

COMPUTER ORGANIZATION AND DESIGN The Hardware/Software Interface

Chapter 3

Arithmetic for Computers

Arithmetic for Computers

- Operations on integers
 - Addition and subtraction
 - Multiplication and division
 - Dealing with overflow
- Floating-point real numbers
 - Representation and operations

- Overflow if result out of range
 - Adding +ve and –ve operands, no overflow
 - Adding two +ve operands
 - Overflow if result sign is 1
 - Adding two –ve operands
 - Overflow if result sign is 0

Consider adding the numbers 7 and 6 represented in 2's complement using 4 bits. What is the result of the computation?

- Consider adding the numbers 7 and 6 represented in 2's complement using 4 bits. What is the result of the computation?
 - 7: 0111
 - 6: 0110

1101 Result is negative (-3)! Overflow.

Consider adding the numbers -7 and -6 represented in 2's complement using 4 bits. What is the result of the computation?

Consider adding the numbers -7 and -6 represented in 2's complement using 4 bits. What is the result of the computation?

$7 \rightarrow -7$: $0 \ 1 \ 1 \ 1 \rightarrow 1 \ 0 \ 0 \ 0 \rightarrow 1 \ 0 \ 0 \ 1$ $6 \rightarrow -6$: $0 \ 1 \ 1 \ 0 \rightarrow 1 \ 0 \ 0 \ 1 \rightarrow 1 \ 0 \ 1 \ 0$

0011

Result is positive (3)! Overflow.

Integer Subtraction

- Add negation of second operand
- Example: 7 6 = 7 + (–6)
 - +7: 0000 0000 ... 0000 0111
 - <u>-6: 1111 1111 ... 1111 1010</u>
 - +1: 0000 0000 ... 0000 0001
- Overflow if result out of range
 - Subtracting two +ve or two –ve operands, no overflow
 - Subtracting +ve from –ve operand
 - Overflow if result sign is 0
 - Subtracting –ve from +ve operand
 - Overflow if result sign is 1

Consider subtracting 7 from -6 assuming that the numbers are represented in 2's complement using 4 bits. What is the result of the computation?

- Consider subtracting 7 from -6 assuming that the numbers are represented in 2's complement using 4 bits. What is the result of the computation?
 - -6: 1010
 - -7: 1001

0011 Result is positive (3)! Overflow.

Consider subtracting -7 from 6 assuming that the numbers are represented in 2's complement using 4 bits. What is the result of the computation?

Consider subtracting -7 from 6 assuming that the numbers are represented in 2's complement using 4 bits. What is the result of the computation?

$$6 - (-7) = 6 + 7$$

6: 0 1 1 0 7: 0 1 1 1

1001 The result is negative (-3). Overflow.

When Overflow Occurs

Operation	Operand A	Operand B	Result indicating overflow
A+B	≥ 0	≥ 0	< 0
A+B	< 0	< 0	≥ 0
A-B	≥ 0	< 0	< 0
A-B	< 0	≥ 0	≥ 0

Dealing with Overflow

- Some languages (e.g., C) ignore overflow
 Use MIPS addu, addui, subu instructions
- Other languages (e.g., Ada, Fortran) require raising an exception
 - Use MIPS add, addi, sub instructions
 - On overflow, invoke exception handler
 - Save PC in exception program counter (EPC) register
 - Jump to predefined handler address
 - mfc0 (move from coprocessor reg) instruction can retrieve EPC value, to return after corrective action

Arithmetic for Multimedia

- Graphics and media processing operates on vectors of 8-bit and 16-bit data
 - Use 64-bit adder, with partitioned carry chain
 - Operate on 8×8-bit, 4×16-bit, or 2×32-bit vectors
 - SIMD (single-instruction, multiple-data)
- Saturating operations
 - On overflow, result is largest representable value
 - c.f. 2s-complement modulo arithmetic
 - E.g., clipping in audio, saturation in video

Multiplication Hardware

Optimized Multiplier

Perform steps in parallel: add/shift

One cycle per partial-product addition
 That's ok, if frequency of multiplications is low

Faster Multiplier

Uses multiple adders

Cost/performance tradeoff

Can be pipelined

Several multiplications performed in parallel

MIPS Multiplication

- Two 32-bit registers for product
 - HI: most-significant 32 bits
 - LO: least-significant 32-bits
- Instructions
 - mult rs, rt / multu rs, rt
 - 64-bit product in HI/LO
 - mfhi rd / mflo rd
 - Move from HI/LO to rd
 - Can test HI value to see if product overflows 32 bits
 - mul rd, rs, rt
 - Least-significant 32 bits of product -> rd

quotientdividend100110001000100010001011011010-1000-1000remainder

n-bit operands yield *n*-bit quotient and remainder

Grammar school algorithm: Try to see how big a number can be subtracted, creating a digit of the quotient on each attempt.

