Machine Learning
with ML.NET

Getting started with Microsoft ML.NET to implement popular
machine learning algorithms in C#

Packt

www.packtcom
Jarred Capellman

Hands-On Machine Learning
with ML.NET

Getting started with Microsoft ML.NET to implement popular
machine learning algorithms in C#

Jarred Capellman

BIRMINGHAM - MUMBAI

Hands-On Machine Learning with ML.NET

Copyright © 2020 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Pravin Dhandre
Acquisition Editor: Devika Battike
Content Development Editor: Joseph Sunil
Senior Editor: David Sugarman

Technical Editor: Utkarsha Kadam

Copy Editor: Safis Editing

Project Coordinator: Aishwarya Mohan
Proofreader: Safis Editing

Indexer: Manju Arasan

Production Designer: Aparna Bhagat

First published: March 2020
Production reference: 1260320
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78980-178-1

www.packt.com

To my amazing wife, Amy, for completing me.

— Jarred Capellman

Packt

Packt.com

Subscribe to our online digital library for full access to over 7,000 books and videos, as well
as industry leading tools to help you plan your personal development and advance your
career. For more information, please visit our website.

Why subscribe?

e Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Fully searchable for easy access to vital information

Copy and paste, print, and bookmark content

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.packt .com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
customercare@packtpub.com for more details.

At www.packt . com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

Contributors

About the author

Jarred Capellman is a Director of Engineering at SparkCognition, a cutting-edge artificial
intelligence company located in Austin, Texas. At SparkCognition, he leads the engineering
and data science team on the industry-leading machine learning endpoint protection
product, DeepArmor, combining his passion for software engineering, cybersecurity, and
data science. In his free time, he enjoys contributing to GitHub daily on his various projects
and is working on his DSc in cybersecurity, focusing on applying machine learning to
solving network threats. He currently lives just outside of Austin, Texas, with his wife,
Amy.

To my wife, Amy, who supported me through the nights and weekends — I devote this book
to her.

About the reviewer

Andrew Greenwald holds an MSc in computer science from Drexel University and a BSc in
electrical engineering with a minor in mathematics from Villanova University. He started
his career designing solid-state circuits to test electronic components. For the past 25 years,
he has been developing software for IT infrastructure, financial markets, and defense
applications. He is currently applying machine learning to cybersecurity, developing
models to detect zero-day malware. Andrew lives in Austin, Texas, with his wife and three
sons.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

Table of Contents

Preface

Section 1: Fundamentals of Machine Learning and

ML.NET

Chapter 1: Getting Started with Machine Learning and ML.NET
The importance of learning about machine learning today

The model building process
Defining your problem statement
Defining your features
Obtaining a dataset
Feature extraction and pipeline
Model training
Model evaluation

Exploring types of learning
Supervised learning
Unsupervised learning

Exploring various machine learning algorithms

Binary classification
Regression
Anomaly detection
Clustering
Matrix factorization
What is ML.NET?
Technical details of ML.NET
Components of ML.NET
Extensibility of ML.NET
Summary

Chapter 2: Setting Up the ML.NET Environment
Setting up your development environment
Installing Visual Studio
Installing .NET Core 3
Creating a process
Creating your first ML.NET application
Creating the project in Visual Studio
Project architecture
Running the code
The RestaurantFeedback class
The RestaurantPrediction class

11
12
12
13
13
14
14
14
15
15
15
16
16
16
17
17
17
18
19
20
22

23
23
24
25
26
26
27
30
31
31
33

Table of Contents

The Trainer class 33

The Predictor class 37

The BaseML class 38

The Program class 39

Running the example 40

Evaluating the model 41

Summary 42
Section 2: ML.NET Models

Chapter 3: Regression Model 44

Breaking down regression models 44

Choosing the type of regression model 45

Choosing a linear regression trainer 46

Choosing a logistic regression trainer 46

Creating the linear regression application 47

Diving into the trainer 47

Exploring the project architecture 48

Diving into the code 49

The ExtensionMethods class 50

The EmploymentHistory class 50

The EmploymentHistoryPrediction class 51

The Predictor class 51

The Trainer class 52

The Program class 54

Running the application 55

Creating the logistic regression application 57

Exploring the project architecture 57

Diving into the code 59

The FeatureExtractor class 59

The Filelnput class 60

The FilePrediction class 60

The BaseML class 61

The Predictor class 63

The Trainer class 63

The Program class 64

Running the application 65

Evaluating a regression model 66

Loss function 66

Mean squared error 67

Mean absolute error 67

R-squared 68

Root mean squared error 68

Summary 69

Chapter 4: Classification Model 70

Breaking down classification models 70

[ii]

