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1 Introduction

Low-cost, resource-constrained devices such as radio-frequency identification (RFID) tags or sensor
nodes demand extremely efficient algorithms and protocols. Securing such devices is a challenge
since, in many cases, “traditional” cryptographic protocols are simply too computationally intensive
to be utilized. With this motivation in mind, Juels and Weis [25] — building upon work of Hopper
and Blum [21, 22] — investigate two highly efficient, shared-key (unidirectional) authentication
protocols suitable for an RFID tag identifying itself to a tag reader. (We will sometimes refer to
the tag as a prover and the tag reader as a verifier.) These protocols are extremely lightweight,
requiring both parties to perform only a relatively small number of primitive bit-wise operations
such as “XOR” and “AND,” and can thus be implemented using fewer than the 3-5K gates required
to implement a block cipher such as DES or AES [25].

The two authentication protocols studied by Juels and Weis are both proven secure based on
the “learning parity with noise” (LPN) problem [2, 3, 4, 8, 20, 28, 21, 22, 37], which is related
to the hardness of decoding a random linear code; a formal definition of the LPN problem as
well as evidence for its difficulty are reviewed in Section 2.1. The first protocol (the HB protocol
[21, 22]) is proven secure against a passive (eavesdropping) adversary, while the second (called
HB+) is proven secure against the stronger class of active adversaries. In each case, Juels and Weis
focus on a single, “basic authentication step” of the protocol, and prove that a computationally
bounded adversary cannot succeed in impersonating a tag in this case with probability noticeably
better than 1/2; that is, a single iteration of the protocol has soundness error 1/2. The implicit
assumption is that repeating these “basic authentication steps” sufficiently many times yields a
protocol with negligible soundness error.

1.1 Difficulties and Limitations

There are, however, some subtle limitations of the security proofs given by Juels and Weis. Most
serious, perhaps, is a difficulty explicitly highlighted by Juels and Weis and regarded by them as a
potential barrier to usage of the HB+ protocol in practice [25, Section 6]: the proof of security for
HB+ requires that the adversary’s interactions with the tag (i.e., when the adversary is imperson-
ating a tag reader) be sequential. Besides leaving in question the security of HB+ under concurrent
executions, this also means that the HB+ protocol itself (which, recall, consists of sufficiently many
repetitions of an underlying basic authentication step) requires very high round complexity since
the multiple iterations of the basic authentication step cannot be parallelized but must instead be
performed sequentially. The difficulty and importance of proving security of various identification
protocols under concurrent or parallel composition is well-understood, and many results are known:
for example, the (black-box) zero-knowledge property of an identification protocol is not preserved
under parallel [16] or concurrent [7] composition (though it is preserved under sequential composi-
tion [18]), whereas witness indistinguishability is preserved in these cases [10]. Unfortunately, the
HB+ protocol is not known to satisfy either zero knowledge or witness indistinguishability and so
such results are of no help here.

An additional difficulty, not explicitly mentioned in [25], is that it is unclear what is the exact
relationship between the soundness error and the number of repetitions of the basic authentication
step; this is true for both the HB and HB+ protocols, regardless of whether the repetitions are
carried out in parallel or sequentially.1 This is related to the more general question of hardness

1Indeed, as we have noted, Juels and Weis [25] only prove soundness 1/2 for a basic authentication step and never
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amplification (i.e., analyzing the difficulty of solving multiple instances of a problem compared to
the difficulty of solving a single such instance) which has been studied in many different contexts
[38, 17, 1, 15, 36, 6] and is surprisingly non-trivial to answer. Unfortunately, there does not seem
to be any prior work that applies in our setting. Specifically:

• For the HB and HB+ protocols it is not possible to efficiently verify whether a given transcript
is “successful” without possession of the secret key; thus, Yao’s “XOR-lemma” [38, 17] and
related techniques that require efficient verifiability do not apply.

• Work on hardness amplification for “weakly verifiable puzzles” [6] does not apply either.
Although the HB/HB+ protocols can be viewed as efficiently verifiable puzzles, existing re-
sults [6] only apply to completely independent instances of the “puzzle.” In particular, existing
results imply that running the basic authentication step of the HB protocol n times using n
independent keys yields soundness roughly (1/2)n, but say nothing about running n iterations
using the same key (which is the case we are interested in).

• The HB/HB+ protocols are computationally sound only, and thus known results [15, Appendix
C] [36] on soundness reduction for interactive proof systems (which apply only when soundness
holds even against an all-powerful cheating prover) do not apply either.

• Limited positive results regarding soundness reduction for computationally sound protocols
exist [1, 34], but these results apply only when the verifier does not hold a secret key (or, more
generally, when the verifier does not share state across different iterations). These results are
therefore of no help when the same secret key is used across all iterations.

An additional difficulty in our setting is that HB and HB+ protocols do not have perfect com-
pleteness; indeed, crucial to both the HB and HB+ protocols is that the honest prover injects “noise”
into its answers and so even the honest prover does not succeed with probability 1. This was not
explicitly addressed in the security proofs of [25], either, and introduces additional complications.

1.2 Our Contributions

In this work we address the difficulties and open questions mentioned above, and show the follow-
ing results: (1) the HB+ protocol remains secure under arbitrary concurrent interactions of the
adversary with the honest prover/tag, and so in particular the iterations of the HB+ protocol can
be parallelized; furthermore, (2) our security proofs explicitly incorporate the dependence of the
soundness error on the number of iterations as well as on the error introduced by the honest prover.

Besides the results themselves, we believe the techniques and proofs given here are of indepen-
dent interest for future work on cryptographic applications of the LPN problem. The main technical
tool we use is the fact [3, 37] that hardness of the LPN problem implies the pseudorandomness of
a certain distribution. Using this, we give proofs which we believe are substantially simpler than
those given in [25], and also more complete in that, in contrast to [25], they explicitly deal with the
dependence of soundness on the number of iterations and also the issues arising due to non-perfect
completeness. Our proofs also use bounds from coding theory [19, 23, 24] in a novel way.

make any claims regarding the security of multiple iterations (for either HB or HB+).
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1.3 Additional Discussion

The problem of secure authentication using a shared, secret key is well understood, and many
widely known solutions based on, e.g., block ciphers are available. The aim of the line of research
considered here, as in [25], is to develop protocols which are exceptionally efficient (i.e., potentially
more efficient than hardware implementations of block ciphers such as DES or AES) while still
guaranteeing some useful level of provable security. Of course, the protocols described here are
far from solving the problem completely. For example, Gilbert, Robshaw, and Silbert [12] have
recently shown a man-in-the-middle attack on the HB+ protocol. Although their attack would
be devastating if carried out successfully, the possibility of such an attack does not mean that
it is useless to explore the security of the HB/HB+ protocols in weaker attack models. For one,
man-in-the-middle attacks can be difficult to carry out. Especially in the case of RFID, where
communication is inherently short range, it appears much more difficult to mount a man-in-the-
middle attack than an active attack.2 (The reader is referred to the work of Wool, et al. [29, 30],
for an illuminating discussion on the feasibility of various attacks in RFID systems.) Juels and
Weis further note [25, Appendix A] that the man-in-the-middle attack of [12] does not apply in a
detection-based system where numerous failed authentication attempts immediately raise an alarm.
Our work can thus be viewed as quantifying more precisely the tradeoff between efficiency and
privacy provided by the HB/HB+ protocols.

