
COMPUTER	ORGANIZATION	AND	DESIGN	
The Hardware/Software Interface

5th
 Edition

Chapter 3

Arithmetic for Computers

Chapter 3 — Arithmetic for Computers — 2

Arithmetic for Computers
n  Operations on integers

n  Addition and subtraction
n  Multiplication and division
n  Dealing with overflow

n  Floating-point real numbers
n  Representation and operations

§3.1 Introduction

Chapter 3 — Arithmetic for Computers — 3

Integer Addition
n  Example: 7 + 6

§3.2 A
ddition and S

ubtraction

n  Overflow if result out of range
n  Adding +ve and –ve operands, no overflow
n  Adding two +ve operands

n  Overflow if result sign is 1

n  Adding two –ve operands
n  Overflow if result sign is 0

Chapter 3 — Arithmetic for Computers — 4

Integer Addition Example 1
n  Consider adding the numbers 7 and 6

represented in 2’s complement using 4 bits.
What is the result of the computation?

Chapter 3 — Arithmetic for Computers — 5

Integer Addition Example 1
n  Consider adding the numbers 7 and 6

represented in 2’s complement using 4 bits.
What is the result of the computation?

 7: 0 1 1 1
 6: 0 1 1 0

 1 1 0 1 Result is negative (-3)!

 Overflow.

Chapter 3 — Arithmetic for Computers — 6

Integer Addition Example 2
n  Consider adding the numbers -7 and -6

represented in 2’s complement using 4 bits.
What is the result of the computation?

Chapter 3 — Arithmetic for Computers — 7

Integer Addition Example 2
n  Consider adding the numbers -7 and -6

represented in 2’s complement using 4 bits.
What is the result of the computation?

 7 è -7: 0 1 1 1 è 1 0 0 0 è 1 0 0 1
 6 è -6: 0 1 1 0 è 1 0 0 1 è 1 0 1 0

 0 0 1 1

Result is positive (3)! Overflow.

Chapter 3 — Arithmetic for Computers — 8

Integer Subtraction
n  Add negation of second operand
n  Example: 7 – 6 = 7 + (–6)

 +7: 0000 0000 … 0000 0111
–6: 1111 1111 … 1111 1010
+1: 0000 0000 … 0000 0001

n  Overflow if result out of range
n  Subtracting two +ve or two –ve operands, no overflow
n  Subtracting +ve from –ve operand

n  Overflow if result sign is 0

n  Subtracting –ve from +ve operand
n  Overflow if result sign is 1

Chapter 3 — Arithmetic for Computers — 9

Integer Subtraction Example 1
n  Consider subtracting 7 from -6 assuming that the

numbers are represented in 2’s complement
using 4 bits. What is the result of the
computation?

Chapter 3 — Arithmetic for Computers — 10

Integer Subtraction Example 1
n  Consider subtracting 7 from -6 assuming that the

numbers are represented in 2’s complement
using 4 bits. What is the result of the
computation?

 -6: 1 0 1 0
 -7: 1 0 0 1

 0 0 1 1 Result is positive (3)!

 Overflow.

Chapter 3 — Arithmetic for Computers — 11

Integer Subtraction Example 2
n  Consider subtracting -7 from 6 assuming that the

numbers are represented in 2’s complement
using 4 bits. What is the result of the
computation?

Chapter 3 — Arithmetic for Computers — 12

Integer Subtraction Example 2
n  Consider subtracting -7 from 6 assuming that the

numbers are represented in 2’s complement
using 4 bits. What is the result of the
computation?

 6 – (-7) = 6 + 7

 6: 0 1 1 0
 7: 0 1 1 1

 1 0 0 1 The result is negative (-3). Overflow.

Chapter 3 — Arithmetic for Computers — 13

When Overflow Occurs

Operation Operand A Operand B Result indicating
overflow

A+B ≥ 0 ≥ 0 < 0
A+B < 0 < 0 ≥ 0
A-B ≥ 0 < 0 < 0
A-B < 0 ≥ 0 ≥ 0

Chapter 3 — Arithmetic for Computers — 14

Dealing with Overflow
n  Some languages (e.g., C) ignore overflow

n  Use MIPS addu, addui, subu instructions
n  Other languages (e.g., Ada, Fortran)

require raising an exception
n  Use MIPS add, addi, sub instructions
n  On overflow, invoke exception handler

n  Save PC in exception program counter (EPC)
register

n  Jump to predefined handler address
n  mfc0 (move from coprocessor reg) instruction can

retrieve EPC value, to return after corrective action

Chapter 3 — Arithmetic for Computers — 15

Arithmetic for Multimedia
n  Graphics and media processing operates

on vectors of 8-bit and 16-bit data
n  Use 64-bit adder, with partitioned carry chain

n  Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors
n  SIMD (single-instruction, multiple-data)

