

Arithmetic for Computers

Arithmetic for Computers

Operations on integers

- Addition and subtraction
- Multiplication and division
- Dealing with overflow

Floating-point real numbers

- Representation and operations

Integer Addition

Example: $7+6$

Overflow if result out of range

- Adding +ve and -ve operands, no overflow
- Adding two +ve operands
- Overflow if result sign is 1
- Adding two -ve operands
- Overflow if result sign is 0

Integer Addition Example 1

Consider adding the numbers 7 and 6 represented in 2's complement using 4 bits. What is the result of the computation?

Integer Addition Example 1

Consider adding the numbers 7 and 6 represented in 2's complement using 4 bits.
What is the result of the computation?
7: 0111
6: 0110

1101 Result is negative (-3)! Overflow.

Integer Addition Example 2

Consider adding the numbers -7 and -6 represented in 2's complement using 4 bits. What is the result of the computation?

Integer Addition Example 2

Consider adding the numbers -7 and -6 represented in 2's complement using 4 bits. What is the result of the computation?

$$
\begin{aligned}
& 7 \rightarrow-7: \quad 0111 \rightarrow 1000 \rightarrow 1001 \\
& 6 \rightarrow-6: \quad 0110 \rightarrow 1001 \rightarrow 1010
\end{aligned}
$$

$$
0011
$$

Result is positive (3)! Overflow.

Integer Subtraction

Add negation of second operand
Example: $7-6$ = $7+(-6)$
+7: 00000000 ... 00000111
$\frac{-6:}{} \quad 11111111 \ldots 11111010$
Overflow if result out of range

- Subtracting two +ve or two -ve operands, no overflow
- Subtracting +ve from -ve operand
- Overflow if result sign is 0
- Subtracting -ve from +ve operand
- Overflow if result sign is 1

Integer Subtraction Example 1

Consider subtracting 7 from -6 assuming that the numbers are represented in 2's complement using 4 bits. What is the result of the computation?

Integer Subtraction Example 1

Consider subtracting 7 from -6 assuming that the numbers are represented in 2's complement using 4 bits. What is the result of the computation?

$$
\begin{array}{llll}
-6: & 1 & 0 & 1
\end{array} 0
$$

0011 Result is positive (3)!
Overflow.

Integer Subtraction Example 2

Consider subtracting -7 from 6 assuming that the numbers are represented in 2's complement using 4 bits. What is the result of the computation?

Integer Subtraction Example 2

Consider subtracting -7 from 6 assuming that the numbers are represented in 2's complement using 4 bits. What is the result of the computation?

$$
6-(-7)=6+7
$$

6: 0110
7: 0111

1001 The result is negative (-3). Overflow.

When Overflow Occurs

Operation	Operand A	Operand B	Result indicating overflow
A+B	≥ 0	≥ 0	<0
A+B	<0	<0	≥ 0
A-B	≥ 0	<0	<0
A-B	<0	≥ 0	≥ 0

Dealing with Overflow

Some languages (e.g., C) ignore overflow

- Use MIPS addu, addui, subu instructions

Other languages (e.g., Ada, Fortran) require raising an exception

- Use MIPS add, addi, sub instructions
- On overflow, invoke exception handler Save PC in exception program counter (EPC) register
Jump to predefined handler address
- mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Arithmetic for Multimedia

Graphics and media processing operates on vectors of 8 -bit and 16 -bit data

- Use 64-bit adder, with partitioned carry chain

Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors

- SIMD (single-instruction, multiple-data)
- Saturating operations
- On overflow, result is largest representable value
- c.f. 2s-complement modulo arithmetic
- E.g., clipping in audio, saturation in video

