
CHAPTER 3: ISSUES IN SPEECH FUNDAMENTAL FREQUENCY AND PERIOD 

ESTIMATION 

3.1 INTRODUCTION 

This chapter explores some of the issues and problems involved in the estimation of 

speech fundamental frequency. Firstly there is a discussion of what is meant by the 

terms fundamental frequency, fundamental period and pitch. Some aspects of human 

pitch perception and their relationships to the requirements of algorithms that estimate 

speech fundamental frequency are then discussed. Finally, there is a brief introduction 

to the basic approaches to speech fundamental frequency estimation by machine. 

3.1.1 Fundamental frequency and pitch 

Before entering into an in depth discussion of the problems involved in estimating 

speech fundamental frequency, it is necessary to precisely define the problem. It is also 

enlightening to investigate the relationship between the parameters fundamental 

frequency, fundamental period and pitch. 

The automatic estimation of fundamental frequency of voiced speech excitation is often 

misleadingly referred to as pitch analysis. Pitch properly refers to a percept rather than 

a parameter of speech production (McKinney, 1965), although the term pitch is often 

used in current technical literature to express both fundamental frequency and 

fundamental period. Pitch is a subjective phenomenon whereas fundamental frequency 

is open to physical measurements. There is a relationship between pitch and frequency, 

but it is rather complex, although pitch is correlated with the physical feature of 

fundamental frequency. Thus, when one is considering speech at the acoustic level, it 

is preferable to use the concept of fundamental frequency. It is also useful to 

distinguish between fundamental period estimation, implying a period-by-period 

estimation process, and fundamental frequency estimation, which result from short-term 

analyses. 



3.1.2 Approaches to speech analysis 

Zwicker, Hess & Terhardt (1967) looked at the problem of speech analysis from three 

different points of view. All of these are related for stationary periodic signals, but not 

for real speech. 

l ]  Speech can be considered from the production viewpoint, and it can be analysed 

using knowledge about the way in which it was generated. The parameters that are 

estimated using such an approach are related to the control parameters of the speech 

production process. At the lowest level of speech production, one can define the larynx 

fundamental periods as the time between successive vocal folds closures. Similarly the 

larynx fundamental frequency can be defined as rate of the vocal fold vibration. 

21 From a perceptual viewpoint, speech may be analysed in a fashion that is similar to 

the processing that is believed to occur in the human auditory system. In the case of 

a human listener or by using a model of human pitch perception, the perceived pitch of 

a speech stimulus can be defined as the frequency of a pure tone that evokes the same 

perceived pitch. 

31 From the signal processing viewpoint, speech analysis does not necessarily take 

account of speech production or speech perception, but seeks to describe the signal in 

some mathematically optimal way. If the speech production process is not taken into 

account, the fundamental frequency and the fundamental period of the speech can be 

defined in terms of the minimum repetitive period of the signal, or corresponding to the 

common sub-multiple of a set of harmonics. This task can be carried out using digital 

signal processing techniques, such as auto-correlation. 

3.1.3 Simplified model of speech excitation 

A simplified model of the excitation of voiced speech sounds was described by 

McKinney (McKinney, 1965). In this model, a volume velocity glottal excitation 

function ug(t) excites a passive linear system. This is illustrated in figure 3.1. The 



supra-glottal system transfer function represents the characteristics of the vocal tract and 

radiation at the lips. The glottal wave is often modelled as a pulse train. However, in 

this model ug(t) will be considered to be due to the sum of a pulse train pg(t) and a 

slowly varying function vg(t). The latter term is required because the volume velocity 

at the glottis does not always go to zero during each cycle of vibration. The function 

pg(t) will be called the excitation pulse function. Each individual excitation pulse has 

an associated time of occurrence, its excitation pulse time. In order to make this 

coincide with the principal excitation of the formant resonance in the vocal tract, the 

excitation time is defined to occur at the time when the excitation pulse function reaches 

a zero value at the end of each glottal cycle (see figure 3.1). This time is also the 

instant of glottal closure, and corresponds to the maximum positive gradient in a 

laryngograph waveform. 

