FROM COGNITIVE MODELING
TO SOCIAL SIMULATION

http://www.cambridge.org/9780521839648

Cognition and Multi-Agent Interaction
From Cognitive Modeling to Social Simulation

This book explores the intersection between cognitive sciences and
social sciences. In particular, it explores the intersection between
individual cognitive modeling and modeling of multi-agent inter-
action. The two contributing fields — individual cognitive modeling
(especially cognitive architectures) and modeling of multi-agent inter-
action (including social simulation and, to some extent, multi-agent
systems) — have seen phenomenal growth in recent years. However,
the interaction of these two fields has not been sufficiently devel-
oped. The interaction of the two may be more significant than either
alone. They bring with them enormous intellectual capitals. These in-
tellectual capitals can be profitably leveraged in creating true synergy
between the two fields, leading to better understanding of both in-
dividual cognition and sociocultural processes. It is possible that an
integrative field of study in cognitive and social sciences is emerging
and we are laying the foundation for it.

Ron Sun is Professor of Cognitive Science at Rensselaer Polytechnic
Institute. A well-known researcher in cognitive science, Ron Sun leads
research projects investigating fundamental structures of the human
mind. In particular, he recently published Duality of the Mind, explor-
ing the interaction of implicit and explicit cognition. He is also the
founding co-editor-in-chief of the journal Cognitive Systems Research,
focusing on integrative cognitive research.

Cognition and Multi-Agent Interaction

From Cognitive Modeling to
Social Simulation

Edited by
RON SUN

Rensselaer Polytechnic Institute

CAMBRIDGE

UNIVERSITY PRESS

CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sdo Paulo
Cambridge University Press

The Edinburgh Building, Cambridge cB2 2ru, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org
Information on this title: www.cambridge.org/9780521839648

© Cambridge University Press 2006

This publication is in copyright. Subject to statutory exception and to the provision of
relevant collective licensing agreements, no reproduction of any part may take place
without the written permission of Cambridge University Press.

First published in print format 2005

ISBN-13 978-0-511-13712-9 eBook (NetLibrary)
ISBN-IO O-511-13712-5 eBook (NetLibrary)

ISBN-13 978-0-521-83964-8 hardback
ISBN-10 0-521-83964-5 hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs
Y Y Y

for external or third-party internet websites referred to in this publication, and does not

guarantee that any content on such websites is, or will remain, accurate or appropriate.

http://www.cambridge.org
http://www.cambridge.org/9780521839648

Contents

List of Contributors page vii
Preface xi

PART1 INTRODUCTION

1 Prolegomena to Integrating Cognitive Modeling and
Social Simulation 3
Ron Sun

PART2 OVERVIEWS OF COGNITIVE ARCHITECTURES

2 Modeling Paradigms in ACT-R 29
Niels Taatgen, Christian Lebiere, and John Anderson

3 Considering Soar as an Agent Architecture 53
Robert E. Wray and Randolph M. Jones

4 The CLARION Cognitive Architecture: Extending Cognitive
Modeling to Social Simulation 79
Ron Sun

PART3 MODELING AND SIMULATING COGNITIVE AND
SOCIAL PROCESSES

5 Cognitive Architectures, Game Playing, and Human

Evolution 103
Robert L. West, Christian Lebiere, and Dan]. Bothell
6 Simulating a Simple Case of Organizational Decision Making 124

Isaac Naveh and Ron Sun

7 Cognitive Modeling of Social Behaviors 151
William]. Clancey, Maarten Sierhuis, Bruce Damer, and Boris
Brodsky

Vi

10

11

12

13

14

Contents

Cognitive Agents Interacting in Real and Virtual Worlds
Bradley |. Best and Christian Lebiere

Modeling Social Emotions and Social Attributions
Jonathan Gratch, Wenji Mao, and Stacy Marsella

Communicating and Collaborating with Robotic Agents

J. Gregory Trafton, Alan C. Schultz, Nicholas L. Cassimatis, Laura M.
Hiatt, Dennis Perzanowski, Derek P. Brock, Magdalena D. Bugajska,
and William Adams

Behavior-Based Methods for Modeling and Structuring
Control of Social Robots
Dylan A. Shell and Maja]. Matari¢

Evolution of a Teamwork Model
Nathan Schurr, Steven Okamoto, Rajiv T. Maheswaran, Paul Scerri,
and Milind Tambe

Sociality in Embodied Neural Agents
Domenico Parisi and Stefano Nolfi

Cognitive Architecture and Contents for Social Structures
and Interactions
Cristiano Castelfranchi

PART4 A SYMPOSIUM

15

16

17

18

19

Cognitive Science and Good Social Science
Scott Moss

Collective Cognition and Emergence in Multi-Agent
Systems
Pietro Panzarasa and Nicholas R. Jennings

Social Judgment in Multi-Agent Systems
Tom R. Burns and Ewa Roszkowska

Including Human Variability in a Cognitive Architecture to
Improve Team Simulation

Frank E. Ritter and Emma Norling

When Does Social Simulation Need Cognitive Models?

Nigel Gilbert

Index

186

219

252

328

355

401

409

417

428

433

Contributors

William Adams

Naval Research Laboratory,
Code 5515

Washington, DC 20375-5337

adams@aic.nrl.navy.mil

John Anderson
Department of Psychology
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213
ja@cmu.edu
http://act.psy.cmu.edu/

Brad Best

Micro Analysis and Design
6800 Thomas Blvd
Pittsburgh, PA 15208
bbest@mmad.com.

Dan J. Bothell

Department of Psychology
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213
db30@andrew.cmu.edu

Derek P. Brock

Naval Research Laboratory,
Code 5513

Washington, DC 20375-5337

brock@itd.nrl.navy.mil

Boris Brodsky

Booz Allen Hamilton Inc
8283 Greensboro Drive
McLean, VA 22102
brodsky_boris@bah.com

Magdalena D. Bugajska

Naval Research Laboratory,
Code 5515

Washington, DC 20375-5337

magda@aic.nrl.navy.mil

Tom R. Burns
Department of Sociology
University of Uppsala
Box 624, 75126

Uppsala, Sweden
tom.burns@soc.uu.se

Nicholas L. Cassimatis
Department of Cognitive Science
Rensselaer Polytechnic Institute
Troy, NY 12180

cassin@rpi.edu

Cristiano Castelfranchi

Department of Communication
Sciences

University of Siena

Siena, Italy

cristian.castelfranchi@istc.cnr.it

vii

viii

William J. Clancey

NASA Ames Research Center
and Institute for Human and
Machine Cognition at UWF

Computational Sciences Division,
MS 269-3

Moffett Field, CA 94028

william j.clancey@nasa.gov

http: //bill.clancey.name

Bruce Damer

DigitalSpace Corporation

343 Soquel Avenue, Suite 70
Santa Cruz, CA 95062
damer@digitalspace.com
http: //www.digitalspace.com

Nigel Gilbert

School of Human Sciences

University of Surrey

Surrey, GU2 7XH, UK

n.gilbert@soc.surrey.ac.uk

http: //www.soc.surrey.ac.uk/
nigel_gilbert.htm

Jonathan Gratch

University of Southern California
13274 Fiji Way

Marina del Rey, CA 90292
gratch@ict.usc.edu

http: //www.ict.usc.edu/~gratch

Laura M. Hiatt

Naval Research Laboratory,
Code 5515

Washington, DC 20375-5337

hiatt@aic.nrl.navy.mil

Nicholas R. Jennings
School of Electronics and
Computer Science
University of Southampton
Southampton SO17 1BJ, UK
nrj@ecs.soton.ac.uk

Contributors

Randolph M. Jones

Colby College & Soar Technology
5857 Mayflower Hill

Waterville, ME 04901-8858
rjones@soartech.com

Christian Lebiere

Micro Analysis and Design
6800 Thomas Blvd
Pittsburgh, PA 15208
clebiere@maad.com

http: //www.maad.com

Rajiv T. Maheswaran

Department of Computer Science
University of Southern California
3737 Watt Way

Los Angeles, CA 90089-0273
maheswar@usc.edu
http://pollux.usc.edu/~maheswar

Wenji Mao

University of Southern California
13274 Fiji Way

Marina del Rey, CA 90292
mao@ict.usc.edu

Stacy Marsella

University of Southern California
13274 Fiji Way

Marina del Rey, CA 90292
marsella@isi.edu

http: //www.isi.edu/~marsella

Maja J Matarié¢

Computer Science Department
University of Southern California
941 West 37th Place, SAL 300

Los Angeles, California
mataric@usc.edu
http://robotics.usc.edu/~maja

Contributors

Scott Moss

Centre for Policy Modelling

Manchester Metropolitan
University

Manchester M1 3GH, UK

s.moss@mmu.ac.uk

http: // cfpm.org/~scott

Isaac Naveh
Department of Computer

Science
University of Missouri-Columbia
Columbia, MO 65211
yizchaknaveh@yahoo.com

Stefano Nolfi

Institute of Cognitive Sciences and
Technologies

National Research Council

Viale Marx 15, 00137

Roma, Italy

s.nolfi@istc.cnr.it

http: // gral.ip.rm.cnr.it/nolfi

Emma Norling

Department of Computer Science
and Software Engineering

The University of Melbourne

Victoria 3010, Australia

norling@acm.org

http: //www.cs.mu.oz.au/~ejn

Steven Okamoto

Department of Computer Science
University of Southern California
3737 Watt Way

Los Angeles, CA 90089-0273
stevenokamoto@yahoo.com

Pietro Panzarasa

Centre for Business Management

Queen Mary College, University of
London

Mile End Road

London, E1 4NS, UK

p-panzarasa@qmul.ac.uk

ix

Domenico Parisi

Institute of Cognitive Sciences
and Technologies

National Research Council

Viale Marx 15, 00137

Roma, Italy

d.parsi@istc.cnr.it

http: // gral.ip.rm.cnr.it/dparisi/

Dennis Perzanowski
Naval Research Laboratory
Washington, DC 20375-5337
dennisp@aic.nrl.navy.mil

Frank E. Ritter
School of Information Sciences

and Technology
The Pennsylvannia State University
University Park, PA 16802
frank.ritter@psu.edu
http: //www.frankritter.com

Ewa Roszkowska

Faculty of Economics
University of Bialystok
Warszawska 63, 15-062
Bialystok, Poland
erosz@w?3cache.uwb.edu.pl

Paul Scerri

Robotics Institute

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213
pscerri@cs.cmu.edu

http: //www.cs.cmu.edu/~pscerri

Alan C. Schultz

Naval Research Laboratory,
Code 5515

Washington, DC 20375-5337

schultz@aic.nrl.navy.mil

X

Nathan Schurr

Department of Computer Science
University of Southern California
3737 Watt Way

Los Angeles, CA 90089-0273
schurr@Qusc.edu

http: //teamcore.usc.edu/schurr

Dylan A. Shell

Computer Science Department
University of Southern California
941 West 37th Place, SAL 300

Los Angeles, California
shell@usc.edu

http: // robotics.usc.edu/~dshell

Maarten Sierhuis

NASA Ames Research Center,
MS 269-1

Moffett Field, CA 94028

msierhuis@mail.arc.nasa.gov

http: //home.comcast.net/
~msierhuis

Ron Sun

Department of Cognitive Science
Rensselaer Polytechnic Institute
Troy, NY 12180

rsun@rpi.edu

http: // www.cogsci.rpi.edu/~rsun

Niels Taatgen

Department of Psychology
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213
taatgen@cmu.edu

http: //www.ai.rug.nl/~niels

Contributors

Milind Tambe

Department of Computer Science
University of Southern California
3737 Watt Way

Los Angeles, CA 90089-0273
tambe@usc.edu

http: //teamcore.usc.edu/tambe

J. Gregory Trafton

Naval Research Laboratory,
Code 5515

Washington, DC 20375-5337

trafton@itd.nrl.navy.mil

http: //www.aic.nrl.navy.mil/
~trafton/trafton.html

Robert L. West

Department of Psychology and
Institute of Cognitive Science

Carleton University

Ottawa, Ontario, Canada

robert_west@carleton.ca

http: //www.carleton.ca/~rlwest/

Robert E. Wray

Soar Technology

3600 Green Court, Suite 600
Ann Arbor, MI 48105
wray@soartech.com

http: //www.soartech.com

Preface

This book explores the intersection between the cognitive sciences and the
social sciences. More specifically, it explores the intersection between indi-
vidual cognitive modeling and modeling of multi-agent interaction. The
two contributing fields — computational cognitive modeling (especially
cognitive architectures) and modeling of multi-agent interaction (includ-
ing social simulation and, to some extent, multi-agent systems) — have seen
phenomenal growth in recent years. Both have been seen as breakthrough
developments. However, the interaction of these two fields has not been
sufficiently developed. We believe that the interaction of the two may be
more significant than either alone. They bring with them enormous intel-
lectual capitals. These intellectual capitals can be profitably leveraged in
creating true synergy between the two fields, leading to more in-depth
studies of both individual cognition and sociocultural processes. It is pos-
sible that an integrative field of study in cognitive and social sciences may
be emerging.

This book is intended for researchers and students in cognitive, behav-
ioral, and social sciences. It may also be read by interested laypersons and
people whose primary scholarly interests are elsewhere — they can profit
from general introductions to cognitive modeling (especially cognitive ar-
chitectures) and examples of social simulations. The intellectual issues ex-
plored in the book are broad and significant, and thus the book may appeal
to a sizable audience in philosophy, psychology, sociology, anthropology,
education, economics, neuroscience, artificial intelligence, and so on. As
these issues are central to the understanding of the human mind and hu-
man society, the book may prove to be of lasting theoretical and practical
relevance.

We believe that investigation and simulation of social phenomena need
cognitive science, because such endeavors need a better understanding,
and better models, of individual cognition, which can provide a foun-
dation for understanding social interaction. Conversely, cognitive science

Xi

xii Preface

also needs multi-agent systems, social simulation, and social sciences in
general. Cognitive science is very much in need of new theoretical frame-
works and new conceptual tools, especially for analyzing sociocultural
aspects of cognition and cognitive processes involved in multi-agent in-
teraction. Thus, there needs to be an integration (to some extent) of these
two strands. In response to such a need, the present volume addresses the
integration of the studies of the social and the cognitive.

This volume brings together cognitive scientists, social scientists, as well
as Al researchers, with a wide range of background and expertise, to ad-
dress the dual issue of understanding social processes through model-
ing individual cognition (especially through employing cognitive archi-
tectures) and understanding and modeling individual cognition through
taking account of social processes. These two issues are of broad impor-
tance, especially in understanding the relationship between cognitive and
social processes.

This volume consists of four parts. Part 1 contains one introductory
chapter. Part 2 includes three chapters. They review some of the best cog-
nitive architectures in existence, which form the basis of modeling indi-
vidual cognition and may be extended for addressing collective processes.
Part 3 develops models of cognition and social interaction using cognitive
architectures as well as other approaches. Those models shed light on the
relationship between cognitive modeling and multi-agent social simula-
tion, as well as their synergy. To provide a better understanding of these
models and approaches, Part 4 presents theoretical positions, arguments,
and issues concerning various possibilities in integrating cognitive mod-
eling and social simulation.

These chapters, written by leading researchers in various disciplines,
provide provocative new insights into relevant issues, as well as solid re-
search results pertinent to these issues.

I would like to thank all contributing authors. Many of them not only
contributed chapters, but also participated in mutual reviews of drafts,
thus helping to ensure the quality of this book.

Note that this volume is, in many ways, an outgrowth of the workshop
on cognitive modeling of agents and multi-agent interaction, chaired by
Ron Sun, held in Acapulco, Mexico, in the summer of 2003.! In this regard,
I'would like to thank members of the program committee of the workshop:
Christian Lebiere, Cristiano Castelfranchi, Jan Treur, and Robert West, for
their help in organizing the event. Thanks are also due to Greg Trafton,
Catholijn Jonker, Pietro Panzarasa, Jonathan Gratch, Bill Clancey, Frank
Ritter, Robert West, Joseph Giampapa, and a few others for their help in
reviewing papers.

! Por further information about this workshop, see the Web page at: http: / www.cogsci.
rpi.edu/~rsun/wsp03.html

Preface xiii

I would like to thank Cambridge University Press for taking on this
project. In particular, I would like to thank Phil Laughlin of Cambridge
University Press for being such a helpful editor throughout the long process
of putting together this book.

Ron Sun
Troy, New York

PART 1

INTRODUCTION

Prolegomena to Integrating Cognitive Modeling and
Social Simulation

Ron Sun

1 INTRODUCTION

A multi-agent system (i.e., a society of agents) is a community of au-
tonomous entities each of which perceives, decides, and acts on its own,
in accordance with its own interest, but may also cooperate with others to
achieve common goals and objectives. How to achieve meaningful coordi-
nation among agents in general, however, is a difficult issue and, to a very
large extent, a mystery thus far (despite the fact that it has been extensively
tackled).

Over the years, the notions of agent and agency have occupied a ma-
jor role in defining research in social and behavioral sciences, includ-
ing sociology, philosophy, economics, psychology, and many other fields.
The notion of agent has also invaded computer science and engineer-
ing (in Internet computing and in robotics research in particular). Com-
putational models of agents have been developed in both artificial in-
telligence and cognitive science. In Al, they appear under the rubric
of “intelligent agents.” In cognitive science, they are often known as
“cognitive architectures,” that is, the essential structure and process of
a (broadly-scoped) domain-generic computational cognitive model. They
are often used for broad, cross-domain analysis of cognition and behav-
ior (Newell, 1990; Sun, 2002). Together, these strands of research pro-
vide useful paradigms for addressing some fundamental questions con-
cerning human nature (Newell, 1990; Anderson & Lebiere, 1998; Sun,
2002).

In particular, although traditionally the main focus of research in cogni-
tive science has been on specific components of cognition (e.g., perception,
memory, learning, or language), relatively recent developments in compu-
tational modeling through cognitive architectures provide new avenues
for precisely specifying a range of complex cognitive processes together in

4 Ron Sun

tangible ways.! Computational cognitive modeling, especially with cog-
nitive architectures, has become an essential area of research on cognition
(Anderson & Lebiere, 1998; Sun, 2004). Computational cognitive modeling
has been gradually integrated into larger communities of social and be-
havioral sciences (Schunn & Gray, 2002). A particularly important aspect
of this integration is that by now, mainstream experimental and theoreti-
cal psychology journals have started publishing computational modeling
papers. This fact reflects the growing interest in computational cognitive
modeling and cognitive architectures on the part of traditional psycho-
logical communities. Likewise, significant applications of computational
cognitive models have found their way into some significant application
domains (Pew & Mavor, 1998; Ritter et al., 2003). Such developments, how-
ever, need to be extended to issues of multi-agent interaction. There have
been some promising initial developments in this regard (see, for exam-
ple, a number of recent papers in this area in the journal Cognitive Systems
Research).

Against this background, the present volume brings together cognitive
scientists, social scientists, as well as Al researchers, with a wide range of
background and expertise, to discuss issues in understanding the relation
between cognition and social processes, through exploring the relation be-
tween computational cognitive modeling and social simulation (Axelrod,
1984; Gilbert & Doran, 1994; Gilbert & Conte, 1995; Epstein & Axtell, 1996;
Conte et al., 1997; Moss & Davidsson, 2001; etc.). The questions that are of
particular interest in this endeavor include:

* How do we extend computational cognitive modeling to multi-agent
interaction (i.e., to social simulation)?

e What should a proper computational cognitive model for addressing
multi-agent interaction be like?

» What are essential cognitive features that should be taken into consid-
eration in computational simulation models of multi-agent interaction?

* What additional representations (for example, “motive,” “obligation,”
or “norm”) are needed in cognitive modeling of multi-agent interaction?

¢ What are the appropriate characteristics of cognitive architectures for
modeling both individual cognitive agents and multi-agent interaction?

1 A cognitive architecture provides a concrete framework for more detailed modeling of cog-
nitive phenomena, through specifying essential structures, divisions of modules, relations
among modules, and a variety of other essential aspects (Sun, 1999). It helps to narrow
down possibilities, provides scaffolding structures, and embodies fundamental theoreti-
cal assumptions. The value of cognitive architectures has been argued many times before;
see, for example, Newell (1990), Anderson and Lebiere (1998), Sun (2002), Sun (2004), and
SO on.

Prolegomena to Integrating Cognitive Modeling and Social Simulation 5

And on the other hand,

* How do we measure cognitive realism of multi-agent (social simulation)
models?

* What can cognitive realism contribute to the understanding of social
processes?

* How should we understand the relation between individual cognition
and collective social phenomena in general?

* What are the fundamental ways of understanding and modeling multi-
agent interaction? How much can they be reduced to individual cogni-
tion?

* How should we characterize the “collective mind”?

* How important is culture in shaping individual cognition and collective
behavior? How can we model the effect of culture on cognition and
behavior?

¢ How can we best characterize and model social relations, structures,
and organizations in relation to cognition?

* How important is evolution in shaping individual cognition and collec-
tive social phenomena? How can we model that aspect?

So on and so forth. These issues are just a few particularly important ones
among many others important issues.

It should be noted that here we use the term “cognition” in the broadest
sense, including, but not limited to, thinking, reasoning, planning, problem
solving, learning, skills, perception, motor control, as well as motivation
and emotion. That is, we use it to denote everything going on in the mind.

It should also be noted that the study of multi-agent interaction (e.g.,
in Al and in economics) raised some specific issues. These issues include
how to develop coordination strategies (that enable groups of agents effec-
tively to solve problems together), negotiation mechanisms, conflict detec-
tion and resolution strategies, and other mechanisms whereby agents can
contribute to overall system effectiveness whereas still assuming a large
degree of autonomy. Relatedly, issues concerning how organizations of
agents (including teams) can be formed, structured, and utilized have also
beenraised. They are very relevant to addressing the questions enumerated
earlier.

2 BACKGROUND

Two approaches dominate traditional social sciences. The first approach
may be termed the “deductive” approach (Axelrod, 1997; Moss, 1999), ex-
emplified by much research in classical economics. It proceeds with the
construction of mathematical models of social phenomena, usually ex-
pressed as a set of closed-form mathematical equations. Such models may

6 Ron Sun

be simple and elegant. Their predictive power derives from the analysis
of various states (equilibria) through applying the equations. Deduction is
used to find consequences of assumptions in order to help achieve better
understanding of relevant phenomena.

The second approach may be termed the “inductive” approach, exempli-
fied by many traditional approaches to sociology. With such an approach,
insights are obtained by generating generalizations from (hopefully a large
number of) observations. Insights are usually qualitative in nature and de-
scribe social phenomena in terms of general categories and characteriza-
tions of these general categories.

However, a new approach has emerged relatively recently. It involves
computer simulations of social phenomena.? It starts with a set of explicit
assumptions. But unlike deduction, it does not prove theorems. Instead,
simulations lead to data that can be analyzed inductively to come up with
interesting generalizations. However, unlike typical induction in empiri-
cal social sciences, simulation data come from pre-specified rules, not from
direct measurements of social phenomena. With simulation data, both in-
ductive and deductive methods may be applied: Induction can be used to
find patterns in data, and deduction can be used to find consequences of
assumptions (that is, rules specified for simulations). Thus, simulations are
useful for developing theories, in both directions and in their combinations
thereof (Axelrod, 1997; Moss, 1999).

Among this third approach, a particularly interesting development is
the focus on agent-based social simulations, that is, simulations based on
autonomous individual entities, as defined earlier. Naturally, such simula-
tions focus on the interaction among agents. From their interactions, com-
plex patterns may emerge. Thus, the interactions among agents provide
explanations for corresponding social phenomena (Gilbert, 1995). Agent-
based social simulation has seen tremendous growth in the recent decade.
Researchers frustrated with the limitations of traditional approaches to the
social sciences have increasingly turned to “agents” for studying a diverse
set of theoretical and practical issues.

Despite their stated goals, however, most of the work in social simulation
still assumes very rudimentary cognition on the part of agents. Whereas
often characterizing agents as “intelligent” actors, there have been rela-
tively few serious attempts to emulate human cognition (Thagard, 1992).
Agent models have frequently been custom-tailored to the task at hand, of-
ten amounting to little more than a restricted set of highly domain-specific
rules. Although this approach may be adequate for achieving some lim-
ited objectives of some simulations, it is overall unsatisfactory. It not only
limits the realism, and hence applicability of social simulations, but also

2 It has sometimes been referred to as a “third way” of doing science, as contrary to the two
traditional approaches (Axelrod, 1997; Moss, 1999).

Prolegomena to Integrating Cognitive Modeling and Social Simulation 7

precludes any possibility of resolving the theoretical question of the micro—
macro link (to be discussed later). At the same time, researchers in cognitive
science, although studying individual cognition in depth, have paid rela-
tively little attention to social phenomena (with some notable exceptions
of course). The separation of the two fields can be seen (1) in the different
journals dedicated to the two different fields (e.g., Journal of Artificial Society
and Social Simulation, Emergence, and Computational and Mathematical Orga-
nization Theory for social simulations, versus Cognitive Science, Cognitive
Systems Research, and Cognitive Science Quarterly for cognitive modeling),
(2) in the different conferences for these two different fields (e.g., the Inter-
national Conferences on Social Simulation versus the International Conference
on Cognitive Modeling), (3) in the different professional organizations (e.g.,
the North American Association for Computational Social and Organizational
Science and the European Social Simulation Association versus the Cognitive
Science Society), as well as (4) in the scant overlap of authors in these two
fields. Moreover, most of the commonly available social simulation tools
(e.g., Swarm and RePast) embody very simplistic agent models, not even
remotely comparable to what has been developed within the field of cog-
nitive architectures (Anderson & Lebiere, 1998; Sun, 2002).

We believe that investigation, modeling, and simulation of social phe-
nomena (whether using multi-agent systems or not) needs cognitive
science (Sun, 2001a,b), because we have reasons to believe that such en-
deavors need a better understanding, and better models, of individual
cognition, only on the basis of which it can develop better models of ag-
gregate processes through multi-agent interaction. Cognitive models may
provide better grounding for understanding multi-agent interaction, by
incorporating realistic constraints, capabilities, and tendencies of individ-
ual agents in terms of their cognitive processes (and also in terms of their
physical embodiment) in their interaction with their environments (both
physical and social environments). This point was argued at length in Sun
(2001b). This point has also been made, for example, in the context of cogni-
tive realism of game theory (Kahan & Rapaport, 1984; Camerer, 1997), or in
the context of deeper models for addressing human—computer interaction
(Gray & Altmann, 2001).

Conversely, cognitive science also needs multi-agent systems, social sim-
ulation, and social sciences in general. Cognitive science is in need of new
theoretical frameworks and new conceptual tools, especially for analyz-
ing sociocultural aspects of cognition and cognitive processes involved in
multi-agent interaction. It needs computational models and theories from
multi-agent work in Al, and also broader conceptual frameworks that can
be found in sociological and anthropological work (as well as in social
psychology to some extent). In particular, computational cognitive mod-
eling, as a field, can be enriched through the integration of these disparate
strands of ideas.

8 Ron Sun

This present volume is concerned exactly with such integration of the
studies of the social and the cognitive. The underlying goal of what we are
collectively doing here is evident: What we are working towards is not just
a slightly better social simulation, or a more “believable” multi-agent sys-
tem. Much beyond these, what we are actually working towards, whether
we acknowledge it or not, is cognitive social science (or “cognitivized” so-
cial science) — a social science that bases its methodology and theory on
the in-depth study of the human mind. The study of the human mind is
the essential ingredient of any social science and, one may argue, should
be the basis of such science (although we clearly realize that there are op-
posing views on this issue, which may be well entrenched). Going even
beyond that, we are actually working towards computational cognitive so-
cial science — with computational approaches being adopted as the primary
means (Prietula et al., 1998; Sun, 2001b).

3 ONE HIERARCHY AND MANY LEVELS

As alluded to before, one striking feature, apparent upon examining the
state of the art in social and cognitive sciences, is the lack of integration and
communication among disciplines. Each discipline considers a particular
aspect and ignores the rest (more or less). Each is substantially divorced
from other, related disciplines. Generally, they do not work together. Con-
sequently, they often talk past each other, instead of to each other.

Here, instead, let us take a broader perspective and look at multiple
“levels” of analysis in social and cognitive sciences. These levels of analysis
canbe easily cast as a set of related disciplines, from the most macroscopic to
the most microscopic. These different levels include: the sociological level,
the psychological level, the componential level, and the physiological level
(see Table 1.1). In other words, as has been argued in Sun et al. (2004),
we may view different disciplines as different levels of abstraction in the
process of exploring essentially the same broad set of questions (cf. Newell,
1990).

TABLE 1.1. A Hierarchy of Four Levels.

Level Object of Analysis Type of Analysis Model

1 inter-agent/collective social/cultural collections of agent models
processes
2 agents psychological individual agent models
3 intra-agent processes componential modular construction of
agent models
4 substrates physiological biological realization of

modules

Prolegomena to Integrating Cognitive Modeling and Social Simulation 9

First of all, there is the sociological level, which includes collective
behaviors of agents (Durkheim, 1895), interagent processes (Vygotsky,
1986), sociocultural processes, social structures and organizations, as well
as interactions between agents and their (physical and sociocultural)
environments.

Although studied extensively by sociology, anthropology, political sci-
ence, and economics, this level has traditionally been very much ignored in
cognitive science. Only recently, cognitive science, as a whole, has come to
grips with the fact that cognition is, at least in part, a sociocultural process
(Lave, 1988; Hutchins, 1995). To ignore sociocultural processes is to ignore
amajor underlying determinant of individual cognition. The lack of under-
standing of sociological processes may result in the lack of understanding
of some major structures in, and constraints on, cognition.?

The next level is the psychological level, which covers individual expe-
riences, individual behaviors, individual performance, as well as beliefs,
concepts, and skills employed by individual agents. In relation to the so-
ciological level, the relationship of individual beliefs, concepts, and skills
with those of the society and the culture, and the processes of change of
these beliefs, concepts, and skills, independent of or in relation to those of
the society and the culture, may be investigated (in inter-related and mu-
tually influential ways). At this level, we may examine human behavioral
data, compared with models and with insights from the sociological level
and details from the lower levels.

The third level is the componential level. At this level, we study and
model cognitive agents in terms of components, with the theoretical lan-
guage of a particular paradigm, for example, symbolic computation or
connectionist networks, or their combinations thereof. At this level, we
may specify computationally an overall architecture and the components
therein. We may also specify some essential computational processes of
each component as well as essential connections among components. Ideas
and data from the psychological level, that is, the psychological constraints
from above, which bear significantly on the division of components and
their possible implementations, are among the most important consider-
ations. This level may also incorporate biological /physiological facts re-
garding plausible divisions and their implementations; that is, it can incor-
porateideas from the nextlevel down —the physiological level, which offers
the biological constraints. This level results in mechanisms, though they are
computational and thus somewhat abstract compared with physiological-
level details. The importance of this level has been argued for, for example,
in Sun et al. (2004) and Gray and Altmann (2001).

3 See Sun (2001b) for a more detailed argument for the relevance of sociocultural processes
to cognition and vice versa.

10 Ron Sun

Although this level is essentially in terms of intra-agent processes, com-
putational models developed therein may be used to capture processes at
higher levels, including interaction at a sociological level whereby multi-
ple individuals are involved. This can be accomplished, for example, by
examining interactions of multiple copies of individual agent models or
those of different individual agent models. We may use computation as a
means for constructing agent models at a sub-agent level (the componen-
tial level), but we may go up from there to the psychological level and to
the sociological level (see more discussions of mixing levels later on).

The lowest level of analysis is the physiological level, that is, the bio-
logical substrate, or the biological implementation, of computation. This
level is the focus of a range of disciplines including biology, physiology,
computational neuroscience, cognitive neuroscience, and so on. Although
biological substrates are not our main concern here, they may nevertheless
provide useful input as to what kind of computation is likely employed
and what a plausible architecture (at a higher level) should be like (Piaget,
1971). The main utility of this level is to facilitate analysis at higher levels,
that is, analysis using low-level information to narrow down choices in
selecting computational architectures as well as choices in implementing
componential computation.

Work at this level is basically the reverse-engineering of biological sys-
tems. In such a case, what we need to do is to pinpoint the most basic prim-
itives that are of relevance to the higher-level functioning that we are in-
terested in. Although many low-level details are highly significant, clearly
not all low-level details are significant or even relevant. After identifying
proper primitives, we may study processes that involve those primitives,
in mechanistic/computational terms.

To more clearly illustrate this view of cascading levels, Figure 1.1 shows
the correspondences among levels, with a cascade of maps of various res-
olutions.

4 CROSSING AND MIXING LEVELS

Although analysis in modeling and simulation is often limited to within a
particular level at a time (inter-agent, agent, intra-agent, or substrate), this
need not be the case: Cross-level analysis and modeling could be intellec-
tually enlightening, and might even be essential to the progress of science
(Sun et al., 2004). These levels proposed earlier do interact with each other
(e.g., constraining each other) and may not be easily isolated and tackled
alone. Moreover, their respective territories are often intermingled, without
clear-cut boundaries.

For example, the cross-level link between the psychological and the neu-
rophysiological level has been strongly emphasized in recent years (in the
form of cognitive neuroscience; see, for example, LeDoux, 1992; Damasio,

Prolegomena to Integrating Cognitive Modeling and Social Simulation 11

AT Y
= | S~—
el
7
e

A

FIGURE 1.1. The cascading levels of analysis.

1994; Milner & Goodale, 1995). For another example, the psychological
and the social level may also be crossed (and may even be integrated) in
many ways, in order to generate new insights into social phenomena on
the basis of cognitive processes (Boyer & Ramble, 2001) and, conversely, to
generate insights into cognitive phenomena on the basis of sociocultural
processes (Hutchins, 1995; Nisbett et al., 2001). In particular, in the field of
cognitive work analysis, in order to facilitate the design of physical work
environments and group structures that improve work performance, work
activities are analyzed in terms of the cognitive processes involved (such
as memory requirement, visual perception, etc.) to shed light on possible
areas of improvement. In all of these cases, the ability to shift freely be-
tween levels, or to understand the mapping between levels, is a critical
part of scientific work.

Note that when crossing levels, there is no fixed path, from either the
highest level to the lowest level, or vice versa. Instead, analysis at multiple
levels can, and should, be pursued simultaneously and be used to constrain
and to guide each other.

Beyond cross-level analysis, there may be “mixed-level” analysis (Sun
et al., 2004). The idea of mixed-level analysis may be illustrated by the
research at the boundaries of quantum mechanics. In deriving theories,

12 Ron Sun

physicists often start working in a purely classical language that ignores
quantum probabilities, wave functions, and so forth, and subsequently
overlay quantum concepts upon a classical framework (Greene, 1999).
The very same idea applies to cognitive modeling and social simulation
(Coward & Sun, 2004). One may start with purely social descriptions but
then substitute cognitive principles and cognitive processing details for
simpler descriptions of agents. Thus, the differences and the separations
among levels should be viewed as rather fluid. The separations should not
be pursued dogmatically.

Another scenario of mixing levels is as follows, again using an example
from the physical sciences (Coward & Sun, 2004). In physics, the objects
and the causal relationships among the objects at higher levels of abstrac-
tion may be defined as combinations of more detailed objects and more
detailed causal relationships at a lower level. In the ideal case, the causal
relationships among objects at higher levels can be specified with 100%
accuracy without reference to the internal structure of those objects as
defined at more detailed levels. However, in practice, this ideal is often
not achieved fully, and the simpler causal relationships at a higher level
sometimes generate predictions that are less consistent with observations
than those generated at a more detailed level. A model must therefore
have associated specifications that indicate the conditions under which a
more detailed model must supersede the higher-level model, or in other
words, when the generally negligible effects of the internal structure of
higher-level objects must be taken into account. Therefore, again, it must
be possible to mix models of adjacent levels.

Whereas normal theories begin with the specification of units of analysis
within a specificlevel, theories that cross and / or mix levels subdivide such
units and therefore delve into deeper explorations. In relation to the focus
of the present volume, we believe that crossing levels and mixing levels
constitute the foundation of the integration of cognitive modeling and
social simulation, as will be explicated in more detail later.

5 A GOLDEN TRIANGLE

Within this framework of a hierarchy of levels, let us take a (relatively) low-
level view first and look specifically into the question of how cognition fits
into this framework.

In analogy with a triad of cognition—task—artifact as often talked about
in the study of human-computer interaction (Gray & Altmann, 2001),
we may examine a much broader and more general triad of thinking—
motivation—structure.? First of all, low-level motivations, such as biological

4 Here, the term “thinking” is used in a broader sense, denoting reasoning, planning, skills,
memory, and so on, equivalent to “cognition” in a narrower sense as commonly used in the
literature and as in the original cognition-task-artifact triad.

Prolegomena to Integrating Cognitive Modeling and Social Simulation 13

needs, arise naturally, and they occur clearly prior to thinking (reasoning,
planning, and so on). Such needs are the most basic and most important
motivators of action and the fundamental underlying themes of everyday
activities.

Needs can be fulfilled only in a physical and sociocultural environment.
The environment may or may not be hospitable to the needs of an agent.
Therefore, effort is often required of an agent to fulfill even the most basic
needs. Evolutionarily speaking, it seems evident that thinking (cognition)
is there mostly to serve the purpose of fulfilling the needs of agents. That
is, thinking (cognition) is evolved mostly to find ways of satisfying such
needs (and their derived goals). It involves embodied reactions on the
one end and deliberative conceptual thinking on the other. Both normally
operate in an existentially pertinent manner. Thinking (cognition) must be
teleologically consistent with an agent’s innate needs and other motivators.
The consistency between the teleological function of thinking (cognition)
and the teleological function of innate needs and other motivators may
result from the evolutionary process that created both. In turn, both are
there to serve the purpose of “competing” in natural selection.

To satisfy needs, one has to deal with environments (including one’s
own embodiment) and their regularities and structures, and to exploit such
regularities and structures in the process, on an individual or a collective
basis. In a sense, thinking (cognition) bridges the needs of an agent and
the environments, physical or social, in which the agent finds itself.

In the reverse direction, existent structures of environments shape the
thinking (cognition) of an agent in many ways, and may even indirectly
shape the needs, desires, and other motivators of an agent. First of all, an
agent has to deal with social and physical environments. Hence, its thinking
is structured and constrained by its environments (Brooks, 1991; Bickhard,
1993; Andersen & Chen, 2002). Second, the structures and regularities of
an environment may be internalized by agents, in the effort to exploit such
structures and regularities to facilitate the attainment of needs. Third, an
environment itself may be utilized as part of the thinking (cognition) of
an agent (Hutchins, 1995; Brooks, 1991), and therefore it may be heavily
reflected in the cognitive process of an agent.

Although in the past there have been calls for cognitive scientists to
ignore external aspects in studying cognition (e.g., Fodor, 1980), the idea
that cognition is, to a large extent, social is not a new one. Hutchins (1995)
has been developing this idea through anthropological field work. Carley
and Newell (1994) attempted to define characteristics of cognitive agents
in a social context. They argued that, in order to be compatible with what
is needed by social sciences, more is needed beyond current theories of
cognition. Their “model social agents” possess a variety of knowledge
and processing capabilities. Their knowledge may be divided into lay-
ers of cultural-historical situations, social goal situations, social structural
situations, real-time interactive situations, multiple agent situations, and

14 Ron Sun

nonsocial task situations, as termed by Carley and Newell (1994). Whether
one agrees with the details of their analysis, the point that cognition and
sociality are intimately tied together remains valid.

On the other hand, needs and their concomitant thinking (cognition)
lead to action. Actions do change environments (existent structures) in a
variety of possible ways. Changes may be made to physical environments,
for example, in the case of building a shack because of the need to avoid
rain. Changes may also be made to social environments, for example, in the
case of creating a social institution to ensure property rights. The changed
structures then, in turn, affect thinking and motivation.

Thus, the three factors, motivation, thinking, and existent structures,
dynamically interact with one another, through human actions. Moreover,
due to their close, dynamic interactions, they are inextricably tied together
and hence we may view them as integral parts of a thinking-motivation—
structure triad.

The ways in which these three major factors interact can evidently be
highly complex (Sun, 2001a,b). It may therefore be argued, on the basis of
complexity, that the dynamics of their interaction is best understood by
ways of modeling and simulation. One may even claim that the dynamics
of their interaction can be understood only by modeling and simulation,
as some researchers would. In this endeavor, computational modeling and
simulation are the most important means currently available for under-
standing the processes and their underlying mechanisms (as opposed to
strictly mathematical modeling or informal verbal theories; see, for exam-
ple, Gilbert, 1995 and Sawyer, 2003; more later).

Notably, however, researchers in the social sciences sometimes over-
look the importance of cognition in theorizing about social phenomena.
For example, current social simulation tends to ignore the role of cognitive
processes, and adopt extremely simplified models of agents instead (e.g.,
Axelrod, 1984). Social sciences (and “social engineering” in practice) may
ignore cognition (as broadly defined, for example, including motivation)
at their own peril. In human history, there have been numerous examples
of failure of social theories, social institutions, or social practices, due to
the failure to take into account important factors of human cognition. For
example, some socioeconomic theories (for example, utopianism, commu-
nism, etc.) failed, precisely because they failed to take into account human
cognition and human nature (especially motivation, emotion, and other
socially relevant aspects of cognition; see Chapter 4). For another example,
doctrines of different religions have rarely been strictly obeyed, nor is it
likely that they will be strictly obeyed in the future. Although it is almost a
necessity that certain counter-intuitive beliefs, as well as other anomalies,
are instituted in religions (Atran & Norenzayan, 2003), many practices or
ideals that go against essential human nature (cognition, motivation, etc.)
have not been, nor will they ever be, strictly followed.

Prolegomena to Integrating Cognitive Modeling and Social Simulation 15

To develop social simulation with realistic cognitive models, it is im-
portant that we have computational cognitive models, or computational
cognitive architectures on which computational cognitive modeling can be
based, that take into adequate account the interactive nature of cognition,
in terms of interacting with both physical and social environments. Cer-
tain characteristics of such models have been argued in Sun (2004), which
include considerations of ecological realism and bio-evolutionary realism.
Furthermore, in such models, a sufficient amount of detail concerning in-
dividual cognition needs to be provided, in order to take adequate account
of human cognition and human nature in social simulation. Glossing over
too many details of cognition that are important and that can currently be
captured computationally is one of the most glaring shortcomings of many
social simulation models (Axelrod, 1984; Gilbert & Doran, 1994).

6 A MYSTERIOUS LINK

Now that we examined issues surrounding cognition, let us see how we
may move up from there. That is, let us see how we may “mix” levels
by going from the psychological level to a higher level — the sociological
level.

Here, we encounter immediately a key issue at the intersection of the
psychological and the sociological level: That is, how do the intention and
action of individual agents serve social functions? In particular, how do
self-interested agents, by virtue of their self-interest, help with the overall
welfare of the society? Here, we encounter the baffling issue of the micro—
macro link (Alexander et al., 1987) — for example, the “invisible hand”
that directs the actions of agents to serve a social function. Adam Smith
(1976) put it this way: “He generally, indeed, neither intends to promote
the public interest, nor knows how much he is promoting it. . .. He intends
only his own gain, and he is led by an invisible hand to promote an end
which was not part of his intention.” Or, as Castelfranchi (2001) put it:
“The real problem is modeling how we play our social roles, while being
unaware of the functional effects of our actions, not only with our routine
actions but even when doing something deliberately for our own subjective
motives.”

What constitutes that “invisible hand”? This paradox has been troubling
sociologists and economists for decades. There is indeed an apparent gap
between the individual intention in deciding his/her own actions and the
(possibly largely unintended) social function of his/her actions. However,
is this situation similar to the case of artificial neural networks? That is,
is this situation similar to the “paradox” of the simple firing of individual
neurons and the overall computation of a network of neurons as a whole
(Rumelhart et al., 1986)? Each neuron fires at its own “will” and appar-
ently for its own “gain.” But, together, a network of neurons accomplishes

16 Ron Sun

complex functions unknown to individual neurons. There is, clearly, a
strong analogy there. We may argue that computational modeling, either
using artificial neural networks or using some more complex computa-
tional models, can conceivably provide useful insights into this and other
related issues.

Castelfranchi (2001) examined various forms of emergence from simple
pattern formation to “cognitive emergence.” Among them, cognitive emer-
gence (implicit-to-explicit explication, or “bottom-up” learning, as termed
by Sun, 2002) is important. Along with (collective) evolution, cognitive
emergence may reconcile the aforementioned difference between individ-
ual intention and collective social function of human action. In a nutshell,
it may be hypothesized that collective social function may be lodged in the
mind of individuals, especially in the cognitive unconscious of the mind,
through a long evolutionary process within social contexts. Such hidden
motives, especially through the cognitive unconscious, may serve as (at
least part of) Adam Smith’s “invisible hand,” giving rise to emergent so-
cial function. Then, through cognitive emergence (Sun, 2002), they some-
times may become consciously known to agents as well. As was put by
Habermas (1987): “The first person, who turns back upon himself, ... can
recapitulate the acts it just carried out. In place of reflectively objectified
knowledge...we have a recapitulating reconstruction of knowledge al-
ready employed.” Though full and precise conscious interpretations of the
cognitive unconscious may not always be the case, such reconstruction is
important nevertheless. Computational modeling does shed light on this
process in a tangible way (see Sun, 2002).

One viable computational modeling approach towards exploring the
link between individual cognition and social phenomena is to construct
a much simplified social simulation first, with only a minimum amount
of detail regarding cognition, for example, by simplifying cognition all
the way down to the level of choosing one of two possible actions based
on one previous action by an opponent (for example, as in the game
of prisoner’s dilemma; Axelrod, 1984). Then, on the basis of the simpli-
fied simulation, one may gradually add cognitive details, by examining
more and more information and by involving deeper and deeper process-
ing (Carley & Newell, 1994). This approach is similar to the notion of a
“docking” experiment described by Axtell et al. (1996), that is, connect-
ing a more detailed and more realistic model with a simplified social
simulation. It has been suggested that “docking” is the best way to val-
idate and to understand simulation in terms of importance and signifi-
cance of various contributing factors (Axtell et al., 1996). This “docking”
process can be repeated, through a series of gradually expanding cogni-
tive models. In so doing, various levels of details can be investigated and
validated.

Prolegomena to Integrating Cognitive Modeling and Social Simulation 17

Alternatively, a complex model, with sufficient social details as well as
cognitive details, may be constructed to begin with. Then various details,
especially parameters concerning cognition, can be tested and validated
in terms of their effects on the outcomes of simulation. One possible way
of doing this is gradually stripping away layers of details and testing
the effects of such stripped-down versions in terms of the outcomes of
simulation.

Whereas verbal or mathematical theories begin with the specification
of units of analysis, computational simulations start with the specification
of units of operation. As a result, more detailed process-based theories
are in place. Because of this shifting of focus to processes, incorporation
of cognitive factors into social theorizing becomes more feasible, more
interesting, and deeper.

Computational social simulation may act as a precise kind of thought
experiment. In fact, computational social simulation may be viewed as
complex thought experiments in which outcomes cannot be clearly estab-
lished except through running simulations on a computer. Results from
simulations may be used to revise existing hypotheses or to generate new
hypotheses. Such thought experiments can easily find their uses in complex
domains like social and cognitive sciences.

What makes computational social simulation, especially computational
cognitive social simulation (based on detailed models of cognitive agents),
different from the long line of social theories and models (such as utility
theory and game theory) includes the fact that it enables us to engage
with observations and data more directly and test various factors more
thoroughly. In analogy with the physical sciences (Sun et al., 2004), good
social theories may be produced on the basis of matching theories with
good observations and data. Cognitive agent based computational social
simulation enables us to gather, organize, and interpret such observations
and data with cognition in mind. Thus, it appears to be a solid means of
developing social-cognitive theories.

There has even been a more radical position that believes (roughly) that
a model is, by itself, a theory (e.g., van Fraasen, 2002). Constructive em-
piricism, as the view is sometimes known, might serve as a philosophical
foundation for computational social simulation in general, and compu-
tational cognitive social simulation in particular. However, regardless of
which philosophical position one subscribes to, computational cognitive
social simulation is useful in more than one way.

7 THE ROOT

As alluded to before, there have been some reasons to believe that the
root of the micro-macro link might lie in the process of evolution (e.g.,

18 Ron Sun

Barkow et al., 1992). Note that when we talk about evolution, we must talk
about both evolution of cognition and evolution of sociocultural processes.
We might view them either as constituting elements of one process or as
separate processes (Kenrick et al., 2003).

How do we test and validate such a hypothesis? To understand the
evolution of these two kinds of processes and their interaction, large-
scale evolutionary simulation (through computational modeling) may be a
necessity. Such an effort requires computational modeling because of its
complexity. Beyond much simplified models of evolution (as in, for exam-
ple, Cecconi & Parisi, 1998; Kenrick et al., 2003), we would need more cog-
nitively realistic computational simulation models of evolution — models
that take into account realistic cognitive processes and constraints, as well
as their changes, phylogenetic and ontogenetic, in addition to capturing
social processes. It is not just social simulation, or just social simulation
with cognitive modeling — it is both plus evolutionary processes on top
of them. One can easily imagine that the complexity of such a simulation
could be overwhelming.

Understanding theoretical issues regarding cognition and sociality re-
quires computational modeling and simulation, not only because of the
complexity of such an undertaking, but also because of the expressive
power of computational models. Unlike mathematical modeling, compu-
tational modeling is not limited by available mathematical tools. Hence it
enjoys greater expressive power. Yet, unlike verbal models, it is precise.’ It
seems to strike a proper balance between rigor and flexibility (or expressive
power) (Sun et al., 2004).

There has been work going on in investigating the purported root of
both cognition and sociality. Such work includes both theoretical hypothe-
ses and arguments as well as empirical investigations and computational
simulations. For example, some theoretical work indicated that human
cognition has evolved in the context of social interaction. Therefore, the
human mind may come equipped with the capabilities for dealing with
social situations (Barkow et al., 1992). Also as a result, certain forms of
social interactions and social groups keep propagating through the human
history. Simulation work by Nolfi and Floreano (1999) indicated that there
might be complex interactions between learning and evolution, or more
generally, between individual cognition and populational changes. Thus,
these two aspects, individual cognition and collective behavior, might be
strongly coupled and thus should be studied together.

Furthermore, beyond the evolutionary-historical interaction, it may be
further hypothesized that at an individual level, as a result of evolution,

5 However, verbal models may often be imaginative and insightful, and therefore useful in
their own right.

Prolegomena to Integrating Cognitive Modeling and Social Simulation 19

the human mind makes decisions taking into account (likely implicitly,
or unconsciously) social contexts and social implications of their actions
(at least to some extent). This point may be argued on the basis that such
a consideration would benefit the survival of social groups and therefore
would benefit the survival of individuals in them. Therefore, natural se-
lection would favor it. This pre-wired micro-macro consistency, if it exists
(to some extent), is evidently the result of the evolutionary history of the
human mind.

Attheindividuallevel, one may argue that this consideration may be un-
conscious or conscious (implicit or explicit) (Rizzello & Turvani, 2000). But
there are reasons to believe that it is mostly implicit, below the conscious
level, because explicit altruistic thoughts are relatively rare (Smith, 1976).
Humans are naturally self-interested, within or without a social group. But
their “self-interested” actions often lead to benefiting society as a whole.
The human mind is the interplay of various factors at many different levels
and scales.

At the collective level, cultural and institutional processes forge and
maintain unifying and stabilizing beliefs and ideologies (Bourdieu &
Wacquant, 1992). These beliefs and ideologies, nevertheless, are mani-
fested through individual beliefs and actions, in an implicit or explicit
form. As viewed by sociologists and anthropologists, cultural and institu-
tional processes may take on their own trajectories and dynamics (as the
“unexpected” outcomes of individual minds as described by Rizzelo and
Turvani 2000, or as the results of deliberate acts), and thus may be viewed as
a separate layer in theorizing (Jung, 1959). A cultural evolutionary process
may be at work with regard to these dynamics, in relation to, but maybe
(to some extent) distinct from, biological evolutionary processes.

In this complex equation, social structures — the enduring, orderly, and
patterned relationship among elements in a society (such as groups and
hierarchies) — are the results of both biological evolution and evolution
of social interaction. Complex social structures, such as those found in
human societies, historically or currently, result from complex biological,
social, cultural, and cognitive adaptation that goes beyond simple biologi-
cal processes. The interplay of these factors (biological, sociocultural, and
cognitive), through the actions of individual agents, gives rise to a variety
of different forms of social structures and sociocultural processes. These
structures and processes in turn impose themselves on individuals. It may
be posited that culture, institutions, and other social structures are needed
for maintaining a proper micro-macro link.

All of the aforementioned factors need to be brought together, because
without any one of them, a full understanding of cognitive and social
processes may not be achieved. In particular, deep roots of their inter-
action need to be explored through all available means, and through

20 Ron Sun

computational modeling and simulation in particular (Cecconi & Parisi,
1998; Mataric, 2001). Crossing and mixing levels (as discussed before) are
necessary in this intellectual endeavor to expose, explicate, and accentuate
the link between the micro and the macro.

8 A BRIEF OVERVIEW

Let us have a brief overview of the remainder of this book. In this book,
we are interested in many aspects of cognitive modeling of agents and the
modeling of multi-agent interaction on that basis, including (among other
things):

» Cognitive architectures of individual cognitive agents

* Cognitively-based computational models of multi-agent interaction

¢ Cognitively-based computational models of multi-agent organizations

¢ Cognitively-based computational models of co-learning of multiple
agents

* Computational models of evolution of cognition and sociality

Beyond computational models of these aspects®, we are also interested in
having broader theoretical perspectives, and therefore commentaries from
diverse viewpoints are also presented towards the end of this volume.

Specifically, Part 2 of this book reviews some of the best known cog-
nitive architectures, which form the basis of computational modeling of
individual cognition and may be extended to modeling social processes.
Three chapters cover three distinct cognitive architectures. Chapter 2 (by
Niels Taatgen et al.) discusses ACT-R — one of the most successful cogni-
tive architectures in existence. This chapter discusses, in some detail, major
mechanisms in ACT-R that are relevant for capturing important aspects of
cognition, and how they may be used for cognitive modeling of various
kinds. Chapter 3 (by Robert Wray and Randolph Jones) discusses Soar —the
original cognitive architecture of Allen Newell (see Newell, 1990). It covers
the essential features of Soar for modeling cognitive processes. Chapter 4
(by Ron Sun) addresses major aspects of a relatively new cognitive archi-
tecture CLARION, which differs from other cognitive architectures in
many significant ways. The question of why CLARION is suitable for social
simulation is briefly addressed.

Part 3 of this book then develops specific models of both cognition
and social interaction, using cognitive architectures as well as other cogni-
tive/computational models. These approaches shed new light on interac-
tions among cognitive agents and on social phenomena in general. These
approaches also embody the integration of cognitive modeling and social
simulation, and demonstrate their synergy in various ways.

6 Admittedly, some of these issues are better addressed than others in this book.

Prolegomena to Integrating Cognitive Modeling and Social Simulation 21

Chapter 5 (by West et al.) investigates how cognitive architectures
(ACT-R in particular) may be used to address repeated game situations.
Repeated games (e.g., repeated prisoner’s dilemma) have been an impor-
tant area in understanding some limited cases of social interaction and
hence they are important domains for social simulation. Their work shows
that cognitive architectures may be beneficially applied to such social sim-
ulation, although the work is limited to simple game situations thus far.

Chapter 6 (by Naveh and Sun) delves into effects of cognitive parame-
ters on social simulation — in particular, on a simulation of a simple case
of organizational decision making. It is found that many of these cog-
nitive parameters have significant impact on the outcomes of this social
simulation. A lesson may be drawn from this study that we cannot fully
understand a social process through social simulation unless we take into
account sufficiently various cognitive factors, in order to see the full range
of possibilities in terms of outcomes of social simulation. In this process, as
this work employs a cognitive architecture, it also demonstrates in some
way the usefulness of cognitive architectures in social simulation.

Chapter 7 (by Clancey et al.) focuses on understanding and modeling
daily activities of a crew in a closed environment. With concepts and ideas
from activities theory, ethnography, as well as cognitive modeling, they
investigated fine-grained capturing of daily activities of agents and the in-
teraction of agents in such activities—their joint participation in a task. Their
model attempts to capture both social and cognitive aspects of such activ-
ities, thus uniting cognitive modeling and (small-scale) social simulation.

Chapter 8 (by Best and Lebiere) discusses the application of the ACT-R
cognitive architecture to military simulation. Their simulation is highly
complex and involves vision, navigation, planning, and a variety of other
functionalities. It addresses team cooperation (although in a highly stylized
way) and interactions with opposition teams. This line of work provides a
fertile ground for exploring a variety of interesting and relevant issues in
building complex and realistic social simulations based on cognitive archi-
tectures. Some of these issues are touched upon in this chapter, including
how vision and action execution can be added to cognitive architectures,
how production rules in cognitive architectures can be made more flexible
in real-time interaction, and how hierarchical planning may be applied.

Chapter 9 (by Gratch et al.) deals specifically with the representation of
emotions and their associated coping strategies. This aspect is important
in social interaction, and hence important for realistic social simulations.
This chapter provides useful ideas and some interesting details concerning
how such representations may be developed and used in future social
simulations.

Chapter 10 (by Trafton et al.) addresses an interesting issue in human
social interaction — taking the perspectives of others, and explores how this
process may be modeled computationally. Their work utilizes a variety

22 Ron Sun

of approaches in addressing this issue. Their results will certainly be of
interest to social simulations that take into account details of individual
cognition and thus may face the issue of perspective taking by individuals
in social interaction.

Chapter 11 (by Shell and Mataric) explores ways of developing mod-
els of cognition and social behaviors in robotic forms, using in particular
“behavior”-based methodologies. They survey a large body of work along
this line, pointing out various successes towards the goal of capturing
cognition and social behaviors in robotic forms, which have significant ap-
plication potentials not just for social simulations but also for a variety of
real-world situations.

Chapter 12 (by Schurr et al.) describes a number of multi-agent frame-
works, for various applications, including possibly for social simulations.
Their discussions range from BDI frameworks to the Soar cognitive ar-
chitecture. They show that cognitively-motivated agent models (such as
BDI and Soar) can be equally applied to social simulations in theoretically
oriented ways (as described by other chapters) and to more practical ap-
plications (as touched upon by this chapter).

Chapter 13 (by Parisi and Nolfi) explores various forms of social behav-
iors that can emerge when evolutionary processes are applied to agents
embodied in neural networks. As they demonstrate, interesting social be-
haviors, from simple cooperative acts to language and culture, do emerge as
a result of evolutionary pressure. Their computational work verifies what
has been extensively discussed by evolutionary theorists (see, e.g., Barkow
et al., 1992) and lends support to some of their claims (see also Section 7
earlier).

Chapter 14 (by Cristiano Castelfranchi) investigates the mental repre-
sentation needed within individual agents to enable social cooperation.
A variety of constructs are discussed, and various possibilities explored.
These issues are of major interest in gaining a better understanding, and in
developing better models, of multi-agent interaction in social simulation.
Further work is very much needed to continue such explorations.

All of these chapters provide new ideas and new perspectives concern-
ing social simulation. In particular, they emphasize the integration of the
modeling of individual cognition and the modeling of social processes, in
different ways and with different objectives. Considering that there has
been relatively so little work in the past on this issue and the issue is such
an important one, these chapters fill a significant gap in the literature.

To help achieve better understanding of the proposed models and archi-
tectures, Part 4 of this book presents various views, issues, and arguments
concerning possibilities of integrating cognitive modeling and social sim-
ulation. Among these short chapters, Moss argues that computational cog-
nitive social simulation is good science because it is observation driven.
Computational cognitive social simulation models capture some intuitive
understanding and draw its implications through simulation experiments.

Prolegomena to Integrating Cognitive Modeling and Social Simulation 23

Thus, such models help to clarify how macro phenomena emerge from
individual behaviors. Panzarasa and Jennings argue that multi-agent sys-
tems in artificial intelligence can address some important issues involving
social interaction and cognition. The recent conceptual and technical de-
velopment of multi-agent systems may make them suitable for social sim-
ulation. Burns and Roszkowska stress the importance of an extended form
of game theory in integrating social simulation and cognitive modeling. In
their formulation, value, norm, social role, and other sociocognitive factors
are taken into account in modeling interactions among cognitive agents.
Ritter and Norling argue that individual differences and behavioral mod-
erators should be taken into consideration in cognitive modeling and in
social simulation, and they point out some possibilities. Finally, Gilbert dis-
cusses the limits of integrating social simulation and cognitive modeling —
when this approach is not applicable and what one should not do with it.
He also highlights a few other methodological issues that are important for
“mixed-level” analysis (as proposed earlier in this chapter) in social and
behavioral sciences.

9 SUMMARY

Within a multilevel framework, this chapter argues for crossing and mixing
some of these levels: the social, the psychological, and the componential.
Hence, the case for the integration of social simulation with cognitive mod-
eling was presented, which opens the way for a more detailed discussion
of integrating social simulation and cognitive modeling in the remainder
of this book.

In particular, this chapter argues for (1) the consistency of individual mo-
tivation and thinking, and (2) the consistency of individual cognition and
collective social function, both from evolutionary considerations. Although
such consistencies are evidently limited, brittle, and controvertible, they
nevertheless serve important teleological functions. They also serve as the
basis of our argument: From the triad of thinking-motivation-structure to
the link between the micro and the macro, these consistencies form a plau-
sible foundation for integrating social simulation and cognitive modeling.

This chapter also argues for the role of computational modeling and
simulation in understanding the social/cognitive interaction, especially
the role of complex computational social simulation with realistic compu-
tational cognitive models (i.e., computational cognitive social simulation),
utilizing cognitive architectures in particular. The argument from complex-
ity and expressive power of computational models did the bulk of the work
in this regard.

It is an open empirical question how much complex computational so-
cial simulation with realistic cognitive models (i.e., computational cogni-
tive social simulation) can accomplish. Addressing this question is what
this book is all about.

24 Ron Sun

ACKNOWLEDGMENTS

The work represented by this chapter was carried out while the author was
supported (in part) by ARI contract DASW01-00-K-0012 (to Ron Sun and
Robert Mathews). Thanks are due to the reviewers for their comments on
the earlier drafts of this chapter. benefited from discussions with Cristiano
Castelfranchi, Isaac (Yizchak) Naveh, Frank Ritter, and Andrew Coward.

References

Alexander, J., Giesen, B., Munch, R., & Smelser, N. (Eds.), (1987). The micro-macro
link. Berkeley: University of California Press, Berkeley.

Andersen, S., & Chen, S. (2002). The relational self: An interpersonal social-cognitive
theory. Psychological Review, 109(4), 619-645.

Anderson, J., & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ:
Lawrence Erlbaum Associates.

Atran, S., & Norenzayan, A. (2003). Religion’s evolutionary landscape: Counterin-
tuition, commitment, compassion, and communion. Behavioral and Brain Sciences,
in press.

Axelrod, R. (1984). The evolution of cooperation. New York: Basic Books.

Axelrod, R. (1997). Advancing the art of simulation in the social sciences. In
R. Conte, R. Hegselmann, & P. Terna (Eds.), Simulating Social Phenomena, 21-40,
Berlin: Springer.

Axtell, R., Axelrod,]J., & Cohen, M. (1996). Aligning simulation models: A case
study and results. Computational and Mathematical Organization Theory, 1(2), 123-
141.

Barkow, J., Cosmides, L., & Tooby, J. (1992). The adapted mind: Evolutionary psychol-
ogy and the generation of culture. New York: Oxford University Press.

Bickhard, M. (1993). Representational content in humans and machines. Journal of
Experimental and Theoretical Artificial Intelligence, 5, 285-333.

Bourdieu, P, & Wacquant, L. (1992). An invitation to reflexive sociology. Chicago:
University of Chicago Press.

Boyer, P., & Ramble, C. (2001). Cognitive templates for religious concepts: Cross-
cultural evidence for recall of counter-intuitive representations. Cognitive Science,
25, 535-564.

Brooks, R. (1991). Intelligence without representation. Artificial Intelligence, 47,
139-159.

Camerer, C. (1997). Progress in behavioral game theory. Journal of Economic Perspec-
tives, 11(4), 167-188.

Carley, K., & Newell, A. (1994). The nature of social agent. Journal of Mathematical
Sociology, 19(4), 221-262.

