Fall 2016 Math 2B
 Suggested homework problems solutions

	Section	Problems
7.5	Strategy for integration	$2,3,7,18,22,25,27,28,30,42$
8.1	Arc length	$10,12,14,34$
11.1	Sequences	$4,10,14,26,31-36$ all, $47,50,55$

Strategy for integration

Problem 2: We make the substitution $u=3 x+1, d u=3 d x$. When $x=0, u=1$ and when $x=1, u=4$. We get

$$
\int_{0}^{1}(3 x+1)^{\sqrt{2}} d x=\frac{1}{3} \int_{1}^{4} u^{\sqrt{2}} d u=\frac{4^{\sqrt{2}+1}-1}{3(\sqrt{2}+1)} .
$$

Problem 3: We integrate by parts to get rid of $\ln y$,with

$$
\begin{array}{ll}
u=\ln y, \quad d u=\frac{d y}{y} \\
v=\frac{2}{3} y^{3 / 2}, \quad d v=\sqrt{y} d y .
\end{array}
$$

We get

$$
\begin{aligned}
\int_{1}^{4} \sqrt{y} \ln y d y & =\left[\frac{2}{3} y^{3 / 2} \ln y\right]_{1}^{4}-\frac{2}{3} \int_{1}^{4} \sqrt{y} d y \\
& =\left[\frac{2}{3} y^{3 / 2} \ln y-\frac{2^{2}}{3^{2}} y^{3 / 2}\right]_{1}^{4}=\frac{32}{3} \ln 2-\frac{28}{9} .
\end{aligned}
$$

Problem 7 : We do the substitution $u=\arctan y, d u=\frac{d y}{1+y^{2}}$. When $y=-1$, $u=\arctan (-1)=-\arctan 1=-\pi / 4$. When $y=1, u=\arctan 1=\pi / 4$.

$$
\int_{-1}^{1} \frac{e^{\arctan y}}{1+y^{2}} d y=\int_{-\pi / 4}^{\pi / 4} e^{u} d u=\left[e^{u}\right]_{-\pi / 4}^{\pi / 4}=e^{\pi / 4}-e^{-\pi / 4}
$$

Problem 18: We do the substitution $u=\sqrt{t}, d u=\frac{d t}{2 \sqrt{t}}$. When $t=1, u=1$. When $t=4, u=2$.

$$
\int_{1}^{4} \frac{e^{\sqrt{t}}}{\sqrt{t}} d t=2 \int_{1}^{2} e^{u} d u=2\left[e^{u}\right]_{1}^{2}=2\left(e^{2}-e\right)
$$

Problem 22: We do the substitution $u=\ln x, d u=\frac{d x}{x}$.

$$
\int \frac{\ln x}{x \sqrt{1+(\ln x)^{2}}} d x=\int \frac{u}{\sqrt{1+u^{2}}} d u
$$

We make the substitution $v=1+u^{2}, d v=2 u d u$.

$$
\int \frac{u}{\sqrt{1+u^{2}}} d u=\int \frac{d v}{2 \sqrt{v}}=\sqrt{v}=\sqrt{1+(\ln x)^{2}}
$$

Problem 25: We have $\operatorname{deg} P=1$ and $\operatorname{deg} Q=1$. We do a long division and have

$$
1+12 t=4(1+3 t)-3
$$

Thus we have

$$
\int_{0}^{1} \frac{1+12 t}{1+3 t} d t=\int_{0}^{1}\left(4-\frac{3}{1+3 t}\right) d z=[4 t-\ln (3 t+1)]_{0}^{1}=4-\ln 4
$$

Problem 27: We make the substitution $u=e^{x}, d u=e^{x} d x$.
$\int \frac{d x}{1+e^{x}}=\int \frac{d u}{u(1+u)}=\int \frac{d u}{u}-\int \frac{d u}{1+u}=\ln |u|-\ln |1+u|+C=x-\ln \left(e^{x}+1\right)+C$.

