 111
thermochemistry, 110–127

thermodynamics, 110–127, 184–198
time, 25–26
titration, 75–77
torr, 85

unary minus, 9
unit(s), 1

adjustment of, 19
in scientific calculations, 19

unit activity, 132, 225(g)

vapor pressure of water, 95–96
vapor-pressure lowering, 169–170,

225(g)
vaporization, 115, 115(f), 225(g)
variables, designation of, 4–5
volt, 128, 226(g)
voltaic cell, 128, 130–136, 226(g)
volume, 15(t), 17, 17(t)

SI vs. metric, 17, 17(t)

water, ionization of, 151–153
water dissociation constant, Kw,

226(g)
water vapor, 95–96
weak acid, 148
weak base, 149
weighted average, 45, 226(g)

XA, 78
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