
The Unicode® Standard
Version 13.0 – Core Specification

To learn about the latest version of the Unicode Standard, see http://www.unicode.org/versions/latest/.
Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and the publisher was aware of a trade-
mark claim, the designations have been printed with initial capital letters or in all capitals.
Unicode and the Unicode Logo are registered trademarks of Unicode, Inc., in the United States and
other countries.
The authors and publisher have taken care in the preparation of this specification, but make no
expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No
liability is assumed for incidental or consequential damages in connection with or arising out of the
use of the information or programs contained herein.
The Unicode Character Database and other files are provided as-is by Unicode, Inc. No claims are
made as to fitness for any particular purpose. No warranties of any kind are expressed or implied.
The recipient agrees to determine applicability of information provided.
© 2020 Unicode, Inc.
All rights reserved. This publication is protected by copyright, and permission must be obtained from
the publisher prior to any prohibited reproduction. For information regarding permissions, inquire
at http://www.unicode.org/reporting.html. For information about the Unicode terms of use, please
see http://www.unicode.org/copyright.html.
The Unicode Standard / the Unicode Consortium; edited by the Unicode Consortium. — Version
13.0.
 Includes index.
 ISBN 978-1-936213-26-9 (http://www.unicode.org/versions/Unicode13.0.0/)
 1. Unicode (Computer character set) I. Unicode Consortium.
 QA268.U545 2020

ISBN 978-1-936213-26-9
Published in Mountain View, CA
March 2020

157
Chapter 4

Character Properties 4

The Unicode Standard associates a rich set of semantics with characters and, in some
instances, with code points. The support of character semantics is required for confor-
mance; see Section 3.2, Conformance Requirements. Where character semantics can be
expressed formally, they are provided as machine-readable lists of character properties in
the Unicode Character Database (UCD). This chapter gives an overview of character prop-
erties, their status and attributes, followed by an overview of the UCD and more detailed
notes on some important character properties. For a further discussion of character prop-
erties, see Unicode Technical Report #23, “Unicode Character Property Model.”

Status and Attributes. Character properties may be normative, informative, contributory,
or provisional. Normative properties are those required for conformance. Many Unicode
character properties can be overridden by implementations as needed. Section 3.2, Confor-
mance Requirements, specifies when such overrides must be documented. A few properties,
such as Noncharacter_Code_Point, may not be overridden. See Section 3.5, Properties, for
the formal discussion of the status and attributes of properties.

Consistency of Properties. The Unicode Standard is the product of many compromises. It
has to strike a balance between uniformity of treatment for similar characters and compat-
ibility with existing practice for characters inherited from legacy encodings. Because of this
balancing act, one can expect a certain number of anomalies in character properties. For
example, some pairs of characters might have been treated as canonical equivalents but are
left unequivalent for compatibility with legacy differences. This situation pertains to
U+00B5 micro sign and U+03BC greek small letter mu, as well as to certain
Korean jamo.

In addition, some characters might have had properties differing in some ways from those
assigned in this standard, but those properties are left as is for compatibility with existing
practice. This situation can be seen with the halfwidth voicing marks for Japanese

Disclaimer
The content of all character property tables has been verified as far as possible by
the Unicode Consortium. However, in case of conflict, the most authoritative
version of the information for this version of the Unicode Standard is that sup-
plied in the Unicode Character Database on the Unicode website. The contents of
all the tables in this chapter may be superseded or augmented by information in
future versions of the Unicode Standard.

Character Properties 158
(U+FF9E halfwidth katakana voiced sound mark and U+FF9F halfwidth

katakana semi-voiced sound mark), which might have been better analyzed as spacing
combining marks. Another examples consists of the conjoining Hangul jamo, which might
have been better analyzed as an initial base character followed by formally combining
medial and final characters. In the interest of efficiency and uniformity in algorithms,
implementations may take advantage of such reanalyses of character properties, as long as
this does not conflict with the conformance requirements with respect to normative prop-
erties. See Section 3.5, Properties; Section 3.2, Conformance Requirements; and Section 3.3,
Semantics, for more information.

Character Properties 159 4.1 Unicode Character Database
4.1 Unicode Character Database
The Unicode Character Database (UCD) consists of a set of files that define the Unicode
character properties and internal mappings. For each property, the files determine the
assignment of property values to each code point. The UCD also supplies recommended
property aliases and property value aliases for textual parsing and display in environments
such as regular expressions.

The properties include the following:

• Name

• General Category (basic partition into letters, numbers, symbols, punctuation,
and so on)

• Other important general characteristics (whitespace, dash, ideographic, alpha-
betic, noncharacter, deprecated, and so on)

• Display-related properties (bidirectional class, shaping, mirroring, width, and
so on)

• Casing (upper, lower, title, folding—both simple and full)

• Numeric values and types

• Script and Block

• Normalization properties (decompositions, decomposition type, canonical
combining class, composition exclusions, and so on)

• Age (version of the standard in which the code point was first designated)

• Boundaries (grapheme cluster, word, line, and sentence)

See Unicode Standard Annex #44, “Unicode Character Database,” for more details on the
character properties and their values, the status of properties, their distribution across data
files, and the file formats.

Unihan Database. In addition, a large number of properties specific to CJK ideographs are
defined in the Unicode Character Database. These properties include source information,
radical and stroke counts, phonetic values, meanings, and mappings to many East Asian
standards. The values for all these properties are listed in the file Unihan.zip, also known as
the Unihan Database. For a complete description and documentation of the properties
themselves, see Unicode Standard Annex #38, “Unicode Han Database (Unihan).” (See
also “Online Unihan Database” in Appendix B.3, Other Unicode Online Resources.)

Many properties apply to both ideographs and other characters. These are not specified in
the Unihan Database.

Stability. While the Unicode Consortium strives to minimize changes to character prop-
erty data, occasionally character properties must be updated. When this situation occurs, a
new version of the Unicode Character Database is created, containing updated data files.

Character Properties 160 4.1 Unicode Character Database
Data file changes are associated with specific, numbered versions of the standard; charac-
ter properties are never silently corrected between official versions.

Each version of the Unicode Character Database, once published, is absolutely stable and
will never change. Implementations or specifications that refer to a specific version of the
UCD can rely upon this stability. Detailed policies on character encoding stability as they
relate to properties are found on the Unicode website. See the subsection “Policies” in
Appendix B.3, Other Unicode Online Resources. See also the discussion of versioning and
stability in Section 3.1, Versions of the Unicode Standard.

Aliases. Character properties and their values are given formal aliases to make it easier to
refer to them consistently in specifications and in implementations, such as regular expres-
sions, which may use them. These aliases are listed exhaustively in the Unicode Character
Database, in the data files PropertyAliases.txt and PropertyValueAliases.txt.

Many of the aliases have both a long form and a short form. For example, the General Cat-
egory has a long alias “General_Category” and a short alias “gc”. The long alias is more
comprehensible and is usually used in the text of the standard when referring to a particu-
lar character property. The short alias is more appropriate for use in regular expressions
and other algorithmic contexts.

In comparing aliases programmatically, loose matching is appropriate. That entails ignor-
ing case differences and any whitespace, underscore, and hyphen characters. For example,
“GeneralCategory”, “general_category”, and “GENERAL-CATEGORY” would all be con-
sidered equivalent property aliases. See Unicode Standard Annex #44, “Unicode Character
Database,” for further discussion of property and property value matching.

For each character property whose values are not purely numeric, the Unicode Character
Database provides a list of value aliases. For example, one of the values of the Line_Break
property is given the long alias “Open_Punctuation” and the short alias “OP”.

Property aliases and property value aliases can be combined in regular expressions that
pick out a particular value of a particular property. For example, “\p{lb=OP}” means the
Open_Punctuation value of the Line_Break property, and “\p{gc=Lu}” means the Upper-
case_Letter value of the General_Category property.

Property aliases define a namespace. No two character properties have the same alias. For
each property, the set of corresponding property value aliases constitutes its own name-
space. No constraint prevents property value aliases for different properties from having
the same property value alias. Thus “B” is the short alias for the Paragraph_Separator value
of the Bidi_Class property; “B” is also the short alias for the Below value of the Canonical_-
Combining_Class property. However, because of the namespace restrictions, any combi-
nation of a property alias plus an appropriate property value alias is guaranteed to
constitute a unique string, as in “\p{bc=B}” versus “\p{ccc=B}”.

For a recommended use of property and property value aliases, see Unicode Technical
Standard #18, “Unicode Regular Expressions.” Aliases are also used for normatively refer-
encing properties, as described in Section 3.1, Versions of the Unicode Standard.

