

BEGINNING

ReactJS Foundations

Building User Interfaces with ReactJS

BEGINNING

ReactJS Foundations

Building User Interfaces with ReactJS
AN APPROACHABLE GUIDE

Chris Minnick

Copyright © 2022 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

ISBN: 978-1-119-68554-8
ISBN: 978-1-119-68561-6 (ebk)
ISBN: 978-1-119-68558-6 (ebk)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of
the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923,
(978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201)
748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations or warranties with respect
to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without
limitation warranties of fitness for a particular purpose. No warranty may be created or extended by sales or promotional
materials. The advice and strategies contained herein may not be suitable for every situation. This work is sold with the
understanding that the publisher is not engaged in rendering legal, accounting, or other professional services. If professional
assistance is required, the services of a competent professional person should be sought. Neither the publisher nor the author
shall be liable for damages arising herefrom. The fact that an organization or Website is referred to in this work as a citation
and/or a potential source of further information does not mean that the author or the publisher endorses the information
the organization or Website may provide or recommendations it may make. Further, readers should be aware the Internet
Websites listed in this work may have changed or disappeared between when this work was written and when it is read.

For general information on our other products and services or for technical support, please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in
electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Control Number: 2021949753

Trademarks: Wiley, the Wiley logo, Wrox, the Wrox logo, Programmer to Programmer, and related trade dress are
trademarks or registered trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United States and other countries,
and may not be used without written permission. All other trademarks are the property of their respective owners. John
Wiley & Sons, Inc. is not associated with any product or vendor mentioned in this book.

Cover image: © peshkov/Adobe Stock Photos
Cover design: Wiley

http://www.copyright.com
http://www.wiley.com/go/permission
http://www.wiley.com

For Sam, who got such a kick out of being thanked in

the last book. How about this?

ABOUT THE AUTHOR

Chris Minnick is a prolific author, blogger, trainer, speaker, and web developer. His company,
WatzThis?, is dedicated to finding better ways to teach computer and programming skills to
beginners.

Chris has been a full-stack developer for over 25 years and a trainer for over 10 years, and has taught
web development, ReactJS, and advanced JavaScript at many of the world’s largest companies as well
as at public libraries, co-working spaces, and meetups.

Minnick has authored or co-authored over a dozen technical books for adults and kids, including
Beginning HTML5 and CSS3 for Dummies, Coding with JavaScript for Dummies, JavaScript for
Kids, Adventures in Coding, and Writing Computer Code.

ABOUT THE TECHNICAL EDITOR

Rick Carlino is a full-stack software developer from the greater Chicago area. He specializes in open
source tools such as React. Rick has over a decade of experience both teaching and implementing
modern web applications in React. During his time as a JavaScript instructor, he traveled the world to
teach modern web application practices to countless students at large enterprises. He currently serves
as the technical co-founder and lead software developer for FarmBot, an open source agricultural
robotics platform (and React application!) that helps gardeners automate food production. Outside of
work he volunteers his time as the co-founder of a makerspace that helps members of his community
learn and access technology.

ACKNOWLEDGMENTS

THIS BOOK WOULD NOT HAVE  been possible without the help, support, experience, and wisdom
provided by my friends, family, colleagues, and team. I’d especially like to thank the following people:

➤➤ Carole Jelen and Maureen Maloney at Waterside Productions.

➤➤ Project editor Kelly Talbot. It’s a real pleasure to work with as keen-eyed and experienced a
professional as you.

➤➤ Technical editor Rick Carlino. Rick, you’re a super-hero. Your suggestions and correc-
tions are always spot-on, and you’ve spared me from innumerable embarrassments and
mea culpas.

➤➤ Acquisitions editor Devon Lewis.

➤➤ Associate Publisher Jim Minatel.

➤➤ The rest of the team at Wiley (Saravanan Dakshinamurthy, Kim Cofer, Louise Watson). It
takes more people to publish a book than I even know, but I know that you’re all fantastic.

➤➤ Jill McVarish, Paul Brady, Mike Machado, and Richard Hain for being readers and testers or
for helping me figure it out, even if you didn’t know that’s what you were doing.

➤➤ My mentors and teachers who taught me how to write, including Roger Smith, Ken Byers,
Conrad Vachon, and Steven Konopacki.

➤➤ Everyone who has taken one of my classes or read my books.

➤➤ The incredible React community, whose blog posts, tweets, articles, books, and videos have
enlightened and inspired me.

➤➤ My co-authors and co-conspirators over the years, especially Eva Holland and Ed Tittel.

➤➤ Sam, who taught me how to make wine and rescued me when I was being electrocuted
(accidentally, I think) by Zach.

➤➤ You, the reader, for placing your trust in me as you begin or continue your journey toward
mastery of React.

—Chris Minnick

BEGINNING
ReactJS FOUNDATIONS BUILDING USER
INTERFACES WITH ReactJS

INTRODUCTION. .  xxvii

CHAPTER 1	 Hello, World!. . 1

CHAPTER 2	 The Foundation of React. . 11

CHAPTER 3	 JSX . . 23

CHAPTER 4	 All About Components . . 43

CHAPTER 5	 React DevTools. . 105

CHAPTER 6	 React Data Flow. . 123

CHAPTER 7	 Events. . 199

CHAPTER 8	 Forms. . 221

CHAPTER 9	 Refs. . 233

CHAPTER 10	 Styling React. . 243

CHAPTER 11	 Introducing Hooks. . 257

CHAPTER 12	 Routing. . 289

CHAPTER 13	 Error Boundaries. . 319

CHAPTER 14	 Deploying React. . 339

CHAPTER 15	 Initialize a React Project from Scratch. . 351

CHAPTER 16	 Fetching and Caching Data. . 369

CHAPTER 17	 Context API . . 387

CHAPTER 18	 React Portals. . 399

CHAPTER 19	 Accessibility in React. . 413

CHAPTER 20	 Going Further. . 425

INDEX. . 437

CONTENTS

INTRODUCTION	 xxvii

CHAPTER 1: HELLO, WORLD!	 1

React without a Build Toolchain	 1
Interactive “Hello, World” with Create React App and JSX	 7
Summary	 9

CHAPTER 2: THE FOUNDATION OF REACT	 11

What’s in a Name?	 11
UI Layer	 12
Virtual DOM	 13
The Philosophy of React	 14

Thinking in Components	 15
Composition vs. Inheritance	 15
React Is Declarative	 16
React Is Idiomatic	 17
Why Learn React?	 17
React vs....	 18

React vs. Angular	 18
React vs. Vue	 19

What React Is Not	 19
React Is Not a Web Server	 20
React Is Not a Programming Language	 20
React Is Not a Database Server	 21
React Is Not a Development Environment	 21
React Is Not the Perfect Solution to Every Problem	 21

Summary	 21

CHAPTER 3: JSX	 23

JSX Is Not HTML	 23
What Is JSX?	 30

How JSX Works	 30
Transpiler . . . Huh?	 31

Compilation vs. Transpilation	 31
JSX Transform	 31

Contents

xvi

Introducing Babel	 31
Eliminating Browser Incompatibilities	 33

Syntax Basics of JSX	 33
JSX Is JavaScript XML	 33
Beware of Reserved Words	 33
JSX Uses camelCase	 33
Preface Custom Attributes in DOM Elements with data-	 34
JSX Boolean Attributes	 34
Use Curly Braces to Include Literal JavaScript	 35

Remember to Use Double Curly Braces with Objects	 35
Put Comments in Curly Braces	 35

When to Use JavaScript in JSX	 36
Conditionals in JSX	 36

Conditional Rendering with if/else and Element Variables	 36
Conditional Rendering with the && Operator	 37
Conditional Rendering with the Conditional Operator	 38

Expressions in JSX	 38
Using Children in JSX	 40
React Fragments	 40

Summary	 41

CHAPTER 4: ALL ABOUT COMPONENTS	 43

What Is a Component?	 43
Components vs. Elements	 44

Components Define Elements	 44
Elements Invoke Components	 45

Built-in Components	 47
HTML Element Components	 47
Attributes vs. Props	 52

Passing Props	 52
Accessing Props	 52
Standard HTML Attributes	 54
Non-Standard Attributes	 56
Custom Attributes	 56

User-Defined Components	 56
Types of Components	 56

Class Components	 57
Stepping through a React Class Component	 68

React.Component	 68
Importing React.Component	 68

Contents

xvii

The Class Header	 69
The Constructor Function	 69
Managing State in Class Components	 71
The Render Function	 73
Creating and Using Props	 74

Function Components	 76
What Are Function Components?	 79
How to Write Function Components	 79
Optimizations and Function Component Shortcuts	 80
Managing State in Function Components	 83

Differences between Function and Class Components	 84
React Component Children	 84

this.props.children	 85
Manipulating Children	 86

React.Children	 86
isValidElement	 87
cloneElement	 87

The Component Lifecycle	 89
Mounting	 90

constructor()	 90
static getDerivedStateFromProps	 90
render	 90
componentDidMount()	 90

Updating	 90
shouldComponentUpdate	 91
getSnapshotBeforeUpdate	 91
componentDidUpdate	 92

Unmounting	 92
componentWillUnmount	 92

Error Handling	 92
getDerivedStateFromError	 92
componentDidCatch	 92

Improving Performance and Avoiding Errors	 92
Avoiding Memory Leaks	 93
React.PureComponent	 96
React.memo	 97
React.StrictMode	 98

Rendering Components	 98
Rendering with ReactDOM	 98
Virtual DOM	 100
Other Rendering Engines	 101

Contents

xviii

React Native	 101
ReactDOMServer	 102
React Konsul	 103
react-pdf	 103

Component Terminology	 103
Summary	 104

CHAPTER 5: REACT DEVTOOLS	 105

Installation and Getting Started	 105
Inspecting Components	 107

Working with the Component Tree	 108
Searching for Components	 110

Using the Search Input Box	 110
Using Regular Expressions	 110

Filtering Components	 112
Selecting Components	 114

Editing Component Data in DevTools	 114
Working with Additional DevTools Functionality	 118
Profiling	 119
Summary	 121

CHAPTER 6: REACT DATA FLOW	 123

One-Way Data Flow	 123
Understanding One-Way Data Flow	 124
Why One-Way Data Flow?	 125

Props	 126
Components Receive Props	 126
Props Can Be Any Data Type	 126
Props Are Read-Only	 127
Validating Incoming Props with PropTypes	 129

What Is PropTypes?	 130
Getting Started with PropTypes	 131
What Can PropTypes Validate?	 133

Default Props	 141
React State	 145

What Is state?	 146
Initializing state	 146

Initializing state in Class Components	 146
Initializing State in Function Components	 147

Contents

xix

The Difference between state and props	 149
Updating state	 149

Updating a Class Component’s state with setState	 150
Updating state with Function Components	 154

What to Put in State	 161
Building the Reminders App	 161
What Not to Put in State	 168
Where to Put State	 168
Lifting State Up	 170
About the key Prop	 177
Filtering the Reminders	 183
Implementing the isComplete Changing Functionality	 188

Converting to Class Components	 190
Summary	 198

CHAPTER 7: EVENTS	 199

How Events Work in React	 199
What Is SyntheticEvent?	 201
Using Event Listener Attributes	 202
The Event Object	 203
Supported Events	 204
Event Handler Functions	 211

Writing Inline Event Handlers	 211
Writing Event Handlers in Function Components	 212
Writing Event Handlers in Class Components	 213
Binding Event Handler Functions	 214

Using bind	 215
Using Arrow Functions	 216

Passing Data to Event Handlers	 218
Summary	 219

CHAPTER 8: FORMS	 221

Forms Have State	 221
Controlled Inputs vs. Uncontrolled Inputs	 222

Updating a Controlled Input	 223
Controlling an Input in a Function Component	 224
Controlling an Input in a Class Component	 224

Lifting Up Input State	 226
Using Uncontrolled Inputs	 228
Using Different Form Elements	 229

Contents

xx

Controlling the Input Element	 230
Controlling a textarea	 230
Controlling a Select Element	 231

Preventing Default Actions	 231
Summary	 232

CHAPTER 9: REFS	 233

What Refs Are	 233
How to Create a Ref in a Class Component	 234
How to Create a Ref in a Function Component	 234
Using Refs	 234
Creating a Callback Ref	 236
When to Use Refs	 238
When Not to Use Refs	 238
Examples	 239

Managing Focus	 239
Automatically Selecting Text	 239
Controlling Media Playback	 241
Setting Scroll Position	 241

Summary	 242

CHAPTER 10: STYLING REACT	 243

The Importance of Styles	 243
Importing CSS into the HTML File	 244
Using Plain Old CSS in Components	 245
Writing Inline Styles	 247

JavaScript Style Syntax	 248
Why to Use Inline Styles	 249
Why Not to Use Inline Styles	 249
Improving Inline Styles with Style Modules	 249

CSS Modules	 250
Naming CSS Module Files	 251
Advanced CSS Modules Functionality	 252

Global Classes	 252
Class Composition	 252

CSS-in-JS and Styled Components	 253
Summary	 255

Contents

xxi

CHAPTER 11: INTRODUCING HOOKS	 257

What Are Hooks?	 257
Why Were Hooks Introduced?	 257
Rules of Hooks	 259
The Built-in Hooks	 259

Managing State with useState	 260
Setting the Initial State	 262
Using the Setter Function	 262
Passing a Value to a Setter	 263
Passing a Function to a Setter	 263
Setter Function Value Comparison	 264

Hooking into the Lifecycle with useEffect	 264
Using the Default useEffect Behavior	 265
Cleaning Up After Effects	 265
Customizing useEffect	 266
Running Asynchronous Code with useEffect	 270

Subscribing to Global Data with useContext	 272
Combining Logic and State with useReducer	 273
Memoized Callbacks with useCallback	 275
Caching Computed Values with useMemo	 278

Solving Unnecessary Renders	 278
Solving Performance Problems	 279

Accessing Children Imperatively with useRef	 279
Customizing Exposed Values with useImperativeHandle	 280
Updating the DOM Synchronously with useLayoutEffect	 281

Writing Custom Hooks	 281
Labeling Custom Hooks with useDebugValue	 283
Finding and Using Custom Hooks	 285

use-http	 285
react-fetch-hook	 286
axios-hooks	 286
react-hook-form	 286
@rehooks/local-storage	 287
use-local-storage-state	 287
Other Fun Hooks	 288
Lists of Hooks	 288

Summary	 288

Contents

xxii

CHAPTER 12: ROUTING	 289

What Is Routing?	 289
How Routing Works in React	 291
Using React Router	 293

Installing and Importing react-router-dom	 293
The Router Component	 294

Selecting a Router	 294
Using the Router Component	 295

Linking to Routes	 296
Internal Linking with Link	 296
Internal Navigation with NavLink	 298
Automatic Linking with Redirect	 302

Creating Routes	 302
Restricting Path Matching	 304
Using URL Parameters	 304
The component Prop	 305
Render Props	 306
Switching Routes	 307
Rendering a Default Route	 308
Routing with Redirect	 308

Behind the Scenes: location, history, and match	 309
The history Object	 310
The location Object	 313
The match Object	 313

React Router Hooks	 317
useHistory	 317
useLocation	 317
useParams	 317
useRouteMatch	 317

Summary	 318

CHAPTER 13: ERROR BOUNDARIES	 319

The Best Laid Plans	 319
What Is an Error Boundary?	 320
Implementing an Error Boundary	 323

Building Your Own ErrorBoundary Component	 323
getDerivedStateFromErrors Is a Static Method	 324
getDerivedStateFromErrors Runs During the Render Phase	 325
getDerivedStateFromErrors Receives the Error as a Parameter	 325

Contents

xxiii

getDerivedStateFromErrors Should Return an Object for
Updating State	 325
Testing Your Boundary	 326
Logging Errors with ComponentDidCatch()	 327
Using a Logging Service	 328
Resetting the State	 333

Installing a Pre-Built ErrorBoundary Component	 334
What Can’t an Error Boundary Catch?	 336

Catching Errors in Error Boundaries with try/catch	 336
Catching Errors in Event Handlers with react-error-boundary	 337

Summary	 338

CHAPTER 14: DEPLOYING REACT	 339

What Is Deployment?	 339
Building an App	 339

Running the build Script	 340
Examining the build Directory	 340

The Built index.html	 341
The static Directory	 342
asset-manifest.json	 342

What’s in a Name?	 343
How Is a Deployed App Different?	 343
Development Mode vs. Production	 343
Putting It on the Web	 344

Web Server Hosting	 344
Node Hosting	 345
Deploying with Netlify	 345

Enabling Routing with Netlify	 347
Enabling Custom Domains and HTTPS	 348

Summary	 349

CHAPTER 15: INITIALIZE A REACT PROJECT FROM SCRATCH	 351

Building Your Own Toolchain	 351
Initializing Your Project	 352
The HTML Document	 352
The Main JavaScript File	 353
The Root Component	 353
Running in the Browser	 354

How Webpack Works	 357
Loaders	 358
Plugins	 358

Contents

xxiv

Automating Your Build Process	 358
Making an HTML Template	 359
Development Server and Hot Reloading	 360
Testing Tools	 360

Installing and Configuring ESLint	 360
ESLint Configuration	 361
How to Fix Errors	 362
Testing with Jest	 363

Creating NPM Scripts	 364
Structuring Your Source Directory	 365

Grouping by File Type	 366
Grouping by Features	 367

Summary	 367

CHAPTER 16: FETCHING AND CACHING DATA	 369

Asynchronous Code: It’s All About Timing	 369
JavaScript Never Sleeps	 370
Where to Run Async Code in React	 374
Ways to Fetch	 376
Getting Data with Fetch	 377
Getting Data with Axios	 377
Using Web Storage	 379

Two Types of Web Storage	 379
When to Use Web Storage	 380
When Not to Use Web Storage	 380
Web Storage Is Synchronous	 380
Working with localStorage	 381
Storing Data with localStorage	 381
Reading Data from localStorage	 382
Removing Data from localStorage	 384

Summary	 385

CHAPTER 17: CONTEXT API	 387

What Is Prop Drilling?	 387
How Context API Solves the Problem	 388

Creating a Context	 388
Creating a Provider	 389
Consuming a Context	 390

Using Context in a Class Component	 390
Using Context in a Function Component	 391

Contents

xxv

Common Use Cases for Context	 391
When Not to Use Context	 392
Composition as an Alternative to Context	 392
Example App: User Preferences	 396
Summary	 398

CHAPTER 18: REACT PORTALS	 399

What Is a Portal?	 399
How to Make a Portal	 399
Why Not Just Render Multiple Component Trees?	 403

Common Use Cases	 403
Rendering and Interacting with a Modal Dialog	 404
Managing Keyboard Focus with Modals	 409

Summary	 411

CHAPTER 19: ACCESSIBILITY IN REACT	 413

Why Is Accessibility Important?	 413
Accessibility Basics	 414

Web Content Accessibility Guidelines (WCAG)	 414
Web Accessibility Initiative - Accessible Rich Internet
Applications (WAI-ARIA)	 415

Implementing Accessibility in React Components	 415
ARIA Attributes in React	 416
Semantic HTML	 416
Form Accessibility	 417
Focus Control in React	 418

Skip Links	 418
Managing Focus Programmatically	 419

Media Queries in React	 420
Media Queries in Included CSS	 421
Using useMediaQuery	 422

Summary	 422

CHAPTER 20: GOING FURTHER	 425

Testing	 425
Mocha	 426
Enzyme	 426
Chai	 427

Assert	 427
Expect	 428
Should	 428

Contents

xxvi

Karma	 428
Nightwatch.js	 428

Server-Side Rendering	 429
Flux	 430
Redux	 430
GraphQL	 432
Apollo	 433
React Native	 434
Next.js	 434
Gatsby	 434

People to Follow	 435
Useful Links and Resources	 435
Summary	 436

INDEX	 437

INTRODUCTION

SINCE ITS CREATION BY FACEBOOK IN 2013, REACTJS  has become one of the most popular and
widely used front-end user interface libraries on the web. With the creation of React Native in 2015,
ReactJS has become one of the most widely used libraries for mobile app development as well.

ReactJS has always been a bit of a moving target. It has gone through several major changes over the
years, but through it all, the core principles of React have remained the same.

If you want to learn to develop next-generation cross-platform web and mobile apps using the latest
syntax and the latest tools, you’ve come to the right place. My goal with this book is to save you
from the countless hours of trial and error that were my experience with trying to piece together bits
of old and new information from the web and books.

Whether you’re coming to React as a mobile developer, a web developer, or as any other kind of soft-
ware developer, this book is for you. If you have experience with ReactJS as it existed in the earlier
days (before about version 16), this book is for you too!

In this book, I’ve attempted not only to give the most up-to-date syntax and patterns for developing
ReactJS applications, but also to give enough background and timeless information for it to remain
relevant for years to come.

So, welcome to ReactJS.

WHY THIS BOOK?

Thank you for choosing to begin, or continue, your React journey with me. My aim with this book
is to provide an up-to-date and thorough explanation of React and the React ecosystem along with
hands-on code that will prepare you to quickly start using React productively in the real world.

I’m thrilled to be writing this book at this time for a number of reasons:

1.	 I have the experience and knowledge to do it right.

2.	 React is one of the most popular JavaScript libraries today.

3.	 I believe React will be even more popular in the future.

4.	 Existing online resources and books too often give incomplete and/or outdated information
about how to program with React.

Let’s take a quick look at each of these points, starting with a little bit about who I am and how I
came to React and this book.

Introduction

xxviii

About Me
I’ve been a web developer since 1997, and I’ve been programming in JavaScript since 1998. I’ve
built or managed the building of web applications for some of the world’s largest companies over
the years. As a web developer, writer, and teacher, I’ve had to learn and use plenty of languages and
JavaScript frameworks. There’s a difference between learning something and applying it, and I’ve
been working on projects with React and doing React consulting for several years now.

I’ve been teaching web development and JavaScript online and in person since 2000, and I’ve been
teaching React since 2015. In the years that I’ve been teaching React, I’ve written three weeklong
courses designed for in-person delivery, numerous short video courses, and two longer video courses.
I’ve taught React on three continents, and my students have been web developers, Java and C pro-
grammers, COBOL programmers, database administrators, network administrators, project manag-
ers, graphic designers, and college students.

As I’m writing, the global COVID-19 pandemic has decimated the in-person training industry. While
this situation has given me more time at home with the pets, it’s also given me time to think deeply
about React and about the React book that I wish existed today. This book is the result of my looking
at all of the top React books, looking at the current state of how React is being used, and looking at
what React is likely to look like in the future.

React Is Popular
React is a JavaScript library that was born out of Facebook’s need to create scalable and fast user
interfaces. Ever since Facebook released it to the world as an open source project, it has been one of
the most widely used ways to build dynamic web and mobile applications.

One popular game among JavaScript developers is to think of a noun, add “.js”, and search GitHub
to find the JavaScript framework with that name. In a time when new JavaScript frameworks and
libraries pop up and die off with shocking regularity, React is one of three libraries released since
2010 that have stuck around and gained the kind of developer usage that will guarantee that they will
be supported and in widespread use for a long time to come.

React Is Both Progressive and Conservative
React has been able to stick around so long and gain so many users because it’s always been a
forward-looking framework that’s not afraid to make big changes to adapt to new features in
JavaScript, new ways of writing user interfaces, and feedback from developers. Over the years, React
has gone through several major changes in how the basic unit of a React application, the component,
is written. But, amidst all this change, React has stuck to a central paradigm and each major change
to React has maintained compatibility with previous versions.

Don’t Believe Everything on the Internet
While the end result of all this change is that React has gotten easier to write and more robust over
the years, it’s also caused a pileup of outdated and often wrong example code and tutorials on the

Introduction

xxix

internet and in books. If you’ve done any research on React prior to buying this book, you’ve surely
noticed this, and you’ve likely been confused by it. Perhaps you bought this book after having a frus-
trating experience with learning React online only to learn that you learned about an old version of it.

This book aims to be a solid and complete guide to all of the most important (and some less impor-
tant) features, concepts, and syntaxes used in React.

WHAT’S COVERED IN THIS BOOK?

This book covers everything you need to know to write high-quality React code. You’ll learn about
React components using the functional method of writing them as well as the class method. You’ll
learn about managing the state of your application using several different methods, including with
React Hooks and with the setState method. You’ll learn how to put components together to make
complete and dynamic user interfaces. You’ll learn how to fetch data from an external data source
and use it in your application. And, you’ll learn how to store data in the user’s web browser to
improve the performance and usability of your application. Speaking of usability, you’ll learn about
best practices for making your application work on mobile devices as well as on the desktop, and
you’ll also learn how to make sure that your application will be accessible.

Because React takes advantage of many of the latest and greatest improvements and enhancements to
the underlying JavaScript language, I’ll be giving you JavaScript lessons throughout the book. Some
of the new JavaScript syntax can be a little confusing to those of us who first learned the language
in its early days, but I’ll provide plenty of simple and real-world examples to explain each new bit of
syntax or shortcut.

WHAT’S NOT COVERED?

Although React is a JavaScript library, this is not a book for newcomers to JavaScript or to web
programming. I expect that you’ve had at least some experience with JavaScript. If you’re not famil-
iar with the latest additions and revisions to JavaScript, that’s not a problem. But, if you’re new to
JavaScript or to programming in general, I recommend that you learn the basics of programming with
JavaScript before you tackle React.

Similarly, this is not a web design book. I assume that you’re familiar with HTML and CSS and feel
comfortable writing both. I also assume a basic knowledge of how web browsers work and how web
pages are rendered in browsers.

Finally, this book is intended to teach the fundamentals of React to anyone who wants to gain the
ability to write React applications. Although it does cover many of the most commonly used patterns
and conventions in React development, and many of the more advanced topics in React are covered
as well, there are many topics that will only be mentioned in passing or that had to be omitted for
the sake of space. To cover everything having to do with more advanced React development would
require several volumes, which would all need to be updated every couple of months.

Introduction

xxx

Once you understand the fundamentals of React as taught in this book, you’ll be more than qualified
to explore the vast React online ecosystem and find tutorials, documentation, and example code to
continue your React education.

Some of the more advanced topics that are beyond the scope of this book are: unit testing, building
mobile applications with React Native, Redux, and isomorphic/universal React. If all that sounds like
a bunch of nonsense jargon at this point, you came to the right place! You may not know everything
about how to implement all these more advanced things by the end of the book, but you’ll certainly
know what they are and how to get started with them.

PREREQUISITES

Programming React can feel like assembling a complex piece of furniture from a Swedish furnish-
ing store. There are a lot of parts that don’t make much sense individually, but when you follow the
instructions and put them together in the right way, the simplicity and beauty of the whole thing may
surprise you.

Internet Connection and Computer
I assume that you have a connection to the internet and a reasonably modern desktop or laptop com-
puter. Writing code on tablets or smartphones is possible, but it’s not easy. My examples and screen-
shots will be from the perspective of a desktop and/or laptop computer, and I can’t guarantee that
my example code will all be usable on a smaller device. Furthermore, some of the tools that you’ll be
using to build React applications simply won’t run on a smartphone or tablet.

Web Development Basics
As previously mentioned, an understanding of HTML, CSS, and JavaScript is essential before begin-
ning your study of React. If your experience is mostly with copying and pasting code that others
have written, but you feel comfortable with making changes and looking up things that you don’t yet
know, you’ll do fine with this book.

Code Editor
You’ll need a code editor. The one I currently use and recommend is Microsoft Visual Studio Code.
It’s available for free on MacOS, Linux, and Windows. If you’re more comfortable using another code
editor, that’s fine too. I’ve used many different code editors over the years, and I believe that which-
ever code editor a developer chooses to use and can be most effective with is the right one.

Browser
You’ll also need a modern web browser. Although Mozilla Firefox, Google Chrome, and Windows
Edge will all work for our purposes, my screenshots throughout the book were taken in Google
Chrome on MacOS. Feel free to use whichever of the three modern web browsers you prefer, but

Introduction

xxxi

understand that your experience may differ slightly from the screenshots in the book and that some
of the React developer tools are currently only available for Chrome and Firefox.

INSTALLING REQUIRED DEPENDENCIES

Although it is possible to write and run React applications with nothing more than a text editor and
a web browser on a computer connected to the internet, if you want to build any applications that
will be deployed to the public web you’ll need to install some additional software packages on your
computer. These packages, when combined, are what web developers refer to as a toolchain.

All of the tools in the React toolchain are free, open source, and easy to download and install. In the
following pages, I’ll take you step by step through installing and configuring your toolchain and I’ll
show you some of the things you’ll be able to do with your new tools to help you efficiently build,
compile, and deploy React applications in a modern, standard, and professional way.

Introducing Visual Studio Code
In my more than 25 years as a web developer, I’ve used many different code editors, and I still switch
code editors from time to time depending on the project or the type of code I’m writing.

However, there always seems to be a “popular” code editor that the majority of web developers use.
Which editor is the popular one has changed several times over the years, but as of this writing, the
code editor that seems to be most widely used for writing front-end web code is Microsoft’s Visual
Studio Code (aka VS Code), shown in Figure I‑1.

FIGURE I-1:  VS Code

Introduction

xxxii

Visual Studio Code is free and open source, and it’s available for Windows, Linux, and MacOS. It
features built-in support for React development and many plugins have been developed for it that can
be helpful for writing and debugging React projects.

For these reasons, I’ll be using the latest version of Visual Studio Code in this book, and my screen-
shots and step-by-step instructions may be specific to Visual Studio Code in some places. If you
choose to use a different code editor, be aware that you’ll need to translate a few specific instructions
to your environment.

If you don’t already have Visual Studio Code installed, follow these steps to get it:

1.	 Open code.visualstudio.com in your web browser and click the download link for your
operating system (Figure I‑2).

FIGURE I-2:  Download VS Code

http://code.visualstudio.com

Introduction

xxxiii

2.	 Double-click the downloaded file to start the installation process.

3.	 Accept the default options if you’re presented with any options during installation.

Once you have Visual Studio Code, launch it. If this is the first time you’ve used it, you’ll see the
welcome screen, as shown in Figure I‑3.

If you’d like to open the welcome screen at any point, you can do so by selecting Get Started from the
Help menu.

The first and most important thing to learn about VS Code is how to use the Command Palette. The
Command Palette gives you quick access to all of VS Code’s commands. Follow these steps to become
familiar with the Command Palette:

1.	 Open the Command Palette by selecting it from the View menu, or by pressing
Command+Shift+P (on MacOS) or CTRL+Shift+P (on Windows). An input box will appear
at the top of the VS Code interface, as shown in Figure I‑4.

NOTE  Since you’re likely going to be using the Command Palette regularly,
take a moment to memorize that keyboard shortcut.

FIGURE I-3:  The VS Code welcome screen

Introduction

xxxiv

2.	 Type new file into the Command Palette input field. As you type, you’ll see a list of available
commands below your input.

3.	 When you see File: New Untitled File at the top of the Command Palette (as shown in
Figure I‑5), press Enter. A new untitled file will be created.

FIGURE I-4:  The VS Code Command Palette

FIGURE I-5:  Creating a new file using the Command Palette

Introduction

xxxv

4.	 Open the Command Palette again and start typing save. When File: Save is highlighted, press
Enter to save your file. Give it a name ending with .html (such as index.html).

5.	 Type ! on the first line of your new file and then press the Tab key. The scaffolding for a
new HTML file will be written for you, which will look like Figure I‑6. This magical code-
generating feature is called Emmet. Emmet can be used to automate many routine tasks and
speed the writing of code, and it would be a great idea to start getting familiar with it and
practicing the use of it right away.

6.	 Use CTRL+s or the Command Palette to save your new file.

Node.js
Node.js started as a way to run JavaScript on web servers. The benefits of doing this are that, using
Node.js (also known as just “Node”), programmers can use the same language on the client side (in
the web browser) as they use on the web server (aka “server side”). Not only does this reduce the
number of programming languages that a programmer or a team of programmers needs to be fluent
in, but Node.js also makes communication between the server and web browsers easier because both
are speaking the same language.

Figure I‑7 shows a basic web application with Node.js running on the server and JavaScript running
in a web browser.

FIGURE I-6:  Using Emmet to save typing

Introduction

xxxvi

As Node.js became popular, people also started to run it on their own computers as a way to run
JavaScript programs outside of web browsers. Specifically, web developers used Node.js to run tools for
automating many of the complex tasks involved in modern web development, as shown in Figure I‑8.

React.js

Client Server

login.js

Node.js

username:

password:

Login

xxxxxx

cminnick
POST

username = cminnick&password=xxxxxx

{"id" : "1",
"fname" : "Chris",
"1name" : "Minnick"}

RESPONSE

FIGURE I-7:  Client-side React and server-side Node

DEVELOPMENT

• VS Code
• Node.js
• version control

SERVER
• Node.js
• database

CLIENT
• Web Browser

 JavaScript
• ReactJS

</>

FIGURE I-8:  Development, client-side, and server-side

Introduction

xxxvii

Common tasks that take place in development and that can be aided by Node.js include:

➤➤ Minification: The process of removing spaces, line breaks, comments, and other code that’s
not required for the program to run, but that is helpful for people who work on the program.
Minification makes scripts, web pages, and stylesheets more efficient and faster. Figure I‑9
shows the difference between JavaScript code as it’s written by a programmer and min-
ified code.

➤➤ Transpiling: The process of converting programming code from one version of a program-
ming language into another version. This is necessary in web development because not all
web browsers support the same set of new JavaScript features, but they do all support some
core subset of JavaScript features. By using a JavaScript transpiler, programmers can write
code using the latest version of JavaScript and then the transpiled code can be run in any web
browser. Figure I‑10 shows an example use of JavaScript template strings, which were intro-
duced in ES2015, along with their equivalent in an earlier version of JavaScript.

FIGURE I-9:  Minification

Introduction

xxxviii

➤➤ Module bundling: A typical website can make use of hundreds of individual JavaScript
programs. If a web browser had to download each of these different programs individually, it
would significantly slow down web pages due to the overhead involved with requesting files
from web servers. The main job of a module bundler is to combine (or “bundle”) the
JavaScript and other code involved in a web application to make serving the application
faster. Because a bundler has to do work to all of the files in a program, it also is a good
central place for tasks like minification and transpiling to take place, through the use of
plugins. Figure I‑11 illustrates the process of module bundling.

FIGURE I-10:  Transpiling example

Introduction

xxxix

➤➤ Package management: With so many different programs involved in JavaScript development,
just installing, upgrading, and keeping track of them can be quite complex. A package man-
ager is a program that helps you with tasks related to the management of all these programs
(which are also known as “packages” in Node.js lingo).

➤➤ CSS preprocessor: A CSS preprocessor, such as SASS or LESS, allows you to write style
sheets for your web application using a superset of CSS (such as SCSS) that supports the pro-
grammatic features that CSS lacks—things like variables, mathematic operations, functions,
scope, and nesting. A CSS preprocessor produces standard CSS from code written using an
alternative syntax.

➤➤ Testing frameworks: Testing is an essential part of any web project. Properly written tests can
tell you whether each piece of your application is working as it was designed. The process of
writing logic to test whether your application works as it should is also a powerful tool for
helping you to write better code.

➤➤ Build automation: If you had to run each of the different tools involved in compiling a
modern web app every time you wanted to test it out and deploy it to the web, you would
have a very complex series of steps to follow and use to train anyone else who might work on
the code. Build automation is the process of writing a program or script that runs all of the
different tools for you in the right order to quickly and reliably optimize, compile, test, and
deploy applications.

These are just a few of the different types of tools that are written in JavaScript and run in Node.js
that front-end developers use on a regular basis. If you’d like to explore the vast universe of Node.js
packages, visit the npm Package Repository at https://npmjs.com, or continue to the next section
to learn about managing and installing Node.js packages.

.js

.css

.png
bundle.js

.js

.png .css

Modules Static Files

Module Bundler

.css

.png .png

FIGURE I-11:  Module bundling

https://npmjs.com

Introduction

xl

Getting Started with Node.js
The most common way of interacting with Node.js is through commands typed into a UNIX-style
terminal. You can access a terminal from within Visual Studio Code using three different methods:

1.	 By selecting New Terminal from the Terminal menu.

2.	 By right-clicking a folder in VS Code’s file explorer and selecting Open in Inte-
grated Terminal.

3.	 By using the keyboard shortcut CTRL+~.

Whichever way you choose (and I recommend getting comfortable with the keyboard shortcut to save
yourself from having to switch to using your mouse), a window will open at the bottom of VS Code
that looks like Figure I‑12.

The first step in learning to use Node.js is to make sure that it’s installed on your computer. If you
have a computer running MacOS or Linux, chances are good that it’s already installed, but you may
need to upgrade to a newer version. On Windows, it may not be installed, but that’s easy to fix.
Follow these steps to check whether you have Node.js installed, see what version is installed, and
upgrade to the latest version:

1.	 Open the Terminal in Visual Studio Code.

FIGURE I-12:  The VS Code Terminal

Introduction

xli

2.	 In the Terminal, type node -v. If Node.js is installed, it will return a version number. If the
version number is lower than 14.0, you’ll need to upgrade. Proceed to step 4. If your version
of Node.js is greater than 14.0, you may still want to proceed to step 4 and upgrade to the
latest version of Node.js, but it’s not required.

3.	 If Node.js is not installed, you’ll get a message that node is an unknown command. Proceed
to step 4.

4.	 Go to https://nodejs.org in your web browser and click the link to download the current
LTS version of Node.js.

5.	 When the Node.js installer finishes downloading, double-click it and follow the instructions
to install it.

6.	 If you have a Terminal window open in Visual Studio Code, close it and then re-open it.

7.	 Type node -v into your Terminal. You should now see that you have the latest version of
Node.js installed.

Node.js Package Management with yarn or npm
Now that you have Node.js installed, the next step is to learn to use a package manager to install and
upgrade Node.js packages. When you installed Node.js, you also installed a package manager called
npm. This is the package manager that we’ll be using in this book, because it’s the most commonly
used one, and because you already have it. There are other package managers, however. One of them,
which has become quite widely used, for a number of reasons that we don’t have the space to go into
here, is called yarn. The commands that you use for npm and yarn are actually quite similar. If you’d
like to find out more about yarn, and why you might want to use it, you can do so by visiting
www.yarnpkg.com.

If you have Node.js installed, you already have npm installed. You can verify this by following
these steps:

1.	 Open the Terminal in Visual Studio Code.

2.	 Type npm -v at the command line. You should get a response similar to the one shown in
Figure I‑13.

FIGURE I-13:  Checking that npm is installed

https://nodejs.org
http://www.yarnpkg.com
http://www.yarnpkg.com

Introduction

xlii

If you have an older version of npm installed, it can cause some of the commands we’ll run in this
Introduction and the book’s chapters to not work correctly. If you use MacOS, you can upgrade npm
by entering the following command in the Terminal:

sudo npm install -g npm

After you type this command in the Terminal and press Enter, you’ll be asked for a password. This is
the password that you use to log in to your computer.

If you use Windows, you can upgrade npm by entering the following command:

npm install -g npm

Note that you must have administrative access to your computer to run this command.

The npm install command is how you can download and install Node.js packages to your com-
puter so you can run them or so other programs can make use of them. When a computer program
needs another computer program in order to run, we call the program it requires a dependency.
Because Node.js programs are made up of small packages that often individually have reusable and
limited functionality, it’s not uncommon for a Node.js package to have hundreds of dependencies.

When you run npm install followed by the name of a Node.js package, npm looks for that package
in the npm repository, downloads it (along with all of its dependencies), and installs it. Packages may
be installed globally, which makes them available to any program on your computer, by specifying the
-g flag after the npm install command. So, when we say npm install-g npm, what happens is that
the npm package installs the latest version of itself. In other words, it upgrades.

In addition to being able to install packages globally, npm can also install packages locally, which
makes them available only to the current project.

NOTE  Whenever possible, it’s a good practice to only install packages locally
in order to reduce the potential for version conflicts and to make your pro-
grams more reusable and more easily shared.

Follow these instructions to see the npm install command in action:

1.	 Open Visual Studio Code and click the File Explorer icon on the left toolbar.

2.	 Click Open Folder and use the file browser that it opens to create a new folder named
chapter-0 in your computer’s Documents folder and open that folder.

3.	 Open the integrated Terminal application in Visual Studio Code. It will open a command-line
interface and set the current directory to the folder that you have open.

4.	 Type npm init -y. Running npm init creates a new file called package.json, whose pur-
pose is to track dependencies and other meta information about your node package.

Introduction

xliii

5.	 Type npm install learnyounode -g, or sudo npm install learnyounode -g (on
MacOS or Linux). This will install an npm package created by NodeSchool (nodeschool.
io) that teaches you how to use Node.js. As the learnyounode package is downloaded
and installed, you’ll see some messages fly by on the screen (and possibly a few warnings or
errors—these are normal and nothing to worry about).

6.	 When the package has finishing installing, type learnyounode in the Terminal to run it. Your
command prompt will be replaced by a menu of lessons. I recommend going through at least
the first one or two of these lessons at your convenience so that you can get a better idea of
what Node.js is, although a deep understanding isn’t necessary for learning React.

NOTE  You may get an error message saying that running scripts is disabled
when you try to run the npm install command on Windows. If you do,
entering the following command into the Terminal should solve the problem:

Set-ExecutionPolicy -Scope Process -ExecutionPolicy Bypass

Chrome DevTools
Google’s Chrome browser includes a powerful set of tools for inspecting and debugging websites and
web applications. Follow these steps to get started with using Chrome DevTools:

1.	 Open your Chrome browser and go to www.example.com. You’ll see a simple exam-
ple web page. The simplicity of this page makes it a great place to start to learn about
Chrome DevTools.

2.	 Open the Chrome DevTools panel by clicking the three dots in the upper-right corner of
Chrome (this is known as the Chrome Menu) and selecting More Tools ➢ Developer Tools
or by using the keyboard shortcut: Command+Option+I (on MacOS) or CTRL+Shift+I
(on Windows). The keyboard shortcut is not only easier, it is also unlikely to ever change,
whereas the location of the Developer Tools menu item has changed several times over the
years. Either way you open it, a panel will open up in your browser, containing the DevTools,
as shown in Figure I‑14.

NOTE  The default docking position for Chrome DevTools is on the right side
of the browser window. You can change where the tools are docked by clicking
the three dots (known as a “kebab” menu icon) in the upper-right corner of the
DevTools pane.

http://www.example.com

Introduction

xliv

3.	 Look for the element selector tool in the upper-left corner of the DevTools panel and click it.
You can use the element selector tool to inspect the different HTML elements in a web page.

4.	 Use the element selector tool to highlight different parts of the www.example.com web page.
When you have the header of the page highlighted, click it. The HTML that creates the
header will be highlighted in the source code view in DevTools, and the CSS styles that are
applied to the header will be shown to the right of the source code.

5.	 Double-click the words Example Domain inside the <h1> element in the source code view.
The words will become highlighted and editable.

6.	 With the words Example Domain highlighted in the source code view, type new words over
them to replace them and then press Enter to exit the source editing mode. Your new text will
appear in the browser window as the <h1> element.

7.	 Find the <h1> element style in the styles pane to the right of the source code window and
double-click it.

FIGURE I-14:  Chrome DevTools

http://www.example.com

Introduction

xlv

8.	 Try changing the styles that are applied to the <h1> element and notice that they modify
what’s showing in the browser window.

9.	 Click the Console tab at the top of the DevTools pane. This will open the JavaScript console.

10.	 Type the following JavaScript into the JavaScript console:

document.getElementsByTagName('h1')[0].innerText

When you press Enter, the text between the opening and closing <h1> tags will be logged to
the console.

The important thing to know about everything we’ve done with the Chrome DevTools so far, and
the first key to understanding how React works, is that you’re not actually changing the HTML
web page itself. That is safely stored on a web server. What you’re changing is your web browser’s
in-memory representation of the web page. If you refresh the page, it will be re-downloaded and will
appear as it did when you first loaded it.

The method that DevTools uses to manipulate the web page is through the Document Object Model,
or DOM. The DOM is the JavaScript application programming interface (API) for web pages. By
manipulating the DOM, you can dynamically alter anything in a web browser window. DOM
manipulation is the way that JavaScript frameworks and libraries, including React, make web pages
more interactive and more like native desktop applications.

React Developer Tools
To help developers debug React applications, Facebook created a browser extension called React
Developer Tools. React Developer Tools is currently only available for Chrome and Firefox. Once
installed, React Developer Tools gives you two new buttons in the browser developer tools: Compo-
nents and Profiler.

Let’s first look at how to install React Developer Tools and then we’ll look at what it does.

Follow these steps to install React Developer Tools in Chrome:

1.	 Go to the Chrome Web Store at https://chrome.google.com/webstore using your
Chrome browser.

2.	 Enter React Developer Tools into the search box. The first result will be the React Developer
Tools extension by Facebook.

3.	 Click the React Developer Tools extension and then click the Add to Chrome button. The
extension will be installed in your browser.

Here’s how to install the React Developer Tools AddOn in Firefox:

1.	 Open your Firefox browser and go to https://addons.mozilla.org/en-US/firefox/
addon/react-devtools/.

2.	 Click the Add to Firefox button.

https://chrome.google.com/webstore
https://addons.mozilla.org/en-US/firefox/addon/react-devtools/
https://addons.mozilla.org/en-US/firefox/addon/react-devtools/

Introduction

xlvi

3.	 When Firefox asks you for permission to install the AddOn, click Add.

Once it’s installed, follow these steps to get started with using the React Developer Tools:

1.	 Open the Chrome DevTools or the Firefox Developer Tools.

2.	 Notice that if you’re not currently viewing a web page that uses React, you won’t see any dif-
ference in the Developer Tools.

3.	 Go to https://reactjs.org in your browser. In the Developer Tools, you’ll see new tabs
for Components and Profiler appear.

4.	 Click the Components tab. You’ll see a tree view of the React user interface, as shown in
Figure I‑15.

FIGURE I-15:  React Developer Tools Components view

https://reactjs.org

Introduction

xlvii

Each of the items in the React Components view is a different component in the React application.
On most public websites that use React, the component names that display in the React Developer
Tools won’t make much sense, and the React Developer Tools are only of limited functionality. This is
because there are actually separate versions of React for development (which is when you’re building
and debugging the application) and for production (which is when the application is deployed and
available to end users).

The production version of React uses minified component names, and most of the debugging func-
tionality is removed in order to increase performance and decrease the size of the download required
for the browser to run React.

Spend a few minutes clicking around the Components tab and exploring the different components.
Click the inspector icon in the React Developer Tools, which appears in the upper left of the window
and resembles the icon for the Chrome DevTools element inspector you saw earlier.

The React Developer Tools’ element inspector works similarly to the Chrome DevTools’ element
inspector (and to the Firefox element inspector too, for that matter). The difference between these
two tools is an essential one to understand, however. Whereas the browser’s element inspector can be
used to highlight and view the HTML and styles that are in the browser’s DOM, the React element
inspector allows you to highlight and view the React components that were rendered on the page.
You can think of the Components tab as a higher-level view.

The React components you can inspect through the React Developer Tools eventually produce the
DOM nodes (which represent HTML and styles) that you can browse using the browser’s element
inspector.

The Profiler gives you information about the performance of your React application. Profiling is disa-
bled in the production version of React, so this tab won’t do much when you view a public web page
that uses React. We’ll explore and use the Profiler and show how it can be used to debug and tune
your React applications in Chapter 5.

Intro to Create React App
The most common way to get started with React is to use a node package called Create React App.
Create React App is an officially supported tool that installs a toolchain for React development and
configures a boilerplate React application that you can use as a starting point for your applications.

To install and run Create React App, you can use a command that comes as part of the npm package
manager called npx. npx is a package runner. Earlier in this Introduction, you used the npm install
command to install a node package. Once a package is installed, you can run it by using the npm start
command. npx is similar to a combination of npm install and npm start. If the package is already
installed globally on your computer when you issue a command to run it with npx, the already-
installed package will be run. If it’s not installed, running it with npx will cause it to be downloaded,
temporarily installed locally, and run.

Introduction

xlviii

To create a new React app using Create React App, use the npx command, followed by create-react-
app, followed by a name that you want to give your new React app. For example:

npx create-react-app my-new-app

Naming Your React App
The name you choose for your new app is up to you, as long as it conforms to the rules of Node.js
package names. These rules are:

➤➤ It must be less than 214 characters long.

➤➤ The name can’t start with a dot or underscore.

➤➤ The name can’t have uppercase letters.

➤➤ It can’t contain any characters that aren’t allowed in URLs (such as ampersands and dollar
signs) and that are “unsafe” in URLs (such as the percent symbol and spaces).

In addition to these rules, there are several common conventions for how Node.js packages, and
therefore apps created using Create React App, are named:

➤➤ Keep it simple and as short as possible.

➤➤ Use only lowercase letters.

➤➤ Use dashes in place of spaces.

➤➤ Don’t use the same name as a common Node.js package.

Making Your First React App
Follow these steps to use Create React App to make your first React app:

1.	 Make or open a new folder in Visual Studio Code.

2.	 Open the Terminal and make your new folder the working directory. You can do this by
right-clicking the folder name and choosing Open in Integrated Terminal, or by opening
the Terminal and using the Unix cd (for change directory) command to change the working
directory to the one where you want to make the new app. Note that if you’re using Win-
dows, your integrated terminal may be the Windows Command Prompt, in which case the
command to change the working directory is dir.

3.	 Use npx to run create-react-app and give your new application a name. For example:

npx create-react-app my-test-app

4.	 Press Enter to start the installation of create-react-app and the configuration of your new
app. You’ll see a series of messages and progress bars in the Terminal. You may also see some
errors and warnings, but often these aren’t anything to be concerned about.

Introduction

xlix

5.	 When the installation and configuration of your new React app finishes, change to the direc-
tory containing your new app by typing cd followed by the name you gave to your app:

cd my-test-app

6.	 Start up your app by using the npm start command. Note: npm start is actually shorthand
for npm run start. What you’re doing when you run npm start is that you’re causing a
script called start to run its commands.

7.	 Wait and watch as your generated React app starts up and then opens in a browser to reveal
the React logo and a message, as shown in Figure I‑16.

8.	 Open the Chrome DevTools window and use the Components pane that you installed with
the React Developer Tools to inspect your React app. Notice that this sample app is much
smaller and less complex than the one that makes up the reactjs.org website, which you
inspected earlier in this Introduction.

FIGURE I-16:  The default Create React App boilerplate

http://reactjs.org

Introduction

l

Now that you’ve created a React app, you can try making some changes to it by following
these steps:

1.	 Leave the integrated Terminal in Visual Studio Code open and open src/App.js, which is
located inside your application’s folder.

NOTE  React applications are made up of a hierarchy of components, and this
one is the top-level component, and the only one in a default application gen-
erated by Create React App.

2.	 Find the part of App.js that contains the code shown in Listing 0‑1.

LISTING 0-1: T he return statement in the default Create React App boilerplate

<div className="App">
 <header className="App-header">

 <p>
 Edit <code>src/App.js</code> and save to reload.
 </p>
 <a
 className="App-link"
 href="https://reactjs.org"
 target="_blank"
 rel="noopener noreferrer"
 >
 Learn React

 </header>
</div>

NOTE  The HTML-like syntax you see here is JSX, which is a special feature of
React projects that we will cover in detail in Chapter 3.

3.	 Change the text between the <p> and </p> tags and then save App.js.

4.	 Switch back to your browser, and notice that the browser window has updated to reflect the
change you made to App.js!

Introduction

li

Congratulations, and Onward!
If you’ve made it this far, you’re well on your way to learning React. You have your toolchain set up,
you’ve learned the basics of using two in-browser testing tools (Chrome DevTools and React Devel-
oper Tools), you’ve installed Create React App, and you’ve used it to generate a boilerplate React
application.

Feel free to play around with the tools and commands you learned in this Introduction, and to try
making additional changes to the Create React App boilerplate code to see what happens.

When you’re ready, move on to Chapter 1, where you’ll get hands-on experience with building and
modifying your first React components!

READER SUPPORT FOR THIS BOOK

You’ll find hundreds of code listings in this book. I’ve designed these to be simple enough to be easily
understandable, but practical enough to be helpful as you transition from learning React to practicing
writing React code. To get the most out of this book, I recommend you try running and experiment-
ing with each of the code listings.

To make running the examples easier, I’ve put them all online, including working examples
where possible.

Companion Download Files
As you work through the examples in this book, you may choose either to type in all the code manu-
ally or to use the source code files that accompany the book. All the source code used in this book is
available for download from http://www.wiley.com/go/reactjsfoundations.

Working examples of each code listing, supplemental information, and a link to the book’s Github
repository are available at https://www.reactjsfoundations.com.

If you prefer to download and run the example code on your own computer, you can clone the
repository using Git and then follow the instructions in the README file to view working versions
of every code listing.

If you don’t have Git installed, you can go to https://www.reactjsfoundations.com in your
browser and click the Download button to download all of the code to your computer.

In the event that a “but” may have made it into this book, or some unforeseen update to React
has necessitated a change to any of the code in the book, you’ll find corrections at https://www.
reactjsfoundations.com as well.

http://www.wiley.com/go/reactjsfoundations
https://www.reactjsfoundations.com
https://www.reactjsfoundations.com
https://www.reactjsfoundations.com
https://www.reactjsfoundations.com

Introduction

lii

How to Contact the Publisher
If you believe you’ve found a mistake in this book, please bring it to our attention. At John Wiley &
Sons, we understand how important it is to provide our customers with accurate content, but even
with our best efforts an error may occur.

In order to submit your possible errata, please email it to our Customer Service Team at
wileysupport@wiley.com with the subject line “Possible Book Errata Submission.”

mailto:wileysupport@wiley.com

Hello, World!
Since the beginning of time, the first program anyone learns to build in any new programming
language is a program that displays the words “Hello, World.” Of course, the words here aren’t
important, and I would encourage you to choose any words you like to replace this cliché
phrase. The point of this chapter is to quickly build up your understanding of how React works
by using a simple and inconsequential program. But, don’t be deceived—the foundational tools
and techniques that you learn about in this chapter are essential to learning React. If you only
read one chapter of this book, this would be the one. In this chapter, you’ll learn:

➤➤ How to use React without a toolchain.

➤➤ How to write your first React application.

➤➤ How to make and modify a React application built with Create React App.

REACT WITHOUT A BUILD TOOLCHAIN

Most React application development uses a build toolchain (such as the one created by Create
React App) running in Node.js as its foundation. It is possible, however, to include React in an
existing website or to build a website that makes use of React by just importing a couple of
scripts into a web page. You can even use React code alongside JavaScript code written using
another library or framework.

Follow these steps to make an HTML page and to add React to it:

1.	 Create a new folder in your Documents folder and open it in Visual Studio Code.

2.	 Open the Command Palette (Command+Shift+P on MacOS or Control+Shift+P
on Windows) and run the File: New File command, or select File ➪ New File from
the top menu.

3.	 Save your new file as index.html.

1

2  ❘  CHAPTER 1   Hello, World!

4.	 Type ! followed by the Tab key to generate an HTML template using emmet. If you prefer,
you can also type the following code into your new blank file:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>Hello, React!</title>
</head>
<body>

</body>
</html>

5.	 Between the <body> and </body> tags, create an empty div element and give it an id attri­
bute with the value of app. This is where you’re going to tell React to render its output. In
the React world, we call this the container element. The actual id value doesn’t matter here,
but app is a simple, easy to remember, and meaningful value that is very commonly used.

NOTE  You can put a React container element anywhere inside the body
element of a web page.

6.	 Go to https://reactjs.org/docs/cdn-links.html in your browser and find the script
tags for including React and ReactDOM from a content delivery network (CDN), as shown
in Figure 1‑1.

7.	 Copy both script tags and paste them right before the </body> tag in index.html.

NOTE  The reason these must go at the end of the body of your web page is
that they can make changes to your web page. Because of the way JavaScript
loads and then executes immediately after it loads, the browser will show an
error message if your React code is loaded and executed before the container
element is loaded.

The first script, react.development.js, is the actual React library that handles the rendering
of React components, the flow of data between components, responding to events, and all of the
functionality that you, as a React developer, have control over in React.

The second script, react-dom.development.js, handles the communication and translation
between the React application that you write and the browser DOM. In other words, it controls
how and when your component renders and updates in the browser.

https://reactjs.org/docs/cdn-links.html

React Without a Build Toolchain  ❘  3

The CDN links that you copy from reactjs.org will explicitly specify the latest version of React
at the time that you view the page. If you want to make sure that your page always uses the latest
version of React, change the number following the @ to “latest” as shown here:

<script src="https://unpkg.com/react@latest/umd/react.development.js"
crossorigin></script>
<script src="https://unpkg.com/react-dom@latest/umd/react-dom.development.js"
crossorigin></script>

NOTE  Notice the “umd” in the URLs in step 7. UMD stands for Universal
Module Definition. UMD is what allows the CDN version of React to work in
browsers without requiring a compile step.

8.	 After the script tags that include the UMD versions of react and react-dom, write another
script tag that includes a file (which we’ll make shortly) named HelloWorld.js:

<script src="HelloWorld.js"></script>

Your index.html file should now match Listing 1‑1.

FIGURE 1-1:  The React CDN Links

http://reactjs.org

4  ❘  CHAPTER 1   Hello, World!

LISTING 1-1:  The HTML file for using React without a toolchain

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>Hello, World!</title>
</head>
<body>
 <div id="app"></div>
 <script src="https://unpkg.com/react@latest/umd/react.development.js"
 crossorigin></script>
 <script src="https://unpkg.com/react-dom@latest/umd/react-dom.development.js"
 crossorigin></script>
 <script src="HelloWorld.js"></script>
</body>
</html>

9.	 Create a new file in the same directory as index.html and name it HelloWorld.js.

10.	 Add the following code to HelloWorld.js:

'use strict';

class HelloWorld extends React.Component {
 constructor(props) {
 super(props);
 this.state = { personName:'World' };
 }

 render() {
 return React.createElement('h1', null, 'Hello, ' + this.state.personName);
 }
}

11.	 Add the following to the end of HelloWorld.js, after the code you entered in step 10:

const domContainer = document.querySelector('#app');
ReactDOM.render(React.createElement(HelloWorld), domContainer);

12.	 Open index.html in a web browser. You should see the message “Hello, World” displayed as
a first level heading, as shown in Figure 1‑2.

13.	 Change the value of the personName property in the state object inside the constructor
function in HelloWorld.js as shown in Listing 1‑2.

LISTING 1-2:  Changing the state data in a component

'use strict';

class HelloWorld extends React.Component {
 constructor(props) {

React Without a Build Toolchain  ❘  5

 super(props);
 this.state = { personName:'Murray' };
 }

 render() {
 return React.createElement('h1', null, 'Hello, ' + this.state.personName);
 }
}

const domContainer = document.querySelector('#app');
ReactDOM.render(React.createElement(HelloWorld), domContainer);

14.	 Save HelloWorld.js and refresh your browser window. You should see the update reflected.

Congratulations! You’ve now built your first custom React application.

Spend a few minutes examining the code for HelloWorld.js. If you’re familiar with JavaScript
objects and classes, you’ll notice that there’s nothing magic going on here. Everything is straightfor­
ward JavaScript.

FIGURE 1-2:  Hello, World running in a browser

6  ❘  CHAPTER 1   Hello, World!

Here’s a quick line-by-line rundown of everything that’s happening in this file:

1.	 We create a JavaScript class called HelloWorld that extends the React.Component class:

class HelloWorld extends React.Component {

NOTE  You’ll learn about using classes in JavaScript in Chapter 4.

2.	 Next, we write the constructor:

constructor(props) {
 super(props);
 this.state = { personName:'World' };
}

The constructor will run just once, before the component is mounted. In the constructor, we
use the super method to import properties from the base class (which is React.Component).
Finally, we create an object called state and give it a property called personName.

3.	 We create a new function in HelloWorld called render():

render() {
 return React.createElement('h1', null, 'Hello,' + this.state.personName);
}

The render function produces the output of every React component. This output is gener­
ated by using the React.createElement method, which takes three parameters:

➤➤ The HTML element to create

➤➤ Optional React element properties

➤➤ The content that should be put into the created element

4.	 Finally, we use the render method of ReactDOM to render the return value of the
HelloWorld class inside of the HTML document:

const domContainer = document.querySelector('#app');
ReactDOM.render(React.createElement(HelloWorld), domContainer);

NOTE  Notice that we’re using two different functions named render(). The
first one, React.render(), creates the output of a component. The second one,
ReactDOM.render(), causes that output to be displayed in the browser window.

If this seems like a lot of work and code to just make a web page display text, you’re right—it is.

Fortunately, there are much easier ways to write React code, thanks to the tools that you learned
about in this book’s Introduction—specifically, Node.js and Create React App.

Interactive “Hello, World” with Create React App and JSX  ❘  7

Let’s wrap up this chapter by combining everything you’ve learned so far into making an interactive
version of the Hello, World application with Create React App.

INTERACTIVE “HELLO, WORLD” WITH CREATE REACT
APP AND JSX

Although it’s possible to use React without a toolchain by including the UMD build into an HTML
file, this is far from an ideal way to do anything but a simple application.

By using a toolchain, you gain a set of testing and debugging tools that can help you write better
code. You also gain the ability to compile your React components so that they’ll run faster in the
user’s browser.

You’ve already seen how to use Create React App to build a boilerplate user interface. Now let’s look
at how to build something slightly more complex and interactive:

NOTE  If you’d like to bypass the process of installing and configuring the Cre-
ate React App boilerplate, you can skip the first three steps and use the same
app you created in the book’s Introduction.

1.	 Using Visual Studio Code, create a new directory and open the integrated terminal.

2.	 Type npx create-react-app react-js-foundations into the terminal and press Enter.

3.	 Once Create React App finishes its work, type cd react-js-foundations followed by npm
start. Create React App will start up your application and open it in a browser.

4.	 Open src/App.js in Visual Studio Code.

5.	 Update App.js to match Listing 1‑3 and then save the file.

LISTING 1-3:  An interactive Hello, World component

import React from 'react';
import './App.css';

function App() {
 const [personName,setPersonName] = React.useState('');

 return (
 <div className="App">
 <h1>Hello {personName}</h1>
 <input type="text" onChange={(e) => setPersonName(e.target.value)}/>
 </div>
);
}

export default App;

8  ❘  CHAPTER 1   Hello, World!

6.	 Return to your browser, and notice that the default Create React App screen has been
replaced with an input field and an h1 element above it.

NOTE  This ability of an app running in Create React App to detect when files
have changed and update what’s showing in the browser without you having
to manually reload the page is called “hot reloading.”

7.	 Type into the input field. Everything you type should appear inside the h1 element, as shown
in Figure 1‑3.

8.	 When you’re done playing around with this component, return to the built-in terminal in VS
Code and press Ctrl+c to stop the recompiling and hot reloading script.

FIGURE 1-3:  The finished interactive Hello, World component!

Summary  ❘  9

SUMMARY

Congratulations! In the last few pages, you’ve experienced the most primitive way to write React
code as well as the latest and most advanced way. The history of React has been one of gradually
refining the methods and tools used to write React to make it easier for developers. In these two
examples, you’ve seen the two extremes—a React application built without the aid of any tooling,
and one built using Create React App and the latest enhancements and simplifications that have been
added to React as of this writing.

In this chapter, you learned:

➤➤ How to write a React application with the UMD build of React.

➤➤ The difference between React.render and ReactDOM.render.

➤➤ How to write a component using React.createElement.

➤➤ How to write and run a basic interactive component using Create React App.

In the following chapters, you’ll learn how all of this works. Continue on to the next chapter where
you’ll learn about the inner workings of React.js and how it fits into the big picture. After that,
Chapter 3 takes you further into working with more code.

The Foundation of React
React is a JavaScript library for creating interactive user interfaces using components. It was
created by Facebook in 2011 for use on Facebook’s newsfeed and on Instagram. In 2013, the
first version of React was released to the public as open source software. Today, it’s used by
many of the largest websites and mobile apps, including Facebook, Instagram, Netflix, Reddit,
Dropbox, Airbnb, and thousands of others.

Writing user interfaces with React requires a bit of a shift in how you think about web applica-
tions. You need to understand what React is, how it works at a higher level, and the computer
science ideas and patterns that it’s based on. In this chapter, you’ll learn:

➤➤ Why it’s called React.

➤➤ What a Virtual DOM does.

➤➤ The difference between composition and inheritance.

➤➤ The difference between declarative and imperative programming.

➤➤ The meaning of “idiomatic” with regard to React.

WHAT’S IN A NAME?

Let’s start with the name “React.” Facebook designed React in response to its need to be able
to efficiently update websites in response to events. Events that can trigger updates in websites
include user input, new data coming into the application from other websites and data sources,
and data coming into the application from sensors (such as location data from GPS chips).

Traditionally, the way that web applications have dealt with data that changes over time is to
refresh themselves every so often, checking for new data in the process. Facebook wanted to
create a way to more easily build applications that respond, or react to new data, rather than

2

12  ❘  CHAPTER 2   The Foundation of React

simply refreshing pages whether the underlying data has changed or not. You can think of the differ-
ence in approaches as pull (which is the traditional way of updating websites) vs. push (which is the
reactive way to build websites).

This method of updating a user interface in response to data changes is called reactive programming.

UI LAYER

Web applications typically are built and described using the Model-View-Controller (MVC) pattern.
The Model in MVC is the data layer, the Controller facilitates communication with the data layer,
and the View is what the user sees and interacts with. In an MVC application, the View sends input to
the Controller, which passes data between the data layer and the View. React is only concerned with
the V in MVC. It takes data as input and presents it to the user in some form.

Figure 2‑1 shows a diagram of the MVC pattern.

React itself doesn’t care whether the user is using a mobile phone, a tablet, a desktop web browser, a
screen reader, a command-line interface, or any other kind of device or interface that may be invented
in the future. React just renders components. How those components get presented to the user is up
to a separate library.

The library that handles rendering of React components in web browsers is called ReactDOM. If you
want to render React elements to native mobile apps, you use React Native. If you want to render
React components to static HTML, you can use ReactDOMServer.

ReactDOM has a number of functions for interfacing between React and web browsers, but the one
that every React application makes use of is called ReactDOM.render. Figure 2‑2 illustrates the rela-
tionship between React, ReactDOM, and a web browser.

MODEL

user input

VIEW CONTROLLER

modi�esupdates

FIGURE 2-1:  The MVC pattern

React
Component

React.render() ReactDOM.render()Virtual
DOM DOM

<div id="app">
</div>

FIGURE 2-2:  React and ReactDOM

Virtual DOM  ❘  13

ReactDOM is what makes it possible for user interfaces built in React to handle the quantity of
screen changes required by modern web applications so efficiently. It does this through the use of a
Virtual DOM.

VIRTUAL DOM

The Document Object Model, or DOM, is a web browser’s internal representation of a web page. It
converts HTML, styles, and content into nodes that can be operated on using JavaScript.

If you’ve ever used the getElementById function or set the innerHTML of an element, you’ve inter-
acted with the DOM using JavaScript. Changes to the DOM cause changes to what you see in your
web browser, and updates made in the web browser (such as when you enter data into a form) cause
changes to the DOM.

Compared to other kinds of JavaScript code, DOM manipulation is slow and inefficient. This is
because whenever the DOM changes, the browser has to check whether the change will require the
page to be redrawn and then the redrawing has to happen.

Adding to the difficulty of DOM manipulation is that the DOM’s functions aren’t always easy to use
and some of them have excessively long names like Document.getElementsByClassName. For both
of these reasons, many different JavaScript DOM manipulation libraries have been created. The single
most popular and widely used DOM manipulation library of all time was jQuery. It gave web devel-
opers an easy way to make updates to the DOM, and that changed the way we build user interfaces
on the web.

Although jQuery made DOM manipulation easier, it left it up to programmers to program specifically
when and how changes to the DOM would happen. The result was often inefficient user interfaces
that were slower both to download and to respond to user interactions because of their use of jQuery.
As a result, jQuery got a reputation for being slow.

When the engineers at Facebook designed React, they decided to take the details of how and when
the DOM is modified out of the hands of programmers. To do this, they created a layer between
the code that the programmer writes and the DOM. They called this intermediary layer the
Virtual DOM.

Here’s how it works:

1.	 A programmer writes React code to render a user interface, which results in a single React
element being returned.

2.	 ReactDOM’s render method creates a lightweight and simplified representation of the React
element in memory (this is the Virtual DOM).

3.	 ReactDOM listens for events that require changes to the web page.

4.	 The ReactDOM.render method creates a new in-memory representation of the web page.

14  ❘  CHAPTER 2   The Foundation of React

5.	 The ReactDOM library compares the new Virtual DOM representation of the web page to
the previous Virtual DOM representation and calculates the difference between the two. This
process is called reconciliation.

6.	 ReactDOM applies just the minimal set of changes to the browser DOM in the most efficient
way that it can and using the most efficient batching and timing of changes.

By taking the programmer out of the process of actually making updates to the browser DOM,
ReactDOM can decide on optimal timing and the optimal method for making required updates. This
greatly improves the efficiency of making updates to a browser view.

Figure 2‑3 is a diagram showing how the Virtual DOM works.

THE PHILOSOPHY OF REACT

If you’ve used other JavaScript libraries, you may find React to be quite a bit different from your past
experience with programming dynamic user interfaces. By understanding the thinking behind why
React is like it is, you’ll have a better understanding and appreciation of it.

Diff (erence)

DOM

Previous DOM Next DOM

FIGURE 2-3:  How the Virtual DOM works

The Philosophy of React  ❘  15

Thinking in Components
React is a library for creating and putting together (or composing) components to build user
interfaces. React components are independent pieces that can be reused and that can pass data to
each other.

A component can be something as simple as a button or it can be more complex, such as a navigation
bar that’s made up of a collection of buttons and dropdowns.

As the programmer, it’s your job to decide how big or how small each component in your application
should be, but a good rule of thumb to think about is the idea of single responsibility.

The single responsibility principle, in programming, is the idea that a component should have respon-
sibility for a single part of a program’s functionality. Robert C. Martin, also known as “Uncle Bob,” is
one of the most important thinkers and writers on software design. He described the single responsi-
bility principle this way:

Single Responsibility means that a class [or what we call a “component” in React]
should have only one reason to change.

Composition vs. Inheritance
In object-oriented programming (OOP), it’s common to create variations of classes that inherit prop-
erties from a parent class. For example, a program might have a class called Button, which might
have a child class called SubmitButton. SubmitButton would inherit all of the properties of Button,
and then override or extend them to create its unique functionality and look.

Rather than using inheritance to create more specific components to deal with specific cases (such as
a submit button), React encourages the creation of a single component that is more broadly reusable
but that can be configured by passing data into it and then combining it with other components to
handle more specific cases.

For example, in the case of a submit button, you might simply pass a parameter to a Button compo-
nent called label and another parameter called handleClick that contains the action to be per-
formed by the button. This generalized button can then serve multiple purposes, depending on the
values of label and handleClick that are passed to it. Listing 2‑1 shows what this component might
look like.

LISTING 2-1:  Creating configurable components

function Button(props){
 return(
 <button onClick={props.handleClick}>{props.label}</button>
);
}

Once you’ve created a configurable component, you can create more specific components by com-
bining more generalized ones. This technique is called composition. Listing 2‑2 shows how you can
create a specific WelcomeDialog component from a general Dialog one using composition.

16  ❘  CHAPTER 2   The Foundation of React

LISTING 2-2:  Using composition

function Dialog(props){
 return(
 <div className="dialogStyle">{props.message}</div>
)
}

function WelcomeDialog(props){
 return(
 <Dialog message="Welcome to our app!" />
)
}

React Is Declarative
One way to describe the difference in approach between programming with React and programming
with many other JavaScript libraries is to say that React is declarative while many other libraries are
imperative.

So, what is declarative programming? Traditionally, the job of a programmer has been to break down
complex processes into steps so that a computer can perform them. For example, if you want to pro-
gram a robot to make you a sandwich, you might start by figuring out the high-level steps involved in
the process:

1.	 Get two slices of bread.

2.	 Find a knife.

3.	 Get the peanut butter.

4.	 Use the knife to spread the peanut butter.

5.	 Assemble the sandwich.

Of course, these steps are far too high-level for a robot to perform, so you need to break down each
one into smaller steps:

1.	 Get two slices of bread.

	1a.	 Use visual sensors to locate bread.

	1aa.	 If bread is found, move toward it.

	1ab.	 If bread is not found, return to step 1.

	1b.	 Use grabber arm to attempt opening of bread package.

You get the idea. By breaking down a complex process into small steps, a task eventually becomes
simple enough for a computer to perform. We call this step-by-step style of programming imperative
programming. The imperative approach is the way that most DOM manipulation libraries worked
prior to React.

The Philosophy of React  ❘  17

To change a paragraph of text in the browser using jQuery, for example, you would do something
like this:

$('#para1').html('<p>This is the new paragraph.</p>');

This code looks for a paragraph with the id attribute equal to para1 and changes its HTML content
to the new content that’s specified inside the parentheses.

React takes a different approach, which we call declarative programming. In declarative program-
ming, the computer (or the computer language interpreter, rather) has some intelligence about the
types of tasks that it can perform, and the programmer only needs to tell it what to do, rather than
how to do it.

In declarative programming, our sandwich-making robot would know the steps for making sand-
wiches, and programming it would involve the programmer saying something like “make me a sand-
wich that looks like this.”

Applied to DOM manipulation, the declarative approach that React takes is to allow the programmer
to say, “Make the page look like this.” React then compares the new way that the page should look
with the way that it currently looks and figures out what’s different and what needs to change and
how to do it.

Building and updating a React user interface, from the programmer’s perspective, is just a matter of
specifying what the user interface should look like and telling React to render it.

React Is Idiomatic
React itself is a small library with limited functionality when compared to other JavaScript libraries.
Except for a handful of concepts and methods that are unique to React, React components are just
JavaScript. If the structure and code of a React component looks foreign to you, it’s likely because it
uses a style of JavaScript programming that you’re not yet familiar with, or because it makes use of a
new feature in JavaScript that you’re not yet familiar with. The good news is that by getting better at
JavaScript, you’ll get better at programming with React.

You may hear the term “idiomatic JavaScript” used to describe React. What this means is that React
code is easily understandable to people who program JavaScript. The reverse is also true: if you know
JavaScript, understanding how to write React is not too much of a stretch.

Why Learn React?
If you’ve made it this far in the book, you probably already have your own reasons for learning
React. You already know by now that you’re in good company—React’s popularity has been growing
from day one of its release into the wild. Surveys of developers have consistently shown that it’s at
the top, or very near the top, of their preferred libraries, and the list of companies that have already
migrated to React or that are in the process of migrating to React is impressive, to say the least.

React is going to be around for a long time to come, and there’s never been a better time to learn it.

18  ❘  CHAPTER 2   The Foundation of React

React vs.…
The job of being a software developer today, especially one working with JavaScript and the web,
requires some knowledge of a staggeringly large and growing number of libraries, frameworks,
protocols, standards, best practices, and patterns. A great programmer not only knows how to apply
whatever language and framework they are working in at any one time, but also how to quickly learn
new languages and frameworks.

One good way to learn a new language is by comparing it to something that you already know, and
the question “how does React compare to (x)” is one of the most common questions that my students
ask me. In the following sections, I’ll look at how React stacks up against its two closest rivals: Angu-
lar and Vue. While I don’t like to take sides, I know enough about each to be able to give some facts
and impressions.

React vs. Angular
Angular (angular.io) was created by Google, and it’s been around longer than React in one form or
another. Let’s start with the similarities:

1.	 Purpose. Both Angular and React can create scalable and dynamic user interfaces.

2.	 Stability. Both Angular and React were created by one of the largest companies on the inter-
net and they both have huge numbers of developers and enthusiasts.

3.	 Robustness. A major concern with any JavaScript library or framework is how safe, secure,
and generally acceptable it is for enterprise development. Both Angular and React are popu-
lar and widely used in corporate software development.

4.	 License. Both frameworks use the MIT license, which allows for unlimited use and reuse
for free as long as the original copyright and license notices are included in any copy of the
source code.

Angular has gone through some major changes in the years since React came onto the scene. Prior
to what we now call “Angular” there was AngularJS, which was replaced in 2016 with Angular 2.0.
Angular 2.0 was a major change and was not compatible with AngularJS. Its introduction led to
many developers deciding to learn React instead of the rewritten Angular.

Angular is considered to be a “framework,” while React calls itself a “library.” The difference between
a library and a framework is that a framework is usually an all-encompassing way of doing some-
thing, while a library is generally seen as a tool for a more specific purpose.

The React library itself is a tool for making user interfaces out of components. Angular, on the other
hand, is a complete system for building front-end web applications. By assembling components and
libraries, React can do everything that Angular can do. But, if you need something smaller, such as to
generate some HTML, React can do that as well.

The Philosophy of React  ❘  19

Angular has a steeper learning curve than React. In addition to the learning curve required to use the
framework itself, Angular requires the use of Microsoft’s TypeScript, which is a superset of JavaScript
that’s designed for the development of large applications. It’s possible to use TypeScript to write React
as well, but with Angular it’s a requirement.

Unlike React, Angular operates on the real DOM, rather than on a Virtual DOM, and it optimizes
changes to the DOM by using an approach it calls Change Detection. When an event causes data
changes in Angular, the framework checks each component and updates it as needed. You may recog-
nize this approach as a more imperative approach (as compared to React’s declarative approach) to
DOM manipulation.

React and Angular also differ in how data flows within an application. React, as you’ll see, uses
one-way data flow. What this means is that every change that happens in the browser starts out as a
change in the data model. This differs from both Angular and Vue, which both feature two-way data
binding, in which changes in the browser can affect the data model directly and changes to the data
model can affect the view.

React vs. Vue
Vue.js (vuejs.org) is a relative newcomer to the universe of JavaScript frameworks, but it has been
growing in popularity and is now considered one of the top three, along with React and Angular.

Like React and Angular, Vue is open source. Unlike React and Angular, however, Vue isn’t backed or
controlled by a large corporation. Instead, it’s the work of many programmers and companies donat-
ing their skills to maintain and support it. This can be seen as either a plus or a minus, depending on
your view of giant internet companies.

Vue takes a middle ground between the bare-bones approach of React and the smorgasbord approach
of Angular. Like Angular, it has built-in functionality for state management, routing, and managing
CSS. But, like React, it’s a small library (even smaller than React in terms of total kilobytes that must
be downloaded to the browser) and how you use it is highly customizable.

Of the three libraries, Vue is probably the easiest to learn.

What React Is Not
It’s important to keep in mind not only what React is, but what it isn’t. Beyond the often repeated
(and largely semantic) argument about whether React is a library or a framework are the more
important distinctions between front-end libraries, back-end libraries, and the development
environment.

React, as it’s used most often, is a front-end library. This means that everything React does happens in
the web browser. It can’t directly control or access remote databases (except through the web), and it
doesn’t serve web pages.

When I’m asked about the differences between front-end, back-end, and development environments
in my classes, I like to draw something like the diagram in Figure 2‑4.

http://vuejs.org

20  ❘  CHAPTER 2   The Foundation of React

You know already that React is a front-end JavaScript library. As you can see from the preced-
ing diagram, there are many other pieces of the web ecosystem. Here are a few of the things that
React is not.

React Is Not a Web Server
A web server, also known as an HTTP server, has as its primary job to accept requests for web pages
from web browsers and then return those web pages to the browser along with all of their linked
images, CSS files, and JavaScript files.

The React library and the user interfaces you create using React are among the linked JavaScript
files that a web server sends to a web browser, and React itself has no ability to handle requests from
web browsers, although it can interact with the browser, just as any JavaScript code can, through the
browser’s application programming interfaces (APIs).

React Is Not a Programming Language
React is a JavaScript library, which means that it is just a collection of JavaScript functions that pro-
grammers can make use of. The idea of a library is to simplify common tasks that programmers need
to do frequently so that they can just focus on writing the code that makes a program unique.

HTTP
Server

Browser
window
requests

index.html

Device

Browser Window

index.html

Document

JavaScript
requests

data

JavaScript

React

HTML

CSS

Front EndBack End

Node.js
Data

FIGURE 2-4:  How the web works

Summary  ❘  21

If you had enough time and knowledge, you could rewrite every bit of the React library yourself
using JavaScript—but, of course, there’s no reason to do that, because the React developers have done
it for you.

React Is Not a Database Server
React doesn’t have any abilities to store data in a secure way or in a permanent way. Instead, React
user interfaces (like every web and mobile web user interface) communicate with server-side data-
bases over the internet to store and receive data such as login information, ecommerce transaction
data, news feeds, and so forth.

The data that React uses to make user interfaces dynamic, and the data that you’re viewing at any
one time in a React user interface (what we call “session” data), is not persistent. Unless your React
user interface saves session data in the web browser (using cookies or the browser’s local storage), it
all gets erased when you navigate to a different URL or refresh your browser window.

