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Abstract: The standard way to parameterize the distributions represented by a directed acyclic
graph is to insert a parametric family for the conditional distribution of each random variable given its
parents. We show that when one’s goal is to test for or estimate the direct effect of a treatment, this
natural parameterization has serious deficiencies. Furthermore, in most settings, the no direct-effect null
hypothesis does not entail any conditional independence restrictions and thus cannot be tested using
computer programs designed to search for conditional independencies in the data. By reparameterizing
the graph using direct effect structural nested models, these problems can be overcome. A direct-effect
structural nested model is a causal model for the direct effect of a final brief blip of treatment on the
outcome of interest.

1. Introduction

Consider a set of random variables V' = (X1,... , X)) whose joint density f (v) is represented
by a Directed Acyclic Graph (DAG) G. If Pa,, represents the parents of X,,, then the density

factorizes as

M
F@) = 1] f@mlpamn) . (1.1)
m=1
In practice, in order to estimate f (v) from independent realizations V;,i = 1,... ,n, obtained on

n study subjects, one often needs to assume some particular parametric form for each f(zm|pam).

M
Thus one writes f(v) = [ f(Zm|pam;Om) where 0, is an element of the parameter space ,,,
=1

an open subset of a ﬁnitgidimensional Euclidean space. For example, suppose the parent of X»
is X1. Then p(xs|pas;f2) might be N(By + B171,02) so that 8 = (By,51,0). In general, if
one inserts a parametric family f (Zm | pam;6m) into the right hand side of each term of (1.1)
and the 6,, are variation independent, we call this a standard parameterization of the DAG.
This seems to be the usual way of using DAGS in practice. The parameters 8, are said to be
variation independent if the joint parameter space for § = ( - ,9’M>/ is the product space
01 X603 x...x0.

As natural as it seems to parameterize a DAG in this way, there are problems with the
standard parameterization when one’s goal is to test for or estimate the direct effect of a treat-

ment or control variable. This has been noted by Robins (1989, 1997). The next section gives



a simple example which illustrates the problem. In our simple example, the goal is to test for
and estimate the direct effect of an AIDS drug, prophylaxis therapy (Ap), on serum HIV RNA
levels (Y') among AIDS patients, many of whom also receive a second active AIDS therapy, AZT
(Az).

Briefly put, the problem is this: Suppose the DAG G represents treatments and covariates
in a longitudinal study. Further suppose that the partial ordering of the variables in V entailed
by the DAG G is consistent with the temporal ordering of the variables. Our goal is to test for a
direct effect of Ap treatment on the outcome Y when Ay is held fixed. In certain settings, such
as a sequential randomized trial, the null hypothesis of “no direct treatment effect,” although
identifiable based on the observed data, cannot be tested simply by testing for the presence
or absence of arrows in the DAG G as one might expect. These conditions, far from being
pathological, are indeed likely to hold in most real examples. Fortunately, the direct effect
null hypothesis can be tested by examining a particular integral called the “G-computation
algorithm functional”. The null is true if this integral satisfies a certain complex condition.
Indeed, this complex condition does not entail any conditional independence restrictions on the
joint distribution of the observed variables and thus cannot be tested using programs such as
TETRAD [Spirtes, Glymour, and Scheines (SGS), 1993] that test for conditional independencies
(Robins, 1986; Verma and Pearl, 1991; SGS, 1993). Furthermore, we prove in Theorem 2 that
there is an additional complication. Specifically, common choices for the parametric families in
a standard parameterization often lead to joint densities such that the integral can never satisfy
the required condition; as a consequence, in large samples, the null hypothesis of no direct
treatment effect, even when true, will be falsely rejected regardless of the data. These problems
are exacerbated in high dimensional problems. In summary, currently available methods cannot
be used to test for direct treatment effects.

We propose a new class of tests, the direct-effect g-tests, of the hypothesis of no direct effect
of a (possibly time-varying sequential) treatment Ap on an outcome Y when a second treatment
Az is held fixed. A direct-effect g-test reweights the g-null test (Robins, 1986) of conditional
independence of Ap and Y by the inverse of the probability of receiving treatment A;. When
the direct-effect g-test rejects, it is of interest to estimate the magnitude of the effect of Ap on Y
when treatment Ay is held fixed at a specified value az. In order to do so, we introduce the class
of direct-effect structural nested models (SNMs). A direct-effect SNM models the effect of a final
brief blip of treatment with Ap at time ¢ on Y when Ay is set to az. Direct-effect SNMs offer a
unified approach to testing for and estimation of direct effects. This unified approach utilizes a
class of robust semiparametric tests and estimators, the direct-effect g-tests and estimators, for
the parameter ¥ of a direct-effect SNM. These tests and estimators are semiparametric in the
sense that they only require that one specify a parametric model for the probability of treatment
with Ap and Ay given their parents on the DAG.

In contrast to this approach, in the graphical modelling literature, the usual approach to

estimation is to (%) specify a fully parametric model for the distribution of the DAG and (i)



then estimate parameters of interest either by maximum likelihood or Bayesian methods. In this
spirit, we describe a complete reparameterization of the distribution of the DAG with a direct-
effect structural nested model for the effect of Ap on Y with Az set to az as one component. A
second component of the reparameterization is a marginal structural model (Robins, 1998, 1999)
for the effect of Az on Y when Ap is withheld. This reparameterization allows a fully parametric
likelihood or Bayesian approach to testing for and estimation of direct effects. We compare the
strengths and weaknesses of our semiparametric approach with this fully parametric approach.
We ultimately recommend a “mixed” approach that combines the best aspects of both.

We study two different direct-effect structural nested models, direct-effect structural nested
mean models (SNMMs) and direct-effect structural nested distribution models (SNDMs). The
SNMMs model the direct effect of a treatment Ap on the mean of the outcome Y while the
SNDMs model the direct effect of Ap on the entire distribution of Y. SNDMs are only ap-
propriate if the outcome Y is continuous, while SNMMs can be used to analyze both discrete
and continuous responses. Our direct-effect SNMs differ from the standard SNMs discussed
in Robins (1989, 1993, 1995, 1997) and Robins and Wasserman (1997). We have introduced
direct-effect SNMs because, as shown by Robins and Wasserman (1997), the standard SNDMs
are not adequate to test for and/or estimate direct effects except in special cases. Specifically, in
Section 12, we show that the standard SNDMs are adequate to test for and estimate the direct
effect of Ap when Ay is held fixed only if the magnitude of the effect of Az on Y is not modified
by pre-treatment covariates.

Finally, we note that the direct-effect SNMs introduced in this paper differ from the direct-
effect SNMs introduced in Appendix 3 of Robins (1997). We recommend that an analyst use the
direct-effect SNMs of this paper rather than those of Robins (1997), because the direct-effect
SNMs introduced here, in contrast to those of Robins (1997), admit robust semiparametric
direct-effect g-tests and estimates. However, the direct-effect SNMs introduced here are intrin-
sically asymmetric, in that, in contrast to the models in Robins (1997), a single model cannot
be used to simultaneously test for a direct effect of Ap fixing Az and for a direct effect of Az

ﬁxing Ap .

1.1. An Example

To illustrate the problem we are concerned with, consider the following generic example of a
sequential randomized clinical trial depicted by DAG 1a in which data have been collected on
variables (Ag, A1, L,Y") on each of n AIDS patients. The continuous variable A represents the
dose in milligrams of prophylaxis therapy for PCP (AIDS pneumonia) received by AIDS patients
at time to; the continuous variable A; represents the dose in milligrams of AZT received at time
t1; the dichotomous variable L records whether a patient developed PCP in the interval from g
to t1; the continuous variable Y represents a subject’s HIV-viral load measured at end-of-follow-
up; and the hidden (unmeasured) variable U denotes a patient’s underlying immune function at

the beginning of the study. U is a measure of a patient’s underlying health status.



The prophylaxis therapy dose Ag was assigned at random to subjects at time tg so, by design,
AglLU. AZT treatment A; was randomly assigned at time ¢; with randomization probabilities
that depend on the observed past (Ag, L), so, by design U 1L A; | Ag, L. For simplicity, we shall
assume that no other unmeasured common causes (confounders) exist. That is, each arrow in
DAG 1a represents the direct causal effect of a parent on its child, as in Pearl and Verma (1991)
or SGS (1993). Note DAG 1la is not complete because of three missing arrows: the arrows
from U to Ag and A; and the arrow from L to Y. The arrows from U are missing by design.
The missing arrow from L to Y represents a priori biological knowledge that L has no effect
on HIV viral load Y. (The missing arrow from L to Y is not essential to what follows and is
assumed to simplify the exposition.) Hence, by the Markov properties of a DAG, we know that
LIIY | Ao, A1,U. It is known that Ag causes PCP, so Ag AIL. Also it is known that the
unmeasured variable U has a direct effect on L and Y, i.e., U causes both PCP and an elevated
HIV RNA. Finally, we suppose it is known that AZT has a direct effect on the outcome Y. That
is, there is an arrow from A; to Y and so A; IIY | L, Ay, U.

DAG 1la DAG 1b

1.2. Representing the Direct Effect Null Hypothesis

Suppose the trial data has been collected in order to test the null hypothesis that prophylaxis
therapy Ag has no direct effect on viral load Y. This “no direct effect null” hypothesis is the
hypothesis that the arrow from Ap to Y in DAG 1a is missing, which would imply that the true
causal graph generating the data was DAG 1b. The alternative to this null hypothesis is that
the true causal graph generating the data is graph 1a.

Following Pearl and Verma (1991) and SGS (1993), we assume the joint distribution of
W = (V,U) is faithful to the true graph where V' = (Ap, A1, L,Y). That is, if B, C, and D
are distinct (possibly empty) subsets of the variables in (V,U), then B is independent of C
given D if and only if B is d-separated from C given D) on the true causal graph generating
the data. It follows that the “no direct effect null hypothesis” of DAG 1b is true if and only if
Ao 1Y | A1, L,U. Indeed, since we have assumed no arrows from L to Y, Ag[[Y | A1, L,U is
equivalent to the hypothesis Ao [[Y | A1,U. The question is: can we still characterize the null

hypothesis even of U is not observed. The answer is yes, according to the following Theorem.



Theorem 1.1: Suppose the distribution of W = (V,U) is faithful to either DAG 1a or 1b, one
of which generated the data. Then, the direct effect null hypothesis AgLLY | A1,U holds (i.e.,
DAG 1b generated the data) if and only if

1
Zf | ag,a1,f) f (€| ap) does not depend on ag. (1.2)
£=0

Thus, even though U is unobserved, we can still tell if the null holds by checking (1.2) which
only involve the observables.
Remark: Even without imposing faithfulness, Ao [[Y | A1,U implies (1.2), although the

converse is no longer true. Note Z fy|ao,a1,8) f(€]ap) is the marginal density of Y in

the manipulated subgraph (SGS, 1993) of the complete DAG (2) for the observed data V' =
(Ao, A1, L,Y) in which arrows into Ag and A; have been removed and (A, A1) set to (ag,a1).
Robins (1986) refers to this marginal density as the g-computational algorithm formula for the
effect of (Ag, A1) on Y. Because U has no arrows into Ay or A;, Theorem 1.1 is a special case
of Theorem F.3 of Robins (1986). See also Pearl and Robins (1995).

By the d-separation criterion applied to DAG 1a and 1b, we see that if either of DAGs 1a
or 1b generated the data, then the joint distribution of V' is represented by the complete DAG
2 without missing arrows. The additional restriction (1.2) that distinguishes the no direct effect
hypothesis of DAG 1b from DAG 1a is not representable by removing arrows from DAG 2. This
is an important observation because a common way of testing the direct effect null hypothesis
is to test for the absence of an arrow from Ag to Y and to test Ag[[Y | L, A1; we call this the
“naive test.” This test is incorrect. Specifically, if the no direct effect hypothesis of DAG 1b is
correct and the distribution of W is faithful, then Ag [[Y | L, A; will be false, and the naive test
will falsely reject the no direct effect null with probability converging to one in large samples.

Thus, testing the null hypothesis of no direct effect of prophylaxis therapy Ay cannot be
accomplished by testing for the presence or absence of arrows on DAG 2. This is because the
arrows of the marginal DAG 2 do not have a causal interpretation (even though the arrows on the
underlying causal DAG do have a causal interpretation). Indeed, by applying the d-separation
criteria to DAG 1b, we discover that DAG 1b does not entail any conditional independence
restrictions among the observed variables V. Thus, the direct effect null hypothesis of DAG 1b
cannot be distinguished from the alternative DAG 1a by a search program such as TETRAD that
uses conditional independence relations among the observed variables V' to distinguish between
underlying causal graphs (Robins, 1986; Verma and Pearl, 1991; SGS, 1993, page 193). One
solution to this problem is to test (1.2) directly. With standard parameterizations, this approach
will also fail, as the next section shows. In Sec. 2, we will derive an appropriate alternative test

of (1.2), the direct-effect g-test.



DAG 2

1.3. The Problem With Standard Parameterizations

We saw that to test the null hypothesis, it does not suffice to test whether the arrow in DAG
2 from Ag to Y is broken. Rather, we need to test the Eq. (1.2). We now show that such a
test will falsely reject if one uses a standard parameterization. To test the null hypothesis (1.2),
the standard approach is to first specify parametric models for the conditional distribution of
each parent given its children in the complete DAG 2 representing the observed data. Hence let
{f(y|ap,a1,4;0);0 € © C R} and {f (¢ | ap;y);v € T C RP} denote parametric models for the
unknown densities f (y | ap,a1,¢) and f (€| ap). Of course, we cannot guarantee these models
are correctly specified. We say the model f (y | ao,a1,¢;6) is correctly specified if there exists
0o € © such that f(y | ag,a1,¢;60) is equal to the true (but unknown) density f (y | ag,a1,?)
generating the data. Results in this Section require the concept of linear faithfulness. We say
that the distribution of W is linearly faithful to the true causal graph in generating the data, if
for any disjoint (possibly empty) subsets B, C, and D of the variables in B, B is d-separated
from C given D on the graph if and only if the partial correlation matrix rgc.p between B
and C given D is the zero matrix. If W is jointly normal, linear faithfulness and faithfulness
are equivalent. For W non-normal, neither implies the other. However, the argument that the
distribution of V' should be linearly faithful to the generating causal DAG is essentially identical
to the argument that the distribution should be faithful to the causal DAG given by SGS (1993)
and Pearl and Verma (1991).

To see why standard parameterizations may not work, consider a specific example. Recall
that Y is continuous and that L is binary. Commonly used models in these cases are normal
linear regression models and logistic regression models. Thus suppose that we adopt the following

models:

Y|a0,a1,€; 0,0’2 ~ N(00+01a0+02€+03a1,02) (13)



and

J (€= 1]ao;v) = expit(yp + v1a0) (1.4)

where ezpit(b) = €/(1 + €°) and N(u,0?) denotes a Normal distribution with mean p and
variance o2. We will now prove the following results.

Lemma 1.1: If the no direct effect null hypothesis represented by DAG 1b is true and
the distribution of (V,U) is either faithful or linearly faithful to DAG 1b, then model (1.3)
and/or model (1.4) is guaranteed to be misspecified; that is, the set of distributions Fpqer for V
satisfying (1.3)-(1.4) is disjoint from the set F,qr of distributions for (V,U) that are marginals
of distributions for W that are either faithful or linearly faithful to DAG 1b.

Since model (1.3) and/or (1.4) are guaranteed to be misspecified under the no direct effect

null hypothesis, one might expect that tests of the null assuming (1.3)-(1.4) will perform poorly.
This expectation is borne out by the following theorem.
Theorem 1.2: Suppose (i) the data analyst tests the no direct effect null hypothesis using the
parametric models (1.3)-(1.4) fit by the method of maximum likelihood, (i) the no direct effect
null hypothesis represented by DAG 1b is true, (4) the distribution of (V,U) is linearly faithful
to DAG 1b. Then, with probability converging to 1, the no direct effect null hypothesis (1.2)
will be falsely rejected.

Theorem 1.2 implies that if we use models (1.3)-(1.4), then in large samples, we will reject
the no direct effect null hypothesis, even when true, for nearly all data sets (i.e., with probability
approaching 1). That is, by specifying models (1.3)-(1.4), we will have essentially rejected the
no direct effect null hypothesis, when true, even before seeing the data!

Proof of Theorem 1.2 and Lemma 1.1: The following Proof of Theorem 2 also proves
Lemma 1. Note Egs. (1.2) implies that

b(ag,a1) = ZJ;E Y | 4,a0,a1] f (€] ao) (1.5)

does not depend on ag. Now, under model (1.3)-(1.4), the maximum likelihood estimator of
b(ap,a1)isb (ao, al;/@\, 3) = §0+§1a0+§3a1+{§26§0+%“0} / {1 + e”AYOJ“”AYlaO} where the maximum
— n ~
likelihood estimators 6,7 satisfy the normal and logistic score equations ) (Yl — 0Z¢> Zi =0
i=1
n
and 0 = Z {Lz - ea:pit (7)/\0 —I—/’?lAOZ)} (11402')/ where Zz = (1,A0¢,Li,A1i)/, 9/ = (90, 91,92, 93)7
i=1
and vy = (vg,7;). Further, the probability limits 8* and v* of 6 and 7 satisfy E [{Y; — 0" Z;} Z;] =
0 and E [{L; — expit (v + i Aoi)} (1, Aoi)'] = 0, where the expectations are with respect to
the true distribution generating the data regardless of whether models (1.3)-(1.4) are correctly
specified. The MLE b (ao,al;@\, ﬁ) converges in probability to b (ag,a1;60%,7*). It follows that
an analyst using models (1.3)-(1.4) fit by maximum likelihood will reject (1.2) with probability
approaching 1 as n — oo if b(ag, a1;60%,7*) depends on ag. We now prove such a dependence by

contradiction.