Character Properties 161 4.1 Unicode Character Database
UCD in XML. Starting with Unicode Version 5.1.0, the complete Unicode Character Data-
base is also available formatted in XML. This includes both the non-Han part of the Uni-
code Character Database and all of the content of the Unihan Database. For details
regarding the XML schema, file names, grouping conventions, and other considerations,
see Unicode Standard Annex #42, “Unicode Character Database in XML.”

Online Availability. All versions of the UCD are available online on the Unicode website.
See the subsections “Online Unicode Character Database” and “Online Unihan Database”
in Appendix B.3, Other Unicode Online Resources.

Character Properties 162 4.2 Case
4.2 Case
Case is a normative property of characters in certain alphabets whereby characters are con-
sidered to be variants of a single letter. These variants, which may differ markedly in shape
and size, are called the uppercase letter (also known as capital or majuscule) and the lower-
case letter (also known as small or minuscule). The uppercase letter is generally larger than
the lowercase letter.

Because of the inclusion of certain composite characters for compatibility, such as U+01F1
latin capital letter dz, a third case, called titlecase, is used where the first character of a
word must be capitalized. An example of such a character is U+01F2 latin capital letter

d with small letter z. The three case forms are UPPERCASE, Titlecase, and lowercase.

For those scripts that have case (Latin, Greek, Coptic, Cyrillic, Glagolitic, Armenian,
archaic Georgian, Deseret, and Warang Citi), uppercase characters typically contain the
word capital in their names. Lowercase characters typically contain the word small. How-
ever, this is not a reliable guide. The word small in the names of characters from scripts
other than those just listed has nothing to do with case. There are other exceptions as well,
such as small capital letters that are not formally uppercase. Some Greek characters with
capital in their names are actually titlecase. (Note that while the archaic Georgian script
contained upper- and lowercase pairs, they are not used in modern Georgian. See
Section 7.7, Georgian.)

Definitions of Case and Casing
The Unicode Standard has more than one formal definition of lowercase, uppercase, and
related casing processes. This is the result of the inherent complexity of case relationships
and of defining case-related behavior on the basis of individual character properties. This
section clarifies the distinctions involved in the formal definition of casing in the standard.
The additional complications for titlecase are omitted from the discussion; titlecase dis-
tinctions apply only to a handful of compatibility characters.

The first set of values involved in the definition of case are based on the General_Category
property in UnicodeData.txt. The relevant values are General_Category = Ll (Lower-
case_Letter) and General_Category = Lu (Uppercase_Letter). For most ordinary letters of
bicameral scripts such as Latin, Greek, and Cyrillic, these values are obvious and non-
problematical. However, the General_Category property is, by design, a partition of the
Unicode codespace. This means that each Unicode character can only have one General_-
Category value, which results in some odd edge cases for modifier letters, letterlike symbols
and letterlike numbers. As a consequence, not every Unicode character that looks like a
lowercase character necessarily ends up with General_Category = Ll, and not every Uni-
code character that looks like an uppercase character ends up with General_Category = Lu.

The second set of definitions relevant to case consist of the derived binary properties, Low-
ercase and Uppercase, specified in DerivedCoreProperties.txt in the Unicode Character
Database. Those derived properties augment the General_Category values by adding the
additional characters that ordinary users think of as being lowercase or uppercase, based

Character Properties 163 4.2 Case
primarily on their letterforms. The additional characters are included in the derivations by
means of the contributory properties, Other_Lowercase and Other_Uppercase, defined in
PropList.txt. For example, Other_Lowercase adds the various modifier letters that are let-
terlike in shape, the circled lowercase letter symbols, and the compatibility lowercase
Roman numerals. Other_Uppercase adds the circled uppercase letter symbols, and the
compatibility uppercase Roman numerals.

A third set of definitions for case is fundamentally different in kind, and does not consist of
character properties at all. The functions isLowercase and isUppercase are string functions
returning a binary True/False value. These functions are defined in Section 3.13, Default
Case Algorithms, and depend on case mapping relations, rather than being based on letter-
forms per se. Basically, isLowercase is True for a string if the result of applying the toLow-
ercase mapping operation for a string is the same as the string itself.

Table 4-1 illustrates the various possibilities for how these definitions interact, as applied to
exemplary single characters or single character strings.

Note that for “caseless” characters, such as U+02B0, U+1D34, and U+02BD, isLowerCase
and isUpperCase are both True, because the inclusion of a caseless letter in a string is not
criterial for determining the casing of the string—a caseless letter always case maps to itself.

On the other hand, all modifier letters derived from letter shapes are also notionally lower-
case, whether the letterform itself is a minuscule or a majuscule in shape. Thus U+1D34
modifier letter capital h is actually Lowercase = True. Other modifier letters not
derived from letter shapes, such as U+02BD, are neither Lowercase nor Uppercase.

The string functions isLowerCase and isUpperCase also apply to strings longer than one
character, of course, for which the character properties General_Category, LowerCase, and
Uppercase are not relevant. In Table 4-2, the string function isTitleCase is also illustrated,
to show its applicability for the same strings.

Programmers concerned with manipulating Unicode strings should generally be dealing
with the string functions such as isLowerCase (and its functional cousin, toLowerCase),
unless they are working directly with single character properties. Care is always advised,
however, when dealing with case in the Unicode Standard, as expectations based simply on

Table 4-1. Relationship of Casing Definitions

Code Character gc Lowercase Uppercase isLowerCase(S) isUpperCase(S)
0068 h Ll True False True False
0048 H Lu False True False True
24D7 b So True False True False
24BD a So False True False True
02B0 c Lm True False True True
1D34 d Lm True False True True
02BD e Lm False False True True

Character Properties 164 4.2 Case
the behavior of the basic Latin alphabet (A..Z, a..z) do not generalize easily across the entire
repertoire of Unicode characters, and because case for modifier letters, in particular, can
result in unexpected behavior.

Case Mapping
The default case mapping tables defined in the Unicode Standard are normative, but may
be overridden to match user or implementation requirements. The Unicode Character
Database contains four files with case mapping information, as shown in Table 4-3. Full
case mappings for Unicode characters are obtained by using the basic mappings from
UnicodeData.txt and extending or overriding them where necessary with the mappings
from SpecialCasing.txt. Full case mappings may depend on the context surrounding the
character in the original string.

Some characters have a “best” single-character mapping in UnicodeData.txt as well as a full
mapping in SpecialCasing.txt. Any character that does not have a mapping in these files is
considered to map to itself. For more information on case mappings, see Section 5.18, Case
Mappings.

The single-character mappings in UnicodeData.txt are insufficient for languages such as
German. Therefore, only legacy implementations that cannot handle case mappings that
increase string lengths should use UnicodeData.txt case mappings alone.

Table 4-2. Case Function Values for Strings

Codes String isLowerCase(S) isUpperCase(S) isTitleCase(S)
0068 0068 hh True False False
0048 0048 HH False True False
0048 0068 Hh False False True
0068 0048 hH False False False

Table 4-3. Sources for Case Mapping Information

File Name Description
UnicodeData.txt Contains the case mappings that map to a single character. These do not

increase the length of strings, nor do they contain context-dependent map-
pings.

SpecialCasing.txt Contains additional case mappings that map to more than one character, such
as “ß” to “SS”. Also contains context-dependent mappings, with flags to distin-
guish them from the normal mappings, as well as some locale-dependent
mappings.

CaseFolding.txt Contains data for performing locale-independent case folding, as described in
“Caseless Matching,” in Section 5.18, Case Mappings.

PropList.txt Contains the definition of the property Soft_Dotted, which is used in the con-
text specification for casing. See D138 in Section 3.13, Default Case Algorithms.

Character Properties 165 4.2 Case
A set of charts that show the latest case mappings is also available on the Unicode website.
See “Charts” in Appendix B.3, Other Unicode Online Resources.

Character Properties 166 4.3 Combining Classes
4.3 Combining Classes
Each combining character has a normative canonical combining class. This class is used
with the Canonical Ordering Algorithm to determine which combining characters interact
typographically and to determine how the canonical ordering of sequences of combining
characters takes place. Class zero combining characters act like base letters for the purpose
of determining canonical order. Combining characters with non-zero classes participate in
reordering for the purpose of determining the canonical order of sequences of characters.
(See Section 3.11, Normalization Forms, for the specification of the algorithm.)

The list of combining characters and their canonical combining class appears in the Uni-
code Character Database. Most combining characters are nonspacing.

The canonical order of character sequences does not imply any kind of linguistic correct-
ness or linguistic preference for ordering of combining marks in sequences. For more
information on rendering combining marks, see Section 5.13, Rendering Nonspacing
Marks.

Class zero combining marks are never reordered by the Canonical Ordering Algorithm.
Except for class zero, the exact numerical values of the combining classes are of no impor-
tance in canonical equivalence, although the relative magnitude of the classes is significant.
For example, it is crucial that the combining class of the cedilla be lower than the combin-
ing class of the dot below, although their exact values of 202 and 220 are not important for
implementations.