Beyond our concrete results, we also hope that the techniques introduced in this paper will
prove useful in analyzing future variants of the HB/HB+ protocols, as well as other protocols based
on the LPN problem.

2 Definitions and Preliminaries

We formally define the LPN problem and state and prove the main technical lemma on which we
rely. We also describe the HB and HB+ protocols as well as the notions of security considered here.

2.1 The LPN Problem

A function ε : N+ → R+∪{0} is negligible if it is asymptotically smaller than any inverse polynomial,
i.e., if for every polynomial p there exists a K such that k > K implies ε(k) ≤ 1/p(k). We use k for
the security parameter, and let ppt stand for “probabilistic polynomial time”. Let wt(Z) denote
the Hamming weight of a boolean vector Z; i.e., wt(Z) is the number of entries of Z equal to 1.
The Hamming distance between two vectors Z1, Z2 is exactly wt(Z1 ⊕ Z2).

If s,a1, . . . ,a` are binary vectors of the same length, 〈s,ai〉 denotes the dot product of s and ai

(modulo 2). For s of length k, given the values a1, 〈s,a1〉 , . . . ,a`, 〈s,a`〉 for random {ai} and
` = Θ(k), it is possible to efficiently solve for s (with all but negligible probability) using standard
linear algebra. However, in the presence of noise where each zi is flipped (independently) with
probability ε, finding s becomes much more difficult. We refer to the problem of learning s in this
latter case as the LPN problem.

2Though there have been claims of being able to read some RFID tags over as much as 69 feet, the maximum
distance from which many commonly used cards can be read appears to be almost two orders of magnitude lower [29].
Note further that a man-in-the-middle attack requires the ability to send data to the tag (and reader).
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For the formal definition, let Berε be the Bernoulli distribution with parameter ε ∈ (0, 1
2) (so if

ν ∼ Berε then Pr[ν = 1] = ε and Pr[ν = 0] = 1− ε), and let As,ε be the distribution defined by:
{
a ← {0, 1}k; ν ← Berε : (a, 〈s,a〉 ⊕ ν)

}
.

Also let As,ε denote an oracle which outputs (independent) samples according to this distribution.
For some fixed value of k, algorithm M is said to (t, q, δ)-solve the LPNε problem if

Pr
[
s ← {0, 1}k : MAs,ε(1k) = s

]
≥ δ,

and furthermore M runs in time at most t and makes at most q queries to its oracle.3 In asymptotic
terms, in the standard way, the LPNε problem is “hard” if every probabilistic polynomial-time
algorithm M solves the LPNε problem with only negligible probability (where the algorithm’s
running time and success probability are functions of k).

The error parameter ε is usually taken to be a fixed constant independent of k, as will be the
case here. The value of ε to use depends on a number of tradeoffs and design decisions: although,
roughly speaking, the LPNε problem appears to become “harder” as ε increases, a larger value of
ε also implies that the honest prover is rejected more often (as will become clear when we describe
the HB/HB+ protocols, below). Our results are meaningful for all ε ∈ (0, 1

2).
The above description corresponds to the average-case LPN problem. The worst-case version

of the LPN problem can be phrased as the following optimization problem: given arbitrary A, b
over Z2, find s over Z2 minimizing the Hamming weight of A · s − b. The hardness of the LPN
problem, both in the average case and the worst case, has been studied in many previous works.
The LPN problem can be formulated as the problem of decoding a random linear code [2, 37], and
the worst-case version of this problem is NP-complete [2] as well as hard to approximate within
a factor of 2 [20]. These worst-case hardness results are complemented by numerous studies of
the average-case hardness of the problem [3, 4, 8, 28, 21, 22]. (Extensions of the LPN problem to
fields other than Z2 have also been considered [37, 35].) Most relevant for our purposes is that
the best known algorithms for solving the LPNε problem [4, 31, 11] for any constant ε require
t, q = 2Θ(k/ log k). (An algorithm due to Lyubashevsky [32] uses q = k1+δ queries but has running
time t = 2Θ(k/δ log log k).) We refer the reader to [25, Appendix D] and [31, 11] for more exact
estimates, as well as suggested practical values for k.

2.2 A Technical Lemma

In this section we prove a key technical lemma: hardness of the LPNε problem implies “pseudoran-
domness” of As,ε. Specifically, let Uk+1 denote the uniform distribution on (k + 1)-bit strings. The
following lemma shows that oracle access to As,ε (for randomly chosen s) is indistinguishable from
oracle access to Uk+1. A proof of the following is essentially in [3, 37], although we have fleshed
out some of the details and worked out the concrete parameters of the reduction.

Lemma 1 Say there exists an algorithm D making q oracle queries, running in time t, and with
∣∣∣Pr

[
s ← {0, 1}k : DAs,ε(1k) = 1

]
− Pr

[
DUk+1(1k) = 1

]∣∣∣ ≥ δ.

3Our formulation of the LPN problem follows, e.g., [37]; the formulation in, e.g., [25] allows M to output any s
satisfying at least a (1− ε) fraction of the equations returned by As,ε. It is easy to see that for q large enough these
formulations are equivalent as with overwhelming probability there will be a unique such s.
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Then there exists an algorithm M making q′ = O (
q · δ−2 log k

)
oracle queries, running in time

t′ = O (
t · kδ−2 log k

)
, and such that

Pr
[
s ← {0, 1}k : MAs,ε(1k) = s

]
≥ δ/4.

(We remark that various tradeoffs are possible between the number of queries/running time of M
and its success probability in solving LPNε; see [37, Sect. 4]. We aimed for simplicity in the proof
rather than trying to optimize parameters.)