Table of Contents

Choosing a classification trainer 71
Creating a binary classification application 72
Diving into the trainer 72
Exploring the project architecture 73
Diving into the code 74
The Carlnventory class 75
The CarlnventoryPrediction class 75
The Predictor class 76
The Trainer class 77
The Program class 79
Running the application 80
Creating a multi-class classification application 81
Diving into the trainer 81
Exploring the project architecture 82
Diving into the code 83
The Email class 84
The EmailPrediction class 84
The Predictor class 85
The Trainer class 85
Running the application 87
Evaluating a classification model 88
Accuracy 89
Area Under ROC Curve 89

F1 Score 89
Area Under Precision-Recall Curve 89
Micro Accuracy 90
Macro Accuracy 90
Log Loss 90
Log-Loss Reduction 90
Summary 91
Chapter 5: Clustering Model 92
Breaking down the k-means algorithm 92
Use cases for clustering 92
Diving into the k-means trainer 93
Creating the clustering application 94
Exploring the project architecture 95
Diving into the code 96
The Constants class 97
The BaseML class 97
The FileTypes enumeration 98
The FileData class 98
The FileTypePrediction class 101
The FeatureExtractor class 101
The Predictor class 102
The Trainer class 104

[iii]

Table of Contents

The Program class

Running the application
Evaluating a k-means model

Average distance

The Davies-Bouldin Index

Normalized mutual information
Summary

Chapter 6: Anomaly Detection Model
Breaking down anomaly detection
Use cases for anomaly detection
Diving into the randomized PCA trainer
Diving into time series transforms
Creating a time series application
Exploring the project architecture
Diving into the code
The NetworkTrafficHistory class
The NetworkTrafficPrediction class
The Predictor class
The Trainer class
The Program class
Running the application
Creating an anomaly detection application
Exploring the project architecture
Diving into the code
The Constants class
The LoginHistory class
The LoginPrediction class
The Predictor class
The Trainer class
Running the application
Evaluating a randomized PCA model
Area under the ROC curve
Detection rate at false positive count
Summary

Chapter 7: Matrix Factorization Model
Breaking down matrix factorizations
Use cases for matrix factorizations
Diving into the matrix factorization trainer
Creating a matrix factorization application
Exploring the project architecture
Diving into the code
The MusicRating class
The MusicPrediction class
The Predictor class

105
106
108
108
108
109
109

110
110
111
111
112
113
113
115
115
116
116
117
118
119
120
120
122
122
123
124
124
125
127
128
128
129
130

131
131
132
132
133
133
135
135
136
136

[iv]

Table of Contents

The Trainer class 137
The Constants class 139
Running the application 139
Evaluating a matrix factorization model 141
Loss function 141
MSE 142
MAE 142
R-squared 143
RMSE 143
Summary 144
Section 3: Real-World Integrations with ML.NET
Chapter 8: Using ML.NET with .NET Core and Forecasting 146
Breaking down the .NET Core application architecture 147
.NET Core architecture 147
.NET Core targets 148
.NET Core future 148
Creating the stock price estimator application 149
Exploring the project architecture 149
Diving into the code 151
The ProgramActions enumeration 152
The CommandLineParser class 152
The BaseML class 154
The StockPrediction class 155
The StockPrices class 155
The Predictor class 156
The Trainer class 157
The ProgramArguments class 159
The Program class 160
Running the application 161
Exploring additional production application enhancements 162
Logging 162
Utilizing Reflection further 162
Utilizing a database 162
Summary 163
Chapter 9: Using ML.NET with ASP.NET Core 164
Breaking down ASP.NET Core 164
Understanding the ASP.NET Core architecture 165
Controllers 165
Models 165
Views 165
Blazor 166
Creating the file classification web application 167
Exploring the project architecture 167

[v]

