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Abstract

This paper presents a new method for optimal matching in observational
studies based on mixed integer programming. Unlike widely used matching
methods based on network algorithms, which attempt to achieve covariate
balance by minimizing the total sum of distances between treated units and
matched controls, this new method achieves covariate balance directly, either
by minimizing both the total sum of distances and a weighted sum of specific
measures of covariate imbalance, or by minimizing the total sum of distances
while constraining the measures of imbalance to be less or equal than certain
tolerances. The inclusion of these extra terms in the objective function or
the use of these additional constraints explicitly optimizes or constrains the
criteria that will be used to evaluate the quality of the match. For example,
the method minimizes or constrains differences in univariate moments, such
as means, variances and skewness; differences in multivariate moments, such
as correlations between covariates; differences in quantiles; and differences in
statistics, such as the Kolmogorov-Smirnov statistic, to minimize the differ-
ences in both location and shape of the empirical distributions of the treated
units and matched controls. While balancing several of these measures, it is
also possible to impose constraints for exact and near-exact matching, and fine
and near-fine balance for more than one nominal covariates, whereas network
algorithms can finely or near-finely balance only a single nominal covariate.
From a practical standpoint, this method eliminates the guesswork involved
in current optimal matching methods, and offers a controlled and system-
atic way of improving covariate balance by focusing the matching efforts on
certain measures of covariate imbalance and their corresponding weights or
tolerances. A matched case-control study of acute kidney injury after surgery
among Medicare patients illustrates these features in detail. A new R package
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called mipmatch implements the method.
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1 Introduction: Motivating Example; Review of

Matching; Outline

1.1 Motivating example: obesity and acute kidney injuries

Does obesity increase the risk of acute kidney injury (AKI) for patients following

surgery? As part of an on-going case-control study of this question, we matched

cases of AKI following colectomy to controls without AKI, using a new matching

method based on mixed integer programming. We used data from the US Medicare

population, from the Obesity and Surgical Outcomes Study (OBSOS; Silber et al.

2011, 2012).

The OBSOS study was designed to compare obese and non-obese surgical patients in

Medicare with respect to outcomes, economic measures, and access to surgical care.

OBSOS focused on five types of surgery: colectomy for cancer, colectomy not for

cancer, thoracotomy, hip replacement without fracture, and knee replacement. Here,

colectomy for cancer is used to illustrate the methodology, but the actual case-control

study uses all five types of surgery and the same matching methods were applied five

times. Specifically, the group with colectomy for cancer consisted of 108 cases with

AKI and 1650 controls without AKI.

In OBSOS the covariates were obtained from claims and chart abstraction from 47

hospitals in Illinois, New York and Texas. The covariates used in the matched case-

control study were: Age; Black (1 = black); Sex (1 = female); Emergency (1 =
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patient was admitted via emergency room); Transfer (1 = patient was admitted via

transfer); APACHE (a modification of a widely used acute physiology score); Risk

(risk-of-death score estimated from Medicare claims from all hospitals in Illinois, New

York and Texas with the exception of the 47 hospitals participating in the study;

Hansen 2008); Dysfunction (1 = renal dysfunction comorbidity); Failure (1 = renal

failure comorbidity); and a key quantitative measure of kidney function, eGFR (the

estimated glomerular filtration rate which describes the pre-operative flow rate of

filtered fluid through the kidney). The eGFR was calculated using Stevens et al.’s

(2006) MDRD4 formula, and it is the most important covariate in the study. This

measure is used to detect early kidney damage and to monitor kidney status, and

as a result it is closely related with AKI. For this reason we needed to adjust for

eGFR very precisely. Three other important covariates were the nominal covariates

that define the specific surgical procedures (left colectomy, right colectomy and other

colectomy), the 47 hospitals involved in the study, and the interaction of history of

renal dysfunction and renal failure.

In the case-control study we matched (i) exactly for the specific surgical procedure,

(ii) balancing the marginal distribution of the nominal covariates for the 47 hospitals

in the study and for the interaction of renal dysfunction and renal failure, (iii) balanc-

ing as closely as possible all the means of the other medically important covariates,

and (iv) balancing the entire empirical distribution of eGFR. This paper presents a

new matching method for observational studies based on mixed integer programming

that finds such matches and even more difficult ones. As we will see in what follows,

the use of mixed integer programming methods in place of commonly used network
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algorithms substantially enlarges the tools available for matching.

1.2 Review of matching in observational studies

In a randomized experiment units are assigned to treatment or control by the flip of

a fair coin, yielding two groups that are similar in terms of observed and unobserved

covariates. As a result, in randomized experiments there is no systematic confounding

on the covariates, and association between the treatment and the outcome implies

causation. Accordingly, in randomized experiments it is relatively easy to obtain

unbiased estimates of treatment effects.

However, in a wide variety of settings it is either very expensive, impractical or

unethical to randomly assign units to treatment or control, and instead we have to

rely on observational data. In observational studies, the allocation of treatment is

outside our jurisdiction as researchers and we merely observe that some units are

treated and that others are controls. In these settings, matching is an attempt to

recover the randomized experiment that is “hidden” inside the observational study

(Hansen 2004).

The main goal of matching in observational studies is to free the comparisons of the

outcome variables in the treated and matched controls groups from the confounding

effects of differences in their observed covariates (Cochran et al. 1983; Rosenbaum

2002; Stuart 2010). With matching we attempt to replicate a randomized experiment

by comparing treated units to controls that are similar in terms of their observed

covariates, as if they were randomly assigned to treatment. For this, we need to
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make the empirical distributions of the observed covariates of these two groups as

similar as possible. Note that differences in unobserved covariates are not addressed

by matching, and other methods like sensitivity analysis need to be used instead (see

§14 of Rosenbaum 2010 for an introduction).

Matching has several attractive features, as discussed by Stuart (2010) and Lu et al.