Proof. Set N = Θ
(
δ−2 log k

)
. Algorithm MAs,ε(1k) proceeds as follows:

1. M chooses random coins ω for D and uses these for the remainder of its execution.

2. M runs DUk+1(1k; ω) a total of N times to compute an empirical estimate p for the probability
(over responses of the oracle) that D outputs 1 in this case.

3. M obtains q ·N samples {(a1,j , z1,j)}q
j=1, . . . , {(aN,j , zN,j)}q

j=1 from As,ε.

4. For i = 1 to k:

(a) Run D(1k; ω) for a total of N iterations, answering the oracle queries of D as follows:
In iteration ` (for ` ∈ {1, . . . , N}), the jth oracle query of D is answered by choosing
a random bit cj and returning (a`,j ⊕ (cj · ei), z`,j), where ei is the vector with 1 at
position i and 0s elsewhere.4

Averaging over all N iterations, compute an empirical estimate pi for the probability
that D outputs 1 in this case.

(b) If |pi − p| ≥ δ/4 set s′i = 0; else set s′i = 1.

4. Output s′ = (s′1, . . . , s
′
k).

Let us analyze the behavior of M . First note that, by a standard averaging argument, with
probability at least δ/2 over choice of s and random coins ω it holds that

∣∣∣Pr
[
DAs,ε(1k; ω) = 1

]
− Pr

[
DUk+1(1k; ω) = 1

]∣∣∣ ≥ δ/2, (1)

where the probabilities are taken over the answers D receives from its oracle. We restrict our
attention to s, ω for which Eq. (1) holds and show that in this case M outputs s′ = s with
probability at least 1/2. The theorem follows.

Setting N = Θ(δ−2 log(k)), we can ensure that
∣∣∣Pr

[
DUk+1(1k; ω) = 1

]
− p

∣∣∣ ≤ δ/16 (2)

except with probability at most 1/k. Next focus on a particular iteration i of steps 4(a) and 4(b).
Letting hybi denote the distribution of the answers returned to D in this iteration, we again have

∣∣∣Pr
[
Dhybi(1k;ω) = 1

]
− pi

∣∣∣ ≤ δ/16 (3)

except with probability at most 1/3k. Applying a union bound, we see that Eqs. (2) and (3) hold
(the latter for all i ∈ [k]) with probability at least 1/2. We assume this to be the case for the rest
of the proof, and show that when this occurs then M always outputs s′ = s.

4Note that the samples that M obtained in step 3 are re-used for different values of i.
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Let s = (s1, . . . , sk). We claim that if si = 0 then hybi = As,ε, while if si = 1 then hybi = Uk+1.
To see this note that when si = 0 the answer (aj ⊕ (cj ·ei), zj) returned to D is distributed exactly
according to As,ε since 〈s,aj〉 = 〈s, aj ⊕ (cj · ei)〉 regardless of cj . On the other hand, if si = 1
then 〈s,aj〉 (and hence zj) is a random bit, independent of aj ⊕ (cj · ei).

It follows that if si = 0 then
∣∣∣Pr

[
Dhybi(1k;ω) = 1

]
− Pr

[
DUk+1(1k; ω) = 1

]∣∣∣ ≥ δ/2

(by Eq. (1)), and so |pi − p | ≥ δ
2 − 2 · δ

16 = 3δ
8 (using Eqs. (2) and (3)) and s′i = 0 = si. When

si = 1 then
Pr

[
Dhybi(1k; ω) = 1

]
= Pr

[
DUk+1(1k; ω) = 1

]
,

and so |pi − p | ≤ 2 · δ
16 = δ

8 (again using Eqs. (2) and (3)) and s′i = 1 = si. Since this holds for all
i ∈ {1, . . . , k}, we conclude that s′ = s.

2.3 The HB/HB+ Protocols, and Security Definitions

Recall that we let k denote our security parameter. The HB and HB+ protocols as analyzed here
consist of n = n(k) parallel iterations of a “basic authentication step.” In the HB protocol, a tag
T and a reader R share a random secret key s ∈ {0, 1}k; the basic authentication step consists of
the reader sending a random challenge a ∈ {0, 1}k to the tag, which replies with z = 〈s,a〉 ⊕ ν for
ν ∼ Berε. The reader can then verify whether the response z of the tag satisfies z

?= 〈s,a〉; we say
the iteration is successful if this is the case. See Figure 1.

T (s, ε) R(s)

¾ a a ← {0, 1}k

ν ← Berε
z := 〈s,a〉 ⊕ ν z -

verify: z
?= 〈s,a〉

Figure 1: The basic authentication step of the HB protocol.

Even for an honest tag a basic iteration is unsuccessful with probability ε. For this reason, a
reader accepts upon completion of all n iterations of the basic authentication step as long as the
number of unsuccessful iterations is not “too high”. More precisely, let u = u(k) be such that
ε · n ≤ u; then the reader accepts as long as the number of unsuccessful iterations is at most5 u.
(Overall, then, the entire HB protocol is parameterized by ε, n, and u.) For an honest tag, each
iteration is independent of the others and so the completeness error εc (i.e., the probability that
an honest tag is rejected) can be calculated using a Chernoff bound. In particular, for any positive
constant δ, setting u = (1 + δ)εn suffices to achieve εc exponentially small in n.

5Note in particular that if u is set to exactly ε ·n then the completeness error will be rather high. One can imagine
changing the protocol so that the tag introduces at most ε · n errors (and iterations are no longer independent); see
Section 5 for discussion of this point.
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By sending random responses in each of the n iterations, an adversary trying to impersonate a
valid tag succeeds with probability

δ∗ε,u,n
def= 2−n ·

u∑

i=0

(
n

i

)
;

that is, δ∗ε,u,n is the best possible soundness error we can hope to achieve for the given setting of the
parameters. Asymptotically, as long as u ≤ (1 − δ) · n/2 for some positive constant δ, the success
of this trivial attack will be negligible in n. (This can again be analyzed using a Chernoff bound.)

Let T HB
s,ε,n denote the tag algorithm in the HB protocol when the tag holds secret key s (note

that the tag algorithm is independent of u), and let RHB
s,ε,u,n similarly denote the algorithm run by

the tag reader. We denote a complete execution of the HB protocol between a party T̂ and the
reader R by

〈
T̂ ,RHB

s,ε,u,n

〉
and say this equals 1 iff the reader accepts.