Certain classes tend to correspond with particular rendering positions relative to the base
character, as shown in Figure 4-1.

Reordrant, Split, and Subjoined Combining Marks
In some scripts, the rendering of combining marks is notably complex. This is true in par-
ticular of the Brahmi-derived scripts of South and Southeast Asia, whose vowels are often
encoded as class zero combining marks in the Unicode Standard, known as matras for the
Indic scripts.

In the case of simple combining marks, as for the accent marks of the Latin script, the nor-
mative Unicode combining class of that combining mark typically corresponds to its posi-

Figure 4-1. Positions of Common Combining Marks

230

202

220

216

Character Properties 167 4.3 Combining Classes
tional placement with regard to a base letter, as described earlier. However, in the case of
the combining marks representing vowels (and sometimes consonants) in the Brahmi-
derived scripts and other abugidas, all of the combining marks are given the normative
combining class of zero, regardless of their positional placement within an aksara. The
placement and rendering of a class zero combining mark cannot be derived from its com-
bining class alone, but rather depends on having more information about the particulars of
the script involved. In some instances, the position may migrate in different historical peri-
ods for a script or may even differ depending on font style.

The identification of matras in Indic scripts is provided in the data file IndicSyllabicCate-
gory.txt in the Unicode Character Database. Information about their positional placement
can be found in the data file IndicPositionalCategory.txt. The following text in this section
subcategorizes some of the class zero combining marks for Brahmi-derived scripts, point-
ing out significant types that need to be handled consistently, and relating their positional
placement to the particular values documented in IndicPositionalCategory.txt.

Reordrant Class Zero Combining Marks. In many instances in Indic scripts, a vowel is
represented in logical order after the consonant of a syllable, but is displayed before (to the
left of) the consonant when rendered. Such combining marks are termed reordrant to
reflect their visual reordering to the left of a consonant (or, in some instances, a consonant
cluster). Special handling is required for selection and editing of these marks. In particular,
the possibility that the combining mark may be reordered to the left side past a cluster, and
not simply past the immediate preceding character in the backing store, requires attention
to the details for each script involved.

The visual reordering of these reordrant class zero combining marks has nothing to do
with the reordering of combining character sequences in the Canonical Ordering Algo-
rithm. All of these marks are class zero and thus are never reordered by the Canonical
Ordering Algorithm for normalization. The reordering is purely a presentational issue for
glyphs during rendering of text.

Reordrant class zero combining marks correspond to the list of characters with Indic_Po-
sitional_Category = Left.

In addition, there are historically related vowel characters in the Thai, Lao, New Tai Lue,
and Tai Viet scripts that are not treated as combining marks. Instead, for these scripts, such
vowels are represented in the backing store in visual order and require no reordering for
rendering. The trade-off is that they have to be rearranged for correct sorting. Because of
that processing requirement, these characters are given a formal character property assign-
ment, the Logical_Order_Exception property. See PropList.txt in the Unicode Character
Database. The list of characters with the Logical_Order_Exception property is the same as
those documented with the value Indic_Positional_Category = Visual_Order_Left in
IndicPositionalCategory.txt.

Split Class Zero Combining Marks. In addition to the reordrant class zero combining
marks, there are a number of class zero combining marks whose representative glyph typi-
cally consists of two parts, which are split into different positions with respect to the conso-
nant (or consonant cluster) in an aksara. Sometimes these glyphic pieces are rendered

Character Properties 168 4.3 Combining Classes
both to the left and the right of a consonant. Sometimes one piece is rendered above or
below the consonant and the other piece is rendered to the left or the right. Particularly in
the instances where some piece of the glyph is rendered to the left of the consonant, these
split class zero combining marks pose similar implementation problems as for the reor-
drant marks.

The split class zero combining marks have various Indic_Positional_Category values such
as Left_And_Right, Top_And_Bottom, Top_And_Right, Top_And_Left, and so forth. See
IndicPositionalCategory.txt for the full listing.

One should pay very careful attention to all split class zero combining marks in implemen-
tations. Not only do they pose issues for rendering and editing, but they also often have
canonical equivalences defined involving the separate pieces, when those pieces are also
encoded as characters. As a consequence, the split combining marks may constitute excep-
tional cases under normalization. Some of the Tibetan split combining marks are depre-
cated.

The split vowels also pose difficult problems for understanding the standard, as the phono-
logical status of the vowel phonemes, the encoding status of the characters (including any
canonical equivalences), and the graphical status of the glyphs are easily confused, both for
native users of the script and for engineers working on implementations of the standard.

Subjoined Class Zero Combining Marks. Brahmi-derived scripts that are not represented
in the Unicode Standard with a virama may have class zero combining marks to represent
subjoined forms of consonants. These correspond graphologically to what would be repre-
sented by a sequence of virama plus consonant in other related scripts. The subjoined con-
sonants do not pose particular rendering problems, at least not in comparison to other
combining marks, but they should be noted as constituting an exception to the normal pat-
tern in Brahmi-derived scripts of consonants being represented with base letters. This
exception needs to be taken into account when doing linguistic processing or searching
and sorting.

Subjoined class zero combining marks are listed with the value Indic_Syllabic_Category =
Consonant_Subjoined in IndicSyllabicCategory.txt.

Strikethrough Class Zero Combining Marks. The Kharoshthi script is unique in having
some class zero combining marks for vowels that are struck through a consonant, rather
than being placed in a position around the consonant. These strikethrough combining
marks may involve particular problems for implementations. In addition to the Kharoshthi
vowels, there are a number of combining svarita marks for Vedic texts which are also ren-
dered as overstruck forms. These Kharoshthi vowels and Vedic svarita marks have the
property value Indic_Positional_Category = Overstruck in IndicPositionalCategory.txt.

Character Properties 169 4.4 Directionality
4.4 Directionality
Directional behavior is interpreted according to the Unicode Bidirectional Algorithm (see
Unicode Standard Annex #9, “Unicode Bidirectional Algorithm”). For this purpose, all
characters of the Unicode Standard possess a normative directional type, defined by the
Bidi_Class (bc) property in the Unicode Character Database. The directional types left-to-
right and right-to-left are called strong types, and characters of these types are called strong
directional characters. Left-to-right types include most alphabetic and syllabic characters
as well as all Han ideographic characters. Right-to-left types include the letters of predom-
inantly right-to-left scripts, such as Arabic, Hebrew, and Syriac, as well as most punctua-
tion specific to those scripts. In addition, the Unicode Bidirectional Algorithm uses weak
types and neutrals. Interpretation of directional properties according to the Unicode Bidi-
rectional Algorithm is needed for layout of right-to-left scripts such as Arabic and Hebrew.

Character Properties 170 4.5 General Category
4.5 General Category
The Unicode Character Database defines a General_Category property for all Unicode
code points. The General_Category value for a character serves as a basic classification of
that character, based on its primary usage. The property extends the widely used subdivi-
sion of ASCII characters into letters, digits, punctuation, and symbols—a useful classifica-
tion that needs to be elaborated and further subdivided to remain appropriate for the
larger and more comprehensive scope of the Unicode Standard.

Each Unicode code point is assigned a normative General_Category value. Each value of
the General_Category is given a two-letter property value alias, where the first letter gives
information about a major class and the second letter designates a subclass of that major
class. In each class, the subclass “other” merely collects the remaining characters of the
major class. For example, the subclass “No” (Number, other) includes all characters of the
Number class that are not a decimal digit or letter. These characters may have little in com-
mon besides their membership in the same major class.

Table 4-4 enumerates the General_Category values, giving a short description of each
value. See Table 2-3 for the relationship between General_Category values and basic types
of code points.

There are several other conventions for how General_Category values are assigned to Uni-
code characters. Many characters have multiple uses, and not all such uses can be captured
by a single, simple partition property such as General_Category. Thus, many letters often
serve dual functions as numerals in traditional numeral systems. Examples can be found in
the Roman numeral system, in Greek usage of letters as numbers, in Hebrew, and similarly
for many scripts. In such cases the General_Category is assigned based on the primary let-
ter usage of the character, even though it may also have numeric values, occur in numeric
expressions, or be used symbolically in mathematical expressions, and so on.

The General_Category gc=Nl is reserved primarily for letterlike number forms which are
not technically digits. For example, the compatibility Roman numeral characters,
U+2160..U+217F, all have gc=Nl. Because of the compatibility status of these characters,
the recommended way to represent Roman numerals is with regular Latin letters (gc=Ll or
gc=Lu). These letters derive their numeric status from conventional usage to express
Roman numerals, rather than from their General_Category value.