It is clear that b (ag, a1;0",v*) does not depend on ay if and only if either () 67 = 65 = 0, or
(i1) 07 =~ = 0. However, it follows from standard least squares theory that (i) is true if and
only if the partial correlations between Y and Ag and between Y and L given A; are both zero.
But this contradicts the assumption that the distribution of (V,U) is linearly faithful to DAG
1b since both Y and L and Y and Ag are not d-separated conditional on A;. Similarly, if (i)
is true, then 75 = 0. But an easy calculation shows that v = 0 if and only if cov (L, Ag) = 0.
However, cov (L, Ap) = 0 contradicts the linear faithfulness assumption since L and Ag are not
d-separated on DAG 1b. The argument in this last paragraph also proves Lemma 1.1.

Remark: One might conjecture that the problem could be solved by adding a small number
of interaction terms to the model. However, using reasoning like that above, one can show that

this is not the case.

2. The Direct Effect g-Null Test

An appropriate approach to testing the direct-effect null hypothesis is based on the following
theorem which is a special case of Theorem 5.1 below.
Theorem 2.1: Direct Effect g-Null Theorem: Eq. (1.2) is true if and only if for any

function ¢ (-, -)
Et(Y,A1)/f (A1 | L,Ap) | Ao] does not depend on Ay w.p.1 (2.1)

whenever the expectation is finite. Here w.p.1 means “with probability 1.”

Proof: By Fubini’s theorem, the expectation in (2.1) can be written

1
/{/uy,an [Zf<y\e,a1,Ao>f<on> dy}dal.
- - =0

Comparing the expression in brackets with Eq. (1.2) and recalling that ¢ (y,a;) is arbitrary

proves the theorem.
Theorems 2.1 and 1.1 together then have the following corollary.
Corollary 2.1: Under the suppositions of Theorem 1.1, the direct effect null hypothesis

AJTY 1ALU e, fy|ao,a,u) = f(y|ai,u) (2.2)

is true if and only if Eq. (2.1) is true.
Remark: The theorem and corollary remain true if we restrict attention to the set of

functions t (y,a1) that factor as

t(y,a1) =t (y)t2(a1) . (2.3)

Indeed, they remain true if we, in addition, require t2 (a1) to be a density, i.e.,

- / 2 (a1) day . (2.4)



Because of the fundamental importance of Corollary 2.1, we shall reprove the Corollary with
t (y, a1) satisfying (2.3)-(2.4) using a proof that should be particularly helpful to readers familiar
with testing hypotheses about DAGs using d-separation and conditional independence.

Alternative Proof of Corollary 2.1: Let DAG 1a* and DAG 1b* be “manipulated
subgraphs” of DAGs 1a and 1b in which all arrows into A; have been removed and equip DAG
la* with the density f* (v,u) = f (u) f(ao) f (¢ | ap,w)t2 (a1) f (y | ao,a1,u) where t2 (a1) is the
new marginal density for the now parentless variable 4; and the remaining factors in f* (v, u)
are the same as in the density f (v, ) of the true causal DAG 1la. Suppose, for the moment, that
DAG 1a* or 1b* generated the data with density f* (v,u). If the null hypothesis (2.2) is true,
then there is no arrow from Ag to Y and DAG 1b* generated the data. By d-separation applied
to DAG 1b*, the null hypothesis (2.2) now implies the conditional independence restriction that
Ao JTY under f*(v,u). Given faithfulness, the converse also is true. Now it is well-known that
ApJTY under f*(v,u) if and only if for all functions ¢ (y)

E*[t1 (Y) | Ao] does not depend on Ay w.p.1 (2.5)

where E* (o) denotes expectations with respect to f* (v,u) and E (e) denotes expectations with

respect to the true density f (v, ). Since the direct-effect null hypothesis (2.2) is the same under

f*(v,u) as under f (v,u), Corollary (2.1) will be proved if we can establish the following.
Lemma 2.1: Eq. (2.5) is true if and only if Eq. (2.1) is true for ¢ (y, a;) satisfying (2.3)-(2.4).
Proof of Lemma: Writing out (2.5) explicitly, we obtain

1 -
Z // ti (y) fly | a1, Ao, 0) ta(ar) f (€| Ao)dy day does not depend on Apgw.p.1. (2.6)
=0""

Now, upon multiplying the integrand in (2.6) by 1 = f (a1 | ¢, Ao) / f (a1 | ¢, Ap), we may rewrite
(2.5) as

3 // [t () 12 (ar) [ (ar | 01, A)} £ (y | an, Ao, bo) F (a1 | € Ao) £ (£ ] Ao)dy day  (2.7)
=0 "

which is precisely (2.1).

The direct effect g-null theorem implies that any test of the conditional independence of Y
and Ag (linear in Y') that one would have used to test the direct effect null hypothesis had A; been
parentless can still be used to test the null hypothesis when A; has parents L and Ag provided,
when calculating the test statistic, Y is replaced by W = Y3 (A1) /f (A1 | L, Ap) or, even
more generally, by ¢ (A41,Y) /f (A1 | L, Ag) where t2 (A1) and ¢ (A;,Y) are arbitrary functions
chosen by the data analyst. This prescription can be followed in a sequential randomized trial
where f(A; | L, Ao) is known by design. In observational studies, f(A; | L, Ag) will have to
be estimated from the data in a preliminary step. We suspect that, after having estimated
f (A1 | L,Ap) in a preliminary step, causal search programs such as TETRAD can be modified

to allow the analyst to test for direct effects.



As an example, suppose, by design, Ag ~ N (71,1) and A; | Ao, L ~ N (72 (Ao, L),1). If
we define U = {f (A1 | L, Ag)} "t (Y, A1) {Ap — E (Ag)} where (e, ®) is chosen by the data
analyst, then, by the direct effect g-null theorem, i U, is a sum of independent and identically
distributed random variables that have mean zero2 :ulnder the direct effect null (1.2). Therefore,
provided U; has a finite variance, x = -, U/ {>°; Ul.z}% is asymptotically distributed N (0, 1)
under the direct effect null. Thus the test that rejects when |x| > 1.96 is an asymptotically
.05-level test of this null hypothesis. As discussed later, the power of the test will depend on
the choice of the function ¢ (y,a;). As noted above, a simple alternative to this test is simply to
test whether W and Ag are correlated using standard software.

Remark: Note if A; is discrete, we can choose t2 (A1) = 1. However, if A; is continu-

ous, as in our example, W may not have a finite expectation or variance if ¢ (A1) = 1 [since

EW) = [t2(a1) g(ar) day with g(a1) = 21: Sy fly 1€ a0,a1] f (€] ao) f (ag) dydao); in that
case, ta (A1) needs to be chosen to downwéi:g(l)&t the tails of W’s distribution so that the expec-
tation and variance of W will be finite.

There are some important caveats an analyst needs to be aware of. First, the direct effect
g-null hypothesis (1.2) does not imply that W = Yo (A1) /f (A1 | L, Ag) is independent of Ag.
If it were, then for any function g (e), E [g (W) | Ag] would not depend on Ay which will not
be true in general, because f(A; | L, Ag) may be “bound up” in the possibly non-linear func-
tion g(e). There is also a lack of symmetry which is not seen with conditional independence.
Specifically, the direct effect g-null hypothesis (1.2) does imply that W and Ag are uncorre-
lated. However, it does not imply that Y and W* = Agts (A1) /f (A1 | L, Ao) are uncorrelated,
since E(Y)E (W*) = E(Y) [ [ t2 (a1) da1] E (Ap) while E [YW*] = E [WAq| = E[W] E [Ao] =
{ 21: JEY | Ag,a1,€] f (€] Ag)ta (a1) dal} E (Ap) where, under the direct effect g-null hypoth-

=0

esis (1.2), the expression in set braces is a constant independent of Ag.
In observational studies, the densities f(ai | ap, ) and f(ag) will not be known and thus
f (a1 ] ap,?) and E (Ap) will need to be estimated from the observed data V;,i =1,... ,n. As
an example, suppose we assume f (ag) and f (a1 | £, ap) lie in parametric families
{f (ao; oz(o)> ;a0 g a(o)} and {f (a1 | £, ap; a(1)> NS 04(1)}. The maximum likelihood esti-
mator a = (a@),a(”)/ maximizes the likelihood £ () = ﬁ f (AOZ»; oz(o)) f (A | Li, Ags; oﬂ)).
i=1

Now define ¥ = Y, U; (@) /97 where U = U (@) = t (Y, A1) { Ao — Eo [Aol} /f (A1 | L, Ao; a<1>)
and the correction term éorr = I'T 'T” in the estimated variance 7 = > [72»2 — ¢orr accounts
for the estimation of the unknown . Here T is the 2 x 2 matrix of second partial derivatives
of log £ () evaluated at @ and T' = 3°, 8U; (@) /. X remains asymptotically N (0,1) under
the direct effect null hypothesis (1.2) provided the models for f(ap) and f (a; | ¢,ap) are cor-
rectly specified. Similarly, the p-value outputted by an off-the-shelf software program testing
the independence of W and A will be greater than the true p-value when f(A; | L, Ag) has

been estimated (i.e., the test is conservative), although an appropriate p-value can be simply

10



computed. [In this simple example, it would have been appropriate and perhaps simpler to have
estimated E (Ap) by >, Aoi/n].

In contrast to the disturbing results summarized in Lemma 1.1, any parametric models for
Ap and Ay | Ap, L are compatible with the direct effect null hypothesis (1.2). That is, there
exist joint distributions for V' under which these parametric models are correctly specified and
the direct effect null hypothesis (1.2) holds.

We now have valid tests for the no direct effect null hypothesis of no effect of prophylaxis
therapy Ag on Y when A; is fixed (set) to any particular value aq; but ultimately we want
more. In particular, we would like to estimate the size of the direct effect. To discuss this, we
first need to generalize the simple example and then precisely define the direct effect. We do
this in sections 3 - 5. Then we introduce direct effect structural nested models which provide a
unified approach to estimation of and testing for direct effects while avoiding both the problems
of standardly parameterized DAGs and of search programs such as TETRAD that rely on

conditional independences.

3. The G-computation Algorithm Formula

Let G be a directed acyclic graph with a vertex set of random variables V' = (V4,..., Vi) with
associated distribution function F'(v) and density function f (v) with respect to the dominating
measure p. Here p is the product measure of Lebesgue and counting measure corresponding to
the continuous and discrete components of V. By the defining Markov property of DAGs, the
density of V' can be factored Hfil f(v; | pa;) where pa; are realizations of parents Pa; of V; on
G. Our results will not require that G has any missing arrows; that is, G may be taken to be
complete.

We assume V is partitioned into disjoint sets A, L, and Y where the univariate outcome vari-
able Y is the variable in V' with the latest temporal occurrence, A = {Ay,... ,Ax} are tempo-
rally ordered treatments or control variables given at times to, ... ,tx and L = {Lo, L1,... , Lk}
are other response variables. The response variables in L, are temporally subsequent to Ay,,_1
and prior to A,,. As will be clear below, both A,, and L,, may consist of more than one vari-
able. Now for any variable Z, let Z be the support (i.e., the possible realizations) of Z. For any
205 -+ ,2m, define Z,, = (20,... ,2m). By convention Z_; = z_; = 0. Now define a treatment
regime or plan g to be a collection of K + 1 functions g = {go, ... ,gx } where gm : L — Am

maps outcome histories £,, € L, into a treatment Im (Zm> € Ap. If gn (Zm> is a constant,

*

say a’,, not depending on ¢, for each m, we say regime ¢ is non-dynamic and write g = @*,

@ = (ag, ... ,a}). Otherwise, g is dynamic. We let G be the set of all regimes g.
Associated with each regime ¢ is the “manipulated” graph G, and distribution Fj (v) with

density f; (v) (SGS, 1993). Given the regime g = (go,g1,- - ,gx) and the joint density

f(v) = f(lo) f(aollo) f(£1]ao, Co) f(ar|l1, a0, 40) - - f (y | I, ax) (3.1)
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fq (v) is the density f(v) except that in the factorization (3.1), f(ao|ly) is replaced by a de-
generate distribution at ag = go(4o), f(ai1|l1,ap,%p) is replaced by a degenerate distribution
at a1 = g1(fo,¢1), and, in general, f (ak | Zk,ﬁk_l) is replaced by a degenerate distribution at
ag = gk (Zk)

In the following, let g (Zk) = (go (ZO) oo 50k (Zk)) and g, (Zk) denote realizations of Ay and
Ay, respectively. Then the marginal density f; (y) of Y under the distribution Fy (-) is

.mw=/ﬁ@ﬁmw@az/m/f@ﬂmmknﬂywn@1g@1»w%»
j=0

Similarly, the marginal distribution function of ¥ under Fj (-) is

&@=/~/ﬁﬁ%wﬂmﬂ%ﬂﬂﬂ@%qa@mMMﬁ- (3.2)
| 11

Robins (1986) referred to (3.2) as the G-computation algorithm formula or functional for the
effect of regime g on outcome Y. Throughout we assume that for each g € G, f (Zk, g (Zk» #0
implies f (a | Uy g (Zk)) # 0 for all @ in the support of Ay so that the RHS of (3.2) is well-defined.
For Ay continuous, this positivity assumption needs to be slightly modified to properly account
for measure theoretic difficulties (Gill and Robins, 1997), due to the existence of different versions
of conditional distributions. Gill and Robins (1997) show that such difficulties do not arise if we
assume that f (Ek | Z,H,ak,l) is (weakly) continuous in all arguments that represent realizations
of random variables with continuous distributions, which then suffices to make (3.2) a unique
well-defined function of the joint distribution of the observable data V. Robins (1986) and Pearl
and Robins (1995) give sufficient conditions under which (3.2) has a causal interpretation as the
distribution of Y that would be observed if all subjects were treated with (i.e., forced to follow)
plan g. A sufficient condition, exemplified by DAG 1a, is the following.

Assumption of g-identifiability: Any hidden variable U that is an ancestor of Ag on the
causally sufficient graph generating the data is, for each k, d-separated from Aj conditional on
the past (fk,zk_l).

G-identifiability will hold in any sequential randomized trial and is assumed to hold through-
out the remainder of the paper.

Informally, G-identifiability will be true if all determinants of the outcome Y that are used
by patients and physicians to determine the dosage of treatment at each time k are recorded in
(fk,zk_l). It is a primary goal of epidemiologists conducting observational studies to collect
data on a sufficient number of covariates in Lj to insure that G-identifiability will hold, at
least approximately. However, the assumption of G-identifiability cannot be subjected to an
empirical test. G-identifiability is equivalent to the assumption of sequential randomization or,
equivalently, of no unmeasured confounders as used in the counter-factual approach to causal
inference (Robins, 1997). It should be noted that the approach to causal inference used in this
paper based on causally sufficient DAGs with hidden variables is mathematically equivalent to

the approach based on counterfactuals (Robins, 1997; Pearl, 1995).
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We emphasize that from this point on the paper is solely concerned with estimation of and
tests concerning the functionals F, (y). As F, (y) is a function of the joint distribution of the
observed data V, a reader skeptical about causal language and inference is free to regard the
remainder of this paper as simply an exposition as to how one might model and estimate the
functionals Fj (y), putting aside why and when one might be interested in these particular

functionals.

4. The Direct Effect “g”-null Hypothesis

In settings where the treatments A = Ay = (Ay, ..., Ax) represent a single type of treatment
given at different times, an important first question is whether the “g”-null hypothesis of no

effect of treatment on Y is true, i.e., whether

Fg (y) = Fg, (y) for all y and all g1,92 € G. (4.1)

Eq. (4.1) is a hypothesis about the distribution of the observable V' whether or not the g-
identifiability assumption holds. When g-identifiability holds, (4.1) implies that the distribution
of Y will be the same under any choice of regime ¢, and thus it does not matter whether the
treatments Ay are given or withheld at each occasion k. When g-identifiability holds, we also
refer to (4.1) as the g-null hypothesis, the removal of “” from around g indicating that (4.1)
now has a causal interpretation.

In this paper we will not be interested in the “g”-null hypothesis (4.1). Rather, we suppose
that (i) treatment A,, = (Apm, Azm) at time t,, is comprised of two different treatments Apy,
and Az, (e.g., prophylaxis therapy and AZT treatment) and (i) the treatment Ag,, is known
to affect the outcome Y. The hypothetical trial in Sec. 1.1 is the special case in which K =1,
Lo=0,L1 =L, Ay = (Apo, Azo) with Azg = 0 for all subjects and Ay = (Ap1, Az1) with
Ap1; = 0 for all subjects since no subject received AZT therapy at tg or prophylaxis therapy
at t1. In such settings, an important first question is whether there is a direct effect of the
treatment Apx = (Apo,-..,Apk) on the outcome Y when the treatment Ay is set to any
history azg.