Castelfranchi, C. (2001). The theory of social functions: Challenges for computa-
tional social science and multi-agent learning. Cognitive Systems Research (Special
issue on multidisciplinary studies of multi-agent learning, R. Sun. Ed.), 2(1),
5-38.

Cecconi, F, & Parisi, D. (1998). Individual versus social survival strategies. Journal
of Artificial Societies and Social Simulation, 1(2), 1-17.

Prolegomena to Integrating Cognitive Modeling and Social Simulation 25

Conte, R., Hegselmann, R., & Terna, P. (eds.), (1997). Simulating social phenomena.
Berlin: Springer.

Coward, L. A., & Sun, R. (2004). Criteria for an effective theory of consciousness
and some preliminary attempts. Consciousness and Cognition, 13, 268-301.

Damasio, A. (1994). Decartes’ Error. Grosset/Putnam, New York.

Durkheim, W. (1895/1962). The rules of the sociological method. Glencoe, IL: The Free
Press.

Epstein, J., & Axtell, R. (1996). Growing artificial societies. Cambridge, MA: MIT
Press.

Fodor, J. (1980). Methodological solipsism considered as a research strategy in cog-
nitive psychology. Behavioral and Brain Sciences, 3, 417-424.

Gilbert, N. (1995). Simulation: An emergent perspective. Conference on New Tech-
nologies in the Social Sciences. Bournemouth, UK.

Gilbert, N., & Conte, R. (eds), (1995). Artificial societies. London: UCL Press.

Gilbert, N., & Doran, J. (1994). Simulating societies: The computer simulation of social
phenomena. London, UK: UCL Press.

Gray, W., & Altmann, E. (2001). Cognitive modeling and human-computer interac-
tion. In W. Karwowski (Ed.), International Encyclopedia of Ergonomics and Human
Factors: Vol. 1, pp. 387-391. New York: Taylor and Francis.

Greene, B. (1999). The elegant universe. New York: Norton.

Habermas, J. (1987). The philosophical discourse of modernity. Cambridge, MA: MIT
Press.

Hutchins, E. (1995). How a cockpit remembers its speeds. Cognitive Science, 19,
265-288.

Jung, C. G. (1959). The archetypes and the collective unconscious. New York: Pantheon
Books.

Kahan, J., & Rapoport, A. (1984). Theories of coalition formation. Mahwah, NJ:
Lawrence Erlbaum Associates.

Kenrick, D., Li, N., & Butner, J. (2003). Dynamical evolutionary psychology:
Individual decision rules and emergent social norms. Psychological Review, 110(1),
3-28.

Lave, J. (1988). Cognition in practice. Cambridge, UK: Cambridge University Press.

LeDoux, J. (1992). Brain mechanisms of emotion and emotional learning. Current
Opinion in Neurobiology, 2(2), 191-197.

Mataric, M. (2001). Learning in behavior-based multi-robot systems: Policies, mod-
els, and other agents. Cognitive Systems Research, 2(1), 81-93.

Milner, D., & Goodale, N. (1995). The visual brain in action. New York: Oxford Uni-
versity Press.

Moss, S. (1999). Relevance, realism and rigour: A third way for social and economic
research. (CPM Report No. 99-56). Manchester, UK: Center for Policy Analysis,
Manchester Metropolitan University.

Moss, S., & Davidsson P. (eds.), (2001). Multi-Agent-Based Simulation. Berlin:
Springer.

Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University
Press.

Nisbett, R., Peng, K., Choi, 1., & Norenzayan, A. (2001). Culture and systems of
thought: Holistic versus analytic cognition. Psychological Review, 108(2), 291—
310.

26 Ron Sun

Nolfi, S., & Floreano, D. (1999). Learning and evolution. Aufonomous Robots, 7(1),
89-113.

Pew, R., & Mavor, A. (eds), (1998). Modeling Human and Organizational Behavior:
Application to Military Simulations. Washington, DC: National Academy Press.
Piaget, J. (1971). Biology and knowledge. Edinburgh, UK: Edinburgh University

Press.

Prietula, M., Carley, K., & Gasser, L. (eds.), (1998). Simulating Organizations: Com-
putational Models of Institutions and Groups. Cambridge, MA: MIT Press.

Ritter, F.,, Shadbolt, N., Elliman, D., Young, R., Gobet, F,, & Baxter, G. (2003). Tech-
niques for Modeling Human Performance in Synthetic Environments: A Supplemen-
tary Review. Human Systems Information Analysis Center, Wright-Patterson Air
Force Base, Dayton, OH.

Rizzello, S., & Turvani, M. (2000). Institutions meet mind: The way out of an im-
passe. Constitutional Political Economy, 11, 165-180.

Rumelhart, D.,McClelland, J., & the PDP Research Group. (1986). Parallel distributed
processing: Explorations in the microstructures of cognition. Cambridge, MA: MIT
Press.

Sawyer, R. (2003). Multiagent systems and the micro-macro link in sociological
theory. Sociological Methods and Research, 31(3), 325-363.

Schunn, C., & Gray, W. (2002). Introduction to the special issue on computational
cognitive modeling. Cognitive Systems Research, 3(1), 1-3.

Smith, A. (1976). The wealth of nations. Oxford, UK: Clarendon Press.

Sun, R. (2001a). Individual action and collective function: From sociology to multi-
agent learning. Cognitive Systems Research, 2(1), 1-3.

Sun, R. (2001b). Cognitive science meets multi-agent systems: A prolegomenon.
Philosophical Psychology, 14(1), 5-28.

Sun, R. (2002). Duality of the mind. Mahwah, NJ: Lawrence Erlbaum Associates.

Sun, R. (2004). Desiderata for cognitive architectures. Philosophical Psychology, 17(3),
341-373.

Sun, R, Coward, A., & Zenzen, M. (2004). On levels of cognitive modeling.
Philosophical Psychology, in press.

Thagard, P. (1992). Adversarial problem solving: Modeling an opponent using ex-
planatory coherence. Cognitive Science, 16, 123-149.

van Fraasen, B. (2002). The empirical stance. New Haven, CT: Yale University Press.

Vygotsky, L. (1986). Thought and language. Cambridge, MA: MIT Press.

PART 2

OVERVIEWS OF COGNITIVE
ARCHITECTURES

2

Modeling Paradigms in ACT-R

Niels Taatgen, Christian Lebiere, and John Anderson

1 INTRODUCTION

In his book “Unified Theories of Cognition,” Newell (1990) called upon
researchers to formulate general theories of cognition in the form of cog-
nitive architectures. A cognitive architecture is a computational modeling
platform for cognitive tasks. An architecture should offer representational
formats together with reasoning and learning mechanisms to facilitate
modeling. For Newell, this was not the most important aspect of an ar-
chitecture. In addition to facilitating modeling, an architecture should also
constrain modeling. Ideally, an architecture should only allow cognitive
models that are cognitively plausible, and it should disallow or reject cog-
nitive models that do not correspond to possible human behavior. Newell
proposed Soar (see Chapter 3) as his candidate theory, but also mentioned
ACT* (Anderson, 1983) as a possible contender.

The ACT-R architecture (Anderson et al., 2004) is the successor of ACT*,
and is, contrary to its predecessor, a fully implemented system that is con-
tinuously updated and expanded. The current version, ACT-R 6.0, is ca-
pable of interacting with the outside world, has been mapped onto brain
structures, and is able to learn to interact with complex dynamic tasks.
Consistent with Newell’s goals, ACT-R is a simulation environment that
supports the creation of cognitive models that are capable of predicting
and explaining human behavior. As such, it can be instrumental in multi-
agent simulations, where an ACT-R-based agent can play the role of a
human. ACT-R’s main source of constraint is the theory of rational analysis.
According to rational analysis, each component of the cognitive system
is optimized with respect to demands from the environment, given its
computational limitations. A consequence of this choice is that truth is not
a fundamental notion in ACT-R (contrary to systems based on logic), but
rather a derivative: useful knowledge is usually true, although true knowl-
edge is not necessarily useful. The memory, performance and learning

29

30 Niels Taatgen, Christian Lebiere, and John Anderson

systems that have been built on the basis of rational analysis have been
validated extensively by many models of classical memory and learning
experiments (many of which are discussed in Anderson and Lebiere, 1998).

Contrary to a true symbolic system like Soar, ACT-R assumes both a sym-
bolicand a subsymboliclevel to the knowledge represented in its two mem-
ory systems — declarative and procedural memory (see also Chapter 4).
The subsymbolic level allows fine-graded models of learning and perfor-
mance that include forgetting and making errors, and can present char-
acteristics usually associated with neural network models. The symbolic
level makes it possible to construct models that cover many reasoning steps
and larger sets of knowledge. Knowledge in all systems of the architecture,
declarative and procedural, and all levels, symbolic and subsymbolic, can
be learned by the architecture. To properly explain the architecture, we will
start with a general overview, followed by explaining ACT-R’s components
on the basis of five modeling paradigms.

2 OVERVIEW OF ACT-R

Central to ACT-R is the notion of a declarative memory for facts, and a
procedural memory for rules. ACT-R 6.0 extends this basis with a set of
modules that interact with the outside world. As a consequence, declara-
tive memory has become another module, whereas the production system
implementing procedural memory takes the center position, connecting
all the modules together (Figure 2.1).

The production system does not have unlimited access to the various
modules, but communicates with them through buffers. A buffer can con-
tain only one piece of information at a time. For example, in order to retrieve
a certain fact from declarative memory, a request has to be made to declar-
ative memory in the form of a partially specified pattern. The declarative
module will then try to complete the pattern, after which the result is placed
back in the retrieval buffer, where it can be matched and used by another
rule. Production rules in ACT-R therefore serve a switchboard function,
connecting certain information patterns in the buffers to changes in buffer
content, which in turn trigger operations in the corresponding modules.
Production rules in ACT-R do not have the same representational power
(and the associated computational problems) as classical production sys-
tems. The different modules in the architecture operate asynchronously,
and in parallel. Behavior within a module is largely serial. For instance,
the declarative model can retrieve only one item at a time, and the visual
system can focus its attention on only one item in the visual field at a time.

Items in declarative memory, called chunks, have different levels of
activation to reflect their use: chunks that have been used recently or chunks
that are used very often receive a high activation. This activation decays
over time if the chunk is not used. Activation also includes a component

Modeling Paradigms in ACT-R 31

Intentional module Declarative Module
(not identified) (Temporal/Hippocampus)
Goal Buffer Retrieval Buffer
(DLPFC) (VLPFC)

A

/

Matching (Striatum)

| Selection (Pallidum)
| Execution (Thalamus)

Productions
(Basal Ganglia)

|

|

|
~

Visual Buffer Manual Buffer
(Parietal) (Motor)
Visual Module Manual Module
(Occipital/Parietal) (Motor/Cerebellum)

™ N

External World |

FIGURE 2.1. Overview of ACT-R 6.0.

that reflects the degree to which this chunk matches the current context,
as well as a noise component that makes activation a stochastic quantity,
and retrieval a probabilistic process. The concept of activation follows from
rational analysis in that it represents the probability (actually, the log odds)
that a chunk is needed and the estimates provided by ACT-R’s learning
equations represent the probabilities in the environment very well. The
level of activation has a number of effects. One effect of activation is that
when ACT-R can choose between chunks, it will retrieve the chunk with
the highest activation. Activation also affects retrieval time, and whether
the chunk can be retrieved at all. The higher a chunk’s activation, the faster
it can be retrieved, and the more likely that activation is to be above a
retrieval threshold. Chunks cannot act by themselves, they need produc-
tion rules for their application. To use a chunk, a production rule has to be
invoked that requests it from declarative memory, and another one that
harvests it from the retrieval buffer and does something with it. Because
ACT-R is a goal-driven theory, chunks are usually retrieved to achieve
some sort of goal.

The selection of production rules is also governed by the principle of ra-
tional analysis. Each production rule has a real-valued quantity associated
with it called utility. This utility is calculated from estimates of the cost and
probability of reaching the goal if that production rule is chosen. The unit

32 Niels Taatgen, Christian Lebiere, and John Anderson

of cost in ACT-R is time. ACT-R’s learning mechanisms constantly update
the parameters used to estimate utility based on experience. If multiple
production rules are applicable to a certain goal, the production rule with
the highest utility is selected. In both declarative and procedural memory,
selections are made on the basis of some evaluation, either activation or
utility. This selection process is noisy, so the item with the highest value
has the greatest probability of being selected, but other items get oppor-
tunities as well. This may produce errors or suboptimal behavior, but it
also allows the system to explore knowledge and strategies that are still
evolving.

In addition to the learning mechanisms that update activation and util-
ity, ACT-R canalsolearn new chunks and production rules. New chunks are
learned automatically: each time a goal is completed or a perceptual / motor
event is registered, it is added to declarative memory. If an identical chunk
is already present in memory, these chunks are merged and their activa-
tion values are combined. New production rules are learned through the
mechanism of production compilation, which combines two rules that fire
in sequence into a single rule.

The five modeling paradigms that we will use to discuss ACT-R are
the following: Instance learning uses previous experiences to guide choices,
and focuses on ACT-R’s declarative memory and partial matching mecha-
nism. In Competing Strategies several strategies compete to solve a problem.
ACT-R’s utility learning mechanism will ensure that the strategy with the
best probability of success for the lowest costs will be used most often.
When studying Individual Differences, architectural global parameters are
identified that correlate with traits and abilities in individuals. Models that
incorporate Perceptual and Motor Processes use the interaction with the out-
side world as an additional constraint on behavior. Finally, Specialization
of Task-Independent Cognitive Strategies allows ACT-R to learn task-specific
rules on the basis of general strategies, including interpretation of instruc-
tions in declarative memory.

3 INSTANCE LEARNING

Instance learning or instance theory, originally developed by Logan (1988),
isasimple but powerful modeling strategy. The basicidea is thatas we solve
problems, we store the solutions in memory to retrieve them as examples
for future problem solving. For example, in tasks where participants have
to solve alphabet arithmetic problems, like D + 3 = ?, they initially use
a counting strategy. Evidence for this is the fact that the solution time
increases linearly with the second addend. However, once participants
become more experienced, they are able to retrieve answers from memory,
which is much faster, and the linear increase of solution time with the
second addend disappears.

Modeling Paradigms in ACT-R 33

It is easy to model instance learning in ACT-R. Achieved goals are al-
ready automatically stored in declarative memory. Items in declarative
memory have an activation value that decays over time, lowering the prob-
ability of correct recall, and is boosted by additional rehearsals, increasing
the probability of recall. Another aspect of instance learning in ACT-R,
which is not covered by Logan’s original theory, is that the retrieval at-
tempt can produce an example that is slightly different from the example
that is searched for. In the case of D + 3 = ?, we might retrieve B4 3 = E
instead, because B is similar to D, which would lead to an error. In many
other areas requiring less precision than arithmetic, however, an example
that is similar to the goal can produce a useful answer, or can serve as a
basis for analogy.

3.1 Activation in Declarative Memory

The activation of a chunk determines whether or not it can be retrieved
and, if it is retrieved, how much time this takes. As has already been stated,
activation reflects past use of a chunk, and its association with the current
goal context. The activation of a chunk is the sum of a base-level activation,
reflecting its general usefulness in the past, and an associative activation,
reflecting its relevance to the current context. The activation of a chunk iis
defined as

A =B+ Z W;S;i Activation Equation
j

where B; is the base-level activation of the chunk i, the W;’s reflect the
attentional weighting of the elements that are part of the current goal, and
the S;;’s are the strengths of association from the elements jto chunk i. The
activation of a chunk controls both its probability of being retrieved and
its speed of retrieval. In the case where there are multiple candidates for
retrieval, the chunk with the highest activation has the highest probability
of being retrieved.

Base-level activation (B;) rises and falls with practice and delay accord-
ing to the equation:

n
Bi =1In (Z tjd> Base-Level Learning Equation
j=1

t; is the time since the jth practice of an item. This equation is based on
the rational analysis of Anderson and Schooler (1991) studying how the
pattern of past occurrences of an item predicts the need to retrieve it. They
found that the above equation reflects the log odds that an item will reoccur
as a function of when it has appeared in the past. In ACT-R, it is assumed
that base-level activation would track log odds. Each presentation has an

34 Niels Taatgen, Christian Lebiere, and John Anderson

impact on odds that decays away as a power function (producing the power
law of forgetting) and different presentations add up (producing the power
law of practice — see Anderson, Fincham & Douglass, 1999). In the ACT-R
community 0.5 has emerged as the default value for the time-based decay
parameter dover a large range of applications.

There are three equations mapping activation onto probability of re-
trieval and latency. Probability is the probability that the activation will be
greater than a threshold .

1
P

) = Y Probability of Retrieval Equation

where s controls the noise in the activation levels and is typically set at
about 0.4. If there is more than one chunk that matches the request, the
following equation describes the probability that a particular chunk will
be chosen (assuming its activation is above threshold):

eA;/«/Es
Zkeﬂk/ﬁs

where k ranges over all the chunks that match. The time to retrieve the
chunk is given as

P = Probability to Win Competition Equation

T, = Fe & Latency of Retrieval Equation

where F is a scaling constant mapping activation to (real) time. Given the
mechanism of activation, ACT-R is able to predict under what circum-
stances an instance will be retrieved, and under which circumstances it is
not. An example of such a model (Anderson & Lebiere, 1998, chapter 4) is
a slight variation on alphabet-arithmetic done by Zbrodoff (1995) where
participants have to judge whether an addition with letters and a number
is correct, for example “F + 3 = I?”. By varying the addend in the equation
(from 42 to +4), they were able to show that at some point people shifted
from using counting, where the time to decide increases linearly with the
addend, to memory retrieval, where the time to decide is independent of
the addend.

3.2 Partial Matching in Instance Retrieval

A slightly more general version of instance retrieval is one in which par-
tial matches are allowed besides exact matches. This is not so useful in
alphabet-arithmetic, but in many other tasks an example that is similar to
the current goal is useful if an exact example is not available. ACT-R han-
dles partial matching by decreasing the activations of chunks that do not
exactly match. This deduction is smaller if the two mismatched values are
more similar. If the model tries to retrieve the answer to “F + 3 =?”, then

Modeling Paradigms in ACT-R 35

the fact “F + 2 = H” would only be mildly penalized, because 2 and 3 are
similar. The formula for calculating activation while taking into account
mismatches now becomes

A; = B; + Z W;S;i + Z P My Activation Equation
7 3

In this equation, Mj; represents the mismatch between the requested value
and the retrieved value, which can vary between 0 (no mismatch, so no
penalty) and — 1 (complete mismatch). P, represents the penalty that is
deducted from the activation in case of a complete mismatch. In case of
a complete mismatch the full penalty is applied, but when the requested
value and retrieved value are similar, only a partial penalty is given.

3.3 Example Model: Sugar Factory

Wallach has modeled an experiment by Berry and Broadbent (1984) in
which participants have to control a system called the Sugar Factory
(Taatgen & Wallach, 2002). Each trial in the experiment represents a day
in which participants have to decide on the size of the workforce (W, be-
tween 1 and 9). They are then told the output of the factory for that day
(O, between 1 and 12 tons), and are asked the size of the workforce for
the next day. The output of the factory not only depends on the size of the
workforce, but also on the output of the previous day, and a random factor
of -1, 0 or 1, according to the following equation:

O(t) =2W(t) — O(t — 1) + random(-1, 0, 1)

If the output is outside the 1...12 range, it is set to the nearest boundary,
1 or 12. Whereas the output increases linearly with the number of work-
ers, it also decreases linearly with the previous day’s output, a somewhat
counterintuitive relation. Participants were given the goal of bringing the
output to 9 tons of sugar per day, and keeping it at that level.

Berry and Broadbent found that participants improve their behavior in
this experiment with experience, but are not able to explain the relationship
between workers and output after they are done with the task. Wallach’s
model is therefore based on instances, because instance retrieval can im-
prove performance without the model having an explicit representation of
what the rule is. The model stores each experience as a separate chunk in
declarative memory, for example:

Transition1239
Isa sugar-goal
Previous-output 3
Workers 8
Output 12

36 Niels Taatgen, Christian Lebiere, and John Anderson

This chunk encodes that a previous output of 3 tons of sugar and a work-
force of size 8 resulted in a new output of 12 tons of sugar. To determine a
workforce level for a new day, the model starts with a goal like this:

Transition1252
Isa sugar-goal
Previous-output 7
Workers ?
Output 9

This goal represents that yesterday’s output was 7 tons of sugar, and the
desired targetis 9 tons of sugar. To determine the workforce level, the model
will try to retrieve an experience from declarative memory that matches
both the previous output and the new output. To this end it needs the
following two rules, which will be represented in a pseudo-English form,
with variables in italics:

Retrieval-request-rule

IF the goal is to determine the number of workers to achieve output
G and the output of the previous day was O

THEN send a request to declarative memory for an instance with previ-
ous output O and output G

Retrieval-harvest-rule

IF the goal is to determine the number of workers
AND an instance has been retrieved with W workers
THEN set the number of workers to W

Given ACT-R’s activation mechanism, the chunk that has been used or
recreated most often and has the largest similarity to the current goal will
be retrieved, for example:

Transition1236
Isa sugar-goal
Previous-output 6
Workers 8
Output 9

Although this example does not exactly match the current goal, it is close
enough if it has enough activation (it will be penalized for the mismatch
between 6 and 7 in the previous-output slots). Based on this example the
model will choose 8 as its next workforce. As the model gathers more expe-
riences, its decisions will also improve, despite the fact that it does not have
an explicit representation of the relationships between the task variables.
In the experiment, participants improved their on-target decisions from 8

Modeling Paradigms in ACT-R 37

in the first block of 40 trials to 15 in the second block of 40 trials. The model
matched this fairly well with 9 and 14 trials, respectively.

4 COMPETING STRATEGIES

Although instance learning is a powerful method to improve performance,
there is no real evaluation of the knowledge used. This is an advantage for
situations where no information for evaluation is available. If such infor-
mation is available it can be inserted into the instance, but this does not
translate into a higher activation. To directly influence knowledge parame-
ters on the basis of an evaluation, we need to learn the utility of knowledge.
An automatic process to keep track of utility is part of ACT-R’s procedural
memory. One way to use utility learning is to implement several problem-
solving strategies using production rules, and have the mechanism keep
track of the relative merits of these strategies.

With each production rule, ACT-R maintains two parameters: the esti-
mated cost of the rule, and the estimated probability of success. The utility
of a production i is defined as

U =PG-C; Production Utility Equation

where P; is an estimate of the probability that if production i is chosen the
current goal will be achieved, G is the value assigned to that current goal,
and C;is an estimate of the cost (typically measured in time) to achieve
that goal. As we will discuss, both P; and C; are learned from experience,
whereas G is an architectural parameter.

The utilities associated with productions are noisy and on a cycle-to-
cycle basis there is a random variation around the expected value given
above. The highest-valued production is always selected but on some tri-
als one might randomly be more highly valued than another. If there are n
productions that currently match, the probability of selecting the ith pro-
duction is related to the utilities U; of the n production rules by the formula

eui/t

P(l) = W

Production Choice Equation

where the summation is over all applicable productions and f controls the
noise in the utilities. Thus, at any point in time there is a distribution of
probabilities across alternative productions reflecting their relative utilities.
The value of t is about 0.5 in our simulations and this is emerging as a
reasonable setting for this parameter.

Learning mechanisms adjust the costs C; and probabilities P; that under-
lie the utilities U; according to a Bayesian framework. Because the example
below is concerned with the learning of the probabilities, we will expand

38 Niels Taatgen, Christian Lebiere, and John Anderson

on that but the learning of costs is similar. The estimated value of P is
simply the ratio of successes to the sum of successes and failures:

Successes

= Successes + Failures Probability of Success Equation
However, there is a complication here that makes this like a Bayesian
estimate. This complication concerns how the counts for Successes and
Failures start out. It might seem natural to start them out at 0. However, this
means that P is initially not defined and after the first experience the esti-
mate of P will be extreme at either the value 1 or 0 depending on whether
the first experience was a success or failure. Rather P is initially defined as
having a prior value 6 and this is achieved by setting Successes to 6V 4+ m
and Failures to (I — 0)V + n where m is the number of experienced Suc-
cesses, 1 is the number of experienced Failures, and V is the strength of the
prior 6. As experience (im + n) accumulates, P will shift from 6 to m/(m + n)
at a speed controlled by the value of V. The value of the cost parameter
C is estimated in a similar way as the sum of the efforts invested in a goal
divided by the total number of experiences (both Successes and Failures):
>, Effort;

C = Cost Equation
Successes + Failures !

Utility learning is a useful mechanism in tasks where there are multiple
cognitive strategies, but where it is unclear which of these strategies is best.
The basic setup of a model using competing strategies is to have a set of
production rules for each of the strategies. One of these production rules
initiates the strategy, and this rule has to compete with the rules that initiate
the other strategies. As these rules gain experience, their parameters will
reflect their utility, and ACT-R will tend to select the strategy with the high-
est utility. Depending on the level of utility noise the other strategies will
also be sampled occasionally. This makes the system somewhat sensitive
to changes in the utility of strategies.

4.1 Example Model: The Building Sticks Task

In the Building Sticks Task (BST), participants have to construct a stick of
a certain length using an unlimited supply of sticks of three other lengths
(Lovett & Anderson, 1996). For example, the goal might be to build a stick of
length 125 using sticks of length 15, 250, and 55. The goal can be reached by
either addition or subtraction, so building a 125 stick can be achieved by
55 + 55 + 15 or by 250 — 55 — 55 — 15. Instead of being presented with
the numbers, sticks of the appropriate length are shown on a computer
screen, giving only an approximate idea of the real length of a stick. Partic-
ipants started with a stick of length 0, and could subsequently select one
of the three sticks to either add to or subtract from the current stick. A

Modeling Paradigms in ACT-R 39

Both Overshoot Undershoot Overshoot Both

100 20 — ~ ek
90 {— : E i
5 o1 ;\ . e
g ! AL ! !
ST, W7 A W VI W B e\

s | i\ _~ \ 4) \:\:
o e
B o0 | = |
g IF RNV SN W 3 5 S
10 1 A a
0 ' ! ' 5

i 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Problem

FIGURE 2.2. Experimental results and model fit for the Building Sticks Task. The
solid line represents the data, and the dotted line the model prediction.

consequence of only showing approximate lengths is that participants
could not calculate the results of their actions beforehand, and had to build
the goal stick by trial and error. The task was constructed in such a way that
there was always one stick longer than the goal stick, whereas the other two
are shorter, and that one of two strategies called undershoot and overshoot
would lead to the goal. In the undershoot strategy, the two smaller sticks
are used to achieve the goal, first by adding the larger of the two as many
times as possible without exceeding the goal, and then continuing with
the smaller one. In the overshoot strategy the stick that is larger than the
goal is selected first, and then the two smaller sticks are subtracted from
that stick in a manner similar to the undershoot strategy until the goal is
reached. In the earlier example, both undershoot and overshoot lead to the
goal. In almost all of the trials in the experiment, only one of the two led
to the goal, whereas the other just missed it. For example the goal might
be 101, and the building sticks 10, 155 and 22. The solution can be reached
through overshoot (155 — 22 — 22 — 10), but not through undershoot.
Although there are only two distinct strategies, they can be chosen for
different reasons. One can prefer to always use overshoot or undershoot,
but another possibility is to let the choice depend upon which initial step
gets you closer to the goal, thereby following a hill-climbing heuristic. For
example, in the case of the problem with 15 — 250 — 55 sticks and a goal of
125, the 55 stick brings one much closer to the goal than 250. In the problem
with 155 —22 - 10 sticks and a goal of 101, the 155 stick is closer to the goal.
The solid line in Figure 2.2 shows the result of one of Lovett’s experi-
ments. In Problems 1 and 15, both undershoot and overshoot will lead to the

40 Niels Taatgen, Christian Lebiere, and John Anderson

goal, in Problems 2 to 8 and 12 to 14 only overshoot succeeds, and in prob-
lems 9 to 11 only undershoot succeeds. The data points indicate the percent-
age of participants that tried overshoot first. The arrows on the data points
indicate which strategy a hill-climbing approach (i.e. the selection first of
the stick closest to the goal stick) would favor: an arrow down means un-
dershoot and an arrow up means overshoot. A double arrow indicates that
there is no clear difference. The figure clearly shows that up to Problem 6,
participants tend to follow a hill-climbing strategy. For example on Prob-
lem 5 the arrow points up, meaning overshoot is favored by hill-climbing,
and over 80% of the participants select overshoot. By Problem 7 they have
discovered that up to then, the only strategy that works is overshoot, so
they start using it all the time. However, by Problem 9 overshoot is no
longer successful, and participants adapt their strategy choice almost im-
mediately. The same is true for Problems 12 to 14, where overshoot is once
more the successful strategy.

The basis for Lovett’s model consists of four competing production rules:

1. Always choose overshoot.

2. Always choose undershoot.

3. Decide for overshoot when the large stick clearly brings you closer
to the goal than the middle stick.

4. Decide for undershoot when the middle stick clearly brings you
closer to the goal than the large stick.

Initially, Rules 3 and 4 were given a slightly higher utility value than
Rules 1 and 2, indicating an initial preference for a hill-climbing strategy.
However, once the model starts interacting with the experiment, it ad-
justs its utility values according to experience. The dotted line in the figure
shows the model’s predictions. By Problem 7, Rule 4 (decide to undershoot)
has sufficiently dropped in utility to allow Rule 1 (always overshoot) to
win the competition and select overshoot despite the fact that undershoot
brings you closer to the goal. In a similar fashion the model adjusts its
behavior according to the successes or failures of the four rules later in the
experiment.

5 INDIVIDUAL DIFFERENCES

Cognitive models have the potential to go beyond modeling averages by
having models that exhibit variability in behavior, or even by fitting mod-
els to individual participants. Individual differences can be explored at
many levels, including knowledge and strategy variations, but up to now
the variation of global architectural parameters has mainly been explored,
more specifically working memory capacity. ACT-R has no separate work-
ing memory, but the effects of a limited capacity for unrelated elements
can be simulated by decay and interference in declarative memory. Lovett,

Modeling Paradigms in ACT-R 41

Reder and Lebiere (1999) found that individual differences in working
memory capacity can be modeled by varying one ACT-R parameter: W,
which controls the amount of spreading activation from the goal. To prop-
erly explain this, reconsider the activation equation:

A; = B; + Z W;S;i Activation Equation
j

As has been related earlier, the S;; parameters represent the strengths of
association between chunks. They are set to S — In(fan;) where fan; is
the number of chunks associated to chunk j. In many applications S is
estimated to be about 2. The Wjs reflect the attentional weighting of the
elements that are part of the current goal, and are set to W/n where n
is the number of elements in the current goal, and W is a global ACT-R
parameter that is by default set to 1. Lovett et al. (1999) explore a variation
of W in a model of the modified digit span (MODS) task. In this task,
participants had to read aloud sequences of characters made up of letters
and digits. After the reading phase they had to recall the digits in the
sequence. The number of digits that had to be recalled varied between 3
and 6. The characters were presented at a pace that made it very hard for
the participants to do rehearsal. Figure 2.3 shows the performance curves
of three of the participants and makes it clear that there are large individual
differences. The model of the task is very simple: during the study phase
the digits are stored in declarative memory. In the recall phase, the digits
have to be retrieved from memory. The probability of success depends
on the level of activation (see the Probability of Retrieval Equation on
p- 34). To model individuals, Lovett et al. varied the W parameter to match
each of the individual performance profiles: a higher W corresponds with
a higher activation, and therefore with a higher probability of recall. The
figure shows three examples of this, fitting the data (the model is the dotted
line) with values of W of 0.7, 1.0 and 1.1. The model matches not only the
aggregate performance level but the detailed recall pattern as well.

Apart from the W parameter there are other parameters in ACT-R that
canaccount for individual differences. For example, Taatgen (2002) showed
that W, the speed of production rule learning, and the psycho-motor speed
correlate with performance at different stages of the learning process.

6 PERCEPTUAL AND MOTOR PROCESSES

Each of the previous three modeling paradigms seeks to constrain the cog-
nitive theory, either by learning or by capacity limitations. Another source
of constraints is interaction with the outside world. As has already been
shown in Figure 2.1, ACT-R has several modules that communicate with
the outside world. These modules are adapted from the EPIC cognitive ar-
chitecture developed by Meyer and Kieras (1997). The approach involves

42 Niels Taatgen, Christian Lebiere, and John Anderson

Subject 221 W=0.7 Subject 211 W=1.0
1 1
5 08 —&— Data 2 0.8 —@—Data |
e — — Model @ \§ —— =—Model
o]
© 0.6 © 0.6
§ § N\
‘g‘_ 0.4 ‘g'_ 0.4 N
o N 3 N
* 0.2 & 02
\—‘
0 _ — - 0 |
3 4 5 6 3 4 5 6
Memory set size Memory set size
Subject 203 W=1.1
1
% 0.8 —— Data
g = == \odel
8 06
5
5 04 N
% AN
& 02 \;
0
3 4 5 6

Memory set size

FIGURE 2.3. Proportion of correct recall of the complete list for different list lengths
from three participants on the MODS task with model predictions, adapted from
Daily et al. (1999).

modeling, in approximate form, the basic timing behavior of the percep-
tual and motor systems, the output of the perceptual systems and the input
to the motor system.

6.1 An Example of Perceptual Modules in Parallel

The ACT-R model described by Byrne and Anderson (2001) for the
Schumacher et al. (1997; also reported in Schumacher et al., 2001) experi-
ment is a useful illustration of how the perceptual-motor modules work to-
gether. It involves interleaving multiple perceptual-motor threads and has
little cognition to complicate the exposition. The experiment itself is inter-
esting because it is an instance of perfect time-sharing. It involved two sim-
ple choice reaction time tasks: 3-choice (low-middle-high) tone discrimina-
tion with a vocal response and 3-choice (left-middle-right) visual position

Modeling Paradigms in ACT-R 43

Speech Say
word
Encode
Sound Aural E:ﬁ:::e
location
Perceive
j Choose
Rules aural &] woed
1 choose key
. Encode
Visual Visual
location
Motor Press key
—
50 ms
Time >

FIGURE 2.4. Timeline of how the model performs the Schumacher et al. (1997) task.

discrimination with a manual response. Both of these tasks are simple
and can be completed rapidly by experimental participants. Schumacher
et al. (1997) had participants train on these two tasks separately, and they
reached average response times of 445 ms for the tone discrimination task
and 279 ms for the location discrimination task. Participants were then
asked to perform the two tasks together with simultaneous stimulus pre-
sentation and they were encouraged to overlap processing of the two stim-
uli. In the dual-task condition, they experienced virtually no dual-task
interference — 283 ms average response time for the visual-manual task
and 456 ms average response time for the auditory-vocal task.

Byrne and Anderson (2001) constructed an ACT-R model of the two
tasks and the dual-task that makes use of the perceptual and motor mod-
ules. A schedule chart for the dual-task model is presented in Figure 2.4.
Consider the visual-motor task first. There is a quick 50 ms detection of
the visual position (which does not require object identification), a 50 ms
production execution to request the action, followed by the preparation
and execution of the motor action. With respect to the auditory-vocal task,
there is first the detection of the tone (which takes longer than detec-
tion of visual position), then a production executes requesting the speech
and then there is a longer but analogous process of executing the speech.

44 Niels Taatgen, Christian Lebiere, and John Anderson

According to the ACT-R model, there is nearly perfect time sharing between
the two tasks because the demands on the central production system are
offset in time.

7 SPECIALIZATION OF TASK-INDEPENDENT
COGNITIVE STRATEGIES

Production system models are often criticized for the fact that they have
all the task-relevant strategies already encoded into their set of produc-
tion rules, whereas in reality people first have to construct a representation
of the task. For example, in the Byrne and Anderson model of perfect
dual-tasking the relevant production rules have to be learned first (but
see Anderson, Taatgen & Byrne in press for a model that learns the rules).
Indeed, participants can achieve perfect dual-tasking only after several
days of training. Another goal of rule learning is to generalize from exam-
ples. In the Sugar Factory example discussed earlier, generalization was
based on single examples. In many other learning situations one can capi-
talize on regularities found in multiple examples. These goals are achieved
in ACT-R by a combination of production compilation, a mechanism that
learns new rules, and general cognitive strategies.

Production compilation (Taatgen & Anderson, 2002) learns new rules
by combining two existing rules that fire in sequence into one new rule. If
the first of the two rules makes a request to declarative memory the result
of which is used by the second rule, then the retrieved chunk is substi-
tuted into the new rule, effectively eliminating the retrieval. By itself, this
mechanism only produces more efficient and specialized representations
of knowledge that is already available. When the production rules that are
compiled are a general cognitive strategy, however, the resulting rules, al-
though specializations of the general strategy, nevertheless generalize the
specific experience. An example of this is learning the regular past tense
rule in English (Taatgen & Anderson, 2002). A straightforward strategy for
finding past tense is to try to apply instance retrieval with the following
rule:

Retrieve-past-tense
IF the goal is to find the past tense of a word word
THEN issue a request to declarative memory for the past tense of word

If this rule finds the past tense of the word, then a second rule uses it as the
answer. The interesting case is when declarative memory does not produce
the requested past tense, but (through partial matching), a different past
tense. In that case we can apply an analogy strategy: find a pattern in the
retrieved example and apply it to the current word. Suppose the retrieved

Modeling Paradigms in ACT-R 45

example is a regular verb, then we can apply the pattern to our goal with
a rule like this:

Analogy-find-pattern

IF the goal is to find the past tense of word word1

AND the retrieval buffer contains past tense word2-suffix of word2
THEN set the answer to word1-suffix

Combining the two rules while substituting the retrieved word produces
the regular rule:

Learned-rule
IF the goal is to find the past tense of a word word
THEN set the answer to word-ed

In this example the general cognitive strategy of analogy is compiled into a
task-specific rule that generalizes a regular example. Other strategies that
have been used in combination with production compilation are search
for differences (van Rijn et al., 2003) and interpretation of instructions
(Anderson et al., 2004; Taatgen & Lee, 2003).

A more elaborate illustration of production compilation is based on a
simplified Air Traffic Control task (KA-ATC; Ackerman, 1988). The model
of the task is explained in detail in Taatgen (2002) and Taatgen and Lee
(2003). In this task, participants direct traffic by choosing a plane that is
waiting to land and designating the runway on which the plane should
land. There are four runways, the use of which is restricted by rules that
relate to the length of the runway, the current weather, and the type of
plane that is to be landed. For example, a DC-10 can be landed on a short
runway only if the runway is not icy and the wind is below 40 knots.
Although participants receive an extended instruction, they tend to forget
some rules—especially the more complicated ones regarding weather, plane
type, and runway length. The goal of the model is to capture the learning in
this task by predicting the improvement in performance of the participants
at both a global level and at the level of individual keystrokes.

An example of a production rule from the air traffic control task is the
following:

Expert-ATC-rule

IF The goal is to land a plane and a plane has been selected that can
be landed on the short runway (match of goal buffer)

AND you are currently looking at the short runway and it is not occu-
pied (match of visual buffer)

AND therighthand is not used at this moment (match of manual buffer)

THEN note that we are moving to the short runway (change to goal
buffer)

46 Niels Taatgen, Christian Lebiere, and John Anderson

AND push the arrow-down key (change to manual-buffer)
AND move attention to the weather information (change to visual
buffer)

This rule reflects knowledge an expert might use at the stage in which a
plane has been selected that has to be directed to the short runway. After
checking whether the short runway is available, the rule issues the first
motor command and also initiates an attentional shift to check the weather,
information that might be needed for landing the next plane.

Although this example rule is very efficient, it is also highly task-specific;
rules like this have to be learned in the process of acquiring the skill. For
novices, the model assumes that all the task-specific knowledge needed
about air traffic control is present in declarative memory, having been put
there by the instructions given to participants. This knowledge has a low
activation because it is new, and might have gaps in it in places where
the participant did not properly memorize or understand the instructions.
The production rules interpret these instructions and carry them out. Two
examples of interpretive rules are these:

Get-next-instruction-rule

IF the goal is to do a certain task and you have just done a certain
step (goal buffer)

THEN request the instruction for the next step for this task (retrieval
buffer)

Carry-out-a-push-key-rule

IF the goal is to do a certain task (goal buffer)

AND the instruction is to push a certain key (retrieval buffer)
AND theright hand is available (manual buffer)

THEN note that the instruction is carried out (goal buffer)
AND push the key (manual buffer)

A characteristic of interpreting instructions is that it results in behavior that
is much slower than that of experts: Retrieving the instructions takes time,
and during this time not much else happens. Also, parts of the instructions
might be forgotten or misinterpreted, leading to even greater time loss.
In such cases, the model reverts to even more general strategies, such as
retrieving past experiences from memory:

Decide-retrieve-memory-rule

IF you have to make a certain decision in the current goal (goal
buffer)

THEN try to recall an experience that is similar to your current goal
(retrieval buffer)

Modeling Paradigms in ACT-R 47

Decide-on-experience-rule

IF you have to make a certain decision in the current goal (goal
buffer)

AND you have retrieved a similar experience that went well (retrieval
buffer)

THEN make the same decision for the current goal (goal buffer)

This experience-based retrieval strategy, which retrieves the experience
with the highest activation from declarative memory, is based on the as-
sumption that experiences with a high activation are potentially the most
relevant in the current situation. The transition from novice to expert is
modeled by production compilation. This mechanism again takes two ex-
isting rules that have been used in sequence and combines them into one
rule, given that there are no buffer conflicts (for example, as would be
the case when both rules specify using the right hand). For example, the
two rules that retrieve an instruction and push a key, together with the in-
struction to press “enter” when the arrow points to the right plane during
landing, would produce the following rule:

Learned-enter-rule

IF the goal is toland a plane and your arrow points to the right plane
(goal buffer)

AND the right hand is available (manual buffer)

THEN note that the instruction is carried out (goal buffer)

AND push enter (manual buffer)

A rule that retrieves and uses old experiences can also be the source for
production compilation. For example, in a situation in which the plane
to be landed is a DC-10, the runway is dry, and a previous example in
which such a landing was successful on the short runway is retrieved, the
following rule would be produced:

Learned-DC-10-rule

IF you have to decide on a runway and the plane is a DC-10 and the
runway is dry (goal buffer)

THEN decide to take the short runway (goal buffer)

New rules have to be recreated a number of times before they can com-
pete with the parent rule, but once they are established they can be the
source for even faster rules. Eventually the model will acquire a rule set
that performs like an expert. Comparisons with data from experiments by
Ackerman (1988; see Taatgen & Lee, 2003) show that the model predicts
the overall performance increase (in terms of number of planes landed)
and the individual subtasks (e.g., how much time is taken to land a sin-
gle plane) very well. The model also does reasonably well at the level of

48 Niels Taatgen, Christian Lebiere, and John Anderson

Overall performance

70
60
§ 50
g 40 -
o ; — — —Model
@ 30 // —a—Data
K
o 20
10
0
1 2 3 4 5 6 7 8 9 10
Trial
Landing unit task
14
8 12
@ TR — — -Model
QE, 10 —a—Data
s 8 \
[~N
S 6 \-_\—‘x"‘ﬁ-ﬁ
@
E_ 4
8 2
0

Trial

FIGURE 2.5. Numbers of planes landed and landing completion times for trials 1 to
10, data and model predictions.

individual keystrokes. As an illustration, Figure 2.5 shows the actual and
predicted number of planes that are landed in a 10-minute trial and the
average time to land a plane.

8 WHICH PARADIGM FOR WHAT PROBLEM?

This chapter offers five modeling paradigms that are used frequently by
ACT-R modelers. This enumeration is by no means exhaustive nor ex-
clusive: there are models that use other methods, and there are models
that use multiple modeling paradigms. The model of the Air Traffic Con-
trol task, for example, uses instance learning, perceptual and motor con-
straints, and has been used to explore individual differences. Neverthe-
less modeling paradigms can be guidelines and sources of inspiration for
setting up a model for a new task. We will start by contrasting the three
learning paradigms: utility learning, instance learning and production rule
learning.

Modeling Paradigms in ACT-R 49

Utility learning is a useful paradigm in tasks where the possible strate-
gies are relatively clear, and where it can be assumed that people already
have some sort of procedural representation of these strategies. When
choosing this paradigm it is important to carefully think about how to
define the set of strategies. For example, in the Building Sticks Task it is not
enough to just have undershoot and overshoot as strategies. To model the
participants’ behavior, a third strategy, hill-climbing, is necessary. Utility
learning can also play a role in models where strategies emerge. In the
model of the past tense, for example, the learned regular rule eventually
has a lower utility than retrieval of instances, explaining why it is used
only if retrieval fails.

Instance learning is useful in situations where the underlying structure
is unclear or absent. In alphabet arithmetic, there is no structure in the
individual additions, so they have to be learned individually. In the Sugar
Factory task there is an underlying rule, but it is unknown to the partici-
pants, and hard to derive on the basis of the behavior of the system. It
is therefore suitable for tasks normally associated with implicit learning
(Wallach & Lebiere, 2003). Instance learning allows for limited general-
ization, especially when used in combination with partial matching. For
generalization to work, though, it must be possible to retrieve the appro-
priate instance on the basis of activation. Such an instance can be found
on the basis of similarity (instances similar to the current goal are useful)
or frequency (instances that are retrieved or encountered often are useful).
Instance learning cannot take utility into account directly, because a single
production rule is responsible for the retrieval process (though see Instance
Based Learning Theory — Gonzalez, Lerch & Lebiere, 2003). Instance learn-
ing is also less suitable for cases where extrapolation from the examples is
needed: if the goal is too far outside the space spanned by the instances,
the instance retrieved will probably not be very useful. In constructing an
instance-based learning model it is important to carefully consider what
should be stored in an instance. In some models a sequence of the last few
actions is stored in an instance instead of just the last action (for example,
in a model of sequence learning by Lebiere & Wallach, 2001).

Production rule learning can unify the two approaches: rules can be
learned out of the instance retrieval process, and these learned rules com-
pete on the basis of utility. To learn interesting rules, some analogy-like
process is necessary to use a retrieved instance that is not identical to the
goal.

Production rule learning also enables learning from instructions, and
therefore supplies the most accurate and complete form of modeling in
experimental situations where a participant is supplied with instructions
for a task and is asked to perform it. Models using this approach are more
complicated; so with any task it is worthwhile to investigate whether one
of the more simple paradigms is sufficient.

50 Niels Taatgen, Christian Lebiere, and John Anderson

Modeling perceptual and motor processes also makes a model more
complicated, but it may substantially increase the precision of its predic-
tions. Apart from providing precise predictions of the timing of perceptual
and motor processes, the approach also acknowledges that cognition is not
just a process in the head, but also an interaction with the outside world.
For example, it might not be necessary to store information on the screen
in the goal, as long as it is available in the visual buffer.

Although most ACT-R models of individual differences have focused on
working memory capacity, it is nevertheless interesting to explore variabil-
ity of behavior in a broader sense in cognitive models. When modeling be-
havior that is highly variable it is worthwhile to investigate whether noise
in the model is sufficient to explain it (e.g., the AMBR model of Lebiere,
Anderson & Bothell, 2001). Varying parameters like W can provide for ad-
ditional variability. But individual differences in task performance can also
be due to the fact that different individuals employ different strategies. De-
termining the precise content of an individual’s knowledge and strategies
is an arduous task, but programs have been proposed to meet it (Gobet &
Ritter, 2000).

9 SUMMARY

The focus of the example models in this chapter has been the modeling
of human performance data, and not really on modeling agents in multi-
agent systems (e.g., Chapter 6). The main reasons are that this is ACT-R’s
research focus and that most modeling projects involve the development of
cognitive models that produce predictions that are matched to human data.
Nevertheless ACT-R can be used to program agents that exhibit human-
like behavior or serve as a theoretical basis to allow agents to construct a
model of their user. The five modeling paradigms discussed can serve as
basic tools or templates for such models. Examples of this can be found
in Chapter 5, where ACT-R is used to play two-player games. In these
games it is important to predict the actions of the opponent in order to
anticipate them. Instance learning can be used to keep track of behav-
ioral patterns in the opponent’s moves, enabling prediction of the most
likely next move. Competing strategies may also be important in game
playing: there may be multiple strategies that can be brought to bear on
a game, and their utilities may shift if the opponent also adjusts his/her
strategies.

Perceptual and motor constraints can be particularly important for
agents immersed in virtual environments meant to recreate the sen-
sory constraints of the real world, such as in first-person shooter games.
Whether they are all used in a given model or not, all aspects of human
cognition are important in some respect in producing human-like agents.

Modeling Paradigms in ACT-R 51

ACKNOWLEDGMENTS

This research was supported by NASA grant NCC2-1226, ONR grant
N00014-96-01491 and NWO grant 634.000.002.

References

Ackerman, P. L. (1988). Determinants of individual differences during skill ac-
quisition: Cognitive abilities and information processing. Journal of Experimental
Psychology: General, 117(3), 288-318.

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard
University Press.

Anderson, J. R. & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ:
Erlbaum.

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., & Qin, Y. (2004).
An integrated theory of mind. Psychological Review, 111(4), 1036-1060.

Anderson,]. R, Fincham, J. M., & Douglass, S. (1999). Practice and retention: A uni-
fying analysis. Journal of Experimental Psychology: Learning, Memory, and Cognition,
25, 1120-1136.

Anderson, J. R., & Schooler, L. J. (1991). Reflections of the environment in memory.
Psychological Science, 2, 396—408.

Anderson, J. R, Taatgen, N. A., & Byrne, M. D. (in press). Learning to achieve
perfect time sharing: Architectural implications of Hazeltine, Teague, & Ivry
(2002). Journal of Experimental Psychology: Human Perception and Performance.

Berry, D. C., & Broadbent, D. E. (1984). On the relationship between task perfor-
mance and associated verbalizable knowledge. Quarterly Journal of Experimental
Psychology, 36A, 209-231.

Byrne, M. D., & Anderson, J. R. (2001). Serial modules in parallel: The psycholog-
ical refractory period and perfect time-sharing. Psychological Review, 108, 847—
869.

Daily, L. Z., Lovett, M. C., & Reder. L. M. (1999). A computational model of indi-
vidual differences in working memory capacity. Cognitive Science, 25, 315-353.
Gobet, F,, & Ritter, F. E. (2000). Individual data analysis and unified theories of cog-
nition: A methodological proposal. Proceedings of the 3rd International Conference
on Cognitive Modelling (pp. 150-157). Veenendaal, The Netherlands: Universal

Press.

Gonzalez, C., Lerch, J. F,, & Lebiere, C. (2003). Instance-based learning in dynamic
decision making. Cognitive Science, 27(4), 591-635.

Lebiere, C., Anderson, J. R., & Bothell, D. (2001). Multi-tasking and cognitive work-
load in an ACT-R model of a simplified air traffic control task. Proceedings of the
10th Conference on Computer Generated Forces and Behavior Representation. Norfolk,
VA.

Lebiere, C., & Wallach, D. (2001). Sequence learning in the ACT-R cognitive archi-
tecture: Empirical analysis of a hybrid model. In R. Sun & C. L. Gilles (Eds.).,
Sequence learning: Paradigms, algorithms, and applications (pp. 188-212). Berlin:
Spinger Lecture Notes in Computer Science.

52 Niels Taatgen, Christian Lebiere, and John Anderson

Logan, G. D. (1988). Toward an instance theory of automatization. Psychological
Review, 95, 492-527.

Lovett, M. C., & Anderson, J. R. (1996). History of success and current context in
problem solving: Combined influences on operator selection. Cognitive Psychol-
ogy, 31, 168-217.

Lovett, M. C., Reder, L. M., & Lebiere, C. (1999). Modeling working memory in
a unified architecture: An ACT-R perspective. In A. Miyake, & P. Shah (Eds.),
Models of working memory: Mechanisms of active maintenance and executive long-term
memory activation. New York: Cambridge University Press.

Meyer, D. E., & Kieras, D. E. (1997). A computational theory of executive cognitive
processes and multiple-task performance. Part 1. Basic mechanisms. Psychological
Review, 104, 2-65.

Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University
Press.

Schumacher, E. H., Seymour, T. L., Glass, J. M., Lauber, E.]., Kieras, D. E., & Meyer,
D. E. (1997). Virtually perfect time sharing in dual-task performance. Paper presented
at the 38th annual meeting of the Psychonomic Society, Philadelphia, PA.

Schumacher, E. H., Seymour, T. L., Glass, J. M., Fencsik, D. E., Lauber, E.]., Kieras,
D. E,, et al. (2001). Virtually perfect time sharing in dual-task performance:
Uncorking the central cognitive bottleneck. Psychological Science, 12(2), 101-108.

Taatgen, N. A. (2002). A model of individual differences in skill acquisition in the
Kanfer-Ackerman Air Traffic Control Task. Cognitive Systems Research, 3(1), 103—
112.

Taatgen, N. A., & Anderson, J. R. (2002). Why do children learn to say “broke”? A
model of learning the past tense without feedback. Cognition, 86(2), 123-155.

Taatgen, N. A., & Lee, F. J. (2003). Production compilation: A simple mechanism to
model complex skill acquisition. Human Factors, 45(1), 61-76.

Taatgen, N. A., & Wallach, D. (2002). Whether skill acquisition is rule or instance
based is determined by the structure of the task. Cognitive Science Quarterly, 2(2),
163-204.

van Rijn, H., van Someren, M., & van der Maas, H. (2003). Modeling developmental
transitions on the balance scale task. Cognitive Science, 27(2), 227-257.

Zbrodoff, N. J. (1995). Why is 9 + 7 harder than 2 + 3? Strength and interference
as explanations of the problem-size effect. Memory & Cognition, 23(6), 689-700.

3

Considering Soar as an Agent Architecture

Robert E. Wray and Randolph M. Jones

1 INTRODUCTION

The Soar architecture was created to explore the requirements for gen-
eral intelligence and to demonstrate general intelligent behavior (Laird,
Newell, & Rosenbloom, 1987; Laird & Rosenbloom, 1995; Newell, 1990).
Asa platform for developing intelligent systems, Soar has been used across
a wide spectrum of domains and applications, including expert systems
(Rosenbloom, Laird, McDermott, Newell, & Orciuch, 1985; Washington &
Rosenbloom, 1993), intelligent control (Laird, Yager, Hucka, & Tuck, 1991;
Pearson, Huffman, Willis, Laird, & Jones, 1993), natural language (Lehman,
Dyke, & Rubinoff, 1995; Lehman, Lewis, & Newell, 1998), and executable
models of human behavior for simulation systems (Jones et al., 1999; Wray,
Laird, Nuxoll, Stokes, & Kerfoot, 2004). Soar is also used to explore the
integration of learning and performance, including concept learning in
conjunction with performance (Chong & Wray, to appear; Miller & Laird,
1996), learning by instruction (Huffman & Laird, 1995), learning to correct
errors in performance knowledge (Pearson & Laird, 1998), and episodic
learning (Altmann & John, 1999; Nuxoll & Laird, 2004).

This chapter will introduce Soar as a platform for the development of
intelligent systems (see also Chapters 2 and 4). Soar can be viewed as a
theory of general intelligence, as a theory of human cognition, as an agent
architecture, and as a programming language. This chapter reviews the the-
ory underlying Soar but considers Soar primarily as an agent architecture.
The architecture point-of-view is useful because Soar integrates a number
of different algorithms common in artificial intelligence, demonstrating
how they can be used together to achieve general intelligent behavior. This
view of Soar also facilitates comparisons to other agent approaches, such as
Beliefs-Desires-Intentions (BDI) (Bratman, 1987; Wooldridge, 2000), and to
rule-based systems, two approaches with which Soar shares many features.
The Appendix provides pointers to papers, tutorials, and other resources

53

54 Robert E. Wray and Randolph M. Jones

interested readers may access to learn the details of Soar at the program-
ming level.

The Soar architecture grew out of the study of human problem solving.
Soar is often used as a tool for the creation of fine-grained cognitive mod-
els that detail and predict aspects of human behavior in the performance
of a task. Newell (1990) has taken this effort as far as proposing Soar as a
candidate unified theory of cognition (UTC) —a theory of human cognition
that spans and unifies the many observed regularities in human behavior.
Evaluating Soar as a UTC remains an active area of work. An example is
Chong’s development of a hybrid architecture that incorporates Elements
of EPIC, ACT-R, and Soar (EASE) (Chong, 2003). However, Soar is increas-
ingly used as a tool useful for building intelligent agents, especially agents
that individually encode significant knowledge and capability. Obviously,
these agents could behave in ways comparable to humans in particular
application domains, but the focus is not limited to human behavior rep-
resentations. This chapter therefore describes the general commitments of
the Soar architecture as a platform for intelligent systems (human and/or
otherwise) and the application of these principles in the development of
intelligent, individual and multiagent systems.

2 SOAR AS A GENERAL THEORY OF INTELLIGENCE

As an intelligent agent architecture, the theoretical principles motivating
Soar’s design are important for two reasons. First, the theory provides
insight in understanding Soar as an implementation platform, especially
in terms of agent design decisions. The processes and representations of
the Soar architecture are derived directly from the theory. Second, just
like any software architecture, Soar biases agent implementations towards
particular kinds of solutions. Allen Newell referred to this as “listening to
the architecture” (Newell, 1990). Understanding the theory makes it easier
to understand these biases in approach and implementation.

2.1 The Knowledge Level, Symbol Level, and Architecture

An agent can be described at three distinct levels: the knowledge level,
the symbol level, and the architecture level (Newell, 1990). The knowledge
level refers to an external, descriptive view of an agent (Newell, 1982).
The knowledge level assumes the principle of rationality, which says that
if an agent has some knowledge that is relevant to the situation, it will
bring it to bear. The knowledge level is a level for analysis; one observes
the actions of an agent and makes assumptions about the knowledge it
has (and does not) based on the observations. However, that knowledge
must be encoded in some form. Soar assumes knowledge is encoded in
a symbol system, which provides the means for universal computation

Considering Soar as an Agent Architecture 55

(Newell, 1980a, 1990). The symbol level is the level in which the “knowl-
edge” of a Soar agent (or any other agent using a symbolic representa-
tion) is represented. Although it is common to think of an agent as having
knowledge, in reality every system (human or otherwise) has only a rep-
resentation of knowledge. The knowledge representations of the symbol
level must be accessed, remembered, constructed, acted on, etc. before an
observer can ascribe knowledge to the agent. The fixed mechanisms and
representations that are used to realize the symbol system comprise the
agent architecture.

An architecture enables the distinct separation of content (the agent pro-
gram) from its processing substrate. Thus, the primary difference in Soar
applications, from simple expert systems, to natural language interpreta-
tion, to real-time models of human behavior, consists of differences in the
encoding of knowledge for these applications. Because Soar (as a symbol
system) provides universal computation, it should be sufficient for any
application requiring intelligent behavior (assuming intelligence can be
captured in computational terms). However, performance efficiency and
the ease with which particular algorithms are encoded and retrieved also
have an impact on the sufficiency of the architecture for producing intelli-
gent behavior in a particular application. When researchers discover that
Soar is unable to produce some desired behavior or that representation
of some behavior is too costly (in terms of performance or solution en-
coding), a search is begun to extend or change the architecture to address
the requirements of the missing capability. Laird and Rosenbloom (1995)
discuss why and how the Soar architecture has evolved since its initial
implementation in the early 1980s.

Finally, although symbol systems may attempt to approximate it, they
will necessarily always fall somewhat short of the perfect rationality of the
knowledge level. One can think of the way in which a system falls short
of the knowledge level as its particular “psychology”; it may not act in
time to appear to have the knowledge, it may use some fixed process for
conflict resolution that leads to a failure to consider some relevant knowl-
edge, etc. One of the fundamental tensions in the development of Soar has
been whether its “psychology” should be minimized as much as possible,
in order to better approximate the knowledge level, or if its limitations
(because every symbol level system will have some limitations) should
attempt to reflect human limitations. Superficially, a single architecture
probably cannot satisfy both constraints. However, one counterargument
is that evolution has provided a good approximation of the knowledge
level in human symbol processing, and taking advantage of that evolu-
tionary design process, by attempting to replicate it, will result in better
symbol systems. For example, a memory decay mechanism for Soar was
resisted for a long time because it appeared to be an artifact of the human
symbol system and provided no functional advantage. However, recent

56 Robert E. Wray and Randolph M. Jones

research has suggested that the functional role of decay is to reduce in-
terference (Altmann & Gray, 2002) and a recent Soar-based architecture,
EASE, incorporates a decay mechanism (Chong, 2003).

2.2 Problem Space Computational Model

The Problem Space Computational Model (PSCM) (Newell, Yost, Laird,
Rosenbloom, & Altmann, 1991) defines the entities and operations with
which Soar performs computations. Soar assumes that any problem can
be formulated as a problem space (Newell, 1980b). A problem space is de-
fined as a set of (possible) states and a set of operators, which individually
transform a particular state within the problem space to another state in
the set. There is usually an initial state (which may describe some set of
states in the problem space) and a desired state, or goal. Operators are
iteratively selected and applied in an attempt to reach the goal state. The
series of steps from the initial state to a desired state forms the solution or
behavior path.

Figure 3.1 illustrates a problem space for the well-known blocks world
domain. The states consist of the arrangement of blocks on the table and
on each other. The agent perceives the current configuration of blocks and
monitors a specified goal configuration. Assume this problem space in-
cludes only two operators, stack and put-on-table. The diagram highlights
a solution path from the initial state to the goal state. One important con-
tribution of the PSCM, which is not often found in other formulations of
problem spaces, is a distinction between selection of an operator and its
application. Under the PSCM, knowing that some operation can be applied
in some situation is distinct from knowing how to execute that operation.
The knowledge representations of Soar reflect this distinction by requiring
independent representations of these separate classes of knowledge.

An individual problem space defines one view of a particular problem
and a single problem space may be insufficient for completely solving a
problem. For example, in Figure 3.1, the problem space provides enough
information to specify the stacking and unstacking of blocks, but it does
not provide any guidance on how to choose between different operations
that may be simultaneously applicable. Similarly, the example ignores how
a robot would actually move in space to accomplish the problem space
operations. Unless stack is a primitive operation of the robot, once the robot
has chosen to stack two blocks, it next has to decide how to perform this task.

When the knowledge represented within the problem space is not suffi-
cient to solve the problem at hand, an impasse is said to have occurred. An
impasse represents a lack of immediately applicable knowledge. An obvi-
ous response to an impasse is to establish a goal to resolve the impasse.
The PSCM specifies that this goal (deciding between potential candidates,
implementing an operator, etc.) should be pursued in another problem

Considering Soar as an Agent Architecture 57

INITIAL STATE

C
B
A

OPERATORS

stack(block-1, block-2)
put-on-table(block)

m
m

A palC} /—J ClA

FIGURE 3.1. Example problem space for the blocks world domain. The solution path
from the initial to the desired state is illustrated with dark arrows.

space. This second problem space is subordinate to the first and imple-
ments some aspect of the original problem space. The initial conditions and
the specific goal are derived from the original problem space. Figure 3.2
illustrates possible implementation problem spaces for a version of the
blocks world where a robot must execute a series of primitive movement
operations in order to stack a block on another.

Every problem space other than the initial (base) problem space is in-
voked to help a parent problem space.! The PSCM defines an ontology of
impasses, detailing all the situations that can stop progress in a problem

! In Soar, the stack of problem spaces is assumed to grow in a downward direction and the
initial problem space is referred to as the “top level space” as well as the base level space.

Jaddub jogou jo uonisod palisap

Jaddub joqou jo uoiisod JusLNd

Jaddub-uado
Jaddub-aso)o
dn-aaow
dn-anow
Jybu-anow
Jal-anow
:siojesadQ

:9)els palisaqg

-8jels |enqiu|

abueyo-o
-10jesado
:assedw

(o0|q)umop-ind
(00jq)dn->jid

3o0|g-uonisod

:siojesadQ

320|q B Jo uoyisod palisap
:8)e)s padisaq
%20|q B Jo uonisod juaiund -
‘Slels |eniu|

[La]

H
v
[a]
B

(¥o0|g)e|qey-uo-jnd

(2-3001q°L-00|g)x0E)S
:siojesadQ

$)20|q Jo uoneinbiyuod palisap
:8je)s pasiseQg

$)00|q jo uoneinbyuod Juauno
‘Slels [eliu|

:aoeds wa|gold

/
I‘. [sainjonus-yo0|g-axeWw
=/l :eoeds wajgoig

58

Considering Soar as an Agent Architecture 59

TABLE 3.1. The Relationship between Impasses in the Parent Problem Space and
Goals in a Child Problem Space.