n  Saturating operations
n  On overflow, result is largest representable

value
n  c.f. 2s-complement modulo arithmetic

n  E.g., clipping in audio, saturation in video

Chapter 3 — Arithmetic for Computers — 16

Multiplication
n  Start with long-multiplication approach

 1000
× 1001
 1000
 0000
 0000
1000
1001000

Length of product is
the sum of operand
lengths

multiplicand

multiplier

product

§3.3 M
ultiplication

Chapter 3 — Arithmetic for Computers — 17

Multiplication Hardware

Initially 0

Chapter 3 — Arithmetic for Computers — 18

Multiplication
n  Start with long-multiplication approach

 1000
× 1001
 1000
 0000
 0000
1000
1001000

Length of product is
the sum of operand
lengths

multiplicand

multiplier

product

§3.3 M
ultiplication

0 0 0 0 1 0 0 0
1 0 0 1

0 0 0 0 0 0 0 0

Chapter 3 — Arithmetic for Computers — 19

Multiplication
n  Start with long-multiplication approach

 1000
× 1001
 1000
 0000
 0000
1000
1001000

Length of product is
the sum of operand
lengths

multiplicand

multiplier

product

§3.3 M
ultiplication

0 0 0 0 1 0 0 0
1 0 0 1

0 0 0 0 1 0 0 0

Chapter 3 — Arithmetic for Computers — 20

Multiplication
n  Start with long-multiplication approach

 1000
× 1001
 1000
 0000
 0000
1000
1001000

Length of product is
the sum of operand
lengths

multiplicand

multiplier

product

§3.3 M
ultiplication

0 0 0 1 0 0 0 0
0 1 0 0

0 0 0 0 1 0 0 0

Chapter 3 — Arithmetic for Computers — 21

Multiplication
n  Start with long-multiplication approach

 1000
× 1001
 1000
 0000
 0000
1000
1001000

Length of product is
the sum of operand
lengths

multiplicand

multiplier

product

§3.3 M
ultiplication

0 0 1 0 0 0 0 0
0 0 1 0

0 0 0 0 1 0 0 0

Chapter 3 — Arithmetic for Computers — 22

Multiplication
n  Start with long-multiplication approach

 1000
× 1001
 1000
 0000
 0000
1000
1001000

Length of product is
the sum of operand
lengths

multiplicand

multiplier

product

§3.3 M
ultiplication

0 1 0 0 0 0 0 0
0 0 0 1

0 0 0 0 1 0 0 0

Chapter 3 — Arithmetic for Computers — 23

Multiplication
n  Start with long-multiplication approach

 1000
× 1001
 1000
 0000
 0000
1000
1001000

Length of product is
the sum of operand
lengths

multiplicand

multiplier

product

§3.3 M
ultiplication

0 0 0 0 0 0 0 0
0 0 0 0

0 1 0 0 1 0 0 0

Chapter 3 — Arithmetic for Computers — 24

Optimized Multiplier
n  Perform steps in parallel: add/shift

n  One cycle per partial-product addition
n  That’s ok, if frequency of multiplications is low

Multiplier in half right of Product register

Chapter 3 — Arithmetic for Computers — 25

Faster Multiplier
n  Uses multiple adders

n  Cost/performance tradeoff

n  Can be pipelined
n  Several multiplications performed in parallel

Chapter 3 — Arithmetic for Computers — 26

MIPS Multiplication
n  Two 32-bit registers for product

n  HI: most-significant 32 bits
n  LO: least-significant 32-bits

n  Instructions
n  mult rs, rt / multu rs, rt

n  64-bit product in HI/LO

n  mfhi rd / mflo rd
n  Move from HI/LO to rd
n  Can test HI value to see if product overflows 32 bits

n  mul rd, rs, rt

n  Least-significant 32 bits of product –> rd

Chapter 3 — Arithmetic for Computers — 27

Division
n  Check for 0 divisor
n  Long division approach

n  If divisor ≤ dividend bits
n  1 bit in quotient, subtract

n  Otherwise
n  0 bit in quotient, bring down next

dividend bit

n  Restoring division
n  Do the subtract, and if remainder

goes < 0, add divisor back
n  Signed division

n  Divide using absolute values
n  Adjust sign of quotient and remainder

as required

 1001
1000 1001010
 -1000
 10
 101
 1010
 -1000
 10

n-bit operands yield n-bit
quotient and remainder

quotient

dividend

remainder

divisor

§3.4 D
ivision

Grammar school algorithm:
Try to see how big a number can be

subtracted, creating a digit of the quotient
on each attempt.

Chapter 3 — Arithmetic for Computers — 28

Division Hardware

Initially dividend

Initially divisor
in left half

Chapter 3 — Arithmetic for Computers — 29

Division Hardware

85 12 Dividend
(initially =
 remainder)