Notational convention: We introduce the convention that the subscripts (k, ¢, j) generally
subscript the times at which treatments are given and the lack of a subscript indicates time #x.
Furthermore, the subscript ¢ will be reserved to index study subjects ¢ = 1,...,n. Thus, for
example, Az = Ay is the AZT history through tx of subject 7. Finally, as above, we will
often suppress the subscript ¢ and write Az; as Az. Also we introduce the notational convention
that for any random variable Z;, both Z_; and Z_; are identically zero.

To formalize our no-direct-effect null hypothesis, let gp = (gpo, ... ,gpK) be a collection
of functions where gp,, : L — Apm. Then, for history @z € Az, let g = (gp,az) be the
treatment regime or plan given by g, (Zm) = {gpm (Zm) ,agm}. Let Gp be the set of all g,.
Then Fi,,a,) (y) is the distribution of Y that, given g-identifiability, would be observed if Ay
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was set to @z and the treatments Ap were assigned, possibly dynamically, according to the plan
gp. If gp is the non-dynamic regime @p, we write Fg, 7, (y).

Definition: The direct effect “g”-null hypothesis of no direct effect of Ap controlling for A,
is the hypothesis

Fopya, (y) =Fgpoa, (y> (4'2)

for all @z and gp1,gp2 € Gp.

Remark: Given the g-identifiability assumption of Sec. 3, the hypothesis that, on the
causally sufficient graph underlying our DAG G, all directed paths from any variable Ap,, to
Y include some Az implies the direct effect “g”-null hypothesis (4.2). Under a faithfulness
assumption, the converse is also true.

An alternative characterization of the direct effect “g”-null hypothesis in terms of the con-
ditional distributions Fj (y | Zk) for non-dynamic regimes ¢ is provided in the following lemma
whose proof is left to the reader.

Lemma 4.1: The direct effect “g”-null hypothesis (4.2) is true if and only if
Fapa, (y | 0) does not depend on apy, = (apk, ... ,apK) (4.3)

for all @p,dz,y and 0.

Note Fy (y | Zk) is given by (3.2) except with the product taken from k + 1 to K rather than
from 0 to K. If we apply this Lemma to the simple example in Section 1, we recover (1.2). That
is, the direct effect “g”-null hypothesis for the observed data V' = (Ag, A1, L,Y) of Sec. 1 is
precisely (1.2).

4.1. Failure of the usual parameterization for testing the direct effect “g”-null hy-
pothesis

In Section 1, we saw that is was difficult to test the direct effect “g”-null hypothesis (4.3) using
the usual parameterization of a DAG. These problems are exacerbated in the general case.
Indeed, there are several difficulties. First, even if the densities appearing in the G-computation
formula (3.2) were known for each g € G, since Fy (y) is a high-dimensional integral, in general,
it cannot be analytically evaluated for any ¢ and thus, must be evaluated by a monte Carlo
integral approximation — the monte Carlo G-computation algorithm (Robins, 1987, 1989).
Second, even if Fy; (y) could be well-approximated for each regime g, the cardinality of the set G
is enormous [growing at faster than an exponential rate in K (Robins, 1989)]. Thus it would be
computationally infeasible to evaluate Fy (y) for all g necessary to determine whether the direct
effect “g”-null hypothesis held.

However, as we saw in Sec. 1, the most fundamental difficulty with the usual parameteriza-
tion of a DAG in terms of the densities f(v; | pa;) is that if we use standard parametric models
for f (v; | paj), (i) there is no parameter, say 1, which takes the value zero if and only if the
direct effect “g”-null hypothesis is true, and (ii) the direct effect “g”-null hypothesis, even when

true, may, with probability approaching 1, be rejected in large samples.
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5. Direct Effect G-null Tests

As in the special case discussed in Sec. 1, an appropriate approach to testing the direct effect
“o”_null hypothesis is based on the following theorem which is a corollary of Theorems 10.1 and
10.2 below. However, since Theorem 5.1 is perhaps the key result of this paper, we provide an
independent proof in Sec. 5.2 below. This proof contains many of the important ideas of the
paper. The proof is similar to the alternative proof of Corollary 2.1 above, except it avoids

appealing to an underlying causally sufficient graph generating the data.

For any variable X = X, let X,, = (X, ..., Xf) and let W, = ﬁ f (AZk | Zk_l,fk>.
By convention Wi = 1. =
Theorem 5.1: Direct effect ¢ ‘g’ ’-null theorem: The direct effect “g”-null hypothesis (4.3)
is true if and only if for each m,m = 0,... , K, and each function T,, = t,, (Y, AZ(m+1)>7

E [Tm/Wm+1 | Zm,fm} does not depend on Apy, w.p.1 (5.1)

whenever the expectation is finite.
We can use (5.1) to construct tests of the direct effect “g”-null hypothesis. We first provide,
in Theorem 5.2 below, a quite general approach to testing (5.1). We then suggest a practical
approach that allows the analyst to test (5.1) using easily available off-the-shelf software.
General Approach to Testing: First consider a sequential randomized trial where
f( m | Am_1, L ) and thus f [Apm | Agm, Am—1, L ] [AZm | Apm_1, m} and W,,, 11 are known.
Let T (Apm,Y) = tF, (Apm,Y,AZm,Am,l,_m) be a function chosen by the data analyst.
Now deﬁne Um = {T* (Apm,Y) — [ T (apm,Y) dF [app | AZm,Zm_l,fm]}/WmH and let

Z Un. Then, by the direct effect “g”-null theorem, we obtain the following result.
m=0

Theorem 5.2: If the direct effect “g”-null hypothesis (4.3) is true and var (U,) < oo, then
EU)=0and x =3, U/ [>,UZ]? : converges to a IV (0,1) random variable.

It follows from Theorem (5.2) that the so-called g-test that rejects when | x |> 1.96 is an
asymptotically .05 level test of (4.3). The power of the test depends on the choice of the function
tr,, as discussed later. The test given in Sec. 2 is the special case of the test y with K =1,
Az = Ay, Apo = Ao, Ti (Apo,Y) =t (A1, Y) Ag and Ty (Ap1,Y) = 0.

In an observational study, we would (3) specify a parametric model f (Ak | Ap_1, Li; a) for
the now unknown densities f [Ak |Zk,1,fk], then (ii) replace the unknown densities in the

definition of Wy,4+1 and Um by their maximum likelihood estimates obtained by on maximizing

the likelihood £ (o) = H H J (Aki | Age—1yi, Lri; @) over «, and (iii) redefine Y = 3, Us; (@) /

i=1m=0
v, where U, ; = U, ; (ag) and the variance estimator v appropriately adjusts for estimation of a.

Specifically, 7 = 3, D; (0) D} (0) where D; (0) is defined following Eq. (8.1a) below.
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5.1. Practical approach to testing

We describe a practical approach to testing (5.1) that only requires access to easily available
off-the-shelf software. Further, the approach has the advantage that we only need to correctly
specify a model for the conditional mean of Ap,, given Az, Am_1, Lm—1 rather than a model
for the entire conditional distribution. We describe our approach in several steps.

Step 1: Specify a parametric model f (AZk |Zk_1,fk;oz(1)) and calculate the MLE a(!) that

K — —
maximizes [[ ][] (AZM | A(k,l)i,LM;a(l)) and let Wy, (a“)) denote W,,; evaluated under
i k=0
the density indexed by am.
Step 2: For m = 0,..., K, specify a model for the conditional mean of Ap, depending on a

parameter vector a(?)
E [Apm | Azm, Am—1,Lm| = d (a<0>’ Qm) | 52

where Q,, is a known vector function of Az, Ap_1, Ly and d(e) is a known link function.
For example, if Apy, is dichotomous, we might choose d (z) = {1+ exp(—z)}"'. If Apy, is
continuous, we might choose d (x) = x.

Step 3: Compute an a-level test of the hypothesis that & = 0 in the extended model that adds the
term 6Q%, = 0q;;, (Y, AZm,Zm_l,fm,AZ(mH)) /W1 (a(l)) to the a(®'Q,, in (5.2), where (i)
q;, () is a known function chosen by the data analyst, () in testing 8 = 0, we treat the QF, as
“fixed covariates” and (i) we use off-the-shelf generalized estimating equation (GEE) software
for “clustered” data available in S+ or SAS that regards the Apy, ... , Apx on each subject as
correlated (i.e., clustered). Often the software will ask the user to specify a so-called working
covariance matrix; one can specify the independence covariance matrix.

It can be shown that, if our model for f (AZk: |Zk_1,fk_1) and Eq. (5.2) are correctly
specified, then under direct-effect null hypothesis (5.1), in large samples, the rejection rate of
the a-level test in Step 3 will be less than or equal to a. That is, the test is “conservative.” The
reason that the test may reject, even in large samples, at a rate less than its nominal a-level is
that the variance computed by the off-the-shelf software programs does not adjust for the effect
of estimating oV (although it does correctly adjust for the effect of estimating 04(0)).

We refer to all the above tests as direct effect g-tests. A direct effect g-test is a semiparametric
test since it only requires we specify a model for f (Am | fm,Zm,l) rather than for the entire
joint distribution of the observed data V' = (Y, L, Z). In an observational study, the g-test is only
guaranteed to reject at a rate no greater than its nominal level if the model for A, | Am-1, Lm
is correct. Again however, in contrast to the disturbing results of Lemma 1.1, any model for
f (Am | fm,Zm_l) will be compatible with the direct effect g-null hypothesis (4.3).

5.2. Proof of Theorem 5.1

We first state and prove a lemma. First, some definitions. Let DAG G* be the manipulated

subgraph of DAG G in which all arrows into each Az have been removed except those from
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Azo, - s Azx—1) and equip G* with the density

K
[ (v) =tz (az) f(y | ak,lx) H f(apm | azm,@m1,0m 1) [ (b | b 1,Gom 1)

m=0

where t5 (az) is the new marginal density for the “composite” parentless variable
Az = (Ago,... ,Azk). The remaining factors are as in the density f (v) of the true DAG G.
Asterisks will refer to the DAG G* and its associated density f* (v). We now outline the proof.

In the proof of the preliminary lemma, we show that the direct-effect null hypothesis (4.3)
is identical under G* and G. However, when, as in G*, Ay is exogenous (parentless), testing for
no direct effect of Ap is equivalent for testing for no over-all effect of Ap. From my previous
work (Robins, 1986), it is known how to test for no over-all effect. Finally, we show that any
test under G* implies that a corresponding test under GG is obtained by reweighting the test
statistic by the inverse probability of treatment with Ay, i.e., by the Wp,’s.

Lemma 5.1: The direct-effect “g”-null hypothesis (4.2) holds (under f (v)) if and only if

Apm H* (Y7 AZ(m-H)) | fm7AZm7Zm*1 (5'3)

where the [[* means independence under the law f* (v).
Proof: Since Fy,3,) (y) does not depend on the densities f (aZm | Em_l,zm_l) modified

in f*(v), we have

Flopan W) = Flgpan W) - (5.4)

Thus, (4.2) also represents the direct-effect “g”-null hypothesis under DAG G*. However, be-
cause the composite variable Az is exogenous on DAG G*, the distribution, under f* (v), of ¥’
when Ap follows plan gp and Ay is set to plan @ equals the conditional distribution, given

Az =z, of Y when Ap is set to gp. That is, by direct calculation,

f(*gPﬁZ) (y> = f;P (y ‘ ZZ = 6Z> (5.5)

where, by definition, fx, (v) is the density obtained by replacing in f* (v) the density

f (apm | aZm,Em_l,zm) by a degenerate distribution at apy, = gpm (Zm) form=0,... K.
Note, and this is why we introduced DAG G*, (5.5) is false for DAG G. It follows from (5.5)
that we can rewrite the direct-effect null hypothesis (4.2) as

F;Pl (y | ZZ = az) = E;PQ (y | ZZ = az) for all gp1,9p> € Gp and all @z (56)

However, it is easy to show (Robins, 1987) that (5.6) is equal to the “g”-null hypothesis of

no over-all effect of Ap on Y.

Fop () = Fy,, (y) for all gp1,9p2 € Gp . (5.7)

The g-null theorem of Robins (1986) states that (5.7) is equivalent to

Apm H* Y ’ Zm,ZP(mfl),ZZ . (58)
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However, by d-separation on DAG G*, we know

AZ(m+1) H* (fm,me) | ZZm .

Hence, on DAG G*, (5.8) is true if and only if (5.3) is true, proving the lemma.

Proof of Theorem 5.1: It is well-known that (5.3) is true if and only if for all functions
hm (Yv AZ(m—i—l))

E* [hm (Y, AZ(m+1)> | Ay =Gy Lim = Zm} does not depend on ap,, w.p.1 (5.9)

whenever the expectation is finite. Writing (5.9) out explicitly, we have

///E [hm (Y’AZ(mH)) ’aK,ZK} (5.10)

K
{ H dF [0y | Ok, Tp(—1y| dF [apk | azk, Tpg—1, k] t2 (azk | Tz0-1)) dpt (aZk)} :
k=m+1

K _ K _
Multiplying the integral in (5.10) by 1 =[] f (aZk | Ek,ak,ﬁ/ I f (aZk | Ek,ak,ﬁ, we
k=m+1 k=m+1
obtain

e

K K
hom, (Y7AZ(m+1)) H t2 (azk | Gz(5-1)) /{ H f(azk |Zk7ak—1)} |5K7ZK]

k=m+1 k=m-+1
dF (ZK,EK \Em,?m)

which equals

K
E [T/ Wit | A = Ty Ln = ] with T = fi (Y, Az<m+1>) T 2 (Aze | Ase ) -
k=m+1

Since h,, was arbitrary, T, is arbitrary as well. This proves the theorem.

6. Direct Effect “g”-null mean hypothesis

Now we would like to estimate various “direct effect” contrasts of interest, such as the difference
in the distribution functions F,,, 7, (¥) — Fgps,a,) () for regimes gp1, gp2, and @z of interest.
Often, rather than focusing on the contrasts between entire distribution functions, one may be
most concerned with its estimating the effect of treatment with Apy on the mean of Y when

Ay is set to some value @y of interest. That is, we are interested in the contrast

E(gmﬁz) (Y> - E(.‘]P%EZ) (Y) (6'1)

where E,; (Y) = [ydF, (y) and in the following direct effect “g”-null mean hypothesis.
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Definition: The direct effect “g”-null mean hypothesis of no direct effect of Ap controlling

for Az is the hypothesis

E(!]PLEZ) (Y) = E(9P2,Ez) (Y> (6'2)

for all @z, gp1, gp2.
Note that the direct effect “g”-null hypothesis (4.2) implies the direct-effect “g”-null mean

hypothesis (6.2) but the converse is false since treatment with Ap could affect the distribution
of Y without affecting its mean. Similar to Lemma 4.1, we have:

Lemma: Eq. (6.2) is true if and only if
Ez (Y | €m) does not depend on ap,, (6.3)

for all @ = (ap,ay) .
A further equivalent characterization is given in the following.
Theorem 6.1: Direct Effect “g”-Null Mean Theorem: Eq. (6.2) is true if and only if for
each m and each function T, = Yt,, (AZ(m+1)) linear in Y, E [Tm/WmH | Zm,fm] does not
depend on Ap,,, whenever the expectation exists.

Proof Sketch: The proof is analogous to that given in Sec. 5.2, except that the “g”-null

mean hypothesis

E* (Y)=E’ (Y) (6.4)

gpr1 gp2

of G* is equivalent to the hypothesis E* [Y | Zm,fm,zz] does not depend on Ap,, for each m
(Robins, 1994, 1997) which replaces (5.8) in the proof. Theorem 6.1 is also a direct corollary of
Theorems 7.1 and 8.1 below.

It follows that the asymptotic a-level test that rejects whenever the direct-effect g-test statis-
tic x of Theorem 5.2 exceeds 1.96 in absolute value is an asymptotic a-level test of the direct
effect g-null mean hypothesis (6.2) provided T}, (Apm,Y) = Tyq (Apm)Y + 1o (Apm) used
in the definition of x is linear in Y. Similarly, the off-the-shelf test of Sec. 5.1 can be used,
provided we choose ¢}, linear in Y.

We shall now develop a unified approach to testing the direct effect g-null mean hypothesis
(6.2) and estimating the contrast (6.1) based on semiparametric g-estimation of direct effect
structural nested mean models (SNMMs). We will then turn our attention to development of
a unified approach to testing the direct-effect “g”-null hypothesis (4.3) and estimating distri-
butional contrasts based on g-estimation of direct effect structural nested distribution models
(SNDMs).