3.2 FUNDAMENTAL PERIOD, FUNDAMENTAL FREQUENCY AND PITCH 

3.2.1 Definition of fundamental period 

Hess (1983) states that there are three possible ways to define To, the speech 

fundamental period. 

l ]  There is a long term definition, whereby To is the period duration of a signal that is 

strictly periodic. 

21 There is a short-term definition, in which case To is due to the average elapsed time 

between successive excitations, somehow averaged over a specified short-term window. 

31 There is a period-by-period definition, where To is the elapsed time between two 

successive period markers. 

Definition l ]  cannot be applied to speech, because it is a quasi-periodic signal and this 

definition only applies for stationary signals. Definition 21 implies a short-term analysis 

of the speech signal, whereas 31 can be achieved by means of tirne-domain analysis of 



the speech signal. In each case, the associated fundamental frequency F, to a 

fundamental period To is defined as 

3.2.2 Period-by-period or average measurements 

Hess and Indefry (1987) discuss several basic approaches to estimating the fundamental 

period and fundamental frequency values of speech. Their analysis is as follows: 

Method 1: Ideally an algorithm is required that can locate individual laryngeal cycles 

as accurately as possible. Such an algorithm will then be able to measure the natural 

fluctuations in vocal fold vibration. By detecting the "event" points of glottal closure 

it is possible to generate cycle-by-cycle fundamental period estimates, that are the times 

between successive points. In this case the period estimates are in correct phase; that 

is to say, a period is defined with its start located at one excitation point an its end at 

the next excitation time. Most algorithms operating on the acoustic speech waveform 

are unable to perform this function. However, laryngograph-based analyses can quite 

easily follow this definition. 

Method 2: The next best approach, in terms of retaining information concerning the 

excitation, is to use an arbitrary repetitive point in the speech waveform and calculate 

the successive period spacing between these points. Most time-domain fundamental 

period estimation algorithms operate in this manner. This again leads to period-by- 

period measurements. In this case, the repetitive point may not correspond to the point 

of excitation in the speech waveform, and its location relative to the excitation point 

may change depending upon the wave-shape. Consequently, the period estimates may 

not be in-phase with the excitation points, as there were in the previous case. 

Method 3: Another method involves determination of the average length of several 

successive periods. This operation is implicitly carried out by algorithms that use short- 

term analysis, such as auto-correlation. The inherent smoothing with this approach 



results in the loss of fine perturbations in the fundamental period values that occur in 

speech. 

Method 4: Finally fundamental frequency can be determined from a short-term 

frequency representation of the signal. Again, the window of analysis is required to 

contain at least one period, which gives a minimum window of around 20ms. The 

detailed nature of the method varies from technique to technique. This approach also 

results in smoothed frequency estimates. 

3.2.3 The perception of spectral and virtual pitch 

There is now a brief discussion of the human perception of pitch. This section is 

included because it is the limitations of the human auditory system and the perception 

of pitch that provide the ultimate limit on the performance necessary for a speech 

fundamental period (or frequency) estimation algorithm for general use. 

Pitch perception has been investigated by many researchers for a long time. Many of 

the earlier theories of pitch perception relate to stationary complex sounds. At present, 

little is known about the perception of non-stationary sounds with changing fundamental 

frequency of excitation. 

In early research, it was believed that the fundamental harmonic played the dominant 

part in the perception of pitch. However, Schouten (1938) showed that the phenomenon 

of pitch perception is not only evoked by the fundamental harmonic (at least not over 

the range of normal speech), an that the pitch of a harmonic complex remains the same 

when the fundamental harmonic is removed. 