divisor

Chapter 3 — Arithmetic for Computers — 30

Division Hardware

 85 12 dividend divisor
-12
 73

 1

remainder

Chapter 3 — Arithmetic for Computers — 31

Division Hardware

 85 12 dividend divisor
-12
 73

 2

-12
61 remainder

Chapter 3 — Arithmetic for Computers — 32

Division Hardware

 85 12 dividend divisor
-12
 73

 3

-12
61

-12
 49 remainder

Chapter 3 — Arithmetic for Computers — 33

Division Hardware

 85 12 dividend divisor
-12
 73

 4

-12
61

-12
 49
-12
 37 remainder

Chapter 3 — Arithmetic for Computers — 34

Division Hardware

 85 12 dividend divisor
-12
 73

 5

-12
61

-12
 49
-12
 37
-12
 25 remainder

Chapter 3 — Arithmetic for Computers — 35

Division Hardware

 85 12 dividend divisor
-12
 73

 6

-12
61

-12
 49
-12
 37
-12
 25
-12

 13 remainder

Chapter 3 — Arithmetic for Computers — 36

Division Hardware

 85 12 dividend divisor
-12
 73

 7

-12
61

-12
 49
-12
 37
-12
 25
-12

 13
-12

 1 remainder

Chapter 3 — Arithmetic for Computers — 37

Division Hardware

 85 12 dividend divisor
-12
 73

 7

-12
61

-12
 49
-12
 37
-12
 25
-12

 13
-12

 1
-12
-11

remainder < 0
add divisor to
remainder

Chapter 3 — Arithmetic for Computers — 38

Division Hardware

 85 12 dividend divisor
-12
 73

 7

-12
61

-12
 49
-12
 37
-12
 25
-12

 13
-12

 1
-12
-11

remainder
+12
 1

quotient

Chapter 3 — Arithmetic for Computers — 39

Division Hardware

Initially dividend

Initially divisor
in left half

10000000

10010100

Chapter 3 — Arithmetic for Computers — 40

Division Hardware

Initially dividend

Initially divisor
in left half

01000000

00010100

0001

Chapter 3 — Arithmetic for Computers — 41

Division Hardware

Initially dividend

Initially divisor
in left half

00100000

00010100

0010

Chapter 3 — Arithmetic for Computers — 42

Division Hardware

Initially dividend

Initially divisor
in left half

00010000

00010100

0100

Chapter 3 — Arithmetic for Computers — 43

Division Hardware

Initially dividend

Initially divisor
in left half

00001000

00000100

1001

Chapter 3 — Arithmetic for Computers — 44

Optimized Divider

n  One cycle per partial-remainder subtraction
n  Looks a lot like a multiplier!

n  Same hardware can be used for both

Chapter 3 — Arithmetic for Computers — 45

Faster Division
n  Can’t use parallel hardware as in multiplier

n  Subtraction is conditional on sign of remainder
n  Faster dividers (e.g., SRT division)

generate multiple quotient bits per step
n  Still require multiple steps
n  Uses a lookup table for guessing several

quotient bits per step

Chapter 3 — Arithmetic for Computers — 46

MIPS Division
n  Use HI/LO registers for result

n  HI: 32-bit remainder
n  LO: 32-bit quotient

n  Instructions
n  div rs, rt / divu rs, rt

n  No overflow or divide-by-0 checking
n  Software must perform checks if required

n  Use mfhi, mflo to access result
n  E.g., mfhi $s3

mflo $s2

Chapter 3 — Arithmetic for Computers — 47

Floating Point
n  Representation for non-integer numbers

n  Including very small and very large numbers
n  Like scientific notation

n  –2.34 × 1056
n  +0.002 × 10–4
n  +987.02 × 109

n  In binary
n  ±1. s1 s2 …2 × 2yyyy (+- 1 + s1 x 2 -1 + s2 x 2 ^ -2 …)

n  Types float and double in C

normalized

not normalized

§3.5 Floating P
oint

Floating-Point Numbers
n  Suppose you are told to use the following

representation for floating point numbers
using 4 bits: bit 3 (sign), bit 2 (exponent of
2), and bits 1 and 0 (fraction of 2). Assume
that numbers are normalized, i.e., the
number is (-1)sign x (1 + 2exponent).

n  What are the possible numbers that can be
represented?

Chapter 3 — Arithmetic for Computers — 48

Floating-Point Numbers
n  Suppose you are told to use the following representation for floating

point numbers using 4 bits: bit 3 (sign), bit 2 (exponent of 2), and bits
1 and 0 (fraction of 2). Assume that numbers are normalized, i.e.,
the number is (-1)sign x (1 + 2exponent).

n  What are the possible numbers that can be represented?

n  Answer: exponent can be 0 or 1. Fraction can be
00, 11, 10, or 01 (which means 0, (2-1 + 2-2 =
0.75), 2-1= 0.5, or 2-2 = 0.25). So, the possible
numbers are:

n  ±1.0, 1.25, 1.5, 1.75, 2.0, 2.5, 3.0, 3.5
n  How do get numbers < 1?