(2011). First, it encourages critical discussion by medical experts who may have

difficulty understanding statistical models, but have greater knowledge of the sub-

ject matter than do statisticians. Second, it forces researchers to look closely at

the data, drawing their attention to issues like the common support of the covari-

ates and helping them to understand better the constraints imposed by the data on

the analysis. Third, since matching is completed before outcomes are examined, it

helps to separate the design and analysis stages of the study and thus to prevent

inappropriate manipulation of the data. Fourth, as pointed out by Rosenbaum and

Rubin (1985), despite the complexity of some matching algorithms very simple meth-

ods can be used to analyze the outcomes, and typical analysis of matched samples

do not require the parametric assumptions of most regression methods (Lu et al.

2011). Fifth, unlike other statistical methods of adjustment, matching facilitates the

combination of qualitative and quantitative methods because it maintains intact the

unit of analysis. Indeed, after matching it is possible to conduct ethnographic or

thick description of cases, and this in-depth investigation in turn can aid statistical

analysis (Rosenbaum and Silber 2001). Sixth, using existing inferential techniques is

straightforward if matching is done without replacement (Hansen and Klopfer 2006).

Finally, the resulting structure after matching is simple enough to allow for sensi-
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tivity analysis to unobserved covariates, which is the major concern in observational

studies.

However, in spite of these attractive features, finding a good match that balances

the empirical distributions of all the observed covariates in the treated and matched

control groups can be very difficult in practice. Current optimal matching methods

based on network algorithms pursue covariate balance indirectly, by minimizing the

total sum of distances between treated units and matched controls, and hope that

this will result in balance. With these methods covariate balance is improved by it-

eratively estimating a distance between treated units and potential controls, finding

the matches, and checking balance until a satisfactory level is achieved. The problem

is that this iterative process usually involves a considerable amount of guesswork,

and it is common to see that balancing some covariates worsens the balance of other

covariates (Diamond and Sekhon 2005; Hill 2011; Iacus et al. 2012). In this sense

there is little control over the matching process. Moreover with this procedure bal-

ancing means is already difficult, but one would like to go beyond that and adjust for

non-linearities and non-additivities in the matched samples by explicitly balancing

other statistics, such as Kolmogorov-Smirnov statistics or correlations between co-

variates. The new matching method presented in this paper deals with these issues

and offers a controlled and systematic way of improving balance based on several

features of the empirical distributions of the observed covariates.
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1.3 Outline: optimal matching with controlled balance for

multiple features of the empirical distributions of the

observed covariates

Unlike widely used matching methods based on network algorithms, which attempt to

achieve covariate balance by minimizing the total sum of distances between treated

units and matched controls, this new method achieves covariate balance directly,

either by minimizing both the total sum of distances and a weighted sum of spe-

cific measures of covariate imbalance, or by minimizing the total sum of distances

while constraining the measures of imbalance to be less or equal than certain tol-

erances. The inclusion of these extra terms in the objective function or the use of

these additional constraints explicitly optimizes or constrains the criteria that will

be used to evaluate the quality of the match. For instance, with this method it is

possible to minimize or constrain differences in univariate moments, such as means,

variances and skewness; differences in multivariate moments, such as correlations

between covariates; differences in quantiles; and differences in statistics, such as

Kolmogorov-Smirnov statistics, to reduce the differences in both location and shape

of the empirical distributions of the case and matched controls samples. Notably,

with the proposed method it is possible to balance not one but several of the previous

criteria simultaneously.

Furthermore, with the proposed method it is possible to do this while also satisfying

constraints for exact and near-exact matching, fine and near-fine balance, for multiple

covariates. Roughly speaking, exact matching refers to matching every treated unit
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to one or more controls with the same value of a nominal covariate while balancing

exactly the marginal distribution of that covariate (see §§7.2 of Rosenbaum 2010 for

a discussion on exact matching). When exact matching is not feasible, it might still

be desirable to approximate it with near-exact matching (see §§9.2 of Rosenbaum

2010 for an introductory discussion on near-exact matching, and Zubizarreta et al.

2011 for using it to match for several sparse nominal covariates). In a similar way

to exact matching, fine balance constrains the marginal distributions of a nominal

variable to be the same in the case and control groups, but without constraining who

is matched to whom (see §10 of Rosenbaum 2010 and Rosenbaum et al. 2007). When

fine balance is not feasible, it is possible to approximate it with near-fine balance

(Yang et al. 2012). With the proposed matching method it is possible to achieve fine

or near-fine balance for more than one nominal covariate, whereas network algorithms

can finely or near-finely balance only a single nominal variable.

From a practical standpoint, this method offers a controlled and systematic way of

improving covariate balance by focusing the matching efforts on certain measures of

covariate imbalance and their corresponding weights or tolerances. From a compu-

tational point of view, with a current implementation of this method it is possible

to solve large problems, comparable to those solved by network optimization, in a

comparable time. This opens a new dimension in combinatorial optimization for

matching in observational studies. All these features are implemented in the new

mipmatch package in R.

Following this introduction, the rest of the paper is organized as follows. Section 2

gives some background on mixed integer programming and describes recent devel-
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opments in computation that have made it possible to solve large instances of these

problems. Section 3 presents a general mixed integer program for matching. Section

4 discusses several covariate imbalance terms that can be directly targeted with this

method and illustrates them using the case-control study of Medicare patients with

acute kidney injuries. Section 5 analyzes the outcomes from this study. Section 6

extends the method to matching with variable ratio. Section 7 concludes with a

summary and a discussion.

2 Background on Mixed Integer Programming

For several decades, a combinatorial optimization problem, such as optimal matching

of cases to controls, was considered tractable if the most difficult problem of a given

size could be solved in a number of arithmetic steps that grows as a polynomial in the

size of the problem. The minimum total distance matching problem (the assignment

problem) and related “network” optimization problems are tractable in this sense,

whereas the more general mixed integer program (MIP) is not. No doubt for this

reason, statisticians used optimal assignment algorithms but not MIPs for matching.

