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About the Tutorial 

CUDA is a parallel computing platform and an API model that was developed by Nvidia. 

Using CUDA, one can utilize the power of Nvidia GPUs to perform general computing tasks, 

such as multiplying matrices and performing other linear algebra operations, instead of 

just doing graphical calculations. Using CUDA, developers can now harness the potential 

of the GPU for general purpose computing (GPGPU).   

Audience 

Anyone who is unfamiliar with CUDA and wants to learn it, at a beginner's level, should 

read this tutorial, provided they complete the pre-requisites. It can also be used by those 

who already know CUDA and want to brush-up on the concepts. 

Prerequisites 

The reader should be able to program in the C language. He/She should have a machine 

with a CUDA capable card. Knowledge of computer architecture and microprocessors, 

though not necessary, can come extremely handy to understand topics such as pipelining 

and memories. 

Copyright & Disclaimer 

 Copyright 2016 by Tutorials Point (I) Pvt. Ltd.  

All the content and graphics published in this e-book are the property of Tutorials Point (I) 

Pvt. Ltd.  The user of this e-book is prohibited to reuse, retain, copy, distribute or republish 

any contents or a part of contents of this e-book in any manner without written consent 

of the publisher.   

We strive to update the contents of our website and tutorials as timely and as precisely as 

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt. 

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our 

website or its contents including this tutorial. If you discover any errors on our website or 

in this tutorial, please notify us at contact@tutorialspoint.com 
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CUDA: Compute Unified Device Architecture. It is an extension of C programming, an API 

model for parallel computing created by Nvidia. Programs written using CUDA harness the 

power of GPU. Thus, increasing the computing performance. 

Parallelism in the CPU 

Gordon Moore of Intel once famously stated a rule, which said that every passing year, 

the clock frequency of a semiconductor core doubles. This law held true until recent years. 

Now, as the clock frequencies of a single core reach saturation points (you will not find a 

single core CPU with a clock frequency of say, 5GHz, even after 2 years from now), the 

paradigm has shifted to multi-core and many-core processors. 

In this chapter, we will study how parallelism is achieved in CPUs. This chapter is an 

essential foundation to studying GPUs (it helps in understanding the key differences 

between GPUs and CPUs). 

Following are the five essential steps required for an instruction to finish: 

 Instruction fetch (IF) 

 Instruction decode (ID) 

 Instruction execute (Ex) 

 Memory access (Mem) 

 Register write-back (WB) 

This is a basic five-stage RISC architecture.  

There are multiple ways to achieve parallelism in the CPU. First, we will discuss about ILP 

(Instruction Level Parallelism), also known as pipelining.  

Pipelining  

A CPU pipeline is a series of instructions that a CPU can handle in parallel per clock. A 

basic CPU with no ILP will execute the above five steps sequentially. In fact, any CPU will 

do that. It will first fetch the instructions, decode them, execute them, then access the 

RAM, and then write-back to the registers. Thus, it needs at least five CPU cycles to 

execute an instruction. During this process, there are parts of the chip that are sitting idle, 

waiting for the current instruction to finish. This is highly inefficient and this is exactly 

what instruction pipelining tries to address. Instead now, in one clock cycle, there are 

many steps of different instructions that execute in parallel. Thus the name, Instruction 

Level Parallelism.  

  

1. CUDA – Introduction 
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The following figure will help you understand how Instruction Level Parallelism works: 

 

  

 

 

 

 

 

Using instruction pipelining, the instruction throughput has increased. Now, we 

can process many instructions in one-clock cycle. But for ILP, the resources of a 

chip would have been sitting idle. 

In a pipe-lined chip, the instruction throughput increased. Initially, one instruction 

completed after every 5 cycles. Now, at the end of each cycle (from the 5th cycle onwards, 

considering each step takes 1 cycle), we get a completed instruction. 

Note that in a non-pipelined chip, where it is assumed that the next instruction begins only 

when the current has finished, there is no data hazard. But since such is not the case with 

a pipelined chip, hazards may arise. Consider the situation below: 

 I1: ADD 1 to R5 

 I2: COPY R5 to R6 

Now, in a pipeline processor, I1 starts at t1, and finishes at t5. I2 starts at t2 and finishes 

at t6. 1 is added to R5 at t5 (at the WB stage). The second instruction reads the value of 

R5 at its second step (at time t3). Thus, it will not fetch the update value, and this presents 

a hazard.  

Modern compilers decode high-level code to low-level code, and take care of hazards. 

Superscalar  

ILP is also implemented by implementing a superscalar architecture. The primary 

difference between a superscalar and a pipelined processor is (a superscalar processor is 

also pipeline) that the former uses multiple execution units (on the same chip) to achieve 

ILP whereas the latter divides the EU in multiple phases to do that. This means that in 

superscalar, several instructions can simultaneously be in the same stage of the execution 

cycle. This is not possible in a simple pipelined chip. Superscalar microprocessors can 

execute two or more instructions at the same time. They typically have at least 2 ALUs. 

Superscalar processors can dispatch multiple instructions in the same clock cycle. This 

means that multiple instructions can be started in the same clock cycle. If you look at the 

pipelines architecture above, you can observe that at any clock cycle, only one instruction 

is dispatched. This is not the case with superscalars. But we have only one instruction 

counter (in-flight, multiple instructions are tracked). This is still just one process.  

 

Take the Intel i7 for instance. The processor boasts of 4 independent cores, each 

implementing the full x86 ISA. Each core is hyper-threaded with two hardware cores. 
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Hyper-threading is a dope technology, proprietary to Intel, using which the operating 

system see a single core as two virtual cores, for increasing the number of hardware 

instructions in the pipeline (note that not all operating systems support HT, and Intel 

recommends that in such cases, HT be disabled). So, the Intel i7 has a total of 8 hardware 

threads.   

SMT  

HT is just a technology to utilize a processor core better. Many a times, a processor core 

is utilizing only a fraction of its resources to execute instructions. What HT does is that it 

takes a few more CPU registers, and executes more instructions on the part of the core 

that is sitting idle. Thus, one core now appears as two core. It is to be considered that 

they are not completely independent. If both the ‘cores’ need to access the CPU resource, 

one of them ends up waiting. That is the reason why we cannot replace a dual-core CPU 

with a hyper-threaded, single core CPU. A dual core CPU will have truly independent, out-

of-order cores, each with its own resources. Also note that HT is Intel’s implementation of 

SMT (Simultaneous Multithreading). SPARC has a different implementation of SMT, with 

identical goals. 

 

 

 

 

 

 

 

 

 

 

 

 

The pink box represents a single CPU core. The RAM contains instructions of 4 different 

programs, indicated by different colors. The CPU implements the SMT, using a technology 

similar to hyper-threading. Hence, it is able to run instructions of two different programs 

(red and yellow) simultaneously. White boxes represent pipeline stalls.  

So, there are multi-core CPUs. One thing to notice is that they are designed to fasten-up 

sequential programs. A CPU is very good when it comes to executing a single instruction 

on a single datum, but not so much when it comes to processing a large chunk of data. A 

CPU has a larger instruction set than a GPU, a complex ALU, a better branch prediction 

logic, and a more sophisticated caching/pipeline schemes. The instruction cycles are also 

a lot faster. 
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The other paradigm is many-core processors that are designed to operate on large chunks 

of data, in which CPUs prove inefficient. A GPU comprises many cores (that almost double 

each passing year), and each core runs at a clock speed significantly slower than a CPU’s 

clock. GPUs focus on execution throughput of massively-parallel programs. For example, 

the Nvidia GeForce GTX 280 GPU has 240 cores, each of which is a heavily multithreaded, 

in-order, single-instruction issue processor (SIMD: single instruction, multiple-data) that 

shares its control and instruction cache with seven other cores. When it comes to the total 

Floating Point Operations per Second (FLOPS), GPUs have been leading the race for a 

long time now. 

 

 

 

 

 

 

 

GPUs do not have virtual memory, interrupts, or means of addressing devices such as the 

keyboard and the mouse. They are terribly inefficient when we do not have SPMD (Single 

Program, Multiple Data). Such programs are best handled by CPUs, and may be that is the 

reason why they are still around. For example, a CPU can calculate a hash for a string 

much, much faster than a GPU, but when it comes to computing several thousand hashes, 

the GPU wins. As of data from 2009, the ratio b/w GPUs and multi-core CPUs for peak 

FLOP calculations is about 10:1. Such a large performance gap forces the developers to 

outsource their data-intensive applications to the GPU. 