In an attempt to explain this phenomenon, de Boer (1956) proposed that this is not due 

to non-linear reconstruction of the fundamental harmonic within the ear, and that the 

perception of pitch is due to a pattern matching process. Subsequent work developed 

this idea further. In these theories, each harmonic evokes a spectral pitch corresponding 

to its fundamental frequency. All the spectral pitches then contribute to an overall pitch. 



This is knows as the residual peridcity (Goldstein, 1973) or the virtual pitch (Terhardt, 

1974). 

3.2.4 Some important modeis of pitch perception 

Three models that represent different approaches to pitch perception are now described. 

All models are characterized by a peripheral analysis that is characterized by a frequency 

analysis and a stage in which low pitch is estimated. However, the final pattern 

recognition stage is different in each model. 

l] Wightman's pattern transformation model (1973). 

There are three stages of processing in this model. Stage 1 is a limited frequency 

resolution power spectrum analyzer which is an approximation to frequency analysis 

performed by the peripheral auditory system. Stage 2 consists of a Fourier transform, 

which is assumed to be realised by means of a specially wired network of neural 

elements. Stage 3 is then a pitch estimator that operates by finding the positions of 

maximal activity in the output patterns from stage 2. 

21 Goldstein's optimal processor model (1973). 

In this model the processor is believed to make an optimal estimate of fundamental 

frequency on the basis of the noisy representations of the harmonics that are resolved. 

Under the assumption that the input stimulus is periodic and that adjacent harmonics are 

present, the model calculates the harmonic numbers and makes use of this information 

to estimate the fundamental frequency. 

31 Terhardt's learning matrix model (1974). 

This model is centres on a learning matrix that uses spectral-pitch and lowest spectral- 

pitch cues as its input (the term spectral-pitch refers to an estimate determined from 

peak in the short-term spectrum of the signal). The model operates in two phases: The 

first is a learning phase, which is assumed to be part of the childhood learning process 

in which a subject acquires the ability to recognize speech. Jn this phase, the 

correlations between the two input signals make their impression on the learning matrix. 



The second is the recognition phase, in which the learned system generates its pitch 

estimates. During this phase of operation, the previously impressed traces in the 

learning mamx can be evoked by similar input stimuli to provide a virtual low pitch. 

Any given stimulus generates an number of such virtual pitch cues and the strongest 

determined the final pitch estimate. 

A single sinusoidal tone evokes a spectral pitch. A signal such as speech is not a single 

tone, but rather a complex tone. If we assume for the moment that it will have many 

harmonics, each of which has it associated spectral pitch. The individual spectral 

pitches due to the harmonics are then centrally combined to give rise to the sensation 

of virtual pitch. This is the perceptual equivalent of fundamental frequency. 

A definition of spectral and virtual pitch based on a quote by Terhardt (1972a) is as 

follows: 

A single sinusoidal tone evokes a sensation known as the spectral pitch, which is related 

to the greatest place of excitation in the organ of Corti. The spectral pitches due to the 

partials associated with a complex sound can be individually perceived by a subject, 

provided that he makes a conscious effort to do so, unless the difference in frequency 

between the partials does not fall below a certain level. In addition to the spectral 

pitches, a stimulus generally evokes a dominant global pitch. In the case of harmonic 

sounds, this corresponds to the fundamental frequency. This due to a completely 

different phenomenon to that which evokes spectral pitch, and is known as the virtual 

pitch. 

3.2.5 The pitch of speech 

For most purposes, it can be assumed that the pitch and fundamental frequency of 

speech sounds correspond to each other. However, this is only true if fundamental 

frequency is defined as the reciprocal of fundamental period. This definition of 

fundamental frequency only corresponds to the largest common divisor of the partials 

in the case of strictly periodic signals. The definition of pitch by Terhardt (1979b) 

provides a good way to combine the temporal properties of the stimulus with its 



perceived pitch. He states that "The extraction of fundamental frequency is in  some 

respect equivalent to extraction of virtual pitch. In a strict sense, however, the 

frequency which corresponds to virtual pitch, and the fundamental frequency defined as 

the largest common divisor of the partials) are in general not identical. ... Hence in the 

analysis of auditory signals such as speech and music actually the extraction of 

fundamental frequency is not the real aim but rather extraction of the frequency which 

corresponds to the virtual pitch". 