React Is Not a Development Environment
As you saw in the book’s Introduction, you’ll use plenty of different tools to program with React.
Collectively, these are known as your development environment. I present the most commonly used
tools (and, in some cases, just my own personal preferences), but there’s nothing about React that
requires you to use these specific tools. In many cases, there are alternatives available, and you may
discover that you prefer different ones than I do (or, you may discover a better tool that I’m not cur-
rently aware of). It’s possible to write perfect React code using any tools you want, or using no tools
at all (other than a text editor).

React Is Not the Perfect Solution to Every Problem
React works well for many types of applications, but it’s not always the best solution. This is true of
any JavaScript library, and it’s probably true of every single tool ever invented. It’s important to know
about a wide variety of different languages and libraries so that you can make good choices and
know when the tools you prefer to use or that you know the best are the best and when they might
not be the best.

SUMMARY

Because React is a different way of writing user interfaces for the web, it does have some concepts
and foundational ideas behind it that are important to understand before you can work with it effec-
tively. In the end, however, writing React user interfaces is straightforward:

1.	 You write components to describe how the user interface should look and act.

2.	 React renders your components to create a tree of nodes.

3.	 A React renderer figures out the differences between the latest rendered component tree and
the previous one and updates the user interface accordingly.

22  ❘  CHAPTER 2   The Foundation of React

In this chapter, you learned:

➤➤ Why React is called React, and what is meant by the term “reactive programming.”

➤➤ The purposes of the React library and of the ReactDOM library.

➤➤ What composition is.

➤➤ About declarative programming and how it’s different from imperative programming.

➤➤ Why you should learn React.

➤➤ How React compares to Angular and Vue.js.

➤➤ The role of React in a web application and what roles React does not fill within the web
application ecosystem.

In the next chapter, you’ll learn about one of the most fundamental tools used to write React
components: JSX.

JSX
Newcomers to React often remark on how it appears that React breaks one of the cardinal
rules of web development, which is to not mix your programming logic with your HTML.
This chapter explains where this misperception about React comes from and introduces JSX,
which gives us an easy, HTML-like syntax for composing React components. In this chapter,
you’ll learn:

➤➤ How to write JSX.

➤➤ How modules work in JavaScript.

➤➤ What a transpiler does.

➤➤ How to include literal JavaScript in JSX code.

➤➤ How to do conditional rendering in React.

➤➤ How to render children in JSX.

JSX IS NOT HTML

Take a look first at Listing 3‑1. If you know some HTML, you can probably guess what the
result of this function will be—a form containing two input fields and a button will be returned.

LISTING 3-1:  A React component

import React from "react";

function Login(){

 const handleSubmit = (e)=>{
 e.preventDefault();
 console.log(`logging in ${e.target[0].value}`);

3

continues

24  ❘  CHAPTER 3   JSX

 // do something else here
 }

 return (
 <form id="login-form" onSubmit={handleSubmit}>
 <input type="email"
 id="email"
 placeholder="E-Mail Address"/>
 <input type="password"
 id="password"/>
 <button>Login</button>
 </form>
);
}

export default Login;

But, if you know some JavaScript, you might think the result of running this JavaScript function
should be an error—HTML is not valid JavaScript, and so the value of the return statement will
cause this function to fail.

However, this is a perfectly well-formed React component and that markup inside of the return
statement actually isn’t HTML. Instead, it’s written in JSX, which is an extension of JavaScript that’s
used as a visual aid to help you describe what a component should look like.

JAVASCRIPT LESSON: MAKING SENSE OF MODULES WITH AMD,
CJS, AND ESM

Modularization is a fundamental concept in software development in which a pro-
gram is organized into reusable units of code. Modularization makes software easier
to build, debug, test, and manage and it also enables team development of software.
Just as functions create units of functionality that can be reused in a JavaScript file,
modules create JavaScript files that can be reused within a program.

A computer program made up of modules might look something like this:

LISTING 3-1  (continued)

JSX Is Not HTML  ❘  25

module 1
data + data1

module 2
data + data2

module 3
data + data3

module 4
data + data1 + data4

main program
data

THE HISTORY OF JAVASCRIPT MODULES

JavaScript started its life as a scripting language for web browsers. In its early days,
scripts written in JavaScript were small. Because it was seen as less than a “real” pro-
gramming language, no thought was given to including a way to create modules in
JavaScript. Instead, programmers would just write their JavaScript in a single file and
import it into HTML files using the script element, or write all of their JavaScript
directly into the script element.

As JavaScript became a more powerful language, and as the number of things that
people were doing with JavaScript began to grow, so too did the complexity and size
of JavaScript files.

The Rise of the JavaScript Module

Because JavaScript couldn’t do modules natively, when the need for and benefits of
breaking up large JavaScript programs into smaller pieces became apparent, Java
Script developers did what they always do and created new libraries that could be
used to add modularization into JavaScript.

RequireJS

The library that became the most popular way to modularize JavaScript in the web
browser was RequireJS. The method used by RequireJS to load modules is called
Asynchronous Module Definition (AMD).

As the name implies, AMD modules are loaded asynchronously, meaning that
all of the imports in a module run prior to any of the code in those modules
being executed.

continues

26  ❘  CHAPTER 3   JSX

With RequireJS, you can create modules by using the define function, and then
those modules can be included into other JavaScript code using the require() func-
tion. All you have to do to use RequireJS is to include the RequireJS script into your
HTML file using a script tag, like this:

<script data-main="scripts/main" src="scripts/require.js">
</script>

The preceding script tag specifies that the single entry point into the app is
scripts/main.js.

Once you’ve included the script tag in your HTML file, you can create individual
modules in other files by using RequireJS’s define function, like this:

// messages.js
define(function () {
 return {
 getHello: function () {
 return 'Hello World';
 }
 };
});

Modules you define can then be loaded into main.js using the requirejs function,
where individual functions from the module can be assigned to variables and used,
like this:

requirejs(["messages"], function(messages) {
 // module usage here
});

This function is called when scripts/messages.js is loaded. If messages.js calls
define, then this function is not fired until messages’s dependencies have loaded,
and the messages argument will hold the module value.

CommonJS

While RequireJS created a way to have modules in the web browser, web browsers
aren’t the only place where JavaScript code runs. Prior to 2009, there was no agreed-
upon standard way to modularize JavaScript code running outside the browser.

This changed when CommonJS (also known as CJS) was created. CommonJS was
built into Node.js and quickly became the most widely used modularization library
for server-side JavaScript.

With CommonJS, you can export variables, functions, or objects from a file by using
the exports function, like this:

// mathhelpers.js
exports.getSum = function(num1,num2) { return num1 + num2; }

(continued)

Once you’ve defined a module, you can import it into any other JavaScript files by
using the require function:

const mathHelpersModule = require('mathHelpers.js');
var theSum = mathHelpersModule.getSum(1,1);

Unlike RequireJS, CommonJS loads and parses modules synchronously, parsing and
executing each module as it’s loaded.

The following image illustrates the difference between how CommonJS and AMD
systems like RequireJS load modules.

Asynchronous Module De�nition (AMD)

module 1

module 1

module 2

module 2

module 3

module 3

CommonJS (CJS)

ES Modules

Having more than one way to create and use modules made modules less reusable,
however, and the ultimate dream of JavaScript programmers was always that Java
Script would someday have a built-in way to modularize code. This dream became a
reality with the standardization of ECMAScript Modules (ESM).

ESM features asynchronous module loading, like RequireJS, but has a simple syntax,
like CommonJS. The statements that you use to create and use ES Modules are
import and export.

USING IMPORT AND EXPORT

React components are JavaScript modules, and so you’ll see import and export
statements everywhere in React. The most basic thing to know about import and
export is that the export statement creates modules, and the import statement
imports modules into other JavaScript code. Since import and export are built into
JavaScript now, there’s no need to include a separate library to make use of them.

continues

JSX Is Not HTML  ❘  27

28  ❘  CHAPTER 3   JSX

export Creates Modules

Let’s say that you have a function that calculates shipping charges for your ecom-
merce store. The basic skeleton of this function might look something like this:

function calculateShippingCharge(weight,shippingMethod){
 // do something here
 return shippingCharge;
}

Turning this function into a module would make it more reusable, since you’d then
be able to simply include it into any file that needs to calculate shipping charges, and
you could even make use of it in different programs as well.

The basic syntax for using export is to put the export keyword before the defini-
tion of the function, like this:

export function calculateShippingCharge(weight,shippingMethod){
 // do something here
 return shippingcharge;
}

Now, you can put this module into a file with other modules (maybe the file would
be named ecommerce-utilities.js) and you can import individual functions, or
every function, from this file into any other file in your program.

import Imports Modules

To import a function, variable, or object from a JavaScript module, you use the
import statement. To use import, name at least one module, followed by the from
keyword, followed by the path to the file that contains the module or modules you
want to import.

You can import individual items from a file by surrounding them with curly braces,
like this:

import { shippingMethods, calculateShippingCharges } from
'./modules/ecommerce-utilities.js';

Using Default Exports

Another way to use export is to create a default export. A default export can be
used to specify a default function provided by a module:

function calculateShippingCharge(weight,shippingMethod){
 // do something here
}
export default calculateShippingCharge;

(continued)

You can only have one default export per file. When you have a default export, you
can import the module specified with the default export by using the import state-
ment without the curly braces, like this:

import calculateShippingCharge from
'./modules/calculateShippingCharge.js';

React components are usually created using default exports, unless you’re creating a
library of components.

Note: you’ll often see the path to a module specified without the .js at the end.
For example:

import calculateShippingCharge from
'./modules/calculateShippingCharge';

When you omit .js at the end of a filename in an import, the import will work
exactly the same as if you had specifically written it. Also notice that the path to the
module file starts with './'. This is the UNIX way of saying to start with the cur-
rent directory and to create a relative path from it. ES Modules require that the path
to the module is a relative path, so it will always start with ./ (the current directory)
or ../ (indicating the parent directory). Oftentimes, you may need to have more
than one ../, if the module you want to load is higher up in the file hierarchy.

So, in the previous case, the modules folder is a subdirectory of the directory con-
taining the file that’s importing the module.

If you’ve installed Node.js packages using npm, such as the React library itself, you
don’t need to use ./ or to specify the path to the Node.js package when you import
it. For example, components that use the React library’s functions have an import
statement that imports React. This usually looks like this:

import React from 'react';

Although you may also see individual objects from the React library imported
separately, like this:

import React, {Component} from 'react';

Some Important ES2015 Module Rules

There are just a few more important rules for how to use import and export:

➤➤ Both import and export statements need to be at the top level of your
JavaScript file—that is, not inside of a function or any other statement.

➤➤ Imports must be done before any other statements in a module.

➤➤ import and export can only be used inside modules (not inside of
ordinary JavaScript files).

JSX Is Not HTML  ❘  29

30  ❘  CHAPTER 3   JSX

WHAT IS JSX?

JSX is an XML-based syntax extension to JavaScript. In plain English, it’s a way to write JavaScript
code using XML. Although it’s not specific to React, and it’s not even required in order to write
React components, JSX is an integral part of how every React developer writes components because
it makes writing components so much easier and has no negative impact in terms of performance or
functionality.

How JSX Works
React uses JSX elements to represent custom components (which are also known as user-defined
components). If you create a component named SearchInput, you can make use of that component
in other components by using a JSX element named SearchInput, as shown in Listing 3‑2.

LISTING 3-2:  Using a user-defined React component in JSX

import {useState} from 'react';
import SearchInput from './SearchInput';
import SearchResults from './SearchResults';

function SearchBox() {
 const [searchTerm,setSearchTerm] = useState(");

 return (
 <div id="search-box">
 <SearchInput term={searchTerm} onChange={setSearchTerm}/>
 <SearchResults term={searchTerm}/>
 </div>
)
}

export default SearchBox;

In the same way, React has components built into it for each of the elements in HTML5, and you can
use any HTML5 element name when you write your React components and the result will be that
React will output that HTML5 element. For example, say you want your React component to result
in the rendering of the following piece of HTML markup:

<label class="inputLabel">Search:
 <input type="text" id="searchInput">
</label>

The JSX code for telling your React component to output that HTML would look like this:

<label className="inputLabel">Search:
 <input type="text" id="searchInput"/>
</label>

If you study both of the preceding snippets closely, you’ll find a couple of differences. The difference
between them, and the fact that JSX is not HTML, are of vital importance to understanding what
JSX is really doing.

What Is JSX?  ❘  31

It’s fully possible to create React components without using JSX by using the React.createElement
method. Here’s what the code to output the previous HTML markup looks like when you write it
using React.createElement:

React.createElement("label", {className: "inputLabel"}, "Search:",
 React.createElement("input", {type: "text", id: "searchInput"}));

If you examine this JavaScript code closely, you should be able to figure out basically how it works.
The React.createElement method accepts an element name, any attributes of the HTML element,
the element’s content ("Search:" in this example) and its child element or elements. In this case, the
label element has one child, input.

That’s pretty much all there is to React.createElement. If you’re interested in learning the exact
syntax of React.createElement, you can read more about it here:

https://reactjs.org/docs/react-without-jsx.html

In reality, however, very few React developers ever have to think about React.createElement,
because we use a tool called a transpiler as part of our development environment.

Transpiler . . . Huh?
Before you can run a React application that uses JSX and modules, it must first be compiled. During
the compile (also known as “build”) process, all of the modules are joined together and the JSX code
is converted into pure JavaScript.

Compilation vs. Transpilation
Compilation of React applications is somewhat different from how programmers of truly “compiled”
languages (like C++ or Java) understand compilation. In compiled languages, the code that you write
is converted into low-level code that can be understood by the computer’s software interpreter. This
low-level code is called bytecode.

When React applications are compiled, on the other hand, they’re converted from one version of
JavaScript to another version of JavaScript. Because the React compilation process doesn’t actually
create bytecode, a more technically correct word for what happens is transpilation.

JSX Transform
One of the steps in the transpilation of React code is the JSX Transform. The JSX Transform is a
process in which the transpiler takes JSX code (which isn’t natively understood by web browsers) and
converts it into plain JavaScript (which is natively understood by web browsers).

Introducing Babel
The tool we use for transpilation in JavaScript is called Babel. Babel is integrated into Create React
App and is an automatic part of compiling a React app built with Create React App.

https://reactjs.org/docs/react-without-jsx.html

32  ❘  CHAPTER 3   JSX

NOTE  Prior to version 17 of React, the JSX Transform converted JSX into
React.createElement() statements. With React 17, the JSX Transform was
rewritten so that it transforms JSX into browser-readable code without using
React.createElement(). The result is that developers no longer need to import
React into every component in order to use JSX.

It can be interesting sometimes to see how Babel converts JSX into JavaScript, and you can do this by
either viewing the source code for a running React application or by pasting your JSX code into the
web-based version of Babel at https://babeljs.io/repl, as shown in Figure 3‑1.

Babel does much more than just convert JSX into JavaScript. It also takes JavaScript in your com-
ponents that’s written using new and experimental syntax that might not be supported by all of
your target web browsers and converts it into JavaScript that can be understood and run in any web
browser that you expect to access your React user interface.

FIGURE 3-1:  Trying out Babel on the web

https://babeljs.io/repl

Syntax Basics of JSX  ❘  33

Eliminating Browser Incompatibilities
Using transpilation does away with the age-old problem of browser incompatibilities and having
to wait until every browser supports a new JavaScript language feature before using it. Rather than
developers having to write special code and multiple if/then branches to accommodate older brows-
ers, Babel makes it possible for developers to just write JavaScript using the latest syntax and then
transpile that new JavaScript into a common denominator that will run in any web browser that’s
likely to access the app.

SYNTAX BASICS OF JSX

As I may have mentioned (and I’ll mention again, because it’s a really important point), JSX is not
HTML. Because it’s not HTML, you can’t write JSX in the same loosey-goosey way that you may be
used to writing HTML.

JSX Is JavaScript XML
The first thing to know about JSX is that it’s XML. So, if you know a little bit about XML (or if
you’ve used XHTML), the rules of writing JSX should sound familiar. Namely:

➤➤ All elements must be closed.

➤➤ Elements that cannot have child nodes (so-called “empty” elements) must be closed with a
slash. The most commonly used empty elements in HTML are br, img, input, and link.

➤➤ Attributes that are strings must have quotes around them.

➤➤ HTML elements in JSX must be written in all lowercase letters.

Beware of Reserved Words
Because JSX compiles to JavaScript, there is the potential that an element name or attribute name
that you use in your JSX code can cause errors in your compiled program. To guard against this,
certain HTML attribute names that are also reserved words used in JavaScript have to be renamed,
as follows:

➤➤ The class attribute becomes className.

➤➤ The for attribute becomes htmlFor.

JSX Uses camelCase
Attribute names in HTML that contain more than one word are camel-cased in JSX. For example:

➤➤ The onclick attribute becomes onClick.

➤➤ The tabindex attribute becomes tabIndex.

34  ❘  CHAPTER 3   JSX

Preface Custom Attributes in DOM Elements with data-
Prior to version 16 of React, if you needed to add an attribute to a DOM element that doesn’t exist
in the HTML or SVG specification for the element, you had to preface it with data-, or else React
would ignore it. Listing 3‑3 shows a JSX HTML equivalent element with a custom attribute.

LISTING 3-3:  Custom attributes in HTML must start with data-

 <div data-size="XL"
 data-color="black"
 data-description="awesome">
 My Favorite T-Shirt
 </div>

Starting with React 16, however, you can use any custom attribute name with built-in DOM ele-
ments. Custom attributes in DOM elements can be useful for including arbitrary data with your
markup that doesn’t have any special meaning or affect the presentation of the HTML in the browser.
Although it is possible to use custom attributes for DOM elements, this is not generally considered a
good practice.

User-defined elements, on the other hand, can have custom attributes with any name, as shown in
Listing 3‑4.

LISTING 3-4:  User-defined elements can have any attributes

import MyFancyWidget from './MyFancyWidget';

function MyFancyComponent(props){
 return(
 <MyFancyWidget
 widgetSize="huge"
 numberOfColumns="3"
 title="Welcome to My Widget" />
)
}
export default MyFancyComponent;

Using custom attributes with user-defined elements is the primary way that React passes data between
components, as you’ll see in Chapter 4.

JSX Boolean Attributes
In HTML and in JSX, certain attributes don’t require values, because their presence is interpreted as
setting their value to a Boolean true. For example, in HTML, the disabled attribute of input ele-
ments causes an input to not be changeable by the user:

<input type="text" name="username" disabled>

Syntax Basics of JSX  ❘  35

In JSX, the value of an attribute can be omitted when it is explicitly true. So, to set the disabled
attribute of a JSX input element to true, you can do either of the following:

<input type="text" name="username" disabled = {true}/>
<input type="text" name="username" disabled/>

Use Curly Braces to Include Literal JavaScript
When you need to include a variable or a piece of JavaScript in your JSX that shouldn’t be interpreted
by the transpiler, use curly braces around it. Listing 3‑5 shows a component whose return statement
includes literal JavaScript in JSX attributes.

LISTING 3-5:  Using literal JavaScript inside of JSX

function SearchInput(props) {

 return (
 <div id="search-box">
 <input type="text"
 name="search"
 value={props.term}
 onChange={(e)=>{props.onChange(e.target.value)}}/>
 </div>
)
 }

export default SearchInput;

Remember to Use Double Curly Braces with Objects
One common mistake is to forget that if you’re including a JavaScript object literal inside of JSX, the
JSX code will have double curly braces, as shown in Listing 3‑6.

LISTING 3-6:  Object literals in JSX result in double curly braces

function Header(props){
return (
 <h1 style={{fontSize:"24px",color:"blue"}}>
 Welcome to My Website
 </h1>
)
}
export default Header;

Put Comments in Curly Braces
Because JSX is actually a way of writing JavaScript, HTML comments don’t work in JSX. Instead,
you can use JavaScript block comment syntax (/* and */).

36  ❘  CHAPTER 3   JSX

However, because you don’t want to transpile your comments, they must be enclosed in curly braces,
as shown in Listing 3‑7.

LISTING 3-7:  Enclose comments in curly braces

function Header(props){
return (
 <h1 style={{fontSize:"24px",color:"blue"}}>
 {/* Todo: Make this header dynamic */}

 Welcome to My Website
 </h1>
)
}
export default Header;

When to Use JavaScript in JSX
The concept of separation of concerns in programming says that layout code should be separated
from logic. What this means in practice is that code that does calculations, retrieves data, combines
data, and controls the flow of an application should be written as functions outside of the return
statement in a component, rather than inside of curly braces in JSX.

Limited amounts of logic are necessary and perfectly normal inside of the return statement, however.
There’s no hard-and-fast rule for how much is too much, but, generally, any JavaScript that you write
in your JSX should only have to do with presentation, and it should be single JavaScript expressions,
rather than functions or complex logic.

An example of purely presentational JavaScript would be the case of conditional rendering.

Conditionals in JSX
Oftentimes, a component needs to output different subcomponents, or hide certain components,
based on the results of expressions or the values of variables. We call this conditional rendering.

There are three ways to write conditional statements in JavaScript, and you may use any of these to
do conditional rendering.

Conditional Rendering with if/else and Element Variables
JSX elements can be assigned to variables, and these variables can be substituted for the elements
inside a component’s return statement, as shown in Listing 3‑8.

LISTING 3-8:  Using element variables

import Header from './Header';

function Welcome(){

Syntax Basics of JSX  ❘  37

 let header = <Header/>;
 return(
 <div>
 {header}
 </div>
);
}
export default Welcome;

By using a conditional statement, you can assign a different element to a variable and thus change
what gets rendered, as shown in Listing 3‑9.

LISTING 3-9:  Conditional rendering with element variables

import Header from './Header';
import Login from './Login';

function Welcome({loggedIn}) {
 let header;

 if (loggedIn) {
 header = <Header/>;
 } else {
 header = <Login/>;
 }
 return (
 <div>
 {header}
 </div>
);
 }

export default Welcome;

Conditional Rendering with the && Operator
Rather than having your conditional logic outside of the return statement, you can write it inline by
using the logical AND operator, &&. The && operator evaluates the expressions on its left and right. If
both expressions evaluate to a Boolean true, the && will return the one on the right. If either side of
the && operator is false, then a value of false will be returned.

By applying this fact, you can conditionally return an expression from the right side of && if the left
side of && is true.

This can be a little confusing at first. Take a look at Listing 3‑10. This code will render the
Header component if loggedIn evaluates to true.

38  ❘  CHAPTER 3   JSX

LISTING 3-10:  Conditional rendering with &&

import Header from './Header';

function Welcome({loggedIn}){
 return (
 <div>
 {loggedIn&&<Header />}
 Note: if you don't see the header messsage,
 you're not logged in.
 </div>
)
 }

export default Welcome;

Conditional Rendering with the Conditional Operator
The conditional operator is a way to combine the simplicity and conciseness of inline conditional
rendering with the ability to have an else case that element variables combined with if and
else gives us.

Listing 3‑11 shows an example of using the conditional operator.

LISTING 3-11:  Using the conditional operator

import Header from './Header';
import Login from './Login';

function Welcome({loggedIn}){
 return(
 <div>
 {loggedIn ? <Header /> : <Login />}
 </div>
)
}

export default Welcome;

In this example, the expression to the left of the question mark is evaluated. If it’s true, the
WelcomeMessage component is returned. If it’s false, the Login component is returned.

Expressions in JSX
You can use any JavaScript expression inside of your JSX or inside of React element attribute values
by surrounding it with curly braces. JSX elements themselves are JavaScript expressions as well,
because they get converted into function calls during compilation.

To understand what JavaScript you can and can’t include in JSX, let’s take a brief look at what a
JavaScript expression is.

Syntax Basics of JSX  ❘  39

An expression is any valid unit of code that resolves to a value. Here are some examples of valid
JavaScript expressions:

➤➤ Arithmetic: 1+1

➤➤ String: "Hello, " + "World!"

➤➤ Logical: this !== that

➤➤ Basic keywords and general expressions: This includes certain keywords (such as this, null,
true, and false) as well as variable references and function calls.

Examples of structures in JavaScript that do not return a value (and are thus not expressions) include
for loops and if statements, as well as function declarations (using the function keyword). You can
still use these in your React components, of course, but you’ll need to use them outside of the return
statement, as we did in Listing 3‑9.

Functions can be included in JSX, provided that they’re invoked immediately and that they return a
value that can be parsed by JSX, or that they’re passed as values for an attribute. The component in
Listing 3‑12 has a return statement that includes a function as an event handler.

LISTING 3-12:  Using an arrow function as an event handler

import {useState} from 'react';

function CountUp(){
 const [count,setCount] = useState(0);
 return (
 <div>
 <button onClick={()=>setCount(count+1)}>Add One</button>
 {count}
 </div>
);
}

export default CountUp;

Listing 3‑13 shows an example of using a function that’s immediately invoked and that’s valid in JSX.

LISTING 3-13:  Immediately invoking a function in JSX

function ImmediateInvoke(){
 return(
 <div>
 {(()=><h1>The Header</h1>)()}
 </div>
);

}
export default ImmediateInvoke;

40  ❘  CHAPTER 3   JSX

Using Children in JSX
The return statement in a React component can only return one thing. This one thing can be a
string, a number, an array, a Boolean, or a single JSX element. Keep in mind, however, that a single
JSX element can have as many children as you like. As long as you start and end your return state-
ment with a matching opening tag and closing tag, everything in between (provided that it’s valid JSX
or a JavaScript expression) is fine.

Here’s an example of an invalid JSX return value:

return(
 <MyComponent />
 <MyOtherComponent />
);

One way to make this a valid JSX return value is to wrap two elements with another element,
like this:

return(
 <div>
 <MyComponent />
 <MyOtherComponent />
 </div>
);

With the div element wrapping the two user-defined elements, we now have a single element
being returned.

React Fragments
Although it’s quite common to see multiple elements wrapped with a div element or another element
for the purpose of returning a single JSX element, adding div elements just for the sake of eliminat-
ing errors in your code, rather than to add necessary meaning or structure to your code, creates code
bloat and decreases the accessibility of your code.

To prevent the introduction of unnecessary elements, you can use the built-in React.Fragment com-
ponent. React.Fragment wraps your JSX into a single JSX element, but doesn’t return any HTML.

You can use the React.Fragment component in one of three ways:

1.	 By using dot notation: <React.Fragment></React.Fragment>

2.	 By importing Fragment from the react library using curly braces

3.	 By using its short syntax, which is just a nameless element: < > < / >

Listing 3‑14 shows how to use React.Fragment in a component.

LISTING 3-14:  Using React.Fragment

import {Fragment} from 'react';

function MyComponent(){

Summary  ❘  41

 return(
 <Fragment>
 <h1>The heading</h1>
 <h2>The subheading</h2>
 </Fragment>
);
}

export default MyComponent;

Listing 3‑15 shows how to use the short syntax for React.Fragment.

LISTING 3-15:  Using React.Fragment’s short syntax

function MyComponent(){
 return(
 <>
 <h1>The heading</h1>
 <h2>The subheading</h2>
 </>
);
}

export default MyComponent;

NOTE   Notice that when you use React.Fragment’s short syntax, you don’t
need to import Fragment from React.

The result of running either Listing 3‑14 or Listing 3‑15 is that just the h1 and h2 HTML elements
will be returned.

SUMMARY

JSX is an important tool that is used in the development of nearly every React component. In this
chapter, you learned:

➤➤ Why we use JSX, the XML language that React uses to make it easier to visualize and write
the output of components.

➤➤ That JSX is not HTML, but that React uses JSX to generate HTML.

➤➤ The history of JavaScript modules, which make distributed development and reusable com-
ponents possible, and how to use import and export to create and use modules.

➤➤ What transpiling is.

➤➤ How to write JSX code.

42  ❘  CHAPTER 3   JSX

➤➤ What conditional rendering is and how to do it in JSX.

➤➤ How to use JavaScript expressions inside JSX.

➤➤ How to use comments in JSX.

➤➤ How to use React.Fragment to group elements together without returning extra
HTML elements.

In the next chapter, you’ll learn about the React library itself, and about the basic unit of every React
user interface: the component.

All About Components
Up until now, we’ve mostly been talking about the tools that make React development possible,
including your development environment, Node.js, ReactDOM, JavaScript modules, and JSX.
Now it’s time to dig deeply into the heart of what makes React tick: the component. In this
chapter, you’ll learn:

➤➤ The relationship between components and elements.

➤➤ How to use React’s HTML elements.

➤➤ How to pass data between components with props.

➤➤ How to write class components.

➤➤ How to write function components.

➤➤ How to bind functions in JavaScript.

➤➤ How to manage React state.

WHAT IS A COMPONENT?

Components are the building blocks of React applications. A React component is a function or
a JavaScript class that optionally accepts data and returns a React element that describes some
piece of the user interface. A React user interface is made up of a hierarchy of components that
build up to a single component (called the root component) that is rendered in the web browser.

Figure 4‑1 shows an example of a React component tree.

It’s possible to create a React application with only a single component, but for all but the
smallest apps, breaking your app up into multiple components makes development and man‑
agement of the code easier.

4

44  ❘  CHAPTER 4   All About Components

COMPONENTS VS. ELEMENTS

Before we talk about components, it’s important to understand the relationship between components
and elements in React.

Components Define Elements
The job of a component is to return an element.

Each component within an application has a unique name, which is how you use it. The component
name becomes the name of the React element when you include a component in another component,
as shown in Listing 4‑1.

LISTING 4-1:  Components define elements

function WelcomeMessage(){
 return "Welcome!";
}
export default WelcomeMessage;

Header

Search
Search Result SearchResult

SearchInput

NavItem NavItem

Image Description Image Description

Navigation

App

ResultList

FIGURE 4-1:  A tree of react components

Components vs. Elements  ❘  45

In this very simple example, WelcomeMessage is a React component that was created using a function
and exported as a JavaScript module. Once it’s exported, WelcomeMessage can be imported into any
other React component where you need to make use of its functionality, as shown in Listing 4‑2.

LISTING 4-2:  Components can be imported into other components

import WelcomeMessage from './WelcomeMessage';

function WelcomeTitle(){
 return <h1><WelcomeMessage /></h1>;
}

export default WelcomeTitle;

It’s not a requirement that each component have its own module, but that’s the most common way
components are defined. In components created using a default export, the file containing the module
usually takes the name of the component defined in the file.

Once you import a component into another component, this is where React elements come in.

Elements Invoke Components
Once you’ve imported a component into another component, the imported component’s function‑
ality can be included in your new component’s JSX using an element. You can include as many
components inside another component as you need to, and there’s no limit to how many levels of
components a tree of components can have. Once you import a component, you can use the element
it defines as many times as you need to and each usage will create a new instance of the component
with its own data and memory.

In general, the point of using components is to provide a higher level of abstraction that reduces the
complexity of an application and enables reuse. Listing 4‑3 shows an example of a top-level React
component that uses the functionality of other components to display a shopping cart user interface.

LISTING 4-3:  Using components to reduce complexity

import React from 'react';
import CartItems from './CartItems';
import DisplayTotal from './DisplayTotal';
import CheckoutButton from './CheckoutButton';
import styles from './Cart.css.js';

function Cart(props){
 return(
 <div style={styles.cart}>
 <h2>Cart</h2>

 <CartItems items = {props.inCart} />

continues

46  ❘  CHAPTER 4   All About Components

 <DisplayTotal items = {props.inCart} />

 <CheckoutButton />

 </div>
);
}

export default Cart;

Notice that the component in Listing 4‑3 uses a combination of ordinary JavaScript and imported
modules to return a combination of custom elements and HTML elements. It’s fairly trivial to figure
out the gist of what will be rendered by this component just by looking at the return statement.

The entire component could have been written with everything in a single file, as shown (partially) in
Listing 4‑4, but the result would be a file that would be much larger, more difficult to work with, and
more difficult to maintain.

Don’t worry if much of the code in Listing 4‑4 looks strange or unfamiliar to you. Remember that
React is just JavaScript, and this example uses several relatively new JavaScript tools and functions
that I’ll explain later in this chapter.

LISTING 4-4:  Putting everything in one component

import React,{useState} from 'react';
import styles from './Cart.css.js';

function Cart(props){

 const [inCart,setInCart] = useState(props.inCart);

 const removeFromCart = (item)=>{
 const index = inCart.indexOf(item);
 const newCart = [...inCart.slice(0, index), ...inCart.slice(index + 1)];
 setInCart(newCart);
 };

 const calculatedTotal = inCart.reduce((accumulator, item) => accumulator +
(item.price || 0), 0);

 let ItemList = inCart.map((item)=>{
 return (<div key={item.id}>{item.title} – {item.price}
 <button onClick={()=>{removeFromCart(item)}}>remove</button></div>)
 });

 return(
 <div style={styles.cart}>
 <h2>Cart</h2>

LISTING 4-3  (continued)

Built-in Components  ❘  47

 {ItemList}

 <p>total: ${calculatedTotal}</p>

 <button>Checkout</button>

 </div>
);
}

export default Cart;

BUILT-IN COMPONENTS

React has built-in components for the most commonly used HTML elements and their attributes.
There are also built-in components for Scalable Vector Graphics (SVG) elements and attributes. These
built-in components produce output in the DOM and are the base for your custom components.

HTML Element Components
React’s built-in HTML element components have the same names as elements from HTML5. Using
them in your React app causes the equivalent HTML element to be rendered.

Many React developers (and web application developers in general) tend to use the div element
for every type of container in their user interfaces. While this is convenient, it’s not always recom‑
mended. HTML is a rich and descriptive language when used correctly, and using meaningful (aka
semantic) HTML elements to mark up your content makes it more accessible for search engines and
people as well.

Table 4‑1 shows all the HTML elements that React supports, along with a brief explanation of each
element. If an element that you want to use in your user interface isn’t on this list, try using it to see
if it’s been added since this list was compiled. If it isn’t, you can submit a request to Facebook that
the element be added to React by filing an issue in the React github.com repository at https://
github.com/facebook/react/issues/new.

TABLE 4-1:  HTML Elements Supported by React

HTML ELEMENT DESCRIPTION

a Creates a hyperlink.

abbr Represents an abbreviation or acronym.

address Indicates that the containing HTML includes contact information.

area Defines a clickable area in an imagemap.

article Represents a self-contained composition (such as a story or an article) in a page.

aside Represents content that is indirectly related to the main content.

continues

http://github.com
https://github.com/facebook/react/issues/new
https://github.com/facebook/react/issues/new

48  ❘  CHAPTER 4   All About Components

HTML ELEMENT DESCRIPTION

audio Embeds sound content.

b Used to draw the reader’s attention to the contents. Previously, this was
the “bold” element, but it’s now called the “Bring to Attention” element to
separate its purpose from how it’s styled.

base Specifies the base URL for all relative URLs in the document.

bdi Bidirectional Isolate. Isolates text that may flow in a different direction from text
around it.

bdo Bidirectional Text Override. Changes the direction of text.

big Renders text at a font size one level larger (obsolete).

blockquote Indicates an extended quotation.

body Represents the content of an HTML document.

br Produces a line break.

button Represents a clickable button.

canvas Creates an area for drawing with the canvas API or WebGL.

caption Specifies a caption for a table.

cite Describes a reference to a cited work.

code Indicates that its content should be styled as computer code.

col Defines a column within a table.

colgroup Defines a group of columns in a table.

data Links content to a machine-readable translation.

datalist Contains option elements indicating the permissible options available for a
form control.

dd Provides the definition for a preceding term (specified using dt).

del Represents text that has been deleted from a document.

details Creates a widget in which information is visible when the widget is toggled to its
“open” state.

dfn Indicates the term being defined within a sentence.

dialog Represents a dialog box, subwindow, alert box, or other such interactive
element.

div A generic container with no effect on content or layout.

TABLE 4-1  (continued)

Built-in Components  ❘  49

HTML ELEMENT DESCRIPTION

dl Represents a description list.

dt Specifies a term in a definition list. Used inside dl.

em Marks text that has emphasis.

embed Embeds external content in the document.

fieldset Groups controls and labels within a form.

figcaption Describes the contents of a parent figure element.

figure Represents self-contained content, optionally with a caption.

footer Represents a footer for its nearest sectioning content.

form Represents a document section containing interactive controls.

h1 First-level section heading.

h2 Second-level section heading.

h3 Third-level section heading.

h4 Fourth-level section heading.

h5 Fifth-level section heading.

h6 Sixth-level section heading.

head Contains machine-readable information about the document.

header Represents introductory content.

hr Represents a thematic break between sections.

html Represents the root of an HTML document.

i Represents idiomatic text that is set off from the normal text.

iframe Represents a nested browser context.

img Embeds an image into the document.

input Creates interactive controls for web-based forms.

ins Represents a range of text that has been added to the document.

kbd Represents a span of text denoting textual user input.

keygen Facilitates generation of key material and submission of the public key in an
HTML form.

label Represents a caption for an item in a user interface.

legend Represents a caption for an element in a fieldset.

continues

50  ❘  CHAPTER 4   All About Components

HTML ELEMENT DESCRIPTION

li Represents an item in a list.

link Specifies a relationship between the document and an external resource.
Commonly used to link stylesheets.

main Represents the dominant content of the body of a document.

map Used with area elements to define an imagemap.

mark Represents marked, or highlighted, text.

menu Represents a group of commands.

menuitem Represents a command in a menu.

meta Represents metadata that can’t be represented with other metadata elements
(such as title, link, script, or style).

meter Represents a fractional value or a scalar value within a known range.

nav Represents a section containing navigation links.

noscript Represents a section to be inserted if a script type is unsupported or if scripting
is disabled in the browser.

object Represents an external resource.

ol Represents an ordered list.

optgroup Creates a grouping of options within a select element.

option Defines an item in a select or optgroup.

output Creates a container for the results of a calculation or for user input.

p Represents a paragraph.

param Defines parameters for an object.

picture Contains source elements and an img element to provide alternative versions
of an image.

pre Represents preformatted text which should be presented exactly as written.

progress Displays an indicator showing progress towards the completion of a task, such
as a progress bar.

q Indicates that its content is a quotation.

rp Used to provide fallback content for browsers that don’t support ruby
annotations using the ruby element.

rt Specifies the ruby text component of a ruby annotation.

ruby Represents annotations for showing the pronunciation of East Asian characters.

TABLE 4-1  (continued)

Built-in Components  ❘  51

HTML ELEMENT DESCRIPTION

s Represents a strikethrough.

samp Encloses text that represents sample output from a computer program.

script Embeds executable code or data.

section Represents a standalone section in a document.

select Represents a control that shows a menu of options.

small Represents small print, such as copyright or legal text.

source Specifies multiple media resources for picture and audio elements.

span A generic inline container.

strong Indicates that its contents have strong importance.

style Contains style information for a document.

sub Specifies inline text that should be displayed as subscript.

summary Specifies a summary, legend, or caption for details content.

sup Specifies inline text that should be displayed as superscript.

table Represents tabular data.

tbody Encapsulates table rows in a table.

td Defines a cell in a table.

textarea Represents a multi-line text editing control.

tfoot Defines a set of rows summarizing the columns in a table.

th Defines a cell as a header of a group of table cells.

thead Defines a set of rows defining the head of the columns in a table.

time Represents a period of time.

title Defines the title that is shown in the browser’s title bar and browser tab.

tr Defines a row of cells in a table.

track Contains timed text tracks (such as subtitles) for audio and video content.

u Originally the underline element, specifies that text should be rendered in a way
that indicates that it has non-textual annotation (whatever that means).

ul Represents an unordered list (usually rendered as a bulleted list).

var Represents the name of a variable in mathematic or programming context.

video Embeds a media player that supports video playback.

wbr Represents a word break opportunity, where the browser may optionally break
a line.

52  ❘  CHAPTER 4   All About Components

Attributes vs. Props
In markup languages (such as XML and HTML), attributes define properties or characteristics of the
element, and are specified using the name=value format.

Because JSX is an XML markup language, JSX elements can have attributes, and there’s no limit to
the number of attributes that a single JSX element can have.

Passing Props
Attributes that you write in JSX elements are passed to the component represented by the element
as properties, or props for short. You can access props inside the component using the component’s
props object.

To illustrate how props are used for passing data between components, I’ll use the example of a
component called Farms, which includes multiple instances of the Farm component, as shown in List‑
ing 4‑5. Props that you pass into the Farm component are what make it possible for the generic Farm
component to represent any farm.

Note that a string can be passed into a component by surrounding it with quotes, and that any other
type of data can be passed to a component by using curly braces to indicate that the value should be
treated as JavaScript.

LISTING 4-5:  Passing props

import Farm from './Farm';

export default function Farms(){
 return(
 <>
 <Farm
 farmer="Old McDonald"
 animals={['pigs','cows','chickens']} />
 <Farm
 farmer="Mr. Jones"
 animals={['pigs','horses','donkey','goat']} />
 </>
)
}

Accessing Props
Once values have been passed as props, you can access that data inside the component. Listing 4‑6
shows the Farm component and how it makes use of the data passed into it.

LISTING 4-6:  Using props inside a component

export default function Farm(props){

 return (

Built-in Components  ❘  53

 <div>
 <p>{props.farmer} had a farm.</p>
 <p>On his farm, he had some {props.animals[0]}.</p>
 <p>On his farm, he had some {props.animals[1]}.</p>
 <p>On his farm, he had some {props.animals[2]}.</p>
 </div>
)

}

As in all JavaScript functions, if data is passed into a function component, you can give that data a
name inside the function arguments. This name, technically, could be anything. However, since React’s
class-based components accept passed data using this.props, it’s standard practice and smart to use
the name props in function components as well.

Notice that when you use props inside the return statement, you have to enclose them in curly
braces. You can use props elsewhere inside a component as well, as shown in the slightly improved
version of the Farm component shown in Listing 4‑7.

LISTING 4-7:  An improved version of the Farm component

export default function Farm(props){
 let onHisFarm = [];
 if(props.animals){
 onHisFarm = props.animals.map((animal,index)=>
 <p key={index}>On his farm he had some {animal}.</p>);
 }
 return (
 <>
 <p>{props.farmer} had a farm.</p>
 {onHisFarm}
 </>
)
 }

JAVASCRIPT LESSON: USING ARRAY.MAP()

JavaScript’s Array.map function creates a new array using the result of applying a
function to every element in an existing array. The map function is commonly used in
React to build lists of React elements or strings from arrays.

The syntax of Array.map is as follows:

array.map(function(currentValue, index, arr),thisValue)

Take a closer look at the details:

➤➤ The array is any JavaScript array. The function passed into the map function
will run once for every element in the array.

continues

54  ❘  CHAPTER 4   All About Components

Standard HTML Attributes
As you saw in Chapter 3, React’s HTML components support most of the standard HTML attributes,
but with a couple of important differences, which I’ll reiterate and expand upon here.

Attributes Use camelCase
Whereas HTML5 attributes use all lowercase letters, and a few of them use dashes between multiple
words (such as the accept-charset attribute), all attributes in React’s HTML components use capi‑
tal letters for words in the attribute after the first one. This type of capitalization is commonly called
camelCase.

For example, the HTML tabindex attribute is represented by tabIndex in React and onclick is
represented by onClick.

Two Attributes Are Renamed
In a couple of cases, React attributes for built-in elements have different names than HTML attrib‑
utes. The reason for this is to avoid potential clashes with reserved words in JavaScript. The attributes
that are different in React are:

➤➤ class in HTML is className in React.

➤➤ for in HTML is htmlFor in React.

➤➤ The currentValue is the value passed into the function and will change with
every iteration through the array.

➤➤ The index parameter is a number representing the current value’s position in
the array.

➤➤ The arr parameter is the array object that the currentValue belongs to.

➤➤ The thisValue parameter is a value to be used as the “this” value inside
the function.

The only required parameter is currentValue. It is also what you will most com‑
monly see in real-world React applications. Here’s how you can use Array.map() to
make a series of list items from an array:

const bulletedList = listItems.map(function(currentItem){
 return {currentItem}
}

For performance reasons, React requires each item in a list of JSX elements (such as
one built from an array) to have a unique key attribute. One way to give each ele‑
ment a unique key is to use the index parameter, like this:

const bulletedList = listItems.map(function(currentItem,index){
 return <li key={index}>{currentItem}
}

(continued)

Built-in Components  ❘  55

React Adds Several Attributes
Several attributes that are available for React’s built-in HTML components don’t exist in HTML.
Chances are good that you’ll never need to use any of these special attributes, but I’m including them
here for completeness. These are:

➤➤ dangerouslySetInnerHTML, which allows you to set the innerHTML property of an
element directly from React. As you can tell by the name of the attribute, this is not a
recommended practice.

➤➤ suppressContentEditableWarning, which suppresses a warning that React will give you if
you use the contentEditable attribute on an element that has children.

➤➤ suppressHydrationWarning. No, it’s not a way to tell React to stop nagging you to drink
more water. This attribute will suppress a warning that React gives you when content gener‑
ated by server-side React and client-side React produce different content.

Some React Attributes Behave Differently
Several attributes behave differently in React than they do in standard HTML:

➤➤ checked and defaultChecked. The checked attribute is used to dynamically set and unset
the checked status of a radio button or checkbox. The defaultChecked attribute sets
whether a radio button or checkbox is checked when the component is first mounted in
the browser.

➤➤ selected. In HTML, when you want to make an option in a dropdown be the currently
selected option, you use the selected attribute. In React, you set the value attribute of the
containing select element instead.

➤➤ style. React’s style attribute accepts a JavaScript object containing style properties and
values, rather than CSS, which is how the style attribute in HTML works.

React Supports Many HTML Attributes
The following list contains the standard HTML attributes supported by React’s built-in HTML
components:

accept acceptCharset accessKey action allowFullScreen allowTransparency alt async

autoComplete autoFocus autoPlay capture cellPadding cellSpacing charset challenge

checked classID className cols colSpan content contentEditable contextMenu

controls coords crossOrigin data dateTime defer dir disabled download draggable

encType form formAction formEncType formMethod formNoValidate formTarget frame-

border headers height hidden high href hrefLang htmlFor httpEquiv icon id

inputMode keyParams keyType label lang list loop low manifest marginHeight

marginWidth max maxLength media mediaGroup method min minLength multiple muted

name noValidate open optimum pattern placeholder poster preload radioGroup rea-

dOnly rel required role rows rowSpan sandbox scope scoped scrolling seamless

selected shape size sizes span spellCheck src srcDoc srcSet start step style

summary tabIndex target title type useMap value width wmode wrap

56  ❘  CHAPTER 4   All About Components

Non-Standard Attributes
In addition to the standard HTML attributes, React also supports several non-standard attributes
that have specific purposes in some browsers and meta-data languages, including:

➤➤ autoCapitalize and autoCorrect, which are supported by Mobile Safari.

➤➤ property is used for Open Graph meta tags.

➤➤ itemProp, itemScope, itemType, itemRef, and itemID for HTML5 microdata.

➤➤ unselectable for Internet Explorer.

➤➤ results and autoSave are attributes supported by browsers built using the WebKit or Blink
browser engines (including Chrome, Safari, Opera, and Edge).

Custom Attributes
As of version 16, React will pass any custom attributes that you use with HTML components
through to the generated HTML, provided that the custom attributes are written using only lower‑
case letters.

USER-DEFINED COMPONENTS

Have you ever thought that it would be awesome if you weren’t just limited to the standard set of
HTML elements? What if you could, for example, make an element called PrintPageButton that
you could use anywhere that you need to display a functional print button in your app? Or what
if you had an element called Tax that would calculate and display the taxes in your online store’s
shopping cart?

Essentially, this is what React components enable through custom components. Custom components,
also known as user-defined components, are the components that you make by putting together built-
in components and other custom components.

The possibilities for custom components are infinite. Even better, if you design your components to be
reusable, you can reuse components not only inside of a single React application, but across any num‑
ber of React applications. There are even hundreds of open source libraries of custom components
created by other developers that you can repurpose inside your own apps.

Writing useful and reusable React components can sometimes require considerable work up front, but
the benefits of writing them the right way are that you can reduce work for yourself overall and make
apps that are sturdier and more dependable.

In the rest of this chapter, you’ll learn about writing custom components and putting them together to
build robust user interfaces.

TYPES OF COMPONENTS

React components can be written in two different ways: by using JavaScript classes or by using JavaS‑
cript functions.

Types of Components  ❘  57

In most cases, making a component with a function is much simpler and requires less code and less
detailed knowledge of the inner workings of JavaScript than the class method. However, both meth‑
ods are widely used, and it’s important to have a good understanding of how to write components
using classes as well as using functions.

NOTE  Having a knowledge of JavaScript classes and class components is
necessary in order for you to get a complete picture of how React works, but
it is possible to write complete React applications without using classes. An
explanation of classes can get pretty dense and theoretical, but don’t let it
bog you down. If this chapter’s “Class Components” section confuses you, feel
free to skip ahead or skim it for now and go straight to the “Function Compo-
nents” section, which is what we’ll be working with for most of the rest of the
book. You can come back and learn all about class components and JavaScript
classes when you need to.

Class Components
Classes were new to JavaScript when React was first released. The early versions of the React library
had a function called React.createClass, which was the only way to create components. To use
React.createClass, you could pass an object containing the component’s properties as a parameter
to the function and the result would be a React component.

In one of the bigger changes made to React in its lifetime so far, React.createClass was deprecated
as of React 15.5.

You can still use createClass if you need to by installing the create-react-class package. List‑
ing 4‑8 shows the code for a component created using createClass.

LISTING 4-8:  Creating a component with React.createClass

import React from 'react';
import createClass from 'create-react-class';

const UserProfile = createClass({
 render() {
 return (
 <h1>User Profile</h1>
);
 }
});

export default UserProfile;

Beginning with React 15.5, the preferred way of writing classes was by extending the React
.Component base class directly.

58  ❘  CHAPTER 4   All About Components

Listing 4‑9 shows how to write the component from Listing 4‑8 using a class that extends
React.Component.

LISTING 4-9:  Creating a component using a class

import React from 'react';

class UserProfile extends React.Component {

 constructor(props) {
 super(props);
 }

 render() {
 return (
 <h1>User Profile</h1>
);
 }
};

export default UserProfile;

JAVASCRIPT LESSON: CLASSES

Classes in JavaScript resemble classes in traditional object-oriented languages, such
as Java or C, but with some fundamental differences.

Traditional classes are blueprints for creating objects. In JavaScript, classes are
objects themselves that serve as a template for objects. In other words, JavaScript has
prototypes, not true classes.

You may see the term “syntactic sugar” used to describe classes and some other new
features of JavaScript that were introduced in ES2015 and more recent versions of
JavaScript. Syntactic sugar refers to a simplified or abstracted way of writing some‑
thing that makes it easier to write or to understand, but doesn’t actually do anything
that you couldn’t previously do. It helps the medicine go down, you might say.

The introduction of the class syntax in JavaScript didn’t create any new functional‑
ity. Classes merely expose existing functionality in JavaScript using a different syntax
that’s more familiar to developers who have worked with class-based languages
(such as Java or C).

More specifically, the class syntax in JavaScript is just a new way to use function
constructors and prototypal inheritance. So, to understand classes, you first need to
understand the basics of function constructors and prototypal inheritance.

Types of Components  ❘  59

Prototypal Inheritance

JavaScript objects are collections of properties. JavaScript has several ways to cre‑
ate objects:

➤➤ By using Object Literal notation.

➤➤ By using the Object.create method.

➤➤ By using the new operator.

Using the new Operator

One way to use the new operator is to write a constructor function and then invoke
the function with the new keyword.

To see how it works, open your browser’s JavaScript console (by pressing
Cmd+Shift+j (on Windows) or Cmd+Option-j (on Mac) and enter the fol‑
lowing code:

let a = function () {
 this.x = 10;
 this.y = 8;
};
let b = new a();

The result of creating the b object will be an object with two properties, x and y.
Type the following two statements to confirm this:

b.x; // 10
b.y // 8

These properties are called the object’s “own” properties, and a is the proto‑
type for b.

Modifying and Using the Prototype

You can add new properties to an object’s prototype, like this:

a.prototype.z = 100;

In the preceding statement, we added a new property, z, to the prototype of b. In
prototypal inheritance, every object inherits properties and methods from its proto‑
type object.

Here’s where things get interesting. When you try to access the property z on the b
object, JavaScript will look first for an “own” property of b named z. If it doesn’t
find one, it will look at the object’s prototype. If it doesn’t find it there, it will look
at the prototype’s prototype. This will happen all the way up to the built-in Object
object, which is the prototype for every JavaScript object.

Try it out!

b.z; // 100
continues

60  ❘  CHAPTER 4   All About Components

Methods Are Properties Too

A property of an object can have a function as its value. A property with a function
value is what we refer to as a “method” in JavaScript.

You can use the this keyword in methods, and it refers to the inheriting object, not
the prototype.

For example, add a method called sum() to the prototype object:

a.prototype.sum = function() { return this.x + this.y };

Now, change the values of x and y on the b object:

b.x = 1000
b.y = 2000

And then invoke the sum function on the b object:

b.sum() // 3000

Even though b doesn’t have its own function called sum, JavaScript runs the sum
function on the prototype but uses the this values from b.

Summary

To sum it all up, every object that you create in JavaScript is a copy of another
object, which is called its prototype. Objects inherit properties and values from their
prototype and have a link back to their prototype. If a property is referenced on
an object and that object doesn’t contain that property, JavaScript will look at the
object’s prototype and so on up the chain of prototypes until it gets to the built-
in Object.

Now that we’ve covered prototypal inheritance, let’s get back to talking about
classes and the most commonly used features of classes used in React.js.

Understanding JavaScript Classes

To define a class, you can use either a class declaration or a class expression.

Class Declarations

A class declaration starts with the class keyword followed by the name of the class.
The following is an example of a class declaration:

class Pizza (
 constructor(toppings,size) {
 this.toppings = toppings;
 this.size = size;
 }
}

(continued)

Types of Components  ❘  61

Class declarations are similar in structure to function declarations. Here’s an example
of a function declaration:

function Pizza(toppings,size) {
 this.toppings = toppings;
 this.size = size;
}

An important difference between class declarations and function declarations, how‑
ever, is that function declarations are hoisted. Function hoisting means that you can
reference a function created using a function declaration anywhere in a script, even
before the function declaration actually appears in the file. For example, the follow‑
ing code will function just fine even though we invoke the Pizza() function before
it appears in the order of the code:

let MyPizza = new Pizza(['sausage','cheese'],'large');
function Pizza(toppings,size) {
 this.toppings = toppings;
 this.size = size;
}

However, the class version of this code will produce an error, because the class
named Pizza doesn’t exist when this code tries to use it:

let MyPizza = new Pizza(['sausage','cheese'],'large');
class Pizza {
 constructor(toppings,size) {
 this.toppings = toppings;
 this.size = size;
 }
}

Class Expression

To create a class using a class expression, you use either a named or unnamed class
and assign it to a variable. Here’s an example of a class expression that uses an
unnamed class:

let Pizza = class {
 constructor(toppings, size) {
 this.toppings = toppings;
 this.size = size;
 }
};

Here’s an example of a class expression that uses a named class:

let Pizza = class MyPizza {
 constructor(toppings,size) {

continues

62  ❘  CHAPTER 4   All About Components

 this.toppings = toppings;
 this.size = size;
 }
};

Note that when you use a class expression with a named class, the name you specify
after the class keyword becomes the value of the name property of the class:

console.log(Pizza.name); // Output: "MyPizza"

Using a named class expression is not a way of extending an existing class. It’s just a
convenient way to give a class instance a name property.

Class Body and the Constructor Method

The body of a class, like the body of a function, is the part between the curly braces.
Inside the class body, you can define class members, such as its methods, fields, and
constructor.

The constructor method of a class can be used to initialize objects created using
the class. It isn’t required that you include a constructor in classes you create. If
you don’t include it, your class will have a default constructor, which is just an
empty function.

When you instantiate a class, you can optionally pass in arguments and these argu‑
ments become the arguments to the constructor method. Inside the constructor, you
can create a property in the new instance by assigning these values to this, which
represents the new object.

For example, the following Pizza class’s constructor takes three parameters:

class Pizza {
 constructor(sauce,cheese,toppings){
 this.sauce = sauce;
 this.cheese = cheese;
 this.toppings = toppings;
 }
}

To create an instance of Pizza, you use the new keyword and pass in arguments,
like this:

let myPizza = new Pizza('tomato','mozzarella',['basil','tomato',
'garlic']);

Inside the myPizza object, sauce is equal to tomato, cheese is equal to
mozzarella, and toppings is equal to the array of toppings that was passed in.

When you assign each value to a new property of this, you create an instance prop‑
erty that can be accessed inside of the instance using this.[property] and outside
the instance by using the instance name followed by a period and the property name.

(continued)

Types of Components  ❘  63

Inside myPizza:

this.cheese;

Outside myPizza:

myPizza.cheese;

Creating Subclasses with extends

You can use the extends keyword in a class declaration or a class expression to cre‑
ate a child of any existing class. If the new class doesn’t have a constructor, the prop‑
erties it inherits from the parent will be automatically accessible in the new instance.
For example, here’s a class that we’ll use as the parent for our new child class:

class Animal {
 constructor(numberOfLegs,weight){
 this.numberOfLegs = numberOfLegs;
 this.weight = weight;
 }
}

You can use extends to create a subclass, like this:

class Insect extends Animal {
}

Once you extend a class, you can define methods in the new subclass that reference
inherited properties:

class Insect extends Animal {
 countLegs() {
 console.log(`This insect has ${this.numberOfLegs} legs.`);
 }
}

If you do include a constructor method in the subclass, you must specifically call the
super method from within the constructor before you can use the this keyword, as
in this example:

class Insect extends Animal {
 constructor(numberOfLegs,weight,name) {
 super(numberOfLegs,weight);
 this.name = name;
 }
 countLegs() {
 console.log(`The ${this.name} has ${this.numberOfLegs}
legs.`);
 }
}

In the preceding example, the constructor of Insect calls the constructor of Animal
and passes in the arguments that were used to instantiate the Insect class, mak‑
ing the properties defined in Animal’s constructor available in Insect even though
they’re not specifically defined inside of Insect’s constructor.

continues

64  ❘  CHAPTER 4   All About Components

For example, let’s take the numberOfLegs out of the Animal class and make it
specific to the Insect subclass. We’ll leave weight as a property of Animal, since all
animals have a weight:

class Animal {
 constructor(weight){
 this.weight = weight;
 }
}

class Insect extends Animal {
 constructor(numberOfLegs,weight) {
 super(weight);
 this.numberOfLegs = numberOfLegs;
 }
}

With these two classes defined, we can now create an instance of the Insect class Fly:

let Fly = new Insect(6,.045);

Now, the Fly instance can reference its own weight and numberOfLegs properties
internally using the this keyword, and these properties can be referenced externally
using the name of the instance:

console.log(Fly.weight); // .045

Understanding this

One of the really interesting (some would say confusing) things about JavaScript is
that it sometimes looks like an object-oriented programming language, but it’s actu‑
ally a functional programming language.

In functional programming, programs are created by applying and composing func‑
tions, and functions are “first-class citizens.” What this means is that JavaScript
functions are treated like any other variable. They can be passed as values into other
functions, they can return other functions, and they can be assigned as a value to
a variable.

Because functions are so versatile, you can define functions as part of a class, or you
can pass functions as arguments into a class to be used by that class.

The this keyword plays a vital role in the ability of functions to be used inside of
and shared between objects.

Having a good understanding of what the this keyword does and how to use it to
bind functions to objects is important to being able to write React code with classes.

this Doesn’t Have a Value until Invocation

Function (or method) invocation in JavaScript happens when an expression that
evaluates to a function is followed by open and close parentheses, optionally with

(continued)

Types of Components  ❘  65

a comma-separated list of arguments between them. For example, here’s a function,
followed by an invocation of the function:

// function definition
function sum(a,b){
 return a+b;
}
// function invocation
let mySum = sum(2,5);
console.log(mySum); // 7

What Is this in a Function?

By default, when you use the this keyword inside a function and then invoke
that function, this gets set to the global object, which in a web browser is the
window object:

function sum(a,b){
 this.secretNumber = 100;
 return a+b;
}

let mySum = sum(2,5);
console.log(window.secretNumber); // 100

What Is this in “strict” Mode?

If your JavaScript code is running in strict mode, however, this will be set to
undefined instead of the global object:

function getSecretNumber(){
'use strict';
 this.secretNumber = 100;
 return this.secretNumber;
}

console.log(getSecretNumber()); // error: cannot set property
'secretNumber' of undefined.

The reason for the different behavior of this in strict mode is that use of global vari‑
ables should be discouraged because when every function has access to a variable, it
makes it difficult to know which functions make use of or modify the variable, and
chaos ensues.

More often than not, when you add properties to the global object, it’s a mistake.
Strict mode makes this mistake have immediate consequences, rather than letting
your code appear to work correctly while containing potentially dangerous global
variables.

continues

66  ❘  CHAPTER 4   All About Components

What Is this in Methods?

Remember that a method is a function that’s stored in a property of an object.
Method invocation is when you access a method followed by parentheses (with
optional arguments between the parentheses).

In the following code, the author object has a method named write, and we can
invoke it using author.write:

const author = {
 write: function(){
 return 'Writing!';
 }
}
let status = author.write();

JavaScript also allows you to write methods using “method” syntax. In method syn‑
tax, you can eliminate the colon and the function keyword. So, the preceding object
declaration can also be written like this:

const author = {
 write() {
 return 'Writing!';
 }
}

More often than not, this shorter syntax is what you’ll see used in React
components.

In method invocation, this is the object that owns the method:

const author = {
 totalWords: 0,
 write: function(words) {
 this.totalWords += words;
 return this.totalWords;
 }
}
let totalWords = author.write(500);

This is all well and good, but remember it’s often the case that you’ll want to use a
function with different objects, as in this case:

const author1 = {
 totalWords: 0
}
const author2 = {
 totalWords: 0
}

(continued)

Types of Components  ❘  67

const write = function(words){
 this.totalWords += words;
 return this.totalWords;
}

If you invoke the write function now, this.totalWords will be undefined (in
strict mode) or will try to access window.totalWords (if not in strict mode). To
associate the totalWords function with an object, you need to bind it to the object
by using call, apply, or bind.

Function Binding with call

The JavaScript call function binds a function with an object and invokes the func‑
tion. It accepts the name of the object you want to bind the function to, followed by
a list of individual arguments to pass into the function. To invoke the write function
within the context of the author1 object and pass in the number 500, you can use
this statement:

write.call(author1,500);

Function Binding with apply

The apply function also binds a function with an object and invokes the function.
It accepts the name of the object you want to bind the function to, followed by an
array that will be passed into the function. To invoke the write function within the
context of the author1 object and pass in an array you can use this statement:

write.apply(author1,[500]);

Function Binding with bind

The bind function works the same as call, but instead of invoking a function, it
returns a new function that’s bound to the specified object. To create a new function
that will invoke the write function within the context of the author1 object and
pass in 500 each time it’s invoked, you can use this statement:

let write500Words = write.bind(author1,500);
write500Words();

The second argument to bind is optional. In React, it’s most common to see bind
used with only the first argument.

Function binding is important in React components, because it allows you to define
a function in one component and then pass it as a variable into other components,
while still operating on the component where the function was initially defined.

This method of passing a bound function to a child component looks like this:
continues

68  ❘  CHAPTER 4   All About Components

Stepping through a React Class Component
Once you have an understanding of how prototypal inheritance works in JavaScript, and you know
that classes are just another way to use function constructors, creating React components using the
class method is actually quite easy and it becomes a powerful tool in your React toolbox.

Let’s take a look, piece by piece, at a basic class component.

React.Component
React.Component is the base class for every class component that you’ll make. It defines a number
of methods, lifecycle methods, class properties, and instance properties that you can make use of and
extend in your components.

Importing React.Component
Because a custom component is a subclass of React.Component, any file that defines a class com‑
ponent (or more than one class component, in the case of a library) must start by importing React.
You’ll see two ways that this is typically done: by importing the entire React library, or by importing
individual objects from the React library.

Here’s the import statement for importing the entire React library:

import React from 'react';

This import is called a “default import.”

eat () { this.tummy = “full” }
this.eat = this.eat.bind (this) ;

eat () ;

class Dog

class Mouth

A function that you pass as an argument to another function, to be executed from
within that component, is called a callback function.

(continued)

Types of Components  ❘  69

You potentially save a few keystrokes inside your component by using a named import to import the
Component class specifically, as shown here:

import {Component} from 'react';

The Class Header
If you import the entire library into your new component module, the first line of your new compo‑
nent will be as follows (assuming that your component is named MyComponent):

class MyComponent extends React.Component{

If you import Component using a named import, the header of your new component will look
like this:

class MyComponent extends Component{

The Constructor Function
Next up is the constructor. If you include a constructor in your class, it will run one time when an
instance of the class is created. The constructor is where you will bind event handler functions to the
instance of the class and set up the local state for the instance.

A typical constructor in a component looks like this:

constructor(props) {
 super(props);
 this.state = {
 score: 0;
 userInput: ''
 }
 this.saveUserInput = this.saveUserInput.bind(this);
 this.updateScore = this.updateScore.bind(this);
}

After the constructor header and the call to the super function, this constructor has two
purposes—it initializes the component instance’s state, and it binds event handler methods to the
component instance.

Initializing Local State
Each instance of a React component maintains its own state, and the constructor is where you initial‑
ize this state. The state of a component determines whether and when a component should re-render.

State and state management is at the heart of how React works, so I’ll introduce the topic here and
I’ll go into much more detail about it in Chapter 6. For now, just know that the state of a component
is stored in an object called state, and every time state changes, React attempts to re-render the UI.

The other object in a component instance that stores data is called props (which is short for proper‑
ties). This is data that is passed to a component by its parent component in a React component hier‑
archy. If you’re going to use the props object in the constructor, you need to pass it to the superclass’s
constructor when you call super.

70  ❘  CHAPTER 4   All About Components

In a component that makes use of the state object, the basic constructor should now look like this:

import {Component} from 'react';

class MyComponent extends Component {

 constructor(props){
 super(props);
 this.state = {};
 }
 ...
}

export default MyComponent;

Binding Event Handlers
Event handlers are the functions that run in response to events. Binding makes the this keyword
work. By binding an event handler to the component instance, you also make it possible to share the
function with other components while maintaining its link to the state of the instance with which
it’s bound. The result is that no matter where the event handler is, it always uses and affects the data
from its bound object.

Listing 4‑10 shows what happens when you don’t properly bind your event handler.

LISTING 4-10:  Not binding your functions results in errors

import React from 'react';

class Foo extends React.Component{
 constructor(props){
 super(props);
 this.message = "hello";
 }

 handleClick(event){
 console.log(this.message); // 'this' is undefined
 }

 render(){
 return (
 <button type="button" onClick={this.handleClick}>
 Click Me
 </button>
);
 }
}

export default Foo;

What’s happening here is that we’re passing this.handleClick into the button component as
a prop. When we do that, it’s passed as a variable and becomes an ordinary function without an

Types of Components  ❘  71

owner object. When the click event happens inside the button component, this falls back to refer‑
ring to the global object, and we get an error because this.message doesn’t exist.

To solve this problem, you can use the bind function to create a new function that’s bound to the
Foo class, as shown in Listing 4‑11. Once you do that, you can pass handleClick as a prop to other
components and it will always run within the context of Foo.

LISTING 4-11:  Binding a function and using it in another class

import React from 'react';

class Foo extends React.Component{
 constructor(props){
 super(props);
 this.message = "hello";
 this.handleClick = this.handleClick.bind(this);
 }

 handleClick(event){
 console.log(this.message); // 'hello'
 }

 render(){
 return (
 <button type="button" onClick={this.handleClick}>
 Click Me
 </button>
);
 }
}

export default Foo;

You’ll learn much more about the importance of binding event handlers in React, as well as how to
avoid having to think about it at all, in Chapters 6 and 7.

Managing State in Class Components
The constructor function is the only place where you should ever directly update the state object
of a component. For updating the state after the constructor function has run (during the life of the
component, in other words), React provides a function called setState.

The setState function tells React to update the state of the component using an object or function
that you pass into it.

Listing 4‑12 shows a class component that displays a counter and has a button for incrementing
that counter.

72  ❘  CHAPTER 4   All About Components

LISTING 4-12:  Using state and setState in a class component

import {Component} from 'react';

class Counter extends Component {
 constructor(props){
 super(props);
 this.state = {count: 0};
 this.incrementCount = this.incrementCount.bind(this);
 }
 incrementCount(){
 this.setState({count: this.state.count + 1});
 }
 render(){
 return (
 <div>
 <p>The current count is: {this.state.count}.</p>
 <button onClick = {()=>{this.incrementCount(this.state.count+1)}}>
 Add 1
 </button>
 </div>
);
 }
}

export default Counter;

A very important point to remember about the setState function (and one that I’ll repeat fre‑
quently because it’s so important and can be the cause of many bugs in React apps) is that setState
is asynchronous, and changes to state that you make using setState may be batched for perfor‑
mance reasons.

The reason that the asynchronous nature of setState is important is that if you try to access state
immediately after setting it, you may get the old value rather than the new value that you expect. In
Listing 4‑13, I’ve added a console.log statement immediately after the setState function in the
incrementCount method. Even though the console.log statement appears after setState, it will
log the value of this.state.count prior to the incrementing happening, as shown in Figure 4‑2.

We’ll talk about how to work with state to avoid this problem in Chapter 6.

LISTING 4-13:  setState() is asynchronous

import {Component} from 'react';

class Counter extends Component {
 constructor(props){
 super(props);
 this.state = {count: 0};
 this.incrementCount = this.incrementCount.bind(this);
 }
 incrementCount(){
 this.setState({count: this.state.count + 1});

Types of Components  ❘  73

 console.log(this.state.count);
 }
 render(){
 return (
 <div>
 <p>The current count is: {this.state.count}.</p>
 <button onClick = {()=>{this.incrementCount(this.state.count+1)}}>
 Add 1
 </button>
 </div>
);
 }
}

export default Counter;

The Render Function
The render function is the only function that’s required in a class-based React component. It runs
when the component mounts and then again each time the component updates. It contains a return
statement that outputs the piece of the user interface that the component is responsible for.

FIGURE 4-2:  Using state immediately after calling setState() may produce unexpected results

74  ❘  CHAPTER 4   All About Components

Like any JavaScript function, the render function may contain JavaScript functions and variables.
The return statement inside the render function contains JSX or variables with JSX values.

Listing 4‑14 shows a component that outputs a simple static figure and caption.

LISTING 4-14:  Rendering a figure and caption

import {Component} from 'react';

class BasicFigure extends Component {

 render() {
 return(
 <figure>

 <figcaption>This is a picture of a cat.</figcaption>
 </figure>
);
 }
}

Remember that the return statement can only return one thing, such as one element, or one array, or
one string. In the preceding example, it returns a single <figure> element.

The beauty of React is that once you’ve built a simple component such as the one in Listing 4‑14,
you can reuse it as many times as you need to. However, there’s a major piece missing from this
BasicFigure component. It will currently output the same image and caption every time you use it.
To fix that, we need to use props.

Creating and Using Props
Props are the arguments that you pass into a component from a parent component. With JSX, the
attributes that you write (which take the form of name=value in JSX elements) become properties
inside the props object of the resulting component instance.

To illustrate how props work, let’s create a component that will make use of the BasicFigure com‑
ponent. I’ll call this component FigureList. The code for FigureList is shown in Listing 4‑15.

LISTING 4-15:  The FigureList component

import {Component} from 'react';
import BasicFigure from './BasicFigure';

class FigureList extends Component {
 render() {
 return (
 <>
 <BasicFigure />
 <BasicFigure />
 <BasicFigure />
 </>

Types of Components  ❘  75

)
 }
}
export default FigureList;

You can probably figure out from looking at the code for this component and the BasicFigure com‑
ponent that the result of rendering FigureList will be that three identical figures and captions will
be outputted. To make our figures different, we need to pass data from FigureList to BasicFigure.
This is where props come in, as shown in Listing 4‑16.

LISTING 4-16:  Using props to pass data to a child component

import {Component} from 'react';
import BasicFigure from './BasicFigure';

class FigureList extends Component {
 render() {
 return (
 <div style={{display:"flex"}}>
 <BasicFigure filename="dog.jpg" caption="Chauncey" />
 <BasicFigure filename="cat.jpg" caption="Murray" />
 <BasicFigure filename="chickens.jpg" caption="Lefty and Ginger" />
 </div>
)
 }
}
export default FigureList;

With these attributes in place, the first part of rendering different output from a single component is
in place. The BasicFigure component instances are all receiving different props.

The next step is to modify the BasicFigure component so that it makes use of the received props.
We can do this by inserting variables in place of static values in the return statement, as shown in
Listing 4‑17.

LISTING 4-17:  Using props in a class component

import {Component} from 'react';

class BasicFigure extends Component {

 render() {
 return(
 <figure>

 <figcaption>{this.props.caption}</figcaption>
 </figure>
);
 }
}

export default BasicFigure;

76  ❘  CHAPTER 4   All About Components

With that done, the FigureList component will now render three BasicFigure components, each
of which will output a figure element with different images and captions. I’ve changed the value of
the display style property to flex so that they’ll display in a row, rather than vertically, as shown in
Figure 4‑3.

Function Components
Now that you understand JavaScript classes, how the this keyword works in JavaScript, what the
constructor is, and the basics of writing React components using the class method, we can get to the
good stuff.

Although a knowledge of classes is important for understanding how React works, the React world is
moving very quickly away from using classes whenever possible. The reason: using classes is com‑
plicated, and many people don’t understand how this works. If you do have an understanding of
classes and how the this keyword works in JavaScript, you’ll have a better appreciation and under‑
standing of how function components work, so I do recommend learning about classes still.

The function component was created to simplify the creation of React components. To illustrate how
much easier writing a function component can be than a class component, consider the simple To Do
List example class in Listing 4‑18.

LISTING 4-18:  A typical class component

import React from 'react';

class ToDoClass extends React.Component{
 constructor(props){
 super(props);
 this.state = {
 item: '',
 todolist: []
 }
 this.handleSubmit = this.handleSubmit.bind(this);
 this.handleChange = this.handleChange.bind(this);
 }

FIGURE 4-3:  The result of rendering FigureList

Types of Components  ❘  77

 handleSubmit(e){
 e.preventDefault();
 const list = [...this.state.todolist, this.state.item];
 this.setState({
 todolist:list
 })
 }

 handleChange(e){
 this.setState({item:e.target.value});
 }

 render(){
 const currentTodos = this.state.todolist.map(
 (todo,index)=><p key={index}>{todo}</p>);
 return (
 <form onSubmit={this.handleSubmit}>
 <input type="text"
 id="todoitem"
 value={this.state.item}
 onChange={this.handleChange}
 placeholder="what to do?" />
 <button type="submit">
 Add
 </button>
 {currentTodos}
 </form>
);
 }
}

export default ToDoClass;

Listing 4‑19 shows how you can write a component that does the same thing as the class in List‑
ing 4‑18 using a function component.

LISTING 4-19:  A typical function component

import React,{useState} from 'react';

function ToDoFunction(props){
 const [item,setItem] = useState('');
 const [todolist,setTodoList] = useState([]);

 const handleSubmit = (e)=>{
 e.preventDefault();
 const list = [...todolist, item];
 setTodoList(list)
 }
 const currentTodos = todolist.map((todo,index)=><p key={index}>{todo}</p>);
 return (
 <form onSubmit={handleSubmit}>
 <input type="text"

continues

78  ❘  CHAPTER 4   All About Components

 id="todoitem"
 value={item}
 onChange={(e)=>{setItem(e.target.value)}}
 placeholder="what to do?" />
 <button type="submit">
 Add
 </button>
 {currentTodos}
 </form>
);
}

export default ToDoFunction;

Notice how much simpler the function component version is. There’s no render method, no con‑
structor, and no binding of this. It’s even possible to further simplify this function component by
removing the import of React, since we’re not directly using it, using an arrow function for the com‑
ponent, and moving the export statement up to the function expression, as shown in Listing 4‑20.

LISTING 4-20:  Further simplifying a function component

import {useState} from 'react';

export const ToDoFunction = (props)=>{
 const [item,setItem] = useState('');
 const [todolist,setTodoList] = useState();

 const handleSubmit = (e)=>{
 e.preventDefault();
 const list = [...todolist, item];
 setTodoList(list)
 }
 const currentTodos = todolist.map((todo,index)=><p key={index}>{todo}</p>);
 return (
 <form onSubmit={handleSubmit}>
 <input type="text"
 id="todoitem"
 value={item}
 onChange={(e)=>{setItem(e.target.value)}}
 placeholder="what to do?" />
 <button type="submit">
 Add
 </button>
 {currentTodos}
 </form>
);
}

LISTING 4-19  (continued)

Types of Components  ❘  79

Note that in this example, we’ve changed the export from a default export to a named export. To
import this component into another component, you’ll need to surround the name of the component
with curly braces, like this:

import {ToDoFunction} from './ToDoFunction';

Now that you’ve seen how much more simple function components can be than class components,
let’s look at how to write them and what their limitations are.

What Are Function Components?
Function components are JavaScript functions that return React elements.

When they were first introduced into React, function components were a simplified way to write cer‑
tain kinds of components called “stateless functional components.” Stateless functional components
are also known as “dumb components” or “presentational components.”

Stateless functional components simply accept props from their parent and return a piece of the user
interface. They don’t perform additional operations, such as fetching and posting data, and they don’t
have their own internal state data.

In version 16.8 of React, however, a new feature was added to React called hooks. Hooks allow func‑
tion components to do most of the things that class components can do, such as interacting with data
stores and using state. The result is that function components have now become the primary way that
most React components are written.

React’s official documentation states that class components will continue to be supported for the
foreseeable future. At this point, however, no one can foresee how much longer they’ll be necessary. If
you’re currently writing class components, there’s no need to convert them to function components.
If you’re coming to React from a background working with object-oriented languages, you may feel
more comfortable working with class components than with function components and that’s fine too.

With function components being so much simpler to work with, you may very well want to use them
exclusively, and that’s great! Be aware, however, that fully functional function components weren’t
introduced into React until years after it became one of the most popular UI libraries, so you’re going
to come into contact with a lot of class components. As long as you understand them and how to
convert them to function components (which we’ll cover in detail in Chapter 11), you may never need
to write another class component.

How to Write Function Components
Since a function component is simply a JavaScript function, it starts the same way as any other
function—as either a function expression or a function declaration. The choice of whether to use an
expression or a declaration is mostly a matter of style and personal choice.

Here’s an example of a function component created using a function declaration:

function Foo(props){
 return <h1>Welcome</h1>;
}

export default Foo;

80  ❘  CHAPTER 4   All About Components

Here’s an example of a function component created using a function expression:

const Foo = function(props){
 return <h1>Welcome</h1>;
}

export default Foo;

Components created using function expressions can also be written using JavaScript’s arrow function
syntax, which saves several characters. For example:

const Foo = (props) => {
 return <h1>Welcome</h1>;
}

export default Foo;

The difference in terms of performance or actual bytes of data between using the function keyword
and using an arrow function is negligible. Many React developers opt for the arrow syntax because it
allows additional shortcuts (as described in the following section), and because arrow functions are
generally more convenient to use internally inside of components, why not use them everywhere and
be consistent? Also, arrow functions look kind of cool.

Whether you choose to use function expressions or function declarations for your function com‑
ponents, it’s a good practice (and looks cleaner) if you stick to one or the other for every function
component you write.

Optimizations and Function Component Shortcuts
One of the challenges in writing any type of computer code is to balance readability with concise‑
ness. JavaScript offers many ways to minimize the number of characters and lines of code required
to perform tasks, and React developers, in particular, are fond of using the shorthand syntax when‑
ever possible.

For example, the following is a perfectly valid function component:

export const Foo = props => <h1>Hello, World!</h1>;

That’s the whole thing! The preceding code snippet takes advantage of the following rules of arrow
functions:

1.	 The parentheses around the parameter list are optional when a function only takes one
parameter.

2.	 The return keyword is optional when an arrow function doesn’t do anything except
return data.

3.	 The curly braces around the function body are optional if you skip the return keyword.

Types of Components  ❘  81

JAVASCRIPT LESSON: VARIABLES

With the ES2015 version of JavaScript, we gained two new keywords for declaring
variables: const and let. We also gained some new ways to work with variables,
including the destructuring assignment syntax.

If it’s been a while since you’ve written any JavaScript, the new keywords and ways
to work with variables will be new to you. They are widely used and relied upon by
most React apps, however, so it’s important that you understand when, why, and
how to use these new tools.

Goodbye to var

In the original JavaScript syntax, and up until 2015, the way to create a variable was
with the var keyword. The var keyword is still present in JavaScript, and it always
will be. The simplest form of using var looks like this:

var x;

When you want to assign a value to x or change the value of x, you can simply use
the assignment operator:

x=10;

You can also initialize a variable created using var at the same time as you declare it:

var x=10;

JavaScript evaluates declarations first within their scope through a process called
hoisting. When you use the var keyword to declare a variable, JavaScript also initial‑
izes the variable with a value of undefined during the hoisting. What this means in
practice is that it’s possible to use a variable created with var before it’s declared, as
in the following example:

x = 10;
console.log(x);
var x;

The previous example, when compiled by a JavaScript interpreter, is exactly
the same as:

var x;
x = 10;
console.log(x);

and

var x=10;
console.log(x);

Variables created using var have function scope. What this means is that if
you declare a variable inside a function, you can use that variable anywhere in
the function.

continues

82  ❘  CHAPTER 4   All About Components

If you declare a variable outside of a function, it will have global scope, meaning that
you can use it anywhere in your program.