GPUs are designed for data intensive applications. This is emphasized-upon by the fact 

that the bandwidths of GPU DRAM has increased tremendously by each passing year, but 

not so much in case of CPUs. Why GPUs adopt such a design and CPUs do not? Well, 

because GPUs were originally designed for 3D rendering, which requires holding large 

amount of texture and polygon data. Caches cannot hold such large amount of data, and 

thus, the only design that would have increased rendering performance was to increase 

the bus width and the memory clock. For example, the Intel i7, which currently supports 

the largest memory bandwidth, has a memory bus of width 192b and a memory clock upto 

800MHz. The GTX 285 had a bus width of 512b, and a memory clock of 1242 MHz. 

2. CUDA – Introduction to the GPU 
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CPUs also would not benefit greatly from an increased memory bandwidth. Sequential 

programs typically do not have a ‘working set’ of data, and most of the required data can 

be stored in L1, L2 or L3 cache, which are faster than any RAM. Moreover, CPU programs 

generally have more random memory access patterns, unlike massively-parallel programs, 

that would not derive much benefit from having a wide memory bus. 

GPU Design  

Here is the architecture of a CUDA capable GPU: 

There are 16 streaming multiprocessors (SMs) in the above diagram. Each SM has 8 

streaming processors (SPs). That is, we get a total of 128 SPs. Now, each SP has a MAD 

unit (Multiply and Addition Unit) and an additional MU (Multiply Unit). The GT200 has 240 

SPs, and exceeds 1 TFLOP of processing power.  

Each SP is massively threaded, and can run thousands of threads per application. The G80 

card supports 768 threads per SM (note: not per SP). Since each SM has 8 SPs, each SP 

supports a maximum of 96 threads. Total threads that can run: 128 * 96 = 12,228. This 

is why these processors are called ‘massively parallel’. 

The G80 chips has a memory bandwidth of 86.4GB/s. It also has an 8GB/s communication 

channel with the CPU (4GB/s for uploading to the CPU RAM, and 4GB/s for downloading 

from the CPU RAM).  
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Memories   

At this point, it becomes essential that we understand the difference between different 

types of memories.  

DRAM stands for Dynamic RAM. It is the most common RAM found in systems today, 

and is also the slowest and the least expensive one. The RAM is named so because the 

information stored on it is lost, and the processor has to refresh it several times in a second 

to preserve data.  

SRAM stands for Static RAM. This RAM does not need to be refreshed like DRAM, and it 

is significantly faster than DRAM (the difference in speeds comes from the design and the 

static nature of these RAMs). It is also called the microprocessor cache RAM.  

So, if SRAM is faster than DRAM, why are DRAMs even used? The primary reason for this 

is that for the same amount of memory, SRAMs cost several times more than DRAMs. 

Therefore, processors do not have huge amount of cache memories. For example, the 

Intel 486 line microprocessor series has 8KB of internal SRAM cache (on-chip). This cache 

is used by the processor to store frequently used data, so that for each request, it does 

not have to access the much slower DRAM. 

VRAM stands for Video RAM. It is quite similar to DRAM but with one major difference: 

it can be written to and read from simultaneously. This property is essential for better 

video performance. Using it, the video card can read data from VRAM and send it to the 

screen without having to wait for the CPU to finish writing it into the global memory. This 

property is of not much use in the rest of the computer, and therefore, VRAM are almost 

always used in video cards. Also, VRAMs are more expensive than DRAM, and this is one 

of the reasons why they have not replaced DRAMs yet. 
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This kind of hardware was popular from the early 1980s to the late 1990s. These were 

fixed-function pipelines that were configurable, but not programmable. Modern GPUs are 

shader-based and programmable.  

The fixed-function pipeline does exactly what the name suggests; its functionality is fixed. 

So, for example, if the pipeline contains a list of methods to rasterize geometry and shade 

pixels, that is pretty much it. You cannot add any more methods. Although these pipelines 

were good at rendering scenes, they enshrine certain deficiencies. In broad terms, you 

can perform linear transformations and then rasterize by texturing, interpolate a color 

across a face by combinations and permutations of those things. But what when you 

wanted to perform things that the pipeline could not do? 

In modern GPUs, all the pipelines are generic, and can run any type of GPU assembler 

code. In recent time, the number of functions of the pipeline are many - they do vertex 

mapping, and color calculation for each pixel, they also support geometry shader 

(tessellation), and even compute shaders (where the parallel processor is used to do a 

non-graphics job). 

Fixed function pipelines are limited in their capabilities, but are easy to design. They are 

not used much in today’s graphics systems. Instead, programmable pipelines using 

OpenGL or DirectX are the de-facto standards for modern GPUs. 

  

3. CUDA – Fixed Functioning Graphics Pipelines 
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The following image illustrates and describes a fixed-function Nvidia pipeline.  

 

Let us understand the various stages of the pipeline now: 

The CPU sends commands and data to the GPU host interface. Typically, the commands 

are given by application programs by calling an API function (from a list of many). A 

specialized Direct Memory Access (DMA) hardware is used by the host interface to 

fasten the transfer of bulk data to and fro the graphics pipeline.  

In the GeForce pipeline, the surface of an object is drawn as a collection of triangles (the 

GeForce pipeline has been designed to render triangles). The finer the size of the triangle, 

the better the image quality (you can observe them in older games like the Tekken 3).  

The vertex control stage receives parameterized triangle data from the host interface 

(which in-turn receives it from the CPU). Then comes the VT/T&L stage. It stands for 

Vertex Shading, Transform and Lighting. This stage transforms vertices and assigns 

each vertex values for some parameters, such as colors, texture coordinates, normals and 
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tangents. The pixel shader hardware does the shading (the vertex shader assigns a color 

value to each vertex, but coloring is done later).  

The triangle setup stage is used to interpolate colors and other vertex parameters to those 

pixels that are touched by the triangle (the triangle setup stage actually determines the 

edge equations. It is the raster stage that interpolates). 

The shader stage gives the pixel its final color. There are many methods to achieve this, 

apart form interpolations. Some of them include texture mapping, per-pixel lighting, 

reflections, etc. 

Shading Using Interpolation  

It is basically assigning a color to each vertex of a triangle on the surface (represented by 

polygon meshes, in our case, the polygon is a triangle), and linearly interpolating for each 

pixel covered by the triangle. There are many varieties to this, such as flat shading, 

Gouraud shading and Phong shading. 

 

 

 

 

 

 

 

Let us now see shading using Gouraud shading. The triangle count is poor, and hence the 

poor performance of the specular highlight. 

 

 

 

 

 

 

 

The same image rendered with a high triangle count.  

Per-pixel Lighting  

In this technique, illumination for each pixel is calculated. This results in a better quality 

image than an image that is shaded using interpolation. Most modern video games use 

this technique for increased realism and level of detail.  

The ROP stage (Raster Operation) is used to perform the final rasterization steps on pixels. 

For example, it blends the color of overlapping objects for transparency and anti-aliasing 
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effects. It also determines what pixels are occluded in a scene (a pixel is occluded when it 

is hidden by some other pixel in the image). Occluded pixels are simply discarded.  

Reads and writes from the display buffer memory are managed by the last stage, that is, 

the frame buffer interface.  
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In this chapter, we will learn about a few key concepts related to CUDA. We will understand 

data parallelism, the program structure of CUDA and how a CUDA C Program is executed. 

Data Parallelism 

Modern applications process large amounts of data that incur significant execution time 

on sequential computers. An example of such an application is rendering pixels.  For 

example, an application that converts sRGB pixels to grayscale. To process a 1920x1080 

image, the application has to process 2073600 pixels. 

Processing all those pixels on a traditional uniprocessor CPU will take a very long time 

since the execution will be done sequentially. (The time taken will be proportional to the 

number of pixels in the image). Further, it is very inefficient since the operation that is 

performed on each pixel is the same, but different on the data (SPMD). Since processing 

one pixel is independent of the processing of any other pixel, all the pixels can be 

processed in parallel. If we use 2073600 threads (“workers”) and each thread processes 

one pixel, the task can be reduced to constant time. Millions of such threads can be 

launched on modern GPUs.  