We consider direct effect structural nested mean models (SNMMs) in addition to direct
effect structural nested distribution models (SNDMs), because (i) the former are conceptually
much easier to understand than the latter, (%) SNDMs are defined only for continuous Y while
SNMMs allow Y to be continuous or discrete, (i) the direct effect “g”-null mean hypothesis
(6.2) may be of greater subject matter interest than the direct effect “g”-null hypothesis (4.2)

and (iv) mean contrasts are much easier to compute than distributional contrasts..
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7. A New Characterization of the Direct-effect “g”-Null Mean Hypothesis

The first step in defining direct-effect SNMMs is yet another new characterization of the direct
effect “g”-null mean hypothesis (6.2). Given any treatment history @ = (@p,az) in obvious
notation, adopt the convention that the treatment history that (i) agrees with @z through tx
for Ay and (ii) agrees with @p through #,, and is zero thereafter for Ap will be denoted (@py,,az)
or ({@pm,0}),az) . Denote Eg (Y | lm) by b(lm,g) and Eq (Y) by b(g). Write b (0, g = (a))

as b (Zm,a) =b (Zm,apm,az) when @ = (@ppm,az). Then define the “blip function”
¥ (zm,apm,az> =b (Zm,apm,az> —b (Zm,ap(mfl),az> .

Given the g-identifiability assumption, ~ (Zm,ﬁpm,ﬁz) is the direct effect on the mean of Y
of one final blip of Ap,, treatment of magnitude ap,, at time t,,, among subjects with history

(E(m_l),zm> when treatment Ay is set to @z. In particular, note the “blip” function satisfies
Y (b, Tpm,Tz) =0 if app =0. (7.1)

Our interest in this function is based on the following theorem.
Theorem 7.1: v (Zm,ﬁpm,ﬁz> = 0 for all y, m,@py,,az if and only if the direct effect “g”-null
mean hypothesis (6.2) holds.

The theorem is a corollary of Theorem (8.6) below. It also follows by noting that the direct-
effect “g”-null mean hypothesis (6.2) holds for DAG G if and only if the over-all “g”-null mean
hypothesis (6.4) holds for DAG G*. This later hypothesis holds if and only if v (Zm,apm, az) =0

by results in Robins (1994, 1997).

8. Direct Effect SNMMs

In view of Theorem 7.1, our approach will be to construct a parametric model for ~ (Zm, A pm, EZ)
depending on a parameter ¢ such that v (Zm,apm,az) = 0 if and only if the true value ¥y of
the parameter is zero.

Definition: The distribution F' of the observables V follows a direct effect pseudo-structural
nested mean model for the effect of Ap controlling for Ay if v (Zm, apm, EZ) =7 (Zm,apm,az, 7,/)0)
where v (Zm,apm,az,lp) is a known function depending on a finite dimensional parameter
and -~y (Zm,apm,az,w) =01if apym = 0 or ¥ = 0, so Yy = 0 represents the direct effect “g”-
null hypothesis (6.2). As just one example, we might consider the model ~ (Zm,apm,az,w) =
Yiapm + wgapmap(m,l) +Ysapmly, | +Vsapmazi where £} is a given univariate function of
0. When g-identifiability holds, we also refer to v (Zm,apm,az,w) as a direct-effect SNMM,
the removal of “pseudo” reflecting the fact that (Zm,apm,az) now has a causal interpretation.

We now consider testing and estimation of 14 in the semiparametric model (a) characterized
by the restrictions that the law of V follows the direct effect pseudo-SNMM -~ (Zm,ﬁpm,ﬁz, w>,
and as in a sequential randomized trial, f (am |am_1,Zm) is known. This model is referred

to as semiparametric since it parameterizes some but not all of the joint distribution of V.
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Our fundamental tool is the following theorem. For any function ~* (Zm,ﬁpm,ﬁz) satisfying
_ K — —
Y (bm,@pm,az) = 0 if apm = 0, define H(v*) =Y — 3 * (L, Apm, Az). The following
m=0

theorem gives a useful characterization of the true blip function ~ (fm,me,Zz).
Theorem 8.1: ~* (Zm,me,ZZ) = (fm,me,ZZ) w. p. 1if and only if for each m =
0,...,K and any function ¢, (e)

E [tm (AZ(m—i—l)) H () /W1 | Zm,fm} does not depend on App, w.p. 1.

Proof: A direct proof is given in Appendix 1. Here we sketch an alternative proof. On
DAG G*, we know by results of Robins (1994, 1997) on overall effects that (fm,me,ZZ) is
uniquely characterized by F [H (v) | me,fm,zz} does not depend on Ap,,. We use this to
replace Eq. (5.8) and proceed analogously to the proof of Theorem 5.1.

Remark: Note that Theorem 6.1 is a direct corollary of Theorems 7.1 and 8.1. We can
use Theorem 8.1 to construct semiparametric direct-effect g-tests and g-estimates for ¢,. In a
parallel to Sec. 5, we first provide in Theorem 8.2 below a quite general approach to testing and
estimation.. We then suggest a practical approach that allows the analyst to use easily available

off-the-shelf software.

8.1. General approach to testing and estimation

To describe the asymptotic properties of the estimators introduced in this Section, it will be
useful to define an asymptotically linear estimator. An estimator @ of 1 is asymptotically linear

with influence function B if
1 ~ 1 n
nd (=) =n"3Y Bi+o,(1),
i=1

where £ (B) =0, E(B'B) < o0, and o, (1) represents a random variable converging to zero in
probability. Thus, an asymptotically linear estimator is asymptotically equivalent to the sum of
independent and identically distributed random variables B;. It follows, therefore, that if Tp is
asymptotically linear, then, by the central limit theorem and Slutzky’s theorem, n? (1/5 — wo) is
asymptotically normal with mean zero and variance E [BB’]. Nearly all commonly encountered
estimators are asymptotically linear. For example, the maximum likelihood estimator and most
Bayes estimators of the parameter vector indexing a parametric model will be asymptotically
linear with influence function equal to the inverse of the expected information matrix multiplied
by the score vector (i.e., the derivative of the log likelihood contribution of a single subject with
respect to the parameter). Two asymptotically linear estimators, @(1) and @(2 with the same
influence function B are asymptotically equivalent in the sense that ns (@(1) — @(2)) goes to
zero in probability.

It will also be useful to define a regular estimator: a regular estimator is one whose conver-
gence to its limiting distribution is locally uniform (Bickel et al., 1993). Regularity is a technical

condition that prohibits super-efficient estimators. Thus, when we say the maximum likelihood
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estimator or a Bayes estimator is efficient, we mean it is efficient within the class of regular
estimators. Thus, an estimator being regular, asymptotically linear (RAL) is a highly desirable
property. With this background, we are ready to describe our general approach to testing and
estimation.

Let Ty, (Apm,y) = Ty (Apm) Y + T (Apm) where, for j = 1,2, Ty (Apm) =

_ _ K _ _
b (Apm,AZm,Am,l,Lm). Write H (¢) =Y — mz—jofy (Lm,Apm,AZ,w) and let Uy, (¢,t*) =

Wil (T Apm, — [T {apm, H ()} dF [apm | Azm, Am-1,Tm] } and U, (1) =

Us (4, t%) = Z Un ( ) where t* is the collection of functions { i(®)sm ., K, j=0, 1}
chosen by the 1nvest1gator. Also given functions 7y, (Azm, m—1, L ) chosen by the investi-
gator, let Ry = fjo R,,, where R, = rp, (AZm,Zm—l,fm—l) -

Jrm (aZm,Zm_l,fm_l) dF (aZm | Zm_l,fm_1> and define U (¢) = UF (¢, t*,1) = Uy (¢, t*) —
R,. In the following theorem, the functions ¢} . and ry, are vector valued of the dimension of ¢.
Theorem 8.2: If var {U; (v,t*,r)} is finite, tlien (i) EUf (¥g)] = 0, and if ¢ is one-
dimensional, x (¢g) = >, U (¥q) / [ZZ U (wo)z} > converges to a N (0,1) random variable.
Further, under standard regularity conditions, with probability approaching 1, the unique solu-
tion ¢ = ¢ (t*,7) to 0 = > U (0,t*,r) = 0 is a regular asymptotically linear (RAL) estimator
of 1), with influence function — {E [QUZ (g, t*,7) /OY]} T UF (1o, t*,7).

Remark: The test statistic y discussed in the paragraph following Theorem 6.1 is a special
case of x (¢y) with ¢y =0 and Re = 0.

Elsewhere we prove there further exists ¢, and r.ry such that @ (t:ff,reff) is the most
efficient possible estimator of ¢, under the restrictions imposed by our semiparametric model (a).
That is, the asymptotic variance of @ (t:ff,reff) attains the semiparametric variance bound
for the model. In particular, this implies that when v, is 1-dimensional, the direct-effect g-test
based on x = x (0) of the null hypothesis 1, = 0 that uses t*ff and 7.y is locally most powerful
among all regular asymptotic a-level tests (Robins and Rotnitzky, 1992) of the direct effect “g”-
null mean hypothesis (6.3) under the sole restriction that, as in a sequential randomized trial,
the densities f (am | Em,l,zm,l) are known. We introduced the additional term Re in UJ (¢) to
be able to characterize the most efficient semiparametric procedure; the choice Ry = 0 of Secs.
5 and 6 is inefficient.

In observational studies, we can replace the unknown density f (Am yfm,Zm,l) used in
Unm (¢) and Wy, 11 by maximum likelihood estimates under a parametric model
f[Am | Ly Am—15@]. Let Uf (¥,a) = Uy (¢, t*,7,a) and ¥ () = ¢ (#*,7,0) be Uz (¢, t*,7)
and Tp (t*,r) with f [Am | fm,zm_l] replaced by f [Am | L, Am—1; oz]. Then if the parametric
model f [Ap | Lm, Apm—1; «] is correctly specified, the estimator ¥ (t*,r, @) with & the maximum
likelihood estimator of a will be RAL with influence function D = D (¢o) = Tt (vg) D* ()
where T' () = —E [0UJ (¢q,t*,1) /OY] and D* (1) =
U* (4o, t*,7) — E[U* (g, t*,7) SL] [E (SaS,)] ™' Say Sa = Sa () and S, (@) is the score for
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a (i.e., the derivative of the log-likelihood w.r.t « for a single subject). Furthermore, the
asymptotic variance of ¢ (t*,r,a) will be less than or equal to that of ¥ (t*,r). In particular,

~

P (t: ppiTef f) and Tp (t: ppiTef f,a) will have the same efficient variance. A consistent estimator

of the asymptotic variance of ns {@ (t,r,a) — wo} is
n~1 Z Di (Zb) D (@)/ (8.1a)

where D (1) = ™1 (@) D* (¢) and T (¢) and D* (¢) are the estimators of T' (¢) and D* ()
obtained by replacing a by @ and expectations by sample averages over the n study subjects.

Similarly, with ¢ 1-dimensional, if ¥ = v

1
2
X)) =Y U (W,a)/ {Z Dy <w>} (8.1b)
converges to a N (0,1) random variable.

A practical approach to testing and estimation: A conservative a-level test of the
hypothesis 1 = 1/ can be obtained using off-the-shelf software by following the practical testing
algorithm of Sec. 5.1, except in Step 3 we replace QF, by QF () =
qt, |H () 7AZmaszl,fm7AZ(m+1) with ¢, linear in its first argument and treat Q, (¢) as
a fixed covariate in the testing procedure. A RAL estimator @ND of ¢ is then obtained as the
value of ¥ that makes this test statistic precisely zero. A conservative 95% confidence interval
(i.e., an interval that is guaranteed in large samples to cover ¢, at least 95% of the time) can
be obtained as the set of ¢ for which the conservative .05-level test of ¥ = 1 of Step 3 fails to
reject.

We refer to all the above estimators as direct-effect g-estimators. It will also be pedagogically
useful to reconsider the simple toy example of Sec. 2 with K =1, Apg = Ap, Azo =0, Ap1 =0,
Az1 = A, Lo=0, L =L, Wy = f(A1 | L, Ap), and H (¢) =Y — ¢ Ap. Then a test of
the hypothesis ¥» = 1), is obtained by using standard software to test whether the variable
W () = H () ta (A1) /W1 is correlated with Ag where t9 (A1) is chosen by the data analyst.
Furthermore, an RAL estimator @ of 1 is obtained by estimating the linear regression model
Y: = B+ ¥ Agi + i by weighted least squares with subject i receiving the weight t2 (A1) /Wh.
Note that no tests and estimators quite this simple are available in the more complex settings
discussed above.

Tt can be shown that consideration of the abstract estimating functions UJ () is completely
general in the sense that any other estimator 1~p of 1, such as the off-the-shelf g-estimator, is
asymptotically equivalent to an estimator @ (t*,r) for some choice of the functions ¢t* and r.
That is, ¢ and ¥ (t*,r) have the same influence function and thus ns {@7} — @A/) (t*,r)} converges
in probability to zero.

Estimation of contrasts: When v, # 0, knowledge of v, alone will not allow one to

calculate the mean contrasts b (gp1,az) —b(gp2,az) with the following exception. Suppose that
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(2)

531) and gpp = @)’ and

we were interested in contrasts between the non-dynamic regimes gp1 =@
Y (b, @pm, az) = 7 (Gpm,Tz) (8.2)

does not depend on /£, for each m. Define b(az) = b(0,az) to be b(g) for g = (a@p,az) with ap
identically zero. Note b (az) — b (az = 0) is, under g-identifiability, the effect of treatment with

Ay =@y on the mean of Y when treatment with Ap is withheld. It follows from Theorem 8.3
K

below that b (ap,az) —b(az)is > v (@pm,az) which is only a function of the parameter 1 of
=0

m=
a correctly specified direct effect SNMM «y (@pm, az, ).

Suppose, however, we wish to estimate the ratio b (Eg),ﬁz) /b (Eg),ﬁz) rather than the
difference. The following theorem, which is a corollary to Theorem 8.6 below, indicates that in

order to do so, we also need an estimate of b (a@z).

Theorem 8.3: If (8.2) is true, b(ap,az) = f: Y (@pm,az)+b(az).

With this motivation, our next goal Wiﬁngg to estimate b(a@z). To do so, we modify our
previous semiparametric model (a) to the more restrictive semiparametric model (b) which
contains the additional assumption that b(a@z) = b(az;0g) where b (az;6) is a known function
of a finite dimensional parameter . The model b (@z; ) is a marginal structural model for the
effect of Ay on the mean of Y when Ap is set to zero (Robins, 1998, 1999). The key tool in
constructing an estimator for 6 in this model is the following characterization of b (ay).
Theorem 8.4: Let o (v,b*) = H (y) — b* (Az). Then b* (A7) = b(Az) w. p. 1if and only
if, for all functions ¢ (az), E [0 (v,b*)t (A7) /W] = 0, whenever the expectation is finite and
W =W,.

Proof: A direct proof is given in Appendix 1. Alternately by Robins (1994, 1997),

E* [H(y) | Az] =b(Az) on G*, and thus we can use the proof methods of Sec. 5.2.

Theorem 8.4 suggests the following estimation procedure for 6. Define o (¢,0) = H (¢) —
b (ZZ;Q). Let S(0,v) = S(0,¢,t) = o (¢,0)t (Zz) /W where t (ZZ) is now a vector-valued
function of the dimension of 8 chosen by the data analyst. Let =0 (?p) =9 (?p,t) solve

0=>,5 (0,@,7&) where Tp = @ (t*,r) is the estimator of v defined previously. Then since
Theorem 8.4 implies E [S (6o, 1, t)] = 0 under semiparametric model (b), we obtain the following
theorem.

Theorem 8.5: Given semiparametric model (b), under standard regularity conditions, 7' =

(@,,/0\/> is a RAL estimator of pf = (¢, 6p) with influence function — {E [05* (p,) /0p]} 1 S* (po)

/!

where S* (p) = (U (¥)', 5 (6,¢)") .

Remark: Note @ = @ (tsz,reff), although efficient semiparametric model (a), will in
general not be an efficient estimator of 1, in semiparametric model (b). To see why, consider
the extreme case where 8y was known a priori. Then since, for any function ¢ (ZZ) of the
dimension of ¢, E'[S (0p,%,t)] = 0 under semiparametric model (b), we can use this fact to
obtain an estimator, say @(t*,r, t), that is more efficient than qu(t*,r). Unfortunately, the

estimator 1~p (t*,r,t), in contrast to @ (t*,r), will be inconsistent for ¢, if the semiparametric
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model (b) is false due to the model b(az;6) being misspecified. It follows that due to this
possible misspecification, using @ND (t*,r,t) can lead us to falsely conclude that there exists a
direct effect of Ap on the mean of Y (i.e., 1y # 0) even in a sequential randomized experiment
with known randomization probabilities. This error is avoided by basing inference on the less
efficient estimator ¥ (t*,7).

Further contrasts: Suppose our goal is to estimate the contrast b(gp1,az) — b(gp2,az)
and either (8.2) is false or gp1 and/or gps is a dynamic regime. According to the following
theorem, proved in Sec. 9., it is then unnecessary to estimate b (@), but we must now estimate
the densities f (Em | Zm_l,am_l). Furthermore, if we wish to estimate the ratio of the means
rather than the difference, we must also estimate b (ay).

Theorem 8.6: b(gp,az) =

b (ﬁz> + / mf_:o’}/ [Zm,gp (Zm> ,ﬁz] mﬁo dF [Em ’ Zm_l,gp (Zm_1> 7EZ(m71)] . (83)

Proof: Robins (1994, 1997) shows E} [V | A; =ay] is given by (8.3) under G*. However,
by Ay exogenous on G*, E;‘P [Y | Ay = EZ] — E*

(9p.az)

tionals in (8.3) are common to f(v) and f*(v), so (8.3) must also equal b(gp,az). A quite

(Y) = bv* (gp,az). However, all func-

different alternative proof is provided in Section 9.