In reality, if a global is what you want (and if you’re not using “strict” mode) you
didn’t even need to use the var keyword, because if you just assigned a value to a
name, the result will be a global variable, no matter where in your program you
do the assignment. Another way to think about what happens when you create a
variable without declaring it is that a new property is created on the global object
(window in the case of a browser). This “feature” of loose-mode JavaScript is called
implicit globals, and it can be very dangerous, which is why strict mode disallows it.

In modern JavaScript, even variables created using the var keyword are considered
to be dangerous, and their use is discouraged. The reason is that function scope is
almost always unnecessarily broad and it makes it too easy to accidentally overwrite
or redeclare a variable.

Most developers and experts now recommend using the new const and let key‑
words exclusively.

Using const

The const keyword creates a variable that can only have one value during its
lifetime, which we call a constant. To create a constant, just use the const keyword
followed by a valid name:

const x;

However, because you can’t change a constant, and because declaring a vari‑
able automatically assigns it a value of undefined, if you want your constant to
have a value other than undefined, you must initialize it at the same time as the
declaration:

const x = 10;

Attempting to change the value of a const will result in an error in JavaScript. Note,
however, that if you assign an object or an array to a constant, you can still change
the properties of that object or the items in the array. You would not be able to reas‑
sign the variable with a completely new object or array, however.

Block Scoped Variables with let

The other new way to declare variables is with the let keyword, which creates a
block-scoped variable. This is also known as lexical variable scoping. In JavaScript,
a block is created by a pair of curly braces. Since loops and conditional statements
as well as functions create blocks, let makes it possible to have variables that are
function-scoped in practice (by declaring them at the top level of a function), but
it also enables you to create variables that have more limited scope, such as inside
of a loop.

Variables created using const also have block scope.

continued

Types of Components  ❘  83

Managing State in Function Components
Each time a JavaScript function runs, the variables inside it are initialized. Because functional compo‑
nents are merely JavaScript functions, it’s not possible for them to have persistent local variables.

React provides hooks to allow functional components to create and access data that persists from one
invocation of a functional component to the next (aka “state”).

Hooks are functions that let you “hook” into functionality of class components without writing a
class. React has many built-in hooks and even lets you write your own hooks. The hook that lets you
persist data with functional components is useState.

The first step in using useState is to import it from the React library, like this:

import {useState} from 'react';

Once imported, you can invoke useState inside your functional component as many times as you
need to. The useState function accepts an initial value as an argument and each time you invoke
useState it returns an array containing a stateful variable and a function for updating that variable.
Using destructuring syntax, you can extract this array and function into two variables:

const [todos, setTodos] = useState([{item: 'Learn About Hooks'}]);

Destructuring Assignment

Destructuring assignment syntax lets you create variables by unpacking the elements
in an array or the properties of an object. For example, say you have the follow‑
ing object:

const User = {
 firstName: 'Lesley',
 lastName: 'Altenwerth',
 userName: 'roosevelt86',
 address: '81592 Daniel Underpass',
 city: 'Haileeshire',
 birthday: '1963-10-12'
}

If you want to create individual variables from the properties in this object, one way
to do it is to declare and assign individual variables, like this:

const firstName = User.firstName;
const lastName = User.lastName;
const userName = User.userName;
...

Using destructuring syntax, you can do it all in one statement:

const {firstName,lastName,userName,address,city,birthday} = User;

To use destructuring with arrays, use square brackets:

const [firstName,lastName] = ['Lesley','Altenwerth'];

84  ❘  CHAPTER 4   All About Components

Listing 4‑21 shows a functional component that uses useState to create and update a counter.

LISTING 4-21:  Using state in functional components

import {useState} from 'react';

function Counter() {
 const [count, setCount] = useState(0);

 return (
 <div>
 <p>The current count is: {count}.</p>
 <button onClick = {()=>{setCount(count+1)}}>
 Add 1
 </button>
 </div>
);
}

export default Counter;

I’ll cover hooks in detail in Chapter 11.

Differences between Function and Class Components
Table 4‑2 summarizes the main differences between function components and class components.

REACT COMPONENT CHILDREN

Components that are rendered inside other components are called children, and the component
they’re rendered inside of is called their parent. As in the physical world, being a child doesn’t prevent
a component from being a parent to some other child, and all parents except for the root component
are also children.

A React UI of any complexity will have many components nested within other components and the
parent/child terminology is how their relationships are described.

TABLE 4-2:  Functions vs. Classes

FUNCTION COMPONENTS CLASS COMPONENTS

Accepts props as arguments and returns a React element Extends React.Component

No render method Requires a render method

No internal state (can be simulated using hooks) Has internal state

Can use hooks Cannot use hooks

Cannot use lifecycle methods (can be simulated using hooks) Can use lifecycle methods

React Component Children  ❘  85

In the React component shown in Listing 4‑22, the UsernameInput, PasswordInput, and
LoginSubmit components are all children of LoginForm. Technically, the built-in form component is
the child of LoginForm, and the three custom components are its grandchildren.

LISTING 4-22:  A component made up of three child components

export default function LoginForm() {
 return (
 <form>
 <UsernameInput />
 <PasswordInput />
 <LoginSubmit />
 </form>
)
}

this.props.children
Every component in a React UI has a property called children that stores the children of that com‑
ponent. By using this.props.children (or props.children in the case of function components) in
the return statement of a component, you can create components where the child components aren’t
known until the component is invoked.

For example, Listing 4‑23 shows a component named ThingsThatAreFunny, which you can wrap
around any other components and it will render them with a title of “Here are some funny things.”

LISTING 4-23:  Presenting ThingsThatAreFunny

export default function ThingsThatAreFunny(props) {
 return (
 <>
 <h1>Here are some funny things.</h1>
 {props.children}
 </>
)
}

To use the ThingsThatAreFunny component, split it into starting and ending tags instead of using the
self-closing slash at the end of the component element name. Between the starting and ending tags,
include child elements that you want to be rendered inside of it, as shown in Listing 4‑24.

LISTING 4-24:  Passing children into a component

import ThingsThatAreFunny from './ThingsThatAreFunny';
import Joke from './Joke';

continues

86  ❘  CHAPTER 4   All About Components

export default function ThingsILike(props){
 return (
 <ThingsThatAreFunny>

 <Joke id="0" />
 <Joke id="1" />

 </ThingsThatAreFunny>
)
}

Assuming that the Joke component outputs one joke, the result of rendering the ThingsILike com‑
ponent is shown in Figure 4‑4.

Manipulating Children
React provides several built-in ways to access information about and manipulate elements. These are:

➤➤ isValidElement

➤➤ cloneElement

➤➤ React.Children

React.Children
React.Children provides several utility functions that operate on the children of a component. For
each of these, you can pass in props.children as an argument. These utilities are:

➤➤ React.Children.map. Invokes a function for each immediate child element and returns a
new array of elements.

➤➤ React.Children.forEach. Invokes a function for each immediate child but doesn’t
return anything.

➤➤ React.Children.count. Returns the number of components in children.

➤➤ React.Children.only. Verifies that children only has one child.

➤➤ React.Children.toArray. Converts children to an array.

LISTING 4-24  (continued)

FIGURE 4-4:  Rendering the ThingsILike component

React Component Children  ❘  87

isValidElement
The isValidElement function takes an object as an argument and returns either true or false
depending on whether the object is a React element.

cloneElement
The cloneElement function creates a copy of an element passed into it. Here’s the basic syntax for
cloneElement:

const NewElement = React.cloneElement(element,[props],[children]);

With cloneElement, you can create new elements from a component’s child elements, and modify
them in the process. For example, say you have a NavBar component that has NavItem children. You
can render these in your App component, as shown in Listing 4‑25.

LISTING 4-25:  Rendering a NavBar inside of App

import NavBar from './NavBar';
import NavItem from './NavItem';

function App(props){
 return (
 <NavBar>
 <NavItem />
 <NavItem />
 <NavItem />
 </NavBar>);
}

export default App;

The NavBar component in this example could use props.children to render all of the NavItems
that are children of it, as shown in Listing 4‑26.

LISTING 4-26:  Rendering the children using props.children

function NavBar(props){
 return (
 <div>
 {props.children}
 </div>
)
}
export default NavBar;

However, what if you want to add an onClick attribute to each NavItem from within the NavBar
component? Because props.children isn’t actually the children (it’s a descriptor of the children),
you can’t modify the children by using props.children.

88  ❘  CHAPTER 4   All About Components

Instead, what you need to do is to clone the children from within the NavBar component and then
add or change properties in them, as shown in Listing 4‑27.

LISTING 4-27:  Cloning the children in NavBar.js

import React from 'react';

function NavBar(props){
 return (
 <div>
 {React.Children.map(props.children, child => {
 return React.cloneElement(child, {
 onClick: props.onClick })
 })}
 </div>
)
}

export default NavBar;

With that done, you can then pass a function into NavBar, as shown in Listing 4‑28, and it will be
added to each of its child components.

LISTING 4-28:  Passing onClick into the parent component

import NavBar from './NavBar';
import NavItem from './NavItem';

function App(props){
 return (
 <NavBar onClick={()=>{console.log('clicked');}}>
 <NavItem />
 <NavItem />
 <NavItem />
 </NavBar>);
}

export default App;

The child components can then make use of this new prop, as shown in Listing 4‑29.

LISTING 4-29:  Making use of props in a child component

function NavItem(props){
 return (
 <button onClick={props.onClick}>Click Me</button>
)
}

export default NavItem;

The Component Lifecycle  ❘  89

THE COMPONENT LIFECYCLE

During the time when a React application is running, components become active, do their thing,
and are destroyed. At each stage in the life of a component, certain events are fired and methods are
invoked. These events and methods make up the component lifecycle.

The stages of a component’s life are:

➤➤ Mounting: Mounting is where a component is constructed using the props passed into it and
the default state, and the JSX returned by the component is rendered.

➤➤ Updating: Updating happens when the state of the component changes and the component is
re-rendered.

➤➤ Unmounting: Unmounting is the end of the component lifecycle, when the component is
removed from the active application.

➤➤ Error handling: The error handling methods run when an error happens during a compo‑
nent’s lifecycle.

In class components, you can override the lifecycle methods to run your own code in response to
lifecycle events. Function components can simulate lifecycle methods using a hook called useEffect,
which I’ll cover in detail in Chapter 11.

Understanding the main events in the lifecycle of a component is key to understanding how React
works. Figure 4‑5 shows the component lifecycle as a flowchart.

“Render phase”
Pure and has no side

effects. May be
paused, aborted, or
restarted by React.

“Pre-commit phase”
Can read the DOM.

“Commit phase”
Can work with DOM,

run side effects,
schedule updates. componentDidMount

render

constructor

Mounting Updating Unmounting

componentDidUpdate componentWillUnmount

React updates DOM and refs

getSnapshotBeforeUpdate

shouldComponentUpdate

New props setState() forceUpdate()

getDerivedStateFromProps

FIGURE 4-5:  The component lifecycle

90  ❘  CHAPTER 4   All About Components

The following sections will examine the four stages of the component lifecycle and then will explore
how you can avoid errors and improve performance with the lifecycle as well.

Mounting
The mounting stage includes everything from when a component is first constructed until it is
inserted into the DOM. During the mounting lifecycle stage, the following methods run, in this order:

➤➤ constructor

➤➤ static getDerivedStateFromProps

➤➤ render

➤➤ componentDidMount

constructor()
You’ve already learned about the constructor. This is the method that automatically runs in an
instance of a class when it’s created. In a React component, it may include a call to the super method,
initialization of the component’s state object, and binding of event handlers.

static getDerivedStateFromProps
This method is a static method, meaning that it doesn’t have access to the this keyword. The pur‑
pose of getDerivedStateFromProps is to check whether the props that the component uses have
changed and to use the new props to update the state. This method runs both during the mounting
stage as well as during the updating stage.

render
Like getDerivedStateFromProps, the render method also runs once during the mounting stage.
After mounting, render runs every time the component updates. This is the method that generates
the JSX output of your component, and it’s the only required method in a class component.

componentDidMount()
The componentDidMount method runs when the component has finished mounting and has been
inserted in the browser DOM. This is the point at which it’s safe to do things that depend on DOM
nodes, or to fetch remote data.

Updating
After your component has mounted, the updating lifecycle methods start running. React components
update their data and re-render in response to changes to the state object made using the setState
function. Every time a component updates, the following methods run, in this order:

➤➤ static getDerivedStateFromProps

➤➤ shouldComponentUpdate

The Component Lifecycle  ❘  91

➤➤ render

➤➤ getSnapshotBeforeUpdate

➤➤ componentDidUpdate

The getDerivedStateFromProps and render methods serve the same purposes in the updating
stage as they do during the mounting stage. So, let’s take a look at the three lifecycle methods that are
unique to the updating stage.

shouldComponentUpdate
The default behavior of a React component is to update every time the state changes. There are times,
however, when you might want to tell React that a change to the state doesn’t affect a component and
so it’s not necessary to go through the updating process.

This method, when it’s present, must return either true or false. If you have a component that you
know will never need to be updated once it’s mounted, you can prevent it from updating by using
this code:

shouldComponentUpdate(){
 return false;
}

More often, the way shouldComponentUpdate is used is to compare the previous props and state
with the new props and state and to decide whether to update the component. This is possible
because React passes the props and state that will be used for the upcoming rendering into
shouldComponentUpdate. In Listing 4‑30, the value of a prop is compared with the value of that
prop in the nextProp object to determine whether to re-render.

LISTING 4-30:  Comparing previous and next props in shouldComponentUpdate

class ToDoItem extends Component {
 shouldComponentUpdate(nextProps, nextState) {
 return nextProps.isChecked != this.props.isChecked;
 }
 ...
}

getSnapshotBeforeUpdate
This lifecycle method happens right before the rendered output from the component is made active in
the DOM. The purpose of this method is to allow you to capture information about the state of the
browser (or other output device) prior to it changing.

Although it’s rare that you’ll have a need to use this lifecycle method, one example use for it
is to maintain the scroll position of an element (such as a text box) between renders. If an
update to the browser DOM would affect what the user is currently viewing in the browser,
getSnapshotBeforeUpdate can be used to find out the relevant information about the browser
DOM so that it can be restored after the update happens.

92  ❘  CHAPTER 4   All About Components

componentDidUpdate
This method runs immediately after a component updates. It’s useful for performing network requests
based on new props passed to the component, or for performing operations that depend on the snap‑
shot of the DOM created during the getSnapShotBeforeUpdate method.

If your component has a shouldComponentUpdate method that returns false, the component won’t
update and this method won’t run.

Unmounting
The process of removing a component from the DOM is called unmounting. Only one lifecycle
method, componentWillUnmount, happens during this process.

componentWillUnmount
As its name implies, componentWillUnmount is invoked right before a component is removed from
the DOM. If you need to do any cleanup in your application related to the component that
will be unmounted, this is the place to do it. Examples of tasks that are commonly done in the
componentWillUnmount method include:

➤➤ Stopping any network requests that are in progress.

➤➤ Stopping timers.

➤➤ Removing event listeners created in componentDidMount.

Error Handling
The fourth type of lifecycle methods are the ones that only run when something goes
wrong with your component. These lifecycle methods are getDerivedStateFromError and
componentDidCatch. I’ll talk about both of these methods further in Chapter 13, but I want to
introduce them to you here.

getDerivedStateFromError
If an error occurs in a component’s descendant components, the component will run the
getDerivedStateFromError method. This lifecycle method receives the error that occurred and
should return an object that will be used to update the state.

componentDidCatch
The componentDidCatch lifecycle method runs after a descendant component throws an error.
Because componentDidCatch doesn’t run during the render phase of the lifecycle, it’s useful for per‑
forming tasks such as error logging.

Improving Performance and Avoiding Errors
Lifecycle methods can be used to improve the performance of your React application and to prevent
errors. In the following sections I’ll talk about a few tools and techniques you can use to make your
components the best they can be.

The Component Lifecycle  ❘  93

Avoiding Memory Leaks
To demonstrate the use of several lifecycle methods, we can look at a common problem in React
applications—a memory leak—and how to fix it.

A memory leak is a fault in a computer program where memory is allocated unnecessarily. This can
happen when a component is unmounted without removing timers or network requests involving the
component continue to happen after the unmounting.

Because a memory leak is a wasted use of resources, having a memory leak in your program can lead
to reduced performance and unexpected behaviors. Memory leaks have a tendency to build up the
longer a program is running, and so you may not notice them at first but things can start to get weird
as they accumulate. So, it’s best to take action to avoid them.

To avoid memory leaks, you should always make sure to properly clean up after your components
using the componentWillUnmount() method.

Listing 4‑31 shows a component that uses the JavaScript setInterval function to increment
a counter.

LISTING 4-31:  A React component with a potential memory leak

import {Component} from 'react';

class Counter extends Component{
 constructor(){
 super();
 this.state = {count: 0};
 this.incrementCount = this.incrementCount.bind(this);
 }

 incrementCount(){
 this.setState({count: this.state.count + 1});
 console.log(this.state.count);
 }

 componentDidMount(){
 this.interval = setInterval(()=>{
 this.incrementCount();
 },1000)
 }

 render(){
 return (<p>The current count is: {this.state.count}.</p>);
 }
}
export default Counter;

The component’s parent has a method, invoked using a button, that toggles whether the Counter
component is rendered or not, as shown in Listing 4‑32.

94  ❘  CHAPTER 4   All About Components

LISTING 4-32:  Toggling the rendering of the Counter

import {useState} from 'react';
import {Counter} from './Counter';
function CounterController() {
 const [displayCounter,setDisplayCounter] = useState(true);

 function toggleCounter(){
 setDisplayCounter(!displayCounter);
 };

 return (
 <div className="App">
 {displayCounter ? <Counter /> : null}
 <button onClick={toggleCounter}>Toggle Count</button>
 </div>
);
}
export default CounterController;

When the App component mounts, the Counter component will also mount and the timer will start
running and incrementing the counter in the browser and in the console, as shown in Figure 4‑6.

FIGURE 4-6:  Incrementing a counter

The Component Lifecycle  ❘  95

When you click the Toggle Count button, the Counter component will disappear. However, the timer
created by the setInterval function in the Counter component is never cleared, and so it continues
to run after the component is removed.

After the component is unmounted, React will log a message to the browser console to tell you that
you’re attempting to call setState on an unmounted component, as shown in Figure 4‑7.

Trying to call setState on an unmounted component won’t do anything, since an unmounted com‑
ponent doesn’t have state. But, as React’s error message points out, it’s indicative of a memory leak.

To fix this problem, you can use the componentWillUnmount method in the Counter component
to call clearInterval, which will stop the timer before the Counter component is unmounted, as
shown in Listing 4‑33.

FIGURE 4-7:  The result of attempting to call setState on an unmounted component

96  ❘  CHAPTER 4   All About Components

LISTING 4-33:  Fixing a memory leak

import {Component} from 'react';

class Counter extends Component{
 constructor(){
 super();
 this.state = {count: 0};
 this.incrementCount = this.incrementCount.bind(this);
 }

 incrementCount(){
 this.setState({count: this.state.count + 1});
 console.log(this.state.count);
 }

 componentDidMount(){
 this.interval = setInterval(()=>{
 this.incrementCount();
 },1000)
 }

 componentWillUnmount(){
 clearInterval(this.interval);
 }

 render(){
 return (<p>The current count is: {this.state.count}.</p>);
 }
}
export default Counter;

Now Counter will be properly unmounted and the timer will be cleared when it’s removed from the
browser. If you click the Toggle Counter button again, the counter will start over as you would expect
it to, because a new timer will be created.

React.PureComponent
If you have a component that only accepts props and returns JSX, without modifying state or affect‑
ing anything outside of itself, that component is known as a “pure component.” It gets this name
from the concept of a pure function.

A key characteristic of a pure function is that it always returns the same result when given the
same input.

Pure components are opportunities to improve the performance of your React user interface. Because
their output only depends on props passed to them, a simple comparison of the previous props and
the new props will tell you whether the component will change when re-rendered.

One way to do this comparison is by using the shouldComponentUpdate lifecycle method along with
React’s shallowCompare function, as shown in Listing 4‑34.

The Component Lifecycle  ❘  97

LISTING 4-34:  Using shouldComponentUpdate and shallowCompare

import React from 'react';
import shallowCompare from 'react-addons-shallow-compare';

class ShallowCompare extends React.Component {

 shouldComponentUpdate(nextProps, nextState) {
 return shallowCompare(this, nextProps, nextState);
 }

 render() {
 return <div>foo</div>;
 }
}

export default ShallowCompare;

Another way to accomplish the same thing as the code in Listing 4‑34 is to write your class compo‑
nent by extending React.PureComponent instead of React.Component, as shown in Listing 4‑35.

LISTING 4-35:  Extending React.PureComponent

import React from 'react';

class PureComponentExample extends React.PureComponent {
 render() {
 return <div>foo</div>;
 }
}

export default PureComponentExample;

React.memo
Function components can also be pure components, but because they can’t use lifecycle methods or
extend React.PureComponent, a different method is required to optimize them.

React.memo() is a higher-order function, meaning that it wraps around another function and adds
its functionality to that function. When you wrap your function component in React.memo(), it per‑
forms a comparison of the previous and next props and skip rendering if they’re the same.

The name of React.memo() refers to memoization, which is the caching of the results of a function
and using the cached result if the function has the same input as when the cache was created.

Listing 4‑36 shows how to use React.memo().

98  ❘  CHAPTER 4   All About Components

LISTING 4-36:  Using React.memo

import React from 'react';

function ExampleComponent(props){
 return (<p>Hi, {props.firstName}. This component returns the same thing when
given the same props.</p>);
}

export default React.memo(ExampleComponent);

React.StrictMode
React.StrictMode is a component that you can wrap around your components to activate addi‑
tional checks of your code and produce warning messages that can be helpful during development.

The default Create React App application wraps the root component with a <StrictMode> element
to turn on strict mode for the entire component tree. But, you can also just use <StrictMode> on
parts of your application by applying it more selectively.

RENDERING COMPONENTS

The end result of the mounting and updating stages of the lifecycle in React is a single rendered
component, called the root component. Remember that by “rendered” we mean that all of the JSX for
the root component and its subcomponents has been parsed and the resulting tree of components has
been created.

Once React’s work has been done and the tree of components has been created, it’s the job of a sepa‑
rate node package to render the component in a way that it can be seen and used by people.

Rendering with ReactDOM
The most common place for a tree of React elements to end up being used is in a web browser. The
library responsible for converting a React component into HTML and inserting it into the DOM and
then managing updates to the DOM is ReactDOM.

ReactDOM includes several methods that you can use to interact with the DOM, but the one that’s
absolutely necessary for every React application designed for the browser to use is ReactDOM.render.

If you look at the index.js file at the root of the src folder in a React project created using Cre‑
ate React App, you’ll see where ReactDOM.render is invoked and where a single React element
(which may be optionally wrapped with a React.StrictMode component) is passed in, as shown in
Listing 4‑37.

Rendering Components  ❘  99

LISTING 4-37:  ReactDOM.render renders a single element in the DOM

ReactDOM.render(
 <React.StrictMode>
 <App/>
 </React.StrictMode>,
 document.getElementById('root')
);

The beauty of ReactDOM.render is that it performs an incredible number of calculations and DOM
manipulations, controls the timing of DOM updates, manages the virtual DOM, and more—but as
far as you, the programmer, are concerned, it’s a black box. All you need to do is feed it a valid React
component and a DOM node where you want that component to be rendered and ReactDOM.render
takes it from there.

If you examine the code in Listing 4‑37, you’ll see that, in this case, we’re telling ReactDOM.render
to render the App component (you can ignore the StrictMode wrapper) inside the HTML element
node that has an id attribute with a value of root.

Every React application designed for rendering to web browsers will have a single HTML file that
imports the React and ReactDOM libraries, plus all the rest of the JavaScript that the application
needs. In the case of a Create React App application, this file is public/index.html. Listing 4‑38
shows a version of Create React App’s index.html file (with the HTML comments and unimportant
meta tags removed to save space). When a JavaScript application lives within a single HTML file like
this, we call it a single page app.

LISTING 4-38:  Create React App’s index.html file

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <link rel="icon" href="%PUBLIC_URL%/favicon.ico" />
 <meta name="viewport" content="width=device-width, initial-scale=1" />
 ...
 <title>React App</title>
 </head>
 <body>
 <noscript>You need to enable JavaScript to run this app.</noscript>
 <div id="root"></div>
 ...
 </body>
</html>

100  ❘  CHAPTER 4   All About Components

Virtual DOM
After the root component has been mounted, the job of ReactDOM.render is to monitor changes
to the rendered element coming in from React and figure out the most efficient way to update the
browser DOM to match the newly rendered application through a process called reconciliation.

As a programmer, you can think of rendering a React UI as a continual process of replacing a previ‑
ous tree of elements with a new one: and this is in fact what React is doing. But, once a new tree of
elements gets to ReactDOM.render’s reconciliation process, it looks for the minimal set of changes
and just makes those.

For example, compare the element shown in Listing 4‑39 with the element in Listing 4‑40. The
second listing could be the <nav> element that results from the user clicking the “About Us” link.

LISTING 4-39:  The initial element tree

<nav>

 Home
 About Us

</nav>

LISTING 4-40:  The element tree after the user clicks a link

<nav>

 Home
 About Us

</nav>

The only difference between these two element trees is which one has the active class. ReactDOM
.render will find this difference during reconciliation and will simply remove active from the first
link’s class element and add it to the second link’s class element without modifying anything else.

This process of rendering the new UI in memory and then comparing it with the previous UI and fig‑
uring out the minimal set of changes that can be applied to the browser DOM to make the previous
state match the new one is what we call the Virtual DOM.

One important thing to know about how reconciliation works is that updates to the browser DOM
won’t always happen in the same order as when they were rendered in the Virtual DOM. This is
because ReactDOM.render may batch changes if it creates more efficiency.

Once again, the Virtual DOM’s inner workings happen without your intervention, and you won’t
need to know exactly what’s happening in the reconciliation process (except perhaps in very rare
cases). Knowing that it exists is important, however.

Rendering Components  ❘  101

If you’d like to learn more about how reconciliation works, you can read about it in more detail at
https://reactjs.org/docs/reconciliation.html.

Other Rendering Engines
React doesn’t care whether you render the elements that it outputs in a web browser, on a billboard,
as a mobile app, as text in a terminal application, or in any other user interface device.

Although ReactDOM is the most commonly used rendering engine, and thus the one that most books
and tutorials on React focus on, other rendering engines can and do exist. The following sections
explore a few of the most common ones.

React Native
React Native converts React elements into native mobile applications. React Native has a set of built-
in elements that, when rendered, result in the creation of commonly used native app components such
as View, Text, ScrollView, and Image.

After React renders a tree of React Native elements, the React Native rendering engine compiles these
elements into platform-specific code for different mobile operating systems (such as Android or iOS).

Listing 4‑41 shows a “Hello, World” component written with React Native.

LISTING 4-41:  Your first React Native component

import React from 'react';
import { Text, View } from 'react-native';

const YourApp = () => {
 return (
 <View style={{ flex: 1, justifyContent: "center", alignItems: "center" }}>
 <Text>
 Hello, World!
 </Text>
 </View>
);
}

export default YourApp;

Everything here is standard React and JavaScript, and everything you’re learning about React also
applies to React Native. The only difference is that React Native adds a library of components that
are relevant to native mobile apps, and React Native components are compiled into native mobile
apps rather than for web browsers.

After you write your React Native code, it needs to be compiled to generate platform-specific code
that you can deploy on mobile devices or to app stores. You can compile React Native components
using a Node.js program called Expo CLI (CLI stands for “command-line interface”), or by using the
React Native CLI.

https://reactjs.org/docs/reconciliation.html

102  ❘  CHAPTER 4   All About Components

React Native CLI requires you to have the appropriate native app development tools installed (either
XCode for iOS apps, or Android Studio for Android apps). Expo CLI compiles your apps and deploys
them inside a wrapper Expo mobile app on mobile phones.

While React Native CLI is more familiar to developers who already have experience with mobile app
development, Expo is great because it’s so easy to use and will have you writing functioning mobile
apps very quickly.

Figure 4‑8 shows the “Hello, World!” app from Listing 4‑41 running on an iPhone.

ReactDOMServer
ReactDOMServer renders React components and returns an HTML string. It can be used on a web
server to generate the initial HTML for a React application, which can then be served to web brows‑
ers to speed up the initial loading of the user interface.

FIGURE 4-8:  Hello, React Native

Component Terminology  ❘  103

Once the initial HTML for the application is rendered on the server and served to a web browser, the
regular ReactDOM renderer takes over and handles updates. This technique is referred to as “Isomor‑
phic React” or “Universal React.”

React Konsul
React Konsul renders React components to the browser console. It includes a handful of built-in
components, including container, text, image, button, and group, that allow developers to create
interactive views inside the JavaScript console of a browser.

The use cases for React Konsul are rather limited, but it can render images, interactive buttons, and
styled text instead of the simple plain text console log messages that JavaScript outputs by default.

react-pdf
With react-pdf, you can use React components to render PDF files. The built-in components for
assembling PDFs include Document, Page, View, and Text. Once you’ve composed your PDF docu‑
ment using these components, you can render them in the browser using ReactDOM.render, or you
can save them as PDF documents using ReactPDF.render.

COMPONENT TERMINOLOGY

Components and elements are the building blocks of React. If you understand components and
JavaScript, you’re more than halfway to being a React developer. React components come with a lot
of terminology, however. To help you keep everything straight, here’s a handy overview of some of the
most commonly used lingo in React component development:

➤➤ Class component: A class component is a React component created by extending React
.Component or React.PureComponent.

➤➤ Function component: A function component is a JavaScript function that returns JSX code.

➤➤ State: State is the data in a React user interface that determines when updates will happen.

➤➤ Props: Props are the data that’s passed from a parent component to a child component. In
JSX, props are created using attributes (in the name=value format).

➤➤ Stateful component: A stateful component is a component that has internal state, stored in
either the state object (in the case of class components) or created using hooks (in the case of
function components).

➤➤ Stateless component: A stateless component is one that doesn’t have its own internal
state. Stateless components are also known as “dumb” components or “presentational”
components.

➤➤ Pure component: A pure component is one that always returns the same output when given
the same input.

➤➤ Root component: The root component is the single component that contains all the other
components in your React application. Rendering the root component (using ReactDOM)
causes the entire component tree to be rendered.

104  ❘  CHAPTER 4   All About Components

➤➤ Parent component/child component: As in the HTML DOM, the relationship between com‑
ponents in a React component tree is described using the terms parent and child.

➤➤ Component lifecycle: The component lifecycle is the progression of events and methods
that happen during the life of a React component. It starts with mounting and ends with
unmounting. In between mounting and unmounting, the update lifecycle methods happen.

SUMMARY

React components are the building blocks of React. In this chapter, you learned:

➤➤ The two methods for creating React components: class and function.

➤➤ How React components return React elements.

➤➤ How to use React’s built-in components.

➤➤ How to pass data between components by using JSX attributes.

➤➤ How data passed using attributes in React elements becomes props in child components.

➤➤ How to manage state in a class component.

➤➤ How to manage state in a function component.

➤➤ What lifecycle methods are and how to use them in a class component.

➤➤ How to prevent memory leaks in React components.

➤➤ How to use PureComponent and React.memo.

➤➤ How to render React components using ReactDOM.

In the next chapter, you’ll learn how to use in-browser tools to inspect and test React components.
Onward!

React DevTools
React applications can get rather large and complex. With a large tree of components and sub‑
components and all of their props and state and events, having a way to easily see what’s going
on inside each component, as well as to be able to filter out the noise and focus on just the
components that you’re interested in, becomes essential to debugging problems. React DevTools
can also show you where performance issues exist in your code. In this chapter, you’ll learn:

➤➤ How to install React DevTools.

➤➤ How to inspect components with React DevTools.

➤➤ How to search for components in React DevTools.

➤➤ Filtering and selecting components in React DevTools.

INSTALLATION AND GETTING STARTED

In this book’s Introduction, you installed React Developer Tools (also known as React Dev‑
Tools) and I briefly covered how it works. If you haven’t yet installed React DevTools, follow
the instructions in the Introduction to install it in Google Chrome or Mozilla Firefox, then
return to this chapter.

Before we can experiment with any of the React DevTools features, we first need an app to
work with. I’ve created the beginnings of a bookstore app, as shown in Figure 5‑1, which you
can download and use for working with the React DevTools.

React Bookstore is a simple store and shopping cart application that displays a randomized grid
of books, using data from an external file. Each book in React Bookstore has an Add To Cart
button underneath it that will add the book to the cart, and that toggles to a button for remov‑
ing the book from the cart.

React Bookstore’s shopping cart simply displays a list of the books that have been added to the
shopping cart and calculates a total price. The React Bookstore is part of my GitHub repository
for this book.

5

106  ❘  CHAPTER 5   React DevTools

If you haven’t already downloaded and installed the repository, use the following steps to do so:

1.	 Open the integrated terminal in Visual Studio Code.

2.	 Type the following command to check whether you have the Git version control system
installed on your computer:

git --version

If Git is installed, the terminal will respond with a version number, and you can skip to
step 3. If it’s not installed, you can download the latest version for your operating system
from https://git-scm.com/downloads.

3.	 You may need to close and re-open the VS Code terminal before you’ll be able to do this
step. Make sure that the current working directory in VS Code’s terminal is where you want
to place the example files. If it’s not, you can either right-click a directory in the VS Code
Explorer pane and select Open in Integrated Terminal or you can use the UNIX cd command
to change the directory from within the terminal.

FIGURE 5-1:  The React Bookstore sample app

https://git-scm.com/downloads

Inspecting Components  ❘  107

4.	 Clone my repository by entering this command into the terminal:

git clone https://github.com/chrisminnick/react-js-foundations

After a moment, all of the files will be downloaded.

NOTE  If you have any issues using Git to clone the example code repository,
you can simply use a browser to go to the repository URL and download it as a
.zip file by clicking the Code link.

5.	 Install and start up the React Bookstore example:

cd react-js-foundations/react-book-store
npm install
npm start

The React Bookstore example is a work in progress that you can use throughout this book to try out
new things you learn about React. The application shows a randomized list of 100 great books, and
you can add and remove the books from a shopping cart.

It’s obviously a simple app which is as yet unfinished, but it’s a good starting point for learning about
React and React DevTools.

NOTE  The React Bookstore is open source, and you can do whatever you want
with it. I make no claims as to its suitability for anything more than learning
React.

INSPECTING COMPONENTS

The most common reason to use React DevTools is to inspect your React component tree. Follow
these steps to get started with the DevTools Components window:

1.	 Start up the react-book-store app if it isn’t already running.

2.	 Open the Developer Tools in your browser. If the current browser window contains a React
app, you’ll see the React DevTools Components and Profiler tabs, as shown in Figure 5‑2.

3.	 Click the Components tab and you’ll see the list of components that make up the React
Bookstore, as shown in Figure 5‑3.

4.	 Click the components on the left to inspect each one.

Inspecting the components in a React app will show you the relationship between the components,
any hooks or state being using in the component, the data and functions that were passed to the com‑
ponent, and the file that contains the source code for each component.

108  ❘  CHAPTER 5   React DevTools

Working with the Component Tree
The left side of the Components window shows a nested list containing each of the components
that make up the current view in the browser. In the React Bookstore app, this includes the root
component, App, the ProductList component, a long list of Product components, and the Cart
component.

Each parent component has an arrow next to it, which you can click to expand or collapse the chil‑
dren within that component. For example, if you collapse the ProductList, the outline will look like
Figure 5‑4.

With ProductList collapsed, you can see that the React Bookstore is made up of two main sections:
the list of products, and the cart. The list of products includes all of the products being viewed (which
is currently all of them) and the cart contains any items that are currently in your shopping cart.

FIGURE 5-2:  The Chrome Developer Tools with React DevTools installed

Inspecting Components  ❘  109

FIGURE 5-3:  The React DevTools Components tab

FIGURE 5-4:  The component tree with ProductList collapsed

110  ❘  CHAPTER 5   React DevTools

If you click the Add to Cart button under one of the products, you’ll see that in the browser window,
the title and price of that product are added to the cart area of the screen, and in the Component win‑
dow of React DevTools, a CartItem component is added as a child of Cart. If you click Add To Cart
for several products, several CartItem children will be created, as shown in Figure 5‑5.

Searching for Components
There are two ways to search for components. One is using the Search input box. The other is using
regular expressions.

Using the Search Input Box
In a large tree of components, the Search input box above the component tree view can be very help‑
ful for locating specific components. The search box can accept either a string or a regular expression
that will be matched against the component names.

Using Regular Expressions
Regular expressions are a way to search for text based on a pattern. To distinguish regular expres‑
sions from ordinary text searches, React DevTools uses slashes before and after the expression. For
example, if you wanted to find all of the components that contain the word “Product,” you could do
so using the following regular expression:

/Product/

Right now, however, this regular expression will highlight the exact same list of components as if you
just searched for the word “product” without the slashes before and after it.

Where regular expressions come in handy is for more complex searches than can be done with ordi‑
nary text searches. For example, if you wanted to select all of the Product components, but not the
ProductList component, you could use a regular expression such as this one:

/Product$/

FIGURE 5-5:  Creating new CartItem children

Inspecting Components  ❘  111

The dollar sign at the end indicates that you’re only looking for component names that end with the
word “Product.”

If you want to find components that match the name Cart or the name ProductList, you can use
the OR operator, which is a vertical bar in regular expressions, like this:

/(Cart$|ProductList)/

In addition to the “ends with” operator ($), regular expressions also have a “begins with” operator,
which is the caret (^). For example, the following regular expression search will find any component
with a “c” in its name:

/c/

The result of running the preceding regular expression search is shown in Figure 5‑6.

If you add a ^ to the beginning of the search term, it will only show the Cart and CartItem compo‑
nents, as shown in Figure 5‑7.

FIGURE 5-6:  Searching for components containing “c”

112  ❘  CHAPTER 5   React DevTools

I’ve only touched on a few of the capabilities of regular expressions here. For a more complete list
of the capabilities of regular expressions and more examples of how to use them, visit the Mozilla
Developer Network Regular Expressions Cheatsheet at https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Guide/Regular_Expressions/Cheatsheet.

Filtering Components
When you first open the React DevTools, you’re actually only seeing a partial list of the React compo‑
nents that make up your user interface. Although all of the custom components that make up what’s
currently on the screen are showing, the built-in HTML components (which React DevTools refers to
as “host components”) are hidden.

To reveal all of the host components as well as the custom components, you can adjust the filtering in
the View Settings.

Click the gear icon in the upper right of the Component window’s tree view, and the settings dialog
box will open, as shown in Figure 5‑8.

FIGURE 5-7:  Searching for components starting with “c”

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions/Cheatsheet
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions/Cheatsheet

Inspecting Components  ❘  113

The Components tab in the settings dialog will be open, and you’ll see a checkbox for expanding the
tree of components by default. Underneath that is an area where you can define filters that will be
applied to the component tree.

The default component tree filter hides all host components. If you disable this filter, you’ll see why
you may also want to uncheck the “Expand component tree by default” checkbox and why it’s so
important for React DevTools to have a Search feature—when you include the host components, the
list of components becomes very long (as shown in Figure 5‑9).

FIGURE 5-8:  React DevTools’ View Settings

FIGURE 5-9:  The component tree view with the default filter disabled

114  ❘  CHAPTER 5   React DevTools

The filter feature in the settings dialog allows you to create filters based on the location, name, type,
and whether components are higher-order components.

Selecting Components
In addition to finding components using the Search input box, you can also select components just by
clicking on them in the tree view, or by using the Select tool, which is shown in Figure 5‑10.

No matter how you select a component, once you do, the inner workings of that component will
show up in the pane on the right side of the Components window. If multiple components are
selected, the details for the first selected component will be shown.

EDITING COMPONENT DATA IN DEVTOOLS

The right side of the Components window in React DevTools displays information about the cur‑
rently selected component, including its state and props data, hooks used by the component,
the ancestors of the component, and the location of the component’s source code, as shown in
Figure 5‑11.

HIGHER-ORDER COMPONENTS

In functional programming, a higher-order function is a function that takes another
function as an argument and whose return value is a function. In React, a higher-
order component is one that takes a component as input and returns another
component.

The reason for writing a component that accepts a component and returns a com‑
ponent is that it’s a convenient way to add functionality to components using the
concept of composition.

Often in React, we refer to the component that is passed to a higher-order compo‑
nent as the “wrapped” component. If you think of a higher-order component as like
wrapping paper, you’ll understand the idea. When you wrap a box with gift wrap‑
ping paper, the result is a new thing that we might call a “present,” which includes
both the box and the wrapping. We can express the wrapping of a box like this in
JavaScript code:

const Present = wrappingPaper(Box);

Higher-order components are not a feature of React, but rather a pattern for
using React.

You’ll see more examples of higher-order components in future chapters, including
in Chapter 12, where we’ll talk about how to give a component the ability to have
React applications respond to the browser URL with React Router.

Editing Component Data in DevTools  ❘  115

FIGURE 5-10:  The React DevTools Select tool

FIGURE 5-11:  Viewing component details

116  ❘  CHAPTER 5   React DevTools

The hooks, state, and props data in this pane can all be edited. Follow these steps to see how edit‑
ing component data in React DevTools can be helpful for quickly testing React applications in
the browser:

1.	 If it’s not already running, start up the React Bookstore demo app and open it in
your browser.

2.	 Open the Developer Tools window in your browser and click the Components tab. You’ll see
a list of the components that make up the React Bookstore.

3.	 Click the root component (App) in the component tree view. App’s props and hooks will
show up on the right side of the DevTools window.

4.	 Notice that App currently has two state hooks. The first one displayed is the state of the cart.
The second one is the state of the products list.

5.	 Expand the first state hook. When the React Bookstore first loads, it just contains an
empty array.

6.	 In the browser window, click the Add to Cart button underneath one of the products to add
the product to the cart.

7.	 Notice that a new item is added to the first state array.

8.	 Double-click the value of the item you just added to the inCart state. It will become editable.

9.	 Change the number to any number between 0 and 99. The product corresponding to that
number will appear in the cart.

10.	 Try using a number that’s higher than 99 or lower than 0. The result will be an error, as
shown in Figure 5‑12.

HOOKS AND STATE

Because of the way React handles multiple state hooks in a function, the only way to
tell the two hooks in React Bookstore apart is by the order in which they appear and
the data within them. In a simple application, this isn’t a problem. In larger applica‑
tions, better ways to organize the state are required.

One way to improve the structure of the state data in React Bookstore is by emulat‑
ing how state works in class components and using a single state object. For exam‑
ple, the App component currently contains two calls to useState—one to create the
products state, and one to create the inCart state. To combine these into a single
tree, you can use the following statement:

const [state,setState] = useState({products:[],inCart:[]});

With this done, you can access state.products and state.inCart, and you can
modify your state data by calling the setState function.

Editing Component Data in DevTools  ❘  117

11.	 Click your browser’s refresh button to restore the default state.

12.	 Try adding a non-numeric character to the inCart array. This will also result in an error.

13.	 Change a value inside the first object in the product state array and see how it changes in the
browser window.

14.	 Click the ProductList component in the component tree view. Notice how the state hook
inside App becomes props inside ProductList.

15.	 Click the first Product component in the component tree view, and notice that it receives a
single object (one product) from the ProductList component.

16.	 See how many different ways you can break the application by changing the data contained
within or passed to a component, and think about how you might modify the application to
prevent the possibility of this error happening.

FIGURE 5-12:  Attempting to add an out-of-range ID to the cart

118  ❘  CHAPTER 5   React DevTools

WORKING WITH ADDITIONAL DEVTOOLS FUNCTIONALITY

In addition to viewing and inspecting component data, the DevTools Components window has a few
other options that can help you with an app’s components.

Look at the icons in the upper-right corner of the component data window. Hovering over each one
of these will give you a description of its purpose. As of this writing, there are four icons, which pro‑
vide the following functionality:

➤➤ Suspend the selected component. Suspense is a new feature in React which allows you to
wrap a component in a Suspense element to tell that component to wait for some code to be
loaded. If a highlighted component is wrapped in the Suspense element, this button in Dev‑
Tools will cause a component to go into this waiting (suspended) state.

➤➤ Inspect the matching DOM element. Clicking this button will open the Chrome DevTools
element inspector window and highlight the HTML generated by the selected component.

➤➤ Log this component data to the console. This option will cause the data in the component
data inspection window to be output to the JavaScript console. After clicking this button,
switch to the Console in Chrome DevTools and you’ll see the data for the selected component
under a link titled [Click to expand], as shown in Figure 5‑13.

➤➤ View source for this element. This option will take you to the JavaScript source file that cre‑
ates the element, such as the function or class that defines the component.

FIGURE 5-13:  Logging component data to the console

Profiling  ❘  119

React DevTools is a powerful tool for quickly viewing a list of the React components in your applica‑
tion and drilling down into them to see their state and props. Being able to access the inner data of
components as they run in the browser is the first step in being able to fix bugs and improve your
components.

PROFILING

The React DevTools Profiler tab gives you information about the performance of a React application.
To use it, start by recording or importing a usage session that you wish to analyze.

1.	 Click the Start Profiling icon in the upper-left corner of the Profiler, which will turn into a red
Stop Profiling icon to indicate that recording is in progress.

2.	 Interact with the application in the browser window. Click buttons, fill out and submit any
forms, and so forth.

3.	 Click the red Stop Profiling icon.

Once you’ve recorded some Profiler data, you can switch to the Flamegraph tab to see how your
components render. The Flamegraph chart is shown in Figure 5‑14.

FIGURE 5-14:  The Flamegraph chart

120  ❘  CHAPTER 5   React DevTools

For each time you did something while profiling the app that caused a state change (and therefore a
re-rendering of the UI), there will be a separate Flamegraph chart.

You can navigate through each rendering by clicking items in the bar graph in the upper right of the
Flamegraph window or by clicking the arrows to the left and right of the bar graph.

The Ranked chart shows each of the components that rendered during your profiling, in order of how
long they took to render. In our React Bookstore app, the component that takes the longest to render,
by far, is ProductList, as shown in Figure 5‑15.

It’s pretty easy to see ProductList is the slowest component—each rendering of ProductList
requires 100 Product components to be rendered. There are several ways to optimize this. The most
effective ways involve rendering fewer components. For example, you could require the user to click a
“View More” button after the first batch of books is displayed.

Another way is to use a technique called list virtualization or windowing. List virtualization optimizes
long lists by only rendering a small subset of the list at a time.

FIGURE 5-15:  Viewing the Ranked chart

Summary  ❘  121

The simplest technique for optimizing the ProductList component is to use memoization. Since the
ProductList component always renders the same data when given the same props, this data can all
be cached by React and re-rendering can be minimized.

Figure 5‑16 shows the Ranked chart after wrapping the ProductList and Product components in
the React.memo function.

SUMMARY

Inspecting and optimizing your code are critical and ongoing processes in any software development
project. React DevTools is a powerful tool for looking inside your React user interfaces while they’re
running and for testing the performance of individual components as well as an entire React app.

In this chapter, you learned:

➤➤ How to access React DevTools.

➤➤ How to navigate and search the DevTools component tree.

FIGURE 5-16:  Ranked chart after optimizing

122  ❘  CHAPTER 5   React DevTools

➤➤ How to filter components in the DevTools tree.

➤➤ How to modify component data in DevTools.

➤➤ How to inspect components in DevTools.

➤➤ How to use the DevTools Profiler to analyze component performance.

In the next chapter, you’ll learn how to manage data and data flow within a React application.

React Data Flow
Data, and moving data between the different parts of an application, is a critical piece of any
interactive user interface. In this chapter, you’ll learn:

➤➤ What one-way data flow means.

➤➤ The benefits of one-way data flow.

➤➤ How to initialize state in a React user interface.

➤➤ How to decide where the state should “live.”

➤➤ How to decide what data should be in state.

➤➤ Methods for updating state.

➤➤ How and why to treat state as immutable.

➤➤ How to pass data between components.

➤➤ The value of “shallow” copying and merging.

➤➤ How to validate incoming props with PropTypes.

➤➤ How and why to provide default props.

➤➤ New JavaScript syntax for working with props and state.

➤➤ How to convert between function and class components.

ONE-WAY DATA FLOW

One of the defining characteristics of React that distinguishes it from most other front-end UI
libraries is its use of one-way data flow, also known as unidirectional data flow. One-way data
flow means that all of the data in a React application flows from parent components to child
components. Another common way to describe the flow of data in React is “Data flows down
(or downstream), and events flow up (or upstream).”

6

124  ❘  CHAPTER 6   React Data Flow

While one-way data flow eliminates a common cause of complexity and errors in user interfaces, it
can also create confusion and frustration unless you fully understand the ins and outs of using it to
your advantage. In this chapter, I’ll take a step-by-step and thorough approach, with plenty of exam-
ple code, to covering everything you need to know about data flow within React, using both class
components and function components.

Understanding One-Way Data Flow
Figure 6‑1 illustrates how unidirectional data flow works.

Unidirectional data flow doesn’t mean that child components can’t send data to parent components.
Sending data from child components (for example, an input form) to parent components (for exam-
ple, the form containing the input) is a critical part of interactivity. However, one-way data flow does
mean that the way you send data from a child component to a parent component or between sibling
components is different from how you pass data from a parent to a child.

To understand one-way data flow, it’s helpful to look at an example of two-way data flow. To use
two-way binding in Angular, you can use a combination of brackets, like this:

<search-form [(term)]="searchTerm"></search-form>

Assuming that the preceding code causes a search form to be rendered, the combination of square
brackets and parentheses indicate that the searchTerm variable should be passed into the component
represented by the search-form element (downstream data flow) and that when the value of the
search term changes within the component represented by the search-form element, the value of the
searchTerm variable should be updated (upstream data flow).

In React, passing data downstream is done using props, like this:

<SearchForm term={searchTerm} />

However, because of unidirectional data flow, updating the value of the searchTerm variable from
within the SearchForm component requires an event to be triggered. In function components, the
event that allows you to pass data upstream is created when you use the useState hook.

Data Events

Component

Component Component

ComponentComponentComponentComponent

FIGURE 6-1:  Unidirectional data flow

One-Way Data Flow  ❘  125

Before we get to how that works, let’s look briefly at why React uses one-way data flow and the
benefits of it.

Why One-Way Data Flow?
Two-way data flow, also known as bidirectional data flow, where a component’s data can be modified
by its parent and changes within the component can directly affect data in the parent, is convenient.
However, it also increases the complexity of a user interface, and this, in turn, increases the potential
for errors.

Figure 6‑2 shows an example of a user interface that makes use of two-way data flow. Notice that
there are multiple ways for data in the model to be changed, and the controller is required in order to
manage changes.

In bidirectional data flow, it’s not possible to tell whether the view was updated by the user interact-
ing with the view or by the data in the model changing.

Figure 6‑3 shows a diagram of one-way data flow in a user interface. The only way that a view
(what’s displayed in the browser) can be changed is by changing the data in the model (which is the
state object in React).

Controller

Model View

FIGURE 6-2:  Bidirectional data flow

View

State Action

FIGURE 6-3:  Data flowing in one direction

126  ❘  CHAPTER 6   React Data Flow

A view in unidirectional data flow can be expressed as a simple function:

V = function(data)

If you want to test whether a piece of data in unidirectional data flow is being properly updated, or
test that the change to a variable in unidirectional data flow has the intended consequences, there’s
only one thing to test: whether changing the state of the application modifies the view as expected.

PROPS

Props in React are the primary way that data is shared between parent components and child com-
ponents. To create a prop, simply give a React custom element an attribute, using the name=value
format. Inside the component instance created by that element, the attribute will become a property
of the props object.

Here are some key points about props:

➤➤ A component can receive any number of props.

➤➤ A prop’s value can be of any type of JavaScript data or an expression that evaluates to a
value or function.

➤➤ Props are read-only.

Let’s take a look at each of these points in more detail.

Components Receive Props
When you write a JSX element in React, the attributes that you give an element are passed to the
component as properties in an object. For example, consider this JSX element:

<Taco meat="chicken" produce={[cabbage,radish,cilantro]} sauce="hot" />

If Taco is a function component, this element is the same as the following JavaScript function call:

Taco({meat:"chicken",produce:[cabbage,radish,cilantro],sauce:"hot"});

Inside the Taco function’s header, the object passed to the function is given the name props, which is
how you can access it inside of the function:

function Taco(props){
 return (<p>Your {props.sauce} {props.meat} taco will be ready shortly.</p>
}
export default Taco;

Because props is a JavaScript object, you can have as many or as few properties in the prop object as
you need, and there’s no requirement that each prop be passed each time you use a component.

Props Can Be Any Data Type
The props you pass to a component can be any type of JavaScript data, including any of the six
primitive data types (undefined, Boolean, Number, String, BigInt, and Symbol) as well as objects,
functions, arrays, and even null.

Props  ❘  127

Because of JSX’s ability to include JavaScript expressions through the use of curly braces, the data
passed to a component through the props object can be determined through the use of a variable or
any JavaScript expression or function call.

Props Are Read-Only
Once data has been passed to a component using props, that data is treated as immutable. This means
that although a component receives props, once those props are values inside the component, your
component can’t change them.

This is the strictest rule in React: a component must act like a pure function with regard to its props.

The reason for this rule is that React only re-renders components in response to state changes. Props
are the mechanism for updating components according to state changes. If you were to change the
value of a prop inside a component, it would cause the internal data of your component to be out of
sync with what’s displayed in your browser and the value of the prop would be reset by the parent
component with the next render. In other words: changing props inside a component won’t have the
effect that you want.

If you attempt to change the value of a prop, you’ll get an error. However, the problem with mutating
props can be illustrated by looking at what happens when you change any variable inside a compo-
nent without triggering a re-render.

In Listing 6‑1, a stateful variable is passed as a prop from a parent component (App) to a child com-
ponent (PropsMutator). Inside PropsMutator, a local variable is created to hold the value of the
prop. This local variable is also used inside the return statement.

A function called changeProp increments the value of the local copy of the prop and then logs it to
the console.

LISTING 6-1:  Changing local variables doesn’t update the view

import {useState} from 'react';

function App(){
 const [theNumber,setTheNumber] = useState(0);
 return (
 <PropsMutator theNumber = {theNumber} setTheNumber = {setTheNumber} />
)
}

function PropsMutator(props){
 let myNumber = props.theNumber;

 const changeProp = ()=>{
 myNumber = myNumber + 1;
 console.log("my number is: " + myNumber);
 }

 return (
 <>

continues

128  ❘  CHAPTER 6   React Data Flow

 <h1>My number is: {myNumber}</h1>
 <h1>props.theNumber is: {props.theNumber}</h1>
 <button onClick = {changeProp}>change myNumber</button>

 <button onClick={()=>{props.setTheNumber(props.theNumber + 1)}}>
 use setTheNumber
 </button>
 </>
)
}

export default App;

Figure 6‑4 shows what happens when you run this component and click the change myNumber but-
ton several times.

The second button in Listing 6‑1 shows the correct way to modify a value that will be used in the
return method. In this button, we call a state change function, setTheNumber (which is passed to
the component from its parent) and pass in a new value. The state change function modifies the state
variable and then re-renders, which causes the new value to be passed into the child component.

Figure 6‑5 shows the result of clicking the change myNumber button several times, followed by click-
ing the use setTheNumber button, followed by clicking change myNumber again.

FIGURE 6-4:  Changing local variables doesn’t update the view

LISTING 6-1  (continued)

Props  ❘  129

Make sure that you understand this example before moving on to the next section, because if you see
what’s happening in Figure 6‑5, the distinction between props and state will make perfect sense and
you’ll have a much better idea of when to use each.

Validating Incoming Props with PropTypes
When you invoke a JavaScript function and pass in arguments, the function doesn’t care what type
of data the arguments are, whether they’re passed in at all, or whether more or fewer arguments are
passed in than the function defines. The same things are true with props that you pass from a parent
component to a child component.

For programs to operate correctly, however, it often is important that the props that are passed to
a component are the same type of data that the component is expecting. For example, if your com-
ponent expects a prop called itemPrice to be a number, an error may occur if a parent component
passes itemPrice as an object.

React programmers (and programmers in general) must account for the possibility of incorrect data
types being passed to any function that receives arguments. But, it’s not always easy to figure out and
detect possible data type problems with a dynamically typed language such as JavaScript.

To help with keeping track of a component’s expected input and finding possible problems, we can
use a tool called PropTypes.

FIGURE 6-5:  Local variable and props confusion

130  ❘  CHAPTER 6   React Data Flow

What Is PropTypes?
PropTypes is a tool for type checking and documenting props in React components. For each prop
in your component, you can specify rules that the value coming into the prop will be tested against.
If the prop value doesn’t pass those rules, a message will be displayed in the JavaScript console in
your browser.

PropTypes only displays these warning messages when you’re using the development version of React.
Once your app is deployed and using the production version of React, PropTypes is silent.

For example, the WelcomeMessage component in Listing 6‑2 uses a prop called firstName to display
a customized header message. You can tell from looking at the code in this component that the value
of the firstName prop should be a string.

LISTING 6-2:  A component that uses a string prop

function WelcomeMessage(props){
 return (<p>Welcome back, {props.firstName}!</p>);
}

export default WelcomeMessage;

By now, you should be able to guess what the output of this component will be when you pass a first
name into it through an element like the following:

<WelcomeMessage firstName = "Grover" />

But, what happens if you pass something that’s not a string into the firstName prop? The following
element passes an array into the firstName prop:

<WelcomeMessage firstName = {['Jimmy','Joe']} />

The result may not be what you’d expect, as shown in Figure 6‑6.

React doesn’t consider this case to be an error, so it may not be obvious at first what the cause of the
unexpected output is. This is especially true in components that make use of many different props.

Listing 6‑3 shows how you can use PropTypes to validate this prop.

LISTING 6-3:  Validating that a prop is a string

import PropTypes from 'prop-types';

function WelcomeMessage(props){
 return (<p>Welcome back, {props.firstName}!</p>);
}

WelcomeMessage.propTypes = {
 firstName:PropTypes.string
}

export default WelcomeMessage;

Props  ❘  131

With the PropType specified for firstName, when WelcomeMessage receives a value of firstName
that isn’t a string, a warning message will be displayed in the console, as shown in Figure 6‑7.

Use of PropTypes in React is optional, and whether you use it or not, it won’t fix errors by itself. It
also won’t cause your application to not compile if a prop fails its checks. It’s purely a development
tool. However, it’s a great way to catch bugs in your components and to document your components.
Getting into the habit of using PropTypes will improve your React components and make it easier for
other programmers who may use your component in the future to know what data it requires.

Getting Started with PropTypes
PropTypes is not part of the core React library. To use it, you first have to install it. If you boot-
strapped your app with Create React App, it’s already been installed for you. Otherwise, you can
install it by running the following command from the root of your project:

npm install prop-types --save

Once PropTypes is installed, you’ll need to include the PropTypes library into each component where
you use it. At the beginning of the file containing your component, use the following import:

import PropTypes from 'prop-types;

Once imported, PropTypes works the same with both function and class components, but where you
place the PropTypes may differ.

FIGURE 6-6:  Passing the wrong prop type

132  ❘  CHAPTER 6   React Data Flow

To use PropTypes, you just need to add a property called propTypes to the component. Note that
the PropTypes library, which contains different ways of validating props, starts with a capital P. The
property that you add to your component to cause it to do type checking starts with a lowercase p.

The propTypes property is a static property, meaning it operates at the component level, not the
component instance. In class components, this means that you can use the static keyword to put your
propTypes property in the body of your class, as shown in Listing 6‑4.

LISTING 6-4:  PropTypes inside a component’s body

import PropTypes from 'prop-types';
import {Component} from 'react';

class WelcomeMessage extends Component {

 static propTypes = {
 firstName: PropTypes.string
 }

 render(){
 return(<h1>Welcome, {this.props.firstName}!</h1>);
 }
}

export default WelcomeMessage;

FIGURE 6-7:  PropTypes displaying a warning

Props  ❘  133

You can also add the propTypes object into your class component by putting it outside of the class
body, as shown in Listing 6‑5.

LISTING 6-5:  Putting propTypes outside the class body

import PropTypes from 'prop-types';
import {Component} from 'react';

class WelcomeMessage extends Component {

 render(){
 return(<h1>Welcome, {this.props.firstName}!</h1>);
 }
}

WelcomeMessage.propTypes = {
 firstName: PropTypes.string
}

export default WelcomeMessage;

In function components, the propTypes object always goes outside of the function body, as shown in
Listing 6‑6.

LISTING 6-6:  Using propTypes with a function component

import PropTypes from 'prop-types';

function MyComponent(props){
 return (<p>The value is {props.itemValue}</p>);
}

MyComponent.propTypes = {
 itemValue: PropTypes.number
}

export default MyComponent;

What Can PropTypes Validate?
PropTypes can perform a wide variety of checks on a component’s props, including the data type
(as you’ve seen), whether required props are passed, the shape of properties passed as objects, and
more. In this section, I’ll explain and demonstrate all of the different validation rules contained in
PropTypes.

Validating Data Type
You’ve already seen how to check whether a prop is one of JavaScript’s data types. The validators for
JavaScript types are:

➤➤ PropTypes.array

134  ❘  CHAPTER 6   React Data Flow

➤➤ PropTypes.bool

➤➤ PropTypes.func

➤➤ PropTypes.number

➤➤ PropTypes.object

➤➤ PropTypes.string

➤➤ PropTypes.symbol

The purpose of each of these should be self-evident, but note that a couple of the validators, bool and
func, have names that are different from the names of the JavaScript data types.

When you use one of these data type validators by itself, PropTypes will treat the prop as optional. In
other words, a missing prop won’t trigger a PropType warning message by default.

Validating Required Props
If a component requires a prop to be passed to it, you can indicate to PropTypes that a prop is
required by appending the isRequired validator to the data type validator, as shown in Listing 6‑7.

LISTING 6-7:  Appending the isRequired validator

MyComponent.propTypes = {
 firstName: PropTypes.string.isRequired,
 middleName: PropTypes.string,
 lastName: PropTypes.string.isRequired
}

Beyond whether a prop exists and is of a particular data type, you can also do checks that are specific
to how the prop data functions within React.

Validating Nodes
The node validator checks whether the prop’s value is something that can be rendered. React calls
anything that can be rendered in a component a node. The things that can be rendered in a compo-
nent are numbers, strings, elements, and arrays containing numbers, strings, or elements:

userMessage: PropTypes.node

The node validator is useful in cases where you may not care whether the value of the prop is a string
or number or element, but you do care that it can be rendered.

If one of your components does try to render a prop that isn’t a node, it will cause your program to
crash and display an error in the browser as well as in the console even if you’re not using PropTypes.
You can view this default error message by trying to render a prop value that isn’t a number, string,
element, or an array of renderable data. For example, the component in Listing 6‑8 renders the values
passed into the url and linkName props.

Props  ❘  135

LISTING 6-:8  Trying to render a non-node value

function SiteLink(props) {
 return (
 {props.linkName}
);
}

export default SiteLink;

The following element invokes the SiteLink function component, passing in an object as
the linkName:

<SiteLink url="http://example.com" linkName={{name:'Example'}} />

Figure 6‑8 shows the error message that displays when you try to render an object. Notice that the
error message doesn’t specify which prop caused the error, just that there was one and the element in
which it occurred.

FIGURE 6-8:  The not-renderable error message

136  ❘  CHAPTER 6   React Data Flow

You can use PropTypes.node to find out which prop caused the error.

Listing 6‑9 shows how to use PropTypes.node to validate that props.linkName can be rendered,
and Figure 6‑9 shows that attempting to render an object still causes the same error messages to be
displayed, but PropTypes displays which prop caused the error.

LISTING 6-9:  Using PropTypes.node

import PropTypes from 'prop-types';

function SiteLink(props) {
 return (
 {props.linkName}
);
}

SiteLink.propTypes = {
 linkName: PropTypes.node
}

export default SiteLink;

FIGURE 6-9:  PropTypes tell which attribute caused the error

Props  ❘  137

In order to properly handle a case where an object value may be passed into a prop that will be ren-
dered, you can use error boundaries, which you’ll learn about in Chapter 13.

Validating React Elements
If you want to make sure that a prop is a React element, you can use PropTypes.element. You
might use the element validator to test whether the children prop contains an element, as shown in
Listing 6‑10.

LISTING 6-10:  Validating React elements

import PropTypes from 'prop-types';

function BorderBox(props){
 return(
 <div style={{border:"1px solid black"}}>{props.children}</div>
)
}

BorderBox.propTypes = {
 children: PropTypes.element.isRequired
}

export default BorderBox;

Here’s an example of a use of the BorderBox element defined in Listing 6‑10 that will cause the
PropType.element validation to fail:

<BorderBox>
 <p>The first paragraph</p>
 <p>The second paragraph</p>
</BorderBox>

Figure 6‑10 shows the warning message that will be displayed in the preceding case.

Element Type Validation
If you want to test whether the prop value is a React element type, you can use elementType, as
shown in Listing 6‑11.

LISTING 6-11:  Using the elementType validator

FamilyTree.propTypes = {
 pet: PropTypes.elementType
}

The difference between the element validator and the elementType validator is that the
element validator checks for a rendered element (for example, <MyComponent />), while
the elementType validator checks for an unrendered element (for example, MyComponent).

138  ❘  CHAPTER 6   React Data Flow

JavaScript Class Validation
PropTypes.instanceOf tests that the supplied prop is an instance of a particular JavaScript class
(meaning that it has this class in its prototype chain). To use it, you can use the instanceOf validator,
as shown in Listing 6‑12. The instanceOf validator uses the JavaScript instanceOf operator.

LISTING 6-12:  Validating that a prop is an instance of a class

import {Component} from 'react';
import {PropTypes} from 'prop-types';
import Person from './Person';

class FamilyTree extends Component {
 render(){
 return(
 <p>{this.props.father.firstName}</p>
)
 }
}

FamilyTree.propTypes = {
 father: PropTypes.instanceOf(Person)
}

export default FamilyTree;

FIGURE 6-10:  Failing PropTypes.element validation

Props  ❘  139

Limiting Props to Certain Values or Types
PropTypes.oneOf is a function that tests whether the value of a prop is one of the specific items in a
list. To use it, pass an array of possible values into the oneOf function, as shown in Listing 6‑13.

LISTING 6-13:  Using PropTypes.oneOf

import PropTypes from 'prop-types';

function DisplayPrimaryColor(props){
 return(
 <p>You picked: {props.primaryColor}</p>
)
}

DisplayPrimaryColor.propTypes = {
 primaryColor:PropTypes.oneOf(['red','yellow','blue'])
}

export default DisplayPrimaryColor;

With the oneOfType validator, you can check whether the value of a prop is one of a list of data
types. To use it, pass an array containing the allowed data types, using names of PropTypes’s data
type validators:

Component.propTypes = {
 myProp:PropTypes.oneOfType([
 PropTypes.bool,
 PropTypes.string,
 PropTypes.number
])
}

Additional Validators
PropTypes.arrayOf tests that the prop is an array in which each of the elements matches a pro-
vided type:

MyComponent.propTypes = {
 students: PropType.arrayOf(
 PropTypes.instanceOf(Person)
)
}

PropTypes.objectOf tests that the prop is an object in which each of the properties of the object
match a provided type:

MyComponent.propTypes = {
 scores: PropTypes.objectOf(
 PropTypes.number
)
}

140  ❘  CHAPTER 6   React Data Flow

PropTypes.shape tests whether a prop value is an object containing specific properties:

MyComponent.propTypes = {
 userData: PropTypes.shape({
 id: PropTypes.number,
 fullname: PropTypes.string,
 birthdate: PropTypes.instanceOf(Date),
 isAdmin: PropTypes.bool
 })
}

PropTypes.exact performs a strict object match on the prop, meaning that it must include only the
specified properties, each of which must pass its validation:

MyComponent.propTypes = {
 toDoItem: PropTypes.exact({
 description: PropTypes.string,
 isFinished: PropTypes.bool
 })
}

Creating Custom PropTypes
If what you want to validate isn’t covered by any of the built-in validators, you can create your own.
A custom validator is a function that will automatically receive three arguments when it’s used:

➤➤ An object containing all of the props received by the component.

➤➤ The prop being tested.

➤➤ The name of the component.

In a custom prop, you can write the Error object that is returned when the validation fails.

For example, you might write a custom validator to check whether a prop is a 10-digit phone
number, as shown in Listing 6‑14.

LISTING 6-14:  Using a custom validator to test for a phone number

import PropTypes from 'prop-types';

function Contact(props){
 return(
 {props.fullName}: {props.phone}
)
}

const isPhoneNumber = function(props, propName, componentName) {
const regex = /^(\+\d{1,2}\s)?\(?\d{3}\)?[\s.-]\d{3}[\s.-]\d{4}$/;

if (!regex.test(props[propName])) {
 return new Error(`Invalid prop ${propName} passed to ${componentName}.
Expected a phone number.`);
}

Props  ❘  141

}

Contact.propTypes = {
 fullName: PropTypes.string,
 phone: isPhoneNumber,
}

export default Contact;

Figure 6‑11 shows the browser console returning the custom error message when this PropType fails.

Default Props
PropTypes can tell you when a component doesn’t receive a prop or when it receives the wrong
data type, but using PropTypes by itself won’t fix any of the problems it reveals. To solve problems
revealed by PropTypes, you often need to look at the parent component that’s passing incorrect data
to the component. But, ideally, each component in a React app should be able to function in some
capacity without crashing your entire user interface, even if something unexpected happens in a par-
ent component. This is where setting default values for props comes in.

For example, the StoresNearYou component in Listing 6‑15 renders a Map component and a
StoreList component based on location data passed into it as props.latitude and props.longi-
tude. Many things can go wrong with geolocation, however, and it’s possible that the parent com-
ponent won’t be able to pass this required data. The result is that the values passed to the Map and
StoreList components would be invalid and could even result in the app crashing.

FIGURE 6-11:  A custom PropType validator failing

142  ❘  CHAPTER 6   React Data Flow

LISTING 6-15:  A component without default props

import Map from './Map';
import StoreList from './StoreList';

function StoresNearYou(props){
 return(
 <>
 <div id="map-container">
 <Map latitude={props.latitude} longitude={props.longitude} />
 </div>
 <div id="store-list">
 <StoreList latitude={props.latitude} longitude={props.longitude} />
 </div>
 </>
)
}

export default StoresNearYou;

One way to solve this problem is by using the || (OR) operator to set fallback values for latitude and
longitude, as shown in Listing 6‑16.

LISTING 6-16:  Setting defaults with the OR operator

import Map from './Map';
import StoreList from './StoreList';

function StoresNearYou(props){
 return(
 <>
 <div id="map-container">
 <Map
 latitude={props.latitude || "37.3230"}
 longitude={props.longitude || "122.0322"}
 />
 </div>
 <div id="store-list">
 <StoreList
 latitude={props.latitude || "37.3230"}
 longitude={props.longitude || "122.0322"}
 />
 </div>
 </>
)
}

export default StoresNearYou;

However, this can quickly get messy and confusing in larger components involving many different
props, and using inline default values like this creates duplication of effort.

Props  ❘  143

The next improvement to this code might be to separate the properties in the props object into vari-
ables outside of the return statement and set the default values just once, as shown in Listing 6‑17.

LISTING 6-17:  Destructuring props and setting defaults

import Map from './Map';
import StoreList from './StoreList';

function StoresNearYou(props){
 const latitude = props.latitude || "37.3230";
 const longitude = props.longitude || "122.0322";

 return(
 <>
 <div id="map-container">
 <Map
 latitude={latitude}
 longitude={longitude}
 />
 </div>
 <div id="store-list">
 <StoreList
 latitude={latitude}
 longitude={longitude}
 />
 </div>
 </>
)
}

export default StoresNearYou;

This is a great improvement in terms of the cleanliness of the code, but it does introduce additional
variables, perhaps unnecessarily. We can do better.

React components have a defaultProps object that can be used to set values for props that aren’t
passed into a component. Like propTypes, defaultProps is a property of the component, rather
than of an instance of the component. Therefore, to set defaultProps in a class component, you
can either define it inside the component by using the static keyword, or set it outside of the
component.

Listing 6‑18 shows how to set defaultProps as a static property, and Listing 6‑19 shows how to set
it outside of the class definition.

LISTING 6-18:  Setting defaultProps as a static property

import {Component} from 'react';

class StoresNearYou extends Component{

continues

144  ❘  CHAPTER 6   React Data Flow

 static defaultProps = {
 latitude: "37.3230",
 longitude: "122.0322"
 }

 render(){
 return(
 <>
 <div id="map-container">
 <Map
 latitude={this.props.latitude}
 longitude={this.props.longitude}
 />
 </div>
 <div id="store-list">
 <StoreList
 latitude={this.props.latitude}
 longitude={this.props.longitude}
 />
 </div>
 </>
)
 }
}

export default StoresNearYou;

LISTING 6-19:  Setting defaultProps outside of the component body

import {Component} from 'react';

class StoresNearYou extends Component{

 render(){
 return(
 <>
 <div id="map-container">
 <Map
 latitude={this.props.latitude}
 longitude={this.props.longitude}
 />
 </div>
 <div id="store-list">
 <StoreList
 latitude={this.props.latitude}
 longitude={this.props.longitude}
 />
 </div>
 </>
)

LISTING 6-18  (continued)

React State  ❘  145

 }
}

StoresNearYou.defaultProps = {
 latitude: "37.3230",
 longitude: "122.0322"
}

export default StoresNearYou;

You can set defaultProps in function components outside of the function body, as shown in
Listing 6‑20.

LISTING 6-20:  Setting defaultProps for a function component

function StoresNearYou(props){
 return(
 <>
 <div id="map-container">
 <Map latitude={props.latitude} longitude={props.longitude} />
 </div>
 <div id="store-list">
 <StoreList latitude={props.latitude} longitude={props.longitude} />
 </div>
 </>
)
}

StoresNearYou.defaultProps = {
 latitude: "37.3230",
 longitude: "122.0322"
}

export default StoresNearYou;

With the defaultProps property set, StoresNearYou will use the default values for props.lati-
tude and props.longitude if it’s invoked without passing props, or if it’s rendered before it receives
props (which can often happen in cases where a component depends on the result of an asynchronous
function).

REACT STATE

If all you want to do is render a static component that never changes, all you need is props. However,
the real value of React is in how it enables interactive web applications and manages updates to com-
ponents in response to input.

The key to React’s ability to be reactive is the concept and object called state.

146  ❘  CHAPTER 6   React Data Flow

What Is state?
In a React component, state is an object containing a set of properties that may change over the
lifetime of the component. Changes to the properties in the state object control the behavior and
updating of the component.

Initializing state
Initializing state is the process of defining the properties of the state object and setting their initial
values. The initial values are the values that will be used for the first rendering of a component.

Initializing state in Class Components
Prior to the introduction of React Hooks, class components were the only place where you could use
state. Hooks made it possible to use state in function components, but if you want to take advantage
of the full power of React, including all of the lifecycle methods, classes are still the best (and in some
cases the only) way to go.

There are a few important rules about initializing the state of a class component:

1.	 The state object of a class component can have as many or as few properties as you need.

2.	 Not all class components need to have state.

3.	 If your component does make use of state, you must initialize it.

4.	 The constructor function is the only place where you can change state directly.

In a class component, the most common way to initialize the state object is in the constructor
function, as shown in Listing 6‑21.

LISTING 6-21:  Initializing state in a class component

import {Component} from 'react'

class NewsFeed extends Component {

 constructor(props){
 super(props);
 this.state = {
 date: new Date(),
 headlines:[]
 }
 }
 render(){
 return(
 <>
 <h1>Headlines for {this.state.date.toLocaleString()}</h1>
 ...

React State  ❘  147

 </>
)
 }
}

export default NewsFeed;

The reason for initializing the state object in the constructor function is that it’s the first method
to be called when you create an instance of a component.

It is possible to initialize the state object without a constructor function by using a class prop-
erty, which is also known as a public instance field, or a public field. A public field works the
same as defining a property of the class in the constructor, and the resulting property will exist
in every instance of the class that’s created. Listing 6‑22 shows how to set the initial state with a
class property.

LISTING 6-22:  Initializing state using the class property

import {Component} from 'react'

class NewsFeed extends Component {

 state = {
 date: new Date(),
 headlines: []
 }

 render(){
 return(
 <>
 <h1>Headlines for {this.state.date.toLocaleString()}</h1>
 ...
 </>
)
 }
}

export default NewsFeed;

Initializing State in Function Components
In JavaScript functions, data doesn’t persist between invocations of the function. Prior to React
Hooks, React function components also had no way to preserve data between calls. For this reason,
function components were previously known as stateless components.

With React Hooks, function components can hook into functionality of React, including the state
object. The hook that makes this possible is useState.

The first time a function component containing the useState function is rendered, useState creates
a stateful variable and a function for setting that variable. For all subsequent renders of the compo-
nent, useState makes use of the variable created on that first render.

148  ❘  CHAPTER 6   React Data Flow

The first time a function component renders, useState serves the same purpose as initializing the
state object in the constructor or using a public field in a class component.

Listing 6‑23 shows how to initialize a stateful variable in a function component.

LISTING 6-23:  Initializing state in a function component

import {useState} from 'react'

function NewsFeed(props) {

const [date,setDate] = useState(new Date());
const [headlines,setHeadlines] = useState([]);

 return(
 <>
 <h1>Headlines for {date.toLocaleString()}</h1>
 ...
 </>
)
}

export default NewsFeed;

Notice that Listing 6‑23 includes two calls to useState. This is the recommended way to manage
state with React Hooks—for each stateful variable, you can make a call to useState and return the
new stateful variable and the function for updating that variable.

Another way to initialize state in a function component is shown in Listing 6‑24.

LISTING 6-24:  Another approach to initializing state in a function component

import {useState} from 'react'

function NewsFeed(props) {

const [state,setState] = useState({date:new Date(),headlines:[]});

 return(
 <>
 <h1>Headlines for {state.date.toLocaleString()}</h1>
 ...
 </>
)
}

export default NewsFeed;

While the method of managing state shown in Listing 6‑24 does have the advantage of more closely
simulating how class components have just a single state object, having multiple variables gives

React State  ❘  149

you more flexibility with regard to splitting your component into smaller components and for
memoization.

The Difference between state and props
Props and state look similar at first glance:

➤➤ They’re both JavaScript objects.

➤➤ Changes to each of them cause components to update.

➤➤ Both are data that are used by a component to generate the HTML output of the component.

The differences between props and state are in their roles.

The basic difference is that the props object is passed to a component by its parent, while state is
managed within a component.

To put it another way, props is similar to a function parameter, while state is similar to a local (pri-
vate) variable defined inside the function. You can pass values from the state of a parent component
to a child component (where they become part of the props object), but a component cannot modify
the state of its children.

Table 6‑1 summarizes the similarities and differences between props and state.

Updating state
Once the initial state of a component has been set and the component has been rendered, updates to
the component (and to its children, if it has any) happen when the state changes.

TABLE 6-1:  Comparing props and state

PROPS STATE

Is it passed from the parent? Yes No

Can it change inside a component? No Yes

Can it be changed by the parent? Yes No

Can it be passed to child components? Yes Yes

setSTATE IS NOT setSTATE

Another important point to keep in mind (which we’ll discuss in more detail shortly)
is that the function returned by useState (which I named setState in Listing 6‑24)
doesn’t work the same as a class component’s setState function. In short:
setState in a class component merges objects, while the setState function
returned by useState replaces the value of the stateful variable.

150  ❘  CHAPTER 6   React Data Flow

You might be wondering how React knows that the state object has changed. It actually doesn’t.
The reason that changes to state update components is that all changes to state must be done using
a function provided for that purpose. This function updates the state and then triggers a re-render of
the component.

The method that you use for updating a component’s state depends on whether you’re using a class
component or a function component.

Updating a Class Component’s state with setState
In class components, the setState method is the only way to modify the state once it’s been ini-
tialized. You can use the setState method inside any method in a class component except the
constructor.

The setState method takes an object or a function as its argument and uses this argument to sched-
ule an update of the component’s state object.

Passing an Object to setState
Listing 6‑25 shows a simple example of a class component that initializes a state object and then
updates it using setState each time a button is clicked.