For the case of a passive attack on the HB protocol, we imagine a stateful adversary A running
in two stages: in the first stage the adversary obtains polynomially many transcripts6 of (honest)
executions of the protocol by interacting with an oracle transHB

s,ε,n (this models eavesdropping); in
the second stage, the adversary interacts with the reader and tries to impersonate the tag. We
define the adversary’s advantage as

Advpassive
A,HB (ε, u, n) def= Pr

[
s ← {0, 1}k;AtransHB

s,ε,n(1k) :
〈
A,RHB

s,ε,u,n

〉
= 1

]
.

The HB protocol is secure against passive attacks (for a particular setting of ε and u = u(k),
n = n(k)) if for all ppt adversaries A we have that Advpassive

A,HB (ε, u, n) is negligible in k.
It is easy to see that the HB protocol is insecure against an active adversary. (For example,

an active adversary impersonating R can send the same challenge vector a repeatedly and then,
taking majority, learn the correct value of 〈s,a〉 with all but negligible probability; doing this for k
linearly independent challenge vectors yields the entire secret s.) To achieve security against active
attacks, Juels and Weis propose a modified protocol called HB+ in which the tag and reader share
two (independent) keys s1 ∈ {0, 1}k and s2 ∈ {0, 1}τ . (In practice, k must chosen such that the
LPN problem is hard for secrets of length k, and τ < k is a statistical security parameter.) A basic
authentication step now consists of three rounds: first the tag sends a random “blinding factor”
b ∈ {0, 1}k; the reader replies with a random challenge a ∈ {0, 1}τ ; and finally the tag replies with
z = 〈s1,b〉 ⊕ 〈s2,a〉 ⊕ ν for ν ← Berε. As in the HB protocol, the reader can verify whether the
response z satisfies z

?= 〈s1,b〉 ⊕ 〈s2,a〉, and we again say the iteration is successful if this is the
case. See Figure 2.

The actual HB+ protocol consists of n parallel iterations of the basic authentication step (and
so the entire protocol requires only three rounds). The protocol also depends upon a parameter u
as in the case of the HB protocol, and this will again affect the completeness error as well as the
best achievable soundness.

Let T HB+

s1,s2,ε,n denote the tag algorithm in the HB+ protocol when the tag holds keys s1, s2,
and let RHB+

s1,s2,ε,u,n denote the algorithm run by the tag reader. For the case of an active attack
on the HB+ protocol, we again imagine an adversary running in two stages: in the first stage

6Note in particular that the adversary is assumed not to learn whether or not the reader accepts. Since, as discussed
earlier, the parameters can be set such that the reader accepts an honest tag with all but negligible probability, this
makes no difference as far as asymptotic security is concerned.
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T (s1, s2, ε) R(s1, s2)

b ← {0, 1}k b -
¾ a a ← {0, 1}τ

ν ← Berε
z := 〈s1,b〉 ⊕ 〈s2,a〉 ⊕ ν z -

verify: z
?= 〈s1,b〉 ⊕ 〈s2,a〉

Figure 2: The basic authentication step of the HB+ protocol.

the adversary interacts polynomially many times with the honest tag algorithm (with concurrent
executions allowed), while in the second stage the adversary interacts only with the reader. The
adversary’s advantage in this case is

Advactive
A,HB+(ε, τ, u, n) def= Pr

[
s1 ← {0, 1}k; s2 ← {0, 1}τ ;AT HB+

s1,s2,ε,n(1k) :
〈
A,RHB+

s1,s2,ε,u,n

〉
= 1

]
.

We say the HB+ protocol is secure against active attacks (for a particular setting of ε and τ = τ(k),
u = u(k), n = n(k)) if for all ppt adversaries A we have that Advactive

A,HB+(ε, τ, u, n) is negligible in k.
We remark that allowing the adversary to interact with the reader multiple times (even concur-

rently), in either the passive or active setting, does not give the adversary any additional advantage
other than the fact that, as usual, the probability that the adversary succeeds in at least one
impersonation attempt scales linearly with the number of attempts.

3 Security of the HB Protocol against Passive Attacks

Recall from the previous section that the HB protocol is parameterized by ε (a measure of the noise
introduced by the tag), u (which determines the completeness error εc as well as the best achievable
soundness), and n (the number of iterations of the basic authentication step given in Figure 1). We
stress that the n iterations are run in parallel, so the entire protocol requires only two rounds.

Theorem 2 Assume the LPNε problem is hard, where 0 < ε < 1
2 . Let n = Θ(k) and u = ε+ · n,

where ε+ is any constant satisfying ε < ε+ < 1
2 . Then the HB protocol with these settings of the

parameters has exponentially small completeness error, and is secure against passive attacks.

A standard Chernoff bound shows that the completeness error is exponentially small for the given
setting of the parameters. Therefore, we focus only on the security of the protocol against passive
attacks. We deal first with the case ε < ε+ < 1/4 since this case admits a significantly simpler
analysis. We then show how to extend the proof to the case ε < 1/2.

Claim 3 Say there exists an adversary A eavesdropping on at most q executions of the HB protocol,
running in time t, and achieving Advpassive

A,HB (ε, u, n) = δ. Then there exists an algorithm D making

8



(q + 1) · n oracle queries, running in time O(t), and such that

∣∣∣Pr
[
s ← {0, 1}k : DAs,ε(1k) = 1

]
− Pr

[
DUk+1(1k) = 1

]∣∣∣ ≥ δ − εc − 2−n ·
2 u∑

i=0

(
n

i

)
.

Asymptotically, for any ε < ε+ < 1
4 and n, u as in Theorem 2, the final two terms of the above

expression are negligible. Thus, the claim together with Lemma 1 proves Theorem 2 for this case.

Proof. D, given access to an oracle returning (k + 1)-bit strings (a, z), proceeds as follows:
1. D runs the first phase of A. Each time A requests to view a transcript of the protocol, D

obtains n samples {(ai, zi)}n
i=1 from its oracle and returns these to A.

2. When A is ready for the second phase, D again obtains n samples {(āi, z̄i)}n
i=1 from its oracle.

D sends the challenge (ā1, . . . , ān) to A and receives in return a response Z ′ = (z′1, . . . , z
′
n).