Chapter 3 — Arithmetic for Computers — 49

Floating-Point Numbers
n  Suppose you are told to use the following representation for floating

point numbers using 4 bits: bit 3 (sign), bit 2 (exponent of 2), and bits
1 and 0 (fraction of 2). Assume that numbers are normalized, i.e.,
the number is (-1)sign x (1 + 2exponent).

n  What are the possible numbers that can be represented?
n  Answer: exponent can be 0 or 1. Fraction can be 00, 11,

10, or 01 (which means 0, (2-1 + 2-2 = 0.75), 2-1= 0.5, or
2-2 = 0.25). So, the possible numbers are:

n  ±1.0, 1.25, 1.5, 1.75, 2.0, 2.5, 3.0, 3.5
n  How do we get numbers < 1?

n  Answer: Need a negative exponent (more
about this later)

Chapter 3 — Arithmetic for Computers — 50

Chapter 3 — Arithmetic for Computers — 51

Floating Point Standard
n  Defined by IEEE Std 754-1985
n  Developed in response to divergence of

representations
n  Portability issues for scientific code

n  Now almost universally adopted
n  Two representations

n  Single precision (32-bit)
n  Double precision (64-bit)

Chapter 3 — Arithmetic for Computers — 52

IEEE Floating-Point Format

n  S: sign bit (0 ⇒ non-negative, 1 ⇒ negative)
n  Normalize significand: 1.0 ≤ |significand| < 2.0

n  Always has a leading pre-binary-point 1 bit, so no need to
represent it explicitly (hidden bit)

n  Significand is Fraction with the “1.” restored
n  Exponent: excess representation: actual exponent + Bias

n  Ensures exponent is unsigned
n  Single: Bias = 127; Double: Bias = 1023

S Exponent Fraction

single: 8 bits
double: 11 bits

single: 23 bits
double: 52 bits

Bias)(ExponentS 2Fraction)(11)(x −×+×−=

Chapter 3 — Arithmetic for Computers — 53

Single-Precision Range
n  Exponents 00000000 and 11111111 reserved
n  Smallest value

n  Exponent: 00000001
⇒ actual exponent = 1 – 127 = –126

n  Fraction: 000…00 ⇒ significand = 1.0
n  ±1.0 × 2–126 ≈ ±1.2 × 10–38

n  Largest value
n  exponent: 11111110
⇒ actual exponent = 254 – 127 = +127

n  Fraction: 111…11 ⇒ significand ≈ 2.0
n  ±2.0 × 2+127 ≈ ±3.4 × 10+38

Chapter 3 — Arithmetic for Computers — 54

Double-Precision Range
n  Exponents 0000…00 and 1111…11 reserved
n  Smallest value

n  Exponent: 00000000001
⇒ actual exponent = 1 – 1023 = –1022

n  Fraction: 000…00 ⇒ significand = 1.0
n  ±1.0 × 2–1022 ≈ ±2.2 × 10–308

n  Largest value
n  Exponent: 11111111110
⇒ actual exponent = 2046 – 1023 = +1023

n  Fraction: 111…11 ⇒ significand ≈ 2.0
n  ±2.0 × 2+1023 ≈ ±1.8 × 10+308

Chapter 3 — Arithmetic for Computers — 55

Floating-Point Precision
n  Relative precision

n  all fraction bits are significant
n  Single: approx 2–23

n  Equivalent to 23 × log102 ≈ 23 × 0.3 ≈ 6 decimal
digits of precision

n  Double: approx 2–52

n  Equivalent to 52 × log102 ≈ 52 × 0.3 ≈ 16 decimal
digits of precision

Chapter 3 — Arithmetic for Computers — 56

Floating-Point Example
n  Represent –0.75

n  –0.75 = (–1)1 × 1.12 × 2–1

n  S = 1
n  Fraction = 1000…002
n  Exponent = –1 + Bias

n  Single: –1 + 127 = 126 = 011111102
n  Double: –1 + 1023 = 1022 = 011111111102

n  Single: 1011111101000…00
n  Double: 1011111111101000…00

Chapter 3 — Arithmetic for Computers — 57

Floating-Point Example
n  Represent –0.75

n  –0.75 = (–1)1 × 1.12 × 2–1

n  S = 1
n  Fraction = 1000…002
n  Exponent = –1 + Bias

n  Single: –1 + 127 = 126 = 011111102
n  Double: –1 + 1023 = 1022 = 011111111102

n  Single: 1011111101000…00
n  Double: 1011111111101000…00

Chapter 3 — Arithmetic for Computers — 58

Floating-Point Example
n  What number is represented by the single-

precision float
 11000000101000…00

n  S = 1
n  Fraction = 01000…002
n  Fxponent = 100000012 = 129

n  x = (–1)1 × (1 + 012) × 2(129 – 127)
 = (–1) × 1.25 × 22
 = –5.0

Chapter 3 — Arithmetic for Computers — 59

Denormal Numbers
n  Exponent = 000...0 ⇒ hidden bit is 0

n  Smaller than normal numbers
n  allow for gradual underflow, with

diminishing precision

n  Denormal with fraction = 000...0

Two representations
of 0.0!