- Check for 0 divisor
- Long division approach
 - If divisor ≤ dividend bits
 - 1 bit in quotient, subtract
 - Otherwise
 - 0 bit in quotient, bring down next dividend bit
 - **Restoring division**
 - Do the subtract, and if remainder goes < 0, add divisor back
- Signed division
 - Divide using absolute values
 - Adjust sign of quotient and remainder as required

Division Hardware Start divisor 85 Dividend 12) 1. Subtract the Divisor register from the Remainder register and place the (initially = result in the Remainder register remainder) Remainder ≥ 0 Remainder < 0 Test Remainder 2a. Shift the Quotient register to the left, 2b. Restore the original value by adding setting the new rightmost bit to 1 the Divisor register to the Remainder register and placing the sum in the Remainder register. Also shift the Quotient register to the left, setting the new least significant bit to 0 3. Shift the Divisor register right 1 bit No: < 33 repetitions 33rd repetition? Yes: 33 repetitions Done Chapter 3 — Arithmetic for Computers — 29

		5	
divisor	12)	85	dividend
)	-12	
		73	
		-12	
		61	
		<u>-12</u> 49	
		49 -12	
		37 -12	
remainde	er	25	

Optimized Divider

- One cycle per partial-remainder subtraction
- Looks a lot like a multiplier!
 - Same hardware can be used for both

Faster Division

- Can't use parallel hardware as in multiplier
 - Subtraction is conditional on sign of remainder
- Faster dividers (e.g., SRT division) generate multiple quotient bits per step
 - Still require multiple steps
 - Uses a lookup table for guessing several quotient bits per step

MIPS Division

- Use HI/LO registers for result
 - HI: 32-bit remainder
 - LO: 32-bit quotient
- Instructions
 - div rs, rt / divu rs, rt
 - No overflow or divide-by-0 checking
 Software must perform checks if required
 - Use mfhi, mflo to access result
 - E.g., mfhi \$s3

mflo \$s2

Floating Point

- Representation for non-integer numbers
 - Including very small and very large numbers
- Like scientific notation

In binary

- $\pm 1. s_1 s_2 \dots 2^{yyyy}$ (+- 1 + $s_1 x 2^{-1} + s_2 x 2^{-2} \dots$)
- Types float and double in C

Floating-Point Numbers

- Suppose you are told to use the following representation for floating point numbers using 4 bits: bit 3 (sign), bit 2 (exponent of 2), and bits 1 and 0 (fraction of 2). Assume that numbers are normalized, i.e., the number is (-1)^{sign} x (1 + 2^{exponent}).
- What are the possible numbers that can be represented?

Floating-Point Numbers

- Suppose you are told to use the following representation for floating point numbers using 4 bits: bit 3 (sign), bit 2 (exponent of 2), and bits 1 and 0 (fraction of 2). Assume that numbers are normalized, i.e., the number is (-1)^{sign} x (1 + 2^{exponent}).
- What are the possible numbers that can be represented?
- Answer: exponent can be 0 or 1. Fraction can be 00, 11, 10, or 01 (which means 0, (2⁻¹ + 2⁻² = 0.75), 2⁻¹= 0.5, or 2⁻² = 0.25). So, the possible numbers are:
- ±1.0, 1.25, 1.5, 1.75, 2.0, 2.5, 3.0, 3.5
- How do get numbers < 1?</p>