Currency symbols (gc=Sc), by contrast, are given their General_Category value based
entirely on their function as symbols for currency, even though they are often derived from
letters and may appear similar to other diacritic-marked letters that get assigned one of the
letter-related General_Category values.

Pairs of opening and closing punctuation are given their General_Category values (gc=Ps
for opening and gc=Pe for closing) based on the most typical usage and orientation of such
pairs. Occasional usage of such punctuation marks unpaired or in opposite orientation cer-
tainly occurs, however, and is in no way prevented by their General_Category values.

Character Properties 171 4.5 General Category
Similarly, characters whose General_Category identifies them primarily as a symbol or as a
mathematical symbol may function in other contexts as punctuation or even paired punc-
tuation. The most obvious such case is for U+003C “<” less-than sign and U+003E “>”
greater-than sign. These are given the General_Category gc = Sm because their primary
identity is as mathematical relational signs. However, as is obvious from HTML and XML,
they also serve ubiquitously as paired bracket punctuation characters in many formal syn-
taxes.

A common use of the General_Category of a Unicode character is in the derivation of
properties for the determination of text boundaries, as in Unicode Standard Annex #29,
“Unicode Text Segmentation.” Other common uses include determining language identifi-
ers for programming, scripting, and markup, as in Unicode Standard Annex #31, “Unicode

Table 4-4. General Category
 Lu = Letter, uppercase
 Ll = Letter, lowercase
 Lt = Letter, titlecase
 Lm = Letter, modifier
 Lo = Letter, other

 Mn = Mark, nonspacing
 Mc = Mark, spacing combining
 Me = Mark, enclosing

 Nd = Number, decimal digit
 Nl = Number, letter
 No = Number, other

 Pc = Punctuation, connector
 Pd = Punctuation, dash
 Ps = Punctuation, open
 Pe = Punctuation, close
 Pi = Punctuation, initial quote (may behave like Ps or Pe depending on usage)
 Pf = Punctuation, final quote (may behave like Ps or Pe depending on usage)
 Po = Punctuation, other

 Sm = Symbol, math
 Sc = Symbol, currency
 Sk = Symbol, modifier
 So = Symbol, other

 Zs = Separator, space
 Zl = Separator, line
 Zp = Separator, paragraph

 Cc = Other, control
 Cf = Other, format
 Cs = Other, surrogate
 Co = Other, private use
 Cn = Other, not assigned (including noncharacters)

Character Properties 172 4.5 General Category
Identifier and Pattern Syntax,” and in regular expression languages such as Perl. For more
information, see Unicode Technical Standard #18, “Unicode Regular Expressions.”

This property is also used to support common APIs such as isDigit(). Common func-
tions such as isLetter()and isUppercase()do not extend well to the larger and more
complex repertoire of Unicode. While it is possible to naively extend these functions to
Unicode using the General_Category and other properties, they will not work for the
entire range of Unicode characters and the kinds of tasks for which people intend them.
For more appropriate approaches, see Unicode Standard Annex #31, “Unicode Identifier
and Pattern Syntax”; Unicode Standard Annex #29, “Unicode Text Segmentation”;
Section 5.18, Case Mappings; and Section 4.10, Letters, Alphabetic, and Ideographic.

Although the General_Category property is normative, and its values are used in the deri-
vation of many other properties referred to by Unicode algorithms, it does not follow that
the General_Category always provides the most appropriate classification of a character
for any given purpose. Implementations are not required to treat characters solely accord-
ing to their General_Category values when classifying them in various contexts. The fol-
lowing examples illustrate some typical cases in which an implementation might
reasonably diverge from General_Category values for a character when grouping charac-
ters as “punctuation,” “symbols,” and so forth.

• A character picker application might classify U+0023 # number sign among
symbols, or perhaps under both symbols and punctuation.

• An “Ignore Punctuation” option for a search might choose not to ignore
U+0040 @ commercial at.

• A layout engine might treat U+0021 ! exclamation mark as a mathematical
operator in the context of a mathematical equation, and lay it out differently
than if the same character were used as terminal punctuation in text.

• A regular expression syntax could provide an operator to match all punctua-
tion, but include characters other than those limited to gc = P (for example,
U+00A7 § section sign).

The general rule is that if an implementation purports to be using the Unicode General_-
Category property, then it must use the exact values specified in the Unicode Character
Database for that claim to be conformant. Thus, if a regular expression syntax explicitly
supports the Unicode General_Category property and matches gc = P, then that match
must be based on the precise UCD values.

Character Properties 173 4.6 Numeric Value
4.6 Numeric Value
Numeric_Value and Numeric_Type are normative properties of characters that represent
numbers. Characters with a non-default Numeric_Type include numbers and number
forms such as fractions, subscripts, superscripts, Roman numerals, encircled numbers, and
many script-specific digits and numbers.

In some traditional numbering systems, ordinary letters may also be used with a numeric
value. Examples include Greek letters used numerically, Hebrew gematria, and even Latin
letters when used in outlines (II.A.1.b). Letter characters used in this way are not given
Numeric_Type or Numeric_Value property values, to prevent simplistic parsers from
treating them numerically by mistake. The Unicode Character Database gives the Numer-
ic_Type and Numeric_Value property values only for Unicode characters that normally
represent numbers.

Decimal Digits. Decimal digits, as commonly understood, are digits used to form decimal-
radix numbers. They include script-specific digits, but exclude characters such as Roman
numerals and Greek acrophonic numerals, which do not form decimal-radix expressions.
(Note that <1, 5> = 15 = fifteen, but <I, V> = IV = four.)

The Numeric_Type = Decimal property value (which is correlated with the General_Cate-
gory = Nd property value) is limited to those numeric characters that are used in decimal-
radix numbers and for which a full set of digits has been encoded in a contiguous range,
with ascending order of Numeric_Value, and with the digit zero as the first code point in
the range.

Decimal digits, as defined in the Unicode Standard by these property assignments, exclude
some characters, such as the CJK ideographic digits (see the first ten entries in Table 4-5),
which are not encoded in a contiguous sequence. Decimal digits also exclude the compati-
bility subscript and superscript digits, to prevent simplistic parsers from misinterpreting
their values in context. (For more information on superscript and subscripts, see
Section 22.4, Superscript and Subscript Symbols.) Traditionally, the Unicode Character
Database has given these sets of noncontiguous or compatibility digits the value Numer-
ic_Type = Digit, to recognize the fact that they consist of digit values but do not necessarily
meet all the criteria for Numeric_Type = Decimal. However, the distinction between
Numeric_Type = Digit and the more generic Numeric_Type = Numeric has proven not to
be useful in implementations. As a result, future sets of digits which may be added to the
standard and which do not meet the criteria for Numeric_Type = Decimal will simply be
assigned the value Numeric_Type = Numeric.

Numbers other than decimal digits can be used in numerical expressions, and may be
interpreted by a numeric parser, but it is up to the implementation to determine such spe-
cialized uses.

Script-Specific Digits. The Unicode Standard encodes separate characters for the digits
specific to a given script. Examples are the digits used with the Arabic script or those of the
various Indic scripts. See Table 22-3 for a list of script-specific digits. For naming conven-
tions relevant to the Arabic digits, see the introduction to Section 9.2, Arabic.

Character Properties 174 4.6 Numeric Value
Ideographic Numeric Values
CJK ideographs also may have numeric values. The primary numeric ideographs are
shown in Table 4-5. When used to represent numbers in decimal notation, zero is repre-
sented by U+3007. Otherwise, zero is represented by U+96F6.

Ideographic accounting numbers are commonly used on checks and other financial instru-
ments to minimize the possibilities of misinterpretation or fraud in the representation of
numerical values. The set of accounting numbers varies somewhat between Japanese, Chi-
nese, and Korean usage. Table 4-6 gives a fairly complete listing of the known accounting
characters. Some of these characters are ideographs with other meanings pressed into ser-
vice as accounting numbers; others are used only as accounting numbers.

In Japan, U+67D2 is also pronounced urusi, meaning “lacquer,” and is treated as a variant
of the standard character for “lacquer,” U+6F06.

The Unihan Database gives the most up-to-date and complete listing of primary numeric
ideographs and ideographs used as accounting numbers, including those for CJK reper-
toire extensions beyond the Unified Repertoire and Ordering. See Unicode Standard
Annex #38, “Unicode Han Database (Unihan),” for more details.