Problem 28: We make the substitution $u=\sqrt{a t}, d u=\frac{a}{2 \sqrt{a t}} d t=\frac{a}{2 u} d t$.

$$
\int \sin \sqrt{a t} d t=\int(\sin u) \frac{2 u}{a} d u=\frac{2}{a} \int u \sin u d u
$$

We perform an integration by parts with

$$
\begin{gathered}
v=u, \quad d v=d u \\
w=-\cos u, d w=\sin u d u \\
\frac{2}{a} \int u \sin u d u=\frac{2}{a}\left[-u \cos u+\int \cos u d u\right]=\frac{2}{a}[-u \cos u+\sin u]+C \\
=\frac{2}{a}[-\sqrt{a t} \cos \sqrt{a t}+\sin \sqrt{a t}]+C .
\end{gathered}
$$

Problem 30: $e^{x} \geq 1 \Leftrightarrow x \geq 0$. We thus have

$$
\left|e^{x}-1\right|= \begin{cases}1-e^{x}, & \text { for }-1 \leq x \leq 0 \\ e^{x}-1, & \text { for } 0 \leq x \leq 2\end{cases}
$$

Therefore

$$
\int_{-1}^{2}\left|e^{x}-1\right| d x=\int_{-1}^{0}\left(1-e^{x}\right) d x+\int_{0}^{2}\left(e^{x}-1\right) d x=\left[x-e^{x}\right]_{-1}^{0}+\left[e^{x}-x\right]_{0}^{2}=e^{2}+e^{-1}-3 .
$$

Problem 42 : We integrate by parts to get rid of $\tan ^{-1} x$, with

$$
\begin{array}{rlrl}
u & =\tan ^{-1} x, & d u=\frac{d x}{1+x^{2}} \\
v & =-\frac{1}{x}, & d v & =\frac{d x}{x^{2}}
\end{array}
$$

We get

$$
\int \frac{\tan ^{-1} x}{x^{2}} d x=-\frac{\tan ^{-1} x}{x}+\int \frac{d x}{x\left(1+x^{2}\right)}
$$

$\frac{1}{x\left(1+x^{2}\right)}$ is a proper rational function whose denominator is already factored. We want to find constants A, B, and C such that

$$
\frac{1}{x\left(1+x^{2}\right)}=\frac{A}{x}+\frac{B x+C}{x^{2}+1} .
$$

By putting the two fractions on the right on the same denominator, we get the equality

$$
1=A\left(x^{2}+1\right)+(B x+C) x \Leftrightarrow 1=(A+B) x^{2}+C x+A
$$

We identify the different powers of x and obtain the system

$$
\left\{\begin{array} { l }
{ A + B = 0 } \\
{ C = 0 } \\
{ A = 1 }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
A=1 \\
B=-1 \\
C=0
\end{array}\right.\right.
$$

We can now compute our integral

$$
\begin{aligned}
\int \frac{1}{x\left(x^{2}+1\right)} d x & =\int \frac{d x}{x}-\int \frac{x}{x^{2}+1} d x \\
& =\ln |x|-\frac{1}{2} \ln \left|x^{2}+1\right|+C
\end{aligned}
$$

Therefore

$$
\int \frac{\tan ^{-1} x}{x^{2}} d x=-\frac{\tan ^{-1} x}{x}+\ln |x|-\frac{1}{2} \ln \left|x^{2}+1\right|+C .
$$

Arc length

Problem 10: Let f be the function defined by

$$
f(x)=\frac{1}{6} \sqrt{\left(x^{2}-4\right)^{3}}=\frac{1}{6}\left(x^{2}-4\right)^{3 / 2}
$$

We have $f^{\prime}(x)=\frac{x}{2}\left(x^{2}-4\right)^{1 / 2}$, and so

$$
\sqrt{1+f^{\prime}(x)^{2}}=\sqrt{1+\left(\frac{x\left(x^{2}-4\right)^{1 / 2}}{2}\right)^{2}}=\sqrt{1+\frac{x^{2}\left(x^{2}-4\right)}{4}}=\sqrt{\frac{\left(x^{2}-2\right)^{2}}{4}}=\frac{x^{2}-2}{2} .
$$