Multiplication

Start with long-multiplication approach

Length of product is the sum of operand lengths

| Multiplication Hardware

Chapter 3 - Arithmetic for Computers - 17

Multiplication

Start with long-multiplication approach

Length of product is the sum of operand lengths

Multiplication

Start with long-multiplication approach

Length of product is the sum of operand lengths

Multiplication

Start with long-multiplication approach

Length of product is the sum of operand lengths

Multiplication

Start with long-multiplication approach

Length of product is the sum of operand lengths

Multiplication

Start with long-multiplication approach

Length of product is the sum of operand lengths

Multiplication

Start with long-multiplication approach

Length of product is the sum of operand lengths

Optimized Multiplier

Perform steps in parallel: add/shift

One cycle per partial-product addition

- That's ok, if frequency of multiplications is low

Faster Multiplier

Uses multiple adders

- Cost/performance tradeoff

- Can be pipelined
- Several multiplications performed in parallel

MIPS Multiplication

Two 32-bit registers for product

- HI: most-significant 32 bits
- LO: least-significant 32-bits

Instructions

- mult rs, rt / multu rs, rt

64-bit product in HI/LO

- mfhi rd / mflo rd
- Move from HI/LO to rd
- Can test HI value to see if product overflows 32 bits
- mul rd, rs, rt
- Least-significant 32 bits of product $->$ rd

n-bit operands yield n-bit quotient and remainder

Grammar school algorithm:

Try to see how big a number can be subtracted, creating a digit of the quotient on each attempt.

- Check for 0 divisor
- Long division approach
- If divisor \leq dividend bits

1 bit in quotient, subtract

- Otherwise
- 0 bit in quotient, bring down next dividend bit
- Restoring division
- Do the subtract, and if remainder goes < 0, add divisor back
Signed division
- Divide using absolute values
- Adjust sign of quotient and remainder as required

Division Hardware

Division Hardware

divisor	$12) 85$	Dividend (initially $=$
	remainder)	

Division Hardware

	1
divisor	$12)$
remainder	$\frac{-12}{73}$

Division Hardware

Chapter 3 - Arithmetic for Computers - 31

Division Hardware

		3	
divisor	12)	85	dividend
		-12	
		73	
		-12	
		61	
		-12	
remainder		49	

Division Hardware

		4	
divisor	12)	85	dividend
		-12	
		73	
		-12	
		61	
		-12	
		49	
		-12	
remainder		37	

Division Hardware

		5	
divisor	12)	85	dividend
		-12	
		73 -12	
		61	
		-12	
		49	
		-12	
		37	
		-12	
remainde		25	

Division Hardware

Division Hardware

divisor		7	dividend
	12)	85	
		-12	
		73	
		-12	
		61	
		-12	
		49	
		-12	
		37	
		-12	
		25	
		-12	
		13	
		-12	
remaind		1	

Division Hardware

Chapter 3 - Arithmetic for Computers - 37

Division Hardware

Chapter 3 - Arithmetic for Computers - 38

Division Hardware

Division Hardware

Chapter 3 - Arithmetic for Computers - 40

Division Hardware

Chapter 3 - Arithmetic for Computers - 41

Division Hardware

Chapter 3 - Arithmetic for Computers - 42

Division Hardware

Chapter 3 - Arithmetic for Computers - 43

Optimized Divider

- One cycle per partial-remainder subtraction

Looks a lot like a multiplier!

- Same hardware can be used for both

Faster Division

Can't use parallel hardware as in multiplier

- Subtraction is conditional on sign of remainder

Faster dividers (e.g., SRT division) generate multiple quotient bits per step

- Still require multiple steps
- Uses a lookup table for guessing several quotient bits per step

MIPS Division

Use HI/LO registers for result

- HI: 32-bit remainder
- LO: 32-bit quotient

Instructions

- div rs, rt / divu rs, rt
- No overflow or divide-by-0 checking

Software must perform checks if required

- Use mfhi, mflo to access result
E.g., mfhi \$s3
mflo \$s2

Floating Point

Representation for non-integer numbers

- Including very small and very large numbers

Like scientific notation

- -2.34×10^{56}
normalized
- $+0.002 \times 10^{-4}$
not normalized
- $+987.02 \times 10^{9}$