Table 4-5. Primary Numeric Ideographs
Code
Point Value

U+96F6 0
U+4E00 1
U+4E8C 2
U+4E09 3
U+56DB 4
U+4E94 5
U+516D 6
U+4E03 7
U+516B 8
U+4E5D 9
U+5341 10
U+767E 100
U+5343 1,000
U+4E07 10,000
U+5104 100,000,000 (10,000 × 10,000)
U+4EBF 100,000,000 (10,000 × 10,000)
U+5146 1,000,000,000,000 (10,000 × 10,000 × 10,000)

Character Properties 175 4.6 Numeric Value
Table 4-6. Ideographs Used as Accounting Numbers
Number Multiple Uses Accounting Use Only
1 U+58F9, U+58F1 U+5F0C
2 U+8CAE, U+8CB3, U+8D30, U+5F10, U+5F0D
3 U+53C3, U+53C2 U+53C1, U+5F0E
4 U+8086
5 U+4F0D
6 U+9678, U+9646
7 U+67D2
8 U+634C
9 U+7396
10 U+62FE
100 U+964C U+4F70
1,000 U+4EDF
10,000 U+842C

Character Properties 176 4.7 Bidi Mirrored
4.7 Bidi Mirrored
Bidi Mirrored is a normative property of characters such as parentheses, whose images are
mirrored horizontally in text that is laid out from right to left. For example, U+0028 left

parenthesis is interpreted as opening parenthesis; in a left-to-right context it will appear as
“(”, while in a right-to-left context it will appear as the mirrored glyph “)”. This require-
ment is necessary to render the character properly in a bidirectional context. Mirroring is
the default behavior for such paired characters in Unicode text. (For more information, see
the “Paired Punctuation” subsection in Section 6.2, General Punctuation.)

Paired delimiters are mirrored even when they are used in unusual ways, as, for example, in
the mathematical expressions [a,b) or]a,b[. If any of these expression is displayed from
right to left, then the mirrored glyphs are used. Because of the difficulty in interpreting
such expressions, authors of bidirectional text need to make sure that readers can deter-
mine the desired directionality of the text from context.

Note that mirroring is not limited to paired punctuation and other paired delimiters, but
also applies to a limited set of mathematical symbols whose orientation is reversed when
the direction of line layout is reversed—for example, U+222B integral. Such characters
subject to bidi mirroring require the availability of a left-right symmetric pair of glyphs for
correct display.

For some mathematical symbols, the “mirrored” form is not an exact mirror image. For
example, the direction of the circular arrow in U+2232 clockwise contour integral

reflects the direction of the integration in coordinate space, not the text direction. In a
right-to-left context, the integral sign would be mirrored, but the circular arrow would
retain its direction. In a similar manner, the bidi-mirrored form of U+221B cube root

would be composed of a mirrored radix symbol with a non-mirrored digit “3”. For more
information, see Unicode Technical Report #25, “Unicode Support for Mathematics.”

The list of mirrored characters appears in the Unicode Character Database. Formally, they
consist of all characters with the property value Bidi_Mirrored = Y. This applies to almost
all paired brackets (with the legacy exception of U+FD3E ornate left parenthesis and
U+FD3F ornate right parenthesis), but not to quotation marks, whose directionality
and pairing status is less predictable than paired brackets. (See the subsection on “Lan-
guage-Based Usage of Quotation Marks” in Section 6.2, General Punctuation.) Many math-
ematical operators with a directional orientation are bidi mirrored, but mirroring does not
apply to any arrow symbols.

The mirroring behavior noted in paleographic materials for a number of ancient scripts,
such as Old Italic, Runic, (ancient) Greek, Egyptian Hieroglyphs, and so forth, is not
within the scope of the Bidi Mirrored property, and is not handled by default in the Uni-
code Bidirectional Algorithm (UBA). Mirroring of the letters or signs in the text of such
paleographic material should be dealt with by higher level protocol. HL6 "Additional mir-
roring" is specified by the UBA as a permissible type of higher-level protocol to allow addi-
tional mirroring of glyphs for certain characters in a bidirectional context. A
straightforward approach to a higher-level protocol would use existing bidirectional for-

Character Properties 177 4.7 Bidi Mirrored
mat controls to override text layout direction, add mirrored glyphs to a font used for paleo-
graphic display, and make the display choice depend on resolved direction for a directional
run. HL3 “Emulate explicit directional formatting characters” in the UBA also allows a
higher-level protocol to use other techniques such as style sheets or markup to override
text directionality in structured text. In combination, such techniques can provide for the
layout requirements of paleographic scripts which may mirror letters or signs depending
on text layout direction. See the discussions of directionality and text layout in the respec-
tive sections regarding each script.

Related Properties. The Bidi Mirrored property is not to be confused with the related,
informative Bidi Mirroring Glyph property, which lists pairs of characters whose represen-
tative glyphs are mirror images of each other. The Unicode Bidirectional Algorithm also
requires two related, normative properties, Bidi Paired Bracket and Bidi Paired Bracket
Type, which are used for matching specific bracket pairs and to assign the same text direc-
tion to both members of each pair in bidirectional processing for text layout. These proper-
ties do not affect mirroring. For more information, see BidiMirroring.txt and
BidiBrackets.txt in the Unicode Character Database.

Character Properties 178 4.8 Name
4.8 Name
Unicode characters have names that serve as unique identifiers for each character. The
character names in the Unicode Standard are identical to those of the English-language
edition of ISO/IEC 10646.

Where possible, character names are derived from existing conventional names of a char-
acter or symbol in English, but in many cases the character names nevertheless differ from
traditional names widely used by relevant user communities. The character names of sym-
bols and punctuation characters often describe their shape, rather than their function,
because these characters are used in many different contexts. See also “Color Words in
Unicode Character Names” in Section 22.9, Miscellaneous Symbols.

Character names are listed in the code charts. Currently, the character with the longest
name is U+FBF9 arabic ligature uighur kirghiz yeh with hamza above with alef

maksura isolated form (Version 1.1) with 83 letters and spaces in its name, and the one
with the shortest name is U+1F402 ox (Version 6.0) with only two letters in its name.

Stability. Once assigned, a character name is immutable. It will never be changed in subse-
quent versions of the Unicode Standard. Implementers and users can rely on the fact that a
character name uniquely represents a given character.

Character Name Syntax. Unicode character names, as listed in the code charts, contain
only uppercase Latin letters A through Z, digits, space, and hyphen-minus. In more detail,
character names reflect the following rules:

R1 Only Latin capital letters A to Z (U+0041..U+005A), ASCII digits (U+0030..
U+0039), U+0020 space, and U+002D hyphen-minus occur in character names.

R2 Digits do not occur as the first character of a character name, nor immediately fol-
lowing a space character.

R3 U+002D hyphen-minus does not occur as the first or last character of a character
name, nor immediately between two spaces, nor immediately preceding or follow-
ing another hyphen-minus character. (In other words, multiple occurrences of
U+002D in sequence are not allowed.)

R4 A space does not occur as the first or last character of a character name, nor imme-
diately preceding or following another space character. (In other words, multiple
spaces in sequence are not allowed.)

See Appendix A, Notational Conventions, for the typographical conventions used when
printing character names in the text of the standard.

Names as Identifiers. Character names are constructed so that they can easily be trans-
posed into formal identifiers in another context, such as a computer language. Because
Unicode character names do not contain any underscore (“_”) characters, a common strat-
egy is to replace any hyphen-minus or space in a character name by a single “_” when con-
structing a formal identifier from a character name. This strategy automatically results in a

Character Properties 179 4.8 Name
syntactically correct identifier in most formal languages. Furthermore, such identifiers are
guaranteed to be unique, because of the special rules for character name matching.

Character Name Matching. When matching identifiers transposed from character names,
it is possible to ignore case, whitespace, and all medial hyphen-minus characters (or any “_”
replacing a hyphen-minus), except for the hyphen-minus in U+1180 hangul jungseong

o-e, and still result in a unique match. For example, “ZERO WIDTH SPACE” is equivalent
to “zero-width-space” or “ZERO_WIDTH_SPACE” or “ZeroWidthSpace”. However,
“TIBETAN LETTER A” should not match “TIBETAN LETTER -A”, because in that
instance the hyphen-minus is not medial between two letters, but is instead preceded by a
space. For more information on character name matching, see Section 5.9, “Matching
Rules” in Unicode Standard Annex #44, “Unicode Character Database.”

Named Character Sequences. Occasionally, character sequences are also given a norma-
tive name in the Unicode Standard. The names for such sequences are taken from the same
namespace as character names, and are also unique. For details, see Unicode Standard
Annex #34, “Unicode Named Character Sequences.” Named character sequences are not
listed in the code charts; instead, they are listed in the file NamedSequences.txt in the Uni-
code Character Database.

The names for named character sequences are also immutable. Once assigned, they will
never be changed in subsequent versions of the Unicode Standard.

Character Name Aliases. The Unicode Standard has a mechanism for the publication of
additional, normative formal aliases for characters. These formal aliases are known as char-
acter name aliases. (See Definition D5 in Section 3.3, Semantics.) They function essentially
as auxiliary names for a character. The original reason for defining character name aliases
was to provide corrections for known mistakes in character names, but they have also
proven useful for other purposes, as documented here.