3.2.6 Difference limens for changes in frequency 

The smallest detectable change in the frequency of a stimulus is known as the frequency 

different limen (DL) for frequency change. For synthetic speech stimuli the fundamental 

frequency DL has a value of about 0.3% to 0.5% of the fundamental frequency for the 

fundamental frequency range of male voice; that is over about 40Hz- 150Hz (Flanagan 

& Saslow, 1958). This is less than the difference limen for a pure tone within the same 

frequency range, which correspond to about 3Hz (Zwicker & Feldkeller, 1967). 

Even if changes in fundamental frequency are audible, there are not necessarily 

linguistically significant. The DL for linguistic significance is an order of magnitude 

larger than the DL for audibility (McKinney, 1965). This is not that surprising if one 

considers the fact that if the change is important, then it makes sense that is should be 

easy for the auditory system to detect. 

3.2.7 The precision of speech production 

Hess (1983) states that unless the output from a speech fundamental frequency 

estimation algorithm is to be used in synthesis applications (in which case the result is 

presented to the ear), or for scientific investigations into vocal fold vibration, there is 

no need to estimate speech fundamental frequency to a higher accuracy than it  can be 

produced by the vocal apparatus. Various researchers have carried out measurements 

of the cycle-by-cycle changes in location of the glottal pulses. Gill (1962) found that 

there are more variations in wave-shape than in length of the glottal excitation. 



Lieberman (1963) found that for successive periods, there was a relative difference of 

more than 1% for 30% of all periods and there was a difference of more than 3% for 

10% of the periods. Similar results were found by Hollein et al. (1973) and Horii 

(1979). Horii found that the mean value of the jitter (the absolute difference in time) 

between two successive glottal pulses had a value of 51 microseconds at 98Hz and 24 

microseconds at 298 Hz. In addition, for 10% of the periods in the data used, the jitter 

exceeded 100 microseconds. 

These perturbations in the excitation are large compared to the frequency DLs for 

steady-state stimuli, and are audible to a listener. They cannot be individually 

distinguished, but contribute to the sensation of naturalness (Schroeder & David, 1960). 

Their effect is quite different from that of quantization noise, as has been observed in 

the context of speech synthesis (Holmes, 1976). 

3.3 PROBLEMS IN SPEECH FUNDAMENTAL PERIOD AND FREQUENCY 

ESTIMATION 

3.3.1 Basic difficulties 

The determination of speech fundamental frequency is a difficult problem for many 

reasons. Speech is a non-stationary signal. That is to say, its characteristics change 

greatly as a function of time. One reason for this is that the shape of the vocal tract can 

change rapidly even within the space of a single fundamental period. In addition, the 

vocal tract can give rise to a wide variety of speech sounds, with a multitude of different 

temporal structures. The glottal excitation of the vocal tract is often only quasi-periodic. 

This is particularly true in the case of creaky voice. In addition there are acoustic 

interactions between the excitation from the vocal folds and the vocal tract. 

3.3.2 Requirements for fundamental frequency estimation algorithms 

There have been many suggestions as to how the ideal fundamental frequency algorithm 

should perform (Rabiner et al., 1976). It must be free from gross errors, which occur 



when the frequency or period estimates deviate substantially from their true values. It 

must be able to retain the irregularity that exists in the vocal fold vibration. The 

fundamental period or fundamental frequency values should be as accurate as possible. 