Floating-Point Numbers

- Suppose you are told to use the following representation for floating point numbers using 4 bits: bit 3 (sign), bit 2 (exponent of 2), and bits 1 and 0 (fraction of 2). Assume that numbers are normalized, i.e., the number is (-1)^{sign} x (1 + 2^{exponent}).
- What are the possible numbers that can be represented?
- Answer: exponent can be 0 or 1. Fraction can be 00, 11, 10, or 01 (which means 0, (2⁻¹ + 2⁻² = 0.75), 2⁻¹ = 0.5, or 2⁻² = 0.25). So, the possible numbers are:
- ±1.0, 1.25, 1.5, 1.75, 2.0, 2.5, 3.0, 3.5
- How do we get numbers < 1?</p>
 - Answer: Need a negative exponent (more about this later)

Floating Point Standard

- Defined by IEEE Std 754-1985
- Developed in response to divergence of representations
 - Portability issues for scientific code
- Now almost universally adopted
- Two representations
 - Single precision (32-bit)
 - Double precision (64-bit)

IEEE Floating-Point Format

single: 8 bits double: 11 bits		single: 23 bits double: 52 bits
S	Exponent	Fraction

 $x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent-Bias)}$

- S: sign bit ($0 \Rightarrow$ non-negative, $1 \Rightarrow$ negative)
- Normalize significand: $1.0 \le |significand| < 2.0$
 - Always has a leading pre-binary-point 1 bit, so no need to represent it explicitly (hidden bit)
 - Significand is Fraction with the "1." restored
- Exponent: excess representation: actual exponent + Bias
 - Ensures exponent is unsigned
 - Single: Bias = 127; Double: Bias = 1023

Single-Precision Range

- Exponents 0000000 and 11111111 reserved
- Smallest value
 - Exponent: 00000001
 - \Rightarrow actual exponent = 1 127 = -126
 - Fraction: $000...00 \Rightarrow$ significand = 1.0
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Largest value
 - exponent: 11111110
 ⇒ actual exponent = 254 127 = +127
 - Fraction: $111...11 \Rightarrow$ significand ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Double-Precision Range

- Exponents 0000...00 and 1111...11 reserved
- Smallest value
 - Exponent: 0000000001
 ⇒ actual exponent = 1 1023 = −1022
 - Fraction: $000...00 \Rightarrow$ significand = 1.0
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Largest value
 - Exponent: 1111111110
 ⇒ actual exponent = 2046 1023 = +1023
 - Fraction: $111...11 \Rightarrow$ significand ≈ 2.0
 - $\pm 2.0 \times 2^{\pm 1023} \approx \pm 1.8 \times 10^{\pm 308}$

Floating-Point Precision

- Relative precision
 - all fraction bits are significant
 - Single: approx 2⁻²³
 - Equivalent to 23 × log₁₀2 ≈ 23 × 0.3 ≈ 6 decimal digits of precision
 - Double: approx 2⁻⁵²
 - Equivalent to 52 × log₁₀2 ≈ 52 × 0.3 ≈ 16 decimal digits of precision

Floating-Point Example

Represent –0.75

- $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
- S = 1
- Fraction = 1000...00₂
- Exponent = -1 + Bias
 - Single: $-1 + 127 = 126 = 01111110_2$
 - Double: $-1 + 1023 = 1022 = 01111111110_2$
- Single: 1011111101000...00
- Double: 101111111101000...00

Floating-Point Example Represent –0.75 $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$ $0.75_{10} = 3/4_{10} = 3/2^2_{10} = 11_2/2^2_{10} = 0.11_2 =$ 1.1₂ x 2⁻¹ Exponent = -1 + Bias Single: $-1 + 127 = 126 = 01111110_2$ Double: $-1 + 1023 = 1022 = 0111111110_2$ Single: 1011111101000...00 Double: 101111111110100...00

Floating-Point Example

- What number is represented by the singleprecision float
 - 1100000101000...00
 - S = 1
 - Fraction = 01000...00₂
 - Fxponent = 10000001₂ = 129

•
$$x = (-1)^1 \times (1 + 01_2) \times 2^{(129 - 127)}$$

= $(-1) \times 1.25 \times 2^2$
= -5.0

Denormal Numbers

Exponent = $000...0 \Rightarrow$ hidden bit is 0

 $x = (-1)^{S} \times (0 + Fraction) \times 2^{-Bias}$

- Smaller than normal numbers
 - allow for gradual underflow, with diminishing precision
- Denormal with fraction = 000...0

$$X = (-1)^{S} \times (0+0) \times 2^{-Bias} = \pm 0.0$$

Two representations
of 0.0!