To estimate b (gp, @), we use our previous estimates (@ﬁ) . Estimates of f (Em | b1, Em_1>

that converge at rate ns can be obtained by specifying a parametric model f (Em | b1, Tm—1: 77)

n K _ —
and then estimating 1 by 7] that maximizes [] [] f (Lmi | L(m—l),z’7A(m—1),z’;77)- The integral

i=1 m=0

in (8.3) can be easily evaluated by Monte Carlo integration.

9. A Non-standard Parameterization and Parametric Likelihood-based Inference

In Sections 7 and 8, we discussed inference for the direct effect of Ap on Y based on the
semiparametric estimation of SNMMs. In contrast to our approach, in the graphical modelling
literature, the usual approach to estimating a functional ¢ (F') [such as b(gp,az)] of the joint
distribution F (v) of the observed data V = (Y,I,Z) is to specify a fully parametric model for
F (v) depending on a finite dimensional parameter p. Then one estimates p and the functional
g (p) by maximum likelihood. Alternatively, one can give p a prior distribution and estimate
the functional ¢ (p) by its posterior mean or median. Keeping with this spirit, we describe a
reparameterization of the joint distribution of V' in terms of the functions -~y (Zm,ﬁpm,ﬁz) and
b(a@z) that will allow a fully parametric likelihood or Bayesian approach to testing the direct
effect “g”-null mean hypothesis (6.3) and estimating the functionals b (gp,@z). Such an approach
is an alternative to the semiparametric methods described previously. To describe this approach,
we shall need to define v (Zm,ap(mfl),az) =0 (Zm,ap(m,l),az) —b (Zm_l,ap(mfl),az). Since,

by definition, b (szl,ﬁp(m_l),az) = j b (Zm,ap(m_l),ﬁz) dF [Em | mel,ﬁmfl], we have

/1/ (Zm,ap(mfl),ﬁz> dF [Em ‘Zm—laam—l] =0. (91)
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Write
e=Y —-E|Y|Lk,Ax]| =Y —b(Lk, Ak) (9.2)
50
Ele|Lk,Ax] =0. (9.3)

Having defined e, we next note that we have, from their definitions, that

K
b (ZK75K> = Y (Zm,apm,az> +v (Zm,ap(mfl),az> +b(ag) . (9.4)

m=0
Finally, we shall need the fact that (9.1) implies there exists a unique function

v* (Zm,ap(m,l),az) satisfying the standardization condition

v (zm,ﬁp(mfl),az> =04 by, =0 (95)

such that

14 (zm,ap(m_l),az) = (96)

Z (ZmaaP(m—l),aZ> - /V* (zm,EP(m—l),aZ> dF (Em ’szlaamfl> .
Specifically, (9.5) and (9.6) imply

v* (Zm,ap(m_l),az) =v (Zm,ap(m_l),az) -V ({szl,gm = 0} ,ap(m_l),az) . (9.7)

Combining (9.2), (9.4), and (9.6), we obtain

K
Y =¢+ Z y (fm,me,Zz> +b (Zz> + (98)

m=20

K
Z {V* (zmazP(M*l),ZZ> - /]j* (zmazp(mfl),zz> dF (Lm ’Zml,zm1>} .
m=0 :

Thus, the density of f (v) factors as follows.

K
FOV)=F(Y, Ik, Ak) = f (e 1 Tr, Ak) ] £ [Zm | Trc1s At £ [Am | Ty A ] (9.9)
m=0
where (i) e is defined in terms of (Y,Lk,Ag) by (9.8). Thus we have reparameterized the
density f (V) in terms of (i) the function y (Cm,@pm,Tz) satisfying (7.1), (ii) the functions
v* (Zm,ﬁp(m_l),az) satisfying (9.5), (i) the functions b(az), (iv) the density of ¢ | I, ax
subject to (9.3), (v) the densities f (fm | Zm_l,ﬁm_l), and (vi) the densities f (am | Zm,ﬁm_1>.
We are now in a position to provide an alternative proof of Theorem 8.6 that demonstrates the

usefulness of the decomposition (9.8).
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Alternative Proof of Theorem 8.6: Note from its definition in Sec. 3, f; (v) is given by
(9.8) and (9.9) except with the law of A,, given L, A,,_1 putting all its mass on A, = gm (fm>.
Since b(gp,az) = [ ydF, (y) for g = (gp,az), Theorem 8.6 follows from Eq. (9.8)-(9.9) and the
fact that, by (9.3) and (9.1), the terms in (9.8) in ¢ and v* have mean zero both under f (v)
and f, (v).

If the support of Y is the whole real line, the reparameterization (%)-(vi) is unrestricted in the
sense that given any functions and densities satisfying (7)-(vi), we can use the densities (iv)-(vi)
to generate random variables (e, Lx, Ax) and then use the function (i)-(iii) to generate Y via
(9.8). The resulting V = (V, L, A) has a density f (v) satisfying (9.9) with the functions (%)- (i)
the appropriate functionals of f (v).

Remark A: Note, to obtain an unrestricted parameterization, it is essential to replace
u(Zm,aP(m_l),aZ) by v* (Zm,ap(m_l),az) since arbitrary functions u(Zm,ap(m_l),aZ) and
densities f (fm | Zm_l,am_l) will fail to satisfy (9.1). To be more precise, each possible density
f (v) of the data is generated by one and only one collection of functions (7)-(vi). However, if, in
generating data, we modify (7)-(vi) by replacing v* (Zm,ﬁp(m_l),ﬁz) by an unrestricted function
v (Zm,ap(m,l),az) and then replace the terms in set braces in (9.8) by this v (Zm,ap(m,l),EZ%
then each density f (v) is generated by many different collections of the modified functions and
densities (i)-(vi). Now consider a particular density }(v) and its implied functions 7, Z, v,
and densities ;” (6 | ZK,EK), } (fm | Zm,l,am,l), } (am | Zm,ﬁm,ﬁ. In particular, the function
U satisfies (9.1) under }(v) Then }(v) is the image of many different modified collections
(i)-(vi), precisely one of which has the functions ~y, b, v and densities (iv)-(vi) equal to those
implied by }(v) - the collection for which v and density f (fm | Zm_l,ﬁm_l) satisfy (9.1). We
now consider conceptually quite distinct further restrictions on (%)-(vi) induced by Y having a
restricted sample space.

If, as discussed further below, the support of Y is restricted (e.g., Y is discrete with
bounded support), then the representation of F (v) in terms of the densities and (unmodi-
fied) functions (7)-(vi) still holds except that the reparameterization is no longer unrestricted.
These densities and functions must satisfy additional side constraints. For example, if Y
is a non-negative random variable, a direct effect SNMM fails to automatically impose the
constraint that E;(Y) = b(g) is positive. If the mean Y can take any non-negative value
(e.g., Y is a Poisson or over-dispersed Poisson random variable), we can automatically im-
pose this restriction by modelling /n {b (Zm,apm, EZ) /b (Zm, ap(m,l),az) } by ~y (Zm,apm, ay, 7,/))
which we refer to as a direct-effect multiplicative SNMM model. Although we do not investi-
gate this possibility further, the relationship between direct-effect SNMMs and direct-effect
multiplicative SNMMs is similar to that between standard SNMMs and standard multiplica-
tive SNMMs discussed in Robins (1994, 1997) and Robins et. al. (1999). Neither direct-
effect SNMMs nor direct-effect multiplicative SNMMs automatically impose the true restriction
0 < Ey(Y) <1whenY is a Bernoulli random variable. Direct effect logistic SNMMs that model
Cogit {b (Zm,apm,az)} — Logit{b (Zm,ap(m_l),az)} by ~ (Zm,apm,az, ) naturally impose this
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restriction but do not admit simple semiparametric estimators of ¢ even when f (am | Zm,ﬁm,l)
is known. This is because all influence functions for 7 depend on a high dimensional smooth,

i.e., a conditional expectation which is left unrestricted by the model.

9.1. A fully parametric model

It follows from (9.9) that if we specify a direct effect SNMM -~ (Zm,apm,az,w) and para-

metric models b(az,0), f (5 | ZK,EK;nl), 7 (Em \zm_ﬁm—l;??g)a v* (Zm,ﬁp(m,l),ﬁz;m), and

f (am | Loy @1 a) subject to the restrictions

/de e | 0k, ax;m] =0 (9.10)
and

V" (b, Tp(m—1),Tz;M2) = 0 if by =0 (9.11)

the contribution to the likelihood for a single subject can be written

with n = (i}, 15, 15) s p = (¥, 0,0, ’)’,

f [Y | zKaszwae,n] = f [6 (w79777277]3> ‘IK’ZK’TII] ) (913)
K

e (¢,0,19,m3) = 7 (,6) {Zu (L Apm-1)> Azi o) (9.14)
=0

_/ (LvaP(m 1) AZaUQ) dF (Lm ’Zm—lvzm—l;n?;)}

where, again,

J(w70> EH(¢) _b(ZZ;Q) 7H(¢> =Y - Z 7<ZmaszazZ;w) .
m=0

Note that f (V;p) is a non-standard parameterization of the DAG G since, for example, the pa-
rameter 15 occurs both in f (Y | L, A, 0,77) andin f [Lm | Zm,l,fmfl;ng]. IftE (Y | IK,ZK)
can take any value in (—oo,00) the above parametrization, although non-standard, is unre-
stricted and so can be chosen variation independent in the sense that the parameter space
for p' = (¢/,0,1,a) is the product of the parameter spaces for ¢/,0', 1}, m5,15, and o/, If
E(Y | ZK,ZK) can only take any value in (0,00), it is necessary to use multiplicative SN-
MDMs to obtain an unrestricted parametrization that can be chosen variation independent. If
E (Y | ZK,ZK) can only take any value in (0, 1), it is necessary to use logistic SNMMs to obtain

an unrestricted parametrization that can be chosen variation independent.
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9.2. Estimation

We assume we have an unrestricted variation-independent parametrization. Let p,; 5 maximize

the likelihood || f (Vi; p). Due to the fact that « only occurs in the terms f (Am | A1, Lon: a),
i=1

the maximum likelihood estimators (IZMLE,/Q\MLE,?/\J\{LE) of (v,0,n) are the same whether
f (Am | Zm_l,fm) is known (as in a sequential randomized trial), follows a parametric model de-
pending on «, or is completely unknown. On the other hand, our semiparametric g-estimator Tp of
¥ required that we either know (as in a sequential randomized trial) or model f (Am | Am—1,Lm),
but allowed us to leave (a) f [e | fK,ZK], (b) f (Zm | Zm,l,ﬁm,l), (c) v* (Zm,ﬁp(m_l),az), and
(d) b (@z) completely unrestricted. In contrast, to compute ¢ ;7 i, we need to model the densities
and functions (a)-(d), but the densities f (Am, | Am—1,Lm) can be left completely unrestricted.

If all models are correctly specified, Tp v Will be more efficient than even our most efficient
g-estimator @ (t:f fiTe ff). Unfortunately, @ wmre Will be inconsistent for 1 if any of the models
for the densities and functions (a)-(d) are misspecified. [However, in contrast with a standard
parameterization, there will always exist a joint distribution for V' compatible with f(V;p)
for which the direct effect “g”-null mean hypothesis is true. Indeed, it will be true for any
distribution f (V;p) with ¢» = 0.] As discussed previously, the g-estimator ¥ will be consistent
if, as in a randomized trial, f (am | Em,l,zm) is known. In an observational study, it will be
inconsistent if the model for these densities is misspecified. However, since (i) we believe it is
much more feasible to specify a realistic model for f (am | am_ljm) than to specify parametric
models for the densities and functions (a)-(d) above, and () we do not wish to conclude that
Ap has a direct effect when in truth it does not (i.e., ¥y = 0), we prefer, in the interest
of robustness, a g-estimator @ to either the MLE @ MLE O a Bayes estimator Tp g (which is

asymptotically equivalent to Tp mre)- We also prefer the g-estimate @ to @ ymLE because of
n

computational convenience, since the likelihood [] f (Vi; p) can be quite difficult to maximize.
i=1

n
Remark B: The greatest computational difficulty in maximizing [] f (Vi; p) will be due to
=1
the term in set braces in (9.14). Therefore, we might consider modifying the likelihood by replac-
ing the terms in set braces in (9.14) by a model v (Zm,ap(m_l),ZZ; ny) for v (Zm,ap(m_l),zz)

and maximize the modified likelihood subject to the equality constraint
0= [ ¥ (B Aoy Az ) AF (Lo | Tono1 Ao 157) (9.15)

as required by (9.1). Unfortunately, this may create difficulties similar to that found in Lemma
1.1 and Theorem 1.2. Often the only parameter values (1y,73) for which (9.15) holds will be
(n5,7m3) such that v (Zm,ap(m_l),zz; 773) = 0, which is a strong restriction we would not wish
to impose (since it implies that L,, is not a predictor of Y'). Suppose therefore we choose to
maximize the modified likelihood without imposing the constraint (9.15).

This implies that we are using the modified parameterization (%)-(vi) described in a Remark

A of Sec. 9. Hence the parameter p is no longer guaranteed to be identified, since many modified
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collections of functions (i)-(vi) imply the same distribution f(v). However, if the parameter p is
of small or moderate dimension, p will usually be identified. That is, the statement f(V;p;) =
f(V;py) wp.l will be false for all py, py in the parameter space. Assuming identification, let
p* be the probability limit of p. Suppose, as will surely be the case, (9.15) fails under p*. Then
even if (i) the model is correctly specified so that f(V;p*) actually generated the data and (%)

@ MmLE converges to ¢* = 0, we cannot conclude that the direct-effect “g”-null mean hypothesis

(6.2) is true. To see why, adopt the notation of Remark A of Sec. 9 and write }(v) = f(v;p*)
to represent the distribution generating the data with associated blip function foy (Zm,apm,az).
As discussed in Remark A, (a) the function % (Zm,apm,az) will differ from the function

vy (Zm,ﬁpm,ﬁz;w*> = 0 when (9.15) fails at p* and (b) the direct-effect “g”-null hypothesis is
the hypothesis that %(Zm,apm,az) = 0. Thus, unconstrained maximization of the modified
likelihood is to be avoided.

9.3. Contrasts revisited

As noted above, to estimate b (gg),az) —-b (gff),az) we must specify and estimate models for
¥ (Zmﬁpm,az) and f (fm | Zm_l,am_l). To estimate ratio contrasts between these means, we
must estimate the functional b(a@yz) as well. Finally, suppose we wish to estimate the contrasts
between distribution functions corresponding to the regimes (gg),az> and (gg)ﬁz). To do so
we must specify and estimate a parametric model for v* (Zmyap(m,l),az) in which case we will
have estimated enough of the joint distribution F (v) of the observables that we can compute
an estimate of the distribution function F, (y) for any regime g.

One relatively robust approach would be to calculate a g-estimate zAb for the parameter 1
of a SNMM and then maximize the likelihood [] f (Vi; p) of a fully parametric model over (6,7)

i

with t held fixed at ¢). Then, our estimation of the distribution function F, (y) will remain
consistent with our earlier semiparametric g-test. In particular, in a sequential randomized trial
with f (am |5m,1,zm,1) known, the actual rejection rate of the direct effect “g”-null mean
hypothesis will equal the nominal level. Indeed, because robustness in this sense is insured, one
might even be willing, as an approximation, to maximize the modified likelihood of Remark B

of Sec. 9.2 without imposing the constraint (9.15).

10. Direct-effect Structural Nested Distribution Models

In this Section, we describe the class of direct effect structural nested distribution models
(SNDMs) for a continuous outcome Y. We purposely re-use (through redefinition) much of
the notation introduced in the section on SNMMs in order that the connection between SNDMs

and SNMMs is as clear as possible.
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10.1. A New Characterization of the Direct-effect “g”-Null Hypothesis

The first step in constructing a direct-effect SNDM is a new characterization of the direct-effect
“o”-null hypothesis (4.3). We assume the conditional distribution of Y given(zm,am> has a
continuous positive density with respect to Lebesgue measure. The quantile-quantile function
v (y) = F7' {F, (y)} mapping quantiles of F; (y) into quantiles of Fy (y) is the unique function
such that if Y7 and Y3 are distributed Fi (y) and F (y), then 7 (Y2) is distributed F} (y).

Let v (y,zm,ﬁpm,ﬁz> be the quantile-quantile function mapping quantiles of
Eq=(ﬁpm,az) (y | @) into quantiles of Eq:(EP(mfl),EZ> (y | m)-

Tt follows from its definition as a quantile-quantile function that: (a) 7 (y,Zm,apm,aZ) =y
if apm =0; (b) vy (y,zm,ﬁpm,ﬁz> is increasing in y; and (¢) the derivative of ~ (y,zm,ﬁpm,ﬁz)

w.r.t. y is continuous. Examples of such functions are

0l (yvzm,aPmﬁ@ =y + 2apm + 3aPmap(m—1) + 4apmly, + bapmazi (10.1a)

Y Yy b, Tpm, Tz) =y exp {2apm + 3apmap(m_1) + 4apmly, + bapmazi } (10.1b)

where £#, is a given univariate function of /,,,. Given the g-identifiability assumption, y (Zm, A pm, 63)
is the direct effect on the quantiles of the distribution of Y of one final blip of Ap,, treatment
of magnitude ap,, at time t,, among subjects with history (Ep(m,l),zm) when treatment Ay is
set to @z. Our interest in y (y,Zm,apm,aZ) is based on the following theorem.
Theorem 10.1: v (y,?m,apm,az) =y for all y,m, b, Tpm,dyz if and only if the direct-effect
“g”-null hypothesis (4.3) holds.