The algorithm must be able to respond rapidly enough to changes in the excitation 

period. There should be no voicing determination errors. The measurements should be 

robust over different speakers, noise and environmental conditions. The algorithm 

should ideally require as little computation as possible, because this makes it easier (and 

possibly cheaper) to implement in real-time and for non-real time applications it will 

need less computer time to run (although this is becoming less important as time goes 

on, because of improvements in computer technology). 

The requirements for a fundamental frequency or period estimation algorithm are all 

dictated by characteristics of the speech production, speech perception, and the particular 

application for which the algorithm is intended. The human ear is capable of detecting 

sounds over a wider frequency range than the vocal apparatus can produce, and can 

detect changes in frequency that are far smaller than the smallest frequency perturbations 

that a speaker can intentionally generate. 

3.3.3 Sources of gross errors in fundamental period and period estimation 

There are various reasons why a particular algorithm may generate gross errors. Firstly, 

when there are adverse signal conditions, which can occur when there is a strong first 

formant, a rapid change in articulator positions or in the case of band-limited or noisy 

speech. Secondly, when there is inadequate algorithm performance, perhaps because the 

analysis window is too small in a short-term algorithm, or because of the absence of 

some feature used in the estimation process. Thirdly, because the algorithm is unable to 

deal satisfactorily with creaky voice. In this case, the inherent averaging in some 

algorithms may cause erroneous output to be generated. 

In addition difficulties can arise due to the recording conditions. Quite often the speech 

signal is degraded by amplitude and phase distortions, and background noise is almost 

always present to some extent. It is particularly difficult to get algorithms to operate 



well over telephone lines, because of phase and amplitude distortions, fading, and break- 

through from other signals. 

Strong first formant in vicinity of second harmonic 

Gross errors can arise when there is a strong first formant in the vicinity of the second 

harmonic, which results in its amplitude becoming significant or greater than that of the 

fundamental harmonic. This can lead to what are known as "doubling" errors, because 

this leads to a significant second peak in each period, which time-domain algorithms 

sometimes confused with the main peak. This is illustrated in figure 3.2. For 

comparison, a temporally simple speech pressure waveform is shown in figure 3.3. 

Frequency-domain and short-term algorithms face a similar problem with this class of 

signals, because the second harmonic dominates the short-term spectrum. In this thesis, 

gross errors that exceed the true values are known as chirp errors. 

The complementary type of errors to chirp errors are defined in this thesis as drop 

errors. In a time-domain algorithm they will occur whenever it misses out a period 

marker, giving the impression that the period is longer than it truly is. This situation 

can arise when there are rapid envelope changes in the speech waveform, and it  is 

especially associated with voiced sounds made with articulations that result in 

obstruction of the vocal tract, such as the sound 11-1. It can also occur due to missing 

secondary excitations in creaky voice quality speech or during diplophonic voicing 

(which is the tendency to generate pairs of pulses that can occur during even normal 

voice). 

3.3.4 The required operating frequency range 

The range of possible fundamental frequencies for human speech is wide. For an 

arbitrary utterance, the range over a large population of subjects can lie between 33Hz 

to 3100Hz by Moerner, Fransson & Fant, 1964. However, another investigation due to 

Catford,l964 (that did not include creaky voice) confined the range to between 70Hz 

and 1100Hz. For the purposes of singing, a somewhat wider range is required. Hess, 



1983 gives the range of 50Hz to 1800Hz to cover a bass to a soprano. 

For an individual speaker, the distribution of fundamental frequency depends upon the 

experimental conditions. It is particularly relevant whether the speech was taken from 

conversation or from read text. The frequency distributions from read text rarely exceed 

an octave range. Provided the distribution is plotted on a logarithmic scale, this 

fundamental frequency distribution comes close to a normal distribution (Risberg, l96 1 ; 

Schultz-Colson, 1975) 

Algorithms that perform speech fundamental frequency estimation usually restrict their 

operation to a sub-range of the possible fundamental frequency values. A good working 

range for an algorithm is between 50Hz and 800Hz, because this covers the range of 

most adult conversational speech (Hess, 1983). 