Table of Contents

Diving into the library 170
The FileClassificationResponseltem class 170

The FileData class 172

The FileDataPrediction class 173

The Converters class 174

The ExtensionMethods class 174

The HashingExtensions class 176

The FileClassificationFeatureExtractor class 176

The FileClassificationPredictor class 178

The FileClassificationTrainer class 179

Diving into the web application 180
The UploadController class 180

The Startup class 182

The Index.razor file 183

Diving into the trainer application 184
The ProgramArguments class 184

The ProgramActions enumeration 185

The Program class 185
Running the trainer application 186
Running the web application 187
Exploring additional ideas for improvements 188
Logging 188
Utilizing a caching layer 189
Utilizing a database 189
Summary 189
Chapter 10: Using ML.NET with UWP 190
Breaking down the UWP architecture 190
Views 192
Models 192
View Models 192
Creating the web browser classification application 193
Exploring the project architecture 193
Diving into the library 195
The Constants class 196

The WebPageResponseltem class 197

The Converters class 197

The ExtensionMethods class 198

The WebPagelnputltem class 198

The WebPagePredictionltem class 199

The WebContentFeatureExtractor class 199

The WebContentPredictor class 200

The WebContentTrainer class 201

Diving into the UWP browser application 202
The MainPageViewModel class 203
MainPage.xaml 206
MainPage.xaml.cs 207

Diving into the trainer application 209

[vi]

Table of Contents

The ProgramArguments class 210
The Program class 210
Running the trainer application 211
Running the browser application 213
Additional ideas for improvements 214
Single-download optimization 215
Logging 215
Utilizing a database 215
Summary 216
Section 4: Extending ML.NET
Chapter 11: Training and Building Production Models 218
Investigating feature engineering 219
PNG image files with embedded executables 220
Creating a PNG parser 221
Obtaining training and testing datasets 224
Creating your model-building pipeline 225
Discussing attributes to consider in a pipeline platform 226
Exploring machine learning platforms 227
Azure Machine Learning 227
Apache Airflow 229
Apache Spark 230
Summary 231
Chapter 12: Using TensorFlow with ML.NET 232
Breaking down Google's Inception model 232
Creating the WPF image classification application 233
Exploring the project architecture 234
Diving into the WPF image classification application 236
The MainWindowViewModel class 237
The MainWindow.xaml class 239
The MainWindow.xaml.cs file 241
The BaseML class 242
The ImageDatalnputltem class 242
The ImageDataPredictionltem class 243
The ImageClassificationPredictor class 243
Running the image classification application 245
Additional ideas for improvements 246
Self-training based on the end user's input 246
Logging 247
Utilizing a database 247
Summary 248
Chapter 13: Using ONNX with ML.NET 249
Breaking down ONNX and YOLO 249
Introducing ONNX 249

[vii]

Table of Contents

The YOLO ONNX model 250
Creating the ONNX object detection application 252
Exploring the project architecture 252

Diving into the code 253

The DimensionsBase class 254

The YoloBoundingBox class 254

The MainWindow.xaml file 255

The ImageClassificationPredictor class 256

The MainWindowViewModel class 258

Running the application 259
Exploring additional production application enhancements 260
Logging 261

Image scaling 261
Utilizing the full YOLO model 261
Summary 262
Other Books You May Enjoy 263
Index 266

[viii]

Preface

Machine learning (ML) is widely used in many industries, such as science, healthcare, and
research and its popularity is only growing. In March 2018, Microsoft introduced ML.NET
to help .NET enthusiasts to work with ML. With this book, you'll explore how to build
ML.NET applications with the various ML models available using C# code.

The book starts by giving you an overview of ML and the types of ML algorithms used,
along with covering what ML.NET is and why you need it to build ML apps. You’'ll then
explore the ML.NET framework, its components, and APIs. The book will serve as a
practical guide to helping you build smart apps using the ML.NET library. You’ll gradually
become well-versed in how to implement ML algorithms such as regression, classification,
and clustering with real-world examples and datasets. Each chapter will cover the practical
implementation, showing you how to implement ML within .NET applications. You'll also
learn how to integrate TensorFlow into ML.NET applications. Later, you'll discover how to
store the regression model housing price prediction results in the database and display the
real-time predicted results from the database on your web application using ASP.NET Core
Blazor and SignalR.