We want the length of the curve defined by $y=f(x), 2 \leq x \leq 3$.

$$
\frac{1}{2} \int_{2}^{3} x^{2}-2 d x=\frac{1}{2}\left[\frac{x^{3}}{3}-2 x\right]_{2}^{3}=\frac{13}{6}
$$

Problem 12: Let g be the function defined by

$$
g(y)=\frac{y^{4}}{8}+\frac{1}{4 y^{2}}
$$

We have $g^{\prime}(y)=\frac{y^{3}}{2}-\frac{1}{2 y^{3}}=\frac{1}{2}\left(y^{3}-y^{-3}\right)$, and so

$$
\begin{aligned}
\sqrt{1+g^{\prime}(y)^{2}} & =\sqrt{1+\left(\frac{1}{2}\left(y^{3}-y^{-3}\right)\right)^{2}}=\sqrt{1+\frac{1}{4}\left(y^{6}-2+y^{-6}\right)}=\sqrt{\frac{4 y^{6}+y^{12}-2 y^{-6}+1}{4 y^{6}}} \\
& =\frac{\sqrt{\left(y^{6}+1\right)^{2}}}{2 y^{3}}=\frac{y^{6}+1}{2 y^{3}}=\frac{1}{2}\left(y^{3}+y^{-3}\right)
\end{aligned}
$$

We want the length of the curve defined by $x=g(y), 1 \leq y \leq 2$.

$$
\frac{1}{2} \int_{1}^{2}\left(y^{3}+y^{-3}\right) d y=\frac{1}{2}\left[\frac{y^{4}}{4}-\frac{1}{2 y^{2}}\right]_{1}^{2}=\frac{33}{16}
$$

Problem 14: Let f be the function defined by

$$
f(x)=\ln (\cos x)
$$

We have $f^{\prime}(x)=\frac{-\sin x}{\cos x}=-\tan x$, and so

$$
\sqrt{1+f^{\prime}(x)^{2}}=\sqrt{1+\tan ^{2} x}=\sec x
$$

We want the length of the curve defined by $y=f(x), 0 \leq x \leq \frac{\pi}{3}$.

$$
\int_{0}^{\pi / 3} \sec x d x=[\ln |\sec x+\tan x|]_{0}^{\pi / 3}=\ln (2+\sqrt{3})
$$

Problem 34 : (a)

(b) Let f be the function defined by

$$
f(x)=x^{2 / 3}
$$

We have $f^{\prime}(x)=\frac{2}{3} x^{-1 / 3}$, and so

$$
\sqrt{1+f^{\prime}(x)^{2}}=\sqrt{1+\frac{4}{9} x^{-2 / 3}}=\frac{\sqrt{9 x^{2 / 3}+4}}{3 x^{1 / 3}}
$$

We want the length of the curve defined by $y=f(x), 0 \leq x \leq 1$.
$\sqrt{1+f^{\prime}(x)^{2}}$ has an infinite discontinuity at 0 .
Let $0<t \leq 1$.
We do the substitution $u=x^{2 / 3}, d u=\frac{2}{3} x^{-1 / 3} d x$. When $x=t, u=t^{2 / 3}$. When $x=1, u=1$.
$\int_{t}^{1} \frac{\sqrt{9 x^{2 / 3}+4}}{3 x^{1 / 3}} d x=\frac{1}{2} \int_{t^{2 / 3}}^{1} \sqrt{9 u+4} d u=\frac{1}{27}\left[(9 u+4)^{3 / 2}\right]_{t^{2 / 3}}^{1}=\frac{1}{27}\left(13^{3 / 2}-\left(9 t^{2 / 3}+4\right)^{3 / 2}\right)$.
As $t \rightarrow 0, t^{2 / 3} \rightarrow 0$ and hence $\left(9 t^{2 / 3}+4\right)^{3 / 2} \rightarrow 4^{3 / 2}=8$. So

$$
\int_{0}^{1} \frac{\sqrt{9 x^{2 / 3}+4}}{3 x^{1 / 3}} d x=\frac{1}{27}\left(13^{3 / 2}-8\right)
$$