Infinities and NaNs

- Exponent = 111...1, Fraction = 000...0
 - ±Infinity
 - Can be used in subsequent calculations, avoiding need for overflow check
- Exponent = 111...1, Fraction $\neq 000...0$
 - Not-a-Number (NaN)
 - Indicates illegal or undefined result
 - e.g., 0.0 / 0.0
 - Can be used in subsequent calculations

Floating-Point Addition

- Consider a 4-digit decimal example
 - 9.999 × 10¹ + 1.610 × 10⁻¹
- 1. Align decimal points
 - Shift number with smaller exponent
 - 9.999 × 10¹ + 0.016 × 10¹
- 2. Add significands
 - $9.999 \times 10^1 + 0.016 \times 10^1 = 10.015 \times 10^1$
- 3. Normalize result & check for over/underflow
 - 1.0015 × 10²
- 4. Round and renormalize if necessary
 - 1.002 × 10²

Floating-Point Addition

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Align binary points
 - Shift number with smaller exponent
 - 1.000₂ × 2⁻¹ + -0.111₂ × 2⁻¹
- 2. Add significands
 - $\bullet 1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalize result & check for over/underflow
 - $1.000_2 \times 2^{-4}$, with no over/underflow
- 4. Round and renormalize if necessary
 - $1.000_2 \times 2^{-4}$ (no change) = 0.0625

FP Adder Hardware

- Much more complex than integer adder
 Doing it in one clock cycle would take too long
 - Much longer than integer operations
 - Slower clock would penalize all instructions
 - FP adder usually takes several cycles
 - Can be pipelined

FP Adder Hardware

Chapter 3 — Arithmetic for Computers — 64

Chapter 3 — Arithmetic for Computers — 65

FP Adder Hardware

Chapter 3 — Arithmetic for Computers — 66

Floating-Point Multiplication

- Consider a 4-digit decimal example
 - 1.110 × 10¹⁰ × 9.200 × 10⁻⁵
- 1. Add exponents
 - For biased exponents, subtract bias from sum
 - New exponent = 10 + -5 = 5
- 2. Multiply significands
 - $1.110 \times 9.200 = 10.212 \implies 10.212 \times 10^5$
- 3. Normalize result & check for over/underflow
 - 1.0212 × 10⁶
- 4. Round and renormalize if necessary
 - 1.021 × 10⁶
- 5. Determine sign of result from signs of operands
 - +1.021 × 10⁶

Floating-Point Multiplication

- Now consider a 4-digit binary example
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- 1. Add exponents
 - Unbiased: -1 + -2 = -3
 - Biased: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Multiply significands

■ $1.000_2 \times 1.110_2 = 1.1102 \implies 1.110_2 \times 2^{-3}$

- 3. Normalize result & check for over/underflow
 - $1.110_2 \times 2^{-3}$ (no change) with no over/underflow
- 4. Round and renormalize if necessary
 - $1.110_2 \times 2^{-3}$ (no change)
- 5. Determine sign: +ve × $-ve \Rightarrow -ve$
 - $-1.110_2 \times 2^{-3} = -0.21875$

FP Arithmetic Hardware

- FP multiplier is of similar complexity to FP adder
 - But uses a multiplier for significands instead of an adder
- FP arithmetic hardware usually does
 - Addition, subtraction, multiplication, division, reciprocal, square-root
 - FP ↔ integer conversion
- Operations usually takes several cycles
 - Can be pipelined

FP Instructions in MIPS

- FP hardware is coprocessor 1
 - Adjunct processor that extends the ISA
- Separate FP registers
 - 32 single-precision: \$f0, \$f1, ... \$f31
 - Paired for double-precision: \$f0/\$f1, \$f2/\$f3, ...
 - Release 2 of MIPs ISA supports 32 × 64-bit FP reg's

FP instructions operate only on FP registers

- Programs generally don't do integer ops on FP data, or vice versa
- More registers with minimal code-size impact
- FP load and store instructions
 -]wc1, ldc1, swc1, sdc1
 - e.g., ldc1 \$f8, 32(\$sp)