By the end of this book, you'll have learned how to confidently perform basic to advanced-
level machine learning tasks in ML.NET.

Who this book is for

If you are a .NET developer who wants to implement machine learning models using
ML.NET, then this book is for you. This book will also be beneficial to data scientists and
machine learning developers who are looking for effective tools to implement various
machine learning algorithms. A basic understanding of C# and .NET is mandatory to grasp
the concepts covered in this book effectively.

Preface

What this book covers

Chapter 1, Getting Started with Machine Learning and ML.NET, talks about what machine
learning is and how important machine learning is in our society today. It also introduces
ML.NET and talks in more detail about getting started with it after learning about the
concepts of machine learning and how they relate.

Chapter 2, Setting Up the ML.NET Environment, talks in more detail about getting started
with ML.NET, continuing the overview of machine learning and how ML.NET can assist in
both developing and running models in both new and existing applications. You will
ensure your development environment is set up and the chapter ends with a simple pre-
trained model in a console application to demonstrate that you are ready to proceed with
the training.

Chapter 3, Regression Model, talks about using a regression and logistic regression model in
ML.NET in addition to the math and what problems these models can help to solve. In
addition, the chapter provides a step-by-step explanation of how to create and work with
both a regression model and a logistic regression model in ML.NET. The end of the chapter
details a quick console application using the dataset and both the models in ML.NET.

Chapter 4, Classification Model, talks about using the classifications trainer models in
ML.NET and what problems a classification model can help to solve. For this chapter, we
will create two applications to demonstrate the classification trainer support in ML.NET.
The first predicts whether a car is of good value based on the several attributes and
comparative prices using the FastTree trainer that ML.NET provides. The second
application takes email data (Subject, Body, Sender) with the SDCA trainer in ML.NET to
classify the email as an Order, Spam or Friend. Through these applications, you will also
learn how to evaluate classification models.

Chapter 5, Clustering Model, talks about using the k-means clustering trainer in ML.NET in
addition to what problems a clustering model can help to solve. In this chapter, we will use
the k-means cluster trainer that ML.NET provides in order to create an example application
that will classify files as either executables, documents, or scripts. In addition, you will
learn how to evaluate clustering models in ML.NET.

Chapter 6, Anomaly Detection Model, talks about using an anomaly detection model in
ML.NET in addition to what problems an anomaly detection model can help to solve. For
this chapter, we will create two example applications. The first uses ML.NET with SSA to
detect Network Traffic anomalies, while the second example uses ML.NET with PCA to
detect anomalies in a series of user logins. With these applications, we will also look at how
you can evaluate your anomaly detection model once trained.

[2]

Preface

Chapter 7, Matrix Factorization Model, talks about using a matrix factorization model in
ML.NET in addition to the math and what problems a matrix factorization model can help
to solve. In this chapter, we will create a music recommendation application using the
matrix factorization trainer that ML.NET provides. Using several data points this
recommendation engine will recommend music based on the training data provided to the
model. In addition, after creating this application we will learn how to evaluate a matrix
factorization model in ML.NET.

Chapter 8, Using ML.NET with .NET Core and Forecasting, covers a real-world application
utilizing .NET Core and utilizes both a regression and time series model to demonstrate
forecasting on stock shares.

Chapter 9, Using ML.NET with ASP.NET Core, covers a real-world application utilizing
ASP.NET with a frontend to upload a file to determine whether it is malicious or not. This
chapter focuses on using a binary classifier and how to integrate it into an ASP.NET
application.

Chapter 10, Using ML.NET with UWP, covers a real-world application utilizing UWP and
ML.NET. The application will utilize ML.NET to classify whether the web page content is
malicious. The chapter will also cover UWP application design and MVVM briefly to give a
true production-ready sample app to build on or adapt to other applications for using UWP
with ML.NET.

Chapter 11, Training and Building Production Models, covers training a model at scale with
all of the considerations, along with the proper training of a production model using the
DMTP project. The lessons learned include obtaining proper training sets (diversity being
key), proper features, and the true evaluation of your model. The focus of this chapter is on
tips, tricks, and best practices for training production-ready models.

Chapter 12, Using TensorFlow with ML.NET, talks about using a pre-trained TensorFlow
model with ML.NET to determine whether a car is in a picture or not with a UWP
application.