Character name aliases are listed in the file NameAliases.txt in the Unicode Character
Database. That file also documents the type field which distinguishes among different
kinds of character name aliases, as shown in Table 4-7.

Character name aliases are immutable, once published. (See Definition D42 in Section 3.5,
Properties.) They follow the same syntax rules as character names and are also guaranteed

Table 4-7. Types of Character Name Aliases

Type Description
correction Corrections for serious problems in the character names
control ISO 6429 names for C0 and C1 control functions, and other commonly occurring

names for control codes
alternate Widely used alternate names for format characters
figment Several documented labels for C1 control code points which were never actually

approved in any standard
abbreviation Commonly occurring abbreviations (or acronyms) for control codes, format

characters, spaces, and variation selectors

Character Properties 180 4.8 Name
to be unique in the Unicode namespace for character names. This attribute makes charac-
ter name aliases useful as identifiers. A character may, in principle, have more than one
normative character name alias, but each distinct character name alias uniquely identifies
only a single code point.

The first type of character name alias consists of corrections for known mistakes in charac-
ter names. Sometimes errors in a character name are only discovered after publication of a
version of the Unicode Standard. Because character names are immutable, such errors are
not corrected by changing the names after publication. However, in some limited instances
(as for obvious typos in the name), a character name alias is defined instead.

For example, the following Unicode character name has a well-known spelling error in it:

U+FE18 presentation form for vertical right white lenticular brakcet

Because the spelling error could not be corrected after publication of the data files which
first contained it, a character name alias with the corrected spelling was defined:

U+FE18 presentation form for vertical right white lenticular bracket

Character name aliases are provided for additional reasons besides corrections of errors in
the character names. For example, there are character name aliases which give definitive
labels to control codes, which have no actual Unicode character names:

U+0009 horizontal tabulation

Character name aliases of type alternate are for widely used alternate names of Unicode
format characters. Currently only one such alternate is normatively defined, but it is for an
important character:

U+FEFF byte order mark

Among the control codes there are a few which have had names propagate through the
computer implementation “lore,” despite the fact that they refer to ISO/IEC 10646 control
functions that were never formally adopted. These names are defined as character name
aliases of type figment, and are included in NameAliases.txt, because they occur in some
widely distributed implementations, such as the regex engine for Perl. Examples include:

U+0081 high octet preset

Additional character name aliases match existing and widely used abbreviations (or acro-
nyms) for control codes and for Unicode format characters:

U+0009 tab

U+200B zwsp

Specifying these additional, normative character name aliases serves two major functions.
First, it provides a set of well-defined aliases for use in regular expression matching and
searching, where users might expect to be able to use established names or abbreviations
for control codes and the like, but where those names or abbreviations are not part of the
actual Unicode Name property. Second, because character name aliases are guaranteed to

Character Properties 181 4.8 Name
be unique in the Unicode character name namespace, having them defined for control
codes and abbreviations prevents the potential for accidental collisions between de facto
current use and names which might be chosen in the future for newly encoded Unicode
characters.

It is acceptable and expected for external specifications to make normative references to
Unicode characters using one (or more) of their normative character name aliases, where
such references make sense. For example, when discussing Unicode encoding schemes and
the role of U+FEFF as a signature for byte order, it would not make much sense to insist on
referring to U+FEFF by its name zero width no-break space, when use of the character
name alias byte order mark or the widely used abbreviation bom would communicate
with less confusion.

A subset of character name aliases is listed in the code charts, using special typographical
conventions explained in Section 24.1, Character Names List.

A normative character name alias is distinct from the informative aliases listed in the code
charts. Informative aliases merely point out other common names in use for a given char-
acter. Informative aliases are not immutable and are not guaranteed to be unique; they
therefore cannot serve as an identifier for a character. Their main purposes are to help
readers of the standard to locate and to identify particular characters.

Unicode Name Property
Formally, the character name for a Unicode character is the value of the normative charac-
ter property, “Name”. Most Unicode character properties are defined by enumeration in
one of the data files of the Unicode Character Database, but the Name property is instead
defined in part by enumeration and in part by rule. A significant proportion of Unicode
characters belong to large sets, such as Han ideographs, Tangut ideographs, and Hangul
syllables, for which the character names are best defined by generative rule, rather than
one-by-one naming.

Formal Definition of the Name Property. The Name property (short alias: “na”) is a
string property, defined as follows:

NR1 For Hangul syllables, the Name property value is derived by rule, as specified in
Section 3.12, Conjoining Jamo Behavior, under “Hangul Syllable Name Genera-
tion,” by concatenating a fixed prefix string “hangul syllable ” and appropriate
values of the Jamo_Short_Name property.

For example, the name of U+D4DB is hangul syllable pwilh, constructed by concate-
nation of “hangul syllable ” and three Jamo_Short_Name property values, “p”, + “wi” +
“lh”.

NR2 For most ideographs (characters with the binary property value Ideographic =
True), the Name property value is derived by concatenating a script-specific prefix
string, as specified in Table 4-8, to the code point, expressed in uppercase hexadec-
imal, with the usual 4- to 6-digit convention.

Character Properties 182 4.8 Name
The exact specification of the 4-6 digit hexadecimal convention for expressing Unicode
code points can be found in Appendix A, Notational Conventions.

For example, the name of U+4E00 is cjk unified ideograph-4e00, constructed by con-
catenation of “cjk unified ideograph-” and the code point. Similarly, the character name
of U+17000 is tangut ideograph-17000.

NR3 For all other Graphic characters and for all Format characters, the Name prop-
erty value is as explicitly listed in Field 1 of UnicodeData.txt.

For example, U+0A15 gurmukhi letter ka or U+200D zero width joiner.

NR4 For all other Unicode code points of all other types (Control, Private-Use, Surro-
gate, Noncharacter, and Reserved), the value of the Name property is the null
string. In other words, na = “”.

The ranges of Hangul syllables and most ideographic characters subject to the name deri-
vation rules NR1 and NR2 are identified by a special convention in Field 1 of Unicode-
Data.txt. The start and end of each range are indicated by a pair of entries in the data file in
the general format:

NNNN;<RANGENAME, First>;Lo;0;L;;;;;N;;;;;
NNNN;<RANGENAME, Last>;Lo;0;L;;;;;N;;;;;
This convention originated as a compression technique for UnicodeData.txt, as all of the
UnicodeData.txt properties of these ranges were uniform, and the names for the characters
in the ranges could be specified by rule. Note that the same convention is used in Unicode-
Data.txt to specify properties for code point types which have a null string as their Name
property value, such as private use characters.

CJK compatibility ideographs are an exception. They have names derived by rule NR2, but
are explicitly listed in UnicodeData.txt with their names, because they typically have non-
uniform character properties, including most notably a nontrivial canonical decomposi-
tion value. Ideographic characters for the Nushu and Khitan Small Script blocks also have
their names listed explicitly in UnicodeData.txt, even though they are derived by rule NR2.

The exact ranges subject to name derivation rules NR1 and NR2, and the specified prefix
strings are summarized in Table 4-8.

Twelve of the CJK ideographs in the starred range in Table 4-8, in the CJK Compatibility
Ideographs block, are actually CJK unified ideographs. Nonetheless, their names are con-
structed with the “cjk compatibility ideograph-” prefix shared by all other code points
in that block. The status of a CJK ideograph as a unified ideograph cannot be deduced
from the Name property value for that ideograph; instead, the dedicated binary property
Unified_Ideograph should be used to determine that status. See “CJK Compatibility Ideo-
graphs” in Section 18.1, Han, and Section 4.4, “Listing of Characters Covered by the Uni-
han Database” in Unicode Standard Annex #38, “Unihan Database,” for more details about
these exceptional twelve CJK ideographs.

Character Properties 183 4.8 Name
The generic term “character name” refers to the Name property value for an encoded Uni-
code character. An expression such as, “The reserved code point U+1029F has no name,” is
shorthand for the more precise statement that the reserved code point U+1029F (as for all
code points of type Reserved) has a property value of na = “” for the Name property.

Name Uniqueness. The Unicode Name property values are unique for all non-null values,
but not every Unicode code point has a unique Unicode Name property value. Further-
more, because Unicode character names, character name aliases, named character
sequences, and code point labels constitute a single, unique namespace, the Name property
value uniqueness requirement applies to all three kinds of names and to code point labels.

Interpretation of Field 1 of UnicodeData.txt. Where Field 1 of UnicodeData.txt contains a
string enclosed in angle brackets, “<” and “>”, such a string is not a character name, but a
meta-label indicating some other information—for example, the start or end of a character
range. In these cases, the Name property value for that code point is either empty (na = “”)
or is given by one of the rules described above. In all other cases, the value of Field 1 (that
is, the string of characters between the first and second semicolon separators on each line)
corresponds to the normative value of the Name property for that code point.