As has already been explained in the previous chapters, GPU is traditionally used for 

rendering graphics. For example, per-pixel lighting is a highly parallel, and data-intensive 

task and a GPU is perfect for the job. We can map each pixel with a thread and they all 

can be processed in O(1) constant time. 

Image processing and computer graphics are not the only areas in which we harness data 

parallelism to our advantage. Many high-performance algebra libraries today such as CU-

BLAS harness the processing power of the modern GPU to perform data intensive algebra 

operations. One such operation, matrix multiplication has been explained in the later 

sections. 

Program Structure of CUDA 

A typical CUDA program has code intended both for the GPU and the CPU. By default, a 

traditional C program is a CUDA program with only the host code. The CPU is referred to 

as the host, and the GPU is referred to as the device. Whereas the host code can be 

compiled by a traditional C compiler as the GCC, the device code needs a special compiler 

to understand the api functions that are used. For Nvidia GPUs, the compiler is called the 

NVCC (Nvidia C Compiler). 

The device code runs on the GPU, and the host code runs on the CPU. The NVCC processes 

a CUDA program, and separates the host code from the device code. To accomplish this, 

special CUDA keywords are looked for. The code intended to run of the GPU (device code) 

is marked with special CUDA keywords for labelling data-parallel functions, called ‘Kernels’. 

The device code is further compiled by the NVCC and executed on the GPU. 

  

4. CUDA – Key Concepts 
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Execution of a CUDA C Program 

How does a CUDA program work? While writing a CUDA program, the programmer has 

explicit control on the number of threads that he wants to launch (this is a carefully 

decided-upon number). These threads collectively form a three-dimensional grid (threads 

are packed into blocks, and blocks are packed into grids). Each thread is given a unique 

identifier, which can be used to identify what data it is to be acted upon. 

Device Global Memory and Data Transfer 

As has been explained in the previous chapter, a typical GPU comes with its own global 

memory (DRAM- Dynamic Random Access Memory). For example, the Nvidia GTX 480 has 

DRAM size equal to 4G. From now on, we will call this memory the device memory. 

To execute a kernel on the GPU, the programmer needs to allocate separate memory on 

the GPU by writing code. The CUDA API provides specific functions for accomplishing this. 

Here is the flow sequence:  

 After allocating memory on the device, data has to be transferred from the host 

memory to the device memory.  

 

 After the kernel is executed on the device, the result has to be transferred back 

from the device memory to the host memory.  

 

 The allocated memory on the device has to be freed-up. The host can access the 

device memory and transfer data to and from it, but not the other way round. 

CUDA provides API functions to accomplish all these steps. 
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In this chapter, we will discuss the keywords and thread organisation in CUDA. 

The following keywords are used while declaring a CUDA function. As an example, while 

declaring the kernel, we have to use the __global__ keyword. This provides a hint to the 

compiler that this function will be executed on the device and can be called from the host. 

 EXECUTED ON THE: CALLABLE FROM: 

__device__ float function() GPU (device) CPU (host0 

__global__ void function() CPU (host) GPU (device) 

__host__ float function() GPU (device) GPU (device) 

A Sample Cuda C Code 

In this section, we will see a sample CUDA C Code. 

void vecAdd(float* A, float* B, float* C,int N) 

{ 

int size=N*sizeOf(float); 

float *d_A,*d_B,*d_C; 

cudaMalloc((void**)&d_A,size);  

This helps in allocating memory on the device for storing vector A. When the function 

returns, we get a pointer to the starting location of the memory. 

cudaMemcpy(d_A,A,size,cudaMemcpyHostToDevice);  

Copy data from host to device. The host memory contains the contents of vector A. Now 

that we have allocated space on the device for storing vector A, we transfer the contents 

of vector A to the device. At this point, the GPU memory has vector A stored, ready to be 

operated upon. 

  

5. CUDA – Keywords and Thread Organization 
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 cudaMalloc((void**)&d_B,size); 

 cudaMemcpy(d_B,B,size,cudaMemcpyHostToDevice); 

 //Similar to A 

 

 cudaMalloc((void**)&d_C,size);  

This helps in allocating the memory on the GPU to store the result vector C. We will cover 

the Kernel launch statement later. 

cudaMemcpy(C,d_C,size,cudaMemcpyDeviceToHost); 

After all the threads have finished executing, the result is stored in d_C (d stands for 

device). The host copies the result back to vector C from d_C. 

 cudaFree(d_A); 

 cudaFree(d_B); 

 cudaFree(d_C); 

This helps to free up the memory allocated on the device using cudaMalloc(). 

This is how the above program works: 

 The above program adds the corresponding elements of two vectors X and Y, and 

stores the final result in a vector Z. 

 

 The device memory is allocated for storing the input vectors (X and Y) and the 

result vector (Z). 

 

 cudaMalloc(): This method is used to allocate memory on the host. in two 

parameters, the address of a pointer to the allocated object, and the size of the 

allocated object in terms of bytes. 

 

 cudaFree():This method is used to release objects from device memory. It takes in 

the pointer to the freed object as parameter. 

 

 cudaMemcpy(): This API function is used for memory data transfer. It requires four 

parameters as input: Pointer to the destination, pointer to the source, amount of 

data to be copied (in bytes), and the direction of transfer. 
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CUDA Thread Organization 

Threads in a grid execute the same kernel function. They have specific coordinates to 

distinguish themselves from each other and identify the relevant portion of data to 

process. In CUDA, they are organized in a two-level hierarchy: a grid comprises blocks, 

and each block comprises threads. 

For all threads in a block, the block index is the same. The block index parameter can be 

accessed using the blockIdx variable inside a kernel. Each thread also has an associated 

index, and it can be accessed by using threadIdx variable inside the kernel. Note that 

blockIdx and threadIdx are built-in CUDA variables that are only accessible from inside 

the kernel. 

In a similar fashion, CUDA also has gridDim and blockDim variables that are also built-

in. They return the dimensions of the grid and block along a particular axis respectively. 

As an example, blockDim.x can be used to find how many threads a particular block has 

along the x axis. 

 

 

 

 

 

 

 

 

 

 

 

Let us consider an example to understand the concept explained above. Consider an 

image, which is 76 pixels along the x axis, and 62 pixels along the y axis. Our aim is to 

convert the image from sRGB to grayscale. We can calculate the total number of pixels by 

multiplying the number of pixels along the x axis with the total number along the y axis 

that comes out to be 4712 pixels. Since we are mapping each thread with each pixel, we 

need a minimum of 4712 pixels. Let us take number of threads in each direction to be a 

multiple of 4. So, along the x axis, we will need at least 80 threads, and along the y axis, 

we will need at least 64 threads to process the complete image. We will ensure that the 

extra threads are not assigned any work. 

Thus, we are launching 5120 threads to process a 4712 pixels image. You may ask, why 

the extra threads? The answer to this question is that keeping the dimensions as multiple 

of 4 has many benefits that largely offsets any disadvantages that result from launching 

extra threads. This is explained in a later section). 

Now, we have to divide these 5120 threads into grids and blocks. Let each block have 256 

threads.  If so, then one possibility that of the dimensions each block are: (16,16,1). This 

means, there are 16 threads in the x direction, 16 in the y direction, and 1 in the z 



CUDA        

   16 

 

direction. We will be needing 5 blocks in the x direction (since there are 80 threads in total 

along the x axis), and 4 blocks in y direction (64 threads along the y axis in total), and 1 

block in z direction. So, in total, we need 20 blocks. In a nutshell, the grid dimensions are 

(5,4,1) and the block dimensions are (16,16,1). The programmer needs to specify these 

values in the program. This is shown in the figure above.  

 dim3 dimBlock(5,4,1): To specify the grid dimensions 

 

 dim3 dimGrid(ceil(n/16.0),ceil(m/16.0),1): To specify the block dimensions. 

 

 kernelName<<<dimGrid,dimBlock>>>(parameter1, parameter2, ...): Launch the 

actual kernel. 

n is the number of pixels in the x direction, and m is the number of pixels in the y direction. 