Proof: By Robins (1989, 1997) and Robins and Wasserman (1997), (y,zm,ﬁpm,ﬁz) =
y if and only if the (over-all) “g”-null hypothesis (5.7) holds on DAG G* which (by the arguments
in the proof of Lemma 5.1) is true if and only if (4.3) holds on DAG G.

10.2. Direct-effect Structural Nested Distribution Models

In view of Theorem 10.1, our approach will be to construct a parametric model for y(y, lon, Cpm, az)
depending on a parameter 1 such that ¥(y, {;m, @pm,az) = y if and only if the true value v, of
the parameter is 0.

Definition: The distribution F' of V follows a direct-effect pseudo-structural nested dis-

tribution model y(y,Zm,apm,aZ,¢) if y(y,Zm,apm,aZ) = YY,lm,TpPm,az,%y) where (1)
¥ (y,Zm,apm,aZ,w) is a known function; (2) v, is a finite vector of unknown parameters to
be estimated; (3) for each value of ¢, (y,?m,apm,az,w) satisfies the conditions (a), (b), and
(c) that were satisfied by (y,?m,apm,az); (4) o (y,Zm,apm,aZ,zp) /O’ and
0%y (y,Zm,apm,aZ,¢) /o' By are continuous for all ¢; and (5) v (y,zm,ﬁpm,ﬁz,zp) =y if and
only if 1 = 0 so that 1y = 0 represents the direct-effect “g-" null hypothesis.

An example of an appropriate function ~ (y,zm, apm, 0z, w) can be obtained from Eq. (10.1)
by replacing the quantities 2, 3, 4 and 5 by the components of ¢/ = (¢,%,15,1,). We call
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models for « (y,zm,ﬁpm,ﬁz) pseudo-structural because they are models for the distribution
F of the observables V' regardless of whether this distribution has a structural (i.e. causal)
interpretation (as it would in a sequential randomized trial or, more generally, whenever the
assumption of g-identifiability holds). When ~ (y,zm, apm, 63) does have a causal interpretation

as well, we refer to our models as direct-effect SNDMs.

10.3. Semiparametric Estimation

We now consider testing and estimation of v, in the (redefined) semiparametric model (a) char-
acterized by (i) the direct-effect SNDM ~ (y,Zm,apm,aZ, ) and (ii) the densities f (am | Em,l,zm)
are known. Our fundamental tool is the following theorem. For any function +* (y,zm,ﬁpm,ﬁz)
satisfying conditions (a)-(c), satisfied by ~y (y,zm, @pm,az), we recursively redefine the following
random variables: Hp (v*) = ~+* (Y, ZK,ZPk,ZZ), Hp (%) = ~* (Hm+1 (") ,Im,me,ZZ),
and set H (v*) = Ho (7v*). The following theorem, proved in the Appendix, characterizes the
true quantile-quantile function (y,Zm,apm,aZ).

Theorem 10.2: v* (Y, fm,me,ZZ) =7 (Y,fm,me,ZZ> w.p.lifand only if form =0,... K

and any functions t,, (-, -),
B [tm (AZ(m-H)vH (7*)) [Wint1 | Zm,fm} does not depend on Apm w.p.1.

Proof: A direct proof is given in Appendix 1. Alternatively, by Robins (1989, 1997) and
Robins and Wasserman (1997), the function -y is uniquely characterized on DAG G* by
H)IT Arm | Zp(m,l),fm,zz which can be used in place of Eq. (5.8) and the proof strategy
of Sec. 5.2 adopted.

Given a SNDM, define H (¢)) to be H (v*) with v* the function ~ (y,Zm,apm,aZ,w). We
can then construct direct effect g-tests and g-estimates for 1), analogous to those in Sec. 8 since
Theorem 8.2 remains true with the functions 77} (Apm,,y) now arbitrary functions of Y rather
than only linear functions. Again there exists a ¢ If and rqy¢ such that the asymptotic variance
of @ (t:ff,reff) attains the semiparametric efficiency bound for 1, in semiparametric model
(a). Generalizations to observational studies with unknown f (Am | fm,zm,ﬁ is as described
following Theorem 8.2 above. Further, the practical tests and estimators of Sec. 8 are available

without requiring the functions g, to be linear in their first argument.

10.4. Estimation of Some Contrasts

In this section, it will be convenient to adopt the following notation. Write Fiy, 5,) (y | Zm)
as b(y,zm,gp,ﬁz), Fypa, (y) as b(y,gp,az). When gp is the Ap-regime (@pm,0), we write
b (y,zm,gp,az) as b (y,Zm,apm,aZ) and b(y, gp,@z) as b (y,@pm, @z). Finally for the Ap-regime
that is identically zero, we write b (y,gp,az) as b(y,0,az) = b(y,az). In this Section, we will
propose methods to estimate some contrasts b (y,gg),ﬁz) —b (y,gg),ﬁz). To do so, we shall
need to estimate the quantile-quantile function 7 (y,a@z) that maps quantiles of b(y,az) =

b(y,0,az) into those of b(y,0) = b(y,0,0), ie., b(y,0,az) = b{r(y,az),0,0}. Note that
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T (y,az) is increasing in y and 7 (y,az) = y if az = 0. To estimate 7 (y,az) we replace the
semiparametric model (a) with the semiparametric model (b) which imposes the additional
restriction that 7 (y,az) = 7 (y,az;0p) where 7 (y,az;6) is a known increasing function of y
satisfying 7 (y,az;0) =y if az = 0 or # = 0. Thus 0y = 0 reflects the hypothesis b (y,0,az) =
b(y,0,0) of no effect of treatment Ay on the marginal distribution of Y when treatment with Ap
is withheld. The model 7 (y,az; 6) is a marginal structural transformation model in the sense of
Robins (1998, 1999) for the effect of Az on Y when treatment with Ap is withheld. We could
have used any other marginal structural model for b (y,@z). We have chosen the transformation
model because of its relationship to the ordinary structural nested models discussed in Sec.
12. The fundamental tool in constructing an estimate for 8 is the following characterization of
T (y,az). Let 7% (y,@z) be any increasing function of y satisfying r* (y,az) =0 if az = 0.
Define o (7*) = 0 (v,7*) = 7* {H (7) , Az }. Given any function ¢ (e,e) and density t3 (@)

for Az, ie.,
/ ta (az) dp (@z) = 1, (10.2)

let ¢ (az) = E [t{o(7*),az}ta (A7) /W] and c3 (y) = E [t {y, Az} /W] with W = W,
Theorem 10.3: The following are equivalent. (i) 7* (y,ZZ) =T (y,ZZ) w.p.1., (i) for any
function ¢ (e, ) and density t5 (@z)

E’{I/Vi1 [t {0’(7'*> ,Zz} —C (Zzﬂ} =0 (103)

whenever the expectation is finite.

(i) for any t (e, e) and density t2 (az)
E {I/V_1 [t{o(7%), Az} —t2 (Az) 2 {o (7)}]} =0 (10.4)

whenever the expectation is finite.

Proofs of Theorems 10.3 - 10.5 are given at the end of this section.

Remark: The theorem is false if t3 (@7 ) is not a density.

Given a g-estimate @ of ¥4, Eq. (10.3) suggests the following estimator 5(1) of fy. Define
o (1,0) =7{H (), Az;0} and let

§1 (9777/)) = §1 (9777[)7757752) =
Wt [t{g(¢,9),zz} ot zn:tg (Az:) t{o; (w,@),ZZ}/Wi] :

1 _ 41

where t5 (az) satisfies (10.2). Let 9 =0 (@) Eb\(l) (@,t,tg) solve 0 = > Si; (9,@,t,t2).
i=1
(2)

Similarly, Eq. (10.4) suggests the following alternative estimator 9. Let

§2 (9,77/)) = §2 (9777[)71:71:2) =

wL [t {o‘ (¢,0) ,ZZ} — 1 (ZZ> n ! zn:t {o’(¢,9) ,ZZi} /VV;]]
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~2) A2

and let 8 =6 (@) = 9 (w,t,tg) solve 0 = > So; (9,@,7&,7&2). Then, under regularity
i=1

" and /9\(2) will be RAL estimators of 8.

Given RAL estimators 6 and w of Oy and v, we can use the following theorem to estimate the
distribution b (y,0) = b(y,0,0) of Y had all subjects remained untreated with either treatment.

Theorem 10.4: For any function ¢ (@), not necessarily a density,

conditions, by Theorem 10.4, 6

E[W it (Az){Io (1) <yl -0(y,0,0)}] =0 (10.5)

whenever the expectation is finite where, for any event Z, I (Z) = 1 if Z is true and 0 otherwise.

Theorem 10.4 implies that, having chosen ¢ (@z) to insure integrability, if Ay is continuous,
the estimator b(y,0,0) = b (y, 0, 0;@,?0\) =S, W't (Azi) I [O’i (@,/9\) < y} /3 Wi (Az)
solving >, W't (Az:) {I [Ui (@,/9\) < y} —b(y,0, 0)} = 0 will be a RAL estimator of b (y, 0, 0).
Thus /b\(y, 0,0) is discrete with support at the o; (@,5) with density

oo (y ZW Y (Az) {rn (@,5) =y}/ZW[1t (Azi) (10.6)

Furthermore, we can use the following theorem to estimate the non-dynamic contrast

b (y,agp),az) - (y,ag),az) whenever, for m =0,... , K,

v (y,Zm,apm,aZ) = (y,@pm,dz) does not depend on Ly, . (10.7)
First we need to develop some additional notation. Let h (y,z,ﬁ) be the function such that
H=H(y)=h(Y,L,A) . (10.8)

This function is increasing in y and satisfies h (y, l, @) = h(y,a) if (10.7) is true. For any function
q(y, e, e) increasing in y, we define ¢~! (y, », ) to be the function satisfying ¢~ (u, e, e) = y if
q(y,e, ) =u.

Theorem 10.5: If (10.7) holds, then for any regime @ = (ap,az)

b(y,ap,az) = [ 1{7’ (X,az) a}<y]

where X is a random variable with distribution b (y,0,0).

Thus to estimate b (y,ap,az) under (10.7), we compute pr {h’l { (X ayz; ) , ,w} }
with X drawn from the density fo,o (y) of (10.6), where h™! (e, 8, ) is the function h~! (e, e)
based on the blip function ~ (y,Zm,apm,aZ, w> = (Y,0pm,0z,%). We obtain
b (y,ﬁp,ﬁz;@,/@) =>.1 [h_l {7_1 (02' (@,0) az; ) , ,w} } Wt (AZI) /> W 14 (AZl).

When either (10.7) is false or g, is a dynamic regime, it is much more difficult to obtain an
estimator of b (y, gp, @) that is consistent with our direct-effect SNDM. We return to this issue
in Sec. 11.

Proof of Theorem 10.3: A direct proof is given in Appendix 1. Here is an alternative
proof. Under DAG G*, pr* [H (v) >y | Az| = b(y,0,Az) by results in Robins (1989, 1997) on
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estimation of the overall effect of Ap on G*. Furthermore, these results imply that 7 (e, ®) is the

unique function such that
o=7{H(v),Az}["Az . (10.9)
However, (10.9) is equivalent to
E*[q(o,az) —c2(0)] =0 (10.10)

for all g (e, ) where 0 = o (1) = 0 (v,7) and ¢z (y) = E* {q (y, Az) }. However, for any random

variable IV,
E*(N)=E [Nty (A7) /W], (10.11)

where t (@) is the density of A7 on G*. Invoking (10.11) and defining ¢ (¢,az) = q (0, az) t2 (az),
we find that (10.10) is equivalent to (10.4) with o (7*) = 0.
On the other hand, (10.9) is also equivalent to

E*[q(0,Az) —c; (Az)] =0 (10.12)

for all ¢ (e, ) where ¢} (az) = E* [q(0,az)]. Using (10.11) and putting t (o,az) = t2 (az) ¢ (0,az)
and noting t2 (az) cf (@z) = E* [t2(az) q(0,az)| = c1 (@z), we conclude (10.12) is equivalent to
(10.3) with o (7*) = 0.

Proof of Theorem 10.4: Under DAG G*, it follows from Robins (1989, 1997) and (10.9)
that ¢ = o (v, 7) has distribution b (y,0,0). Hence, E* [ {c <y} —b(y,0,0)] = 0. Invoking Eq.
(10.11) completes the proof. An alternative direct proof is given in the Appendix.

Proof of Theorem 10.5: This is an immediate consequence of the definitions of 7 (y,az),

y (y,zm,apm,az>, and h (y,ZK,aK).
11. Parametric Likelihood-based Inference for Direct Effect SNDMs

We now describe a reparameterization of the distribution of V' in terms of the functions ~ (y, U, Tpm, HZ)
and 7 (y,az) that will allow a fully parametric likelihood or Bayesian approach to testing the
direct effect “g”-null hypothesis and estimating the functionals b(y,gp,az). To describe this
approach, we first define v (y,Zm,ap(m_l),aZ) by

b (Z/,Zmﬁp(m—naaZ) =b {V (y,zmvaP(m—l),aZ) 7Zm71,EP(m—1)7aZ} : (111)

That is, v (y, Zm,ﬁp(m_l),ﬁz) is the unique function mapping quantiles of Fg (y | Zm) into quan-
tiles of Fg (y | Zm_1> with @ = {(Ep(m,l),O) ,az )

Thus, since by definition, [ b (y,zm,ﬁp(m_l),ﬁz) dF (L, | Zm,l,ﬁm,l) =b (y,zm,l,ﬁp(m_l),ﬁg),
it follows that

/b [V {Y, s T (1), 02 } 3 b1, Gp(m—1),8z) AF [l | b1, Tp(m_1), Az(m-1)] =  (11.2)

b (Y, bm—1,ap(m—1),a2)
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Now we recursively define the random variables
Hi, Mk, Hix—1, Mg_1,...,Ho, Mo

by Hx = v(Y,Lk,Apk,Az), My = v (Hi, Lr, Apte—1), Az), Hi = 7 (Mis1,Li, App, Az).
Finally, definee = 7 (MO,ZZ>. We also write e = d [Y, ZK,ZK] to emphasize that ¢ is a function
d(-,-,) of the data (Y, Lk, Ak ) that is increasing in V. Thus we can write Y = d ! (¢, Lg, Ak).
We prove the following in Appendix 2.

Theorem 11.1: (i)

pr[Hm >y | L, Al =b(y, Lin, Ap(m-1), Az) (11.3)
so that
Hon [ [ (AP Linir) | Ty Az, Apm-1) ; (11.4)
(ii)
pr [Mp >y | LA =b(y,Lim—1, Apm—1), A7) (11.5)
S0
/\/lmH (Lin>Apm) | Lin—1, Ap(m—1), Az ; (11.6)
(iii)
prle>y| L, A =b(y,0,0) (11.7)
SO

e[[(@.4) . (11.8)

Remark: H,, = Hy, (y) and 0 = o(v,7), in contrast to H,, and e, are not conditionally

independent of any components of (f, Z) given any other components. In particular
H,, HApm | T, Ap(m—1), Az (11.9)

is false (although true on DAG G*) for, were it true, the inverse weight W, 1 would not be

necessary in Eq. (5.1) or in the expectation in Theorem 10.2. Similarly, if o were independent

of Az, the inverse weight W would not be necessary in Egs. (10.3) and (10.4) of Theorem 10.3.
Theorem 11.1 implies that the density f (V') factors as follows.

m=0

where 0e/9Y = dd (Y,ZK,ZK) JOY = {8d’1 (E,ZK,ZK) /86}_1. Thus we have reparameter-
ized f (V) in terms of the functions (%) y (y,?m,apm,az), (it) T (y,az), (iii) v (y,?m,ap(m_l),az)
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satisfying (11.2), (iv) the density f(e) of €, (v) the densities f (£m | €m—1,@m—1), and (vi) the
densities f (am | Zm,am_1>.

However, this reparameterization is not unrestricted since the constraint (11.2) will not hold
for arbitrary densities f (Em | Zm_l,ﬁm_1> and functions v (y,zm,ﬁp(m,l),ﬁz). An unrestricted
parameterization is necessary in order to allow unconstrained likelihood-based inferences, and,
more importantly, to avoid difficulties analogous to those discussed in Remark B of Sec. 9.2.
Therefore, we replace in our parameterization the functions v (y,Zm,aP(m_l),aZ) by the hazard

ratio v* (y,{m, p(m—1), @z ), Where

V (Y, b Gp(m—1),Tz) = A (Y, by Gpm—1),02) /A (Ys {lm—1,bm = 0} ,Apm_1),dz) (11.11)
so that

V* (Y, b, Gpm—1),az) =1 if by =0 and V* (y,lm,Gpim—1),az) is non-negative .  (11.12)

Here A (y,zm,ﬁp(m,l),ﬁz) = -0 {ln [1 —b (y,zm,ﬁp(m,l),ﬁzﬂ } /Oy. It may appear from Eq.
(11.11) that in addition to the function v* our parameterization also depends on the hazard func-
tion A (y, {Zm,l,em = O} ,Ep(m_l),ﬁz). However, A (y, {Zm,l,em = O} ,Ep(m_l),ﬁz) is com-
pletely determined (and thus not part of the parameterization) by the law Fy (y), 7 (y,az),
v (y,Zm,apm,aZ), f (Em | Zm,l,am,l) and v* (y,Zm,ap(m_l),aZ).