Object Impasse Description

State No-change No operators appear to be acceptable in the
current state. The goal in the child problem space
is to find an operator to apply in the parent state.

Operator No-change An operator appeared to be applicable in the
current state but selecting it does not result in
changes to the state. The goal in the child
problem space is to implement the operator,
which may include decomposition (as in
Figure 3.2) or correcting problems in the operator
representation in the parent problem space
(Pearson & Laird, 1998).

Operator Tie Two (or more) operators are applicable to the
current state and the parent problem space lacks
knowledge to determine which should be chosen.
The goal in the child problem space is to compare
the options and make a decision about which
options should be preferred.

Operator Conflict Two (or more) operators are applicable to the
current state but the problem space has
conflicting knowledge about which operator to
pursue. The goal in the child problem space is to
resolve the knowledge conflict.

space; common impasse types are shown in Table 3.1. Each impasse pre-
scribes a specific class of subordinate problem space and the states and
operators in this problem space can be structured to solve the particular
impasse. One significant advantage of the PSCM is that implementations of
different domains all share this same ontology of impasses. The PSCM in-
forms agent development by guiding task formulation and termination in
subgoal problem spaces and identifying and discriminating potential prob-
lems in operator selection and application. This type of informed problem
representation is one of the major advantages of developing agents within
general architecture like Soar.

FIGURE 3.2. Implementing elements of a problem space with additional problem
spaces. The initial state in the blocks problem space is defined by the current operator
in the top, structure problem space. Operators in the blocks space pick up and put
down individual blocks. This problem space is then implemented by the gripper
problem space, which moves the gripper in one of four directions, and opens and
closes the robotic hand.

60 Robert E. Wray and Randolph M. Jones

The PSCM is the overarching constraint in Soar architecture research. All
versions of Soar have adhered to it (Laird & Rosenbloom, 1995). Whereas
the high-level nature of the PSCM enables the exploration of many alter-
native implementations, any Soar-based implementation that violated the
PSCM could not be said to be a version of Soar. More strongly, in terms
of Soar as a Lakatosian research program under Sophisticated Method-
ological Falsification (Lakatos, 1970), the PSCM forms the “hard core” of
Soar as a general theory of intelligence. Whether the PSCM is, itself, strong
enough and constraining enough to constitute a falsifiable hypothesis, and
thus a basis for the core assumptions of Soar as a general theory on intel-
ligence, is debatable. It is also unclear if non-PSCM aspects of Soar (e.g.,
parsimony, in the following section) also should be considered among the
core assumptions.

2.3 Parsimony

A continuing thread of Soar research has been to find a sufficient but mini-
mal set of mechanisms that can be used to realize the full range of intelligent
behavior. Soar commits to individual, uniform representations of long-
term and dynamic knowledge representations, a single symbol level learn-
ing mechanism, and the uniform process of behavior execution and prob-
lem solving defined by the PSCM. Introducing multiple representations or
mechanisms for the same function would violate this principle of parsi-
mony, and, until recently, has not been a seriously challenged assumption.

This commitment to parsimony provides a stable system that is rela-
tively easy to learn at the level of the software architecture. However, as
a consequence, Soar defines a sort of low-level machine for implementing
algorithms and representations not directly supported by the architecture.
Soar programs directly refer to architectural elements rather than higher-
level constructs, resulting in a situation akin to an “assembly language”
for intelligent systems. For example, Soar does not directly support the
representation of plans. One can represent plans in Soar, but to do so one
must build them from the lower level representations of the architecture.
Similarly, most work in Soar assumes a single, architectural learning mech-
anism, chunking (Newell, 1990). Additional types of learning must be re-
alized by mapping the learning requirements to chunking and structuring
and formulating agent knowledge within problem spaces to implement
the learning algorithm. This mapping can be onerous in comparison to im-
plementing a learning algorithm in a less constrained environment. More
recently, students in John Laird’s research group have been exploring addi-
tional symbol level learning mechanisms in Soar such as episodic learning
(Nuxoll & Laird, 2004). What impact, if any, these changes will have on the
PSCM, on Soar as a general theory of intelligence, and on Soar as a minimal
set of mechanisms for intelligence is unresolved.

Considering Soar as an Agent Architecture 61

3 THE SOAR ARCHITECTURE

Recall from earlier discussion that an architecture comprises the fixed
mechanisms and knowledge representations of the symbol system. Be-
cause these elements are fixed, they transfer from one domain to an-
other. The number of implemented representations and mechanisms is
as small as possible, as dictated by Soar’s assumption of parsimony. Soar’s
architecture-supported representations, the basic sense-decide-act cycle of
processing, and individual processes that act within the basic control loop
are enumerated in the following sections.

3.1 Architectural Representations

Soar supports three basic representations, productions, asserted memory
objects, and preferences, which are represented in production memory,
blackboard memory, and preference memory, respectively. Soar operators
are composed from these others, and the representation of operators spans
the three memories.

3.1.1 Productions and Production Memory

Soar is a production system. Each production (or rule) is specified by a se-
ries of conditions and a set of actions. Conditions are matched against the
contents of a blackboard memory, and, when all conditions are satisfied,
the rule actions are executed, usually specifying changes to objects on the
blackboard. Figure 3.3 shows a Soar production for the blocks world robot
illustrated in Figure 2.2. The production matches against Soar’s input rep-
resentation (the “input-link”) to determine if a block meets a desired state
in the problem space, represented by the current-goal object. The action of
the production is to create an object that indicates the block is in the de-
sired position. This new object may trigger other productions; for example,

production {structure*elaborate*state*in-position*on-table
(state <s> “problem-space.name make-block-structures
“top-state.io.input-link <il>
“current-goal (“relation on “top <bl> “bottom <t>))
(<il> “on (“top <bl> “bottom <t>)
Atable <t>)
-=>
(<s> “block-in-position <bl>)}
FIGURE 3.3. Example of a Soar production. This production tests if a block (repre-
sented on Soar’s input-link) meets the constraints of a desired state of the structure
problem space, which is that the block is on the table. The desired state is repre-
sented by an object called current-goal. The action of the production is to add a new
object to the blackboard memory, which indicates that the block is in the desired
position.

62 Robert E. Wray and Randolph M. Jones

a production might match against in-desired-position and then explicitly
mark the current-goal object as having been met when the condition is
satisfied.

Productions are often described as “if-then” rules, comparable to the
“case” statements of mainstream programming languages. However, Soar
expresses the conditions and actions of productions in a form of predicate
logic, rather than the propositional logic used in procedural programming
languages. Thus, a production like the one in Figure 3.3 simultaneously
considers all blocks and all current-goals represented on the state. The
match process can generate multiple instantiations of the production, with
variable bindings specific to each match. Thus, in the example, if two
blocks satisfied the current goal description, two instances of the produc-
tion would match. In Soar, both instances would fire in parallel, resulting
in two in-desired-position objects, one for each block.

3.1.2 Assertions and Blackboard Memory

Soar asserts and maintains active memory objects in a blackboard memory,
called the working memory. As the objects expressed on the blackboard
change, they trigger new productions, resulting in further changes to the
blackboard. Unlike many blackboard systems, Soar’s working memory is
highly structured. Working memory is a directed graph, with each object
described by a triple [identifier, attribute, value]. Complex objects can be
created by composing the objects’ triples, as shown in Figure 3.4.

The blackboard is also segmented into state partitions. Soar assigns to
each problem space created in response to an impasse a distinct state object.
Each state partition encapsulates assertions created in the search to resolve
that state’simpasse. Every object in memory can be traced to a specific state.
Soar’s top state also includes an input/output partition, which is divided
into input-link and output-link objects. Individual input and output objects
are represented in the same representation language as other objects. How-
ever, input objects are placed on the input-link by an “input function” that
transforms environmental percepts into the [identifier, attribute, value]
representation required by Soar. An output function interprets objects on
the output-link as commands and attempts to execute them.

3.1.3 Preferences and Preference Memory
The preference data structure expresses preferences between candidate
operators competing for selection. Table 3.2 lists some of the preferences
available in Soar for selecting and comparing operators. Unary preferences
such as “acceptable” and “best” express preferences about a single candi-
date; binary preferences compare one operator to another.

When it is time for Soar to select an operator, a preference semantics pro-
cedure interprets all the preferences to determine if a unique option can be
identified. If no unique choice can be made, Soar generates an impasse; the

Considering Soar as an Agent Architecture 63

SUperstate
—lpe

position-block

ate
4 operator
é‘g—' 559/ Xng_change

Al

1

1

!

1

£ move-robotic-gripper]

J 4 Qé;,e “e((\e. -gripp I
L = @ |
\53} prob em-spac! :
— 1
%rgm‘____ !

2, i

operator(+) Qe '
move-right :

1

FIGURE 3.4. Example of Soar’s blackboard memory. Each object consists of the triple
(identifier, attribute, value) and can be traced to the root state object. Soar automati-
cally creates some objects, like impasses and operators; architecture-created objects
are shown in grey and objects created by productions are shown in black.

impasse type is indicated by the problem in the preferences. For example,
if all candidates are acceptable, but no other preferences are asserted, an
operator-tie impasse will be generated, allowing Soar to initiate a search
for knowledge that indicates which of the candidates should be chosen.
The specific interpretation of preferences is dictated by the preference
semantics procedure, which is detailed in the Soar Users” Manual (Laird
& Congdon, 2004).

64 Robert E. Wray and Randolph M. Jones

TABLE 3.2. Examples of Soar Preferences.

Soar

Representation Name Description

01+ Acceptable Indicates that operator O1 is an acceptable
candidate for selection

o1 > Best Indicates O1 is the “best” candidate

O1 > 02 Better Indicates operator O1 is a better candidate than
operator O2

o1! Require Indicates operator O1 is required for the
(impasse) goal to be achieved

o1 ~ Prohibit Indicates selection of operator O1 will cause the
(impasse) goal to be unable to be achieved

Ol = Indifferent Indicates operator O1 can be chosen randomly
from the set of all candidates with indifferent
preferences.

Bl — Reject Indicates object B1 is not a candidate for selection

Soar stores preferences in a preference memory, which is impenetrable to
productions. Thatis, productions cannot test whether one operator is better
than another, or if an indifferent preference has been asserted for a partic-
ular operator. The exception is the preference that represents whether an
operator should be considered at all. This “acceptable” preference is repre-
sented in Soar’s blackboard memory and thus can be tested by productions.
Testing the acceptable preference allows productions to assert additional
preferences about the acceptable candidate(s).

Preferences are used in Soar programs to distinguish between situations
in which some operation could apply, and when it should apply (it is the
more/most preferable choice). For example, in Figure 3.1, when the top
block is placed on the table, the stack operator could be used to put the
block back on the stack of remaining blocks. A Soar production would
propose the stack operator, as shown in the figure, making it an acceptable
action to take at this point in the problem solving. However, additional
preference productions could be used to prohibit or reject this candidate,
because it undoes a previous step, or because in the current situation,
the block already meets a partial condition of the goal. The advantage
of the preference mechanism is that all the options and constraints on
them do not need to be worked out at design time, but the agent can
make a choice based on its current situation, resulting in least-commitment
execution. Further, because “proposal” and “evaluation” productions are
distinct representations, an agent can learn to change its preferences in
useful ways, without having to modify the representation of operator pre-
or postconditions.

Considering Soar as an Agent Architecture 65

3.1.4 Operators

Soar’s operators are equivalent, conceptually, to operators in state-based
planning systems, such as those based on STRIPS (Fikes & Nilsson,
1971). These operators represent small procedures, specifying precondi-
tions (what must be true for the operator to be activated) and actions (what
the operator does). In Soar the representation of an operator is distributed
across productions, preferences, and memory objects within the architec-
ture. The preconditions of an operator are expressed in one or more pro-
posal productions, which assert an acceptable preference for the operator
into working memory. When an operator is selected (during the execution
of the decision procedure, described below), Soar creates an operator object
in the blackboard, as shown in Figure 3.4. Soar allows each state exactly
one selected operator at any time. Therefore, attempting to create zero or
multiple operator objects will result in an impasse for that state’s prob-
lem space. Once the selected operator is represented in the blackboard, it
can trigger productions that produce the postconditions of the operator,
resulting in operator application. In the blocks world example, this could
mean internally changing the position of the blocks (in a planning task) or
sending output commands to the robot for execution in the environment.

3.2 The Soar Decision Cycle

At a high level, many agent systems can be described by a sense-decide-
act (SDA) cycle, as represented in the left of Figure 3.5. Soar’s general
processing loop, its decision cycle, maps directly to the SDA loop, as shown in
the middle diagram. Individual components of the Soar decision cycle are
termed phases. During the INPUT PHASE, Soar invokes the input function
(as described previously), communicating any changes indicated by the
environment to the agent through the input-link. In the OUTPUT PHASE,
the agent invokes the output function, which examines the output-link

Abstract

Agent

FIGURE 3.5. Common representation of an abstract agent as a cycle of percep-
tion, reasoning, and action (left), a high-level view of Soar’s sense-decide-act loop
(middle), and a more detailed Soar representation (right).

66 Robert E. Wray and Randolph M. Jones

and executes any new commands indicated there. Proprioceptive feedback
about the execution of commands is provided during the INPUT PHASE.

The reasoning within Soar’s decision cycle is focused on the selection
(and application) of operators. Each Soar decision consists of three phases
within the “decide” portion of the SDA loop. During the ELABORATION
PHASE, the agent iteratively fires any productions other than operator
applications that match against the current state, including new input. This
process includes “elaborating” the current state with any derived features
(such as in-desired-position in Figure 3.3), proposing new operators, and
asserting any preferences that evaluate or compare proposed operators.
This phase uses Soar’s reason maintenance system to compute all available
logical entailments (i.e., those provided by specific productions) of the
assertions in the blackboard.

When no further elaboration productions are ready to fire, the decision
cycle is said to have reached quiescence. At this point, the elaboration pro-
cess is guaranteed to have computed the complete entailment of the current
state; any immediately knowledge applicable to the proposal and com-
parison of operators will have been asserted. At quiescence, Soar enters
the DECISION PHASE and invokes the preference semantics procedure
to sort and interpret preferences for operator selection. If a single operator
choice is indicated, Soar adds the operator object to memory and enters the
APPLICATION PHASE. In this phase, any operator application produc-
tions fire, resulting in further changes to the state, including the creation of
output commands. Application productions are similar to elaboration pro-
ductions with two exceptions: their conditions must include a test for the
existence of a selected operator, and any changes they make to the black-
board are persistent. Persistent objects do not get retracted automatically
by Soar’s reason maintenance system. They must be deliberately removed
by another operator. If there is not a unique choice for an operator, Soar
creates a new state object in response to the impasse, so that the agent can
undertake a deliberate search for knowledge that will resolve the impasse
and thus enable further progress in the original state.

Soar’s decision cycle conceptually is divided into these five distinct
phases, as shown in the rightmost diagram of Figure 3.5. In this abstract
form, Soar’s decision cycle is roughly equivalent to the reasoning loop of
BDI agents (Wooldridge, 2000). The BDI control loop consists of polling the
world for new input (corresponding to Soar’s INPUT PHASE), updating
the world model (ELABORATION PHASE), generating desires (roughly
comparable to the proposal of operators in the ELABORATION PHASE),
selecting an intention from the desires (DECISION PHASE), and then
choosing and acting on a plan (APPLICATION PHASE).

Soar does not directly support a plan representation. Operators are used
to execute individual actions (corresponding to plan steps in BDI) as well
as to represent the plan itself (i.e., hierarchical decomposition via problem

Considering Soar as an Agent Architecture 67

spaces, as in Figure 3.2). Another important difference between Soar and
BDI at the level of the control loop is that the preference semantics for
making decisions is fixed in Soar, whereas in BDI, decision and recon-
sideration can be customized for decisions about specific types of objects
(e.g., intentions vs. plans). Thus, when using Soar, one must map alternate
kinds of decision strategies (e.g., decision theory) to Soar preferences. This
is another example where Soar programming can seem like assembly lan-
guage. However, because the basic decision process is uniform and fixed, it
is reasonably straightforward both to implement and to explore a range of
decision strategies and also to cache specific decisions using Soar’s built-
in learning mechanism. This uniformity provides structure for additional
reuse across Soar models.

3.3 Architectural Processes

Within the decision cycle, Soar implements and integrates a number of
influential ideas and algorithms from artificial intelligence. In particular,
Soar is a production system that performs operator-based reasoning within
problem spaces. The mix of productions and operators is not unique;
most rule-based systems can also be seen as operator-like systems. The
main difference in Soar is that individual rules do not map to individ-
ual operators; rather, as outlined above, a Soar operator is implemented
by a collection of rules that individually perform one of the PSCM func-
tions of proposal, comparison, or application. The following introduces
algorithms within the decision cycle, focusing on highlighting the dif-
ferences between Soar and traditional rule-based systems (RBS) such as
OPS5, CLIPS, and JESS, and production system cognitive architectures,
such as ACT-R (Anderson & Lebiere, 1998, see also Chapter 1 this volume)
and CLARION (see Chapter 4 this volume). Examples will be presented
from both the blocks world and TacAir-Soar, a tactical aircraft pilot model
(Jones et al., 1999) that better demonstrates the role of Soar in dynamic
domains.

3.3.1 Pattern-Directed Control

Soar brings to bear any knowledge relevant to the current problem via asso-
ciative pattern matching in a parallel match-fire production system. Thus,
flow of control in Soar is determined by the associations made in memory,
rather than a sequential, deterministic control structure. Because the rea-
soning of the agent is always sensitive to context, Soar readily supports
both reactive and goal-driven styles of execution, and is able to switch
between them during execution. Soar uses an extension of the Rete al-
gorithm (Forgy, 1982) to ensure efficient pattern matching across the en-
tire knowledge base. A research demonstration showed that Soar can
handle as many as one million rules without a significant slowdown

68 Robert E. Wray and Randolph M. Jones

in reasoning (Doorenbos, 1994). TacAir-Soar, which includes more than
8,000 productions, runs in (soft) real-time.

Typical rule-based systems are also pattern directed. However, most
use conflict resolution to choose between matching rules rather than firing
all of them. Conflict resolution in typical RBS usually depends on syntac-
tic features of rules; for example, preferring the rule instantiated with the
most recent memory elements or the largest number of them. Soar uses
no conflict resolution at the level of individual rules. Instead, conflict res-
olution occurs when choosing between operator candidates, allowing the
decision to be mediated by available knowledge (in the form of preferences)
rather than relying on syntactic features of the situation.

3.3.2 Reason Maintenance

Soar uses computationally inexpensive reason maintenance algorithms
(Doyle, 1979) to update its beliefs about the world. For example, if a pilot
agent computes a collision course with a target it is intercepting, and the
target’s course changes, a Soar agent can use its justification-based truth
maintenance (JTMS) to update the collision course automatically without
additional deliberation. Every nonpersistent object in Soar’s blackboard
memory is subject to reason maintenance, including impasses and operator
selections (Wray & Laird, 2003). Reason maintenance ensures that agents
are responsive to their environments. It also embeds knowledge about the
dynamics of belief change in the architecture, with the result that agent de-
velopers are freed from having to create knowledge to manage revisions
to current beliefs.

Typical rule-based systems do not include reason maintenance, meaning
that every change to an agent’s context must be the result of a deliberate
commitment. This requirement is one source of the perception that rule-
based systems are generally brittle and inflexible, because they overcommit
to particular courses of action. However, there are alternative approaches to
reassessment of beliefs. For example, ACT-R uses an activation and decay
mechanism that provides a functionally similar role, allowing elements to
disappear from active memory after their activation falls below threshold
(Anderson & Lebiere, 1998). This ACT-R mechanism has been used within
EASE, a variant of Soar (Chong, 2003).

Whereas implementations of reason maintenance within Soar can some-
times make Soar agents overly reactive to their environments, they guaran-
tee Soar agents take persistent actions only when the agent internal state
is fully entailed and consistent with external perceptions. Further, they
encourage the development of fully reentrant agent programs, so that an
agent can generally recover from interruption and resume its activity if
warranted (Wray & Laird, 2003).

Considering Soar as an Agent Architecture 69

3.3.3 Preference-Based Deliberation
An agent in a dynamic environment must be able to deliberate and commit
to goals. Soar balances automatic reason maintenance within the decision
cycle with the deliberate selection of operators. Assertions that result from
deliberation (i.e., operator applications) persist independently of reason
maintenance. A Soar pilot agent could commit to a particular course based
on a target’s position at a particular point in time. Even as the target’s po-
sition changed, the agent would remember its previously derived course.
In a typical RBS, individual rules are the operators. Because operator
preconditions and action components are implemented as separate rules,
Soar agents recognize available options and reason about which option to
take. Although this separation may appear to require more productions,
in practice it can also result in fewer total productions. A single precon-
dition production can pair with any number of action productions (and
vice versa). In contrast, when precondition and action combine in a single
rule, as in RBS, the agent needs rules for every possible combination of
precondition and action, leading to a potential combinatorial explosion in
rules.

3.3.4 Automatic Subgoaling and Task Decomposition

In some cases, an agent may find it has no available options or has con-
flicting information about its options. Soar responds to these impasses and
automatically creates a new problem space, in which the desired goal is
to resolve the impasse. The agent can now bring new knowledge to bear
on the problem. It might use planning knowledge to consider the future
and determine an appropriate course for this particular situation. It might
compare this situation to others it knows about and, through analogy, de-
cide on a course of action. The full range of reasoning and problem-solving
methods available to the agent can be brought to bear to solve the prob-
lem indicated by the particular impasse. However, these methods must be
encoded by the agent developer.

Automatic subgoaling provides agents the ability to reason about their
own reasoning. Thus, Soar agents can use identical knowledge represen-
tations both to act in the world (push the fire button) and to reason about
actions (what will happen if I push the fire button?). This contrasts with
RBS, where there is typically only a single state, making it difficult to use
the same rules in multiple contexts.

Automatic subgoaling enables task decomposition. At each step in de-
composition, the agent is able to focus its knowledge on the particular
options at just that level, filtering considerations at other levels. Automatic
subgoaling leads to a hierarchy of distinct states. This process of hierarchi-
cal decomposition narrows a potentially exponential number of considera-
tions into a much smaller set of choices. Moreover, the resulting knowledge

70 Robert E. Wray and Randolph M. Jones

base is naturally compartmentalized, providing a scalable infrastructure
with which to build very large knowledge bases.

3.3.5 Adaptation via Generalization of Experience

Knowledge search refers to the process of searching one’s knowledge base
to attempt to find knowledge representations relevant to a given situation.
Problem search refers to the deliberate attempt to solve a problem by ana-
lyzing the situation, considering and weighing alternative responses, etc.
In general, Soar performs knowledge search at the architecture level, em-
ploying the Rete match process, whereas a problem search engages both
the architecture and the production knowledge representations. A fun-
damental assumption in Soar is that a knowledge search should be less
expensive than a problem search, because a knowledge search is an “inner
loop” used in the problem search process.

The chunking mechanism converts the results of the problem search
within an impasse to new production representations that summarize the
problem search that occurred within the impasse. Once the agent comes to a
decision that resolves the impasse, chunking generates a new production
that has as conditions those memory objects that were referenced in the
solution of the impasse and as actions the result of the problem solving in
the impasse state. This process results in new knowledge that will allow
the agent to avoid a similar impasse. For example, without any preference
knowledge, Soar will reach an operator-tie impasse after moving the top
block to the table in Figure 3.1. In the resulting impasse state, Soar might
simulate the action of the two operators and recognize that restacking the
block should be rejected in this situation because it undoes the previous
action, resulting in a cycle. When the impasse is resolved, Soar will create
a new production that rejects operators that undo a preceding action.?

Soar’s chunking mechanism is fully integrated within the architecture,
pervasive (it automatically applies to all reasoning), and flexible (it can
be used to realize a variety of different kinds of adaptation). Because the
learning algorithm is an integral part of the overall system, Soar also pro-
vides a structure that addresses when learning occurs (when impasses are
resolved), what is learned (a summarization of impasse processing), and
why learning occurs (a preference for a knowledge search over a problem
search). The drawback of Soar’s learning mechanism is that all higher-
level learning styles must be realized within the constraints imposed by
Soar’s basic learning mechanism. For example, although chunking can be
used for knowledge level learning (Dietterich, 1986), achieving this new

2 Conceptually, this description is correct. In practice, generating a chunk with the correct
function, at therightlevel of generality, is often highly dependent on the developer-designed
knowledge representations. Creating agents that learn automatically is more a design art
than a wholly automatic function of the architecture.

Considering Soar as an Agent Architecture 71

learning generally requires the execution of a multistep inductive reason-
ing algorithm carefully constructed to provide the desired result (Young &
Lewis, 1999). Thus, whereas Soar provides constraint in integrating mul-
tiple learning methods with behavior, realizing any individual learning
style is often more straightforward in a typical RBS.

Chunking is wholly focused on caching the results of a problem search
into new productions because of the assumption that a knowledge search
is less expensive. Not all systems share this assumption. For example, in
ACT-R, models repeatedly consider whether to attempt to retrieve an ob-
ject from declarative memory (knowledge search) or to construct the de-
sired object (problem search). In ACT-R, declarative retrieval depends on
processes other than matching, such as the activation of the declarative
memory objects and the perceived utility of the rule attempting retrieval.
Soar’s retrieval is based on complete matching and its efficiency derives
from the underlying Rete match algorithm. However, unless one chooses
object representations carefully, chunking can result in rules that are com-
putationally expensive to match (Tambe, Newell, & Rosenbloom, 1990).
As Soar evolves and additional mechanisms complement or augment the
Rete match, the general assumption of preferring the knowledge search to
the problem search may need to be reconsidered.

4 SOAR AGENTS WITHIN MULTIAGENT SYSTEMS

The discussion thus far has focused on Soar in an individual agent context,
describing the specific mechanisms of the architecture and the resulting
behavior enabled by the architecture. However, in nearly all current-day
applications (and most research systems), Soar agents are employed in
a multiagent context, where a group of agents act collectively (in both
cooperative and adversarial roles). TacAir-Soar is a good example of a
Soar multiagent system. TacAir-Soar agents can fly together as a tight team
(lead and wing), provide status and control information to other agentsas a
controller (radar observation aircraft), decide to change their mission based
on the multiagent context (e.g., fighter-bomber aircraft on a strike mission
could decide to abandon the bombing mission and intercept enemy aircraft
due to the lack of other aircraft in the vicinity), etc. This section introduces
some of the constraints Soar introduces in multiagent system design.
Typical Soar multiagent systems adopt multiagent constraints from hu-
man behavior. In general, these constraints encourage agents that coor-
dinate as actual human agents do, taking advantage of shared, common
knowledge, observation, and communication when appropriate or neces-
sary. For example, Soar agents do not share state with one another. Soar
provides no mechanism by which an agent can inspect the internal as-
sertions of another agent. To make decisions (such as predictions) about
another agent’s objectives or goals, the agent must observe other agents

72 Robert E. Wray and Randolph M. Jones

and use its knowledge and inference to come to conclusions about the
intentions of other agents. In a collaborative environment, an agent may
be able to assume a shared goal or joint intention (Tambe, 1997). This as-
sumption may derive from shared domain knowledge. For example, in
TacAir-Soar (and other military applications), each agent has a representa-
tion of the command hierarchy, the role of other agents in the mission, and
the knowledge of the doctrine used in executing the mission, just as hu-
man participants share this knowledge. This shared “understanding” can
make it much easier to predict and interpret the actions of other agents. To
make it easier to encode and share domain knowledge, Soar systems are
now able to incorporate ontological representations via a straightforward
translation process (Wray, Lisse, & Beard, 2004). This approach simplifies
some knowledge development and maintenance (via the use of tools for
building and maintaining ontologies, such as Protégé) and makes it pos-
sible to guarantee that agents with different execution knowledge (e.g.,
controller and pilot) share the same knowledge of the domain.
Communication is also critical in multiagent contexts. Whereas agents
may share general knowledge of the domain, they have unique perceptions
and views of a situation that may need to be explicitly communicated with
other agents. For example, if one member of an air patrol decides to inter-
cept an observed enemy, it is possible that his partner may have not sighted
the enemy. In this case, the second pilot might behave inappropriately for
the intercept situation (e.g., not maintaining formation strictly enough),
unless the lead communicates the intercept decision. In this specific case,
military doctrine prescribes explicit communication between the actors, to
minimize the likelihood of misunderstanding and mistake. In general, the
Soar multiagent philosophy is to communicate only in situations where hu-
mans actually also routinely communicate (in the case of human behavior
models) or where it seems likely communication would have high utility
(e.g., Tambe, 1997). This approach contrasts with other attempts to achieve
coordinated multiagent action via high bandwidth, frequent communica-
tion (e.g., see Best & Lebiere, Chapter 8). However, the Soar multiagent
approach does lead to behavior that can be disrupted in the same ways
human behavior can be (e.g., radio jamming preventing communication
between entities). The result is that agents will sometimes make mistakes.
Although Soar multiagent systems are generally constrained at the be-
havior level by human—system constraints, Soar agents do take advan-
tage of existing multiagent standards and infrastructure to facilitate multi-
agent interaction. One example is the use of ontological representations in
Soar agents mentioned previously. As another example, both the Knowl-
edge Query and Manipulation Language (KQML) and the Foundation for
Intelligent Physical Agents—Agent Communication Language (FIPA-ACL)
have been supported in Soar via software wrappers in the output function
(Wray et al., 2002). Neither KQML or FIPA-ACL are content languages

Considering Soar as an Agent Architecture 73

for communication, but rather enable message passing between Soar (and
non-Soar) agents and simplify the parsing of incoming communications
by explicitly declaring the speech act of the message (tell, ask, reply, etc.).

5 LISTENING TO THE ARCHITECTURE: COMPARING SOAR TO BDI

Soar biases solutions to behavior representation problems in unique ways.
This bias is present in models of human cognition and in the development
of multiagent systems in which individual Soar agents are used, as intro-
duced in the previous section. This section explores some of the repercus-
sions of the Soar approach and contrasts Soar solutions to those within the
Beliefs-Desires-Intentions (BDI) framework (Wooldridge, 2000). Because
both BDI and Soar can be viewed as alternatives for the implementation of
knowledge-intensive, multiagent systems (Jones & Wray, 2004), this com-
parison highlights some of the tradeoffs one encounters when using Soar
to develop multiagent systems.

Whereas the control loops of Soar and BDI are similar, the representa-
tions and processes comprising BDI architectures are quite different from
those of Soar. For example, BDI architectures do not make an explicit dis-
tinction between justified assertions and persistent assertions. Instead, they
usually use some form of belief revision. However, the most important dif-
ference between Soar and BDI is Soar’s assumption of parsimony and the
consequences of this assumption on knowledge representations.

Soar accomplishes all deliberation via a single representation: the oper-
ator. In contrast, BDI specifies multiple representations that are mediated
by deliberation, including desires, intentions, plans, and, in some cases, be-
liefs. For each of these representations, there can be a distinct mechanism
of choice. Committing to an intention may use some decision-theoretic
computation, although committing to a particular plan could result from
a simple table lookup. Similarly, the process of reconsideration (deciding
if a commitment should be continued) can also be tailored to the specific
representation and its role in the agent system (Wooldridge, 2000).

Because Soar uses only operators for deliberation, there is one mecha-
nism each for commitment (the decision procedure) and reconsideration
(reason maintenance). Essentially, the reconsideration algorithms assume
it is cheaper to retract and repeat some problem searches, if necessary,
rather than attempt to decide whether some deliberate selection should
continue to be supported (Wray & Laird, 2003).

This uniform approach to reconsideration has important consequences
for the design of agent systems. For example, because reconsideration
will interrupt a deliberate process as soon as a potential inconsistency
is detected, no deliberate step can be assumed to directly follow another.
Thus, (robust) Soar systems must be designed to be reentrant at every
step in execution. These reentrance requirements contrast with some BDI

74 Robert E. Wray and Randolph M. Jones

implementations, which enable the execution of plans of arbitrary length
or even traditional, serial procedures (Howden, Ronnquist, Hodgson, &
Lucas, 2001), within a single pass of the agent control loop. BDI systems
thus provide immediate power in the representation of complex proce-
dures and plans, but at the cost of having to manage the execution of these
procedures with other (potentially competing) procedures. The lack of an
explicit plan representation in Soar lends flexibility in terms of plan ex-
ecution (including interleaved execution with other plans). However, it
also requires that a developer consider plan representation in the design of
agent knowledge and plan for interruption and reentrant execution with-
out exception.

Another consequence of the uniformity in representation in Soar is that
any new representations must be implemented as symbolic representations
of knowledge, rather than at the architecture level. Within the BDI commu-
nity, there is presently a focus on extending the basic BDI representations
of beliefs, desires, and intentions, to other, multiagent-oriented representa-
tions, such as teams, values, and norms (e.g., see Beavers & Hexmoor, 2002;
Broersen, Dastani, Hulstijn, Huang, & van der Torre, 2001; and other chap-
ters in this volume). Within a BDI framework, these new representations
must be integrated with the other representations and processes used for
commitment and reconsideration, which leads to exploration at the archi-
tecture level. Within Soar, operators and the processes of the decision cycle
define the basic architectural mechanisms. Algorithms that make decisions
about new representations map to different Soar operators, where they are
integrated by the built-in conflict resolution procedure. For example, the
Soar-Teamwork (STEAM) model mentioned previously® (Tambe, 1997) an-
notated individual Soar operators with team goals, to enable team-specific
processing for each operator. The drawback of the Soar approach is that
the architecture will not readily support decision and conflict resolution
that does not map easily to the architectural decision process. For exam-
ple, to make decision-theoretic communication decisions, STEAM relies on
extra-architectural procedures.

Of course, one could have used Soar operators to make those decision-
theoretic calculations. One of the fundamental tensions that arises in
“listening to the Soar architecture” is whether to follow its advice. In gen-
eral, listening to Soar requires mapping any deliberate step to an operator.
In the most recent version of Soar, any sequence of deliberate steps can
be interrupted, which encourages fine-grained, single-step operator im-
plementations (Wray & Laird, 2003). However, because elaboration occurs
as a loop within the decision, splitting the execution of a procedure over

3 Tambe and colleagues have extended their original Soar-Teamwork model to a more general
computational approach to teamwork within the BDI framework; Chapter 12 in this volume
introduces this work.

Considering Soar as an Agent Architecture 75

multiple deliberation steps can appear inefficient. Many Soar developers
spend significant time and effort attempting to implement computations
within the elaboration cycle of Soar that would be trivial to accomplish
via deliberation. In theory, Soar also resolves this dilemma by compiling
the results of multistep sequences into more compact, efficient representa-
tions. However, in practice, using chunking in performance environments
remains difficult, even after the successful resolution of a number of recog-
nized interactions between chunking and interaction with external envi-
ronments (Wray & Jones, 2001; Wray, Laird, & Jones, 1996). In summary;, it is
often difficult to discern if an implementation challenge is the result of not
“listening to the architecture” closely enough, a flaw in the current imple-
mentation, or an inadequacy in the theory. Of course, these challenges are
not unique to Soar and all approaches to computational intelligence must
be evaluated both in the context of idealized theories and implementations
of those theories that may not fully live up to those ideals.

6 SUMMARY

The Soar project reflects an attempt to articulate a theory of general intelli-
gence through a specific computational model, an architecture foundation
that implements the computational model, and artifacts that guide evalua-
tion and refinement of the theory. Defining characteristics of the Soar com-
putational model include pattern-directed processing, least-commitment
execution, subgoaling and task decomposition, knowledge-mediated con-
flict resolution, and learning integrated with performance.

A downside of the Soar approach is that, by specifying general mecha-
nisms, it underspecifies some capabilities that must be built into intelligent
agents. Most of an agent’s competence arises from the encoded knowl-
edge representations (i.e., the set of rules) that Soar’s mechanisms oper-
ate on. Thus, agent knowledge representations must be created to realize
any high-level intelligent capability. For instance, whereas Soar has been
used to build planning systems, in comparison to other Al planning sys-
tems, Soar offers little immediately evident power. Soar only specifies very
low-level constraints on how planning can occur, so Soar agent designers
must develop their own plan languages and algorithms, although these
are provided in most planning systems. However, Soar does provide a
natural, scalable methodology for integrating planning with plan execu-
tion, as well as natural language understanding, reasoning by analogy, etc.
By focusing on a uniform substrate that allows any available knowledge
to mediate any decision, Soar provides a tool with which to realize inte-
grated approaches. Soar therefore trades off powerful, but often overly con-
strained processes for the flexibility to integrate solutions, and this integra-
tion has been demonstrated across a broad spectrum of intelligent system
applications.

76 Robert E. Wray and Randolph M. Jones

APPENDIX: ADDITIONAL RESOURCES

Soar is supported by a community of academic and industry researchers,
developers, and users. The Soar homepage (http: /sitemaker.umich.edu/
soar) includes links to the executable and source versions of the Soar soft-
ware, tutorials that introduce Soar as a programmable system, a Soar
programming manual, and tools for creating and debugging Soar pro-
grams. Soar is a freely available, open-source project and continuing
architecture development is hosted at Source Forge (http:/sourceforge.
net/projects/soar/). The multi-site, multinational Soar community in-
teracts via the Soar mailing list (see http://sourceforge.net/mail/?group
1id=65490 for subscription information) and a yearly “Soar Workshop,” usu-
ally held in June in Ann Arbor, Michigan, USA. The Soar Frequently Asked
Questions (FAQ) (http: /acs.ist.psu.edu/soar-faq/soar-fag.html) answers
common questions about the theory, software architecture, and program-
ming of Soar. Theoretical motivations and descriptions of the basic princi-
ples of Soar may be found in The Soar Papers (Rosenbloom, Laird, & Newell,
1993).

References

Altmann, E. M., & Gray, W. D. (2002). Forgetting to remember: The functional
relationship of decay and interference. Psychological Science, 13(1), 27-33.

Altmann, E. M., & John, B. E. (1999). Episodic indexing: A model of memory for
attention events. Cognitive Science, 23(2), 117-156.

Anderson, J., & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ:
Lawrence Erlbaum.

Beavers, G., & Hexmoor, H. (2002). Obligations in a BDI Agent Architecture. Paper
presented at International Conference on Artificial Intelligence (IC-AI 2002) Los
Vegas, NV.

Bratman, M. (1987). Intentions, plans, and practical reason. Cambridge, MA: Harvard
University Press.

Broersen, J., Dastani, M., Hulstijn, J., Huang, Z., & van der Torre, L. (2001). The
BOID architecture. Paper presented at the Fifth International Conference on
Autonomous Agents, Montreal, Canada.

Chong, R. S. (2003). The addition of an activation and decay mechanism to the Soar
architecture. Paper presented at the Fifth International Conference on Cognitive
Modeling, Bamberg, Germany.

Chong, R. S., & Wray, R. E. (in press). Constraints on architectural models:
Elements of ACT-R, Soar and EPIC in human learning and performance. In
K. Gluck & R. Pew (Eds.), Modeling human behavior with integrated cognitive archi-
tectures: Comparison, evaluation, and validation. Mahwah, NJ: Lawrence Erlbaum.

Dietterich, T. G. (1986). Learning at the knowledge level. Machine Learning, 1, 287—
315.

Doorenbos, R. B. (1994). Combining left and right unlinking for matching a large number
of learned rules. Paper presented at the 12th National Conference on Artificial
Intelligence (AAAI-94), Seattle, WA.

Considering Soar as an Agent Architecture 77

Doyle, J. (1979). A truth maintenance system. Artificial Intelligence, 12, 231-272.

Fikes, R., & Nilsson, N. (1971). STRIPS: A new approach in the application of
theorem proving to problem solving. Artificial Intelligence, 2(3—4), 189-208.

Forgy, C. L. (1982). RETE: A fast algorithm for many pattern/many object pattern
matching problem. Artificial Intelligence, 19, 17-37.

Howden, N., Ronnquist, R., Hodgson, A., & Lucas, A. (2001). JACK: Summary of
an agent infrastructure. Paper presented at the Workshop on Infrastructure for
Agents, MAS, and Scalable MAS at the Fifth International Conference on Au-
tonomous Agents, Montreal, Canada.

Huffman, S. B., & Laird, J. E. (1995). Flexibly instructable agents. Journal of Artificial
Intelligence Research, 3, 271-324.

Jones, R. M., Laird, J. E., Nielsen, P. E., Coulter, K. J., Kenny, P. G., & Koss, F. V.
(1999). Automated intelligent pilots for combat flight simulation. AI Magazine,
20(1), 27-42.

Jones, R. M., & Wray, R. E. (2004). Comparative analysis of frameworks for knowledge-
intensive intelligent agents. Paper presented at the AA Al Fall Symposium Series on
Achieving Human-Level Intelligence through Integrated Systems and Research,
Alexandria, VA.

Laird, J. E., & Congdon, C. B. (2004). The Soar users’ manual: Version 8.5. Ann Arbor,
MI: University of Michigan.

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An architecture for general
intelligence. Artificial Intelligence, 33(3), 1-64.

Laird, J. E., & Rosenbloom, P. S. (1995). The evolution of the Soar cognitive archi-
tecture. In D. Steir & T. Mitchell (Eds.), Mind matters. Hillsdale, NJ: Lawrence
Erlbaum Associates.

Laird, J. E., Yager, E. S., Hucka, M., & Tuck, M. (1991). Robo-Soar: An integration of
external interaction, planning and learning using Soar. Robotics and Autonomous
Systems, 8(1-2), 113-129.

Lakatos, 1. (1970). Falsification and the methodology of scientific research pro-
grammes. InI. Lakatos & A. Musgrave (Eds.), Criticism and the growth of knowledge
(pp. 91-196). Cambridge, UK: Cambridge University Press.

Lehman, J. F, Dyke,]. V., & Rubinoff, R. (1995, May). Natural Language Processing
for intelligent forces (IFORs): Comprehension and generation in the air combat domain.
Paper presented at the Fifth Conference on Computer Generated Forces and
Behavioral Representation, Orlando, FL.

Lehman, J. F, Lewis, R. L., & Newell, A. (1998). Architectural influences on lan-
guage comprehension. In Z. Pylyshyn (Ed.), Cognitive architecture. Norwood, NJ:
Ablex.

Miller, C. S., & Laird, J. E. (1996). Accounting for graded performance within a
discrete search framework. Cognitive Science, 20, 499-537.

Newell, A. (1980a). Physical symbol systems. Cognitive Science, 4, 135-183.

Newell, A. (1980b). Reasoning, problem solving and decision processes: The prob-
lem space as a fundamental category. In R. Nickerson (Ed.), Attention and perfor-
mance VIII. Hillsdale, NJ: Erlbaum.

Newell, A. (1982). The knowledge level. Artificial Intelligence, 18(1), 82-127.

Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University
Press.

Newell, A., Yost, G. R,, Laird, J. E., Rosenbloom, P. S., & Altmann, E. M. (1991).
Formulating the problem space computational model. In R. F. Rashid (Ed.),

78 Robert E. Wray and Randolph M. Jones

CMU Computer Science: A 25th Anniversary Commemorative (pp. 255-293). ACM
Press/Addison-Wesley.

Nuxoll, A., & Laird, J. E. (2004). A cognitive model of episodic memory integrated with a
general cognitive architecture. Paper presented at the International Conference on
Cognitive Modeling, Pittsburgh, PA.

Pearson, D. J., Huffman, S. B., Willis, M. B., Laird, J. E., & Jones, R. M.. (1993). A sym-
bolic solution to intelligent real-time control. Robotics and Autonomous Systems,
11, 279-291.

Pearson, D.]., & Laird, J. E. (1998). Toward incremental knowledge correction for
agents in complex environments. Machine Intelligence, 15.

Rosenbloom, P. S., Laird, J. E., McDermott, J., Newell, A., & Orciuch, E. (1985). R1-
Soar: An experiment in knowledge-intensive programming in a problem-solving
architecture. IEEE Transactions on Pattern Analysis and Machine Intelligence, 7, 561
569.

Rosenbloom, P. S., Laird, J. E., & Newell, A. (Eds.). (1993). The Soar papers: Research
on integrated intelligence. Cambridge, MA: MIT Press.

Tambe, M. (1997). Towards flexible teamwork. Journal of Artificial Intelligence Re-
search (JAIR), 7, 83-124.

Tambe, M., Newell, A., & Rosenbloom, P. S. (1990). The problem of expensive
chunks and its solution by restricting expressiveness. Machine Learning, 5, 299
348.

Washington, R., & Rosenbloom, P. S. (1993). Applying problem solving and learn-
ing to diagnosis. In P. S. Rosenbloom, J. E. Laird, & A. Newell (Eds.), The Soar
papers: Research on integrated intelligence (Vol. 1, pp. 674-687). Cambridge, MA:
MIT Press.

Wooldridge, M.]. (2000). Reasoning about rational agents. Cambridge, MA: MIT Press.

Wray, R. E., Beisaw, J. C., Jones, R. M., Koss, F. V., Nielsen, P. E., & Taylor, G. E. (2002,
May). General, maintainable, extensible communications for computer generated forces.
Paper presented at the Eleventh Conference on Computer Generated Forces and
Behavioral Representation, Orlando, Florida.

Wray, R. E., & Jones, R. M. (2001). Resolving contentions between initial and learned
knowledge. Paper presented at the Proceedings of the 2001 International Confer-
ence on Artificial Intelligence, Las Vegas, NV.

Wray, R. E., & Laird, J. E. (2003). An architectural approach to consistency in hier-
archical execution. Journal of Artificial Intelligence Research, 19, 355-398.

Wray, R. E., Laird, J. E., & Jones, R. M. (1996). Compilation of non-contemporaneous
constraints. Paper presented at the Proceedings of the Thirteenth National Con-
ference on Artificial Intelligence, Portland, Oregon.

Wray, R. E., Laird, J. E., Nuxoll, A., Stokes, D., & Kerfoot, A. (2004). Synthetic adver-
saries for urban combat training. Paper presented at the 2004 Innovative Applica-
tions of Artificial Intelligence Conference, San Jose, CA.

Wray, R. E,, Lisse, S., & Beard, J. (2004). Investigating ontology infrastructures for
execution-oriented autonomous agents. Robotics and Autonomous Systems 49(1-2)
113-122.

Young, R., & Lewis, R. L. (1999). The Soar cognitive architecture and human working
memory. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of
active maintenance and executive control (pp. 224-256). Cambridge, UK: Cambridge
University Press.

4

The CLARION Cognitive Architecture: Extending
Cognitive Modeling to Social Simulation

Ron Sun

1 INTRODUCTION

This chapter presents an overview of a relatively recent cognitive architec-
ture for modeling cognitive processes of individual cognitive agents (in a
psychological sense) (see Sun et al., 1998, 2001; Sun, 2002). We will start
with a look at some general ideas underlying this cognitive architecture as
well as the relevance of these ideas to social simulation.

To tackle a host of issues arising from computational cognitive mod-
eling that are not adequately addressed by many other existent cogni-
tive architectures, such as the implicit-explicit interaction, the cognitive-
metacognitive interaction, and the cognitive-motivational interaction,
CLARION, a modularly structured cognitive architecture, has been de-
veloped (Sun, 2002; Sun et al., 1998, 2001). Overall, CLARION is an inte-
grative model. It consists of a number of functional subsystems (for ex-
ample, the action-centered subsystem, the metacognitive subsystem, and
the motivational subsystem). It also has a dual representational structure —
implicit and explicit representations being in two separate components in
each subsystem. Thus far, CLARION has been successful in capturing a
variety of cognitive processes in a variety of task domains based on this
division of modules (Sun et al., 2002). See Figure 4.1 for a sketch of the
architecture.

A key assumption of CLARION, which has been argued for amply be-
fore (see Sun et al., 1998, 2001; Sun, 2002), is the dichotomy of implicit
and explicit cognition. Generally speaking, implicit processes are less ac-
cessible and more “holistic,” whereas explicit processes are more acces-
sible and more crisp (Reber, 1989; Sun, 2002). This dichotomy is closely
related to some other well-known dichotomies in cognitive science: the di-
chotomy of symbolic versus subsymbolic processing, the dichotomy of con-
ceptual versus subconceptual processing, and so on (Smolensky, 1988; Sun,
1994). This dichotomy can be justified psychologically, by the voluminous

79

80 Ron Sun

ACS | NACS
—=| | action—centered non—action—centered
explicit representation explicit representation
action—centered implicit non—action—centered —
S representsation implicit representation
—
A)
‘ i
goal structure reinforcement bf
goal setting
filteri
. iltering
drives selection
= regulation
MS MCS

FIGURE 4.1. The CLARION architecture. ACS denotes the action-centered subsys-
tem, NACS, the non-action-centered subsystem, MS, the motivational subsystem,
and MCS, the metacognitive subsystem.

empirical studies of implicit and explicit learning, implicit and explicit
memory, implicit and explicit perception, and so on (Reber, 1989; Seger,
1994; Cleeremans et al., 1998; Sun, 2002). In social psychology, there are
similar dual-process models for describing socially relevant cognitive pro-
cesses (Chaiken & Trope, 1999). Denoting more or less the same distinction,
these dichotomies serve as justifications for the more general notions of im-
plicit versus explicit cognition, which is the focus of CLARION. See Sun
(2002) for an extensive treatment of this distinction.

Beside the previous oft-reiterated point about CLARION, there are also a
number of other characteristics that are pertinent to its application to social
simulation, such as its focus on (1) the cognition-motivation-environment
interaction, (2) the bottom-up and top-down learning, and (3) the cognitive-
metacognitive interaction.

For instance, one particularly pertinent characteristic of this cognitive
architecture is its focus on the cognition-motivation-environment interac-
tion. Essential motivations of an agent, its biological needs in particular,
arise naturally, prior to cognition (but interact with cognition of course).
Such motivations are the foundation of action and cognition. In a way,

The CLARION Cognitive Architecture 81

cognition is evolved to serve the essential needs and motivations of an
agent. Cognition, in the process of helping to satisfy needs and following
motivational forces, has to take into account environments, their regular-
ities and structures. Furthermore, some needs and motivations are inher-
ently social or socially oriented. Thus, cognition bridges the needs and
motivations of an agent and its environments (be it physical or social),
thereby linking all three in a “triad” (see Chapter 1 of this book for more
discussions of this point).

Another important characteristic of this cognitive architecture is that
an agent may learn on its own, regardless of whether or not there is a
priori or externally provided domain knowledge. Learning may proceed
on a trial-and-error basis. Furthermore, through a bootstrapping process,
or “bottom-up learning” as has been termed (Sun et al., 2001), explicit and
abstract domain knowledge may be developed, in a gradual and incre-
mental fashion (Karmiloff-Smith, 1986). This is significantly different from
other cognitive architectures (e.g., Anderson & Lebiere, 1998). Likewise, in
CLARION, it is not necessary to have a priori explicit knowledge of needs,
desires, and other motivational structures. Explicit knowledge of needs,
desires, and motivations may also be acquired through a bottom-up pro-
cess, gradually and incrementally.

Itshould be noted that, although itaddresses trial-and-error and bottom-
up learning, the architecture does not exclude innate biases and innate
behavioral propensities from being represented within the architecture. In-
nate biases and propensities may be represented, implicitly or even explic-
itly, and they interact with trial-and-error and bottom-up learning, in terms
of constraining, guiding, and facilitating learning. In addition to bottom-
up learning, top-down learning, that is, assimilation of explicit/abstract
knowledge from external sources into internal implicit forms, is also pos-
sible in CLARION (Sun, 2003).

Yet another important characteristic of this architecture is that multi-
ple subsystems interact with each other constantly. In this architecture,
these subsystems have to work closely with each other in order to accom-
plish cognitive processing. The interaction among these subsystems may
include some “executive control” of some subsystems. It may also include
metacognitive monitoring and control of ongoing processing. It is worth
noting that such cognitive-metacognitive interaction has not yet been fully
addressed by other cognitive architectures such as ACT-R or Soar (but see,
e.g., Sloman, 2000). Note that social interaction is made possible by the (at
least partially) innate ability of cognitive agents to reflect on, and to mod-
ify dynamically, their own behaviors (Tomasello, 1999). The metacognitive
self monitoring and control enables agents to interact with each other and
with their environments more effectively, for example, by avoiding social
impasses — impasses that are created because of the radically incompatible
behaviors of multiple cognitive agents (see, for example, Sun, 2001).

82 Ron Sun

As mentioned earlier, the architecture also includes motivational struc-
tures and, therefore, the interaction between motivational structures and
other subsystems within the architecture is also prominent (again signif-
icantly different from other cognitive architectures such as ACT-R and
Soar). This characteristic is also important for social interaction. Each agent
in a social situation carries with it its own needs, desires, and motiva-
tions. Social interaction is possible in part because agents can understand
and appreciate each other’s (innate or acquired) motivational structures
(Tomasello, 1999; Bates et al., 1992). On that basis, agents may find ways to
cooperate.

In the remainder of this chapter, first, the overall structure of CLARION
is presented in the next section. Then, each subsystem is presented in sub-
sequent sections. Together, these sections substantiate the characteristics of
CLARION discussed above. A discussion section follows, which addresses
some general issues in extending cognitive modeling to social simulation
with CLARION. It further explicates how these characteristics discussed
earlier support cognitive modeling and social simulation in substantial
ways. A summary section then completes this chapter.

2 THE OVERALL ARCHITECTURE

CLARION is intended for capturing all the essential cognitive processes
within an individual cognitive agent. As mentioned before, CLARION is
an integrative architecture, consisting of a number of distinct subsystems,
with a dual representational structure in each subsystem (implicit versus
explicit representations). Its subsystems, shown in Figure 4.1, include the
action-centered subsystem (the ACS), the non—action-centered subsystem
(the NACS), the motivational subsystem (the MS), and the metacognitive
subsystem (the MCS). The role of the ACS is to control actions, regardless
of whether the actions are for external physical movements or for internal
mental operations. The role of the NACS is to maintain general knowledge,
either implicit or explicit. The role of the MS is to provide underlying
motivations for perception, action, and cognition, in terms of providing
impetus and feedback (e.g., indicating whether outcomes are satisfactory or
not). The role of the MCS is to monitor, direct, and modify the operations of
the ACS dynamically as well as the operations of all the other subsystems.

Each of these interacting subsystems consists of two levels of represen-
tation (i.e., a dual representational structure): Generally, in each subsystem,
the top level encodes explicit knowledge and the bottom level encodes im-
plicitknowledge; this distinction has been argued for earlier (see also Reber,
1989; Seger, 1994; and Cleeremans et al., 1998). Let us consider the repre-
sentational forms that need to be present for encoding these two different
types of knowledge. Notice the fact that the relatively inaccessible nature of
implicit knowledge may be captured by subsymbolic, distributed represen-
tation provided, for example, by a backpropagation network (Rumelhart

The CLARION Cognitive Architecture 83

etal., 1986). This is because distributed representational units in the hidden
layer(s) of a backpropagation network are capable of accomplishing com-
putations but are subsymbolic and generally not individually meaningful
(Rumelhart et al., 1986; Sun, 1994). This characteristic of distributed repre-
sentation, which renders the representational form less accessible, accords
well with the relative inaccessibility of implicit knowledge (Reber, 1989;
Seger, 1994; Cleeremans et al., 1998). In contrast, explicit knowledge may
be captured in computational modeling by symbolic or localist represen-
tation (Clark & Karmiloff-Smith, 1993), in which each unit is more easily
interpretable and has a clearer conceptual meaning. This characteristic of
symbolic or localist representation captures the characteristic of explicit
knowledge being more accessible and more manipulable (Smolensky, 1988;
Sun, 1994).

Accessibility here refers to the direct and immediate availability of men-
tal content for the major operations that are responsible for, or concomitant
with, consciousness, such as introspection, forming higher-order thoughts,
and verbal reporting. The dichotomous difference in the representations of
the two different types of knowledge leads naturally to a two-level archi-
tecture, whereby each level uses one kind of representation and captures
one corresponding type of process (implicit or explicit).

Let us now turn to learning. First, there is the learning of implicit knowl-
edge at the bottom level. One way of implementing a mapping function to
capture implicit knowledge is to use a multi-layer neural network (e.g., a
three-layer backpropagation network). Adjusting parameters of this map-
ping function to change input/output mappings (that is, learning implicit
knowledge) may be carried out in ways consistent with the nature of dis-
tributed representation (e.g., as in backpropagation networks), through
trial-and-error interaction with the world. Often, reinforcement learning
can be used (Sun et al., 2001), especially Q-learning (Watkins, 1989), im-
plemented using backpropagation networks. In this learning setting, there
is no need for a priori knowledge or external teachers providing desired
input/output mappings. On the other hand, in the learning settings where
desired input/output mappings are available, straight backpropagation (a
supervised learning algorithm) can be used (Rumelhart et al., 1986). Such
(implicit) learning may be justified cognitively. For instance, Cleeremans
(1997) argued at length that implicit learning could not be captured by
symbolic models but neural networks. Sun (2002) and Sun et al. (2005a)
made similar arguments.

Explicit knowledge at the top level can also be learned in a variety
of ways (in accordance with localist/symbolic representation used there).
Because of its representational characteristics, one-shot learning (for ex-
ample, based on hypothesis testing) is preferred during interaction with
the world (Bruner et al., 1956; Busemeyer & Myung, 1992; Sun et al., 2001).
With such learning, an agent explores the world, and dynamically acquires
representations and modifies them as needed.

84 Ron Sun

The implicit knowledge already acquired in the bottom level may be
utilized in learning explicit knowledge at the top level, through bottom-up
learning (Sun et al., 2001). That is, information accumulated in the bot-
tom level through interacting with the world is used for extracting and
then refining explicit knowledge. This is a kind of “rational reconstruc-
tion” of implicit knowledge at the explicit level. Conceivably, other types
of learning of explicit knowledge are also possible, such as explicit hypoth-
esis testing without the help of the bottom level. Conversely, once explicit
knowledge is established at the top level, it may be assimilated into the
bottom level. This often occurs during the novice-to-expert transition in
instructed learning settings (Anderson & Lebiere, 1998). The assimilation
process, known as top-down learning (as opposed to bottom-up learning),
may be carried out in a variety of ways (Sun, 2003).

Figure 4.1 presents a sketch of this basic architecture of a cognitive agent,
which includes the four major subsystems interacting with each other. The
following four sections will describe, one by one and in more detail, these
four subsystems of CLARION.

3 THE ACTION-CENTERED SUBSYSTEM

The action-centered subsystem (the ACS) of CLARION is meant to capture
the action decision making of an individual cognitive agent in its interac-
tion with the world (see also Chapter 11 by Shell and Matari¢ in this book).
The ACS is the central part of CLARION. In the ACS, the process for action
decision making is essentially the following: Observing the current state of
the world, the two levels of processes within the ACS (implicit or explicit)
make their separate decisions in accordance with their own knowledge,
and their outcomes are somehow “combined.” Thus, a final selection of an
action is made and the action is then performed. The action changes the
world in some way. Comparing the changed state of the world with the
previous state, the agent learns (in accordance with Q-learning of Watkins,
1989, as mentioned earlier). The cycle then repeats itself.

In this subsystem, the bottom level is termed the IDNs (the Implicit Deci-
sion Networks), implemented with neural networks involving distributed
representations, and the top level is termed the ARS (the Action Rule Store),
implemented using symbolic/localist representations.

The overall algorithm for action decision making by an agent during its
interaction with the world is as follows:

1. Observe the current state x.

2. Compute in the bottom level (the IDNs) the “value” of each of
the possible actions (a;’s) associated with the state x: Q(x, a1),
Q(x,a2), ..., Q(x, a,). Stochastically choose one action according to
these values.

The CLARION Cognitive Architecture 85

3. Find out all the possible actions (b1, b, ..., by,) at the top level (the
ARS), based on the current state x (which goes up from the bottom
level) and the existing explicit rules in place at the top level. Stochas-
tically choose one action.

4. Choose an appropriate action, by stochastically selecting the out-
come of either the top level or the bottom level.

5. Perform the action, and observe the next state y and (possibly) the
reinforcement r.

6. Update the bottom level in accordance with an appropriate algo-
rithm (to be detailed later), based on the feedback information.

7. Update the top level using an appropriate algorithm (for extracting,
refining, and deleting rules, to be detailed later).

8. Go back to Step 1.

The input (x) to the bottom level consists of three sets of information:
(1) sensory input, (2) working memory items, and (3) the selected item of
the goal structure. The sensory input is divided into a number of input
dimensions, each of which has a number of possible values. The goal in-
put is also divided into a number of dimensions. The working memory is
divided into dimensions as well. Thus, input state x is represented as a set
of dimension-value pairs: (d1, v1)(d2, v2) . .. (dy, Vy)-

The output of the bottom level is the action choice. It consists of three
groups of actions: working memory actions, goal actions, and external
actions.!

In each network (encoding implicit knowledge), actions are selected
based on their values. A Q value is an evaluation of the “quality” of an
action in a given state: Q(x, a) indicates how desirable action a is in state x.
Ateach step, given state x, the Q values of all the actions (i.e., Q(x, a) forall
a’s) are computed. Then the Q values are used to decide probabilistically on
an action to be performed, through a Boltzmann distribution of Q values:

e Qxa)/a

Pal) = s oy (1)
where « controls the degree of randomness (temperature) of the decision-
making process. (This method is also known as Luce’s choice axiom;
Watkins, 1989.)

The Q-learning algorithm (Watkins, 1989), a reinforcement learning al-
gorithm, may be used for learning implicit knowledge at the bottom level.

! Note that aforementioned working memory is for storing information temporarily for the
purpose of facilitating subsequent decision making (Baddeley, 1986). Working memory
actions are used either for storing an item in the working memory, or for removing an
item from the working memory. Goal structures, a special case of working memory, are for
storing goal information specifically.

86 Ron Sun

In the algorithm, Q(x, a) estimates the maximum (discounted) total rein-
forcement that can be received from the current state x on. Q values are
gradually tuned, on-line, through successive updating, which enables re-
active sequential behavior to emerge through trial-and-error interaction
with the world. Q-learning is implemented in backpropagation networks
(see Sun, 2003 for details).

Next, explicit knowledge at the top level (the ARS) is captured by rules
and chunks. The condition of a rule, similar to the input to the bottom level,
consists of three groups of information: sensory input, working memory
items, and the current goal. The output of a rule, similar to the output from
the bottom level, is an action choice. It may be one of the three types: work-
ing memory actions, goal actions, and external actions. The condition of a
rule constitutes a distinct entity known as a chunk; so does the conclusion
of a rule.

Specifically, rules are in the following form: state-specification — action.
The left-hand side (the condition) of a rule is a conjunction (i.e., logic AND)
of individual elements. Each element refers to a dimension x; of state x,
specifying a value range, for example, in the form of x; € (vi1, vip, ..., Vin).
The right-hand side (the conclusion) of a rule is an action recommendation.

The structure of a set of rules may be translated into that of a network
at the top level. Each value of each state dimension (i.e., each feature) is
represented by an individual node at the bottom level (all of which together
constitute a distributed representation). Those bottom-level feature nodes
relevant to the condition of a rule are connected to the single node at the
top level representing that condition, known as a chunk node (a localist
representation). When given a set of rules, a rule network can be wired up at
the top level, in which conditions and conclusions of rules are represented
by respective chunk nodes, and links representing rules are established
that connect corresponding pairs of chunk nodes.

To capture the bottom-up learning process (Stanley et al., 1989; Karmiloff-
Smith, 1986), the Rule-Extraction-Refinement algorithm (RER) learns rules
at the top level using information in the bottom level. The basic idea of
bottom-up learning of action-centered knowledge is as follows: If an ac-
tion chosen (by the bottom level) is successful (i.e., it satisfies a certain
criterion), then an explicit rule is extracted at the top level. Then, in sub-
sequent interactions with the world, the rule is refined by considering the
outcome of applying the rule: If the outcome is successful, the condition
of the rule may be generalized to make it more universal; if the outcome is
not successful, then the condition of the rule should be made more specific
and exclusive of the current case.

An agent needs a rational basis for making these above decisions. Nu-
merical criteria have been devised for measuring whether a result is suc-
cessful or not, used in deciding whether or not to apply these operations.