The sharp line between tractable and intractable combinatorial problems has been

blurred in recent years.

In observational studies, the optimal assignment algorithm matches every case to

one or more controls to minimize the total sum of distances of the matched groups

(Rosenbaum 1989). While it is possible to solve this problem by means of the simplex

algorithm (due to the totally unimodular constraint matrix, which implies that all
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its square submatrices have a determinant equal to -1, 0 or 1, and thus that the

problem has integer basic solutions), there exist more specialized algorithms that

take advantage of its particular structure. One of them is the Hungarian method

due to Kuhn (1955), which can be modified to achieve a worst time bound of order

O(C3), where C is the number of potential controls, and which is equivalent to the

worst time required to multiply two C × C matrices in the customary way. An

often faster algorithm is the auction algorithm due to Bertsekas (1981). Using the

auction algorithm, optimal pair matching was made widely available to the statistical

community through the optmatch package in R by Hansen (2007).

On the other hand, mixed integer programming has been rarely used for matching

in observational studies. An exception is Li et al. (2001) who used penalty optimiza-

tion in the context of balanced risk set matching. However, during the last years

there have been important advances in linear programming (LP), which is the facil-

itating technology for solving MIPs (Bixby et al. 2000; Bertsimas and Weismantel

2005). Using LP as a tool, modern solvers integrate branch and bound, and cutting

plane algorithms to solve general MIPs. The branch and bound algorithm iteratively

partitions the solution space into smaller MIPs by rounding the solution of LP re-

laxations, and discards subsets of the candidate solutions by using bounds of the

optimized quantity. The cutting plane algorithm iteratively refines the feasible set

to find the convex hull of the mixed integer solutions. The logic behind integrating

these two algorithms is, on the one hand, to find a better approximation of the con-

vex hull and thus increase the chances that fewer partitions of the solution space are

needed with the branch and bound algorithm; and, on the other hand, to avoid the
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slow convergence rates of the addition too many constraints which present numerical

difficulties for solvers with the cutting plane algorithm (Bixby and Rothberg 2007;

Linderoth and Lodi 2010).

Besides using sophisticated branching and cutting plane generation strategies, the

basic components of modern MIP solvers are: presolving (which tightens the original

formulation of the problem); heuristics (which try to find good feasible solutions at

several stages of the solving process); and parallel implementation (which solves

independently several nodes of the branch-and-bound solution tree) (Linderoth and

Lodi 2010). These advances combined with greater computational power make of

mixed integer optimization a new tool for matching in observational studies.

3 A Mixed Integer Program for Optimal Match-

ing: Statement of the Problem

Let T = {t1, ..., tT} be the set of treated units or cases, and C = {c1, ..., cC}, the

set of potential controls, with T ≤ C. Define P = {p1, ..., pP} as the set of labels

of the P observed covariates. Each treated unit t ∈ T has a vector of observed

covariates xt = {xt ,p1 , ..., xt ,pP }, and each control c ∈ C has a similar vector xc =

{xc,p1 , ..., xc,pP }. Based on these covariates there is a distance 0 ≤ δt ,c <∞ between

treated and control units. We want to find an assignment α : T → C that matches

each treated unit to a number of different controls, while minimizing or constraining

several discrepancy measures between the empirical distributions of the observed
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covariates of the treated units and the matched controls.

Unlike the majority of optimal matching methods, which define these discrepancy

measures solely as a sum of distances between treated units and matched controls,

we express them as both this sum of distances and a number of specific covariate

imbalance terms. As we will see, these covariate imbalance terms can enter the

matching problem through the objective function to directly minimize imbalances

or via several constraints to directly constrain them. This approach allows us to

have more control over the covariate balancing process by explicitly optimizing or

constraining the criterion that will be used to judge the quality of the match, such as

differences in means after matching or differences in the entire empirical distributions

of the matched units for several covariates. This allows for a fine-grained adjustment

of the covariates in the design of an observational study.

To find the optimal assignment α∗(·) we introduce the decision variable at ,c , which is

1 if treated unit t is assigned to control c, and 0 otherwise. We solve the optimization

problem

minimize
a

∑
t∈T

∑
c∈C

δt ,cat ,c +
∑
i∈I

ωiµi (a) (1.1)

subject to
∑
c∈C

at ,c = m, t ∈ T (1.2)

∑
t∈T

at ,c ≤ 1, c ∈ C (1.3)

at ,c ∈ {0, 1}, t ∈ T , c ∈ C (1.4)

νj (a) ≤ εj , j ∈ J . (1.5)

(1)

In the objective function, (1.1),
∑

t∈T
∑

c∈C δt ,cat ,c is the total sum of distances be-
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tween treated units and matched controls, and
∑

i∈I ωiµi (a) is a weighted sum of

specific measures of covariate imbalance. In this second term the µi (·)’s are functions

that define the measures of covariate imbalance, and the ωi ’s are importance weights

that each of these measures receive. The argument of each µi (·) is a, the vector of

all decision variables at ,c . The specific form of each µi (·) will vary from problem to

problem depending on what aspects of covariate balance we want to optimize.

In the constraints, (1.2) requires that each treated unit is matched to m controls,

and (1.3), that each control is used at most once; (1.4) are integrality constraints.

All together, these constraints require matching with a fixed 1 : m ratio, but other

constraints can be written for matching with a variable ratio (this is discussed in

section 6). In the last set of constraints, (1.5), the νj (·)’s are measures of covariate

imbalance analogous to the µi (·)’s in (1.1), and the εj ’s are scalar tolerances that

define the maximum level of imbalance allowed for each νj (·). The constraints in (1.5)

force each measure of covariate imbalance νj (·) to be no greater than a given tolerance

εj , for all j ∈ J . Note that if both these constraints, (1.5), and the second term

of the objective function,
∑

i∈I ωiµi (a), were omitted, then the above optimization

problem would become a version of the optimal assignment problem commonly solved

in matching in observational studies. Having these additional constraints and extra

terms in the objective function will generally make the above problem a MIP.