In binary
$- \pm 1 . \mathrm{s}_{1} \mathrm{~s}_{2} \cdots 2^{\times y y y}\left(+-1+\mathrm{s}_{1} \times 2^{-1}+\mathrm{s}_{2} \times 2^{\wedge}{ }^{\wedge}-\ldots\right)$
Types float and double in C

Floating-Point Numbers

Suppose you are told to use the following representation for floating point numbers using 4 bits: bit 3 (sign), bit 2 (exponent of 2), and bits 1 and 0 (fraction of 2). Assume that numbers are normalized, i.e., the number is $(-1)^{\text {sign }} \times\left(1+2^{\text {exponent }}\right)$. What are the possible numbers that can be represented?

Floating-Point Numbers

Suppose you are told to use the following representation for floating point numbers using 4 bits: bit 3 (sign), bit 2 (exponent of 2), and bits 1 and 0 (fraction of 2). Assume that numbers are normalized, i.e., the number is $(-1)^{\text {sign }} x\left(1+2^{\text {exponent }}\right)$.

- What are the possible numbers that can be represented?
- Answer: exponent can be 0 or 1 . Fraction can be $00,11,10$, or 01 (which means $0,\left(2^{-1}+2^{-2}=\right.$ 0.75), $2^{-1}=0.5$, or $2^{-2}=0.25$). So, the possible numbers are:
$\pm 1.0,1.25,1.5,1.75,2.0,2.5,3.0,3.5$
How do get numbers < 1 ?

Floating-Point Numbers

Suppose you are told to use the following representation for floating point numbers using 4 bits: bit 3 (sign), bit 2 (exponent of 2), and bits 1 and 0 (fraction of 2). Assume that numbers are normalized, i.e., the number is $(-1)^{\text {sign }} \mathrm{x}\left(1+2^{\text {exponent }}\right)$.

- What are the possible numbers that can be represented?
- Answer: exponent can be 0 or 1 . Fraction can be 00, 11, 10 , or 01 (which means $0,\left(2^{-1}+2^{-2}=0.75\right), 2^{-1}=0.5$, or $\left.2^{-2}=0.25\right)$. So, the possible numbers are:
$\pm 1.0,1.25,1.5,1.75,2.0,2.5,3.0,3.5$
- How do we get numbers < 1 ?
- Answer: Need a negative exponent (more about this later)

Floating Point Standard

Defined by IEEE Std 754-1985
Developed in response to divergence of representations

- Portability issues for scientific code

Now almost universally adopted
Two representations

- Single precision (32-bit)
- Double precision (64-bit)

IEEE Floating-Point Format

| single: 8 bits
 double: 11 bits |
| :--- | | single: 23 bits
 double: 52 bits |
| :--- |
| S |
| Exponent |

$$
x=(-1)^{S} \times(1+\text { Fraction }) \times 2^{\text {(Exponent-Bias })}
$$

S: sign bit ($0 \Rightarrow$ non-negative, $1 \Rightarrow$ negative $)$

- Normalize significand: $1.0 \leq \mid$ significand $\mid<2.0$
- Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
- Significand is Fraction with the "1." restored

Exponent: excess representation: actual exponent + Bias

- Ensures exponent is unsigned
- Single: Bias = 127; Double: Bias = 1023

Single-Precision Range

Exponents 00000000 and 11111111 reserved Smallest value

- Exponent: 00000001 \Rightarrow actual exponent $=1-127=-126$
- Fraction: 000... $00 \Rightarrow$ significand $=1.0$
$\pm \pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
- exponent: 11111110
\Rightarrow actual exponent $=254-127=+127$
- Fraction: $111 \ldots 11 \Rightarrow$ significand ≈ 2.0
- $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

Exponents 0000... 00 and 1111... 11 reserved Smallest value

- Exponent: 00000000001 \Rightarrow actual exponent $=1-1023=-1022$
- Fraction: 000... $00 \Rightarrow$ significand $=1.0$
$\pm \pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
- Exponent: 11111111110
\Rightarrow actual exponent $=2046-1023=+1023$
- Fraction: $111 . . .11 \Rightarrow$ significand ≈ 2.0
- $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Floating-Point Precision