3. D outputs 1 iff Z̄
def= (z̄1, . . . , z̄n) and Z ′ differ in at most 2u entries.

When D’s oracle is Uk+1, it is clear that D outputs 1 with probability exactly 2−n ·∑2u
i=0

(
n
i

)
since Z̄ is in this case uniformly distributed and independent of everything else. On the other
hand, when D’s oracle is As,ε then the transcripts D provides to A during the first phase of A’s
execution are distributed identically to real transcripts in an execution of the HB protocol. Let
Z∗ def= (〈s, ā1〉 , . . . , 〈s, ān〉) be the vector of correct answers to the challenge (ā1, . . . , ān) sent by
D in the second phase. Then with probability at least δ it holds that Z ′ and Z∗ differ in at
most u entries (since A successfully impersonates the tag with this probability). Also, since Z̄ is
distributed exactly as the answers of an honest tag, Z̄ and Z∗ differ in at most u positions except
with probability at most εc. It follows that with probability at least δ − εc the vectors Z ′ and Z̄
differ in at most 2u entries, and so D outputs 1 with at least this probability.

We next consider the general case of ε < 1/2. The main difference in the proofs is as follows.
Let d(Z1, Z2) denote the Hamming distance between Z1, Z2. In the case of ε < 1/4, we use the
fact that d(Z̄, Z∗) ≤ u and d(Z ′, Z∗) ≤ u imply d(Z̄, Z ′) ≤ 2u in order to argue that with high
probability D outputs 1 when its oracle is As,ε. While this remains true for any choice of ε, the
problem is that when ε ≥ 1/4 we have Pr[d(Z̄, Z ′) ≤ 2u] ≈ 1 even when D’s oracle is Uk+1. To
prove the theorem when ε ≥ 1/4, we exploit the fact that Z̄ is not chosen adversarially within the
ball of radius u around Z∗, but is instead chosen by flipping each bit of Z∗ with probability ε. This
allows us to show that, conditioned on d(Z ′, Z∗) ≤ u and choosing Z̄ as described, d(Z̄, Z ′) < n/2
with high probability.

Proof (of Theorem 2). Fix some ppt adversary A attacking the HB protocol, and let δ
def=

Advpassive
A,HB (ε, u, n). We construct a ppt adversary D attempting to distinguish whether it is given

oracle access to As,ε or to Uk+1 (as in Lemma 1). Relating the advantage of D to the advantage of
A gives the stated result.

The first two steps of our algorithm D are identical to those in the previous proof, and only the
third step differs. For convenience we repeat the first two steps here. D, given access to an oracle
returning (k + 1)-bit strings (a, z), proceeds as follows:

1. D runs the first phase of A. Each time A requests to view a transcript of the protocol, D
obtains n samples {(ai, zi)}n

i=1 from its oracle and returns these to A.
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2. When A is ready for the second phase, D again obtains n samples {(āi, z̄i)}n
i=1 from its oracle.

D sends the challenge (ā1, . . . , ān) to A and receives in return a response Z ′ = (z′1, . . . , z
′
n).

3. D outputs 1 iff Z̄
def= (z̄1, . . . , z̄n) and Z ′ differ in at most u′ def= ε++ · n entries, where ε++ is

a constant satisfying ε+ − 2ε+ε + ε < ε++ < 1
2 . (Note that for ε < 1/2, ε+ < 1/2, we have

ε+ − 2ε+ε + ε = ε+ · (1− 2ε) + ε

<
1
2
· (1− 2ε) + ε =

1
2

,

and so ε++ in the desired range exists.)

When D’s oracle is Uk+1, it is clear that D outputs 1 with probability 2−n ·∑u′
i=0

(
n
i

)
since Z̄ is

in this case uniformly distributed and independent of everything else. Since u′ < n/2, this quantity
is negligible in k for the given settings of the other parameters.

When D’s oracle is As,ε then the transcripts D provides to A during the first phase of A’s
execution are distributed identically to real transcripts in an execution of the HB protocol. Letting
Z∗ def= (〈s, ā1〉 , . . . , 〈s, ān〉) be the vector of correct answers to the challenge (ā1, . . . , ān) sent by D
in the second phase, it follows that with probability δ (i.e., the impersonation probability of A)
the vector of responses Z ′ given by A differs from Z∗ in at most u entries. We show below that
conditioned on this event, Z ′ and Z̄ differ in at most u′ entries with all but negligible probability.
Thus, D outputs 1 in this case with probability negligibly close to δ. We conclude from Lemma 1
that δ must be negligible.

Recall that the distance between two vectors Z1, Z2 is exactly wt(Z1 ⊕ Z2). We show that,
conditioned on wt(Z ′ ⊕ Z∗) ≤ u, we have wt(Z ′ ⊕ Z̄) ≤ u′ with all but negligible probability.

Write Z ′ = Z∗⊕w for some vector w of weight at most u = ε+n. The vector Z̄ is generated by
the following process: choose an error vector e by setting each position of e (independently) to 1
with probability ε, and then set Z̄ = Z∗ ⊕ e. We see that the probability that Z̄ differs from Z ′ in
at most u′ entries is precisely the probability that

wt(Z ′ ⊕ Z̄) = wt(w ⊕ e) ≤ u′.

The random variable wt(w ⊕ e), where w is fixed, is the sum of n independent indicator random
variables, one for each position of the vector w ⊕ e. The expectation of wt(w ⊕ e) is

wt(w) · (1− ε) + (n−wt(w)) · ε ≤ ε+n · (1− ε) + (n− ε+n) · ε
= (ε+ − 2ε+ε + ε) · n.

Since ε++ is a constant strictly larger than (ε+ − 2ε+ε + ε), the Chernoff bound implies that
wt(w ⊕ e) ≤ ε++n with all but negligible probability.

4 Security of the HB+ Protocol against Active Attacks

We now prove security of the HB+ protocol against active attacks.

Theorem 4 Assume the LPNε problem is hard, where 0 < ε < 1
2 . Let τ, n = Θ(k), and let

u = ε+ · n, where ε+ is any constant satisfying ε < ε+ < 1
2 . Then the HB+ protocol with these

settings of the parameters has negligible completeness error, and is secure against active attacks.
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A standard Chernoff bound shows that the completeness error is exponentially small for the given
setting of the parameters. Therefore, we focus only on the security of the protocol against active
attacks. As in the previous section, we deal first with the case of ε < ε+ < 1/4; in that case, we
also assume for simplicity that τ − n = Θ(k). We then extend the proof to handle any ε < 1/2.