With this MIP we have two ways of targeting covariate balance: through the ob-

jective function, by specifying covariate imbalance terms, µi (·), and giving them ap-

propriate weights, ωi ; and via additional constraints, defined by the νj (·)’s and their

corresponding tolerances, the εj ’s. Mathematically, it is the same to represent a co-
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variate imbalance term as µi (·) in the objective function or as νj (·) in the constraints,

however they yield different approaches to achieve balance. In the next section we

discuss both approaches and show how they can be used to achieve different forms

of covariate balance.

4 Objective Functions and Constraints to Achieve

Different Forms of Covariate Balance

4.1 Balancing univariate moments

As said in the review, by matching we attempt make the empirical distributions

of the observed covariates of the treated units and matched controls as similar as

possible. To accomplish this, a first thought is to balance the means of both groups.

For this let I ⊆ P denote a subset of the observed covariates and write

∑
i∈I

ωiµi (a) =
∑
i∈I

ωi

∣∣∣∣∣∑
t∈T

∑
c∈C

xc,iat ,c

mT
− xT ,i

∣∣∣∣∣ , (2)

where xT ,i is the mean of covariate i for the treated units. Here, (2) is the weighted

sum of the absolute treated-minus-control difference in means for the covariates in

I. To linearize (2) we introduce one additional decision variable zi for each absolute-
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value term, and solve

minimize
a,z

∑
t∈T

∑
c∈C

δt ,cat ,c +
∑
i∈I

ωizi

subject to
∑
c∈C

at ,c = m, t ∈ T

∑
t∈T

at ,c ≤ 1, c ∈ C

zi ≥
∑
t∈T

∑
c∈C

xc,iat ,c

mT
− xT ,i , i ∈ I

zi ≥ −
∑
t∈T

∑
c∈C

xc,iat ,c

mT
+ xT ,i , i ∈ I

at ,c ∈ {0, 1}, t ∈ T , c ∈ C.

(3)

Basically, this transformation forces each zi to be as close as possible to the largest

of the two bounds
∑

t∈T
∑

c∈C
xc,iat ,c
mT
− xT ,i and −

∑
t∈T
∑

c∈C
xc,iat ,c
mT

+ xT ,i , reducing

the difference in means after matching for the covariates in question. This kind

of transformation is common in linear optimization and in our setting it is used

repeatedly to minimize different covariate imbalance terms (see §§1.3 of Bertsimas

and Tsitsiklis 1997 for a discussion of linear optimization problems involving absolute

values).

We used this formulation in our case-control study to find an optimal pair match

that directly balanced the means of all the observed covariates. The results are sum-

marized in Table 1 below. In this table, the first set of columns presents the means

of the cases and controls before matching, showing that the two groups are quite

different in terms of all the covariates, especially eGFR, APACHE, risk, dysfunction
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and failure. The following set of columns shows the means of the cases and con-

trols but after a first match obtained by solving the standard assignment problem.

We observe an improvement on the balance of most of the covariates, however the

means of eGFR, APACHE, risk, dysfunction and failure are still quite far apart. We

improved the balance of these covariates by solving (3) with appropriate weights for

each of the absolute differences in means terms.

Broadly speaking the weights need to be large enough to minimize imbalances to a

satisfactory level. Of course the ideal values will depend on the problem at hand,

but general advice is to divide the distance matrix by its mean value, standardize

the covariates, and use weights equal to a tenth of the number of treated units. Like

this, a difference in means equal to one standard deviation would have a cost in

the objective function equivalent to matching a tenth of the treated units. After

matching, if covariate balance is not satisfactory then we can match again using

higher weights, directly targeting those covariates for which balance needs to be

improved. In general, smaller imbalances will be at the expense of a higher total

sum of distances, but in most applications covariate balance is the main goal of

matching. By using mixed integer programming for matching one has a tool to

regulate this trade-off.

Following these guidelines, we gave a weight of 10 to each term corresponding to

the differences in means of eGFR, APACHE, risk, dysfunction and failure. The

third set of columns presents these results, showing that all the differences in means

are considerably lower and that only renal failure still has an absolute standardized

difference in means larger than 0.1. We corrected this remaining imbalance with a
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third match that increased the weight of the difference in means of failure to 25. In

the fourth set of columns we show the results of this match and note that all the

means are now very close.

Mixed integer programming of the form (1) directly optimizes covariate balance, and

by doing so, it achieves greater covariate balance in a few steps. In fact, in only three

steps we have reduced all the standardized differences in means to 0.09 or less. This

is satisfactory by common standards, however by choosing the weights more carefully

we can find an even tighter match and actually reduce all the standardized differences

in means to 0.00. The weights used in this fourth match and the resulting means are

shown in the fifth set of columns of Table 1. In the spirit of Love (2004), Figure 1

shows the absolute standardized differences in means for these different matches. As

we can see, we have obtained maximum bias reduction for all the covariates.

An alternative approach to balancing the means of the covariates is to force the ab-

solute treated-minus-control difference in means to be less or equal than pre-specified

levels or tolerances. For this let J denote a subset of the observed covariates and

write ∣∣∣∣∣∑
t∈T

∑
c∈C

xc,jat ,c

mT
− xT ,j

∣∣∣∣∣ ≤ εj , j ∈ J . (4)

In a similar way to (2) we can linearize these constraints by requiring each of the

differences in means
∑

t∈T
∑

c∈C
xc,jat ,c

mT
− xT ,j and xT ,j −

∑
t∈T
∑

c∈C
xc,jat ,c

mT
to be less

or equal than the tolerance εj for all j ∈ J . In our case control study, by letting

εj = 0.04 for all j ∈ J where J is the set of labels of all the covariates we can force

all the standardized differences in means to be approximately zero.
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Using additional constraints and choosing tolerances has advantages and disadvan-

tages relative to including extra terms in the objective function and picking weights.