BiasS 2Fraction)(01)(x −×+×−=

0.0±=×+×−= −BiasS 20)(01)(x

Chapter 3 — Arithmetic for Computers — 60

Infinities and NaNs
n  Exponent = 111...1, Fraction = 000...0

n  ±Infinity
n  Can be used in subsequent calculations,

avoiding need for overflow check
n  Exponent = 111...1, Fraction ≠ 000...0

n  Not-a-Number (NaN)
n  Indicates illegal or undefined result

n  e.g., 0.0 / 0.0
n  Can be used in subsequent calculations

Chapter 3 — Arithmetic for Computers — 61

Floating-Point Addition
n  Consider a 4-digit decimal example

n  9.999 × 101 + 1.610 × 10–1

n  1. Align decimal points
n  Shift number with smaller exponent
n  9.999 × 101 + 0.016 × 101

n  2. Add significands
n  9.999 × 101 + 0.016 × 101 = 10.015 × 101

n  3. Normalize result & check for over/underflow
n  1.0015 × 102

n  4. Round and renormalize if necessary
n  1.002 × 102

Chapter 3 — Arithmetic for Computers — 62

Floating-Point Addition
n  Now consider a 4-digit binary example

n  1.0002 × 2–1 + –1.1102 × 2–2 (0.5 + –0.4375)
n  1. Align binary points

n  Shift number with smaller exponent
n  1.0002 × 2–1 + –0.1112 × 2–1

n  2. Add significands
n  1.0002 × 2–1 + –0.1112 × 2–1 = 0.0012 × 2–1

n  3. Normalize result & check for over/underflow
n  1.0002 × 2–4, with no over/underflow

n  4. Round and renormalize if necessary
n  1.0002 × 2–4 (no change) = 0.0625

Chapter 3 — Arithmetic for Computers — 63

FP Adder Hardware
n  Much more complex than integer adder
n  Doing it in one clock cycle would take too

long
n  Much longer than integer operations
n  Slower clock would penalize all instructions

n  FP adder usually takes several cycles
n  Can be pipelined

Chapter 3 — Arithmetic for Computers — 64

FP Adder Hardware

Step 1

Step 2

Step 3

Step 4

Chapter 3 — Arithmetic for Computers — 65

FP Adder Hardware

Step 1

Step 2

Step 3

Step 4

Multiplexer to
select largest
exponent

Multiplexer to
select significand
of smallest number

Multiplexer to
select significand
of largest number

Chapter 3 — Arithmetic for Computers — 66

FP Adder Hardware

Step 1

Step 2

Step 3

Step 4

Chapter 3 — Arithmetic for Computers — 67

Floating-Point Multiplication
n  Consider a 4-digit decimal example

n  1.110 × 1010 × 9.200 × 10–5

n  1. Add exponents
n  For biased exponents, subtract bias from sum
n  New exponent = 10 + –5 = 5

n  2. Multiply significands
n  1.110 × 9.200 = 10.212 ⇒ 10.212 × 105

n  3. Normalize result & check for over/underflow
n  1.0212 × 106

n  4. Round and renormalize if necessary
n  1.021 × 106

n  5. Determine sign of result from signs of operands
n  +1.021 × 106

Chapter 3 — Arithmetic for Computers — 68

Floating-Point Multiplication
n  Now consider a 4-digit binary example

n  1.0002 × 2–1 × –1.1102 × 2–2 (0.5 × –0.4375)
n  1. Add exponents

n  Unbiased: –1 + –2 = –3
n  Biased: (–1 + 127) + (–2 + 127) = –3 + 254 – 127 = –3 + 127

n  2. Multiply significands
n  1.0002 × 1.1102 = 1.1102 ⇒ 1.1102 × 2–3

n  3. Normalize result & check for over/underflow
n  1.1102 × 2–3 (no change) with no over/underflow

n  4. Round and renormalize if necessary
n  1.1102 × 2–3 (no change)

n  5. Determine sign: +ve × –ve ⇒ –ve
n  –1.1102 × 2–3 = –0.21875

Chapter 3 — Arithmetic for Computers — 69

FP Arithmetic Hardware
n  FP multiplier is of similar complexity to FP

adder
n  But uses a multiplier for significands instead of

an adder
n  FP arithmetic hardware usually does

n  Addition, subtraction, multiplication, division,
reciprocal, square-root

n  FP ↔ integer conversion
n  Operations usually takes several cycles

n  Can be pipelined

Chapter 3 — Arithmetic for Computers — 70

FP Instructions in MIPS
n  FP hardware is coprocessor 1

n  Adjunct processor that extends the ISA
n  Separate FP registers

n  32 single-precision: $f0, $f1, … $f31
n  Paired for double-precision: $f0/$f1, $f2/$f3, …

n  Release 2 of MIPs ISA supports 32 × 64-bit FP reg’s
n  FP instructions operate only on FP registers

n  Programs generally don’t do integer ops on FP data,
or vice versa

n  More registers with minimal code-size impact
n  FP load and store instructions

n  lwc1, ldc1, swc1, sdc1
n  e.g., ldc1 $f8, 32($sp)