Chapter 13, Using ONNX with ML.NET, talks about using a pre-trained ONNX model with
ML.NET in addition to the value added by taking a pre-existing ONNX format model into
ML.NET directly.

[3]

Preface

To get the most out of this book

You will need a version of Angular installed on your computer—the latest version, if
possible. All code examples have been tested using Angular 9 on Windows OS. However,
they should work with future version releases too.

Software/Hardware covered in the

book OS Requirements

A common Windows 10 development environment
Microsoft Visual Studio 2019 with 20-50 GB of free space (a quad core processor
and 8 GB of RAM is highly recommended)

If you are using the digital version of this book, we advise you to type the code yourself
or access the code via the GitHub repository (link available in the next section). Doing so
will help you avoid any potential errors related to the copy/pasting of code.

Download the example code files

You can download the example code files for this book from your account at
www . packt . com. If you purchased this book elsewhere, you can visit
www . packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packt .com.
Select the Support tab.
Click on Code Downloads.

Enter the name of the book in the Search box and follow the onscreen
instructions.

Ll e

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

[4]

Preface

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Hands-On-Machine-Learning-with-ML.NET. In
case there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it here: http://www.packtpub.com/sites/default/files/
downloads/9781789801781_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "The first time the application is run, the ML.NET version of the model is trained
with the images and tags. tsv file (to be reviewed in the next section)."

A block of code is set as follows:

public void Classify(string imagePath)
{

var result = _prediction.Predict (imagePath);

ImageClassification = $"Image ({imagePath}) is a picture of
{result.PredictedLabelValue} with a confidence of
{result.Score.Max () .ToString ("P2") }";

}

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

dotnet —-version
3.0.100

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Firstly, ensure that .NET desktop development, Universal Windows Platform
Development, and ASP.NET and web development are checked."

[5]

Preface

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: If you have questions about any aspect of this book, mention the book
title in the subject of your message and email us at customercare@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/support/errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packt .com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please
visit authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packt . com.

[6]

Section 1: Fundamentals of
Machine Learning and ML.NET

This section gives an overview of this book's audience and a short introduction to machine
learning and the importance of learning how to utilize machine learning. In addition, this
section introduces the reader to ML.NET. It also talks about the tools and framework
needed to build the applications and gives a step-by-step explanation of how to work with
ML.NET.

This section comprises the following chapters:

e Chapter 1, Getting Started with Machine Learning and ML.NET
e Chapter 2, Setting Up the ML.NET Environment

Getting Started with Machine
Learning and ML.NET

By opening this book, you are taking the first step in disrupting your own knowledge by
approaching solutions to complex problems with machine learning. You will be achieving
this with the use of Microsoft's ML.NET framework. Having spent several years applying
machine learning to cybersecurity, I'm confident that the knowledge you garner from this
book will not only open career opportunities to you but also open up your thought
processes and change the way you approach problems. No longer will you even approach a
complex problem without thinking about how machine learning could possibly solve it.

Over the course of this book, you will learn about the following;:

e How and when to use five different algorithms that ML.NET provides
¢ Real-world end-to-end examples demonstrating ML.NET algorithms

¢ Best practices when training your models, building your training sets, and
feature engineering

¢ Using pre-trained models in both TensorFlow and ONNX formats

This book does assume that you have a reasonably solid understanding of C#. If you have
other experience with a strongly typed object-oriented programming language such as C++
or Java, the syntax and design patterns are similar enough to not hinder your ability to
follow the book. However, if this is your first deep dive into a strongly typed language such
as C#, I strongly suggest picking up Learn C# in 7 Days, by Gaurav Aroraa, published

by Packt Publishing, to get a quick foundation. In addition, no prior machine learning
experience is required or expected, although a cursory understanding will accelerate your
learning.

Getting Started with Machine Learning and ML.NET Chapter 1

In this chapter, we will cover the following:

e The importance of learning about machine learning today

The model-building process

Exploring types of learning

Exploring various machine learning algorithms
Introduction to ML.NET

By the end of the chapter, you should have a fundamental understanding of what it takes to
build a model from start to finish, providing the basis for the remainder of the book.