LISTING 6-25:  Using setState

import {Component} from 'react';

class CounterClass extends Component {
 constructor(props){
 super(props);
 this.state = {count:0};
 this.increment = this.increment.bind(this);
 }

 increment(){
 this.setState({count: this.state.count + 1});
 }

 render(){
 return(
 <button onClick={this.increment}>{this.state.count}</button>
)
 }

}
export default CounterClass;

This simple counter example demonstrates a basic usage of setState. In the increment function, I
passed a new object containing a new value for the count property. If you run this component, you’ll
see that it works as follows:

➤➤ Clicking the button triggers the increment method in the component.

➤➤ The increment method calls the setState function, passing in a new value for this
.state.count.

React State  ❘  151

➤➤ Calling setState updates the value of state.count and then causes the component to
re-render.

➤➤ The new value of state.count is displayed on the button.

While this simple example can be fairly easily understood, it doesn’t do much to illuminate how
setState actually functions. For that, we’ll need a slightly more complex example with multiple
properties in the state object.

Merging an Object into state with setState
Listing 6‑26 simply adds another count property to the component, along with another button and
another increment function.

LISTING 6-26:  Using setState with multiple state properties

import {Component} from 'react';

class CounterClass extends Component {
 constructor(props){
 super(props);
 this.state = {count1:0,count2:0};
 this.incrementCount1 = this.incrementCount1.bind(this);
 this.incrementCount2 = this.incrementCount2.bind(this);

 }

 incrementCount1(){
 this.setState({count1: this.state.count1 + 1});
 }
 incrementCount2(){
 this.setState({count2: this.state.count2 + 1});
 }

 render(){
 return(
 <>
 <button onClick={this.incrementCount1}>Count 1: {this.state.count1}</button>
 <button onClick={this.incrementCount2}>Count 2: {this.state.count2}</button>
 </>
)
 }

}
export default CounterClass;

If you run the example in Listing 6‑26, you’ll see that clicking each of the buttons increments the
respective property in the state object. Notice, though, that each count’s increment function only
passes the single property that’s being modified to setState and setState only updates the property
passed to it.

152  ❘  CHAPTER 6   React Data Flow

While the previous example is not particularly thrilling, and the code could be simplified and made
considerably more flexible, it demonstrates how the first way to use setState works: when you pass
an object into setState, it merges that object with the existing state object.

Calls to setState are Asynchronous
When you call setState, it may not immediately update the state object. Instead, it actually just
schedules, or enqueues, an update to the component’s state. The reason for this behavior is that
it reduces the number of unnecessary component re-renders, which improves performance of the
React app.

It’s helpful to think of a call to setState as a request, rather than an immediate operation.

For example, if a parent and child component both call setState in response to the same click event,
this would cause two re-renders of the component if setState were to update state immediately.
Because calls to setState are asynchronous, however, React will wait until both components have
called setState before re-rendering.

Why Should You Care that setState Is Asynchronous?
The asynchronous nature of setState is a frequent cause of bugs or unexpected behavior in React.
The problem is that if you try to use the state object immediately after calling setState, you may
not get the most current state.

In Listing 6‑27, I’ve written a method called incrementTwice that calls setState twice each time
the button is clicked. To show the difference between what the expected value of this.state
.count is and the new value, the component also increments and logs the value of a property named
testCount.

LISTING 6-27:  Demonstrating setState’s asychronous nature

import {Component} from 'react';

class CounterClass extends Component {
 constructor(props){
 super(props);
 this.state = {count:0};
 this.testCount = 0;
 this.incrementTwice = this.incrementTwice.bind(this);
 }

 incrementTwice(){
 this.setState({count: this.state.count + 1});
 this.testCount ++;
 this.setState({count: this.state.count + 1});
 this.testCount ++;
 console.log("Count should be: " + this.testCount);
 }

 render(){
 return(

React State  ❘  153

 <button onClick={this.incrementTwice}>{this.state.count}</button>
)
 }

}
export default CounterClass;

If you didn’t know that setState is asynchronous, you would think that each click of the button
would increase the value of state.count by two. But, if you try out the component, you’ll discover
that it only increments by one. The reason is that the second call to setState happens before state
.count has been updated by the first call. It therefore uses the same value of state.count that the
first call used and the result is that both calls to setState change the value of state.count to the
same number.

Figure 6‑12 shows the result of clicking the button in the CounterClass component in Listing 6‑27.

To solve this problem, you can pass a function into the setState function, rather than an object, to
ensure that setState uses the most up-to-date value for the state object.

Passing a Function into setState
When you pass a function that returns an object into setState, the inner function receives the cur-
rent state and props of the component and returns an updated state object. This function is called
an updater function. The updater function variant of setState takes this form:

setState((state,props)=>{ return {};}

FIGURE 6-12:  The result of clicking the CounterClass button

154  ❘  CHAPTER 6   React Data Flow

The updater function is guaranteed to receive the latest state and props. For this reason, you should
always use an updater function when the new state depends on the current state.

To make it clear that the state received by the updater function is the most current state, it’s a com-
mon practice to name this parameter current. In our increment function, we can use an updater
function to update the value of state.count like this:

setState((current)=>{
 return {count: current.count + 1};
});

Listing 6‑28 shows how the updater function solves the problem in the incrementTwice function
from Listing 6‑27.

LISTING 6-28:  Using the updater function with setState

import {Component} from 'react';

class CounterClass extends Component {
 constructor(props){
 super(props);
 this.state = {count:0};
 this.testCount = 0;
 this.incrementTwice = this.incrementTwice.bind(this);
 }

 incrementTwice(){
 this.setState((current)=>{return {count: current.count + 1};});
 this.testCount++;
 this.setState((current)=>{return {count: current.count + 1};});
 this.testCount++;
 console.log("Count should be: " + this.testCount);
 }

 render(){
 return(
 <button onClick={this.incrementTwice}>{this.state.count}</button>
)
 }

}

export default CounterClass;

Figure 6‑13 shows the result of clicking the button in Listing 6‑28. Notice that the testCount
property is now in sync with state.count.

Updating state with Function Components
When you call the useState hook, it returns an array. The first element of the array is a stateful vari-
able. The second element is a setter function.

React State  ❘  155

To assign the state variable and the function to separate variables, use array deconstruction. For
example, to create a state variable called counter and a setter function for changing the value of
counter, use the following statement:

const [counter,setCounter] = useState(0);

The variable name can be any valid JavaScript variable name. The function should be the name of the
state variable prefixed with “set,” although this is just a convention and not enforced by React.

Initializing and updating state in function components is considerably simpler than doing so with
class components. Here are a few important things to know about using state in function components
and the useState hook:

1.	 The value you pass into useState will be the initial value for the stateful variable.

2.	 Use const rather than let when creating stateful variables and setter functions.

3.	 Unlike setState in class components, the setter function returned by useState replaces the
value of the stateful variable with the new value you pass into it, rather than merging it with
the current state.

4.	 After updating the stateful variable, the setter function causes a re-render of the component.

Each of these four points deserves a bit more explanation, so let’s take a look at them one by one.

FIGURE 6-13:  The fixed counter class

156  ❘  CHAPTER 6   React Data Flow

Setting Initial State with useState
The first time a function component calls useState, the returned variable will be assigned the value
you pass into useState. This parameter is optional. If you call useState without passing an initial
value, the variable will be assigned a value of undefined.

The initial state can be of any JavaScript data type, but it should be of the same data type as you will
be setting the variable to inside your component. For example, if you create a stateful variable called
products to hold an array of products that will be loaded from an API, the initial value of products
should be an empty array ([]).

If you pass a function to the useState hook, the function will be invoked and its return value will be
used as the initial state.

Why Use const with useState?
It may seem wrong to use const for a stateful variable, since the whole purpose of a stateful variable
is to be changed and the whole purpose of const is to prevent a variable from being changed. Never-
theless, it is recommended that you use const with useState, and it actually does make sense when
you think about how functions (and therefore function components) work.

Consider the example of a stateful variable named counter and a setter function called setCounter.
Calling setCounter and passing it a new value sets the value of a property in React’s state object
and then re-renders the component. Unlike class components, where the render method can be called
and use the same properties of the class each time, a function starts its life over each time it’s invoked.

When React re-renders a function component, the function calls useState again, and useState
returns a new variable with the latest state value. So, the setter function doesn’t actually modify the
variable in the function at all—the function gets a new const each time it’s invoked.

Because the whole point of a stateful variable is to trigger a re-render, the only way a stateful variable
should be updated is with the setter function returned by useState.

The Setter Function Replaces the State
The function returned by the useState hook replaces the current value of the stateful variable with
the value you pass into it. This makes working with stateful variables in functions simpler, but it also
introduces some additional complexity, especially when working with more complex state.

State in function components is immutable. That is, you can’t change it; you can only replace it with
a new state. If the new state of a function component depends on the previous state, this creates
some interesting problems and coding patterns—especially when the stateful variable’s value is an
object or array.

To set a stateful variable that’s a primitive data type, simply pass the new value to the function:

setCounter(4);

If the new value depends on the previous value, you should use a function to access the previous state
and return the new value:

setCounter((prevState)=>{return prevState+1});

React State  ❘  157

If your stateful variable contains an object or array, you can replace the value by passing in a new
object or array. But, if your new state depends on the old state, you’ll need to make a copy of the
existing array or object, modify it, and then pass the copy of the array into the setter function.

The copy you make of an object or array can’t be just any copy. It needs to be a shallow copy. One
of the easiest ways to make a shallow copy, which is widely used in React, is by using the spread
operator (...).

JAVASCRIPT LESSON: SHALLOW COPIES AND THE SPREAD OPERATOR

One of the most useful new tools in JavaScript is the spread operator. The spread
operator is made up of three periods (...) and its job is to expand (or spread) the
value of a string, array, or object into separate parts.

To see how the spread operator works, we’ll start with a very simple example. The
following function accepts three numbers and returns the sum of the numbers:

function sum(x,y,z){
 return x+y+z;
}

If you have an array of three numbers that you want to find out the sum of, you
could invoke the sum function and pass in each element of the array separately,
like this:

sum(myNumbers[0],myNumbers[1],myNumbers[2]);

Or you could just spread the array into its component parts, which accomplishes the
same thing:

sum(...myNumbers)

The spread operator is useful in cases where you want to include all of the elements
of an array or object in a new object or array, such as when you’re creating a new
array or object that’s partially made up of an existing one.

In React, the spread operator is commonly used to work with immutable state vari-
ables, especially in function components.

When you’re working with mutable data in JavaScript and you have an array and
you want to add an element to it, you can use the Array.push function, like this:

let temperatures = [31,29,35];
temperatures.push[32];

The result of these statements is that the temperatures array will look like this:

[31,29,35,32]

Because React state is immutable and can only be changed using the setState func-
tion or the function returned by useState, if you want to change the value of an
array or object inside the state, you need to make a new array or object rather than
mutating the existing one.

continues

158  ❘  CHAPTER 6   React Data Flow

Copying an Array with Spread

JavaScript arrays are reference values. When you use the = operator to make a copy
of an array, the new array still has a reference to the old one. Follow these steps to
see the consequences of this:

1.	 Open the JavaScript console in Chrome.

2.	 Create a new array, such as the following one:

let arr = ['red','green','blue'];

3.	 Use the = operator to make a new array from the original one:

let newArr = arr;

4.	 Add an element to the new array:

newArr.push('orange');

5.	 Write out the value of the original array to the console:

arr

The following image shows the result, which is that adding a new element to the
copy created using the = operator also changes the original array.

To make a copy of an array that doesn’t reference the original one, you need to copy
each element in the original array into a new array. The new array created in this
way is called a shallow copy. As with everything in JavaScript, there are several ways
to make a shallow copy of an array. One way is by using a loop, like this:

let numbers = [1, 2, 3];
let numbersCopy = [];

for (i = 0; i < numbers.length; i++) {
 numbersCopy[i] = numbers[i];
}

Another method is to use the slice function. slice returns a shallow copy of an
array based on the start and end element indexes you provide. If you call slice
on an array without passing in any arguments, it returns a shallow copy of the
whole array:

numbersCopy = numbers.slice();

continued

React State  ❘  159

Using the spread operator makes this same operation even easier. You simply use
square brackets to create a new array, and then populate it with each element in the
old array by prefacing the name of the old array with the spread operator:

numbersCopy = [...numbers];

Changing an Array with Spread

JavaScript has several different methods for modifying, adding, and removing ele-
ments from arrays. For example, if you want to add an element to the end of an
array, you can use the Array.push method:

numbersCopy.push(4);
setNumbers(numbersCopy);

Other array methods include:

➤➤ Array.pop: Removes an element from the end of an array.

➤➤ Array.shift: Adds an element to the beginning of an array.

➤➤ Array.unshift: Removes an element from the beginning of an array.

Each of these array methods actually modifies, or mutates, the array, however. To
work with immutable data, such as React state, the spread operator can be used to
accomplish each of these tasks. For example, if you want to copy an array and add
an element to the end of it, you can do that like this:

numbersCopy = [...numbers,14];

If you want to change the value of a certain element in an array, you need to know
the index of that element, then you can use what I refer to as the “sandwich”
method—two slices and spread:

const newArray = [...oldArray.slice(0, indexToChange),
 updatedValue,
 ...oldArray.slice(indexToChange+1)];

Although it may look strange and confusing at first, this method of modifying an ele-
ment in an array is actually quite simple, and it’s widely used in React programming.
If you know the index of the element in the array you want to modify, you make a
shallow copy of the original array from the first element in the array (0) up to the
element you want to change. Then, you insert the new value into the array. Finally,
you insert the rest of the elements in the array into the new array by passing just the
number of the next element in the original array into slice.

Copying an Object with Spread

The spread operator can also be used to create a shallow copy of an object. A
shallow copy of an object is a copy that only includes the properties, and not the
prototype:

let obj1 = { foo: 'bar', x: 0 };
let clonedObj = { ...obj1 };

continues

160  ❘  CHAPTER 6   React Data Flow

Combining two objects with spread is as simple as combining two arrays:

let obj1 = { foo: 'bar', x: 0 };
let obj2 = { food: 'taco', y: 1 };

let mergedObj = { ...obj1, ...obj2 };

The new object will look like this:

{foo: 'bar', x: 0, food: 'taco', y: 1}

Changing a property while cloning or merging objects is also simple with objects.
Just use the spread operator to expand the object, and then overwrite one or more
existing properties:

let newObj = {...obj1, x: 42 };

The resulting object will now look like this:

{foo: 'bar', x:42}

Bonus JavaScript Lesson: Rest Parameters

Once you’re comfortable with how the spread operator works, understanding its
twin, rest parameters, is easy. Rest parameters use the same three-period operator
as spread syntax. What’s different about it is where rest parameters are used. As the
name implies, rest parameters are parameters that you can define in function defini-
tions. Here’s an example:

function(a,b,...c){
 // do something here
}

When you use a rest parameter, the function will aggregate the arguments passed
into the function where the rest parameter is and any following arguments into an
array inside the function.

For example, in the following function the first two arguments will become function-
scoped variables, and an array named toppings will be created with however many
arguments are passed into the function after the first two:

function pizza(size,crust,...toppings){
 // do something here
}

In the following example, the add function will take any number of arguments and
return the sum of them, using the Array.reduce function:

function add(..numbers) {
 return numbers.reduce((sum, next) => sum + next)
}

Now that you know about the rest and spread operators, you’ll recognize and be
able to understand their role in JavaScript code, as well as their special powers when
used in React and JSX.

continued

React State  ❘  161

What to Put in State
Whether you use class components or function components, changes to state data are what initiate
changes to your user interface. If you think of the data in your React user interface as a river, state is
the melting snow in the mountains that sets everything off.

One of the first steps in designing any React user interface is to figure out what the state of your
application is. While it may not always be immediately obvious at first, as you become more comfort-
able with React, you’ll get better at identifying the state.

As a rule, if a piece of data changes over time in response to data coming in from an external source
or user input, it is likely state.

Building the Reminders App
Let’s take a look at a demo application and determine what its state is, and then implement it.
Before we can implement state, however, we need to take a brief detour to build the structure of the
application.

Figure 6‑14 shows a mockup of a user interface for a simple reminders app. The user can enter a task
into the form and set a due date. The app will show a list of tasks and the user can filter tasks using a
dropdown menu and mark tasks as completed.

Typically, once you’ve created a mockup of an app, the next step in the development of a React user
interface is to figure out what components will make up the app and then make a “static” ver-
sion of the app. A static version simply passes props from parents to children and doesn’t have any
interactivity.

Before I get started with building the app, I’ll set up the development environment using Create React
App. If you plan to follow along, open your terminal in VS Code and create a new project by entering
the following command:

npx create-react-app reminders-app

After Create React App finishes its work, you’ll see the new project in the file explorer in VS Code.

Open the src directory inside the reminders-app directory, and delete everything from there except
for the following files:

➤➤ index.js

➤➤ index.css

➤➤ reportWebVitals.js

Now we’re ready to get started.

From my initial evaluation of the mockup in Figure 6‑14, I’ve determined that the Reminders app
should have the following components:

➤➤ An entry form and submit button component.

➤➤ A filter select dropdown component.

162  ❘  CHAPTER 6   React Data Flow

➤➤ A list of reminders.

➤➤ An individual reminder component (which will be reused for each reminder in the list).

In addition to these components, there’s one more component that we need to make this app com-
plete: a container. The container component will enclose all of the other components in the app and
will provide an overall structure and style to the app. The container component is frequently named
App, although, as with most things in React, you’re free to call it whatever you like.

Now that I’ve figured out what components I’ll need to make, the next step is to think up names for
the components and then write static versions of them.

What do you want to do?

When?

Show Items Due By ...

Add Item

Item 1
Item 2
Item 3
Item 4

FIGURE 6-14:  A reminders app

React State  ❘  163

The first component I’ll make is App, and I’ll include import statements and JSX elements for its sub-
components (which I have yet to make). Listing 6‑29 shows a static version of the App component.

LISTING 6-29:  The static version of the App component

import InputForm from './InputForm';
import FilterSelect from './FilterSelect';
import RemindersList from './RemindersList';

function App(){
 return(
 <div>
 <InputForm />
 <FilterSelect />
 <RemindersList />
 </div>
);
}

export default App;

Notice that I didn’t pass props into App. Since App is the top-level component, we won’t be passing
any props to it, so there’s currently no need to specify props in the parameter list.

Once you’ve created the container component, the next step is to create empty files for each of the
components that App imports, and to make shell components for each one. Listing 6‑30 shows an
example of the start of the InputForm component.

LISTING 6-30:  A shell component for InputForm

function InputForm(props){
 return(
 <div>Input form here</div>
);
}
export default InputForm;

You can copy and modify this basic shell component for each of the rest of the components. List-
ing 6‑31 shows a shell component for FilterSelect, Listing 6‑32 shows one for RemindersList,
and Listing 6‑33 shows the one for the Reminder component.

LISTING 6-31:  A shell component for FilterSelect

function FilterSelect(props){
 return(
 <div>Filter the List</div>
);
}
export default FilterSelect;

164  ❘  CHAPTER 6   React Data Flow

LISTING 6-32:  A shell component for RemindersList

function RemindersList(props){
 return(
 <div>Reminders List</div>
);
}
export default RemindersList;

LISTING 6-33:  A shell component for Reminder

function Reminder(props){
 return(
 <div>Reminder</div>
);
}
export default Reminder;

On a simple app such as this, you can now just go through the components and start to make each
one’s return statement look a little bit more like what you think the final component will need to
be. Don’t worry about getting everything perfect. Writing React code is usually an iterative process—
write some code, see what it looks like, improve it, and then write some more.

The first thing you might want to do to improve on what we have so far is to link in the Reminder
component. The RemindersList component will contain all of the instances of the Reminder compo-
nent, so we can import Reminder into it and also put in a couple instances of the Reminder element,
as shown in Listing 6‑34.

LISTING 6-34:  RemindersList with Reminder imported

import Reminder from './Reminder';

function RemindersList(props){
 return(
 <div>
 <Reminder />
 <Reminder />
 <Reminder />
 </div>
);
}
export default RemindersList;

If you compile and build this app as it is so far (using a Create React App boilerplate application to
provide the toolchain and basic structure), you’ll see something like what’s shown in Figure 6‑15.

Clearly, this is far from being a full static version of the app, but it’s a great start. Let’s go through
another round of changes and get this static app to look a bit more like the mockup. We’ll also define
some props and pass some fake data down to child components.

React State  ❘  165

The App component can stay how it is for now. We’ll add functionality and style to it eventually, but
that can come later.

The InputForm component should have a text input, a date input, and a button. I’ll also add in a
couple of attributes for the input element and change the container element for these elements to a
form element. Listing 6‑35 shows the InputForm component with these improvements made.

LISTING 6-35:  Round two of InputForm

function InputForm(props){
 return(
 <form>
 <input id="reminderText" type="text" placeholder="What do you want to do?" />
 <input id="dueDate" type="date" />
 <button>Add Item</button>
 </form>
);
}
export default InputForm;

The FilterSelect component should contain a select input with several options. I’ll define these
options in my second round of changes, as shown in Listing 6‑36. We’ll assume that the filter will

FIGURE 6-15:  The first round static version

166  ❘  CHAPTER 6   React Data Flow

be applied when the selected value changes, so there’s no need to add a button to the FilterSelect
component. If you recall from Chapter 3, select elements in React JSX have a value attribute that
determines which option is currently selected.

LISTING 6-36:  Round two of FilterSelect

function FilterSelect(props){
 return(
 <label htmlFor="filterReminders">Show tasks due:
 <select id="filterReminders" value="2day">
 <option value="2day">within 2 Days</option>
 <option value="1week">within 1 Week</option>
 <option value="30days">within 30 Days</option>
 <option value="all">any time</option>
 </select>
 </label>
);
}
export default FilterSelect;

The RemindersList component’s purpose is to contain one Reminder element for each reminder in
the list. For our static version, we can pass sample text, a due date, and a status from RemindersList
to each Reminder, as shown in Listing 6‑37.

LISTING 6-37:  Round two of RemindersList

import Reminder from './Reminder';

function RemindersList(props){
 return(
 <div>
 <Reminder reminderText="Pick up Wesley" dueDate="2364-01-15"
isComplete={false} />
 <Reminder reminderText="Meet with Jean-Luc" dueDate="2364-01-29"
isComplete={false} />
 <Reminder reminderText="Holodeck time!" dueDate="2364-06-01"
isComplete={false} />
 </div>
);
}
export default RemindersList;

The Reminder component can now accept the props data from RemindersList and display it, as
shown in Listing 6‑38. Because the Boolean value from props.isComplete won’t display in the
browser, we can convert it to a string in the JSX.

React State  ❘  167

LISTING 6-38:  Round two of Reminder

function Reminder(props){
 return(
 <div>item: {props.reminderText}
 due date: {props.dueDate}
 Completed?: {String(props.isComplete)}
 </div>
);
}
export default Reminder;

Our Reminders app still isn’t pretty, as you can see in Figure 6‑16, but more of the pieces are in place
now and we have a foundation upon which we can start to implement the dynamic data, or state.

After you’ve made your static version, you can figure out what data in the app causes the app to
change—what should be in the state of the app, in other words.

In the case of the Reminders app, it has the following pieces of data:

➤➤ The user’s current textual input.

➤➤ The currently selected due date.

➤➤ The list of reminders.

➤➤ Individual reminders.

FIGURE 6-16:  A static version of the Reminders app

168  ❘  CHAPTER 6   React Data Flow

➤➤ The reminder status (completed or not completed).

➤➤ The selected filter.

➤➤ The filtered list of tasks.

Think for a moment about which pieces of data should or should not be state. Here’s what I’ve
come up with:

➤➤ The user’s current input is certainly state, since it changes as the user types.

➤➤ The selected due date, likewise, is state.

➤➤ The list of reminders changes as new tasks are added, so it is state.

➤➤ The individual tasks within the list are unchanging, and are not state.

➤➤ The completed status of each task is state, since the user can change it.

➤➤ The selected filter is state.

➤➤ The filtered list is not state.

In the next section, I’ll explain why some of these items should not be state. Oftentimes, your initial
judgment about what needs to be state changes as you code your app. It’s important to stay flex-
ible and look for opportunities to reduce the size of your state object. The more data in your app
can be moved out of state and into props, the simpler (and perhaps faster and more efficient) your
app will be.

What Not to Put in State
Another way to think about what should be state is to follow a few rules for determining what
isn’t state:

➤➤ If it’s passed from a parent component to a child component, it’s not state.

➤➤ If it remains unchanged throughout its life, it’s not state.

➤➤ If it can be computed based on other values, it’s not state.

Generally speaking, individual task items should not be kept in state. My reasoning for this is that
these tasks, once created, are unchanging. Also, as you’ll learn, the tasks are going to be stored in the
parent component and passed down to the individual task components using props.

The filtered list of tasks that displays when you select a time period from the dropdown list also
should not be stored in state. This is because this list will be computed based on the due dates.
Because it can be computed and displayed based on other props and state, it’s not state itself.

Where to Put State
Once you’ve determined what is and what isn’t state, the next step in the development of a React user
interface is to figure out where each piece of state should be located. In other words, which com-
ponent should we initialize the state inside of by either using the class-based component method of
setting this.state, or by using the useState hook.

React State  ❘  169

So, let’s take another look at each piece of state that we identified and decide what component it
should be declared in. Here’s an outline of our current user interface, taken from the components cre-
ated during the building of the static version:

App

- InputForm

- Filter

- RemindersList

- Reminder

And here, once again, is the list of state items that we’ve identified in the app so far:

➤➤ User input.

➤➤ Selected due date.

➤➤ Reminder list.

➤➤ Reminder status.

➤➤ Selected filter.

Now, I’ll go through each of these candidates for state and figure out where to put them in the com-
ponent hierarchy:

➤➤ The current user input seems like it should be stored in the component that contains the
form, so we’ll put that in the InputForm component.

➤➤ The currently selected due date seems like it should be stored with the user input. So, we’ll
put that in the InputForm component as well.

➤➤ The list of reminders, logically, would seem to go into the RemindersList component.

➤➤ The isComplete status of each reminder item probably belongs inside of each Reminder
component.

➤➤ The filter that is currently selected can go with the Filter component.

Now that we’ve put each piece of state into a component, let’s look at the outline of components
again, with the state values that each one contains:

<App>

- <InputForm>

- currentInput

- selectedDate

- <Filter>

- selectedFilter

- <RemindersList>

170  ❘  CHAPTER 6   React Data Flow

- reminders

- <Reminder>

- isComplete

Although it seems logical, the organization of the state in our app has some serious problems that
become apparent as you think about how it will actually function. Here are a few of the bigger issues:

1.	 In the preceding outline, each reminder keeps track of its own completed status. If we wanted
the RemindersList component to only list the completed tasks, or only list the uncompleted
ones, RemindersList would first need to query each Reminder and find out its status.

2.	 The Filter and RemindersList components are siblings. If you recall that data always
flows down in a React app, you’ll see a problem here. If Filter maintains its own state
about which filter is currently selected, there’s no way to get that information to the
RemindersList component so that the correct Reminder components can be displayed.

3.	 InputForm is also a sibling of RemindersList. Since the goal of the user input form is to add
a new item to the list of reminders, we need the current user input to be able to be passed to
the RemindersList component. With these components being siblings, there’s no easy way
to do this.

It seems that our little Reminders app is getting pretty complicated. We’ll need to figure out how the
RemindersList component will query all of the Reminders for their status, we’ll need to figure out
how to get around this problem with passing data between sibling components, and we have all this
state data spread throughout our app that we’re going to need to remember and keep track of. There
must be a simpler way, you say.

There is, and it’s called lifting state up.

Lifting State Up
Having a lot of components that each independently maintain their own state can very quickly
increase the complexity of your app, and therefore the chances of something breaking. A good rule of
thumb, therefore, is that the majority of your components should be stateless pure functions.

A pure function, as you’ll recall from Chapter 4, is one in which the output of the function is solely
a result of the input to it. In other words, a pure function will always produce the same output when
given the same input.

To turn stateful components into stateless components, React developers use a technique called “lift-
ing state up.” This means that, instead of a component controlling its own state, you can have a com-
ponent at a higher level in the hierarchy of your user interface control the state. This state can then be
passed down as props to the components that need it.

Lifting state up gives you the benefit of having fewer components that can possibly cause your user
interface to change, it makes your components more easily reusable, and it makes your app eas-
ier to test.

To determine where to lift your state up to, think about where each piece of state in your application
is needed, and then find a parent common to all of the components that use each piece of state.

React State  ❘  171

For example, in our Reminders app, the list of reminders is used by the InputForm, Filter, Remind-
ersList, and Reminder components. The only component in our application that’s a common parent
to all of these is the App component. So, that’s where that piece of stateful data should live.

In fact, if you look through the list of stateful variables we identified for the Reminders app, you’ll
discover that each one of them actually should belong to the App component, and also that some of
them can be combined.

The reminders and isComplete values, for example, can be combined into a single array of objects,
with each object having a reminderText property, an isComplete property, and a dueDate property:

[
 {reminderText:"do laundry",dueDate:"2022-01-01",isComplete:false},
 {reminderText:"finish chapter",dueDate: "2022-02-01",isComplete:false},
 {reminderText:"make Pizza",dueDate: "2022-03-01",isComplete:false}
]

Likewise, the currentInput and selectedDate can also be combined into an object. This has the
benefit of creating exactly the right data structure for insertion into the reminder list.

Since the useState hook not only creates the stateful variable, but also creates the function for set-
ting that variable, you can pass both of these down to the proper components as props.

With those changes done, our App component with the lifted-up state is shown in Listing 6‑39.

LISTING 6-39:  App with lifted state

import {useState} from 'react';
import InputForm from './InputForm';
import FilterSelect from './FilterSelect';
import RemindersList from './RemindersList';

function App(){
 const [reminders,setReminders] = useState();
 const [userInput,setUserInput] = useState();
 const [selectedFilter,setSelectedFilter] = useState("all");

 return(
 <div>
 <InputForm userInput={userInput}
 setUserInput={setUserInput} />
 <FilterSelect selectedFilter={selectedFilter}
 setSelectedFilter={setSelectedFilter} />
 <RemindersList reminders={reminders} />
 </div>
);
}

export default App;

Next, I’ll receive and make use of the stateful data, which I’ve passed down to the subcomponents
as props, and write all of the subcomponents of App as pure functions. Listing 6‑40 shows the

172  ❘  CHAPTER 6   React Data Flow

InputForm component, Listing 6‑41 shows the FilterSelect component, and Listing 6‑42 shows
the RemindersList component.

LISTING 6-40:  Pure InputForm

function InputForm(props){
 return(
 <form>
 <input value={props.userInput.reminderText}
 id="reminderText"
 type="text"
 placeholder="What do you want to do?" />
 <input value={props.userInput.dueDate}
 id="dueDate"
 type="date" />
 <button>Add Item</button>
 </form>
);
}
export default InputForm;

LISTING 6-41:  Pure FilterSelect

function FilterSelect(props){
 return(
 <label htmlFor="filterReminders">Show tasks due:
 <select id="filterReminders" value={props.selectedFilter}>
 <option value="2day">within 2 Days</option>
 <option value="1week">within 1 Week</option>
 <option value="30days">within 30 Days</option>
 <option value="all">any time</option>
 </select>
 </label>
);
}
export default FilterSelect;

LISTING 6-42:  Pure RemindersList

import Reminder from './Reminder';

function RemindersList(props){

 const reminders = props.reminders.map((reminder,index)=>{
 return (<Reminder reminderText={reminder.reminderText}
 dueDate={reminder.dueDate}
 isComplete={reminder.isComplete}
 id={index}
 key={index} />);
 });

React State  ❘  173

 return(
 <div>
 {reminders}
 </div>
);
}
export default RemindersList;

Figure 6‑17 shows what happens when you try to run the app at this point.

The reason we get this error is that we’re trying to read a property of an object (userInput) that
doesn’t yet exist.

The solution to this problem, and to many other problems in React, is to make use of PropTypes for
validating props, and defaultProps to set initial values for the props. I’ll start again with the child
components and work through each one and make some necessary improvements.

The InputForm component receives two props: userInput and setUserInput. The userInput prop
is an object with two properties. We can use propTypes.shape to validate that the object the compo-
nent receives has the correct properties and that those properties are the correct type of data. I’ll also
set default values that will be used for each property of userInput in case the prop is not received, as
shown in Listing 6‑43.

FIGURE 6-17:  Cannot read property

174  ❘  CHAPTER 6   React Data Flow

LISTING 6-43:  Adding PropTypes and default values to InputForm

import PropTypes from 'prop-types';

function InputForm(props){
 return(
 <form>
 <input value={props.userInput.reminderText}
 id="reminderText"
 type="text"
 placeholder="What do you want to do?" />
 <input value={props.userInput.dueDate}
 id="dueDate"
 type="date" />
 <button>Add Item</button>
 </form>
);
}

InputForm.propTypes = {
 userInput: PropTypes.shape({
 reminderText: PropTypes.string,
 dueDate: PropTypes.string
 }),
 setUserInput: PropTypes.func
}

const date = new Date();
const formattedDate = date.toISOString().substr(0,10);

InputForm.defaultProps = {
 userInput: {
 reminderText:"",
 dueDate:formattedDate
 }
}

export default InputForm;

You may have a question about how the default value for the date picker is being set. The HTML
date picker control accepts a string in the format 'YYYY-MM-DD'. To set its default value, I’ll get the
current date (by creating a new Date object) and then I’ll use the JavaScript toISOString func-
tion to convert the current date to a string containing the date and time, in the format 'YYYY-MM-
DDTHH:mm:ss.sssZ'. Since I only care about the date portion of this string, I’ll use the substr
function to get the first 10 characters of the result of the toISOString function.

Because the actual value used by the date input is a string, the correct PropType to validate it against
is string rather than date.

If you run the app now (or just refresh the browser window if the development server is still running),
you’ll see that the reminderText error is gone, but we have a new one, as shown in Figure 6‑18.

This isn’t the last time you’ll see this error in your dealings with React. In plain English, it’s telling us
that we’re trying to run the Array.map function on something that’s not an array.

React State  ❘  175

RemindersList receives the reminders variable as a prop and uses Array.map to create an array of
Reminder elements from it. Any time you use Array.map in a component, you have to be certain that
the component won’t try to render before the array that Array.map is used on is populated. If it does
try to render before the array is received, the render will fail with an error, as you saw in Figure 6‑18.
Using a default prop value is one way to eliminate the possibility of this type of failure. Listing 6‑44
shows the RemindersList component with default props and propTypes defined.

LISTING 6-44:  RemindersList with default props and PropTypes

import PropTypes from 'prop-types';
import Reminder from './Reminder';

function RemindersList(props){

 const reminders = props.reminders.map((reminder,index)=>{
 return (<Reminder reminderText={reminder.reminderText}
 dueDate={reminder.dueDate}
 isComplete={reminder.isComplete}
 id={index}
 key={index} />);
 });

 return(
 <div>
 {reminders}
 </div>
);

FIGURE 6-18:  Cannot read property ‘map’ of undefined

continues

176  ❘  CHAPTER 6   React Data Flow

}

RemindersList.propTypes = {
 reminders: PropTypes.array
}

const date = new Date();
const formattedDate = date.toISOString().substr(0,10);

RemindersList.defaultProps = {
 reminders: [{
 reminderText:"No Reminders Yet",
 dueDate:formattedDate,
 isComplete: false
 }]
}

export default RemindersList;

Another way to prevent map from trying to run on a prop that’s not yet an array is to set the initial
value of the stateful variable in App to an empty array, like this:

 const [reminders,setReminders] = useState([]);

However, if you set the initial value of reminders to an empty array, the default "No Reminders Yet"
reminder doesn’t show up. If you remove the empty square brackets passed into the useState func-
tion that creates the reminders variable, the default props defined in RemindersList will render, as
shown in Figure 6‑19.

FIGURE 6-19:  Displaying the default prop

LISTING 6-44  (continued)

React State  ❘  177

About the key Prop
Any time you make a list of components, as we do in the RemindersList component, each element
in the list must have a prop named key. The value of key must be unique to each item in the list.
Since the index position of an element in an array is a unique value, this makes a convenient value for
the key prop.

The key prop is used by React to help facilitate updating of items in the list. The value of key is not
available as part of the props object inside the component. You’ll notice that RemindersList passes
the same value (the index position of the reminder in the array) to both the key prop and to a prop
called id. This is necessary so we can make use of this value to update the reminders list, as you’ll see
when we start coding the functionality of the app.

NOTE  In this example, I used the index of the reminders array as the key. In a
real-world application, it would be a better practice to have a separate, unique
ID property for each reminder and to use that as the key. The reason is that
the key is used by React to identify elements in the array. If your application
changes the order of elements in the array or adds or removes elements from
inside the array (none of which ours currently does), React will assume that the
same keys represent the same DOM elements. The result can be that wrong
data will be displayed or your app will break. For a more detailed explanation
of the problems with using the index as the key, see Robin Pokorny’s blog post
at https://robinpokorny.medium.com/index-as-a-key-is-an-anti-pattern-
e0349aece318.

Now let’s look at the FilterSelect component. FilterSelect also receives two props: selected-
Filter and setSelectedFilter. I’ll set selectedFilter to all by default and validate the types
for both, as shown in Listing 6‑45.

LISTING 6-45:  Validating and setting defaults for FilterSelect

import PropTypes from 'prop-types';

function FilterSelect(props){
 return(
 <label htmlFor="filterReminders">Show tasks due:
 <select id="filterReminders" value={props.selectedFilter}>
 <option value="2day">within 2 Days</option>
 <option value="1week">within 1 Week</option>
 <option value="30days">within 30 days</option>
 <option value="all">any time</option>
 </select>
 </label>
);
}

continues

https://robinpokorny.medium.com/index-as-a-key-is-an-anti-pattern-e0349aece318
https://robinpokorny.medium.com/index-as-a-key-is-an-anti-pattern-e0349aece318

178  ❘  CHAPTER 6   React Data Flow

FilterSelect.propTypes = {
 selectedFilter: PropTypes.string,
 setSelectedFilter: PropTypes.func
}

FilterSelect.defaultProps = {
 selectedFilter:'all'
}

export default FilterSelect;

The Reminder component receives three props: reminderText, dueDate, and isComplete.
There shouldn’t be a possibility of Reminder not receiving props, because its parent component,
RemindersList, has default props set. But, it’s always a good idea to set defaults and validate your
props using PropTypes, because it makes your component more reusable and independent. List-
ing 6‑46 shows the Reminder component with propTypes and default props set.

LISTING 6-46:  Reminder with PropTypes and defaultProps

import PropTypes from 'prop-types';

function Reminder(props){
 return(
 <div>item: {props.reminderText}
 due date: {props.dueDate}
 Completed?: {String(props.isComplete)}</div>
);
 }

Reminder.propTypes = {
 reminderText: PropTypes.string,
 dueDate: PropTypes.string,
 isComplete: PropTypes.bool
}

const date = new Date();
const formattedDate = date.toISOString().substr(0,10);

Reminder.defaultProps = {
 reminderText:"No Reminder Set",
 dueDate:formattedDate,
 isComplete: false
}

export default Reminder;

Now that we have state and props being passed down through the components and default values
set for the props, the initial render of the app is starting to take shape and there shouldn’t be any
PropType warnings in the JavaScript console (although you will see a couple of other warnings), as
you can see in Figure 6‑20.

LISTING 6-45  (continued)

React State  ❘  179

The warnings that you see in the console now are expected, and they point to the one big thing left
to do before this is a somewhat functional app: we need to implement event listeners that will trigger
state changes.

Since we’re building this app entirely with function components, we already created the functions that
will set the state variables. All we need to do now is pass those functions down to the correct compo-
nent and then set up event listeners to call the functions.

I’ll start with the userInput object and its setter function, setUserInput. The setUserInput
function is already passed to the InputForm component. What we want to happen is for it to be
called and to store the reminder text and date when the text field and date field change.

It’s common to define an intermediary function between the event handler and the setter function.
Often, this function will take the name of the event that triggers it, prefaced by handle. In the
InputForm component, we’ll define a function called handleTextChange, one called
handleDateChange, and one called handleClick. The purpose of handleTextChange and
handleDateChange is to get the data from the field’s change event into the correct form to be stored
in state and then to call the setUserInput function. The purpose of handleClick will be to use the
current values from the userInput object to add a new element to the reminders array each time
the button is clicked.

Recall that the setter functions created by the useState hook replace the value of the stateful vari-
able, rather than updating it like setState does. As a result, each time we call setUserInput, we

FIGURE 6-20:  The initial render of the Reminders app

180  ❘  CHAPTER 6   React Data Flow

need to re-create the userInput object, but with the new value. This is easily done by using the
spread operator. The handleTextChange function in InputForm looks like this:

const handleTextChange = (e)=>{
 const newUserInput = {...props.userInput,reminderText:e.target.value}
 props.setUserInput(newUserInput);
}

The handleDateChange function is very similar, but it requires the date to be massaged into the cor-
rect format:

const handleDateChange = (e)=>{
 const date = new Date(e.target.value);
 const formattedDate = date.toISOString().substr(0,10);
 const newUserInput = {...props.userInput,dueDate:formattedDate};
 props.setUserInput(newUserInput);
}

Because we’ve done all of the hard work of creating the userInput object as the user was typing it,
adding a new reminder to the reminders array when the button is clicked is just a matter of adding
the new object along with an isComplete property.

We’ll write a function to update the reminders list. To avoid having to pass the reminders array
down to the InputForm component unnecessarily, we’ll instead define a function in App and then
pass that down to InputForm.

Here’s the addNewReminder function to add to App:

const addNewReminder = (itemToAdd) => {
 setReminders([...reminders,itemToAdd]);
}

Add a new attribute to the InputForm element to pass addNewReminder down to the InputForm
component:

<InputForm userInput={userInput}
 setUserInput={setUserInput}
 addNewReminder={addNewReminder} />

And, of course, don’t forget to validate the PropType for setUserInput inside InputForm:

InputForm.propTypes = {
 userInput: PropTypes.shape({
 reminderText: PropTypes.string,
 dueDate: PropTypes.string
 }),
 setUserInput: PropTypes.func,
 addNewReminder: PropTypes.func
}

Now, inside of InputForm, we can define a handleClick function that will call the addNewReminder
function when the button is clicked. HTML buttons have a default action, which is to submit a form
and reload the page. We need to prevent this default action so that we don’t reload the page (and
React) every time the button is clicked (thus losing the state):

const handleClick = (e)=>{
 e.preventDefault();

React State  ❘  181

 const itemToAdd = {...props.userInput,isComplete:false};
 props.addNewReminder(itemToAdd);
};

To invoke these new functions, add event listener attributes to the form elements. Event listener
attributes in React work like HTML event listener attributes. When the specified event happens on
the element containing the attribute, the function specified will be run.

NOTE  I’ll cover events and event handling in React in more detail in Chapter 7.

The value of an event listener attribute can be the name of a function (or a prop with a function
value), or an arrow function definition. Here’s the reminderText input element with the event lis-
tener function specified:

<input value={props.userInput.reminderText}
 id="reminderText"
 type="text"
 placeholder="What do you want to do?"
 onChange={handleTextChange} />

Here’s the dueDate input with its event listener attribute:

<input value={props.userInput.dueDate}
 id="dueDate"
 type="date"
 onChange={handleDateChange} />

And here’s the button with its event listener attribute:

<button onClick={handleClick}>Add Item</button>

At this point, the code for the InputForm component should look like Listing 6‑47.

LISTING 6-47:  The InputForm component with event handlers and event listeners

import PropTypes from 'prop-types';

function InputForm(props){
 const handleTextChange = (e)=>{
 const newUserInput = {...props.userInput,reminderText:e.target.value}
 props.setUserInput(newUserInput);
 }

 const handleDateChange = (e)=>{
 const date = new Date(e.target.value);
 const formattedDate = date.toISOString().substr(0,10);
 const newUserInput = {...props.userInput,dueDate:formattedDate};
 props.setUserInput(newUserInput);
 }

continues

182  ❘  CHAPTER 6   React Data Flow

 const handleClick = (e)=>{
 e.preventDefault();
 const itemToAdd = {...props.userInput,status:false};
 props.addNewReminder(itemToAdd);
 };

 return(
 <form>
 <input value={props.userInput.reminderText}
 id="reminderText"
 type="text"
 placeholder="What do you want to do?"
 onChange={handleTextChange} />

 <input value={props.userInput.dueDate}
 id="dueDate"
 type="date"
 onChange={handleDateChange} />

 <button onClick={handleClick}>Add Item</button>
 </form>
);
}

InputForm.propTypes = {
 userInput: PropTypes.shape({
 reminderText: PropTypes.string,
 dueDate: PropTypes.string
 }),
 setUserInput: PropTypes.func,
 addNewReminder: PropTypes.func
}

const date = new Date();
const formattedDate = date.toISOString().substr(0,10);

InputForm.defaultProps = {
 userInput: {
 reminderText:"",
 dueDate:formattedDate
 }
}

export default InputForm;

With these three event listeners set to trigger our event handler functions, you should be able to start
up Create React App’s development server (using npm start). When you try to add a new reminder,
however, you’ll get a new error: TypeError: reminders is not iterable. This indicates that
we’re trying to use the spread operator on reminders before it’s an array. And, in fact, that’s what’s
happening in the addNewReminder function.

LISTING 6-47  (continued)

React State  ❘  183

As with the solution to the error we got when we tried to use the Array.map function on
reminders before it was populated, the solution here is to add a default value. You could set the
initial value of reminders to an empty array, or you could use a third method and test the value of
reminders inside of addNewReminders and take the appropriate action. Here’s what that looks like:

const addNewReminder = (itemToAdd) => {
 if (reminders===undefined){
 setReminders([itemToAdd]);
 } else {
 setReminders([...reminders,itemToAdd]);
 }
}

With that done, now you’ll be able to add new reminders to the list, as shown in Figure 6‑21.

Filtering the Reminders
The FilterSelect component uses a dropdown menu containing various time frames to calculate a
filtered list of the reminders. To figure out how to code the functionality of this component, let’s step
through the basic process of filtering the list:

1.	 The user changes the selected item in the select input.

2.	 The change to the select input causes a function to be called.

3.	 The called function receives the full list of reminders and the selected filter.

FIGURE 6-21:  Adding Reminders to the list

184  ❘  CHAPTER 6   React Data Flow

4.	 A subset of the full reminders list is created.

5.	 The subset of the list is displayed.

The default filter in our app is "all", which displays all of the reminders. Since there’s no way to
shut off the filter selector, what is displayed in the app should always be a filtered list (even if the
filtered list contains all of the reminders). So, the first step in programming the filter functionality is
to create a new variable for the filtered list and pass that down to the RemindersList component
instead of the full list of reminders.

For now, I’ll do this by just copying the reminders list into a new array called filteredReminders
in App (using the spread operator) and then passing down this new filteredReminders array as the
value of the reminders attribute in RemindersList, as shown in Listing 6‑48.

Once again, the spread operator will produce an error unless you give reminders a default
value or do a test before trying to use Array.map on reminders. I’ll use the ternary operator this
time to check whether reminders is defined. If it is, I’ll copy the elements from reminders into
filteredList. If it isn’t, I’ll set filteredList to undefined.

Remember, because the filteredList is calculated, it doesn’t need to be state. The selectedFilter,
on the other hand, is changed as a result of a user interaction, so it does need to be state.

LISTING 6-48:  Creating a new filteredReminders array

import {useState} from 'react';
import InputForm from './InputForm';
import FilterSelect from './FilterSelect';
import RemindersList from './RemindersList';

function App(){
 const [reminders,setReminders] = useState();
 const [userInput,setUserInput] = useState();
 const [selectedFilter,setSelectedFilter] = useState("all");

 const addNewReminder = (itemToAdd) => {
 if (reminders===undefined){
 setReminders([itemToAdd]);
 } else {
 setReminders([...reminders,itemToAdd]);
 }
 }

 const filteredList = reminders?[...reminders]:undefined;

 return(
 <div>
 <InputForm userInput={userInput}
 setUserInput={setUserInput}
 addNewReminder={addNewReminder} />
 <FilterSelect selectedFilter={selectedFilter}
 setSelectedFilter={setSelectedFilter} />
 <RemindersList reminders={filteredList} />

React State  ❘  185

 </div>
);
}

export default App;

At this point, the app will function exactly the same as before, but the groundwork is properly laid to
be able to filter the list. The next step is to write a function that will filter the reminders list based on
the date. For that, we can use Array.filter. Array.filter takes a function as its argument, and
creates a new array containing all of the elements that pass a test in the function.

Listing 6‑49 shows the function that I came up with for filtering the list.

LISTING 6-49:  Filtering the reminders list

function filterList(reminders,selectedFilter){
 if (selectedFilter === "all"){
 return reminders;
 } else {

 let numberOfDays;

 switch(selectedFilter){
 case "2day":
 numberOfDays = 2;
 break;
 case "1week":
 numberOfDays = 7;
 break;
 case "30days":
 numberOfDays = 30;
 break;
 default:
 numberOfDays = 0;
 break;
 }

 const result = reminders.filter(reminder=>{
 const todaysDate = new Date().toISOString().substr(0,10);
 const todayTime = new Date(todaysDate).getTime();
 const dueTime = new Date(reminder.dueDate).getTime();
 return dueTime < (todayTime + (numberOfDays * 86400000));
 });
 return result;
 }
 }

If you examine this function, you’ll see that it first checks whether the selected filter is "all", and just
exits out of the rest of the function if so. If the selected filter isn’t "all", it converts the selected filter
into a number of days. Then it uses Array.filter to go through each element in the reminders
array and make a list of the reminders that have a due date earlier than the current time (which is in

186  ❘  CHAPTER 6   React Data Flow

the number of milliseconds since the beginning of UNIX time) plus the number of milliseconds in the
selected filter.

To implement this function, place it outside of the return statement in the App component, and then
call it, passing in reminders and selectedFilter, as shown in Listing 6‑50.

LISTING 6-50:  Implementing the filterList function

import {useState} from 'react';
import InputForm from './InputForm';
import FilterSelect from './FilterSelect';
import RemindersList from './RemindersList';

function App(){
 const [reminders,setReminders] = useState();
 const [userInput,setUserInput] = useState();
 const [selectedFilter,setSelectedFilter] = useState("all");

 const addNewReminder = (itemToAdd) => {
 if (reminders===undefined){
 setReminders([itemToAdd]);
 } else {
 setReminders([...reminders,itemToAdd]);
 }
 }

 const filteredList = filterList(reminders,selectedFilter);

 function filterList(reminders,selectedFilter){
 if (selectedFilter === "all"){
 return reminders;
 } else {

 let numberOfDays;

 switch(selectedFilter){
 case "2day":
 numberOfDays = 2;
 break;
 case "1week":
 numberOfDays = 7;
 break;
 case "30days":
 numberOfDays = 30;
 break;
 default:
 numberOfDays = 0;
 break;
 }

 const result = reminders.filter(reminder=>{
 const todaysDate = new Date().toISOString().substr(0,10);
 const todayTime = new Date(todaysDate).getTime();

React State  ❘  187

 const dueTime = new Date(reminder.dueDate).getTime();
 return dueTime < (todayTime + (numberOfDays * 86400000));
 });
 return result;
 }
 }
 return(
 <div>
 <InputForm userInput={userInput}
 setUserInput={setUserInput}
 addNewReminder={addNewReminder} />
 <FilterSelect selectedFilter={selectedFilter}
 setSelectedFilter={setSelectedFilter} />
 <RemindersList reminders={filteredList} />
 </div>
);
}

export default App;

The next thing we need to do is to add the event listener and handler to the FilterSelect compo-
nent so that selecting a filter from the dropdown will update the selectedFilter state variable.

In the FilterSelect component, I’ll define a new function called handleChange, which will pass the
value of the select input to the setSelectedFilter component. Then, I’ll set an onChange event
handler on the select input to call handleChange. The FilterSelect component, with this event
listener and event handler specified, is shown in Listing 6‑51.

LISTING 6-51:  FilterSelect with an event handler and event listener

import PropTypes from 'prop-types';

function FilterSelect(props){

function handleChange(e){
 props.setSelectedFilter(e.target.value);
}

return(
 <label htmlFor="filterReminders">Show tasks due:
 <select id="filterReminders" value={props.selectedFilter}
onChange={handleChange}>
 <option value="2day">within 2 Days</option>
 <option value="1week">within 1 Week</option>
 <option value="30days">within 30 days</option>
 <option value="all">any time</option>
 </select>
 </label>
);
}

FilterSelect.propTypes = {

continues

188  ❘  CHAPTER 6   React Data Flow

 selectedFilter: PropTypes.string,
 setSelectedFilter: PropTypes.func
}

FilterSelect.defaultProps = {
 selectedFilter:'all'
}

export default FilterSelect;

Implementing the isComplete Changing Functionality
The last thing left to do for now is to implement the isComplete status changing functionality. This
should just be a checkbox to the right of each reminder that, when clicked, will indicate that the item
is complete.

The first thing to do is to implement the checkbox in the Reminder component. Checkboxes don’t
have a value property. Instead, they have a property called checked which is either true or false.
Our checkbox in the Reminder component should look like this:

<input type="checkbox" checked={props.isComplete} onChange={handleChange} />

The full Reminder component should now look like Listing 6‑52.

LISTING 6-52:  Reminder with the checkbox

import PropTypes from 'prop-types';

function Reminder(props){
 function handleChange(){
 props.setIsComplete(!props.isComplete,props.id);
 }

 return(
 <div className="item">item: {props.reminderText}
 due date: {props.dueDate}

 Completed?: <input type="checkbox"
 checked={props.isComplete}
 onChange={handleChange} />
 </div>
);
 }

Reminder.propTypes = {
 reminderText: PropTypes.string,
 dueDate: PropTypes.string,
 isComplete: PropTypes.bool
}

LISTING 6-51  (continued)

React State  ❘  189

const date = new Date();
const formattedDate = date.toISOString().substr(0,10);

Reminder.defaultProps = {
 reminderText:"No Reminder Set",
 dueDate:formattedDate,
 isComplete: false
}

export default Reminder;

Next, we can define the handleChange function, which will call a function called setIsComplete
that we’ll pass down via props. The handleChange function will pass the index of the current
reminder in the array (which we’re passing down as the id prop) and the opposite of the current
isComplete (so, if isComplete is true, false will be passed to the setIsComplete function):

function handleChange(){
 props.setIsComplete(!props.isComplete,props.id);
}

Next, we have to define the setIsComplete function. Remember that isComplete is a property
inside the reminders array. Since the reminders array lives in the App component, we’ll define the
setIsComplete function there as well. This function will simply change the isComplete property
of the element in the array matching the index passed to it. Here’s how that’s done, using the “sand-
wich” method (two slices and spread):

function setIsComplete(isComplete,index){
 const newReminders = [...reminders.slice(0, index),
 {...reminders[index],isComplete},
 ...reminders.slice(index+1)];
 setReminders(newReminders);
}

To get the setStatus function down to the Reminders component, you’ll need to pass it first to the
RemindersList component, like this:

<RemindersList reminders={filteredList} setIsComplete={setIsComplete}/>

And then you’ll need to pass it from the RemindersList component down to the Reminder compo-
nent, like this:

<Reminder reminderText={reminder.reminderText}
 dueDate={reminder.dueDate}
 isComplete={reminder.isComplete}
 setIsComplete={props.setIsComplete}
 id={index}
 key={index} />

When you run the app and add a couple of reminders, you can now check and uncheck each one’s
status checkbox independently of the others, as shown in Figure 6‑22.

190  ❘  CHAPTER 6   React Data Flow

CONVERTING TO CLASS COMPONENTS

Now that we’ve gone through how to write this app the easy way, let’s look at how to write this
application using class components. The functionality of the app will remain the same, but the class
method of writing components is commonly used, even since the introduction of React Hooks, and so
understanding how to switch between the two methods is important:

1.	 Start with the root component, App. All of our state variables will still be defined in this
component, but in a class component, this is done inside the constructor. Import Component
instead of useState from the react library, then create the render method and initialize the
properties of this.state as shown in Listing 6‑53.

LISTING 6-53:  Initializing state in App

import {Component} from 'react';
class App extends Component{
 constructor(props){
 super(props);
 this.state = {
 reminders:undefined,
 userInput:undefined,
 selectedFilter:"all"
 }
 }
 render(){
 return();
 }
}

export default App;

2.	 Copy the JSX from the function version of App to the class version, import the child compo-
nents, and update the names of the state properties to reference this.state and update the
names of functions to methods of the class, as shown in Listing 6‑54.

FIGURE 6-22:  Checking and unchecking isComplete checkboxes

Converting to Class Components  ❘  191

LISTING 6-54:  Copying and modifying JSX in App

import {Component} from 'react';
import InputForm from './InputForm';
import FilterSelect from './FilterSelect';
import RemindersList from './RemindersList';

class App extends Component{
 constructor(props){
 super(props);
 this.state = {
 reminders:undefined,
 userInput:undefined,
 selectedFilter:"all"
 }
 }
 render(){
 return(
 <div>
 <InputForm userInput={this.state.userInput}
 setUserInput={this.setUserInput}
 addNewReminder={this.addNewReminder} />
 <FilterSelect selectedFilter={this.state.selectedFilter}
 setSelectedFilter={this.setSelectedFilter} />
    <RemindersList reminders={filteredList} setIsComplete={this.setIsComplete} />
 </div>
);
 }
}

export default App;

3.	 Create methods for setUserInput, setSelectedFilter, addNewReminder, and
setIsComplete. Change references to state properties and methods to refer to properties of
the class, and bind these methods to the component, as shown in Listing 6‑55.

LISTING 6-55:  Adding methods and binding them to App

import {Component} from 'react';
import InputForm from './InputForm';
import FilterSelect from './FilterSelect';
import RemindersList from './RemindersList';

class App extends Component{
 constructor(props){
 super(props);
 this.state = {
 reminders:undefined,
 userInput:undefined,
 selectedFilter:"all"
 }

continues

192  ❘  CHAPTER 6   React Data Flow

 this.setUserInput = this.setUserInput.bind(this);
 this.setSelectedFilter = this.setSelectedFilter.bind(this);
 this.addNewReminder = this.addNewReminder.bind(this);
 this.setIsComplete = this.setIsComplete.bind(this);
 }

 setUserInput(newInput){
 this.setState({userInput:newInput});
 }

 setSelectedFilter(newFilter){
 this.setState({selectedFilter:newFilter});
 }

 addNewReminder(itemToAdd) {
 if (this.state.reminders===undefined){
 this.setState({reminders:[itemToAdd]});
 } else {
 this.setState((current)=>{
 return (
 {
 reminders:[...current.reminders,itemToAdd]
 }
)
 });
 }
 }

 setIsComplete(isComplete,index){
 const newReminders = [... this.state.reminders.slice(0, index),
 { ... this.state.reminders[index],isComplete},
 ... this.state.reminders.slice(index+1)];
 this.setState({reminders:newReminders});
 }

 render(){
 return(
 <div>
 <InputForm userInput={this.state.userInput}
 setUserInput={this.setUserInput}
 addNewReminder={this.addNewReminder} />
 <FilterSelect selectedFilter={this.state.selectedFilter}
 setSelectedFilter={this.setSelectedFilter} />
               <RemindersList reminders={filteredList} setIsComplete={this.setIsComplete} />
 </div>
);
 }
}

export default App;

LISTING 6-55  (continued)

Converting to Class Components  ❘  193

4.	 Copy over the filterList function and update its reference to this.state.reminders.

5.	 Use a call to filterList inside the render method to create the filteredList, since we
want it to be recalculated when the component re-renders.

With these steps done, the App component should be fully converted to a class, and the Reminders
app will function the same as it did before. The final code for the converted App component is shown
in Listing 6‑56.

LISTING 6-56:  The converted App component

import {Component} from 'react';
import InputForm from './InputForm';
import FilterSelect from './FilterSelect';
import RemindersList from './RemindersList';

class App extends Component{
 constructor(props){
 super(props);
 this.state = {
 reminders:undefined,
 userInput:undefined,
 selectedFilter:"all"
 }
 this.setUserInput = this.setUserInput.bind(this);
 this.setSelectedFilter = this.setSelectedFilter.bind(this);
 this.addNewReminder = this.addNewReminder.bind(this);
 this.setIsComplete = this.setIsComplete.bind(this);
 }

 setUserInput(newInput){
 this.setState({userInput:newInput});
 }

 setSelectedFilter(newFilter){
 this.setState({selectedFilter:newFilter});
 }

 addNewReminder(itemToAdd) {
 if (this.state.reminders===undefined){
 this.setState({reminders:[itemToAdd]});
 } else {
 this.setState((current)=>{
 return (
 {
 reminders:[...current.reminders,itemToAdd]
 }
)
 });
 }
 }

continues

194  ❘  CHAPTER 6   React Data Flow

 setIsComplete(isComplete,index){
 const newReminders = [...this.state.reminders.slice(0, index),
 {...this.state.reminders[index],isComplete},
 ...this.state.reminders.slice(index+1)];
 this.setState({reminders:newReminders});
 }

 filterList(reminders,selectedFilter){
 if (selectedFilter === "all"){
 return reminders;
 } else {

 let numberOfDays;

 switch(selectedFilter){
 case "2day":
 numberOfDays = 2;
 break;
 case "1week":
 numberOfDays = 7;
 break;
 case "30days":
 numberOfDays = 30;
 break;
 default:
 numberOfDays = 0;
 break;
 }

 const result = this.state.reminders.filter(reminder=>{
 const todaysDate = new Date().toISOString().substr(0,10);
 const todayTime = new Date(todaysDate).getTime();
 const dueTime = new Date(reminder.dueDate).getTime();
 return dueTime < (todayTime + (numberOfDays * 86400000));
 });

 return result;
 }
 }
 render(){
 const filteredList =
this.filterList(this.state.reminders,this.state.selectedFilter);

 return(
 <div>
 <InputForm userInput={this.state.userInput}
 setUserInput={this.setUserInput}
 addNewReminder={this.addNewReminder} />
 <FilterSelect selectedFilter={this.state.selectedFilter}
 setSelectedFilter={this.setSelectedFilter} />

LISTING 6-56  (continued)

Converting to Class Components  ❘  195

 <RemindersList reminders={filteredList} setIsComplete={this.setIsComplete} />
 </div>
);
 }
}

export default App;

Since all of the state of our application lives in the App component, converting the other components
is straightforward and simple. I’ll show how to convert the first InputForm to a class, and then the
same steps can be followed to convert the others:

1.	 Import Component from react at the very beginning of the file:

import {Component} from 'react';

2.	 Replace the function header with a class header:

class InputForm extends Component {

3.	 Wrap the event handler functions and the return statement with the render method and
change references to props to references to this.props:

render(){
 const handleTextChange=(e)=>{
 const newUserInput = {...this.props.userInput,reminderText:e.target.value}
 this.props.setUserInput(newUserInput);
 }

 const handleDateChange=(e)=>{
 const date = new Date(e.target.value);
 const formattedDate = date.toISOString().substr(0,10);
 const newUserInput = {...this.props.userInput,dueDate:formattedDate};
 this.props.setUserInput(newUserInput);
 }

 const handleClick=(e)=>{
 e.preventDefault();
 const itemToAdd = {...this.props.userInput,isComplete:false};
 this.props.addNewReminder(itemToAdd);
 }

 return(
 <form>
 <input value={this.props.userInput.reminderText}
 id="reminderText"
 type="text"
 placeholder="What do you want to do?"
 onChange={handleTextChange} />

 <input value={this.props.userInput.dueDate}
 id="dueDate"
 type="date"
 onChange={handleDateChange} />

196  ❘  CHAPTER 6   React Data Flow

 <button onClick={handleClick}>Add Item</button>
 </form>
);
}

Once you’ve made these changes, start up the app and test it. If you did everything correctly, it should
function the same as before. The converted InputForm component is shown in Listing 6‑57.

LISTING 6-57:  The converted InputForm component

import {Component} from 'react';
import PropTypes from 'prop-types';

class InputForm extends Component {

 render(){

 const handleTextChange=(e)=>{
 const newUserInput = {...this.props.userInput,reminderText:e.target.value}
 this.props.setUserInput(newUserInput);
 }

 const handleDateChange=(e)=>{
 const date = new Date(e.target.value);
 const formattedDate = date.toISOString().substr(0,10);
 const newUserInput = {...this.props.userInput,dueDate:formattedDate};
 this.props.setUserInput(newUserInput);
 }

 const handleClick=(e)=>{
 e.preventDefault();
 const itemToAdd = {...this.props.userInput,isComplete:false};
 this.props.addNewReminder(itemToAdd);
 }
 return(
 <form>
 <input value={this.props.userInput.reminderText}
 id="reminderText"
 type="text"
 placeholder="What do you want to do?"
 onChange={handleTextChange} />

 <input value={this.props.userInput.dueDate}
 id="dueDate"
 type="date"
 onChange={handleDateChange} />

 <button onClick={handleClick}>Add Item</button>
 </form>
);

Converting to Class Components  ❘  197

 }

}

InputForm.propTypes = {
 userInput: PropTypes.shape({
 reminderText: PropTypes.string,
 dueDate: PropTypes.string
 }),
 setUserInput: PropTypes.func,
 addNewReminder: PropTypes.func
}

const date = new Date();
const formattedDate = date.toISOString().substr(0,10);

InputForm.defaultProps = {
 userInput: {
 reminderText:"",
 dueDate:formattedDate
 }
}

export default InputForm;

This same basic method can be applied to the other components to convert them to class components.
However, there is one important gotcha to be aware of. In the InputForm and RemindersList func-
tions, we defined the internal event handler functions using the function keyword. When you define
functions using the function keyword and then reference this inside of them, this refers to the
function, not to the object the function is a part of. The result is that the following function will result
in an error:

function handleChange(e){
 this.props.setSelectedFilter(e.target.value);
}

The easiest solution (but not the only solution) is to simply redefine the function as an arrow func-
tion. The this keyword inside an arrow function references the object that the function is a part of:

const handleChange = (e)=> {
 this.props.setSelectedFilter(e.target.value);
}

If you’re really set on using the function keyword, another solution is to use the bind function to
specify that the function should run in the context of the current object. You can bind the function in
the constructor (as you’ve previously seen) or in the onChange event listener attribute, like this:

 <select id="filterReminders"
 value={this.props.selectedFilter}
 onChange={this.handleChange.bind(this)}>

198  ❘  CHAPTER 6   React Data Flow

SUMMARY

One-way data flow is a large part of what makes React user interfaces able to handle updates effi-
ciently and reliably. Although some of the patterns and techniques used to implement one-way data
flow may be unfamiliar to many JavaScript programmers, they are just JavaScript, and they become
second nature as you work with React more. Especially since the introduction of React Hooks, and
the useState hook in particular, basic state management in React has become simpler while also
remaining compatible with previous methods of writing React components.

In this chapter, you learned:

➤➤ How one-way data flow works.

➤➤ How to pass data to child components with props.

➤➤ How to initialize state.

➤➤ How to change state variables in class components and in function components.

➤➤ How to work with the asynchronous nature of setState.

➤➤ What immutability is.

➤➤ The importance of shallow copies.

➤➤ How to validate props using PropTypes.

➤➤ How to set default prop values using defaultProps.

➤➤ How to use the rest and spread operators.

➤➤ The steps to build an app from mockup to reactivity.

➤➤ How to “lift state up.”

➤➤ How to convert between function components and class components.

In the next chapter, we’ll go into more depth about how events, event listening, and event handling
work in React.

Events
Events, and the functions that run in response to events, are what make React reactive. In this
chapter, you’ll learn:

➤➤ How and where to use event listeners.

➤➤ The difference between native events and SyntheticEvents.

➤➤ How to write event handlers in class and function components.

➤➤ How to use the Event object.

➤➤ How to bind functions to class components.

➤➤ How to pass data to event handlers.

➤➤ How to use arrow functions for inline event handlers.

➤➤ How passing functions to child components works.

HOW EVENTS WORK IN REACT

To put it simply, listening for events in a React component and handling events is done similarly
to how HTML event attributes trigger actions in a browser.

In HTML, it’s possible to use event attributes to call JavaScript functions. These event attrib‑
utes have names starting with “on” and they take a function call as their value. For example,
the HTML onsubmit event attribute can be used with the <form> element to invoke a func‑
tion when the form is submitted. Listing 7‑1 shows an example of using the HTML onsubmit
attribute. This example assumes that a JavaScript function named validate() has been defined
or imported elsewhere in the HTML file.

7

200  ❘  CHAPTER 7   Events

LISTING 7-1:  Using an event attribute in HTML

<form id="signup-form" onsubmit="validate()">
 <input type="text" id="email">
 <input type="text" id="fullname">
 <input type="submit">
</form>

Because HTML event attributes violate the “separation of concerns” rule that says markup and
scripts should be kept separate, it’s generally not a good practice to rely on them too heavily in web
apps. Instead, most JavaScript programmers use the addEventListener DOM method to attach
event listeners to HTML elements, as shown in Listing 7‑2.

LISTING 7-2:  Using addEventListener

<html>
 <head>
 <script>
 function validate(e){
 //do something here
 }
 </script>
 </head>
 <body>
 <form id="signup-form">
 <input type="text" id="email">
 <input type="text" id="fullname">
 <input type="submit">
 </form>
 <script>
 document.getElementById("signup-form").addEventListener("submit",validate);
 </script>
 </body>
</html>

NOTE  In Listing 7‑2, the event listener is registered at the end of the body of
the document, so the form element will be loaded beforehand. Another way
to accomplish the same thing is to add another event listener to the document
that waits until the entire page (the HTML document) is loaded before regis‑
tering event listeners.

In React, setting event listeners is a hybrid between the two approaches for doing so in HTML. The
syntax in the JSX code looks very similar to an HTML event attribute, but because it’s JSX, it actually
compiles to something that more closely resembles using addEventListener.

What Is SyntheticEvent?  ❘  201

Listing 7‑3 shows how to set an event listener in a React component to listen for a form’s
submit event.

LISTING 7-3:  Setting an event listener in a React component

function MyForm(props){
 return (
 <form onSubmit={props.handleSubmit}>
 <input type="text" id="fullName" />
 <input type="text" id="phoneNumber" />
 <button>Submit</button>
 </form>
);
}
export default MyForm;

As you’ll frequently see in React, it would seem that the use of an event listener attribute would
violate the same separation of concerns rule that dictates that the use of event attributes in HTML
should be avoided. However, keep in mind that JSX is, essentially, JavaScript. So, in reality, it’s not
that you’re using HTML to trigger JavaScript, but that you’re using JavaScript to write HTML and to
add an event listener to the form element created using JavaScript.

The two biggest clues as to what’s really going on when you write event attributes in JSX are:

1.	 As with the DOM addEventListener method, React event attributes take a function,
rather than a string containing a function call, as their value. The value of a React event
attribute must be in curly braces and it should not have the pair of parentheses after the
function name.

2.	 React event attributes use JavaScript-style camelCase names, rather than the HTML-style
lowercase attribute names used by HTML event attributes.

React events are actually a wrapper around native HTML DOM events, which take the same names
as the native events (albeit with different capitalization). These wrapped events are instances of a
React class called SyntheticEvent.

WHAT IS SYNTHETICEVENT?

SyntheticEvent is a cross-browser wrapper around the browser’s native events. Historically, web
browsers have always had slightly different ways of handling events. Most famously, in Microsoft’s
now defunct Internet Explorer browser, the event object was a global property of the browser’s
window object, whereas in Chrome and Firefox, it was a property passed to event handlers (as is the
case with SyntheticEvent). Another important difference between how browsers handle events is at
what point in the propagation of events do the event listeners handle them. Today, every modern
browser handles events during the event “bubbling” phase, but in the earlier days of web browsers,
Internet Explorer handled events during the “capture” phase.

202  ❘  CHAPTER 7   Events

NOTE  Event bubbling refers to the upward propagation of an event from
a lower level in the element hierarchy to a higher one. Event capture is the
opposite. In event bubbling, an event that happens on a button (such as a
click) is dispatched by the button before the form element that contains the
button dispatches it.

These historic and major differences between how web browsers handle events have largely been
ironed out, and today the real value of having a cross-browser wrapper for events is that it can pro‑
vide additional and consistent properties across every browser.

SyntheticEvent also shields developers from the implementation details of exactly how events in React
are translated to DOM events in the browser. The React documentation is intentionally vague about
exactly how SyntheticEvents map to native events (although it is possible to find this out, as you’ll
see). Except in rare cases, these details won’t matter to a React developer, and because these details
are not part of the official React documentation, they are subject to change at any time.

USING EVENT LISTENER ATTRIBUTES

To create an event listener in React, use one of the supported event listener attributes on a built-in
HTML DOM element. If the HTML event that will be created by a React component supports a
certain event, it should also be supported by the React component, except in a few cases where things
work differently in React.

Using an event listener attribute in an element created by a custom component won’t have any effect
on the custom component except to create a prop inside of it with same name as the event listener
attribute. For example, inside the following element, a prop named onClick will be created:

<MyButton onClick={handleEvent} />

The preceding onClick attribute is not an event listener attribute. It’s common to use the names of
event listener attributes to pass event handlers between custom components, but doing so doesn’t
actually add the event listener to the resulting browser DOM.

In order for the MyButton component to actually be able to handle events, you must have an HTML
DOM element inside the MyButton component that has an event listener attribute. For example,
here’s what the return statement of the MyButton component might look like:

return (
 <button onClick={props.onClick}>Click Me</button>
);

The Event Object  ❘  203

THE EVENT OBJECT

When an event happens in React, it triggers an event in the DOM. This, in turn, creates an instance
of the Event object, which triggers the creation of a SyntheticEvent object in React. This is what we
mean by SyntheticEvent being a wrapper around native DOM events.

The Event object contains the properties and methods that are common to all events. The most
important of these base Event properties and methods are the following:

➤➤ Event.cancelable indicates whether an event can be canceled. Canceling an event prevents
the event from happening. Canceling events is useful when you want to prevent a user from
clicking something or to prevent a form element from submitting a form, for example.

➤➤ Event.target references the object onto which the event was originally dispatched (such as
an element that was clicked or a form input that was typed into).

➤➤ Event.type contains the name of the event, such as click, change, load, mouseover,
and so forth.

➤➤ Event.preventDefault cancels an event if it’s cancelable.

The wrapper that React creates around the JavaScript Event object is named SyntheticBaseEvent.

To access the properties and methods of the SyntheticBaseEvent object, specify a parameter in
the function definition for your event handler. The SyntheticBaseEvent object will take the name
of this parameter inside the function. It’s a standard practice for this parameter to be named either
event or simply e, but there’s no restriction in React or JavaScript on what valid JavaScript variable
name you give it.

Listing 7‑4 is a React component that listens for a click event on a button and then prints out the
properties of the dispatched SyntheticBaseEvent object to the console.

LISTING 7-4:  Viewing the properties of the Event object

function EventProps(){
 const logClick=(e)=>{
 console.dir(e);
 }
 return(
 <button onClick={logClick}>Click Me</button>
)
}

export default EventProps;

With modifications, this basic function can be used to view the properties of the SyntheticBaseEvent
object for any event. Figure 7‑1 shows the object that’s output to the console when you click the button
in this component.

204  ❘  CHAPTER 7   Events

The SyntheticBaseEvent object has a property called NativeEvent, which is an object that
contains all the properties from the native Event object that SyntheticBaseEvent wraps around.
Compare the properties in this NativeEvent object, shown in Figure 7‑2, with the properties in the
SyntheticEvent shown in Figure 7‑1.

SUPPORTED EVENTS

All interactivity in a web browser happens as a result of events. Events are what is emitted (or
“fired”) by software in reaction to interactions or significant things (including automated processes)
happening in the browser. For example, when a user clicks a mouse button while the pointer is
hovered over a button, that causes the button element to emit a click event. The movement of the
mouse pointer within the browser window and the mouse pointer hovering over an element trigger
additional events.

FIGURE 7-1:  Viewing the properties of a SyntheticEvent

Supported Events  ❘  205

Many DOM events are defined in official specifications, and others are defined and used by specific
browsers. These events can be detected using the HTML DOM and responded to using JavaScript
running in the browser.

React supports listening for and handling many of the standard DOM events. Many of these events
add properties to the Event object, which you can use to find out more about the event. For example,
the keyboard events include properties that tell which key was pressed.

Table 7‑1 lists the events that are currently supported within React, along with a brief description of
each one. To view the properties added to the Event object, you can log the Event object to the con‑
sole, as shown in Listing 7‑4, or visit the excellent Event API documentation available at https://
developer.mozilla.org/en-US/docs/Web/API/Event.

FIGURE 7-2:  The NativeEvent properties

https://developer.mozilla.org/en-US/docs/Web/API/Event
https://developer.mozilla.org/en-US/docs/Web/API/Event

206  ❘  CHAPTER 7   Events

TABLE 7-1:  Events Supported by React

CATEGORY EVENT LISTENER DESCRIPTION

Clipboard
Events

onCopy The copy event fires when data is copied to the
clipboard.

onCut The cut event fires when data is cut to the
clipboard.

onPaste The paste event fires when data is pasted from the
clipboard.

Composition
Events

onCompositionEnd The compositionend event fires when a text
composition system completes or cancels a session.
Text composition systems include input method
editors (IMEs) for entering Chinese, Japanese, or
Korean text using a Latin keyboard.

onCompositionStart The compositionstart event fires when a text
composition system starts a session.

onCompositionUpdate The compositionupdate event fires when a new
character is received during a composition session.

Keyboard
Events

onKeyDown The keydown event fires when a key is pressed.

onKeyPress The keypress event fires when a key that produces
a character is pressed.

onKeyUp The keyup event fires when a key is released.

Focus Events onFocus The focus event fires when an element receives
focus, for example when an input element is
selected.

onBlur The blur event fires when an element loses focus,
for example when an input element becomes
unselected (by tabbing out of it or clicking another
input element).

Form Events onChange The change event is fired for input, select, and
textarea elements when the value of the input is
changed by the user.

onInput The input event fires when the value of an element
changes.

onInvalid The invalid event fires when a submittable
element’s content is checked and doesn’t meet
its constraints. For example, when a number input
receives a number outside of the range specified by
min and max attributes.

Supported Events  ❘  207

CATEGORY EVENT LISTENER DESCRIPTION

onReset The reset event fires when a form is reset.

onSubmit The submit event fires when a form is submitted.

Generic
Events

onError The error event fires when a resource fails to load.

onLoad The load event fires when a resource finishes
loading.

Mouse
Events

onClick The click event fires when a pointing device (such
as a mouse) has been pressed and released.

onContextMenu The contextmenu event fires when the right mouse
button is clicked.

onDoubleClick The doubleclick event fires when the mouse
button is double-clicked.

onDrag The drag event fires while an element or text
selection is being dragged.

onDragEnd The dragend event fires when a drag event ends
(such as when the mouse button is released).

onDragEnter The dragenter event fires when a draggable
element enters a drop target.

onDragExit The dragexit event fires when a draggable
element exits a drop target. Note: onDragExit
may not work in all browsers. Use onDragLeave
instead.

onDragLeave The dragleave event fires when a draggable
element exits a drop target.

onDragOver The dragover event fires while a draggable
element is being dragged over a drop target.

onDragStart The dragstart event fires when the user begins
dragging an element.

onDrop The drop event fires when an element is dropped
on a drop target.

onMouseDown The mousedown event fires when a pointing device
button (such as a mouse button) is pressed on an
element.

onMouseEnter The mouseenter event fires when a pointing device
is moved onto an element.

continues

208  ❘  CHAPTER 7   Events

CATEGORY EVENT LISTENER DESCRIPTION

onMouseLeave The mouseleave event fires when a pointing device
is moved off an element.

onMouseMove The mousemove event fires when a pointing device
is moved over an element.

onMouseOut The mouseout event fires when a pointing device
is moved off an element that has the onMouseOut
event listener attached to one of its children.

onMouseOver The mouseover event fires when a pointing
device is moved onto an element that has the
onMouseOver event listener attached to one of its
children.

onMouseUp The mouseup event fires when a pointing device
button is released over an element.

Pointer
Events

onPointerDown The pointerdown event fires when a pointer device
(such as a mouse, pen, or touch) becomes active,
for example when a button is clicked or a touch-
sensitive device is touched.

onPointerMove The pointermove event fires when a pointer
changes coordinates.

onPointerUp The pointerup event fires when a pointer is no
longer active.

onPointerCancel The pointercancel event fires when a browser
decides there are unlikely to be more pointer
events (such as when the browser window becomes
inactive).

onGotPointerCapture The gotpointercapture event fires when the
setPointerCapture method is used to capture a
pointer.

onLostPointerCapture The lostpointercapture event fires when a
captured pointer is released.

onPointerEnter The pointerenter event fires when a pointer
moves into the boundaries of an element on a
device that doesn’t support hover (such as a pen or
touch device with no mouse).

onPointerLeave The pointerleave event fires when a pointer
moves out of the boundaries of an element.

TABLE 7-1  (continued)

Supported Events  ❘  209

CATEGORY EVENT LISTENER DESCRIPTION

onPointerOver The pointerover event fires when a pointing
device moves into an element’s boundaries.

onPointerOut The pointerout event fires when a pointer leaves
the boundaries of an element.