3.3.5 Required measurement resolution and accuracy 

The accuracy and resolution requirements for a fundamental frequency algorithm are 

determined by its intended applications. The human auditory sys tern is more sensitive 

to changes in absolute frequency at low frequencies, and in general the noticeable 

difference in frequency is proportional to frequency. The difference limen with respect 

to the fundamental frequency (DI,) for human listeners perhaps represents the ultimate 

required performance, which is typically 0.3-0.5% resolution of the fundamental 

frequency for steady state harmonic sounds. Most algorithms do not meet this 

specification. However, for most applications, less accuracy can be tolerated. 

The difference limen for linguistic significance is greater than for that of perception 

(McKinney, 1965). Thus for prosodic analysis, an accuracy of a few percent may be 

adequate. 

The required frequency (or time) resolution required is dependent upon the required 

application of the algorithm. For intonation training, a resolution of 3-4% will suffice 

(for example in a Voicscope, Abberton & Fourcin, 1973). There are also limits on the 



resolution of fundamental frequency values that can be displayed with such schemes, 

due to the limited number of pixels available for the graphics display. 

Consideration to human frequency difference limens suggest that a frequency resolution 

of 0.3%-0.4% of the fundamental frequency value would be ideally required by a 

fundamental frequency or period estimation algorithm. 

Requirements for profoundly deaf EPT patients 

The required frequency resolution for the profoundly deaf patients for whom high 

technology signal processing hearing aids are intended is only about 1% of the 

fundamental frequency values within the male frequency range and poor above about 

200Hz, which is several times worse than for normal listeners. 

3.3.6 Accuracy limitations due to time quantization of sampled signals 

There is an intrinsic accuracy limit in time-domain fundamental frequency estimation 

algorithms that operate using sampled digital signals which is due to the time 

quantization of the input signal. This introduces uncertainty into the location of an 

event in time. For example, at a sampling frequency of IOkHz, it is only possible to 

locate a time event to 1/10000 = 100 microseconds. For a fundamental freqiiency of 

lOOHz, this corresponds to an accuracy of 1%. At higher fundamental frequencies, this 

percentage error increases still further. Even at 100Hz, this error is greater than the 

auditory DL for frequency change. The same problem arises for short-term analysis 

algorithms that operate in the lag domain (for example auto-correlation, cepstral 

analysis, etc). 

There is a similar problem in the case of frequency-domain analyzers. In this case, a 

sampling rate of lOkHz and an analysis window of 1OOms (which is very long for the 

short term analysis of speech) gives rise to a frequency resolution of 10Hz. 

Consequently, in this case it is rhe lower frequencies that give a proportionally larger 

quantization error. Thus there is a 10% error at 100Hz, and a 2% error at 500Hz. With 



regard to this accuracy issue, Hess and Indefry point out (1987) that to reduce sampling 

accuracies to 0.5% up to the fundamental frequency of 500Hz requires a sampling 

period of 10 microseconds. 

Many algorithms use interpolation at their outputs to improve the time or frequency 

resolution of their estimates. Interpolation can easily be carried out in the case of 

frequency-domain algorithms and those employing short-term analysis. Interpolation is 

more difficult to use in time-domain algorithms, although the accuracy of location of 

peaks and zero-crossings can be increased using interpolation. Another approach to 

reducing quantization errors is by smoothing the frequency estimates, although this 

approach is not always guaranteed to improve accuracy. 

3.3.7 Required maximum rate of change of speech fundamental period 

In regularly excited speech (not creak), the maximum rate of change of period length 

is typically taken to be a 10% to 15% change between successive periods (Reddy, 1967). 

The maximum rate of change of frequency of the normal voice source was found to be 

about 1% per millisecond by Sundberg (1979). However, in voice qualities such as 

creaky, as well as in pathological speech, there can be much larger change per period 

than this figure suggests. 