‘ceil’ is the regular ceiling function. We use it because we never want to end up with less 

number of blocks than required. dim3 is a data structure, just like an int or a float. 

dimBlock and dimGrid are variables names. The third statement is the kernel launch 

statement. ‘kernelName’ is the name of the kernel function, to which we pass the 

parameters: parameter1, parameter2, and so on. <<<>>> contain the dimensions of the 

grid and the block. 
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In this chapter, we will learn how to install CUDA. 

For installing the CUDA toolkit on Windows, you’ll need: 

 A CUDA enabled Nvidia GPU.  

 A supported version of Microsoft Windows. 

 A supported version of Visual Studio. 

 The latest CUDA toolkit. 

Note that natively, CUDA allows only 64b applications. That is, you cannot develop 32b 

CUDA applications natively (exception: they can be developed only on the GeForce series 

GPUs). 32b applications can be developed on x86_64 using the cross-development 

capabilities of the CUDA toolkit. For compiling CUDA programs to 32b, follow these steps: 

Step 1: Add <installpath>\bin to your path. 

Step 2: Add -m32 to your nvcc options. 

Step 3: Link with the 32-bit libs in <installpath>\lib (instead of <installpath>\lib64). 

You can download the latest CUDA toolkit from here. 

Compatibility 

Windows version Native x86_64 

support 

X86_32 support on 

 x86_32 (cross) 

Windows 10 YES YES 

Windows 8.1 YES YES 

Windows 7 YES YES 

Windows Server 2016 YES NO 

Windows Server 2012 

R2 

YES NO 

 

 

 

6. CUDA – Installation 

http://developer.nvidia.com/cuda-downloads
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Visual Studio Version Native X86_64 

support 

X86_32 support 

on x86_32 

(cross) 

2017 YES NO 

2015 YES NO 

2015 Community edition YES NO 

2013 YES YES 

2012 YES YES 

2010 YES YES 

 

As can be seen from the above tables, support for x86_32 is limited. Presently, only the 

GeForce series is supported for 32b CUDA applications. If you have a supported version of 

Windows and Visual Studio, then proceed. Otherwise, first install the required software. 

Verifying if your system has a CUDA capable GPU: Open a RUN window and run the 

command: control /name Microsoft.DeviceManager, and verify from the given 

information. If you do not have a CUDA capable GPU, or a GPU, then halt.  

Installing the Latest CUDA Toolkit  

In this section, we will see how to install the latest CUDA toolkit. 

Step 1: Visit: https://developer.nvidia.com/cuda-

downloads?target_os=Windows&target_arch=x86_64 and select the desired operating 

system. 

Step 2: Select the type of installation that you would like to perform. The network 

installer will initially be a very small executable, which will download the required files 

when run. The standalone installer will download each required file at once and won’t 

require an Internet connection later to install. 

Step 3: Download the base installer. 

The CUDA toolkit will also install the required GPU drivers, along with the required libraries 

and header files to develop CUDA applications. It will also install some sample code to help 

starters. If you run the executable by double-clicking on it, just follow the on-screen 

directions and the toolkit will be installed. This is the graphical way of installation, and the 

downside of this method is that you do not have control on what packages to install. This 

can be avoided if you install the toolkit using CLI. Here is a list of possible packages that 

you can control: 

 

https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64
https://developer.nvidia.com/cuda-downloads?target_os=Windows&target_arch=x86_64
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nvcc_9.1 cuobjdump_9.1 nvprune_9.1 cupti_9.1 

demo_suite_9.1 documentation_9.1 cublas_9.1 gpu-library-

advisor_9.1 

curand_dev_9.1 nvgraph_9.1 cublas_dev_9.1 memcheck_9.1 

cusolver_9.1 nvgraph_dev_9.1 cudart_9.1 nvdisasm_9.1 

cusolver_dev_9.1 npp_9.1 cufft_9.1 nvprof_9.1 

cusparse_9.1 npp_dev_9.1 cufft_dev_9.1 visual_profiler_9.1 

 

For example, to install only the compiler and the occupancy calculator, use the following 

command: 

<PackageName>.exe -s nvcc_9.1 occupancy_calculator_9.1 

Verifying the Installation 

Follow these steps to verify the installation: 

Step 1: Check the CUDA toolkit version by typing nvcc -V in the command prompt. 
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Step 2: Run deviceQuery.cu located at: C:\ProgramData\NVIDIA Corporation\CUDA 

Samples\v9.1\bin\win64\Release to view your GPU card information. The output will look 

like: 

  

Step 3: Run the bandWidth test located at C:\ProgramData\NVIDIA 

Corporation\CUDA Samples\v9.1\bin\win64\Release. This ensures that the host 

and the device are able to communicate properly with each other. The output will look 

like: 
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If any of the above tests fail, it means the toolkit has not been installed properly. Re-

install by following the above instructions. 

Uninstalling  

CUDA can be uninstalled without any fuss from the ‘Control Panel’ of Windows.  

At this point, the CUDA toolkit is installed. You can get started by running the sample 

programs provided in the toolkit.  

Setting-up Visual Studio for CUDA  

For doing development work using CUDA on Visual Studio, it needs to be configured. To 

do this, go to: File-> New | Project... NVIDIA-> CUDA->. Now, select a template for your 

CUDA Toolkit version (We are using 9.1 in this tutorial). To specify a custom CUDA Toolkit 

location, under CUDA C/C++, select Common, and set the CUDA Toolkit Custom Directory. 
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We have learnt how threads are organized in CUDA and how they are mapped to multi-

dimensional data. Let us go ahead and use our knowledge to do matrix-multiplication using 

CUDA. But before we delve into that, we need to understand how matrices are stored in 

the memory. The manner in which matrices are stored affect the performance by a great 

deal. 

2D matrices can be stored in the computer memory using two layouts – row-major and 

column-major. Most of the modern languages, including C (and CUDA) use the row-

major layout. Here is a visual representation of the same of both the layouts: 

M0,0 M0,1 M0,2 M0,3 

M1,0 M1,1 M1,2 M1,3 

M2,0 M2,1 M2,2 M2,3 

M3,0 M3,1 M3,2 M3,3 

 

Matrix to be stored 

M0,

0 

M0,

1 

M0,

2 

M0,

3 

M1,

0 

M1,

1 

M1,

2 

M1,

3 

M2,

0 

M2,

1 

M2,

2 

M2,

3 

M3,

0 

M3,

1 

M3,

2 

M3,

3 

 

Row-major layout  

Actual organization in memory: 

M0,

0 

M1,

0 

M2,

0 

M3,

0 

M0,

1 

M1,

1 

M2,

1 

M3,

1 

M0,

2 

M1,

2 

M2,

2 

M3,

2 

M0,

3 

M1,

3 

M2,

3 

M3,

3 

 

Column-major layout  

Actual organization in memory 

Note that a 2D matrix is stored as a 1D array in memory in both the layouts. Some 

languages like FORTRAN follow the column-major layout.  

  

7. CUDA – Matrix Multiplication 
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Addressing  

In row-major layout, element(x,y) can be addressed as: x*width + y. In the above 

example, the width of the matrix is 4. For example, element (1,1) will be found at position: 

1*4 + 1 = 5 in the 1D array. 

We will be mapping each data element to a thread. The following mapping scheme is used 

to map data to thread. This gives each thread its unique identity. 

row=blockIdx.x*blockDim.x+threadIdx.x; 

col=blockIdx.y*blockDim.y+threadIdx.y; 

We know that a grid is made-up of blocks, and that the blocks are made up of threads. All 

threads in the same block have the same block index. Each coloured chunk in the above 

figure represents a block (the yellow one is block 0, the red one is block 1, the  blue one 

is block 2 and the green one is block 3). So, for each block, we have blockDim.x=4 and 

blockDim.y=1. Let us find the unique identity of thread M(0,2). Since it lies in the yellow 

array, blockIdx.x=0 and threadIdx.x=2. So, we get: 0*4+2=2. 

In the previous chapter, we noted that we often launch more threads than actually needed. 

To ensure that the extra threads do not do any work, we use the following ‘if’ condition: 

if(row<width && col<width) { 

 then do work 

} 

The above condition is written in the kernel. It ensures that extra threads do not do any 

work. 