The constraint approach has the benefit of interpretability: in general it is more

meaningful to define a maximum allowable level of imbalance than a weight. Also,

the resulting problem is simpler in principle: it is a pure integer programming prob-

lem whereas the objective function approach yields a mixed integer one. However,

the constraint approach has the drawback that specifying very small tolerances can

yield an infeasible problem, whereas with the objective function approach for any

choice of weights there should be a feasible solution. In any case, the two approaches

are not mutually exclusive, as one can use extra terms and weights in the objective

function to balance one set of measures, and at the same time impose additional

constraints with tolerances to force balance on another set. Besides, from a prac-

tical standpoint with very difficult matches it might be useful to start by finding

the matches with weights and then switching to tolerances or vice versa. Since the

mathematical expressions of the covariate imbalance terms are similar with both

approaches, in what follows for each covariate balance form we are going to discuss

only one of them.

Generalizing our approach for balancing the means through the objective function, we

can minimize or constrain the differences in the rth moment of a subset of covariates

I if we let ∑
i∈I

ωiµi (a) =
∑
i∈I

ωi

∣∣∣∣∣∑
t∈T

∑
c∈C

xrc,iat ,c

mT
− xrT ,i

∣∣∣∣∣ , (5)

where xrT ,i is the rth moment of covariate i for the treated units, and proceed
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analogously. Like this, with the proposed MIP formulation for matching we can

simultaneously minimize the differences in means, variances and skewness.

4.2 Balancing multivariate moments

We can minimize the differences in correlations of two covariates, p1 and p2, by

letting

∑
i∈I

µi (a) = ω1

∣∣∣∣∣∑
t∈T

∑
c∈C

xc,p1at ,c

mT
− xT ,p1

∣∣∣∣∣+ ω2

∣∣∣∣∣∑
t∈T

∑
c∈C

x2c,p1at ,c

mT
− x2T ,p1

∣∣∣∣∣+
ω3

∣∣∣∣∣∑
t∈T

∑
c∈C

xc,p2at ,c

mT
− xT ,p2

∣∣∣∣∣+ ω4

∣∣∣∣∣∑
t∈T

∑
c∈C

x2c,p2at ,c

mT
− x2T ,p2

∣∣∣∣∣+ (6)

ω5

∣∣∣∣∣∑
t∈T

∑
c∈C

(xc,p1 · xc,p2)at ,c

mT
− (x·,p1 · x·,p2)T

∣∣∣∣∣ ,

where x2T ,p1 and x2T ,p2 are the second moments of covariates p1 and p2 for the treated

units, and (x·,p1 · x·,p2)T is the mean of the cross product of covariates p1 and p2 also

for the treated units. From here we can proceed as in subsection 4.1 linearizing the

resulting objective function. The extension to other multivariate moments possibly

involving more covariates is analogous.

We used this formulation in our case-control study to minimize the differences in

correlations of age and emergency admission. In the controls, before matching, this

correlation is equal to 0.037, whereas in the cases it is equal to -0.068. Our goal here
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was to find a match such that the correlation between age and emergency admission

is as close as possible to -0.068. In a match that directly balanced the means of all

the covariates this correlation resulted in a value of 0.029. However, if in addition

to the terms for the mean differences we use the previous terms for minimizing

differences in correlations, with weights equal to (10, 10, 10, 10, 25), the resulting

value is exactly -0.068. In this way we adjusted perfectly for the correlation of the

two covariates.

4.3 Balancing quantiles and Kolmogorov-Smirnov statistics

It is possible to explicitly balance the quantiles of the distributions of the treated

units and matched controls by defining as auxiliary covariates the indicators of the

quantiles of the treated units and then minimizing their differences in means as in

subsection 4.1.

Similarly, we can also minimize a coarse version of the Kolmogorov-Smirnov (K-

S) statistic between the empirical distributions of the treated units and matched

controls for covariate p if we write

µi (a) = ωi sup
gp∈Gp

∣∣FT ,p(gp)− FC,p(gp,a)
∣∣ , (7)

where FT ,p(·) and FC,p(·) are the empirical cumulative distribution functions of the

treated units and matched controls for covariate p, and Gp = {g1, ..., gGp} is a grid of

Gp quantile values in the treated group for covariate p that defines the cumulative
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proportions Hp = {h1, ..., hGp}. For instance if Gp are the deciles of the treated units

for covariate p then Hp = {0.1, 0.2, ..., 1}. Using (7), the problem can be simplified

to one of minimizing the difference in means after matching by defining as auxiliary

covariates the indicators of the quantiles defined by Gp plus an auxiliary decision

variable zi . To minimize the Kolmogorov-Smirnov statistic, zi has to be larger than

the differences in means for each of the auxiliary covariates for the quantiles; this

is

ωiµi (a) = ωi sup
gp∈Gp

∣∣FT ,p(gp)− FC,p(gp,a)
∣∣

= ωizi (8)

≥

∣∣∣∣∣hgp −
∑
t∈T

∑
c∈C

1{xc,p<gp}at ,c

mT

∣∣∣∣∣ ∀gp ∈ Gp.

This condition is equivalent to the constraints ωizi ≥ hgp −
∑

t∈T
∑

c∈C
1{xc,p<gp}at ,c

mT

and ωizi ≥ −hgp +
∑

t∈T
∑

c∈C
1{xc,p<gp}at ,c

mT
, for all gp ∈ Gp. A very similar trans-

formation can be applied if the covariate imbalance term for the K-S statistic,

supgp∈Gp

∣∣FT ,p(gp)− FC,p(gp,a)
∣∣, is included in the constraints of our matching prob-

lem instead of the objective function.