Control Codes. The Unicode Standard does not define character names for control codes
(characters with General_Category = Cc). In other words, all control codes have a property
value of na = “” for the Name property. Control codes are instead listed in UnicodeData.txt
with a special label “<control>” in Field 1. This value is not a character name, but instead
indicates the code point type (see Definition D10a in Section 3.4, Characters and Encoding).
For control characters, the values of the informative Unicode 1.0 name property (Uni-

Table 4-8. Name Derivation Rule Prefix Strings

Range Rule Prefix String
AC00..D7A3 NR1 “hangul syllable”
3400..4DBF NR2 “cjk unified ideograph-”
4E00..9FFC NR2 “cjk unified ideograph-”
20000..2A6DD NR2 “cjk unified ideograph-”
2A700..2B734 NR2 “cjk unified ideograph-”
2B740..2B81D NR2 “cjk unified ideograph-”
2B820..2CEA1 NR2 “cjk unified ideograph-”
2CEB0..2EBE0 NR2 “cjk unified ideograph-”
30000..3134A NR2 “cjk unified ideograph-”
17000..187F7 NR2 “tangut ideograph-”
18D00..18D08 NR2 “tangut ideograph-”
18B00..18CD5 NR2 “khitan small script character-”
1B170..1B2FB NR2 “nushu character-”
F900..FA6D* NR2 “cjk compatibility ideograph-”
FA70..FAD9 NR2 “cjk compatibility ideograph-”
2F800..2FA1D NR2 “cjk compatibility ideograph-”

Character Properties 184 4.8 Name
code_1_Name) in Field 10 match the names of the associated control functions from ISO/
IEC 6429. (See Section 4.9, Unicode 1.0 Names.)

Code Point Labels
To provide unique, meaningful labels for code points that do not have character names,
the Unicode Standard uses a convention for code point labeling.

For each code point type without character names, code point labels are constructed by
using a lowercase prefix derived from the code point type, followed by a hyphen-minus and
then a 4- to 6-digit hexadecimal representation of the code point. The label construction
for the five affected code point types is illustrated in Table 4-9.

Unicode code point labels are included in the unique namespace for Unicode character
names. This ensures that there will never be a naming conflict between a code point label
and an actual, assigned Unicode character name.

To avoid any possible confusion with actual, non-null Name property values, constructed
Unicode code point labels are often displayed between angle brackets: <control-0009>,
<noncharacter-FFFF>, and so on. This convention is used consistently in the data files for
the Unicode Character Database.

A constructed code point label is distinguished from the designation of the code point itself
(for example, “U+0009” or “U+FFFF”), which is also a unique identifier, as described in
Appendix A, Notational Conventions.

Use of Character Names in APIs and User Interfaces
Use in APIs. APIs which return the value of a Unicode “character name” for a given code
point might vary somewhat in their behavior. An API which is defined as strictly returning
the value of the Unicode Name property (the “na” attribute), should return a null string for
any Unicode code point other than graphic or format characters, as that is the actual value
of the property for such code points. On the other hand, an API which returns a name for
Unicode code points, but which is expected to provide useful, unique labels for unassigned,
reserved code points and other special code point types, should return the value of the Uni-
code Name property for any code point for which it is non-null, but should otherwise con-
struct a code point label to stand in for a character name.

Table 4-9. Construction of Code Point Labels

Type Label
Control control-NNNN
Reserved reserved-NNNN
Noncharacter noncharacter-NNNN
Private-Use private-use-NNNN
Surrogate surrogate-NNNN

Character Properties 185 4.8 Name
User Interfaces. A list of Unicode character names may not always be the most appropriate
set of choices to present to a user in a user interface. Many common characters do not have
a single name for all English-speaking user communities and, of course, their native name
in another language is likely to be different altogether. The names of many characters in
the Unicode Standard are based on specific Latin transcription of the sounds they repre-
sent. There are often competing transcription schemes. For all these reasons, it can be
more effective for a user interface to use names that were translated or otherwise adjusted
to meet the expectations of the targeted user community. By also listing the formal charac-
ter name, a user interface could ensure that users can unambiguously refer to the character
by the name documented in the Unicode Standard.

Character Properties 186 4.9 Unicode 1.0 Names
4.9 Unicode 1.0 Names
The Unicode_1_Name property is an informative property referring to the name of char-
acters in Version 1.0 of the Unicode Standard. Values of the Unicode_1_Name property
are provided in UnicodeData.txt in the Unicode Character Database in cases where the
Version 1.0 name of a character differed from the current name of that character. A signifi-
cant number of names for Unicode characters in Version 1.0 were changed during the pro-
cess of merging the repertoire of the Unicode Standard with ISO/IEC 10646 in 1991.
Character name changes are now strictly prohibited by the Unicode Character Encoding
Stability Policy, and no character name has been changed since Version 2.0.

The Version 1.0 names are primarily of historic interest regarding the early development of
the Unicode Standard. However, where a Version 1.0 character name provides additional
useful information about the identity of a character, it is explicitly listed in the code charts.
For example, U+00B6 pilcrow sign has its Version 1.0 name, paragraph sign, listed for
clarity.

The status of the Unicode_1_Name property values in the case of control codes differs
from that for other characters. The Unicode Standard, Version 1.0, gave names to the C0
control codes, U+0000..U+001F, U+007F, based on then-current practice for reference to
ASCII control codes. Unicode 1.0 gave no names to the C1 control codes,
U+0080..U+009F. The values of the Unicode_1_Name property have been updated for the
control codes to reflect the ISO/IEC 6429 standard names for control functions. Those
names can be seen as annotations in the code charts. In a few instances, because of updates
to ISO/IEC 6429, those names may differ from the names that actually occurred in Uni-
code 1.0. For example, the Unicode 1.0 name of U+0009 was horizontal tabulation, but
the ISO/IEC 6429 name for this function is character tabulation, and the commonly
used alias is, of course, merely tab.

Character Properties 187 4.10 Letters, Alphabetic, and Ideographic
4.10 Letters, Alphabetic, and Ideographic
Letters and Syllables. The concept of a letter is used in many contexts. Computer language
standards often characterize identifiers as consisting of letters, syllables, ideographs, and
digits, but do not specify exactly what a “letter,” “syllable,” “ideograph,” or “digit” is, leaving
the definitions implicitly either to a character encoding standard or to a locale specifica-
tion. The large scope of the Unicode Standard means that it includes many writing systems
for which these distinctions are not as self-evident as they may once have been for systems
designed to work primarily for Western European languages and Japanese. In particular,
while the Unicode Standard includes various “alphabets” and “syllabaries,” it also includes
writing systems that fall somewhere in between. As a result, no attempt is made to draw a
sharp property distinction between letters and syllables.

Alphabetic. The Alphabetic property is a derived informative property of the primary units
of alphabets and/or syllabaries, whether combining or noncombining. Included in this
group would be composite characters that are canonical equivalents to a combining char-
acter sequence of an alphabetic base character plus one or more combining characters; let-
ter digraphs; contextual variants of alphabetic characters; ligatures of alphabetic
characters; contextual variants of ligatures; modifier letters; letterlike symbols that are
compatibility equivalents of single alphabetic letters; and miscellaneous letter elements.
Notably, U+00AA feminine ordinal indicator and U+00BA masculine ordinal indi-

cator are simply abbreviatory forms involving a Latin letter and should be considered
alphabetic rather than nonalphabetic symbols.

Ideographic. The Ideographic property is an informative property defined in the Unicode
Character Database. The Ideographic property is used, for example, in determining line
breaking behavior. Characters with the Ideographic property include unified CJK ideo-
graphs, CJK compatibility ideographs, Tangut ideographs, Nüshu ideographs, and charac-
ters from other blocks—for example, U+3007 ideographic number zero and U+3006
ideographic closing mark. For more information about Han, Tangut, and Nüshu ideo-
graphs, see Section 18.1, Han, Section 18.11, Tangut and Section 18.8, Nüshu. For more
about ideographs and logosyllabaries in general, see Section 6.1, Writing Systems.

Character Properties 188 4.11 Properties for Text Boundaries
4.11 Properties for Text Boundaries
The determination of text boundaries, such as word breaks or line breaks, involves contex-
tual analysis of potential break points and the characters that surround them. Such an anal-
ysis is based on the classification of all Unicode characters by their default interaction with
each particular type of text boundary. For example, the Line_Break property defines the
default behavior of Unicode characters with respect to line breaking.