Matrix multiplication between a (IxJ) matrix d_M and (JxK) matrix d_N produces a matrix 

d_P with dimensions (IxK). The formula used to calculate elements of d_P is: 

d_Px,y = 𝝨 d_Mx,,k*d_Nk,y, for k=0,1,2,....width 

A d_P element calculated by a thread is in ‘blockIdx.y*blockDim.y+threadIdx.y’ row and 

‘blockIdx.x*blockDim.x+threadIdx.x’ column. Here is the actual kernel that implements 

the above logic. 

__global__ void simpleMatMulKernell(float* d_M, float* d_N, float* d_P, int 

width) 

{ 

This helps to calculate row and col to address what element of d_P will be calculated by 

this thread. 

int row = blockIdx.y*width+threadIdx.y; 

int col = blockIdx.x*width+threadIdx.x; 

This ensures that the extra threads do not do any work.  
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if(row<width && col <width) { 

float product_val = 0 

  for(int k=0;k<width;k++) { 

   product_val += d_M[row*width+k]*d_N[k*width+col]; 

  } 

  d_p[row*width+col] = product_val; 

 } 

   

} 

Let us now understand the above kernel with an example: 

Let d_M be: 

2 4 1 

8 7 4 

7 4 9 

 

The above matrix will be stored as: 

2 4 1 8 7 4 7 4 9 

 

And let d_N be: 

4 8 9 

1 7 0 

2 5 4 

 

The above matrix will be stored as: 

4 8 9 1 7 0 2 5 4 

 

Since d_P will be a 3x3 matrix, we will be launching 9 threads, each of which will compute 

one element of d_P. 
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d_P matrix 

(0,0) (0,1) (0,2) 

(1,0) (1,1) (1,2) 

(2,0) (2,1) (2,2) 

 

Let us compute the (2,1) element of d_P by doing a dry-run of the kernel: 

row=2; 

col=1; 

When (k=0)  

product_val = 0 + d_M[2*3+0] * d_N[0*3+1] 

product_val = 0 + d_M[6]*d_N[1] = 0+7*8=56 

1st Iteration 

product_val = 56 + d_M[2*3+1]*d_N[1*3+1] 

product_val = 56 + d_M[7]*d_N[4] = 84 

Final Iteration 

product_val = 84+d_M[2*3+2]*d_N[2*3+1] 

product_val = 84+d_M[8]*d_N[7] = 129 

Now, we have: 

d_P[7] = 129 
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In this chapter, we will learn about the CUDA threads. To proceed, we need to first know 

how resources are assigned to blocks. 

Resource Assignment to Blocks 

Execution resources are assigned to threads per block. Resources are organized into 

Streaming Multiprocessors (SM). Multiple blocks of threads can be assigned to a single 

SM. The number varies with CUDA device. For example, a CUDA device may allow up to 8 

thread blocks to be assigned to an SM. This is the upper limit, and it is not necessary that 

for any configuration of threads, a SM will run 8 blocks. 

For example, if the resources of a SM are not sufficient to run 8 blocks of threads, then 

the number of blocks that are assigned to it is dynamically reduced by the CUDA runtime. 

Reduction is done on block granularity. To reduce the amount of threads assigned to a 

SM, the number of threads is reduced by a block. 

In recent CUDA devices, a SM can accommodate up to 1536 threads. The configuration 

depends upon the programmer. This can be in the form of 3 blocks of 512 threads each, 

6 blocks of 256 threads each or 12 blocks of 128 threads each. The upper limit is on the 

number of threads, and not on the number of blocks. 

Thus, the number of threads that can run parallel on a CUDA device is simply the number 

of SM multiplied by the maximum number of threads each SM can support. In this case, 

the value comes out to be SM x 1536. 

Synchronization between Threads 

The CUDA API has a method, __syncthreads() to synchronize threads. When the method 

is encountered in the kernel, all threads in a block will be blocked at the calling location 

until each of them reaches the location. 

What is the need for it? It ensure phase synchronization. That is, all the threads of a block 

will now start executing their next phase only after they have finished the previous one. 

There are certain nuances to this method. For example, if a __syncthreads statement, is 

present in the kernel, it must be executed by all threads of a block. If it is present inside 

an if statement, then either all the threads in the block go through the if statement, or 

none of them does.  

If an if-then-else statement is present inside the kernel, then either all the threads will 

take the if path, or all the threads will take the else path. This is implied. As all the threads 

of a block have to execute the sync method call, if threads took different paths, then they 

will be blocked forever.  

It is the duty of the programmer to be wary of such conditions that may arise.  

8. CUDA – Threads 
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Thread Scheduling 

After a block of threads is assigned to a SM, it is divided into sets of 32 threads, each 

called a warp. However, the size of a warp depends upon the implementation. The CUDA 

specification does not specify it. 

Here are some important properties of warps: 

 A warp is a unit of thread scheduling in SMs. That is, the granularity of thread 

scheduling is a warp. A block is divided into warps for scheduling purposes. 

 

 A SM is composed of many SPs (Streaming Processors). These are the actual CUDA 

cores. Normally, the number of CUDA cores in a SM is less than the total number 

of threads that are assigned to it. Thus the need for scheduling. 

 

 While a warp is waiting for the results of a previously executed long-latency 

operation (like data fetch from the RAM), a different warp that is not waiting and 

is ready to be assigned is selected for execution. This means that threads are 

always scheduled in a group. 

 

 If more than one warps are on the ready queue, then some priority mechanism can 

be used for assignment. One such method is the round-robin. 

 

 A warp consists of threads with consecutive threadIdx.x values. For example, 

threads of the first warp will have threads ids b/w 0 to 31. Threads of the second 

warp will have thread ids from 32-63. 

 

 All threads in a warp follow the SIMD model. SIMD stands for ‘Single Instruction, 

Multiple Data’. It is different when compared to SPMD. In SIMD, each thread is 

executing the same instruction of a kernel at any given time. But the data is always 

different. 

Latency Tolerance  

A lot of processor time goes waste if while a warp is waiting, another warp is not scheduled.  

This method of utilizing in the latency time of operations with work from other warps is 

called latency tolerance. 
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In this chapter, we will understand the performance considerations of CUDA. 

A poorly written CUDA program can perform much worse than intended. Consider the 

following piece of code: 

for(int k=0; k<width; k++) { 

 product_val += d_M[row*width+k] * d_N[k*width+col]; 

} 

For every iteration of the loop, the global memory is accessed twice. That is, for two 

floating-point calculations, we access the global memory twice. One for fetching an 

element of d_M and one for fetching an element of d_N. Is it efficient? We know that 

accessing the global memory is terribly expensive – the processor is simply wasting that 

time. If we can reduce the number of memory fetches per iteration, then the performance 

will certainly go up. 

The CGMA ratio of the above program is 1:1. CGMA stands for ‘Compute to Global 

Memory Access’ ratio, and the higher it is, the better the kernel performs. Programmers 

should aim to increase this ratio as much as it possible. In the above kernel, there are two 

floating-point operations. One is MUL and the other is ADD.  

YEAR CPU  (in GFLOPS) GPU (in GFLOPS) 

2008 0-100 0-100 

2009 0-100 300 

2010 0-100 500 

2011 0-100 800 

2012 0-300 1200  

2013 0-400 1500 (K20) 

2014 500 1800 (K40) 

2015 500-600 3000 (K80) 

2016 800 4000 (Pascal) 

9. CUDA – Performance Considerations 
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2017 1300 7000 (Volta) 

Let the DRAM bandwidth be equal to 200G/s. Each single-precision floating-point value is 

4B. Thus, in one second, no more than 50G single-precision floating-point values can be 

delivered. Since the CGMA ratio is 1:1, we can say that the maximum floating-point 

operations that the kernel will execute in 1 second is 50 GFLOPS (Giga Floating-point 

Operations per second). The peak performance of the Nvidia Titan X is 10157 GFLOPS for 

single-precision after boost. Compared to that 50GFLOPS is a minuscule number, and it is 

obvious that the above code will not harness the full potential of the card. Consider the 

kernel below: 

__global__ void addNumToEachElement(float* M) 

{ 

 int  index = blockIdx.x * blockDim.x + threadIdx.x; 

 M[index] = M[index] + M[0]; 

} 

The above kernel simply adds M[0] to each element of the array M. The number of global 

memory accesses for each thread is 3, while the total number of computations is 1 (ADD 

in the second instruction). The CGMA ratio is bad: ⅓.  If we can eliminate the global 

memory access for M[0] for each thread, then the CGMA ratio will improve to 0.5. We will 

attain this by caching. 