Selection
Events

onSelect The select event fires when text is selected.

Touch Events onTouchCancel The touchcancel event fires when a touch point
has been disrupted.

onTouchEnd The touchend event fires when a touch point is
removed from a touch surface.

onTouchMove The touchmove event fires when a touch point is
moved along a touch surface.

onTouchStart The touchstart event fires when a touch point is
placed on a touch surface.

UI Events onScroll The scroll event fires when the document or an
element is scrolled.

Wheel
Events

onWheel The wheel event fires when a wheel button of a
pointing device is rotated.

Media Events onAbort The abort event fires when playback of the media
is aborted.

onCanPlay The canplay event fires when enough data is
available that the media can start playing.

onCanPlayThrough The canplaythrough event fires when enough of
a media file is downloaded that the file can play
without interruption.

onDurationChange The durationchange event fires when the
metadata indicating the duration of the media
file changes, such as when enough of it has
downloaded that the duration is known.

onEmptied The emptied event fires when the media has
become empty, such as when it’s reloaded.

onEncrypted The encrypted event fires when the media
indicates that it’s encrypted.

onEnded The ended event fires when playback of the media
ends.

continues

210  ❘  CHAPTER 7   Events

CATEGORY EVENT LISTENER DESCRIPTION

onError The error event fires when an error occurs.

onLoadedData The loadeddata event fires when the media has
finished loading.

onLoadedMetadata The loadedmetadata event fires when the media’s
metadata is loaded.

onLoadStart The loadstart event fires when loading of the
media starts.

onPause The pause event fires when playback is paused.

onPlay The play event fires when playback begins or
resumes as a result of the play method.

onPlaying The playing event fires after the play event, when
the media has enough data to begin playing.

onProgress The progress event fires during loading of media
and contains information about the amount of data
loaded.

onRateChange The ratechange event fires when playback
changes speed.

onSeeked The seeked event fires when a seek operation
finishes.

onSeeking The seeking event fires when a seek operation
starts.

onStalled The stalled event fires when loading of media is
unexpectedly not happening.

onSuspend The suspend event fires when loading of media is
paused or completed.

onTimeUpdate The timeupdate event fires when the
currentTime attribute of the element changes.

onVolumeChange The volumechange event fires when the audio
volume changes.

onWaiting The waiting event fires when a requested
operation is delayed.

Image Events onLoad The load event fires when an image is fully loaded.

onError The error event fires when an error occurs in
loading of an image.

TABLE 7-1  (continued)

Event Handler Functions  ❘  211

EVENT HANDLER FUNCTIONS

Once your React component has detected an event, you can write a function that will take some
action in response to the event. This function is called an event handler function.

Writing Inline Event Handlers
An inline event handler is an anonymous function that’s written as the value of an event listener
attribute. Inline event handlers are often used as wrappers for calling another function that’s defined
outside of the return statement. They may also be used for performing simple tasks that perhaps
don’t warrant the creation of a full event handler function.

Listing 7‑5 shows an example of an inline event handler.

LISTING 7-5:  Using an inline event handler to show an alert

function WarningButton(){

return (
 <button onClick={()=>{alert('Are you sure?');}}>Don't Click Here</button>
);

}

export default WarningButton;

It’s possible to call multiple functions or execute a block of code from inside an inline event handler,
but there are several reasons for not using inline event handlers for complex code:

1.	 Inline event handlers aren’t reusable.

2.	 Inline event handlers can be difficult to read and they reduce the organization of your code.

CATEGORY EVENT LISTENER DESCRIPTION

Animation
Events

onAnimationStart The animationstart event fires when an
animation starts.

onAnimationEnd The animationend event fires when an animation
stops.

onAnimationIteration The animationiteration event fires when one
iteration of an animation ends and another starts.

Transition
Events

onTransitionEnd The transitionend event fires when a CSS
transition completes.

Other Events onToggle The toggle event fires when the state of a
details element (open or closed) is toggled.

212  ❘  CHAPTER 7   Events

3.	 Inline event handlers are re-created every time the component re-renders. In function com‑
ponents, this is what happens to all inner functions. But, in class components, inline event
handlers may affect performance, although the effect is not likely to be noticeable, and
prematurely optimizing your code for this kind of problem before you have it will cause you
more problems (in terms of time wasted alone) than it solves.

NOTE  I’ll talk about how to use React Hooks to cache event handler functions
in function components in Chapter 11.

Inline event handlers are often also used when the result of some user interaction should be simply to
update the state in some way. In a class component, this means that setState is called, or in a func‑
tion component, when the state setter function is called. Listing 7‑6 shows an example of using an
inline event handler to call setState.

LISTING 7-6:  Using an inline event handler to call setState

import {Component} from 'react';

class ScreenDoor extends Component {
 constructor(props){
 super(props);
 this.state={
 isOpen:true
 }
 }
 render(){
 return(
 <button onClick={()=>this.setState({isOpen:!this.state.isOpen})}>
 {this.state.isOpen?'Close the Door':'Open the Door'}
 </button>
)
 }
}

export default ScreenDoor;

Writing Event Handlers in Function Components
An event handler inside a function component is written as an inner function, using either arrow
syntax or the function keyword.

If you’re comfortable with the class method of writing components, you can think of function compo‑
nents as being the render method from a class component. The event handlers in a function compo‑
nent only exist for a single render, unlike in class components where they’re methods of the class and
persist between renders.

Event Handler Functions  ❘  213

Function components don’t have the this keyword, and so there’s no need to bind event handlers
declared inside of functions.

Writing functions inside of function components is as simple as writing a function anywhere else.
Once you’ve written an event handler function, you can assign it to a particular event listener by pass‑
ing the name of the function as the value of an event listener attribute, as shown in Listing 7‑7.

LISTING 7-7:  Using an event handler function in a function component

import {useState} from 'react';

function Search(props){

 const [term,setTerm] = useState('');
 const updateTerm = (searchTerm)=>{
 setTerm(searchTerm);
 }

 return(
 <>
 <input type="text" value={term} onChange={(e)=>{updateTerm(e.target.value)}}
/>

 You're searching for: {term}
 </>
);

}

export default Search;

Writing Event Handlers in Class Components
Event handlers in class components are methods of the class. They’re written outside of the render
method and must be bound to the specific instance of the class.

Listing 7‑8 shows one way to write and bind an event handler method in a class component.

LISTING 7-8:  Writing and binding an event handler method in a class

import {Component} from 'react';

class CoffeeMachine extends Component {
 constructor(props){
 super(props);
 this.state={
 brewing:false
 }
 this.toggleBrewing = this.toggleBrewing.bind(this);
 }

continues

214  ❘  CHAPTER 7   Events

 toggleBrewing = function(){
 this.setState({brewing:!this.state.brewing});
 }

 render(){

 return(
 <>
 The Coffee Maker is {this.state.brewing?'on':'off'}.

 <button onClick={this.toggleBrewing}>toggle brewing state</button>
 </>
);
 }
}

export default CoffeeMachine;

Binding Event Handler Functions
To be useful, event handler functions need to be passed as values to React’s built-in components that
support event listener attributes. For example, the built-in input element represents an input compo‑
nent that can receive an onChange event handler prop and will call an associated callback function
when it receives a change event.

Because event handler functions are passed to child components via props, they need to be bound to
the context in which they were created so that the value of this will refer to the parent component in
which the event handler was defined.

JAVASCRIPT LESSON: METHOD DEFINITION SYNTAX

In JavaScript classes, functions in the class (also known as methods) can be created
using method definition syntax, which is a shorthand way of assigning a function to
a method name.

For example, you can define a method by assigning a function to a property,
like this:

toggleBrewing = function(){
 this.setState({brewing:!this.state.brewing});
}

Or you can use method definition syntax, like this:

toggleBrewing(){
 this.setState({brewing:!this.state.brewing});
}

LISTING 7-8  (continued)

Event Handler Functions  ❘  215

Only class components have a this keyword, so binding only applies in class components. Plus, as
you’ll see, binding only applies in class components to methods defined using function or method
definition syntax.

Using bind
If you’re still not clear on how this and bind work in JavaScript classes, go back and review the
JavaScript lesson from Chapter 4. Or, just remember this rule:

In class components, if a function defined using method definition syntax or the function
keyword will be passed as a prop, bind it.

Functions can be bound in one of two ways. The first is the method you’ve seen most often so far: in
the constructor. In this method, you overwrite the value of the unbound function with a new function
that includes the context of the class, as shown in Listing 7‑9.

LISTING 7-9:  Binding a function in the constructor

import {Component} from 'react';

class ColorWheel extends Component {

 constructor(props){
 super(props);
 this.state = {
 currentColor: '#ff0000'
 }
 this.changeColor = this.changeColor.bind(this);
 }

 changeColor(e) {
 this.setState({currentColor:e.target.value});
 }

 render(){
 const wheelStyle = {
 width: "200px",
 height: "200px",
 borderRadius: "50%",
 backgroundColor: this.state.currentColor
 }
 return(
 <>
 <div style={wheelStyle}></div>
 <input onChange={this.changeColor} value={this.state.currentColor} />
 </>
)
 }
}

export default ColorWheel;

216  ❘  CHAPTER 7   Events

The other method of binding a function is to do it inline. In this method, you bind the function inside
the value of the event listener attribute, as shown in Listing 7‑10.

LISTING 7-10:  Binding an event handler inline

import {Component} from 'react';

class ColorWheel extends Component {

 constructor(props){
 super(props);
 this.state = {
 currentColor: '#ff0000'
 }
 }

 changeColor(e) {
 this.setState({currentColor:e.target.value});
 }

 render(){
 const wheelStyle = {
 width: "200px",
 height: "200px",
 borderRadius: "50%",
 backgroundColor: this.state.currentColor
 }
 return(
 <>
 <div style={wheelStyle}></div>
 <input onChange={this.changeColor.bind(this)} value={this.state.currentColor} />
 </>
)
 }
}

export default ColorWheel;

While the inline method may be more convenient in some cases, it has the drawback of living inside
the render method, which means that it will re-run every time the component renders. Also, it may
result in duplication of effort if you use the same event handler function more than once in a class.

Because the constructor only runs once, binding in the constructor has the benefit of being efficient as
well as of keeping your code tidy.

Using Arrow Functions
Arrow functions use lexical this binding. What this means is that they are automatically bound to
the scope in which they’re created. As a result, if you define your event handlers using arrow func‑
tions, or write your event handlers as inline arrow functions, they don’t need to be bound.

Event Handler Functions  ❘  217

Listing 7‑11 shows how to use an arrow function as an event handler.

LISTING 7-11:  Using an arrow function as an event handler

import {Component} from 'react';

class ColorWheel extends Component {

 constructor(props){
 super(props);
 this.state = {
 currentColor: '#ff0000'
 }
 }

 changeColor = (e)=>{
 this.setState({currentColor:e.target.value});
 }

 render(){

 const wheelStyle = {
 width: "200px",
 height: "200px",
 borderRadius: "50%",
 backgroundColor: this.state.currentColor
 }

 return(
 <>
 <div style={wheelStyle}></div>
 <input onChange={this.changeColor} value={this.state.currentColor} />
 </>
)
 }
}

export default ColorWheel;

Using the same syntax that you used to eliminate the binding of the event handler in the constructor,
you may also be able to eliminate the constructor completely and define your component’s state using
a class property, as shown in Listing 7‑12.

LISTING 7-12:  Defining state using a class property

import {Component} from 'react';

class ColorWheel extends Component {

 state = {currentColor: '#ff0000'};

continues

218  ❘  CHAPTER 7   Events

 changeColor = (e)=>{
 this.setState({currentColor:e.target.value});
 }

 render(){

 const wheelStyle = {
 width: "200px",
 height: "200px",
 borderRadius: "50%",
 backgroundColor: this.state.currentColor
 }

 return(
 <>
 <div style={wheelStyle}></div>
 <input onChange={this.changeColor} value={this.state.currentColor} />
 </>
)
 }
}

export default ColorWheel;

Passing Data to Event Handlers
Event handlers often need to receive data from within the render method. Most commonly, event
handlers need access to the Event object so they can make use of its properties to get form field val‑
ues, mouse position, and the other properties that you saw in Table 7‑1.

If you specify your event handler using just the name of the event handler function, the good news is
that there’s nothing more to do. The Event object is passed to the event handler function automati‑
cally, as demonstrated in Listing 7‑13.

LISTING 7-13:  The Event object is passed automatically

function LogInput(){
 const logChange=(e)=>{
 console.dir(e);
 }
 return(
 <input onChange={logChange} />
)
}

export default LogInput;

If you use an anonymous arrow function to call your event handler, you do need to specifically pass
the Event object into the event handler, as shown in Listing 7‑14.

LISTING 7-12  (continued)

Summary  ❘  219

LISTING 7-14:  Passing the Event object to the event handler

function LogInput(){
 const logChange=(e)=>{
 console.dir(e);
 }
 return(
 <input onChange={(e)=>{logChange(e)}} />
)
}

export default LogInput;

SUMMARY

Through its use of a familiar and simple interface and standard, idiomatic JavaScript, React allows
programmers to enable interactivity within user interfaces while also gaining the benefits of one-way
data flow.

In this chapter, you learned:

➤➤ What SyntheticEvents are.

➤➤ How to log the properties of the SyntheticBaseEvent object.

➤➤ What event listeners React can respond to.

➤➤ How to write event handlers in both function and class components.

➤➤ How to bind event handlers in class components.

➤➤ How to pass data into event handlers.

In the next chapter, you’ll learn how to create interactive forms in React and how to listen for and
respond to form events.

Forms
HTML form elements are what make it possible for web applications to gather user input.
React has built-in HTML DOM components that create native HTML form elements. The
built-in React components that create HTML form elements behave somewhat differently from
native HTML form elements in some important ways, however. In this chapter, you’ll learn:

➤➤ How to use form components in React with one-way data flow.

➤➤ The difference between controlled and uncontrolled form inputs.

➤➤ How and why to prevent a form’s default action.

➤➤ How to use each of React’s form elements.

➤➤ How to retrieve and use data from a form.

FORMS HAVE STATE

Form elements in HTML are unique in that they maintain their own internal state. When you
type into a text input or check a checkbox or select something from a dropdown menu, it
changes the internal state of the element.

For example, in an HTML input element, this state is kept in the value attribute and in a
checkbox element, the state is kept in a Boolean attribute named checked. It’s possible in
HTML for the internal state of a form element to be set either by a person interacting with the
form (typing into it or checking boxes, for example) or by changing the value of the attribute
that determines the state.

If you’ve been paying close attention, you’ll recognize this default behavior of HTML forms as
two-way data flow, which is generally discouraged in React. Ideally, everything that changes in
a React user interface should be the result of changes to the state object. However, with forms,
there are times when implementing one-way data flow is unnecessary and maybe even a little
ridiculous, as I’ll demonstrate. Rather than forcing the programmer to always implement one-
way data flow for form elements, React has two different ways to work with form inputs that
you can choose between depending on the needs of a particular form. React calls these two
different ways of working with inputs controlled and uncontrolled.

8

222  ❘  CHAPTER 8   Forms

CONTROLLED INPUTS VS. UNCONTROLLED INPUTS

The default behavior of an input element is to allow the user to change its value directly. In one-way
data flow, on the other hand, every interaction with the user interface results in an event which, when
handled, updates the state. Changes to state then update the user interface.

React calls a form input that can be directly manipulated by the user an uncontrolled input, and one
that can only be changed through changes to the state object a controlled input.

Figure 8‑1 illustrates the difference between controlled and uncontrolled inputs.

To create an uncontrolled input, omit the value attribute from the JSX code for that input, as shown
in Listing 8‑1.

LISTING 8-1:  Omiting the value attribute creates an uncontrolled input

function SignUp(props){
 return(
 <form>
 <input type="text" name="emailAddress" />
 <button>Sign up for our newsletter</button>
 </form>
)
}

export default SignUp;

Figure 8‑2 shows the result of rendering the preceding component and typing into the input. This is
exactly the behavior you’d expect with an HTML form.

FIGURE 8-1:  Controlled and uncontrolled inputs

Controlled Inputs vs. Uncontrolled Inputs  ❘  223

To make this form be controlled, add a value attribute, as shown in Listing 8‑2.

LISTING 8-2:  Adding the value attribute creates a controlled input

function SignUp(props){
 return(
 <form>
 <input value="" type="text" name="emailAddress" />
 <button>Sign up for our newsletter</button>
 </form>
)
}

export default SignUp;

Simply adding the value attribute causes React to “control” the input. Now, when you render the
SignUp component and try to type into it, nothing will happen. It’s impossible to demonstrate noth-
ing happening in a figure, so if you’d like to see this, you can create a component similar to the one in
Listing 8‑2 or download the example code from this book’s GitHub repository.

Updating a Controlled Input
Unless your goal is to create an input that can’t be edited, a controlled input must also have an event
listener attribute and an event handler function. Even though the internal state of the input element
in Listing 8‑2 doesn’t change when you type into it, it still fires a change event with every keystroke.

FIGURE 8-2:  Rendering an uncontrolled input

224  ❘  CHAPTER 8   Forms

Using the onChange event listener, you can detect this event and use the target.value property of
the Event object to update the state property, which can then be assigned to the value attribute of
the input.

The process for controlling a controlled input is the same in function and class components, but the
JavaScript code you need to write in each differs somewhat.

Controlling an Input in a Function Component
Listing 8‑3 shows a controlled text input that updates using one-way data flow in a function
component.

LISTING 8-3:  Updating an input element with one-way data flow

import {useState} from 'react';

function SignUp(props){

 const [emailAddress,setEmailAddress] = useState('');

 const handleChange = (e)=>{
 setEmailAddress(e.target.value);
 }

 return(
 <>
 <form>
 <label>Enter your email address:
 <input value={emailAddress} onChange={handleChange} type="text" />
 </label>
 </form>
 <p>Your email address: {emailAddress}</p>
 </>
)
}

export default SignUp;

When you run this component in a browser, typing into the input updates the value of the
emailAddress state variable, which is used as the value of the input and is also output in the para-
graph below the input. The input behaves like a normal HTML input, but the component also has
access to the value of the input.

Controlling an Input in a Class Component
In a class component, controlling an input works the same way, but the JavaScript is slightly differ-
ent and a bit more verbose because of the need to write and bind the event handler and to correctly
address the state property.

Listing 8‑4 shows the same controlled input as Listing 8‑3, but written as a class component.

Controlled Inputs vs. Uncontrolled Inputs  ❘  225

LISTING 8-4:  Controlling an input in a class component

import {Component} from 'react';

class SignUp extends Component{

 constructor(props){
 super(props);
 this.state = {
 emailAddress:''
 }
 this.handleChange = this.handleChange.bind(this);
 }

 handleChange(e){
 this.setState({emailAddress:e.target.value});
 }

 render(){

 return(
 <>
 <form>
 <label>Enter your email address:
 <input value={this.state.emailAddress} onChange={this.handleChange}
 type="text" />
 </label>
 </form>
 <p>Your email address: {this.state.emailAddress}</p>
 </>
)
 }
}

export default SignUp;

The class component in Listing 8‑4 can be written a bit more succinctly by using arrow functions, an
inline event handler, and by creating state as a class property, as shown in Listing 8‑5.

LISTING 8-5:  Simplifying a controlled input in a class

import {Component} from 'react';

class SignUp extends Component{

 state = {emailAddress:''};

 render(){

 return(
 <>
 <form>
 <label>Enter your email address:
 <input value={this.state.emailAddress}
 onChange={(e)=>{this.setState({emailAddress:e.target.value})}}
 type="text" />

continues

226  ❘  CHAPTER 8   Forms

 </label>
 </form>
 <p>Your email address: {this.state.emailAddress}</p>
 </>
)
 }
}

export default SignUp;

LIFTING UP INPUT STATE

Most of the time, when you have a form in a user interface, input into the form should affect some
other part of the user interface. For example, words typed into a search form are used to perform a
search, and then the searched-for words and the search results are presented in some sort of results
component, as shown in Figure 8‑3.

FIGURE 8-3:  Form input often affects other components

LISTING 8-5  (continued)

Lifting Up Input State  ❘  227

Because the search term entered into the search form in Figure 8‑3 needs to be used by other compo-
nents, the state variable that the search form updates should be lifted up to a common ancestor of the
search form and search results components.

Listings 8‑6, 8-7, and 8‑8 show three components that might make up a very basic version of the
search interface from Figure 8‑3. Notice that the setSearchTerm function is passed down to the
SearchInput component and the searchTerm variable is passed down to both the SearchInput and
SearchResults components.

LISTING 8-6:  The SearchBox component

import {useState} from 'react';
import SearchInput from './SearchInput';
import SearchResults from './SearchResults';

function SearchBox(){
 const [searchTerm,setSearchTerm] = useState('');

 return(
 <>
 <SearchInput searchTerm = {searchTerm} setSearchTerm = {setSearchTerm} />
 <SearchResults searchTerm = {searchTerm}/>
 </>
);
}
export default SearchBox;

LISTING 8-7:  The SearchInput component

function SearchInput(props){

 const handleChange = (e)=>{
 props.setSearchTerm(e.target.value);
 }

 return(
 <label>Enter your search term:
 <input type="text" value={props.searchTerm} onChange={handleChange} />
 </label>
);
}

export default SearchInput;

LISTING 8-8:  The SearchResults component

function SearchResults(props){
 return(
 <p>You're searching for: {props.searchTerm}</p>

continues

228  ❘  CHAPTER 8   Forms

);
}

export default SearchResults;

As you saw in Chapter 6, lifting state up minimizes the number of components that need to be state-
ful. Having a single stateful component eliminates duplication of data processing and provides the
application with a single source of truth. In other words, the behavior of the subcomponents can be
known and tested based on how the state changes in the stateful component.

USING UNCONTROLLED INPUTS

Using controlled inputs ensures that your user interface strictly adheres to the pattern of one-way
data binding, and it enables you to easily work with the current values of your input fields. However,
it also creates a lot of overhead work that may be unnecessary.

For example, a “Contact Us” form within a user interface doesn’t need to store the data entered into
it or do anything with the data as it’s being entered. Essentially, such a form isn’t really part of the
larger application at all, and there’s maybe no reason for React to track and run an event handler
function for every keystroke that someone enters into a textarea input. Binding each input of a large
form can be tedious and the additional processing that it takes to listen for and respond to a large
number of form inputs can create performance issues.

In cases where you don’t need to track the user’s input as they’re typing and you don’t need to store
the input in state, it may be a better choice to use uncontrolled inputs and simply attach an event
listener to the form itself to run a function when the form is submitted.

Listing 8‑9 shows a comment form, such as you might see on a blog, which uses an uncontrolled
input. When the user submits the form, an event handler function runs that retrieves the data from
the uncontrolled input and adds it to the state.

LISTING 8-9:  A blog comment interface using an uncontrolled input

import {useState,useRef} from 'react';

function BlogComment(props){
 const [comments,setComments] = useState([]);
 const textAreaRef = useRef(null);
 const recordComment = (e)=>{
 e.preventDefault();
 setComments([...comments,textAreaRef.current.value]);
 }

 const commentList = comments.map((comment,index)=>{
 return (<p key={index}>{comment}</p>);
 })

 return(
 <>

LISTING 8-8  (continued)

Using Different Form Elements  ❘  229

 <form onSubmit={recordComment}>
 <p>Enter your comment:</p>
 <textarea ref={textAreaRef}></textarea>

 <button>Submit Comment</button>
 <p>All Comments:</p>
 {commentList}
 </form>
 </>
);
}

export default BlogComment;

To get values from uncontrolled inputs, you can use a technique called a ref. The ref creates a refer-
ence to the underlying DOM node, which allows React to access its properties directly. You’ll learn
more about refs and how and when to use them in Chapter 9.

USING DIFFERENT FORM ELEMENTS

HTML input elements are the most commonly used types of interactive elements. By changing the
type attribute of the input element, you can create inputs for a large and growing number of data
types, including:

➤➤ button

➤➤ checkbox

➤➤ color

➤➤ date

➤➤ datetime-local

➤➤ email

➤➤ file

➤➤ hidden

➤➤ image

➤➤ month

➤➤ number

➤➤ password

➤➤ radio

➤➤ range

➤➤ reset

➤➤ search

➤➤ submit

➤➤ tel

230  ❘  CHAPTER 8   Forms

➤➤ text

➤➤ time

➤➤ url

➤➤ week

The different input types may look different or have different validation that they perform on user
input. For example, the number input type will only allow numbers to be entered, the color input
type will display a color picker (in browsers that support it), and the hidden input type doesn’t dis-
play anything in the browser window.

Controlling the Input Element
With the exception of the input types that create buttons, and the special case of the file input type,
the way to get the value of a controlled input element in React is by using the onChange attribute.

The button inputs (submit, reset, and button) use the onClick attribute. The button element,
which does the same thing as an input with a type of button, also uses the onClick attribute.

The file input, which allows you to choose a file from your computer to upload to the browser, is a
read-only input. In React, an input with the type of file is always uncontrolled.

Controlling a textarea
In HTML, a textarea element’s value is its children, as shown in Listing 8‑10.

LISTING 8-10:  An HTML textarea’s value is its children

<textarea name="terms-of-use">
 Make sure to read all of these terms of use. By reading this book, you agree
to learn React and to never try to mutate a prop or forget to bind an event
handler in a class component. Furthermore, although it is not required, you
agree to consider writing a review of this book and to tell your friends how
great this book is.
</textarea>

In React, a textarea is written more like an input element: as an empty element (meaning it doesn’t
have an end tag or content) with a value attribute. You can use the onChange event listener to handle
input into a textarea in React, as shown in Listing 8‑11.

LISTING 8-11:  Using a textarea in React

function TermsOfUse(props){
 return(
 <textarea value={props.terms} onChange={props.updateTerms} />
);
}

export default TermsOfUse;

Preventing Default Actions  ❘  231

Controlling a Select Element
A select element in HTML creates a dropdown list, with any number of option element chil-
dren forming the items in the dropdown list. In HTML, each option element has a Boolean attrib-
ute named selected, which determines the current value of the select element, as shown in
Listing 8‑12.

LISTING 8-12:  A select element in HTML

<select name="pizza-type">
 <option value="thin">Thin Crust</option>
 <option value="thick">Thick Crust</option>
 <option value="deep">Deep Dish</option>
 <option value="detroit" selected>Detroit-style</option>
 <option value="chicago">Chicago-style</option>
</select>

In React, the select element has a value attribute that determines which option is currently
selected, and the onChange attribute on the select input can be used to detect and handle changes to
the currently selected option, as shown in Listing 8‑13.

LISTING 8-13:  Using a select input in React

function SizeSelect(props){
 return(
 <select name="size" value={props.size} onChange={props.changeSize}>
 <option value="xs">Extra Small</option>
 <option value="sm">Small</option>
 <option vlue="md">Medium</option>
 <option value="lg">Large</option>
 <option value="xl">Extra Large</option>
 </select>
);
}

export default SizeSelect;

PREVENTING DEFAULT ACTIONS

When you submit a form in a browser window, the default action that the browser will take is to
reload the current page, passing the values from the form as a querystring appended to the URL.
You can change the default action of the form element by using the action and method attributes
of the form element. The action attribute changes the URL that the form will submit to, and the
method attribute changes the HTTP method used to submit the form (either using HTTP GET or
HTTP POST).

232  ❘  CHAPTER 8   Forms

In user interfaces written using JavaScript, you don’t want the form element to submit data to a URL
at all. Instead, the form data should be handled by JavaScript. The reason for this is that default
action of a form reloads the form or loads a different URL, which has the effect of reloading the
underlying JavaScript library and erasing the state of the user interface.

React doesn’t have its own method for preventing default actions. Instead, it just uses the prevent-
Default method of the Event object. Any time you write an event handler to respond to a submit
event, you must include a call to preventDefault, as shown in Listing 8‑14.

LISTING 8-14:  Using preventDefault

function SignUpForm(props){

 const handleSubmit = (e)=>{
 e.preventDefault();
 props.commitFormData();
 }

 return(
 <form onSubmit={handleSubmit}>
 <input type="email" value={props.email} onChange={props.setEmail} />
 <button>Sign Up!</button>
 </form>
)
}

export default SignUpForm;

SUMMARY

Because of one-way data flow, using forms and inputs in React is somewhat different from using
them in native HTML or in other frameworks and libraries. Controlled inputs give your application
complete access to user input and maintain the fundamental React pattern of data flowing down and
events flowing up.

However, there may be times when it’s better to give up control. For this, React provides refs and the
ability to have uncontrolled inputs.

In this chapter, you learned:

➤➤ The difference between controlled and uncontrolled inputs.

➤➤ How to use events to get data from a controlled input.

➤➤ How to use refs to get data from an uncontrolled input.

➤➤ How to use different types of input elements.

➤➤ How to prevent a form’s default action.

In the next chapter, you’ll learn about refs, which, when used wisely, can do much more than just
getting data from uncontrolled inputs.

Refs
Refs are one of the most-often debated and controversial topics in React. Hundreds of blog
posts and articles on the web will caution you to avoid refs. The official documentation for
React even says (several times, in fact) that you should avoid using them, except in particular
situations.

Knowing exactly when it’s okay to use refs and what the problem is with using them is one of
the things you’ll pick up with more experience, but my aim in this chapter is to give you a head
start on understanding why refs are such a hot-button issue, and some practical advice on how
to use them correctly.

In this chapter, you’ll learn:

➤➤ How to use refs in class components.

➤➤ How to use refs in function components.

➤➤ When you should use refs.

➤➤ When you shouldn’t use refs.

➤➤ How to maintain the correct focus in a form.

WHAT REFS ARE

Nothing is perfect, and that includes React. There are rare, but unavoidable, times when one-
way data flow and the declarative way of only modifying children via props break down. In
these cases, which I’ll demonstrate in more detail and with plenty of examples in this chapter,
a React developer needs to be able to imperatively get into a child component or a DOM node
to make changes or access some property directly. For these cases, React provides an “escape
hatch” called refs.

A ref is reference to a child component that allows you to modify a child component or DOM
node from the parent component, rather than by using the standard method of modifying chil-
dren only by passing props into them.

9

234  ❘  CHAPTER 9   Refs

HOW TO CREATE A REF IN A CLASS COMPONENT

In a class component, refs are created using React.createRef. Once you have a ref, you can assign it
to a child component by passing it as the value of the ref attribute. Listing 9‑1 shows how to create a
ref to a textarea element from a component called TextReader.

LISTING 9-1:  Creating a ref in a class component

import React,{Component} from 'react';

class TextReader extends Component {
 constructor(props) {
 super(props);
 this.textView = React.createRef();
 }
 render() {
 return (
 <textarea ref={this.textView} value={this.props.bookText} />
);
 }
}

HOW TO CREATE A REF IN A FUNCTION COMPONENT

In a function component, you can use the useRef hook to create a ref, as shown in Listing 9‑2.

LISTING 9-2:  Creating a ref with useRef()

import {useRef} from 'react';

function TextReader(props) {

 const textView = useRef(null);

 return (
 <textarea ref={textView} value={props.bookText} />
);

}

export default TextReader;

USING REFS

Once you have a ref and you’ve assigned it to a child element, you can access the properties of that
child element by using a property of the ref called current. When you create a ref to a DOM ele-
ment, current contains the properties of the DOM node (meaning what’s rendered in the browser).

Using Refs  ❘  235

When you create a ref to a custom React element, current receives the mounted instance of the
component.

Refs can only be passed to class components and DOM elements. Although they can be created inside
function components, refs can’t be passed to function components. The reason why you can’t create
a ref to a function component is that functions don’t have an instance.

If you need to pass a ref to a component that’s currently a function component, the easiest way to do
it is by converting the function component to a class component.

NOTE  Remember: Function components and class components can co-exist
within the same React UI. There’s no need to choose one over the other. Use
what you’re comfortable with or what works best for a component.

With access to the properties and methods of the child, the parent component can pretty much
do whatever it wants with it. You could think of creating a ref as like being able to implant a chip
into your child that will allow you to remotely control them. But, no one would actually do that
or want to.

Listing 9‑3 shows how to call the DOM focus method on a textarea from its parent component.
The reason to do this is to make sure that the textarea containing the text will have focus when it
mounts so that the user can scroll through it using arrow keys without having to click on it first.

LISTING 9-3:  Calling a DOM method on a child using a ref

import React,{Component} from 'react';

class TextReader extends Component {

 constructor(props) {
 super(props);
 this.textView = React.createRef();
 }

 componentDidMount(){
 this.textView.current.focus();
 }

 render(){
 return (
 <textarea style={{width:'380px',height:'400px'}}
 ref={this.textView}>{this.props.bookText}</textarea>
);
 }

}

export default TextReader;

236  ❘  CHAPTER 9   Refs

Figure 9‑1 shows what the TextReader component looks like rendered in a browser. Notice the high-
light around the text area, which indicates that it has focus.

CREATING A CALLBACK REF

A third way to create a ref is with a callback ref. A callback ref doesn’t use the createRef function or
the useRef hook. Instead, it’s a function that you pass into the ref attribute, which receives the React
component instance or the HTML DOM element as its argument.

Using a ref callback rather than createRef or useRef is useful when the child you’re attaching the
ref to is dynamic. The function you pass into the ref attribute will be called (with the instance or ele-
ment passed into it) when the component mounts, and then it will be called again with null when the
component unmounts.

Listing 9‑4 shows an example of creating a callback ref. Notice the use of the condition in the focus-
TextView method, which allows you to avoid calling the focus method on the ref if the child element
is unmounted.

FIGURE 9-1:  The TextReader component

Creating a Callback Ref  ❘  237

LISTING 9-4:  Creating a callback ref

import {Component} from 'react';

class TextReaderCallback extends Component {

 constructor(props) {
 super(props);
 this.textView = null;

 this.setTextViewRef = element => {
 this.textView = element;
 };

 this.focusTextView = () => {
 if (this.textView) this.textView.focus();
 };
 }

 componentDidMount(){
 this.focusTextView();
 }

 render(){
 return (
 <textarea style={{width:'380px',height:'400px'}}
 ref={this.setTextViewRef}
 value={this.props.bookText} />
);
 }

}

export default TextReaderCallback;

Ref callbacks are often passed to child components as inline functions, as shown in Listing 9‑5.

LISTING 9-5:  Passing a ref callback as an inline function

import {Component} from 'react';

class TextReaderCallback extends Component {

 constructor(props) {
 super(props);
 this.textView = null;

 this.focusTextView = () => {
 if (this.textView) this.textView.focus();
 };
 }

 componentDidMount(){

continues

238  ❘  CHAPTER 9   Refs

 this.focusTextView();
 }

 render(){
 return (
 <textarea style={{width:'380px',height:'400px'}}
 ref={(e)=>this.textView = e}
 value={this.props.bookText} />
);
 }

}

export default TextReaderCallback;

One minor caveat to using the inline ref callback syntax is that it will cause the ref callback to be
executed twice when the component first mounts—once with null, and then again with the element
passed into it. This is not a major concern, but if you want to avoid this extra execution of the call-
back you can simply define the callback in the constructor.

WHEN TO USE REFS

Because they allow you to directly manipulate React components and DOM elements from parent
components, refs are a powerful tool. Certain important tasks in a web application are perfect jobs
for refs. These include:

➤➤ Managing focus

➤➤ Automatically selecting text within a child element

➤➤ Controlling media playback

➤➤ Setting scroll position on a child element

➤➤ Triggering imperative animations

➤➤ Integrating with third-party libraries (such as jQuery, for example)

Although you may not need to perform any of these tasks very often, when you do need them, they’re
impossible or nearly impossible to do simply by passing props.

WHEN NOT TO USE REFS

With great power comes great responsibility. In theory, you could use refs to bypass all the features of
React and just change the contents of elements, call methods of components, change element styles,
and anything else you need to do in your application in an imperative way. But, this would defeat the
purpose of using React.

LISTING 9-5  (continued)

Examples  ❘  239

As a rule, if there’s a way to do something by passing props to children (what we call the “React
Way”) that’s what you should do. Breaking out of the fundamental pattern that makes React work so
well will make your app more complicated, harder to debug, and likely less performant.

EXAMPLES

Finding working examples of some of the use cases for refs on the web can be difficult. So, for the
rest of this chapter, I’ll provide some code that you can study and try out to better understand the
appropriate uses for refs.

Managing Focus
Properly managing focus, especially in a web form, is an important part of web user interface usabil-
ity and accessibility.

The most basic use case for managing focus is shown in Listing 9‑3. The same technique is also com-
monly used to automatically place the cursor into the first field in a login form when it loads.

Another common use for managing focus is to return a user to the same field they were editing before
a modal window was opened or after they save their input into a form and return to it at a later time.

Automatically Selecting Text
Selecting text in a child element can be useful for making components that display text and provide
a button for copying the text. This is often done in applications that generate some kind of a code or
key. Listing 9‑6 shows an example of a text input with a button for copying the contents.

This example also demonstrates how to display a temporary notification in a React component.
After you copy the code, the component updates a state variable called message to display a success
message. This state change triggers the componentDidUpdate lifecycle hook, which uses JavaScript’s
setTimeout method to wait three seconds and then set message back to an empty string, thus
removing the success message.

LISTING 9-6:  Selecting and copying text with a ref

import React,{Component} from 'react';

class CodeDisplay extends Component {

 constructor(props) {
 super(props);
 this.state={message:''};

 this.codeField = React.createRef();
 this.copyCode = this.copyCode.bind(this);
 }

continues

240  ❘  CHAPTER 9   Refs

 componentDidUpdate(){
 setTimeout(() => this.setState({message:''}), 3000);
 }

 copyCode(){
 this.codeField.current.select();
 document.execCommand('copy');
 this.setState({message:'code copied!'});
 }

 render(){
 return (
 <>
 <input value={this.props.yourCode}
 ref={this.codeField} /> {this.state.message}

 <button onClick={this.copyCode}>Copy your Code</button>
 </>
);
 }

}

export default CodeDisplay;

Figure 9‑2 shows the value of the text input selected and the success message that displays right after
you click the button.

FIGURE 9-2:  Selecting text and displaying a temporary message

LISTING 9-6  (continued)

Examples  ❘  241

Controlling Media Playback
HTML’s audio and video elements can be controlled using several DOM methods, including
play, pause, and load. You can attach refs to media elements to use these methods, as shown in
Listing 9‑7.

LISTING 9-7:  A React audio player

import React,{Component} from 'react';

class AudioPlayer extends Component {

 constructor(props) {
 super(props);
 this.mediaFile = React.createRef();
 this.playToggle = this.playToggle.bind(this);
 }

 playToggle(){
 if (this.mediaFile.current.paused){
 this.mediaFile.current.play();
 } else {
 this.mediaFile.current.pause();
 }
 }

 render(){
 return (
 <>
 <audio ref={this.mediaFile}>
 <source src="/music/thebestsongever.mp3" type="audio/mpeg" />
 </audio>

 <button onClick={this.playToggle}>Play/Pause</button>
 </>
);
 }

}

export default AudioPlayer;

Setting Scroll Position
The DOM window.scrollTo method takes coordinates in a document (specified as x and y pixel
values) and scrolls the window to those coordinates. One way to use this is to find out the position
of a certain element in a document (using the offsetTop property) and then scroll the window to
that element.

This can be useful for navigating long documents, or for remembering a user’s position
between sessions.

242  ❘  CHAPTER 9   Refs

Listing 9‑8 demonstrates how to use a ref to get the position of an element and then scroll to that ele-
ment. Previous examples have used class components, so I’ll use a function component for this one.

LISTING 9-8:  Scrolling to an element with a ref

import {useRef} from 'react';

const ScrollToElement = (ref)=>{window.scrollTo(0,ref.current.offsetTop)};

function ScrollToDemo(){

 const bookStart = useRef();

 return (
 <>
 <h1 ref={bookStart}>CHAPTER 1. Loomings.</h1>

 <div style={{width:'300px'}}><p>...</p></div>

 <button onClick={() => ScrollToElement(bookStart)}>
 Scroll to the Beginning
 </button>
 </>
);

}

export default ScrollToDemo;

SUMMARY

In this chapter, you learned about React’s escape hatch, refs. Refs are an important and useful part of
React. Used incorrectly, however, they’re antithetical to the goals and purpose of React and can have
a detrimental effect on your React UI. Fortunately, the use cases for refs are relatively few, and I’ve
covered most of them with examples in this chapter. In this chapter, you learned:

➤➤ What refs are and why they exist.

➤➤ How to create refs in both function and class components.

➤➤ How to use refs to access component and DOM elements from a parent.

➤➤ What callback refs are and how to use them.

➤➤ How to implement basic versions of several of ref’s use cases.

In the next chapter, you’ll learn about another hotly debated and sometimes controversial aspect of
React, namely, how to apply style to React components.

Styling React
How to style React components, and React user interfaces in general, can be a polarizing topic.
There are many ways to handle style in React, and you’re likely to see several of them used side-
by-side on most React projects.

In this chapter, you’ll learn:

➤➤ How to include and use CSS files in React.

➤➤ How to write inline styles in React.

➤➤ How to use CSS Modules.

➤➤ How to use CSS-in-JS.

THE IMPORTANCE OF STYLES

Style in web applications determines how individual elements look, including typefaces, weight
of text, colors, backgrounds, width, and height, for example. It also determines how elements
relate to each other and to the HTML document or browser window—their borders, margins,
alignment, and position. Certain CSS styles create animations. Still others affect how elements
behave and how they look when they’re in different states, such as hovered over, clicked,
focused, and so on.

Even if you don’t add any style at all to your user interface, it’s still affected by the browser’s
default styles, which are rarely ideal. Styles also determine how your user interface will look
on different sized devices, when printed, and even how it will sound when read by a text-to-
speech reader.

With styles determining so much of what the end user’s experience with your application will
be, it’s essential for a developer or a development team to give more than a little thought to how
style will be managed and implemented in a user interface.

10

244  ❘  CHAPTER 10   Styling React

Because React is just JavaScript and because everything in your React user interface will start its life
as JavaScript, you have more options for how to implement style with React than if you were devel-
oping an application using plain old HTML and CSS files.

Using ordinary CSS with React is an option, however, and it’s the option that we’ll talk about first.

IMPORTING CSS INTO THE HTML FILE

The most basic way to style a React user interface is by importing one or more CSS files into the
HTML file that loads React. This can be done as simply as by opening up index.html, which lives
in the public folder in a Create React App project, and adding an HTML link element between the
<head> and </head> tags, as shown in Listing 10‑1.

LISTING 10-1:  Adding an HTML link to the HTML file

<!DOCTYPE html>
<html lang="en">
 <head>
 <meta charset="utf-8" />
 <link rel="icon" href="%PUBLIC_URL%/favicon.ico" />
 <meta name="viewport" content="width=device-width, initial-scale=1" />
 <meta name="theme-color" content="#000000" />
 <meta
 name="description"
 content="Web site created using create-react-app" />

 <link rel="stylesheet" href="%PUBLIC_URL%/css/style.css" />

 <link rel="apple-touch-icon" href="%PUBLIC_URL%/logo192.png" />

 <link rel="manifest" href="%PUBLIC_URL%/manifest.json" />

 </head>
 <body>
 <noscript>You need to enable JavaScript to run this app.</noscript>
 <div id="root"></div>

 </body>
</html>

In Create React App projects, the index.html file is a template, which gets compiled when you run
npm start or npm run build. Variables in the template are surrounded by the % character. So, in the
CSS link added in Listing 10‑1, the %PUBLIC_URL% variable will be replaced with the actual URL
where the application is being served.

To use this method of styling React, just put a CSS file in the right place inside the public directory or
point the link to an external URL (such as a hosted stylesheet or a stylesheet library like Bootstrap).

This method of styling React is useful for providing an overall style to the user interface, or a theme.
However, it should be used carefully, since the styles included in the HTML file will affect every

Using Plain Old CSS in Components  ❘  245

component in your application, and it’s easy to accidentally cause problems lower in the component
tree or create unnecessary complexity by adding styles at this level.

USING PLAIN OLD CSS IN COMPONENTS

Create React App has built into it the ability to load and bundle ordinary CSS files into your user
interface. If you’re familiar with CSS and how to use CSS selectors to apply style to elements, classes,
and IDs, you’ll find using CSS in React comfortable and familiar. Listing 10‑2 shows how to include a
CSS file into a React component and then use the CSS classes.

LISTING 10-2:  Including CSS in a component

import "styles.css";

function ArticleLink(props){

return (

 <div className="article-link">
 <h1 className="title">{props.title}</h1>
 <p className="firstPara">{props.firstPararaph}</p>
 <p>read more</p>
 </div>

);
}

export default ArticleLink;

Importing a stylesheet into a React component has the benefit of being a familiar way to work, and it
also allows you to use existing stylesheets that you may have.

As with importing styles into the HTML file, CSS imported into the components cascades to the
component’s children. For example, Listing 10‑3 shows a stylesheet, a parent component, and a child
component rendered by the parent component. The styles are imported into the parent component,
but the class and element styles defined in the stylesheet are only used in the child.

LISTING 10-3:  Cascading styles in components

/* style.css */
p {
 font-size: 80px;
}

.red {
 color: red;
}

continues

246  ❘  CHAPTER 10   Styling React

// StyledParent.js
import StyledChild from './StyledChild';

import './style.css';

function StyledParent(props){
 return (<StyledChild />)
}

export default StyledParent;

// StyledChild.js
function StyledChild(props){
 return (<p className="red">This is testing whether styles cascade.</p>)
}

export default StyledChild;

The result of rendering StyledParent in your browser is shown in Figure 10‑1.

This trickling down of styles from parent elements to child elements and the complex series of steps
that a browser goes through to determine the priority of different styles is the way that CSS was

FIGURE 10-1:  Cascading styles from parent to child

LISTING 10-3  (continued)

Writing Inline Styles  ❘  247

designed. It can often be useful to be able to apply styles to a tree of elements and to make use of the
CSS cascade to apply styles, but more often it creates confusion and results in components that have
access to far more styles than they actually use.

One way to tame CSS is to only use the class selector. This is an approach used by many CSS librar-
ies, including Bootstrap. By only applying styles using the class selector (which is created using the
“.” symbol in CSS stylesheets and matches the value of the className attribute in JSX) you elimi-
nate the problem of styles that are applied to IDs overriding styles that are applied to classes, and
styles applied to elements overriding classes and IDs, and styles marked as !important overriding
everything.

But, no matter what you do, CSS is not a programming language, and it doesn’t have scope as
programmers understand it or many of the conveniences of programming languages. This is why
many developers who use CSS directly in their components or HTML file use a CSS preprocessor,
such as SASS.

NOTE  A discussion of CSS preprocessors is beyond the scope of this book,
but if you want to learn more, visit sass-lang.com/.

However, React has built into it another way to style components that gives you all of the capabilities
of a CSS preprocessor, without having to learn the language used by the CSS preprocessor: you can
simply use JavaScript to apply style to components.

WRITING INLINE STYLES

React’s built-in DOM elements have a style attribute that accepts a style object as its value. When
you pass DOM style properties into this attribute, those properties will be applied to the resulting
HTML element.

To demonstrate a basic use of the style attribute, Listing 10‑4 shows a React component that
returns a styled paragraph of text.

LISTING 10-4:  Using inline styles in React

function WarningMessage(props){
 return (
 <p style={{color:"red",padding:"6px",backgroundColor:"#000000"}}>
 {props.warningMessage}
 </p>
)
}

export default WarningMessage;

http://sass-lang.com

248  ❘  CHAPTER 10   Styling React

In this example, notice that the style object, which is written as an object literal (using curly brack-
ets) must itself be surrounded by curly brackets to indicate that it’s to be treated as literal JavaScript
rather than JSX, which is why there are double curly brackets around the style properties.

JavaScript Style Syntax
The properties that you can access and manipulate using JavaScript mirror the CSS properties, and
you can do anything using JavaScript styles that you can do with CSS. Because of the differences
between JavaScript and CSS, however, JavaScript styles are written differently.

The first difference is that a CSS rule-set does not follow the rules of JavaScript object literals,
although it does resemble one. In particular, CSS style rules don’t have quotes around the values,
while in JavaScript style objects, quotes are required around strings.

The second difference between CSS rule-sets and JavaScript objects is that the individual rules in CSS
are separated by semicolons, while in JavaScript objects, properties are separated by commas.

The third difference is that CSS property names containing more than one word have hyphens
between the words. In JavaScript, this would result in an error, so JavaScript style properties use
camelCase for multi-word names.

Finally, CSS has the concept of selectors, which is how styles can be selectively applied to only certain
elements. A rule-set attached to a class selector (which is indicated by a . before the name of the rule-
set) will apply to elements that have that class (or className in JSX).

In JavaScript, style objects that aren’t inline styles must be assigned to a variable and that variable can
be used as the value of a DOM element’s style attribute.

Listing 10‑5 shows a CSS rule-set, followed by the JavaScript style object that accomplishes the
same thing.

LISTING 10-5:  CSS rule-sets vs. JavaScript style objects

/* CSS rule-set */
.headingStyle{
 background-color: #999999;
 color: #eee;
 border: 1px solid black;
 border-radius: 4px;
 width: 50%;
}

//JavaScript style object
const headingStyle = {
 backgroundColor: '#999999',
 color: '#eee',
 border: '1px solid black',
 borderRadius: '4px',
 width: '50%'
};

Writing Inline Styles  ❘  249

Why to Use Inline Styles
Inline styles make it easy to see how a component will be styled. If you’re only applying a couple of
style properties to an element, and you’re not going to reuse that particular combination of properties
in another component, writing them as inline styles is easy and fast. Using inline styles also increases
the portability of a component, since the styles are part of the component file and don’t rely on an
external module being present.

Why Not to Use Inline Styles
In a React application with many different components, using inline styles can become a mainte-
nance nightmare. It’s simply a good user interface design practice to reuse certain styles, including
how headings are styled, colors and sizes of buttons, sizes and typefaces of different types of text,
and so forth.

If you were to write the same style object, containing the same style properties, each time you styled a
block of text, you’d soon come to the realization that writing inline style objects is a waste of effort.
At that point, logically, the thing to do is to create variables to store your style objects.

Improving Inline Styles with Style Modules
Rather than writing your style objects directly in the style attribute of each element, you can create
variables to hold the styles, as shown in Listing 10‑6.

LISTING 10-6:  Using variables to hold style objects

function WarningMessage(props){

 const warningStyle = {color:"red",padding:"6px",backgroundColor:"#000000"};

 return (
 <p style={warningStyle}>
 {props.warningMessage}
 </p>
)
}

export default WarningMessage;

Variables created to hold style objects can be kept inside the component, as shown in Listing 10‑6, or
you can put them into separate files and export them using either named exports (if you want to cre-
ate a style library containing the styles for multiple components) or a default export.

Listing 10‑7 shows an example of a style object library containing styles for multiple different
components.

250  ❘  CHAPTER 10   Styling React

LISTING 10-7:  A style object library

export const warningStyle = {color:"red",padding:"6px",backgroundColor:"#000000"};
export const infoStyle = {color:"yellow",padding:"6px",backgroundColor:"#000000"};
export const successStyle = {color:"green",padding:"6px",backgroundColor:"#000000"};

Ignoring how ugly these styles will actually look in reality, they could be saved in a file called
messageStyles.js and then imported individually or as a group into each component that needs to
display a message.

Listing 10‑8 shows how to import an entire style object library into a component that will display
text in a different style, depending on the type of message passed into the component.

LISTING 10-8:  Importing multiple styles

import {warningStyle,infoStyle,successStyle} from './messageStyles.js';

function DisplayStatus(props){
let messageStyle;
switch(props.message.type){
 case 'warning':
 messageStyle = 'warningStyle';
 break;
 case 'info':
 messageStyle = 'infoStyle';
 break;
 case 'success':
 messageStyle = "successStyle";
 break;
 default:
 messageStyle = "infoStyle";
 break;
}

 return (
 <p style={messageStyle}>{props.message.text}</p>
);
}

export default DisplayStatus;

CSS MODULES

CSS Modules give you some of the benefits of using JavaScript style objects while using standard CSS
stylesheets. Specifically, CSS Modules solve the problem of name conflicts and scoping in CSS.

CSS Modules  ❘  251

CSS modules can be written like normal CSS files, and then imported into your components as if they
were JavaScript. In fact, what happens during the compilation of your components is that CSS mod-
ules are converted into JavaScript objects. This gives CSS modules some special powers, which we’ll
talk about in a moment. Listing 10‑9 shows a basic CSS module.

LISTING 10-9:  A CSS Module

/* my-component.module.css */
.bigText {
 font-size: 4em;
}

.redText {
 color: #FF0000;
}

To import the preceding CSS module into a component, make sure to save the file with .module.css
at the end and use the following import statement:

import styles from './my-component.module.css';

When your component is compiled, the classes in the CSS module will be rewritten using a format
called ICSS, which stands for Interoperable CSS.

You can then access the imported styles using dot notation and pass them into the className attrib-
ute, as shown in Listing 10‑10.

LISTING 10-10:  Using a CSS Module

import styles from './my-component.module.css';

function DisplayMessage(props) {

 return (<p className = {styles.redText}>This text is red.</p>);

}

export default DisplayMessage;

CSS Modules isn’t specific to React. It’s a separate specification, which can be used with any front-
end library. However, support for it is built into Create React App, so to use it in your React applica-
tions built using Create React App, you don’t need to do anything special to start using it.

Naming CSS Module Files
Although CSS module files resemble ordinary CSS files, when you use them inside of Create React
App, their filenames must end with .module.css to indicate to the compiler that they need to be
processed as CSS modules.

252  ❘  CHAPTER 10   Styling React

The standard naming convention for CSS module files is to lowercase and hyphenate the component
name that the module will be used in, and then follow that with .module.css.

So, if your React component is named NavBar, the CSS module file for the NavBar component would
be named nav-bar.module.css. You can import the styles contained in the CSS module file using
any name you want, but it’s normal to import them as an object named styles, like this:

import styles from './nav-bar.module.css';

Because each component can import its own styles object, you can write the CSS for any compo-
nent without having to worry that a class name you use for one component’s styles will interfere with
a style having the same name in another component.

The styles inside a CSS module file should use camelCase so that when you use them inside your JSX,
you can access them using dot notation.

Advanced CSS Modules Functionality
CSS module files can be just plain CSS, but they also have some additional capabilities that can make
them more powerful than plain old CSS.

Global Classes
By default, the rules you create in CSS module files are scoped locally to the component you import
the styles into. If you want to create a global rule, you can do so by prefixing the name of the class
with :global, like this:

:global .header1 {
 font-size: 2rem;
 font-weight: bold;
}

In this example, the header1 class will be available to all of your components.

Class Composition
Class composition lets you create new classes in CSS modules by extending existing ones. For exam-
ple, you might have a class named bodyText that determines how standard text in your component
should display. With class composition, different types of text can extend the base bodyText class to
create variations. Class composition in CSS modules uses a special property called composes, which
takes as its value any number of classes that should be used as the starting point for the current class.

Listing 10‑11 shows an example of using class composition to create a firstParagraph class based
on bodyText.

LISTING 10-11:  Using class composition

.bodyText {
 font-size: 12px;
 font-family: Georgia serif;
 color: #333;

CSS-in-JS and Styled Components  ❘  253

 text-indent: 25px;
}

.firstParagraph {
 composes: bodyText;
 text-indent: 0px;
}

You can also import styles from other stylesheets to use as the base class for a new style, as shown in
Listing 10‑12.

LISTING 10-12:  Basing a new class on an external style

.checkoutButton {
 composes: button from './buttons';
 background-color: #4CAF50;
 font-size: 32px;
}

CSS-IN-JS AND STYLED COMPONENTS

CSS-in-JS refers to a pattern of composing styles using JavaScript. Several third-party libraries exist
for implementing CSS-in-JS. Perhaps the most popular and commonly used is Styled Components.

Because Styled Components is a separate library, which is not installed by Create React App by
default, the first step in using it is to install it:

npm install --save styled-components

Once installed, you can include the styled-components package into any component where you
want to use it.

Styled Components uses tagged template literals to let you write new components using CSS. See the
“JavaScript Lesson: Tagged Template Literals” sidebar in this chapter to learn more about this rela-
tively new feature of JavaScript.

Styled Components creates a styled component that you can wrap around the elements you want
to style. The result is that your JSX code is free from style objects, class names, and style attributes,
because all the styling is done with reusable styled elements. Styled Components is a declarative way
of styling React components, as we say.

Listing 10‑13 shows a simple example of using Styled Components to create a component called
Heading that applies styles to its contents.

LISTING 10-13:  Using Styled Components

import styled from 'styled-components';

const Heading = styled.h1`

continues

254  ❘  CHAPTER 10   Styling React

 width: 50%;
 margin: 0 auto;
 font-size: 2.2em;
 color: #333300;`

const ExampleComponent = ()=>{
 return(
 <Heading>Example Heading</Heading>
);
}

export default ExampleComponent;

Styled Components can be defined in separate files just like other components and then imported
into multiple files, they can be nested to create more complex components through composition, and
because they’re JavaScript, they can be scripted.

JAVASCRIPT LESSON: TAGGED TEMPLATE LITERALS

Tagged template literals are a more advanced form of template literals, so I’ll start by
reviewing template literals.

Template literals use the backtick character (`) to turn a JavaScript string into a tem-
plate. A string surrounded by backticks can include JavaScript expressions by sur-
rounding the expression with ${}. For example, if you want to dynamically generate
a message to display after someone has placed an order on your website, you could
use something like the following:

const thankYouMessage = `Thank you, ${customer.name}, for your
order.`;

Prior to template literals, the preceding code had to be written like this:

const thankYouMessage = "Thank you, " + customer.name + " for
your order.";

Tagged template literals let you parse a string with a function. The tag function
takes a template literal as its argument, and returns a new string. For example, if you
have a function that reverses the letters in a string, you could use it as a tag func-
tion, like this:

reverseString`Bet you can't read this.`;

Because the tag function only takes one argument, the parentheses around the argu-
ment are optional and are usually omitted when using tagged templates.

LISTING 10-13  (continued)

Summary  ❘  255

SUMMARY

Because React doesn’t give developers many rules about exactly how to structure user interfaces,
you’re free to mix and match solutions and patterns and find out what works best. Nowhere is
this more apparent than in the multiple approaches to styling components that have been devised
for React.

In this chapter, you learned:

➤➤ How to import CSS into components.

➤➤ How to use inline styles.

➤➤ How to import and use JavaScript style modules.

➤➤ How to write and use CSS Modules.

➤➤ About CSS-in-JS.

In the next chapter, you’ll learn how to use hooks to give function components most of the same
functionality as class components.

If you include variables in the string that you pass into a tag template, those vari-
ables are passed to the function as arguments. In the following example, the tag
function receives a sentence with a price variable that’s used to display a custom-
ized message:

let orderTotal = 42;

function determineShipping(strings, price) {
 let str0 = strings[0]; // "Your order "
 let str1 = strings[1]; // " for free shipping."

 let qualifyStr;
 if (price > 50){
 qualifyStr = 'qualifies';
 } else {
 qualifyStr = 'does not qualify';
 }

 return `${str0}${qualifyStr}${str1}`;
}

let output = determineShipping`Your order ${orderTotal} for
free shipping.`;

console.log(output);
// Your order does not qualify for free shipping.

Introducing Hooks
React Hooks give function components access to much of the functionality of React that was
previously only available with class components. Hooks also give developers a simpler syntax
for using state, performing tasks in response to lifecycle events, and reusing code.

In this chapter, you’ll learn:

➤➤ What hooks are.

➤➤ General rules and best practices for using hooks.

➤➤ How to use React’s built-in hooks.

➤➤ How to write custom hooks.

➤➤ How to find and use other custom hooks.

WHAT ARE HOOKS?

Hooks are functions that are part of the React library which give you access to features of
React that were previously only available by extending the React.Component class. These
features include state and lifecycle, as well as refs and caching of function results (aka memoiza-
tion). Hooks “hook into” React from functions.

WHY WERE HOOKS INTRODUCED?

Hooks were introduced to solve several problems with the React library. The first is that React
didn’t have a simple way to share reusable functionality between components. Prior to React
Hooks, solutions such as higher-order components and render props (both of which are covered
in Chapter 12) were commonly used (and still are) for sharing functionality. However, higher-
order components tend to result in code and component trees that are difficult to read and
overly complex. Code that renders multiple levels of components within components within

11

258  ❘  CHAPTER 11   Introducing Hooks

components in order to provide reusable functionality to a deeply buried component is what is com-
monly known in the React world as “wrapper hell.” Figure 11‑1 shows a view of the React Developer
Tools for a component tree that’s suffering badly from this condition.

React’s other big problem prior to hooks was that people found using classes to be unnecessarily
confusing and verbose. If you’ve made it this far into the book, I don’t need to explain this one to you
again. Most of the time, what requires 50 lines of code in a class can be done with a fraction of that
by using a function.

FIGURE 11-1:  Wrapper hell

The Built-in Hooks  ❘  259

As you’ll see, beyond just having the ability to accomplish the same thing with less code, hooks also
give you the ability to split up your components into smaller parts by creating custom hooks.

Now that you understand the motivation for hooks, let’s take a look at the specifics.

RULES OF HOOKS

Although different hooks accomplish different things, all of them have two important rules which
must be followed:

1.	 Hooks can only be used in function components.

2.	 Hooks must be called at the top level of your function components—meaning inside the
function, but not inside of a statement or inner function. Because hooks need to run just once
every time your function component runs, they can’t be called from inside of conditional
statements, loops, or nested functions.

THE BUILT-IN HOOKS

React has 10 built-in hooks that you can use without needing to install anything else. These built-in
hooks are:

➤➤ useState

➤➤ useEffect

➤➤ useContext

➤➤ useReducer

➤➤ useCallback

➤➤ useMemo

➤➤ useRef

➤➤ useImperativeHandle

➤➤ useLayoutEffect

➤➤ useDebugValue

The first three hooks—useState, useEffect, and useContext—are the basic hooks. They’re the
ones you’ll use most often and that are therefore the most important ones to understand.

The other seven hooks are called “Additional Hooks” in the React documentation. These are hooks
that you may only use occasionally (or never) or which are variations on the three basic hooks. There
are some really useful things (and a couple that are essential, in my opinion) in this set of hooks,
however, so I’m going to spend some time covering them and showing examples of how to use
them as well.

260  ❘  CHAPTER 11   Introducing Hooks

Managing State with useState
On the first render of a function component containing it, the useState hook creates a stateful
value from the argument passed to it, along with the function for updating it. After the first render,
useState returns its most recent value after updates are applied. Like class properties (such as this
.state), values created with useState persist between renders.

As with all of the hooks, the first step in using useState is to import it:

import {useState} from 'react';

Once you import useState into a component, you can use it as many times as you need to create
stateful variables. React keeps track of stateful values in a function component based on the order
in which they appear in the code, which is how it can return the latest value for each stateful vari-
able each time the function renders. This is why hooks can’t be used inside of conditional or looping
code—doing so would cause the hooks in a function component to not always be called, or to not be
called in the same order with each render, which would cause React to return unexpected values.

Listing 11‑1 shows a simple example of using useState to keep track of the score and the current
guess in a number guessing game.

LISTING 11-1:  A number guessing game with useState

import {useState} from 'react';

function NumberGuessing(props){
 const [score,setScore] = useState(0);
 const [guess,setGuess] = useState('');

 const checkNumber =()=>{
 const randomNumber = Math.floor(Math.random() * 10)+1;
 if (Number(guess) === randomNumber){

IMPORTING ALL THE HOOKS

In reality, since hooks are part of the React library, you can import all of the hooks
at once by importing the entire React library and then referencing them using dot
notation, like this:

import React from 'react';
const [state,setState] = React.useState();

Although there’s no real problem with using hooks this way, it’s more common, and
perhaps more efficient, to import just the hooks you need individually using named
imports. If your component makes use of multiple hooks, separate them with com-
mas inside of the curly braces, like this:

import {useState,useEffect,useCallback} from 'react';

The Built-in Hooks  ❘  261

 setScore(()=>score+1);
 }
 }

 return (
 <>
 What number (between 1 and 10) am I thinking of?
 <input value={guess}
 type="number"
 min="1"
 max="10"
 onChange={(e)=>setGuess(e.target.value)}
 />
 <button onClick={checkNumber}>Guess!</button>
 <p>Your score: {score}</p>
 </>
)
}

export default NumberGuessing;

In the preceding example, the user’s guess is updated using an inline event handler in the onChange
event listener when the user enters a number into the number input field.

When the button is clicked, the checkNumber function generates a random number between 1 and 10
and then compares that number with the latest value stored in the guess stateful variable.

One important thing to notice with the comparison is that I used the Number function to convert
guess to a number. This is necessary because even numeric values from <input> elements are stored
in the browser as strings. The random number variable is of the number data type, however, so to be
able to do a strict comparison between them, one of them has to be converted.

If the two numbers match, the score variable is updated to its current value plus 1.

JAVASCRIPT LESSON: STRICT EQUALITY

JavaScript has two equality operators, == and ===. The difference between them is
that == will disregard the data type when comparing, and the === operator will com-
pare both the value and the data type of the values being compared.

If you’re coming to JavaScript from another programming language, the behavior of
the == operator will seem strange and mysterious. It’s simply not correct that “0” is
equal to 0, for example.

In fact, the existence of the == operator (and its opposite, the != operator) in
JavaScript is widely regarded as a flaw in the language, because it has the potential
to create mysterious behavior and errors. It is therefore best to avoid using == and to
always perform strict equality comparisons.

262  ❘  CHAPTER 11   Introducing Hooks

Setting the Initial State
To set the initial state of a stateful variable created using useState, pass the initial value into
useState. The useState hook accepts a single argument, which can be any of JavaScript’s data types
(or an expression that evaluates to a single value) or a function.

If you don’t pass an argument into useState, the resulting stateful variable will be created with an
initial value of undefined.

If the initial state is an expression, that expression will still run on each render, but the result will be
ignored after the first render. For this reason, if your initial state is the result of an expensive calcu-
lation (for example, it requires a network request), pass a function that returns the initial value to
useState, as shown here:

const [mailingList,setMailingList] = useState(()=>{
 const initialMailingList = loadMailingList(props);
 return initialMailingList;
});

The function will only be run on the first render of the component. React calls this lazy initial state.

Using the Setter Function
Like the setState function in a class component, the setter function returned by useState will
trigger a render. If you pass a setter function down to a child component and call it from that child
component, it will still operate on the original variable it was created with, as demonstrated by
Listing 11‑2.

LISTING 11-2:  Setter functions are bound to their creator components

import {useState} from 'react';

function ButtonContainer(){

 const [count,setCount] = useState(0);

 return (
 <>
 <MyButton count = {count} setCount = {setCount} />

 count value: {count}
 </>
);
}

function MyButton(props){
 return (
 <button onClick = {()=>props.setCount(props.count+1)}>
 Add 1 to the Count
 </button>
);
}

export default ButtonContainer;

The Built-in Hooks  ❘  263

Figure 11‑2 shows the result of rendering the ButtonContainer component and clicking the button
(which is rendered by the MyButton child component).

The setter function returned by useState can be used in two different ways: by passing it a function
or by passing it a single value.

Passing a Value to a Setter
When you pass a single value (or an expression that evaluates to a single value) into a useState set-
ter function, the stateful variable attached to that useState function call will be set to the new value
you pass it:

const [guess,setGuess] = useState(''); // guess === ''
setGuess('7'); // guess === '7'
setGuess('3'); // guess === '3'

Unlike when you use setState in a class component, useState’s setter functions do not merge
objects. If you pass an object into a useState setter function, the variable connected to that
useState function will be set to exactly that object.

Passing a Function to a Setter
The other way to use useState setter functions is to pass them a function. This is the method that
should be used when the new state of the variable is based on the previous state of the variable.
Passing a function ensures that the setter function will always receive the latest value of the variable.

FIGURE 11-2:  Passing a setter function as a prop

264  ❘  CHAPTER 11   Introducing Hooks

The function you pass to a setter function will receive the previous value of the stateful variable as
an argument, and it’s common to name this argument prev or the name of the variable with prev
before it:

const [score,setScore] = useState(0); // score === 0
setScore((prevScore)=>prevScore+1); // score === 1

Setter Function Value Comparison
If the value that you pass into a setter function is the same as the current value of the state variable,
the setter function will “bail out” without re-rendering the component’s children.

Hooking into the Lifecycle with useEffect
The useEffect hook accepts a function, which it will run after each render of the function
component by default. The useEffect hook can be used to simulate the componentDidMount(),
componentDidUpdate(), and componentWillUnmount() lifecycle methods in function components.

The purpose of useEffect is to allow you to run imperative code that may have side effects inside a
function component. These side effects are the types of things that aren’t otherwise allowed in func-
tion components, such as network requests, setting timers, and manipulating the DOM directly. The
reason these types of operations aren’t otherwise possible in function components is that function
components are essentially just the render method of a component. Side effects shouldn’t be done in
the render method, even in class components, because the render method is likely to overwrite the
results of any side effects. Instead, side effects should be performed after the render method has run
and the DOM has been updated.

This is why side effects are handled inside of lifecycle methods, such as constructor(),
componentDidMount(), and componentDidUpdate() in class components.

JAVASCRIPT LESSON: SIDE EFFECTS

The term “side effects” comes up frequently in React, but it’s not a React-specific
term. In computer science, a side effect is a result of an impure function. If you recall,
a pure function is one whose return value is always the same when given the same
arguments, and that doesn’t do anything that lasts past the running of the function
except return a value.

Anything that a function does that has an effect outside of the function, other than
producing a return value, is a side effect.

Side effects in a browser-based application can include:

➤➤ Modifying global variables.

➤➤ Making a network request.

➤➤ Changing the DOM.

➤➤ Writing to a database or a file.

➤➤ Modifying an argument.

The Built-in Hooks  ❘  265

Using the Default useEffect Behavior
In its most basic form, useEffect simply accepts a function and executes it after each render is com-
plete, as shown in Listing 11‑3.

LISTING 11-3:  The most basic form of useEffect

import {useEffect,useState} from 'react';

function RenderCounter(){

 const [count,setCount] = useState(0);

 useEffect(()=>{console.log(count)});

 return(
 <>
 This component will count how many times it renders.
 <button onClick={()=>setCount((prev)=>prev+1)}>Update State</button>
 </>
);
}

export default RenderCounter;

When you run the component in Listing 11‑3, it will count each time the function passed to
useEffect runs and log the current count to the browser’s JavaScript console.

This use of useEffect is similar to if you had passed this same function into both the
componentDidMount() and the componentDidUpdate() lifecycle methods in a class component.
However, there is an important difference between these lifecycle methods and how useEffect
works. Namely, the timing of when a class component’s lifecycle methods run and when useEffect
runs are different. Most of the time this isn’t an issue, but in some cases it can cause problems or
glitches in the layout in the browser. I’ll discuss this and how to solve it when I cover the
useLayoutEffect hook.

Cleaning Up After Effects
If you use useEffect to set up subscriptions, set event listeners, or create timers, you run
the risk of introducing memory leaks into your React application. In class components, the
componentWillUnmount() lifecycle method is used for cleaning up and avoiding memory leaks, as
you saw in Chapter 4.

To clean up after effects in function components you can return a function from the function passed
into useEffect. This function will run before the component is removed from the user interface. In
addition, it will also run before every update of the component.

Although it may seem inefficient for the cleanup function to run before every update of a component,
if you think about how function components work, you’ll understand why this is necessary. Since
JavaScript functions aren’t persistent, effects will run every time a component renders. If you’re creat-
ing a subscription to a data source, or a timer, this means that a new timer or subscription will be

266  ❘  CHAPTER 11   Introducing Hooks

created each time the component renders. If it renders multiple times and there’s nothing cleaning up
the multiple timers or subscriptions, you’ll have a memory leak.

Using a cleanup function in useEffect is optional.

Customizing useEffect
There are times when you don’t want to run an effect on every render, but instead only on the initial
render, or only when a specific value changes. To customize the behavior of useEffect, you can pass
it an optional second argument. The second argument is an array of values that the effect depends on.

For example, Listing 11‑4 shows a component that starts a timer and uses the default
useEffect behavior. With the default useEffect behavior, this timer is re-created each time the
component renders.

LISTING 11-4:  Starting a timer with each render

import {useEffect} from 'react';

function TimerFun(){

 useEffect(() => {
 let time = 0;
 const interval = setInterval(() => {
 console.log(time++);
 }, 1000);
 return () => clearInterval(interval);
 });

 return (<p>Check the console to see the timer.</p>);
}

export default TimerFun;

Since this component doesn’t use state or accept any props, there’s no reason for it to re-render, so the
timer will continue to increment and log a higher number each second for as long as the component is
mounted in the browser window.

If this component were to re-render, however, the default behavior of useEffect would cause the
cleanup function to run and a new timer to be created with each render, as shown in Listing 11‑5.

LISTING 11-5:  Creating a new timer with each render

import {useEffect,useState} from 'react';

function TimerRestartFun(props){

 const [count,setCount] = useState(0);

The Built-in Hooks  ❘  267

 useEffect(() => {
 let time = 0;
 const interval = setInterval(() => {
 console.log(time++);
 }, 1000);
 return () => clearInterval(interval);
 });

 return (
 <p>Check the console to see the timer.
 <button onClick={()=>setCount((prev)=>prev+1)}>{count}</button>
 </p>
);
}

export default TimerRestartFun;

Each time you click the button in the preceding example component, the state changes and the return
value changes, which causes the component to render, which causes a new timer to start, as shown in
Figure 11‑3.

But what if you want to create a game that runs a timer to test how quickly you can click the button?
One way to do this would be to only start the timer after the component first mounts, rather than
after every render. The way to do this with useEffect is to pass it an empty array as the second argu-
ment, as shown in Listing 11‑6.

FIGURE 11-3:  Starting a new timer with each render

268  ❘  CHAPTER 11   Introducing Hooks

LISTING 11-6:  Passing an empty array to only run useEffect on mount

import {useEffect,useState} from 'react';

function TimerOnceFun(props){

 const [count,setCount] = useState(0);

 useEffect(() => {
 let time = 0;
 const interval = setInterval(() => {
 console.log(time++);
 if(time===10){
 console.log(`time's up!`);
 clearInterval(interval);
 }
 }, 1000);
 return () => clearInterval(interval);
 },[]);

 return (<p>Check the console to see the timer.
 <button onClick={()=>setCount((prev)=>prev+1)}>{count}</button>
 </p>);
}

export default TimerOnceFun;

With the effect only running when the component mounts, the render caused by incrementing the
count variable no longer creates a new timer, as shown in Figure 11‑4.

FIGURE 11-4:  Running an effect only after mounting

The Built-in Hooks  ❘  269

Passing an empty array as the second argument of useEffect causes it to simulate the behavior of
the componentDidMount() lifecycle method, and makes it a good place to put fetch requests for
data that won’t change during the life of the component, for example. The empty dependency array
works because the dependency array’s job is to say, “run the function when one of these values has
changed.” If there are no values in the dependency array, the effect only runs when it’s first created.

But, what if you wanted to change the game so that the timer could be restarted when the user wants,
or when the count gets up to a certain number, for example? What you need is to conditionally run
useEffect. To do this, you can make useEffect depend on one or more values that will determine
when it runs, as shown in Listing 11‑7.

LISTING 11-7:  Specifying useEffect’s dependencies

import {useEffect,useState} from 'react';

function TimerConditionalFun(props){

 const [count,setCount] = useState(0);
 const [gameNumber,setGameNumber] = useState(0);

 useEffect(() => {
 let time = 0;
 const interval = setInterval(() => {
 console.log(time++);
 if(time===10){
 console.log(`time's up!`);
 clearInterval(interval);
 }
 }, 1000);
 return () => clearInterval(interval);
 },[gameNumber]);

 return (
 <>
 <h1>Game Number {gameNumber}</h1>
 <p>Click as fast as you can!
 <button onClick={()=>setCount((prev)=>prev+1)}>{count}</button>
 </p>
 <p>
 <button onClick={()=>setGameNumber((prev)=>prev+1)}>New Game</button>
 </p>
 </>
);
}

export default TimerConditionalFun;

When the component in Listing 11‑7 mounts, the timer will start, and it will only be restarted when
the value of gameNumber changes.

270  ❘  CHAPTER 11   Introducing Hooks

Even when the benefits and results of conditionally running an effect aren’t as apparent as those
in Listing 11‑7, specifying the dependencies of an effect can often be a way to increase the perfor-
mance of your user interface by eliminating unnecessary renders of components, as you’ll see in the
next section.

Running Asynchronous Code with useEffect
Because useEffect is asynchronous and runs after the component has rendered, it’s the ideal place to
perform asynchronous tasks such as fetching data. Listing 11‑8 shows a postal code lookup compo-
nent that uses an effect hook to look up the U.S. city and state whenever the ZIP code entered into an
input field changes.

LISTING 11-8:  Asynchronous requests with useEffect

import {useEffect, useState} from 'react';

function ShippingAddress(props){
 const [zipcode,setZipcode] = useState('');
 const [city,setCity] = useState('');
 const [state,setState] = useState('');

 const API_URL = 'https://api.zip-
codes.com/ZipCodesAPI.svc/1.0/QuickGetZipCodeDetails/';
 const API_KEY = 'DEMOAPIKEY';

 const updateZip = (e)=>{
 e.preventDefault();
 setZipcode(e.target.zipcode.value);
 }

 useEffect(()=>{
 if (zipcode){
 const loadAddressData = async ()=>{
 const response = await fetch(`${API_URL}${zipcode}?key=${API_KEY}`);
 const data = await response.json();
 setCity(data.City);
 setState(data.State);
 }

 loadAddressData();

 }
 },[zipcode]);

 return (
 <form onSubmit={updateZip}>
 Zipcode: <input type="text" name="zipcode" />
 <button type="submit">Lookup City/State</button>

 City: {city}

 State: {state}

The Built-in Hooks  ❘  271

 </form>
)
}

export default ShippingAddress;

The result of running the component in Listing 11‑8 is shown in Figure 11‑5.

This example uses a number of the techniques that you’ve learned about in the last couple of
chapters, plus a couple of new ones, so let’s take a walk through the code step by step:

1.	 On its initial render, the zipcode, city, and state variables are set to empty strings. The
useEffect hook runs, but the conditional statement that checks whether zipcode has a
value that evaluates to a Boolean true prevents the inner function, loadAddress(), from
being created or running.

2.	 The user can enter text into an uncontrolled input. Because the input is uncontrolled, it
doesn’t cause the UI to render and useEffect doesn’t run. If this input were controlled, the
effect would run on each keystroke because the value of zipcode would be changing.

3.	 When the user clicks the button, the zipcode state variable is set by the
updateZip() function.

4.	 The change to the zipcode variable causes a render. Because zipcode is listed as a depend-
ency for the useEffect hook, the effect runs.

FIGURE 11-5:  Performing an asynchronous request using useEffect

272  ❘  CHAPTER 11   Introducing Hooks

5.	 This time, zipcode has a value that evaluates to true, so the inner function is created and
then runs.

6.	 The loadAddress() function is an async function. Using the async keyword before the
function definition allows the function to use the await statement to perform asynchro-
nous tasks. In the case of this function, it will call the fetch command and then wait for
a response. When a response is received, the json() command reads the response into an
object named data.

7.	 The data from the API is used to set the values of the city and state stateful variables. This
causes another render of the component. The zipcode hasn’t changed, so the useEffect
hook won’t run.

This component illustrates how to use effect dependencies to eliminate unnecessary renders, which
are one of the most common types of performance problems in React components. It’s possible that
this component would still function without the dependency array, but it would make many unnec-
essary API requests, which would slow down your component (at the least) and possibly cost you
money if the API charges you for requests.

Subscribing to Global Data with useContext
Global data is data that’s used by all or many components in a program, such as a theme or user pref-
erences. It can be a hassle to have to pass global data from parent components to child components
for every component in an React app—especially when your component tree has multiple levels.

React Context provides a way to share global data between components without having to manually
pass values as props. The useContext hook accepts a Context object as its argument and returns the
most recent value of that object.

NOTE  Chapter 17 covers the React Context API in detail, along with when and
exactly how to use it.

One example of global data that can be passed to child components using Context is a style
theme. A theme refers to styles that are used by multiple components to give them a common look
within an app.

Listing 11‑9 shows an example of using the useContext hook in the child component to subscribe to
a Context object.

LISTING 11-9:  Using Context with the useContext hook

import { ThemeContext } from './theme-context'

function App() {
 const { theme } = React.useContext(ThemeContext)

The Built-in Hooks  ❘  273

 return (
 <>
 <header
 className="App-header"
 style={{ backgroundColor: theme.backgroundColor, color: theme.color }}
 >
 <h1>Welcome to my app.</h1>
 </header>
 </>
)
}

export default App;

Combining Logic and State with useReducer
The useReducer hook is an alternative to useState that’s useful for complex state updates or situa-
tions where the new state depends on the previous state. Whereas useState takes just an initial state
as its argument, useReducer takes an initial state and a reducer as its arguments. A reducer is a pure
function that takes the current state and an object called an action and returns the new state. In other
words, here’s the signature of a reducer function:

(state, action) => newState

The useReducer hook returns a value and a dispatch function. A dispatch function can be used
in response to events, but instead of taking a value to set the stateful variable to, it takes an action
object. An action object has a type and an optional payload.