FP Instructions in MIPS

- Single-precision arithmetic
 - add.s, sub.s, mul.s, div.s
 - e.g., add.s \$f0, \$f1, \$f6
- Double-precision arithmetic
 - add.d, sub.d, mul.d, div.d
 - e.g., mul.d \$f4, \$f4, \$f6
- Single- and double-precision comparison
 - c.xx.s, c.xx.d (xx is eq, lt, le, ...)
 - Sets or clears FP condition-code bit
 - e.g.c.lt.s \$f3, \$f4
- Branch on FP condition code true or false
 - bc1t, bc1f
 - e.g., bc1t TargetLabel

FP Example: °F to °C

C code:

```
float f2c (float fahr) {
    return ((5.0/9.0)*(fahr - 32.0));
```

}

- fahr in \$f12, result in \$f0, literals in global memory space
- Compiled MIPS code:

```
f2c: lwc1 $f16, const5($gp)
  lwc1 $f18, const9($gp)
  div.s $f16, $f16, $f18
  lwc1 $f18, const32($gp)
  sub.s $f18, $f12, $f18
  mul.s $f0, $f16, $f18
  jr $ra
```


FP Example: Array Multiplication

$$X = X + Y \times Z$$

All 32 × 32 matrices, 64-bit double-precision elements

C code:

- - Addresses of x, y, z in \$a0, \$a1, \$a2, and i, j, k in \$s0, \$s1, \$s2

Consider a 3 x 2 matrix stored in memory in *row major order*, i.e., elements are stored row by row. Each element is 4-bytes long. What is the byte offset of element i,j?

Consider a 3 x 2 matrix stored in memory in *row major order*, i.e., elements are stored row by row. Each element is 4-bytes long. What is the byte offset of element i,j?

[i,j] = (i * row dim + j) * size element

$$[1,1] = (1 * 2 + 1) * 4 = 12$$

$$[2,0] = (2^{*}2 + 0)^{*} 4 = 16$$

Absolute address [i,j] = array base address + (i * row dim + j) * size element

Write MIPS code to load into \$t4, element A [i,j] assuming that The base address of A is in \$s0, i is in \$s1, j in \$s2, each element of A is 4 bytes and A is a 10 x 20 matrix.

Absolute address [i,j] = array base address + (i * row dim + j) * size element

Chapter 3 — Arithmetic for Computers — 76

Write MIPS code to load into \$t4, element A [i,j] assuming that The base address of A is in \$s0, i is in \$s1, j in \$s2, each element of A is 4 bytes and A is a 10 x 20 matrix.

Absolute address [i,j] = array base address + (i * row dim + j) * size element

addi	\$t1, \$0, 20	# \$t1 = 20
mul	\$t1, \$s1, \$t1	# \$t1 = i * 20
add	\$t1, \$t1, \$s2	# \$t1 = i * 20 + j
sll	\$t1, \$t1, 2	# \$t1 = (i * 20 + j) * 4
add	\$t1, \$t1, \$s0	# \$t1 = Addr[A] + (i * 20 + j) * 4
lw	\$t4, 0 (\$t1)	# \$t4 = A[i,j]

Chapter 3 — Arithmetic for Computers — 77

FP Example: Array Multiplication

MIPS code:

	li	\$t1,	32		#	\$t1	= 32 (row size/loop end)
	li	\$s0,	0		#	i =	0; initialize 1st for loop
L1:	li	\$s1,	0		#	j =	0; restart 2nd for loop
L2:	li	\$s2,	0		#	k =	0; restart 3rd for loop
	s11	\$t2,	\$s0,	5	#	\$t2	= i * 32 (size of row of x)
	addu	\$t2,	\$t2,	\$s1	#	\$t2	= i * size(row) + j
	s]]	\$t2,	\$t2,	3	#	\$t2	<pre>= byte offset of [i][j]</pre>
	addu	\$t2,	\$a0,	\$t2	#	\$t2	<pre>= byte address of x[i][j]</pre>
	1.d	\$f4,	0(\$t2	2)	#	\$f4	= 8 bytes of x[i][j]
L3:	s]]	\$t0,	\$s2,	5	#	\$t0	= k * 32 (size of row of z)
	addu	\$t0,	\$t0,	\$s1	#	\$t0	= k * size(row) + j
	s]]	\$t0,	\$t0,	3	#	\$t0	<pre>= byte offset of [k][j]</pre>
	addu	\$t0,	\$a2,	\$t0	#	\$t0	<pre>= byte address of z[k][j]</pre>
	1.d	\$f16	, 0(\$t	:0)	#	\$f16	6 = 8 bytes of z[k][j]

...

