Cheatography

Astronomy Cheat Sheet by ajschwecks via cheatography.com/20252/cs/3080/

Everything	Everything (cont)	Everything (cont)	Still Everything
How does critical density relate to	- transit method: if things are lined	Galileo	baryonic and non baryonic
universe?	up, exoplanet will cross in front of	- telescopic discoveries for keplar	WIMPS
- Basically how much matter is	star and block a portion of light	support	- baryonic suggestions are
there per cubic cm	(very tiny)	- TONS OF TELESCOPE	incomplete
- If enough, enough gravity to	- spectroscopic method: cross star,	OBSERVATION	- baryons are what we are made of
recollpase	but doesn't block light	Spiral structure	(all atoms)
- If not, Universe could go on	- star wobbles a little bit due to the	- spiral galaxies	- non baryonic: things that are not
expanding forever	gravity of the star (doppler shift)	- waves of higher and lower	made out of what we are made of
- Dark energy - seals the fate of	Cosmic module principal	density that travel through disk	(dark matter)
the universe and an expansive	- the universe is the same every	- higher density = spiral arms light	• cepheids
body	and in all direction (does not differ	up as stars form	- stage of the stars life after the
Accretion	greatly anywhere)	Finding mass of a star	main sequence
- Binary star: material could fall of	- helps explain the structure of the	- in binary = easy	- variable stars
companion onto pair star	universe	- in not binary = not easy	- They have very particular patterns
- doesn't fall straight in, spirals in	Brahe	- infer in comparison to other stars	of change and variability
and forms disk around the star	- made telescope obvs to measure	Doppler effect	- luminosity is related to the period
- accretion disk holding pattern	positions of planets	- change in frequency or	 pulsars and neutron stars
until it falls into star	Copernicus	wavelength due to the relative	- pulsars are neutron stars
Milky Way size	- first to say heliocentric	motion of the source and observer	- connected by very strong
- 100k light year across	Keplar	xray binary	magnetic fields
How do we detect exosolar	- mathematical laws for the orbits	- exist and due to transfer of	- rotate very quickly
planets?	- used bra he's precise	energy from of one star to next, X-	- if you tried to take normal stars
- same as binary stars	measurements	ray flares	and spin them that fast, they would
- direct detection: take a picture,	- ellipses and speed change as		pull apart
hard because light gets swamped	they changed distant		- radio waves are most common,
			optical light too and xray

С

By ajschwecks

cheatography.com/ajschwecks/

Not published yet. Last updated 17th December, 2014. Page 1 of 3.

Sponsored by Readability-Score.com

Measure your website readability! https://readability-score.com

Cheatography

Astronomy Cheat Sheet by ajschwecks via cheatography.com/20252/cs/3080/

Still Everything (cont)	Still Everything (cont)	Moar	Moar (cont)
 nova explosions and xray binary 	- acts like a gas or a fluid	1000 exoplanets	• What is hubble constant?
explosions	- Gravity tries to make the star	Standard candle	- 70 km/sec/Mpc
- very similar	contract	- object who's luminosity before	- velocity for every km away from
- dump material onto surface of	- Pressure is center is trying to	you measure the distant	us, moving 70x that fast away from
star = surface explosion	slow down contraction	Greenhouse effect	us
 young medium and old clusters 	Era's of the Universe	- CO2 concentration in atmosphere	 Interactions of light and matter in
when they turn off main sequence	- First less than a second, particle	increase, plants grow larger	respect to radiation
- for the sun, 10 billion years it	era	- Plant grows larger, removes	- light can scatter off of matter (blue
turns on to main sequence	- particles are being created or	CO2, puts out O2 = NEGATIVE	sky)
Low mass	destroyed	FEEDBACK	- absorb light (photons disappear)
- eject nebula, end up in white	- five minutes	- Ice is a good reflector of sunlight,	- produce light and photons (excite
dawrf	- nucleosynthesis	water is good absorber	atoms in a gas)
Galileo's experiment with velocity	- first 400k years, when universe	- Temperature of earth rises, ice	- bend light (refraction)
and acceleration	becomes transparent	melts, less reflected and more	 Equilibrium of stars
- rolled balls down a plain	- radiation can flow freely	absorbed	- amount of energy created =
(demonstration in class)	throughout universe	- warm the earth, melt more ice,	energy flowing out of star
Hubble relation explain age of	- after that, stars begin to form	make warmer = POSITIVE	- have to stay in balance or star will
universe	- cosmic microwave background	FEEDBACK	heat up or cool down and mess up
- Several ways to think about it	Hubble relationship in graph form	Bootstrapping	star
- universe is expansion, hubble	- Velocity x Distant	- process of starting with one set of	 Filaments (cluster of galaxies)
relation tells rate of expansion	- Straight line = hubble constant	distance measurements and using	- 3d spider web = filaments are
- calculate how long ago		it to progress	lines and thread of web
expansion started which tells us		- measuring parallax using radar	- basically where galaxies and
distant		inside solar system by using size of	stars are heavily concentrated
Equilibrium in stars		earth's orbit	
- Gravitational and Hydrostatic		- once measured parallax,	
equilibrium		measure stars and clusters	