The importance of learning about machine
learning today

In recent years, machine learning and artificial intelligence have become an integral part of
many of our lives in use cases as diverse as finding cancer cells in an MRI and facial and
object recognition during a professional basketball game. Over the course of just the four
years between 2013 and 2017, machine learning patents alone grew 34%, while spending is
estimated to grow to $57.6B by 2021 (https://www.forbes.com/sites/louiscolumbus/
2018/02/18/roundup-of-machine-learning-forecasts—-and-market-estimates—-2018/
#794d6£6c2225).

Despite its status as a growing technology, the term machine learning was coined back in
1959 by Arthur Samuel—so what caused the 60-year gap before its adoption? Perhaps the
two most significant factors were the availability of technology able to process model
predictions fast enough, and the amount of data being captured every minute digitally.
According to DOMO Inc, a study in 2017 concluded that 2.5 quintillion bytes were
generated daily and that at that time, 90% of the world's data was created between 2015
and 2017 (https ://www.domo.com/learn/data-never-sleeps-52aid=ogsm072517_1
s£100871281=1). By 2025, it is estimated that 463 exabytes of data are going to be created
daily (https ://www.visualcapitalist. com/howfmuchfdatafisfgeneratedfeachfday/),
much of which will come from cars, videos, pictures, IoT devices, emails, and even devices
that have not made the transition to the smart movement yet.

[9]

Getting Started with Machine Learning and ML.NET Chapter 1

The amount that data has grown in the last decade has led to questions about how a
business or corporation can use such data for better sales forecasting, anticipating a
customer's needs, or detecting malicious bytes in a file. Traditional statistical approaches
could potentially require exponentially more staff to keep up with current demands, let
alone scale with the data captured. Take, for instance, Google Maps. With Google's
acquisition of Waze in 2013, users of Google Maps have been provided with extremely
accurate routing suggestions based on the anonymized GPS data of its users. With this
model, the more data points (in this case GPS data from smartphones), the better
predictions Google can make for your travel. As we will discuss later in this chapter,
quality datasets are a critical component of machine learning, especially in the case of
Google Maps, where, without a proper dataset, the user experience would be subpar.

In addition, the speed of computer hardware, specifically specialized hardware tailored for
machine learning, has also played a role. The use of Application-Specific Integrated
Circuits (ASICs) has grown exponentially. One of the most popular ASICs on the market is
the Google Tensor Processing Unit (TPU). Originally released in 2016, it has since gone
through two iterations and provides cloud-based acceleration for machine learning tasks on
Google Cloud Platform. Other cloud platforms, such as Amazon's AWS and Microsoft's
Azure, also provide FPGAs.

Additionally, Graphics Processing Units (GPUs) from both AMD and NVIDIA are
accelerating both cloud-based and local workloads, with ROCm Platform and CUDA-
accelerated libraries respectively. In addition to accelerated workloads, typical professional
GPUs offered by AMD and NVIDIA provide a much higher density of processors than the
traditional CPU-only approach. For instance, the AMD Radeon Instinct MI60 provides 4,096
stream processors. While not a full-fledged x86 core, it is not a one-to-one comparison, and
the peak performance of double-precision floating-point tasks is rated at 7.373 TFLOPs
compared to the 2.3 TFLOPs in AMD's extremely powerful EPYC 7742 server CPU. From a
cost and scalability perspective, utilizing GPUs in even a workstation configuration would
provide an exponential reduction in training time if the algorithms were accelerated to take
advantage of the more specialized cores offered by AMD and NVIDIA. Fortunately,
ML.NET provides GPU acceleration with little additional effort.

From a software engineering career perspective, with this growth and demand far
outpacing the supply, there has never been a better time to develop machine learning skills
as a software engineer. Furthermore, software engineers also possess skills that traditional
data scientists do not have — for instance, being able to automate tasks such as the model
building process rather than relying on manual scripts. Another example of where a
software engineer can provide more value is by adding both unit tests and efficacy tests as
part of the full pipeline when training a model. In a large production application, having
these automated tests is critical to avoid production issues.

[10]

Getting Started with Machine Learning and ML.NET Chapter 1

Finally, in 2018, for the first time ever, data was considered more valuable than oil. As
industries continue to adopt the use of data gathering and existing industries take
advantage of the data they have, machine learning will be intertwined with the data.
Machine learning to data is what refining plants are to oil.