The CLARION Cognitive Architecture 87

The details of the numerical criteria measuring whether a result is success-
ful or not can be found in Sun et al. (2001). Essentially, at each step, positive
and negative match counts are updated (through measuring whether a rule
or a potential rule leads to a positive or negative outcome). Then, on that
basis, an information gain measure is computed, which compares differ-
ent rules and chooses better ones (by essentially comparing their respec-
tive positive match ratios). The aforementioned rule learning operations
(extraction, generalization, and specialization) are determined and per-
formed based on the information gain measure (see Sun, 2003, for details).

On the other hand, in the opposite direction, the dual representation
(implicit and explicit) in the ACS also enables top-down learning. With ex-
plicit knowledge (in the form of rules) in place at the top level, the bottom
level learns under the guidance of the rules. That is, initially, the agent
relies mostly on the rules at the top level for its action decision making.
But gradually, when more and more knowledge is acquired by the bot-
tom level through “observing” actions directed by the rules (based on the
same Q-learning mechanism as described before), the agent becomes more
and more reliant on the bottom level (given that the inter-level stochastic
selection mechanism is adaptable). Hence, top-down learning takes place.

For the stochastic selection of the outcomes of the two levels, at each step,
with probability Pg, the outcome of the bottom level is used. Likewise,
with probability Preg, if there is at least one RER rule indicating a proper
action in the current state, the outcome from that rule setis used; otherwise,
the outcome of the bottom level is used (which is always available). Other
components may be included in a like manner. The selection probabilities
may be variable, determined through a process known as “probability
matching”: that is, the probability of selecting a component is determined
based on the relative success ratio of that component. There exists some
psychological evidence for such intermittent use of rules; see, for example,
Sun et al. (2001).

In addition, a set of equations specifies the response times of different
components of the ACS and their combination — the overall response time.
Those response time equations are based on “base-level activation” — a
priming mechanism with gradually fading activation (Anderson & Lebiere,
1998; see Sun, 2003, for details).

This subsystem has been used for simulating a variety of psychologi-
cal tasks, including process control tasks in particular (Sun et al., 2005b).
In a process control task, participants were supposed to control a (simu-
lated) sugar factory. The output of the sugar factory was determined by
the current and past inputs from the participants into the factory, often
through a complex and non-salient relationship. In the ACS of CLARION,
the bottom level acquired implicit knowledge (embodied by the neural
network) for controlling the sugar factory, through interacting with the

88 Ron Sun

(simulated) sugar factory in a trial-and-error fashion. On the other hand,
the top level acquired explicit action rules for controlling the sugar fac-
tory, mostly through bottom-up learning (as explained before). Different
groups of participants were tested, including verbalization groups, explicit
instruction groups, and explicit search groups (Sun et al., 2005b). Our sim-
ulation succeeded in capturing the learning results of different groups of
participants, mainly through adjusting one parameter that was hypothe-
sized to correspond to the difference among these different groups (that is,
the probability of relying on the bottom level; Sun et al., 2005b).

Besides simulating process control tasks, this subsystem has been em-
ployed in simulating a variety of other important psychological tasks,
including alphabetic arithmetic tasks, artificial grammar learning tasks,
Tower of Hanoi, and so on, as well as social simulation tasks such as or-
ganizational decision making (see Chapter 6 by Naveh and Sun in this
book).

4 THE NON—ACTION-CENTERED SUBSYSTEM

The non-action-centered subsystem (the NACS) is used for representing
general knowledge about the world that is not action-centered, for the
purpose of retrieving information and making inferences about the world.
It stores such knowledge in a dual representational form (the same as in the
ACS): that is, in the form of explicit “associative rules” (at the top level), as
well as in the form of implicit “associative memory” (at the bottom level).
Its operation is under the control of the ACS.

First, at the bottom level of the NACS, “associative memory” networks
(AMN:s for short) encode non-action-centered implicit knowledge. Asso-
ciations are formed by mapping an input to an output. The regular back-
propagation learning algorithm, for example, can be used to establish such
associations between pairs of input and output (Rumelhart et al., 1986).

On the other hand, at the top level of the NACS, a general knowledge
store (the GKS) encodes explicit non—action-centered knowledge (cf. Sun,
1994). Asin the ACS, chunks are specified through dimensional values. The
basic form of a chunk consists of a chunk id and a set of dimension-value
pairs. A node is set up in the GKS to represent a chunk (which is a localist
representation). The chunk node connects to its constituting features (i.e.,
dimension-value pairs) represented as individual nodes in the bottom level
(a distributed representation in the AMNSs). Additionally, in the GKS, links
between chunks encode explicit associations between pairs of chunk nodes,
which are known as associative rules. Such explicit associative rules may
be formed (i.e., learned) in a variety of ways in the GKS of CLARION (see
Sun, 2003).

On top of that, similarity-based reasoning may be employed in the
NACS. A known (given or inferred) chunk may be automatically compared

The CLARION Cognitive Architecture 89

with another chunk. If the similarity between them is sufficiently high, then
the latter chunk is inferred.

Similarity-based and rule-based reasoning can be intermixed. As a result
of mixing similarity-based and rule-based reasoning, complex patterns of
reasoning may emerge. As shown by Sun (1994), different sequences of
mixed similarity-based and rule-based reasoning capture essential patterns
of human everyday (mundane, commonsense) reasoning.

As in the ACS, top-down or bottom-up learning may take place in the
NACS, either to extract explicit knowledge in the top level from the implicit
knowledge in the bottom level, or to assimilate the explicit knowledge of
the top level into the implicit knowledge in the bottom level.

Asinthe ACS, a set of equations determines the response times of differ-
ent components within the NACS (again based on “base-level activation”;
see Sun, 2003).

The NACS of CLARION has been used to simulate a variety of psycho-
logical tasks. For example, in artificial grammar learning tasks, participants
were presented with a set of letter strings. After memorizing these strings,
they were asked to judge the grammaticality of new strings. Despite their
lack of complete explicit knowledge about the grammar underlying the
strings, they nevertheless performed well in judging new strings. More-
over, they were also able to complete partial strings in accordance with their
implicit knowledge. The result showed that participants acquired fairly
complete implicit knowledge although their explicit knowledge was frag-
mentary at best (Domangue et al., 2004). In simulating this task, although
the ACS was responsible for controlling the overall operation, the NACS
was used for representing most of the relevant knowledge. The bottom
level of the NACS acquired implicit associative knowledge that enabled
it to complete partial strings. The top level of the NACS recorded explicit
knowledge concerning sequences of letters in strings. When given partial
strings, the bottom level or the top level might be used, or the two levels
might work together, depending on circumstances. Based on the previous
setup, the simulation succeeded in capturing fairly accurately human data
in this task across a set of different circumstances (Domangue et al., 2004).
In addition, many other tasks have been simulated using the NACS.

Let us also look into social situations in which the representations of self
and others are important (e.g., Tomasello, 1999; Andersen & Chen, 2002).
The social-cognitive model of transference claims that in an encounter with
a new person, an underlying representation of some significant others is
activated in a perceiver, leading the perceiver to interpret the new person in
ways derived from the stored representation and to respond accordingly.
The information one stores for significant others constitutes a system of
knowledge that can be activated and brought to the fore in similar contexts.
Within CLARION, such representations may be constructed in simulation
using both the NACS and the ACS. In the NACS, information about others

90 Ron Sun

is stored at both levels as usual: through implicit associative memory as
well as through explicit associative rules. Similarity of a new person to
a stored representation of a significant other may be detected within the
NACS through the working of the two levels, in ways as sketched earlier. In
turn, the detected similarity may trigger associated inferences — deriving
information about the new person from the stored information. Similar
detection may occur in the ACS. However, in the ACS, instead of infer-
ential processes, actions may be chosen in accordance with the detected
similarity.

5 THE MOTIVATIONAL SUBSYSTEM

Supervisory processes over the operations of the ACS and the NACS are
made up of two subsystems in CLARION: the motivational subsystem
and the metacognitive subsystem. The motivational subsystem (the MS)
is concerned with drives and their interactions (Toates, 1986). That is, it is
concerned with why an agent does what it does —why an agent chooses the
actions it takes. Simply saying that an agent chooses actions to maximize
gains, rewards, or payoffs leaves open the question of what determines
gains, rewards, or payoffs. The relevance of the motivational subsystem
to the main part of the architecture, the ACS, lies primarily in the fact
that it provides the context in which the goal and the reinforcement of the
ACS are determined. It thereby influences the working of the ACS, and by
extension, the working of the NACS.

As an aside, for several decades by now, criticisms of commonly ac-
cepted models of human motivations, for example in economics, have fo-
cused on their overly narrow views regarding motivations, for example,
solely in terms of simple reward and punishment (economic incentives
and disincentives). Many critics opposed the application of this overly
narrow approach to social, behavioral, cognitive, and political sciences.
Complex social motivations, such as desire for reciprocation, seeking of
social approval, and interest in exploration, also shape human behav-
ior. By neglecting these motivations, the understanding of some key so-
cial and behavioral issues (such as the effect of economic incentives on
individual behavior) may be hampered. Similar criticisms may apply
to work on reinforcement learning in Al (for example, Sutton & Barto,
1998).

A set of major considerations that the motivational subsystem of an
agent must take into account may be identified. Here is a set of considera-
tions using drives as the main construct (cf. Simon, 1967; Tyrell, 1993):

* Proportional activation. The activation of a drive should be proportional
to corresponding offsets, or deficits, in related aspects (such as food or
water).

The CLARION Cognitive Architecture 91

goal action goal

goal structure
from MCS, ACS to ACS, MCS

low—level primary drives

drive strengths
to MCS

sensory input high—level primary drives

secondary drives

FIGURE 4.2. The structure of the motivational subsystem.

* Opportunism. An agent needs to incorporate considerations concerning
opportunities. For example, the availability of water may lead one to
prefer drinking water over gathering food (provided that food deficits
are not too great).

* Contiguity of actions. There should be a tendency to continue the current
action sequence, rather than switching to a different sequence, in order
to avoid the overhead of switching.

* Persistence. Similarly, actions to satisfy a drive should persist beyond
minimum satisfaction, that is, beyond a level of satisfaction barely
enough to reduce the most urgent drive to be slightly below some other
drives.?

* Interruption when necessary. However, when a more urgent drive arises
(such as “avoid-danger”), actions for a lower-priority drive (such as
“get-sleep”) may be interrupted.

» Combination of preferences. The preferences resulting from different drives
should be combined to generate a somewhat higher overall preference.
Thus, a compromise candidate may be generated that is not the best for
any single drive but the best in terms of the combined preference.

A bipartite system of motivational representation is as follows (cf.
Simon, 1967; Nerb et al., 1997). The explicit goals (such as “finding food”)
of an agent (which is tied to the working of the ACS, as explained before)
may be generated based on internal drive states (for example, “being hun-
gry”) of the agent. This explicit representation of goals derives from, and
hinges upon, implicit drive states. See Figure 4.2.3

2 For example, an agent should not run toward a water source and drink only a minimum
amount, then run toward a food source and eat a minimum amount, and then go back to
the water source to repeat the cycle.

3 Note that it is not necessarily the case that the two types of representations directly corre-
spond to each other (e.g., one being extracted from the other), as in the case of the ACS or
the NACS.

92 Ron Sun

Specifically, we refer to as primary drives those drives that are essential
to an agent and are most likely built-in (hard-wired) to begin with. Some
sample low-level primary drives include (cf. Tyrell, 1993):

Get-food. The strength of this drive is proportional to 0.95 * max (food-
deficit, food-deficit * food-stimulus). The maximum strength of this drive is
0.95. The actual strength is determined by two factors: food-deficit felt by
the agent, and the food-stimulus perceived by it.

Get-water. The strength of this drive is proportional to 0.95 * max (water-
deficit, water-deficit * water-stimulus). This situation is similar to get-food.

Avoid-danger. The strength of this drive is proportional to 0.98 * danger-
stimulus * danger-certainty. The maximum strength of this drive is 0.98.
It is proportional to the danger signal: its distance, severity (disincentive
value), and certainty. The first two factors are captured by danger-stimulus
(which is determined by distance and severity), and the third factor by
danger-certainty.

These drives may be implemented in a (pre-trained) backpropagation neu-
ral network, representing evolutionarily pre-wired instincts.

Beyond such low-level drives (concerning physiological needs), there
are also higher-level drives. Some of them are primary, in the sense of
being “hard-wired.” The “need hierarchy” of Maslow (1987) identifies
some of these drives. A few particularly relevant high-level drives include:
belongingness, esteem, self-actualization, and so on (Sun, 2003).

Whereas primary drives are built-in and relatively unalterable, there
are also “derived” drives, which are secondary, changeable, and acquired
mostly in the process of satisfying primary drives. Derived drives may in-
clude: (1) gradually acquired drives, through “conditioning” (Hull, 1951);
(2) externally set drives, through externally given instructions. For exam-
ple, due to the transfer of the desire to please superiors into a specific
desire to conform to their instructions, following the instructions becomes
a (derived) drive.

Explicit goals may be set based on these (primary or derived) drives, as
will be explored in the next section (Simon, 1967; Nerb et al., 1997).

6 THE METACOGNITIVE SUBSYSTEM

Metacognition refers to one’s knowledge concerning one’s own cogni-
tive processes and their outcomes. Metacognition also includes the ac-
tive monitoring and consequent regulation and orchestration of these pro-
cesses, usually in the service of some concrete goal (Flavell, 1976; Mazzoni

4 Other drives include get-sleep, reproduce, and a set of “avoid saturation” drives, for exam-
ple, avoid-water-saturation or avoid-food-saturation. There are also drives for curiosity
and avoid-boredom. See Sun (2003) for further details.

The CLARION Cognitive Architecture 93

& Nelson, 1998). This notion of metacognition is operationalized within
CLARION.

In CLARION, the metacognitive subsystem (the MCS) is closely tied
to the motivational subsystem. The MCS monitors, controls, and regu-
lates cognitive processes for the sake of improving cognitive performance
(Simon, 1967; Sloman, 2000). Control and regulation may be in the forms
of setting goals for the ACS, interrupting and changing ongoing processes
in the ACS and the NACS, setting essential parameters of the ACS and
the NACS, and so on. Control and regulation are also carried out through
setting reinforcement functions for the ACS on the basis of drive states.

In this subsystem, many types of metacognitive processes are available,
for different metacognitive control purposes. Among them, there are the
following types (Sun, 2003; Mazzoni & Nelson, 1998):

(1) behavioral aiming:
setting of reinforcement functions
setting of goals

(2) information filtering:
focusing of input dimensions in the ACS
focusing of input dimensions in the NACS

(8) information acquisition:
selection of learning methods in the ACS
selection of learning methods in the NACS

(4) information utilization:
selection of reasoning methods in the ACS
selection of reasoning methods in the NACS

(5) outcome selection:
selection of output dimensions in the ACS
selection of output dimensions in the NACS

(6) cognitive mode selection:
selection of explicit processing, implicit processing, or a combination
thereof (with proper integration parameters) in the ACS

(7) setting parameters of the ACS and the NACS:
setting of parameters for the IDNs
setting of parameters for the ARS
setting of parameters for the AMNs
setting of parameters for the GKS

Structurally, the MCS may be subdivided into a number of modules.
The bottom level consists of the following (separate) networks: the goal
setting network, the reinforcement function network, the input selection
network, the output selection network, the parameter setting network (for
setting learning rates, temperatures, etc.), and so on. In a similar fashion, the

94 Ron Sun

reinforcement

evaluation

state
goal goal setting
drives

goal action

level selection

reasoning selection

learning selectipn

filtering. selection

. input selection and regulation
monitoring -
buffer output selectior]
goal change

parameter setting

FIGURE 4.3. The structure of the metacognitive subsystem.

rules at the top level (if they exist) can be correspondingly subdivided. See
Figure 4.3 for a diagram of the MCS. Further details, such as monitoring
buffer, reinforcement functions (from drives), goal setting (from drives),
information selection, and so on, can be found in Sun (2003).

This subsystem may be pre-trained before the simulation of any partic-
ular task (to capture evolutionary pre-wired instincts, or knowledge /skills
acquired from prior experience).

7 DISCUSSIONS

Let us turn to the question of the relevance of this cognitive architecture
to cognitive modeling and social simulation. First of all, let us examine its
contributions to computational cognitive modeling. Compared with other
existent cognitive architectures, it is unique in that it contains (1) built-in
motivational constructs, (2) built-in metacognitive constructs, (3) the sepa-
ration of the two dichotomies: the dichotomy of implicit versus explicit rep-
resentation and dichotomy of action-centered versus non-action-centered
representation, and (4) both top-down and bottom-up learning. These fea-
tures are not commonly found in other existing cognitive architectures.
Nevertheless, these features are crucial to the enterprise of cognitive archi-
tectures, as they capture important elements in the interaction between an
agent and its social and physical world.

For instance, without motivational constructs, a model agent would be
literally aimless. It would wander around the world aimlessly accomplish-
ing hardly anything. Or it would have to rely on knowledge hand coded

The CLARION Cognitive Architecture 95

into it (for example, regarding goals and procedures) in order to accomplish
some relatively minor things, usually only in a controlled environment. Or
it would have to rely on external “feedback” (reinforcement, reward, pun-
ishment, etc.) in order to learn. But the requirement of external feedback
begs the question of how such a signal is obtained in the natural world. In
contrast, with the motivational subsystem as an integral part of CLARION,
it is able to generate such feedback internally and learn on that basis, with-
out requiring a “special” external feedback signal or externally provided
and hand coded a priori knowledge (Edelman, 1992).

Furthermore, with the two separate, built-in dichotomies, a variety of
different types of knowledge may be represented. They include implicit
and explicit action-centered knowledge, and implicit and explicit non-
action-centered knowledge. These types of knowledge are not only im-
portant for modeling individual agents, but also important for modeling
social interactions among agents. They capture habitual everyday rou-
tines for coping with the everyday world involving other agents, delib-
erate plans for specific tasks taking into account other agents, general,
explicit, conceptual knowledge about the world and about other agents,
implicit associations (formed from prior experiences) for priming other
knowledge that may involve other agents, and so on. Cognitive models
of agents would be much less capable without some of these knowledge
types. Social simulation would, likewise, be much less realistic without
some of these knowledge types.

On top of that, with the ability to learn in both top-down and bottom-
up directions, CLARION captures more realistic learning capabilities of
more cognitively realistic agents. The combination of these learning di-
rections, especially bottom-up learning, enables the modeling of the com-
plex interaction of an agent and its environment in learning a variety of
different types of knowledge, in a variety of different ways (Sun et al.,
2001). In particular, they enable the capturing of complex sociocultural
learning.

Compared with existing social simulations, there are reasons to believe
that CLARION has a lot to contribute towards more cognitively realistic
social simulation. In existing social simulations, only very rudimentary
models of agents have been used for the most part, without detailed, cog-
nitively realistic processes and mechanisms (see, for example, Axelrod,
1984; Gilbert & Doran, 1994; Prietula et al., 1998; and so on), which may
or may not serve well the intended purposes of these social simulations.
Compared with such models, cognitive architectures provide a cognitively
grounded way of understanding multi-agent interaction, by embodying re-
alistic cognitive constraints and cognitive capabilities of individual agents
in their interaction with their environments and with other agents, which
may be highly relevant in many circumstances (see, for example, the chap-
ters in Part 3 of this book). This is because cognitive architectures embody
detailed (but generic) mechanisms and processes of individual cognition.

96 Ron Sun

This point about the importance of cognitive realism has also been made
by others, for example, in the context of cognitive realism of game theory
(Kahan & Rapoport, 1984; Camerer, 2003) and cognitive realism of social
simulation (Edmonds & Moss, 2001). We may even attempt to develop
cognitive principles of sociocultural processes (e.g., Boyer & Ramble, 2001;
Atran & Norenzayan, in press).

CLARION has been successful in simulating a variety of psychologi-
cal tasks. These tasks include serial reaction time tasks, artificial grammar
learning tasks, process control tasks, categorical inference tasks, alphabeti-
cal arithmetic tasks, and the Tower of Hanoi task (see Sun, 2002). Some of
these tasks have been explained earlier. In addition, extensive work has
been done on a complex minefield navigation task (Sun et al., 2001). We
have also tackled human reasoning processes through simulating reason-
ing data. Simulations involving motivational structures and metacogni-
tive processes are also under way. Therefore, we are now in a good po-
sition to extend the effort on CLARION to the capturing of a wide range
of social phenomena through integrating cognitive modeling and social
simulation.

Let us take a brief look at some rather preliminary applications of
CLARION to social simulation. In one instance, CLARION was substituted
for simpler models previously used in organizational decision making
modeling. An exploration was made of the interaction between cognitive
parameters that govern individual agents, placement of agents in different
organizational structures, and performance of the organization. By vary-
ing some factors and measuring the effect on collective performance, a
better picture of the interaction between individual cognition and organi-
zational decision making was arrived at (see Chapter 6 by Naveh and Sun
in Part 3 of this book). In another instance, CLARION was used to simulate
the collective process of academic publication. CLARION reproduced the
empirically observed power curves concerning number of publications,
based on rather detailed modeling of the individual cognitive processes
involved. Various cognitive parameters were also tested and various ef-
fects observed. In yet another instance, tribal societies were simulated, on
the basis of CLARION modeling individual cognitive processes. In the
simulation, different forms of social institutions (such as food distribution,
political system, and enforcement of law) were investigated and related
back to factors of individual cognition. Social institutions affect agents’
actions and behaviors, which in turn affect social institutions. In this inter-
action, individual motivational factors are being taken into consideration,
which include social norms, ethical values, need for social acceptance, em-
pathy, imitation, and so on. The role of metacognitive control is also being
investigated in this process. It has been suggested that such simulations are
the best way to understand or to validate the significance of contributing
cognitive, motivational, and metacognitive factors (see, e.g., Chapter 1 in

The CLARION Cognitive Architecture 97

this book). The reader is referred to the chapters in Part 3 of this book for
more examples of such social simulations.

8§ SUMMARY

In summary, this chapter covers the essentials of the CLARION cognitive
architecture, and focuses in particular on the distinguishing features of the
architecture. CLARION is distinguished by its inclusion of multiple, inter-
acting subsystems: the action-centered subsystem, the non—action-centered
subsystem, the motivational subsystem, and the metacognitive subsystem.
It is also distinguished by its focus on the separation and the interaction
of implicit and explicit knowledge (in these different subsystems, respec-
tively). Different representational forms have been used for encoding these
different types of knowledge, and different learning algorithms have been
developed. Both top-down and bottom-up learning have been incorpo-
rated into CLARION. With these mechanisms, especially the motivational
and metacognitive mechanisms, CLARION has something unique to con-
tribute to cognitive modeling and social simulation.

For the full technical details of CLARION, see Sun (2003), which is avail-
able at http: //www.cogsci.rpi.edu/~rsun/CLARION-pub.html.

CLARION has been implemented as a set of Java packages, available at
http: //www.cogsci.rpi.edu/~rsun/CLARION.html.

ACKNOWLEDGMENTS

The work on CLARION has been supported in part by Army Research
Institute contract DASW01-00-K-0012. Thanks are due to Xi Zhang, Isaac
Naveh, Paul Slusarz, Robert Mathews, and many other collaborators, cur-
rent or past. Thanks are also due to Jonathan Gratch, Frank Ritter, and Bill
Clancey for their comments.

References

Andersen, S., & Chen, S. (2002). The relational self: An interpersonal social-cognitive
theory. Psychological Review, 109(4), 619-645.

Anderson, J., & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ:
Lawrence Erlbaum.

Atran, S., & Norenzayan, A. (in press). Religion’s evolutionary landscape: Coun-
terintuition, commitment, compassion, and communion. Behavioral and Brain
Sciences.

Axelrod, R. (1984). The evolution of cooperation. New York: Basic Books.

Baddeley, A. (1986). Working memory. New York: Oxford University Press.

Bates, J., Loyall, A., & Reilly, W. (1992). Integrating reactivity, goals, and emotion
in a broad agent. Proceedings of the 14th Meeting of the Cognitive Science Society.
Mahwah, NJ: Lawrence Erlbaum.

98 Ron Sun

Boyer, P., & Ramble, C. (2001). Cognitive templates for religious concepts: Cross-
cultural evidence for recall of counter-intuitive representations. Cognitive Science,
25, 535-564.

Bruner, J., Goodnow, J., & Austin, J. (1956). A study of thinking. New York: Wiley.

Busemeyer, J., & Myung, L. (1992). An adaptive approach to human decision mak-
ing: Learning theory, decision theory, and human performance. Journal of Exper-
imental Psychology: General, 121(2), 177-194.

Camerer, C. (2003). Behavioral game theory: Experiments in strategic interaction. Prince-
ton, NJ: Princeton University Press.

Chaiken, S., & Trope, Y. (eds.), (1999). Dual process theories in social psychology. New
York: Guilford Press.

Clark, A., & Karmiloff-Smith, A. (1993). The cognizer’s innards: A psychologi-
cal and philosophical perspective on the development of thought. Mind and
Language, 8(4), 487-519.

Cleeremans, A. (1997). Principles for implicitlearning. In D. Berry (Ed.), How implicit
is implicit learning? (pp. 195-234). Oxford, UK: Oxford University Press.

Cleeremans, A., Destrebecqz, A., & Boyer, M. (1998). Implicit learning: News from
the front. Trends in Cognitive Sciences, 2(10), 406—416.

Domangue, T., Mathews, R., Sun, R., Roussel, L., & Guidry, C. (2004). The effects
of model-based and memory-based processing on speed and accuracy of gram-
mar string generation. Journal of Experimental Psychology: Learning, Memory, and
Cognition, 30(5), 1002-1011.

Edelman, G. (1992). Bright air, brilliant fire. New York: Basic Books.

Edmonds, B., & Moss, S. (2001). The importance of representing cognitive processes
in multi-agent models. In G. Dorffner, H. Bischof, & K. Hornik (Eds.), Artificial
Neural Networks—-ICANN'2001. Lecture Notes in Computer Science (Vol. 2130,
pp. 759-766). Springer-Verlag.

Flavell, J. (1976). Metacognitive aspects of problem solving. In: B. Resnick (ed.), The
Nature of Intelligence. Hillsdale, NJ: Erlbaum.

Gilbert, N., & Doran, J. (1994). Simulating societies: The computer simulation of social
phenomena. London, UK: UCL Press.

Hull, C. (1951). Essentials of behavior. New Haven, CT: Yale University Press.

Kahan, J., & Rapoport, A. (1984). Theories of coalition formation. Mahwah, NJ:
Erlbaum.

Karmiloff-Smith, A. (1986). From meta-processes to conscious access: Evidence
from children’s metalinguistic and repair data. Cognition, 23, 95-147.

Latane, B. (1981). The psychology of social impact. American Psychologist, 36, 343—
356.

Maslow, A. (1987). Motivation and personality. 3rd ed. New York: Harper and Row.

Mazzoni, G., & Nelson, T. (Eds.). (1998). Metacognition and cognitive neuropsychology.
Mahwah, NJ: Erlbaum.

Nerb, J., Spada, H., & Ernst, A. (1997). A cognitive model of agents in a com-
mon dilemma. Proceedings of the 19th Cognitive Science Conference (pp. 560-565).
Mahwah, NJ: Erlbaum.

Prietula, M., Carley, K., & Gasser, L. (eds.), (1998). Simulating Organizations: Com-
putational models of institutions and groups. Cambridge, MA: MIT Press.

Reber, A. (1989). Implicit learning and tacit knowledge. Journal of Experimental
Psychology: General, 118(3), 219-235.

The CLARION Cognitive Architecture 99

Rumelhart, D., McClelland, J., & the PDP Research Group (1986). Parallel distributed
processing: Explorations in the microstructures of cognition. Cambridge, MA: MIT
Press.

Seger, C. (1994). Implicit learning. Psychological Bulletin, 115(2), 163-196.

Simon, H. (1967). Motivational and emotional controls of cognition. Psychological
Review, 74, 29-39.

Sloman, A. (2000). Architectural requirements for human-like agents both natural
and artificial. In Human cognition and social agent technology, K. Dautenhahn (ed.).
Amsterdam: John Benjamins.

Smolensky, P. (1988). On the proper treatment of connectionism. Behavioral and Brain
Sciences, 11(1), 1-74.

Stanley, W., Mathews, R., Buss, R., & Kotler-Cope, S. (1989). Insight without aware-
ness: On the interaction of verbalization, instruction and practice in a simulated
process control task. Quarterly Journal of Experimental Psychology, 41A(3), 553-577.

Sun, R. (1994). Integrating rules and connectionism for robust commonsense rea-
soning. New York: John Wiley.

Sun, R. (2001). Meta-learning in multi-agent systems. InN. Zhong, J. Liu, S. Ohsuga,
& J. Bradshaw (Eds.), Intelligent agent technology: Systems, methodologies, and tools.
(pp- 210-219). Singapore: World Scientific.

Sun, R. (2002). Duality of the mind. Mahwah, NJ: Lawrence Erlbaum.

Sun, R. (2003). A Tutorial on CLARION 5.0. http://www.cogsci.rpi.edu/~rsun/
sun.tutorial.pdf

Sun, R. (2004). Desiderata for cognitive architectures. Philosophical Psychology, 17(3),
341-373.

Sun, R., Merrill, E., & Peterson, T. (1998). A bottom-up model of skill learning.
Proceedings of 20th Cognitive Science Society Conference, 1037-1042, Mahwah, NJ:
Lawrence Erlbaum.

Sun, R., Merrill, E., & Peterson, T. (2001). From implicit skills to explicit knowledge:
A bottom-up model of skill learning. Cognitive Science, 25(2), 203-244.

Sun, R.,Slusarz, P., & Terry, C. (2005a). The interaction of the explicit and the implicit
in skill learning: A dual-process approach. Psychological Review, 112(1), 159-192.

Sun, R, Zhang, X., Slusarz, P, & Mathews, R. (2005b). The interaction of im-
plicit learning, explicit hypothesis testing, and implicit-to-explicit extraction.
Submitted.

Sutton, R., & Barto, A. (1998). Reinforcement learning. Cambridge, MA: MIT Press.

Toates, F. (1986). Motivational systems. Cambridge, UK: Cambridge University Press.

Tomasello, M. (1999). The cultural origins of human cognition. Cambridge, MA:
Harvard University Press.

Tyrell, T. (1993). Computational mechanisms for action selection. PhD thesis, Oxford
University, Oxford, UK.

Watkins, C. (1989). Learning with delayed rewards. PhD thesis, Cambridge University,
Cambridge, UK.

PART 3

MODELING AND SIMULATING COGNITIVE
AND SOCIAL PROCESSES

5

Cognitive Architectures, Game Playing,
and Human Evolution

Robert L. West, Christian Lebiere,
and Dan J. Bothell

1 INTRODUCTION

Game playing is an excellent domain for researching interactive behaviors
because any time the outcomes of the interactions between people are
associated with payoffs the situation can be cast as a game. Because it is
usually possible to use game theory (von Neumann & Morgenstern, 1944)
to calculate the optimal strategy, game theory has often been used as a
framework for understanding game-playing behavior in terms of optimal
and sub-optimal playing. That is, players who do not play according to the
optimal game theory strategy are understood in terms of how they deviate
from it. In this chapter we explore whether or not this is the right approach
for understanding human game-playing behavior, and present a different
perspective, based on cognitive modeling.

Optimal game theory models have been shown to be predictive of com-
petitive strategies used by some animals (see Pool, 1995 for a review), lead-
ing to the argument that the process of evolution acts as a genetic algorithm
for producing optimal or near-optimal competitive behaviors. However,
game theory models have not been very successful in predicting human
behavior (Pool, 1995). In fact, psychological testing indicates that, from
a game theory perspective, humans do not have the necessary cognitive
skills to be good players. According to the classical game theory view, two
abilities are needed to be a good game player (note, game theorists do not
claim that game theory describes the cognitive process underlying game
playing; however, these two abilities are necessary to play in the manner
described by game theory): (1) the player needs the ability to calculate
or learn the optimal probabilities for performing each move, and (2) the
player needs to be able to select moves at random, according to these prob-
abilities. Humans are remarkably poor at both of these tasks. For example,
in a simple guessing task in which a signal has an 80% chance of appearing
in the top part of a computer screen and a 20% chance of appearing in

103

104 Robert L. West, Christian Lebiere, and Dan |. Bothell

the bottom, instead of adhering to the game theory solution and always
guessing that the signal will be in the top part (for an optimal hit rate of
80%) people will fruitlessly try to predict when the signal will appear in the
bottom part (for a hit rate of approximately 68%); which causes us humans
to perform significantly worse than rats (Gazzaniga, 1998). Likewise, in
addition to being poor at finding optimal probabilities, humans have been
shown to be very poor at behaving randomly across a wide variety of tasks
(see Tune, 1964, and Wagenaar, 1972 for reviews).

Given that humans are, arguably, the most successful species on earth, it
does not seem reasonable that we should fail to fit the profile of a successful
competitor. The answer to this problem lies in the unique adaptive strategy
adopted by humans. In almost all cases, other creatures have evolved niche
strategies. That is, they have adapted to compete as effectively as possi-
ble within particular environments and/or against particular opponents.
These strategies tend to be near optimal, in the game theory sense, and
also tend to be relatively inflexible. In contrast, humans have evolved to
use learning, reasoning, problem solving, and creative thought to respond
in highly adaptive ways across a wide variety of conditions.

From a game-playing perspective, these two evolutionary strategies
equate to two different types of players. As noted above, niche players can
often be understood as optimal or near-optimal players. Optimal players
conform to game theory expectations in that (1) their choice of moves across
time can be described in terms of selecting moves according to fixed prob-
abilities and (2) these probabilities delineate an optimal or near-optimal
approach to the game. In contrast, the strategy of using some form of learn-
ing or thinking to try to improve the choice of future moves is a maximizing
strategy. Maximal players do not use a fixed way of responding. Instead
they attempt to adjust their responses to exploit perceived weaknesses in
their opponent’s way of playing. We argue that humans have evolved to
be maximal rather than optimal players. That is, in competitive situations,
humans attempt to exploit their opponent’s weaknesses, rather than play
optimally. Furthermore, we argue that evolution has evolved the human
cognitive system to support a superior ability to operate as a maximizing
player.

1.1 Maximal Versus Optimal

Maximal agents are potentially more effective than optimal agents against
non-optimal agents. The optimal game theory solution is calculated by
assuming that the opponent will play rationally. What this amounts to is an
assumption that all players will assume that all other players will attempt
to find the optimal strategy. If an opponent is using a sub-optimal strategy
the optimal player will generally fail to exploit it. For example, the game
theory solution for the game of Paper, Rock, Scissors is to play randomly

Cognitive Architectures, Game Playing, and Human Evolution 105

1/3 paper, 1/3 rock, 1/3 scissors (in this game paper beats rock, rock beats
scissors, and scissors beats paper). If an opponent plays 1/2 paper, 1/4
rock, and 1/4 paper, the optimal strategy will tend to produce ties instead
of the wins that could be produced by maximizing and playing scissors
more. Nevertheless, it is also true that if a maximal agent plays against an
optimal agent the best they can do is tie. However, keep in mind that for an
optimal agent to be safe against all maximizing agents it needs the ability
to behave truly randomly, something that may not be all that common
in the natural world. Overall, we can characterize optimal agents as being
designed to avoid losing, whereas maximizing agents can be characterized
as being designed to try to win by as much as possible, at the risk of losing.

1.2 Understanding Maximizing Strategies

Game theory provides a mathematical model for understanding and cal-
culating optimal strategies. In this framework it is generally possible to
calculate who should win, how often they will win, and how much they
will win by. However, for games between maximizing players it can be
very difficult to predict these things. The reason for this is that when two
maximizing agents interact they form a dynamically coupled system. To
adjust their behavior to exploit their opponent they have to sample their
opponent’s behavior to find a weakness. After they alter their behavior
to exploit their opponent, the opponent will eventually detect the change
and alter its behavior to exploit weaknesses in the new behavior. Thus,
maximizing agents can end up chasing each other, trying to stay on top
with the best strategy. This could result in an agent ending up in equilib-
rium, where the agent maintains a single strategy, or a limit cycle, where
an agent repeatedly cycles through a limited set of strategies. However
another possibility is that the coupled system, composed of the two in-
teracting agents, could fail to settle into a stable pattern and instead pro-
duce a chaos-like situation (the term chaos-like is used instead of chaos as
truly chaotic systems, i.e., systems that never repeat, exist only in math-
ematics or in physical, analog systems. In this case, chaos-like is simply
meant to refer to dynamic systems that appear to an observer to behave
randomly).

Clark (1997, 1998) refers to these chaos-like interactions as reciprocal
causation. Reciprocal causation is associated with emergent properties,
that is, these systems often produce unexpected, higher-level patterns of
behavior. In terms of game playing, the ability of one player to beat an-
other at a greater than chance rate is the higher-level pattern of interest.
Clark (1997) also notes that, due to the chaos-like properties of recipro-
cal causation systems, it is often difficult to deliberately design systems
to produce specific emergent properties. This is because predicting the re-
sults of these types of interactions is often mathematically intractable. To

106 Robert L. West, Christian Lebiere, and Dan |. Bothell

deal with this problem, maximizing strategies are usually studied by using
computer simulations to create games between agents programmed with
specific maximizing strategies.

This approach has been used by game theorists is to study the role of
learning in game theory. A central question in this area of research has been
whether or not players could learn the optimal move probabilities through
their experience in a game. More specifically, if both players adjusted their
move probabilities to create an advantage for themselves based on the
history of their opponent’s moves, would they eventually settle into an
equilibrium equivalent to the game theory solution? If so, it would mean
that the optimal game theory solution would still be relevant for under-
standing maximizers. However, research has shown that maximizers can
co-evolve to non-optimal solutions (e.g., see Fudenberg & Levine, 1998;
Sun & Qi, 2000), meaning that the optimal strategy is not predictive of
behavior in these cases.

We also used the simulation approach, but with one important differ-
ence. Rather than adapting the basic game theory model to include learn-
ing, we based our model on psychological findings describing the way
people process information in game-like situations. Thus we draw a dis-
tinction between game theory maximizers (i.e. the game theory model with
the proviso that the move probabilities be learned) and cognitive maximiz-
ers (i.e., models based directly on the way human cognition works). Our
contention is that these two approaches are very different and that the cog-
nitive maximizer perspective is necessary for understanding human game
playing behavior.

1.3 Experimental Psychology and Reciprocal Causation

Humans frequently interact in complex and dynamic ways. Despite this,
experimental psychology is based almost exclusively on studying indi-
viduals in isolation, interacting with static situations (i.e., situations that
do not feed back or do not feed back in a way that could produce re-
ciprocal causation). This has allowed psychology to avoid the difficulties
associated with studying complex dynamic systems, and to amass a large
body of facts and models describing how people respond under these con-
ditions. However, it may also be preventing psychology from forming a
complete picture of human behavior. Hutchins (1995) has argued that much
of what humans have achieved is due to distributed cognition rather than
individual cognition — where distributed cognition refers to the fact that
cognition (the processing of symbolic information) can occur across brains
(linked by language and other means of communication). Likewise Clark
(1997) has noted that much of human behavior seems to form reciprocal
causation linkages to the world and to other humans (e.g., the economic
system).

Cognitive Architectures, Game Playing, and Human Evolution 107

Others (e.g., van Gelder & Port, 1995) have pointed to the limited num-
ber of studies showing that dynamic systems theory (i.e., mathematical,
dynamic systems models) can be used to describe human behavior, and
argued that traditional cognitive models (i.e., computational, symbolically
based models) need to be abandoned in favor of dynamic systems models.
We agree with Hutchins and Clark that humans ultimately need to be un-
derstood in terms of the dynamic, interactive behaviors that make up most
of their lives, but we disagree with the view that existing cognitive models
need to be thrown out in favor of dynamic systems models. Instead we
argue that experimental psychology has produced good models of specific
cognitive mechanisms, and that these should form the building blocks for
modeling complex interactive behavior.

However, interactive human behavior is often complex, involving more
than one specific cognitive mechanism. Because of this need to go beyond
the study of individual, isolated cognitive mechanisms, and the need to
simulate interactions between agents, we argue that the use of cognitive
architectures is the best way to proceed.

2 COGNITIVE ARCHITECTURES

Cognitive architectures (specifically, production systems) were proposed
by Newell (1973b) as a solution to the problems that he raised in a com-
panion paper (Newell, 1973a) about the state of the study of cognition.
The basic problem as he saw it was that the field of cognitive psychol-
ogy practiced a strategy that was too much divide and too little conquer.
Increasingly specialized fields were being carved out and esoteric distinc-
tions being proposed, without any resolution that could lead to an in-
tegrated understanding of the nature of human cognition. Although the
extent to which our cognitive abilities result from specialized capacities
or from general-purpose mechanisms remains a hotly debated question,
Newell’s concept of cognitive architectures addresses the underlying sys-
temic problem of unification by providing computational accounts of the
findings of each specialized area in a comprehensive and integrated archi-
tecture of cognition. He later developed and proposed his own Soar archi-
tecture as a candidate for such a unified theory of cognition (Newell, 1990).

Cognitive architectures can provide some insights into the nature of
cognition, but they do not constitute a panacea. Cognitive architectures
specify, often in considerable computational detail, the mechanisms un-
derlying cognition. However, performance in a given task depends not
only on those mechanisms but also on how a given individual chooses
to use them. Individual differences include not only fundamental capac-
ities such as working memory or psychomotor speed, but also a bewil-
dering array of different knowledge states and strategies. Limiting the
complexity and degrees of freedom of such models is a major challenge

108 Robert L. West, Christian Lebiere, and Dan |. Bothell

Intentional Module Declarative Module
(not identified) (Temporal/Hippocampus)
Y
Goal Buffer Retrieval Buffer
(DLPFC) (VLPFC)
s L S
H] % | Matching (Striatum)
2 s
E o Selection (Pallidum
S o
= @ |_Execution (Thalamus))
. ™Y
Imaginal Buffer Manual Buffer
(Parietal) (Motor)
P T
Imaginal Module Manual Module
(Parietal, ete) (Motor/Cerebellum)

i
External World

FIGURE 5.1. The component structure of ACT-R.

in making cognitive modeling a predictive rather than merely explanatory
endeavor.

Hybrid architectures (see Wermter & Sun, 2000, for a review) have
become increasingly popular over the last decade to remedy the re-
spective shortcomings of purely symbolic or connectionist approaches.
Symbolic architectures (e.g. Soar) can produce very complex, structured
behavior but find it difficult to emulate the adaptivity and robustness
of human cognition. Connectionist approaches (e.g., see McClelland &
Rumelhart, 1986) provide flexible learning and generalization to new situ-
ations, but have not been successful in modeling complex, knowledge-rich
behavior.

ACT-R (Anderson & Lebiere, 1998) is a cognitive architecture developed
over the last 30 years at Carnegie Mellon University. At a fine-grained scale
it has accounted for hundreds of phenomena from the cognitive psychol-
ogy and human factors literature. The most recent version, ACT-R 5.0, is
a modular architecture composed of interacting modules for declarative
memory, perceptual systems such as vision and audition, and motor sys-
tems, all synchronized through a central production system (see Figure 5.1).
This modular view of cognition is a reflection both of functional constraints
and of recent advances in neuroscience concerning the localization of brain
functions.

ACT-R is a hybrid system that combines a tractable symbolic level that
enables the easy specification of complex cognitive functions, with a sub-
symbolic level that tunes itself to the statistical structure of the environment

Cognitive Architectures, Game Playing, and Human Evolution 109

to provide the graded characteristics of cognition such as adaptivity, ro-
bustness, and stochasticity. The subsymbolic level is controlled by func-
tions that control the access to the symbolic structures. As ACT-R gains
experience in a task the parameter values of these functions are tuned to
reflect a rational adaptation to the task (Anderson, 1990), where “ratio-
nal” refers to a general ability to respond rationally to our environment, as
opposed to a rational analysis of the specific task. Using this approach,
Anderson (1990) demonstrated that characteristics of human cognition
thought of as shortcomings could actually be viewed as optimally adapted
to the environment. For example, forgetting provides a graceful implemen-
tation of the fact that the relevance of information decreases with time.

The symbolic level of ACT-R is primarily composed of chunks of infor-
mation, and production rules that coordinate the flow of information and
actions between modules based on the current goals of the system, also
represented as chunks. Chunks are composed of a small number of pieces
of information (typically less than half a dozen), which can themselves be
chunks. Chunks stored in declarative memory can be retrieved according
to their associated subsymbolic parameter called activation. The activation
of a chunk is influenced by several factors that cause activation to increase
with frequency of access, decay with time, and vary with the strengths
of association to elements of the context and the degree of the match to
requested patterns (chunks are requested by production rules). The chunk
with the highest level of activation is the one that is retrieved.

Production rules are condition—action pairs that fire based on matching
their if condition with chunks in the buffers providing the interface with
the other modules. When production rules execute their then condition
they change the information in these buffers. This act can trigger actions,
request information, or change the current goal. Because several produc-
tions typically match in a cycle, but only one can fire at a time, a conflict
resolution mechanism is required to decide which production is selected.
Productions are evaluated based on their associated subsymbolic parame-
ter called expected utility. The expected utility of a production is a function
of its probability of success and cost (to accomplish the current goal). Over
time, productions that tend to lead to success more often and/or at a lower
cost receive higher utility ratings. Both chunk activation and production
utility include noise components so declarative memory retrieval and con-
flict resolution are stochastic processes (for a more extensive discussion on
ACT-R see Chapter 2 by Taatgen, Lebiere, and Anderson in this book).

3 METHODOLOGY

In this chapter we want to show that humans are “good” maximal players,
but there is no direct way to do this. As noted above, it is often not possible
to calculate whether one maximizing strategy is better than another. Also,

110 Robert L. West, Christian Lebiere, and Dan |. Bothell

because different maximizing strategies may draw on different abilities, it
isnotpossible, as itis with game theory, to identify the essential abilities and
test them in isolation (in game theory these are the ability to learn or calcu-
late the right probabilities and the ability to play randomly). Our solution
to this was to create a cognitive model of how people play games and then
to play this model against artificial intelligence (AI) models designed to
play a particular game as well as possible. Although providing qualitative
rather than definitive answers, this approach has led to important insights
in the area of perfect information games. Perfect information games are games
where it is, in principle, possible to calculate the best move on every turn.
One of the best-known examples is the game of chess, which has provided
important insights into human cognitive abilities through the matches be-
tween humans and computers; another good example is the game of go.
These games are too complex for even the fastest computer to come close
to finding the best move for every situation, but it is possible for them to
search very deeply into future possibilities. What surprised many was the
enormous amount of computing power required to beat a skilled human.
Even today it is debatable whether or not computers have truly surpassed
the best humans in chess, and it is definitely not the case for go.

Game theory applies to imperfect information games. In imperfect infor-
mation games it is not, in principle, possible to calculate the best move
on every turn because that would require knowing what your opponent
was going to do. For example, in Paper, Rock, Scissors, if your opponent
is going to play rock then your best move is to play paper, but you cannot
be sure when they will play rock. Game theory is a way to calculate the
optimal way to play for these types of games. Generally, it is assumed that
people are poor at imperfect information games and can easily be beaten
by a well-programmed computer. The main reason for this is probably
that people are poor at the basic skills required to be an optimal player,
whereas computers are ideal for optimal playing. Prior to having humans
play against computers, similar assumptions were made about perfect in-
formation games because of the belief that perfect information games were
all about how deeply a player could search a game tree (i.e., the outcome of
future moves). Similarly, we believe that the current view of people as poor
imperfect information players is based on an erroneous view of imperfect
information games; specifically that game theory delineates the essential
skills. Demonstrating that the way people play games competes well with
Al'models designed to play specific games would support our hypothesis.
Alternatively, if we are wrong, the human model should be badly beaten
by the Al models.

4 HOW DO HUMANS PLAY?

The first question that we need to ask is, do people play games in the
way described by game theory? If they do, we have no need for cognitive

Cognitive Architectures, Game Playing, and Human Evolution 111

INPUT OUTPUT

paper
lag1 rocks
scissors

paper
lag2 rocks
scissors

paper

lag3 rocks
scissors

FIGURE 5.2. A lag 3 network model for playing paper, rock scissors. The model can
be converted to a lag 2 model by getting rid of the lag 3 inputs, or a lag 1 model by
getting rid of the lag 2 and 3 inputs.

models. The standard game theory model requires that the players be able
to select moves at random according to preset probabilities. However, re-
search has repeatedly shown that people are very poor at doing this (see
Tune, 1964, and Wagenaar, 1972, for reviews) suggesting that our evolu-
tionary success is not based on this ability. Instead of trying to learn advan-
tageous move probabilities, people try to detect sequential dependencies in
the opponent’s play and use this to predict the opponent’s moves (Lebiere
& West, 1999; West & Lebiere, 2001). This is consistent with a large amount
of psychological research showing that when sequential dependencies ex-
ist, people can detect and exploit them (e.g., Anderson, 1960; Estes, 1972;
Restle, 1966; Rose & Vitz, 1966; Vitz & Todd, 1967). It also explains why
people tend to do poorly on tasks that are truly random —because they per-
sist in trying to predict the outcome even though it results in sub-optimal
results (e.g., Gazzaniga, 1998; Ward, 1973; Ward, Livingston, & Li, 1988).
West and Lebiere (2001) examined this process using neural networks
designed to detect sequential dependencies in the game of Paper, Rock,
Scissors. The networks were very simple two-layer networks rewarded
by adding 1 and punished by subtracting 1 from the connection weights,
which all started with a weight of 0. The inputs to the network were the op-
ponent’s moves at previous lags and the outputs were the moves the player
would make on the current play (see Figure 5.2). West and Lebiere (2001)
found four interesting results: (1) the interaction between two agents of this
type produces chaos-like behavior, and this is the primary source of ran-
domness; (2) the sequential dependencies that are produced by this process
are temporary and short lived; (3) processing more lags creates an advan-
tage; and (4) treating ties as losses (i.e., punishing the network for ties)
creates an advantage. West & Lebiere (2001) also tested people and found
that they played similarly to a lag 2 network that is punished for ties. That
is, people are able to predict their opponent’s moves by using information
from the previous two moves, and people treat ties as losses. Although both
the network model and game theory predicted that people would play pa-
per, rock, and scissors with equal frequency, the network model predicted

112 Robert L. West, Christian Lebiere, and Dan |. Bothell

that people would be able to beat alag 1 network that was punished for ties
and a lag 2 network that was not punished for ties; whereas the game the-
ory solution predicted they would tie with these opponents. The results
showed that people were reliably able to beat these opponents, demon-
strating that the game theory solution could not account for all the results.

4.1 The ACT-R Model

Although ACT-R was not designed to detect sequential dependencies, it
turns out that there is a straightforward way to get the architecture to
do this. The model learns sequential dependencies by observing the re-
lationship between what happened and what came before on each trial.
After each turn, a record of this is stored in the ACT-R declarative memory
system as a chunk. Each time the same sequence of events is observed it
strengthens the activation of that chunk in memory. Thus, chunk activation
level reflects the past likelihood of a sequence occurring. For example, if the
opponent’s last move was P (where P = Paper, R = Rock, and S = Scissors)
and the model was set to use information from the previous move (i.e., lag
1 information), then the model would choose one of the following chunks
based on activation level: PR, PS, PP (where the first letter represents the
opponent’s lag 1 move and the second letter represents the expected next
move). The model would then use the retrieved chunk to select its own
move based on what it expected its opponent to do. Thus if PR had the
highest activation the model would play P to counter the expected move
of R. The model would then see what the opponent actually did and store a
record of it (e.g., assume the opponent played S, the model would then store
PS), which would strengthen the activation of that sequence. Also, in addi-
tion to the correct chunks being strengthened on each trial, the activation
levels of the chunks that are not used are lowered according to the ACT-R
memory decay function (Figure 5.3 shows this process for a lag 2 model).

4.2 Accounting for Human Data

In theory, ACT-R represents fundamental cognitive abilities directly in the
architecture, whereas learned abilities are represented as information pro-
cessed by the architecture. The model described above is based directly on
the ACT-R architecture and therefore represents a strong prediction about
the way people detect sequential dependencies (i.e., because it is not influ-
enced by assumptions about how learned information could influence the
task). Also, it should be noted that our results do not depend on parameter
tweaking. All parameters relevant for this model were set at the default
values found to work in most other ACT-R models.

Simulations and testing with human subjects confirmed that the model
could account for the human Paper, Rock, Scissors (PRS) findings (Lebiere

Cognitive Architectures, Game Playing, and Human Evolution 113

PRP

gﬁ% | Chunks in
| Declarative

PSP Memory
PSR
PSS

PPP

PPR
PPS
RPP
RPR
RPS

|

“

RSP

RSR «
RSS 4/\

=\
—

RS_

SRR

SRS RSR
SPP

Sps Rss S <:
SSP

SSR
SSS 8 7

FIGURE 5.3. The process for an ACT-R, lag 2 model: (1) retrieve a chunk represent-
ing memory of the last two trials, with the chunk slot representing the current trial
blank, (2) find the matching chunks, (3) retrieve the matching chunk with the high-
est activation level, (4) use the value in the current slot to predict the opponent’s
current move and play a move to counter it, (5) see what the opponent actually did,
(6) create a chunk representing what actually happened, (7) put it into declarative
memory where it will strengthen the activation of the chunk with the same slot
values, and (8) the activation level of all other chunks decays.

& West, 1999). This was very significant as the aspects of the architecture
that we used were developed to model the human declarative memory
system, not our ability to play games. It suggests that the evolutionary pro-
cesses that shaped declarative memory may have been influenced by com-
petition (in the game theory sense) for resources and mating privileges. It
also indicates amazing design efficiency, as it suggests that humans use the
same system for competition as they do for learning facts about the world.

114 Robert L. West, Christian Lebiere, and Dan |. Bothell

The same model, without any changes other than adapting it to han-
dle different games, has also been shown to account for batting results in
baseball players (Lebiere, Gray, Salvucci, & West, 2003) and strategy shifts
in 2X2 mixed strategy games, including the famous prisoner’s dilemma
(Lebiere, Wallach, & West, 2000). These findings indicate that this general
mechanism is fundamental to human game playing abilities. However, we
would not go so far as to claim that this simple mechanism could com-
pletely account for all human game playing. The structure of the ACT-R
architecture itself suggests that under certain conditions people may learn
specific production rules (using the procedural memory system) that can
interact with or override the system we have described. Another possi-
bility is that people may use the declarative memory system in different
ways. For example, if a person does not have a strong feeling (activation
strength) about the opponent’s next move, they might instead opt to play
a sequence that has caused the opponent to behave predictably in the past.
Such sequences would also be learned through the declarative memory
system. In game playing terms, having this type of flexibility is advanta-
geous as it means that it would be difficult to develop systems that could
routinely beat ACT-R models.

5 COMPARISON WITH OTHER ARCHITECTURES

We chose ACT-R to model human game playing because of the substantial
body of work showing that ACT-R is a good model of human cognition.
However, it is not the case that ACT-R is the only architecture capable of
playing in this way. Any architecture capable of detecting sequential de-
pendencies could most likely be adjusted to produce similar results for
individual games. In fact, as noted above, we have used both neural net-
works and ACT-R to model human playing. ACT-R is often contrasted
with neural networks but the ACT-R declarative memory system possesses
network-like abilities. The ACT-R model presented in this chapter can be
thought of as roughly equivalent to a simple network (no hidden layer)
with feedback that rewards the correct answer on each trial whereas the
wrong answers are punished through the decay function. In addition to
neural networks, hybrid architectures embodying some form of network
(e.g., CLARION - see Ron Sun’s chapter 4 on CLARION in this book for
a description) as well as models based directly on sequential dependency
detection algorithms could potentially be adjusted to produce similar re-
sults (see Ward, Livingston, & Li, 1988 for an example of how this might
be done with a sequential dependency detection algorithm). However, the
ACT-R architecture can be viewed as a good choice for four reasons: (1) the
architecture severely constrains how the declarative memory system could
detect sequential dependencies, (2) it works with no parameter tweaking
(all relative parameters were set to default values), (3) it locates the pro-
cess within a well studied model of a particular brain function, and (4) the

Cognitive Architectures, Game Playing, and Human Evolution 115

same process can also be used to explain other, non-game results, such as
implicit learning (Lebiere & Wallach, 1998).

Models that do not play by detecting sequential dependencies may also
be able to capture some game results. For example, the classic game theory
model can capture the result that across time and across individuals, hu-
man players seem to play paper, rock, and scissors with equal frequency.
Also, ACT-R can be programmed to play through the production learning
system rather than through the declarative memory system. The strategy
shift in the prisoner’s, dilemma, which can be fairly well accounted for
using the ACT-R declarative memory system (Lebiere, Wallach, & West,
2000), can also be fairly well accounted for using the ACT-R production
learning system (Cho & Schunn, 2002). Note that the production system
model is the same general type as the maximizing game theory models
mentioned earlier, where each move (represented by a production) has
a certain probability of being chosen, and these probabilities are learned
through experience. However, this approach does not account for the find-
ings that humans use sequential dependency information and are bad at
being random. Also, it is seems unlikely that this type of model could repli-
cate the West and Lebiere (2001) data demonstrating that humans could
beat some of the network models. This is because the only way to beat the
network models was to somehow capitalize on the short-lived sequential
dependencies that they produced. However, it is possible that some people
may play this way for some games. For example, some people may have
well learned rules for cooperation that would influence how they play the
prisoner’s dilemma, and would be more appropriately modeled through
the ACT-R production system.

6 COMPARISONS WITH HUMAN DATA

All of our assertions so far concerning our model have been based on the
claim that the model’s behavior matches human behavior. Thus it is impor-
tant to also evaluate the process by which we have compared the model to
human behavior. One criticism of cognitive modeling is that many differ-
ent models can be fit to a human data set by tuning the model parameters
(Roberts & Pashler, 2000). This is a legitimate concern, but it applies only
to studies limited to fitting a particular model to a single data set. In addi-
tion, it is important to note that this type of study is still useful, especially
in the early stages of developing a model, as it shows that, in principle, a
certain type of model can account for a certain type of human behavior. A
second criticism is that it is difficult to set a criterion for when something
is considered a close fit. This is because the logic of significance testing is
based on evaluating when there is a significant difference, not when there
is a significant similarity. Generally, the fit for cognitive models is evalu-
ated through the visual inspection of graphs comparing the behavior of the
cognitive model and the human subjects. Although informal, this process

116 Robert L. West, Christian Lebiere, and Dan |. Bothell

is legitimate. If a model is truly poor at fitting the data it will be visually
obvious. Likewise, if one model is better than another at fitting the data it
will often be visually obvious.

However, the initial goal is not always to closely fit the data. Models can
also be evaluated in terms of qualitatively fitting the data. This is relevant
when the human data displays interesting or important qualitative prop-
erties. For example, human PRS play displays the qualitative property of
appearing to be random. The game theory model can easily account for
this quality because moves are selected at random according to set prob-
abilities. However, the sequential dependency model, whether modeled
using neural networks or ACT-R, does not choose moves at random (ex-
cept when two moves are equally weighted). Thus, although inspired by
empirical results, it was an open question whether or not this type of model
could generate a random-like output. Demonstrating that the model could
produce this effect through a chaos-like process (Lebiere & West, 1999; West
& Lebiere, 2001) provided important, early support for the model.

Overall, the key to demonstrating the validity of a model is to evaluate
converging evidence from different sources. One way to do this is to
use different ways to test the model against the data. In terms of the game
playing research our model has been compared against the average game
outcomes (i.e., the final scores), the win rate (i.e., the probability for each
trial that a player will get a win), the time course function (i.e., the function
describing the rate of winning across time — it is linear), the distribution of
final scores, the distribution of moves across players, and the distribution
of moves across time. In each case the model provided a good fit to the
data.

In addition to directly comparing the model to human results, we have
also used model tracing (Anderson, Corbett, Koedinger, & Pelletier, 1995).
Playing PRS in the manner suggested by our model involves learning se-
quential dependencies that produce positive results and then unlearning
them as the opponent learns not to produce them anymore. We wanted
to know approximately how long the learned sequential dependencies re-
mained viable, but this could not be directly observed in the human play-
ers. To get an indirect estimate we assumed that our model was valid and
used model tracing as a way of estimating this parameter. Model tracing
involves forcing the model to make the same behaviors as a human on
each trial. West & Lebiere (2001) forced a lag 2 network model to make
the same moves as a human subject in a game against a lag 1 network
model (the lag 1 model was also forced to make the same moves as the lag
1 model the human played against). We were then able to examine how
long the sequential dependencies remained viable in the lag 2 model. The
results showed that the learned sequential dependencies were very short
lived (mostly less than 5 trials). To further test the validity of the model
we compared these results to the results from a lag 2 model played against
a lag 1 model without any constraints. The model tracing results closely

Cognitive Architectures, Game Playing, and Human Evolution 117

matched the unconstrained results for both the lag 1 and lag 2 models. This
provided further support for the model by demonstrating that the model
behaves the same when it is unconstrained as when it is forced to play
exactly the same as a human.

A second source of converging evidence comes from testing a model on
different tasks, hypothesized to engage the same basic mechanisms. Here it
is generally necessary to modify the model for the new task. Naturally the
modifications should be as small as possible. In our case, because the ACT-R
model made very direct use of the architecture, the changes were minimal.
For PRS (Lebiere & West, 1999), prisoner’s dilemma (Lebiere, Wallach, &
West, 2000), and baseball (Lebiere, Gray, Salvucci, & West, 2003), the model
required only minor modifications that did not alter the basic strategy of
using the declarative memory system for detecting sequential dependen-
cies. Note also that these three games tested the model in very different
ways. The PRS model (Lebiere & West, 1999) showed that the model could
account for the novel effects found by West and Lebiere (2001), when they
had humans play against different versions of the neural network model. In
both of these studies, humans played against dynamic models that contin-
uously altered their play in an attempt to find and maintain an advantage.

In contrast, in the baseball study, the human subjects played against a
stochastically based opponent (the pitcher threw different pitches accord-
ing to fixed probabilities — the humans were batters). Thus the task was
to learn a stable, stochastic truth about the opponent. Another important
feature of the baseball study was that it used human data gathered in a
simulated batting environment, where subjects had to physically swing a
bat (see Gray, 2001, for a description). This was important because it could
be argued that self-paced computer games, such as our version of PRS, are
artificial and do not relate to games involving fast physical actions. Also,
the baseball study used experienced baseball players, thus further adding
to the realism.

The prisoner’s dilemma study (Lebiere, Wallach & West, 2000) used data
generated by humans playing against other humans, rather than humans
playing against computer models. This addressed the concern that hu-
mans playing against computers is a situation qualitatively different from
humans playing against humans. The prisoner’s dilemma study focused
on an observed shift in behavior that has been found to occur at a certain
point in this type of game. This shift has been attributed to a change in
attitude about cooperation (Rapoport, Guyer, & Gordon, 1976). However,
our model produced the shift with no added assumptions whatsoever. This
finding is important because it shows there is no need to invoke higher-
level mechanisms, such as attitude shifts, to account for this result.

Finally, a third source of converging evidence thatis particularly relevant
for testing cognitive models of game playing, is the testing of counterfac-
tual scenarios (see Bechtel, 1998, for a detailed discussion of counterfactual
testing, dynamic systems, and cognition). As West & Lebiere (2001) note,

118 Robert L. West, Christian Lebiere, and Dan |. Bothell

the opponent is a key element in game playing, and it is possible to generate
many different counterfactual situations by creating different opponents
using the computer. Therefore it is possible to test both humans and the
model against a range of opponents, not found in nature (i.e., counterfac-
tual). If the model is valid it should produce the same results as the humans
against all of the opponents, without any changes to the structure of the
model or the parameter values. We have used this approach to test the PRS
model against opponents set at different lags (i.e., lag 1 and lag 2) as well as
different strategies (i.e., treating ties as neutral and treating ties as losses).
In both cases the human data could be accounted for without any changes
to the original model (Lebiere & West, 1999; West & Lebiere, 2001).

One point that is critical for understanding cognitive modeling is that,
unlike experimental psychology, it is often necessary to look across mul-
tiple studies to fully evaluate a model. This reflects the fact that cognitive
models often cannot be reduced to simple hypotheses that can be fully
evaluated within one study. However, this is the whole point of cognitive
modeling — to advance the study of human behavior to more complex behaviors.
When viewed across studies, there is compelling convergent evidence indi-
cating that our model is a valid representation of how humans play simple
games.