We used this approach in the case-control study to balance the entire distribution

of eGFR. For each decile of the distribution of eGFR for the cases, we constrained

the proportion of controls from different deciles to be less or equal than 0.01. The

results are summarized in Figure 2, which shows the empirical cumulative distribu-

tions functions of eGFR for the cases, all the potential controls, and three different
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matches. The match in the upper-right plot (match 1) was obtained through the clas-

sical assignment algorithm; the match in the lower-left plot (match 4) used mixed

integer programming to constrain the differences in means of all the covariates to

0; and the match in the lower lower-right plot (match 5) extended this last MIP to

constrain both the differences in means of all the covariates and the K-S statistic for

eGFR. We observe that the empirical cumulative distributions functions of eGFR

for the cases and the all potential controls are quite far apart before matching, but

that match 1 finds a subset of controls for which the corresponding distribution is

much closer. Balancing all the differences in means as in match 4 improves the lower

part of the distribution function, but there seems to be room for improvement in

the middle and upper parts. In fact, for match 5 the distribution function of eGFR

for the matched controls is almost on top of the corresponding distribution of the

cases.

It is worth mentioning that in other observational studies this continuous covari-

ate can be the propensity score. This formulation makes it possible to capitalize

the balancing property of propensity scores, which says that if there is imbalance

on the observed covariates then there is also be imbalance on the propensity score

(Rosenbaum and Rubin 1983; Stuart 2010). Note that in the current example there

are no propensity scores because it is a case-control study (Joffe and Rosenbaum

1999).
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4.4 Balancing constraints: exact and near-exact matching;

fine and near-fine balance

In the original problem, in addition to the network constraints it is possible to include

other constraints for exact and near-exact matching, and fine and near-fine balance.

Let x·,p be a nominal covariate taking integer values b ∈ B. To match exactly for

x·,p we can add the constraints

∑
t∈T

∑
c∈C

at ,c1{xt ,p=b}
⋂
{xc,p=b} = m

∑
t∈T

1{xt ,p=b} ∀b ∈ B, (9)

which say that every treated unit has to be matched to m controls with the same

values for covariate x·,p.

Matching exactly for all the values of x·,p is the ideal thing to do, but this is not

always possible. Indeed, for given b there might be more treated units than potential

controls, making (9) infeasible. To deal with these cases we can use near-exact

matching, which can be defined as the optimal matching obtained by adding the

constraints

|
∑
t∈T

∑
c∈C

at ,c1{xt ,p=b}
⋂
{xc,p=b} −m

∑
t∈T

1{xt ,p=b}| ≤ ξ ∀b ∈ B, (10)

where ξ is the maximum deviation allowed from exact matching for covariate x·,p.

For example, if ξ = 2 we allow the total number of matched controls to be at most

two units away from the total number of treated units with value b.
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Note that exact matching is typically done by dividing the data set into |B| mutually

exclusive and exhaustive parts, obtaining the matches for each of these parts, and

then combining these matches. Here instead we are matching exactly by solving

a single optimization problem. Computationally this can be very expensive so a

better alternative might be to divide the data set and proceed as mentioned. On the

other hand it is not possible to do near-exact matching by solving separate problems

because the optimal deviation from exact balance it is not known in advance. As

seen, our MIP offers a straightforward method to do this.

In the spirit of Rosenbaum et al. (2007) and Yang et al. (2012), it is also possible to

match with fine balance and near-fine balance by adding the constraints

∑
t∈T

∑
c∈C

at ,c1{xc,p=b} = m
∑
t∈T

1{xt ,p=b} ∀b ∈ B (11)

and

|
∑
t∈T

∑
c∈C

at ,c1{xc,p=b} −m
∑
t∈T

1{xt ,p=b}| ≤ ξ ∀b ∈ B, (12)

respectively.

Following Yang et al. (2012), fine and near-fine balance may be used to balance a

nominal variable with many levels, a rare binary variable, or the interaction of several

nominal variables, all of which are difficult to control using a distance. With current

matching methods fine balance is achieved by augmenting the distance matrix. Ba-

sically, for every control that needs to be removed to achieve fine balance, one extra

row with a specific pattern of values equal to zero or infinity is added (see §16 of
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Rosenbaum 2010 for details). However, adding extra rows allows for fine balance for

one covariate only, or for the interaction of more than one of them, but not for each

of them separately which is considerably more restrictive. On the other hand, with

the proposed method, since we are adding one constraint for every nominal covariate

that we want to fine balance, we can achieve fine balance for more than one covari-

ate. For the first time, this permits to balance perfectly the marginal distributions

of several nominal covariates.

We use these constraints in our case-control study to match exactly for the specific

surgical procedures, and with fine balance for both the 47 hospitals in the study and

the interaction of renal dysfunction and renal failure. We use these constraints while

minimizing the differences in means and in the Kolmogorov-Smirnov statistic for

eGFR as in match 5. Table 2 shows that the marginal distributions of the surgical

procedures are perfectly balanced, while cases are matched to controls within the

same surgical procedure. In Table 3 we observe that the 47 hospitals are perfectly

balanced, but we are not constraining a case from a given hospital to be matched to

a control from the same hospital. Table 4 shows a similar pattern for the interaction

of renal dysfunction and renal failure.

4.5 Using a specific subset of the controls

As discussed by Yang et al. (2012) in some cases it might be desirable to use all

the controls with certain covariate values, especially if these controls are close to the

treated units in terms of the covariates and they are relatively scarce in the control
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sample. We can force a particular subset of controls to be used if in addition to the

network constraints we include

∑
t∈T

∑
c∈C

at ,c1{c∈S} = |S|, (13)

where S is the subset of indexes of controls to be used.

4.6 Putting it all together

Under the general framework of (1) all the previous features can be combined and

used easily with the new mipmatch package in R. This package makes use of IBM’s op-

timization software CPLEX through its R interface Rcplex (Corrada 2011). CPLEX

is free for academics and students and can be downloaded from the IBM Academic

Initiative at https://www.ibm.com/developerworks/university/academicinitiative/.

mipmatch can be downloaded from the webpage of the author at www-stat.wharton.

upenn.edu/~josezubi/ with documentation that describes the steps for installing

CPLEX and calling it from R.