The model building process

Before diving into ML.NET, an understanding of core machine learning concepts is
required. These concepts will help create a foundation for you to build on as we start
building models and learning the various algorithms ML.NET provides over the course of
this book. At a high level, producing a model is a complex process; however, it can be
broken down into six main steps:

Problem Statement

Feature Engineering

Obtain Dataset

Feature Extraction

Model Training

Model Evaluation

Over the next few sections, we will go through each of these steps in detail to provide you
with a clear understanding of how to perform each step and how each step relates to the
overall machine learning process as a whole.

[11]

Getting Started with Machine Learning and ML.NET Chapter 1

Defining your problem statement

Effectively, what problem are you attempting to solve? Being specific at this point is crucial
as a less concise problem can lead to considerable re-work. For example, take the following
problem statement: Predicting the outcome of an election. My first question upon hearing that
problem statement would be, at what level? County, state, or national? Each level more
than likely requires considerably more features and data to properly predict than the last. A
better problem statement, especially early on in your machine learning journey, would be
for a specific position at a county level, such as Predicting the 2020 John Doe County Mayor.
With this more direct problem statement, your features and dataset are much more focused
and more than likely attainable. Even with more experience in machine learning, proper
scoping of your problem statement is critical. The five Ws of Who, What, When, Where,
and Why should be followed to keep your statement concise.

Defining your features

The second step in machine learning is defining your features. Think of features as
components or attributes of the problem you wish to solve. In machine learning —
specifically, when creating a new model — features are one of the biggest impacts on your
model's performance. Properly thinking through your problem statement will promote an
initial set of features that will drive differentiation between your dataset and model results.
Going back to the Mayor example in the preceding section, what features would you
consider data points for the citizen? Perhaps start by looking at the Mayor's competition
and where he/she sits on issues in ways that differ from other candidates. These values
could be turned into features and then made into a poll for citizens of John Doe County to
answer. Using these data points would create a solid first pass at features. One aspect here
that is also found in model building is running several iterations of feature engineering and
model training, especially as your dataset grows. After model evaluation, feature importance
is used to determine what features are actually driving your predictions. Occasionally, you
will find that gut-instinct features can actually be inconsequential after a few iterations of
model training and feature engineering.

In chapter 11, Training and Building Production Models, we will deep dive into best practices
when defining features and common approaches to complex problems to obtain a solid first
pass at feature engineering.

[12]

Getting Started with Machine Learning and ML.NET Chapter 1

Obtaining a dataset

As you can imagine, one of the most important aspects of the model building process is
obtaining a high-quality dataset. A dataset is used to train the model on what the output
should be in the case of the aforementioned case of supervised learning. In the case of
unsupervised learning, labeling is required for the dataset. A common misconception when
creating a dataset is that bigger is better. This is far from the truth in a lot of cases.
Continuing the preceding example, what if all of the poll results answered the same way
for every single question? At that point, your dataset is composed of all the same data
points and your model will not be able to properly predict any of the other candidates. This
outcome is called overfitting. A diverse but representative dataset is required for machine
learning algorithms to properly build a production-ready model.

In chapter 11, Training and Building Production Models, we will deep dive into the
methodology of obtaining quality datasets, looking at helpful resources, ways to manage
your datasets, and transforming data, commonly referred to as data wrangling.

Feature extraction and pipeline

Once your features and datasets have been obtained, the next step is to perform feature
extraction. Feature extraction, depending on the size of your dataset and your features,
could be one of the most time-consuming elements of the model building process.

For example, let's say that the results from the aforementioned fictitious John Doe County
Election Poll had 40,000 responses. Each response was stored in a SQL database captured
from a web form. Performing a SQL query, let's say you then returned all of the data into a
CSV file, using which your model can be trained. At a high level, this is your feature
extraction and pipeline. For more complex scenarios, such as predicting malicious web
content or image classification, the extraction will include binary extraction of specific bytes
in files. Properly storing this data to avoid having to re-run the extraction is crucial to
iterating quickly (assuming the features did not change).

In Chapter 11, Training and Building Production Models, we will deep dive into ways to
version your feature-extracted data and maintain control over your data, especially as your
dataset grows in size.

[13]