7 HOW WELL DOES ACT-R PLAY?

We have argued, based on the evolutionary success of the human race,
that the way people play games likely constitutes a good, general-purpose
design for maximizing agents. To test this, we entered our ACT-R model in
the 1999 International RoShamBo Programming Competition (RoShamBo
is another term for Paper, Rock, Scissors). Although Paper, Rock, Scissors is
a simple game, it is not easy to design effective maximizing agents for this
game due to the reasons described previously. The goal of the competition
was toillustrate this fact and explore solutions (see Billings, 2000, for details
and discussion).

Overall, ACT-R placed 13th out of 55 entries in the round robin com-
petition (scores calculated based on margin of victory across games, e.g.,
+5 for winning by 5 and —5 for losing by 5). However, to get a better idea
of how ACT-R compared to the other models we will focus on the open
event, where ACT-R faced all the models. In this event ACT-R placed 15th
in terms of margin of victory and 9th in terms of wins and losses. That
is, the ACT-R model, with no modifications, was able to beat most of the
other models.

To further test our claim we entered the same model in the 2000 Interna-
tional RoShamBo Programming Competition. However, the code for the
winning program in 1999, which had been able to infer the ACT-R strategy
well enough to beat it by a large margin, had been released (see Egnor,

Cognitive Architectures, Game Playing, and Human Evolution 119

2000). Therefore we expected a lot more programs would have this abil-
ity in 2000. To counteract this, we created a second model that retained
the essential features of the first model but incorporated a strategy to pre-
vent other programs from locking onto the ACT-R strategy. This model
was called ACT-R-Plus. ACT-R-Plus simultaneously ran 30 ACT-R models
that looked at both the opponent’s history and its own history. The lags
were set at 0, 1, 2, 3, 4, and 5 (lag = 0 would just keep track of what the
most likely move is, regardless of history) and for each of these there was
a version with noise on and noise off (the ACT-R chunk retrieval process
involves a noise component that can be turned off). These were then com-
bined with 3 strategies for choosing a move based on the prediction of the
opponent’s move: play the move that beats the move predicted, play the
move predicted, or play the move that loses to the move predicted. As
with the ACT-R model, the prediction with the highest activation value
was chosen. Of course, ACT-R-Plus does not represent how humans play
Paper, Rock, Scissors. Instead, it was an experiment in combining brute
strength tactics with a human-inspired architecture. In a sense, playing
against ACT-R-Plus is like playing against a committee of agents, each
with slightly different approaches as to how to use the ACT-R architecture
to play the game.

In the round robin event, ACT-R came in 31st out of 64 whereas ACT-
R-Plus came in 14th. In the open event ACT-R came in 32nd according
to margin of victory and 28th according to wins and losses. ACT-R-Plus
came in 9th according to margin of victory and 16th according to wins and
losses. It was interesting to note that ACT-R was once again able to beat
most of the models, despite the fact that the code that could beat it had
been released and had influenced many of the new models. However, as
this program still placed 3 in the competition, we speculate that in trying
to improve on the code, many people actually made it worse. This again
highlights the difficulties in designing maximizing agents.

The models in the competition could be divided into two types, historical
models thatsearched for specific patterns in the history of the game, and sta-
tistical models that searched for statistical trends in the history of the game.
To get a better idea of how well ACT-R performed, Figure 5.4 shows the
open event results for ACT-R; ACT-R-Plus; the first-placed model, which
was historical; and the second-placed model, which was statistical. From
this graph we can see that, although it was not able to exploit some models
as well as the history model or the statistical model, ACT-R-Plus compares
quite well. It mostly wins and when it loses it does not lose by much.
ACT-R loses more but only the first-placed history model is able to exploit
it in a big way (this can be seen in the first point for ACT-R and the second
big spike for the history model). Otherwise, overall, the performance of the
basic ACT-R model is not bad, especially when you consider its relative
simplicity and the fact that it was not designed for this competition.

120 Robert L. West, Christian Lebiere, and Dan |. Bothell

1200

1000

800 i x\

600

| " .

T v ———- Historical
I

I

PRI Statistical

400
—— ACT-R

T
NI
Fl
S ACT-R-Plus

Overall score

200 A .\

O,

-200

400 A
Opponents in order of overall score

FIGURE 54. ACT-R results in the open event of the 2000 International RoShamBo
Programming Competition.

8 SUMMARY

When viewed from a traditional game theory perspective, humans do not
appear to be particularly skillful game players. However, this is difficult
to reconcile with our evolutionary success, which indicates that we are
very effective competitors. We argued that this is because human game
playing needs to be viewed as a maximizing strategy rather than the opti-
mizing strategy suggested by traditional game theory analysis. However,
it is difficult to evaluate the effectiveness of different types of maximiz-
ing strategies because competing maximizers can feed back on each other
and form dynamically coupled systems that can give rise to emergent prop-
erties that are difficult to foresee (Clark, 1997). This was demonstrated in
the results of the International RoShamBo Programming Competitions,
which showed that even for the very simple game of Paper, Rock, Scissors
it is difficult to predict the results of this type of interaction.

In support of our position we reviewed a series of findings on hu-
man game playing abilities. Consistent with our view that humans are
maximizing players we found that, under close examination, standard
game theory models do not describe human game playing very well (at
least for the games we investigated). Instead of trying to optimize move
probabilities, humans try to maximize by exploiting the short-lived sequen-
tial dependencies produced when they interact with another maximizing
player (West & Lebiere, 2001). We also found that this type of interaction
produces complex (chaos-like) behaviors and higher-level emergent prop-
erties resulting in one or the other player receiving an advantage. Following
this we showed that these behaviors could be accounted for in a detailed

Cognitive Architectures, Game Playing, and Human Evolution 121

and straightforward way by using the ACT-R cognitive architecture, and
that the model could account for human behavior across a number of dif-
ferent games. This finding supports our contention that the human cogni-
tive architecture, in addition to supporting individual activities, supports
a level of functionality that can be accessed only by studying the dynamic
interactions that occur between people. Finally, we demonstrated that the
way humans play games, as represented by the ACT-R model, compares
well to agents specifically created to play a particular game.

When considering the tournament results it is important to keep in mind
that the ACT-R model was much simpler than the other models shown in
Figure 5.4 and that the ACT-R model can play many different games with-
out modifying the basic strategy. We also showed that the basic ACT-R
model could be adapted to deal with specific limitations of the basic ACT-R
model for a particular game (e.g., ACT-R —Plus). Although the adaptations
that we made were not cognitively inspired, it is possible that with suf-
ficient experience, humans could effectively augment their basic strategy.
The main point however is that the general human strategy was competi-
tive with and, in many cases, superior to Al strategies designed specifically
for this game.

Finally, it is important to note that the same architectural components
that we have shown to be important for game playing have also been
shown to be important in a wide variety of other tasks unrelated to game
playing (e.g., tasks involving problem solving and learning). Humans do
not have a separate, dedicated system for game playing; we use the same
cognitive system for a vast array of divergent tasks. Thus, the human cog-
nitive system represents a highly efficient, multipurpose mechanism that
has evolved to be as effective as possible across a wide variety of behaviors,
including game playing.

References

Anderson, J. R. (1990). The adaptive character of thought. Hillsdale, NJ: Erlbaum.

Anderson, J. R., Corbett, A. T., Koedinger, K., & Pelletier, R. (1995). Cognitive tutors:
Lessons learned. Journal of Learning Sciences, 4, 167-207.

Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ:
Erlbaum.

Anderson, N. H. (1960). Effect of first-order probability in a two choice learning
situation. Journal of Experimental Psychology, 59, 73-93.

Bechtel, W. (1998). Representations and cognitive explanations: Assessing the
dynamicist’s challenge in cognitive science. Cognitive Science, 22(3), 295-318.

Billings, D. (2000). Thoughts on RoShamBo. International Computer Games Associa-
tion Journal, 23(1), 3-8.

Cho, K., & Schunn, C. D. (2002). Strategy shift in prisoner’s dilemma through utility
learning. Paper presented at the 9th Annual ACT R Workshop, Carnegie Mellon
Univ.,, Pittsburgh, PA.

122 Robert L. West, Christian Lebiere, and Dan |. Bothell

Clark, A. (1997). Being there: Putting brain, body and world together again. Cambridge,
MA: MIT Press.

Clark, A. (1998). The dynamic challenge. Cognitive Science, 21(4), 461-481.

Egnor, D. (2000). IOCAINE POWDER. International Computer Games Association
Journal, 23(1), 33-35.

Estes, W. K. (1972). Research and theory on the learning of probabilities. Journal of
the American Statistical Association, 67, 81-102.

Fudenburg, D., & Levine, D. K. (1998). The theory of learning in games. Cambridge,
MA: MIT Press.

Gazzaniga, M. S. (1998, July). The split brain revisited. Scientific American, 50-55.

Gray, R. (2001). Markov at the bat: A model of cognitive processing in baseball
batters. Psychological Science, 13(6), 542-547.

Hutchins, E. (1995). Cognition in the wild. Cambridge, MA: MIT Press.

Kelso, J. S. (1995). Dynamic patterns: the self-organization of brain and behavior.
Cambridge MA: MIT Press.

Lebiere, C., Gray, R., Salvucci, D., & West, R. L. (2003). Choice and learning un-
der uncertainty: A case study in baseball batting. Proceedings of the 25th An-
nual Conference of the Cognitive Science Society. Mahwah, NJ: Lawrence Erlbaum,
704-709.

Lebiere, C., & Wallach, D. (1998). Implicit does not imply procedural: A declarative
theory of sequence learning. Paper presented at the 41st Conference of the German
Psychological Association, Dresden, Germany.

Lebiere, C., Wallach, D., & West, R. L. (2000). A Memory-based account of the
prisoner’s dilemma and other 2 x 2 games. Proceedings of the Third International
Conference on Cognitive Modeling (pp. 185-193). Groningen, Netherlands, NL:
Universal Press.

Lebiere, C., & West, R. L. (1999). Using ACT-R to model the dynamic properties of
simple games. Proceedings of the Cognitive Science Society, Hillsdale, NJ: Erlbaum,
296-301.

McClelland, J. L., & Rumelhart, D. E. (1986). Parallel distributed processing: Explo-
rations in the microstructure of cognition. Cambridge, MA: Bradford Books.

Newell, A. (1973a). You can’t play 20 questions with nature and win: Projective
comments on the papers of this symposium. In W. G. Chase (Ed.), Visual infor-
mation processing (pp. 283-310). New York: Academic Press.

Newell, A. (1973b). Production systems: Models of control structures. In W. G.
Chase (Ed.), Visual information processing (pp. 463-526). New York: Academic
Press.

Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Cambridge Univer-
sity Press.

Pool, R. (1995). Putting game theory to the test. Science, 267, 1591-1593.

Rapoport, A., Guyer, M.]., & Gordon, D. G. (1976). The 2 x 2 game. Ann Arbor, MI:
University of Michigan Press.

Restle, F. (1966). Run structure and probability learning: Disproof of Restle’s model.
Journal of Experimental Psychology, 72, 382-389.

Roberts, S., & Pashler, H. (2000). How persuasive is a good fit? A comment on
theory testing. Psychological Review 107(2), 358-367.

Rose, R. M., & Vitz, P. C. (1966). The role of runs of events in probability learning.
Journal of Experimental Psychology, 72, 751-760.

Cognitive Architectures, Game Playing, and Human Evolution 123

Sun, R., & Qi, D. (2000). Rationality assumptions and optimality of co-learning. Pro-
ceedings of PRIMA’2000, Lecture notes in artificial intelligence, Heidelberg: Springer-
Verlag, pp. 61-75.

Tune, G. S. (1964). A brief survey of variables that influence random generation.
Perception and Motor Skills, 18, 705-710.

van Gelder, T., & Port, R. F. (19_95). It’s about time: An overview of the dynamic
approach to cognition. In R. F. Port & T. van Gelder (Eds.), Mind as motion
(pp. 1-44). Cambridge, MA: MIT Press.

Vitz, P. C., & Todd, T. C. (1967). A model of learning for simple repeating binary
patterns. Journal of Experimental Psychology, 75, 108-117.

von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behaviour.
Princeton, NJ: Princeton University Press.

Wagenaar, W. A. (1972). Generation of random sequences by human subjects: A
critical survey of the literature. Psychological Bulletin, 77, 65-72.

Ward, L. M. (1973). Use of Markov-encoded sequential information in numerical
signal detection. Perception and Psychophysics, 14, 337-342.

Ward, L. M., Livingston, J. W., & Li, J. (1988). On probabilistic categorization: The
Markovian observer. Perception and Psychophysics, 43, 125-136.

Wermter, S., & Sun, R. (2000). An overview of hybrid neural systems. In S. Wermter
& R. Sun (Eds.), Hybrid neutral systems, Lecture notes in artificial intelligence 1778,
Berlin: Springer Verlag.

West, R. L., & Lebiere, C. (2001). Simple games as dynamic, coupled systems:
Randomness and other emergent properties. Cognitive Systems Research, 1(4),
221-239.

Simulating a Simple Case of Organizational
Decision Making

Isaac Naveh and Ron Sun

1 INTRODUCTION

Computational models of cognitive agents that incorporate a wide range of
cognitive functionalities (such as various types of memory/representation,
various modes of learning, and sensory motor capabilities) have been de-
veloped in both Al and cognitive science (e.g., Anderson & Lebiere, 1998;
Sun, 2002). In cognitive science, they are often known as cognitive archi-
tectures. Recent developments in cognitive architectures provide new av-
enues for precisely specifying complex cognitive processes in tangible ways
(Anderson & Lebiere, 1998).

In spite of this, however, most of the work in social simulation still as-
sumes very rudimentary cognition on the part of the agents. At the same
time, although researchers in cognitive science have devoted considerable
attention to the workings of individual cognition (e.g., Anderson, 1983;
Klahr et al., 1987; Rumelhart & McClelland, 1986; Sun, 2002), sociocultural
processes and their relations to individual cognition have generally not
been sufficiently studied by cognitive scientists (with some notable excep-
tions; e.g., Hutchins, 1995; Resnick et al., 1991; Lave, 1988).

However, there are reasons to believe that better models of individual
cognition can lead us to a better understanding of aggregate processes
involving multi-agent interaction (Moss, 1999; Castelfranchi, 2001; Sun,
2001). Cognitive models that incorporate realistic tendencies, biases, and
capacities of individual cognitive agents (Boyer & Ramble, 2001) can serve
as a more realistic basis for understanding multi-agent interaction. This
point has been made before in different contexts (e.g., Edmonds & Moss,
2001; Kahan & Rapoport, 1984; Sun, 2001).

As noted earlier, research on social simulation has mostly dealt with
simplified versions of social phenomena, involving much simplified agent
models (e.g., Gilbert & Doran, 1994; Levy, 1992). Such agents are clearly
not cognitively realistic, and thus may result in important cognition-related

124

Simulating a Simple Case of Organizational Decision Making 125

insights being left by the wayside. Social interaction is, after all, the result
of individual cognition (which includes instincts, routines, and patterned
behaviors, as well as complex conceptual processes). Therefore, the mech-
anisms underlying individual cognition cannot be ignored in studying
multi-agent interaction. At least, the implications of these mechanisms
should be understood before they are abstracted away.

By using cognitively realistic agents in social simulation, explanations
of observed social phenomena may be provided based on individual cog-
nitive processes. This allows us to start to do away with assumptions that
are not cognitively grounded. Often, in simulations, rather arbitrary as-
sumptions were made, simply because they were important for generating
simulations that matched observed data. In this chapter, we instead make
assumptions at a lower level. This allows us to put more distance between
assumptions and outcomes, and thereby to provide deeper explanations.

In the remainder of this chapter, first, a more realistic cognitive architec-
ture, named CLARION, will be described, which captures the distinction
between explicit and implicit learning (e.g., Sun, 1997; Sun, 2002; see also
Chapter4). This model will then be applied to the problem of organizational
design as presented in Carley et al. (1998). The idea here is to substitute
more sophisticated agents, based on CLARION, for the (mostly) simple
agents used in Carley et al. (1998).

The previous experiments and simulations (e.g., Carley et al., 1998) left
open the question of whether their results were generic or tied specifi-
cally to particular settings of the experiments/simulations or to particular
assumptions regarding cognitive parameters. The work reported here is
designed in part to explore a wider range of possibilities and ascertain
some answers to the above question.

2 THE MODEL

2.1 Explicit vs. Implicit Learning

The role of implicit learning in skill acquisition has been widely recognized
in recent years (e.g., Reber, 1989; Stanley et al., 1989; Seger, 1994; Proctor
& Dutta, 1995; Stadler & Frensch, 1998). Although explicit and implicit
learning have both been actively studied, the question of the interaction
between these two processes has rarely been broached. However, despite
the lack of study of this interaction, it has recently become evident that
rarely, if ever, is only one of type of learning engaged. Our review of exper-
imental data (e.g., Reber, 1989; Stanley et al., 1989; Sun et al., 2001) shows
that although one can manipulate conditions so that one or the other type
of learning is emphasized, both types of learning are nonetheless usually
present.

126 Isaac Naveh and Ron Sun

To model the interaction between these two types of learning, the cog-
nitive architecture CLARION was developed (Sun & Peterson, 1998; Sun
et al., 2001), which captures the combination of explicit and implicit learn-
ing. CLARION mostly learns in a bottom-up fashion, by extracting explicit
knowledge from implicit knowledge (see Sun, 2002, for details). Such pro-
cesses have also been observed in humans (e.g., Willingham et al., 1989;
Stanley et al., 1989; Mandler, 1992).

A major design goal for CLARION was to have a set of tunable pa-
rameters that correspond to aspects of cognition. This is in contrast to
some models in which performance depends on a set of variables that are
mathematically motivated (and hence do not translate into mechanisms of
individual cognition). We have avoided this, so as to be able to manipulate
the parameters of the model and observe the effect on performance as a
function of cognition.

2.2 A Summary of the CLARION Model

CLARION is an integrative cognitive architecture with a dual represen-
tational structure (Sun, 1997; Sun et al., 1998; Sun et al., 2001; Sun, 2002).
It consists of two levels: a top level that captures explicit learning, and a
bottom level that captures implicit learning (see Figure 6.1).

At the bottom level, the inaccessibility of implicit learning is captured by
subsymbolic distributed representations. This is because representational
units in a distributed environment are capable of performing tasks but are
generally not individually meaningful (Sun, 1995). Learning at the bottom
level proceeds in trial-and-error fashion, guided by reinforcement learning

Top Level
- action-centered non-action-centered
explicit representation =TT explicit representation

A= L7}
¥ L [¥

action-centered non-action-centered
implicit representation implicit representation

Y

Bottom Level
FIGURE 6.1. The CLARION architecture.

Simulating a Simple Case of Organizational Decision Making 127

(i.e., Q-learning) implemented in backpropagation neural networks (Sun &
Peterson, 1998).

At the top level, explicit learning is captured by a symbolic representa-
tion, in which each element is discrete and has a clearer meaning. This
accords well with the directly accessible nature of explicit knowledge
(Smolensky, 1988; Sun, 1995). Learning at the top level proceeds by first
constructing a rule that corresponds to a “good” decision made by the bot-
tom level, and then refining it (by generalizing or specializing it), mainly
through the use of an “information gain” measure that compares the suc-
cess ratios of various modifications of the current rule.

A high-level pseudo-code algorithm that describes the action-centered
subsystem of CLARION is as follows:

1. Observe the current state x.

2. Compute in the bottom level the Q-value of each of the possible ac-
tions (a;’s) associated with the state x: Q(x, a1), Q(x, az), ..., Q(x, a,).

3. Find outall the possible actions (by, by, . . ., by,) at the top level, based
on the state x and the rules in place at the top level.

4. Compare the values of a;’s with those of b;’s, and choose an appro-
priate action a.

5. Perform the action a, and observe the next state y and (possibly) the
reinforcement r.

6. Update the bottom level in accordance with the Q-Learning-
Backpropagation algorithm, based on the feedback information.

7. Update the top level using the Rule-Extraction-Refinement algorithm.

8. Go back to Step 1.

At the bottom level, a Q-value is an evaluation of the “quality” of an
action in a given state: Q(x, a) indicates how desirable action a is in state
x. Actions can be selected based on Q-values. To acquire the Q-values,
Q-learning, a reinforcement learning algorithm (Watkins, 1989), is used.

In this simulation, a simplified Q function as follows is used:

AQ(x,a) = a(r +y maxy Q(y, b) = Qx, a)) = a(r — Q(x, a))

where x is the current state, a is one of the actions, r is the immediate
teedback, and ymax;, Q(y, b) is set to zero for the organizational decision
task, because immediate feedback is relied upon here (see details below).
AQ(x, a) provides the error signal needed by the backpropagation algo-
rithm and then backpropagation takes place. That is, learning is based on
minimizing the following error at each step:

r—Q(x,a) ifa;=a
err; =
! 0 otherwise

where i is the index for an output node representing the action 4,. Based

128 Isaac Naveh and Ron Sun

on the above error measure, the backpropagation algorithm is applied to
adjust internal weights of the network.

In the top level, explicit knowledge is captured in a simple prepositional
rule form. We devised an algorithm for learning rules using information
from the bottom level (the Rule-Extraction-Refinement, or RER, algorithm).
The basic idea is as follows: if an action decided by the bottom level is suc-
cessful then the agent extracts a rule (with its action corresponding to that
selected by the bottom level and with its condition corresponding to the
current state), and adds the rule to the top level. Then, in subsequent inter-
actions with the world, the agent refines the extracted rule by considering
the outcome of applying the rule: if the outcome is successful, the agent
may try to generalize the condition of the rule to make it more universal. If
the outcome is unsuccessful, the agent may try to specialize the rule, by nar-
rowing its condition down and making them exclusive of the current state.

The information gain (IG) measure of a rule is computed (in this orga-
nizational decision task) based on the immediate feedback at every step
when the rule is applied. The inequality, r > thresholdrer determines the
positivity /negativity of a step and the rule matching this step (where r
is the feedback received by an agent). The positivity threshold (denoted
thresholdgrer) corresponds to whether or not an action is perceived by the
agent as being reasonably good. Based on the positivity of a step, PM (Pos-
itive Match) and NM (negative match) counts of the matching rules are
updated. IG is calculated based on PM and NM:

PM, (A) +c1
2 PM, (A) + NM, (A) + c2
~log PM,(B) +c1
2 PM,(B) + NM, (B) + c2

IG(A, B) =log

where Aand B are two different rule conditions that lead to the same action
a,and c1 and c2 are two constants representing the prior (by default, c1 =
1, c2 = 2). Essentially, the measure compares the percentages of positive
matches under conditions A and B.

The generalization operator is based on the IG measure. Generalization
amounts to adding an additional value to one input dimension in the con-
dition of a rule, so that the rule will have more opportunities of matching
input. For a rule to be generalized, the following must hold:

IG(C, all) > thresholdgey and maxc IG(C’, C) > 0

where C is the current condition of a rule (matching the current state and
action), all refers to the corresponding match-all rule (with the same action
as specified by the original rule but an input condition that matches any
state), and C’ is a modified condition equal to C plus one input value.
If it holds, the new rule will have the condition C’ with the highest IG

Simulating a Simple Case of Organizational Decision Making 129

measure. The generalization threshold (denoted thresholdgey) determines
how readily an agent will generalize a rule.

The specialization operator works in an analogous fashion, except that
a value in an input dimension is discarded, rather than being added. Like-
wise, a rule must perform worse than the match-all rule, rather than better,
to be considered for specialization. This process is described in greater de-
tail elsewhere (Sun et al., 2001). (Due to running-time considerations, the
specialization threshold is held constant in all simulations reported in this
chapter.)

To avoid the proliferation of useless rules, a RER density measure is in
place. A density of 1/x means that a rule must be invoked once per x steps
to avoid deletion due to disuse. This corresponds to the agent’s memory
for rules, necessitating that a rule come up every once in a while in order
to be retained.

To integrate the outcomes from the two levels, a number of methods
may be used. Here, levels are chosen stochastically, using a probability of
selecting each level. Other selection methods are available as well (see Sun
et al., 2001).

When the outcome from the bottom level is chosen, a stochastic process
based on the Boltzmann distribution of Q values is used for selecting an
action:

o Qa)/t

plalx) = Y eQa/t

where x is the current state, 2 is an action, and t controls the degree of
randomness (temperature) of the process.!

At each level of the model, there may be multiple modules, both action-
centered modules and non-action-centered modules (Schacter 1990). In the
current study, we focus only on the action-centered subsystem. There are also
other components, such as working memory, goal structure, and so on.

3 ORGANIZATIONAL DESIGN

Research on organizational performance has usually focused either on an
organization’s design (i.e., its structure) or on the cognition of its members
(i.e., how smart/capable individuals in the organization are). However, the
interaction of these two factors — cognition and structure — is rarely stud-
ied. Carley et al. (1998) introduced a classification task involving different
types of organizational structures and agents. By varying agent type and
structure separately, they were able to study how these factors interact with
each other. Here, we will build on that research, with the aim of studying

1 This method is also known as Luce’s choice axiom (Watkins, 1989). It is found to match
psychological data in many domains.

130 Isaac Naveh and Ron Sun

the interaction of cognition and design in the context of a more realistic
cognitive architecture (i.e., CLARION).

3.1 Task

A typical task faced by organizations is classification decision making. In
a classification task, agents gather information about problems, classify
them, and then make further decisions based on the classification. In this
case, the task is to determine whether a blip on a screen is a hostile aircraft,
a flock of geese, or a civilian aircraft (Carley et al., 1998). Hence, this is
a ternary choice task. It has been used before in studying organizational
design (e.g., Kang et al., 1998; Carley & Prietula, 1992; Ye & Carley, 1995;
Carley & Lin, 1995).

In each case, there is a single object in the airspace. The object has nine
different attributes, each of which can take on one of three possible values
(e.g., its speed can be low, medium, or high). An organization must de-
termine the status of an observed object: whether it is friendly, neutral or
hostile. There are a total of 19,683 possible objects, and 100 problems are
chosen randomly (without replacement) from this set. The true status of
an object is determinable by adding up all nine attribute values. If the sum
is less than 17, then it is friendly; if the sum is greater than 19, it is hostile;
otherwise, it is neutral. Because this is a simplified decision-making task,
we ignore extraneous factors such as weather, device malfunctions, and
5O on.

No one single agent has access to all the information necessary to make
a choice. Decisions are made by integrating separate decisions made by
different agents, each of which is based on a different subset of information.
Of course, each organization is assumed to have sufficient personnel to
observe all the necessary information (in a distributed way).

In terms of organizational structures, there are two archetypal struc-
tures of interest: (1) teams, in which agents act autonomously, individ-
ual decisions are treated as votes, and the organization decision is the
majority decision; and (2) hierarchies, which are characterized by agents
organized in a chain of command, such that information is passed from
subordinates to superiors, and the decision of a superior is based solely on
the recommendations of his/her subordinates (Carley, 1992). In this task,
only a two-level hierarchy with nine subordinates and one supervisor is
considered.

In addition, organizations are distinguished by the structure of infor-
mation accessible by each agent. There are two varieties of information
access: (1) distributed access, in which each agent sees a different subset of
three attributes (no two agents see the same subset of three attributes), and
(2) blocked access, in which three agents see exactly the same attributes. In
both cases, each attribute is accessible to three agents.

Simulating a Simple Case of Organizational Decision Making 131

TABLE 6.1. Human and Simulation Data for the Organizational Design Task.
D Indicates Distributed Information Access, Whereas B Indicates Blocked Information
Access. All Numbers are Percentage Correct.

Agent/Org. Team (B) Team (D) Hierarchy (B) Hierarchy (D)
Human 50.0 56.7 46.7 55.0
Radar-Soar 73.3 63.3 63.3 53.3
CORP-P-ELM 78.3 71.7 40.0 36.7
CORP-ELM 88.3 85.0 45.0 50.0
CORP-SOP 81.7 85.0 81.7 85.0

Several simulation models were considered in the study of Carley et al.
(1998). Among them, CORP-ELM produced the most probable classifi-
cation based on an agent’s own experience, CORP-P-ELM stochastically
produced a classification in accordance with the estimate of the probability
of each classification based on the agent’s own experience, CORP-SOP fol-
lowed organizationally prescribed standard operating procedure (which
involved summing up the values of the attributes available to an agent)
and thus was not adaptive, and Radar-Soar was a (somewhat) cognitive
model built in Soar, which is based on explicit, elaborate search in problem
spaces (Rosenbloom et al., 1991).

3.2 Previous Experimental Results

The experiments by Carley and her colleagues (1998) were doneina 2 x 2
fashion (organization x information access). In addition, human data for
the experiment were compared to the results of the four aforementioned
artificial models. The data appeared to show that agent type interacted
with organizational design. The human data and the simulation results
from this study (Carley et al., 1998) are shown in Table 6.1.

The human data showed that humans generally performed better in
team situations, especially when distributed information access was in
place. Moreover, distributed information access was generally better than
blocked information access. The worst performance occurred when hier-
archal organizational structure and blocked information access were used
in conjunction.

It also suggested that which type of organizational design exhibits the
highest performance depends on the type of agent. For example, human
subjects performed best as a team with distributed information access,
whereas Radar-Soar and CORP-ELM performed the best in a team with
blocked information access. Relatedly, increasing general “intelligence”
(i.e., increasing the adaptiveness of agents) tended to decrease the per-
formance of hierarchal organization. With a non-adaptive agent such as
CORP-SOP, there was no difference between the two organization types.

132 Isaac Naveh and Ron Sun

The above results are interesting because they brought up the issue of the
interaction between organizational type and intelligence level. However,
from the point of view of matching human performance, the agent mod-
els used were to a large extent simplistic. The “intelligence” level in these
models was rather low (including, to a large extent, the Soar model, which
essentially encoded a set of simple rules). Moreover, learning in these sim-
ulations was rudimentary: there was no complex learning process as one
might observe in humans.

With these shortcomings in mind, it is worthwhile to undertake a sim-
ulation that involves more complex, more comprehensive agent models
that more accurately capture human performance in more realistic ways.
Moreover, with the use of more cognitively realistic agent models, we may
investigate individually the importance of different cognitive capacities
and process details in affecting the performance. In CLARION, we can
easily vary parameters and options that correspond to different cognitive
capacities and test the resulting performance.

4 SIMULATION I: MATCHING HUMAN DATA

Below, we present three simulations involving the CLARION model. The
first experiment uses the aforementioned radar task (Carley et al., 1998)
but substitutes a different cognitive model. The second simulation uses the
same task, but extends the duration of training given to the agents. Finally,
in the third simulation, we vary a wide range of cognitive parameters of
the model in a factorial design.

In the first simulation, we use the same setup as used by Carley and her
colleagues (1998; see Section 3.1), but substitute CLARION-based agents
for the simpler agents used previously. Our aim here is to gauge the effect
of organization and information access on performance (as in the original
study), butin the context of the more cognitively realistic model CLARION.

4.1 Simulation Setup

There are two organizational forms: team and hierarchy. Under the team
condition, the input to each agent consists of three of the attributes, se-
lected according to a blocked or distributed information access scheme.
Thus, each agent sees only one-third of the total attributes, and must make
a decision on the basis of partial information. The condition where a hi-
erarchy is used is similar to the team condition, except that a supervisor
agent is added. The input to the supervisor corresponds to the outputs of
all nine subordinates.

The actions of each agent are determined by CLARION. At the top level,
RER rule learning is used to extract rules. At the bottom level, each agent

Simulating a Simple Case of Organizational Decision Making 133

TABLE 6.2. Simulation Data for Agents Running for 3,000 Cycles. The Human Data
from Carley et al. (1998) are Reproduced here for Ease of Comparison. Performance of
CLARION is Computed as Percentage Correct Over the Last 1,000 Cycles.

Agent/Org. Team (B) Team (D) Hierarchy (B) Hierarchy (D)
Human 50.0 56.7 46.7 55.0
CLARION 53.2 59.3 45.0 49.4

has a single network that is trained, over time, to respond correctly. The
network receives an external feedback of 0 or 1 after each step, depending
on whether the target was correctly classified. Due to the availability of
immediate feedback in this task, simplified Q-learning is used (as explained
before).

All agents run under a single (uniform) set of cognitive parameters?,
regardless of their role in the organization.

4.2 Results

The results of our simulation are shown in Table 6.2. 3,000 training cycles
(each corresponding to a single problem, followed by a single decision by
the entire organization) were included in each group. As can be seen, our
results closely accord with the patterns of the human data, with teams out-
performing hierarchal structures, and distributed access proving superior
to blocked access. Also, as in humans, performance is not grossly skewed
towards one condition or the other, but is roughly comparable across all
conditions (unlike some of the simulation results from Carley et al., 1998).
The match with the human data is far better than in the simulations con-
ducted in the original study (Carley et al., 1998).

To understand these results and their interpretation better, let us exam-
ine the curve that represents the learning process more closely. As can be
seen in Figure 6.2, a team organization, using distributed access, quickly
achieves a high level of performance. However, thereafter there is very
little gain. By contrast, a team using blocked access (Figure 6.3) starts out
slowly but eventually achieves a performance nearly as high as that in
the distributed condition. Thus, the loose organization of teams appears to
help them master simple tasks relatively quickly, although learning pro-
ceeds more quickly when there is a diverse range of “perspectives” on the
problem than when there is a redundancy of viewpoints.

2 The following parameters were used for all agents: Temperature = 0.05; Learning Rate =
0.5; Probability of Using Bottom Level = 0.75; RER Positivity Criterion = 0; Density = 0.01;
Generalization Threshold = 4.0. See Section 2.2 for a description of the cognitive parameters.

134 Isaac Naveh and Ron Sun

0-7 T T T T T T T

0.65 b

Percent Correct
o o
N o » O
[&)] [6)] [$)] (o))
T T T T
1 1 1 1

o
~
T

1

0.351- B

0.3

500 1000 1500 2000 2500 3000 3500 4000
Cycles

FIGURE 6.2. Training curve for team organization with distributed access.

As can be seen in Figures 6.4 and 6.5, hierarchies not only take longer
to learn the task than teams, but their learning is also characterized by
a greater amount of “noise.” Under distributed access (Figure 6.4), per-
formance dips in the first few hundred cycles, but afterward it improves

0.7 T T T T T T T

0.65[i

Percent Correct
o o
~ = o o
()] [6)] [$)] [¢))
T T T T
1 1 1 1

o
'
T

1

0.351 i

0.3

1 1 1 1 1 1 1
500 1000 1500 2000 2500 3000 3500 4000
Cycles

FIGURE 6.3. Training curve for team organization with blocked access.

Simulating a Simple Case of Organizational Decision Making 135

0.7 T T T T T T T

0.65F i

o
o I3 o
o o o
T T T

Percent Correct
o
i
[6;]
T

500 1000 1500 2000 2500 3000 3500 4000

0.3 1 1 1 1 1

Cycles

FIGURE 6.4. Training curve for hierarchal organization with distributed access.

steadily. This should not surprise us, since two layers of agents are being
trained (rather than one), with the output of the upper layer depending
on that of the lower layer. In addition, the higher input dimensionality of
the supervisor (nine inputs vs. three inputs for a subordinate) increases the

0.7 T T T T T T T

0.65 b

0.6 i

0.55 i

0.5F E

0.45 k

Percent Correct

0.4} .

0.35- i

0.3

500 1000 1500 2000 2500 3000 3500 4000
Cycles

FIGURE 6.5. Training curve for hierarchal organization with blocked access.

136 Isaac Naveh and Ron Sun

complexity of the task, leading to a longer training time for the network
and to a slower process of rule refinement. The supervisor must assimilate
considerably more information than its subordinates, which places strains
on the system as a whole. This is analogous to the case of humans, where
input dimensionality is known to be one of the chief determinants of task
complexity (e.g., Berry & Broadbent, 1988). With respect to information ac-
cess, the situation is similar to the team condition, with distributed access
being superior to blocked access. In the latter condition, performance is so
poor that there is little discernible progress made throughout the simula-
tion.

5 SIMULATION II: EXTENDING THE SIMULATION TEMPORALLY

So far, we have considered agents trained for only 3,000 cycles. The results
were interesting, because they were analogous to those of humans. The
human data were arguably the result of limited training. However, it is
interesting to see what will happen if we extend the length of the training.
In particular, we are interested in knowing if the trends seen earlier (in
Section 4.2) will be preserved in the long run. It is important that before
we draw any conclusion about human performance, we understand the
context and conditions under which data are obtained, and thereby avoid
overgeneralizing our conclusions (e.g., team vs. hierarchy, blocked vs. dis-
tributed; Carley et al., 1998).

Figures 6.6-6.9 show learning as it occurs over 20,000 (rather than 3,000)
cycles. Previously, the best-performing condition was team organization
with distributed information access. As can be seen in Figure 6.6, this con-
dition continues to improve slowly after the first 3,000 cycles. However, it
is overtaken by team organization with blocked access (Figure 6.7). Thus, it
seems that although teams benefit from a diversified (distributed) knowl-
edge base in the initial phase of learning, a well-trained team with redun-
dant (blocked) knowledge performs better in the long run.

In the hierarchal conditions, too, we can see either a reversal or dis-
appearance of the initial trends. Hierarchies using distributed access
(Figure 6.8) now show not only the best, but also the most stable (least
variance) performance of any condition. Likewise, a hierarchy with blocked
access (Figure 6.9), previously a weak performer, shows impressive gains
in the long run. Thus, whereas hierarchies take longer to train, their perfor-
mance is superior in the long run. In a hierarchy, a well-trained supervisor
is capable of synthesizing multiple data points with greater sensitivity
than a simple voting process. Likewise, the reduced individual variation
in blocked access leads to less fluctuation in performance in the long run.

There is a serious lesson here: limited data can allow us to draw only
limited conclusions — only with regard to the specific situation under which
the data were obtained. There is a natural tendency for researchers to

Simulating a Simple Case of Organizational Decision Making 137

0.9

0.85

0.8

A e
!
]f| ;

0.4
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Cycles

o
N

o
»
a

Percent Correct
o
»

e
o
a

o
wn

0.45

FIGURE 6.6. Training curve for team organization with distributed access.

overgeneralize their conclusions, which can only be remedied by more
extensive investigations. Given the high cost of human experiments, sim-
ulation has a large role to play in exploring alternatives and possibilities,
especially social simulation coupled with cognitive architectures.

I
T

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Cycles

FIGURE 6.7. Training curve for team organization with blocked access.

0.9

0.85

0.8

o
IS
N o

—

g
o2}
o

A

o
o

Percent Correct

0.55

0.5

0.45

0.4

138 Isaac Naveh and Ron Sun

1 e

0.7

1l

0.5

Percent Correct

0.4

0.3

0.2

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Cycles

FIGURE 6.8. Training curve for hierarchal organization with distributed access.

6 SIMULATION III: VARYING COGNITIVE PARAMETERS

In the two preceding simulations, agents were run under a fixed set of
cognitive parameters. Next, let us see what happens when we vary these
parameters, analogous to varying the training length earlier. This again

0.9

o inld M‘JH 'rjwl HW

0.6

Percent Correct

0.3

0.2
0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
Cycles

FIGURE 6.9. Training curve for hierarchal organization with blocked access.

Simulating a Simple Case of Organizational Decision Making 139

allows us to see the variability of results, and thus avoid overgeneraliza-
tion. As mentioned above, the ability to vary different aspects of cognition
is one feature that sets CLARION apart from many specialized models that
are devised to tackle a specific task. Because CLARION captures a wide
range of cognitive processes and phenomena, its parameters are generic
rather than task-specific. Thus, we have the opportunity of studying spe-
cific issues, such as organizational design, in the context of a general theory
of cognition.

In our third simulation, parameters were varied in a factorial design,
such that combinations of parameter values were considered. This allowed
us to study both the influence of individual parameters and their inter-
actions with each other.

6.1 Simulation Setup

Two different sets of parameters of CLARION were separately varied (to
avoid the prohibitively high cost of varying all parameters simultane-
ously). These parameters were described in detail in Section 2.2. The first
set of parameters consisted of fundamental parameters of the model, in-
cluding: (1) Reliance on the top versus the bottom level, expressed as a
fixed probability of selecting each level. (2) Learning rate of the neural net-
works. (3) Temperature, or degree of randomness. The second set consisted
of parameters related to RER rule extraction, including: (1) RER positivity
threshold, which must be exceeded for a rule to be considered “success-
ful.” (2) RER density measure, which determined how often a rule must be
invoked in order to be retained. (3) RER generalization threshold, which
must be exceeded for a rule to be generalized.

The two sets of parameters above, along with information access and
organization, were varied in a factorial design. For each parameter, 2 or 3
different levels were tested, resulting ina 3 x 2 x 2 x 2 x 2 (probability of
using bottom level x learning rate x temperature x organization x infor-
mation access) design for the first set of parameters,anda2 x 3 x 2 x 2 x 2
(RER positivity x RER density x RER generalization x organization x in-
formation access) design for the second set.

6.2 Results

We are interested in observing performance at both ends of the learning
curve — that is, both after a moderate amount of training (because results
at that point corresponded closely to the human results) and after exten-
sive training. Therefore, in all conditions of the variable-factor simulation,
performance was measured both near the start of the simulation (after
3,000 cycles) and at the end (after 20,000 cycles).

An ANOVA (analysis of variance) confirmed the effects of organi-
zation [F (1, 24) = 30.28, p < 0.001, MSE = 0.05] and information access

140 Isaac Naveh and Ron Sun

Performance

Organization

O Team

O Hierarchy

4
3K 20K

FIGURE 6.10. The effect of organization on performance over time.

[F(1,24) =7.14, p < 0.05, MSE = 0.01] to be significant. Moreover, the
interaction of these two factors with length of training was signifi-
cant [F(1,24) =59.90, p < 0.001, MSE = 0.73 for organization; F (1, 24) =
3.43, p < 0.05, MSE = 0.01 for information access]. These interactions,
which can be seen in Figures 6.10 and 6.11, reflect the trends discussed
earlier: the superiority of teams and distributed information access at the

Performance

Access
7 JR—
w O Distributed
. O Blocked
"3K 20K

FIGURE 6.11. The effect of information access on performance over time.

Simulating a Simple Case of Organizational Decision Making 141

.8

Performance
o
1

5‘~~‘
5 ———_ TIME
555-____ ! O After 3K
4 O After 20K
" .50 75 .95

PROBABILITY OF USING BOTTOM LEVEL

FIGURE 6.12. The effect of probability of using the bottom level on performance over
time.

start of the learning process, and either the disappearance or reversal of
these trends towards the end. This finding is important, because it shows
that these trends persist robustly across a wide variety of settings of cog-
nitive parameters, and do not critically depend on any one setting of these
parameters.

The effect of probability of using the top vs. the bottom level was like-
wise significant [F (2, 24) = 11.73, p < 0.001, MSE = 0.02]. More interest-
ingly, however, its interaction with length of training was significant as well
[F(2,24) =12.37, p < 0.001, MSE = 0.01]. As can be seen in Figure 6.12,
rule learning is far more useful at the early stages of learning, when in-
creased reliance on them tends to boost performance, than towards the
end of the learning process. This is because rules are crisp guidelines that
are based on past success, and as such, they provide a useful anchor at
the uncertain early stages of learning. However, by the end of the learning
process, they become no more reliable than highly-trained networks. This
corresponds to findings in human cognition, where there are indications
that rule-based learning is widely used in the early stages of learning, but is
later increasingly supplanted by similarity-based processes (Palmeri, 1997;
Smith & Minda, 1998) and skilled performance (Anderson & Lebiere, 1998).
Such trends may partially explain why hierarchies do not perform well ini-
tially (see Section 4.2): because a hierarchy’s supervisor is burdened with a
higher input dimensionality, it takes a longer time to encode rules (which
are essential at the early stages of learning).

142 Isaac Naveh and Ron Sun

Performance

Learning Rate

o .25

o0 .50

3K 20K
Number of Runs
FIGURE 6.13. The effect of learning rate on performance over time.

Predictably, the effect of learning rate was significant [F(2,24) =
32.47, p < 0.001, MSE = 0.07]. As can be seen in Figure 6.13, groups with a
higher learning rate (0.5) outperformed the groups with the lower learning
rate (0.25) by between 5 and 14%. However, there was no significant inter-
action between learning rate and organization or information access. This
suggests that quicker learners do not differentially benefit from, say, a hier-
archy versus a team. By the same token, the poorer performance of slower
learners cannot be mitigated by recourse to a particular combination of
organization and information access.

Let us now turn to the parameters related to RER rule learning.
Figure 6.14 shows the effect of generalization threshold, which determines
how readily an agent will generalize a successful rule. As can be seen, it is
unquestionably better to have a higher rule generalization threshold than
a lower one (up to a point’). An ANOVA confirmed the significance of
this effect [F (1, 24) = 15.91, p < 0.001, MSE = 0.01]. Thus, if one restricts
the generalization of rules only to those rules that have proved relatively
successful (by selecting a fairly high generalization threshold), the result is
a higher-quality rule set, which leads to better performance in the long run.

Relatedly, whereas the effect of rule density on performance was in-
significant, the interaction between density (i.e., “memory” for rules) and

3 If we raise the threshold above a certain point, performance dips and an overall “U-curve”
is observed. The same is true for other parameters.

Simulating a Simple Case of Organizational Decision Making 143

.76

74 - i

72 A

.70 1

Performance

.68

.66

i

.30 .60
Generalization Threshold

.64

FIGURE 6.14. The effect of generalization threshold on the final performance.

generalization threshold was significant [by an ANOVA; F(2,24) =
2.93; p < 0.05;MSE = 0.01]. As we can see in Figure 6.15, when rules are
of relatively high quality (i.e., under a high generalization threshold) it is
advisable to have more of them available (which is achievable by lower-
ing the density parameter). By contrast, when the average quality of rules
is lower (i.e., under a low generalization threshold) it is advantageous to
have a quicker forgetting process in place, as embodied by a high density
parameter.

Finally, the interaction between generalization threshold and organiza-
tion was significant at the start of the learning process [by an ANOVA;
F(1,24) =593, p < 0.05, MSE = 0.01], but not at the end. This result
(shown in Figure 6.16) is more difficult to interpret, but probably reflects
the fact that hierarchies, at the start of the learning process, do not encode
very good rules to begin with (due to the higher input dimensionality of
the supervisor and the resulting learning difficulty). Thus, generalizing
these rules, even incorrectly, causes relatively little further harm.

For the rest of the factors considered previously (including tempera-
ture and RER positivity threshold), no statistically significant effects were
found.

This simulation confirmed an earlier observation — namely, that which
organizational structure (team vs. hierarchy) or information access scheme
(distributed vs. blocked) is superior depends on the length of the training.
It also showed that some cognitive parameters (e.g., learning rate) have a

144

.78

.76 1

.74 4

.72 1

.70 1

.68

Performance

66
644

i
.62

.60

A ————————— 0

.005

01 R
Density

Isaac Naveh and Ron Sun

Gen. Threshold

o .30

0 .60

FIGURE 6.15. The interaction of generalization threshold and density with respect
to the final performance.

.56

.54

527

.50 7

.48

Performance

46

44

.42{3—-———‘__

.40

Organization
|

O Team

O Hierarchy

.30

Generalization Threshold

.60

FIGURE 6.16. The interaction of generalization threshold and organization with re-
spect to the initial performance.

Simulating a Simple Case of Organizational Decision Making 145

monolithic, across-the-board effect under all conditions, whereas in other
cases, complex interactions of factors are at work. This illustrates, once
again, the importance of limiting one’s conclusions to the specific cognitive
context in which data were obtained.

7 DISCUSSION

This study shows that a more cognitively realistic simulation, with
CLARION, can better capture human performance data in the radar task.
Unlike simpler models, which often exhibit specialized intelligence, and
thus do very well on some conditions, but poorly on others (for instance, in
teams vs. in hierarchies), our model, with its more general-purpose learn-
ing architecture, performs reasonably well across a variety of conditions.
This is consistent with the human results (Carley et al., 1998). Furthermore,
after a certain amount of training, the trends observed closely match the hu-
man data. More specifically, teams learn faster and better than hierarchies,
due to the simpler structure of teams and the difficulty of training a com-
petent supervisor. Additionally, distributed access is superior to blocked
access, showing the advantages of a variegated knowledge base at the early
stages of learning. Thus, cognitive realism in social simulation can lead to
models that more closely capture human results, although currently most
social and organizational simulations tend to be at a higher level and thus
often gloss over details of cognitive processes.

Moreover, by using CLARION, we are able to formulate deeper expla-
nations for the results observed. For instance, based on our observations,
one may formulate the following possible explanation: the poorer per-
formance of hierarchies early on (see Section 4.2) may be due, at least
in part, to the longer training time needed to encode high-dimensional
information for the supervisor, which leads to fewer useful rules being
acquired at the top level. This in turn impacts performance, because rule
learning is especially important in the early stages of learning (see Section
6.2). Such explanations are only possible when the model is cognitively
realistic.

In addition to offering deeper explanations, cognitive realism can lead
to greater predictive power for social simulations. The results of social sim-
ulations should not be taken as “facts,” but rather as predictions that can be
empirically verified. The ability to produce testable predictions, then, is a
measure of the usefulness of a simulation. In this connection, there are two
significant advantages to using cognitively realistic agents in social simu-
lations. First, if the model is truly reflective of human cognitive processes,
then its predictions will more often prove accurate. Second, predictions
that contain references to aspects of human cognition (e.g., explicit vs. im-
plicit learning) should be more illuminating and relevant than those that

146 Isaac Naveh and Ron Sun

refer to the internal parameters of an artificial model (e.g., momentum in
a neural network) or to external measures only (e.g., percent correct).

In CLARION, we can vary parameters and options that correspond
to cognitive processes and test their effects on performance. In this way,
CLARION can be used to predict human performance, and furthermore to
help performance by prescribing optimal or near-optimal cognitive abili-
ties for specific tasks and organizational structures. Such prescriptions fall
into two general categories. First, they may help us to develop a more rig-
orous methodology for building organizations (Belbin, 1993), by assigning
agents to organizational roles based on their individual cognitive capabili-
ties. For instance, we may learn that a hierarchy’s performance hinges cru-
cially on having a quick-learning agent as its supervisor, or alternatively,
we may discover that quicker-learning supervisors do not significantly
affect the overall performance of the organization. Second, prescriptions
generated by CLARION may help us to formulate organizational policies.
Recall, again, the high importance of rule learning at the beginning of the
learning process. Based on this, an organization may decide to emphasize
standard operational procedures (i.e., rules) when training new personnel,
but to emphasize case studies (i.e., exemplars) when training experienced
employees. The value of such prescriptions is contingent on the cognitive
realism of the models employed. The more faithfully a model captures as-
pects of human cognition, the wider the applicability of its predictions and
prescriptions.

We think of individual cognitive processes as a “lower-level” descrip-
tion, and of social phenomena as a “higher-level” description. Itis therefore
evident that the density of descriptions at the higher level is much greater
than the density at the lower level. This means that a higher-level descrip-
tion may correspond to a vast multiplicity of lower-level descriptions. Each
instance at the higher (or social) level corresponds to a large set of instances
at the lower (or cognitive) level.

The processes that occur at the higher level represent merely a tiny
fraction of the ones that could conceivably occur, given a particular com-
bination of entities at the lower level. Although nearly any imaginable
high-level process may be described in terms of the low-level entities, the
actual high-level processes that occur depend on a particular combination
of conditions at the lower level (in the physical sciences, these are known
as “boundary conditions”). There is no a priori way of determining, based
on the lower-level entities, which of the higher-level processes will actually
occur. Thus, social processes are in this sense “emergent.”

It can be argued that our approach is needlessly reductionist. A higher-
level entity may consist of numerous lower-level entities. Likewise, causal
relationships at the higher level may be a product of causal relationships at
the lower level. Nevertheless, it is possible to describe causal relationships

Simulating a Simple Case of Organizational Decision Making 147

at the higher level without referring to relationships at the lower level.
Why, then, is cognitive realism in social simulation necessary? The answer
is that an effective scientific theory must be capable, in principle at least, of
mapping social phenomena to cognitive attributes. The ability to accurately
model high-level phenomena through a high-level theory is a necessary,
but not sufficient, condition for validity. Thus, for example, the Ptolemaic
method of predicting planetary motion based on epicycles around a series
of mathematical points was at least as accurate as the Copernican model of
motion when the latter was first proposed. By adding additional epicycles,
the Ptolemaic method could be more accurate still. Nonetheless, a theory
based on epicycles around a series of theoretical mathematical points could
not provide the deeper account offered by the Copernican theory of motion,
in which an orbit can be traced to the presence of an astronomically iden-
tifiable body in the center of the orbit (Coward & Sun 2004). This is the
primary reason why we need to bridge the two levels.

8 SUMMARY

We have tested the approach of cognitively realistic social simulation by
deploying the CLARION cognitive architecture in an organizational sim-
ulation involving multi-agent interaction. The results have been encour-
aging, yielding several results that are consistent with the psychological
literature, as well as a few testable hypotheses. The empirical verification of
these hypotheses should be relatively straightforward in the case of some
cognitive factors (e.g., learning rate, which can be plausibly equated with
scores on some standardized tests), but admittedly trickier in others (e.g.,
generalization threshold).

Along the way, we have argued for an integration of two separate strands
of research; namely, cognitive modeling and social simulation. Such inte-
gration could, on the one hand, enhance the accuracy of social simulation
models (by taking into account the potentially decisive effects of individ-
ual cognition), and on the other hand, it could lead to greater explanatory
power from these models (by identifying the precise role of individual
cognition in collective social phenomena).

ACKNOWLEDGMENTS

We wish to acknowledge Xi Zhang for his assistance in conducting this
simulation. Thanks are also due to Jay Hutchinson for implementing a
preliminary version of this simulation. The comments by Robert West,
Nigel Gilbert, Bill Clancey, and Frank Ritter on an early version of this
chapter are also acknowledged.

148 Isaac Naveh and Ron Sun

References

Anderson, J. R. (1983). The architecture of cognition. Cambridge, MA: Harvard
University Press.

Anderson, J. R. (1993). Rules of the mind. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Anderson, J. R., & Lebiere, C. (1998). The atomic components of thought. Mahwah, NJ:
Lawrence Erlbaum.

Axtell,R., Axelrod, J., & Cohen, M. (1996). Aligning simulation models: A case study
and results. Computational and mathematical organization theory, 1(2), 123-141.

Belbin, M. (1993). Team roles at work. Oxford, UK: Butterworth-Heinemann.

Berry, D., & Broadbent, D. (1988). Interactive tasks and the implicit-explicit distinc-
tion. British Journal of Psychology, 79, 251-272.

Boyer, P., & Ramble, C. (2001). Cognitive templates for religious concepts: Cross-
cultural evidence for recall of counter-intuitive representations. Cognitive Science,
25, 535-564.

Carley, K. M. (1992). Organizational learning and personnel turnover. Organizational
Science, 3(1), 20-46.

Carley, K. M., & Lin, Z. (1995). Organizational designs suited to high performance
under stress. IEEE Systems Man and Cybernetics, 25(1), 221-230.

Carley, K. M., & Prietula, M. J. (1992). Toward a cognitively motivated theory of
organizations. Proceedings of the 1992 coordination theory and collaboration technology
workshop. Washington DC.

Carley, K. M., Prietula, M. J., & Lin, Z. (1998). Design versus cognition: The interac-
tion of agent cognition and organizational design on organizational performance.
Journal of Artificial Societies and Social Simulation, 1(3).

Castelfranchi, C. (2001). The theory of social functions: Challenges for computa-
tional social science and multi-agent learning. In R. Sun (ed.), Cognitive Systems
Research [Special issue on the multidisciplinary studies of multiagent learning],
2(1), 5-38.

Coward, L. A, & Sun, R. (2004). Criteria for an effective theory of consciousness
and some preliminary attempts. Consciousness and Cognition, 13, 268-301.

Edmonds, B., & Moss, S. (2001). The importance of representing cognitive processes
in multi-agent models. In G. Dorffner, H. Bischof, & K. Hornik (Eds.), Artifi-
cial Neural Networks — ICANN’2001. Springer-Verlag: Lecture Notes in Computer
Science, 2130, 759-766.

Gilbert, N., & Doran, J. (1994). Simulating societies: The computer simulation of social
phenomena. London, UK: UCL Press.

Hutchins, E. (1995). How a cockpit remembers its speeds. Cognitive Science, 19,
265-288.

Kahan, J., & Rapoport, A. (1984). Theories of coalition formation. Mahwah, NJ:
Erlbaum.

Kang, M. C., Waisel, L. B., & Wallace, W. A. (1998). Team-Soar: A model for team
decision making. In M. J. Prietula, K. M. Carley, & L. Gasser (Eds.), Simulating
organizations: Computational models of institutions and groups. Cambridge, MA: MIT
Press.

Klahr, D., Langley, P., & Neches, R. (Eds.). (1987). Production system models of learning
and development. Cambridge, MA: MIT Press.

Simulating a Simple Case of Organizational Decision Making 149

Lave, J. (1988). Cognition in practice. Cambridge, UK: Cambridge University Press.

Levy, S. (1992). Artificial life. London: Jonathan Cape.

Mandler, J. (1992). How to build a baby. Psychological Review, 99(4), 587-604.

Moss, S. (1999). Relevance, realism and rigour: A third way for social and economic
research. (CPM Report No. 99-56). Manchester, UK: Center for Policy Analysis,
Manchester Metropolitan University.

Palmeri, T. J. (1997). Exemplar similarity and the development of automatic-
ity. Journal of Experimental Psychology: Learning, Memory, and Cognition, 23,
324-354.

Proctor, R., & Dutta, A. (1995). Skill acquisition and human performance. Thousand
Oaks, CA: Sage Publications.

Reber, A. (1989). Implicit learning and tacit knowledge. Journal of Experimental
Psychology: General, 118(3), 219-235.

Resnick, L. B., Levine, J. M., & Teasley, S. D. (1991). Perspectives on socially shared
cognition. Hyattsville, MD: American Psychological Association.

Rosenbloom, P, Laird, J., Newell, A., & McCarl, R. (1991). A preliminary analysis
of the Soar architecture as a basis for general intelligence. Artificial Intelligence,
47(1-3), 289-325.

Rumelhart, D., & McClelland,]. (Eds.). (1986). Parallel distributed processing I.
Cambridge, MA: MIT Press.

Schacter, D. (1990). Toward a cognitive neuropsychology of awareness: Implicit
knowledge and anosagnosia. Journal of Clinical and Experimental Neuropsychology,
12(1), 155-178.

Seger, C. (1994). Implicit learning. Psychological Bulletin, 115(2), 163-196.

Smith, J. D., & Minda, J. P. (1998). Prototypes in the mist: The early epochs of category
learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 24,
1411-1436.

Smolensky, P. (1988). On the proper treatment of connectionism. Behavioral and Brain
Sciences, 11(1), 1-74.

Stadler, M., & Frensch, P. (1998). Handbook of implicit learning. Thousand Oaks, CA:
Sage Publications.

Stanley, W., Mathews, R., Buss, R., & Kotler-Cope, S. (1989). Insight without aware-
ness: On the interaction of verbalization, instruction and practice in a simulated
process control task. Quarterly Journal of Experimental Psychology, 41A(3), 553-577.

Sun, R. (1995). Robust reasoning: Integrating rule-based and similarity-based rea-
soning. Artificial Intelligence, 75(2), 241-296.

Sun, R. (1997). Learning, action, and consciousness: A hybrid approach towards
modeling consciousness. Neural Networks [Special issue on consciousness], 10(7),
1317-1331.

Sun, R. (2001). Cognitive science meets multi-agent systems: A prolegomenon.
Philosophical Psychology, 14(1), 5-28.

Sun, R. (2002). Duality of the mind. Mahwah, NJ: Lawrence Erlbaum.

Sun, R., Merrill, E., & Peterson, T. (1998). A bottom-up model of skill learning.
Proceedings of 20th Cognitive Science Society Conference (pp. 1037-1042). Mahwabh,
NJ: Lawrence Erlbaum.

Sun, R., Merrill, E., & Peterson, T. (2001). From implicit skills to explicit knowledge:
A bottom-up model of skill learning. Cognitive Science, 25(2), 203-244.

150 Isaac Naveh and Ron Sun

Sun, R., & Peterson, T. (1998). Autonomous learning of sequential tasks: Experi-
ments and analyses. IEEE Transactions on Neural Networks, 9(6), 1217-1234.

Watkins, C. (1989). Learning with delayed rewards. PhD thesis, Cambridge University,
Cambridge, UK.

Willingham, D., Nissen, M., & Bullemer, P. (1989). On the development of procedu-
ral knowledge. Journal of Experimental Psychology: Learning, Memory and Cognition,
15,1047-1060.

Ye, M., & Carley, K. M. (1995). Radar-Soar: towards an artificial organization com-
posed of intelligent agents. Journal of Mathematical Sociology, 20(2-3), 219-246.

7

Cognitive Modeling of Social Behaviors

William J. Clancey, Maarten Sierhuis, Bruce Damer,
and Boris Brodsky

1 INTRODUCTION

The driving theme of cognitive modeling for many decades has been that
knowledge affects how and which goals are accomplished by an intelli-
gent being (Newell, 1991). But when one examines groups of people living
and working together, one is forced to recognize that whose knowledge is
called into play, at a particular time and location, directly affects what the
group accomplishes. Indeed, constraints on participation, including roles,
procedures, and norms, affect whether an individual is able to act at all
(Lave & Wenger, 1991; Jordan, 1992; Scribner & Sachs, 1991).

To understand both individual cognition and collective activity, perhaps
the greatest opportunity today is to integrate the cognitive modeling ap-
proach (which stresses how beliefs are formed and drive behavior) with
social studies (which stress how relationships and informal practices drive
behavior). The crucial insight is that norms are conceptualized in the in-
dividual mind as ways of carrying out activities (Clancey 1997a, 2002b).
This requires for the psychologist a shift from modeling only goals and
tasks — why people do what they do — to modeling behavioral patterns —
what people do — as they are engaged in purposeful activities. Instead of
a model that exclusively deduces actions from goals, behaviors are also,
if not primarily, driven by broader patterns of chronological and located
activities (akin to scripts).

This analysis is particularly inspired by activity theory (Leont’ev, 1979).
Although acknowledging that knowledge (relating goals and operations) is
fundamental for intelligent behavior, activity theory claims that a broader
driver is the person’s motives and conceptualization of activities. Such un-
derstanding of human interaction is normative (i.e., viewed with respect to
social standards), affecting how knowledge is called into play and applied
in practice. Put another way, how problems are discovered and framed,
what methods are chosen, and indeed who even cares or has the authority

151

152 William]. Clancey, Maarten Sierhuis, Bruce Damer, and Boris Brodsky

to act, are all constrained by norms, which are conceived and enacted by
individuals.

Of special interest for the cognitive modeler, and emphasized in so-
cial theory (Lave, 1988), is how norms are reinforced and shaped through
behavior. Each enacting of a norm potentially reinforces the behavior pat-
tern for the individual, as well as the group observing and relating to
the behavior. But also, each action potentially changes the norm, includ-
ing functional adaptations to the current circumstances as well as per-
sonal whim. One might refer to understanding of norms as an individual’s
“social knowledge”; but many or perhaps most norms are tacit — the pat-
terns are not necessarily experienced or described. Of major interest for
cognitive modeling is how individuals formulate situation-action rules of
behavior (i.e., they develop models of norms) to deliberately accomplish
goals in novel ways (i.e., they deduce how to relate and adapt available
methods to permissible behaviors). For example, a leader may develop the
group’s capability by humorously violating a norm, reinforcing each indi-
vidual’s understanding of the group’s structure and ways of interacting.

Our understanding of how to relate goals, knowledge, behaviors, and
social concepts in a cognitive model has been developing over more than
a decade in the Brahms modeling and simulation system (Clancey et al.,
1998, 2002b; Sierhuis, 2001). It has taken a long time to break out of the
task analysis perspective to understanding the social notion of activity
(Lave, 1988; Suchman, 1987) as a behavioral and not functional description,
and to ground it in a cognitive architecture. The significant breakthroughs
included:

* Understanding activities as patterns of what people do, when, and
where, using what tools or representations;

* Representing activities in a cognitive model using a subsumption ar-
chitecture (i.e., conceptualization of activities occurs simultaneously on
multiple levels);

* Understanding that conceptualization of activities is tantamount to con-
ceptualization of identity, “What I'm doing now,” which is the miss-
ing link between psychological and social theory (Clancey, 1997b, 1999;
Wenger, 1998).