FP Example: Array Multiplication

<pre># \$t0 = i*32 (size of row of y)</pre>
\$t0 = i*size(row) + k
<pre># \$t0 = byte offset of [i][k]</pre>
<pre># \$t0 = byte address of y[i][k]</pre>
<pre># \$f18 = 8 bytes of y[i][k]</pre>
\$f16 = y[i][k] * z[k][j]
f4=x[i][j] + y[i][k]*z[k][j]
\$k k + 1
if (k != 32) go to L3
x[i][j] = \$f4
\$j = j + 1
if (j != 32) go to L2
\$i = i + 1
if (i != 32) go to L1

Accurate Arithmetic

- IEEE Std 754 specifies additional rounding control
 - Not all real numbers in the FP range can be represented.
 - Extra bits of precision (guard, round, sticky)
 - Choice of rounding modes
 - Allows programmer to fine-tune numerical behavior of a computation
- Not all FP units implement all options
 - Most programming languages and FP libraries just use defaults
- Trade-off between hardware complexity, performance, and market requirements

Rounding with Guard Digits

- Add 2.56₁₀ x 10⁰ to 2.34₁₀ x 10² assuming 3 significant decimal digits. Round to the nearest decimal number, first with guard and round digits, and then without them.
- With guard and round digits:

2.34<mark>00</mark> x 10²

+ 0.02<mark>56</mark> x 10²

 $2.3656 \times 10^2 \rightarrow 2.37 \times 10^2$

Without guard and round digits:

2.34 x 10² + 0.02 x 10²

2.36 x 10²

Subword Parallellism

- Graphics and audio applications can take advantage of performing simultaneous operations on short vectors
 - Example: 128-bit adder:
 - Sixteen 8-bit adds
 - Eight 16-bit adds
 - Four 32-bit adds
- Also called data-level parallelism, vector parallelism, or Single Instruction, Multiple Data (SIMD)

x86 FP Architecture

- Originally based on 8087 FP coprocessor
 - 8 × 80-bit extended-precision registers
 - Used as a push-down stack
 - Registers indexed from TOS: ST(0), ST(1), …
- FP values are 32-bit or 64 in memory
 - Converted on load/store of memory operand
 - Integer operands can also be converted on load/store
- Very difficult to generate and optimize code
 - Result: poor FP performance

x86 FP Instructions

Data transfer	Arithmetic	Compare	Transcendental
FILD mem/ST(i) FISTP mem/ST(i) FLDPI FLD1 FLDZ	<pre>FIADDP mem/ST(i) FISUBRP mem/ST(i) FIMULP mem/ST(i) FIDIVRP mem/ST(i) FSQRT FABS FRNDINT</pre>	FICOMP FIUCOMP FSTSW AX/mem	FPATAN F2XMI FCOS FPTAN FPREM FPSIN FYL2X

- Optional variations
 - I: integer operand
 - P: pop operand from stack
 - R: reverse operand order
 - But not all combinations allowed

Streaming SIMD Extension 2 (SSE2)

- Adds 4 × 128-bit registers
 - Extended to 8 registers in AMD64/EM64T
 - Can be used for multiple FP operands
 - 2 × 64-bit double precision
 - 4 × 32-bit double precision
 - Instructions operate on them simultaneously

<u>Single-Instruction Multiple-Data</u>

Unoptimized code:

```
1. void dgemm (int n, double* A, double* B, double* C)
2. {
3. for (int i = 0; i < n; ++i)
4.
  for (int j = 0; j < n; ++j)
5.
     {
  double cij = C[i+j*n]; /* cij = C[i][j] */
6.
7.
    for(int k = 0; k < n; k++)
8.
    cij += A[i+k*n] * B[k+j*n]; /* cij += A[i][k]*B[k][j] */
  C[i+j*n] = cij; /* C[i][j] = cij */
9.
10. }
11. }
```