Chapter 3 — Arithmetic for Computers — 71

FP Instructions in MIPS
n  Single-precision arithmetic

n  add.s, sub.s, mul.s, div.s
n  e.g., add.s $f0, $f1, $f6

n  Double-precision arithmetic
n  add.d, sub.d, mul.d, div.d

n  e.g., mul.d $f4, $f4, $f6
n  Single- and double-precision comparison

n  c.xx.s, c.xx.d (xx is eq, lt, le, …)
n  Sets or clears FP condition-code bit

n  e.g. c.lt.s $f3, $f4
n  Branch on FP condition code true or false

n  bc1t, bc1f
n  e.g., bc1t TargetLabel

Chapter 3 — Arithmetic for Computers — 72

FP Example: °F to °C
n  C code:
 float f2c (float fahr) {
 return ((5.0/9.0)*(fahr - 32.0));
}

n  fahr in $f12, result in $f0, literals in global memory
space

n  Compiled MIPS code:
 f2c: lwc1 $f16, const5($gp)
 lwc1 $f18, const9($gp)
 div.s $f16, $f16, $f18
 lwc1 $f18, const32($gp)
 sub.s $f18, $f12, $f18
 mul.s $f0, $f16, $f18
 jr $ra

Chapter 3 — Arithmetic for Computers — 73

FP Example: Array Multiplication
n  X = X + Y × Z

n  All 32 × 32 matrices, 64-bit double-precision elements
n  C code:
 void mm (double x[][],
 double y[][], double z[][]) {
 int i, j, k;
 for (i = 0; i! = 32; i = i + 1)
 for (j = 0; j! = 32; j = j + 1)
 for (k = 0; k! = 32; k = k + 1)
 x[i][j] = x[i][j]
 + y[i][k] * z[k][j];
}

n  Addresses of x, y, z in $a0, $a1, $a2, and
i, j, k in $s0, $s1, $s2

Chapter 3 — Arithmetic for Computers — 74

Storing multi-dimensional arrays
Consider a 3 x 2 matrix stored in memory in row major order,
 i.e., elements are stored row by row. Each element is 4-bytes
long. What is the byte offset of element i,j?

Chapter 3 — Arithmetic for Computers — 75

Storing multi-dimensional arrays
Consider a 3 x 2 matrix stored in memory in row major order,
 i.e., elements are stored row by row. Each element is 4-bytes
long. What is the byte offset of element i,j?

A00 A01
A10 A11
A20 A21

[i,j] = (i * row dim + j) * size element

[1,1] = (1 * 2 + 1) * 4 = 12

[2,0] = (2*2 + 0) * 4 = 16

A00
A01

A10
A11

A20
A21

4

0

8
12

16
20

Absolute address [i,j] = array base address + (i * row dim + j) * size element

Chapter 3 — Arithmetic for Computers — 76

Storing multi-dimensional arrays
Write MIPS code to load into $t4, element A [i,j] assuming that
The base address of A is in $s0, i is in $s1, j in $s2, each
element of A is 4 bytes and A is a 10 x 20 matrix.

Absolute address [i,j] = array base address + (i * row dim + j) * size element

Chapter 3 — Arithmetic for Computers — 77

Storing multi-dimensional arrays
Write MIPS code to load into $t4, element A [i,j] assuming that
The base address of A is in $s0, i is in $s1, j in $s2, each
element of A is 4 bytes and A is a 10 x 20 matrix.

Absolute address [i,j] = array base address + (i * row dim + j) * size element

addi $t1, $0, 20 # $t1 = 20
mul $t1, $s1, $t1 # $t1 = i * 20
add $t1, $t1, $s2 # $t1 = i * 20 + j
sll $t1, $t1, 2 # $t1 = (i * 20 + j) * 4
add $t1, $t1, $s0 # $t1 = Addr[A] + (i * 20 + j) * 4
lw $t4, 0 ($t1) # $t4 = A[i,j]

Chapter 3 — Arithmetic for Computers — 78

FP Example: Array Multiplication
n  MIPS code:
 li $t1, 32 # $t1 = 32 (row size/loop end)

 li $s0, 0 # i = 0; initialize 1st for loop

L1: li $s1, 0 # j = 0; restart 2nd for loop

L2: li $s2, 0 # k = 0; restart 3rd for loop

 sll $t2, $s0, 5 # $t2 = i * 32 (size of row of x)

 addu $t2, $t2, $s1 # $t2 = i * size(row) + j

 sll $t2, $t2, 3 # $t2 = byte offset of [i][j]

 addu $t2, $a0, $t2 # $t2 = byte address of x[i][j]

 l.d $f4, 0($t2) # $f4 = 8 bytes of x[i][j]

L3: sll $t0, $s2, 5 # $t0 = k * 32 (size of row of z)

 addu $t0, $t0, $s1 # $t0 = k * size(row) + j

 sll $t0, $t0, 3 # $t0 = byte offset of [k][j]

 addu $t0, $a2, $t0 # $t0 = byte address of z[k][j]

 l.d $f16, 0($t0) # $f16 = 8 bytes of z[k][j]