* Simulating collective behavior in a multi-agent simulation with an ex-
plicit “geographic model” of places and facilities, using the Brahms tool.

A Brahms model is a way of formalizing (expressing, collecting, and
organizing) field observations so they can be correlated, shared, and used
in work system design (Sierhuis & Clancey, 2002; Sierhuis et al., 2003; Seah,
Sierhuis, & Clancey 2005). The primary objective is not necessarily to con-
struct a predictive model of human behavior, which is often emphasized in
scientific modeling, including cognitive modeling, but to have a systematic

Cognitive Modeling of Social Behaviors 153

way of relating disparate sources of information, including video, notes,
and surveys.

To illustrate these ideas, this chapter presents an extract from a Brahms
simulation of the Flashline Mars Arctic Research Station (FMARS), in which
a crew of six people are living and working for a week, physically simu-
lating a Mars surface mission (Clancey, 2002a). This Brahms simulation of
this mission is broadly described in Clancey (2002b); this chapter focuses
on one part, the Brahms simulation of a planning meeting. How people be-
have during the meeting (e.g., standing at the table) exemplifies the nature
of norms; this is modeled at the individual agent level in Brahms. The ex-
ample shows how physiological constraints (e.g., hunger, fatigue), facilities
(e.g., the habitat’s layout), and high-level events during the meeting inter-
act. This chapter describes the methodology for constructing such a model
of practice, from video and first-hand observation, and how this modeling
approach fundamentally changes how one relates goals, knowledge, and
cognitive architecture.

Relating physical behaviors to a meeting and producing a visual display
with realistic timing involves integrating diverse information (topography,
agent beliefs, posture, meeting structure). No attempt is made here to ana-
lyze or model the group dynamics of decision making in detail (e.g., raising
one’s voice, misunderstandings, domination, digressions). Rather the ef-
fort here is intended to provide a framework within which such analysis
could be meaningfully embedded. Specifically, we hypothesize that being
able to model apparently superficial multi-agent behaviors, as we have
here, is a necessary first step in understanding the cognitive and social na-
ture of norms. Recognizing how norms are manifested, violated, adapted,
etc., will enable us to subsequently use activity-based analysis to better
analyze the quality of group decision making.

Following the analytic approach of Schon (1987), this research effort
shifts from studying technical knowledge in isolation to modeling the con-
text in which behavior occurs and how it unfolds over time through in-
teractions of people, places, and tools. The resulting simulation model of
practice is a powerful complement to task analysis and knowledge-based
simulations of reasoning, with many practical applications for work system
design, operations management, and training.

2 THE BRAHMS APPROACH FOR RELATING COGNITIVE
AND SOCIAL PROCESSES

The Brahms simulation system was developed as a means of systemat-
ically relating information gained from the anthropological method of
observing by participating in some activity, called “participant observa-
tion” (Spradley, 1980; Clancey in preparation, in press). Being a participant

154 William]. Clancey, Maarten Sierhuis, Bruce Damer, and Boris Brodsky

allows the observer to detect and understand events that people would not
otherwise report (e.g., a swimmer would probably not mention “you have
to be in water; alive,” Wynn, 1991, p. 49). Brahms’ patented design was
conceived in 1992 to complement business process modeling tools by rep-
resenting how work actually gets done. As a model of practice, in contrast
with formal processes, Brahms simulations emphasize informal commu-
nications and assistance (i.e., actions that are not specified in task require-
ments or procedures), and circumstantial interactions (e.g., how place-
ment of people and tools affects what information is shared or how long a
job takes).

The Brahms modeling language enables representing and relating the
following:

* people (as agents having beliefs, factual properties, and belonging to
one or more groups)

* locations (as a hierarchy of geographic areas)

* tools and furniture (represented as objects having factual properties)

e computer systems (e.g., databases, represented as objects with stored
beliefs that can be read or modified by agents)

* robotic systems (represented as agents)

* behavior of people and systems (represented as activities).

Activities are represented as prioritized situation-action rules called work-
frames and conditional inference rules called thoughtframes. Workframes
have four parts:

* preconditions (matched against agent beliefs)

* actions (activities or primitive actions)

* detectables (conditions associated with actions, modeling perception of
the world)

* consequences (changes to beliefs and the state of the world).

Primitive actions occur for a fixed duration (or the duration may be ran-
domly generated from a specified interval). The simulation engine man-
ages agent and object behaviors as a discrete event simulation.

The state of the world (physical properties of agents and objects) is
modeled in Brahms as facts. Detectables match against facts, resulting in
agent beliefs (which may be different from the facts), modeling how what
is perceived is conditional on what an agent is doing. Changed beliefs
then activate workframes for the activities in which the agent is currently
engaged. Detectables may also abort or complete an activity. Thus, agent
behaviors are largely data-driven within the context of activities. The lan-
guage provides two special primitive actions: Move (to a specified location,
taking a particular time) and Communicate (ask or tell another agent a be-
lief matching a specified proposition, which applies as well to reading and
writing beliefs to an object, e.g., a computer screen).

Cognitive Modeling of Social Behaviors 155

An agent is engaged in a hierarchy of activities at any particular time,
constituting a subsumption architecture. For example, an FMARS crew
member might be ParticipatingInPlanningMeeting while ConductingPlan-
ningMeeting during the course of LivingOneDayinTheMarsHabitat. The
agent is doing all of these activities at a particular moment, and thus a stack
of activities is always active for every agent. The workframes and thought-
frames of these activities may activate, depending on the agents beliefs
and the priorities of the workframes. Furthermore, any of the detectables
on the current line of workframe activation may be triggered, according to
the facts in the world that the agent encounters (subject to area and line of
sight restrictions). Workframes may thus be interrupted or resumed as the
agent behaves, gets new beliefs, and modifies the world. Furthermore, the
initial beliefs of the agent, as well as the potential activities are inherited by
group membership. Groups may belong to groups, providing an efficient
way of representing beliefs and behaviors.

The Brahms language, architecture, and simulation engine are described
in detail by Sierhuis (2001). Besides the original simulations of office work
(Clancey et al., 1998) constructed for NYNEX (the former New York New
England telephone company), Brahms has been used to model NASA’s
mission operations, deployment of instruments on the lunar surface by
Apollo astronauts (Sierhuis, 2001), how procedures are followed on the
International Space Station (Acquisiti et al., 2002), activities of scientists
controlling the Mars Exploration Rovers (MER) (Seah, Sierhuis, & Clancey,
in preparation), and teleoperations from earth of a proposed lunar rover
(Sierhuis et al., 2003).

Before examining the Brahms model of the FMARS planning meeting,
a few aspects of activity-based modeling should be emphasized:

* A model of activity is a model of practice, what people do. It should be
contrasted with idealized or written models of procedures (what people
are supposed to do).

* Tasks and activities are different units for viewing and describing hu-
man behavior. Like functional and behavioral models of artifacts such
as electronic circuits, a task model can be related to, but does not strictly
map onto an activity model. Most notably, many activities, such as eat-
ing, which can occur at any time during work, are omitted from task
models. Simply put, a task model describes input and output relations
as a kind of idealized specification of what should be accomplished.
An activity model describes located, chronological behaviors and per-
ceptual experiences. See Clancey (2002b) for extensive discussion and
comparison of task analysis to Brahms, especially the historical relation
to scripts.

* The emphasis on modeling behavior is not the same as behavior-
ism. Agent actions are totally driven by their perceptions, beliefs, and

156 William]. Clancey, Maarten Sierhuis, Bruce Damer, and Boris Brodsky

_

conceptualization of activities (represented by workframes and
thoughtframes).

Brahms activities are models of conceptualizations — which are largely
non-verbal. Models of activities are quite different from the models
of technical information and task-oriented procedures in knowledge-
based systems.

Brahms models are first and foremost investigators’ models, not neces-
sarily patterns articulated by the people being modeled. However, by
incorporating agent beliefs (perhaps unarticulated), perception, condi-
tional actions, and inferences, Brahms models have many characteristics
of cognitive models.

An agent’s beliefs include how other people relate to activities, objects,
and procedures, that is, social knowledge.

Attitude, emotion, and personality are of fundamental importance in
understanding human activity, but are not included in the FMARS
model. For example, the crew’s attitude towards each other is revealed
by their posture and spacing around the meeting table. These character-
istics of people are essential for the application domain of long-duration
space missions. In related work the FMARS data and simulation is being
used to understand what aspects of personality for example are relevant
in understanding the crew’s behavior.

Broadly speaking, a person’s activities are identities. For example, one
crew member was simultaneously being an American woman, a graduate
student in geophysics at MIT, an FMARS crew member, and a person at-
tending a planning meeting. These identities are dynamically composed
and blended conceptions of “what I'm doing now,” such that norms at
each level are tacitly attended to and integrated (Clancey, 1999, 2002b).
Both formal structures (e.g., roles and procedures) and informal, emer-
gent interactions (e.g., friendship) are part of the conceptualization of
activity, but rules are always only consciously interpreted guides, not
rigid controllers of behavior, as in computer programs.! Observing and
documenting how preplanned procedures are adapted in practice is a
central part of understanding the nature and role of cognition in the real
world (Suchman, 1987).

In this form, situated cognition concerns the dynamic nature of human memory: Knowledge
does not consist of stored structures such as rules and procedures that are indexed, retrieved,
and subconsciously executed as in the von Neumann computer architecture. In general,
social scientists promoting situated cognition in the 1980s did not present alternative neural
arguments, and used sometimes confusing language (e.g., “The point is not so much that
arrangements of knowledge in the head correspond in a complicated way to the social
world outside the head, but that they are socially organized in such as a fashion as to be
indivisible,” Lave, 1988.) Some claims were absurdly interpreted by some researchers as
“there is no knowledge in the head.” For examples and discussion see Clancey (1993, 1994,
1995, especially 1997b, “Remembering Controversies,” chapter 3).

Cognitive Modeling of Social Behaviors 157

3 SIMULATION MODEL OF MARS CREW PLANNING MEETING

Developing a Brahms model of a planning meeting exploited a unique
opportunity and involved many steps:

* A crew of six people was living in the Mars analog mission for a week
(at FMARS on Devon Island in the Canadian Arctic during July 2001).

» Clancey was selected to participate in the mission as a member of the
crew (serving as journalist and meteorologist).

* The crew’s activities were systematically observed and recorded.

* Time-lapse video was analyzed to map out patterns of what people did,
when, and where.

* Selected multi-agent interactions were simulated (a planning meeting,
filling the water tank, and preparing to work outside—an extra-vehicular
activity, EVA).

* TheBrahmssimulation was integrated with a graphic rendering of agent
postures, movements, object manipulations, etc. in the Brahms Virtual
Environment (BrahmsVE) described in this chapter, implemented in
Adobe® Atmosphere™(a commercially available, browser-based ren-
dering engine).

* The simulation was refined by analyzing and further specifying the
interaction of physiological, cognitive, and social structures (referring
to the time-lapse video, photographs, and ethnographic field notes).

Over the course of a week, an FMARS participant observer can induce
the typical pattern of the day, including what individuals do at different lo-
cations habitually. One approach is to keep an accumulating outline that is
revised each day as part of the observer’s field notes. The resulting Brahms
model has a hierarchical activity structure, shown here chronologically:

LivingOneDayinTheMarsHabitat
Sleeping
GoingToRestroom
MovingToArea
GettingUp
EatingBreakfast
HeatingWater
BringingBreakfast
DoingPersonalltemsAfterBreakfast
StartingPlanningMeeting
AnnouncingReadinessForPlanning
Gathering
ChattingBeforePlanning
AnnouncingStartOfPlanning
ConductingPlanningMeeting
ParticipatingInPlanningMeeting

158 William]. Clancey, Maarten Sierhuis, Bruce Damer, and Boris Brodsky

CoveringAgendaltemWeather
CoveringAgendaltemWater
AnnouncingEndOfPlanningMeeting
ConductingEVAPreparation
DonningSuit
DepressurizingInChamber
ConductingEVA
EatingSnack
TakingNap

Many details in the model are omitted here, such as the steps in donning
the suit and activities relating to specific roles and tasks (e.g., working with
particular laboratory equipment).

The present model of the FMARS planning meeting does not attempt
to replicate the conversational details of how people plan in a group by
articulating and negotiating alternatives. As will become clear, there are
many other issues to consider in simulating a planning meeting. The top-
ics of the planning meeting, such as discussing the weather and reviewing
the habitat’s systems (power, water), are modeled as a sequence of events,
with fixed durations. Even within such a restricted framework, individ-
ual agents can opportunistically change the topic (a subactivity) of the
meeting or carry out a given subactivity in a way that changes what other
agents are doing. For example, if there is a fire alarm, the meeting will
be interrupted and the activity of responding to the alarm would begin.
This flexibility results from the combination of detectables, thoughtframes,
communications, inheritance of activities through group membership, and
the subsumption architecture for interrupting and resuming activities.

Subsequent sections explain in more detail how the planning meeting
model is created and what its structure reveals about the relation of cogni-
tion and social behavior.

3.1 Planning Meeting Time Lapse

Using methods developed over several expedition field seasons (Clancey,
2001), Clancey systematically recorded most of several days using a time-
lapse apparatus. A quarter-frame (320 x 240 pixels) wide-angle view
(Figure7.1) was captured direct to computer disk every 3 seconds, such that
the entire upper deck outside of the staterooms is visible. These frames were
manually abstracted in a spreadsheet to show where people are (columns)
at different times (rows).? From this, statistics and graphs are generated.
Meetings such as the morning planning meeting are often video-recorded
in full, so the conversations can also be analyzed.

2 Foster-Miller, Inc. has been funded by NASA to develop the Crew Activity Analyzer, which
uses image processing to automate most of the time-lapse analysis.

Cognitive Modeling of Social Behaviors 159

9:51:51 AM

FIGURE 7.1. FMARS planning meeting of July 13, 2001, after KQ has moved from
far left seat to standing on right. Commander sits on one long side of the table;
Clancey is on the right. Ladder to lower deck is out of camera range on far left;
staterooms are to far right.

The following are some typical observations about how people sit and
stand at different places and times. These are all based on the time lapse
of July 13, 2001. The identity of individuals is part of the public record (the
meeting was filmed by the Discovery Channel); initials are used here.

D

2)

3)

[09:17:14] Everyoneis at the table, and the meeting is started (then KQ
and BC leave to get notebooks and clothing). Prior to this point there
were never more than three people sitting at the table, although at
different points in time the informal, pre-meeting conversation was
joined by CC (at workstation), SB (at galley cabinet), and KQ (by the
table).

Outside the formal meeting, SB rarely sits, whereas CC never leaves
his workstation (aside from getting a drink). Those two appear to
represent two ends of a volatility spectrum. CC works on one project,
his paper; SB has many problems with the satellite network, walkie-
talkies, power, etc. to resolve.

Later in the day, people spend relatively long times standing and
pacing around the table: KQ ([11:54:49 - [11:55:52]); SB ([11:55:40] -
[12:16:01]); CC([12:06:53] - [12:08:59]). BC also has his notepad on

160 William]. Clancey, Maarten Sierhuis, Bruce Damer, and Boris Brodsky

Meeting begins
9:17:47
cc
SB
v Il
KQ
RZ H,0
BC Weather email
| ! [
9:15:17 9:34:12
Call to order Food breaks...
Closure begins Ending
10:01:11 10:11:30

Standing in Galley email
stands H,O
BC H,O

R 3

FIGURE 7.2. Location of crew members during planning meeting. The timeline is
broken into two parts, starting at top left. Shading indicates seated at table, other-
wise the activity is indicated. See text for analysis.

the table, to which he returns periodically and makes notes while
standing. The chairs are obviously still available, but they have been
moved to the workstation and the lab on the lower deck, where they
“belong,” and nobody returns them to the table.

4) [15:01:24] VP sets up his laptop on the wardroom table, even though
there is plenty of space available at the workstation area (only two
people are there). At [15:16:55], all but SB are sitting at their laptops.

A graph of the planning meeting (Figure 7.2) reveals some surprising
patterns and provides a basis for characterizing behavior in terms of norms.

To understand what one needs to know about the structure of the meet-
ing in order to simulate it, consider the problem of representing the lo-
cations and postures of the individual agents. At a first-order evaluation
of simulation fidelity, before the model can be used to explain what is
happening, the interacting agent behaviors must visibly resemble real life.
This means that the graphic simulation must appear plausible to someone
familiar with such settings. For example, it would be implausible to have
the six people taking their chairs simultaneously or leaving at the same
moment — any crew member knows that this never occurs.

The chart reveals what kinds of events are plausible, though they may
still be unexpected to analysts because people do not necessarily reflect
on even highly structured social behavior. Thus one observes a kind of
“vetoing” of the meeting start when BC leaves his chair, just as RZ calls the

Cognitive Modeling of Social Behaviors 161

meeting to order, which is the moment when SB and KB have sat for the
first time. Shortly after, RZ (meeting organizer) and VP leave. RZ begins
the meeting when BC returns; simultaneously CC spins his chair around
(waiting to the last moment to leave his personal work). Equally interesting
is that KQ stands during about a third of the meeting, after reheating
her drink in the microwave. This establishes a norm for the group: It is
permissible to stand during the meeting, at least near the food area. At the
very end of the meeting RZ stands and holds his chair in a way that appears
to signify an ending. If someone were to stand and hold his/her chair in
the same way in the middle of the meeting, it might appear that they are
planning to leave for a moment, for example to go to the bathroom. VP &
BC return to table after checking water (signifying that the meeting is not
over). CC turns his chair around as the meeting ends, although two people
remain at the table.

In short, modeling how individual agents carry out a group activity, as
conditional actions organized into activity conceptualizations, begins to
reveal how collective (social) behavior relates to individual cognition (in-
volving perception, motive, and action). However, common sense knowl-
edge about social behavior is far more complex than has been modeled
in Brahms. In addition, social theorists (e.g., Lave, 1988) suggest that ev-
ery action within a group involves learning for all participants: Norms are
being reinforced through their reproduction, but also adapted and even
purposefully violated (e.g., for humor to confirm or deny emotional re-
lationships). The FMARS simulation does not represent this learning (i.e.,
reinforcement or adaptation of workframes). Other social analyses suggest
(Wenger, 1998) that activity conceptualizations involve dynamic blending
of identities, another aspect of learning that occurs as action that may not
be deliberately planned. For example, FMARS crew members are always
improvising their roles, as seen through their prior conceptualizations (e.g.,
“being a scientist on an expedition” “being a NASA representative”). In
some respects, the interleaving of actions in different parallel activity con-
ceptualizations models this blending in Brahms.

3.2 Planning Meeting Model Details

To create a model of the planning meeting, Brodsky and Clancey analyzed
the time lapse video and wrote elaborate descriptions of the chronology
of events. The following excerpt uses formatting to indicate the located
activities of AGENTS using objects:

RZ requests weather info from BC. (They need it to decide whether to go for
EVA).

BC gets up from his chair, walks to workstation area, to his laptop (in a
subarea), and checks weather report (for ~7 min; sitting facing laptop). After

162 William]. Clancey, Maarten Sierhuis, Bruce Damer, and Boris Brodsky

BC is done, he walks back to wardroom table area, approaches his chair area,
and sits down on his chair. He then communicates the weather data to RZ.
Shortly after BC goes to check the weather, RZ gets up from his chair, walks
to water tank area, climbs the water tank ladder, and checks water level
(by looking into the water tank—standing on the ladder at the upper rim of
water tank level, facing it).

On this basis, Brahms locations, agents, activities, and objects are related
by declaring group-agent-activity relationships and writing workframes.
For example, one part of the above sequence of events is modeled by this
workframe (Brahms language constructs appear in bold):

workframe CheckWaterLevel

when (unknown(current.timeToFillWaterTank))

detectable DetectWaterLevel {
detect((WaterTank.waterLevel = 0))
then continue;}

do { Getup();
Walk(GalleyLadderArea);
Upladder(WaterTankArea);
CheckWaterLevel();
Downladder(GalleyLadderArea);
Walk(WardroomTableArea);
conclude((current.waterLevelChecked = true)); }

The subactivities in the do part are defined by other workframes, most of
which use the move primitive activity.

After the simulation is run, the modeler may display agent actions using
the AgentViewer (Figure 7.3). While RZ is checking the water level, BC is
checking the weather report. Figure 7.4 shows this moment graphically
using the Brahms Virtual Environment (BrahmsVE; Damer 2004).

In the 2002 implementation, the simulation output is recorded in a
database and mapped by BrahmsVE onto graphic primitives and scripts.
The scripts generate short, agent-specific movements or gestures, such as
walking up the ladder. In general, the scripts are created by analyzing pho-
tographs and videos, then developing storyboards, as if creating a cartoon
or movie (Figure 7.5). These were reviewed for accuracy and plausibility,
based on the ethnographer’s memory and records of events. For example,
whether people would be able to or choose to squeeze between CC and
the table instead of walking around is a matter of practice and should be
rendered accurately. In general, the simulation might generate interactions
that are not based on specific events; these must be evaluated for plausi-
bility based on similar known events.

To illustrate the interface between Brahms simulation engine and the
rendering system, consider the simple example of RZ doing the action:

I9jeA WL epuady SULIDA0D) PUE ‘I9)eap| WLl epuady
Surpao)) “Suruuel] ur pegedus A[Snosue)nNuiIs St 3 ‘[PAITINIEMIYD) S0P 73y dwny ayy 3y “Sunesw Suruuerd ay3 jo jred
18I 9} SuLINp JA pue ‘Og 7y Syua3e JO SadUIIDJUI PUe ‘SUOHEIIUNUIIOD ‘SUOHOE SUIMOYS JOMIIATURSY SWely "€/ 4aN914

_ gied _ i [v ||] e || | BupuneigupBunedioneg red
_ | | | Horugied gm |
| | AnanovBunmppeusiuneg ieo |
JqureIEdpnIEd M | | SUTUUEGB N DORUSIET M | Sunueguoredionaeg gu
_ _ Suuueyg e
I _ T ! e
LTI T fajjeg : Balya|qe L WwooIpIE)),
= | | |) meo wBuppoy) ied | BuruuelquIBuRedoReg e
suoppuciIspeayIoday Jm | | | MedayIaiea N9 JM |
I | | | 1sanbariodeyemes)BuIssao0ld (€3 |
am | | | I 15NbIIOATYIBIEIN 001 i | Sumuriquieiedionard yu
| | | | | Supuuelg ea
_ _ | | ueld gm
| earya|qeLWwo0Ipsey | Ealya|qe WwooIpiE))

JeARTISIB MO M

18y s epusdyiuiiaso]) jea

M I 0 Iy I [EpuaiyIasc]) gm M
ED Jeiea | W [epuslyEpeac) reo 1ED

Ealya)qeL WooIpIEH)

eanya|qe wooipiey, |

IB1IER M WP} [PPUREVIRACD M.
|
I

0 J 1T 6
.-i_._#__seei

(99}
\O
—

FIGURE 7.4. Frame 3:24 from animation showing RZ checking the water level
whereas BC is reading the weather report at his workstation [9:25:19]. Developed by

DigitalSpace Corporation.

FIGURE 7.5. Initial storyboard showing ending of the planning meeting (Digital-

Space Corporation).

164

RZ
BC
cc
VP
KQ
SB

Cognitive Modeling of Social Behaviors 165

move Upladder(BaseAreaDef loc) {max_duration: 5; location: loc;} where
loc is GalleyLadderArea. A program called OWorld Service converts this
simulation event into the following scheduled animation:

activity|move|164[169|projects.
fmarsvre.RZ|Upladder||projects.
fmarsvre.GalleyLadderArea|
projects.fmarsvre.WaterTankArea

Another program, OWorld Parser (implemented as Javascript in Adobe®
Atmosphere™), sends this scheduled animation to the BrahmsVE agent
object queue. The RZ agent’s Upladder action script executes the move-
ment details. Figure 7.4 shows one of the frames.

All together, three complex FMARS scenarios are simulated in
BrahmsVE: the planning meeting (requiring 200 OWorld scripts), filling
the water tank (67 scripts), and the EVA preparation (gathering equipment
and helping each other don space suits, 423 scripts).

In this implementation, the rendering occurs in batch mode, after the
simulation is completed. The timings of primitive motions and renderings
are adjusted dynamically by the individual scripts, so they properly add
up to the durations of Brahms activities. For example, a primitive activity
in Brahms such as moving to the Galley Ladder Area, would require seven
animation scripts, for getting out of a chair and walking, which together
should total the five seconds declared in the Brahms model:

* Head Track Horizontal
* Head Track Vertical

» Stand Up From Chair
» Walk

* Turn While Walking

* Idle Standing(s)

* Breathe

The idle animations (e.g., shifting weight, moving arms) are random
within the available time. Timing of primitive motions and renderings
are not hard-coded in scripts, rather scripts are designed to play faster or
slower to take the amount of time the Brahms model requires. An ani-
mation such as walking may take five seconds in real time, but if told by
Brahms to take two, it will be accelerated, or it could be slowed if necessary.
Waypoints must be specified by the graphic designers (one purpose of the
storyboards), so the agents don’t run through objects or into each other.
Primitive motions refer to the waypoints in a general way, so they needn’t
be encoded in the script itself.

Using BrahmsVE, an analyst can now visualize postures and layout of
the planning meeting. For example, one can see how RZ sits alone on one
long end of the table (Figure 7.1), which is not visible in the AgentViewer.

166 William]. Clancey, Maarten Sierhuis, Bruce Damer, and Boris Brodsky

In effect, the graphic scripts of BrahmsVE represent part of the practice of
the activity — the details of how people sit and move.

3.3 Modeling Biological Motives and Behaviors vs. Goals

Developing a multi-agent model of a day in the life of the FMARS crew
naturally leads to including biological drivers of behavior, such as fatigue,
hunger, and the need to use the bathroom. Such aspects of human behavior
are ignored by most cognitive models (but see CLARION in Part 2 of this
volume), but are emphasized by the discipline of psychology and design
called human factors (e.g., Kantowitz and Sorkin, 1983). Thus, a Brahms
activity model provides a way to relate human factor concerns to cognition.

An activity model necessarily reveals that how people accomplish tasks
within an activity (e.g., recording data while working at the computer in the
workstation area) is affected by biological concerns (e.g., interrupting work
in order to put on a sweater). At the same time, activities such as eating are
interleaved with group activities (such as the planning meeting) and how
they are carried out reflects the group’s norms (e.g., one may get something
to eat during an FMARS meeting, but would do this in a business office
setting only if the food were already laid out for the participants in the
meeting room).

In the FMARS simulation, biological needs are modeled in a simple way;
the initial research objectives did not require replicating the state of the art
of physiological modeling. Each factor is represented by a single parameter
(physical energy, hunger, urine in the bladder) that accumulates over time
and is reset by a compensating action (rest, eating, elimination).

The inclusion of biological motives in explaining human behavior pro-
vides an interesting problem for cognitive modeling. For example, consider
KQ warming her drink in the microwave and then standing by the side
of the table (Figures 7.1 & 7.6). There are many explanations for this be-
havior: Her drink may be cold; she might be cold; her back may hurt; she
may be bored with the meeting; someone at the table who hasn’t had a
shower in a week may smell, etc. One doesn’t know her goals, aside from,
perhaps, warming her drink. Even this may be a kind of convenient cover
for accomplishing her “real intention.”

Perhaps most interesting, the single action of standing to the side may
be satisfying for several reasons, none of which need be conscious (i.e.,
deliberately reasoned to create a plan that the action carries out). Behavior
may be determined by many physiological, personal, and social functions
at the same time, and these need not be articulated or distinguished by
the person. A functional (goal-based) analysis tends to ascribe a single
purpose to an action. A broad analysis of a day-in-the-life of the FMARS
crew shows that of course all human activity is purposeful, but not every
activity accomplishes a task (i.e., the work of the crew) nor can it easily

‘pooy Sunjed pue Suraow
Surpnpur ‘suorde [euonrpuod jo dusnbas e urajoaur ‘Ajragoe ajrsodwod e Jsit st yorus ay3 Suneq Ayanoe uraueJ ayy
UIJIM SweIppIom e st sty “Sunesw Suruuerd a3 Sunmp sypeug Suneq OY jo Aefdsip ramaipjualdy suryerq ‘94 190914

[PagTeoInosayfiuaInySuruonoung red ArpaocdaygiogSurredad red red

[2ARTROINOSIYIULSLIN)I Y UOTIOUN] M peyoeayploysaiy | 481eugedisiyd Jm B
senanayysEnoay pSuruonoung (es

SONIANPYYSNOIY LUonoun ;js

OspuadvIodpod Il
earyhajjeg _ Ealyajge wooipiey
5251 -uoneing
Buluue)guibuiedopey
poojBunies ed _ B2y 0 [BurAoy :Aw _ ied SunuuequrBunedonied ied

HorUSIERT M
Ananevaunnmyoeusduney (ed

Supuue[quraiedpnied Jm

Suruueld :ed>

SupuuejdSupnorusiey M

ue[d M

earyfajeg EAlya|qELWo0IPIENY

167

168 William]. Clancey, Maarten Sierhuis, Bruce Damer, and Boris Brodsky

be assigned to a single goal (i.e., a conscious proposition). This follows
especially from the subsumption architecture in which multiple activity
conceptualizations on different levels are affecting behavior by inhibiting,
enabling, or blending actions (e.g., people in a meeting conventionally
wait for an appropriate moment to use the bathroom). In contrast, when
the crew discusses what EVA is to do on this day, including where to go
for what purpose, including what equipment and who should go, they are
clearly engaged in goal articulation and planning. What is revealing is how
much else is occurring that is modulated by perception of the environment
and each other, physiological needs, and relationships (e.g., how people
sit at the table, who chooses to remain silent) — modeled in the FMARS
simulation without reasoning about goals and alternative plans of action.

Conventional goal/task analysis is a descriptive abstraction of human
behavior, imposed by an observer, which may be an agent doing an ac-
tivity. Goal/task analysis has implied that every human behavior has a
direct goal as its cause (i.e., knowledge explains behavior). In contrast,
the subsumption architecture in Brahms represents a conceptual nesting
of activities, each of which has many implicit goal structures, so any be-
havior may make sense from multiple perspectives. It is far from clear
whether KQ stands for one reason or five. (Notice how the “rationalist”
framework suggests analyzing behavior in terms of reasons or reasoning.)
Did a combination of activations cause her to stand at that time or were
other satisfying relations emergent in the action (e.g., standing aside, she
discovered that she related to the conversation better as an observer than
as a direct participant)? It is highly problematic (if not theoretically im-
possible) to uniquely explain by subgoals behaviors that have not been
deliberately planned.® Instead, a Brahms activity model represents the con-
text in which the behavior occurs and (ideally) descriptively captures all
gross movements, sequences, and communications. A goal-subgoal anal-
ysis can always be imposed later, and certainly a task analysis is necessary
for designing layouts, procedures, work flow tools, etc.

4 DISCUSSION: LESSONS ABOUT ACTIVITY MODELING

This section considers lessons about the use of the virtual environment
interface, methodology of constructing a Brahms model, how individual

3 One can distinguish sensory stimuli (e.g., an odd feeling in the body), perceptual categoriza-
tion (e.g., recognizing hunger), and conceptualization of a goal (e.g., “I will get something
to eat”). Some perceptual categorizations may be reactive and not conceptually coordi-
nated, as occurs in the stroop task, where the meaning of a word and its physical color
conflict. Goal conceptualizations may also form reactively (which is one interpretation of
KQ’s standing), without reasoning about alternative motives, subgoals, or methods (i.e.,
deliberative planning).

Cognitive Modeling of Social Behaviors 169

behaviors reflect and reinforce group dynamics, the relation of cognitive
modeling and social interaction, and what can be learned by reconsider-
ing Newell’s social band framework. The section concludes with some re-
marks about applications of multi-agent simulations like FMARS to failure
analysis.

4.1 Use of the Virtual Environment Interface

The most important finding about the graphic interface is that it is not
merely a display, but rather constitutes a second simulation — of the phys-
ical world — that must be integrated with the perceptual and action multi-
agent model. That is, the modeler relegates to the virtual world simulation
the physics of the real world influencing where and how agents and ob-
jects move (e.g., the microgravity of the International Space Station), line
of sight, auditory range, and placement of objects on surfaces. In gen-
eral, one would incorporate an anthropometric (human body) model, rep-
resenting reachability and physical coordination in moving and holding
objects. Work is underway to integrate the BrahmsVE with the agent simu-
lation engine such that primitive actions with fixed durations and location
would be modified during the physical simulation in the virtual environ-
ment. This is important not only for computing appropriate motion paths,
but also to enable interruption of movements, for example, to allow two
agents to encounter each other on the ladder and have a conversation. In
effect, the notion of a primitive activity is fully open in Brahms, both to
the purposes of the model (e.g., is fidelity in modeling the hand required?)
and the possible interactions that may occur between objects, agents, and
the facility (e.g., an open stateroom door enables calling someone from
outside).

The virtual environment itself was first conceived as an appropriate
way to both construct and view Brahms simulations. The browser-based,
distributed nature of the interactive 3D Adobe Atmosphere platform en-
ables collaborative design and engineering, by which a common virtual
world (e.g., FMARS) incorporates avatars (Damer, 1997) that may inter-
act with simulated agents, objects, and each other. In general, this could
be a suitable framework for teleoperating teams of robots, especially with
astronauts present, such as constructing and maintaining a lunar base. A
more futuristic application would involve uploading agents to deep space
such as to Mars or asteroids, where a time delay prevents conversation
with Earth. Astronauts could converse with simulated agents, surrogates
for human counterparts on Earth (e.g., the remote science team and special-
ized engineers), serving as coaches or assistants in real-time during Mars
operations. The resulting interactions could be transmitted back to Earth
and replayed to analyze and improve the work system design.

170 William]. Clancey, Maarten Sierhuis, Bruce Damer, and Boris Brodsky

4.2 Methodology of Constructing a Brahms Model

The experiment of constructing a day-in-the-life FMARS model has rein-
forced the view that a Brahms model is a way of stating and organizing
information about a work system. For example, after creating the model,
Clancey received from CC a paper (Cockell et al., 2003) about doing biology
in FMARS. The paper includes CC’s view of his daily schedule. Using the
full-day FMARS model, one could verify whether his summary fits what
was observed (including time-lapse data).

CC distinguishes in his experience between an EVA day and a sample
analysis day. A typical day includes an EVA, but not everyone goes out
every day, and the model does not include what CC does on “an analysis
day.” The lesson learned is that simulating a sequence of multiple days is a
heuristic for capturing work practices. Also, a simple interview may have
revealed this distinction; one could ask, “Do you spend your time in the
same way every day?”

CC gives details about his scientific work that were not recorded or
modeled (e.g., the names of his tools and their parts, and the lab equip-
ment is in sequential order for sample processing). He says he performed
a procedure 100 times in two weeks; to verify this claim, another recording
method is required, such as time-lapse on the lower deck or a log book
near CC’s microscope. He also tells us that he sent images to a colleague,
an activity that was not observed, but might be learned by examining his
email record.

The idea of modeling “a day in the life” is a starting point. The FMARS
day simulated in Brahms is not intended to be a particular day, but a
pastiche, something generalized from the available data, a typical day.
The next step might be to refine the overall pattern to characterize types of
typical days. Certainly modeling a sequence of days is as important for real
applications (e.g., instruction and developing work flow tools) as having
a full-day model.

Cockell et al. (2003) relate that CC had to abort his analysis work at
one point to provide support for an EVA team, indicating how he detected
the need for assistance: “during the science activity it is necessary for the
scientist to be concentrating but aware of other activities .. . having an EVA
radio close-by.” This shows how an overarching activity (being the EVA
support person) blends with a familiar activity (writing a paper), so it is
carried out in a different modality. Furthermore, he says he was “constantly
shuttling” between the decks. Time-lapse data provides the frequency on
some days. If that were in the model, the statistics could be provided to
Cockell for his own report.

Related work by Clancey during NASA’s Haughton-Mars Project in 2003
showed that people were not accurate in estimating how often they were
interrupted and for how long (e.g., a group stopped to navigate during an

Cognitive Modeling of Social Behaviors 171

EVA every 3.7 minutes on average, whereas they estimated they drove for
ten minutes between stops). These data suggest that people in highly inter-
active settings prone to interruption are not aware of the broader structure
of emergent patterns, including the frequency of events. The analysis and
simulation of group behavior is obviously of great value for capturing and
visualizing these patterns.

Developing a model of social behavior consequently has a special chal-
lenge that conventional cognitive modeling may not — patterns are often
undetected by participants who are immersed in the setting, and even an
observer may miss the regularities. A striking example is Clancey’s (2001)
analysis of the Haughton-Mars expedition in 1999, revealing that what
people called the “work tent” was most often visited for less than two
minutes, and was in fact primarily a place for storing things. This pattern
was not detected while working inside the tent, but was only clear from
the statistical analysis of the group’s behavior over a day, which time-lapse
video allowed. Thus, some means is required for capturing located behav-
iors over time, so that what individuals are doing becomes visible. The
statistical patterns (e.g., frequency of interruption) may be emergent in the
simulation as it is run for many simulated hours, but one must somehow
learn what activities are occurring. An observer working in a “work tent”
will not easily see all the people coming and going, because they are part
of the background and tuned out like so many gnats. In contrast, a conven-
tional cognitive model is constructed from a task whose parameters are
fully defined by the modeler, and all that must be observed are operations
for transforming the materials or describing the situation.

In summary, a fundamental problem in constructing a model of social
behavior is knowing what everyone is doing at all times. A Brahms model
provides a way of organizing observations (and redesigns), so particular
information can be easily viewed and brought into juxtaposition and re-
lated. Conventional ethnographic text (e.g., field notes or analytic memo)
does not enable relating data in this way. As the examples illustrate, it is
particularly interesting to attempt to discover and replicate frequencies of
recurrent events, such as how often people are interrupted in their work
setting.

4.3 How Individual Behaviors Reflect and Reinforce
Group Dynamics

Throughout the FMARS analysis we have been struck by how individual
behavior ranging from seconds to minutes is sensitive to other people’s
interpretations and actions. A good example is the process by which in-
dividuals stop what they are doing and arrive at the meeting. As known
from common experience, groups tolerate varying degrees of lateness, and
in a situation where communication is possible, as in the FMARS habitat,

172 William]. Clancey, Maarten Sierhuis, Bruce Damer, and Boris Brodsky

one may negotiate the start of the meeting (“I just need a few minutes to
finish [photographing this rock slice]”).

More interesting is how people notice, through their peripheral aware-
ness of the group arriving at the table, that they must hurry. For example,
someone on the lower deck can hear the difference between four people
at the table and two, and may notice that he/she is now alone. Whether
a meeting starts on time and how an individual may cause others to wait
is a paradigmatic norm for the group. More broadly, how individuals bal-
ance their own agendas as scientists (with papers and sponsors to satisfy)
against the group’s objectives and imposed responsibilities (e.g., chores)
is starkly revealed when individual work is simulated within a day-in-
the-life context. This is a rich phenomenon for further investigation. How
are individuals rationalizing their actions, and where do they draw the
line in compromising or adapting their original plans as problems such as
resource constraints develop within the group?

Finally, the effort to graphically render the FMARS Brahms simulation
has allowed us to model gestures, routes, and field of view, though none of
these are yet incorporated in the simulated agents’ perception and hence
do not affect simulated actions. Research continues to close the loop so
the physics model in BrahmsVE feeds back to the simulation while it is
running, thus routes will affect how long a movement takes, and fields of
view (and hearing) will affect what the agent can perceive. Modeling an
agent’s perception of gestures and relating them to individual behavior
is complex, but is fundamental for relating cognition to social behavior.
Figure 7.7 provides a glimmer of what could be involved.

4.4 Distinguishing Ways of Working Together

Another understanding that has resulted from this work is recognizing that
people are often working together but not collaborating. For example, the
group sometimes sits in the habitat, reading and working on computers
without talking, in effect, “working together alone” (Figure 7.8). They are
cooperating in sharing a resource (the facility), but not working on the
same project.

The FMARS investigation, plus related work studying field scientists
(Clancey, 2004b), has suggested the following distinctions:

* Coordination: Sharing a common resource via scheduling or ordering,
without requiring changes to how individuals or subgroups behave,
e.g., sharing the habitat’s “mess table” during the day. Literally, “co-
ordinating,” ordering in time and place to avoid any possible interfer-
ence with others’ activities.

* Cooperation: Sharing a common resource in a way that requires ad-
justing how individuals or subgroups carry out an activity, e.g., sharing

Cognitive Modeling of Social Behaviors 173

3:40: 21AMp

FIGURE 7.7. Unusual posture at end of planning meeting. Square standing distri-
bution suggests a balanced or stable relationship. Individuals move into and hold
the encounter in this position. Possibly an important issue is being reconsidered.

space on the table during the meeting. Literally, “co-operating,” oper-
ating in a way that relates individual actions in time and place. Work
flow typically describes how different functional roles cooperate, with
one product feeding into another task.

* Collaboration: Working on a common project, e.g., most of the planning
meeting is devoted to the daily EVA, which will require three or four
members of the crew to work together for half of the day or more.
Literally, “co-laboring,” conceiving and carrying out a single project.
Most generally, this is a triad, two or more agents (or groups) and a
group. The relation is in general asymmetric: A and B collaborate on a
project originated by A (but might do no work together on B’s project).
For example, a geologist may help a biologist do a study in the field, but
the biologist doesn’t contribute to the geologist’s investigation (Clancey
2004b).

“Working quietly in the hab” is a cooperative group activity, in which
individuals pursue their own agendas. In general, the crew’s schedule
is designed to balance collaborations (common projects) with individual
agendas stemming from personal needs and interests (e.g., reading a book

174 William]. Clancey, Maarten Sierhuis, Bruce Damer, and Boris Brodsky

FIGURE 7.8. The activity of working alone together, an example of cooperating with-
out collaborating. FMARS initial habitation, August 2000.

about the Arctic), disciplinary specialization (e.g., microphotography), and
institutional commitments (e.g., writing a column for a news organization).
Understanding the relation between individual drivers of behavior and
group activities is a fundamental aspect of understanding how cognition
relates to social interactions.

4.5 Summary of Relation Between Cognitive Modeling
and Social Interaction

To summarize the example and discussion to this point, consider some of
the questions posed by Sun (Chapter 1) for relating cognitive modeling
and social interactions:

1) What are the appropriate characteristics of cognitive architectures
for modeling both individual cognitive agents and multi-agent in-
teractions?

Experience constructing six work practice models in Brahms sug-
gests that the following Brahms language features are relevant:
a. Subsumption architecture for conceptualization of activity
b. Physical layout of facilities modeled explicitly; all behaviors are
located

Cognitive Modeling of Social Behaviors 175

2)

3)

4)

C.

Communication of beliefs (Ask and Tell)

d. Context-dependent perception (activity-specific detectables)

e.

f.

Interruption of activities based on priorities and detected
conditions

Model representational objects that agents can read and write
(e.g., documents)

What are the fundamental ways of understanding and modeling
multi-agent interactions? How much can they be reduced to indi-
vidual cognition?

a.

Reductionism is inappropriate; it is better to begin by asking: How
can patterns of social interactions emerge from individual cogni-
tion and behaviors? What is the nature and role of subconscious
perception of interactions by individuals (cf. Figure 7.7)?
Ethnography (participant observation) is the fundamental way
of understanding and modeling multi-agent interactions: pho-
tos, video, time-lapse, activity mapping (person, time, and place)
(Clancey, 2001, 2004a, 2004b; Jordan, 1992; Scribner & Sachs, 1991;
Wynn, 1991).

As a heuristic, model at least a day in the life of the group
(24 hours); move to multiple days as soon as practical; especially,
consider the rhythm of a week (Clancey, 2002a).

Model both group and individual activities; consider how the
methods for accomplishing goals are adapted in cooperative ac-
tivities; recognize that not all group activities are collaborative.

What additional representations are needed in cognitive modeling
of multi-agent interactions?

a.

b.

Activities (including motives, goals, and operations) described by
Activity Theory (Leont’ev, 1979)

Biological needs (fatigue, hunger, toilet, cold) affect choice of ac-
tivity and manner of carrying it out

Perception of posture, attitude, tone of voice, etc. affect relation-
ships (not included in Brahms)

Perception of space, line of sight, voices (e.g., to determine paths,
what is visible, what can be heard)

Facilities (e.g., lack of proper heating at FMARS, available
work space) influence personal experience and attitude towards
cooperation

How can we best characterize and model social relations, structures,
and organizations in relation to individual cognition?

a.

b.

C.

See 2nd

In a multi-agent simulation, social structure can be modeled in
terms of the activities of groups to which agents belong.
Modelroles (e.g., meteorologist) and identities (e.g., graduate stu-
dent) as inherited group behaviors.

176 William]. Clancey, Maarten Sierhuis, Bruce Damer, and Boris Brodsky

d. Model behaviors descriptively: What individuals do when and
where for how long — do not focus on goals and tasks.

e. Model the broad activity chronology of a day and refine to tasks
to the level required for the application of the model.

f. Focus on how group activities begin, the norms for how they are
carried out, and how they are brought to a closing.

g. Attempt to model belief change as much as possible in terms of
communication, perception, and forward-chaining; goal-directed
inference occurs during planning activities (e.g., deciding what to
do next) — observe why and how often it occurs.

h. Do astatistical analysis of where people are located and what they
are doing throughout a day.

i. Observe reminders and peripheral attending (how individuals
keep each other synchronized); group and individual tolerance
for delays.

j- Consider how the group decides whose knowledge will be called
into play and how individual methods of working are facilitated,
blended, or inhibited by the group’s schedule, other goals, or
conflicting modes of operation (e.g., when one is driving in a
caravan during an EVA it may be impossible to stop and take
photographs).

k. Recognize that some social patterns (e.g., paths left by ATVs) may
be perceived and direct individual behavior; others may be only
tacitly conceived and yet be influencing individual behavior (e.g.,
how people arrange themselves and interact, Figures 7.1,7.2,7.7,
and 7.8).

This outline resembles more a list of examples than a comprehensive per-
spective and goes beyond what is incorporated in the planning model.
Thus at least from the perspective of this project it represents the edge of
scientific understanding.

4.6 Relation to Newell’s Social Band Framework

One way of appraising progress is to compare the FMARS planning model
to Newell’s (1990) discussion of the “social band” in Unified Theories of
Cognition. Newell’s position was comprehensive and contains many sound
pieces of advice: “models of the individual as intelligent agents interact-
ing with...real worlds would seem essential” (p. 493). The aspect of his
analysis that appears perhaps most foreign is the “system levels” called
“bands.” By analogy to physical computer systems, the bands are defined
in terms of time scales, with the social band having “time units” of days
to months (p. 152). In contrast, simulating the most simple norms, such
as standing at a table during a meeting, involves momentary dynamics of

Cognitive Modeling of Social Behaviors 177

perceiving and moving within a conceptualization of the conscious person
(“what I'm doing now,” Clancey, 1999).

Possibly Newell viewed “social” as just meaning direct, physical interac-
tion with others: “As the time scale increases from days to weeks to months,
the systems involved become social. They comprise multiple individuals
in interaction. Humans do not lead solitary lives at the level of days and
above” (p.154). Theidea that all human activity is socially conceived (in terms
of the norms of roles, methods, purpose), so solitary activity is always in-
herently social, was apparently not part of Newell’s notion of social or
his notion of knowledge. He viewed knowledge as “socially conditioned”
(p. 490) as opposed to being formulated in social terms (“who am I being
now?” Clancey, 1997a).

Anderson (2002) makes a similar conclusion: “Newell thought that
issues of cognitive architecture became relatively unimportant at the
Rational Band and were completely irrelevant at the Social Band” (p. 3—4).
Indeed, Anderson disagrees with Newell: “fine-grained temporal factors
at the Biological Band do influence higher-level outcomes” (p. 4). But
Anderson’s analysis focuses on the mechanism of “unit-task” learning,
rather than the individual’s conceptualization of motivation and value (Lave
& Wenger, 1991) — social factors that explain why learning is occurring at
all.

Newell claimed that “the group’s behavior is explainable and pre-
dictable by its use of knowledge in service of its goals” (p. 154). This is
by definition true when one constructs a model that refers to conditional
actions as “knowledge” and describes all behavior as deriving from goals.
However, as shown in this chapter, other kinds of models are possible.
More generally, a group’s behavior is explainable and predictable by 1)
interacting normative behaviors of individuals (e.g., when the planning
meeting begins depends on how long they delay after the commander’s
call to order) and 2) habitual patterns of “how we do things,” which are not
all scheduled or reasoned about in plans (e.g., sharing hot water during
breakfast, allowing people to stand during the middle of a meeting).

Referring to all human behaviors as determined by goals and knowl-
edge seems inappropriate when a day in the life of a group such as the
FMARS crew is considered. The task-goal-knowledge analysis applies best
when people are working on specific tasks, focusing on using laboratory
equipment, downloading and analyzing EVA science data, or preparing a
meal. Put another way, at the time scale of 10 seconds or more — Newell’s
“Intendedly Rational Band” (p. 150) — behavior is both deliberately rea-
soned about and habitually patterned by previous interactions. Although
one may ignore biological impulses during intendedly rational activities
(e.g., continuing to read a fascinating book chapter despite having the
urge to use the bathroom), all behaviors are always in a social context, that
is, they are conceived with respect to social norms, relations, and values.

178 William]. Clancey, Maarten Sierhuis, Bruce Damer, and Boris Brodsky

People frame their activity in terms of their socially constructed identi-
ties; this determines what they do, when, where, and how, including what
problems they discover or tackle and what methods they use to resolve
them (for elaboration, see Clancey, 2002b).

In summary, the heuristic of modeling a day in the life of a group living
and working together reveals an interaction of biological, task-oriented
cognitive, and social influences that cannot be separated into temporal
bands. Social behavior is not only occurring (or rolling up) over longer
time scales as Newell posits, in the manner of individual actions accumu-
lating into a social history or a person being forced to interact with others
(e.g., going to the store to buy milk). The “bands” in Newell’s analysis are
notisolated systems in practice. Different emergent aspects of the scene (bi-
ological, task-goal oriented, and collective) causally influence each other:

Biology and culture interpenetrate in an inextricable manner....Individuals are
not real and primary, with collectivities ... merely constructed from their accumu-
lated properties. Cultures make individuals too; neither comes first, neither is more
basic. ... Thus, we cannot factor a complex social situation into so much biology on
one side, and so much culture on the other. (Gould, 1987, p. 153)

Cognition — whether the person is physically alone or in a group - is im-
mersed in norms and emergent physiological, physical, and cooperative
constraints (Wynn, 1991)%.

4.7 Application to Failure Analysis

Because NASA'’s failure analysis reports (e.g., CAIB, 2003) consistently
emphasize social problems, it is worth considering how a Brahms activity
analysis might be useful in understanding or identifying organizational
and cultural problems in a highly structured task setting. One approach
is to represent how people are actually conceiving of a given activity in
broad terms. For example, as MER scientists are working at JPL during
a Mars rover mission, do they conceive of their activity as geologists ex-
ploring Mars or see the mission through the eyes of the “flight control”
team operating a rover? How do these conceptions interact as concerns
in practice and influence the quality of the outcome from scientific and
engineering perspectives? Notice how this analysis is different from a task
model that frames the problem in one way (e.g., controlling the rover) or
uses a multi-tasking or linear architecture (e.g., first I solve the geology
planning problem, then I solve the flight control sequencing problem). In
practice, these tasks are not strictly partitioned into different roles, nor
when they are separated organizationally can the constraints be strictly

4 For a more detailed discussion, see the chapter “Dialectic Mechanism” in Clancey (1997b)
as well as the discussion of Maturana’s “structural coupling” (p. 89).

Cognitive Modeling of Social Behaviors 179

ordered. An activity analysis asks how a given individual might be blend-
ing alternative ways of perceiving, interpreting, and acting, such that they
experience conflicts in their judgment (e.g., as a geologist, I'd first take a
look over the top of this crater I'm standing in and possibly return, but the
mission success criteria imply that the rover’s path must omit loops). In a
task analysis, these are just “conflicting goals.”

One purpose of a social simulation of work practices is to under-
stand how “intendedly rational” behaviors fail to accomplish goals within
broader time scales because behavior derives from norms and emotions,
and not just local reasoning about technical matters. An example appears
in the Columbia Accident Investigation Board Report (2003), involving a man-
agement meeting that reviewed and accepted a faulty damage analysis.
People based decisions on previous interpretations of similar problems
and scheduling constraints for subsequent launches. A social analysis is
required to explain why knowledge and concerns of individuals and sub-
teams were not brought to bear. In this case the norms of management
prevented specialists from getting data they needed to support their ten-
tative damage analyses, creating a Catch-22 situation.

The Columbia disaster highlights how the group’s roles, schedules,
and even representational practices (e.g., PowerPoint bullets; Tufte, 2003,
pp- 7-11) determine the salience of events — how to evaluate a situation,
what effects are important, and hence what constitutes a problem and how
or to what extent it is resolved. The FMARS models shows how cognitive
modeling might apply to real-world applications by developing a multi-
agent simulation, with multiple groups interacting over a day or more. Just
as conventional task analysis works backwards from goals to knowledge,
an activity-based analysis works backwards from the quality of the work
product (e.g., ways in which it fails) to the representations (e.g., presen-
tations at meetings), interactive patterns (e.g., how time is allocated dur-
ing a meeting), and norms of authority that influence who may speak to
whom about what, when, and where. Modeling these relations and effects
in Brahms in a general way is an open research problem.

How were people during the Columbia management meetings conceiv-
ing of their activity? Planning for the next launch or trying to return the
crew safely? Were they conceiving the meeting as managing the agenda
(i.e., controlling who participates and how) or trying to ferret out and
understand anomalies? Of special interest to the Columbia analysis are in-
formal (not role or task-defined) communications by which people assist
or influence each other, a consideration naturally revealed when a mod-
eler focuses on describing behaviors instead of only goals and inferences.
In other words, communication of information is not necessarily trace-
able to missing or wrong technical knowledge, but instead will point to
misconceptions about practice, a presumption about how the work is sup-
posed to be done, including especially lines of authority and when and how

180 William]. Clancey, Maarten Sierhuis, Bruce Damer, and Boris Brodsky

people are allowed to influence the group’s work. Thus modeling how peo-
ple conceive of their activity, which is always pervaded by social relations,
is essential for explaining human behavior. This is a very different kind of
cognitive model than emphasized heretofore in understanding expertise
and problem solving ability.

5 SUMMARY

Simulating an FMARS planning meeting in Brahms produced several
surprises:

* “Off-task” activities of eating, resting, using the toilet, and recreation
(e.g., playing games or talking at the table) must be included in a work
practice simulation because they causally affect the duration, timing,
and methods by which tasks are accomplished.

* Characteristics and experiences of people often studied by human fac-
tor specialists (e.g., hunger and fatigue), which are typically excluded
from cognitive models, must be included in a work practice simulation
because they determine when off-task activities occur.

» Everyday behaviors, such as getting something to eat, are carried out
according to norms, but improvised in a way (e.g., standing while eating
during a meeting) that exercise the open nature of norms, while possibly
accomplishing many goals simultaneously. Such behaviors appear to
blend rituals or habits with both premeditated intentions and emergent
affects (e.g., calling attention to oneself and hence being better able to
influence the decisions being made).

* The non-immersive virtual display of BrahmsVE, which was at first
considered to be only a “visualization tool,” provides a means of simu-
lating line of sight and movement paths — information that is essential
for simulating what agents can detect in the environment and how long
movement between two points requires.

The heuristics of modeling a full “day in the life” of the habitat and simu-
lating all agent movements and use of tools were crucial for making these
discoveries.

The modeling experiment shed a different light on what cognition ac-
complishes and how perception and action are related through concep-
tualization of activity. For example, a conventional cognitive model of a
planning meeting would focus on the discourse structure of the meeting’s
conversation. Such fine-grained explanations of topic relationships, based
on the semantics of what is being presented, explained, and decided, might
be improved by including what the FMARS model focused upon: postures
(e.g., which may convey boredom or disagreement to participants), transi-
tional activities (e.g., how individual agent behaviors become coordinated

Cognitive Modeling of Social Behaviors 181

into a coherent group activity), and biological motives (e.g., fatigue, which
may affect the meeting’s agenda).

In some respects, behaviors emphasized in the FMARS model might
be viewed as noise in a conventional discourse model. For example, it
might appear humorous to ask a cognitive modeler, “What if the person
is hungry and doesn’t want to continue talking?” Cognitive simulations
often assume that people are motivated (i.e., the goals of the task at hand are
not in question) and that work occurs in a controlled setting. The FMARS
simulation emphasizes that the context includes people’s activities, which
have both broad and narrow forms that influence what goals and methods
are established, how they are adapted —affecting the quality of the resulting
work.

This chapter has focused on what can be learned from the use of a virtual
environment interface, the methodology of constructing a Brahms model
of practice, how individual behaviors reflect and reinforce group dynam-
ics, the relation of cognitive modeling and social interaction, and what can
be learned by reconsidering Newell’s social band framework. The exam-
ples throughout illustrate many aspects of behavior that protocol analysis
would not consider because they are visual relationships (e.g., how people
stand when talking), off-task (i.e., would not be included in an experimen-
tal setting that presents a task to a subject), and conceptualizations that are
not articulated in common experience or sought in task-oriented studies
(e.g., understanding of norms, how participation is negotiated).

The observational methodology used in the FMARS study includes both
systematic (e.g., time lapse video) and informal (e.g., field notes) records. By
design, the recording is intended to record and learn more than can practi-
cally be analyzed, and thus (perhaps) include information that is only later
found to be useful (as illustrated by the analysis of the July 13, 2001 plan-
ning meeting). Clancey (in preparation, in press) shows how time-lapse,
diaries, and surveys can be systematically recorded and analyzed to pro-
duce information about productivity and work system design problems.

The focus of the FMARS simulation is to provide a proof of concept that
the simulation can fit what actually occurs. The main criteria used were
the episodes visible on the time lapse (e.g., movement of crew members
during the planning meeting for different reasons) and the duration of
events. As discussed in considering CC'’s report of his crew experiences,
to more thoroughly verify the model would require simulating at least
a week, which is well beyond what modeling resources have permitted.
The present model includes three episodes identified as recurrent and in-
volving distinctive combinations of attention and interpersonal interac-
tion (the planning meeting, refilling the water tank, and preparing for an
EVA; Clancey, 2002a). From the perspective of practical design and ongo-
ing Mars analog investigations, the most important scientific product of

182 William]. Clancey, Maarten Sierhuis, Bruce Damer, and Boris Brodsky

such research is identifying new issues to systematically study (e.g., the
frequency of interruptions; Clancey, in press).

Although cognition is sometimes considered narrowly as relating goals,
inference, and actions, cognitive science (as represented by the journal and
society of that name) more broadly includes perception, the nature of con-
ceptualization, social interaction during learning, and many other topics.
This chapter focuses on relating collective (social) behavior to individual
cognition (involving perception, motive, and action) by emphasizing that
individual behaviors are conceptually coordinated with respect to an un-
derstanding of norms. Such an investigation touches upon the nature of
culture, as embodied in individuals (Lave, 1988), and realized in episodes
that exercise, extend, test, and interpret other people’s conception of how
to behave. These normative behaviors include: What topics should be dis-
cussed when, by whom, and using what tools?

Thus, the analysis presented is part of a much larger project that might
examine the decisions made during the planning meeting, and tie them to
interpretations of the group’s role structure, competing motivations, and so
on. This analysis would again be primarily episodic until many such meet-
ings had been analyzed and statistically related. The FMARS 2001 rotation
studied here ended after a week, and the group never lived or worked to-
gether again. Developing a full-fledged theory of such social interactions
may therefore require a series of related studies in other contexts.

Finally, the FMARS modeling experiment illustrates what mechanisms
other than backward chaining of goals capture, given a focus on simulating
the activities of a typical day, rather than automating a task. The project
revealed the relation of different levels of analysis (biological, psycholog-
ical, social). A contrast can be drawn with multi-agent models that focus
on functional actions. For example, Brahms’ design was inspired by the
Phoenix system (Cohen et al., 1989), which showed how an environment
model of a fire-fighting setting interacted with a hierarchal communica-
tion and command structure. If modeling fire-fighting in Brahms using the
same approach used for FMARS, one would model the entire day, includ-
ing where the fire-fighters camp, how meals are prepared, how they are
transported to the work site, etc. This day-in-the-life model would comple-
ment Cohen’s multi-agent task analysis, revealing how mundane activities
are interleaved with and constrain how work is actually done.

Understanding the nature and influence of individual emotions, agen-
das, preferences, ambitions, etc. is a significant next step. Thus, the intersec-
tion of cognitive and social analyses broadens the research perspective —
from what knowledge is required to accomplish a task, to why certain
people are participating at all. How do leaders in high-risk situations man-
age fear and temerity in assigning individuals to tasks? To allowing some-
one to present a contrary view and plan to the group? A question for

Cognitive Modeling of Social Behaviors 183

cognitive modeling then becomes, what knowledge and motives affect
who is allowed to participate and in what manner?

ACKNOWLEDGMENTS

Our colleagues, especially Paul Feltovich, Chin Seah, Dave Rasmussen,
and Mike Shafto, as well as other members of the Work Systems Design
and Evaluation group in Computational Sciences at NASA Ames, have
made important contributions to this research. We also thank the FMARS
Rotation #2 July 2001 crew for providing explanations of their work and
completing surveys. The FMARS study would not have been possible with-
out the Mars analog concept, support, and facilities of the Mars Society led
by Robert Zubrin. Field support and research ideas were also provided
by Pascal Lee and the Haughton-Mars Project (1998 to 2003). This work
has been supported in part by NASA’s Computing, Communications, and
Information Technology Program, Intelligent Systems subprogram,
Human-Centered Computing element, managed by Mike Shafto at NASA
Ames. DigitalSpace Corporation has been funded through SBIR and STTR
NASA contracts (see http://www.digitalspace.com/reports/index.html).

References

Acquisti, A., Sierhuis, M., Clancey, W. J., & Bradshaw, J. M. (2002). Agent-based
modeling of collaboration and work practices onboard the international space
station. Proceedings of the 11th Conference on Computer-Generated Forces and Behavior
Representation (pp. 181-188). Orlando, FL, May.

Anderson, J. R. (2002). Spanning seven orders of magnitude: A challenge for cog-
nitive modeling. Cognitive Science, 26(1), 85-112.

Clancey, W. J. (1993). Situated action: A neuropsychological interpretation
(Response to Vera and Simon). Cognitive Science, 17(1), 8-116.

Clancey, W. J. (1994). Comment on diSessa. Cognition and Instruction, 12(2),
97-102.

Clancey, W. J. (1995). A boy scout, Toto, and a bird. In L. Steels & R. Brooks (Eds.),
The “artificial life” route to “artificial intelligence”: Building situated embodied agents
(pp. 227-236). New Haven: Lawrence Erlbaum.

Clancey, W.]. (1997a). The conceptual nature of knowledge, situations, and activity.
In P. Feltovich, K. Ford, & R. Hoffman (Eds.), Human and machine expertise in
context, (pp. 247-291). Menlo Park, CA: The AAAI Press.

Clancey, W. J. (1997b). Situated cognition: On human knowledge and computer represen-
tations. New York: Cambridge University Press.

Clancey, W.]. (1999). Conceptual coordination: How the mind orders experience in time.
Hillsdale, NJ: Lawrence Erlbaum.

Clancey, W. J. (2001). Field science ethnography: Methods for systematic observa-
tion on an arctic expedition. Field Methods, 13(3), 223-243.

184 William]. Clancey, Maarten Sierhuis, Bruce Damer, and Boris Brodsky

Clancey, W.J. (2002a). Simulating “Mars on Earth” — A Report from FMARS Phase 2.
In F. Crossman & R. Zubrin (Eds.), On to Mars: Colonizing a new world (CD-ROM).
Burlington, Ontario, Canada: Apogee Books.

Clancey, W. J. (2002b). Simulating activities: Relating motives, deliberation, and
attentive coordination. Cognitive Systems Research, 3(3), 471-499.

Clancey, W.]. (2004a). Automating CapCom: Pragmatic Operations and Technology
Research for Human Exploration of Mars. In C. Cockell (Ed.), Martian expedition
planning, Vol. 107, AAS Science and Technology Series, pp. 411-430.

Clancey, W.]J. (2004b). Roles for agent assistants in field science: Understand-
ing personal projects and collaboration. IEEE Transactions on Systems, Man and
Cybernetics, Part C: Applications and Reviews [Special Issue on Human-Robot
Interaction], 34(2) 125-137.