4.1 The Case ε < 1/4

Claim 5 Say there exists an adversary A interacting with the tag in at most q executions of the
HB+ protocol (possibly concurrently), running in time t, and achieving Advactive

A,HB+(ε, τ, u, n) = δ.
Then there exists an algorithm D making q · n oracle queries, running in time O(t), and such that

∣∣∣Pr
[
s ← {0, 1}k : DAs,ε(1k) = 1

]
− Pr

[
DUk+1(1k) = 1

]∣∣∣ ≥ δ2 − 2n

2τ
− 2−n ·

2 u∑

i=0

(
n

i

)
.

Asymptotically, when ε < ε+ < 1
4 , and τ − n = Θ(k), and u = ε+n as in Theorem 4, the final

two terms of the above expression are negligible. Thus, the claim together with Lemma 1 proves
Theorem 4 in this case.

Proof. D, given access to an oracle returning (k + 1)-bit strings (b, z̄), proceeds as follows:
1. D chooses s2 ∈ {0, 1}τ uniformly at random.

2. D runs the first phase of A. To simulate a basic authentication step, D obtains a sample
(b, z̄) from its oracle and sends b as the initial message. A replies with a challenge a, and
then D responds with z = z̄ ⊕ 〈s2,a〉. Note that since D does not rewind A here, there is
no difficulty in simulating the n parallel executions of the basic authentication step (nor in
simulating concurrent executions of the entire protocol).

3. When A begins the second phase of its attack, it first sends an initial message b1, . . . ,bn (we
now explicitly consider all n parallel iterations of the protocol rather than focusing on a single
basic authentication step). In response, D chooses random a1

1, . . . ,a
1
n ∈ {0, 1}τ , sends these

challenges to A, and records A’s response z1
1 , . . . , z

1
n. Then D rewinds A, chooses random

a2
1, . . . ,a

2
n ∈ {0, 1}τ , sends these to A, and records A’s response z2

1 , . . . , z
2
n.

4. Let z⊕i
def= z1

i ⊕ z2
i and set Z⊕ def=

(
z⊕1 , . . . , z⊕n

)
. Let âi = a1

i ⊕ a2
i and ẑi = 〈s2, âi〉, and set

Ẑ
def= (ẑ1, . . . , ẑn). D outputs 1 iff Z⊕ and Ẑ differ in at most 2u entries.

Let us analyze the behavior of D:

Case 1: Say D’s oracle is Uk+1. In step 2, above, since z̄ is uniformly distributed and independent
of everything else, the answers z that D returns to A are uniformly distributed and independent
of everything else. It follows that A’s view throughout the entire experiment is independent of the
secret s2 chosen by D.

The {âi}n
i=1 are uniformly and independently distributed, and so except with probability at

most 2n

2τ they are linearly independent (this is a standard combinatorial result that is easy to
prove). Assuming this to be the case, Ẑ is uniformly distributed over {0, 1}n from the point of view
of A. But then the probability that Z⊕ and Ẑ differ in at most 2u entries is exactly 2−n ·∑2 u

i=0

(
n
i

)
.

We conclude that D outputs 1 in this case with probability at most 2n

2τ + 2−n ·∑2 u
i=0

(
n
i

)
.
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Case 2: Say D’s oracle is As1,ε for randomly chosen s1. In this case, D provides a perfect
simulation for the first phase of A. Let ω denote all the randomness used to simulate the first
phase of A (namely, the keys s1, s2, the randomness of A, and the randomness used to respond to
A’s queries). For a fixed such ω, let δω denote the probability, over random choice of a1, . . . ,an,
that A successfully impersonates the honest tag in the second phase. The probability that A
successfully responds to both sets of queries a1

1, . . . ,a
1
n and a2

1, . . . ,a
2
n sent by D is thus δ2

ω. The
overall probability that A successfully responds to both sets of queries is then given by

Eω(δ2
ω) ≥ (Eω(δω))2 = δ2,

using Jensen’s inequality (here Eω denotes the expectation over the choice of ω).
AssumingA does respond successfully to both sets of D’s challenges, this means that (z1

1 , . . . , z
1
n)

differs in at most u entries from the correct answer

ans1
def=

(〈s1,b1〉 ⊕
〈
s2,a1

1

〉
, . . . , 〈s1,bn〉 ⊕

〈
s2,a1

n

〉)

and also (z2
1 , . . . , z

2
n) differs in at most u entries from the correct answer

ans2
def=

(〈s1,b1〉 ⊕
〈
s2,a2

1

〉
, . . . , 〈s1,bn〉 ⊕

〈
s2,a2

n

〉)
.

But then (z1
1 , . . . , z

1
n)⊕ (z2

1 , . . . , z
2
n) = Z⊕ differs in at most 2u entries from

ans1 ⊕ ans2 =
(〈

s2,a1
1

〉⊕ 〈
s2,a2

1

〉
, . . . ,

〈
s2,a1

n

〉⊕ 〈
s2,a2

n

〉)

=
(〈

s2, (a1
1 ⊕ a2

1)
〉
, . . . ,

〈
s2, (a1

n ⊕ a2
n)

〉)
= Ẑ.

We conclude that D outputs 1 in this case with probability at least δ2. This completes the proof
of the claim.

4.2 Auxiliary Lemmas

Before turning to the case of ε < 1/2, we state and prove some coding-theoretic results on which we
will rely. Throughout, we let B(x, δ) denote the Hamming ball of radius δ centered at x. We begin
with the following version of the classical Johnson bound [23, 24], taken from [19, Theorem 3.1]:

Lemma 6 Let C ⊂ {0, 1}n be a binary code with minimum distance d = 1
2(1 − δ)n, and let e =

1
2(1− γ)n for δ, γ ∈ (0, 1) and γ2 > δ. Then, for any x ∈ {0, 1}n we have

|B(x, e) ∩ C| ≤ 1− δ

γ2 − δ
.

We now prove a “distributional” form of the Johnson bound, which says that for any distribution
over a Hamming ball B ⊂ {0, 1}n of radius αn, two strings chosen independently according to this
distribution will be closer than their “worst-case” distance 2αn with reasonably high probability.

Lemma 7 Let α, α+ be constants such that 0 < α < α+ < 1
2 and α+ > 1

2 · (1− (1− 2α)2). Then
there exists a constant C = C(α, α+) such that for any n, and any distribution D over a Hamming
ball of radius α · n in {0, 1}n, we have:

Pr
∆1,∆2←D

[
wt(∆1 ⊕∆2) < α+n

] ≥ C .
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Proof. Without loss of generality, assume the Hamming ball is centered at the origin. Let δ =
1− 2α+, and let γ = 1− 2α. Note that γ2 > δ by hypothesis. Set c

def=
⌈

1−δ
γ2−δ

+ 1
⌉

.