A number of characters have special behavior in the context of determining text boundar-
ies. These characters are described in more detail in the subsection on “Line and Word
Breaking” in Section 23.2, Layout Controls. For more information about text boundaries
and these characters, see Unicode Standard Annex #14, “Unicode Line Breaking Algo-
rithm,” and Unicode Standard Annex #29, “Unicode Text Segmentation.”

Character Properties 189 4.12 Characters with Unusual Properties
4.12 Characters with Unusual Properties
The behavior of most characters does not require special attention in this standard. How-
ever, the characters in Table 4-10 exhibit special behavior. Many other characters behave in
special ways but are not noted here, either because they do not affect surrounding text in
the same way or because their use is intended for well-defined contexts. Examples include
the compatibility characters for block drawing, the symbol pieces for large mathematical
operators, and many punctuation symbols that need special handling in certain circum-
stances. Such characters are more fully described in the following chapters. The section
numbers or other references listed in the “Details” column in Table 4-10 indicate where to
find more information about the functions or particular groups of characters listed.

Table 4-10. Unusual Properties

Function Details Code Point and Name
Segmentation
Line break controls Section 23.2 00AD soft hyphen

200B zero width space
2060 word joiner

Combining Marks
Bases for display of isolated
nonspacing marks

Section 2.11,
Section 6.2,
Section 23.2

0020 space
00A0 no-break space

Double nonspacing marks Section 7.9 035C combining double breve below
035D combining double breve
035E combining double macron
035F combining double macron below
0360 combining double tilde
0361 combining double inverted breve
0362 combining double rightwards arrow
below

1DCD combining double circumflex above
1DFC combining double inverted breve below

Combining half marks Section 7.9 FE20 combining ligature left half
FE21 combining ligature right half
and all other pairs in the Combining Half Marks
block

Combining continuous lin-
ing marks

Section 7.3,
Section 7.9

0305 combining overline
0332 combining low line
0333 combining double low line
033F combining double overline
FE26 combining conjoining macron
FE2D combining conjoining macron below

Combining marks with non-
default stacking

Section 7.9 1ABB combining parentheses above
1ABC combining double parentheses above
1ABD combining parentheses below

Character Properties 190 4.12 Characters with Unusual Properties
Ligation
Cursive joining and ligation
control

Section 23.2 200C zero width non-joiner
200D zero width joiner

Fraction formatting Section 6.2 2044 fraction slash

Ligating modifier tone let-
ters

Section 7.8 02E5..02E9 modifier letter extra-high tone
bar..modifier letter extra-low tone bar

A712..A716 modifier letter extra-high left-
stem tone bar..modifier letter extra-low
left-stem tone bar

Ligating brackets that sur-
round text

Section 11.4,
Section 13.4,

0F3C tibetan mark ang khang gyon
0F3D tibetan mark ang khang gyas
13258..1325D egyptian hieroglyph o006a..egyp-
tian hieroglyph o006f

13282 egyptian hieroglyph o033a
13286..13289 egyptian hieroglyph o036a..egyp-
tian hieroglyph o036d

13379..1337B egyptian hieroglyph v011a..egyp-
tian hieroglyph v011c

Ligating regional indicator
symbols

Section 22.10,
UTS #51

1F1E6..1F1FF regional indicator symbol letter
a..regional indicator symbol letter z

Indic-related: conjuncts, killers, and other viramas
Brahmi-derived script dead-
character formation

Chapter 12,
Chapter 13,
Chapter 14,
Chapter 15,
Chapter 16

See IndicSyllabicCategory.txt in the UCD for a full
listing.

Brahmi number formation Section 14.1 1107F brahmi number joiner

Non-Indic consonant liga-
tion

Section 19.3 2D7F tifinagh consonant joiner

Historical viramas with
other functions

Section 13.4,
Section 13.6,
Section 13.7,
Section 13.11,
Section 16.3

0F84 tibetan mark halanta
103A myanmar sign asat
193B limbu sign sa-i
ABED meetei mayek apun iyek
11134 chakma maayyaa

Ideographic-related
Ideographic variation indi-
cation

Section 6.2 303E ideographic variation indicator

Ideographic description Section 18.2 2FF0..2FFB ideographic description character
left to right..ideographic description char-
acter overlaid

Table 4-10. Unusual Properties (Continued)

Function Details Code Point and Name

Character Properties 191 4.12 Characters with Unusual Properties
Complex expression format control (scoped)
Bidirectional ordering Section 23.2 See Table 23-3 for a full listing.
Mathematical expression
processing and formatting

Section 22.6 2061 function application
2062 invisible times
2063 invisible separator
2064 invisible plus

Musical format control Section 21.2 1D173 musical symbol begin beam
1D174 musical symbol end beam
1D175 musical symbol begin tie
1D176 musical symbol end tie
1D177 musical symbol begin slur
1D178 musical symbol end slur
1D179 musical symbol begin phrase
1D17A musical symbol end phrase

Prefixed format control Section 9.2,
Section 9.3,
Section 15.2

0600 arabic number sign
0601 arabic sign sanah
0602 arabic footnote marker
0603 arabic sign safha
0604 arabic sign samvat
0605 arabic number mark above
06DD arabic end of ayah
070F syriac abbreviation mark
08E2 arabic disputed end of ayah
110BD kaithi number sign
110CD kaithi number sign above

Interlinear annotation Section 23.8 FFF9 interlinear annotation anchor
FFFA interlinear annotation separator
FFFB interlinear annotation terminator

Deprecated alternate for-
matting

Section 23.3 206A inhibit symmetric swapping
206B activate symmetric swapping
206C inhibit arabic form shaping
206D activate arabic form shaping
206E national digit shapes
206F nominal digit shapes

Other unusual format control
Miao tonal vowel position
control

Section 18.10 16F8F miao tone right
16F90 miao tone top right
16F91 miao tone above
16F92 miao tone below

Shorthand format control Section 21.5 1BC9D duployan thick letter selector
1BCA0 shorthand format letter overlap
1BCA1 shorthand format continuing overlap
1BCA2 shorthand format down step
1BCA3 shorthand format up step

SignWriting fill and rotation Section 21.6 1DA9B..1DA9F signwriting fill modifier-2..sign-
writing fill modifier-6

1DAA1..1DAAF signwriting rotation modifier-
2..signwriting rotation modifier-16

Table 4-10. Unusual Properties (Continued)

Function Details Code Point and Name

Character Properties 192 4.12 Characters with Unusual Properties
Variation selection
Generic variation selectors Section 23.4 FE00..FE0F variation selector-1..variation

selector-16
E0100..E01EF variation selector-17..variation
selector-256

Mongolian variation selec-
tors

Section 13.5 180B mongolian free variation selector one
180C mongolian free variation selector two
180D mongolian free variation selector three
180E mongolian vowel separator

Emoji modifiers for skin
tone

Section 22.9,
UTS #51

1F3FB..1F3FF emoji modifier fitzpatrick type-1-
2..emoji modifier fitzpatrick type-6

Emoji components to indi-
cate hair style

UTS #51 1F9B0..1F9B3 emoji component red hair..emoji
component white hair

Tag characters
Deprecated language tag Section 23.9 E0001 language tag

Tag characters Section 23.9 E0020..E007F tag space..cancel tag

Miscellaneous
Collation weighting and
sequence interpretation

Section 23.2 034F combining grapheme joiner

Byte order signature Section 23.8 FEFF zero width no-break space

Object replacement Section 23.8 FFFC object replacement character

Code conversion fallback Section 23.8 FFFD replacement character

Table 4-10. Unusual Properties (Continued)

Function Details Code Point and Name

	4 Character Properties
	4.1 Unicode Character Database
	4.2 Case
	Definitions of Case and Casing
	Table 4-1. Relationship of Casing Definitions
	Table 4-2. Case Function Values for Strings

	Case Mapping
	Table 4-3. Sources for Case Mapping Information

	4.3 Combining Classes
	Figure 4-1. Positions of Common Combining Marks
	Reordrant, Split, and Subjoined Combining Marks

	4.4 Directionality
	4.5 General Category
	Table 4-4. General Category

	4.6 Numeric Value
	Ideographic Numeric Values
	Table 4-5. Primary Numeric Ideographs
	Table 4-6. Ideographs Used as Accounting Numbers

	4.7 Bidi Mirrored
	4.8 Name
	Table 4-7. Types of Character Name Aliases
	Unicode Name Property
	Table 4-8. Name Derivation Rule Prefix Strings

	Code Point Labels
	Table 4-9. Construction of Code Point Labels

	Use of Character Names in APIs and User Interfaces

	4.9 Unicode 1.0 Names
	4.10 Letters, Alphabetic, and Ideographic
	4.11 Properties for Text Boundaries
	4.12 Characters with Unusual Properties
	Table 4-10. Unusual Properties