Let g be the function defined by

$$
g(y)=y^{3 / 2}
$$

We have $g^{\prime}(y)=\frac{3}{2} y^{1 / 2}$, and so

$$
\sqrt{1+g^{\prime}(y)^{2}}=\sqrt{1+\frac{9}{4} y}=\frac{1}{2} \sqrt{4+9 y}
$$

We want the length of the curve defined by $x=g(y), 0 \leq y \leq 1$.

$$
\frac{1}{2} \int_{0}^{1} \sqrt{4+9 y} d y=\frac{1}{27}\left[(4+9 y)^{3 / 2}\right]_{0}^{1}=\frac{1}{27}\left(13^{3 / 2}-8\right)
$$

(c)

$$
\begin{aligned}
\frac{1}{2} \int_{0}^{1} \sqrt{4+9 y} d y+\frac{1}{2} \int_{0}^{4} \sqrt{4+9 y} d y & =\frac{1}{27}\left(13^{3 / 2}-8\right)+\frac{1}{27}\left[(4+9 y)^{3 / 2}\right]_{0}^{4} \\
& =\frac{1}{27}\left(13^{3 / 2}+80 \sqrt{10}-16\right)
\end{aligned}
$$

Sequences

Problem 4: $a_{1}=0, a_{2}=\frac{3}{5}, a_{3}=\frac{4}{5}, a_{4}=\frac{15}{17}, a_{5}=\frac{12}{13}$.
Problem 10: $a_{1}=6, a_{2}=6, a_{3}=3, a_{4}=1, a_{5}=\frac{1}{4}$.
Problem 14: $a_{n}=\frac{(-1)^{n+1}}{4^{n-2}}$.
Problem 26: $-1<0.86<1$ so $\lim _{n \rightarrow+\infty}(0.86)^{n}=0$, and $\lim _{n \rightarrow+\infty} a_{n}=2$.
Problem 31: We factor n^{2} in the numerator and denominator of the rational function

$$
\frac{1+4 n^{2}}{1+n^{2}}=\frac{\frac{1}{n^{2}}+4}{\frac{1}{n^{2}}+1}
$$

Hence

$$
\lim _{n \rightarrow+\infty} \frac{1+4 n^{2}}{1+n^{2}}=\lim _{n \rightarrow+\infty} \frac{\frac{1}{n^{2}}+4}{\frac{1}{n^{2}}+1}=\frac{4}{1}=4
$$

The square root function is continuous at 4 , so $\lim _{n \rightarrow+\infty} a_{n}=\sqrt{4}=2$.

Problem 32: We factor n in the numerator and denominator of the rational function

$$
\frac{n \pi}{n+1}=\frac{\pi}{1+\frac{1}{n}}
$$

Hence

$$
\lim _{n \rightarrow+\infty} \frac{n \pi}{n+1}=\lim _{n \rightarrow+\infty} \frac{\pi}{1+\frac{1}{n}}=\frac{\pi}{1}=\pi
$$

\cos is continuous at π, so $\lim _{n \rightarrow+\infty} a_{n}=\cos (\pi)=-1$.
Problem 33: We factor by n^{2} the numerator and denominator, because it is the highest power of n.

$$
\frac{n^{2}}{\sqrt{n^{3}+4 n}}=\frac{n^{2}}{n^{2} \sqrt{\frac{1}{n}+\frac{4}{n^{3}}}}=\frac{1}{\sqrt{\frac{1}{n}+\frac{4}{n^{3}}}}
$$

$\lim _{n \rightarrow+\infty} \sqrt{\frac{1}{n}+\frac{4}{n^{3}}}=0^{+}$, so $\lim _{n \rightarrow+\infty} a_{n}=+\infty$.
Problem 34: We factor by n the numerator and denominator, and take the limit.