We show that for two vectors ∆1,∆2 chosen independently according to distribution D, we have
wt(∆1 ⊕∆2) < α+n with (constant) probability at least 1

c2
. Assume not, so that

Pr[∆1, ∆2 ← D : wt(∆1 ⊕∆2) < α+n] <
1
c2

.

Then, by a union bound, Pr[∆1, . . . ,∆c ← D : ∃i 6= j s.t. wt(∆i ⊕∆j) < α+n] < 1
2 . In particular,

there exist c (distinct) vectors ∆1, . . . , ∆c in the support of D, and hence in the Hamming ball of
radius αn = 1

2 · (1 − γ) · n, whose pairwise distances are all at least α+n = 1
2 · (1 − δ) · n. This

contradicts Lemma 6.

Finally, we show that for a random linear code there is no “small” Hamming ball containing
more than a negligible fraction of the codewords.

Lemma 8 Let α ∈ (0, 1
2) be a constant, let n = Θ(k), and let C be a random [n, k]-code generated by

the columns of an n×k binary matrix A with entries chosen uniformly at random. With probability
2−Ω(k) over choice of A, there does not exist a Hamming ball of radius α · n that contains at least
a 2−Ω(k) fraction of the codewords in C.

Formally, let α < 1
2 and set n = ak for some constant a > 0. Then there are positive constants

C1 and C2 depending only on α, a such that, for k large enough,

PrA

[
∃x ∈ {0, 1}n such that

|C ∩B(x, α · n)|
|C| ≥ 2−C1k

]
≤ 2−C2k .

Proof. Suppose there is a ball B of radius αn that contains K codewords of C for some arbitrary K.
We first show that this implies the existence of a ball B+ of slightly larger radius, centered at the
origin, that contains at least γK points of C (for some constant γ). We then show that, for a random
linear code, B+ typically captures only an exponentially small (in k) fraction of the codewords of C
and so γK must be small.

Assume there is a ball B of radius αn that contains K codewords of C. Fix α+ < 1
2 such that

α+ > 1
2 · (1 − (1 − 2α)2). Let γ = C(α, α+), as defined in Lemma 7. We claim that there exists

a codeword x∗ ∈ B such that the ball B(x∗, α+n) of radius α+n centered at x∗ contains at least
γ · K codewords. Assume toward a contradiction that no such x∗ exists. Let D be the uniform
distribution over codewords in B. Then for any codeword x ∈ B we have

Pr
y←D

[
wt(x⊕ y) < α+n

]
<

γK

K
= γ ,

and so
Pr

x,y←D
[
wt(x⊕ y) < α+n

]
< γ .

This contradicts Lemma 7.
Since we are working with a linear code, the number of codewords in B(x∗, α+n) is equal to the

number of codewords in B+ def= B(0, α+n). We conclude that if there is a ball of radius αn that
contains K codewords of C, then there is a ball of radius α+n centered at the origin that contains
at least γ ·K codewords of C.
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We now bound the probability that |B+ ∩ C| ≥ γK. Let X be a random variable denoting
the number of codewords in B+ when the generating matrix A is chosen at random. Let δr, for
r ∈ {0, 1}k \ {0k}, be the indicator random variable denoting whether Ar ∈ B+, and note that
Pr[δr = 1] = |B+|/2n = 2−Θ(n). Observe also that the {δr} are pairwise independent. We have
X = 1+

∑
r∈{0,1}k\{0k} δr, and so (for k sufficiently large) E[X] < 1+2k|B+|/2n ≤ 1+2ck for some

constant c < 1 that depends only on α+. Now, for any γK > 1 + 2ck,

Pr [X ≥ γK] = Pr
[
X − (1 + 2ck) ≥ γK − (1 + 2ck)

]

≤ Pr
[∣∣∣X − (1 + 2ck)

∣∣∣ ≥ γK − (1 + 2ck)
]

= Pr
[∣∣∣∑r∈{0,1}k\{0k} δr − 2ck

∣∣∣ ≥ γK − (1 + 2ck)
]

≤ 2k|B+|/2n

(γK − (1 + 2ck))2
≤ 2ck

(γK − (1 + 2ck))2
,

using Chebyshev’s inequality. Taking K = 2c+k for c < c+ < 1, we see that Pr [X ≥ γK] is
negligible in k.

4.3 The Case ε < 1/2

We now prove security of the HB+ protocol against active attacks in the general case of ε < 1/2
(and for arbitrary τ, n = Θ(k)). We do not provide concrete bounds in this case, though such
bounds may be derived from the proof that follows.

Proof (of Theorem 4). Fix a ppt adversary A, and let δA
def= Advactive

A,HB+(ε, τ, u, n). We construct a
ppt adversary D attempting to distinguish whether it is given oracle access to As,ε or to Uk+1 (as
in Lemma 1). Relating the advantage of D to the advantage of A gives the stated result.

The first three steps of our algorithm D are identical to those in the previous proof, and only
the last step differs. For convenience we repeat all the steps here. D, given access to an oracle
returning (k + 1)-bit strings (b, z̄), proceeds as follows:

1. D chooses s2 ∈ {0, 1}τ uniformly at random.

2. D runs the first phase of A. To simulate a basic authentication step, D obtains a sample
(b, z̄) from its oracle and sends b as the initial message. A replies with a challenge a, and
then D responds with z = z̄ ⊕ 〈s2,a〉.

3. When A begins the second phase of its attack, it first sends an initial message b1, . . . ,bn. In
response, D chooses random a1

1, . . . ,a
1
n ∈ {0, 1}τ , sends these challenges to A, and records

A’s response z1
1 , . . . , z

1
n. Then D rewinds A, chooses random a2

1, . . . ,a
2
n ∈ {0, 1}τ , sends these

to A, and records A’s response z2
1 , . . . , z

2
n.

4. Let z⊕i := z1
i ⊕ z2

i and set Z⊕ def=
(
z⊕1 , . . . , z⊕n

)
. Let âi = a1

i ⊕ a2
i and ẑi = 〈s2, âi〉, and set

Ẑ
def= (ẑ1, . . . , ẑn). D outputs 1 iff Z⊕ and Ẑ differ in strictly fewer than u′ = ε++n entries,

for some constant ε++ < 1
2 to be fixed later.