All the matches in this paper were obtained using mipmatch on a laptop with a 2.53

GHz Inter Core 2 Duo processor and a Mac OS X v10.6 Snow Leopard operating

system. The final match, which (i) matched exactly for surgical procedure, (ii) finely

balanced the marginal distributions for the nominal covariates for the 47 hospitals in

the study and for the interaction of renal dysfunction and renal failure, (iii) explicitly

balanced the means of the 10 covariates, and (iv) balanced the entire empirical dis-
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tribution of eGFR, took only 1 minute to be solved. As was said in the introduction,

this sample consists of 108 cases and 1650 controls, and corresponds to the patients

that had colectomy for cancer in the OBSOS study. If one extended this sample to

the patients in OBSOS that underwent any type of colectomy or any type of surgery

procedure, the sample sizes would increase to 182 cases and 2437 controls, and 283

cases and 4356 controls, correspondingly. In these problems the running times for

similar matches were 12 and 18 minutes, respectively.

Of course computing times in general will depend on the data at hand and the form

of covariate balance that one wants to achieve. Nonetheless, general advice to speed

the matching is to split the problem into smaller matching problems by categories of

the covariates for exact matching. Since exact matching forces units to be matched

within the same categories of the covariates, solving a single problem or splitting

them into several smaller ones and then putting them together is almost equivalent.

For example, in the previous match that took 18 minutes we split into three smaller

problems by the categories of surgery taking 10 seconds, 1 minute and 1 minute

each.

Finally it is worth noting that in all these examples the ratio of potential controls

to cases was quite high, ranging approximately between 13-to-1 and 17-to-1. In

many problems in practice, however, this ratio is lower and there is a clear trade-

off between balancing one set of covariates and others. In such problems mipmatch

provides a useful tool to regulate that trade-off by directly targeting covariate by

choosing weights or tolerances, and finding a satisfactory match.
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5 Results

In this section we take a brief look at potential risk factors for acute kidney injury

following colectomy for cancer. Our central question was whether obese patients

are at greater risk of acute kidney injury. The results suggest that they are not.

Figure 3 is a quantile-quantile plot of BMI for cases and matched controls. If the

distributions of BMIs were equal for cases with acute kidney injury and controls,

then the points would lie on the 45 degree line. In the figure, there seems to be a

departure from this line for BMIs with values smaller than 21, and for higher BMIs

with values between 32 and 36, but this association is not significant. In fact, for

Wilcoxon’s signed rank test with continuity correction the point estimate is -0.18,

with 95 percent confidence interval of [-1.45, 1.80]. (For the three categories of obesity

given by BMI ≥ 35, 18 ≤ BMI < 35 and BMI < 18, McNemar’s generalized p-value

is equal to 0.34; see §13 of Fleiss et al. 2003 for a presentation of McNemar’s test.)

On the BMI scale, the previous confidence interval is very narrow around zero: one

unit of BMI is approximately five percent of the weight of a person. We also tested

for differences in dispersion, finding that they are not significant. In this way, there

is no sign that BMI predicts acute kidney injury independently of other risk factors.

After matching, it is fairly easy to see this result in Figure 3, whereas with a model

it is less easy to see this relation so clearly. Therefore, from a medical standpoint

our results show that it is better to characterize the risk of acute kidney injury in

terms of factors like the APACHE score, eGFR and the histories of renal problems,

because after we adjust for them BMI is irrelevant.
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Other risk factors of interest in the study were hypotension and sepsis complications.

For hypotension, McNemar’s test yields a p-value equal to 0.00004, whereas for sepsis

complication it is equal to 0.0003. Thus, it is important to account for hypotension

and sepsis complications in characterizing the risk of acute kidney injury following

colectomy for cancer. Further analysis will be conducted in the future to determine

the association of other risk factors and acute kidney injury after other surgical

procedures, such as colectomy without cancer, thoracotomy, hip replacement without

fracture, and knee replacement.

6 Using a variable matching ratio

The MIP presented in section 3 can be extended to accommodate other matching

structures such as matching with a variable ratio. For this we use the entire number

introduced by Yoon (2009), which is the optimal number of controls that should

be matched to a treated unit. Extending the notation of (1), we denote the entire

number for treated unit t as mt , and calculate it as mt = 1−e(xt )
e(xt )

where e(xt ) is

the propensity score for treated unit t . The entire number has an intuitive inter-

pretation: if e(xt ) = 1/3 then treated unit t should be matched to mt = 1−1/3
1/3

= 2

controls.

Using the entire number, we can modify the objective function and the constraints

of our MIP to match with a variable ratio. In the objective function we minimize∑
t∈T
∑

c∈C
δt ,c
mt
at ,c +

∑
i∈I ωiµi (a,mt ), where the distances are now normalized by the

entire number and the covariate imbalance terms now are also a function of mt (in
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a similar way to the distances, the covariate summary measures of the treated units

are also normalized by mt instead of the fixed number m). In the constraints, we

replace (1.2) by
∑

c∈C at ,c = mt , t ∈ T , and modify (1.5) to have different balancing

constraints for each stratum of mt . In this way, following Yoon (2009), within each

stratum of mt we would match with a fixed 1 : mt ratio and, say, use fine balance

within each stratum to produce a weighted version of fine balance. In the analysis,

we would take each treated unit t minus the average of its mt controls for each

t ∈ T .

7 Summary and Discussion

For many years, mixed integer programming problems have been regarded as in-

tractable and impractical problems in statistics. However, as we have seen in this

paper this has changed with modern computers and powerful solvers. Although from

the viewpoint of computational complexity general mixed integer programming prob-

lems are still labeled as intractable, they have become practical to solve in typical

observational studies, such as the case-control study of kidney failure after surgery.

As a matter of fact, we can solve matching problems of comparable size in com-

parable time to those solved by network optimization algorithms, but with several

advantages from the perspective of balancing the covariates.