Relative precision

- all fraction bits are significant
- Single: approx 2^{-23}

Equivalent to $23 \times \log _{10} 2 \approx 23 \times 0.3 \approx 6$ decimal digits of precision

- Double: approx 2^{-52}

Equivalent to $52 \times \log _{10} 2 \approx 52 \times 0.3 \approx 16$ decimal digits of precision

Floating-Point Example

Represent -0.75

- $-0.75=(-1)^{1} \times 1.1_{2} \times 2^{-1}$
- S = 1
- Fraction $=1000 \ldots 00_{2}$
- Exponent $=-1+$ Bias
- Single: $-1+127=126=01111110_{2}$
- Double: $-1+1023=1022=01111111110_{2}$

Single: 1011111101000...00
Double: 1011111111101000... 00

Floating-Point Example

Represent -0.75
$-0.75=(-1)^{1} \times 1.1_{2} \times 2^{-1}$
$0.75_{10}=3 / 4_{10}=3 / 2^{2}{ }_{10}=11_{2} / 2^{2}{ }_{10}=0.11_{2}=$ $1.1_{2} \times 2^{-1}$

- Exponent $=-1+$ Bias
- Single: $-1+127=126=01111110_{2}$
- Double: $-1+1023=1022=01111111110_{2}$

Single: 1011111101000...00
Double: 1011111111101000... 00

Floating-Point Example

What number is represented by the singleprecision float
11000000101000... 00

- $S=1$
- Fraction $=01000 \ldots 00_{2}$
- Fxponent $=10000001_{2}=129$

$$
\begin{aligned}
x & =(-1)^{1} \times\left(1+01_{2}\right) \times 2^{(129-127)} \\
& =(-1) \times 1.25 \times 2^{2} \\
& =-5.0
\end{aligned}
$$

Denormal Numbers

Exponent $=000 \ldots 0 \Rightarrow$ hidden bit is 0

$$
x=(-1)^{s} \times(0+\text { Fraction }) \times 2^{- \text {Bias }}
$$

Smaller than normal numbers

- allow for gradual underflow, with diminishing precision

Denormal with fraction $=000 . . .0$

$$
\begin{gathered}
x=(-1)^{S} \times(0+0) \times 2^{- \text {Bias }}= \pm 0.0 \\
\begin{array}{c}
\text { Two representations } \\
\text { of } 0.0!
\end{array}
\end{gathered}
$$

Infinities and NaNs

Exponent $=111 \ldots 1$, Fraction $=000 \ldots 0$

- \pm Infinity
- Can be used in subsequent calculations, avoiding need for overflow check
Exponent $=111 \ldots 1$, Fraction $\neq 000 \ldots 0$
- Not-a-Number (NaN)
- Indicates illegal or undefined result
e.g., 0.0 / 0.0
- Can be used in subsequent calculations

Floating-Point Addition

Consider a 4-digit decimal example

- $9.999 \times 10^{1}+1.610 \times 10^{-1}$

1. Align decimal points

- Shift number with smaller exponent
- $9.999 \times 10^{1}+0.016 \times 10^{1}$

2. Add significands

- $9.999 \times 10^{1}+0.016 \times 10^{1}=10.015 \times 10^{1}$

3. Normalize result \& check for over/underflow

- 1.0015×10^{2}

4. Round and renormalize if necessary

- 1.002×10^{2}

Floating-Point Addition

Now consider a 4-digit binary example

- $1.000_{2} \times 2^{-1}+-1.110_{2} \times 2^{-2}(0.5+-0.4375)$

1. Align binary points

- Shift number with smaller exponent
$=1.000_{2} \times 2^{-1}+-0.111_{2} \times 2^{-1}$