Using reducers is quite a bit more complicated than simple state updates, but once you see some
examples, they become much clearer. Listing 11‑10 shows our old friend the Counter component, but
rewritten to use a reducer.

LISTING 11-10:  A Counter with useReducer

import {useReducer} from 'react';

const initialState = {count: 0};

function reducer(state, action) {
 switch (action.type) {
 case 'increment':
 return {count: state.count + 1};
 case 'decrement':
 return {count: state.count - 1};
 default:
 throw new Error();
 }
}

function Counter() {
 const [state, dispatch] = useReducer(reducer, initialState);

continues

274  ❘  CHAPTER 11   Introducing Hooks

 return (
 <>
 Count: {state.count}
 <button onClick={() => dispatch({type: 'decrement'})}>-</button>
 <button onClick={() => dispatch({type: 'increment'})}>+</button>
 </>
);
}

export default Counter;

In Listing 11‑10, the action only has a type property. But, if you wanted to have a more advanced
counter, you could add a payload that could be used to indicate how much to increment or decrement
the counter by, as shown in Listing 11‑11.

LISTING 11-11:  Passing a payload to a reducer

import {useReducer} from 'react';
const initialState = {count: 0};

function reducer(state, action) {
 switch (action.type) {
 case 'increment':
 return {count: state.count + action.payload};
 case 'decrement':
 return {count: state.count - action.payload};
 default:
 throw new Error();
 }
}

function Counter() {
 const [state, dispatch] = useReducer(reducer, initialState);
 return (
 <>
 Count: {state.count}
 <button onClick={() => dispatch({type: 'decrement', payload:4})}>-4</
button>
 <button onClick={() => dispatch({type: 'increment', payload:4})}>+4</
button>
 </>
);
}

export default Counter;

LISTING 1-10  (continued)

The Built-in Hooks  ❘  275

Memoized Callbacks with useCallback
Functions that you define in components are normally re-created with each render. This is
not usually a problem. However, sometimes you do need to (or should for performance reasons)
return a memoized version of a function to keep it available between renderings. This is where
useCallback comes in.

Listing 11‑12 shows the most common use case for useCallback. In this example, the useEffect
hook should call a function passed into it (which we call a callback function) when the value of
the phoneNumber variable changes. The useEffect hook has two dependencies—the function and
the variable.

Because callback functions are re-created on each render, the effect in this example will still call its
internal function each time the component renders.

Listing 11-12  Function dependencies cause unnecessary renders

import {useEffect,useState,useRef} from 'react';

function CallMe(props){

 const [phoneNumber,setPhoneNumber] = useState();
 const [currentNumber,setCurrentNumber] = useState();

 const phoneInputRef = useRef();

 const handleClick = (e)=>{
 setPhoneNumber(currentNumber);
 }

 const placeCall = () => {
 if(currentNumber){
 console.log(`dialing ${currentNumber}`);
 }
 };

 useEffect(() => {
 placeCall(phoneNumber);
 },[phoneNumber,placeCall]);

 return(
 <>
 <label>Enter the number to call:</label>
 <input type="phone" ref={phoneInputRef}
onChange={()=>{setCurrentNumber(phoneInputRef.current.value)}}/>
 <button onClick={handleClick}>
 Place Call
 </button>

continues

276  ❘  CHAPTER 11   Introducing Hooks

 <h1>{currentNumber}</h1>
 </>
);
}

export default CallMe;

If you try to run the preceding component using Create React App, you’ll get a warning in the con-
sole, as shown in Figure 11‑6.

When you type into the input field, you’ll see that the placeCall() function is called each time the
component renders, which happens every time you type a character.

As the warning message tells you, there are two solutions to this problem. The first is to just define
the placeCall() function inside of the useEffect hook and then remove it from the dependencies
list, like this:

useEffect(() => {
 const placeCall = () => {
 if(phoneNumber){
 console.log(`dialing ${phoneNumber}`);
 }
 };

FIGURE 11-6:  Unnecessary renders warning due to a function dependency

LISTING 11-12  (continued)

The Built-in Hooks  ❘  277

 placeCall(phoneNumber);

 },[phoneNumber]);

The other solution, which is the correct one if you’re going to use the placeCall() function in more
than one place, is to memoize the callback function using useCallback, like this:

 const placeCall = useCallback(() => {
 if(phoneNumber){
 console.log(`dialing ${phoneNumber}`);
 }
 },[phoneNumber]);

The useCallback hook creates a persistent version of the function that will only be re-created when
the phoneNumber variable changes. With this change, the useEffect hook will behave the way you
want it to—only calling the inner function when the value of phoneNumber changes—as shown in
Listing 11‑13.

LISTING 11-13:  Memoized callbacks fix the unnecessary effect problem

import {useEffect,useState,useRef,useCallback} from 'react';

function CallMe(props){

 const [phoneNumber,setPhoneNumber] = useState();
 const [currentNumber,setCurrentNumber] = useState();

 const phoneInputRef = useRef();

 const handleClick = (e)=>{
 setPhoneNumber(currentNumber);
 }

 const placeCall = useCallback(() => {
 if(phoneNumber){
 console.log(`dialing ${phoneNumber}`);
 }
 },[phoneNumber]);

 useEffect(() => {
 placeCall(phoneNumber);
 },[phoneNumber,placeCall]);

 return(
 <>
 <label>Enter the number to call:</label>
 <input type="phone"
 ref={phoneInputRef}
 onChange={()=>{setCurrentNumber(phoneInputRef.current.value)}}
 />
 <button onClick={handleClick}>
 Place Call

continues

278  ❘  CHAPTER 11   Introducing Hooks

 </button>
 <h1>{currentNumber}</h1>
 </>
);
}

export default CallMe;

Caching Computed Values with useMemo
The useMemo hook memoizes (caches) values between renderings of a function component. It works
the same way as useCallback, except that it can cache any value type, not just functions.

As with useCallback, there are two reason to use useMemo:

➤➤ To solve problems with unnecessary renders.

➤➤ To solve performance problems related to computationally expensive calculations.

Solving Unnecessary Renders
I covered the first case already in the “Memoized Callbacks with useCallback” section. The issue
comes up when you have an object, array, or function serve as a dependency for a function that
should only be run when its dependencies change.

In JavaScript, when you create two objects (or functions, or arrays) with exactly the same properties,
the two objects are not equal to each other. You can test this by opening your browser’s JavaScript
console and executing the following expressions:

{} === {}
[] === []
() => {} === () => {}

In each case, the result will be false, as shown in Figure 11‑7.

FIGURE 11-7:  Testing referential equality

LISTING 11-13  (continued)

The Built-in Hooks  ❘  279

Because of this, using an object, array, or function in a dependency array will result in the function
running on every render of the function component. Just as useCallback is the solution for callback
functions, useMemo is the solution to unnecessary renders due to object or array dependencies.

Solving Performance Problems
Normally, JavaScript (and therefore calculations within React) is very fast. However, in rare cases, or
when you do encounter a performance problem due to a computationally expensive operation,
useMemo can be used to solve it.

For example, the component in Listing 11‑14 generates a chart from a large set of data. By using
useMemo to cache the chart, you can prevent it from being regenerated each time the component ren-
ders. Instead, it will only be generated when the data supplied to it changes.

LISTING 11-14:  Solving performance problems with useMemo

import {useMemo} from 'react';
import {chartGenerator} from 'some-chart-library';

function Chart(props){

 const giantChart = useMemo(()=>{
 return chartGenerator(props.chartData);
 },[props.chartData]);

 return {giantChart};
}

export default Chart;

Accessing Children Imperatively with useRef
The useRef hook returns a ref object with a mutable property named current. One use for a ref
object is to imperatively access the DOM. When a DOM node that a ref is attached to changes, the
ref object’s current property is updated. Changes to a ref do not cause the component to re-render.

Listing 11‑15 shows a component that uses a ref to get the value of an uncontrolled <textarea> in
order to count the number of words in it.

LISTING 11-15:  Getting the value of a textarea and counting its words

import {useState,useRef} from 'react';

function WordCount(props){

 const textAreaRef = useRef();
 const [wordCount,setWordCount] = useState(0);

continues

280  ❘  CHAPTER 11   Introducing Hooks

 const countWords = () => {
 const text = textAreaRef.current.value;
 setWordCount(text.split(" ").length);
 }

 return (
 <>
 <textarea ref={textAreaRef} />

 <button onClick={countWords}>Count Words</button>
 <p>{wordCount} words.</p>
 </>
)
}

export default WordCount;

Customizing Exposed Values with useImperativeHandle
The useImperativeHandle hook lets you create a “handle” or custom name for a value exposed to a
parent component using a ref. This is useful when using React.forwardRef to forward a ref attrib-
ute from one component to its child.

For example, in Listing 11‑16, a component called CountingBox is created that contains a
<textarea>. The ref attribute passed into the CountingBox component will be forwarded and
attached to the <textarea>. The useImperativeHandle hook is then used to make a new property
of the ref.current object (called count in this case) available to the parent component.

LISTING 11-16:  Customizing a value exposed by a ref

import {useState,useRef,useImperativeHandle,forwardRef} from 'react';

const CountingBox = forwardRef((props, ref) => {

 const [text,setText] = useState('');

 useImperativeHandle(ref, () => {
 return {count: text.split(" ").length}
 },[text]);

 return (
 <>
 <textarea value={text} onChange={(e)=>setText(e.target.value)} />
 </>);
});

function TextEdit(props){

 const countingBoxRef = useRef();
 const [wordCount,setWordCount] = useState(0);

LISTING 11-15  (continued)

Writing Custom Hooks  ❘  281

 const handleClick = (count) => {
 setWordCount(count)
 }

 return (
 <>
 <CountingBox ref={countingBoxRef} />

 <button onClick={()=>handleClick(countingBoxRef.current.count)}>
 count words
 </button>

 current count: {wordCount}

 </>
)
}

export default TextEdit;

NOTE  Notice that useImperativeHandle has a third argument, which is a
dependency array (similar to that used by useEffect, useCallback, and
useMemo). In the current version of React, useImperativeHandle memoizes the
value of the handle, which can be a problem if you’re trying to get an updated
value (as in this case). Specifying a dependency that changes with each render
solves the problem.

The useImperativeHandle hook is the least important hook to fully understand. In most cases, any-
thing you want to do using useImperativeHandle can be better done by passing props from parent
components to child components.

Updating the DOM Synchronously with useLayoutEffect
The useLayoutEffect hook is identical to useEffect in every way, except in when and how it exe-
cutes. Whereas useEffect runs its functions asynchronously (that is, without blocking anything else)
after the component appears in the browser, useLayoutEffect runs its function before the DOM is
painted to the browser, and it runs synchronously.

The useLayoutEffect hook can be used in cases where an effect results in changes to the DOM and
where the useEffect hook may cause flicker or inconsistent display of the results.

WRITING CUSTOM HOOKS

Custom hooks are functions that make use of the built-in hooks to encapsulate reusable functional-
ity. Many different custom hooks have been written and are available for free on the web, either by
themselves as standalone components, or as features within React libraries. You can also write your
own custom hooks.

282  ❘  CHAPTER 11   Introducing Hooks

Custom hooks, like the built-in hooks, have names that start with use. This is a helpful convention
rather than a requirement. To write a custom hook, write a function that uses at least one built-in
hook and export a value from the function.

Listing 11‑17 shows a custom hook based on the zipcode lookup component from earlier in this
chapter. When imported into a component, useZipLookup will take a zipcode as its argument and
return an array containing the corresponding city and state.

LISTING 11-17:  useZipLookup: a custom hook to return location data based on a ZIP code

import {useEffect,useState} from 'react';

function useZipLookup(zipcode){
 const [city,setCity] = useState('');
 const [state,setState] = useState('');

 const API_URL = 'https://api.zip-
codes.com/ZipCodesAPI.svc/1.0/QuickGetZipCodeDetails/';
 const API_KEY = 'DEMOAPIKEY';

 useEffect(()=>{
 if (zipcode){
 const loadAddressData = async ()=>{
 const response = await fetch(`${API_URL}${zipcode}?key=${API_KEY}`);
 const data = await response.json();
 setCity(data.City);
 setState(data.State);
 }

 loadAddressData();

 }
 },[zipcode]);

 return [city,state];
}

export default useZipLookup;

To use the useZipLookup hook, import it into a component, pass it a ZIP code, and deconstruct the
returned array into two local variables, as shown in Listing 11‑18.

LISTING 11-18:  Using the useZipLookup custom hook

import {useRef,useState} from 'react';
import useZipLookup from './useZipLookup';

function ShippingAddress2(props){
 const [zipcode,setZipcode] = useState('');
 const [city,state] = useZipLookup(zipcode);

Labeling Custom Hooks with useDebugValue  ❘  283

 const setZip = (e)=>{
 e.preventDefault();
 setZipcode(e.target.zipcode.value);
 }

 return (
 <form onSubmit={setZip}>
 Zipcode: <input type="text" name="zipcode" />
 <button type="submit">Lookup City/State</button>

 City: {city}

 State: {state}

 </form>
)
}

export default ShippingAddress2;

By creating the useZipLookup custom hook, we’ve made this functionality reusable and we simplified
the component that outputs the user interface.

LABELING CUSTOM HOOKS WITH USEDEBUGVALUE

When you use a custom hook, it shows up in the React Developer Tools as a hook when you inspect a
component, as shown in Figure 11‑8.

It can be helpful for debugging in some cases to output a value from a custom hook. Normally, the
time-honored practice of JavaScript developers everywhere is to use console.log to output debug-
ging code to the console. However simple this may be, it doesn’t provide any context as to what

FIGURE 11-8:  Inspecting a custom hook

284  ❘  CHAPTER 11   Introducing Hooks

function wrote the log message, unless you add that information into the console.log message.
Logged messages tend to build up in your code over time, unless you’re careful about removing them
when you no longer need them. But, when you remove them, you often end up adding them again
when you’re debugging something related. Logging to the console, while essential sometimes, is less
than ideal.

The useDebugValue hook lets you export a value from a custom hook that will be visible next to the
name of the hook in the React Developer Tools component inspector. This value can be anything you
want. Listing 11‑19 shows how to use useDebugValue in the useZipLookup component to display
the value of the zipcode parameter passed into it.

LISTING 11-19:  Using useDebugValue

import {useEffect,useState,useDebugValue} from 'react';

function useZipLookup(zipcode){
 const [city,setCity] = useState('');
 const [state,setState] = useState('');

 useDebugValue(zipcode);

 const API_URL = 'https://api.zip-
codes.com/ZipCodesAPI.svc/1.0/QuickGetZipCodeDetails/';
 const API_KEY = 'DEMOAPIKEY';

 useEffect(()=>{
 if (zipcode){
 const loadAddressData = async ()=>{
 const response = await fetch(`${API_URL}${zipcode}?key=${API_KEY}`);
 const data = await response.json();
 setCity(data.City);
 setState(data.State);
 }

 loadAddressData();

 }
 },[zipcode]);

 return [city,state];
}

export default useZipLookup;

Figure 11‑9 shows how the value from useDebugValue displays in the component inspector.

The useDebugValue hook can also optionally accept a formatting function as its second parameter.
This function receives the debug value and can be used for doing conversions or other formatting to
the debug value. The function only runs when the hook is actually being inspected.

Finding and Using Custom Hooks  ❘  285

One example of where using the formatting function is helpful would be a case where a date is stored
as a UNIX timestamp, but you want to be able to view it in the component inspector in a human-
readable form. By using the formatting function, you can avoid doing the conversion except when the
hook is actually being inspected. Here’s what that might look like, using a function from the moment
.js date library:

useDebugValue(timestamp, timestamp=>timestamp.format("HH/mm/ss"));

FINDING AND USING CUSTOM HOOKS

Custom hooks deliver on React’s promise of a simple way for developers to share reusable compo-
nents. Thousands of custom hooks have been created for just about any common functionality that a
developer might need.

Unfortunately, finding out which custom hooks are available isn’t always easy, and this is complicated
by hooks that have the same purpose and name but are part of different Node.js packages and have
different APIs. Here are a few of the more popular custom hooks that are currently available.

use-http
The useFetch hook that’s part of the use-http package (https://use-http.com) makes isomor-
phic HTTP requests. What this means is that it can be used both on the server and in the browser.
It features caching, TypeScript support, automatic aborting of pending requests when a component
unmounts, React Native, GraphQL, and retrying.

FIGURE 11-9:  Viewing a Custom Hook’s debug value

https://use-http.com

286  ❘  CHAPTER 11   Introducing Hooks

react-fetch-hook
React Fetch Hook’s useFetch hook (https://www.npmjs.com/package/react-fetch-hook) takes
a URL and a response formatter function as parameters and returns a Boolean named isLoading and
formatted data. In its most basic form, using this hook looks like this:

const {isLoading,data} = useFetch("http://example-url.com/api/users/1");

axios-hooks
The useAxios hook (https://www.npmjs.com/package/axios-hooks) executes HTTP requests
using the popular Axios library. It takes a URL and an options object as parameters and returns an
object containing data, the loading status, and any error message that was returned by the URL. It
also returns a function that you can use to manually execute the HTTP request.

Listing 11‑20 shows a simple example of using the useAxios hook.

LISTING 11-20:  Using useAxios

import {useState} from 'react';
import useAxios from 'axios-hooks';
import {API_KEY} from './config';

function WeatherWidget() {
 const [city,setCity] = useState('London');
 const [{data, loading, error}, refetch] =
useAxios(`https://api.openweathermap.org/data/2.5/weather?q=${city}&appid=${API_KEY}`);
 if (loading) return <p>Loading...</p>;
 if (error) return <p>There was an error. {error.message}</p>;

 return (
 <>
 <input type="text" value={city} onChange={e=>setCity(e.target.value)} />
 <pre>{JSON.stringify(data,null,2)}</pre>
 </>
);
}

export default WeatherWidget;

react-hook-form
React Hook Form’s useForm hook makes building forms and validating data input simple. The
useForm hook returns a function called register() that you can pass as a ref to uncontrolled inputs
with name attributes. The handleSubmit() method returned by useForm will then handle all of the
data from your form.

You can pass options to each register() function to validate fields, make them required, and
specify other limits such as minimum and maximum values.

Listing 11‑21 shows a basic use of useForm.

https://www.npmjs.com/package/react-fetch-hook
https://www.npmjs.com/package/axios-hooks

Finding and Using Custom Hooks  ❘  287

LISTING 11-21:  Using useForm

import {useForm} from 'react-hook-form';

function SignUpForm() {
 const {register, handleSubmit} = useForm();
 const onSubmit = data => {
 console.log(data);
 };

return (
 <form onSubmit = {handleSubmit(onSubmit)}>
 <label>First Name: </label>
 <input name="firstname" {...register("firstname",{required:true})} />

 <label>Last Name: </label>
 <input name="lastname" {...register("lastname",{required:true})} />

 <input type="submit" />
 </form>
);
}

export default SignUpForm;

@rehooks/local-storage
The useLocalStorage hook, which is part of the Rehooks library (https://github.com/rehooks),
provides functions for working with the browser’s local storage. Browser local storage is useful for
storing data between browser sessions. This is helpful for creating offline apps, for increasing the
performance of a web app, and for remembering the user’s state between sessions.

Another feature of useLocalStorage is that it can sync data between browser tabs.

use-local-storage-state
The useLocalStorageState hook (https://www.npmjs.com/package/use-local-storage-
state) takes a key and an optional default value and returns an array with three values: a value, a
setter function, and a Boolean named isPersistent. Here’s an example:

const [reminders, setReminders, isPersistent] =
useLocalState('reminders',['sleep','eat food']);

The first two return values work the same as the values returned by useState. The third tells
you whether the value is stored in memory or in local storage. By default, of course, any
value you create using useLocalStorageState will be stored in localStorage. In the event that
localStorage isn’t available for some reason, useLocalStorageState will fall back to just keeping
the value in memory.

https://github.com/rehooks
https://www.npmjs.com/package/use-local-storage-state
https://www.npmjs.com/package/use-local-storage-state

288  ❘  CHAPTER 11   Introducing Hooks

Other Fun Hooks
Going beyond the basic tasks that are used in most modern user interfaces, other custom hooks
encapsulate functionality that’s more specialized or even just for fun. Here are a few custom hooks
that fall into this category:

➤➤ The useGeolocation hook (https://github.com/streamich/react-use) tracks a user’s
geographic location.

➤➤ The useNetworkStatus hook (https://github.com/rehooks/network-status) returns
information about a user’s current network status.

➤➤ The useKonomiCode hook (https://stackblitz.com/edit/use-konami-code) is an eas-
ter egg hook for detecting when a user has entered the famous Konomi Code (↑ ↑ ↓ ↓ ← →

← → B A), which is used as a cheat code in many video games.

Lists of Hooks
Finding custom hooks for just about any purpose is becoming easier thanks to some great lists of
hooks being maintained and updated by the React community. Here are a few of the lists of hooks
that are currently available:

➤➤ Hooks.guide (https://hooks-guide.netlify.app/). A curated and categorized
list of hooks.

➤➤ Collection of React Hooks (https://nikgraf.github.io/react-hooks/). A searchable
collection of hooks that anyone can add to.

➤➤ Use Hooks (https://use-hooks.org/). Provides a tool for scaffolding React hooks and a
list of hooks created using the scaffolding.

SUMMARY

Hooks aren’t just a new and better way of doing something in React; they dramatically improve the
entire React development experience, they make learning React easier, and they solve the problem of
creating a standard and simple way to share code between components.

In this chapter, you learned:

➤➤ What React Hooks are.

➤➤ Why React Hooks were created.

➤➤ How to use each of the built-in hooks.

➤➤ How to use and create custom hooks.

➤➤ How to find pre-built custom hooks.

In the next chapter you’ll learn how to manage complex user interfaces and applications by associat-
ing URLs with components and layouts using React Router.

https://github.com/streamich/react-use
https://github.com/rehooks/network-status
https://stackblitz.com/edit/use-konami-code
https://hooks-guide.netlify.app/
https://nikgraf.github.io/react-hooks/
https://use-hooks.org/

Routing
Until now, every user interface example you’ve seen in this book has only had a single screen
and everything the application can do is displayed at once. In the real world, apps have multiple
modes, tabs, and screens. The ability to change from an app’s main screen to a settings screen,
for example, makes it possible for user interfaces to do more while not overwhelming the user
with complexity and clutter.

In this chapter, you’ll learn:

➤➤ What routing is and why you need it.

➤➤ How routing works in single page applications.

➤➤ How to install and use React Router.

➤➤ How to create basic routes.

➤➤ How to create navigation.

➤➤ How to create nested routes.

➤➤ How to use React Router’s hooks.

WHAT IS ROUTING?

The most basic concept behind the web (what we call Web 1.0) is that a web browser requests
a web page from a web (HTTP) server using a unique URL. The web server then responds with
an HTML page that is rendered in the browser, as shown in Figure 12‑1.

When a user clicks a link on a web page, it requests a new HTML page, which the browser
downloads and displays instead of the current page. Browsers and servers maintain a user’s
state between different web pages by using browser cookies, the localStorage API, and
server-side data.

12

290  ❘  CHAPTER 12   Routing

The problem with loading a new web page each time a user clicks a link is that it doesn’t create a
smooth experience for the user, and it doesn’t allow for refreshing data dynamically. The whole web
page is downloaded and rendered each time a new URL is loaded.

AJAX (which stands for Asynchronous JavaScript and XML) was created to solve this problem. With
AJAX, JavaScript dynamically loads data into a web page without loading a new HTML page. AJAX
made dynamic web user interfaces possible, and JavaScript libraries and frameworks made building
them easier. This is what was referred to as Web 2.0.

Now instead of the web browser requesting new pages from a web server, the browser only loads the
first page containing the JavaScript code and the JavaScript virtual machine takes over from there and
dynamically loads data and updates the browser using the DOM API.

JavaScript user interface libraries hijack the original request/response model that the web was built
on. This works well, but it means that the browser is always displaying the same HTML page. This is
what we call a single page application (SPA). Having a website or web application that only con‑
sists of one web page makes it impossible for other sites to link to specific data within your app or
site using a URL, and it makes it more difficult for search engines to index the data on your site or
in your app.

The solution is to have the JavaScript that runs your web application simulate the browser’s built-in
ability to load web pages that correspond to unique URLs, as shown in Figure 12‑2.

This mapping of URLs to things happening inside a JavaScript application is what we call routing.

FIGURE 12-1:  How the web works

How Routing Works in React  ❘  291

HOW ROUTING WORKS IN REACT

In React, routing has two purposes:

1.	 To change the window.location property of the browser (when used with a web browser).

2.	 To detect the current location and use it to show or hide different components or combina‑
tions of components.

The browser’s window.location.href property is what indicates the current URL of the web page.
By setting window.location.href without making a server request, a JavaScript routing program
can simulate the native way that browsers change the rendered view. What this means is that a user or
search engine can navigate to or link to a specific URL, such as www.example.com/aboutUs.

Once the value of window.location.href changes, this property can be read using JavaScript and
different URLs can be associated with different components. This association is called a route.

Listing 12‑1 shows a simple use of React Router to create two routes, such as you might do in a con‑
figuration utility, a survey, or a text-based adventure game.

LISTING 12-1:  A simple routing component

import React from "react";
import {LessTraveledPath,MoreTraveledPath} from './PathOptions';
import {
 BrowserRouter,
 Switch,
 Route,
 Link
} from "react-router-dom";

FIGURE 12-2:  JavaScript routing

continues

http://www.example.com/aboutUs

292  ❘  CHAPTER 12   Routing

function ChooseYourAdventure() {
 return (
 <BrowserRouter>
 <div>
 <p>You come to a fork in the road. Which path will you take?</p>

 <Link to="/worn">The More Well-traveled Path</Link>

 <Link to="/untrodden">The Less Well-traveled Path</Link>

 <Switch>
 <Route path="/worn">
 <MoreTraveledPath />
 </Route>
 <Route path="/untrodden">
 <LessTraveledPath />
 </Route>
 </Switch>

 </div>
 </BrowserRouter>
);
}

export default ChooseYourAdventure;

In this example, the Link component changes the current browser location. The Route components
render the correct child component depending on the browser’s location. When the browser’s location
(after the domain name) is /worn, the MoreTraveledPath component will be displayed, and when
the location is /untrodden, the LessTraveledPath component will be displayed.

You can verify that the window.location.href property changes by opening the JavaScript console
and typing window.location.href, as shown in Figure 12‑3.

LISTING 12-1  (continued)

Using React Router  ❘  293

USING REACT ROUTER

React Router can be used for routing in web applications or in mobile apps. Because of the funda‑
mental differences in routing in a browser versus routing in a native mobile app, there are two differ‑
ent versions of React Router:

➤➤ react-router-dom is the version of React Router for the web.

➤➤ react-router-native is the version of React Router for native apps.

Since this book is primarily about creating user interfaces for the web, we’ll use
react-router-dom. However, the basic process that you’ll use to create routes and links in React
Router applies for either version.

Installing and Importing react-router-dom
React Router isn’t installed with Create React App by default, so you’ll need to install it before you
can start using it. Once you have a React application built with Create React App, you can install
react-router-dom using npm by entering the following command into the terminal:

npm install react-router-dom@5.3.0

FIGURE 12-3:  Changing routes and viewing the window.location.href property

294  ❘  CHAPTER 12   Routing

Once react-router-dom is installed, you can import components, functions, and hooks from the
library into any of your components that will use routing. For most uses of React Router, you’ll need
three parts:

➤➤ A router component.

➤➤ A linking component.

➤➤ A route component.

The Router Component
A router component is the top-level component that makes routing possible. It handles the changing
of the window.location property and it provides React Router props to components below it.

Selecting a Router
React Router contains five different router components:

➤➤ BrowserRouter

➤➤ HashRouter

➤➤ MemoryRouter

➤➤ StaticRouter

➤➤ NativeRouter

No matter which router you choose, it’s a convention to import the router component using the name
Router, like this:

import {BrowserRouter as Router} from 'react-router-dom';

Importing the router as Router also simplifies things later if you want to change the router.

NOTE  The five router components listed here are the “high-level” routers.
React Router also has a component named Router, which is the “low-level”
router. The low-level Router component is used for synchronizing routes with
state management libraries (such as Redux). Unless you have a good reason to
use the low-level Router, you can safely ignore it.

BrowserRouter
BrowserRouter is the Router component that you’ll use most, if not all, of the time. It uses the
HTML5 history API to change the browser’s window.location.href property. Using Browser-
Router allows your React UI to simulate the familiar way of navigating the web using URL paths.

Using React Router  ❘  295

HashRouter
HashRouter uses the part of the URL after the hash symbol (#) to synchronize the location and the
displayed components. HashRouter relies on the fact that anything after a # in a URL won’t cause a
browser to load a new page by default. For example, the following two addresses both use the same
HTML page:

https://www.example.com/

https://www.example.com/#/aboutUs

The second URL passes a path after a #, which can be read using JavaScript and used to change the
displayed components.

Prior to the widespread availability of the HTML5 history API in browsers, which allows JavaScript
to change the address without loading new pages, hash routing was how JavaScript routing always
worked. Today, HashRouter is mostly still around for backwards compatibility with older apps
and browsers.

MemoryRouter
MemoryRouter doesn’t update or read the browser’s window.location property at all. Instead, it
keeps the routing history in memory. MemoryRouter is useful for non-browser environments such as
React Native, and for in-memory tests of your user interface.

StaticRouter
StaticRouter creates a router that never changes. It’s useful for server-side rendering of React,
where the web server passes a path to React on the server and React generates static code to serve
to the user.

NativeRouter
NativeRouter is used for creating navigation in iOS and Android apps built using React Native.
Keep in mind that React apps can be rendered to many different types of user interface devices
(as you saw in Chapter 4). Native apps handle routing differently from web browsers, and the
NativeRouter component translates the lower-level React Router components to routing commands
that work with your target mobile operating system.

Using the Router Component
Whichever router component you choose, it needs to wrap around the other React Router compo‑
nents. One common way to make sure that the router is available to your entire app is by rendering it
around your root component in the ReactDOM.render method.

This is one of the few times that you’ll have a need to modify index.js after you initially create it.
If you recall from Chapter 2, the ReactDOM.render method is used once in a React UI and takes a
component (called the root component) and a DOM node where that component should be rendered
as arguments.

https://www.example.com/
https://www.example.com/#/aboutUs

296  ❘  CHAPTER 12   Routing

For example, the default Create React App ReactRouter.render method looks like this:

ReactDOM.render(
 <React.StrictMode>
 <App />
 </React.StrictMode>,
 document.getElementById('root')
);

The React.StrictMode component is optional in the preceding example and may or may not be
present depending on how and when you bootstrapped your app with Create React App. But, just
as React.StrictMode wraps around the root component, App, you can wrap a router component
around App to provide routing capabilities to your entire app.

After you’ve imported your router component, enclose the root component in a router like this:

import React from 'react';
import ReactDOM from 'react-dom';
import {BrowserRouter as Router} from 'react-router-dom';

ReactDOM.render(
 <React.StrictMode>
 <Router>
 <App />
 </Router>
 </React.StrictMode>,
 document.getElementById('root')
);

With the router in place, you can move on to creating links and routes.

Linking to Routes
React Router has three different linking components:

➤➤ Link

➤➤ NavLink

➤➤ Redirect

The first two linking components are essentially wrappers around the HTML a element with some
additional features and capabilities added. The Redirect component changes the current URL with‑
out user interaction.

Internal Linking with Link
Because React Router overrides the default behavior of links in a browser, you can’t simply link
between routes using the a element as you normally would in a website. The Link element is the basic
linking element in React Router. All it requires is a path to link to, which can be provided using the
to attribute, and a single child node, as in the following example:

<Link to="/user/login">Log in</Link>

Using React Router  ❘  297

The value of the to attribute can be a string (or an expression that evaluates to a string) or an object.
If the to property is specified as an object, the properties of the object are concatenated to create the
destination location.

Linking with a String
If you pass a string to the to attribute, it can be any valid internal path that you would normally
use as the value of the href attribute with the HTML a element. Any path that you pass to the Link
component will be used to update the browser location relative to the path of the app. Because using
Link updates the URL relative to the app, the following example won’t work as you might expect:

<Link to="https://chrisminnick.com">Link to my website</Link>

Figure 12‑4 shows what happens in the address bar when you click the preceding link in a React
Router app.

If you want to link to an external site from a React app, just use the a element.

Linking with an Object
To use an object as the value of the to attribute, specify a combination of the allowed properties:

➤➤ pathname: A string containing the path to link to.

➤➤ search: A string containing query parameters (the question mark followed by the
name=value pairs that form an HTML querystring).

➤➤ hash: A string containing the hash symbol (#) followed by any values you want to provide to
the destination route in the hash portion of the URL.

➤➤ state: An object containing state that you want to persist in the destination location.

For example, the following Link component, when followed, will pass a path and querystring to
the destination Route component:

<Link to={{path: '/orders, search: '?filterBy=new'}}>
 View New Orders
</Link>

Additional Link Props
The Link component can receive several optional props. These include replace, component, and
pass-through props, which are discussed next.

FIGURE 12-4:  React Router can’t be used for external linking

298  ❘  CHAPTER 12   Routing

replace

Normally, when a Link element is clicked, React Router adds a new location entry to the browser
history stack. If you want to return to the route you were previously at, you can use the browser back
button or change the browser’s position in the history stack. The replace attribute replaces the cur‑
rent entry in the history stack rather than adding a new one:

<Link to="/somepath" replace>Go to the new location</Link>

component

The component attribute takes a custom navigation component as its value. You can use the
component attribute to supply the name of the component you’d like to use in place of the default
Link component. To create a custom navigation component that you want to use for the link and
pass the prop from the Link component through to it, do this:

const SpecialLink = (props)=>(
 <a {...props}>***Super Special Link*** {props.children}
);

<Link to="/somepath" component={SpecialLink}>Click the special link</Link>

pass-through props

If you want to attach additional props to the a element that results from the Link, you can specify
them as well. Examples include className, id, and title.

Internal Navigation with NavLink
Navigation links are a subset of internal links within an app. They’re used for changing modes, tabs,
or pages within a web application. Examples of navigation links include the links in a navigation bar
or mobile site navigation menu.

Navigation links function the same as any other link in a web application, but it’s good user interface
design to indicate which link is currently active, as shown in Figure 12‑5.

FIGURE 12-5:  Navigation links indicate the current position

Using React Router  ❘  299

React Router’s NavLink component creates navigation links. The difference between a NavLink and a
Link component is that the NavLink has attributes that allow it to be styled when the value of its to
attribute matches the browser’s current location.

You can style a NavLink component using either the activeClassName attribute, which accepts a
CSS class name, or the activeStyle attribute, which accepts a style object:

<NavLink to="/home" activeClassName="active">Home</NavLink>

Depending on how your app is designed, there are options to consider when deciding when a
NavLink will display in its “active” style. For example, in the navigation menu shown in Figure 12‑6,
should the “Home” and “About Us” menus be highlighted when the “Meet the Team” sub-menu link
is active?

Listing 12‑2 shows the JSX used to build the navigation menu in Figure 12‑6.

LISTING 12-2:  A list of NavLinks with sub-items

 <NavLink to="/" activeClassName="active">Home</NavLink>
 <NavLink to="/aboutUs" activeClassName="active">About Us</NavLink>

 <NavLink to="/aboutUs/team" activeClassName="active">

FIGURE 12-6:  A navigation menu with sub-items

continues

300  ❘  CHAPTER 12   Routing

 Meet the Team
 </NavLink>

 <NavLink to="/aboutUs/history" activeClassName="active">
 Company History
 </NavLink>

<NavLink to="/contactUs" activeClassName="active">Contact Us</NavLink>

By default, NavLink will apply the active style when part of the path matches. In the preceding exam‑
ple, when the Team link is active, the active style will be applied to not only the Team link, but also to
the aboutUs and Home links, as shown in Figure 12‑7.

If you only want to activate the active style when there’s an exact match, you use the Boolean exact
attribute, as shown in Listing 12‑3.

LISTING 12-2  (continued)

FIGURE 12-7:  Partial matches activate the active style

Using React Router  ❘  301

LISTING 12-3:  Using the exact attribute on NavLink components

 <NavLink exact to="/" activeClassName="active">Home</NavLink>
 <NavLink exact to="/aboutUs" activeStyle={{color:'green'}}>About
Us</NavLink>

 <NavLink exact to="/aboutUs/team" activeClassName="active">Meet the
Team</NavLink>
 <NavLink exact to="/aboutUs/history" activeClassName="active">
Company History</NavLink>

 <NavLink exact to="/contactUs" activeClassName="active">Contact
Us</NavLink>

Figure 12‑8 shows the resulting navigation bar after the exact attribute has been added to each of
the NavLink components.

FIGURE 12-8:  Using the exact attribute on NavLink components

302  ❘  CHAPTER 12   Routing

If you need an even more strict matching of paths, the strict attribute can be used with NavLink
components to also take into account the trailing slash in a URL path:

<NavLink strict to="/aboutUs" activeClassName="active">About Us</NavLink>

In the preceding link, the active style will be applied if the location is /aboutUs, but not if it’s
/aboutUs/.

Automatic Linking with Redirect
The Redirect component changes the current URL by replacing the current location in the history
stack when it renders. Like the Link and NavLink components, Redirect takes an attribute named
to, which can have a value of a string or object. Unlike Link and NavLink, a Redirect doesn’t
have children.

Redirect is often used to change the URL in response to the result of a conditional statement, as in
the following example:

{loginSuccess?<Redirect to="/members" />:<Redirect to="/forgotPassword" />}

If you want to add a new location to the history stack, rather than replacing the current one, use the
push attribute:

<Redirect push to="/pageNotFound" />

The Redirect component can also take an attribute called from, which causes it to function as a
routing component. I’ll discuss the from attribute in the next section, “Creating Routes.”

Creating Routes
The Route component is the one that actually creates routes. In its simplest form, Route takes an
attribute named path, which it compares with the current location. If there’s a match, Route will
render its children:

<Route path="/login">
 <LoginForm />
</Route>

By default, the path only needs to match part of the location. For example, if the current browser
location is /login, the component in Listing 12‑4 will render both the Home component and the
Login component.

LISTING 12-4:  Multiple routes in a component may have matches

import {BrowserRouter as Router, Route} from 'react-router-dom';

function HomeScreen(props){
 return (
 <Router>
 <Route path="/">
 <Home />
 </Route>

Using React Router  ❘  303

 <Route path="/login">
 <Login />
 </Route>
 </Router>
)
}

export default HomeScreen;

Figure 12‑9 shows what the resulting page might look like when the location is /login, with the
Home and Login components both displaying.

The ability to match and display multiple routes means that you can compose pages and create sub-
navigation with React Router.

FIGURE 12-9:  Multiple routes can match the URL

304  ❘  CHAPTER 12   Routing

Restricting Path Matching
You can use the exact attribute with Route to restrict path matching to exact matches. Figure 12‑10
shows the result of adding exact to both of the Routes from the previous example and visiting the
/login path.

If you want to enforce the ending slash in path matching, use the strict attribute:

<Route strict path="/user/">
 <UserProfile />
</Route>

Using URL Parameters
URLs frequently contain dynamic data that need to be available inside of child components. For
example, in the following path, the directory name user is followed by a slash and then a number:

/user/5455

FIGURE 12-10:  Add the exact attribute to Routes to restrict matching

Using React Router  ❘  305

This type of URL usually indicates that the number represents a unique identifier for a user, rather
than a component named “5455” (which isn’t a valid component name).

A Route component to match this path would look for the /user/ path and then indicate that the
characters after the path are a parameter that should be available inside the child component, as
shown in Listing 12‑5.

LISTING 12-5:  Using URL parameters

import {BrowserRouter as Router, Route} from 'react-router-dom';

function HomeScreen(props){
 return (
 <Router>
 <Route exact path="/">
 <Home />
 </Route>
 <Route exact path="/login">
 <Login />
 </Route>
 <Route path="/user/:id">
 <UserProfile />
 </Route>
 </Router>
)
}

export default HomeScreen;

Inside the rendered child component, you can access URL parameters using the useParams hook, as
shown in Listing 12‑6.

LISTING 12-6:  Using the useParams hook

function UserProfile() {

 let { id } = useParams();

 return (
 <div>
 <h3>User ID: {id}</h3>
 </div>
);
}

The component Prop
Instead of specifying the component to be rendered by a matching route using children of the Route
component, you can use the component attribute, as shown in Listing 12‑7.

306  ❘  CHAPTER 12   Routing

LISTING 12-7:  Using the component attribute

import React from "react";
import {
 BrowserRouter as Router,
 Route,
 Link
} from "react-router-dom";

function ComponentProp(props) {

 const OrderDetails = (props)=>{
 return (
 <h1>Details for order # {props.match.params.orderid}</h1>
)
 }

 return (
 <>
 <Router>
 <Link to="/orders/4">Order #4</Link>
 <Route path="/orders/:orderid" component={OrderDetails} />
 </Router>
 </>

);
}

export default ComponentProp;

React Router will use the component passed to the component attribute to create and render a
new React element. Using the component attribute results in the component being unmounted and
rendered with every render.

Render Props
Another option for rendering components when routes match is to specify a function inside the render
attribute. When the route matches, this function will be called. Using the render attribute doesn’t
require React Router to create an element, so it avoids the unmounting and mounting on each render
that using the component attribute does.

Listing 12‑8 shows an example of using the render attribute.

LISTING 12-8:  Using the render attribute

import React from "react";
import {
 BrowserRouter as Router,
 Route,
 Link
} from "react-router-dom";

Using React Router  ❘  307

function ComponentProp(props) {

 return (
 <>
 <Router>
 <Link to="/orders/4">Order #4</Link>
 <Route path="/orders/:orderid" render={props => (
 <h1>Details for order # {props.match.params.orderid}</h1>
)
 } />
 </Router>
 </>

);
}

export default ComponentProp;

Use of Route’s render attribute is an example of an advanced technique in React known as render
props. A render prop is a function provided to a component using props that the component calls
instead of using its own render method.

Render props can be used to share functionality between components and to dynamically determine
what the child component will render. Inside of a component that accepts a render prop (such as
Route in this case), the component will call the provided function. Listing 12‑9 shows a simplified
version of what happens inside the Route component when you use the render prop.

LISTING 12-9:  Rendering a render prop

function Route(props) {

 return (
 <>
 {props.render({})}
 </>
);
}

export default Route;

Switching Routes
The Switch component causes only the first matching Route to be rendered. This is useful in cases
where you don’t want to render multiple routes when there are multiple matches. To use Switch,
wrap the routes that you want it to choose the first match from with a <Switch> element, as shown
in Listing 12‑10.

308  ❘  CHAPTER 12   Routing

LISTING 12-10:  Switching between multiple routes

<Switch>
 <Route path="/">
 <p>home</p>
 </Route>
 <Route path="/aboutUs">
 <p>about us</p>
 </Route>
 <Route path="/aboutUs/team">
 <p>meet the team</p>
 </Route>
</Switch>

In this example, if the current URL is /aboutUs/team, only that route will be rendered.

Rendering a Default Route
Switch can also be used to render a default route when no other routes match. The default route
should be the last one, and a Route with no path can be used so that it matches any location, as
shown in Listing 12‑11.

LISTING 12-11:  Rendering a default route

<Switch>
 <Route path="/">
 <p>home</p>
 </Route>
 <Route path="/aboutUs">
 <p>about us</p>
 </Route>
 <Route path="/aboutUs/team">
 <p>meet the team</p>
 </Route>
 <Route>
 <PageNotFound />
 </Route>
</Switch>

Routing with Redirect
The Redirect component can take a parameter named from that will be compared with the current
URL and automatically redirect to a new location if it matches. Any matched parameters specified by
the from attribute can be received by the to attribute by specifying them in both places. A Redirect
with a from attribute can only be used inside a Switch component.

One use for a Redirect with a from attribute is in cases where more than one location should map
to the same URL, or where the URL has changed. For example, in Listing 12‑12, the /users route
will redirect to /user/list.

Using React Router  ❘  309

LISTING 12-12:  Redirecting from one location to another

import { BrowserRouter as Router, Redirect, Route, Switch, Link, useLocation }
from "react-router-dom";

function Header(props){
 return(<Link to="/users">View a list of users</Link>);
}

function UsersList(props){
 const location = useLocation();
 return(
 <>
 <h1>User List</h1>
 path: {location.pathname}
 </>);
}

function NoMatch(props){
 const location = useLocation();
 return(<h1>{location.pathname} is not a matching path</h1>)
}

function App(props){
 return(
 <Router>
 <Header />
 <Switch>
 <Route path="/users/list">
 <UsersList />
 </Route>

 <Redirect from="/users" to="/users/list" />

 <Route>
 <NoMatch />
 </Route>
 </Switch>
 </Router>
);
}

export default App;

The App component in the previous example will render a link to /users. When that’s clicked the
Redirect component will change the location to /users/list and render the appropriate Route
child component.

Behind the Scenes: location, history, and match
Routing depends on and uses three related objects: the history object, the location object, and the
match object. By manipulating or reading values from these objects, you can gain greater control over
how routing works in your app.

310  ❘  CHAPTER 12   Routing

The history Object
The history object refers to the history package, which is separate from React Router, but which
React Router depends upon. The history object’s job is to keep a record of the locations navigated
to in the current session and to make changing the location possible. The concept of session history
is device-independent, but is implemented in several different ways for different environments (which
correspond to the router components in React Router):

➤➤ Browser history.

➤➤ Hash history.

➤➤ Memory history.

You can gain access to the history object in your React code by using the useHistory hook or by
using the withRouter higher-order function.

Listing 12‑13 shows how to use withRouter to gain access to the history.push method and use it
to create a link.

LISTING 12-13:  Using withRouter

import React from "react";
import {
 withRouter
} from "react-router-dom";

function NavMenu(props) {
 function handleClick() {
 props.history.push("/home");
 }

 return (
 <button type="button" onClick={handleClick}>
 Go home
 </button>
);
}

export default withRouter(NavMenu);

The useHistory hook is the newer, and slightly simpler, way of gaining access to the history object,
as shown in Listing 12‑14.

LISTING 12-14:  Using useHistory

import React from "react";
import {
 useHistory
} from "react-router-dom";

Using React Router  ❘  311

function NavMenu(props) {

 const history = useHistory();

 function handleClick() {
 history.push("/home");
 }

 return (
 <button type="button" onClick={handleClick}>
 Go home
 </button>
);
}

export default NavMenu;

JAVASCRIPT LESSON: HIGHER-ORDER FUNCTIONS

Higher-order functions and higher-order components are tools for abstracting and
reusing code. They can be confusing at first, however, so I’ll explain them with sim‑
ple examples.

Higher-Order Functions

A higher-order function is a function that operates on another function. Higher-
order functions aren’t specific to React or to JavaScript. Rather, they’re a common
technique in mathematics and in computer science. Higher-order functions may take
a function as a parameter and/or return a function.

For example, consider this function, which just adds one to a number and returns
the result:

const addOne = (a)=>a+1;

This function is called a first-order function.

The following higher-order function takes a function as a parameter and returns the
result of that function with some text appended to it:

const addText = f => x => f(x) + ' is the result.';

A new function can then be defined using the addText function with addOne sup‑
plied to it as a parameter:

const addWithText = addText(addOne);

The addWithText function can then be called, like this:

addWithText(8);

The result will be that the string "9 is the result" will be returned. You can test
this out by copying each of the previous lines into your browser’s JavaScript console
one at a time. continues

312  ❘  CHAPTER 12   Routing

Table 12‑1 shows all the properties and methods of the history object.

TABLE 12-1:  Properties and Methods of history

PROPERTIES

AND METHODS

DESCRIPTION

length The number of location items in the history stack.

action The current action (such as PUSH or REPLACE).

location The current location.

push() Adds a new item to the history stack.

replace() Replaces the current location on the history stack.

go() Moves the pointer by the passed-in number of entries in the history stack.

goBack() Go back one entry in the history stack.

goForward() Go forward one entry in the history stack.

block() Prevents navigation. For example, if the user clicks the Back button, block can
be used to interrupt the navigation to display a message or confirmation dialog.

Higher-Order Components

In React, a higher-order component is a function that takes a component and returns
a new component. In the process, it enhances the original component in some way.
For example, in React Router, the withRouter function returns a new component
that has access to the history object.

To use a higher-order function, you can define a normal component, and then
use the higher-order component to enhance that original component, as shown in
this example:

import React from "react";
import { withRouter } from "react-router";

class ShowTheLocation extends React.Component {

 render() {
 const { match, location, history } = this.props;

 return <div>You are now at {location.pathname}</div>;
 }
}
const ShowTheLocationWithRouter = withRouter(ShowTheLocation);
export default ShowTheLocationWithRouter;

In the preceding example, when you render a ShowTheLocationWithRouter
component, it will have access to the match, location, and history props from
React Router.

continued

Using React Router  ❘  313

The location Object
A location object contains information about where the app is or has been or will be. It can contain
a pathname, a querystring, a hash, state data, and a key. Location objects are stored in the history
stack and can be accessed in a Route component or by using the withRouter higher-order function.

Listing 12‑15 shows how to access properties of the Location object using withRouter.

LISTING 12-15:  Viewing properties of the current location object

import React from "react";
import {
 withRouter
} from "react-router-dom";

function ViewLocation(props) {

 return (
 <>
 <h1>Current Location</h1>

 pathname: {props.location.pathname}
 hash: {props.location.hash}
 search: {props.location.search}
 key: {props.location.key}

 </>

);
}

export default withRouter(ViewLocation);

With this component rendered, try changing the location by adding a querystring or hash in the
browser’s address bar, as shown in Figure 12‑11.

The match Object
The match object contains information about how a Route’s path matches the URL. Just as with the
location and history objects, you can access the match object in several different ways:

➤➤ Inside a Route component.

➤➤ By using the withRouter higher-order component.

➤➤ By using a hook.

314  ❘  CHAPTER 12   Routing

The match object contains the following properties:

➤➤ params: An object containing the key/value pairs passed from the URL, which correspond to
dynamic parts of the URL. For example, if the route’s path is /user/:id, id will be in the
params property.

➤➤ isExact: A Boolean that’s true if the entire URL matches, with no characters after it.

➤➤ path: The pattern that was used to make the match.

➤➤ url: The matched portion of the URL.

The match object is useful for dynamically constructing links and routes in nested routes, as shown in
Listing 12‑16.

LISTING 12-16:  Dynamic links and routes in nested routes

import {
 BrowserRouter as Router,
 Switch,
 Route,
 Link,
 useParams,
 useRouteMatch
} from "react-router-dom";

function Reports() {
 let { path, url } = useRouteMatch();

FIGURE 12-11:  Modifying the current location

Using React Router  ❘  315

 return (
 <div>
 <h2>Reports</h2>

 <Link to={`${url}/profitloss`}>Profit and Loss</Link>

 <Link to={`${url}/balancesheet`}>Balance Sheet</Link>

 <Link to={`${url}/payroll`}>Payroll</Link>

 <Switch>
 <Route exact path={path}>
 <h3>Select a report.</h3>
 </Route>
 <Route path={`${path}/:reportId`}>
 <Report />
 </Route>
 </Switch>
 </div>
);
 }

 function Report() {

 let { reportId } = useParams();

 return (
 <div>
 <h3>{reportId}</h3>
 </div>
);
 }

function Nav() {

 return(
 <div>

 <Link to={`/reports`}>Reports</Link>

 <hr />

 <Switch>
 <Route path={`/reports`}>
 <Reports />
 </Route>
 </Switch>

continues

316  ❘  CHAPTER 12   Routing

 </div>
)
}
function App() {
 return (
 <Router>
 <Nav />
 </Router>
);
}

export default App;

This sub-navigation menu contains Link elements that use the URL from the match object as the base
for the to attribute. To match these new links, Route components use the path from the match object
as the base for their own path attribute values.

Figure 12‑12 shows the result of rendering Listing 12‑16 and clicking the Reports link.

FIGURE 12-12:  Dynamic link and path attributes with the match object properties

LISTING 12-16  (continued)

React Router Hooks  ❘  317

REACT ROUTER HOOKS

As you’ve seen in the previous examples, React Router includes several hooks that give you access to
the state of the Router. These hooks are:

➤➤ useHistory: Gives you access to the history object.

➤➤ useLocation: Gives you access to the current location object.

➤➤ useParams: Returns an object containing the current URL parameters.

➤➤ useRouteMatch: Attempts to match the current URL. The useRouteMatch hook works
the same way as the Route component matches URLs, but it can do so without ren‑
dering a Route.

useHistory
To use the useHistory hook, assign the return value of the useHistory hook to a new variable. The
properties and methods of the history object then become available through the new object:

const history = useHistory();

useLocation
The useLocation hook works the same way as the useHistory hook. Create a new object from the
returned value of useLocation to gain access to the properties of the location object:

const location = useLocation();

useParams
The useParams hook returns an object containing key/value pairs for each of the current Route’s
params. You can deconstruct the object to use individual params:

const {orderNumber,size,color} = useParams();

useRouteMatch
The useRouteMatch hook attempts to match the current URL in the same way that a Route com‑
ponent would, but without rendering anything. For example, if you have the following Route with a
render prop:

<Route
 path="/order/:orderId"
 render={({ match }) => {

 return <> {match.path}</>;
 }}
/>

you could gain access to the same match object without rendering anything like this:

let match = useRouteMatch("/order/:orderId");

318  ❘  CHAPTER 12   Routing

The useRouteMatch hook can be used with a single argument, which is the path to match against,
or it can be used without an argument, in which case it will return the match object of the cur‑
rent Route.

SUMMARY

Routing makes navigation and organization within React apps possible. React Router’s declarative
and composable API is logical and conforms to standard React best practices. With hooks, gaining
access to the inner workings of routing when you need to is also easy.

In this chapter, you learned:

➤➤ What routing is.

➤➤ How JavaScript and React Router enable routing in SPAs.

➤➤ About the different routers in React Router.

➤➤ How to link between routes.

➤➤ How to create routes.

➤➤ How to use the Redirect component.

➤➤ How to use React Router’s hooks.

➤➤ What higher-order functions and components are.

In the next chapter, you’ll learn how to properly handle errors in React components by using error
boundaries.

Error Boundaries
Even if it were possible to write perfect code, the nature of interactive web applications guar‑
antees that once in a while something is going to break. Error boundaries will help you ensure
that when something goes wrong, it won’t result in the user seeing a crashed user interface.

In this chapter, you’ll learn:

➤➤ What error boundaries are.

➤➤ What kinds of errors can be caught with error boundaries.

➤➤ How to log caught errors.

➤➤ What errors can’t be caught with error boundaries.

➤➤ How to use JavaScript’s try/catch.

THE BEST LAID PLANS

Any kind of software development involves balancing money, time, and quality. Too often,
money and time are the limiting factors, especially on the web. Add to this the number of
dependencies involved in a typical JavaScript application and other factors that are completely
out of your control (such as network availability), and it’s guaranteed that at some point or
another a React user interface isn’t going to function as you intended.

By default, when React encounters an error inside any of the components in a UI, it will emit an
error on the next render that will fill the screen with either a big red message (in development
mode) or a “white screen of death” (in production) that’s not very helpful to anyone, as shown
in Figure 13‑1.

Crashed user interfaces and cryptic error messages are especially not helpful to end users. Usu‑
ally, the only way to recover an app from a crashed UI is to restart it by refreshing the browser
window, thus resetting the state of the application. In the worst-case scenario, an error message
intended to be used by developers can reveal details of the internal workings of your application
that could give someone with malicious intent the information they need to hack your applica‑
tion in some way.

13

320  ❘  CHAPTER 13   Error Boundaries

Error boundaries catch many kinds of errors in a user interface and display a user-friendly alterna‑
tive user interface. They also allow the parts of your application that were unaffected by the error to
continue to function.

WHAT IS AN ERROR BOUNDARY?

An error boundary is a component that catches errors that happen in its child components. Once an
error is caught, the error boundary can provide a fallback UI and log the error, as well as provide
the user with a way to recover the use of the UI without refreshing the browser window. Think of
it as like a firewall that keeps an explosion inside a component’s child tree from blowing up your
whole app.

For an example of why error boundaries are necessary, take a look at the diagram of a typical React
user interface shown in Figure 13‑2.

FIGURE 13-1:  A crashed React app

What Is an Error Boundary?  ❘  321

This app consists of an App component that encloses several sub-components, including a navigation
menu, a footer, and the main part of the user interface. It can be shown as an outline like this:

<App>
 <NavBar />
 <Main />
 <Footer />
</App>

The main part of the user interface may have many levels of components, and it may depend on out‑
side sources of data and user input. All of these are factors that contribute to the likelihood of errors.

Starting with version 16 of React, the default behavior when an error is encountered in rendering
any component in your app is to unmount the entire component tree and display a blank page, with
details logged to the console. In development mode, an overlay window with an error message will
also appear.

Figure 13‑3 shows what happens to this user interface when something goes wrong in any of the
app’s components—in this case, the component was expecting a function to be passed as a prop, but
it wasn’t.

FIGURE 13-2:  A diagram of a typical UI

322  ❘  CHAPTER 13   Error Boundaries

Once the UI has been unmounted, there’s no way for the user (or for the developer) to navigate else‑
where in the app. An error boundary around the Main component will ensure that the rest of the user
interface continues to be usable even if something goes wrong inside Main. Here’s what the new app
looks like as an outline with an error boundary around Main:

<App>
 <NavBar />
 <ErrorBoundary>
 <Main />
 </ErrorBoundary>
 <Footer />
</App>

With this change, the ErrorBoundary component can now handle errors any way you want, while
the rest of the UI is still functional, as shown in Figure 13‑4.

If you want to, you can put an error boundary around the NavBar component and one around the
Footer component as well. You could even put an ErrorBoundary around each of the subcom‑
ponents of Main, or just have one around the App component that handles events from all of the

FIGURE 13-3:  An uncaught error

Implementing an Error Boundary  ❘  323

sub-components. More granularity (meaning more components wrapped in the ErrorBoundary) can
give you more information about where the error happened as well as keep more of your app func‑
tional when something goes wrong.

IMPLEMENTING AN ERROR BOUNDARY

An error boundary isn’t a specific function or component in React. Instead, it’s any component that
you create that defines a static getDerivedStateFromError or componentDidCatch lifecycle
method (or both). Because error boundaries make use of lifecycle methods, they must be class com‑
ponents. Once you define an ErrorBoundary component, you can reuse it as many times as you need
it—or even reuse it in multiple React apps. So, if you want, an ErrorBoundary component may be
the only class component you need to write.

Building Your Own ErrorBoundary Component
One way to get an ErrorBoundary component is to build your own. Listing 13‑1 shows a simple
example of an ErrorBoundary, which just uses static getDerivedStateFromError to show a fall‑
back UI when an error occurs.

FIGURE 13-4:  Handling an error with an error boundary

324  ❘  CHAPTER 13   Error Boundaries

LISTING 13-1:  An ErrorBoundary component

import {Component} from 'react';

class ErrorBoundary extends Component {
 constructor(props) {
 super(props);
 this.state = { hasError: false };
 }

 static getDerivedStateFromError(error) {
 return { hasError: true };
 }

 render() {

 if (this.state.hasError) {
 return <h1>Oops! There's been an error.</h1>;
 }

 return this.props.children;
 }
}

export default ErrorBoundary;

To understand what’s happening in this ErrorBoundary component, you need to know a couple of
things about the getDerivedStateFromErrors lifecycle method.

getDerivedStateFromErrors Is a Static Method
The getDerivedStateFromErrors lifecycle method is a static method. Static methods are commonly
used to define functionality that belongs to the class as a whole, such as utilities. In React, the get-
DerivedStateFromErrors and getDerivedStateFromProps lifecycle methods are defined as static
to make it more difficult for them to have side effects.

In other words, because these methods are static, they belong to the component but they don’t have access
to the properties of an instance of a component (like this.props, this.state, and so forth). By limiting
what the method has access to, React is limiting your ability to write anything but pure functions, which
makes sure that this lifecycle method doesn’t cause unpredictable results in the render method.

JAVASCRIPT LESSON: STATIC METHODS

Static methods are methods that are defined on a class and that can’t be called on
instances of the class. For example, the following class, Cashier, has a static method
called makeChange. The makeChange method doesn’t need to access the unique data
in an instance of Cashier. It just takes a total and an amountTendered and returns
the change:

Implementing an Error Boundary  ❘  325

getDerivedStateFromErrors Runs During the Render Phase
The render phase of a component’s lifecycle is the time when it’s not permitted to perform operations
that have side effects. The correct time to perform side effects is before or after the render phase. If
you want your ErrorBoundary to perform a side effect—such as logging the error—the place to do
that is in the ComponentDidCatch lifecycle method (which we’ll discuss in a moment).

getDerivedStateFromErrors Receives the Error as a Parameter
When an error happens in a descendant component of a component that uses getDerivedState-
FromErrors, the method is called and the error message is passed. The error message is a string
containing information about where the error happened and what the error was. As in the example
in Listing 13‑1, you don’t actually need to do anything with the error. You can just use the fact that
getDerivedStateFromErrors was called to trigger the rendering of the alternate user interface.

getDerivedStateFromErrors Should Return an Object for Updating State
The return value of getDerivedStateFromErrors will be used to update the state. In the example in
Listing 13‑1, getDerivedStateFromErrors returns a value for changing hasError to true. You’re
not limited to updating just one value, of course, and a more complex error boundary might also
store the error itself in state, like this:

 static getDerivedStateFromError(error) {
 return { hasError: true,
 error
 };
 }

If getDerivedStateFromErrors doesn’t run, ErrorBoundary will just render its children, as if it’s
not there at all, by returning this.props.children.

If getDerivedStateFromErrors does run, the resulting state can be used to display an alternate, or
fallback, user interface. The conditional statement that checks the value of the hasError state value
must go before return this.props.children so that if hasError is true, the component will

class Cashier{
 static makeChange(total,amtTendered){
 return amtTendered - total;
 }
}

The makeChange method isn’t available in an instance of Cashier, as shown here:

const bob = new Cashier();
bob.makeChange(2,10); // bob.makeChange is not a function

You can call makeChange on the class, however, like this:

Cashier.makeChange(2,10); // 8

326  ❘  CHAPTER 13   Error Boundaries

return the fallback UI and not even get to the section of the render method that returns the children
(since a function can only execute one return statement):

render() {

 if (this.state.hasError) {
 return <h1>Oops! There's been an error.</h1>;
 }

 return this.props.children;
}

Testing Your Boundary
Once you’ve created your ErrorBoundary component, you can test it out by wrapping it around a
component that you know will produce an error that can be caught. Listing 13‑2 contains a compo‑
nent that would normally produce an error, because it tries to return an object in the render method,
which isn’t allowed.

LISTING 13-2:  A component with an error

function BadComponent(){
 return (
 {oops:"this is not good"}
);
}

export default BadComponent;

Attempting to render this component without an error boundary will result in an error message and/
or a blank screen.

To prevent this kind of error (short of fixing the actual component, of course) you can wrap the Bad-
Component component in an error boundary in its parent’s render method, or you can export it with
the ErrorBoundary around it, as shown in Listing 13‑3.

LISTING 13-3:  Exporting with an ErrorBoundary

import ErrorBoundary from './ErrorBoundary';

function BadComponentContainer(){
 return (
 <ErrorBoundary>
 <BadComponent />
 </ErrorBoundary>
)
}

Implementing an Error Boundary  ❘  327

function BadComponent(){
 return (
 {oops:"this is not good"}
);
}

export default BadComponentContainer;

With the error boundary around the component with the error, the fallback UI will now render, as
shown in Figure 13‑5.

Logging Errors with ComponentDidCatch()
Minimizing the impact on users when errors happen in your React component tree is one thing, but
actually learning why and where the error occurred can help you prevent the error from happening in
the future. This is where the ComponentDidCatch lifecycle method comes in.

ComponentDidCatch runs during React’s commit phase. The commit phase happens after the render
phase. In addition to ComponentDidCatch, this is also when ComponentDidMount and Component-
DidUpdate run. During the commit phase, ReactDOM actually applies (or commits) the changes
from the render phase to the browser. The commit phase is when it’s safe for components to do
operations that have side effects, because the commit phase only happens once per change, whereas
the render phase may happen multiple times for any change to the state.

FIGURE 13-5:  Rendering a fallback UI

328  ❘  CHAPTER 13   Error Boundaries

ComponentDidCatch receives two parameters: the error that was thrown, and an info object con‑
taining information about which component threw the error. Listing 13‑4 adds the ComponentDid-
Catch method to the ErrorBoundary we created earlier. In this version, ComponentDidCatch just
logs the values of the error and info parameters to the browser console.

LISTING 13-4:  Logging the error and the info object to the console

import {Component} from 'react';

class ErrorBoundary extends Component {
 constructor(props) {
 super(props);
 this.state = { hasError: false };
 }

 static getDerivedStateFromError(error) {
 return { hasError: true };
 }

 componentDidCatch(error,info){
 console.log(`error: ${error}`);
 console.log(`info: ${info}`);
 }

 render() {

 if (this.state.hasError) {
 return <h1>Oops! There's been an error.</h1>;
 }

 return this.props.children;
 }
}

export default ErrorBoundary;

With this change made to ErrorBoundary, you can now mount the BadComponent component and
open the console to see the parameters passed to ComponentDidCatch, as shown in Figure 13‑6.

Using a Logging Service
Logging errors to the console is fine during development, but once your app is out in the wild and
being used by other people, all of those log messages that show up in the console window stay in the
user’s console window and don’t do anyone any good.

To find out what errors are happening for real users, either they need to tell you about them (which
is unlikely unless the error is very bad) or you need to implement a system that logs errors outside of
the user’s browser automatically.

Implementing an Error Boundary  ❘  329

A cloud-based logging service can capture events (such as errors) that happen in your application and
provide you with reports that you can use to improve your app or to gain information about how
people are using it.

One such service is Loggly (https://loggly.com). Loggly has a free trial that you can use for testing
out the following example code.

After you’ve signed up for Loggly’s trial, you’ll need to install the Loggly Software Development Kit
(SDK). You can do this by entering the following at the root of your app:

npm install loggly-jslogger

Once the Loggly SDK is installed, create a new component, Logger, that will provide the Loggly
SDK’s functionality to other components (such as your error boundary). Listing 13‑5 shows what
your Logger component should contain.

LISTING 13-5:  The Logger component

import { LogglyTracker } from 'loggly-jslogger';

const logger = new LogglyTracker();

logger.push({ 'logglyKey': 'YOUR CUSTOMER TOKEN HERE' });

export default logger;

FIGURE 13-6:  Viewing the error and info parameters in the console

https://loggly.com

330  ❘  CHAPTER 13   Error Boundaries

To get the customer token, log in to your Loggly trial account and go to the Source Browser, as
shown in Figure 13‑7.

Find the Customer Tokens link (shown in Figure 13‑8) and click it to view the token you’ll need to
enter into the Logger component.

FIGURE 13-7:  Add a log source

Implementing an Error Boundary  ❘  331

The last step in installing Loggly and configuring it to log errors in your React UI is to import it into
ErrorBoundary and pass the parameters of ComponentDidCatch to it, as shown in Listing 13‑6.

LISTING 13-6:  The updated ErrorBoundary with remote logging

import {Component} from 'react';
import logger from './logger';

class ErrorBoundary extends Component {
 constructor(props) {
 super(props);
 this.state = { hasError: false };
 }

FIGURE 13-8:  The Customer Token link in Loggly

continues

332  ❘  CHAPTER 13   Error Boundaries

 static getDerivedStateFromError(error) {
 return { hasError: true };
 }

 componentDidCatch(error,info){
 logger.push({ error, info });
 }

 render() {

 if (this.state.hasError) {
 return <h1>Oops! There's been an error.</h1>;
 }

 return this.props.children;
 }
}

export default ErrorBoundary;

Now that the ErrorBoundary is logging caught errors to Loggly, you can go to your Loggly dash‑
board and see information about caught errors that happen, as shown in Figure 13‑9.

FIGURE 13-9:  Viewing caught errors in Loggly

LISTING 13-6  (continued)

Implementing an Error Boundary  ❘  333

Resetting the State
If the error that triggers an error boundary is a temporary one, such as can happen when a network
service is unavailable, providing a way for the user to try again can improve the user experience.

Since our ErrorBoundary component determines whether to render the fallback UI or its children
based on the hasError state value, resetting the value of hasError will cause it to try to render the
children again.

To demonstrate resetting the state, let’s first make a component that doesn’t always return an error.
The component in Listing 13‑7 will randomly result in an error when you click a button.

LISTING 13-7:  A component that sometimes errors

import ErrorBoundary from './ErrorBoundary';
import {useState} from 'react';

function SometimesBad(){
 const [message,setMessage] = useState();

 const handleClick = () => {
 const randomNumber = Math.floor(Math.random() * 2);
 if (randomNumber === 1){
 setMessage({error:"there has been an error"});
 } else {
 setMessage("great");
 }
 }
 return (
 <div>
 <button onClick={handleClick}>Mystery Button</button>
 {message}
 </div>
);
}

export default SometimesBad;

If you render this component and click the button, it may result in the value of message being set to
an object, which will attempt to render. The result will be the unmounting of the React component
tree and an error message.

If you use one of the ErrorBoundary components that you’ve seen so far in this chapter, it will pre‑
vent the user from seeing a blank screen and will leave the rest of the app intact. However, because
this error isn’t necessarily fatal, we can give the user an option to try their luck again. To do so, pro‑
vide a way for the value of hasError to be reset to false, as shown in Listing 13‑8.

334  ❘  CHAPTER 13   Error Boundaries

LISTING 13-8:  Providing a reset link in the Error Boundary

import {Component} from 'react';
import logger from './logger';

class ErrorBoundary extends Component {
 constructor(props) {
 super(props);
 this.state = { hasError: false };
 }

 static getDerivedStateFromError(error) {
 return { hasError: true };
 }

 componentDidCatch(error,info){
 logger.push({ error, info });
 }

 render() {

 if (this.state.hasError) {
 return (<>
 <h1>Oops! There's been an error.</h1>
 <button onClick={()=>this.setState({hasError:false})}>Try
again</button>
 <>)
 }

 return this.props.children;
 }
}

export default ErrorBoundary;

With this ErrorBoundary wrapped around SometimesBad, when it does result in an error, the user
will be able to click the button to get back to the user interface with the button and try again, as
shown in Figure 13‑10.

Installing a Pre-Built ErrorBoundary Component
The other way to get an ErrorBoundary component is to install one that someone has already built,
such as the one at https://www.npmjs.com/package/react-error-boundary.

To install react-error-boundary, enter the following into your terminal:

npm install react-error-boundary

The react-error-boundary package provides a configurable ErrorBoundary component that you
can use instead of writing your own. To use it, import it into your component and wrap it around
components that you want to catch errors in. React-error-boundary is highly customizable, but
the most basic use of it simply requires a fallback component that should be displayed when an error
occurs, as shown in Listing 13‑9.

https://www.npmjs.com/package/react-error-boundary

Implementing an Error Boundary  ❘  335

LISTING 13-9:  Specifying a fallback component with react-error-boundary

import ErrorBoundary from 'react-error-boundary';

function ErrorFallback({error}) {
 return (
 <div role="alert">
 <p>Something went wrong:</p>
 <pre>{error.message}</pre>
 </div>
)
}

function BadComponentContainer(){
 return (
 <ErrorBoundary
 FallbackComponent={ErrorFallback}>
 <BadComponent />
 </ErrorBoundary>
)
}

FIGURE 13-10:  Providing a reset option in the error boundary

continues

336  ❘  CHAPTER 13   Error Boundaries

function BadComponent(){
 return (
 {oops:"this is not good"}
);
}

export default BadComponentContainer;

WHAT CAN’T AN ERROR BOUNDARY CATCH?

Error boundaries are a great tool for capturing most of the errors that you’re likely to encounter in
your components, but there are a few types of errors that error boundaries can’t handle. These are:

➤➤ Errors in the ErrorBoundary.

➤➤ Errors in event handlers.

➤➤ Errors in server-side rendering.

➤➤ Errors in asynchronous code.

Catching Errors in Error Boundaries with try/catch
One way to catch the errors that error boundaries can’t, is to use JavaScript’s built-in try/
catch syntax.

For example, an error boundary can’t catch an error in itself, only in its child components. Theoreti‑
cally, you could wrap your ErrorBoundary in an ErrorBoundary, but that’s a never-ending task. It’s
better to use try/catch in the ErrorBoundary component, as shown in Listing 13‑10.

LISTING 13-10:�  Using try/catch to catch errors in an ErrorBoundary

import {Component} from 'react';
import logger from './logger';

class ErrorBoundary extends Component {
 constructor(props) {
 super(props);
 this.state = { hasError: false };
 }

 static getDerivedStateFromError(error) {
 return { hasError: true };
 }

 componentDidCatch(error,info){
 try {
 logger.push({ error, info });
 } catch(error){

LISTING 13-9  (continued)

What Can’t an Error Boundary Catch?  ❘  337

 // handle the error here
 }
 }

 render() {

 if (this.state.hasError) {
 return <h1>Oops! There's been an error.</h1>;
 }

 return this.props.children;
 }
}

export default ErrorBoundary;

In this example, if something goes wrong with calling logger.push, that error can be handled by the
code in the catch block.

Catching Errors in Event Handlers with react-error-boundary
Event handlers in React don’t happen during the rendering, unlike the lifecycle methods and the
render method. Because of this, errors in event handlers don’t have the potential to cause the col‑
lapse of the entire UI, and so event boundaries aren’t needed or supported in event handlers.

However, rather than writing separate error handling code for your event handlers and your error
boundary, it would be ideal to be able to handle both the same way.

If you use the react-error-boundary package, it includes a hook named useErrorHandler that
you can use to hand off errors that happen in an event handler to the nearest ErrorBoundary compo‑
nent, as shown in Listing 13‑11.

LISTING 13-11:  Using useErrorHandler()

function Greeting() {
 const [greeting, setGreeting] = React.useState(null)
 const handleError = useErrorHandler()

 function handleSubmit(event) {
 event.preventDefault()
 const name = event.target.elements.name.value
 fetchGreeting(name).then(
 newGreeting => setGreeting(newGreeting),
 error => handleError(error),
)
 }

 return greeting ? (
 <div>{greeting}</div>
) : (

continues

338  ❘  CHAPTER 13   Error Boundaries

 <form onSubmit={handleSubmit}>
 <label>Name</label>
 <input id="name" />
 <button type="submit">get a greeting</button>
 </form>
)
}

In this example, when an error happens in the handleSubmit method, it will be handled by the
ErrorBoundary that encloses the Greeting component (or one of its ancestors).

SUMMARY

The goal of error handling (also known as exception handling) in software is to minimize the impact
that errors in your application have on the user experience. Once you’ve handled an error, logging it
can help you get to the root cause and fix the problem. Both error handling and logging are enabled
and simplified in React through the use of error boundaries.

In this chapter, you learned:

➤➤ What an error boundary is.

➤➤ How to write your own error boundary.

➤➤ How to use an error boundary to display a fallback UI.

➤➤ How to use an error boundary to log errors to a logging service.

➤➤ How to use the react-error-boundary package.

➤➤ How to catch errors using try/catch.

➤➤ How to use react-error-boundary’s useErrorHandler hook.

In the next chapter, you’ll learn how to put everything you’ve learned so far together and actually
deploy your React app to the web.

LISTING 13-11  (continued)

Deploying React
Now that you know how to build a React UI, implement routing, catch and log errors, and
several methods for fixing performance problems, you’re ready to move beyond the confines of
your local development machine and make your app available to its audience. In software and
web development, we call this step deployment.

In this chapter, you’ll learn:

➤➤ The differences between the development and production versions of React.

➤➤ How to build your app for deployment.

➤➤ Different options for hosting a React UI.

➤➤ How to enable continuous integration with Git.

WHAT IS DEPLOYMENT?

Software deployment is the process of making software available for use. For web apps, this
means putting an app on the web. For mobile apps, it usually means putting an app in an
app store.

Deployment of a web app generally involves running the code through several steps to prepare
it for the web, followed by actually transferring the processed files to a server where they’ll
become accessible through a non-local URL.

BUILDING AN APP

Building, or compiling, an app is the process of transforming your development, or source, files
into a standalone app. In the case of a React project, this means your app must go through
several steps, including the following:

➤➤ Linking to the optimized production version of the React and ReactDOM libraries.

➤➤ Bundling other linked libraries that are required for your app to run on a server (such
as React Router).

14

340  ❘  CHAPTER 14   Deploying React

➤➤ Transpiling your source files to a lowest-common-denominator version of JavaScript that will
run in all of your target web browsers.

➤➤ Combining your source files into bundles for efficient transfer over the web.

➤➤ Minifying your source files to reduce the bandwidth required for the end user to load the app.

➤➤ Moving static files (such as HTML, CSS, the compiled JavaScript, and images) into a distribu-
tion directory.

Building a React app is a complex process involving several tools and scripts working together to
process the hundreds of files that make up your React project. Fortunately, Create React App makes
building an app simple. When you’re ready to compile your React app that was bootstrapped with
Create React App for deployment, you only need to know one simple command: npm run build.

Running the build Script
When you’re ready to deploy your app (or any time you want to try it out, really) you can create a
production version of your app by going into the terminal and typing npm run build.

What happens next will be that Create React App will go through a similar process to what it does
when you run npm start, except that instead of opening the compiled app in a browser, it will save
the compiled files in a directory named build.

Examining the build Directory
Figure 14‑1 shows the files in the resulting build directory after running npm run build in the
React Bookstore project from Chapter 5.

FIGURE 14-1:  The build directory

Building an App  ❘  341

If you compare the build directory with the rest of the project, you’ll notice the following:

➤➤ The contents of the public directory become the root of the build directory. The images
and data directories, along with the favicon.ico, index.html, and the manifest.json
files, have all been copied over to build.

➤➤ A new static directory has been created. This directory contains a css subfolder and a js
subfolder.

➤➤ A new asset-manifest.json file has been created.

The Built index.html
If you open the index.html from the public directory and the index.html from the build direc-
tory, you’ll see that the one in the build directory is minified, comments have been removed, template
code (marked by % characters) has been replaced, and links to scripts and CSS have been inserted. If
you look hard enough, however, you’ll notice your root node, where the React app will run, is still in
there, as shown in Figure 14‑2.

This built index.html is the file that a web browser will load that will kick off the React app and
display your root component (and its children) in the root node.

The index.html file uses absolute paths to load linked files. So, if you open index.html in a web
browser now, you’ll see error messages in the console that the JavaScript and CSS files weren’t found.

If you change all of the absolute paths in index.html to relative ones (by putting a . before the
path) you can actually run the built app locally on your computer without a web server, as shown in
Figure 14‑3.

FIGURE 14-2:  The minified and compiled index.html

342  ❘  CHAPTER 14   Deploying React

In the case of the React Bookstore, however, loading the app locally produces two errors in the con-
sole due to browser requirements for loading the app’s data. Namely, for the fetch command to be
able to load data.json, the app must be viewed using HTTP or HTTPS.

The static Directory
The static directory inside build holds the compiled JavaScript and CSS files and sourcemap
files. The compiled JavaScript files are built from the React and ReactDOM libraries, other packages
from the node_modules folder, and the source code that you wrote. All of these are combined, tran-
spiled to be compatible with your target browsers, minified, and output as static files. The same thing
happens with the CSS files.

The sourcemap files (which end in .map) provide mappings between the minified static files and the
original formatted code. Sourcemap files can be read by web browsers to allow you to view and
debug readable code in the browser developer tools.

asset-manifest.json
As part of the build process, a file named asset-manifest.json will be created. This file functions
much like the .map files, but for filenames. It lists the files that were generated in the compilation

FIGURE 14-3:  Running a built app from the filesystem

Development Mode vs. Production  ❘  343

of your app along with their original filenames. This file doesn’t affect the rendering of your app,
but rather, it can be used by tools to find out what assets your app uses without having to parse the
index.html file.

What’s in a Name?
The filenames generated by Create React App include unique strings between the original name of the
file and the file extension, as you can see here:

/static/js/main.ee531687.chunk.js

This string of seeming random letters and numbers is actually a hash string. A hash string is a string
of text calculated based on the contents of the file. As a result of the build process inserting hash
strings into the filenames, whenever you change your React components and rebuild your app, the
built filenames will change. This enables your application’s files to be cached by servers and browsers
and automatically updated when you modify the app.

Files may also be split into multiple “chunks” to optimize downloading and loading of the files. This
is done automatically during the build process.

HOW IS A DEPLOYED APP DIFFERENT?