Clancey, W. J. (in preparation). Observation in natural settings. To appear in K. A.
Ericsson, N. Charness, P. Feltovich, & R. Hoffman, Cambridge handbook on expertise
and expert performance, “Methods for studying the structure of expertise.” New
York: Cambridge University Press.

Clancey, W. J. (in press). Participant observation of a Mars surface habitat mission
simulation. To appear in Habitation.

Clancey, W. J., Sachs, P, Sierhuis, M., & van Hoof, R. (1998). Brahms: Simulating
practice for work systems design. Int.]. Human-Computer Studies, 49, 831-865.
Cohen, P. R, Greenberg, M. L., Hart, D. M., & Howe, A. E. (1989). Trial by fire:
Understanding the design requirements for agents in complex environments. Al

Maguazine, 10(3), 34—48.

Columbia Accident Investigation Board. (2003). CAIB Report, Volume 1. NASA.
(Online), August. http://www.caib.us/news/report/volumel/default.html
Cockell, C. S., Lim, D.S.S., Braham, S., Lee, P, & Clancey, W. J (2003). Journal of the

British Interplanetary Society, 56(3—4), 74-86.

Damer, B. (1997). Avatars: Exploring and building virtual worlds on the Internet.
Berkeley: Peachpit Press.

Damer, B. (2004). Final Report, SBIR I: BrahmsVE: Platform for Design and Test of
Large Scale MultiAgent Human-Centric Mission Concepts, DigitalSpace Documents.
(Online), http://www.digitalspace.com/reports/sbir04-phasel

Gould, S. J. (1987). An urchin in the storm: Essays about books and ideas. New York:
W. W. Norton.

Jordan, B. (1992). Technology and social interaction: Notes on the achievement of author-
itative knowledge in complex settings. (IRL Technical Report No. IRL92-0027). Palo
Alto, CA: Institute for Research on Learning.

Kantowitz, B. H., & Sorkin, R. D. (1983). Human Factors: Understanding People-System
Relationships. New York: John Wiley.

Lave, J. (1988). Cognition in practice. Cambridges, UK: Cambridge University Press.

Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation.
New York: Cambridge University Press.

Leont’ev A. N. (1979). The problem of activity in psychology. In Wertsch, J. V. (Ed.),
The Concept of activity in Soviet psychology (pp. 37-71). Armonk, NY: M. E. Sharpe.

Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University
Press.

Schon, D. (1987). Educating the reflective practitioner. San Francisco: Jossey-Bass
Publishers.

Cognitive Modeling of Social Behaviors 185

Scribner, S., & Sachs, P. (1991). Knowledge acquisition at work (IEEE Brief. No. 2).
New York: Institute on Education and the Economy, Teachers College, Columbia
University.

Seah, C., Sierhuis, M., & Clancey W. (2005). Multi-agent modeling and simulation
approach for design and analysis of MER mission operations. In Proceedings of
2005 International Conference on Human-Computer Interface Advances for Modeling
and Simulation (SIMCHI'05). (73-78).

Sierhuis, M. (2001). Modeling and simulating work practice. PhD thesis, Social Science
and Informatics (SWI), University of Amsterdam, The Netherlands.

Sierhuis, M., & Clancey, W. J. (2002). Modeling and simulating work practice:
A method for work systems design. IEEE Intelligent Systems, [Special issue on
human-centered computing at NASA], 17(5), 32—41.

Sierhuis, M., Clancey, W.J., Seah, C., Trimble, J., & Sims, M. H. (2003). Modeling and
simulation for mission operations work systems design. Journal of Management
Information Systems, 19(4), 85-128.

Spradley, J. P. (1980). Participant observation. Fort Worth: Harcourt Brace College
Publishers.

Suchman, L. A. (1987). Plans and situated actions: The problem of human-machine
communication. Cambridge, UK: Cambridge University Press.

Tufte, E. R. (2003). The cognitive style of PowerPoint. Cheshire, CT: Graphics Press
LLC.

Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. New York:
Cambridge University Press.

Wynn, E. (1991). Taking practice seriously. In J. Greenbaum & M. Kyng (Eds.),
Design at work: Cooperative design of computer systems (pp. 45-64). Hillsdale, NJ:
Lawrence Erlbaum.

Cognitive Agents Interacting in Real
and Virtual Worlds

Bradley J. Best and Christian Lebiere

1 INTRODUCTION

This chapter describes agents, based on the ACT-R cognitive architecture,
which operate in real robotic and virtual synthetic domains. The virtual
and robotic task domains discussed here share nearly identical challenges
from the agent modeling perspective. Most importantly, these domains
involve agents that interact with humans and each other in real-time in
a three-dimensional space. This chapter describes a unified approach to
developing ACT-R agents for these environments that takes advantage of
the synergies presented by these environments.

In both domains, agents must be able to perceive the space they move
through (i.e., architecture, terrain, obstacles, objects, vehicles, etc.). In some
cases the information available from perceptionis raw sensor data, whereas
in other cases it is at a much higher level of abstraction. Similarly, in both
domains actions can be specified and implemented at a very low level (e.g.,
through the movement of individual actuators or simulated limbs) or at
a much higher level of abstraction (e.g., moving to a particular location,
which depends on other low-level actions).

Controlling programs for both robots and synthetic agents must operate
on some representation of the external environment that is created through
the processing of sensory input. Thus, the internal robotic representation
of the external world is in effect a simulated virtual environment. Many of
the problems in robotics then hinge on being able to create a sufficiently
rich and abstract internal representation of the world from sensor data
that captures the essential nuances necessary to perceive properly (e.g.,
perceiving a rock rather than a thousand individual pixels from a camera
sensor bitmap) and a sufficiently abstract representation of actions to allow
it to act properly.

Robotic and virtual platforms must deal with the vision problem, ei-
ther by bypassing it (e.g., through the use of radio beacons to mark paths,

186

Cognitive Agents Interacting in Real and Virtual Worlds 187

structured data describing architecture, and volumetric solids), or by solv-
ing relevant problems in vision (producing a depth map from stereo cam-
eras, segmenting images, identifying objects, etc.). Virtual synthetic do-
mains may make bypassing some of the issues in vision straightforward
but this is not a given — some virtual environments may simply present an
agent with raw sensor data such as a bitmap. In either case, the problem is
the same: producing a representation of the environment from raw sensor
data that the agent can use to reason with. Although this representation
will have its own problems (uncertainty, incomplete information, nonmon-
tonic changes, etc.) and should not be viewed as an idealized version of
the underlying reality, it is nonetheless essential in insulating higher-level
processes from the details of lower-level processes and providing a layered
way for complex cognitive agents to interact with a complex world, reflect-
ing the earlier insights of Marr (1982) in the nature of visual information
processing.

Actions the agent can take in the environment range from domain-
general actions such as locomotion to domain-specific actions such as
weapon loading, and span levels of abstraction from very low-level ac-
tions such as changing wheel actuator velocities or changing a virtual pose
to higher-level actions such as movement from point to point. Domain-
general high-level actions such as locomotion are typically abstracted in
both environments such that a simple API with high-level commands will
produce equivalent movements in both a virtual environment and on a
robotic platform.

In the cases of both perception and action, though the low-level imple-
mentation of an action or the processing of a sensory input will be differ-
ent in the two domains, the high-level specification may remain the same.
These parallels between real robotic and synthetic virtual domains encour-
aged the development of a common platform allowing the same agents to
be developed and deployed in either robotic or virtual domains. This will
in turn facilitate the development of increasingly large and complex teams
of agents to populate both real world entities and virtual avatars.

2 ACT-R

ACT-Ris aunified architecture of cognition developed over the last 30 years
at Carnegie Mellon University. At a fine-grained scale it has accounted for
hundreds of phenomena from the cognitive psychology and human factors
literature. The most recent version, ACT-R 5.0, is a modular architecture
composed of interacting modules for declarative memory, perceptual sys-
tems such as vision and audition modules, and motor systems such as
manual and speech modules, all synchronized through a central produc-
tion system (see Figure 8.1). This modular view of cognition is a reflection

188 Bradley]. Best and Christian Lebiere

Intentional System[] Declarative Memofy
(not modeled) (Temporal/Hippocanpt
> 4
A x
Goa_g (DLPFC) |Retrieval (VL+FC)
m g .\ ro
g O A &|[Matching (Stridtum)
— o t)’ © v
,g E 3 <+ |[_selection (Pal}idum)
3 O u v
§ m A 2 || Execution (Thallmus)
. LAV
Visual (ParidtgMpnual (Motor |ck)
Visual System[] Effector System |flc
(loosely modeled) Hands (loosely modis
x A
N —
Environment

FIGURE 8.1. ACT-R architecture.

both of functional constraints and of recent advances in neuroscience con-
cerning the localization of brain functions. ACT-R is also a hybrid system
that combines a tractable symbolic level that enables the easy specification
of complex cognitive functions, with a subsymbolic level that tunes itself
to the statistical structure of the environment to provide the graded char-
acteristics of cognition such as adaptivity, robustness, and stochasticity.

The central part of the architecture is the production module. A produc-
tion can match the contents of any combination of buffers, including the
goal, which holds the current context and intentions, the retrieval buffer,
which holds the most recent chunk retrieved from declarative memory, vi-
sual and auditory buffers, which hold the current sensory information, and
the manual buffer, which holds the current state of the motor module (e.g.
walking, firing, etc.). The highest-rated matching production is selected to
effect a change in one or more buffers, which in turn trigger an action in
the corresponding module(s). This can be an external action (e.g., move-
ment) or an internal action (e.g., requesting information from memory).
Retrieval from memory is initiated by a production specifying a pattern
for matching in declarative memory. Each chunk competes for retrieval,
with the most active chunk selected and returned in the retrieval buffer.
The activation of a chunk is a function of its past frequency and recency of
use, the degree to which it matches the requested pattern, plus stochastic
noise. Those factors confer memory retrievals, and behavior in general,
desirable “soft” properties such as adaptivity to changing circumstances,
generalization to similar situations, and variability (Anderson & Lebiere,
1998).

Cognitive Agents Interacting in Real and Virtual Worlds 189

The current goal is a central concept in ACT-R, which as a result pro-
vides strong support for goal-directed behavior. However, the most recent
version of the architecture (ACT-R 5.0) is less goal-focused than its pre-
decessors by allowing productions to match to any source of information,
including the current goal, information retrieved from declarative memory,
objects in the focus of attention of the perceptual modules, and the state
of the action modules. This emphasis on asynchronous pattern matching
of a wide variety of information sources better enables ACT-R to operate
and react efficiently in a dynamic fast-changing world through flexible
goal-directed behavior that gives equal weight to internal and external
sources of information.

There are three main distinctions in the ACT-R architecture. First, there
is the procedural-declarative distinction that specifies two types of knowl-
edge structures — chunks for representing declarative knowledge and pro-
ductions for representing procedural knowledge. Second, there is the sym-
bolic level, which contains the declarative and procedural knowledge, and
the sub-symbolic level of neural activation processes that determine the
speed and success of access to chunks and productions. Finally, there is
a distinction between the performance processes by which the symbolic
and sub-symbolic layers map onto behavior and the learning processes by
which these layers change with experience.

Human cognition can be characterized as having two principal compo-
nents: (1) the knowledge and procedures codified through specific train-
ing within the domain, and (2) the natural cognitive abilities that manifest
themselves in tasks as diverse as memory, reasoning, planning, and learn-
ing. The fundamental advantage of an integrated architecture like ACT-R
is that it provides a framework for modeling basic human cognition and
integrating it with specific domain knowledge.

The advantage of a symbolic system like ACT-R’s production system
is that, unlike connectionist systems for example, it can readily represent
and apply symbolic knowledge of the type specified by domain experts
(e.g., rules specifying what to do in a given condition, a type of knowl-
edge particularly well-suited for representation as production rules). In
ACT-R, performance described by symbolic knowledge is mediated by
parameters at the sub-symbolic level that determine the availability and
applicability of symbolic knowledge. Those parameters underlie ACT-R’s
theory of memory, providing effects such as decay, priming, and strength-
ening, which make cognition adaptive, stochastic, and approximate, ca-
pable of generalization to new situations and robustness in the face of
uncertainty. Those qualities provide ACT-R models with capacities of in-
ference, planning, reasoning, learning, and decision-making that are both
powerful and general without the computational complexity and spe-
cialization of standard Al techniques (e.g., Sanner, Anderson, Lebiere, &
Lovett, 2000).

190 Bradley]. Best and Christian Lebiere

3 TUSING A COGNITIVE ARCHITECTURE TO CREATE AGENTS
FOR VIRTUAL AND ROBOTIC ENVIRONMENTS

One major goal of this work was to provide training opponents for Mili-
tary Operations in Urban Terrain (MOUT) scenarios rendered in a virtual
environment. The state of the art in both commercial gaming packages and
virtual training systems is the use of finite state machines for behavioral
control. Finite state machines provide simplicity of development, but at
the cost of producing brittle behavior, combinatorial explosions of poten-
tial state transitions as the number of states increase, and low levels of
realism and variability. Teamwork among synthetic opponents is often ei-
ther lacking or completely absent. Anecdotally, human players often learn
to game the finite state machine and take advantage of the idiosyncrasies
of the opponents.

Rather than basing behavior on finite state machines, we have chosen
to use the ACT-R architecture as the basis for cognitive agents with the
intent of maximizing realism, adaptivity, unpredictability, and teamwork.
These properties are a natural aspect of human performance in many task
environments, and as such are also an inherent aspect of the ACT-R ar-
chitecture, making it a good match for creating agents to play the role of
opponents in the MOUT domain in particular, and for creating agents that
simulate human behavior in general.

ACT-R also provides a platform for simulating the way humans rep-
resent space and navigate about it (e.g., Schunn & Harrison, 2001). Many
of the pitfalls of robotic performance in the field involve behavior that
would never be conceived of by a human in the same situation. Recogni-
tion of this has inspired the creation of robotic agents that simulate a human
in the same situation as the robot with a goal of producing robust robot
behaviors. Selecting a representation of the environment that is psycho-
logically plausible enables portability by leveraging the flexibility of the
human cognitive and perceptual systems: people can effortlessly switch
from navigating their own bodies in space to controlling virtual entities
in a computer simulation to remotely teleoperating robotic platforms in
real-world environments. An agent endowed with a reasonable facsimile
of the spatial and cognitive abilities of humans ought to be able to as well,
requiring changes only in the low-level layers that provide information to
and act upon the orders of that agent.

4 SIMULATION PLATFORMS

A major trend in modeling and simulation is the use of gaming platforms
for use in research. Using a gaming platform to provide a virtual environ-
ment, however, provides many of the same opportunities and challenges

Cognitive Agents Interacting in Real and Virtual Worlds 191

FIGURE 8.2. Two agents prepare to enter room.

as working on a robotic platform. The parallels and differences between
these two types of platforms are discussed below.

4.1 Unreal Tournament (UT) as a Platform for MOUT

The UT environment (see Figure 8.2) can easily be used to construct a basic
urban battlefield — buildings, the areas around them, and the areas beneath
them. UT supports a range of built-in weapons including those meant
to simulate military weapons (such as rifles, grenades, rocket launchers,
handguns, and machine guns), as well as others that are non-violent (such
as bubble wands, nets, etc.), either directly as part of the game or as part
of freely available “mods.”

UT allows for a wide range of player motion and action. Weapons can be
picked up, thrown down, and often used in different modes (e.g., shoot-
ing from the hip with the handgun is fast but inaccurate). Players may
crouch, jump, pivot, sidestep, run, swim, look up or down, and even feign
death. Messages in the form of text may be freely transferred from one
player to another, from a player to all players on the same team, or from a
player to all players in the game. This allows simulation of radio commu-
nication within a team or spoken communication between players.

Unreal Tournament handles multi-user games by means of a client-
server architecture, allowing multiple agents running on separate

192 Bradley |. Best and Christian Lebiere

FIGURE 8.3. ActivMedia Pioneer P3-DX robot.

machines to interact via the virtual environment. The client provides static
information about the map in which the agent is playing (i.e., architecture)
whereas the server sends messages to the client regarding dynamic ele-
ments, such as objects that can be picked up and other players that are in
the immediate environment of the agent.

Creating a synthetic agent involves opening a TCP/IP socket to the UT
server and creating a process that catches and handles the messages that
the server sends. Any messages received or sent on a socket affect only the
agent for which it was created. This interface allows for the isolation of
agents from each other, forcing interaction to take place through the game
itself (e.g., through text messaging between agents), providing an equal
footing for both humans and agents.

4.2 ActivMedia Robotics as a Platform

The ActivMedia robotics platform is a platform for mobile robotics that
consists of controlling software and a range of physical robots including
all-terrain robots, high-payload robots, human-interaction robots, team
robots, and the robot used in this project: the Pioneer P3-DX, a general-
purpose robot (see Figure 8.3).

Available perceptual inputs (sensors) for the P3-DX include sonar, ladar,
contact bumpers, video cameras, range-finding infrared, stereo cameras,
and compasses and gyros (as well as various actuator sensors). Available

Cognitive Agents Interacting in Real and Virtual Worlds 193

action outputs (actuators) include the wheel motors, a speaker, pan-tilt-
zoom camera controls, a gripper, and a robotic arm.

The ActivMedia software provides APIs that allows for access to low-
level raw sensor data and high-level processed sensor data. Similarly, ac-
tions can be specified through the APIs as either high-level actions, such
as move to an (x, y) position, or low-level actions such as changes in wheel
motor velocity. The high-level action APIs permit a straightforward
mapping of the synthetic agent API for ACT-R UT bots directly onto the
ActivMedia APIs.

The controlling software includes a simulation environment for the
robot to allow faster testing and prototyping of control code without the
need to run the real robot, or to be in the actual location being tested. The
simulated ActivMedia platform provides reasonably high fidelity and in-
cludes aspects of the real platform such as sensor noise and wheel slippage.

4.3 Time Synchronization Details for UT and ActivMedia

Unlike many production systems, ACT-R exactly specifies the real-world
timing of production matching and execution to the millisecond (a result
of its role as a high-fidelity theory of human cognition). The explicit tim-
ing of ACT-R events allows for a straightforward integration of an ACT-R
agent with a real-time simulation environment. At the beginning of each
cycle, ACT-R is provided with an up-to-date representation of the simu-
lation environment, and ACT-R is allowed to perform whatever action it
chooses. The ACT-R clock is then advanced by the amount of time con-
sumed by the action, and ACT-R will not be called for another recognize-
act cycle until the simulated time has moved beyond the current ACT-R
time.

The effect of this scheme is that the cognitive agent always lags slightly
behind the real world. If updates are passed from the simulation to ACT-
R at a reasonably high frequency (e.g., 10 Hz), the effect of this lag is
negligible (and, in fact, roughly matches the latency of the human visual
system). Thus, the ACT-R system acts on information that is, on average,
slightly out of date but is never perceived before it could exist (updates are
never early).

In the time synchronization scheme used, ACT-R is allowed to produce
an immediate action, subject to the communication lag between ACT-R
and the network infrastructure across which the agent is communicating
with the simulation. In this case the network latency combined with the
real time required to run an ACT-R cycle approximates the actual time
required for an action. For the real-time systems described here, there is
no obvious need for a more complicated mechanism (the agents can, for
example, successfully track targets in real-time).

194 Bradley]. Best and Christian Lebiere

5 THE MOUT DOMAIN: REQUIREMENTS FOR INTELLIGENT
AGENTS IN MILITARY OPERATIONS ON URBAN TERRAIN
(MOUT) AND CLOSE QUARTER BATTLE (CQB) DOMAINS

MOUT environments are distinguished from the terrain of rural battlefields
by the dominant features of densely packed manmade structures and mul-
tiple avenues of approach. MOUT tactics have been developed through the
analysis of historical urban conflict and extrapolation to the capabilities of
modern soldiers. These tactics prescribe methods for clearing blocks of
buildings, individual buildings, floors in buildings, and individual rooms
and hallways. Important aspects of terrain in MOUT environments in-
clude fields of view, the closely related fields of fire (which depend on the
available weapons and the field of view), available cover and concealment,
obstacles to navigation, available lighting, and avenues of approach and
escape. Close-quarter fighting in and around buildings makes command
and control extremely difficult. The main approach to this problem is to
systematically clear zones in the battlefield, sector by sector, with certain
units assigned to particular zones, and the use of clear and explicit pro-
cedures implemented by small teams. The work described here involves
the implementation of collaborative doctrinal tactics at the level of the
individual infantry soldier by intelligent agents.

Doctrinal MOUT tactics are extremely well-defined. Movement tech-
niques taught in MOUT training specify how to move while reducing the
exposure to enemy fire. Open areas between buildings are crossed along
the shortest possible path. Movement inside building hallways is done
along the walls instead of down the center of the hallway with support-
ing personnel leapfrogging each other, alternating covering and moving.
Clearing techniques specify which teammates will direct fire where, and
how to arrange units prior to room entry.

As an example of the specificity involved in this training, in a doctrinal
room entrance, a pair of soldiers assumes a “stacked” position along the
wall outside the doorway. The lead soldier directs his weapon towards the
far corner whereas the second soldier steps around and behind them and
tosses a grenade into the room. The use of a grenade is signaled to other
assault team members nonverbally if possible, but otherwise verbally. After
grenade detonation, the first shooter steps through the doorway (one step
away from the wall, two steps in) and clears their immediate area using
weapon fire if necessary. The second shooter (who was stacked behind)
steps through the doorway, buttonhooks, and clears their section of the
room. Both shooters start from the outside corners and rotate towards the
center wall, eventually converging after supressing any threats. A second
two-person team provides covering fire and security in the hallway behind
the first team. The clearing team and covering team also communicate
with a series of doctrinal statements, such as “Clear,” “Coming out,” etc.

Cognitive Agents Interacting in Real and Virtual Worlds 195

Though there are many variations, it is worth noting the explicit nature of
the teamwork involved.

Clearing hallways is similarly well specified. To clear an L-shaped hall-
way, a team of two soldiers will each take one wall of the initial portion of
the hall. The soldier on the far wall will advance to just before the inter-
section whereas the soldier on the near wall parallels this movement. The
soldiers then, on a signal, move together into the hallway, one crouching
and the other standing, clearing all targets.

Modeling the continuum of behavior from structured doctrinal behavior
to unstructured reactive behavior allows testing a range of opposing force
behaviors against the expected doctrinal strategy. Unlike friendly force
behaviors, opposing force behavior is not well specified and ranges from
coordinated, planned attacks by well-trained forces who carefully aim their
weapons to disorganized sporadic attacks from enemies using the “pray
and spray” weapon discharge technique. Thus, opposing forces should be
capable of using doctrinal techniques, but also should be free to diverge
substantially from them.

5.1 Doctrinal Approaches to Building Clearing — Case Study:
Clearing an L-Shaped Hallway

The vignette described here involves a pair of soldiers starting at the end of
an L-shaped hallway whose mission is to clear the floor of opposing forces.
The friendly forces employ doctrinal tactics and first clear the hallway it-
self using the covering movements described earlier. The cleared hallway
presents the soldiers with several doorways. The soldiers then stack them-
selves at the doorways, enter the room (also described earlier), and clear
any inner rooms discovered.

Opposing forces return fire if they are cornered or run and escape if
they can (while firing some poorly aimed shots). These forces are very
reactive compared to the friendly forces. Their planning is limited to the
hiding spots and defensive positions they initially assumed — their goal is
to defend the building they are in. As they spot the entering soldiers, they
hastily fire a shot or two while falling back. When cornered, they dig in
and fight (one of many possible scenarios).

5.2 Sample ACT-R Models

An overall ACT-R model for building clearing involves components that
handle route planning (e.g., clear the first floor, then the second, etc.), spec-
ify what to do on hostile contact, and include doctrinal approaches to
many subtasks within the domain. Space limitations preclude detailing a
complete building clearing agent, so instead agents involved in clearing
an L-shaped hallway will be focused on clearing it. The possible actions

196

Bradley]. Best and Christian Lebiere

encoded by agents that are faced with an L-shaped corner in a hallway will
be detailed for one set of attacking agents and one set of defending agents.
Below are English abstractions of some of the relevant productions used
in ACT-R models for the attacking force and the opposing force:

Opposing Force Sample Productions:

1.

2.

3.

If there is an enemy in sight and there is no escape route then shoot
at the enemy.

If there is an enemy in sight and there is an escape route then set a
goal to escape along that route.

If there is a goal to escape along a route and there is an enemy in
sight then shoot at the enemy and withdraw along the route

Attacking Force Productions (a space is a room or hallway):

1

. If there is a goal to clear a building and there is an entrance to the

current space that has not been cleared and it is closer than any other
entrance to the current space that has not been cleared then set a goal
to clear the adjoining space through that entrance.

. If there is a goal to clear a space and an enemy is in sight then shoot

at the enemy.

. If there is a goal to clear a space and I am the lead shooter then take

up position on the near side of the entrance to that space.

. If there is a goal to clear a space and I am the second shooter then

get behind the lead shooter.

.If there is a goal to clear a space and I am the lead shooter and I

am positioned at the entrance and the second shooter is positioned
behind me then signal to the second shooter to move, step into the
entrance, and clear the area to the left.

. If there is a goal to clear a space and I am the lead shooter and I

am positioned at the entrance and the second shooter is positioned
behind me then signal to the second shooter to move, step into the
entrance, and clear the area to the right.

7.1f there is a goal to clear a space and the lead shooter has signaled to

8.

9.

10.

enter the space then step into the entrance and clear the area to the
opposite side of the lead shooter.

If there is a goal to clear a space and I am the lead shooter and there
is no enemy in sight then pan towards the opposite corner.

If there is a goal to clear a space and I am the lead shooter and I have
panned to the second shooter and there are no enemies in sight then
signal to the second shooter that the space is clear and note that the
space is cleared.

If there is a goal to clear a space and the current space is cleared and
there is no other entrance to the space that has not been cleared then
remove the goal to clear the space and return to the adjoining space
through the entrance.

Cognitive Agents Interacting in Real and Virtual Worlds 197

Note that productions 5 and 6 differ only by which way they specify to
move. This allows for variability of behavior — either of these two produc-
tions can match the conditions for entering a room. The conflict resolution
process will decide which of these productions will fire in any given sit-
uation. The basis for that decision will be each production’s utility. Those
utilities, even if the system learns them to be different, have a stochastic
component that will make the choice probabilistic, though not random
because it is sensitive to the quality of each choice.

6 GETTING AROUND THE VISION PROBLEM

Much of the previous discussion presupposes a working real-time per-
ceptual system that provides a useful description of where enemies and
friendly forces are, and how the surrounding architecture is arranged.
Although substantial progress has been made in the field of computer
vision in the last decade, real-time algorithms for space perception and
object identification are not yet realities. This necessitates bypassing the
vision problem. In many synthetic environments, object identity and loc-
ation are passed to agents in the domain as structured symbolic data
rather than as image-based data. This allows these agents to perform as
if they had the results of high-level vision. In robotic domains it is more
common to develop a special-purpose sensor and provide a distinct cue
for that sensor in the location where the object of interest is. For exam-
ple, a researcher could hang a large blue square on a piano and identify
all large blue squares as pianos. Alternatively, a researcher could place
a radio beacon on a location and identify that location as the piece of
cheese in a maze (or the intercontinental ballistic missile to destroy). In
both of these examples, the robot does not perceive the actual target of
the identification, but rather an easier-to-identify stand-in. This section
will elaborate on the methods used for the ACT-R MOUT agents and
the ACT-R ActivMedia agents for getting from the basic sensor data pro-
vided by the simulation to a high-level representation usable in a cognitive
agent.

6.1 Extracting Cognitive Primitives in Unreal Tournament

For an agent to navigate and act within a space it must have a represen-
tation of the environment that supports these actions, with more com-
plex planning and teamwork requiring a more complete representation of
space. This representation can be constructed from basic elements available
within the particular virtual environment, in this case UT.

The representation we have used is generated from a process that can be
divided into two parts: (1) a low-level implementation-dependent feature
extraction process, and (2) a method for translating this to a model-level
representation usable by the agent. Although the extraction process will

198 Bradley]. Best and Christian Lebiere

vary for each environment the abstract representation is implementation-
independent. Implementations on other platforms would focus on extract-
ing low-level primitives available in that environment and mapping them
onto the model-level representation.

The low-level spatial primitives available in UT are fairly sparse, be-
ing limited primarily to a range-finding mechanism. The challenge was
to use this mechanism to automatically build up a cognitively plausible
representation of space that could be used across platforms.

6.2 Sampling the Space

One of the messages that can be sent from an agent is a request for informa-
tion on whether a particular point in UT space (using a three-dimensional
x, y, z coordinate system) is reachable in a straight line from the current
location of the agent. This mechanism can be used to determine the bound-
aries of walls. Given a current location, it is possible to extend a ray out
from this point and at various points along the ray query the UT engine.
Eventually, traveling out on a ray from the current location, because a UT
level is a finite space that is bounded by unreachable borders, a point will
be far enough away that it is unreachable. The transition from reachable to
unreachable defines a boundary between open space and some solid object
(e.g., a wall) (see Figure 8.4).

From a particular location, an agent can perform this range sensing in
any direction (this is analogous to laser range sensing as provided on the
ActivMedia platform). By standing in one place and rotating, an agent can
determine the distance to the outer edges of the space it is in. If an agent
also moves to other parts of the space, it is possible to sample all of the

£800

FIGURE 8.4. Sampled range sensing data.

Cognitive Agents Interacting in Real and Virtual Worlds 199

y

theta

X

FIGURE 8.5. Parametric form of line equation.

available spaces in a UT level. The model reported here uses three-
dimensional sampling to allow for the detection of upward sloping ramps,
stairs, etc.

6.3 Converting Sampled Points to a Line Segment Representation

The ActivMedia platform provides utility programs to produce a line seg-
ment representation from sampled sensor data, reducing this process to a
single step. Unfortunately, the Unreal Tournament environment does not
provide this facility, making the derivation of a line segment representation
from sensor data a more laborious process, described in detail here.
Given a set of points that fall along walls on a map, determining which
point falls on which wall and how to group them can be solved using a
method known as the Hough transform (e.g., Illingworth & Kittler, 1988).
The equation of a line can be represented in the following parametric form:

r =xcosf + ysind

In this form, » represents the distance from the origin to the line along the
normal, and theta (9) represents the angle between the normal to the line
and the x axis.

With a large number of points, it is possible to search the parameter
space for line equations that many points could potentially fall on. Using
this technique, each individual point will provide several values of r as
theta (0) is iterated across. Given a particular x, y, and theta, the resulting
r gives an index into the accumulator array that is incremented to indicate
a solution for this point. These parameters (r and theta) represent the lines

200 Bradley]. Best and Christian Lebiere

N ' | .
X N }/ N\ X
X X J ...-\‘Jﬂ
N N
,""< |
X " X \"E B S R
/ \ | N
|

FIGURE 8.6. Candidate lines voted for by points.

crossing through that point. If two points in space are processed in this
way, each will individually vote for several values of R and theta, but the
only value of r and theta that receives votes from both points will be the
line they both fall on.

Continuing this process with each new point, the accumulator array will
be incremented the most at locations corresponding to line equations that
cross through many of the points, resulting in a set of cells that correspond
to lines that intersect large numbers of the input points.

6.4 An Autonomous Mapping Agent for UT

Based on the sensor to line-segment process described in the sections
above, we developed an autonomous mapping agent for UT that navigates
the environment and gradually builds a representation of the space (see
Figure 8.7).

Using the range-sensing data as the only spatial primitive, and a
Hough transform to detect straight lines within the data, a cognitive-level
description that consists of walls, corners, rooms, and openings is

Step 2: Range-sensor

1: Agent explores area M Wintin 5 smaliy
:stt:.l';ctingtnrge-m data —

Step 3: Datais converted to

a high-level representation

e
% Step 4: Agent uses
%‘3 wa e representation to
- environment
" Bl Y

FIGURE 8.7. Autonomous mapping process.

Cognitive Agents Interacting in Real and Virtual Worlds 201

constructed. From this static representation, the dynamic perceptual pres-
ence of architectural primitives relative to the agents’ current location can
be determined in real-time (Best et al., 2002).

6.5 Mapping for ActivMedia Robotics Platforms

The robotic platform presents a nearly identical challenge to UT in sam-
pling the space. Unlike Unreal Tournament, however, the ActivMedia plat-
form provides direct support for obtaining a line-segment representation
of a particular environment, making the development of an automated
map-building agent unnecessary. Mapping may be accomplished in sev-
eral ways on the ActivMedia platform. The robots are packaged with a
utility that allows them to randomly wander, sampling the space as they
go. Due to the lack of guidance in this wandering, maps derived in this
way are often very incomplete. The alternative, and likely the most com-
mon approach, is for a human operator to teleoperate the robot during this
process. In this case, the operator essentially pilots the robot around the
spaces to be mapped, ensuring the robot enters all of the corners, openings,
and dead ends to provide complete coverage of the space.

6.6 Data Structures: Line Segments, Bounding Volumes, and Binary
Space Partitioning Trees

At this point in building the spatial representation, there is a set of wall
segments defined by endpoints and openings (doors) aligned with those
wall segments. Searching for the walls that bound a location and deter-
mining which walls are visible from a particular location can be aided by
a data structure called a binary space partitioning tree (BSP tree).

A BSP tree represents space hierarchically. In the two-dimensional case,
each node in the tree subdivides the space recursively with a splitting
plane aligned with a wall segment. The root node in the BSP tree divides
the whole plane with a line. Given the normal to that line, every point
on the plane is either in front of, behind, or on the line. This node has
two children: one child further subdivides the front half-space of the plane
whereas the other child subdivides the back half-space of the plane. This
recursive subdivision continues until all of the segments have been used as
splitters. The resulting data structure provides a means for computation-
ally efficient determination of visibility determination that can be used to
quickly determine the visible surfaces of the space surrounding an agent.

6.7 Algorithms for Calculating Analytic Visibility

Although many algorithms for calculating analytic visibility exist, many
of them are too computationally expensive to be used in real-time. One
way around this difficulty, and the approach we have taken here, is the

202 Bradley]. Best and Christian Lebiere

A
B
> =
—_[_J_T I C
E
T [
D A

FIGURE 8.8. BSP Tree Splits map along wall segments.

use of a BSP tree for computing visibility. The primary benefit of the BSP
tree representation is that it guarantees that an in-order tree traversal will
draw edges in the tree in either front to back or back to front visibility
order, so that no edge will ever be drawn before a potentially occluding
edgeis drawn. This allows the fast calculation of walls and obstructions vis-
ible from a particular vantage point by traversing the tree in-order, which
results in drawing walls from front to back (i.e., closest walls first), and
short-circuiting the process when all of the space around the agent is en-
closed by an occluding wall. This technique is an extension of a z-buffer
technique where the tree traversal is done when all of the pixels in the
buffer have been drawn once.

7 COGNITIVE REPRESENTATION OF SPACE AND PERCEPTION:
EGOCENTRIC AND ALLOCENTRIC REPRESENTATIONS
OF DISTANCE AND BEARING

To perceive, react, navigate, and plan, it is necessary for the agents to have
a robust spatial representation. Like people, agents can represent things in
two fundamental ways: where something is relative to the agent’s location,
or egocentrically (e.g., something is to my left); or where something is in
absolute terms relative to a world coordinate system, or allocentrically
(e.g., something is at a particular latitude/longitude).

The egocentric representation of an item used includes both the distance
to the item and relative bearing, in both quantitative and qualitative terms
(see Figure 8.9). A qualitative distance is how distant something is relative
to the current visual horizon, and ranges across a set of logarithmically

Cognitive Agents Interacting in Real and Virtual Worlds 203

Wall I Door I Wall

Inside Corner

Wall

’ "
Wall oytside Corner

FIGURE 8.9. Cognitive representation of space used by agents.

s

spaced rings denoted “here,” “near,” “far,” and “very far,” whereas a quan-
titative distance is the distance to the object in numerical units (e.g., 7 meters
away). Bearing is represented quantitatively as absolute compass bearing
to target relative to current orientation (e.g., 30 degrees to the left, 5 degrees
up), and qualitatively as “right,” “left,” “ahead,” “behind,” or any of the
four intermediate bearings “ahead right,” “ahead left,” “behind right,” or
“behind left.”

The allocentric representation of an item includes the location of an item
in the world coordinate system (in this case, x, y, and z) and potentially
its orientation relative to that coordinate system (pitch, yaw, and roll — the
angles relative to the axes). An allocentric representation is particularly
important in reference to maps (which are typically defined relative to
some world coordinate system), and correspondingly to navigation tasks.

Many of the doctrinal rules for MOUT can be spelled out clearly using
an egocentric representation. For example, the following describes how to
employ the cross method of clearing a room:

When employing the cross method, two Marines position themselves on either
side of the entryway. Each Marine faces into the room covering the corner of the
room opposite his position. On a prearranged signal, each Marine alternately enters
the room. Each Marine crosses quickly to the opposite corner while covering the
half of the room toward which he is moving. Once in the near corner, he assumes

204 Bradley]. Best and Christian Lebiere

an outboard kneeling position to reduce his silhouette and continues to maintain
coverage of his half of the room. MWCP, p. A-34)

However, for other purposes, the use of an allocentric representation
is preferable to an egocentric representation. For instance, tasks such as
navigation need a representation of the features in a global frame of ref-
erence that allows for computations (such as the path between a given
room and the exit of the building) independently of the current location
and its immediate environment. The challenge is to integrate the two rep-
resentations, using each where it is best while maintaining consistency
between them. That integration takes the form of an accumulation of ego-
centric information provided at each instant that is particularly useful for
reactive behavior into a global, persistent map of the environment in an al-
locentric representation suitable for navigation and other global planning
behaviors.

8 NAVIGATION

Navigation is one of the most essential tasks an agent must undertake
in a spatial environment. Navigation is accomplished through combining
basic locomotive behavior with the immediate results of perception — that
which is perceived at that moment — and interaction with a memory-based
cognitive map of the environment.

8.1 Navigational Primitives

Locomotion is simply moving from one location to another. This is a fun-
damental behavior that need not be attended to once it is initiated, and
thus may occur in parallel with other activities. The basic behavior of lo-
comotion involves commencing movement to a location, the continuation
of that movement while not at the destination, the abandonment of that
movement if an obstacle, or threat is encountered or a change in plans
is initiated, and the cessation of movement upon arrival at the destina-
tion. Locomotion can be performed in several modes: walking, running,
stalking, and sidestepping while facing another direction.

8.2 Higher-Order Navigational Behavior

Higher-order navigational behavior involves an interaction of the cognitive
map of the environment (the allocentric reference frame) with the current
visual scene (egocentric cues) and memory for goals and past events (paths
followed and destinations). As such, it represents a significant theoretical
challenge in both cognitive psychology (Klatzky, 1998) and robotics (Beetz,
2002; Frank, 2000).

Cognitive Agents Interacting in Real and Virtual Worlds 205

Agents in this simulation use a node-link representation for rooms and
pathways between them. Attacking agents build up a representation of
rooms visited and episodic traces of items and other agents seen there.
When moving from the current room through a doorway to a new room,
the agent creates a chunk in declarative memory corresponding to that path
allowing an overall map to be built. Defending agents, who are assumed
to have intimate knowledge of the area to be defended, are given a com-
plete representation of the rooms and pathways connecting them allowing
them to fluidly and quickly choose paths for attack and escape that real
defenders would have knowledge of (but attackers would not).

8.3 The Interaction of Memory and Perception in Navigation

Although memory for paths exists in a complete form in the defenders’
declarative memories, the attackers may be forced to rely on other meth-
ods. In addition to remembering the path followed, attackers may also
encode individual moves at particular situations. This is similar to the
heuristic applied by some people who “retrace their footsteps” when try-
ing to find their way. These previous moves include actions relative to
landmarks (e.g., turn left at the L-shaped hall), actions relative to an allo-
centric frame (e.g., proceed at a compass bearing of 90 degrees), or actions
relative to an egocentric frame (e.g., turn left 45 degrees). These represen-
tations are complementary, and are typically used by people as the context
allows. Landmarks are often preferred, but in a situation where landmarks
are impoverished, people quickly adopt the other strategies. If going to
a house in a subdivision where all of the houses look alike, people com-
monly depend on memory for the moves such as “turn left at the second
street in the subdivision and go to the fourth house on the right.” In a
navigation context, an allocentric frame such as that encoded in a map is
often used. This is particularly useful in military situations for exchanging
information about threats, destinations, and movements, because allocen-
tric coordinates such as GPS coordinates are unambiguous, whereas ego-
centric coordinates depend on knowing the egocentric orientation of the
perceiver and are therefore often less useful.

9 COMMUNICATION

Planning, as presented above, requires at the least the ability for agents
to signal each other. We have provided a grammar that the agents use
to communicate that includes signaling, acknowledgment, sending and
receiving orders, communication of intention, and specification of the type
and location of a contact (e.g., friendly fire, from location (x, y, z)).

The most fundamental of these, simple communication, involves the
passing of signals and the acknowledgment of their receipt. For example,

206 Bradley]. Best and Christian Lebiere

saying “On the count of three, go” requires the receipt of the signal
“three” while ignoring other signals. In the UT environment, this is im-
plemented by passing text messages between the agents. Although the
agents could have passed tokens in a coded language, the agents use actual
English phrases for readability and extensibility to interactions with human
players.

The passing of orders initiates execution of schematic plans. These plans
include actions such as clearing an L-shaped hallway, supplying covering
fire, moving to a particular location, standing guard, providing assistance
in storming a particular room, or retreating from overwhelming fire. These
schematic plans depend on doctrinally defined simple communications.
For example, when storming a room, attackers typically “stack” outside
the doorway. Attackers in front are signaled by the attackers behind that
they are in position to enter the room, obviating the need to turn away
from a potentially hazardous entrance at a critical moment. Although it is
possible for real combatants to signal each other non-verbally (e.g., with a
touch on the back), agents in this environment are limited to the passing
of text messages.

In addition to orders, agents can also share information, such as a spot
report of enemy activity. A spot report includes a brief description of the
enemy forces spotted including their numbers and armament if known,
their location, and their movement (if any). Other agents may use this
information to provide coordinated ambushes and attacks.

10 IMPLEMENTING PLANNING AND TEAMWORK
IN ACT-R FOR MOUT

Within the framework developed for this project, a set of productions in-
terprets the schema within the current context, leading to a literal inter-
pretation of the schema for that context. In this way, an abstract plan plus
a context results in a set of concrete actions. This allows the abstract plan
to be fairly brief and vague until the agent actually selects it to be put into
action. At that point, the plan will be instantiated in a manner consistent
with the details of the current situation.

The current modeling effort includes plans for a team of two for clear-
ing: rooms with and without doors, halls, L-corners, T-intersections, and
stairs. In addition, plans are included for advancing and retreating in a
leapfrog style, and for firing a defensive shot in an attempt to cause casu-
alties immediately prior to escaping (cut and run). A sample chart of the
interactions of two agents clearing an L-shaped hallway is presented in
Figure 8.10.

At each step of the plan, agents perform an action, communicate, or
wait for a predetermined signal or length of time before moving on to

Cognitive Agents Interacting in Real and Virtual Worlds 207

Legend
—— iy Mowe

TETPITTITITERE Wait

4~ = = = Together

FIGURE 8.10. Schematic representation of plan to clear L-shaped hallway.

their next action. In this way, the agents synchronize their actions taking
turns appropriately. The plans the agents adhere to are not ad-hoc but in-
stead come directly from doctrinal MOUT documents. Doctrine typically
not only specifies how one agent should be positioned relative to another
for activities such as clearing L-shaped halls but even specifies the exact
language to be used in this situation. This knowledge is typically a set of
steps spelled out in declarative form with the particular actions, triggers,
and synchronization of action all clearly defined. Given the cookbook na-
ture of some of these doctrinal maneuvers, we noticed an opportunity to
create an authoring tool to aid in the conversion of doctrine to cognitive
models.

The model for the agents described here was authored like a typical
ACT-R model. However, the knowledge structures, especially declarative
chunks of information and production rules, were written using an abstract
notation rather typical of production systems. Table 8.1 presents a typical
example of a production rule and related chunks:

The production implements the sequential retrieval of a piece of an
action plan, and the declarative chunks represent some of those action
pieces. The situation involves two agents, L for Leader and F for Follower,
moving in coordinated fashion through a sequence of positions and ac-
tions, as shown in Figure 8.10. Their various positions are indicated by

208 Bradley]. Best and Christian Lebiere

TABLE 8.1. Production Rule Used in Planning and
Relevant Chunks Representing a Plan.

(p get-next-action (action11
=goal> isa action
isa action plan1
plan =plan index 1
index =index type move
type nil argument 11)
argument nil (action 12
=action> isa action
isa action plan1
plan =plan index 2
index =index type wait
type =type argument go)
argument =argument (action13
==> isa action
=goal> plan1
index (1+ =index) index 3
type =type type end
argument =argument) argument none)

an index. Solid arrows between successive positions indicate movement.
Dotted arrows indicate when an agent waits for the other to have per-
formed an action (such as reached a position) to proceed with the next step
of its plan. Dashed arrows indicate synchronized actions between the two
agents. Other codes specific to the domain can be added to the graphical
interface in a modular fashion.

All those codes transform readily into a piece of the plan for each agentas
encoded in declarative chunks in Table 8.1. Each chunk contains a number
of slots. The index of the plan, plan, and the index of each action, index,
can easily be supplied automatically by the interface. The nature of the
action, type, depends on the code used in the graphical interface, e.g. a
solid line would translate into a move action, etc. A list of interfaces codes
and associated actions can simply be encoded into the interface for each
domain. The last slot, argument, is an action qualifier, such as where to
move, e.g. to position L2. This argument represents the most difficult part
of the mapping, because obviously one does not want to encode a specific
location but instead one that will generalize to similar situations (in this
case, the position nearest the corner of the L-shaped hallway). Humans,
even non-experts, usually understand readily a set of spatial relationships
between the various positions and landmarks to generalize them across
situations, e.g., to symmetrical situations. The challenge before us is to
provide in the model a sufficient knowledge base to supply those spatial
relationships automatically.

Cognitive Agents Interacting in Real and Virtual Worlds 209

TABLE 8.2. Schematic Plan for Clearing an L-Corner.

(p get-next-action (action-L1
=goal> isa action
isa action plan take-L-corner
plan =plan index 1
index =index type move
type nil argument inside-corner)
argument nil (action-L2
=action> isa action
isa action plan take-L-corner
plan =plan index 2
index =index type wait
type =type argument go)
argument =argument (action-L3
==> isa action
=goal> plan take-L-corner
index (1+ =index) index 3
type =type type move
argument =argument) argument around-corner)

10.1 Schematic Plans

A large part of the teamwork exhibited by these agents hinges on shar-
ing common knowledge about how to approach certain tasks. The details
on how to do this come directly from military doctrinal manuals (e.g., see
MCWP in the references) and are routinely taught to trainees as part of their
fundamental training. Each agent knows, as a trained human combatant
does, what actions to perform when playing any of the roles in different
scripts. This knowledge is stored as a set of chunks in declarative memory
of the agent. These chunks, analogous to a schema, are a somewhat general
description of what to do in a certain situation. The details are then filled
in by productions that interpret the declarative script given the currently
perceived environmental context. Table 8.2 gives an example of a produc-
tion that selects the next step in an action plan as well as three steps of the
plan.

Plans in which an abstract script is filled with details later are sometimes
referred to as “skeletal plans,” or sometimes simply as “scripts” (Stefik,
1995). We have chosen to use “schematic plans,” because the plans we are
dealing with here have a spatial component, and are most easily visualized
using a schematic diagram.

For example, when clearing an L-shaped hallway, the procedure for
clearing the hallway is well-defined (see Figure 8.10). A pair of attackers
will split up and take position along the front wall (agent L in the diagram)
and back wall (agent F) respectively. Agent L then moves forward close

210 Bradley |. Best and Christian Lebiere

Urreal Touwrnament

—_—— —

FIGURE 8.11. Agent viewing teammate preparing to clear L-shaped corner.

to the corner as agent F waits for a signal. Once in position, agent L sig-
nals agent F to move. Agent F then advances to a position almost directly
across the hall from agent L. At this point, agent L waits for F to signal the
next move. Upon agent F’s signal, L and F simultaneously move into the
hallway, L staying close to the corner and dropping to a crouch whereas
F sidesteps along the back wall. This brings both of their weapons to bear
on the hallway simultaneously, although allowing both of them an unob-
structed field of fire including the whole hallway.

These schematic plans, then, are scripts with a spatial component that
describe how multiple agents are expected to work together in a particular
situation. For both human combatants and agents, this bypasses the poten-
tially deadly inefficiency of trying to decide what to do at each step. Each
agent knows what to do, and what to expect from a partner. Signals are
predefined and the potential for confusion is relatively low. The MOUT
environment provides a clear example of a domain where teamwork is
explicitly taught at a fine level of detail. A visual snapshot of two agents
performing this script in UT is presented in Figure 8.11 (viewed from the
perspective of one of the agents).

Cognitive Agents Interacting in Real and Virtual Worlds 211

Hierarchical Planning Framework

Abstract Abstract Abstract
Step Step Step
Detail Detail Detail Detail Detail Detail
Step] Step ™ Step Step Step Step
v
| Action | | Action | | Action | | Action | | Action | | Action |

FIGURE 8.12. Hierarchical plan levels and components.

10.2 Hierarchical and Partial Planning

Due to the dynamic nature of the task environment, it is not possible to fully
develop a plan prior to performing the first actions. Instead, a rough plan
consisting of abstract steps is developed. The abstract steps themselves can
be implemented by the schematic plans described earlier. In turn, individ-
ual actions to accomplish the schematic plans are combined with elements
from declarative memory and perception to form an action plan on an as-
needed basis (see Figure 8.12 for a diagram of the hierarchical planning
framework). This provides flexibility and robustness in the actual actions
taken because they are planned with the immediately perceived context in
mind.

This method of planning has roots in means-ends analysis and has much
in common with skeletal planning and hierarchical match algorithms (see
Stefik, 1995, for a discussion of this). Because the plan can be modified at
several abstract levels, it may be better described as hierarchical planning.
However, the individual action steps themselves are highly constrained
whereas the planning at the more abstract levels is less constrained. This
significantly reduces planning complexity as the sequence of action nodes
is most often predefined by a schematic plan. The interesting implication
is that human combatants have developed schematic plans to deal with
exactly those situations that present many options. In any case, this type
of hierarchical planning, modified by on-the-fly circumstances, provides
planned, goal-directed behavior that is sensitive to context. The abstract
plan of clearing the two floors will not change under most circumstances,
but the details of carrying out these steps often cannot be known in advance
(Schank & Abelson, 1977). This provides an efficient compromise between

212 Bradley]. Best and Christian Lebiere

FIGURE 8.13. Proceduralization of retrievals.

the need for flexibility in robustly adapting one’s behavior to unforeseen
(and unforeseeable) circumstances with the need for efficiency in executing
any actions in dealing with immediate threats. This tradeoff is represen-
tative of many everyday though less dramatic human environments, e.g.
driving.

11 PROCEDURALIZATION, GENERALIZATION, AND FLEXIBILITY

Plans of action are represented in the form of a list of declarative chunks
(see Table 8.2 for an instance) each representing a particular step of action
such as moving to alocation, waiting for a partner, firing at a target, etc. The
execution of those plans takes the form illustrated in Figure 8.13. Each cycle
consists of a production firing requesting the retrieval of the next step (Pr),
the retrieval itself (Ret), then one or more production firings implementing
that course of action (Py).

Although production firings are quite rapid (usually taking about 50 mil-
liseconds), retrieval of a chunk of information from declarative memory
typically takes several hundreds of milliseconds. This corresponds to a
poorly trained opponent who consistently thinks about his actions rather
than simply executing them. To represent a better trained opponent able
to execute plans of action much more quickly and efficiently, one can take
advantage of a feature of the ACT-R architecture that compiles consecutive
productions, together with an intervening information request such as re-
trieval from memory, into a single production (Pc), specialized to the task
athand, which can then fire much more quickly than the series of interpre-
tive steps that it replaced. However, one feature of declarative retrievals is
the ability to generalize to related situations based on similarities between
components such as distances, angles, appearances, etc. This is quite useful
in applying plans of action flexibly to situations that do not quite match
the original design. Therefore, to allow proceduralized plans to retain the
flexibility of interpreted plans, we need to provide production rules with
the same kind of flexible matching primitives as declarative memory.

Perhaps the most significant difficulty in authoring production system
models (e.g. expert systems) is specifying the conditions under which

Cognitive Agents Interacting in Real and Virtual Worlds 213

productions can apply. Because of the lack of a conventional control struc-
ture, it is often difficult for the author to forecast exactly the full range of
symbolic conditions under which an action is applicable. Moreover, in dy-
namic, approximate and uncertain domains (such as a MOUT simulation),
the all-or-none symbolic conditions (i.e. either specify a specific value re-
quired or else no restriction on that value) that determine production rules’
applicability have significant limitations in capturing the loose range of
conditions under which a behavior might be applicable. What is desired is
the ability to specify a canonical case for which a production is applicable,
then have the production system generalize it to related situations.

A similar need for flexibility on matching chunks of information in
declarative memory has long been recognized and addressed with the
addition of a partial matching mechanism to memory retrieval, allowing
chunks that only partially match the desired pattern specified by a produc-
tion retrieval request to qualify for matching. A chunk’s activation, which
represents in ACT-R the likelihood of a chunk being relevant to a partic-
ular situation, is decreased by the amount of mismatch, thereby reducing
the probability of retrieving that chunk but not eliminating it altogether.
The similarity values used in specifying partial matches between chunk
values can be viewed as a high-level equivalent to distributed represen-
tations (specifically, to the dot product between representation vectors) in
PDP networks. It seems logical to implement the same mechanism for pro-
duction rule matching, thereby emphasizing the symmetry between the
declarative and procedural parts of architecture by unifying their match-
ing mechanisms. Practically, this allows pieces of knowledge that were
specified and used as declarative instances to seamlessly transition to pro-
duction rules.

Currently, only production rules whose conditions match perfectly to
the current state of various information buffers (goal, memory retrieval,
perceptual, etc.) qualify to enter the conflict set. Because ACT-R specifies
that only one production can fire at a time, the rule with the highest ex-
pected utility is selected from the conflict set as the one to fire. The utility
of a production rule is learned by a Bayesian mechanism as a function of
its past history to reflect the probability and cost of achieving its goal. In a
manner similar to partial matching in declarative memory, all rules (sub-
ject to types of restrictions for tractability reasons) will now be applicable
but the new mechanism of production rule matching will scale the utility
of a rule by the degree to which its conditions match the current state of
the buffers. Specifically, the scale utility (SU,) of a rule p is specified as:

SU, =U, + Z MP - Sim,y Scaled Utility Equation
conds

where U, is the usual utility of the rule, and the penalty term is a product
of MP, a mismatch scaling constant, and Sim,,, the similarity between the

214 Bradley]. Best and Christian Lebiere

actual value v present in a buffer and the desired value d specified in the
production condition, summed over all production conditions. Similarities
are 0 for a perfect match, leading to no change in production utility, and
negative for less-than-perfect matches, leading to decrement in utility that
lowers the probability of the rule being selected with the degree of mis-
match. The mismatch penalty MP can be seen as a regulating factor, with
large values trending towards the usual all-or-none symbolic matching.

Our experiences using this mechanism, show that it succeeds in pro-
viding the desired approximate and adaptive quality for production rule
matching. All things being equal, productions will generalize equally
around their ideal applicability condition. However, productions with
higher utility will have a broader range of applicability, up to the point
where they reach their limits and failures lower their utility, thereby pro-
viding a learning mechanism for the range of applicability of production
rules. Moreover, the range of applicability of a production rule will be a
function of the presence of production rules with similar competing con-
ditions. In the initial learning of a new domain, a few production rules will
be generalized broadly as all-purpose heuristics. As more knowledge of
the domain is accumulated and new production rules created, the range of
application of those rules will be increasingly restricted.

Using this modification to the ACT-R production-matching scheme, no
“hard” boundaries exist between conditions for matching productions; the
boundaries are instead continuous. For example, if production A is appro-
priate when a doorway is to the front, whereas production B is appropriate
when a doorway is to the left side, both productions may match when a
doorway is both ahead and to the left. Although specifying directions such
as “left” as a range makes it possible to match a production in a symbolic
system to a range of situations, specifying “left” as a precise direction and
allowing productions to match based on similarity to that condition allows
both cleaner specification of the underlying representation (i.e., “left” is
90 degrees to the left instead of between 45 degrees and 135 degrees to the
left), and easier authoring of the productions with a reduction in unwanted
interactions between pieces of procedural knowledge. In this case, if the
author later decided that a new production, production C, was appropri-
ate when a doorway was ahead and to the left, adding the new production
C to the system would result in that production predominating over the
others without any revision of productions A and B.

This feature has significant theoretical and practical importance, because
it imbues the ACT-R architecture with many of the properties of a case-
based reasoning system, or a fuzzy matching rule-based system (similar
to the similarity-based reasoning proposed in Sun, 1995). Partial matching
in procedural memory allows ACT-R to automatically select the closest
(imperfectly) matching production in a case where no production is ex-
actly appropriate. This provides similarity based generalization where the

Cognitive Agents Interacting in Real and Virtual Worlds 215

120 120
c c
] o
£ 100 B 100
3 3 W
¥
” 80 » 80
'g — Left E
S 60 —— Ahead S 60
=1 =
3 20 — Left-Ahead g " —s— Left-Ahead
a ———— Anywhere o / — Anywhere
s s
S 20 o 20 /
o g LAV W ST
s S Wl
c 0 S 0
8 o
& 20 & 20
-180 -135 -90 -45 0 45 90 135 180 -180 -135 -90 -45 0 45 90 135 180
Angle Angle
120 120
g —'—IZ\ehﬂ ; g —=— Left
2 ea 2 —— Ahead
B 100 —— Left-Ahead| 5 100 —— Left-Ahead
2 Anywhere 2 ~——— Anywhere
[} Q
® 80 My @ 80
c /f‘ ey <
2 S
° 60 ° 60
=} =]
H 3
£ 40 g 40
b k]
o 20 o 20
o (=]
ko) 3
) 5 0
e e
& 20 & 20

-180 -135 -90 45 0 45 90 135 180 -180 -135 90 -45 0 45 90 135 180
Angle Angle

FIGURE 8.14. Production selection frequency by similarity to condition.

similarity metric can be determined from a psychologically appropriate
model of the stimulus domain (e.g., logarithmic scales to determine sim-
ilarity in the size of geometric solids). On the practical side, this feature
allows the ACT-R pattern matcher to select the most appropriate produc-
tion when faced with a novel situation, and can provide a substantial boost
to robustness by preventing the system from falling into a behavioral black
hole where, as no rule is exactly applicable, it does nothing.

12 ACTION VS. REACTION

The schematic plans outlined earlier indicate that the system is capable of
goal-directed activity. However, in a real-time system such as this, the en-
vironment may change in a way that is incompatible with the current goal.
As an example, an agent may have a goal to move towards the doorway
of an unexplored room. If an enemy enters the hallway within sight, the
agent clearly should abandon exploration and deal with the threat. ACT-R
5.0 provides a mechanism built into the architecture that allows for inter-
ruption by critical events — multiple buffers. In this case, a buffer is used
to keep track of any perceived threats. Exploratory behavior continues in
the absence of a threat, but once a threat is perceived, the perception of the

216 Bradley]. Best and Christian Lebiere

threat interrupts the current system goal and forces the agent to deal with
the threat (though the agent could then choose to ignore the threat, that
choice still must be made explicitly).

Similarly, occasionally it is desirable to simultaneously pursue two
goals. For example, while moving from one location to another, an informa-
tional message may be received. Although it would be simple to abandon
the movement to handle the incoming transmission, the preferred solu-
tion is to continue the agent’s movement while handling the transmission.
This is also accomplished through the use of a buffer for keeping track of
an initiated movement. The human behavioral equivalent is driving from
place to place — often once the drive is initiated, other goal-directed be-
havior occurs without interrupting the drive. It is not that the two goals
are being serviced at the same time but that the pursuit of compatible si-
multaneous goals can be achieved without simultaneous actions — actions
can be interleaved through the use of architectural primitives such as goal
retrievals and buffer switching, which do not provide all-powerful ways
to multi-task but instead a knowledge-based, robust, and flexible way to
reconcile goal-directed and reactive behavior.

13 SUMMARY

The focus of this work has been the development of agents capable of inter-
acting in small teams within a spatial domain and real-time environments.
The social interactions within these domains are particularly well-defined
and cooperation is either ensured (in the case of teammates in a military
domain or a robot assistant in a robotic domain), or deliberately avoided
(in the case of opponents). Teamwork, in these cases, depends on the ability
to share interleaved plans, the ability to effectively communicate the inten-
tion to execute a plan and the current step involved, and the ability to share
arepresentation for describing the surrounding space. Cognitive modeling
in these domains provides for straightforward implementation of human
behavior that provides a demonstration of how explicit fully-committed
teamwork functions. The cognitive models discussed in this chapter will
hopefully enable the abstraction of deeper principles of teamwork from
a fully-specified domain that can then be generalized to domains where
things are not spelled out quite so literally.

In addition to the emphasis on teamwork, this chapter has brought out
what we believe to be a significant synergy in research efforts for virtual
synthetic and real robotic platforms. In this case we have demonstrated
that the same framework for action and perception at the cognitive level
used in the ACT-R agents discussed earlier can be used to control behavior
in both virtual and robotic domains. By insulating low-level perception
and action from higher-level cognition through a principled, cognitively
plausible spatial and motor representation, we have shown that a mature,

Cognitive Agents Interacting in Real and Virtual Words 217

validated cognitive architecture can be used to provide robust high-level
behavior in a broad range of spatial environments, real and virtual. Agents
built in this manner are insulated from an overly tight dependency on the
low-level details of their environment, providing the opportunity for reuse
of models or parts of models across environments, thereby allowing the
porting of previously validated models at a low relative effort.

References

Anderson, J. R., & Lebiere, C. (1998). The Atomic components of thought. Mahwah,
NJ: Erlbaum.

Beetz, M. (2002). Plan-based control of robotic agents, Lecture notes in artificial intelligence
2554. Berlin: Springer-Verlag.

Best, B.]., Scarpinatto, K. C., & Lebiere, C. (2002). Modeling synthetic opponents in
MOUT training simulations using the ACT-R cognitive architecture. Proceedings
of the 11th Conference on Computer Generated Forces and Behavior Representation.
Orlando, FL: University of Central Florida.

Capps, M., McDowell, P., & Zyda, M. (2001). A future for entertainment — defense
research collaboration, IEEE Computer Graphics and Applications, 21(1), 37-43.
Frank, A. (2000). Spatial Communication with maps: Defining the correctness of

maps using a multi-agent simulation. Spatial Cognition II, 80-99.

Gillis, P. D. (2000). Cognitive behaviors for computer generated command entities. U.S.
Army Research Institute Technical Report.

Hicinbothom, J. H. (2001). Maintaining situation awareness in synthetic team mem-
bers. Proceedings of the 10th Conference on Computer Generated Forces and Behavior
Representation. pp. 231-241 Norfolk, VA: SISO, Inc.

Mlingworth, J., & Kittler, J. (1988). A Survey of the Hough Transform. Computer
Vision, Graphics and Image Processing, 44, 87-116.

Kaminka, G. A., Veloso, M., Schaffer, S., Sollitto, C., Adobbati, R., Marshall,
A. N, et al. (2002). GameBots: A flexible testbed for Multiagent team Research.
In Communications of the ACM, 45(1), 43-45.

Klatzky, R. L. (1998). Allocentric and egocentric spatial representations: Definitions,
distinctions, and interconnection. Spatial Cognition, 1-18.

Lebiere, C., Anderson, J. R., & Bothell, D. (2001). Multi-tasking and cognitive work-
load in an ACT-R model of a simplified air traffic control task. In Proceedings of the
10th Conference on Computer Generated Forces and Behavior Representation. Norfolk,
VA.

Lyons, D., Cohn, J., & Schmorrow, D. (2002). Virtual technologies and environments
for expeditionary warfare training. Proceedings of the IEEE Virtual Conference Re-
ality 2002. p. 261 Washington, DC: IEEE Computer Society.