By ajschwecks

cheatography.com/ajschwecks/

Not published yet. Last updated 17th December, 2014. Page 2 of 3. Sponsored by **Readability-Score.com** Measure your website readability! https://readability-score.com

Cheatography

Astronomy Cheat Sheet by ajschwecks via cheatography.com/20252/cs/3080/

Moar (cont)

• Wiens law / Greenhouse

- wavelength at which most of the

radiation comes out = temperature - our atmosphere absorbs infrared, radiation gets trapped but sun's radiation (sunlight) reaches the

earth

- earth heats up because infrared is being trapped
- · Dark matter evidence
- measured velocity of objects orbiting milky way

- how much mass do you

need/gravity to keep object in orbit - not enough present, has to be something else that has mass

- gravitational lensing

- light bends under influence of gravity

- gravity distorts images more than there is present, must have dark matter

- clusters of galaxies are filled with hot gas

Moar (cont)

- why doesn't it escape? moving very fast
- more gravity than should be present

- Dark energy existence
- universe is accelerating
- shouldn't be accelerating unless acted on by separate force
- · Energy sources
- Certain labs will help explain - Release gravitational energy to
- create heat - waterfall, gravity pulls water
- down which creates electrical energy
- Chemical energy --> heat
- burning
- nuclear energy
- nuclear reactions to create heat or kinetic
- kinetic energy
- motion energy
- potential energy - springs
- · Motions of spiral galaxy
- motions in disk are orderly

Moarrr (cont)

- motions in bulge are random and spontaneous
- Measuring composition
- spectral lines
- · Black holes and time
- all clocks slow down when nearing a black hole
- distorts time
- · Black hole at the center of a galaxy
- orbit of stars
- something dark with TONS of
- mass at center
- no light being emitted at center
- schwarzchild radius
- radius from which light cannot escape
- · Olber's paradox
- if universe is infinite in space and time, if i go out in a direction, i will eventually hit a bright star
- sky should be bright, then
- the universe is finite in time, i.e. **BIG BANG**
- · matter vs antimatter
- antimatter exists, we see it during nuclear reaction

- counterpart to matter with
- opposite charges
- very limited in nature

- weird because in physics b/c antimatter and matter should be equal

- andromeda nebula?
- didn't know it was a galaxy,
- classified as nebulae
- hubble discovered that it was far
- away and as big as our Milky Way
- · High Mass vs Low Mass
- High mass ends in supernovae explosions
- Low Mass turn into white dwarf
- Binary stars can gain matter from other stars
- CDMS lab searches
- One of the ways we look for dark matter
- Telescopes
- size goes up, collecting area goes up^2
- bigger telescope = better resolution

By ajschwecks

cheatography.com/ajschwecks/

Not published yet. Last updated 17th December, 2014. Page 3 of 3.

Sponsored by Readability-Score.com Measure your website readability! https://readability-score.com