x86 assembly code:

```
1. vmovsd (%r10),%xmm0 # Load 1 element of C into %xmm0
3. xor %eax, %eax # register %eax = 0
4. vmovsd (%rcx), %xmm1 # Load 1 element of B into %xmm1
5. add \$r9, \$rcx # register \$rcx = \$rcx + \$r9
6. vmulsd (%r8,%rax,8),%xmm1,%xmm1 # Multiply %xmm1,
element of A
7. add \$0x1, \$rax # register \$rax = \$rax + 1
8. cmp %eax, %edi  # compare %eax to %edi
9. vaddsd %xmm1,%xmm0,%xmm0 # Add %xmm1, %xmm0
10. jg 30 <dgemm+0x30> # jump if %eax > %edi
12. vmovsd %xmm0, (%r10) # Store %xmm0 into C element
```

```
Optimized C code:
1. #include <x86intrin.h>
2. void dgemm (int n, double* A, double* B, double* C)
3. {
  for (int i = 0; i < n; i+=4)
4.
5. for (int j = 0; j < n; j++) {
6.
       m256d c0 = mm256 load pd(C+i+j*n); /* c0 = C[i]
[ij]
   */
7.
  for( int k = 0; k < n; k++ )
8.
    c0 = mm256 add pd(c0, /* c0 += A[i][k]*B[k][j] */
9.
               mm256 mul pd(mm256 load pd(A+i+k*n),
               mm256 broadcast sd(B+k+j*n)));
10.
    mm256 store pd(C+i+j*n, c0); /* C[i][j] = c0 */
11.
12.
   }
13. }
```

Optimized x86 assembly code:

```
1. vmovapd (%r11),%ymm0
                      # Load 4 elements of C into %ymm0
2. mov %rbx,%rcx
             # register %rcx = %rbx
3. xor %eax, %eax # register %eax = 0
4. vbroadcastsd (%rax, %r8,1), %ymm1 # Make 4 copies of B element
5. add $0x8,%rax
                    # register %rax = %rax + 8
6. vmulpd (%rcx),%ymm1,%ymm1 # Parallel mul %ymm1,4 A elements
7. add %r9, %rcx
                 # register %rcx = %rcx + %r9
               # compare %r10 to %rax
8. cmp %r10,%rax
9. vaddpd %ymm1,%ymm0,%ymm0 # Parallel add %ymm1, %ymm0
12. vmovapd %ymm0, (%r11) # Store %ymm0 into 4 C elements
```


Fallacy: Right Shift and Division

- Left shift by *i* places multiplies an integer by 2ⁱ
- Right shift divides by 2ⁱ?
 - Only for unsigned integers
- For signed integers
 - Arithmetic right shift: replicate the sign bit
 - e.g., -5 / 4
 - $11111011_2 >> 2 = 11111110_2 = -2$
 - Rounds toward —∞
 - c.f. 11111011₂ >> 2 = 00111110₂ = +62

Pitfall: FP Addition is not Associative

- Parallel programs may interleave operations in unexpected orders
 - Assumptions of associativity may fail

		(x+y)+z	x+(y+z)
X	-1.50E+38		-1.50E+38
У	1.50E+38	0.00E+00	
Z	1.0	1.0	1.50E+38
		1.00E+00	0.00E+00

 Need to validate parallel programs under varying degrees of parallelism

Fallacy: Who Cares About FP Accuracy?

- Important for scientific code
 - But for everyday consumer use?
 - "My bank balance is out by 0.0002¢!" ⊗
- The Intel Pentium FDIV bug in 1994
 - The market expects accuracy
 - See Colwell, The Pentium Chronicles
 - Intel recalled the flawed microprocessor at a cost of \$500 million!

Concluding Remarks

- Bits have no inherent meaning
 - Interpretation depends on the instructions applied
- Computer representations of numbers
 - Finite range and precision
 - Need to account for this in programs

Concluding Remarks

- ISAs support arithmetic
 - Signed and unsigned integers
 - Two's complement and IEEE 754 are standard.
 - Floating-point approximation to reals
- Bounded range and precision
 - Operations can overflow and underflow

Concluding Remarks

MIPS ISA

- Core instructions: 54 most frequently used
 - 100% of SPECINT, 97% of SPECFP
- Other instructions: less frequent
- Rest of book concentrates on:
 - add, addi, addu, addiu, sub, subu, AND, ANDI, OR, Ori, NOR, sll, srl
 - Iui, Iw, sw,Ihu,sh, Ibu,sb,
 - II, sc
 - beq, bne, j, jal, jr,
 - slt, slti, sltu, sltiu