If the kernel does not have to fetch the value of M[0] from the global memory for every 

thread, then the CGMA ratio will increase. What actually happens is that the value of M[0] 

is cached aggressively  by CUDA in the constant memory. The bandwidth is very high, and 

hence, fetching it from the constant memory is not a high-latency operation. Caching is 

used generously wherever possible by CUDA to improve performance. 

Memory is often a bottleneck to achieving high performance in CUDA programs. No matter 

how fast the DRAM is, it cannot supply data at the rate at which the cores can consume 

it. It can be understood using the following analogy. Suppose that you are thirsty on a hot 

summer day, and someone offers you cold water, on the condition that you have to drink 

it using a straw. No matter how fast you try to suck the water in, only a specific quantity 

can enter your mouth per unit of time. In the case of GPUs, the cores are ‘thirsty’, and the 

straw is the actual memory bandwidth. It limits the performance here. 
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Apart from the device DRAM, CUDA supports several additional types of memory that can 

be used to increase the CGMA ratio for a kernel. We know that accessing the DRAM is slow 

and expensive. To overcome this problem, several low-capacity, high-bandwidth 

memories, both on-chip and off-chip are present on a CUDA GPU. If some data is used 

frequently, then CUDA caches it in one of the low-level memories. Thus, the processor 

does not need to access the DRAM every time. The following figure illustrates the memory 

architecture supported by CUDA and typically found on Nvidia cards: 

Device code 

 R/W per-thread registers 

 R/W per-thread local memory 

 R/W per-block shared memory 

 R/W per-grid global memory 

 Read only per-grid constant memory 

 

  

10. CUDA – Memories 
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Host code 

This helps in transferring data to/from per grid global and constant memories. 

The global memory is a high-latency memory (the slowest in the figure). To increase the 

arithmetic intensity of our kernel, we want to reduce as many accesses to the global 

memory as possible. One thing to note about global memory is that there is no limitation 

on what threads may access it. All the threads of any block can access it. There are no 

restrictions, like there are in the case of shared memory or registers. 

The constant memory can be written into and read by the host. It is used for storing data 

that will not change over the course of kernel execution. It supports short-latency, high-

bandwidth, read-only access by the device when all threads simultaneously access the 

same location. There is a total of 64K constant memory on a CUDA capable device. The 

constant memory is cached. For all threads of a half warp, reading from the constant 

cache, as long as all threads read the same address, is no slower than reading from a 

register. However, if threads of the half-warp access different memory locations, the 

access time scales linearly with the number of different addresses read by all threads 

within the half-warp. 

How does constant memory work? 

For devices with CUDA capabilities 1.x, the following are the steps that are followed when 

a constant memory access is done by a warp: 

 The request is broken into two parts, one for each half-wrap. That is, two constant 

memory accesses will take place for a single request.  

 

 The request for each half-warp is split into as many discrete requests as there are 

different memory addresses in the initial request, decreasing the throughput by a 

factor equal to the number of separate requests. The cost increases linearly. If 

there is just one memory address that is accessed, then the access is as fast as it 

is from a register. 

 

 If there is a cache hit, then the resulting data is serviced at the bandwidth of the 

cache. 

 

 In case of a cache miss, the resulting data is serviced at the bandwidth of the 

DRAM. 

The __constant__ keyword can be used to store a variable in constant memory. They are 

always declared as global variables. 

Registers and shared-memory are on-chip memories. Variables that are stored in these 

memories are accessed at a very high speed in a highly parallel manner. A thread is 

allocated a set of registers, and it cannot access registers that are not parts of that set. A 

kernel generally stores frequently used variables that are private to each thread in 

registers. The cost of accessing variables from registers is less than that required to access 

variables from the global memory.  

 

SM 2.0 GPUs support up to 63 registers per thread. If this limit is exceeded, the values 

will be spilled from local memory, supported by the cache hierarchy. SM 3.5 GPUs expand 

this to up to 255 registers per thread. 
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Shared Memory 

All threads of a block can access its shared memory. Shared memory can be used for inter-

thread communication. Each block has its own shared-memory. Just like registers, shared 

memory is also on-chip, but they differ significantly in functionality and the respective 

access cost. 

While accessing data from the shared memory, the processor needs to do a memory load 

operation, just like accessing data from the global memory. This makes them slower than 

registers, in which the LOAD operation is not required. Since it resides on-chip, shared 

memory has shorter latency and higher bandwidth than global memory. Shared memory 

is also called scratchpad memory in computer architecture parlance. 

Variable Lifetime 

Lifetime of a variable tells the portion of the program’s execution duration when it is 

available for use. If a variable’s lifetime is within the kernel, then it will be available for 

use only by the kernel code. An important point to note here is that multiple invocations 

of the kernel do not maintain the value of the variable across them. 

Automatic Variables 

Automatic variables are those variables for which a copy exists for each thread. In the 

matrix multiplication example, row and col are automatic variables. A private copy of row 

and col exists for each thread, and once the thread finishes execution, its automatic 

variables are destroyed. 

The following table summarizes the lifetime, scope and memory of different types of CUDA 

variables: 

Variable 

declaration 

Memory Scope Lifetime 

Automatic variables 

other than arrays 

Register Thread  Kernel 

Automatic array 

variables  

Local  Thread Kernel 

__device__ 

__shared__ int 

sharedVar  

Shared Block Kernel 

__device__ int 

globalVar 

Global Grid Application 

__device__ 

__constant__ int 

constVar 

Constant Grid Application 
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Constant variables are stored in the global memory (constant memory), but are cached 

for efficient access. They can be accessed in a highly-parallel manner at high-speeds. As 

their lifetime equals the lifetime of the application, and they are visible to all the threads, 

declaration of constant variables must be done outside any function. 

Memory as a Bottleneck 

Although shared memory and registers are high-speed memories with huge bandwidth, 

they are available in limited amounts in a CUDA device. A programmer should be careful 

not to overuse these limited resources. The limited amount of these resources also caps 

the number of threads that can actually execute in parallel in a SM for a given application. 

The more resources a thread requires, the less the number of threads that can 

simultaneously reside in the SM. It is simply because there is a dearth of resources. 

Let us suppose that each SM can accommodate upto 1536 threads and has 16,384 

registers. To accommodate 1536 threads, each thread can use no more than 16,384/1536 

= 10 registers. If each threads requires 12 registers, the number of threads that can 

simultaneously reside in the SM is reduced. Such reduction is done per block. If each block 

contains 128 threads, the reduction of threads will be done by reducing 128 threads at a 

time.  

Shared memory usage can also limit the number of threads assigned to each SM. Suppose 

that a CUDA GPU has 16k/SM of shared memory. Suppose that each SM can support upto 

8 blocks. To reach the maximum, each block must use no more than 2k of shared memory. 

If each block uses 5k of shared memory, then no more than 3 blocks can live in a SM.  
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As we already know, CUDA applications process large chunks of data from the global 

memory in a short span of time. Hence, more often than not, limited memory bandwidth 

is a bottleneck to optimal performance.  

In this chapter, we will discuss memory coalescing. It is one of the most important things 

that are taken into account while writing CUDA applications. Coalesced memory accesses 

improve the performance of your applications drastically. 

Data bits in DRAM cells are stored in very weak capacitors that hold charge to distinguish 

between 1 and 0. A charge capacitor contains 1, and it shares its charge with a sensor 

that determines if it was sufficiently charged to represent a 1. This process is slow, and 

accessing a bit like this would be very inefficient. Instead, what actually happens is that 

many consecutive cells transfer their charges in parallel to increase bandwidth. There are 

multiple sensors present that detect charges on these cell in parallel. Whenever a location 

is accessed in the DRAM, data at locations adjacent to it are also accessed and supplied. 

Now, if that data were actually needed, then it is used and bandwidth is saved. Otherwise, 

it goes to waste. 