 …

Chapter 3 — Arithmetic for Computers — 79

FP Example: Array Multiplication
 …

 sll $t0, $s0, 5 # $t0 = i*32 (size of row of y)

 addu $t0, $t0, $s2 # $t0 = i*size(row) + k

 sll $t0, $t0, 3 # $t0 = byte offset of [i][k]

 addu $t0, $a1, $t0 # $t0 = byte address of y[i][k]

 l.d $f18, 0($t0) # $f18 = 8 bytes of y[i][k]

 mul.d $f16, $f18, $f16 # $f16 = y[i][k] * z[k][j]

 add.d $f4, $f4, $f16 # f4=x[i][j] + y[i][k]*z[k][j]

 addiu $s2, $s2, 1 # $k k + 1

 bne $s2, $t1, L3 # if (k != 32) go to L3

 s.d $f4, 0($t2) # x[i][j] = $f4

 addiu $s1, $s1, 1 # $j = j + 1

 bne $s1, $t1, L2 # if (j != 32) go to L2

 addiu $s0, $s0, 1 # $i = i + 1

 bne $s0, $t1, L1 # if (i != 32) go to L1

Chapter 3 — Arithmetic for Computers — 80

Accurate Arithmetic
n  IEEE Std 754 specifies additional rounding

control
n  Not all real numbers in the FP range can be

represented.
n  Extra bits of precision (guard, round, sticky)
n  Choice of rounding modes
n  Allows programmer to fine-tune numerical behavior of

a computation
n  Not all FP units implement all options

n  Most programming languages and FP libraries just
use defaults

n  Trade-off between hardware complexity,
performance, and market requirements

Chapter 3 — Arithmetic for Computers — 81

Rounding with Guard Digits
n  Add 2.5610 x 100 to 2.3410 x 102 assuming 3 significant decimal

digits. Round to the nearest decimal number, first with guard and
round digits, and then without them.

n  With guard and round digits:

 2.3400 x 102
 + 0.0256 x 102

 2.3656 x 102 è 2.37 x 102

n  Without guard and round digits:

 2.34 x 102
 + 0.02 x 102

 2.36 x 102

Subword Parallellism
n  Graphics and audio applications can take

advantage of performing simultaneous
operations on short vectors
n  Example: 128-bit adder:

n  Sixteen 8-bit adds
n  Eight 16-bit adds
n  Four 32-bit adds

n  Also called data-level parallelism, vector
parallelism, or Single Instruction, Multiple
Data (SIMD)

Chapter 3 — Arithmetic for Computers — 82

§3.6 P
arallelism

 and C
om

puter A
rithm

etic: S
ubw

ord P
arallelism

Chapter 3 — Arithmetic for Computers — 83

x86 FP Architecture
n  Originally based on 8087 FP coprocessor

n  8 × 80-bit extended-precision registers
n  Used as a push-down stack
n  Registers indexed from TOS: ST(0), ST(1), …

n  FP values are 32-bit or 64 in memory
n  Converted on load/store of memory operand
n  Integer operands can also be converted

on load/store
n  Very difficult to generate and optimize code

n  Result: poor FP performance

§3.7 R
eal S

tuff: S
tream

ing S
IM

D
 E

xtensions and AV
X

 in x86

Chapter 3 — Arithmetic for Computers — 84

x86 FP Instructions

n  Optional variations
n  I: integer operand
n  P: pop operand from stack
n  R: reverse operand order
n  But not all combinations allowed

Data transfer Arithmetic Compare Transcendental
FILD mem/ST(i)

FISTP mem/ST(i)

FLDPI

FLD1

FLDZ

FIADDP mem/ST(i)

FISUBRP mem/ST(i)
FIMULP mem/ST(i)
FIDIVRP mem/ST(i)

FSQRT

FABS

FRNDINT

FICOMP

FIUCOMP

FSTSW AX/mem

FPATAN

F2XMI

FCOS

FPTAN

FPREM

FPSIN

FYL2X

Chapter 3 — Arithmetic for Computers — 85

Streaming SIMD Extension 2 (SSE2)

n  Adds 4 × 128-bit registers
n  Extended to 8 registers in AMD64/EM64T

n  Can be used for multiple FP operands
n  2 × 64-bit double precision
n  4 × 32-bit double precision
n  Instructions operate on them simultaneously

n  Single-Instruction Multiple-Data

Matrix Multiply
n  Unoptimized code:

1. void dgemm (int n, double* A, double* B, double* C)

2. {

3. for (int i = 0; i < n; ++i)

4. for (int j = 0; j < n; ++j)

5. {

6. double cij = C[i+j*n]; /* cij = C[i][j] */

7. for(int k = 0; k < n; k++)

8. cij += A[i+k*n] * B[k+j*n]; /* cij += A[i][k]*B[k][j] */

9. C[i+j*n] = cij; /* C[i][j] = cij */

10. }

11. }

Chapter 3 — Arithmetic for Computers — 86

§3.8 G
oing Faster: S

ubw
ord P

arallelism
 and M

atrix M
ultiply

Matrix Multiply
n  x86 assembly code:
1. vmovsd (%r10),%xmm0 # Load 1 element of C into %xmm0