2. Add significands

- $1.000_{2} \times 2^{-1}+-0.111_{2} \times 2^{-1}=0.001_{2} \times 2^{-1}$

3. Normalize result \& check for over/underflow

- $1.000_{2} \times 2^{-4}$, with no over/underflow

4. Round and renormalize if necessary

- $1.000_{2} \times 2^{-4}$ (no change) $=0.0625$

FP Adder Hardware

Much more complex than integer adder
Doing it in one clock cycle would take too long

- Much longer than integer operations
- Slower clock would penalize all instructions

FP adder usually takes several cycles

- Can be pipelined

FP Adder Hardware

FP Adder Hardware

Chapter 3 - Arithmetic for Computers - 65

FP Adder Hardware

Floating-Point Multiplication

Consider a 4-digit decimal example

- $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$

1. Add exponents

- For biased exponents, subtract bias from sum
- New exponent $=10+-5=5$

2. Multiply significands

- $1.110 \times 9.200=10.212 \Rightarrow 10.212 \times 10^{5}$
- 3 . Normalize result \& check for over/underflow
- 1.0212×10^{6}

4. Round and renormalize if necessary

- 1.021×10^{6}

5. Determine sign of result from signs of operands

- $+1.021 \times 10^{6}$

Floating-Point Multiplication

Now consider a 4-digit binary example

- $1.000_{2} \times 2^{-1} \times-1.110_{2} \times 2^{-2}(0.5 \times-0.4375)$

1. Add exponents

- Unbiased: $-1+-2=-3$
- Biased: $(-1+127)+(-2+127)=-3+254-127=-3+127$

2. Multiply significands

- $1.000_{2} \times 1.110_{2}=1.1102 \Rightarrow 1.110_{2} \times 2^{-3}$

3. Normalize result \& check for over/underflow

- $1.110_{2} \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
- $1.110_{2} \times 2^{-3}$ (no change)
- 5. Determine sign: +ve $\times-\mathrm{ve} \Rightarrow-\mathrm{ve}$
- $-1.110_{2} \times 2^{-3}=-0.21875$

FP Arithmetic Hardware

FP multiplier is of similar complexity to FP adder

- But uses a multiplier for significands instead of an adder
FP arithmetic hardware usually does
- Addition, subtraction, multiplication, division, reciprocal, square-root
- FP \leftrightarrow integer conversion

Operations usually takes several cycles

- Can be pipelined

FP Instructions in MIPS

FP hardware is coprocessor 1

- Adjunct processor that extends the ISA Separate FP registers
- 32 single-precision: \$f0, \$f1, .. \$f31
- Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...

Release 2 of MIPs ISA supports 32×64-bit FP reg's
FP instructions operate only on FP registers

- Programs generally don't do integer ops on FP data, or vice versa
- More registers with minimal code-size impact

FP load and store instructions

- 1wc1, 1dc1, swc1, sdc1
e.g., 1dc1 \$f8, 32 (\$sp)

FP Instructions in MIPS

Single-precision arithmetic

- add.s, sub.s, mu7.s, div.s

e.g., add.s \$f0, \$f1, \$f6

Double-precision arithmetic

- add.d, sub.d, mu7.d, div.d
e.g., mul.d \$f4, \$f4, \$f6

Single- and double-precision comparison

- C. $x x . \mathrm{s}, \mathrm{c} . x x . \mathrm{d}(x x$ is eq, $7 \mathrm{t}, 7 \mathrm{e}, \ldots$)
- Sets or clears FP condition-code bit
e.g.c.7t.s \$f3, \$f4

Branch on FP condition code true or false

- bc1t, bc1f
e.g., bc1t TargetLabe1

FP Example: ${ }^{\circ} \mathrm{F}$ to ${ }^{\circ} \mathrm{C}$

C code:

float f2c (float fahr) \{ return ((5.0/9.0)*(fahr - 32.0));
$\}$

- fahr in \$f12, result in \$f0, literals in global memory space
Compiled MIPS code:
f2c: 1wc1 \$f16, const5(\$gp)
1wc1 \$f18, const9(\$gp)
div.s \$f16, \$f16, \$f18