We already know that threads in a warp execute the same instruction at any point in time. 

Let the instruction be LOAD (LD). If it so happens that the threads are accessing 

consecutive memory locations in the DRAM, then their individual requests can be coalesced 

into one. This is detected by the hardware dynamically, and saves a lot of DRAM 

bandwidth. When all threads of a warp access consecutive memory locations, it is the most 

optimal access pattern. For example, if thread 0 of the warp accesses location 0 of the 

DRAM, thread 1 accesses location 1, and so on, their requests will be merged into one. 

Such access patterns enable the DRAM to supply data close to their peak bandwidth. 

Let us take our example of matrix-multiplication and see how the row-major layout gives 

rise to coalesced access pattern, ultimately leading to improved performance. Consider 

the matrix given below: 

M0,0 M0,1 M0,2 M0,3 

M1,0 M1,1 M1,2 M1,3 

M2,0 M2,1 M2,2 M2,3 

M3,0 M3,1 M3,2 M3,3 

(Matrix to be stored) 

  

11. CUDA – Memory Considerations 
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(Row major layout) 

Let us take the threads of a warp. Let each thread process a row. In the 0th iteration, all 

of them will be accessing the 0th element of each row. In the 1st iteration, the 1st element 

of each row, and in the 2nd iteration, the 2nd element. Now, since CUDA stores its matrices 

in row major layout, let us see the access pattern: 

0th iteration 

 Elements accessed: M(0,0), M(1,0), M(2,0) and so on. 

1st iteration 

 Elements accessed: M(0,1), M(1,1), M(2,1) and so on. 

As you can see, the memory locations that are accessed in each loop are not consecutive. 

Hence, coalesced memory access will not be of much help here and optimal bandwidth is 

not achieved. 

Let each thread now access the 0th element of each column. Let us see the access pattern 

now: 

0th iteration 

 Elements accessed: M(0,0), M(0,1), M(0,2) and M(0,3) and so on. 

1st iteration 

 Elements accessed: M(1,0), M(1,1), M(1,2) and M(1,3) and so on. 

As you can see that in each iteration, consecutive memory locations are accessed, and 

hence, all these requests can be coalesced into a single one. This increases the kernel 

performance. 

It may so happen that data are to be accessed in a non-favourable pattern. For example, 

while doing matrix multiplication, one of the matrices has to be read in a non-coalesced 

manner. The programmer has no choice here. So, what can instead be done is that one of 

the matrices can be loaded into the shared memory in a coalesced manner, and then it 

can be read in any pattern (row major or column major). Performance will not be affected 

much since the shared memory is an intrinsically high-speed memory that resides on-chip.  

Here is a tiled kernel for matrix multiplication: 

__global__ void MatrixMulTiled(float *Md, float *Nd, float *Pd, int width) { 

 

 __shared__ float Mds[width_tile][width_tile]; 

 __shared__ float Nds[width_tile][width_tile]; 
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 int bx = blockIdx.x;  

 Int by = blockIdx.y; 

 Int tx = threadIdx.x; 

 Int ty = threadIdx.y; 

 

 //identify what pd element to work on 

 int row = by * width_tile + ty; 

 Int col = bx * width_tile + tx; 

 

  float product_val = 0; 

 

for(int m = 0; m < width/width_tile; m++) { 

 //load the tiles 

 Mds[ty][tx] = Md[row*width + (m*width_tile + tx)]; 

 Nds[ty][tx] = Nd[col*width + (m*width_tile + ty)]; 

 _syncthreads(); 

for(int k=0; k < width_tile; k++) { 

 product_val += Mds[ty][k] * Nds[k][tx]; 

} 

pd[row][col] = product_val; 

}  

} 
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Resources in SM are dynamically partitioned and assigned to threads to support their 

execution. As has been explained in the previous chapter, the number of resources in SM 

are limited, and the higher the demands of a thread, the lower the number of threads that 

can actually run parallel inside the SM. Execution resources of SM include registers, shared 

memory, thread block slots and thread slots. 

In the previous chapter, It has already been discussed that the current generation of CUDA 

devices support upto 1536 thread slots. That is, each SM can support no more than 1536 

threads that can run in parallel. It has to be remembered that there is no capping on the 

number of thread blocks that can occupy a SM. They can be as many as would keep the 

total number of threads less than or equal to 1536 per SM. For example, there may be 3 

blocks of 512 threads each, or 6 blocks of 256 threads each, or 12 blocks of 128 threads 

each. 

This ability of CUDA to dynamically partition SM resources into thread blocks makes it the 

real deal. Fixed partitioning methods, in which each thread block receives a fixed number 

of execution resources regardless of its need leads to wasting of execution resources, 

which is not desired, as they are already at a premium. Dynamics partition has its own 

nuances. For example, suppose each thread block has 128 threads. This way, each SM will 

have 12 blocks. But we know that the current generation of CUDA devices support no more 

than 8 thread block slots per SM. Thus, out of 12, only 8 blocks will be allowed. This means 

that out of 1536 threads, only 1024 will be allocated to the SM. Thus, to fully utilize the 

available resources, we need to have at least 256 threads in each block.  

In the matrix-multiplication example, consider that each SM has 16384 registers and each 

thread requires 10 registers. If we have 16x16 thread blocks, how many registers can run 

on each SM? The total number of registers needed per thread block = 256x10 = 2560 

registers. This means that a maximum of 6 thread blocks (that need 15360 registers) can 

execute in a SM. 

Thus, each SM can have a maximum of 6 x 256=1536 threads run on each SM.  What if 

the number of registers required by each thread is 12? In that case, a thread block requires 

256 x 12 = 3072 registers. Thus, we can have 5 blocks at maximum. This concludes that 

the maximum number of threads that can be allocated to a SM are 5 x 256 =1280.  

It is to be noted that by using just two registers per thread extra, the warp parallelism 

reduces by ⅙.This is known as performance cliff and refers to a situation in which 

increasing the resource usage per thread even slightly leads to a large reduction in 

performance. The CUDA occupancy calculator (a program from Nvidia) can calculate the 

occupancy of each SM. 

Reducing Traffic to the Global Memory Using Tiles 

Let us consider an example of matrix-matrix multiplication once again.  Our aim is to 

reduce the number of accesses to global memory to increase arithmetic intensity of the 

kernel. Let d_N and d_M be of dimensions 4 x 4 and let each block be of dimensions 2 x 

2. This implies that, each block is made up of 4 threads, and we require 4 blocks to 

compute all the elements of d_P. 

12. CUDA – Reducing Global Memory Traffic 
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The following table shows us the memory access pattern of block (0,0) in our previous  

kernel. 

Thread (0,0) M0,0 * 

N0,0 

M0,1 * N1,0 M0,2 * 

N2,0 

M0,3 * N3,0 

Thread (0,1) M0,0 * 

N0,1 

M0,1 * N1,1 M0,2 * 

N2,1 

M0,3 * N3,1 

Thread (1,0) M1,0 * 

N0,0 

M1,1 * N1,0 M1,2 * 

N2,0 

M1,3 * N3,0 

Thread (1,1) M1,0 * 

N0,1 

M1,1 * N1,1 M1,2 * 

N2,1 

M1,3 * N3,1 

From the above figure, we see that both thread (0,0) and thread (1,0) access N1,0. 

Similarly, both thread (0,0) and thread (0,1) access element M0,0. In fact, each d_M and 

d_N element is accessed twice during the execution of block (0,0). Accessing the global 

memory twice for fetching the same data is inefficient. Is it possible to somehow make a 

thread collaborate with others so that they don’t access previously fetched elements? It 

was explained in the previous chapter that shared memory can be used for inter-thread 

communication. 

Tiled Matrix-Matrix Multiplication 

It is an algorithm for matrix multiplication in which threads collaborate to reduce global 

memory traffic. Using this algorithm, multiple accesses to the global memory for fetching 

the same data is avoided. 

 Threads collaboratively load M and N elements into shared memory before using 

them in calculations. 

 

 d_M and d_N are divided into small tiles. Let the tile dimension be equal to the 

block dimension. In our example, each time has dimensions 2 x 2. 

 

 The dot product done by each thread is divided into multiple phases. During each 

phase, all threads in a block collaboratively load two tiles into the shared memory. 