$$
\lim _{n \rightarrow+\infty} \frac{2 n}{n+2}=\lim _{n \rightarrow+\infty} \frac{2}{1+\frac{2}{n}}=\frac{2}{1}=2
$$

$x \mapsto e^{x}$ is continuous at 2 , so $\lim _{n \rightarrow+\infty} a_{n}=e^{2}$.
Problem 35: We take the absolute value of a_{n} to get rid of $(-1)^{n}$.

$$
\lim _{n \rightarrow+\infty}\left|a_{n}\right|=\lim _{n \rightarrow+\infty} \frac{1}{2 \sqrt{n}}=0
$$

Hence $\lim _{n \rightarrow+\infty} a_{n}=0$.
Problem 36: We take the absolute value of a_{n} to get rid of $(-1)^{n+1}$.

$$
\left|a_{n}\right|=\frac{n}{n+\sqrt{n}} .
$$

We factor by n the numerator and denominator, and take the limit.

$$
\lim _{n \rightarrow+\infty} \frac{n}{n+\sqrt{n}}=\lim _{n \rightarrow+\infty} \frac{1}{1+\sqrt{\frac{1}{n}}}=\frac{1}{1}=1
$$

Hence a_{n} has odd-numbered terms that approach 1 and even-numbered terms that approach -1 . Therefore a_{n} is divergent.

Problem 47 : $a_{n}=\left(1+\frac{2}{n}\right)^{n}=e^{n \ln \left(1+\frac{2}{n}\right)}$. We define $f(x)=x \ln \left(1+\frac{2}{x}\right)$. We have $\lim _{n \rightarrow+\infty} n \ln \left(1+\frac{2}{n}\right)=\lim _{x \rightarrow+\infty} f(x)$. We apply l'Hospital rule

$$
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{\ln \left(1+\frac{2}{x}\right)}{\frac{1}{x}}=\lim _{x \rightarrow+\infty} \frac{\frac{1}{1+\frac{2}{x}} \cdot \frac{-2}{x^{2}}}{\frac{-1}{x^{2}}}=\lim _{x \rightarrow+\infty} \frac{2}{1+\frac{2}{x}}=\frac{2}{1}=2 .
$$

Then $\lim _{n \rightarrow+\infty} n \ln \left(1+\frac{2}{n}\right)=2 . x \mapsto e^{x}$ is continuous at 2 , so $\lim _{n \rightarrow+\infty} a_{n}=e^{2}$.
Problem 50 : We define $f(x)=\frac{(\ln x)^{2}}{x}$. We have $a_{n}=f(n)$ and $\lim _{n \rightarrow+\infty} a_{n}=$ $\lim _{x \rightarrow+\infty} f(x)$. We apply l'Hospital rule two times in a row and get

$$
\lim _{x \rightarrow+\infty} f(x)=\lim _{x \rightarrow+\infty} \frac{2 \cdot \frac{1}{x} \ln x}{1}=\lim _{x \rightarrow+\infty} \frac{2 \ln x}{x}=\lim _{x \rightarrow+\infty} \frac{\frac{2}{x}}{1}=\lim _{x \rightarrow+\infty} \frac{2}{x}=0
$$

Thus $\lim _{n \rightarrow+\infty} a_{n}=0$.
Problem 55: Let $n>1$.

$$
a_{n}=\frac{n!}{2^{n}}=\frac{1}{2} \cdot \frac{2}{2} \cdot \frac{3}{2} \cdots \frac{n-1}{2} \cdot \frac{n}{2} .
$$

Each fraction between $\frac{2}{2}$ and $\frac{(n-1)}{2}$ is larger than 1 .
We thus have $a_{n} \geq \frac{1}{2} \cdot \frac{n}{2}$. And $\lim _{n \rightarrow+\infty} \frac{n}{4}=+\infty$. Therefore $a_{n} \rightarrow+\infty$, as $n \rightarrow+\infty$.