2. mov %rsi,%rcx # register %rcx = %rsi

3. xor %eax,%eax # register %eax = 0

4. vmovsd (%rcx),%xmm1 # Load 1 element of B into %xmm1

5. add %r9,%rcx # register %rcx = %rcx + %r9

6. vmulsd (%r8,%rax,8),%xmm1,%xmm1 # Multiply %xmm1,
element of A

7. add $0x1,%rax # register %rax = %rax + 1

8. cmp %eax,%edi # compare %eax to %edi

9. vaddsd %xmm1,%xmm0,%xmm0 # Add %xmm1, %xmm0

10. jg 30 <dgemm+0x30> # jump if %eax > %edi

11. add $0x1,%r11d # register %r11 = %r11 + 1

12. vmovsd %xmm0,(%r10) # Store %xmm0 into C element

Chapter 3 — Arithmetic for Computers — 87

§3.8 G
oing Faster: S

ubw
ord P

arallelism
 and M

atrix M
ultiply

Matrix Multiply
n  Optimized C code:
1. #include <x86intrin.h>

2. void dgemm (int n, double* A, double* B, double* C)

3. {

4. for (int i = 0; i < n; i+=4)

5. for (int j = 0; j < n; j++) {

6. __m256d c0 = _mm256_load_pd(C+i+j*n); /* c0 = C[i]
[j] */

7. for(int k = 0; k < n; k++)

8. c0 = _mm256_add_pd(c0, /* c0 += A[i][k]*B[k][j] */

9. _mm256_mul_pd(_mm256_load_pd(A+i+k*n),

10. _mm256_broadcast_sd(B+k+j*n)));

11. _mm256_store_pd(C+i+j*n, c0); /* C[i][j] = c0 */

12. }

13. }

Chapter 3 — Arithmetic for Computers — 88

§3.8 G
oing Faster: S

ubw
ord P

arallelism
 and M

atrix M
ultiply

Matrix Multiply
n  Optimized x86 assembly code:
1. vmovapd (%r11),%ymm0 # Load 4 elements of C into %ymm0

2. mov %rbx,%rcx # register %rcx = %rbx

3. xor %eax,%eax # register %eax = 0

4. vbroadcastsd (%rax,%r8,1),%ymm1 # Make 4 copies of B element

5. add $0x8,%rax # register %rax = %rax + 8

6. vmulpd (%rcx),%ymm1,%ymm1 # Parallel mul %ymm1,4 A elements

7. add %r9,%rcx # register %rcx = %rcx + %r9

8. cmp %r10,%rax # compare %r10 to %rax

9. vaddpd %ymm1,%ymm0,%ymm0 # Parallel add %ymm1, %ymm0

10. jne 50 <dgemm+0x50> # jump if not %r10 != %rax

11. add $0x1,%esi # register % esi = % esi + 1

12. vmovapd %ymm0,(%r11) # Store %ymm0 into 4 C elements

Chapter 3 — Arithmetic for Computers — 89

§3.8 G
oing Faster: S

ubw
ord P

arallelism
 and M

atrix M
ultiply

Chapter 3 — Arithmetic for Computers — 90

Fallacy: Right Shift and Division
n  Left shift by i places multiplies an integer

by 2i
n  Right shift divides by 2i?

n  Only for unsigned integers
n  For signed integers

n  Arithmetic right shift: replicate the sign bit
n  e.g., –5 / 4

n  111110112 >> 2 = 111111102 = –2
n  Rounds toward –∞

n  c.f. 111110112 >> 2 = 001111102 = +62

§3.9 Fallacies and P
itfalls

Chapter 3 — Arithmetic for Computers — 91

Pitfall: FP Addition is not Associative

n  Parallel programs may interleave
operations in unexpected orders
n  Assumptions of associativity may fail

(x+y)+z x+(y+z)
x -1.50E+38 -1.50E+38
y 1.50E+38
z 1.0 1.0

1.00E+00 0.00E+00

0.00E+00
1.50E+38

n  Need to validate parallel programs under
varying degrees of parallelism

Chapter 3 — Arithmetic for Computers — 92

Fallacy: Who Cares About FP Accuracy?

n  Important for scientific code
n  But for everyday consumer use?

n  “My bank balance is out by 0.0002¢!” L

n  The Intel Pentium FDIV bug in 1994
n  The market expects accuracy
n  See Colwell, The Pentium Chronicles
n  Intel recalled the flawed microprocessor at a

cost of $500 million!

Chapter 3 — Arithmetic for Computers — 93

Concluding Remarks
n  Bits have no inherent meaning

n  Interpretation depends on the instructions
applied

n  Computer representations of numbers
n  Finite range and precision
n  Need to account for this in programs

§3.9 C
oncluding R

em
arks

Chapter 3 — Arithmetic for Computers — 94

Concluding Remarks
n  ISAs support arithmetic

n  Signed and unsigned integers
n  Two’s complement and IEEE 754 are

standard.
n  Floating-point approximation to reals

n  Bounded range and precision
n  Operations can overflow and underflow

Chapter 3 — Arithmetic for Computers — 95

Concluding Remarks
n  MIPS ISA

n  Core instructions: 54 most frequently used
n  100% of SPECINT, 97% of SPECFP

n  Other instructions: less frequent
n  Rest of book concentrates on:

n  add, addi, addu, addiu, sub, subu, AND,
ANDI, OR, Ori, NOR, sll, srl

n  lui, lw, sw,lhu,sh, lbu,sb,
n  ll, sc
n  beq, bne, j, jal, jr,
n  slt, slti, sltu, sltiu