When you use Create React App’s start command, it creates the build directory in memory and
serves it using a development server. When you use the build command, it creates the build direc-
tory on disk so that it can be served using a static file server. Other than where it’s created and served,
the biggest difference between the version of your app that you’ve been working on and testing using
npm start and the version that’s created when you use build is that the version created in the build
directory uses the production version of React.

DEVELOPMENT MODE VS. PRODUCTION

The production version of React is a minified version of the library with all the helpful warning
messages and other tools for debugging your components stripped out. Minification and removal of
unnecessary code makes a big difference in the file sizes of React and ReactDOM. The total file size
for the React and ReactDOM libraries in the development version is currently 1045Kb, while the
production version is just 132Kb.

You can tell whether a React app is running in development or production by clicking the React icon
in the Chrome extensions menu. The icon will be red for an app running in development mode and
blue for an app running in production mode, as shown in Figure 14‑4.

344  ❘  CHAPTER 14   Deploying React

PUTTING IT ON THE WEB

React web apps can be published to the web in a variety of different ways. Which way you choose
will depend on the amount of traffic you expect the app to get, whether you want to integrate deploy-
ment with your version control system, and your budget for hosting.

Web Server Hosting
The easiest way to publish a React app on the web is to upload the contents of the build directory to
any HTTP server, such as Apache or NGINX. Publishing a React app in this way is not much differ-
ent from publishing any static website built using HTML, CSS, and JavaScript.

If you sign up with any standard web host that allows FTP upload or upload of files using a browser-
based file browser, the steps for publishing your app to the web will be similar to the following:

1.	 Create or find out your FTP login credentials, or find out if your web host has a web-based
file uploader.

2.	 Use FTP (or the web-based file uploader) to connect to your site and upload everything
inside the build directory to your web directory (which should be named something like
www or htdocs).

3.	 Test that your app works and that you uploaded it correctly by navigating to the root of your
website (for example, www.example.com) in a web browser.

FIGURE 14-4:  Development vs. production in the Developer Tools

http://www.example.com

Putting It on the Web  ❘  345

For a simple app that doesn’t use routing, the preceding process will work. If your app does use rout-
ing, you’ll need to do an additional configuration to redirect any requests for subdirectories of the site
back to index.html so they can be properly handled by React Router.

For an Apache server, create a file named .htaccess containing the following code:

Options -MultiViews
RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule ^ index.html [QSA,L]

Add this file to your public directory, and then upload it from the build directory with the rest
of your app.

Node Hosting
If your web server has Node.js installed, you can deploy your React app by installing the serve pack-
age and running it.

Run the following command to install serve globally:

npm install -g serve

To start up serve and use it to serve a particular React app, run the following command in the root
of your project:

serve -s build

The server will start up and your site will become available at your web server’s domain name at port
5000. If you wish to modify the port, you can do so by using -listen (or -l for short) in the serve
build command, like so:

serve -s build -l 5050

Deploying with Netlify
Modern web apps are increasingly being hosted on cloud and backend as a service (BaaS) platforms
that offer one-step deployment and continuous integration and continuous deployment (CI/CD). CI/
CD means that when you commit changes to a version control system, those changes can be pushed
to your live production environment automatically.

One popular target for deploying React applications is Netlify.

To get started with hosting your React app on Netlify, first go to https://netlify.com and sign up
for a free account. Because Netlify publishes directly from a Git server, you should first sign up with a
Git repository host such as GitHub, GitLab, or Bitbucket and push your code to one of these services,
if you haven’t already.

The first step in setting up hosting at Netlify is to click the New site from Git button on the Overview
page, as shown in Figure 14‑5.

The next screen will ask you to choose your Git provider. Click the one that you use, as shown in
Figure 14‑6.

https://netlify.com

346  ❘  CHAPTER 14   Deploying React

FIGURE 14-5:  Click the New site from Git button

FIGURE 14-6:  Choose your Git provider

Putting It on the Web  ❘  347

Once you authorize Netlify to access your Git provider, you can select a repository to import from, as
shown in Figure 14‑7.

On the next screen, you’ll be asked to provide a branch of your repository that should be deployed to
Netlify, and to enter the build command and publish directory. For Create React App, the build com-
mand is npm run build, and the publish directory is build.

Enabling Routing with Netlify
If your app uses routing, create a directory inside your public directory named _redirects and enter
the following into it to correctly redirect any requests for files in the site to index.html:

/* /index.html 200

After you’ve selected the repository that contains your app and entered the build command and the
publish directory, Netlify will start the process of cloning and building your project and deploying it

FIGURE 14-7:  Choose a repository

348  ❘  CHAPTER 14   Deploying React

to a custom domain. If there are errors during the deployment, Netlify will let you know that deploy-
ment was unsuccessful and display an error log.

If your site is deployed successfully, it will become accessible using a netlify.app subdomain, as
shown in Figure 14‑8.

Enabling Custom Domains and HTTPS
For most public web apps, you’ll want to have a custom domain name (such as example.com) and
to enable encrypted serving of your app using HTTPS. Both of these can be configured in Netlify’s
Domain management area, which is shown in Figure 14‑9.

FIGURE 14-8:  A deployed React app

http://example.com

Summary  ❘  349

SUMMARY

Building and deployment of a React application can be done in many different ways. Tools and tech-
niques that have become common for automating the process have made making your application
available to the world reliable, repeatable, and simple.

In this chapter, you learned:

➤➤ How to use Create React App to build your application.

➤➤ How the build directory created by Create React App is structured.

FIGURE 14-9:  Domain management in Netlify

350  ❘  CHAPTER 14   Deploying React

➤➤ How to publish a React app to a web server.

➤➤ How to publish a React app to a node server.

➤➤ How to publish a React app to Netlify.

In the next chapter, the first of the advanced part of the book, you’ll learn how to install and config-
ure some of the tools used by Create React App to make your own automated build environment or
modify an existing one.

Initialize a React Project
from Scratch

Using a pre-built build toolchain, such as Create React App, is convenient and allows React
programmers to focus on the most important job at hand—programming with React. However,
there are times when you’ll need to customize your toolchain or adjust settings in one of the
tools that make up Create React App. Knowing what tools make up your toolchain and learn-
ing how to install and configure each of them and wire them together will give you a head start.

In this chapter, you’ll learn:

➤➤ How to install and configure a module bundler.

➤➤ How to install and configure ESLint.

➤➤ How to use Babel.

➤➤ How to automate tasks with npm scripts.

➤➤ How to create a production build of your React app.

➤➤ Options for organizing a React project.

BUILDING YOUR OWN TOOLCHAIN

Create React App is an invaluable tool for automating and simplifying many of the tasks
involved in starting, testing, deploying, and maintaining React apps. Under the hood of Cre-
ate React App, many different Node.js packages are working together, mostly seamlessly. As a
React developer, having such a powerful set of tools that is continually being maintained and
improved is liberating.

Create React App is not the only build toolchain for React, however. There are alternatives to
each of the components of Create React App and there are other toolchains available that have
strengths and features that Create React App lacks.

15

352  ❘  CHAPTER 15   Initialize a React Project from Scratch

Prior to the creation of Create React App, it was common for React developers to link together
the individual tools needed for a toolchain themselves. Rolling your own is seldom a requirement
today, and you’ll actually be better off in most cases by using a toolchain built and maintained by
someone else.

But just as a homeowner should have some basic skills in home repair, the experience of learning to
install, configure, and link together different tools is something that every JavaScript and React devel-
oper should have.

Initializing Your Project
The build toolchain and the files that make up your React application are two separate things. Even
a project that’s bootstrapped using Create React App can easily be taken out of Create React App
and used with another toolchain. To show you how simple it can be to start a React project without a
toolchain, in this chapter we’ll start with just three files and build a complete app and toolchain
from scratch:

1.	 Select File ➪ New Window in VS Code.

2.	 Click Open Folder from the Welcome Screen and select an empty directory on your computer
where you want to put your new project.

3.	 Open a new terminal window in VS Code by selecting Terminal ➪ New Terminal from
the top menu.

4.	 Initialize a new Node.js package and skip over answering questions about your project by
entering npm init -y into the terminal. A package.json file will be created.

5.	 Open package.json in VS Code so you can watch the changes that are made to it as you
install and configure required packages.

6.	 Install React and ReactDOM into the new project with this command:

npm install react react-dom

The HTML Document
The first file to set up is the single HTML document that will load when a browser visits the app.
This can be extremely simple:

1.	 Make a new folder named src. This is where we’ll keep our source files for the project.

2.	 Make a new file named index.html inside the src directory.

3.	 In index.html, type the ! character and then press the Tab key. This is a shortcut that will
automatically enter the bones of an HTML document.

4.	 Create an empty div element between <body> and </body> and give it an id attribute with a
value of root:

<div id="root"></div>

Listing 15‑1 shows the finished index.html.

Building Your Own Toolchain  ❘  353

LISTING 15-1:  The finished index.html

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>My App</title>
</head>
<body>
 <div id="root"></div>
</body>
</html>

The Main JavaScript File
The main JavaScript file is the one that calls ReactDOM.render to render the root component in
the browser:

1.	 Create a new file named index.js inside src and open it for editing.

2.	 Import React and ReactDOM:

import React from 'react';
import ReactDOM from 'react-dom';

3.	 Import your root component (which we’ll create shortly):

import App from './App.js';

4.	 Call ReactDOM.render, passing in the root component and the target DOM node:

ReactDOM.render(<App />, document.getElementById('root'));

Listing 15‑2 shows the finished index.js.

LISTING 15-2:  The finished index.js

import React from 'react';
import ReactDOM from 'react-dom';
import App from './App';

ReactDOM.render(<App />, document.getElementById('root'));

The Root Component
The root component is the one that’s the parent of every other component in your app:

1.	 Create a new file named App.js inside src.

2.	 Inside App.js, create a simple function component to use as your root. For our purposes
here, this component can be anything. Listing 15‑3 shows a component that will track your
mouse position.

354  ❘  CHAPTER 15   Initialize a React Project from Scratch

LISTING 15-3:  A component to track mouse position

import React from 'react';

const App = () => {
 const [position,setPosition] = React.useState({x:0,y:0});

 const onMouseMove = (e) => {
 setPosition({x: e.nativeEvent.offsetX, y: e.nativeEvent.offsetY })
 }

 const { x, y } = position;

 return (
 <div style={{width:"500px",height:"500px"}}
 onMouseMove = {onMouseMove}>
 <h1>x: { x } y: { y }</h1>
 </div>
)

}

export default App;

Running in the Browser
In a perfect world, it should be possible to just import index.js into your index.html document
and everything would work. Let’s try that out:

1.	 Use a script element to import index.js into index.html, as shown in Listing 15‑4.

LISTING 15-4:  Importing index.js into index.html

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>My App</title>
</head>
<body>
 <div id="root"></div>
 <script src="index.js"></script>
</body>
</html>

2.	 Install and run a basic local web server and serve your app by entering the following into
your terminal:

npx http-server src

Building Your Own Toolchain  ❘  355

3.	 Open the URL that the web server gives you when it starts. The result will be a blank screen
with an error in the JavaScript console, as shown in Figure 15‑1.

For our JavaScript imports and React code containing JSX to work in a browser, they need to
be compiled first. We’ll use the Webpack module bundler to do this.

4.	 Install Webpack, the Webpack Development Server, and the Webpack command-line
interface:

npm install webpack webpack-dev-server webpack-cli --save-dev

Notice that with this install, we’re using --save-dev to indicate that these tools are
development dependencies that won’t be deployed to production. The result of using
--save-dev is that these packages will be listed in a separate section of package.json called
devDependencies.

FIGURE 15-1:  Attempting to load index.js without compiling

356  ❘  CHAPTER 15   Initialize a React Project from Scratch

5.	 Try to compile the app now, using the following command:

npx webpack

You’ll get an error saying that you need a loader, as shown in Figure 15‑2. The problem is
that Webpack doesn’t know how to compile JSX code on its own.

6.	 Install Babel, the Babel loader for Webpack, and the Babel presets for modern JavaScript and
for React:

npm install @babel/core babel-loader @babel/preset-env @babel/preset-react --save-dev

7.	 Create a new file named babel.config.json and enter the following code into it:

{
 "presets": ["@babel/preset-env", "@babel/preset-react"]
}

8.	 Make a Webpack config file named webpack.config.js, and link to the Babel loader:

module.exports = {
 mode: 'development',
 module: {
 rules: [
 {
 test: /\.js$/,
 exclude: /node_modules/,
 use: ["babel-loader"]
 }
]
 }
};

FIGURE 15-2:  JSX requires a loader

How Webpack Works  ❘  357

9.	 Run npx webpack. A new directory named dist will be created, containing the bundled
main.js file.

10.	 Make a copy of index.html (from the src directory) and put it in the new dist directory.

11.	 Change the script element in index.html to import main.js:

<script src="main.js"></script>

12.	 Serve the new dist directory using http-server by entering the following into the terminal:

npx http-server dist

13.	 Open the localhost URL in your browser. It should work now, and as you move your mouse
over the rectangle created in App.js, the x and y values should display the current position
of your mouse, as shown in Figure 15‑3.

HOW WEBPACK WORKS

Webpack’s primary function is to combine the modules used in modern JavaScript development into
optimized output files for use in a browser. Webpack does its magic by starting with an entry point
(which is src/index.js by default) and building a dependency graph. A dependency graph is a list of
every module linked from the entry point and what the dependencies of each module are. By using the
dependency graph, Webpack can bundle all of these files together.

FIGURE 15-3:  The working React app

358  ❘  CHAPTER 15   Initialize a React Project from Scratch

Webpack can bundle together files that use any of several different module formats, including
JavaScript’s import statement, CommonJS, AMD Modules, @import statements in CSS, and HTML
 elements.

Loaders
Loaders tell Webpack how to process and bundle file types that it doesn’t natively support. Many
loaders have been written, including CSS loaders, HTML loaders, file loaders, and more.

Loaders can be configured in webpack.config.js by specifying a test property and a use property.
The test property is a regular expression that tells which files should be affected by a loader, and the
use property tells which loader to use for the files matching the test. You can also use an optional
property named exclude, which tells what files shouldn’t be affected by the loader.

For example, in our project, we configured a loader with the following settings:

 rules: [
 {
 test: /\.js$/,
 exclude: /node_modules/,
 use: ["babel-loader"]
 }
]

This rule says to use the babel-loader to transform any file that ends with .js, but to ignore files
inside node_modules.

Plugins
Plugins extend the capabilities of Webpack. Examples of plugins include:

➤➤ HtmlWebpackPlugin: Creates HTML files to serve the bundle.

➤➤ NpmInstallWebpackPlugin: Automatically installs missing dependencies during bundling.

➤➤ ImageminWebpackPlugin: Minifies images in your project during bundling.

Plugins can be configured in the plugins array in webpack.config.js.

AUTOMATING YOUR BUILD PROCESS

Now that you’ve gone from writing React code, to compiling it, to deploying it—in a very basic
way—let’s automate the process and make our development and build toolchain a bit more
functional.

Automating Your Build Process  ❘  359

Making an HTML Template
Copying the HTML document from src to dist and inserting the correct path to the main script
isn’t difficult, but it’s a step that you shouldn’t have to remember to do in an automated build. Here’s
how to use a Webpack plugin called HtmlWebpackPlugin to automate this process:

1.	 Install HtmlWebpackPlugin:

npm install html-webpack-plugin --save-dev

2.	 Open webpack.config.js in VS Code and insert the following at the beginning of the file to
import HtmlWebpackPlugin:

const HtmlWebpackPlugin = require('html-webpack-plugin');

3.	 Create a new property in webpack.config.js named plugins, as shown in Listing 15‑5.

LISTING 15-5:  Creating the plugins object

module.exports = {
 mode: 'development',
 module: {
 rules: [
 {
 test: /\.js$/,
 exclude: /node_modules/,
 use: ["babel-loader"]
 }
],
 },
 plugins: []
 };

The plugins property should contain an array of configuration objects for the plugins you
want to use with Webpack.

4.	 Configure HtmlWebPackPlugin. You can read more about the features and capabilities of
HtmlWebPackPlugin at https://webpack.js.org/plugins/html-webpack-plugin/.
We’re going to use it to copy index.html from the src directory to the dist and to inject
the main.js script into it. Use the following configuration object inside the plugins array:

new HtmlWebpackPlugin({
 template: __dirname + '/src/index.html',
 filename: 'index.html',
 inject: 'body'
})

5.	 Open src/index.html and remove the <script> element from it.

6.	 Delete the dist directory.

https://webpack.js.org/plugins/html-webpack-plugin/

360  ❘  CHAPTER 15   Initialize a React Project from Scratch

7.	 Run npx webpack to test out your Webpack configuration. If you entered everything cor-
rectly, the index.html file should be copied from src to dist, and the compiled version in
dist will have a script tag that imports main.js.

8.	 Start up your development server and open your app in your browser to confirm that every-
thing still works.

Development Server and Hot Reloading
Hot reloading, in a development environment, is the ability to make changes to an app and then see
those changes reflected automatically without needing to enter a compile command. To enable hot
reloading with Webpack, you can use the Webpack Dev Server.

You already installed Webpack Dev Server in an earlier step. To use it, enter npx webpack serve
into the terminal. Instead of compiling to the dist directory, Webpack will serve your app at
localhost:8080 (by default).

With your app being served by Webpack, try making and saving a change to App.js. Your changes
will be reflected immediately in the browser window. When you’re finished and want to stop the dev
server, press Ctrl+C in the terminal window.

Testing Tools
We’ll talk more about testing in Chapter 20. Although a detailed explanation of how to test React
apps is beyond the scope of this chapter, automated testing is a critical part of any professional devel-
opment environment. A good toolchain will include at least two testing-related components:

➤➤ A static code analysis tool (also known as a linter).

➤➤ An automated unit testing tool.

Installing and Configuring ESLint
The job of a static code analysis tool is to check the code you write for syntax errors and code style.
This process is called linting. The tool that’s currently most often used for linting JavaScript code
is ESLint.

ESLint is highly configurable. It can be used just for checking your code for syntax errors, or it can
check syntax, best practices, and code style. It can even fix some kinds of problems for you.

To get started with ESLint, install it into your project:

npm install eslint --save-dev

Once installed, ESLint includes an initialization script that will ask you questions about how you
want to use it and create a configuration file based on your answers. Follow these steps to config-
ure ESLint:

1.	 Type the following command to run the initialization script:

npx eslint --init

The configuration wizard will start and ask you an initial question about how you want to
use ESLint, as shown in Figure 15‑4.

Automating Your Build Process  ❘  361

2.	 Use the arrow keys on your keyboard to choose any of the options. If you make a mistake
or change your mind later, you can always run the configuration wizard again, or edit the
configuration file manually.

3.	 Go through all of the questions in the configurator. When in doubt, choose the default
option. At the end of the questions, the ESLint React plugin should be installed and a con-
figuration file for ESLint will be created and named .eslintrc.js.

4.	 Open .eslintrc.js in VS Code to see what the configuration wizard generated.

5.	 Check your code in the src directory by running the following command:

npx eslint src

If your code doesn’t have any errors or problems or style issues, as defined by the configura-
tion file, ESLint shouldn’t produce any output.

6.	 Introduce an error into App.js. For example, delete an ending tag in the return statement.

7.	 Run ESLint again to confirm that it produces an error.

ESLint Configuration
The easiest way to configure ESLint is to run the initialization script. But, ESLint has far more options
than the ones that the initialization script asks you about. The primary way to configure ESLint is
through rules in the configuration file.

If your configuration file has a property named extends, it’s bringing in the rules from the configura-
tions or plugins listed there. You can override them or add additional rules in the rules property.

ESLint rules determine what will produce output when you run ESLint, and the severity (called “error
level”) of the output. For example, if your style is to use single quotes around strings in JavaScript,
you can tell ESLint to show a warning when it finds double quotes with the following rule:

"quotes": ["warn", "single"]

The error level can be one of three values:

➤➤ 0 or "off": Disables the rule.

➤➤ 1 or "warn": Displays a warning message.

➤➤ 2 or "error": Displays an error and sets the exit code to 1, which will cause your automated
build script to fail, as you’ll see later in this chapter.

You can find a complete list of ESLint’s rules at https://eslint.org/docs/rules/.

FIGURE 15-4:  Starting the configuration wizard

https://eslint.org/docs/rules/

362  ❘  CHAPTER 15   Initialize a React Project from Scratch

How to Fix Errors
When ESLint reports errors, you have at least two ways to resolve the problem. The first way is by
modifying your source code to eliminate the error or fix the bug. The second way, which is quite
common when you’re first starting to configure ESLint, is to change ESLint’s configuration so that it
doesn’t count the source of the error as an error.

For example, if your ESLint configuration reports use of double quotes as an error, this may cause
problems and errors that you don’t care about when ESLint checks configuration files, such as
webpack.config.js.

Some of the ways you can tell ESLint not to report a certain error are:

1.	 Add files that you don’t want checked to a file called .eslintignore in the root of
your project.

2.	 Change the rule in question to a lower-level error or disable it.

3.	 Disable a single rule for that file by adding a block comment with an eslint-disable
instruction to the file. For example, to disable the no-console rule for a file, add the follow-
ing to the top of the file:

/* eslint-disable no-console */

Depending on the error, you may also have a third way to fix errors: let ESLint do it. After it finishes
running, ESLint may report that some of the errors are potentially fixable by ESLint, as shown in
Figure 15‑5.

When this happens, you can have ESLint try to fix the errors by adding --fix to your ESLint com-
mand and running it again. If ESLint is able to fix the problems, it will just do so when it finds them.

FIGURE 15-5:  Automatically fixable errors or warnings

Automating Your Build Process  ❘  363

Testing with Jest
Jest is an automated unit testing framework. Unit testing is the process of testing the components
of an application in isolation. By writing tests for each component and function of your app as you
write it (or before you write it, in the case of test-driven development), you’ll detect problems in your
app earlier and improve the quality of your code.

Listing 15‑6 shows an example of a basic test for the mouse tracker app from earlier in this chapter.

LISTING 15-6:  Testing the mouse tracker

import React from 'react';
import {render, screen} from '@testing-library/react';
import App from './App';

 test('initial position displays as 0,0', () => {
 render(
 <App />,
);

 expect (screen.getByText(/x:/i).textContent).toBe('x: 0 y: 0')
});

Follow these steps to install and configure Jest:

1.	 Install the Jest package, React Testing Library, the Babel plugin for Jest, and the React
Test Renderer:

npm install jest @testing-library/react babel-jest react-test-renderer --save-dev

2.	 Run Jest:

npx jest --env=jsdom

By default, Jest will look for tests in directories named __tests__, or files that end with
.spec.js, or files that end with .test.js. Because you don’t currently have any files or
directories that match these patterns, Jest will return a message that no tests were found, as
shown in Figure 15‑6.

FIGURE 15-6:  No tests found

364  ❘  CHAPTER 15   Initialize a React Project from Scratch

If you save the test from Listing 15‑6 into a file named App.test.js in the src directory and run Jest
again, it will run the test and report that it passed, as shown in Figure 15‑7.

If you run ESLint now, it will likely fail. The reason is that you’ve added new globals to your code
that ESLint doesn’t know about. To fix that, add Jest as an environment in .eslintrc.js by modify-
ing the env property, like this:

"env": {
 "browser": true,
 "es2021": true,
 "jest": true
},

Creating NPM Scripts
Now that you’ve installed and configured several tools for developing, testing, and deploying React
apps, the next step is to link them together with npm scripts.

Npm scripts are specified in the scripts object in package.json and can be run using the npm run
command. You can create as many npm scripts as you need, but generally any toolchain will have at
least the following scripts:

➤➤ npm run start: Starts the development server.

➤➤ npm run test: Runs the automated tests.

➤➤ npm run build: Compiles the production version of the app.

NOTE  The first two scripts (start and test) are so commonly used in Node.js
projects that the word “run” can be omitted when you want to run them.

Follow these steps to write these three npm scripts, plus a couple of others that are required in our
toolchain:

1.	 Open package.json in VS Code.

2.	 Find the scripts object. By default, it will have a single script, named test, which will
simply return a message that no tests are specified and will exit with an error.

FIGURE 15-7:  Test passed

Structuring Your Source Directory  ❘  365

3.	 Modify the test script to match the following:

"test": "jest --env=jsdom"

4.	 Save package.json and enter npm test in the terminal. It should run Jest, just as if you had
entered npx jest --env=jsdom into the terminal.

5.	 Make another property in the scripts object, named lint. The value will be eslint src,
which will run the linter on your src directory:

"lint": "eslint src"

6.	 Add another script, named start, which will bundle your code and start the develop-
ment server:

"start": "webpack serve"

7.	 Add a bundle script:

"bundle": "webpack"

At this point, the scripts object in package.json should look like Listing 15‑7.

LISTING 15-7:  Adding npm scripts

"scripts": {
 "test": "jest",
 "lint": "eslint src",
 "start": "webpack serve",
 "bundle": "webpack"
},

The powerful thing about npm scripts is that you can link them together and run them in sequence
to automate complex processes. To see this in action, create a build script that runs the lint script,
followed by the test script, followed by the bundle script:

"build": "npm run lint && npm run test && npm run bundle"

When you run the build script, it will go through each of the component scripts in order. If one of
them encounters an error, the build script will fail.

STRUCTURING YOUR SOURCE DIRECTORY

Once you have a basic toolchain in place, you can save it by itself, for example in a Git repository,
and then clone it any time you need to start a new React project. Or, you can use Create React App,
but with a new confidence that you know how to fix or customize your toolchain when you need to.

Either way, the toolchain is just a necessary step before you can get to the real work of writing an
app. The next step in the process is to give some thought to how to efficiently organize your source
files. In the end, of course, your entire project will get rolled up into bundles by Webpack and
organization of your source code doesn’t have a direct effect on the final dist or build directory.
But, organization of your source files helps you and other developers to visualize the structure of the

366  ❘  CHAPTER 15   Initialize a React Project from Scratch

project without having to read through the code, and it also gives you a framework for improving
and expanding your app.

React intentionally doesn’t put limits on how you write code or name your functions, files, and fold-
ers. As a result, you’ll see many different opinions on the “correct” way to do things. You’ll also see
plenty of experienced React developers who recommend taking a flexible approach to structuring
your project—just get started and evolve as the need arises.

Several approaches have become common, however, and adopting parts of someone else’s evolved
best practice can save you the time and frustration of reinventing the wheel for yourself.

Grouping by File Type
Grouping React source files by type typically means that you start with a single directory named com-
ponents, and then expand outward from there as the need arises. For small projects, the components
directory may be all you need. For larger projects, however, it can be helpful to create subdirectories
inside of components and to move certain kinds of files into their own directories.

Examples of directories you might create in this strategy include:

➤➤ css

➤➤ hooks

➤➤ utilities (often abbreviated as utils or named helpers)

➤➤ api

➤➤ routes

➤➤ images

Figure 15‑8 shows an example of a project that was structured using groups of file types.

FIGURE 15-8:  Grouping by file type

Summary  ❘  367

Grouping by Features
Grouping by features means that you create a directory structure that mirrors the main functional
areas or routes in your app. For example, an app for accounting might have a route named income
and one named expenses. Inside these directories, you may continue to group components and other
source files by purpose, or you may decide to switch to grouping by file type inside of the func-
tional areas.

Figure 15‑9 shows an example of a project that was structured by grouping files by features.

SUMMARY

Even if you decide to use a pre-built toolchain such as Create React App (which is actually a very
good idea for most people), knowing how to configure your own toolchain is an essential skill for
modern JavaScript and web developers.

In this chapter, you learned:

➤➤ How to start a project from scratch.

➤➤ Why a module bundler is necessary.

➤➤ How Webpack works.

➤➤ How to automate your build.

➤➤ How to install ESLint and Jest.

➤➤ Popular ways to structure React source files.

In the next chapter, you’ll learn how to reach beyond your app and fetch data from remote sources
and how to store data between sessions.

FIGURE 15-9:  Grouping by features

Fetching and Caching Data
It’s possible to build great user interfaces that are self-contained and don’t need to interact with
the outside world (such as many games, calculators, and utilities). But, most web apps have a
need to receive and store data.

In this chapter, you’ll learn:

➤➤ When to fetch and store data in React.

➤➤ How to use window.fetch.

➤➤ What promises are.

➤➤ How async/await works.

➤➤ How to simplify network requests with Axios.

➤➤ How to store data in localStorage.

➤➤ How to read data from localStorage.

ASYNCHRONOUS CODE: IT’S ALL ABOUT TIMING

Whenever you update state, do a side effect, or store data in the user’s browser, these tasks take
time. One of the trickiest, but also most important, skills that a React developer needs to have is
learning how to properly handle asynchronous tasks.

With state updates, ReactDOM handles everything for you. You simply call setState (in a
class component) or pass data to a function returned by the useState hook (in a function
component). Most of the time, the asynchronous nature of setting React state is seamless and
invisible to the developer and the user.

With network and cache requests, on the other hand, every request has the potential to
adversely impact the user experience. In the worst case, a remote resource won’t be available.
More often, the amount of time a request takes will be wildly variable, depending on the user’s
internet connection, network congestion, and the remote server’s current workload.

16

370  ❘  CHAPTER 16   Fetching and Caching Data

JavaScript itself is rarely the issue—JavaScript is fast and usually only gets bogged down if the devel-
oper made a mistake (such as creating an infinite loop or a memory leak). One reason why JavaScript
is so fast and the reason that handling asynchronous code correctly is so important is that JavaScript
doesn’t wait for anything.

JAVASCRIPT NEVER SLEEPS

JavaScript doesn’t have a sleep or wait command. Instead, a JavaScript engine (such as the V8 Engine
built into the Chrome web browser and Node.js) starts at the beginning of your script and runs the
code as fast as it can, using a single thread. Because JavaScript is single-threaded, it must complete the
previous statement before moving on to the next.

The call stack in a JavaScript engine is where commands waiting to be executed sit until they can be
executed in a First In Last Out (FILO) order.

You might be asking yourself at this point how it’s possible to do asynchronous tasks (like network
requests and caching data) in JavaScript with only one thread. The answer is that although JavaScript
itself is single-threaded, the environment in which it runs (your browser or Node.js) is multithreaded.

Asynchronous tasks (like network requests) are handled by parts of the browser that are outside of
the JavaScript engine, such as the Web APIs, in conjunction with two other parts of the runtime envi-
ronment outside of JavaScript: the event loop and the callback queue.

Consider the following code:

console.log("get ready...");
setTimeout(() => {
 console.log("here it is!");
}, 1000);
console.log("end of the code.");

The result of running this code in a browser console is shown in Figure 16‑1.

What’s going on here is that when this program starts up, three function calls are added to the call
stack to be executed in order. After the first statement is executed and removed from the call stack,
JavaScript sees the setTimeout() function, which creates an event that is only indirectly managed
by JavaScript. It hands it off to the browser to execute, and then removes it from the call stack.
JavaScript can then move on to the third statement.

The Web API, in the meantime, waits for one second (because of the 1,000-millisecond timeout
length you passed to it) and then adds your callback function to the browser’s callback queue. The
event loop (which is in charge of listening for events and registering event listeners in the JavaScript
environment) picks up the function from the callback queue and adds it to JavaScript’s call stack to
be executed.

Figure 16‑2 shows a diagram of the whole process.

Callback functions, which get executed upon completion of an asynchronous task, are how
JavaScript programmers can write code that depends on the result of that asynchronous task. If you
want to have multiple asynchronous tasks that happen in a particular order, you can put them inside
the callback functions from other asynchronous tasks, as shown in Listing 16‑1.

JavaScript Never Sleeps  ❘  371

FIGURE 16-1:  Executing asynchronous JavaScript

Call
Stack

JavaScript Web APIs

DOM

Fetch

setTimeout

Callback Queue
Event Loop

FIGURE 16-2:  How asynchronous tasks are handled

372  ❘  CHAPTER 16   Fetching and Caching Data

LISTING 16-1:  Callbacks within callbacks

function userCheck(username, password, callback){
 db.verifyUser(username, password, (error, userInfo) => {
 if (error) {
 callback(error)
 }else{
 db.getRoles(username, (error, roles) => {
 if (error){
 callback(error)
 }else {
 db.logAccess(username, (error) => {
 if (error){
 callback(error);
 }else{
 callback(null, userInfo, roles);
 }
 })
 }
 })
 }
 })
};

In the preceding example, what should happen when the userCheck() function is called (absent any
errors) is the following:

1.	 Verify the user’s credentials.

2.	 Get the user’s access permissions.

3.	 Create a log entry.

Nested callbacks can be difficult to read, however, so more intuitive ways to perform tasks in
response to asynchronous tasks have been created—namely promises and async/await.

JAVASCRIPT LESSON: PROMISES AND ASYNC/AWAIT

This JavaScript lesson examines promises, async, and await.

Promises

A promise is a placeholder for the result of an asynchronous action. It lets you write
asynchronous code in a synchronous way, but instead of returning the final value, it
returns a “promise” to return the final value at some point.

Promises can be in one of three states:

➤➤ Pending: This is the initial state of a promise.

➤➤ Fulfilled: The operation was completed successfully.

➤➤ Rejected: The operation failed.

JavaScript Never Sleeps  ❘  373

When a promise becomes fulfilled, it can be chained to additional promises using the
then method, as in the following example:

receiveHamburger
 .then(eatHamburger)
 .then(payForHamburger)

In order for the preceding code to work, each of the functions must return a Promise
object. For example, here’s what the receiveHamburger function might look like:

const receiveHamburger = function(){
 return new Promise((resolve,reject) => {
 getHamburger((result) => {
 resolve(result);
 })
))
};

If something goes wrong and the promise is rejected, the catch method can be used
to handle the error:

receiveHamburger
 .then(eatHamburger)
 .then(payForHamburger)
 .catch((err)=>{ //handle the error here }

async/await

Promises are great, but they still require the use of callbacks. A couple of the best
improvements to how asynchronous code is written are the async and await state-
ments. With async and await, you can write code that really does look synchronous.
For example, here’s our hamburger example written with async and await:

const tradeForHamburger = async function() {
 try {
 await receiveHamburger();
 await eatHamburger();
 await payForHamburger();
 } catch(e) {
 // handle errors
 }
}

Although async/await is an abstraction of promises, it’s easier to write and read than
either callbacks or promises. Behind the scenes, an async function always returns a
Promise. If the return value of an async function isn’t explicitly a Promise, it will
be implicitly wrapped in one.

For example, the following function:

async function eatHamburger(){
 return 1;
} continues

374  ❘  CHAPTER 16   Fetching and Caching Data

WHERE TO RUN ASYNC CODE IN REACT

Asynchronous code, such as data fetching, can be done at several points in the life of a component,
including:

➤➤ When the component first mounts.

➤➤ In response to a user action (such as clicking a button).

➤➤ In response to changes in the component (such as receiving new props).

➤➤ In response to timers (such as apps that refresh periodically).

In a class component, initial data can be loaded using the componentDidMount lifecycle method,
and updates to data in response to component changes can be done using the componentDidUpdate
method, as shown in Listing 16‑2.

NOTE  To try out Listing 16‑2 and Listing 16‑3, you’ll need a free API key from
https://newsapi.org/.

LISTING 16-2:  Loading initial data in a class component

import {Component} from 'react';

class NewsFeed extends Component {
 constructor(props){
 super(props);
 this.state={
 news:[]
 }
 }
 componentDidMount(){
 fetch('https://newsapi.org/v2/top-headlines?country=us&apiKey=[YOUR KEY]')

is essentially the same as this one:

function eatHamburger(){
 return Promise.resolve(1);
}

Once you make an async function, you can use the await keyword inside of it to
wait for any promise inside of it without having to make any changes to other func-
tions. Inside an async function, the await keyword will cause the function to wait
until the statement following it returns before moving on to the next statement.

continued

https://newsapi.org/

Where to Run Async Code in React  ❘  375

 .then(response => response.json())
 .then(data => {
 this.setState({news:data.articles})})
 .catch(error => console.error(error))
 }
 render(){
 const todaysNews = this.state.news.map((article)=>{
 return (<p>{article.title}</p>);
 })
 return(
 <>
 <h1>Today's News</h1>
 {todaysNews}
 </>
)
 }
}

export default NewsFeed;

In a function component, the useEffect hook can be used for fetching a component’s initial data as
well as in response to the component receiving new data, as shown in Listing 16‑3.

LISTING 16-3:  Loading initial data in a function component

import {useState,useEffect} from 'react';

const NewsFeedFunction = () => {
 const [news,setNews] = useState([]);
 useEffect(()=> {
 fetch('https://newsapi.org/v2/top-headlines?country=us&apiKey=[YOUR KEY]')
 .then(response => response.json())
 .then(data => {
 setNews(data.articles)
 })
 .catch(error => console.error(error))
 },[])

 const todaysNews = news.map((article)=>{
 return (<p>{article.title}</p>);
 })

 return(
 <>
 <h1>Today's News</h1>
 {todaysNews}
 </>
)
}

export default NewsFeedFunction;

376  ❘  CHAPTER 16   Fetching and Caching Data

WAYS TO FETCH

Once you know how and where to run asynchronous code in React components, the rest is just a
matter of knowing the properties and methods of the tool you want to use and knowing the structure
of the data source.

Most single page web applications access data sources using web APIs based on the REST archi-
tecture style. Data sent and received between a user interface and a RESTful API is usually in the
JSON format.

JAVASCRIPT LESSON: REST

Representational State Transfer, or REST, is an architectural style for application
programming interfaces (APIs). RESTful APIs use HTTP requests to get, add, update,
and delete data using unique URLs. RESTful APIs rely on the fact that HTTP has
built into it different methods for accessing resources. REST maps these methods to
operations that can be performed using the API:

➤➤ To fetch data, use the HTTP GET method.

➤➤ To add data, use the HTTP POST method.

➤➤ To update data, use the HTTP PUT method.

➤➤ To delete data, use the HTTP DELETE method.

For example, to get data about a user with an ID of 23 using a RESTful API, you
might make an HTTP GET request to the following URL:

https://www.example.com/user/23/

To delete the user with the ID of 23, you would use the HTTP DELETE method to
access that same URL.

To try out a RESTful API, open a browser window and enter the following URL into
the address bar:

https://api.github.com/users/facebook/repos

This will do an HTTP GET to retrieve a list of Facebook’s repositories on GitHub
and display the returned JSON in the browser window.

To fetch and return the data from this same URL in a JavaScript program, you can
use the Fetch API along with Promises:

fetch('https://api.github.com/users/facebook/repos', {
 method: 'GET',
 headers: {
 'Content-Type': 'application/json'
 }
})
 .then(response => response.json())
 .then(data => {
 console.log('Success:', data);
 })

https://www.example.com/user/23/
https://api.github.com/users/facebook/repos

Getting Data with Axios  ❘  377

GETTING DATA WITH FETCH

window.fetch is a method built into all modern browsers that allows you to perform HTTP requests
from JavaScript without loading a separate library. Listing 16‑4 shows an example of using the Fetch
API to fetch data and log it to the console in a React component.

LISTING 16-4:  Using Fetch in response to events

import {useState} from 'react';

function Restful(){
 const [repos,setRepos] = useState([]);
 const [status,setStatus] = useState();

 const getRepos = function(){
 fetch('https://api.github.com/users/facebook/repos')
 .then(response => response.json())
 .then(data => {
 setRepos(data);})
 .then(setStatus("fetched"))
 .catch(error => console.error(error))
 }

 const logRepos = function(){
 console.log(repos);
 }

 return(
 <>
 <button onClick={getRepos}>{status?"Fetched":"Fetch Repos"}</button>
 <button onClick={logRepos}>Log Repos</button>
 </>
)
}

export default Restful;

GETTING DATA WITH AXIOS

Axios is a popular AJAX library that you can use instead of the browser’s native Fetch API. Axios has
advantages over window.fetch in terms of ease of use and capabilities, but using it does require you
to load a separate library.

To install Axios, use the following command:

npm install axios

378  ❘  CHAPTER 16   Fetching and Caching Data

Axios has a method named axios that takes a configuration object as its parameter. The configu-
ration object can contain many different properties, but the only ones required to perform a basic
HTTP GET request are method and url:

axios({
 method: 'GET',
 url:'https://api.github.com/users/facebook/repos'
});

Like the window.fetch method, the axios method returns a Promise, which you can then chain to
additional methods to work with the returned data.

Unlike window.fetch, axios automatically decodes the returned JSON data. What this means is that
when you use Axios, you don’t need to convert the response to JSON data before you can make use
of it as you do with window.fetch.

Listing 16‑5 shows an example of using Axios to perform a GET request in a component.

LISTING 16-5:  Performing a GET request with Axios

import {useState} from 'react';
import axios from 'axios';

function Restful(){
 const [repos,setRepos] = useState([]);
 const [status,setStatus] = useState();

 const getRepos = function(){
 axios({
 method:'get',
 url:'https://api.github.com/users/facebook/repos'
 }).then(resp => {setRepos(resp.data);})
 .then(setStatus("fetched"))
 .catch(error => console.error(error))
 }

 const logRepos = function(){
 console.log(repos);
 }

 return(
 <>
 <button onClick={getRepos}>{status?"Fetched":"Fetch Repos"}</button>
 <button onClick={logRepos}>Log Repos</button>
 </>
)
}

export default Restful;

In addition to the axios method, Axios also provides convenience functions for each HTTP
method. The convenience functions are aliases to full axios calls that you can use without passing a

Using Web Storage  ❘  379

configuration object. The convenience methods include:

➤➤ axios.get

➤➤ axios.post

➤➤ axios.delete

➤➤ axios.put

Using one of these methods can be as easy as passing it the URL for the request, like this:

axios.get('/user/1');

Both GET and DELETE calls are frequently made without passing any additional data, since all of the
data required to perform their actions on the server are contained in the URL. The POST and PUT
methods require a payload. That can be specified using the data property in the config object.

For example, to post data from a signup form using Axios, you might use the following:

axios.post('/user/',{
 firstName:'Frank',
 lastName:'Columbo',
 email:'f.columbo@lapdonline.org'
 });

USING WEB STORAGE

Web applications, by default, don’t persist data between sessions. What this means for React user
interfaces is that if a user leaves your application and returns later, or refreshes the browser window,
the state data returns to the initial state.

One solution to persisting data between sessions is to save data on the server and associate it with the
user’s login info or a unique key stored in a browser cookie. When the user visits the app again, they
can log in or the cookie can be read and the data can be downloaded from the server.

Downloading from the server is slow and inefficient, however, and if you can store data locally, you’ll
improve the performance of a user interface. The Web Storage API, which is supported by all modern
browsers, is an easy way to store key/value pairs of string data in a user’s browser.

Two Types of Web Storage
Web Storage includes two objects, window.sessionStorage and window.localStorage. Both
properties work the same: they access a Storage object that stores data associated with the current
application, as identified by its origin. A web application’s origin is made up of the protocol (HTTP
or HTTPS), host domain, and port. Web Storage provides at least 5MB of storage per origin.

The difference between sessionStorage and localStorage is that sessionStorage only lasts as
long as the current browser tab is open, while localStorage persists between tabs and sessions.
Because localStorage gives you all the benefits of sessionStorage plus persistence between
sessions, it’s more commonly used.

mailto:f.columbo@lapdonline.org

380  ❘  CHAPTER 16   Fetching and Caching Data

When to Use Web Storage
Web Storage can be used to remember where the user was in an application the last time they visited.
For example, if your application includes a lengthy form, the user’s input into that form can be saved
to Web Storage so that if something happens (such as a browser crash) while they’re filling it out,
they can return to the form and continue where they left off. One simple and common use for Web
Storage is to remember a user’s login name between sessions, such as in the user interface shown in
Figure 16‑3.

When Not to Use Web Storage
Web Storage can’t save data between browsers, different computers, or different origins and it will be
erased if a user clears their browser’s cache. For these reasons, it’s not a replacement for storing data
on a server that can be downloaded to any device with internet access. Instead, Web Storage should
be used like a temporary cache of data entered by the user or downloaded from the server.

Web Storage should also never be used for storing sensitive data, such as credit card info or pass-
words. Although the same-origin policy provides some security from other sites being able to read
data stored in an application’s Web Storage, it’s not much protection. If one of the hundreds of mod-
ules that make up a JavaScript application were to be compromised, code could be inserted into it to
access and transmit stolen Web Storage data to a remote server.

Web Storage Is Synchronous
Although Web Storage is useful for improving the performance of your application, it can also cause
performance problems if overused. Unlike APIs for retrieving data from servers (such as Fetch) and
even other local storage APIs (such as indexedDB), Web Storage is synchronous. Each call to read or
write from Web Storage blocks the execution of your app until the operation is complete.

That said, Web Storage is very fast. In most cases, using Web Storage to avoid making an HTTP
request will improve the performance of your user interface. But, be careful not to overuse it.

FIGURE 16-3:  Remembering a user with Web Storage

Using Web Storage  ❘  381

Working with localStorage
To demonstrate how to use localStorage, we’ll start with a simple app that doesn’t use
localStorage. Listing 16‑6 shows a simple counter web application that could be used on a mobile
device by someone at a retail store, for example. Every time the button is clicked, it increments
a counter.

LISTING 16-6:  A Clicker app

import {useState} from 'react';
import './style.css';

function Clicker(){
 const [count,setCount] = useState(0);

 const incrementCount = ()=>{
 setCount((prev)=>prev+1);
 }

 return(
 <div className="container">
 <h1 className="current-count">{count}</h1>
 <button className="increment-button"
 onClick={incrementCount}>+</button>
 </div>
)
}

export default Clicker;

The idea of the Clicker app is that the staff can use it to keep track of how many people visit the store
during a day. But, as it’s written now, the data is erased each time you leave the page and return. To
fix it, we can cache its value locally.

Storing Data with localStorage
To store a key/value pair in localStorage, use the setItem method. This method takes two
arguments—the key and the value:

localStorage.setItem('zipcode', '97103');

Keep in mind that Web Storage can only store string data. If you want to store another data type in
Web Storage, you’ll need to convert it to a string and then back again when you read it.

Because storing data in localStorage is a side effect, the best place to put a call to setItem is inside
the useEffect hook (in a function component) or in a lifecycle method (in a class component). You
can use the second parameter of useEffect to specify that the effect should run each time the state
value you want to store changes, as shown in Listing 16‑7.

382  ❘  CHAPTER 16   Fetching and Caching Data

LISTING 16-7:  Writing to localStorage when the state changes

import {useState,useEffect} from 'react';
import './style.css';

function Clicker(){
 const [count,setCount] = useState(0);

 const incrementCount = ()=>{
 setCount((prev)=>prev+1);
 }

 useEffect(()=>{
 localStorage.setItem('counter',count);
 },[count]);

 return(
 <div className="container">
 <h1 className="current-count">{count}</h1>
 <button className="increment-button"
 onClick={incrementCount}>+</button>
 </div>
)
}

export default Clicker;

To verify that the value is being written to localStorage, you can open Chrome’s developer console
and go to the Application tab. You’ll find an entry in the left pane of the Application tab for Local
Storage, as shown in Figure 16‑4.

Reading Data from localStorage
Now that the Clicker app is storing data in localStorage, the next thing to do is to load that data
when the page loads. To get data out of localStorage, use the getItem method, which takes a key
you want to get from localStorage and returns the value:

localStorage.getItem('zipcode');

The easiest place to retrieve cached data in a function component is in the initial state parameter of
useState. By using a conditional operator, you can update the initial state to be set to the value from
localStorage if it exists, and to a default value if it doesn’t.

Listing 16‑8 shows the Clicker app with the value of count being set to the cached value when
it exists.

Using Web Storage  ❘  383

LISTING 16-8:  Reading localStorage data in Clicker

import {useState,useEffect} from 'react';
import './style.css';

function Clicker(){
 const [count,setCount] = useState(Number(localStorage.getItem('counter')) || 0);

 const incrementCount = ()=>{
 setCount((prev)=>prev+1);
 }

 useEffect(()=>{
 localStorage.setItem('counter',count);
 },[count]);

FIGURE 16-4:  Viewing Local Storage in Chrome Developer Tools

continues

384  ❘  CHAPTER 16   Fetching and Caching Data

 return(
 <div className="container">
 <h1 className="current-count">{count}</h1>
 <button className="increment-button"
 onClick={incrementCount}>+</button>
 </div>
)
}

export default Clicker;

Now the Clicker will increment and remember data every time it’s accessed. The next step is to
implement a way for the counter to be reset.

Removing Data from localStorage
To remove data from localStorage, you can use one of two methods:

➤➤ removeItem takes a key as its argument, and removes that key from localStorage.

➤➤ clear clears all of the keys for the current origin.

Since the Clicker app only has one key, we can use either method to reset localStorage. But,
because we’re using an effect to update localStorage when the counter changes, we could also just
implement a reset button that changes the counter to 0. One thing to watch out for when resetting
localStorage or removing keys is that resetting the localStorage value by itself won’t change the
current state of the application.

In Listing 16‑9, the Clicker has been updated with a Reset button that both clears the localStorage
and sets the value of the counter to 0.

LISTING 16-9:  Clearing localStorage in the Clicker

import {useState,useEffect} from 'react';
import './style.css';

function Clicker(){
 const [count,setCount] = useState(Number(localStorage.getItem('counter')) || 0);

 const incrementCount = ()=>{
 setCount((prev)=>prev+1);
 }

 const resetCount = ()=>{
 localStorage.clear();
 setCount(0);
 }

LISTING 16-8  (continued)

Summary  ❘  385

 useEffect(()=>{
 localStorage.setItem('counter',count);
 },[count]);

 return(
 <div className="container">
 <h1 className="current-count">{count}</h1>
 <button className="increment-button"
 onClick={incrementCount}>+</button>

 <button className="reset-button"
 onClick={resetCount}>reset</button>
 </div>
)
}

export default Clicker;

SUMMARY

Although React doesn’t have its own AJAX and browser storage capabilities, integrating the
native browser APIs or third-party APIs for these common tasks is easily done from within React
components.

In this chapter, you learned:

➤➤ How JavaScript runs asynchronous code.

➤➤ How to use promises.

➤➤ How to use async/await.

➤➤ How to make HTTP requests using window.fetch.

➤➤ How to make HTTP requests using Axios.

➤➤ How to store, retrieve, and delete data using Web Storage.

In the next chapter, you’ll learn how to use React’s Context API to share global data in a component
tree.

Context API
The primary way to pass data from parent components to child components in React is through
props. However, in some cases props can be tedious to use and can lead to code that’s more dif‑
ficult to read and maintain. The Context API was created for these cases.

In this chapter, you’ll learn:

➤➤ What prop drilling is.

➤➤ When the right time is to use Context.

➤➤ How to make a Provider.

➤➤ How to use Context in class components.

➤➤ How to use Context in function components.

➤➤ Best practices and conventions for Context.

WHAT IS PROP DRILLING?

React props make passing data from parent components to child components simple and intui‑
tive. If you have a piece of data in a component and you want to make it available to subcom‑
ponents, just add an attribute to the child component’s element and the value will be available
in the child. If you have data in a component that you want to use in a grandchild component,
you can pass the data through the child component and then into the grandchild.

This process of passing data through multiple levels of the component tree is called prop
drilling. In a tree of components, you may have multiple levels of components that don’t use
a particular piece of data but just pass it along to their descendants using props, as shown in
Listing 17‑1.

17

388  ❘  CHAPTER 17   Context API

LISTING 17-1:  Using prop drilling

const Grandpa = (props) => {
 return (<Dad story = {props.story} />);
}

const Dad = (props) => {
 return (<Son story = {props.story} />);
}

const Son = (props) => {
 return (<Grandson story = {props.story} />);
}

const Grandson = (props) => {
 return (<p>Here's the story that was passed down to the Grandson component:
{props.story}</p>);
}

export default Grandpa;

HOW CONTEXT API SOLVES THE PROBLEM

Prop drilling isn’t necessarily a problem. In most cases, it’s exactly what you should do. However, if
you have data or functions in your app that could be considered “global” (or global to a particular
tree of components), Context lets you avoid prop drilling.

Here’s how Context works:

1.	 You create a Context object, which includes the Provider and Consumer components and
properties.

2.	 You create a Provider for the Context, which will publish a value to its descendants.

3.	 Any of the Provider’s descendants can subscribe to the Provider.

4.	 Components that subscribe to a Provider will update when the Provider’s data changes.

Creating a Context
To create a Context, use React.createContext:

const MyContext = React.createContext(defaultValue);

The createContext method returns a Context object. The defaultValue argument that you pass
into createContext is the data that will be available to its descendants if there isn’t a matching Pro‑
vider. Since the default value most likely won’t ever get used, many developers leave the default value
as undefined or set it to some sample object.

For example, in Listing 17‑2, I’ve created a Context for user preferences, which passes default values
for the lang and timezone properties.

How Context API Solves the Problem  ❘  389

LISTING 17-2:  A Context for user preferences

const PrefsContext = React.createContext({lang:'English',timezone:'Pacific
Time'});

You’ll need to import the Context (PrefsContext in this case) into components where you want to
use it, so it’s common to put the call to createContext in its own module, or in a module containing
a Provider.

Creating a Provider
A Context’s Provider is a component that publishes changes to context data to its descendant com‑
ponents. The Provider component takes an attribute named value, which overrides the default value
you set in React.createContext:

<MyContext.Provider value={/*some value here*/}>

The process for using a Provider is the same in function components and class components. To use
a Provider, wrap it around the component or components that need access to its value. To simplify
your code and make reuse of a Provider easier, it’s common to create a higher-order component that
renders a Provider component and its children, as shown in Listing 17‑3.

LISTING 17-3:  Using a Provider component

import React, {useState} from 'react';
import {PrefsContext} from './contexts/UserPrefs';

const UserPrefsProvider = ({ children }) => {
 const [lang, setLang] = useState("English");
 const [timezone, setTimezone] = useState("UTC");
 return (
 <PrefsContext.Provider value={{ lang, timezone }}>
 {children}
 </PrefsContext.Provider>
);
};

function App(){
 return (
 <UserPrefsProvider>
 <Header />
 <Main />
 <Footer />
 </UserPrefsProvider>
)
}

export default App;

390  ❘  CHAPTER 17   Context API

The Provider component can be used as many times as you need, and it can be nested. Components
that use a Context will access the closest Provider ancestor or will use the Context’s default value if
there isn’t a Provider ancestor.

Consuming a Context
Once you have a Context and a Provider, descendant components can become Consumers of the Con‑
text. Context Consumers will be re-rendered when the Provider’s value changes.

Using Context in a Class Component
There are two ways to consume Context in a class component:

➤➤ Set the contextType property on the class.

➤➤ Use the Context.Consumer component.

If you only need to use one Context in a class, setting the contextType class property is the easiest
method. Because contextType is a class property, you can set it using public class fields syntax, as
shown in Listing 17‑4.

LISTING 17-4:  Consuming a Context in a class component

import React from 'react';
import {PrefsContext} from './contexts/UserPrefs';

class TimeDisplay extends React.Component {

 static contextType = PrefsContext;

 render() {
 return (
 <>
 Your language preference is {this.context.lang}.

 Your timezone is {this.context.timezone}.
 </>
)
 }
}

export default TimeDisplay;

If your component needs to use multiple Context objects, you can use the Context.Consumer com‑
ponent. Context.Consumer requires a function as its child, and the value of the Context is passed as
an argument to that function, as shown in Listing 17‑5.

LISTING 17-5:  Using the Context.Consumer component

import React from 'react';
import {PrefsContext} from './contexts/UserPrefs';

Common Use Cases for Context  ❘  391

class TimeDisplay extends React.Component {

 render() {
 return (
 <PrefsContext.Consumer>
 {userPrefs => {
 <>
 Your language preference is {userPrefs.lang}.

 Your timezone is {userPrefs.timezone}.
 </>
 }};
 </ PrefsContext.Consumer >
)
 }
}

export default TimeDisplay;

Using Context in a Function Component
You can consume a Context in a function component by using the Context.Consumer component or
by using the useContext hook.

To use useContext, import the Context and pass it to useContext, which will return the value from
the Provider. Listing 17‑6 shows a function component that uses useContext to get user preferences.

LISTING 17-6:  Consuming a Context in a function component

import {useContext} from 'react';
import {PrefsContext} from './contexts/UserPrefs';

function TimeDisplay(props){
 const userPrefs = useContext(PrefsContext);

 return (
 <>
 Your language preference is {userPrefs.timezone}.

 Your timezone is {userPrefs.timezone}.
 </>
);
}

export default TimeDisplay;

COMMON USE CASES FOR CONTEXT

Context is most useful for managing global data. What fits the description of global data is a judg‑
ment call, but if some piece of data needs to be accessed by multiple components at different nesting
levels, it may be a candidate for using Context.

392  ❘  CHAPTER 17   Context API

Examples of when Context is helpful include:

➤➤ Theming an app (light mode or dark mode, for example).

➤➤ User preferences.

➤➤ Language preference.

➤➤ User authorization and roles.

WHEN NOT TO USE CONTEXT

When a component uses React Context, it becomes dependent on the global state, which makes the
component less reusable.

If it’s likely that a component will be reused, it’s best to avoid coupling it with the global state using
Context. In many cases, there are alternatives to prop drilling and Context that accomplish the same
thing but maintain the standard explicit React way of passing data from parents to children. One
such alternative is the composition pattern.

COMPOSITION AS AN ALTERNATIVE TO CONTEXT

A good alternative to Context and to prop drilling is composition. In React composition, you create a
component that renders its child components and adds something to them in the process.

To understand how composition can be a better alternative to prop drilling than Context, consider
the example app in Listing 17‑7. This app has a login button that, when clicked, passes the username
variable and the setUsername function into the Dashboard component. The username and its setter
function are then passed through two levels of components that don’t use them before they’re used by
the WelcomeMessage and Logout components.

LISTING 17-7:  Getting data to a deeply nested component with prop drilling

import {useState} from 'react';

const App = () => {
 const [username,setUsername] = useState();
 if (username) {
 return <Dashboard setUsername={setUsername} username={username} />
 } else {
 return <button onClick={()=>setUsername('Chris')}>Login</button>
 }
}

const Dashboard = (props) => {
 return <Header setUsername={props.setUsername} username={props.username} />
}

Composition as an Alternative to Context  ❘  393

const Header = (props) => {
 return <UserControls setUsername={props.setUsername} username={props.user-
name} />
}

const UserControls = (props) => {
 return (<>
 <WelcomeMessage username={props.username} />
 <Logout setUsername={props.setUsername} />
 </>)
}

const WelcomeMessage = (props) => {
 return <> Welcome {props.username}!</>
}

const Logout = (props) => {
 return <button onClick = {()=>{props.setUsername('')}}>Logout</button>
}

export default App;

Listing 17‑8 shows how you might eliminate the prop drilling in this application by using
React Context.

LISTING 17-8:  Eliminating prop drilling with Context

import React,{useState,useContext} from 'react';
const UserContext = React.createContext();

const App = () => {
 const [username,setUsername] = useState();

 if (username) {
 return (
 <UserContext.Provider value={{username,setUsername}}>
 <Dashboard/>
 </UserContext.Provider>
)
 } else {
 return <button onClick={()=>setUsername('Chris')}>Login</button>
 }
}

const Dashboard = (props) => {
 return <Header />
}

const Header = (props) => {
 return <UserControls />
}

continues

394  ❘  CHAPTER 17   Context API

const UserControls = (props) => {
 return (<>
 <WelcomeMessage />
 <Logout />
)</>
}

const WelcomeMessage = () => {
 const {username} = useContext(UserContext);
 return <> Welcome {username}!</>
}

const Logout = (props) => {
 const {setUsername} = useContext(UserContext);
 return <button onClick = {()=>{setUsername('')}}>Logout</button>
}

export default App;

Although Context has eliminated the need for prop drilling in the preceding example, it also makes
the WelcomeMessage and Logout components dependent on UserContext. To illustrate why this is a
bad thing, in Listing 17‑9, I’ve attempted to reuse the Logout component outside of the Context.

LISTING 17-9:  Using a component outside of a required Context

const App = () => {
 const [username,setUsername] = useState();
 const UserContext = React.createContext();

 if (username) {
 return (
 <>
 <UserContext.Provider value={{username,setUsername}}>
 <Dashboard/>
 </UserContext.Provider>
 <Logout />
 </>
)
 } else {
 return <button onClick={()=>setUsername('Chris')}>Login</button>
 }
}

The result of this code will be an error, as shown in Figure 17‑1.

Composition can be used to eliminate prop drilling while also maintaining the reusability of the
WelcomeMessage and Logout components. To use composition, render the children property inside
the Dashboard, Header, and UserControl components, and then compose your user interface
inside the App component, as shown in Listing 17‑10.

LISTING 17-8  (continued)

Composition as an Alternative to Context  ❘  395

LISTING 17-10:  Using composition instead of Context

import React,{useState} from 'react';

const App = () => {
 const [username,setUsername] = useState();

 if (username) {
 return (
 <Dashboard>
 <Header>
 <UserControls>
 <WelcomeMessage username={username} />
 <Logout setUsername={setUsername} />
 </UserControls>
 </Header>
 </Dashboard>
)
 } else {
 return <button onClick={()=>setUsername('Chris')}>Login</button>
 }
}

const Dashboard = (props) => {
 return (<>{props.children}</>);
}

const Header = (props) => {
 return (<>{props.children}</>);
}

const UserControls = (props) => {
 return (<>{props.children}</>);
}

FIGURE 17-1:  Using a component outside of its Context

continues

396  ❘  CHAPTER 17   Context API

const WelcomeMessage = (props) => {
 return <>Welcome {props.username}!</>
}

const Logout = (props) => {
 return <button onClick = {()=>{props.setUsername('')}}>Logout</button>
}

export default App;

EXAMPLE APP: USER PREFERENCES

In this example app, we’ll create a user interface for setting global preferences for units of tempera‑
ture and units of length for an app. The larger app that this component belongs to is unimportant—it
could be reused in many different types of apps.

Figure 17‑2 shows the finished user interface. The user can change the dropdown menu between
metric and imperial units, which changes the corresponding state changes and updates the value of
the Provider.

The first step in creating this user interface is to create the Context and a Provider, as shown in
Listing 17‑11.

LISTING 17-11:  Making a Provider

import React, {createContext, useState} from 'react';
export const UnitsContext = createContext();

export const UnitsProvider = ({ children }) => {
 const [lengthUnit, setLengthUnit] = useState("cm");
 const [tempUnit, setTempUnit] = useState("c");
 return (
 <UnitsContext.Provider value={{ lengthUnit, setLengthUnit, tempUnit,
setTempUnit }}>
 {children}
 </UnitsContext.Provider>
);
};

FIGURE 17-2:  A user preferences component with Context

LISTING 17-10  (continued)

Example App: User Preferences  ❘  397

In a smaller app, it’s common to put the call to createContext and the Provider higher-order
component (if you create one) in the same file as the top-level component in the tree that uses the
Context. If your app makes use of multiple Contexts or uses the same Context or Provider more than
once, it’s common to put them in a separate file, often in a directory named context.

The next step is to wrap the tree of components that will consume the Context with the Provider
component, as shown in Listing 17‑12.

LISTING 17-12:  Providing a Context to a tree

import { UnitsProvider } from './contexts/UnitsContext';
import Header from './Header';

const App = (props) => {
 return (
 <UnitsProvider>
 <Header />
 </UnitsProvider>
)
}

export default App;

With the Provider in place, you can consume the Context from anywhere inside the Header com‑
ponent and its descendants. Listing 17‑13 shows a component that’s a descendant of Header that
uses the Context to display the current values of lengthUnit and tempUnit and allows the user to
change them.

LISTING 17-13:  Consuming a Context

import {useContext} from 'react';
import {UnitsContext} from './contexts/UnitsContext';

const UserPrefs = (props) => {

 const unitPrefs = useContext(UnitsContext);

 const changeLengthUnit = () => {
 unitPrefs.setLengthUnit((unitPrefs.lengthUnit === 'cm')?"inch":"cm");
 }

 const changeTempUnit = () => {
 unitPrefs.setTempUnit((unitPrefs.tempUnit === 'c')?"f":"c");
 }

 return (
 <>
 Your preferred length unit: {unitPrefs.lengthUnit}
 <button onClick={changeLengthUnit}>Switch to {(unitPrefs.lengthUnit
=== 'cm')?"inch":"cm"}</button>

continues

398  ❘  CHAPTER 17   Context API

 Your preferred temperature unit: {unitPrefs.tempUnit}
 <button onClick={changeTempUnit}>Switch to {(unitPrefs.tempUnit ===
'c')?"f":"c"}</button>

 </>
)
}

export default UserPrefs;

SUMMARY

The ability to consume Context from function components with the useContext Hook makes React
Context easy and convenient. But, React Context is a tool that should be used sparingly or not at
all in most apps. When you need it, however, it’s invaluable as a way to manage small pieces of
global data.

In this chapter, you learned:

➤➤ What prop drilling is and how React Context can eliminate it.

➤➤ When to use React Context.

➤➤ When not to use React Context.

➤➤ How to use composition as an alternative to Context.

In the next chapter, you’ll learn about using React Portals to break out of the confines of a React
app’s root DOM node.

LISTING 17-13  (continued)

React Portals
ReactDOM.render renders a React application in a single DOM node in a web page. But it
may be a big document outside that node, and there are times when your application may need
access to that larger world. React Portals provide you with a way to access and control DOM
nodes beyond the root in which it’s rendered.

In this chapter, you’ll learn:

➤➤ How to create a Portal.

➤➤ Common use cases for Portals.

➤➤ How to make a modal dialog with Portals.

➤➤ How to listen for and handle events within Portals.

➤➤ How to properly handle keyboard focus with Portals.

WHAT IS A PORTAL?

A Portal is a way to render child components into different DOM nodes than the root of your
React application. For example, if you have a modal dialog box that appears when the user
clicks a help link, a Portal lets you render that dialog box in a separate element in the HTML
that’s styled to appear on top of the React application, as shown in Figure 18‑1.

How to Make a Portal
Because Portals interact with the DOM, they’re a part of the ReactDOM library. To create
a Portal, use the ReactDOM.createPortal method within a React component. ReactDOM.
createPortal works the same way as ReactDOM.render, except that it works inside a React
component’s render method. Like ReactDOM.render, it takes two arguments: the component
to render and the DOM node in which to render it.

18

400  ❘  CHAPTER 18   React Portals

Making a React Portal starts with knowing the structure of the HTML document in which your app
is rendered. Unlike every example you’ve seen so far, Portals depend on having more than just a root
node inside the HTML body element. Listing 18‑1 shows an HTML document with two elements
inside the body.

LISTING 18-1:  An HTML document with multiple nodes in the body

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>Portal Demo</title>
</head>
<body>
 <div style="display:flex;">
 <div id="root" style="width:50%"></div>
 <div id="sidebar" style="width:50%"></div>
 </div>
</body>
</html>

FIGURE 18-1:  Portals enable modal dialogs

What Is a Portal?  ❘  401

The div element with the id of root is where we want to render the React app with ReactDOM
.render. The div element with the id of sidebar is where we want to render a Portal.

Any component in your React app can call ReactDOM.createPortal. In Listing 18‑2, a component
named SidebarHelp renders a paragraph of text as a Portal.

LISTING 18-2:  Creating a Portal

import {createPortal} from 'react-dom';

function SidebarHelp(props){
 return createPortal(
 <p>{props.helpText}</p>,
 document.getElementById('sidebar')
);
}

export default SidebarHelp;

Listing 18‑3 shows an example of a component that renders the SidebarHelp component. Notice
that from the perspective of this component, rendering a component containing a Portal is no differ‑
ent from rendering any other component.

LISTING 18-3:  Using the SidebarHelp component

import Chart from './Chart';
import SidebarHelp from './SidebarHelp';

function SalesChart(props){
 return (
 <>
 <Chart type="sales" />
 <SidebarHelp helpText="This chart shows your sales over time." />
 </>
)
}

export default SalesChart;

Figure 18‑2 shows the result of rendering the SalesChart component.

If you inspect the resulting HTML in the Chrome Developer Tools, you’ll see the HTML generated by
the SidebarHelp component rendered outside of the root component, as shown in Figure 18‑3.

If you inspect the app using the React Developer Tools, you’ll see the SidebarHelp component ren‑
dered as a normal child component, as shown in Figure 18‑4.

402  ❘  CHAPTER 18   React Portals

FIGURE 18-2:  Rendering the SalesChart component

FIGURE 18-3:  Inspecting an app with a Portal in Chrome Developer Tools

Common Use Cases  ❘  403

Why Not Just Render Multiple Component Trees?
Another way to render React components into multiple DOM nodes is to use multiple calls to
ReactDOM.render. If the components in the two DOM nodes don’t need to interact and they use
separate data, this works fine.

The benefit of using React Portals is that a Portal behaves like any other child in a React applica‑
tion. This means that Portals are both inside and outside of the React user interface. They mount and
unmount outside of the root DOM node, but they behave the same as they would if they were normal
React children—they accept props, can listen for and handle events, and so forth.

COMMON USE CASES

Portals are useful for any situation in which you need to display and interact with DOM nodes out‑
side of the root node of your application. Common uses for Portals include:

➤➤ Rendering child elements elsewhere in the browser window.

➤➤ Modal dialogs.

➤➤ Tooltips.

➤➤ Hovercards.

FIGURE 18-4:  Inspecting an app with a Portal in React Developer Tools

404  ❘  CHAPTER 18   React Portals

It is possible to create modal dialogs and other sorts of temporary pop-up windows without using
Portals. However, any element rendered without using a Portal inherits the height and width from its
parent element. This can lead to problems in which a dialog box is cropped by its parent element, as
shown in Figure 18‑5.

Rendering and Interacting with a Modal Dialog
Depending on how and why they open and close, temporary windows that overlay the main content
of an HTML document go by different names, including modal dialogs, popup windows, tooltips,
and hovercards. Most of the time, their opening and closing is triggered by an event happening within
the application, such as a click on a help link or the mouse hovering over a line on a chart.

Follow these steps to create a modal dialog with Portals:

1.	 Create a node for the modal in the DOM tree. This can be any element outside of the root
node. It should have an id attribute to make it easy to select:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>Modal Dialog with React</title>
</head>

FIGURE 18-5:  Rendering a modal without using React Portals can have unexpected results

Common Use Cases  ❘  405

<body>
 <div id="main"></div>
 <div id="modal"></div>
</body>
</html>

2.	 Create a modal component. Our example component will display a header and the children
prop. By rendering the children prop, we make the modal dialog a flexible container that
can be reused throughout the user interface:

import "./styles.css";

function Modal(props){
 return (
 <div className="modalOverlay">
 <div className="modalContainer">
 <h1 className="modalTitle">{props.title}</h1>
 <div className="modalContent">
 {props.children}
 </div>
 </div>
 </div>

)
}

export default Modal;

3.	 Create a CSS document, which we’ll call styles.css, that will position and style the modal.
You can style your modal any way you like. My sample styles are shown in Listing 18‑4.

LISTING 18-4:  One way to style a modal

.modalOverlay {
 position: absolute;
 top: 0;
 left: 0;
 height: 100%;
 width: 100%;
 padding-top: 60px;
 background-color: rgba(50,50,50,0.6);
}
.modalContainer {
 border:1px solid black;
 background: white;
 width: 50%;
 margin: 0 auto;
 padding: 25px;
}
.modalTitle {
 text-align:center;
 background-color: black;
 color: white;

continues

406  ❘  CHAPTER 18   React Portals

}
.modalContent {
 background: white;
 text-align: center;
}

4.	 Create an App component that renders the modal:

import Modal from './Modal';
import './styles.css';

function App() {
 return (
 <div>
 <Modal title="Warning" isOpen={isModalOpen}>
 <p>This Modal is awesome.</p>
 </Modal>
 </div>
);
}

export default App;

5.	 Add a stateful variable to App to set whether the modal is open, and create a function, but‑
tons, and event listener to toggle the open state. Notice that passing an event listener to a
Portal and handling the events that happen in a Portal works the same as if the Portal were
any other child element. Everything you learned in Chapter 7 about event listeners and event
handlers applies to Portals.

import {useState} from 'react';
import Modal from './Modal';
import './styles.css';

function App() {

 const[isModalOpen,setModalOpen] = useState(false);
 const toggleModal = () => setModalOpen(!isModalOpen);

 return (
 <div>
 <button onClick={toggleModal}>Open the Modal</button>

 <Modal title="Warning" isOpen={isModalOpen}>
 <p>This Modal is awesome.</p>
 <button onClick={toggleModal}>close modal</button>
 </Modal>
 </div>
);
}

export default App;

LISTING 18-4  (continued)

Common Use Cases  ❘  407

The current App component is shown in Listing 18‑5. At this point, we’re just passing a Boolean
prop named isOpen to the Modal component. In the next steps, we’ll use this value to determine
whether to display the Portal.

LISTING 18-5:  The App component

import {useState} from 'react';
import Modal from './Modal';
import './styles.css';

function App() {

 const[isModalOpen,setModalOpen] = useState(false);
 const toggleModal = () => setModalOpen(!isModalOpen);

 return (
 <div>
 <button onClick={toggleModal}>Open the Modal</button>

 <Modal title="Warning" isOpen={isModalOpen}>
 <p>This Modal is awesome.</p>
 <button onClick={toggleModal}>close modal</button>
 </Modal>
 </div>
);
}

export default App;

6.	 Import ReactDOM and wrap the child element in the Modal component with ReactDOM
.createPortal and pass a pointer to the DOM node where it should be rendered:

import ReactDOM from 'react-dom';
import "./styles.css";

function Modal(props){
 return (
 ReactDOM.createPortal((
 <div className="modalOverlay">
 <div className="modalContainer">
 <h1 className="modalTitle">{props.title}</h1>
 <div className="modalContent">
 {props.children}
 </div>
 </div>
 </div>)
 ,document.getElementById('modal'))
)
}

export default Modal;

408  ❘  CHAPTER 18   React Portals

7.	 Use the Boolean prop passed from the App component to conditionally render the Portal:

import ReactDOM from 'react-dom';
import "./styles.css";

function Modal(props){

 return (
 <>
 {props.isOpen &&
 ReactDOM.createPortal((
 <div className="modalOverlay">
 <div className="modalContainer">
 <h1 className="modalTitle">{props.title}</h1>
 <div className="modalContent">
 {props.children}
 </div>
 </div>
 </div>)
 ,document.getElementById('modal'))}
 </>
)
}

export default Modal;

The finished Modal component is shown in Listing 18‑6.

Listing 18-6:  The finished Modal component

import ReactDOM from 'react-dom';
import "./styles.css";

function Modal(props){

 return (
 <>
 {props.isOpen &&
 ReactDOM.createPortal((
 <div className="modalOverlay">
 <div className="modalContainer">
 <h1 className="modalTitle">{props.title}</h1>
 <div className="modalContent">
 {props.children}
 </div>
 </div>
 </div>)
 ,document.getElementById('modal'))}
 </>
)
}
export default Modal;

Figure 18‑6 shows the UI with the isOpen variable set to true.

Common Use Cases  ❘  409

Managing Keyboard Focus with Modals
Modal dialogs, such as tooltips, help dialogs, and modal forms, can make a user interface more
usable. They also have the potential to confuse users if they aren’t implemented correctly. One par‑
ticularly important consideration with modal dialogs is to properly manage keyboard focus when
closing a modal.

For example, a long signup or application form may make use of modal windows for entering
detailed information and viewing help content, as shown in Figure 18‑7.

When a user clicks a link to open a modal and interacts with the content of that modal (even just to
click a “close” button), focus leaves the main content of the form. When the modal closes, the user
will be forced to click in or tab to the next form field again to fill it out. At the least, this is inconven‑
ient. At worst, it’s an accessibility issue for users who rely on screen readers.

To properly set focus when returning from a modal, use the useEffect hook along with a ref to
check whether the value of isModalOpen has changed to false and set the focus, as shown in
Listing 18‑7.

FIGURE 18-6:  The opened modal

410  ❘  CHAPTER 18   React Portals

Listing 18-7:  Using a ref to set keyboard focus

import {useState,useRef,useEffect} from 'react';
import Modal from './Modal';
import './styles.css';

function App() {
 const CSCRef = useRef()
 const[isModalOpen,setModalOpen] = useState(false);

 const toggleModal = () => {
 setModalOpen(()=>!isModalOpen);
 }

 useEffect(() => {
 setTimeout(()=>{!isModalOpen && CSCRef.current.focus()},1000)
 }, [isModalOpen]);

 return (
 <>
 <div style={{padding:"60px"}}>
 <label>Card Security Code:<input ref={CSCRef} /></label>
 <button onClick={toggleModal}>What's This?</button>

FIGURE 18-7:  A checkout form with help links

Summary  ❘  411

 <Modal title="What is the CSC Code?" isOpen={isModalOpen}>
 <p>A credit card security code is the 3-4 digit number that
 is printed, not embossed, on all credit cards. The length
 and location of a credit card's security code depend on
 what network the card is on. </p>
 <button onClick={toggleModal}>close modal</button>
 </Modal>
 </div>
 </>
);
}

export default App;

In Listing 18‑7, I used a setTimeout function to make the setting of the focus take 1,000 milli‑
seconds (1 second) so that it will be obvious when you test it out. In an actual application you can
eliminate the setTimeout function so that the focus gets set as quickly as possible when the modal
dialog is closed.

SUMMARY

Occasionally, it’s helpful to be able to break out of the root node and render React components in
a different DOM node. React Portals, which is enabled by ReactDOM.createPortal, is the way
to do this.

In this chapter, you learned:

➤➤ What a React Portal is.

➤➤ When Portals are useful.

➤➤ How to create a Portal.

➤➤ How to interact with a Portal.

➤➤ How to manage keyboard focus when closing a Portal.

In the next chapter, you’ll learn about accessibility concerns when programming React user interfaces.

Accessibility in React
Accessibility (also known as a11y, because all those letters between the a and the y are too hard
to type) means that websites and web applications are designed and built in such a way so that
people with disabilities can use them. The qualities that make a user interface built with React
accessible are no different from those that make any web user interface accessible, but the way
in which accessibility is implemented differs in some instances.

In this chapter, you’ll learn:

➤➤ What makes a web application accessible.

➤➤ Special considerations for making single page applications accessible.

➤➤ What ARIA is.

➤➤ How and why to use semantic HTML.

➤➤ The importance of proper labeling of form elements.

➤➤ How to use media queries in React components.

WHY IS ACCESSIBILITY IMPORTANT?

According to the World Health Organization, about 15 percent of the global population has
some form of disability. Accessibility studies have found that between 6 and 10 percent of
people over 15 years old have a sight or hearing impairment. For people over 65, that number
is over 20 percent. Eight percent of people over 65 have difficulty grasping objects—including a
computer mouse.

With the average age increasing worldwide, the number of people who require some sort of
alternative device or assistive technology to use the web is in the tens of millions, even by
conservative estimates.

19

414  ❘  CHAPTER 19   Accessibility in React

Implementing web accessibility is not just the right thing to do or good for business, it’s increasingly
required by law. Public sector websites in many countries (including the U.S., Canada, and the E.U.)
have been required to meet certain accessibility standards for years, and private-sector websites in
many countries will be required by law to meet accessibility standards in the coming years.

ACCESSIBILITY BASICS

Most of the techniques you’ll use for making web applications accessible are just good practices in
general, and they make your application better and easier to use for all users, not just those with
disabilities.

A short list of the considerations to keep in mind when designing your app for accessibility includes:

➤➤ Use valid HTML.

➤➤ Make sure all images have alt attributes.

➤➤ Add alternative content for all audio and video content.

➤➤ Your app should be navigable without a mouse.

➤➤ Form elements should be properly labeled.

➤➤ The application should be usable by people with color blindness.

Web Content Accessibility Guidelines (WCAG)
The World Wide Web Consortium (W3C) has developed and maintains a collection of documents
that explain how to make websites accessible, which are collectively known as the Web Content
Accessibility Guidelines, or WCAG. WCAG is the standard used by governments for laws that require
accessibility.

The WCAG has four main principles:

➤➤ Perceivable. All user interface elements must be presentable to users in a way that they can
receive it. For example, images must have text alternatives that can be read by screen readers
for the blind. Perceivability also encompasses techniques such as responsive design, which
ensures that content can be presented in different ways without losing information or struc-
ture. For example, a user interface should respond to changes in orientation of a mobile
device (from portrait to landscape) and to different sized screens.

➤➤ Operable. Users should be able to operate the user interface. For example, it should be
possible for all content and navigation and components to be used with a keyboard instead
of a mouse.

➤➤ Understandable. How the user interface works must be understandable. This principle
includes making sure the language of the content is specified in the code, providing proper
labels to user interface controls, and providing help to the user.

Implementing Accessibility in React Components  ❘  415

➤➤ Robust. Content must be usable by a wide variety of devices and user agents, including assis-
tive technologies. The most important factor in determining whether web content is robust
is whether it complies with the HTML standard. For example, while a visual web browser
may be able to render something that works just fine from faulty markup, it’s much more dif-
ficult, or impossible, for an assistive device such as a screen reader to parse HTML that has
duplicate attributes or missing end tags.