Specifically, the A (y, {Zm_l,em = O} ,Ep(m,l),ﬁz) are obtained recursively from these other
functions and densities as follows. First, b(y,0,az) = b (y,Z,l,a,l,aZ) is given by
b(t7 (y,az),0,0) = F. (77! (y,az)), where we have used our convention Z_; = 0. Now for m =
0,..., K—1, given b (y,Zm_l,aP(m,l),aZ), it follows from Robins, Rotnitzky and Scharfstein
(1999, Sec.8.7a) that A (y, {Zm,l,em =0} ,Ep(m_l),ﬁz) is the unique solution

r (y,Zm_l,ap(m,l),aZ) to the Volterra-like integral equation

P (Y lm—1,Tp(m—1),0z) =

I exp |:— jfoo v* (u,zm,ﬁp(mfl),az> r (u,zm_l,ﬁp(mfl),az> du} v* (y,zm,ﬁp(mfl),az> dF (fm | Zm_l,am_1> .

Thus b (y,zm,ﬁp(m,l)ﬁ@ =
1—exp [— v (u,Zm,ap(m_1>,aZ) A (t, {1, bm =0} ,Ep(m_l),az)} du. Further v (y,Zm,ap(m_l),aZ)
can now be obtained by (11.1). Finally, b (y,zm,ﬁpmjz) =b {7 (y,zm,ﬁpm,ﬁz> ,Zm,ﬁp(m_l),ﬁz} i
We thus are in a position now to repeat the recursion with m substituted for m — 1.
It follows from the factorization (11.10) that if we specify a direct effect SNDM
y (y,Zm,apm,aZ,w) and parametric models 7 (y,az;0), f(e;m), f (fm | Zm_l,am_l,n3),
v* (y,Zm,ap(m_l),aZ; 17) and f (am | €y T 1; ) subject to the restrictions 7 (y,az;0) =y if

@z = 0 and the nonnegative function v* (y,zm,ﬁp(m,l),ﬁz; 772) = 1if ¢, = 0, then the contri-
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bution to the likelihood for a single subject can be written

f(Vip) =
K
{85 (¢»97772,773> /aY}f [6 (¢707n27n3) ;771] H f [Am ‘zm,zm—l;a] f [Lm IZm—l,Zm—l;T]S] .

m=0

The parameterization is non-standard because the parameter 75 occurs in two terms. Note that
e (1,60,m5,m3) has no simple relationship to o (¢,6) in contrast to what we found with SNMM
models. The robustness properties of qz vine are analogous to those described for direct-effect
SNMM models. The above parametrization is variation-independent in the sense that any value
of any parameter can occur with any value of any other parameter. However, the parametrization
(11.11) in terms of hazard ratios requires that the measure b (y,Zm,aP(m_l),aZ) be absolutely
continuous with respect to b (y, {Zm_l,ﬁm = O} ,Ep(m,l),ﬁz) for all #,,, which we henceforth
assume to be the case.

Remark: We could have tried to avoid the assumption of absolute continuity mentioned

above by redefining the function v/* (y,Zm,ap(m,l),aZ) to be the unique function satisfying

2 (y7zmvap(mfl)7az) =V (yvz’mdap(mfl):az) -V (y7 {Zm—lvgm = O} 75P(m71)7az)

and

v (y;zm7aP(m—1)7aZ) =0 Zf by =0.

It may appear that, in addition to the function v*, this alternative parameterization also de-
pends on the function v (y, {Zm,l,em = O} ,Ep(m,l),ﬁz>. However, it can be shown that
v (y, {Zm_l,zm = 0} ,Ep(m,l),az) is completely determined (and thus not part of the parame-
terization) by the law F. (y), 7 (y,az), v (y,?m,apm,az), S (lm | Zm,l,ﬁm,l) and
v* (y,zm, Ep(m,l),az). However, as discussed in Sec.(8.7a) of Robins, Rotnitzky and Scharfstein
(1999), this alternative parametrization will not be unrestricted (i.e.,variation independent) if
one allows v* (y,?m,ap(m,l),az) to be non-monotone in y. Non-monotonicity is required if all
possible laws of the observed data are to be represented by the parametrization.

The computational difficulty in computing p,;; 5 is much greater for direct-effect SNDMs
than for direct-effect SNMMs, since at each iteration
A (y, {mel, b = O} ,Ep(m_l),ﬁz) must be recursively computed by solving a series of Volterra-
like integral equations,as described above. With an estimator of p in hand, we can estimate,
through (11.10), the entire joint distribution F'(v) of the observables and thus Fy (y) for any
regime g. A robust and computationally less demanding approach to estimating p than maximum
likelihood is to (i) calculate a g-estimate ¥ of Yo, (i) compute 9=70 (@) as described in
Sec. 10, (ii) estimate 75 by maximizing [ ﬁof (Lmi |f(m_1)i,z(m_1)i;773), and (i) finally

estimate n; and 7, by maximizing [[ f (Vi;p) over (ny,m,) with (¢,0,173) fixed at (@,5,’7?3).

This guarantees the estimator of Fy (y) is consistent with our semiparametric g-test of Sec. 3.
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However, even this option may be computationally difficult because of the need to estimate the
A (y, {zm_l,ﬁm = O} ,Ep(m,l),az) at each iteration. In the next Section, we discuss a different
parameterization which will turn out to have difficulties of its own but also, under further

assumptions, much to recommend it.

12. An Alternative Approach to Estimation of Contrasts

Consider again estimation of Fy, g, (y) = b(y,gp,az). It follows from Robins (1989, 1997)
and Robins and Wasserman (1997) that, under the law f*(v) of DAG G* of Sec. 5.1 with
Ay exogenous, F¥(y) = b(y,0,0), reflecting the fact that b(y,0,0) = F(fquo,azzo) (y) =

w—0(y| Az =0). Further, we obtain independent realizations, say Y*, from Fy, (y | az)
by the following Monte Carlo algorithm:
Step 1: Draw o from b (y,0,0);
Step 2: Draw Lg from f* (o | Gz,0);
Step 3: Recursively for m=1,... , K, draw L, from f* (Em | Lin_1,9p (fm,l) ,HZ,(T);
Step 4: Compute Y* = A~ {771 (0,az) ,LK,gp (ZK) ,EZ} where again h™! is the inverse
function to H = h (Y,ZK,ZPK,ZZK) and is a functional of (y,Zm,apm,aZ).

However, as shown in the proof of Lemma 5.1, Fy, (y |az) = Fy_ 5, (y) = Fypa, (y), so

we can in principle use the above algorithm to draw from our target distribution Fy, 7, (y) as

follows. From a g-estimator @, we obtain an estimate h™! (-,-,-,-,@) of 71 (-,+,-,+). From
an estimator 6 = 0 (@) of 6y, we obtain an estimator 77! (-, ,5) of 771 (.,+). Further, from

(/0\, @), we can draw from b (y, 0,0) using the estimated distribution b (y, 0, 0;5, %Z) with density

J/%,O (y) given in (10.6). Hence to implement an estimated version of the algorithm, it only

remains necessary to estimate
S5 (bm | bn—1,@p(m—1),0z,0) (12.1)
Suppose we could correctly specify a parametric model for (12.1) depending on a parameter 7.
f (b | b1, @p(m—1y,az,057) (12.2)

Then had the data been generated under G*, the score S () =
oln f (Lm | Zm_l,ZP(m,l),Zz, o; 77) /On has mean zero under f* (v) at the true value of . Eq.
(10.11) then implies

E [tg (Zz) 5(77) /W] =0. (123)

Write S () = S(n,0) to emphasize the dependence of the score on ¢. Then (12.3) suggests

estimating n by 7 solving

0=>" t:(Az) S (n,ai (;7),5)) Wy | (12.4)
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for some t3 (a@z). The solution 7} to (12.4) will be a RAL estimator of 7 if the models for (7)
v (y,Zm,apm,aZ), (i) T (y,az), and (iii) the density (12.1) are correctly specified. However,
except in the special case described later, it is unlikely (i)-(iii) will all be correct, since a
constraint must be satisfied. Specifically, as noted previously, by using d-separation on DAG

G*, we have
Az I Lk | Th1, A (12.5)

and further, by (10.9), on G*, o [[* Az. Also o [[* Apm | Az, Am—1, Lim, since, by results in
Robins (1997) for over-all effects, H[[* Apm | Azms Am—1, Lm. These independencies imply
that

k .k
H f* (Lm | szlvszl) = / H f* (Lm | fm*hzm*l:AZm:U) f* (0-) do (126)
m=0 Y m=0

fork=0,... K.
If we specify a model (12.2) which imposes

Azm H* L | Ln1, A 1,0 (12.7)

then (12.6) holds. However, (12.7) is a restriction on the allowable densities f (v) for the data.
If (12.7) is not true, it will be essentially impossible to specify a model (12.2) such that, for
some value of 7y, (i) (12.7) is false and (i) the constraint (12.6) holds. Hence when (12.7) is
false, a parameterization in terms of (i) F (y) = b(y,0,0), (%) the densities (12.1), and the
functions (4ii) v (y, &m,@pm,az) and (iv) T (y,@z) which fails to impose (12.6) will suffer from
the type of difficulties described in Remark A of Sec. 9. However, such a parameterization
cannot be realized if (12.6) is imposed. Thus it becomes important to characterize (12.7) in
some equivalent fashion with a clear causal interpretation, so that we can better judge when it
is substantively reasonable to impose (12.7). We will show that (12.7) can be characterized as
a particular restriction on the functional form of a standard SNDM as studied in Robins (1997)
and Robins and Wasserman (1997).

To characterize this restriction, we recall the definition of a standard SNDM. Let % (y, Urm, Em)
be the quantile-quantile function satisfying b (y,zm,ﬁm) = %(y,Zm,am) ,Zm,ﬁm,l} where
b (y,zm,ﬁm) =b (yjm,ﬁpm,EZm) and b (y,zm,ﬁpk,63m> = F, (y | Zm) for the regime g that
has (i) A, history apy through 5 and zero thereafter and (i) Ay history @z, through t,, and
zero thereafter. It follows that %(y,?m,am) is (a) increasing and continuously differentiable in
y and (b) ¥ (Y, lm,@m) = y if am = 0 (i.e., appm = azm = 0). Robins (1989, 1997) shows (i)
%(y,zm,am) = y if and only if the “g”-null hypothesis (4.1) holds. Now define H=H (%) =

i )

i 1)

;L (%IK,ZK) recursively by I:[K_H (%) =Y and

hw (V.Ik, Ax) =3 [ffkﬂ <q) ,Zk,Zk} . Robins (1989, 1997) shows that
][ An | T A1 - (12.8)

40



Definition: The distribution F (v) follows a standard SNDM ~ (y,zm,ﬁm, 6) if 5 (y,zm,6m> =
%(y,zm,am,éo) and (i) %(y,zm,am,é) satisfies (a)-(b) above and %(y,zm,am,é) = y if and
only if § = 0, so 8o = 0 represents the “g”-null hypothesis (4.1). An example would be

Y (¥, b i, 8) = Y + $102maz(m—1) + 82a2m bl + 3azmapmly, +

840 2mAp(m—1) T 05aPm + 66aPmaAz(m—1) + 67aPmly, Az (m—1) (12.9)

where § = (61,...,87)" and £, is a known function of £,,. We shall need the following.
Definition: We say that %(y,zm,ﬁm) is Ap-direct-effect consistent if % (y,zm,ﬁm) is not a
function of ¢,, when apy, = 0.

Example: Putting ap,, = 0 in (12.9), we are left with the non-zero terms

81a7maz(m—1) + 02azmly, + 04azmap(m_1) -

We thus deduce that % (y,Zm,am) is Ap-direct-effect consistent if and only if the true value 699
of 65 is zero. The importance of this definition is the following.

Theorem 12.1: If % (y,zm,6m> is Ap-direct-effect consistent, the direct-effect “g”-null hypoth-
esis (4.3) holds < ot (y,Zm,am) does not depend on @pm, <>~ (y,Zm,am) =5 (y,azm) does not
depend on lpy, OF G-

Example: Suppose d20 = 0 in model (12.9) so it is Ap-direct-effect consistent. Then the
direct-effect “g”-null hypothesis holds < 639 = ... = 679 = 0. That is, %(y,zm,am,&)) =
6100 2maz(m—1)- Note if 99 # 0 in (12.9), the direct-effect “g”-null hypothesis can be false even
if 630 = ... = 079 = 0 since, for example, App might affect ¢;, which then, in turn, affects Y
via the interaction az,,?;,. Indeed, we developed direct-effect SNDMs model precisely because,

in the presence of terms such as dsaz,fr,, we are unable to use standard SNDMs to test the

ms
direct-effect “g”-null hypothesis. See Robins and Wasserman (1997, Sec. 8.1) for further discus-
sion. Before giving our main theorem, we give another condition equivalent to Ap-direct-effect
consistency.
Definition: There is no L — Ay interaction if, for each m, the quantile-quantile function
Yz (y,zm,ﬁp(m_l),EZm) satisfying b (y,zm,ﬁp(m_l),EZm) =
b {72 (y,Zm,ap(m,l),aZm) ,Zm,ap(m,l),az(m,l)} does not depend on .

We are now ready to state our main theorem of this section which gives alternative charac-
terizations of (12.7).

Theorem 12.2: The following are equivalent:
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Corollary 12.1: Eq. (12.7) implies
J* (b | 1, @m=1,0) = [ (bm | I—1,@m—1,0) and f (o) = f* (o).

Theorem 12.2 indicates that weighting by W,,,! is unnecessary when we impose (12.7). In
particular, it follows from parts (4)-(5) of Theorem 12.1 that (¢,0) can be estimated jointly
by standard g-estimation of a standard SNDM as in Robins (1992, 1997). Further, by part

(4) it follows that, given estimators (1},5), we can estimate the law Fy (y) = b(y,0,0) by

n~IST [ai @,5) > y} as in Robins (1997). Finally, Corollary (12.1) indicates that, given
(12.7), the model (12.2) can be fit by maximum likelihood without needing to reweight, since
the model is also true for the density f (Em | €1, @1, 0). Note, however, that if one wanted
an estimate of ¥ that would be consistent even under misspecification of the model 7 (y,@.;6),
one would have to use the weighted g-estimator @ of Sec. 10, rather than the joint standard
g-estimator of (v, #) mentioned above.

The no L — Ay interaction characterization of (12.7) is probably the most easily interpreted
characterization of (12.7) from a substantive point of view. In assessing the reasonableness of the
no I. — Ay interaction assumption, it is important to recognize that this absence of interaction
is only on a particular scale, the quantile-quantile transformation scale as represented by the
function v, (y,zm,ap(m,l),62m> in the definition of no L — Ay interaction. The no L — Ay
interaction assumption can be empirically tested by specifying a standard SNDM and testing for
no Ap-direct effect consistency. For example, given SNDM (12.9), we would test the hypothesis
820 = 0 using a standard g-test as in Robins (1992, 1997).

13. Discussion

Following Robins (1998, 1999), we could have used direct effect marginal structural models
(MSMs) rather than direct effect SNMs. A direct effect marginal structural distribution model
is a semiparametric model for b(y,@p,az) = Fapa, (y) depending on a finite dimensional pa-
rameter (3, such that 8y = 0 if and only if Fyz, (y) = Fapa, (y) for all @p. The direct effect
g-null hypothesis (4.2) implies 35 = 0 but the converse is false. An SNDM with no L — Ay inter-
action (i.e., d20 = 0 apriori) is a direct effect marginal structural model, although the converse
is false..

A direct effect marginal structural mean model is a semiparametric model for b (@p,az) =
Fapa, (Y) depending on a finite dimensional parameter (3, such that 3, = 0 if and only if
b(@p,az) = b(0,az) for all ap. The direct effect g-null mean null hypothesis (6.2) implies
By = 0 but the converse is false. Robins (1998, 1999) further discusses the advantages and

disadvantages of marginal structural versus structural nested models.

Appendix 1:
Proof of Theorems 8.1 and 8.4: We shall need the following lemma. Let € be as defined
in Eq. (9.2).
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Lemma: For j = —1,0,... , K, and any function t; (e)

|:€W/]+1 (Az(g+1)) | 4; ,fj} =0 (A.1)
B o B K

B |b(Az) Wikt; (Azim) | 45T ) = //b(AZ) ti(Azgen) TT dnAz)  (A2)

. k=j+1
{ v (L, Ap(m-1), Az) Wit (AZ(j—H)) | 4;,L; } =0forj<m<K (A.3)

E {V (Lims Ap(m—1), Az) W, 753 ( Z g+1)) IJ} =

K
/ / v s A1, A7) 1 (AZ(J'+1)> I dn(Az) 0<m<j<K. (A4)
. k=1

Proof of Lemma: Consider (A.3). By Fubini’s theorem, the left hand side of (A.3) is

/ H (A7)t (Azi))

k=j+1

{// H dF (Apy | Ap—1,Azk) dF (Ly | Ly—1, Ap—1)
k=j+1

[ [ v T A1y A7) dF (L | fml,Zml)] ;.