As we have seen in this paper, by using mixed integer programming we can directly

balance several features of the marginal and joint distributions of the treated units

and matched controls, whereas with network algorithms we hope to attain this in-
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directly by minimizing the total sum of distances between units. One way of trying

to balance these features without minimizing distances is using propensity scores,

but they produce stochastic balance (like randomization) rather than forcing pre-

cise balance; in particular, stochastic balance tends to be inadequate with nominal

covariates that have many categories (Zubizarreta et al. 2011). Further, propensity

scores don’t exist in case-control studies like the one discussed in this paper. The

proposed method allows us to explicitly optimize the criteria that will be used to

evaluate the quality of the match, and it is possible to do this both in observational

studies of treatments and case-control studies.

As we have discussed, we can use mixed integer programming to directly constrain

or minimize differences in univariate moments, such as means, variances and skew-

ness, and achieve maximum bias reduction on the observed covariates. In addition

we can make the entire distributions of the covariates close by constraining or mini-

mizing differences quantiles or K-S statistics. Furthermore we can use mixed integer

programming to directly balance features of joint distributions by constraining or

minimizing differences in multivariate moments, such as correlations between covari-

ates.

While balancing several of these measures, it is also possible to impose constraints

for exact and near-exact matching, and fine and near-fine balance for more than one

nominal covariate, whereas network algorithms can finely or near-finely balance only

a single nominal variable.

Each of these features is new in the context of optimal matching, but they can be
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combined and pursued simultaneously by solving a single mixed integer programming

problem, as implemented in the new R package mipmatch.

From a statistical perspective, one of the benefits of using mixed integer programming

for matching is related to model-based adjustments, which are commonly used in

observational studies of treatments and case-control studies. Rubin (1979) justifies

matching as a method that can be usefully combined with model-based adjustments

to estimate treatment effects. Specifically, Rubin (1979) finds that model-based

adjustments of matched pair differences are robust to model misspecification. If the

matched samples are more closely balanced, the estimates tend to be more robust

to model misspecification. Also, as discussed in Snedecor and Cochran (1980, page

368), when a covariance adjustment model is used for the outcome the estimate is

more precise when matches are more closely balanced. Along these lines Greevy

et al. (2004) show that covariance adjustment is more efficient when the covariates

are more nearly balanced.

Another statistical benefit of using mixed integer programming for matching is that

it allows us to emphasize in the matched pairs those covariates of greater impor-

tance, and as a result make statistical tests less conservative. For example, based on

analysis from separate data sets it might be possible to determine that some covari-

ates produce higher Spearman correlation between the outcomes of matched units.

The results in Hollander et al. (1974) and Lam and Longnecker (1983) suggest that

matching the treated and controls units closely on these covariates tends to make

statistical tests less conservative. By using mixed integer programming for matching

it is possible to achieve this by emphasizing those covariates that are highly predic-
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tive of the outcome in the matched pairs (or matched groups), while also balancing

several covariates on aggregate.

Abadie and Imbens (2006) study asymptotic properties of nearest-neighbor matching

estimators commonly used in economics in which the same control is used as a

neighbor of multiple treated units, finding that control for many continuous covariates

is difficult when nearest-neighbor matching with replacement is used. In contrast,

matching without replacement using mixed integer programming can balance many

continuous covariates using the K-S distance, while permitting close matches on some

key covariates, perhaps the propensity score; see Rosenbaum and Rubin (1983) and

Dehejia and Wahba (1999) for a discussion of propensity scores.

From a practical standpoint, this method eliminates the guesswork involved in cur-

rent matching methods, and offers a controlled and systematic way of improving

covariate balance by focusing the matching efforts on certain covariates, measures of

imbalance and corresponding tolerances or weights.
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Table 2: Exact matching for the specific surgery procedure.
Procedure Cases Controls
Left colectomy 32 32
Other colectomy 14 14
Right colectomy 62 62
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Figure 1: Balancing the means of the observed covariates. Match 1 uses the assign-
ment algorithm. Match 2 uses MIP to directly balance the means with weights ω
= (0, 0, 0, 0, 0, 10, 10, 10, 10, 10). Matches 3 and 4 also use MIP improving upon
match 2 with weights ω = (0, 0, 0, 0, 0, 10, 10, 10, 10, 25) and ω = (10, 0, 15, 15, 0,
10, 10, 10, 10, 50), respectively. In match 4 the differences in means of all the covari-
ates are reduced to zero. This maximum bias reduction can also be obtained using
MIP and forcing the mean imbalances to less or equal than very small tolerances.
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Figure 2: Balancing the K-S statistic for eGFR. Match 1 uses the assignment algo-
rithm. Match 4 uses MIP to directly balance the means of all the covariates through
the constraints with tolerances. Match 5 extends match 4 to balance both the means
of all the covariates and the K-S statistic for eGFR using the constraint approach.
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Figure 3: qq-plot of BMI for cases and matched controls.
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Table 3: Fine balance for hospitals.
Hospital ID Cases Controls Hospital ID Cases Controls
1 3 3 24 3 3
2 3 3 25 5 5
3 3 3 26 0 0
4 0 0 27 1 1
5 4 4 28 0 0
6 1 1 29 3 3
7 0 0 30 1 1
8 0 0 31 3 3
9 3 3 32 3 3
10 1 1 33 1 1
11 3 3 34 1 1
12 1 1 35 5 5
13 0 0 36 10 10
14 7 7 37 4 4
15 3 3 38 2 2
16 1 1 39 1 1
17 3 3 40 1 1
18 4 4 41 2 2
19 4 4 42 1 1
20 5 5 43 1 1
21 1 1 44 2 2
22 4 4 45 0 0
23 4 4 47 0 0

Table 4: Fine balance for the interaction of renal dysfunction and renal failure.
Renal commorbidity Cases Controls
Dysfunction = no, Failure = no 63 63
Dysfunction = yes, Failure = no 11 11
Dysfunction = no, Failure = yes 9 9
Dysfunction = yes, Failure = yes 25 25
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