The maximum rate of change on fundamental period usually presents no problems to 

time-domain analyzers, because they operate on a period-by-period basis. However, 

they do put an upper time window limit on short-term analysis procedures of around 

20ms -30ms. 

3.4 CATEGORIZATION OF SPEECH FUNDAMENTAL FREQUENCY ESTIMATION 

ALGORITHMS 

3.4.1 Preliminary classification 



McKinney (1965) states that a 'pitch' determination algorithm can be essentially 

decomposed into three stages. These are the pre-processor, the basic extractor and the 

post-processor, as illustrated in figure 3.4. The main task of the measurement is 

performed by the basic extractor stage. The main function of the pre-processor is one 

of data reduction, and the emphasis of features in the input speech to facilitate the 

operation of the basic extractor. The post-processor combines many functions, such as 

error correction and the generation of output in the desired format. 

3.4.2 Types of algorithm 

The techniques that have been developed to determine speech fundamental frequency 

are broadly classified into four main groups by Hess, 1983; Those that operate in the 

time-domain, those that operate over some short-term window of the speech, which he 

calls short-term analysis, those which are hybrids of the first two, and finally those that 

operate by direct measurement of vocal fold activity. The is often no clear-cut 

distinction between the first two types. It is important to understand what is meant by 

the terms short-term, time-domain and frequency-domain. 

Time-domain algorithms employ direct measurements on the speech signal and involve 

looking for temporal features in the speech pressure waveform (or in the filtered 

waveform), such as local maxima and minima. 

Short-term analysis procedures use some form of transformation of the data within a 

short (for example, 20rns) time window. The nature of the transformation depends on 

the particular method used. The estimate obtained with such an approach consists of 

a sequence of average fundamental period or frequency values obtained over the input 

interval. 

Frequency-domain algorithms make explicit 'frequency' estimates. There may be a 

frequency-domain interpretation to certain short-term operations which are implicit. For 

example, the auto-conelation technique can be implemented via a frequency-domain 

representation. 



The time-domain refers to analyses which use the same time base as the input speech 

signal. A time-domain analyzer gives rise to an output signal that consists of a series 

of excitation markers that delineate period boundaries. Time-domain operation thus 

generally presumes the local definition of fundamental period and gives rise to a period- 

by-period fundamental period estimates. 

The next chapter will examine some time-domain, short-term and laryngeal algorithms 

in more detail. 



Figure 3.1 Diagram showing voice source parameters. 

This illustrates; a) the excitation signal, and b) the corresponding period durations. 

(After McKinney, 1965). 



Figure 3.2 Speech pressure waveform exhibiting two peaks per fundamental period. 

The speech is shown in trace A. The corresponding laryngograph waveform in shown 

in trace B. This situation arises when the fmt  formant coincides with the second 

harmonic in the excitation spectrum. This situation can lead to "doubling error" in 

simple fundamental period estimation algorithms. The speech is the vowel N from a 

male subject. 



Figure 3.3 Temporally simple speech pressure waveform. 

Speech is shown in trace A. The corresponding laryngograph waveform in shown in 

trace B. It is relatively would be easy to determine the fundamental period of the 

speech in this case, even with a simple fundamental period estimation algorithm. The 

speech is the vowel "U", as in the word "but", from a male subject. 



I B A S I C  EXTRACTOR ( 

l 

POSTPROCESSOR 

Figure 3.4 Block diagram illustrating the basic stages involved in speech fundamental 

frequenc ylperiod, es tirnation. 

The pre-processing stage is involved with data reduction and extraction of important 

features of the speech signal. The basic extractor essentially performs the main task 

estimation of period or frequency. Finally, the post-processing stage converts the output 

from the basic extractor into a desirable format and may also perform error correction 

and smoothing of the raw estimates. 

(Taken from Hess, 1983; After McKinney, 1965). 