The term in the square brackets is zero by (9.1). (A.1), (A.2), and (A.4) are established by
similar calculations.

Proof of Theorem 8.1: =-Since the right hand sides of (A.1)-(A.4) do not depend on A;,
the conclusion of the theorem follows from (9.2) and (9.4) when we set m = j.

<« Suppose ¥* (fm,me,ZZ) was a second function satisfying the premise of the theorem
that differed from ~ (fm,me,ZZ) on a set of positive probability. Let m* be the largest value
of m such that A (Lm,me,ZZ) =~* (Zm,me,ZZ> - (fm,me,ZZ) is a function of Ap,,
with positive probability. By the assumption that ~* (fm,me,ZZ) = 0 if Ap,, = 0, we are
guaranteed that m* > 0. It follows that the expectation in the theorem will be a function
of Apm~ if and only if [du (Az(m*-u)) t {AZ(m*—‘,—l)} A (Lpm+, Apm+, Az) does not depend on
App~. But this clearly is false for a suitable choice of the function ¢ (e).

Proof of Theorem 8.4: = We must show that

E[o(y,b)t(Az) /W] =E [0 (7,b)t (Az) /Wo | L1, A1) =0. (A.5)

But by (9.4) and (9.2),

K
O-(’va)EH( )_b AZ _5 Z LvaPm 1)7AZ) .
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(A.5) now follows from (A.1) and (A.3).
< This can be proved analogously to Theorem &.1.
Proof of Theorem 10.2-10.4:

We shall require some preliminary results and definitions. First note for regime g =@
Fo 0 1Tm) = [ 01 Tori) AP (bt | T = T o =) (A6)
Now let

f (y,zm,ﬁpm,az> =0b (y,zm,apm,ﬁz> /8y (A7)
denote f; (y | lm) for g = @,@ = {(@pm,0) ,az}. Also note that, from (A.7) and the definition

of v (y,zm,ﬁpm,ﬁz), we have

f (uvzﬂ%ap(mfl)vaZ) = f [771 (U,Zm,apm,az> 7vaavaaZ] 8771 <u7vaavaaZ> /8U
(AS)

Proof of Theorem 10.2: =. We will show by induction that, whenever the expectation

is finite,
E [t (Zz, Hmazm,ZP(m—l)) /Wm+1 ’ Zmafm] = (A9)
/{/t (Az, 1, Lo, Ap(m—1)) f (t, Lin, Ap(m—1), Az) dU} dp (AZ(m+1)) )

which is not a function of Ap,,. This proves the theorem, since H = H () is a deterministic
function of Hm,ZZ,Im_l,ZP(m,D.

Case 1: m = K: (A.9) holds since (i) Hx =~ (Y,ZK,EPK,ZZ) has density
f (UyzKazP(K—l),ZZ> given (ZK,EK>, and (i) Wi 1 = 1 and Azg41) = 0 w.p.1. by con-
vention.

Case 2: Assume (A.9) is true with m + 1 replacing m. We show it as true for m. Now the
LHS of (A.9) is

E {q (Zm+1,fm+1) {f (AZ(m—H) ‘ vazm)}il ‘ vafm} (A.l())
with

q (Zm+1azm+l) =F [WWZ_IQ_Qt {ZZ,’Y (Hm—l-l,fm,zpm,ZZ) ,vazP(m—l)} ‘ Z771—|—1,fm,—}—1i|
(A.11)

where we have used the definition of H,, in terms of H,,+1. Now, by the induction hypothesis,

q (Zm+lvzm+1) = I d:u’ (AZ(m+2)> {/t mZ7 U,Zm,Zp(m_l)] f (h,fm+1,ZPm,ZZ) dh} withu =
v (h,fm,me,ZZ>, which is not a function of Ap(,1). Hence, (A.10) equals

/d/u (AZ(m—‘rl)) {t |ZZ7U’7zmazP(m—l)j| |:/ f (h7zm+laszazZ) dr (Lm—l—l |Imazm):| dh} -
[ (dzimin) { [+ oo T Tty £ (T B A7) i} by (.6,
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We now change the variable of integration from h to u in this last expression to obtain

/dlj’ (AZ(m+1)> { /t (ZZ7uafm,ZP(mfl)> f [771 (U,EmaszazZ> ,Zm,ZPm,ZZ]
[8771 (u,fm,me,ZZ) /au] du},

which is the RHS of (A.9) by (A.8).
<« The proof is analogous to that of Theorem 8.1.
Proof of 10.3: = It is straightforward to show part (i) of the Theorem implies parts (i)

and (%it) if we can show
B[t (Az,0) (W) = B [t {Az.7 (1.7)} /W) = [ du (A7) {/t (Ay.1)  (1,0,0) dh}
(A.12)

with f(h,0,0) = 9b(h,0,0) /Oh. Now the LHS of (A.12) is
E [E {t[Az,7 (H,Az)] /W1 | Ao, Lo} {f[Az0 | LO]}A}
= £ |{ [z [tz r A2)) £ [0.20.077] e} (F (A0 2al) ]

by (A.9),

= [au(Ar) Ut 7 (uAy)] {/f (u, 0,0, A7) dF (LO)}du]
— [ @) | [+ om0, 702)] £ (0.7 ] (A13

with f (u, O,ZZ> = 0b (u,O,ZZ) /Ou. But, by the change of variables h = 7 (u, O,ZZ>, (A.13)

equials
./.du (Az) {/'t(ZZ,h)f{T—l (h,Az),0,4z} {87—1 (h A7) Jon) dh} _
| / dp (Az) { / t (Az,h) f (h,0,0) dh}

by definition of 7 (h,zz). The other parts of the theorem we leave for the reader.

Proof of Theorem 10.4: Define ¢t (Az,0) = t(Az)[I(0 >y) —b(y,0,0)]. Then, by
(A.12), we have E [W 't (Az,0)] = [du(Az)t (Az) [[{I[h>y] —b(y,0,0)} f (h,0,0)dh] =
0, proving Theorem 10.4.

Appendix 2:

Proof of Theorem 11.1: First note pr [’HK >y | L, Z] =
pr[Y >4 (0. Tk Apk, Az) | TA = b [y (5. T Apic, A7) T, Ape, Az =
b [y,fK,Zp(K,l),ZZ] by definition of the function . The proof is now completed by induction
using the following two lemmas.

Lemma 1: If (11.3) is true, then (11.4) is true.
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Proof: pr My >y | L, A] = pr [Hm > v (Y, L, Ap(m—1), Az) | L, A] =
b {1/’1 (y,fm,Zp(m,l),Zz) ,Zm,ZP(m,l),ZZ} =0 (y,fm_l,ZP(m,l),ZZ) by definition of v.
Lemma 2: If (11.4) is true with m + 1 replacing m, then (11.3) is true.
Proof: pr [Hm >y | L, A] = pr [Mms1 > 7" (y, Lm, Apm, Az) | L, A] =
b [7*1 (y,fm,me,ZZ) ,fm,me,ZZ] =b (y,fm,ZP(m_l),Zz) by definition of the function
.
Appendix 3:
Throughout, we use the convention that for any function ¢ (-) with argument @z = Gz,
q(@zm) is q(az) with @z = (Gzm,0), and ¢(0) has @z = 0. Analogous remarks hold for func-

tions of ap.

Proof of Theorem 12.1: We will show (1)=(6)=(5)=(4)=(2)<(3), (3)=(4), and (4)=(1).
(1)=(6): We have noted in Section 12 that, whether or not (12.7) is imposed, o [[* Az and
ApmII" 0 | L, Ap(m—1),Az. Combining these restrictions with (12.7), we obtain the condi-
tional independencies in Part (6).

(6)=(5): It is sufficient to show that

E[q(0) | A, Tm] = E* [¢(0) | Tony Aum] (A3.1)

for any function g (e).

Proof by Induction: In the proof we use the identity
E* [q¢(0) | Ton Am) = E |4(0) t2 (Apmsny | Azm) (Wi | T A | (A32)

where where 9 (AZ(m +1) | sz) is the conditional density of AZ(m +1) given Az under £* (v).
Case 1: m= K: E [q(0) | Ak, Lx| = E* [q(0) | Ak, Lk]| by (A3.2).

Case 2: We assume (A3.1) is true for m + 1 and will prove it true for m.

E [q (0) |Zm,fm] =F [E {q (o) |Zm+1,fm+1} |Zm,fm] =F [E* {q((r) |Zm,fm+1} |Zm,fm} =

B [Wm+l{t2 (AZ(mH)\sz)} E*{q(0) | Am Zm+1}yzm,fm

E* [E* {q (o) | Zm7fm+1} | ZrmLm] [CI( ) | ms ]
the induction hypothesis and (O‘,Az(m_H ) 1T Apm | Lm, Am—1, Azm, the third by (A3.2), and
the fourth by integration under f* (v).

where the second inequality is by

(5)=(4): We know from Robins (1989, 1995, 1997) and Robins and Wasserman (1997) that,
given f(v) there are unique densities (i) fI.{ (h), (ii) f (b | Cm1,Tm—1,h) , f (Qm | €, Cm—1)
and unique functions %(y,Zm,am) which have a continuous positive derivative with respect to

y and satisfy % (y,zm,ﬁm) = 0 if a;;, = 0 such that
L [ K - - L - -
f(vV)= {8H/8Y} f (H> 11 7 <Lm | Lm_lAm_l,H> f(Am | An-1, L) (A3.3)
m=0
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where JEI = }.l(Y, ZK,ZK) is defined in terms of the & (y,zm,6m> as in Sec. 12. Hence, in view
of (5), (4) follows if we can show that o = 7 [h (Y, Lk, Ax),Az] is equal to some function,
say h* (Y, EK,ZK>, that is (a) recursively defined in terms of functions ~* (y,zm,6m> just as
the function 1.1 was recursively defined in terms of the functions % and (b) v* (y,Zm,am) has a
continuous positive derivative with respect to y and satisfies v* (y,zm,6m> =0if ay,, = 0. To do
so, let A1 (y,ZK,Epm,EZk) be shorthand for i1 (y,ZK, (@pm,0), (@zk,0)) and let 7y, azm)
be shorthand for 7! (y, (@zm, 0)). Note h~1 (y,ZK,Epm,EZm) =hp! (y,zm,ﬁpm,EZm) does not
depend on £, 1, as is easily shown from its definition in terms of the ~y (y,Zm,apm,aZ). Now
define v*~! (y, 4y, a0) = h* {7_1 (y,azo) ,Eo,apo,azo} and define y*~! (y,zm,ﬁm) recursively
by v*~1 (y,zm,ﬁm) =h! {7_1 [’y* (y,zm_l,ﬁm_1> ,EZm] ,Zm,ﬁpm,EZm}, where v* (y, ®) is the
inverse function to v*~! (y,e). Tt is then straightforward to check that ~* (y,Zm,am) has a
continuous positive derivative with respect to y and satisfies v* (y,zm,ﬁm) = 0 if a,, = 0. Fur-
thermore, one can check that h* (y,ZK,EK) can be recursively obtained from the v* (y,Zm,am)

in the appropriate manner. This completes the proof.

o1
(4)=(2): Tt follows from the above proof that (5)=(4) that when ap,, =0, v (y,%,a0) =

71 (y,az0) does not depend on £y, and that A (y,Zm,am) =71 [% (y,Zm_l,am_l) ,EZm}

o1  _
does not depend on £,,,. Combining these results, we conclude that when ap,, = 0, ¥ (y, b, 6m>

does not depend on ¢,,, concluding the proof.

(2)<(3): From their definitions, %(y,zm,ﬁm) = vz {7 (y,zm,ﬁpm,62m> oy Ap(m—1), Gzm }
so, when app, = 0, % (y,Zm,am) =7y (y,Zm,ap(m_l),aZm).

(3)=(4): We need to show that

h (y,Z,a) =7 [h (y,Z,a) ,EZ] (A3.4)
under the no L — Ay interaction assumption
Yz (sl Tp(—1):Tzk) = Yz (¥>Bp(k—1)>Tzk) - (A3.5)

We shall require two preliminary lemmas.
Lemma A3.1: (A3.5) implies, for —1 < k < m,

b (Y, k> Bpim—1),@zm) = b{u, U, Tp(m—1), Tz(m—1) } (A3.6)

where u = v, (y,ap(m,l),aZm).
Proof of Lemma A3.1: By definition of v,, (A3.6) holds for k = m. Hence it suf-
fices to show that if (A3.6) is true for k, it is true for & — 1. Now b (y,Zk,l,ap(m,l),aZm) =

S0 (Y, Cks@pim—1),Tzm) dF (0 | Cp—1,Gk—1) = [ b (, Ly, Tpim—1), Tz(m—1)) AF (g | Cp1,Tp—1)

b (u,Zk,l,ap(m_l),az(m_l)), where the second to last equality is by the induction hypothesis.
Lemma A3.2: Eq. (A3.5) implies

Yz (U, OaaZm) =7 (U*7€07 aPOaaZ(m71)> (A37)
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with w = v (y, 4, apo,Gzm) and u* = v, (y,apo, Gzm)-

Proof: b(y, 4, apo,Tzm) = b [u*,lo,apo, Tzm-_1)] = b |y (u*,ﬁo,apo,az(m,l)) 0,0,z (m—1)]
where the first equality is by Lemma A3.1 with @p(,,_1) = (app,0) and the last equality is by
definition of the direct effect blip function . However, b(y, fo,apo,Gzm) = blu,lo,0,azm] =
b hZ (u,0,azm,) ,EO,O,EZ(m_l)]. Hence, since b (y,EO,O,EZ(m_l)) is monotone increasing in y,
the lemma is proved.

Proof that (A3.5)=(A3.4): We shall use induction on K.

Case 1: K = 1: Note l;(s,zl,al) = v, (x*,40,0,az0) with z* = v [u*, ly, apo, azo] where u* =
vz (y,apo,az1) and y = W(S,Zl,ﬁpl,azﬁ. Similarly, 7 [h (s,zl,m) ,631] = v4[%,00,0,az0]
where z = v, [u,0,a21], v = v (y,f0,apo,az1), and y is as defined above. Hence we must show
that = = «*, which is just (A3.7) with m = 1.

Case 2: Assume the theorem is true for K = K*. We shall show it is true for K = K* + 1.

Given (0,a) = ((x+41,0x+41), let 7, ) = ¥ (U, lnsGpm.Tz) and vz, ) = V7 (4,0,azm).
Then

T [h (%zaa) ﬁz] =%70° - VzK* CVZ(K*+1)°T0° -+ VK> O VK*41 (y) - (A3.8)
We now apply (A3.7) successively for m = K* +1, K*,... |1 to obtain
Y70 ©---°Vz(K*+1) © 70 (¥) =Y20°7P0° V701 © V2029 ---© YZo(K*41) (y) (A3.9)

where vpo (y) = v (y, %0, apo,azo) and Yzo,, (¥) = vz (Y, apo,Gzm). Now since by their defini-
tions, v,40 0 Ypo (¥) = 7 (4,40, ag) and h (y,Z,a) =3\ (y,z, a) ,Eo,ao} , the theorem is proved

if we can show that

Iy (Z/,zaﬁ) =%z01°---°YZ0o(K*+1) V1 ©--- 9 VK*11 (y) - (A3.10)

However, treating (¢p, ap) as fixed, we find that (A3.10) is true by the induction hypothesis since
the RHS of (A3.10) is 7 o h for a study with K = (K*+1) — 1 = K*.
(4)=-(1): This implication follows from a probability calculation on G* using Part (6).

Proof of Corollary 12.1: Parts (5) and (6) of Theorem 12.1 imply
K —_— —_—
f*(v) = {00 foy} 1 (o) 11 F* (m | Lm—1,Tm-1,0) f* (am | fm, @m—1) and

K _ -
f)y={00/0y} f (@) TI f(lm | Lm-1,m-1,0) f (am | €m,@m—1). The corollary is now proved
m=0
K -
by noting that by the definition of f* (v), f*(v)/ [ f* (am | Oy 1) =
m=0

FO/ L f (am | T

Final Remark: It is interesting to note that in the context of a SNMM, the assumption of
no L — Az mean interaction, i.e., vy, (Zm,ap(m_l),aZm) =b (Zm,ap(m_l),aZm) -

b (Zm,ap(m_l),az(m_l)) does not depend on ¢,y, is true if and only if v (Zm,ap(m_1>,az) does not
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depend on a,,,. However, it is not true, in the setting of a SNDM, that the assumption (A3.5) of
no L — Ay interaction either implies or is implied by the assumption that v (y,Zm,aP(m,l),aZ)
does not depend on ay,, [unless the null hypothesis 7 (y,az) = y is also true]. This re-
flects the fact that the scale in which the L — Ay interaction is measured by the function

v (y,Zm,aP(m_l),aZ) differs from the scale on which it is measured by v, (y,Zm,aP(m_l),aZm).
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