1wc1 \$f18, const32 (\$gp)
sub.s \$f18, \$f12, \$f18 mul.s \$f0, \$f16, \$f18 jr \$ra

FP Example: Array Multiplication

$X=X+Y \times Z$

- All 32×32 matrices, 64-bit double-precision elements

C code:
void mm (double x[][], doub7e y[][], doub7e z[][]) \{ int i, j, k;
for (i $=0 ; \mathrm{i}!=32$; $\mathbf{i}=\mathbf{i}+1$)
for $(j=0 ; j!=32 ; j=j+1)$
\quad for $(k=0 ; k!=32 ; k=k+1)$ $x[i][j]=x[i][j]$ $+y[i][k]$ * $z[k][j] ;$
\}

- Addresses of x, y, z in $\$ a 0, \$ a 1, \$ a 2$, and i, j, k in \$s0, \$s1, \$s2

Storing multi-dimensional arrays

Consider a 3×2 matrix stored in memory in row major order, i.e., elements are stored row by row. Each element is 4-bytes long. What is the byte offset of element i, j ?

Storing multi-dimensional arrays

Consider a 3×2 matrix stored in memory in row major order, i.e., elements are stored row by row. Each element is 4-bytes long. What is the byte offset of element i, j ?

$\left[\begin{array}{lll}\text { A00 } & \text { A01 } \\ \text { A10 } & \text { A11 } \\ \text { A20 } & \text { A21 }\end{array}\right]$	0	A00	$\begin{aligned} & {[i, j]=(i * \text { row } \operatorname{dim}+j) * \text { size element }} \\ & {[1,1]=(1 * 2+1) * 4=12} \end{aligned}$
	4	A01	
	8	A10	
	12	A11	
	16	A20	$[2,0]=(2 * 2+0) * 4=16$
	20	A21	

[^0]
Storing multi-dimensional arrays

Write MIPS code to load into \$t4, element A [i,j] assuming that The base address of A is in $\$ \mathrm{~s} 0$, i is in $\$ \mathrm{~s} 1, \mathrm{j}$ in $\$ \mathrm{~s} 2$, each element of A is 4 bytes and A is a 10×20 matrix.

Absolute address $[i, j]=$ array base address + (i * row dim + j) * size element

Storing multi-dimensional arrays

Write MIPS code to load into $\$ t 4$, element A $[i, j]$ assuming that The base address of A is in $\$ s 0, i$ is in $\$ s 1, j$ in $\$ s 2$, each element of A is 4 bytes and A is a 10×20 matrix.

Absolute address $[i, j]=$ array base address + (i * row dim + j) * size element

```
addi $t1, $0, 20 # $t1 = 20
mul $t1, $s1, $t1 # $t1 = i * 20
add $t1,$t1,$s2 # $t1 = i * 20 + j
sll $t1, $t1,2 # $t1 = (i * 20 + j)*4
add $t1, $t1, $s0 # $t1 = Addr[A] + (i * 20 + j) * 4
Iw $t4,0 ($t1) # $t4 = A[i,j]
```


FP Example: Array Multiplication

MIPS code:

FP Example: Array Multiplication

Accurate Arithmetic

IEEE Std 754 specifies additional rounding control

- Not all real numbers in the FP range can be represented.
- Extra bits of precision (guard, round, sticky)
- Choice of rounding modes
- Allows programmer to fine-tune numerical behavior of a computation
- Not all FP units implement all options
- Most programming languages and FP libraries just use defaults
Trade-off between hardware complexity, performance, and market requirements

Rounding with Guard Digits

Add $2.56_{10} \times 10^{0}$ to $2.34_{10} \times 10^{2}$ assuming 3 significant decimal digits. Round to the nearest decimal number, first with guard and round digits, and then without them.

