Chapter 3: The Structure of Crystalline Solids

ISSUES TO ADDRESS...

- How do atoms assemble into solid structures?
- Examples of dependence of material property on its crystal structure

Crystalline vs. Noncrystalline (Amorphous) Materials

Crystalline materials...

- atoms pack in periodic, 3D arrays with long-range translational symmetry
- typical of: - Most metals
- Many ceramics
- Some polymers

crystalline SiO_{2}
Adapted from Fig. 3.23(a), Callister \& Rethwisch 8 e .

- Si • Oxygen

Noncrystalline materials...

- atoms have no long-range periodic packing
- occurs for: - All glasses
- Some polymer
"Amorphous" = Noncrystalline

noncrystalline SiO_{2}
Adapted from Fig. 3.23(b),
Callister \& Rethwisch $8 e$.

Energy \& Packing for Crystalline vs.

 Noncrystalline (Amorphous) Materials- Crystalline material

Ordered packing, higher density

- Amorphous material:

Random packing, lower density

Orderly packed crystalline structures tend to have higher density and lower energies (more stable)

Single Crystal Materials

- Periodic arrangement of atoms throughout the entire material
-- diamond single crystals for industrial abrasives

(Courtesy Martin Deakins, GE Superabrasives, Worthington, OH. Used with permission.)
-- Single crystal silicon wafer for semiconductor
http://www.sumcosi.com/english/products/lineup.html

-- turbine blades

Fig. 8.33(c), Callister \&
Rethwisch 8e. (Fig. 8.33(c) courtesy of Pratt and Whitney).

Polycrystalline Materials

- Most engineering materials are polycrystalline, i.e., they contain many individual grains or small crystals

- Each "grain" is a single crystal
- Grain size ranges from $\sim 1 \mathrm{~nm}$ to $\sim 1 \mathrm{~cm}$

Tasted poly-

 crystalline Si
http://pveducation.org

Polycrystalline Materials

Hard Sphere Model for Crystal Structures

- Hard-sphere model
- Atoms are hard spheres
- Atoms "touch" nearest neighbors
- Periodic with translational symmetry
- Exercise:
- Draw 1D arrangement

- Draw 2D arrangement

Crystal Lattice, Unit Cell, \& Coordination Number (CN)

- Crystal lattice: an array of points coincide with atoms (or a certain set of atoms or molecules) representing geometric configuration in crystals
- Unit cell:

Smallest (simplest) repeating unit in a lattice that satisfy the followings:

- Represent/reflect symmetry in crystal

- Translational
- Rotational
- Mirror
- Opposite faces (for 3D)/edges are parallel
- Each point is identical in its environment
- Coordination Number (CN)
- Number of nearest (or touching) neighboring atoms for an atom within a crystal

Crystal Systems

Unit cell in 3D typically parallelepipeds

Fig. 3.4, Callister \&
Rethwisch 8e.
a, b, and c are the lattice constants α, β, γ are angles

7 Crystal Systems

43 -fold axis
of rotation

Monoclinic

1 mirror plane

14 -fold axis of rotation

Tetragonal Orthorhombic

Rhombohedral (Trigonal)
13 -fold axis of rotation

Triclinic

None

Adapted with changes from

Simple Cubic Structure (SC)

- Cubic crystal system
- Simple
- Rare for metals (only Po has this structure)
- Close-packed directions are cube edges
- Coordination number (CN, or the \# nearest/touching neighbors) $=6$

- If same types of atoms (e.g., pure metal)
- Edge length a
- Atom radius \boldsymbol{R}
(Courtesy P.M. Anderson)

$$
a=2 R
$$

On average: 1 atoms per unit cell: 8 corners $\times 1 / 8=1$

Crystal Structure Application Problem 2 Atomic Packing Factor (APF) for Simple Cubic Structure

$$
\begin{aligned}
& \text { PF }=\frac{\text { Volume of atoms in unit cell* }}{\text { Volume of unit cell }} \\
& \text { *assume hard spheres }
\end{aligned}
$$

- APF for a simple cubic structure $=0.52$

Visualizing Simple Cubic (SC) Lattice

Filling balls for SC lattice
Ball-Stick model for SC lattice

srinivaseducation.blogspot.com

Unit cell for SC lattice
다


```
Whe logations ot the lattime pomitions, {aj A
```


http://www2.ucdsb.on.ca/tiss/stretton/CHEM2/arch19.htm

Body Centered Cubic (BCC) Structure

- Atoms touch each other along cube diagonals.
--Note: All atoms are identical; the center atom is shaded differently only for ease of viewing.
ex: Cr, W, Fe (α), Tantalum, Molybdenum

https://www.nde-
ed.org/EducationResources/CommunityColleg e/Materials/Structure/metallic_structures.htm
- Coordination number CN = 8

Adapted from Fig. 3.2,
Callister \& Rethwisch $8 e$.

On average, 2 atoms per unit cell: 1 center +8 corners $\times 1 / 8$

Crystal Structure Application Problem 2 Atomic Packing Factor (APF) for BCC

- APF for a body-centered cubic structure $=0.68$

Adapted from Fig. 3.2(a), Callister \& Rethwisch 8e.

a

Along close-packed direction:

$$
4 R=\sqrt{3} a
$$

\# of atoms
per unit cell $\rightarrow 2 \frac{4}{3} \pi(\sqrt{3} a / 4)^{3} \longleftarrow \begin{aligned} & \text { Volume of } \\ & \text { each atom }\end{aligned}$

$$
\text { APF }=\frac{a^{3} \longleftarrow \text { Volume of an } \quad=\frac{\sqrt{3} \pi}{8} \cong 0.68 ~}{a^{2}}
$$ unit cell

Face Centered Cubic (FCC) Structure

- Atoms touch each other along face diagonals.
--Note: All atoms are identical; the face-centered atoms are shaded differently only for ease of viewing.
https://www.nde-
ed.org/EducationResources/Com munityCollege/Materials/Structure/ metallic_structures.htm
ex: Al, $\mathrm{Cu}, \mathrm{Au}, \mathrm{Pb}, \mathrm{Ni}, \mathrm{Pt}, \mathrm{Ag}$
- Coordination number CN = 12

Adapted from Fig. 3.1, Callister \& Rethwisch 8 e.
On average: 4 atoms per unit cell: 6 face $\times 1 / 2+8$ corners $\times 1 / 8$

Crystal Structure Application Problem 2 Atomic Packing Factor (APF) for FCC

- APF for a face-centered cubic structure $=0.74$ maximum achievable APF

Close-packed directions:

$$
4 R=\sqrt{2} a
$$

Adapted from
Fig. 3.1(a),
Callister \&
Rethwisch $8 e$.
\# of atoms per unit cell $\rightarrow 4 \frac{4}{3} \pi(\sqrt{2} a / 4)^{3}$

Densities of Material Classes

In general

$\rho_{\text {metals }}>\rho_{\text {ceramics }}>\rho_{\text {polymers }}$

Graphite/
Ceramics/ Polymers
Semicond

Composites/ fibers

Why?

Metals have...

- close-packing (metallic bonding)
- often large atomic masses

Ceramics have...

- less dense packing
- often lighter elements

Polymers have...

- low packing density (often amorphous)
- lighter elements (C,H,O)

Composites have...

- intermediate values