Let us call these tiles Mds and Nds.  

 

 The following figure illustrates the above mentioned points: 

 P1 P1 P1 P2 P2 P2 

threa

d(0,0

) 

M0,

0-

>M

N0,

0-

>Nd

s0,0 

Pval(0,0)+=Mds(0,0)*Nd

s(0,0)+Mds(0,1)*Nds(1,0

) 

M0,

2-

>M

N2,

0-

>Nd

s0,0 

Pval(0,0)+=Mds(0,0)*Nd

s(0,0)+Mds(0,1)*Nds(1,0

) 
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ds0,

0 

ds0,

0 

threa

d(0,1

) 

M0,

1-

>M

ds0,

1 

N0,

1-

>Nd

s0,1 

Pval(0,1)+=Mds(0,0)*Nd

s(0,1)+Mds(0,1)*Nds(1,1

) 

M0,

3-

>M

ds0,

1 

N2,

1-

>Nd

s0,1 

Pval(0,1)+=Mds(0,0)*Nd

s(0,1)+Mds(0,1)*Nds(1,1

) 

threa

d(1,0

) 

M1,

0-

>M

ds1,

0 

N1,

0-

>Nd

s1,0 

Pval(1,0)+=Mds(1,0)*Nd

s(0,0)+Mds(1,1)*Nds(1,0

) 

M1,

2-

>M

ds1,

0 

N3,

0-

>Nd

s1,0 

Pval(1,0)+=Mds(1,0)*Nd

s(0,0)+Mds(1,1)*Nds(1,0

) 

threa

d(1,1

) 

M1,

1-

>M

ds1,

1 

N1,

1-

>Nd

s1,1 

Pval(1,1)+=Mds(1,0)*Nd

s(0,1)+Mds(1,1)*Nds(1,1

) 

M1,

3-

>M

ds1,

1 

N3,

1-

>Nd

s1,1 

Pval(1,1)+=Mds(1,0)*Nd

s(0,1)+Mds(1,1)*Nds(1,1

) 

 

 In the above figure, in phase one, threads of block (0,0) (other blocks will have 

similar behaviour) load two tiles, Mds and Nds into the shared memory. Each tile 

is of size 2 x 2. After the values are loaded into the shared memory, they are used 

in the calculation of dot product.  

 

 The calculation of dot product is done in two phases (P1 and P2 in the above 

diagram). After phase 2 is over, we get the final value of each element of d_P. 

 

 The number of phases required to calculate d_P is equal to N/tile_width, where N 

is the width of the input matrices. Mds and Nds are reused in each phase. 

 

 It should be noted that each value in the shared memory is read twice. In this way, 

we reduce the number of access to global memory by half. As a rule, for a tile of 

size N x N, the number of access to the global memory is reduced by a factor of N. 
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__global__ void MatrixMulKernel(float* d_M, float* d_N, float* d_P, int Width) 

{ 

 

__shared__ float Mds[TILE_WIDTH][TILE_WIDTH]; 

__shared__ float Nds[TILE_WIDTH][TILE_WIDTH]; 
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int bx = blockIdx.x;  

int by = blockIdx.y;  

int tx = threadIdx.x; 

int ty = threadIdx.y; 

 

int Row = by * TILE_WIDTH + ty;  

int Col = bx * TILE_WIDTH + tx; 

float Pvalue = 0; 

 

 

for (int m = 0; m < Width/TILE_WIDTH;m++) { 

Mds[ty][tx] = d_M[Row*Width + m*TILE_WIDTH + tx];   

Nds[ty][tx] = d_N[(m*TILE_WIDTH + ty)*Width + Col];  

__syncthreads(); //Wait till all the threads have finished loading elements 

into the tiles. 

 

for (int k = 0; k < TILE_WIDTH;k++) { 

Pvalue += Mds[ty][k] * Nds[k][tx];  

__syncthreads();  

 } 

d_P[Row*Width + Col] = Pvalue;  

} 
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As we know already, the increase in DRAM bandwidth has not kept up with the increase in 

processor speed. DRAM is made up of capacitors, that need to be refreshed several times 

per second, and this process is slow. One of the workarounds is to use a SRAM instead of 

DRAM. SRAMs are static in nature, and hence, need not be refreshed. They are much 

faster than DRAMs, but also much more expensive than them. Modern GPUs have 2-4G of 

DRAM on average. Using SRAM to build memories of that size would increase the cost 

manifolds. 

So, instead, what architecture designers did was they used small memories made up of 

SRAM that lay very close to the processor. These memories are called caches, and they 

can transmit data to the processor at a much higher rate than DRAM. But they are typically 

small in size. The modern GPU contains three levels of caching – L1, L2 and L3. The L1 

cache has higher bandwidth compared to other L2 and L3 caches. As we go farther from 

the cores, the size of the memory increases and its bandwidth decreases.  

Caches have been around because of the following attributes of most of the computer 

programs: 

 Temporal locality: Programs tend to use data that they have used recently. 

 

 Spatial locality: Programs tend to access data residing in addresses similar to 

recently referenced data.  

Computer programs have something called as a working set. The working set of a 

program can be defined as the set of data a program needs during a certain interval of 

time to do a certain task. If the working set can be stored in a cache, then the program 

won’t have to go to the higher levels of memory to fetch data.  

Cache Implementation  

One important thing to note is that caches are completely transparent to the operating 

system. That is, the OS does not have any knowledge if the working set of the program is 

cached. The CPU still generates the same address. Why is it so? Why doesn’t the OS know 

about caches? It is simply because that would defeat the very purpose of caches; they are 

meant to decrease the time the CPU wastes waiting for data. Kernel calls are very 

expensive, and if the OS takes into account the presence of caches, the increase in the 

time required to generate an address would offset any benefits that caches offer. 

Now, we know that the CPU still generates the same address (it addresses the RAM 

directly). So, to access caches, we somehow need to map the generated addresses with 

the cached addresses. In caches, data are stored in blocks (also called lines). A block is a 

unit of replacement - that is, if some new data comes to be cached, a block of data would 

be evicted. What block is evicted is a matter of policy (one such policy is the LRU policy). 

The least recently used block is evicted (takes advantage of temporal locality). 

  

13. CUDA – Caches 
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Different Types of Caches 

In this section, we will learn about the different types of caches: 

Direct mapped cache  

This is a simple cache. Blocks of the RAM map the cache size to their respective address 

module. On a conflict, it evicts a block. The advantage is that it is really simple to 

implement, and is very fast. The downside is that due to a simple hash function, many 

conflicts may arise. 

Associative cache  

In associative caches, we have a set of associated blocks in them. Now, blocks from the 

RAM may map to any block in a particular set. They are of many types – 2-way, 4-way, 

8-way. If the cache is an n-way associative cache, then it can eliminate conflicts; if at max 

n blocks in the RAM map to the same block in the cache concurrently. These types of 

caches are hard to implement than direct mapped caches. The access time is slower and 

the hardware required is expensive. Their advantage is that they can eliminate conflicts 

completely. 

Fully associative cache  

In these caches, any block of the RAM can block to any block in the cache. Conflicts are 

eliminated completely, and it is the most expensive to implement. 

Cache Misses  

Caches have 4 kinds of misses: 

 Compulsory misses 

 Conflict misses 

 Capacity misses 

 Coherence misses (in distributed caches) 

Compulsory misses  

When the cache is empty initially, and data come to it for caching. There is not much that 

can be done about it. One thing that can be done is prefetching. That is, while you are 

fetching some data from the RAM into the cache, also ensure that the data you will be 

requiring next are present in the same block. This would prevent a cache miss the next 

time.  

Conflict misses  

These type of misses happen when data need to be fetched again from the RAM as another 

block mapped to the same cache line and the data were evicted. It should be noted here 

that fully-associative caches have no conflict misses, whereas direct mapped caches have 

the most conflict misses.  
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Capacity misses  

These misses occur when the working set of the program is larger than the size of the 

cache itself. It is simply because some blocks of data are discarded as they cannot fit into 

the cache. The solution is that the working set of a program should be made smaller. 

Coherence misses  

These happen in distributed caches where there is in-consistent data in the same 

distributed cache. 

 

 

 

 

 

 