With guard and round digits:
2.3400×10^{2}
$+0.0256 \times 10^{2}$
$2.3656 \times 10^{2} \boldsymbol{\rightarrow} 2.37 \times 10^{2}$

- Without guard and round digits:

$$
\begin{array}{r}
2.34 \times 10^{2} \\
+0.02 \times 10^{2} \\
----- \\
2.36 \times 10^{2}
\end{array}
$$

Subword Parallellism

Graphics and audio applications can take advantage of performing simultaneous operations on short vectors

- Example: 128-bit adder:

Sixteen 8-bit adds

- Eight 16-bit adds
- Four 32-bit adds

Also called data-level parallelism, vector parallelism, or Single Instruction, Multiple Data (SIMD)

x86 FP Architecture

Originally based on 8087 FP coprocessor

- 8×80-bit extended-precision registers
- Used as a push-down stack
- Registers indexed from TOS: ST(0), ST(1), ...

FP values are 32-bit or 64 in memory

- Converted on load/store of memory operand
- Integer operands can also be converted on load/store
- Very difficult to generate and optimize code
- Result: poor FP performance

x86 FP Instructions

Data transfer	Arithmetic	Compare	Transcendental
FILD mem/ST(i)	FIADDP mem/sT(i)	FICOMP	FPATAN
FISTP mem/ST(i)	FISUBRP mem/sT(i)	FIUCOMP	F2XMI
FLDPI	FIMULP mem/sT(i)	FSTSW AX/mem	FCOS
FLD1	FIDIVRP mem/sT(i)		FPTAN
FLDZ	FSQRT		FPREM
	FABS		FPSIN
	FRNDINT		FYL2X

Optional variations

- I: integer operand
- P: pop operand from stack
- R: reverse operand order
- But not all combinations allowed

Streaming SIMD Extension 2 (SSE2)

Adds 4×128-bit registers

- Extended to 8 registers in AMD64/EM64T

Can be used for multiple FP operands

- 2×64-bit double precision
- 4×32-bit double precision
- Instructions operate on them simultaneously Single-Instruction Multiple-Data

Matrix Multiply

Unoptimized code:

1. void dgemm (int n, double* A, double* B, double* C)
2. \{
3. for (int $i=0$; $i<n$; ++i)
4. for (int j $=0$; $j<n$; ++j)
5. \{
6. double cij = C[i+j*n]; /* cij = C[i][j] */
7. for (int $k=0 ; k<n$; $k++$)
8. Cij +=A[i+k*n] * B[k+j*n]; /* cij +=A[i][k]*B[k][j] */
9. C[i+j*n] = cij; /* C[i][j] = cij */
10. \}
11. \}

Matrix Multiply

x86 assembly code:

```
1. vmovsd (%r10),%xmm0 # Load 1 element of C into %xmm0
```

2. mov \%rsi,\%rcx
3. xor \%eax, \%eax
4. vmovsd (\%rcx), \%xmm1
5. add $\% \mathrm{r} 9, \% \mathrm{rcx}$
\# Load 1 element of C into $\% x m m 0$
\# register \%rcx = \%rsi
\# register \%eax = 0
\# Load 1 element of B into \%xmm1
\# register \%rcx = \%rcx + \%r9
```
6. vmulsd (\%r8,\%rax,8),\%xmm1,\%xmm1 \# Multiply \%xmm1, element of A
7. add \$0x1,\%rax
\# register \%rax = \%rax + 1
8. cmp \%eax, \%edi
\# compare \%eax to \%edi
9. vaddsd \%xmm1,\%xmm0, \%xmm0 \# Add \%xmm1, \%xmm0
10. jg 30 <dgemm+0x30> \# jump if \%eax > \%edi
11. add \(\$ 0 \times 1, \% r 11 d\)
\# register \(\% r 11=\frac{\circ}{\circ} 11+1\)
12. vmovsd \%xmm0,(\%r10) \# Store \%xmm0 into C element
```


Matrix Multiply

Optimized C code:

1. \#include <x86intrin.h>
2. void dgemm (int n, double* A, double* B, double* C)
3. \{
4. for (int $i=0$; $i<n$; $i+=4$)
5. for (int j $=0$; j $<n$; j++) \{
6. $m 256 d \mathrm{c} 0=$ mm256_load_pd $(\mathrm{C}+i+j * \mathrm{n}) ; / * \mathrm{c} 0=\mathrm{C}[\mathrm{i}]$
[j] */
7. for (int $k=0 ; k<n ; k++$)
8. $\quad \mathrm{c} 0=$ mm256_add_pd(c0, /* c0 +=A[i][k]*B[k][j] */
9.
10.