Let us analyze the behavior of D:
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Case 1: Say D’s oracle is Uk+1. Let A be the n × τ matrix whose rows are the âi. Viewing s2

and Ẑ as column vectors, we see that Ẑ = A · s2. As in the proof of Claim 5, when D’s oracle is
Uk+1 the adversary A has no information about s2 and, therefore, from the point of view of the
adversary Ẑ is a random element in the columnspace of A. Furthermore, D outputs 1 exactly when
Z⊕ is within distance u′ of Ẑ. We want to argue that this happens with low probability.

Translating the above to the language of coding theory, A defines a random, linear code C of
dimension τ and length n, and Ẑ is a random codeword in this code. Fixing any Z⊕, the probability
that Ẑ is within distance u′ of Ẑ is exactly |C ∩ B(Z⊕, u′)|/2τ . Lemma 8 shows that with all but
negligible probability over A, this probability is negligible in τ (and hence negligible in k).

Case 2: Say D’s oracle is As1,ε for randomly chosen s1. Exactly as in the proof of Claim 5, we
have that A responds correctly to both sets of queries a1

1, . . . ,a
1
n and a2

1, . . . ,a
2
n with probability at

least δ2
A. We show next that conditioned on both challenges being answered successfully (and for

appropriate choice of ε++), Z⊕ differs from Ẑ in fewer than u′ entries with constant probability.
Putting everything together, we conclude that D outputs 1 in this case with probability Ω(δ2

A). It
follows from Lemma 1 that δA must be negligible.

We now prove the above claim regarding the probability that Z⊕ differs from Ẑ in fewer than
u′ entries. Set ε++ so that 1

2 > ε++ > 1
2 · (1− (1− 2ε+)2). Fixing all the randomness used in the

simulation of the first phase of A defines a function fA from queries a1, . . . ,an to vectors (z1, . . . , zn)
given by the response function of A in the second phase. Define the function fcorrect that returns
the “correct” answers for a particular query; i.e.,

fcorrect(a1, . . . ,an) def= (〈s1,b1〉 ⊕ 〈s2,a1〉 , . . . , 〈s1,bn〉 ⊕ 〈s2,an〉)
(recall that b1, . . . ,bn are the vectors sent by A in the first round). Define

∆(a1, . . . ,an) def= fA(a1, . . . ,an)⊕ fcorrect(a1, . . . ,an),

and say a query a1, . . . ,an is good if wt(∆(a1, . . . ,an)) ≤ u. A query a1, . . . ,an is good if A’s
response is within distance u of the “correct” response, that is, A successfully impersonates the tag
in response to such a query.

Let D denote the distribution over ∆(a1, . . . ,an) induced by a uniform choice of a good query
a1, . . . ,an (we assume at least one good query exists since we are only interested in analyzing this
case). To see how this maps on to the reduction being analyzed above, note that conditioning on
the event that A successfully responds to queries a1

1, . . . ,a
1
n and a2

1, . . . ,a
2
n is equivalent to choosing

these two queries uniformly from the set of good queries. Setting ∆1 def= ∆(a1
1, . . . ,a

1
n) and ∆2

analogously, we have

∆1 ⊕∆2 = fA(a1
1, . . . ,a

1
n)⊕ fcorrect(a1

1, . . . ,a
1
n)⊕ fA(a2

1, . . . ,a
2
n)⊕ fcorrect(a2

1, . . . ,a
2
n)

= Z⊕ ⊕ fcorrect(a1
1, . . . ,a

1
n)⊕ fcorrect(a2

1, . . . ,a
2
n).

Furthermore,

fcorrect(a1
1, . . . ,a

1
n)⊕ fcorrect(a2

1, . . . ,a
2
n)

=
(〈s1,b1〉 ⊕

〈
s2,a1

1

〉
, . . . , 〈s1,bn〉 ⊕

〈
s2,a1

n

〉)⊕ (〈s1,b1〉 ⊕
〈
s2,a2

1

〉
, . . . , 〈s1,bn〉 ⊕

〈
s2,a2

n

〉)

=
(〈

s2,a1
1

〉⊕ 〈
s2,a2

1

〉
, . . . ,

〈
s2,a1

n

〉⊕ 〈
s2,a2

n

〉)

=
(〈

s2, (a1
1 ⊕ a2

1)
〉
, . . . ,

〈
s2, (a1

n ⊕ a2
n)

〉)
= Ẑ.
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So ∆1 ⊕ ∆2 = Z⊕ ⊕ Ẑ, and we see that Z⊕ and Ẑ differ in fewer than u′ entries exactly when
wt(∆1 ⊕∆2) < u′.

Now, by definition of a good query, each vector in the support of D has weight at most u = ε+n.
By Lemma 7, with constant probability over ∆1, ∆2 generated independently according to D, we
have wt(∆1 ⊕ ∆2) < u′ (note that u′ and u were chosen to satisfy the conditions of the lemma).
This concludes the proof of Theorem 4.

5 Conclusions and Open Questions

The main technical results of this paper are the first rigorous proofs of (1) security of the HB+

protocol against active attacks, even under parallel and concurrent executions; and (2) “hardness
amplification” for the HB and HB+ protocols as the number of iterations of the basic authentication
step increases. Our proofs are also the first to explicitly take into account the non-zero completeness
error and the impact this has on the security of the protocol as a whole.

We believe our proofs are remarkably simple, and view this as an additional contribution of
this work (rather than as a drawback!). Indeed, we expect there will be further applications of
Lemma 1 to the analysis of other cryptographic constructions based on the LPN problem, and
hope this paper inspires and aids others in exploring such applications.

It would be very interesting to see an efficient protocol based on the LPN problem that is
provably resistant to man-in-the-middle attacks such as those of Gilbert et al. [12]. Though much
recent work [5, 9, 13, 14, 33] (subsequent to the results described here) addresses this problem, none
of these provides a provably secure solution to the problem in its full generality. It would also be
useful to improve the concrete security reductions obtained here, or to propose new protocols with
tighter security reductions. As one possible approach toward this goal, one can imagine changing
the HB/HB+ protocols so that the tag always introduces at most ε·n errors, rather than introducing
errors in each of the n iterations with independent probability ε.7 (A related idea, in a different
context, was explored in [3]; their analysis does not seem to apply to our setting.) This would give
protocols with perfect completeness, and would improve the concrete security bounds as well since
the upper bound u could be set to exactly ε · n. On the other hand it is not clear what can be said
of the hardness of the natural variant of the LPN problem such protocols would be based on.
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