A complete guide to implementing WCAG is beyond the scope of this book, but you can find the
complete document, as well as a quick reference guide to the latest version of the standard, at
https://www.w3.org/WAI/.

Web Accessibility Initiative - Accessible Rich Internet
Applications (WAI-ARIA)

The Web Accessibility Initiative - Accessible Rich Internet Applications (WAI-ARIA) document,
published by the W3C, defines techniques for making web applications accessible to people who use
assistive technologies, including people who use screen readers and people who cannot use a mouse.

ARIA provides standard HTML attributes that can be used to identify user interaction features and
specify how they relate to each other as well as their current state:

➤➤ ARIA’s role attribute can be added to elements to point out landmarks such as nav, search,
tab, and so forth to screen readers.

➤➤ The aria-live attribute can be used to tell screen readers that particular content is updated.
This is particularly important in dynamic single page applications.

➤➤ The tabindex attribute allows you to make the order of tabbing between user interface ele-
ments explicit. This is useful when the position of the elements in the document and the order
in which you want them to be accessed are different.

➤➤ Attributes such as aria-label and aria-required can be used to give more information
about form controls to screen readers.

To find out more about ARIA, visit the WAI-ARIA overview at https://www.w3.org/WAI/
standards-guidelines/aria/.

IMPLEMENTING ACCESSIBILITY IN REACT COMPONENTS

Because the result of compiling a React application is a standard HTML, CSS, and JavaScript web
page, implementing accessibility in user interfaces built with React is largely done using the same
standards and techniques that you use with a static HTML document.

However, because you write the output of React components using JavaScript and JSX rather than
HTML, there are some differences that you should be aware of.

The main things to consider when implementing accessibility with React are:

➤➤ ARIA attributes.

➤➤ Semantic HTML.

http://www.w3.org/WAI/
http://www.w3.org/WAI/standards-guidelines/aria/
http://www.w3.org/WAI/standards-guidelines/aria/

416  ❘  CHAPTER 19   Accessibility in React

➤➤ Form accessibility.

➤➤ Managing focus.

➤➤ How to use media queries.

ARIA Attributes in React
JSX supports all the ARIA attributes. Unlike most other attributes that you write in JSX, ARIA attrib-
utes with multiple words, such as aria-label, are written the same as in HTML, using a hyphen
between words rather than camelCase.

For example, the following JSX code tells a screen reader that an input is required and specifies the
control’s label:

<input
 type="text"
 aria-label={labelText}
 aria-required="true"
 onChange={onchangeHandler}
 value={inputValue}
 name="name"
/>

Semantic HTML
Semantic HTML refers to using HTML elements that indicate the purpose, or role, of an element
in the document. For example, a page’s navigation should be written using the nav element, and the
address element should be used to mark up contact information.

When you use semantic HTML elements, the ARIA role of the element is implied, meaning there’s
no need to explicitly define the ARIA role attribute. Writing semantic and valid HTML is the most
important thing you can do to make a page or application usable by assistive technologies.

Because each React component must return a single element, there’s a tendency when writing React
to wrap the return value of a component in an unnecessary div element, such as in the component
shown in Listing 19‑1.

LISTING 19-1:  Using unnecessary elements to group elements

function ListItem({ item }) {
 return (
 <div>
 <dt>{item.term}</dt>
 <dd>{item.description}</dd>
 </div>
);
}

These unnecessary elements can confuse screen readers, especially when they’re used inside lists. For
example, the component shown in Listing 19‑2 makes use of the ListItem component to generate a
definition list.

Implementing Accessibility in React Components  ❘  417

LISTING 19-2:  Using unnecessary grouping elements can result in invalid HTML

function Glossary(props) {
 return (
 <dl>
 {props.items.map(item => (
 <ListItem item={item} key={item.id} />
))}
 </dl>
);
}

The returned HTML from Listing 19‑2 will have a div element around each group of terms and
descriptions. The result is a definition list that doesn’t comply with the HTML standard way to make
definition lists.

The solution to this problem is to use React.Fragment (or its shorthand element) to group elements
in cases where there shouldn’t be a resulting HTML element from the necessary JSX grouping, as
shown in Listing 19‑3.

LISTING 19-3:  Using React.Fragment to eliminate unnecessary HTML elements

function ListItem({ item }) {
 return (
 <>
 <dt>{item.term}</dt>
 <dd>{item.description}</dd>
 </>
);
}

Form Accessibility
Form inputs need to have labels that are readable by screen readers and that are specifically associ-
ated with the inputs. It’s not enough, for example, to have a label that visually appears above or next
to an input, like this:

<form>
 first name: <input type="text" />
</form>

An accessible form is one that uses a label element and/or an aria-label attribute to label each
input field. The label element in JSX works the same as the HTML label element, except that the
for attribute in the HTML label element becomes the htmlFor attribute in JSX.

The value of htmlFor should be the value of the id attribute in the associated form control.
Listing 19‑4 shows an accessible form written in JSX.

418  ❘  CHAPTER 19   Accessibility in React

LISTING 19-4:  An accessible form, written using JSX

<form onSubmit={handleSubmit}>
 <label htmlFor="firstName">First Name</label>
 <input id="firstName" type="text" />

 <label htmlFor="lastName">Last Name</label>
 <input id="lastName" type="text" />

 <label htmlfor="emailAddress">Email Address</label>
 <input id="emailAddress" type="email" />

 <button type="submit">Submit</button>
</form>

Focus Control in React
Your web application should be fully accessible and usable with only the keyboard. One important
aspect of making an application usable with only the keyboard is to properly manage focus.

Skip Links
Users who navigate using the keyboard or voice commands typically must move from one interactive
element on the page to the next using the Tab key. For applications with a large number of navigation
elements at the top of the page, this can mean that the user must tab through each element to get to
the main body of the page. To help keyboard or screen reader users to navigate to the part of the page
they want to use, you can implement a “Skip Navigation” link.

Skip Navigation links are links at the top of a page that may be visible, or that are only visible for
keyboard and screen reader users. The Skip Navigation link uses an HTML anchor to move the focus
past the navigation and directly to the main content of the page. You can implement Skip Navigation
links easily yourself with a link and some styling, or you can use a pre-built component that makes
it easier. Listing 19‑5 shows a React component that implements a Skip Navigation link using the
react-skip-nav component, which is available at npmjs.com/package/react-skip-nav or by
running npm install react-skip-nav.

LISTING 19-5:  Implementing Skip Navigation links with react-skip-nav

import React from 'react';
import SkipNav from 'react-skip-nav';

import "react-skip-nav/lib/style.css";

const MyComponent = (props) => {
 return (
 <>
 <SkipNav
 id='main-content'
 text='skip to main content'

http://npmjs.com/package/react-skip-nav

Implementing Accessibility in React Components  ❘  419

 targetDomId='main-content'
 />
 <Header/>
 <div id="main-content">
 <MainContent />
 </div>
 </>
)
}

export default MyComponent;

Managing Focus Programmatically
When the browser’s focus is taken away from the normal flow of a page and then returned to it (such
as what happens when a modal dialog is opened and closed), even users with a mouse must manu-
ally return the focus to the form field or interactive element they were using prior to the opening of
the modal dialog. Without proper focus management, users of keyboard navigation or screen read-
ers must start again at the top of the page and move through each element until they get to the spot
where they were when focus moved to the modal.

You can use a ref and the window.focus method to return focus to the correct place when a modal
dialog is closed. Listing 19‑6 shows how to open a modal and return the focus to the appropriate ele-
ment when the modal is closed.

LISTING 19-6:  Managing focus upon closing a modal

import ReactDOM from 'react-dom';
import {useState,useRef,useEffect} from 'react';
import './styles.css';

function Modal(props){

 return (
 <>
 {props.isOpen &&
 ReactDOM.createPortal((
 <div className="modalOverlay">
 <div className="modalContainer">
 <div className="modalContent">
 {props.children}
 </div>
 </div>
 </div>)
 ,document.getElementById('modal'))}
 </>
)
}

function App() {
 const PasswordRef = useRef()

continues

420  ❘  CHAPTER 19   Accessibility in React

 const[isModalOpen,setModalOpen] = useState(false);

 const toggleModal = () => {
 setModalOpen(()=>!isModalOpen);
 }

 useEffect(() => {
 !isModalOpen && PasswordRef.current.focus()
 }, [isModalOpen]);

 return (
 <>
 <div style={{padding:"60px"}}>
 <label>Choose a Password:<input ref={PasswordRef} /></label>
 <button onClick={toggleModal}>?</button>

 <Modal title="Password Requirements" isOpen={isModalOpen}>
 <p>Your password must contain at least 8 characters, an uppercase letter,
 the name of your pet, your birthday, your child's birthday, the word
 "password" and several sequential numbers.</p>
 <button onClick={toggleModal}>close modal</button>
 </Modal>
 </div>
 </>
);
}

export default App;

Media Queries in React
Media queries provide different CSS to a page or application based on the properties of the browser.
The most common use for media queries is for implementing responsive design.

Responsive design is the technique used to make web pages and web applications adapt to different-
sized devices. Besides making your application more usable for visual web browsers, responsive
design also makes it possible for users with low vision to resize the user interface without needing to
scroll horizontally. Media queries can also be used to detect non-visual browsers and customize the
CSS for these devices.

Because inline styles in React components are actually JavaScript, rather than CSS, it’s not easily pos-
sible to write media queries as style modules or using inline styles. Two common ways to use media
queries in React components are by including a CSS stylesheet into the component or by using a
custom hook.

LISTING 19-6  (continued)

Implementing Accessibility in React Components  ❘  421

Media Queries in Included CSS
If your React toolchain is configured to allow the importing of CSS files (as is the case if you use
Create React App), you can use media queries in React the same way that you’d use them in any web
application.

Listing 19‑7 shows how to use media queries in CSS to format a web application differently at
different viewport widths. Each width at which the styles change in responsive design is called a
“breakpoint.”

LISTING 19-7:  Responsive media queries in a CSS file

/* Smartphones (portrait and landscape) ----------- */
@media only screen and (min-device-width : 320px) and (max-device-width : 480px) {
/* Styles */
}

/* iPads (portrait and landscape) ----------- */
@media only screen and (min-device-width : 768px) and (max-device-width : 1024px) {
/* Styles */
}
/* Desktops and laptops ----------- */
@media only screen and (min-width : 1224px) {
/* Styles */
}

/* Large screens ----------- */
@media only screen and (min-width : 1824px) {
/* Styles */
}

HOW MANY BREAKPOINTS SHOULD YOU HAVE?

At the very least, a responsive web application should have a separate design for
mobile devices and desktop devices. While a mobile layout may work fine on a desk-
top device, mobile-specific user interface controls (especially those involving touch
events) may not work correctly on desktop computers.

The breakpoints specified in the sample CSS shown in Listing 19‑7 are much more
granular, and you can even refine your breakpoints further to customize the CSS for
devices that may fall in between these standard ones.

Many websites and organizations have created sample media queries that you can
copy and paste into your applications. The ones in Listing 19‑7 come from https://
responsivedesign.is.

https://responsivedesign.is
https://responsivedesign.is

422  ❘  CHAPTER 19   Accessibility in React

Using useMediaQuery
The useMediaQuery hook is part of the react-responsive library. To use it, you first need to install
it using npm install react-responsive and then import it into your component. Once you’ve
imported it, you can use either the MediaQuery component or the useMediaQuery hook.

To use the useMediaQuery hook, pass a query to it as a parameter. The result will be a Boolean
value that you can use to conditionally render JSX. Listing 19‑8 shows an example of using
useMediaQuery to conditionally render one of four different components based on the size of
the viewport.

LISTING 19-8:  Conditionally rendering children based on a media query

import { useMediaQuery } from 'react-responsive'

const Desktop = ({ children }) => {
 const isDesktop = useMediaQuery({ minWidth: 992 })
 return isDesktop ? children : null
}
const Tablet = ({ children }) => {
 const isTablet = useMediaQuery({ minWidth: 768, maxWidth: 991 })
 return isTablet ? children : null
}
const Mobile = ({ children }) => {
 const isMobile = useMediaQuery({ maxWidth: 767 })
 return isMobile ? children : null
}
const Default = ({ children }) => {
 const isNotMobile = useMediaQuery({ minWidth: 768 })
 return isNotMobile ? children : null
}

const Example = () => (
 <div>
 <Desktop>Desktop or laptop</Desktop>
 <Tablet>Tablet</Tablet>
 <Mobile>Mobile</Mobile>
 <Default>Not mobile (desktop or laptop or tablet)</Default>
 </div>
)

export default Example;

SUMMARY

Accessibility is an essential element in the design and implementation of any user interface. It helps to
ensure that the largest possible number of users will be able to access and make use of your applica-
tion. The techniques for implementing accessibility with React are largely the same as with any web
UI, but with some important technical differences.

Summary  ❘  423

In this chapter, you learned:

➤➤ Why accessibility is important.

➤➤ What the main accessibility standards are.

➤➤ How ARIA attributes help to identify user interface components.

➤➤ The importance of semantic and valid HTML.

➤➤ How to make forms accessible.

➤➤ How to control focus in a React component.

➤➤ How to implement media queries in React.

In the next chapter, you’ll be introduced to some additional tools and resources that will help you to
continue to become a better React programmer long beyond the limits of this book.

Going Further
I’ve covered a lot of material in this book, but your React learning journey is just beginning.
The React ecosystem is giant, active, and growing. What this means is that developers are con-
stantly creating new tools to use with React and improving existing ones.

With all the activity, having a guide to the next steps can be invaluable. In this chapter, I’ll give
you a head start on where to go from here by discussing or expanding on some of the topics
that I didn’t have room for earlier in the book.

In this chapter, you’ll learn:

➤➤ About testing and popular testing libraries.

➤➤ What server-side rendering is.

➤➤ How GraphQL works.

➤➤ How to use GraphQL with Apollo.

➤➤ What Flux and Redux are.

➤➤ What Next.js and Gatsby are and how they’re used.

➤➤ What organizations and people to follow to keep up to date on React.

TESTING

The process of testing React components and user interfaces is similar to the process for test-
ing any JavaScript application, and there are many automated testing tools to choose from. If
you’re using Create React App, the most straightforward choice is simple—Create React App
installs and configures Facebook’s Jest testing framework for you.

Although Jest is popular and quite good, other tools and libraries may offer features or a way
of working that you prefer. You might choose to use some of these tools together with Jest or in
place of similar functionality that’s provided by Jest. Here are a few of the most popular testing
tools for React besides Jest.

20

426  ❘  CHAPTER 20   Going Further

Mocha
Mocha, like Jest, is an automated testing framework. Mocha is more configurable than Jest, and as a
result, it may require more initial configuration. Mocha tests run sequentially, unlike Jest, which runs
tests in parallel. Also unlike Jest, Mocha doesn’t include its own assertion library. Instead, it’s com-
monly used along with the Chai assertion library, which you’ll learn about in the next section.

Test suites created with Mocha look very similar to those created with Jest. They use a function
named describe() to create a test suite, and a function named it to define assertions (aka tests).
Listing 20‑1 shows a simple test suite created with Mocha and the Assert assertion library.

LISTING 20-1:  A test suite created with Mocha

const assert = require('assert');
describe('Array', function() {
 describe('#indexOf()', function() {
 it('should return -1 when the value is not present', function() {
 assert.equal([1, 2, 3].indexOf(4), -1);
 });
 });
});

Enzyme
Enzyme is a testing utility for React that was developed by AirBnB. It can be used in place of React’s
built-in testing library (which you saw in Chapter 15). Enzyme’s interface for selecting and work-
ing with nodes in the output of components is similar to how jQuery works with the DOM. With
Enzyme, you can use familiar CSS-style selectors to locate nodes that you want to test. Enzyme makes
it easier to traverse and inspect the elements output from your application’s React components, which
is an essential part of unit testing a React application.

To use Enzyme, you first render a component using one of its three render methods:

➤➤ shallow: Renders a single component. The shallow method is most often used for unit test-
ing, in which it’s important to be sure that you’re not indirectly testing the behavior of child
components.

➤➤ mount: Renders a component and mounts it in the DOM. The mount method is typically used
with a browser simulator such as jsdom. Jsdom is a “headless” browser that runs completely
in JavaScript. Use mount for testing higher-order components and components that interact
with the DOM.

➤➤ render: Renders static HTML from your component. You can use the render method to test
the structure of the HTML returned by a component.

Among the functions included with Enzyme is the find method, which is a simple way to locate
and select elements in a component. The find method takes the place of several functions that are
included with ReactDOM’s testing utilities, including findRenderedDOMComponentWithClass,
findRenderedDOMComponentWithTag, and findRenderedComponentWithType.

Testing  ❘  427

Listing 20‑2 shows how to use the shallow method to render a component and the find method to
locate a node within it. Once you’ve rendered the component and made a selection with find, you
can test the selected node using an assertion library (such as Chai, in this example).

LISTING 20-2:  Rendering and finding a node with Enzyme

import React from 'react';
import { expect } from 'chai';
import { shallow } from 'enzyme';

import MyComponent from './MyComponent';
import Foo from './Foo';

describe('<MyComponent />', () => {
 it('renders three <Foo/> components', () => {
 const wrapper = shallow(<MyComponent />);
 expect(wrapper.find(Foo)).to.have.lengthOf(3);
 });
});

Chai
Chai is an assertion library. Assertion libraries are used with testing frameworks and testing librar-
ies to provide functions for declaring what result you expect in a test. Chai is often used along with
Mocha and Enzyme, but it can also be used with Jest.

Chai has three different ways that you can write assertions:

➤➤ Assert

➤➤ Expect

➤➤ Should

Assert
The assert style is similar to the assert function that comes with Node.js. It uses the assert function,
followed by a matcher function, as shown in Listing 20‑3.

LISTING 20-3:  Using Chai’s assert method

const assert = require('chai').assert;
let foo = 'bar';
const beverages = { tea: ['chai', 'matcha', 'oolong'] };

assert.typeOf(foo, 'string'); // without optional message
assert.typeOf(foo, 'string', 'foo is a string'); // with optional message
assert.equal(foo, 'bar', 'foo equal `bar`');
assert.lengthOf(foo, 3, 'foo`s value has a length of 3');
assert.lengthOf(beverages.tea, 3, 'beverages has 3 types of tea');

428  ❘  CHAPTER 20   Going Further

Expect
Expect is commonly used for Behavior Driven Development (BDD). It uses a chain of functions to
produce an assertion that resembles how you would describe a test in English. An example of using
expect is shown in Listing 20‑4.

LISTING 20-4:  Using Chai’s expect method

const assert = require('chai').assert;
let foo = 'bar';
const beverages = { tea: ['chai', 'matcha', 'oolong'] };

expect(foo).to.be.a('string');
expect(foo).to.equal('bar');
expect(foo).to.have.lengthOf(3);
expect(beverages).to.have.property('tea').with.lengthOf(3);

Should
The should method extends each object with a should property that starts a chain similar to the
chains used by expect. Listing 20‑5 shows examples of assertions written with should.

LISTING 20-5:  Using Chai’s should method

const should = require('chai').should(); //actually call the function
let foo = 'bar';
const beverages = { tea: ['chai', 'matcha', 'oolong'] };

foo.should.be.a('string');
foo.should.equal('bar');
foo.should.have.lengthOf(3);
beverages.should.have.property('tea').with.lengthOf(3);

Karma
Jest and Mocha both run in Node.js and can test your code using a simulated web browser. Even
the best simulated web browser isn’t the same as a real one, however, and there’s a possibility
that your React code may not run exactly the same in Firefox as it does in Chrome running on an
Android device.

Karma is a tool for testing JavaScript code in real browsers. It works by launching an HTTP server
and then loading your tests (written with whichever tools you prefer) into each of a list of browsers
that you specify. Karma then reports the result of running each test in each browser.

Nightwatch.js
Nightwatch is an end-to-end testing tool. The idea of end-to-end testing is to test scenarios as if from
the eyes of the user. Nightwatch controls web browsers to simulate user actions.

Server-Side Rendering  ❘  429

Listing 20‑6 shows an example test suite (from the nightwatchjs.org website) that opens
the Ecosia search engine, searches for “nightwatch,” and checks that the first result is the
nightwatchjs.org website.

LISTING 20-6:  A Nightwatch test suite

module.exports = {
 'Demo test ecosia.org' : function(browser) {
 browser
 .url('https://www.ecosia.org/')
 .waitForElementVisible('body')
 .assert.titleContains('Ecosia')
 .assert.visible('input[type=search]')
 .setValue('input[type=search]', 'nightwatch')
 .assert.visible('button[type=submit]')
 .click('button[type=submit]')
 .assert.containsText('.mainline-results', 'Nightwatch.js')
 .end();
 }
};

SERVER-SIDE RENDERING

Most of the time, React runs in a web browser and manages rendering and updating of components
by manipulating the DOM. However, because React components are just JavaScript functions, they
can also run inside of any other JavaScript engine. Server-side React runs React components to
generate static files that can be sent to a web browser when a React user interface is first requested.
The result is that the initial rendering of the page is faster, because it doesn’t have to happen in the
user’s browser.

Server-side rendering works by having an instance of the ReactDOMServer library on the server (typi-
cally in a Node.js server) and using one of its render methods to generate static HTML. ReactDOM-
Server has four render methods you can choose from, depending on your needs:

➤➤ renderToString: Renders the app to a static HTML string. Inside the browser,
this HTML string can be turned into a functioning React user interface using the
ReactDOM.hydrate method.

➤➤ renderToStaticMarkup: Renders the app to static HTML, without the attributes that React
normally adds to HTML. The result is a smaller file, but one that can’t be made interactive
using ReactDOM.hydrate. You can use renderToStaticMarkup to create a static file server.

➤➤ renderToNodeStream: Returns the same HTML as renderToString but encoded as a Node
Stream rather than as a string.

➤➤ renderToStaticNodeStream: Returns the same HTML as renderToStaticMarkup, but for-
matted as a Node Stream.

http://nightwatchjs.org
http://nightwatchjs.org

430  ❘  CHAPTER 20   Going Further

Flux
Flux is a pattern for how to manage data within an application. With the Flux pattern, data is kept
in stores that can be subscribed to by user interface components. When a store that a component is
subscribed to changes, the user interface component (also known as the view) fetches the new data
and uses it to update.

Changing the data in a store is done using actions, which are dispatched in response to events in
the view. All data in a Flux application flows in a single direction. Figure 20‑1 shows the basic
Flux pattern.

Redux
As your user interface gets larger, it can be helpful to centralize some or all of the data used in it,
rather than having stateful variables spread throughout your components.

Redux is a library for managing state in a React application that implements the Flux pattern.
Redux centralizes the state data in an application into a single state tree. This state tree is modi-
fied from within components by dispatching “actions.” These actions, in turn, trigger pure functions
called reducers, which update the Redux state tree. Figure 20‑2 shows how data flows in a Redux
application.

A React application that uses Redux has a single object that contains all of its data. This object is
called the Redux store. A store is created using the createStore method. The createStore method
takes a function parameter, called a reducer, as its argument. The reducer contains all the methods
that can be used to work with the data in the store.

The following is an example of a reducer function for a simple counter application:

const counterReducer = (state = 0, action) => {
 switch (action.type) {

Action Dispatcher Store View

FIGURE 20-1:  The Flux pattern

Actions Reducers Store

React
Components

FIGURE 20-2:  Data flow in a Redux application

Server-Side Rendering  ❘  431

 case 'INCREMENT':
 return state + 1
 case 'DECREMENT':
 return state - 1
 default:
 return state
 }
}

To create a store, pass the reducer function into Redux’s createStore function, like this:

import { createStore } from 'redux';

const store = createStore(counterReducer)

Each possible case in the reducer’s switch statement corresponds to an action that can be dispatched
in response to an event in the user interface.

An action in Redux is a JavaScript object that has a type and an optional payload. For example, in a
Redux counter app, clicking an “Increment” button doesn’t call a setState function. Rather, it trig-
gers the Redux dispatcher (which is a method of the store object) and passes it an action object:

<button onClick={() => store.dispatch({ type: 'INCREMENT' })}>
 +
</button>
<button onClick={() => store.dispatch({ type: 'DECREMENT' })}>
 -
</button>

The store’s reducer function receives the action and uses its type property to decide how to change
the store. Changing the store causes the application to re-render.

Putting it all together, Listing 20‑7 shows a complete Redux counter example.

LISTING 20-7:  A Redux counter

import React from 'react'
import ReactDOM from 'react-dom'
import { createStore } from 'redux'

const counterReducer = (state = 0, action) => {
 switch (action.type) {
 case 'INCREMENT':
 return state + 1
 case 'DECREMENT':
 return state - 1
 default:
 return state
 }
}

const store = createStore(counterReducer)
const rootEl = document.getElementById('root')

continues

432  ❘  CHAPTER 20   Going Further

const Counter = (props)=>{

 return (
 <p>
 Clicked: {props.value} times
 <button onClick={props.onIncrement}>
 +
 </button>
 <button onClick={props.onDecrement}>
 -
 </button>
 </p>
)
 }

const render = () => ReactDOM.render(
 <Counter
 value={store.getState()}
 onIncrement={() => store.dispatch({ type: 'INCREMENT' })}
 onDecrement={() => store.dispatch({ type: 'DECREMENT' })}
/>,
 rootEl
)

render()
store.subscribe(render)

If this example looks complicated to you, that’s because it is. Redux is not meant to be used for such
simple applications. However, even for larger applications, Redux often involves more complexity
than is necessary.

GraphQL
GraphQL is a query language for APIs. GraphQL services are created by defining types and fields on
those types. For example, you might have a type named User that might look like this:

type User {
 id: ID
 fname: String
 lname: String
}

A GraphQL server accepts requests and returns JSON data to the client application. Here’s an exam-
ple of a GraphQL query:

{
 user(id:"1") {
 fname
 lname
 }
}

LISTING 20-7  (continued)

Server-Side Rendering  ❘  433

The response from the preceding query might look something like the following:

{
 "data": {
 "user": {
 "fname": "Chris",
 "lname": "Minnick"
 }
 }
}

Because a GraphQL query has the same shape as the returned data, GraphQL is a more declarative
way to fetch remote data than using REST.

Apollo
Like Redux, Apollo is a state management library. Unlike Redux, Apollo lets you manage both
your local and remote data. Apollo has a client component that interacts with a remote GraphQL
server to fetch data, and a provider component that makes the data available to components in your
React app.

The first step in using Apollo is to have a GraphQL server to connect to. This is the most involved
part of the process of using GraphQL and Apollo. You can create your own GraphQL server by
following the instructions from the “How to Create a GraphQL Server” tutorial on Apollo’s web-
site at https://www.apollographql.com/blog/tutorial-building-a-graphql-server-
cddaa023c035/.

Once you have a GraphQL server, you can connect to it with the Apollo client. Listing 20‑8 shows
how to create an Apollo client.

LISTING 20-8:  Creating an Apollo client

import { ApolloClient, InMemoryCache } from '@apollo/client';

const client = new ApolloClient({
 uri: 'https://my.graphql.server',
 cache: new InMemoryCache()
});

To connect an Apollo client to your React app, you can use the ApolloProvider component, as
shown in Listing 20‑9.

LISTING 20-9:  Using an Apollo provider

import React from 'react';
import { render } from 'react-dom';
import { ApolloClient, InMemoryCache } from '@apollo/client';
import { ApolloProvider } from '@apollo/client/react';

continues

https://www.apollographql.com/blog/tutorial-building-a-graphql-server-cddaa023c035/
https://www.apollographql.com/blog/tutorial-building-a-graphql-server-cddaa023c035/

434  ❘  CHAPTER 20   Going Further

const client = new ApolloClient({
 uri: 'https://my.graphql.server',
 cache: new InMemoryCache()
});

function App() {
 return (
 <div>
 <h2>My first Apollo app</h2>
 </div>
);
}

render(
 <ApolloProvider client={client}>
 <App/>
 </ApolloProvider>,
 document.getElementById('root'),
);

React Native
React Native is a framework for creating native mobile apps using React. React Native works the
same way as React: components are JavaScript functions or classes that return JSX. The difference
between React and React Native is that React Native doesn’t manipulate the HTML DOM. Instead,
React Native components return JSX elements that map to mobile user interface building blocks such
as Text, View, and Image. React Native was explored further in Chapter 4.

Next.js
Next.js is a React development web framework, similar to Create React App. Like Create React
App, Next.js helps you to get started with your React app quickly and provides tools that you’ll use
throughout the development and building of your application.

In terms of features, the two main differences between Next.js and Create React App are:

➤➤ Next.js is more configurable than Create React App.

➤➤ Next.js supports server-side rendering. Create React App can be configured to support server-
side rendering, but it doesn’t support it by default.

Gatsby
Gatsby is a static site generator. It pre-renders React user interfaces and pre-fetches data on the server,
which makes rendering of the site happen faster on the client. Besides speed, another benefit to serv-
ing static pages to browsers is that static pages may be more easily accessible by search engines, which
can mean that static sites will receive higher search engine placement. Since static sites don’t interact
with the server or a database from the browser, they are also often more secure and provide less
opportunity for a malicious script or user to access or modify data they’re not authorized to access.

LISTING 20-9  (continued)

Useful Links and Resources  ❘  435

PEOPLE TO FOLLOW

Given how active the React developer community is and how popular React is, it’s important to stay
on top of the latest developments. A great place to find out about the latest React news and trends
in the React community is on Twitter. The following is a list of React and JavaScript developers and
organizations you may want to follow:

➤➤ React News (@ReactExpo): ReactJS and React Native news, templates, and jobs.

➤➤ Rectiflux (@reactiflux): A chat community of over 147,000 React and React Native
developers.

➤➤ Andrew Clark (@acdlite): ReactJS developer at Facebook. Co-creator of Redux.

➤➤ ReactJS News (@ReactJSNews): The latest ReactJS news and articles.

➤➤ React (@reactjs): The official ReactJS Twitter account.

➤➤ React Newsletter (@reactnewsletter): The free, weekly newsletter of the latest React news,
tutorials, resources, and more.

➤➤ Becca Bailey (@beccaliz): Engineering manager at Formidable labs.

➤➤ MadeWithReactJS (@madewith_react): A collection of projects made with ReactJS.

➤➤ Jessica Carter (@jesss_codes): Freelance software engineer who frequently tweets
about React.

➤➤ Dan Abramov (@dan_abramov): Software engineer at Facebook. Co-creator of Redux and
Create React App.

➤➤ Mark Dalgleish (@markdalgleish): React developer and co-creator of CSS Modules.

➤➤ John-David Dalton (@jdalton): JavaScript developer and creator of the Lodash library.

➤➤ Sean Larkin (@TheLarkinn): Webpack developer.

USEFUL LINKS AND RESOURCES

When you need help or have questions about how to do something in React, chances are good that
someone else has had a similar problem and the solution can be found with a quick search. If you run
into a new problem, finding help is usually not a problem and your question may help others who are
having the same issue. The open source community thrives because of users helping each other out,
and as you gain more experience, you may be able to solve others’ problems as well. Here are some of
the best places to give and find help with React programming:

➤➤ Stack Overflow: Stack Overflow is the first place to check, and the place where you’re most
likely to find an answer. You can find questions tagged with reactjs at https://stack-
overflow.com/questions/tagged/reactjs.

➤➤ Reddit’s React community: Although you’re less likely to find answers to specific questions
on Reddit, you can often find interesting discussions or projects posted at https://www
.reddit.com/r/reactjs/.

https://stackoverflow.com/questions/tagged/reactjs
https://stackoverflow.com/questions/tagged/reactjs
https://www.reddit.com/r/reactjs/
https://www.reddit.com/r/reactjs/

436  ❘  CHAPTER 20   Going Further

➤➤ Dev.to: The react tag on Dev.to is an active place to find links to articles and tutorials about
React and React-related topics. https://dev.to/t/react

➤➤ React Community on Facebook: React was created by Facebook, and so it’s logical that there
would be an active React Facebook community. In reality, this isn’t really the case, but fol-
lowing the React Facebook community is a good way to stay on top of announcements from
Facebook related to React.

➤➤ Reactiflux: The Reactiflux website and the online chat at https://discord.gg/reactiflux
are both great resources for learning about React and for getting and giving help.

➤➤ Hashnode: Hashnode is another site with an active React community. Check it out at
https://hashnode.com/n/reactjs.

SUMMARY

You’ve come to the end of this book, and hopefully you’ve gained a good understanding of the foun-
dations of ReactJS. There’s always more to learn, and the brief summaries in this chapter should give
you some good jumping off points.

In this chapter, you learned:

➤➤ Several popular testing libraries and frameworks.

➤➤ What server-side rendering is.

➤➤ What GraphQL and Apollo are.

➤➤ About Next.js and how it compares to Create React App.

➤➤ About using Gatsby for static site generation.

➤➤ Who to follow on Twitter.

➤➤ Resources to use for getting help with React.

Every React developer benefits from the amazing React community. Now that you have a solid foun-
dation of React knowledge, one of the best ways to continue to learn and to ensure that React will
continue to thrive is by giving back. Ways to give back include answering React questions on Stack
Overflow and elsewhere, contributing to an open source project, or teaching React to someone else or
writing a book. Best wishes!

https://dev.to/t/react
https://discord.gg/reactiflux
https://hashnode.com/n/reactjs

437

INDEX

A

Abramov, Dan (React developer community), 435
accessibility

also known as a 1 1 y, 413
basics of, 414–415
form accessibility, 417–418
implementing of in React components, 415–422
why is it important, 413–414

addEventListener, 200
AJAX (Asynchronous JavaScript and XML), 290
AMD (Asynchronous Module Definition), 25
Angular (angular.io), 18
animation events, 211
Apollo, 433–434
App component

adding methods and binding them to, 191–192
converted App component, 193–195
copying and modifying of JSX in, 191
initializing state in, 190
listing for, 407
rendering NavBar inside of, 87
static version of, 163

apply function, 67
apps

building of, 339–343
Clicker app, 381, 383, 384
example of, 396–398
inspecting of with Portal in Chrome Developer

Tools, 402
inspecting of with Portal in React Developer

Tool, 403
putting it on the web, 344–349
running built app from filesystem, 342
what’s in a name, 343

working React app, 357
ARIA attributes, 416
array

changing of with spread, 158
copying of with spread, 158–159
passing an empty array to only run

useEffect on mount, 268
array.map function, 53
arrow functions, 39, 216–217
assertions, writing of with Chai, 427–428
asset-manifest-json, 342–343
async, 372
asynchronous code

described, 369–370
where to run in React, 374–377

Asynchronous JavaScript and XML (AJAX), 290
Asynchronous Module Definition (AMD), 25
asynchronous tasks, 371
attributes

ARIA attributes, 416
component attribute, 305–306
custom attributes, 56
exact attribute, 301–303, 304
non-standard attributes, 56
vs. props, 52–56
React as supporting many HTML attributes, 55
renaming of, 54
render attribute, 306–307
some as behaving differently, 55
standard HTML attributes, 54–56
as using camelCase, 54
using event listener attributes, 202

await, 372
Axios, getting data with, 377–379
axios-hooks, 286

438

Babel – commits

B

Babel, 31–32
backend as a service (BaaS), 345
back-end environment, 20
Bailey, Becca (React developer community), 435
bidirectional data flow, 125
bind function, 67, 215–216
breakpoints, 421
browser incompatibilities, elimination of, 33
BrowseRouter, 294
build directory, examining of, 340
build script, running of, 340
build toolchain, React without, 1–7
built app, running of from filesystem, 342
built-in components, 47–56
built-in hooks

accessing children imperatively with useRef,
279–280

caching computer values with useMemo, 278–279
combining logic and state with useReducer,

273–274
customizing exposed values with

useImperativeHandle, 280–281
hooking into lifecycle with useEffect, 264–272
list of, 259
managing state with useState, 260–264
memoized callbacks with useCallback, 275–278
subscribing to global data with useContext,

272–273
updating DOM synchronously with

useLayoutEffect, 281
bytecode, 31

C

call function, 67
callback function, 67
callback refs, creating of, 236–238
callbacks

within callbacks, 372
memoized callbacks with useCallback, 275

camelCase, 33, 54, 201, 248, 252, 416
caption, rendering of, 74
Carter, Jessica (React developer community), 435
cascading styles, in components, 245–246

CDN links, 3
Chai, testing with, 427–428
Change Detection, 19
checkout form, with help links, 410
children

accessing of imperatively with useRef,
279–280

cloning of in NavBar.js, 88
conditionally rendering children based on media

query, 422
creating new CartItem children, 110
defined, 84, 104
an HTML textarea's value as, 230
making us of props in, 88–89
manipulating, 86–88
rendering of using props.children, 87–88

CJS (CommonJS), 26–27
Clark, Andrew (React developer community), 435
class, basing new class on external style, 253
class body, and constructor method, 62–63
class components

consuming a Context in, 390
controlling of inputs in, 224–225
converting to, 190–197
creating ref in, 234
defined, 103
differences between function and class

components, 84
initializing state in, 146–147
introduction to, 57–68
loading initial data in, 374–375
managing state in, 71–72
updating state with setState, 150
using Context in, 390
using state and setState in, 72
writing event handlers in, 213–214

class composition, use of, 252–253
class declarations, 60–61
class expression, 61–62
class property, initializing state in, 147
Clicker app, 381, 383, 384
clipboard events, 206
cloneElement, 87
command-line interface (CLI), 101–102
commit phase, of component lifecycle, 89, 327
commits, 327

439

CommonJS (CJS) – const keyword

CommonJS (CJS), 26–27
component attribute, use of, 305–306
component data, editing of in React DevTools,

114–117
component tree, 108–110, 113
componentDidCatch(), 92, 327–328
componentDidMount method, 90
componentDidUpdate, 92
components

as able to be imported into other components, 45
App component. See App component
attributes vs. props, 52–56
built-in components, 47–56
cascading styles in, 245–246
changing state data in, 4–5
class components, 57–68, 103, 213–214,

224–225, 234, 374–375, 390
as compared to elements, 44–47
Context.Consumer component, 390–391
Counter component, 94
creating component using a class, 58
creating component with React

.createClass, 57
creating configurable ones, 15
custom components, 30, 56
defined, 15, 43
as defining elements, 44–45
dumb components, 79
elements as invoking, 45
with errors, 326
FigureList component, 74–76
filtering of, 112–114
function components, 76–84, 103, 212–213, 224,

375, 391
higher-order components, 114, 311–312
HTML element components, 47–51
improving performance and avoiding errors,

92–98
including CSS in, 245
inspecting, 107–114
lifecycle of, 89–98
lifecyle of, 104
linking component, 294
Logger component, 329
made up of three child components, 85
Modal component, 408

passing children into, 85–86
presentational components, 79
Provider component, 389–390
pure component, 96, 103
putting everything in one, 46–47
React component, 23–24
React.Component, 68–76
rendering of, 98–103
root component, 43, 103, 353–354
route component, 294
router component, 294
SalesChart component, 401, 402
SearchBox component, 227
searching for, 110–112
SearchInput component, 227
SearchResults component, 227–228
selecting, 114–117
setting an event listener in, 201
shell components, 163–164
SidebarHelp component, 401
simple routing component, 291–292
stateful component, 103
stateless component, 103, 147
stateless functional components, 79
terminology of, 103–104
TextReader component, 236
types of, 56–84
use of to reduce complexity, 45–46
user-defined components, 30, 56
without default props, 142

Components window, 108–109, 114, 115
componentWillUnmount, 92
composing, defined, 15
composition

as alternative to Context, 392–396
defined, 15
vs. inheritance, 15–16
use of instead of Context, 395–396
using, 16

composition events, 206
conditional rendering

with && operator, 37–38
with conditional operator, 38
defined, 36
with if/else and element variables, 36–37

const keyword, 82, 156

440

constant – defaults

constant, defined, 82
constructor

binding function in, 215–216
class body and constructor method, 62–63
in mounting stage, 90

Context
common use cases for, 391–392
composition as alternative to, 392–396
consuming a Context in a function component,

391
consuming of, 390–391, 397–398
creating Provider, 389
eliminating prop drilling with, 393–394
use of composition instead of, 395–396
use of with useContext hook, 272
for user preferences, 389
user preferences component with, 396
using a component outside of a required Context,

394–395
using in function component, 391
when not to use, 392

Context API, as solving the problem, 388–391
Context object, creating of, 388–389
Context.Consumer component, use of, 390–391
controlled inputs

adding value attribute as creating, 223
simplifying of in a class, 225–226
vs. uncontrolled inputs, 221–226
updating of with function components, 223–224

Counter, with useReducer, 273–274
Counter component, toggling render of, 94
CounterClass button, result of clicking, 153
Create React App

Babel as integrated into, 31
interactive “Hello, World” with, 7–8
use of to build boilerplate user interface, 1–7

CSS
advanced CSS Modules functionality, 252–253
CSS rule-sets vs. JavaScript style objects, 248
importing of into HTML file, 243–245
media queries in included CSS, 421
modules of, 250–253
naming CSS Module files, 251–252
responsive media queries in CSS file, 421

using plain old CSS in components, 245–247
CSS-in-JS, and styled components, 253–254
curly braces

putting comments in, 35–36
use of double curly braces with objects, 35
use of to include literal JavaScript, 35

custom attributes
prefacing of in DOM elements with data-, 34
written using only lower-case letters, 56

custom components, 30, 56
custom domains, enabling of and HTTPS, 348
custom hooks

finding and using, 286–288
inspecting of, 283
labeling of with useDebugValue, 283–285
other fun hooks, 288
viewing debug value of, 285
writing of, 281–283

D

Dalgleish, Mark (React developer community), 435
Dalton, John-David (React developer community),

435
data

fetching and caching of, 369–385
getting data to a deeply nested component with

prop drilling, 392–393
getting of with Axios, 377–379
getting of with fetch, 377
reading of from localStorage, 382–385
removing of from localStorage, 383–384

data flow
bidirectional data flow, 125
one-way data flow, 123–126, 224
two-way data flow, 125
unidirectional data flow, 123–126

data type, validation of, 133–134
declarative programming, 16–17
default actions, preventing of, 231–232
default exports, 28–29
default values, adding of to InputForm, 174–175
defaultProps object, 143, 178
defaults

deployment – errors

441

destructuring props and setting of, 143
setting defaultProps as static property,

143–144
setting defaultProps for function component,

145
setting defaultProps outside of component

body, 144–145
setting of with OR operator, 142

deployment
defined, 339
a deployed React app, 348
how is a deployed app different? 343
with Netlify, 345–349

destructuring assignment syntax, 81, 83
Developer Tools, 344. See also React DevTools
development environment, 20, 21
development mode, vs. production,

343–344
development server, and hot reloading,

360
Dev.to, 436
Document Object Model (DOM)

defined, 13
role of, 13

DOM method
calling of on child using a ref, 235
updating of synchronously with

useLayoutEffect, 281
dumb components, 79

E

ECMAScript Modules (ESM), 27
effects

cleaning up after, 265–266
running of only after mounting, 268

element tree
after user clicks a link, 100
initial element tree, 100

element validator, 137
elements

components as defining, 44–45
as invoking components, 45
using unnecessary elements to group elements,

416

using unnecessary grouping elements can result in
invalid HTML, 417

elementType validator, 137
Enzyme, testing with, 426–427
error boundaries

best laid plans, 319–320
building your own ErrorBoundary component,

323–334
crashed React app, 320
defined, 320–323
ErrorBoundary component, 324
getDerivedStateFromErrors as static method,

324
handling an error with, 323
implementing of, 323–338
providing reset option in, 335
testing of, 326–327
what it can’t catch, 336–337

error handling, as stage of component’s life, 89, 92
error message

cannot read property, 173
cannot read property ‘map’ of undefined, 175
not-renderable error message, 135

ErrorBoundary component
building your own, 323–334
exporting with, 326
installing a pre-built one, 334–336
listing for, 324
providing reset link in, 334
updated of with remote logging, 331–332

errors
automatically fixable errors or warnings, 362
catching ones in error boundaries with

try/catch, 336–337
catching ones in event handlers with

react-error-boundary, 337–338
component that sometimes errors, 333
component with, 326
how to fix, 362
logging of and the info object to console, 328
logging of with ComponentDidCatch(),

327–328
uncaught error, 322
viewing caught ones in Loggly, 332
viewing of and info parameters in console, 329

442

ES205 module rules – fecthing

ES205 module rules, 28–29
ESLint

configuration of, 361
how to fix errors, 362
installing and configuring of, 360–361

ESM (ECMAScript Modules), 27
Event API documentation, 205
event bubbling, 202
event handler

binding event handler functions, 214–216
binding of, 70–71
binding of inline, 216
catching errors in with react-error-boundary,

337–338
defining state using class property, 217–218
FilterSelect with, 187–188
functions of, 211–219
InputForm component with event handlers and

event listeners, 181–182
passing data to, 218–219
passing Event object to, 219
use of arrow function as, 39, 216–217
using inline event handler to call setState,

212
using inline event handler to show an alert, 211
writing and binding an event handler method in a

class, 213–214
writing inline event handlers, 211–212
writing of in function components, 212–213

event handler function, 211–219
event listeners
FilterSelect with, 187–188
InputForm component with event handlers and

event listeners, 181–182
setting of in React component, 201
using event listener attributes, 202

Event object
adding properties to, 205
base Event properties, 203
passing of automatically, 218
passing of to event handler, 219
viewing properties of, 203

Event.cancelable, 203
Event.preventDefault, 203

events
animation events, 211
clipboard events, 206
composition events, 206
event bubbling, 202
Event object, 203–204
focus events, 206
form events, 206–207
generic events, 207
how they work in React, 199–201
image events, 210
keyboard events, 206
media events, 209–210
mouse events, 207–208
other events, 211
pointer events, 208–209
selection events, 209
setting an event listener in a React component,

201
supported events, 204–211
SyntheticEvent, 201–202
touch events, 209
transition events, 211
UI events, 209
using addEventListener, 200
using an event attribute in HTML, 200
using event listener attributes, 202
wheel events, 209
writing of in class components, 213–214

Event.target, 203
Event.type, 203
exact attribute

adding of to Routes to restrict matching, 304
use of on NavLink components, 301–303

export statement, 27–29
exporting, with ErrorBoundary, 326–327
expressions, 38–39

F

Facebook
React as created by, 11
React Community on, 436

fecthing, ways to, 376

443

fetch – global data

fetch, getting data with, 377
figure, rendering of, 74
FigureList component, 74–76
filteredReminders, creating new one, 184–185
filtering

of components, 112–114
reminders, 183–190
reminders list, 185

filterList function, implementing of, 186–187
FilterSelect

with an event handler and event listener, 187–188
filtering reminders, 183–190
pure FilterSelect, 172
round two of, 166
shell component for, 163
validating and setting defaults for, 177–178

fixed counter class, 155
Flamegraph chart, 119
Flux, use of, 430
focus

managing of, 239
managing of programmatically, 419

focus control (in React), 418–420
focus events, 206
form events, 206–207
forms

controlled inputs vs. uncontrolled inputs,
221–226

as having state, 221–222
lifting up input state, 226–228
preventing default actions, 231–232
using different form elements, 229–231
using uncontrolled inputs, 228–229

front-end environment, 20
function binding, 67
function components

consuming a Context in, 391
controlling of input in, 224
creating ref in, 234
defined, 79, 103
how to write them, 79–80
initializing state in, 147–149
loading initial data in, 375
managing state in, 83–85

optimizations and shortcuts with, 80
setting defaultProps for, 145
as simpler than class components, 76–79
updating state with, 154–155
use of PropTypes with, 133
writing event handlers in, 212–213

function constructors, 58
function declarations, 61
function dependencies

as causing unnecessary renders, 275–277
unnecessary renders warning due to, 276

function hoisting, 61
function scope, 81
functional programming, 64
functions
apply function, 67
array.map function, 53
arrow functions, 39, 216–217
binding of in the constructor, 215–216
call function, 67
callback function, 67
higher-order functions, 311–312
immediately invoking of in JSX, 39
passing of to a setter, 263
setter function, 262–264

G

Gatsby, use of, 434
generic events, 207
getDerivedStateFromErrors

receives error as parameter, 325
as running during render phase, 325
should return an object for updating state,

325–326
as static method, 324

getDerivedStateFromProps, 90, 91, 92
getElementById function, 13
getSnapshotBeforeUpdate, 91–92
Git button, clicking New site from, 346
Git provider, choosing of, 346
global data

defined, 272
subscribing to with useContext, 272

444

global scope – InputForm

global scope, 82
Google, Angular (angular.io), 18
GraphQL, use of, 432–433

H

hash string, defined, 343
Hashnode, 436
HashRouter, 294, 295
Hello, World

interactive Hello, World component, 7
running in browser, 5

Hello React Learner, 8
higher-order components, 114, 257, 311–312
higher-order functions, 114, 311–312
history object, 309, 310, 312
hoisting, 61, 81
hooks

built-in hooks, 259–281
custom hooks, 281–288
defined, 257
importing of, 260
React Router hooks, 317–318
resources on, 288
role of, 79, 147
rules of, 259
and state, 116
why they were introduced, 257–259

hot reloading, 8, 360
HTML

adding HTML link to HTML file, 244
adding React to page, 1–7
custom attributes in, 34
element components, 47–51
file for using React without toolchain, 4
HTML document, 352–353
HTML document with multiple nodes in the

body, 400
importing CSS into, 243–245
input elements, 229–230
making HTML template, 359–360
React as supporting many HTML attributes, 55
select element in, 231
semantic HTML, 416

standard HTML attributes, 54–56
using an event attribute in, 200
using unnecessary grouping elements can result in

invalid HTML, 417
HTTPS, enabling custom domains and, 348

I

image events, 210
immutabilty, 156
imperative programming, 16
implicit globals, 82
import statement, 27–29
index.html

the built index.html, 341
creating React App’s, 99
finished one, 352–353
importing index.js into, 354

index.js

attempt to load without compiling, 355
finished index.js, 353
importing of into index.html, 354

initial element tree, 100
initializing state, 146–149
inline event handlers, 211–212
inline styles

importing multiple styles, 250
improvement of with style modules, 249
using of in React, 247–248
using variables to hold style objects, 249
why not to use, 249
why to use, 249

innerHTML function, 13
input elements

controlling of, 230
list of, 229–230

InputForm

adding PropTypes and default values to,
174–175

converted InputForm component, 196–197
with event handlers and event listeners, 181–182
pure InputForm, 172
round two of, 165–166
shell component for, 163

445

inputs – list virtualization

inputs. See also controlled inputs; uncontrolled
inputs

controlling of in class component, 224–225
controlling of in function component, 224
lifting up input state, 226–228
updating input element with one-way data flow,

224
isComplete, implementing isComplete changing

functionality, 188–190
Isomorphic React, 103
isRequired validator, 134
isValidElement, 87

J

JavaScript
array.map function, 53
class body and constructor method, 62–63
class declarations, 60–61
class expression, 61–62
class validation, 138
classes in, 58–68
CSS rule-sets vs. JavaScript style objects, 248
equality operators, 261
executing asynchronous JavaScript, 371
function (or method) invocation in, 64–66
as functional programming language, 64
history of modules in, 25–29
main JavaScript file, 353
method definition syntax, 214
method syntax, 65
as never sleeping, 370–374
promises and async/await, 372–374
REST (Representational State Transfer), 376
routing, 291
shallow copies and spread operator, 157–160
side effects, 264
static methods, 324–325
in strict mode, 65
style syntax, 248
subclasses with extends keyword, 63–64
tagged template literals, 254–255
variables in, 81–83
when to use it in JSX, 36

Jest, testing with, 363, 425
JSX

accessible form, writing using, 418
Babel, 31–32
Boolean attributes, 34–35
conditionals in, 36
copying and modifying of in App, 191
defined, 30
expressions in, 38–39
how it works, 30–31
JSX Transform, 31, 32
as not HTML, 23, 33
as requiring loader, 356
as supporting all ARIA attributes, 416
syntax basics of, 33–41
transpilation, 31–33
use of curly braces to include literal JavaScript, 35
as using camelCase, 33
using children in, 40
when to use JavaScript in, 36
as XML, 33

K

Karma, testing with, 428
key prop, 177–183
keyboard events, 206
keyboard focus, use of ref to set, 410–411

L

Larkin, Sean (React developer community), 435
let keyword, 82
lexical variable scoping, 82
lifting state up, 170–176
Link, internal linking with, 296–297
linking

automatic linking with Redirect, 302
with object, 297
to routes, 296–302
with string, 297

linking component, 294
linting, defined, 360
list virtualization, 120

446

literal JavaScript – oneOfType validator

literal JavaScript, using of inside JSX, 35
loader

JSX as requiring, 356
role of, 358

localStorage

clearing of in the Clicker, 384–385
reading data from, 382
reading of in Clicker, 383–384
removing of data from, 383–384
storing data with, 381–382
viewing of in Chrome Developer Tools, 383
working with, 381
writing to when state changes, 382

location object, 309, 313, 314
log source, adding of, 330
Logger component, 329
logging service, use of, 328–329
Loggly, 329–330, 331, 332

M

MadeWithReactJS, 435
Martin, Robert C. (“Uncle Bob”), 15
match object, 309, 313–314, 316
media events, 209–210
media playback, controlling of, 241
media queries (in React)

overview, 420
conditionally rendering children based on, 422
in included CSS, 421
responsive media queries in CSS file, 421
using useMediaQuery, 422

memoization, 121
memory leaks

avoiding, 93–98
fixing, 96
React component with potential one, 93

MemoryRouter, 294, 295
method definition syntax, 214
methods

as properties too, 60
this keyword in, 65–66

Microsoft, TypeScript, 19
Mocha, testing with, 426

modal
managing keyboard focus with, 409–410
one way to style, 405–406
opened modal, 409

Modal component, finished Modal component, 408
modal dialog, rendering and interacting with,

404–409
model, managing focus upon closing of, 419–420
Model-View-Controller (MVC) pattern, 12
modularization, 24–29
mounting, as stage of component’s life, 89, 90
mouse events, 207–208
mouse position, component to track, 354
mouse tracker, testing of, 363
multiple component trees, why not just render? 403

N

NativeEvent, 204, 205
NativeRouter, 294, 295
NavBar, 87
NavBar.js, cloning children in, 88
navigation menu with sub-items, 299
NavLink

internal navigation with, 298–302
list of NavLinks with sub-items, 299–300
using exact attribute on NavLink components,

301
Netlify

deployment with, 345–349
domain management in, 349
enabling routing with, 347–348

new operator, 59
Next.js, use of, 434
Nightwatch.js, testing with, 428–429
node hosting, 345
nodes, validation of, 134–137
npm scripts, creating of, 364–365

O

object, copying of with spread, 159–160
object-oriented programming (OOP), 15
oneOfType validator, 139

one-way data flow – PropTypes

447

one-way data flow
defined, 123
reason for, 125
understanding, 124–125
updating input element with, 224

operators, equality operators, 261
optimization, 120–121

P

parameters
using URL parameters, 304–305
using useParams hook, 305

parent
defined, 84, 104
passing onClick into, 88

path matching, restricting of, 304
payload, passing of to reducer, 274
performance, solving performance problems, 279
plugins, role of, 358
plugins object, creating of, 359
pointer events, 208–209
Portals

common use cases for, 403–411
creating of, 401
defined, 399
as enabling modal dialogs, 400
how to make, 399–403
inspecting an app with Portal in Chrome

Developer Tools, 402
inspecting an app with Portal in React Developer

Tools, 403
pre-commit phase, of component lifecycle, 89
presentational components, 79
preventDefault, use of, 232
production, development mode vs., 343–344
Profiler tab, 119
project

automating build process, 358–365
HTML document, 352–353
initializing a React project from scratch, 351–367
initializing yours, 352
main JavaScript file, 353
root component, 353–354

running in the browser, 354–357
structuring your source directory, 365–367

prop drilling
defined, 387–388
elimination of with Context, 393–394
getting data to a deeply nested component with,

392–393
use of, 388

props (properties)
accessing props, 52–54
additional Link props, 296–297
attributes vs., 52–56
as being any data type, 126–127
component Prop, 305–306
component that uses string prop, 130
components as receiving, 126
creating, 126
creating and using, 74–76
default props, 141–145, 175–176
defined, 103, 126
difference between state and, 149
key prop, 177–183
limiting of to certain values or types, 139
local variable and props confusion, 129
methods as, 60
passing props, 52
passing setter function as, 263
passing the wrong prop type, 131
as read-only, 127
render props, 257, 306–307
rendering render prop, 307
as storing data, 69
string prop, 130
validating incoming ones with PropTypes,

129–130
validating that a prop is a string, 130–131
validation of required props, 134

props.children, 87
PropTypes

adding of and default values to InputForm,
174–175

appending the isRequired validator, 134
creating custom ones, 140–141
defined, 130

448

PropTypes.arrayOf – React.Component

PropTypes (continued)
displaying a warning, 132
failing PropTypes.element validation, 138
getting started with, 131–133
inside component’s body, 132
putting propTypes outside the class body, 133
Reminder with and defaultProps, 178
as telling which attribute caused the error, 136
trying to render non-node value, 135
use of with function component, 133
using PropTypes.node, 136
using PropTypes.oneOf, 139
validating incoming props with, 129–131
validation with, 133

PropTypes.arrayOf, 139
PropTypes.exact, 140
PropTypes.objectOf, 139
PropTypes.shape, 140
prototypal inheritance, 58–60
prototypes

JavaScript as having, 58
modifying and using of, 59

Provider component
making of, 396
use of, 389–390

public field, 147
public instance field, 147
pure component, 96, 103
pure function, 96

R

Ranked chart, 120, 121
React

as compared to Angular (angular.io), 18–19
as compared to Vue.js (vujs.org), 19
as compared to what you already know, 18–19
as declarative, 16–17
developer community, 435
events supported by, 206
foundation of, 11–22
as front-end library, 19
as idiomatic, 17
origins of, 11

philosophy of, 14–21
and ReactDOM, 12
reason for name, 11–13
reason to learn, 17
Twitter account, 435
useful links and resources, 435–436
what it is not, 19–21

React audio player, 241
React Bookstore, 105–107, 108
React component tree, 43, 44
React DevTools

additional functionality of, 118–119
editing component data in, 114–117
Flamegraph chart, 119
getting started with, 105–107
for inspecting components, 107–114
installation of, 105–107
logging component data to console, 118
profiling, 119–121
Ranked chart after optimizing, 121
role of, 107
Select tool, 115
View Settings, 113
viewing Ranked chart, 120

React element type, validation of, 137
React elements, validation of, 137
React Konsul, 103
React Native

React Native CLI, 101–102
as rendering engine, 101
use of, 434
your first React Native component, 101

React News, 435
React Newsletter, 435
React UI

as having many components nested within other
components, 84

rendering of, 100
React.Children, 86
React.Component

class header, 69
constructor function, 69
defined, 68
importing of, 68–69

449

React.createClass – rendering

initializing local state, 69
managing state in, 71

React.createClass, 57
React.createElement(), 32
React.createElement method, 31
react.development.js, 2
ReactDOM, 12–14, 101
react-dom.development.js, 2
ReactDOM.render(), 6, 13, 98–99
ReactDOMServer, 102–103
react-error-boundary, specifying fallback

component with, 335–336
react-fetch-hook, 286
React.Fragment

use of short syntax of, 40–41
use of to eliminate unnecessary HTML elements,

417
react-hook-form, 286
Reactiflux, 435, 436
reactive programming, defined, 12
ReactJS News, 435
React.memo(), 97–98
react.pdf, 103
React.PureComponent, 96, 97
React.render(), 6
react-router-dom

installing and importing of, 293–294
as one version of React Router, 293

react-router-native, as one version of React
Router, 293

react-skip-nav, implementing Skip Navigation
links with, 418–419

React.StrictMode, 98
reconciliation, 14, 100
Reddit’s React community, 435
Redirect

automatic linking with, 302
routing with, 308–309

reducer, 274, 430
Redux, use of, 430–432
reference values, 157
referential equality, testing of, 278
refs

calling a DOM method on a child using, 235

creating callback ref, 236–237
creating of in class component, 234
creating of in function component, 234
customizing value exposed by, 280–281
defined, 233
examples of, 239–242
passing ref callback as inline functions, 237–238
use of, 234–236
use of to set keyboard focus, 410–411
when not to use, 238–239
when to use, 238

regular expressions
defined, 110
use of, 110–112

@rehooks/local-storage, 287
Reminder

with PropTypes and defaultProps, 178
round two of, 167
shell component for, 164

reminders
adding of to list, 183
filtering of, 183–190
filtering of reminders list, 185

Reminders App
building, 161–168
initial render of, 179
static version of, 167–168

RemindersList

with default props and PropTypes,
175–176

pure RemindersList, 172–173
with Reminder imported, 164
round two of, 166
shell component for, 164

render(), 6
render attribute, 306–307
render function, 73–74
render method, 90, 91
render phase, of component lifecycle, 89
render props, 257, 306–307
rendering

of caption, 74
of children using props.children, 87–88
of components, 98–103

450

renders – setState function

rendering (continued)
conditional rendering, 36–38
conditionally rendering children based on media

query, 422
default route, 308
a fallback UI, 327
of figure, 74
and finding node with Enzyme, 427
and interacting with a modal dialog,

404–409
modal without React Portals can have unexpected

results, 404
of NavBar inside of App, 87
other rendering engines, 101
of React UI, 100
ReactDOM as most commonly used rendering

engine, 101
of render props, 307
of SalesChart component, 402
server-side rendering, 429–434
of uncontrolled input, 223

renders
function dependencies as causing unnecessary

ones, 275–276
solving unnecessary ones, 278–279
unnecessary renders warning due to function

dependence, 276
repository, choosing of, 347
RequireJS, 25–26
reserved words, cautions with, 33
rest parameters, 160
return statement, 40
root component, 43, 103, 353–354
route component, 294
router

components of, 294, 295–296
installing and importing react-router-dom,

293–294
linking component, 294
route component, 294
router component, 294
selecting of, 294–295
using React router, 293–316

router component, 294, 295–296

routes
creating of, 302–309
dynamic links and routes in nested routes,

314–316
linking to, 296–302
multiple ones in component may have matches,

302–303
multiple routes can match the URL, 303
rendering default route, 308
switching of, 307–308

routing
behind the scenes, 309–316
changing routes and viewing the window

.location.href property, 293
defined, 289–290
enabling routing with Netlify, 347–348
how it works in React, 291–293
linking to routes, 296–302
purposes of, 291
React Router hooks, 317–318
with Redirect, 308–309
redirecting from one location to another, 309
simple routing component, 291–292
using React router, 293–316

S

SalesChart component, 401, 402
scroll position

scrolling to element with a ref, 242
setting of, 241–242

Search input box, 110
SearchBox component, 227
SearchInput component, 227
SearchResults component, 227–228
select elements, controlling of, 231
select inputs, use of in React, 231
selection events, 209
setState function

as asynchronous, 72–73
calls to as asynchronous, 152–153
managing of in class components, 71
merging object into state with, 151–152
as not setState, 149

451

setState method – textarea

passing a function info, 153–154
using updater function with, 154

setState method, 150–151
setter

passing function to, 263–264
passing value to, 263

setter function
as bound to their creator components, 262
passing one as a prop, 263
use of, 262
value comparison, 264

shallow copy, 157, 158
shallowCompare function, 96, 97
shell components, 163–164
shouldComponentUpdate, 91, 96, 97
side effects, 264
SidebarHelp component, use of, 401
single page application (SPA), 290
single responsibility principle, 15
Skip Navigation links, 418–419
source directory

grouping by features, 367
grouping by file type, 366
structuring yours, 365–367

spread operator, 157–160
Stack Overflow, 435
state

App with lifted state, 171–172
defined, 103
defining of using class property, 217–218
difference between props and, 149
hooks and, 116
initializing state in App, 190
lifting it up, 170–176
lifting up input state, 226–228
resetting of, 333
setter function as replacing, 156
updating, 149–150
updating of with function components, 154–155
what not to put in, 168
what to put in state, 161
where to put it, 168–170

state object, 69–70, 71, 145–149
stateful component, 103
stateless component, 103, 147

stateless functional components, 79
static directory, 342
static method, getDerivedStateFromErrors

as, 324
StaticRouter, 294, 295
store (in Redux), 430
string

hash string, 343
linking with, 297
validating that a prop is one, 130–131

string prop, 130
style objects

importing multiple styles, 250
style object library, 250
using variables to hold, 249

styled components, use of, 253–254
styles

CSS Modules, 250–253
CSS-in-JS and styled components, 253–254
importance of, 243–244
importing CSS into HTML file, 243–245
using plain old CSS in components, 245–247
writing inline styles, 247–250

subclasses with extends keyword, 63–64
syntactic sugar, use of term, 58
SyntheticBaseEvent object, 203–204
SyntheticEvent, 201–202, 204

T

tagged template literals, 254–255
templates, making HTML template,

359–360
test-driven development, 363
testing tools, 360–364, 425
text

automatic selection of, 239
selecting and copying of with ref, 239–240
selecting of and displaying temporary message,

240
textarea

controlling of, 230
getting value of and counting its words, 279–280
an HTML textarea's value as, 230
use of in React, 230

452

TextReader component – useReducer

TextReader component, 236
ThingsLike, 86
ThingsThatAreFunny, 85
this keyword, 64–66
this.props.children, 85
timer

creating new timer with each render, 266–267
starting of with each render, 266

toolchain, building your own, 351–357
touch events, 209
transition events, 211
transpilation, 31–33
try/catch, catching errors in error boundaries

with, 336–337
two-way data flow, 125
TypeScript (Microsoft), 19

U

UI
diagram of typical one, 321
rendering a fallback UI, 327

UI events, 209
UI layer, 12
UMD (Universal Module Definition), 3
uncontrolled inputs

blog comment interface using, 228–229
vs. controlled inputs, 221–226
omitting value attribute as creating, 222
rendering of, 223
use of, 228–229

unidirectional data flow, 123, 124–125
Universal React, 103
unmounting, as stage of component’s life, 89, 92
updater function, 153–154
updating, as state of component’s life, 89, 90–92
URL parameters, use of, 304–305
useAxios, use of, 286
useCallback

function dependences cause unnecessary renders,
275–277

memoized callbacks fix the unnecessary effect
problem, 277–278

memoized callbacks with, 275–278

useContext

subscribing to global data with, 272–273
using Context with, 272–273

useDebugValue

labeling of custom hooks with, 283–285
use of, 284

useEffect

asynchronous requests with, 270–271
cleaning up after effects, 265–266
creating new timer with each render, 266–267
customizing of, 266–270
hooking into lifecycle with, 264–272
most basic form of, 265
passing an empty array to only run useEffect

on mount, 268
running asynchronous code with, 270–272
specifying useEffect’s dependencies, 269
starting timer with each render, 266
using default useEffect behavior, 265

useErrorHandler(), use of, 337–338
useForm, use of, 287
useGeolocation, 288
useHistory, 310–311, 317
use-http, 285
useImperativeHandle, customizing exposed

values with, 280–281
useKonomiCode, 288
useLayoutEffect, updating DOM synchronously

with, 281
use-local-storage-state, 287
useLocation, 317
useMediaQuery, use of, 422
useMemo

caching computed values with, 278–279
solving performance problems with, 279
solving unnecessary renders with, 278–279

useNetworkStatus, 288
useParams, 317
user preferences (app), 396–398
user-defined components

custom components as also known as, 30
as having any attributes, 34
possibilities for, 56

useReducer

453

useRef – wrapper hell

combining logic and state with, 273–274
Counter with, 273–274
passing payload to reducer, 274

useRef, accessing children imperatively with,
279–280

useRouteMatch, 317–318
useState

calling of hook as returning an array, 155–156
managing state with, 260–264
number guessing game with, 260–261
setting initial state, 262
setting initial state with, 156
use of to create and update a counter, 84–85
why use const with, 156

useState function, 147, 149
useZipLookup

defined, 282
use of, 282–283

V

validation
of data type, 133–134
failing PropTypes.element validation, 138
of incoming props, 129–131
JavaScript class validation, 138
of nodes, 134–137
with PropTypes, 133
of React element type, 137
of React elements, 137
of required props, 134
and setting defaults for FilterSelect, 177–178
that prop is a string, 130–131
that prop is an instance of a class, 138

validators
custom validators, 140–141
element validator, 137
elementType validator, 137
isRequired validator, 134

values
customizing exposure values with

useImperiatveHandle, 280–281

customizing value exposed by ref, 280–281
debug value, 283–285
getting value of textarea and counting its

words, 279–280
passing of to a setter, 263

var keyword, 81–82
variables

block scope variables with let, 82
changing local variables doesn’t update the view,

127–128
goodbye to var, 81–82
in JavaScript, 81–83
local variable and props confusion, 129
use of to hold style objects, 249
using const, 82

Virtual DOM, 13–14, 100–101
Vue.js (vujs.org), 19

W

web
how it works, 290
putting app on, 344–349

Web Accessibility Initiative - Accessible Rich
Internet Applications (WAI-ARIA),
415

Web Content Accessibility Guidelines (WCAG),
414–415

web server hosting, 344–345
Web Storage

remembering user with, 380
as synchronous, 380
types of, 379
use of, 379–385
when not to use, 380
when to use, 380

Webpack, how it works, 357–358
Webpack Dev Server, 360
wheel events, 209
windowing, 120
withRouter, use of, 310
wrapper hell, 258

WILEY END USER LICENSE AGREE-
MENT

Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

http://www.wiley.com/go/eula

	Cover
	Title Page
	Copyright Page
	About the Author
	About the Technical Editor
	Acknowledgments
	BEGINNING ReactJS Foundations Building User Interfaces with ReactJS
	Contents
	Introduction
	Why This Book?
	What’s Covered in This Book?
	What’s Not Covered?
	Prerequisites
	Installing Required Dependencies
	Reader Support for This Book

	Chapter 1 Hello, World!
	React Without a Build Toolchain
	Interactive “Hello, World” with Create React App and JSX
	Summary

	Chapter 2 The Foundation of React
	What’s in a Name?
	UI Layer
	Virtual DOM
	The Philosophy of React
	Thinking in Components
	Composition vs. Inheritance
	React Is Declarative
	React Is Idiomatic
	Why Learn React?
	React vs.…
	React vs. Angular
	React vs. Vue

	What React Is Not
	React Is Not a Web Server
	React Is Not a Programming Language
	React Is Not a Database Server
	React Is Not a Development Environment
	React Is Not the Perfect Solution to Every Problem

	Summary

	Chapter 3 JSX
	JSX is not HTML
	What Is JSX?
	How JSX Works
	Transpiler . . . Huh?
	Compilation vs. Transpilation
	JSX Transform
	Introducing Babel
	Eliminating Browser Incompatibilities

	Syntax Basics of JSX
	JSX Is JavaScript XML
	Beware of Reserved Words
	JSX Uses camelCase
	Preface Custom Attributes in DOM Elements with data-
	JSX Boolean Attributes
	Use Curly Braces to Include Literal JavaScript
	Remember to Use Double Curly Braces with Objects
	Put Comments in Curly Braces

	When to Use JavaScript in JSX
	Conditionals in JSX
	Conditional Rendering with if/else and Element Variables
	Conditional Rendering with the && Operator
	Conditional Rendering with the Conditional Operator

	Expressions in JSX
	Using Children in JSX
	React Fragments

	Summary

	Chapter 4 All About Components
	What Is a Component?
	Components vs. Elements
	Components Define Elements
	Elements Invoke Components

	Built-in Components
	HTML Element Components
	Attributes vs. Props
	Passing Props
	Accessing Props
	Standard HTML Attributes
	Non-Standard Attributes
	Custom Attributes

	User-Defined Components
	Types of Components
	Class Components
	Stepping through a React Class Component
	React.Component
	Importing React.Component
	The Class Header
	The Constructor Function
	Managing State in Class Components
	The Render Function
	Creating and Using Props

	Function Components
	What Are Function Components?
	How to Write Function Components
	Optimizations and Function Component Shortcuts
	Managing State in Function Components

	Differences between Function and Class Components

	React Component Children
	this.props.children
	Manipulating Children
	React.Children
	isValidElement
	cloneElement

	The Component Lifecycle
	Mounting
	constructor()
	static getDerivedStateFromProps
	render
	componentDidMount()

	Updating
	shouldComponentUpdate
	getSnapshotBeforeUpdate
	componentDidUpdate

	Unmounting
	componentWillUnmount

	Error Handling
	getDerivedStateFromError
	componentDidCatch

	Improving Performance and Avoiding Errors
	Avoiding Memory Leaks
	React.PureComponent
	React.memo
	React.StrictMode

	Rendering Components
	Rendering with ReactDOM
	Virtual DOM
	Other Rendering Engines
	React Native
	ReactDOMServer
	React Konsul
	react-pdf

	Component Terminology
	Summary

	Chapter 5 React DevTools
	Installation and Getting Started
	Inspecting Components
	Working with the Component Tree
	Searching for Components
	Using the Search Input Box
	Using Regular Expressions

	Filtering Components
	Selecting Components

	Editing Component Data in DevTools
	Working with Additional DevTools Functionality
	Profiling
	Summary

	Chapter 6 React Data Flow
	One-Way Data Flow
	Understanding One-Way Data Flow
	Why One-Way Data Flow?

	Props
	Components Receive Props
	Props Can Be Any Data Type
	Props Are Read-Only
	Validating Incoming Props with PropTypes
	What Is PropTypes?
	Getting Started with PropTypes
	What Can PropTypes Validate?

	Default Props

	React State
	What Is state?
	Initializing state
	Initializing state in Class Components
	Initializing State in Function Components

	The Difference between state and props
	Updating state
	Updating a Class Component’s state with setState
	Updating state with Function Components

	What to Put in State
	Building the Reminders App
	What Not to Put in State
	Where to Put State
	Lifting State Up
	About the key Prop
	Filtering the Reminders
	Implementing the isComplete Changing Functionality

	Converting to Class Components
	Summary

	Chapter 7 Events
	How Events Work in React
	What Is SyntheticEvent?
	Using Event Listener Attributes
	The Event Object
	Supported Events
	Event Handler Functions
	Writing Inline Event Handlers
	Writing Event Handlers in Function Components
	Writing Event Handlers in Class Components
	Binding Event Handler Functions
	Using bind
	Using Arrow Functions

	Passing Data to Event Handlers

	Summary

	Chapter 8 Forms
	Forms Have State
	Controlled Inputs vs. Uncontrolled Inputs
	Updating a Controlled Input
	Controlling an Input in a Function Component
	Controlling an Input in a Class Component

	Lifting Up Input State
	Using Uncontrolled Inputs
	Using Different Form Elements
	Controlling the Input Element
	Controlling a textarea
	Controlling a Select Element

	Preventing Default Actions
	Summary

	Chapter 9 Refs
	What Refs Are
	How to Create a Ref in a Class Component
	How to Create a Ref in a Function Component
	Using Refs
	Creating a Callback Ref
	When to Use Refs
	When Not to Use Refs
	Examples
	Managing Focus
	Automatically Selecting Text
	Controlling Media Playback
	Setting Scroll Position

	Summary

	Chapter 10 Styling React
	The Importance of Styles
	Importing CSS into the HTML File
	Using Plain Old CSS in Components
	Writing Inline Styles
	JavaScript Style Syntax
	Why to Use Inline Styles
	Why Not to Use Inline Styles
	Improving Inline Styles with Style Modules

	CSS Modules
	Naming CSS Module Files
	Advanced CSS Modules Functionality
	Global Classes
	Class Composition

	CSS-in-JS and Styled Components
	Summary

	Chapter 11 Introducing Hooks
	What Are Hooks?
	Why Were Hooks Introduced?
	Rules of Hooks
	The Built-in Hooks
	Managing State with useState
	Setting the Initial State
	Using the Setter Function
	Passing a Value to a Setter
	Passing a Function to a Setter
	Setter Function Value Comparison

	Hooking into the Lifecycle with useEffect
	Using the Default useEffect Behavior
	Cleaning Up After Effects
	Customizing useEffect
	Running Asynchronous Code with useEffect

	Subscribing to Global Data with useContext
	Combining Logic and State with useReducer
	Memoized Callbacks with useCallback
	Caching Computed Values with useMemo
	Solving Unnecessary Renders
	Solving Performance Problems

	Accessing Children Imperatively with useRef
	Customizing Exposed Values with useImperativeHandle
	Updating the DOM Synchronously with useLayoutEffect

	Writing Custom Hooks
	Labeling Custom Hooks with useDebugValue
	Finding and Using Custom Hooks
	use-http
	react-fetch-hook
	axios-hooks
	react-hook-form
	@rehooks/local-storage
	use-local-storage-state
	Other Fun Hooks
	Lists of Hooks

	Summary

	Chapter 12 Routing
	What Is Routing?
	How Routing Works in React
	Using React Router
	Installing and Importing react-router-dom
	The Router Component
	Selecting a Router
	Using the Router Component

	Linking to Routes
	Internal Linking with Link
	Internal Navigation with NavLink
	Automatic Linking with Redirect

	Creating Routes
	Restricting Path Matching
	Using URL Parameters
	The component Prop
	Render Props
	Switching Routes
	Rendering a Default Route
	Routing with Redirect

	Behind the Scenes: location, history, and match
	The history Object
	The location Object
	The match Object

	React Router Hooks
	useHistory
	useLocation
	useParams
	useRouteMatch

	Summary

	Chapter 13 Error Boundaries
	The Best Laid Plans
	What Is an Error Boundary?
	Implementing an Error Boundary
	Building Your Own ErrorBoundary Component
	getDerivedStateFromErrors Is a Static Method
	getDerivedStateFromErrors Runs During the Render Phase
	getDerivedStateFromErrors Receives the Error as a Parameter
	getDerivedStateFromErrors Should Return an Object for Updating State
	Testing Your Boundary
	Logging Errors with ComponentDidCatch()
	Using a Logging Service
	Resetting the State

	Installing a Pre-Built ErrorBoundary Component

	What Can’t an Error Boundary Catch?
	Catching Errors in Error Boundaries with try/catch
	Catching Errors in Event Handlers with react-error-boundary

	Summary

	Chapter 14 Deploying React
	What Is Deployment?
	Building an App
	Running the build Script
	Examining the build Directory
	The Built index.html
	The static Directory
	asset-manifest.json

	What’s in a Name?

	How Is a Deployed App Different?
	Development Mode vs. Production
	Putting It on the Web
	Web Server Hosting
	Node Hosting
	Deploying with Netlify
	Enabling Routing with Netlify
	Enabling Custom Domains and HTTPS

	Summary

	Chapter 15 Initialize a React Project from Scratch
	Building Your Own Toolchain
	Initializing Your Project
	The HTML Document
	The Main JavaScript File
	The Root Component
	Running in the Browser

	How Webpack Works
	Loaders
	Plugins

	Automating Your Build Process
	Making an HTML Template
	Development Server and Hot Reloading
	Testing Tools
	Installing and Configuring ESLint
	ESLint Configuration
	How to Fix Errors
	Testing with Jest

	Creating NPM Scripts

	Structuring Your Source Directory
	Grouping by File Type
	Grouping by Features

	Summary

	Chapter 16 Fetching and Caching Data
	Asynchronous Code: It’s All About Timing
	JavaScript Never Sleeps
	Where to Run Async Code in React
	Ways to Fetch
	Getting Data with Fetch
	Getting Data with Axios
	Using Web Storage
	Two Types of Web Storage
	When to Use Web Storage
	When Not to Use Web Storage
	Web Storage Is Synchronous
	Working with localStorage
	Storing Data with localStorage
	Reading Data from localStorage
	Removing Data from localStorage

	Summary

	Chapter 17 Context API
	What Is Prop Drilling?
	How Context API Solves the Problem
	Creating a Context
	Creating a Provider
	Consuming a Context
	Using Context in a Class Component
	Using Context in a Function Component

	Common Use Cases for Context
	When Not to Use Context
	Composition as an Alternative to Context
	Example App: User Preferences
	Summary

	Chapter 18 React Portals
	What Is a Portal?
	How to Make a Portal
	Why Not Just Render Multiple Component Trees?

	Common Use Cases
	Rendering and Interacting with a Modal Dialog
	Managing Keyboard Focus with Modals

	Summary

	Chapter 19 Accessibility in React
	Why Is Accessibility Important?
	Accessibility Basics
	Web Content Accessibility Guidelines (WCAG)
	Web Accessibility Initiative - Accessible Rich Internet Applications (WAI-ARIA)

	Implementing Accessibility in React Components
	ARIA Attributes in React
	Semantic HTML
	Form Accessibility
	Focus Control in React
	Skip Links
	Managing Focus Programmatically

	Media Queries in React
	Media Queries in Included CSS
	Using useMediaQuery

	Summary

	Chapter 20 Going Further
	Testing
	Mocha
	Enzyme
	Chai
	Assert
	Expect
	Should

	Karma
	Nightwatch.js

	Server-Side Rendering
	Flux
	Redux
	GraphQL
	Apollo
	React Native
	Next.js
	Gatsby

	People to Follow
	Useful Links and Resources
	Summary

	Index
	EULA