_mm256_mul_pd(_mm256_load_pd(A+i+k*n), _mm256_broadcast_sd (B+k+j*n)));
11. \quad mm256_store_pd (C+i+j*n, c0); /* C[i][j] = c0 */
12. \}
13. \}

Matrix Multiply

Optimized x86 assembly code:

1. vmovapd (\%r11), \%ymm0
2. mov \%rbx, \%rcx
3. xor \%eax, \%eax
4. vbroadcastsd (\%rax, \%r8,1), \%ymm1 \# Make 4 copies of B element
5. add \$0x8, \%rax
6. vmulpd (\%rcx), \%ymm1, \%ymm1
7. add \%r9, \%rcx
8. cmp \%r10, \%rax
9. vaddpd \%ymm1, \%ymm0, \%ymm0
10. jne 50 <dgemm+0x50>
11. add \$0x1, \%esi
12. vmovapd \%ymm0, (or11)
\# Load 4 elements of C into \%ymm0
\# register \%rcx $=\% r b x$
\# register \%eax $=0$
\# register \%rax $=$ \%rax +8
\# Parallel mul \%ymm1,4 A elements
\# register \%rcx $=\%$ \%cx $+\% r 9$
\# compare \%r10 to \%rax
\# Parallel add \%ymm1, \%ymm0
\# jump if not \%r10 ! = \%rax
\# register $\%$ esi $=\%$ esi +1
\# Store \%ymm0 into 4 C elements

Fallacy: Right Shift and Division

Left shift by i places multiplies an integer by 2^{i}
Right shift divides by 2^{i} ?

- Only for unsigned integers

For signed integers

- Arithmetic right shift: replicate the sign bit
- e.g., -5 / 4
$-11111011_{2} \gg 2=11111110_{2}=-2$
Rounds toward $-\infty$
- c.f. $11111011_{2} \gg 2=00111110_{2}=+62$

Pitfall: FP Addition is not Associative

Parallel programs may interleave operations in unexpected orders

- Assumptions of associativity may fail

		$(x+y)+z$	$x+(y+z)$
x	$-1.50 E+38$		$-1.50 E+38$
y	$1.50 E+38$	$0.00 E+00$	
$z z$	1.0	1.0	$1.50 E+38$
		$1.00 E+00$	$0.00 E+00$

Need to validate parallel programs under varying degrees of parallelism

Fallacy: Who Cares About FP Accuracy?

Important for scientific code

- But for everyday consumer use?
"My bank balance is out by $0.0002 \phi!$ " $*$
The Intel Pentium FDIV bug in 1994
- The market expects accuracy
- See Colwell, The Pentium Chronicles
- Intel recalled the flawed microprocessor at a cost of $\$ 500$ million!

Concluding Remarks

Bits have no inherent meaning

- Interpretation depends on the instructions applied
Computer representations of numbers
- Finite range and precision
- Need to account for this in programs

Concluding Remarks

ISAs support arithmetic

- Signed and unsigned integers
- Two's complement and IEEE 754 are standard.
- Floating-point approximation to reals

Bounded range and precision

- Operations can overflow and underflow

Concluding Remarks

MIPS ISA

- Core instructions: 54 most frequently used 100% of SPECINT, 97% of SPECFP
- Other instructions: less frequent

Rest of book concentrates on:

- add, addi, addu, addiu, sub, subu, AND, ANDI, OR, Ori, NOR, sll, srl
- lui, lw, sw,lhu,sh, lbu,sb,
- II, sc
- beq, bne, j, jal, jr,

[^0]: Absolute address $[i, j]=$ array base address + (i * row dim +j) * size element