Marine Corps Warfighting Publication (MCWP) 3-35.3, Military operations on ur-
banized terrain (MOUT). Washington DC: Headquarters, USMC, 1998.

Marr, D. (1982). Vision: A computational investigation into the human representation and
processing of visual information. New York: W. H. Freeman.

Newell, A., & Simon, H. A. (1972). Human Problem Solving. Englewood Cliffs, NJ:
Prentice-Hall.

218 Bradley]. Best and Christian Lebiere

Pew, R. W., & Mavor, A. S. (1998). Modeling human and organizational behavior:
Application to military simulations. Washington, DC: National Academy Press.

Reece, D. (2001). Notes on cognitive limitations of DISAF. SAIC Technical Report.

Reece, D., Ourston, D., Kraus, M., & Carbia, I. (1998). Updating ModSAF for in-
dividual combatants: The DISAF program. Proceedings of the 7th Conference on
Computer Generated Forces and Behavior Representation. Orlando, FL: University of
Central Florida.

Sanner, S., Anderson, J. R., Lebiere, C., & Lovett, M. (2000). Achieving efficient
and cognitively plausible learning in backgammon. In Proceedings of the 17th
International Conference on Machine Learning (pp. 823-830). San Francisco: Morgan
Kaufmann.

Schank, R. C., & Abelson, R. P. (1977). Scripts, plans, goals and understanding.
Hillsdale, NJ: Erlbaum.

Schunn, C., & Harrison, A. (2001). ACT-RS: A neuropsychologically inspired mod-
ule for spatial reasoning. Proceedings of the Fourth International Conference on Cog-
nitive Modeling (pp. 267-268). Mahwah, NJ: Erlbaum.

Silverman, B. G., Might, R., Dubois, R., Shin, H., Johns, M., & Weaver, R. (2001).
Toward a human behavior models anthology for synthetic agent development.
Proceedings of the 10th Conference on Computer Generated Forces and Behavior Repre-
sentation. Norfolk, VA, 2001.

Stefik, M. (1995). An introduction to knowledge systems. San Francisco: Morgan
Kaufmann.

Sun, R. (1995). Robust reasoning: Integrating rule-based and similarity-based rea-
soning. Artificial Intelligence, 75, (2), 241-296.

Weaver, R., Silverman, B. G., & Shin, H. (2001). Modeling and simulating terrorist
decision-making: A performance moderator function approach to generating
virtual opponents. Proceedings of the 10th Conference on Computer Generated Forces
and Behavior Representation. Norfolk, VA.

Modeling Social Emotions and Social Attributions

Jonathan Gratch, Wenji Mao, and Stacy Marsella

1 INTRODUCTION

Emotions play a crucial role in mediating human social relationships
(Davidson, Scherer, & Goldsmith, 2003). Whether articulated through body
movements, voice, deed, or through the ways we justify our actions, hu-
man relationships are laden with emotion. Emotion can act as a signal,
communicating information about the sender’s mental state, indicating
his or her future actions, and indirectly inducing emotions in the mind of
observers.Emotion can also act as a mental process, altering how people
see the world, how they form decisions, and how they respond to the en-
vironment. In our work we seek to develop testable computational models
that emphasize the relationship between emotion and cognition (Gratch
& Marsella, 2001; Marsella & Gratch, 2003). In this chapter, we focus on
emotions that have a social component: the rage arising from a perceived
offence, the guilt we feel after harming another. Such emotions arise from
social explanations involving judgments not only of causality but inten-
tion and free will (Shaver, 1985). These explanations underlie how we act
on and make sense of the social world. In short, they lie at the heart of
social intelligence. With the advance of multi-agent systems, user inter-
faces, and human-like agents, it is increasingly important to reason about
this uniquely human-centric form of social inference. Here we relate recent
progress in modeling such socio-emotional judgments.

Modeling emotions is a relatively recent focus in artificial intelligence
and cognitive modeling and deserves some motivation. Although such
models can ideally inform our understanding of human behavior, we see
the development of computational models of emotion as a core research
focus that will facilitate advances in the large array of computational sys-
tems that model, interpret or influence human behavior. On the one hand,
modeling applications must account for how people behave when ex-
periencing intense emotion including disaster preparedness (e.g., when

219

220 Jonathan Gratch, Wenji Mao, and Stacy Marsella

modeling how crowds react in a disaster (Silverman, 2002)), training (e.g.,
when modeling how military units respond in a battle (Gratch & Marsella,
2003)), and even macro-economic models (e.g., when modeling the eco-
nomic impact of traumatic events such as 9/11 or the SARS epidemic). On
the other hand, many applications presume the ability to correctly inter-
pret the beliefs, motives and intentions underlying human behavior (such
as tutoring systems, dialog systems, mixed-initiative planning systems,
or systems that learn from observation) and could benefit from a model
of how emotion motivates action, distorts perception and inference, and
communicates information about mental state. Emotions play a powerful
role in social influence, a better understanding of which would benefit ap-
plications that attempt to shape human behavior, such as psychotherapy
applications (Marsella, Johnson, & LaBore, 2000; Rothbaum et al., 1999),
tutoring systems (Lester, Stone, & Stelling, 1999; Ryokai, Vaucelle, & Cas-
sell, in press; Shaw, Johnson, & Ganeshan, 1999), and marketing applica-
tions (André, Rist, Mulken, & Klesen, 2000; Cassell, Bickmore, Campbell,
Vilhjalmsson, & Yan, 2000). Lastly, models of emotion may give insight
into building models of intelligent behavior in general. Several authors
have argued that emotional influences that seem irrational on the surface
have important social and cognitive functions that would be required by
any intelligent system (Damasio, 1994; Minsky, 1986; Oatley & Johnson-
Laird, 1987; Simon, 1967; Sloman & Croucher, 1981). For example, social
emotions such as anger and guilt may reflect a mechanism that improves
group utility by minimizing social conflicts, and thereby explains people’s
“irrational” choices in social games such as prison’s dilemma (Frank, 1988).
Similarly, “delusional” coping strategies such as wishful thinking may re-
flect a rational mechanism that is more accurately accounting for certain
social costs (Mele, 2001).

1.1 Virtual Humans and “Broad” Cognitive Models

Although much of cognitive science and cognitive modeling has focused
on accurately modeling relatively narrow psychological phenomena, our
work is part of a growing trend to demonstrate cognitive models within
the context of “broad agents” that must simultaneously exhibit multiple
aspects of human behavior (Anderson & Lebiere, 2003). Arguably, the
most ambitious of such efforts focus on the problem of developing virtual
humans, intelligent systems with a human-like graphical manifestation.
Building a virtual human is a multi-disciplinary effort, joining traditional
artificial intelligence problems with a range of issues from computer graph-
ics to social science. Virtual humans must act and react in their simulated
environment, drawing on the disciplines of automated reasoning and plan-
ning. To hold a conversation, they must exploit the full gamut of natural

Modeling Social Emotions and Social Attributions 221

FIGURE 9.1. Two applications that use virtual humans to teach people to cope with
emotionally-charged social situations. The image on the left illustrates the first au-
thor interacting through natural language with the MRE system, designed to teach
leadership skills. The image on the left is from Carmen’s Bright Ideas (Marsella,
Johnson, & LaBore, 2003), developed by the third author, and designed to teach
coping skills to parents of pediatric cancer patients.

language research, from speech recognition and natural language under-
standing to natural language generation and speech synthesis. Providing
human bodies that can be controlled in real time delves into computer
graphics and animation. And because a virtual human looks like a hu-
man, people readily detect and are disturbed by discrepancies from human
norms. Thus, virtual human research must draw heavily on psychology
and communication theory to appropriately convey non-verbal behavior,
emotion, and personality. Through their breadth and integrated nature,
virtual humans provide a unique tool for assessing cognitive models.

In developing computational models of emotional phenomena, we focus
on models that can influence and exploit the wide range of capabilities that
a virtual human provides. In particular, we have used emotion models to
mediate the cognitive and communicative behavior of virtual humans in
the context of the Mission Rehearsal Exercise (MRE) training system. In
this system, students can engage in face-to-face spoken interaction with the
virtual humans in high-stress social settings (Figure 9.1 left) (Gratch, 2000;
Gratch & Marsella, 2001; Marsella & Gratch, 2002, 2003; Rickel et al., 2002).
Emotional models help create the non-verbal communicative behavior and
cognitive biases one might expect if trainees were interacting with real
people in similar high-stress settings. Our scenarios focus on dialog and
group decision-making, rather than physical action, so the focus of our
emotional models is on cognitive source of emotions, emotion’s influence
on cognition (decision-making, planning, and beliefs) and external verbal
and non-verbal communicative behavior that reflect the virtual human’s
emotional state.

222 Jonathan Gratch, Wenji Mao, and Stacy Marsella

1.2 Social Emotions

Allowing naive users to freely interact with a broad cognitive model can
quickly reveal its limitations, and the work described here is motivated
by the following example of “novel” emotional reasoning on the part of
our virtual humans. In the Mission Rehearsal Exercise, trainees have the
opportunity to make bad decisions. In one instance, a human user issued
a particular flawed order to his virtual subordinate. The subordinate sug-
gested a better alternative, but when this was rejected, the subordinate, in
turn, ordered lower level units to execute the flawed order. Rather than
blaming the trainee, however, the virtual human assigned blame to the
lower-level characters that executed the plan.In contrast, human observers
universally assign blame to the trainee, as the subordinate was clearly fol-
lowing orders and even attempted to negotiate for a different outcome.
The virtual human’s “novel” attribution of blame was traced to some sim-
plifying assumptions in the model: the model assigns blame to whoever
actually executes an act with undesirable consequence. In this case, how-
ever, the action was clearly coerced. Such results indicate an impoverished
capacity to judge credit or blame in a social context. How we addressed
this limitation is the subject of the second half of this chapter.

1.3 Overview

This chapter provides an overview of EMA (named after Emotion and
Adaptation by Lazarus (1991)), our current model of emotion, and then
describes our efforts to extend the model with respect to its ability to
reason about social (multi-agent) actions. The following section gives a
review of cognitive appraisal theory, the theoretical underpinning of our
model. Next, we outline our current computational approach, and then
contrast our model with related work and describes some limitations. A
discussion of how we can extend the model to better account for attribu-
tions of social credit and blame follows. Some concluding remarks end the
chapter.

2 COGNITIVE APPRAISAL THEORY (A REVIEW)

Motivated by the need to model the influence of emotion on symbolic
reasoning, we draw theoretical inspiration from cognitive appraisal the-
ory, a theory that emphasizes the cognitive and symbolic influences of
emotion and the underlying processes that lead to this influence (K. R.
Scherer, Schorr, & Johnstone, 2001) in contrast to models that emphasize
lower-level processes such as drives and physiological effects (Velasquez,
1998). In particular, our work is informed by Smith and Lazarus’ cognitive-
motivational-emotive theory (Smith & Lazarus, 1990).

Modeling Social Emotions and Social Attributions 223

Appraisal theories argue that emotion arises from two basic processes:
appraisal and coping. Appraisal is the process by which a person assesses
his or her overall relationship with the environment, including not only
current conditions, but events thatled to this state and future prospects. Ap-
praisal theories argue that appraisal, although not a deliberative process in
itself, is informed by cognitive processes and, in particular, those process in-
volved in understanding and interacting with the environment (e.g., plan-
ning, explanation, perception, memory, linguistic processes). Appraisal
maps characteristics of these disparate processes into a common set of in-
termediate terms called appraisal variables. These variables serve as an inter-
mediate description of the person-environment relationship and mediate
between stimuli and response. Appraisal variables characterize the signifi-
cance of events from an individual’s perspective. Events do not have signif-
icance in and of themselves, but only by virtue of their interpretation in the
context of an individual’s beliefs, desires and intention, and past events.

Coping determines how the organism responds to the appraised signif-
icance of events, preferring different responses depending on how events
are appraised (Peacock & Wong, 1990). For example, events appraised as
undesirable but controllable motivate people to develop and execute plans
to reverse these circumstances. On the other hand, events appraised as un-
controllable lead people toward denial or resignation. Appraisal theories
typically characterize the wide range of human coping responses into two
classes. Problem-focused coping strategies attempt to change the environ-
ment. Emotion-focused coping (Lazarus, 1991) are inner-directed strategies
that alter one’s mental stance towards the circumstances, for example, by
discounting a potential threat or abandoning a cherished goal.

The ultimate effect of these strategies is a change in a person’s inter-
pretation of his or her relationship with the environment, which can lead
to new (re-)appraisals. Thus, coping, cognition, and appraisal are tightly
coupled, interacting and unfolding over time (Lazarus, 1991; K. Scherer,
1984); an agent may “feel” distress for an event (appraisal), which moti-
vates the shifting of blame (coping), which leads to anger (re-appraisal). A
key challenge for a computational model is to capture this dynamics.

3 A COMPUTATIONAL MODEL OF APPRAISAL AND COPING

EMA is a computational model of emotion processing that we have
been developing and refining over the last few years (Gratch, 2000;
Gratch & Marsella, 2001, 2004a; Marsella & Gratch, 2003). EMA is im-
plemented within Soar, a general architecture for developing cognitive
models (Newell, 1990; Chapter 3 of this book). Here, we sketch the basic
outlines of the model and some of the details of its Soar implementation.
Soar is intended to model the mixture of parallel and sequential reasoning
that has been posited to underlie human cognition and can be seen as a

224

Jonathan Gratch, Wenji Mao, and Stacy Marsella

Causal Interpretation

(Goals, Beliefs, Causal Relations, Plans, Intentions)

Environment] :

\ & / —~ : F |_
P L_EM _/_// J (J' Appraisal i e Y
(/ Action >.-._-—-——~"""- S T I -~ Planni ~,
~— / KN | (\ anning)
2 AL / b | L S~
N ™ — 1
K Dialogue \} = Appraisal Affective i “Belief ‘) L)
— Frames State | . Formation_

0

|

XL
4

1 Control Signals

+

A

[
|
|
|
|
|
|

—

(Explanation
Xplanation
L e P _/’l

(’ Coplng"’/

l%
J

FIGURE 9.2. EMA’s reinterpretation of Smith and Lazarus.

blackboard model. It provides an unstructured working memory (in terms
of objects with attributes and values that can be other objects). Persistent
changes to working memory are made by operators that are proposed in
parallel but selected sequentially and are intended to model the sequential
bottleneck of deliberative reasoning. Elaboration rules fire rapidly and in
parallel and make transitory elaborations to working memory. Soar also
provides a model of learning via a chunking mechanism and a model of
universal subgoaling, though these last two features do not play a role in
our current model.

3.1 EMA Overview

A central tenet in cognitive appraisal theories in general, and Smith and
Lazarus’” work in particular, is that appraisal and coping center around a
person’s interpretation of their relationship with the environment (See Fig-
ure 9.2.). This interpretation is constructed by cognitive processes, main-
tained in a working memory, summarized by appraisal variables and
altered by coping responses. To capture this interpretative process in com-
putational terms, we have found it most natural to build on decision-
theoretic planning representations (e.g., (Blythe, 1999)) and on methods
that explicitly model commitments to beliefs and intentions (Bratman,
1990; Grosz & Kraus, 1996). Planning representations provide a concise
description of the causal relationship between events and states, key for
assessing the relevance of events to an agent’s goals and for forming causal
attributions. The appraisal variables of desirability and likelihood find

Modeling Social Emotions and Social Attributions 225

natural analog in the concepts of utility and probability as characterized by
decision-theoretic methods. In addition to inferences about causality, attri-
butions of blame or credit involve reasoning if the causal agent intended
or foresaw the consequences of his or her actions, most naturally repre-
sented by explicit representations of beliefs and intentions. As we will see,
commitments to beliefs and intentions also play a key role in assigning
social blame and credit. Admittedly, these methods and representational
commitments have issues from the standpoint of cognitive plausibility, but
taken together they form a first-approximation of the type of reasoning that
underlies cognitive appraisal.

In EMA, the agent’s current interpretation of its “agent-environment
relationship” is reified by an explicit representation of beliefs, desires, in-
tentions, plans, and probabilities that correspond to the agent’s working
memory. Following a blackboard-type model, this representation encodes
as the input, intermediate results, and output of reasoning process that
mediate between the agent’s goals and its physical and social environment
(e.g., perception, planning, explanation, and natural language processing).
These incremental processes are implemented as Soar operators, though
we use the more general term cognitive operators to refer to these processes
and adopt the term causal interpretation to refer to this collection of data
structures to emphasize the importance of causal reasoning as well as the
interpretative (subjective) character of the appraisal process. At any point
in time, the causal interpretation encodes the agent’s current view of the
agent-environment relationship, an interpretation that may subsequently
change with further observation or inference. EMA treats appraisal as a
set of feature detectors that map features of the causal interpretation into
appraisal variables. For example, an effect of an action that threatens a
desired goal would be assessed as a potential undesirable event. Coping
acts by creating control signals that prioritize or trigger the processing
of cognitive operators, guiding them to overturn or maintain features of
the causal interpretation that yield high-intensity appraisals. For example,
coping may resign the agent to the threat by abandoning the desired goal.
Figure 9.2 illustrates a reinterpretation of Smith and Lazarus’ cognitive-
motivational-emotive system consistent with this view.

Figure 9.3 illustrates the representation of a causal interpretation. In
the figure, an agent has a single goal (affiliation) that is threatened by
the recent departure of a friend (the past action “friend departs” has one
effect that deletes the “affiliation” state). This goal might be re-established
if the agent “joins a club.” Appraisal assesses every instance of an act
facilitating or inhibiting a fluency in the causal interpretation. In the figure,
the interpretation encodes two “events,” the threat to the currently satisfied
goal of affiliation, and the potential re-establishment of affiliation in the
future.

226 Jonathan Gratch, Wenji Mao, and Stacy Marsella

Appraisal from own perspective ;

€ Past Present Future =
/ Affiliation | Aﬂ';]ilﬁurl
o Utility: 50
Utility: 50 oA
4 Probability: 100% Probability: 25%
. ¢ [\.__Belicf: False Intend-that: True
Friend
Departs |f
Prob: 100% .
Responsibility: [\ | Join Club
Friend Intend-to: True
Probability: 50%
Responsibility: self /
Desired state threatened Desired state facilitated f
Desirability: -50 Desirability: 50
Likelihood: 50% Likelihood: 25%
i Attribution: Friend Attribution: self
Emotion: Distress(25), Anger(25) Emotion: Hope(12.5)

FIGURE 9.3. An example causal interpretation.

Each event is appraised in terms of several appraisal variables by

domain-independent functions that examine the syntactic structure of the
causal interpretation:

Perspective: from whose perspective is the event judged

Desirability: what is the utility of the event if it comes to pass, from the
perspective taken (i.e., does it causally advance or inhibit a state of some
utility)

Likelihood: how probable is the outcome of the event

Causal attribution: who deserves credit or blame (i.e., what entity per-
formed the action leading to the desirable/undesirable outcome)
Temporal status: is this past, present, or future

Controllability: can the outcome be altered by actions under control of
the agent whose perspective is taken

Changeability: can the outcome be altered by some other causal agent

Each appraised event is mapped into an emotion instance of some type

and intensity, following the scheme proposed by Ortony, Clore, and Collins
(1988). A simple activation-based focus of attention model computes a
currentemotional state based on most-recently accessed emotion instances.

Coping determines how one responds to the appraised significance of

events. Coping strategies are proposed to maintain desirable or overturn
undesirable in-focus emotion instances. Coping strategies essentially work
in the reverse direction of appraisal, identifying the precursors of emotion

Modeling Social Emotions and Social Attributions 227

in the causal interpretation that should be maintained or altered (e.g., be-
liefs, desires, intentions, expectations). Strategies include:

* Action: select an action for execution

* Planning: form an intention to perform some act (the planner uses such
intentions to drive its plan generation)

* Seekinstrumental support: ask someone who is in control of an outcome
for help

* Procrastination: wait for an external event to change the current circum-
stances

» Positive reinterpretation: increase utility of positive side-effect of an act
with a negative outcome

* Resignation: drop a threatened intention

* Denial: lower the probability of a pending undesirable outcome

* Mental disengagement: lower utility of desired state

* Shift blame: shift responsibility for an action toward some other agent

» Seek/suppress information: form a positive or negative intention to
monitor some pending or unknown state

Strategies give input to the cognitive processes that actually execute
these directives. For example, planful coping will generate an intention to
perform the “join club” action, which in turn leads to the planning system
to generate and execute a valid plan to accomplish this act. Alternatively,
coping strategies might abandon the goal, lower the goal’s importance, or
re-assess who is to blame.

Not every strategy applies to a given stressor (e.g., an agent cannot
engage in problem-directed coping if he or she is unaware of an action that
has an impact on the situation), however, multiple strategies can apply.
EMA proposes these in parallel but adopts strategies sequentially. EMA
adopts a small set of search control rules to resolve ties. In particular, the
model prefers problem-directed strategies if control is appraised as high
(take action, plan, seek information), procrastination if changeability is
high, and emotion-focus strategies if control and changeability is low.

In developing EMA’s model of coping, we have moved away from
the broad distinctions of problem-focused and emotion-focused strategies.
Formally representing coping requires a certain crispness that is otherwise
lacking in the problem-focused/emotion-focused distinction. In particu-
lar, much of what counts as problem-focused coping in the clinical liter-
ature is really inner-directed in an emotion-focused sense. For example,
one might form an intention to achieve a desired state — and feel better as
a consequence — without ever acting on the intention. Thus, by perform-
ing cognitive acts like planning, one can improve one’s interpretation of
circumstances without actually changing the physical environment.

228 Jonathan Gratch, Wenji Mao, and Stacy Marsella

1. Construct and maintain a causal interpretation of ongoing

beliefs, desires, plans and intentions.

2. Generate multiple appraisal frames that characterize featu

tation in terms of appraisal variables
3. Map individual appraisal frames into individual instances
4. Aggregate instances and identify current emotional state.

5. Propose and adopt a coping strategy in response to the cur

FIGURE 9.4. Stages in EMA’S emotional reasoning.

3.2 Soar Implementation

The overall model consists of the repeated application of the five stages
listed in Figure 9.4. Note that similar stages have been suggested by other
cognitive modeling architectures. In particular, they are analogous to the
standard problem-solving cycle used in the Soar architecture (Newell,
1990), of which we take advantage in our Soar implementation. Here we
describe these stages in some detail.

3.2.1 Construct Causal Interpretation

The causal interpretation is a structured representation built atop Soar’s
working memory. This representation can be viewed as an explicit rep-
resentation of a partial order plan in the sense of (Ambros-Ingerson &
Steel, 1988). Certain working memory elements correspond to actions that
are linked to precondition and effect objects. Other objects represent re-
lationships between actions such as establishment relations (this action
establishes a precondition of that action), threat relations (this action has
an effect that disables a precondition of that action), and ordering rela-
tions (this action should be executed before that action). There is also an
explicit representation of beliefs, desires, and intentions (e.g, actions have
attributes indicating if they are intended, states have attributes represent-
ing their worth to the agent and if they are believed to be true in the current
world).

The causal interpretation is constructed sequentially through the appli-
cation of operators (a process analogous to deliberation). These operators
adjust the causal interpretation at a micro level. For example, an update-
belief operator will change the belief associated with a single state object.
An add-step operator will add a signal step to the current plan, and so
forth.

Modeling Social Emotions and Social Attributions 229

3.2.2 Appraise the Causal Interpretation

Appraisal is performed by elaboration rules that trigger automatically and
in parallel based on changes to working memory. For example, if an add-
step operator adds a new operator to the plan, elaboration rules automati-
cally fire to assess the significance of this new action from the perspective
of the agent’s goals: Does the action have an effect that facilitates or in-
hibits certain desired states? How does this action have an impact on the
likelihood of goal achievement, etc? These conclusions are represented by
explicit appraisal frames stored in working memory. A separate frame ex-
ists for each state object represented in working memory and these are
automatically created or modified as a side effect of operators manipulat-
ing the causal interpretation.

3.2.3 Construct Emotion Instances

Emotion instances are generated automatically and in parallel from ap-
praisal rules operating on the appraisal variables listed in each appraisal
frame. One or more objects representing an emotion type and intensity are
associated with the appraisal frame that generates them. The emotion type
of the instance is determined by a fixed mapping based on the configura-
tion of appraisal variables. For example, a frame with low desirability and
high likelihood would yield to intense fear.

3.2.4 Determine Emotional State

EMA uses an activation-based sub-symbolic process, modeled outside of
the Soar architecture and loosely motivated by ACT-R, to identify a partic-
ular emotional instance to exhibit and cope with. This activation is based on
two factors: (1) how recently cognitive structures associated by the instance
were “touched” by a Soar operator, and (2) how congruent the instance is
to the other emotion instances in memory (this latter factor is intended to
account for mood-congruent effects of emotion). For the activation factor,
each time a Soar operator accesses an element of the causal interpretation
that has an associated appraisal frame, this frame is assigned an activation
level equal to its intensity (this currently decays to zero upon the next ap-
plication of a Soar operator). For example, an “add-step” operator would
tend to activate an instance of hope that the step will address the threat
and fear that the goal is threatened. For the congruence factor, EMA com-
municates the type and intensity of all current instances to a module that
decays their intensities according to a fixed rate and sums the intensities
of instances of a given type into an overall score that can be viewed as the
agent’s mood (e.g., there is an overall fear score that consists of the sum
of the intensities of each instance of fear). A small fraction of this mood
vector is added to the activation-level of activated instances. The instance
with the most activation becomes the emotion to be displayed and coped
with.

230 Jonathan Gratch, Wenji Mao, and Stacy Marsella

3.2.5 Propose and Adopt a Coping Strategy

Soar elaboration rules propose individual coping strategies that could po-
tentially address the emotion instance identified in the previous stage. The
strategy itself is implemented by a Soar operator and each of these opera-
tors is proposed in parallel but only one is ultimately selected by Soar to
sequentially apply.

3.3 Limitations and Related Work

EMA relates to a number of past appraisal models of emotion. Although
we are perhaps the first to provide an integrated account of coping, compu-
tational accounts of appraisal have advanced considerably over the years.
In terms of these models, EMA contributes primarily to the problem of
developing general and domain-independent algorithms to support ap-
praisal, and by extending the range of appraisal variables amenable to a
computational treatment. Early appraisal models focused on the mapping
between appraisal variables and behavior and largely ignored how these
variables might be derived, instead requiring domain-specific schemes to
derive their value variables. For example, Elliott’s (1992) Affective Rea-
soner, based on the OCC model (1988), required a number of domain
specific rules to appraise events. A typical rule would be that a goal at a
football match is desirable if the agent favors the team that scored. More re-
cent approaches have moved toward more abstract reasoning frameworks,
largely building on traditional artificial intelligence techniques. For exam-
ple El Nasr and colleagues (2000) use markov decision processes (MDP)
to provide a very general framework for characterizing the desirability
of actions and events. An advantage of this method is that it can repre-
sent indirect consequences of actions by examining their impact on fu-
ture reward (as encoded in the MDP), but it retains the key limitations of
such models: they can only represent a relatively small number of state
transitions and assume fixed goals. The closest approach to what we pro-
pose here is WILL (Moffat & Frijda, 1995), which ties appraisal variables
to an explicit model of plans (which capture the causal relationships be-
tween actions and effects), although they, also, did not address the issue
of blame/credit attributions, or how coping might alter this interpretation.
We build on these prior models, extending them to provide better charac-
terizations of causality and the subjective nature of appraisal that facilitates
coping.

There are several obvious limitations in the current model. The model
could be viewed as overemphasizing the importance of task-oriented goals.
Many psychological theories refer to more abstract concepts such as ego-
involvement (Lazarus, 1991). Other theories, for example, the theory of
Ortony, Clore, and Collins (1988), emphasize the importance of social
norms or standards in addition to goal processing. For example, fornica-
tion may satisfy a personal goal but violate a social standard. Our approach

Modeling Social Emotions and Social Attributions 231

is to represent social standards by (dis-utility) utility over states or actions
that (violate) uphold the standard, which we have found to be sufficient
in practice. Perhaps the largest deficiency of the model concerns the im-
poverished reasoning underlying causal attributions (and social reasoning
in general), which we will address in the second half of this chapter. Cur-
rently the model assumes the executor of an act deserves responsibility for
its outcomes, but this can lead to nonsensical conclusions in the case of
social actions. We address this limitation in the next section.

4 MODELING SOCIAL ATTRIBUTIONS

EMA must be extended with respect to its ability to form social attributions
of blame and credit. Currently, an entity is assumed credit/blameworthy
for an outcome if it actually performed the act. Although this works well in
single-entity scenarios, in multi-agent settings it can often fall short. For ex-
ample, when someone is coerced by another to perform an undesirable act,
people tend to blame the coercer rather than the actor. People also excuse
social blame in circumstances where the act was unintentional or the out-
come unanticipated. Failing to account for these mitigating circumstances
can lead EMA to produce nonsensical appraisals. The following example
from one of our training exercises is illustrative. In the exercise, a trainee
(acting as the commander of a platoon) ordered his sergeant (played by
a virtual human) to adopt a course of action that the sergeant agent con-
sidered highly undesirable. The command was such that it could not be
executed directly by the sergeant, but rather the sergeant had to, in turn, or-
der his subordinates to perform the act. The current model assigned blame
to the subordinates as they actually performed the undesirable action with
the result that the sergeant became angry at his subordinates, even though
he commanded them to perform the offensive act. Clearly, such results indicate
an impoverished ability to assign social credit and blame.

To address this limitation we turn to social psychology. This is in con-
trast to most computational work on blame assignment that, inspired by
philosophy or law, emphasizes prescriptive approaches that try to identify
“ideal” principles of responsibility (e.g., the legal code or philosophical
principles) and ideal mechanisms to reason about these, typically contra-
dictory principles (e.g., non-monotonic or case-based reasoning) (McCarty,
1997). As our primary goal is to inform the design of realistic virtual hu-
mans that mimic human communicative and social behavior, our work
differs from these models in emphasizing descriptive rather than prescrip-
tive models.

Our extension of EMA is motivated by psychological attribution theory,
specifically the work of Weiner (Weiner, 1995) and Shaver (Shaver, 1985), as
their symbolic approaches mesh well with our existing approach. Indeed,
Lazarus pointed to Shaver as a natural complement to his own theory. In
these theories, the assignment of credit or blame is a multi-step process

232 Jonathan Gratch, Wenji Mao, and Stacy Marsella

Attribution Variables

Caused \ Foreseen Intended Voluntary

No Excuse Blame
Excuse

Negative

Coerced
Consequence

Unintended

Unforeseen

Increasing responsibility but no blame >

FIGURE 9.5. Process model of blame/credit attribution (adapted from Shaver).

initiated by events with positive or negative consequences and mediated
by several intermediate variables (see Figure 9.5). First one assesses causal-
ity, distinguishing between personal versus impersonal causality (i.e., is
causal agent a person or a force of nature). If personal, the judgment
proceeds by assessing key factors: did the actor foresee its occurrence; was
it the actor’s intention to produce the outcome; was the actor forced under
coercion (e.g., was the actor acting under orders)? As the last step of the pro-
cess, proper degree of credit or blame is assigned to the responsible agent.!
We extend EMA by incorporating these mediating factors (foreseeabil-
ity, coercion, etc.) into our assignment of causal attribution. The variables
mediating blame in these models are readily derived by representations
underlying appraisal and we show how planning and dialog processing
can inform and alter these assessments. Causality and intention map to our
representations of action, beliefs, desires, and intentions. Coercion requires
a representation of social relationships and understanding of the extent to
which it limits one’s range of options. For example, one may be ordered to
carry out a task but to satisfy the order, there may be alternatives that vary
in blame or creditworthiness. In the remainder of this section, we describe
this extension in detail.

4.1 Computational Representation

4.1.1 Actions and Consequences

EMA represents causal information through a hierarchical plan represen-
tation. Actions consist of a set of propositional preconditions and effects.
Each action step is either a primitive action (i.e., an action that can be

! Note that we did not strictly follow the process model of Shaver in our approach. As it is
explained in later sections, we model the same basic inferences but relax the strict sequential
nature of his model. This generalization follows more naturally from the model and, indeed,
has been argued for by subsequent theorists (e.g., Weiner).

Modeling Social Emotions and Social Attributions 233

directly executed by some agent) or an abstract action. An abstract action
may be decomposed hierarchically in multiple ways and each alternative
consists of a sequence of primitive or abstract sub-actions. The desirability
of action effects (i.e., effects having positive/negative significance to an
agent) is represented by utility values (Blythe, 1999) and the likelihood of
preconditions and effects is represented by probability values.

A non-decision node (or And-node) is an abstract action that can be de-
composed only in one way. A decision node (or Or-node), on the other hand,
can be decomposed in more than one way. In a decision node, an agent
needs to make a decision and select among different options. If a decision
node A can be decomposed in different ways a1, as, ...a,, we will refer
to ay, az, ...ay as alternatives of each other. Clearly, a primitive action is a
non-decision node, whereas an abstract action can be either a non-decision
node or a decision node.

Consequences or outcomes (we use the terms as exchangeable in this
chapter) of actions are represented as a set of primitive action effects. The
consequence set of an action A is defined recursively from leaf nodes (i.e.,
primitive actions) in plan structure to an action Aas follows. Consequences
of a primitive action are those effects with non-zero utility, and all the
consequences of a primitive action are certain. For an abstract action, if
the abstract action is a non-decision node, then the consequence set of the
abstract action is the union of the consequences of its sub-actions. If the
abstract action is a decision node, we need to differentiate two kinds of
consequences. If a consequence p of a decision node occurs among all the
alternatives, we call p a certain consequence of the decision node; otherwise
p is an uncertain consequence of the node.

In addition, each action step is associated with a performer (i.e., the agent
that performs the action) and an agent who has authority over its execution.
The performer cannot execute the action until authorization is given by the
authority. This represents the hierarchical organizational structure of social
agents.

4.1.2 Attribution Variables
Weiner and Shaver define the attribution process in terms of a set of key
variables:?

Causality refers to the connection between actions and the effects they
produce. In our approach, causal knowledge is encoded via hierarchical task
representation. Interdependencies between actions are represented as a set
of causal links and threat relations. Each causal link specifies that an effect
of an action achieves a particular goal that is a precondition of another
action. Threat relations specify that an effect of an action threatens a causal
link by making the goal unachievable before it is needed.

2 Note that these models differ in terminology. Here we adopt the terminology of Shaver.

234 Jonathan Gratch, Wenji Mao, and Stacy Marsella

Foreseeability refers to an agent’s foreknowledge about actions and con-
sequences. We use know and bring-about to represent foreseeability. If an
agent knows that an action brings about certain consequence before its
execution, then the agent foresees that the action brings about the conse-
quence.

Intention is generally conceived as a commitment to work toward a cer-
tain act or outcome. Intending an act (i.e., act intention) is distinguished
from intending an outcome of an act (i.e., outcome intention) in that the for-
mer concerns actions whereas the latter concerns consequences of actions.
Most theories argue that outcome intention rather than act intention is the
key factor in determining accountability and intended outcome usually de-
serves more elevated accountability judgments (Weiner, 1986,2001). We use
intend with do to represent act intention and intend with achieve for outcome
intention. Because our work is applied to rich social context, comparing
with (Bratman, 1987; Grosz & Kraus, 1996), we include indirect intentions
in our work. For example, an agent intends an action or a consequence,
but may not be the actor himself/herself (i.e., by intending another agent
to act or achieve the consequence), or an agent intends to act but is coerced
to do so.

Similar difference exists in coercion. An agent may be coerced to act (i.e.,
act coercion) yet not be coerced to achieve any outcome of the action (i.e.,
outcome coercion), depending on whether the agent has choices in achiev-
ing different outcomes among alternatives. It is important to differentiate
act coercion and outcome coercion, because it is the latter that actually
influences our judgment of behavior, and is used to determine the respon-
sible agent. We use coerce with do to represent act coercion and coerce with
achieve for outcome coercion. In the case of outcome coercion, the respon-
sible agent for a specific outcome is the performer or the authority of an
action, but the action may not be the primitive one that directly leads to the
outcome.

4.1.3 Representational Primitives
In modeling Shaver and Weiner’s attribution theory, we need to map at-
tribution variables into representational features of an agent’s causal in-
terpretation. Here we define a number of specific primitive features that
support this mapping.

Let x and y be different agents. Let Aand B be actions and p a proposi-
tion. The following primitives are adopted in the system:

(1) and-node(A): Ais a non-decision node in plan structure.

(2) or-node(A): Ais a decision node in plan structure.

(3) alternative(A, B): A and B are alternatives of performing the same
higher-level action.

(4) effect(A): Effect set of a primitive action A.

Modeling Social Emotions and Social Attributions 235

(5) consequence(A): Certain consequence set of A.
(6) performer(A): Performing agent of A.
(7) authority(A): Authorizing agent of A.
(8) know(x, p): x knows p.
(9) intend(x, p): x intends p.
(10) coerce(y, x, p): y coerces x to achieve the proposition p.
(11) want(x, p): x wants p.
(12) by(A, p): By acting A to achieve p.
(13) bring-about(A, p): Abrings about p.
(14) do(x, A): x does A.
(15) achieve(x, p): x achieves p.
(16) responsible(p): Responsible agent for p.
(17) superior(y, x): y is a superior of x.

414 Axioms

We identify the interrelations of attribution variables, expressed as axioms.
The axioms are used either explicitly as commonsense inference rules for de-
riving key attribution values, or implicitly to keep the consistency between
different inference rules.

Let x and y be different agents. Let A be an action and p a proposition.
The following axioms hold from a rational agent’s perspective (To simplify
the logical expressions, we omit the universal quantifiers in this chapter,
and substitute A for do(*, A) and p for achieve(x, p) here).

(1) 3Fy(coerce(y, x, A)) = intend(x, A)

(2) intend(x, A) A =(Jy(coerce(y, x, A)) = Ip(p € consequence(A) A
intend(x, p))

(3) intend(x, p) = FA(p € consequence(A) A intend(x, A))

(4) intend(x, by(A, p)) = know(x, bring-about(A4, p))

The first axiom shows that act coercion entails act intention. It means that
if an agent is coerced to perform an action A by another agent, then the
coerced agent intends A.®> The second and the third axioms show the
relations between act intention and outcome intention. The second one
means that if an agent intends an action A and the agent is not coerced to
doso (i.e. Aisavoluntary act), then the same agent must intend at least one
consequence of A. The third means that if an agent intends a consequence p,
the same agent must intend at least one action that has p as a consequence.*
Note that in both axioms, intending an action or a consequence includes

3 The notion of intention in this axiom is not identical to the typical implication of intention
in literatures, as here it is applied to coercive situations.

4 This axiom is not true in general cases, as the agent may not know that an action brings
about p. Here we apply it within the restrictive context of after-action evaluation, where
actions have been executed and the consequence has occurred.

236 Jonathan Gratch, Wenji Mao, and Stacy Marsella

the case in which an agent intends another agent to act or achieve the con-
sequence. The last one shows the relation between intention and foresee-
ability. It means that if an agent intends acting A to achieve a consequence
p, the same agent must know that Abrings about p.

4.1.5 Attribution Rules

Social credit assignment focuses on consequences with personal signifi-
cance to an agent. This evaluation is always from the perspective of a per-
ceiving agent and based on the attribution values acquired by the individ-
ual perceiver. As different perceivers have different preferences, different
observations, and different knowledge and beliefs, it may well be the case
that for the same situation, different perceivers form different judgments.

Nevertheless, the attribution process and rules are general, and applied
uniformly to different perceivers. Following Weiner’s (2001) attribution
theory, we use coercion to determine the responsible agent for credit or
blameworthiness, and intention and foreseeability in assigning the intensity
of credit/blame.

If an action performed by an agent brings about a positive/negative con-
sequence, and the agent is not coerced to achieve the consequence, then
credit/blame is assigned to the performer of the action. Otherwise, assign
credit/blame to the authority. If the authority is also coerced, the process
needs to be traced further to find the responsible agent for the consequence.
The back-tracing algorithm for finding the responsible agent will be given
later.

Rule 1: If <consequence> of <action> is positive /negative and
<performer> is not coerced the <consequence>
Then Assign credit /blame to the <performer>

Rule 2: 1f <consequence> of <action> is positive /negative and
<performer> is coerced the <consequence>
Then Assign credit /blame to the <responsible agent>

We adopt a simple categorical model of intensity assignment, though one
could readily extend the model to a numeric value by incorporating proba-
bilistic rules of inference. If the responsible agent intends the consequence
while acting, the intensity assigned is high. If the responsible agent does
not foresee the consequence, the intensity is low.

4.2 Commonsense Inference

Judgments of causality, foreseeability, intentionality, and coercion are in-
formed by dialog and causal evidence. Some theories have formally ad-
dressed subsets of this judgment task. For example, Sadek (1990) addresses
the relationship between dialog and inferences of belief and intention.
These theories have not tended to consider coercion. Rather than trying to

Modeling Social Emotions and Social Attributions 237

synthesize and extend such theories, we introduce small number of com-
monsense rules that, via a justification-based truth maintenance system
(JTMS), allow agents to make inferences based on this evidence.

4.2.1 Dialog Inference

Conversational dialog between agents is a rich source of information for
deriving values of attribution variables. In a conversational dialog, a speaker
and a hearer take turns alternatively. When a speech act (Austin, 1962; Searle,
1969, 1979) is performed, a perceiving agent (who can be one of the par-
ticipating agents or another agent) makes inferences based on observed
conversation and current beliefs. As the conversation proceeds, beliefs are
formed and updated accordingly.

Assume conversations between agents are grounded (Traum & Allen,
1994) and they conform to Grice’s maxims of Quality® and Relevance® (Grice,
1975). Social information (agents’ social roles, relationship, etc) is also im-
portant, for example, an order can be successfully issued only to a subor-
dinate, but a request can be made of any agent.

x and y are different agents. p and g are propositions and ¢ is time.
For our purpose, we analyze following speech acts that help infer agents’
desires, intentions, foreknowledge, and choices in acting.

(1) inform(x, y, p, t): x informs y that p at ¢.

(2) request(x,y, p,t): x requests y that p at £.

(3) order(x, y, p,t): x orders y that p at f.

(4) accept(x, p, t): x accepts p at t.

(5) reject(x, p, t): x rejects p at t.

(6) counter-propose(x, p, 4, t): x counters p and proposes g at t.

We have designed commonsense rules that allow perceiving agents to infer
from dialog patterns. These rules are general. Hence, they can be combined
flexibly and applied to variable-length dialog sequences with multiple par-
ticipants.

Let z be a perceiving agent. If at time t1, a speaker (s) informs a hearer
(h) that p, then after t1 a perceiving agent can infer that both the speaker
and the hearer know that p as long as there is no intervening contradictory
belief.

Rule 3: inform(s, h, p, t1) A t1<t3 A =(3t2)(t1< t2<t3 A
believe(z, —know(s, p)Vv —know(h, p), t2)) = believe(z,
know(s, p) Aknow(h, p), t3)

A request gives evidence of the speaker’s desire (or want). An order gives
evidence of the speaker’s intent.

5 The Quality maxim states that one ought to provide true information in conversation.
6 The Relevance maxim states that one’s contribution to conversation ought to be pertinent
in context.

238 Jonathan Gratch, Wenji Mao, and Stacy Marsella

Rule 4: request(s, p, t1) A t1<t3 A —(I2)(t1< t2< 3 A

believe(z, —want(s, p), t2)) = believe(z, want(s, p), t3)
Rule 5: order(s, p, t1) A t1<t3 A =(3t2)(t1< t2<t3 A

believe(z, —intend(s, p), t2)) = believe(z, intend(s, p), t3)

The hearer may accept, reject, or counter-propose. If the speaker wants (or
intends) and the hearer accepts, it can be inferred that the hearer intends.
An agent can accept via speech or action execution. If the hearer accepts
what the superior wants (or intends), there is evidence of coercion.

Rule 6: believe(z, want/intend(s, p), t1) A accept(h, p, t2) A
—superior(s, h) A t1<t2<t4 A =(3t3)(t2< t3<t4 A
believe(z, —intend(h, p), t3)) = believe(z, intend(h, p), t4)

Rule 7: believe(z, want/intend(s, p), t1)A accept(h, p, £2) A
superior(s, h) A t1<t2<t4 A =(3t3)(t2< t3< t4 A
believe(z, —coerce(s, h, p), t3)) =
believe(z, coerce(s, h, p), t4)

In the rules above, if act coercion is true, act intention can be deduced from
Axiom 1.

If the speaker wants (or intends) and the hearer rejects, infer that the
hearer does not intend.

Rule 8: believe(z, want/intend(s, p), t1) Areject(h, p, t2) A
tl<t2<t4 A —(3t3)(t2< t3< t4 A believe(z, intend(h, p), t3)) =
believe(z, —intend(h, p), t4)

If the hearer counters acting A and proposes acting B instead, both the
speaker and the hearer are believed to know that Aand B are alternatives.
It is also believed that the hearer does not want A and wants B instead.

Rule9: counter-propose(h, do(h, A), do(h, B), t1) At1<t3 A
—(3t2)(t1< t2< t3 A believe(z, —know(h, alternative(A, B)) v
—know(s, alternative(A, B)), t2)) = believe(z, know(h,
alternative(A, B)) A know(s, alternative(A, B)), t3)

Rule 10: counter-propose(h, p, q, t1) A t1<t3 A =(3t2)(t1<t2<t3 A
believe(z, want(h, p) v —want(h, q), t2)) = believe(z,
—want(h, p)Awant(h, q), t3)

If the speaker has known that two actions are alternatives and still requests
(or orders) one of them, infer that the speaker wants (or intends) the chosen
action instead of the alternative. The beliefs that the speaker wants (or
intends) the chosen action can be deduced from Rules 4 and 5.

Rule 11: believe(z, know(s, alternative(A, B)), t1)A request/order(s,
do(h, A), t2) A tl<t2<t4 A —=(3t3)(t2< t3< t4 A believe(z, want
(s, do(h, B)), t3)) = believe(z, ~want/intend(s, do(k, B)), t4)

Modeling Social Emotions and Social Attributions 239

4.2.2 Causal Inference

Causal knowledge encoded in plan representation also helps derive values
of attribution variables. Different agents may have access to different plans
in memory. Although plans are specific to certain domains, the structure
and features of plans can be described using domain-independent terms
such as action types, alternatives, and action effects. We adopt the hierar-
chical task formalism that differentiates action types, explicitly expresses
consequences of alternatives, and separates certain consequences of an
action from its uncertain ones.

An agent’s foreknowledge can be derived simply by checking primitive
action effects. If a consequence p is an effect of a primitive action A, then
the agents involved (i.e., the performer and the authority) should know
that Abrings about p.

Rule12: peeffect(A) = believe(z, know(performer(A), bring-about(A4,

p))
peeffect(A) = believe(z, know(authority(A), bring-about(A,

P))

Outcome intent can be partially inferred from evidence of act intent and
comparative features of consequence sets of action alternatives. According
to Axiom 2,if an agentintends a voluntary action A, the agent must intend at
least one consequence of A. If Ahas only one consequence p, then the agent
is believed to intend p. In more general cases, when an action has multiple
consequences, in order to identify whether a specific outcome is intended
or not, a perceiver may examine alternatives the agent intends and does
not intend, and compare the consequences of intended and unintended
alternatives.

Ifanagentintends an action Avoluntarily and does intend its alternative
B, we can infer that the agent either intends (at least) one consequence that
only occurs in A or does not intend (at least) one consequence that only
occurs in B, or both. If the consequence set of A is a subset of that of B,
the rule can be simplified. As there is no consequence of A not occurring
in the consequence set of B, we can infer that the agent does not intend (at
least) one consequence that only occurs in B. In particular, if there is only
one consequence p of B that does not occur in the consequence set of A,
infer that the agent does not intend p.

Rule13: believe(z, intend(x, A) A —intend(x, B) A =(Jy(superior(y, x)A
coerce(y, x, A)))) A alternative(A, B) A consequence(A) C
consequence(B) = Ip(p ¢consequence(A) A p € consequence
(B) Abelieve(z, —intend(x, p)))

On the other hand, given the same context that an agent intends an action
A and does not intend its alternative B, if the consequence set of B is a

240 Jonathan Gratch, Wenji Mao, and Stacy Marsella

subset of that of A, infer that the agent intends (at least) one consequence
that only occurs in A. In particular, if there is only one consequence p of
Athat does not occur in the consequence set of B, the agent must intend p.

Rule 14: believe(z, intend(x, A) A —intend(x, B) A =(3y(superior(y, x)A
coerce(y, x, A)))) A alternative(A, B) A consequence(B) C
consequence(A) =3p(p econsequence(A) A p ¢
consequence(B) A believe(z, intend(x, p)))

Outcome coercion can be properly inferred from evidence of act coercion
and consequence sets of different action types. In a non-decision node (i.e.,
and-node), if an agent is coerced to act, the agent is also coerced to achieve
the consequences of subsequent actions, for the agent has no other choice.

Rule 15: Jy(superior(y, x) A believe(z, coerce(y, x, A)) A and-node(A) A
p € consequence(A) = believe(z, coerce(y, x, p)))

In a decision node (i.e., or-node), however, an agent must make a decision
among multiple choices. Even if an agent is coerced to act, it does not follow
that the agent is coerced to achieve a specific consequence of subsequent
actions. To infer outcome coercion, we examine the choices at a decision
node. If an outcome is a certain consequence of every alternative, then it is
unavoidable and thus outcome coercion is true. Otherwise, if an outcome is
an uncertain consequence of the alternatives, then the agent has the option
to choose an alternative to avoid this outcome and thus outcome coercion
is false. Our definition of consequence set ensures the consistency when
the rules are applied to actions at different levels of plan structure.

Rule 16: 3y(superior(y, x) A believe(z, coerce(y, x, A)) A or-node(A)A p €
consequence(A) = believe(z, coerce(y, x, p)))
Jy(superior(y, x) A believe(z, coerce(y, x, A)) A or-node(A) A
p ¢ consequence(A) = believe(z, —coerce(y, x, p)))

4.3 Back-Tracing Algorithm

We have developed a back-tracing algorithm for evaluating the responsible
agent for a specific consequence. The evaluation process starts from the
primitive action that directly causes a consequence with positive or nega-
tive utility. Because coercion may occur in more than one level in a hierar-
chical plan structure, the process must trace from the primitive action to the
higher-level actions. We use a back-tracing algorithm to find the respon-
sible agent. The algorithm takes as input some desirable or undesirable
consequence of a primitive action (step 1) and works up the task hierarchy.’
During each pass through the main loop (step 2), the algorithm initially as-
signs default values to the variables (step 2.2). Then apply dialog rules to

7 Given that the evaluating agent is aware of the task hierarchy.

Modeling Social Emotions and Social Attributions 241

infer variable values at the current level (step 2.3). If there is evidence that
the performer was coerced to act (step 2.4), the algorithm proceeds by ap-
plying plan inference rules (step 2.5). If there is outcome coercion (step 2.6),
the authority is deemed responsible (step 2.7). If current action is not the
root node in plan structure and outcome coercion is true, the algorithm
enters next loop and evaluates the next level up in the task hierarchy.

After the execution of the algorithm, the responsible agent for the out-
come is determined. Meanwhile, through applying inference rules, the
algorithm also acquires values of intention and foreknowledge about the
agents. The variable values are then used by the attribution rules (Rules
1 and 2) to assign credit or blame to the responsible agent with proper
intensity.

Events may lead to more than one desirable /undesirable consequence.
For evaluating multiple consequences, we can apply the algorithm the
same way, focusing on one consequence each time during its execution.
Then, to form an overall judgment, the results can be aggregated and
grouped by the responsible agents.

Backtrace (consq, plan structure):
1. parent = A, where consq is an effect of action A
2. DO
2.1 node = parent
2.2 coerce(authority(node), performer(node), node) = unknown
coerce(authority(node), performer(node), consq) = unknown
responsible(consq) = performer(node)
2.3 Search dialog history on node and apply dialog inference rules
2.4 IF coerce(authority(node), performer(node), node) THEN
2.5 apply plan inference rules on node
2.6 IF coerce(authority(node), performer(node), consq) THEN
2.7 responsible(consq) = authority(node)
2.8 parent = P, where P is the parent of node in plan structure
WHILE parent # root of plan structure AND
coerce(authority(node), performer(node), consq)
3. RETURN responsible(consg)

4.4 Illustrative Example

The need to extend EMA was motivated by a number of odd social at-
tributions generated by agents in the Mission Rehearsal Exercise (MRE)
leadership training system (Rickel et al., 2002), to which EMA was ap-
plied. By extending EMA with a more realistic social attribution process,
we eliminated the obvious departures of the model from normal human be-
havior. Here we illustrate how the model operates on one of these previous

242

Jonathan Gratch, Wenji Mao, and Stacy Marsella

Support Eagle 1-6
Authority: std
Performer: std

— &

/1 One Squad Forward |,

Authority: std
Performer: sgt

Two squads Forward
Authority: std
Performer: sgt

4th Squad Recon 1st & 4th Fwd 2nd & 3rd Fwd
Authority: sgt Authority: sgt Authority: sgt Authority: sgt
Performer: sld Performer: sld Performer: sld Performer: sld

1-6 supported K [1-6 supported J { Not fractured J

Unit fractured

FIGURE 9.6. Team plan from the sergeant’s perspective

Remaining Fwd

defects. The example arises from the following extract of dialog taken from
an actual run of the system. Details on how this negotiation is automati-
cally generated and how natural language is mapped into speech acts can
be found in (Traum, Rickel, Gratch, & Marsella, 2003):

STUDENT: Sergeant. Send two squads forward.

SERGEANT: That is a bad idea, sir. We shouldn’t split our forces. Instead
we should send one squad to recon forward.

STUDENT: Send two squads forward.

SERGEANT: Against my recommendation, sir. Lopez! Send first and
fourth squads to Eagle 1-6’s location.

LOPEZ: Yes, sir. Squads! Mount up!

We focus on three social actors, the student, the sergeant, and the squad
leader (Lopez), who act as a team in this example. The student is a human
trainee and acts as an authority over the sergeant. The squad leader acts
as a subordinate of the sergeant. Conversations between agents are rep-
resented within the system as speech acts and a dialog history as in the
MRE. Figure 9.6 illustrates the causal knowledge underlying the exam-
ple. Take the sergeant’s perspective as an example. The sergeant perceives
the conversation between the actors and task execution. Dialog history in-
cludes the following acts, ordered by the time the speakers addressed them
(std, sgt and sld stand for the student, the sergeant, and the squad leader,
respectively. t1<t2<- .- <t6).

(1) order(std, do(sgt, two-sqds-fwd), t1)
(2) inform(sgt, std, bring-about(two-sqds-fwd, unit-fractured), t2)

Modeling Social Emotions and Social Attributions 243

(3) counter-propose(sgt, do(sgt, two-sqds-fwd), do(sgt, one-sqd-fwd), t3)
(4) order(std, do(sgt, two-sqds-fwd), t4)

(5) accept(sgt, do(sgt, two-sqds-fwd), t5)

(6) order(sgt, do(sld, 1st-and-4th-to-celic), t6)

To simplify the example, we illustrate part of the task structure from MRE
scenario and evaluate one of the negative consequences, though we can
generally apply the approach in the chapter to more complex judgments.
The sergeant has access to a partial plan, where one squad forward and
two squads forward are two choices of action support eagle-1-6. One squad
forward is composed of two primitive actions, 4th squad (recon) forward and
remaining (squads) forward. Two squads forward consists of 1st and 4th (squads)
to celic and 2nd and 3rd (squads) to celic. Two action effects are salient to the
sergeant, (eagle) 1-6 supported and unit fractured. 1-6 supported is a desirable
team goal. Assume the sergeant assigns negative utility to unit fractured
and this consequence serves as input to the back-tracing algorithm. We
illustrate how to find the blameworthy agent given the sergeant’s task
knowledge and observations.

Loop 1: The algorithm starts from primitive action 1st-and-4th-to-celic, of
which unit-fractured is an effect. The sergeant perceived that the squad leader
performed the action.

Step 2.2: Initially, coerce(sgt, sld, 1st-and-4th-to-celic) and coerce(sgt, sid,
unit-fractured) are unknown. Assign the squad leader to the responsible
agent.

Step 2.3: Relevant dialog history is act 6. Because the sergeant ordered the
squad leader the act, apply Rule 5. The algorithm infers that the sergeant
believes he intended the squad leader to act. Because the squad leader ac-
cepted by executing the action and the sergeant is the superior, apply Rule
7. The sergeant believes that he coerced the squad leader to act.

Steps 2.4-2.5: Because coerce(sgt, sld, 1st-and-4th-to-celic) is true and the
primitive action is an and-node in the plan structure, apply Rule 15. The
sergeant believes he coerced the squad leader to fracture the unit. Because
unit-fractured is an effect of the primitive action, apply Rule 12. The sergeant
believes that both he and the squad leader knew the action bringing about
unit-fractured.

Steps 2.6-2.7: Because coerce(sgt, sld, unit-fractured) is true, assign the
sergeant to the responsible agent. The sergeant believes that he is responsi-
ble for unit-fractured and he has the foreknowledge while acting.

Because parent node is not the root of plan structure and outcome coercion
is true, the algorithm enters next loop.

244 Jonathan Gratch, Wenji Mao, and Stacy Marsella

Loop 2: The action is two-sqds-fwd, performed by the sergeant. Relevant
dialog history is Acts 1-5. A variety of beliefs can be inferred from com-
monsense rules by analyzing the task structure and conversation history.
The results are given below.

(1) Dbelieve(sgt, intend(std, do(sgt, two-sqds-fwd))) (act 1 or 4, rule 5)
(2) believe(sgt, know(sgt, bring-about(two-sqds-fwd, unit-fractured))) (act 2, rule 3)
(3) Dbelieve(sgt, know(std, bring-about(two-sqds-fwd, unit-fractured))) (act 2, rule 3)
(4) Dbelieve(sgt, know(sgt, alternative(one-sqd-fwd, two-sqds-fwd))) (act 3, rule 9)
(5) Dbelieve(sgt, know(std, alternative(one-sqd-fwd, two-sqds-fwd))) (act 3, rule 9)
(6) Dbelieve(sgt, — want(sgt, do(sgt, two-sqds-fwd))) (act 3, rule 10)
(7) Dbelieve(sgt, want(sgt, do(sgt, one-sqd-fwd))) (act 3, rule 10)
(8) Dbelieve(sgt, — intend(std, do(sgt, one-sqd-fwd))) (act 4, result 5, rule 11)
(9) Dbelieve(sgt, coerce(std, sgt, two-sqds-fwd)) (act 5, result 1, rule 7)
(10) believe(sgt, coerce(std, sgt, unit-fractured)) (act 5, result 9, rule 15)

After Loop 2, the sergeant believes the student coerced him to fracture the
unit (Result 10). So the student is responsible for the outcome.

Loop 3: The action is support-eagle-1-6, performed by the student. Thereisno
relevant dialog in history. The initial values and the responsible agent are
as default. There is no clear evidence of coercion, so the sergeant believes
that the student is the responsible agent. Parent node is the root of plan. The
algorithm terminates.

Now the sergeant also believes that the student intended to send two
squads forward and did not intend to send one squad forward (Results 1
and 8). Because the consequence set of one-sqd-fwd (i.e., 1-6-supported) is a
subset of that of two-sqds-fwd (i.e., 1-6-supported and unit-fractured), apply
Rule 14. The sergeant believes that the student intended unit-fractured and
foresaw the outcome (Result 3), so the student is to blame for unit-fractured
with high intensity.

4.5 Discussion

By incorporating this richer model of causal attribution into EMA, the sys-
tem now gives reasonable inferences on situations that arise in our current
MRE application. As the work moves forward, several issues need further
attention. We must incorporate probabilistic reasoning to deal with uncer-
tainty in observations and judgment process. For modeling more complex
multi-agent teamwork, we need to consider joint responsibility and shar-
ing responsibility among teammates (the current model assumes one agent
has sole responsibility) and less hierarchical relationships between social
actors. Some inference rules are too restrictive and need to make better
use of plan knowledge, particularly considering how preconditions and
effects indirectly limit one’s choices in acting. As our task representation

Modeling Social Emotions and Social Attributions 245

has already encoded information about action preconditions and effects,
this should be a natural extension of our existing methods.

A critical issue is formal evaluation. Although the work is based on
psychological theory and seems to provide reasonable responses in prac-
tice, we would like to more systematically assess the veracity of the ap-
proach. This is a challenge given that social attributions are more variable
than many phenomena studied by cognitive science, differing widely both
within and across individuals depending on non-observable factors like
goals, beliefs, cultural norms, etc. And unlike work in decision making,
there is no accepted normative model of such attributions or their dynam-
ics that we can use as a gold standard for evaluating techniques. We would
like to build on the “situational psychology” methodology we have used in
evaluating the basic model (Gratch & Marsella, 2004a). Under this method-
ology, people are presented with a description of an evolving situation and
queried as to their feelings and interpretations during several intermediate
stages of the episode. In using this methodology to assess the extensions
related to social attribution, we must identify or create a corpus of situ-
ations involving social attributions and compare the results of the model
against human data.

5 EVALUATION

Given the broad influence emotions have over behavior, evaluating the
effectiveness of such a general architecture presents some unique chal-
lenges. Emotional influences are manifested across a variety of levels and
modalities. For instance, there are telltale physical signals: facial expres-
sions, body language, and certain acoustic features of speech. There are
also influences on cognitive processes, including coping behaviors such as
wishful thinking, resignation, or blame-shifting. Unlike many phenomena
studied by cognitive science, emotional responses are also highly variable,
differing widely both within and across individuals depending on non-
observable factors like goals, beliefs, cultural norms, etc. And unlike work
in rational decision making, there is no accepted, idealized model of emo-
tional responses or their dynamics that we can use as a gold standard for
evaluating techniques.

In evaluating our model, we adopt a multi-pronged approach, identify-
ing certain specific functions that emotions play in humans and assessing
the extent that the model reproduces those functions. Here we briefly sum-
marize two recent evaluation studies, each illustrating this multi-pronged
approach. In the first study, we address the question of process dynamics:
does the model generate cognitive influences that are consistent with hu-
man data on the influences of emotion, specifically with regard to how emo-
tion shapes perceptions and coping strategies, and how emotion and cop-
ing unfold over time. In the second, we address the question of behavioral

246 Jonathan Gratch, Wenji Mao, and Stacy Marsella

Controllability Coping Strategies
4
N~
2 ~X Aversive Loss
1
0 Phase | Seek information Suppress information
1 Take action Procrastinate
Start Phase 2
Seek instrumental support
Changeability
4 Phase | Mental disengagement Mental disengagement
K 2 Suppress information Suppress information
3
Resignation
2 [—— Wishful thinking
q Good | Accept responsibility
1
Bad Mental disengagement Mental disengagement
0 T Suppress information Suppress information
Start Phase 2
Valence
5 X/x —&— Loss (human)
. \
R)(/ —— Averse (human)
21— Loss (model)
1
0 —X%— Averse (model)
T T K

Start Phase2 Bad Good

FIGURE 9.7. Some results from the emotion process evaluation. The experiment
compares human and model responses to two emotion evoking scenarios (”aver-
sive” and “loss”). Each scenario evolves over three phases, ending in either a good
or bad outcome and subjects are queried as to their emotional state, appraisals,
and coping strategies after each phase. The model fits the basic trends of human
subjects, though differs in specific ratings.

influence: do external behaviors have the same social influence on a human
subject that one person’s emotion has on another person, specifically with
regard to how emotional displays influence third-party judgments.

In the first study, we fit our model to a standard instrument used in
the clinical psychological evaluation of a person’s emotional and coping
response to stressful situations, and in particular, how these responses
evolve over time. In the Stress and Coping Process Questionnaire (Perrez
& Reicherts, 1992), a subject is presented a stereotypical situation, such
as an argument with their boss. They are asked how they would respond
emotionally and how they would cope. They are then given subsequent

Modeling Social Emotions and Social Attributions 247

updates on the situation and asked how their emotions/coping would
dynamically unfold in light of systematic variations in both expectations
and perceived sense of control. Based on their evolving pattern of re-
sponses, subjects are scored as to how closely their reactions correspond to
those of normal healthy adults. In our evaluation, we encode these evolv-
ing situations in EMA’s domain language, run the scenarios, and compare
EMA’s appraisals and coping strategies to the responses indicated by the
scale. Figure 9.7 illustrates the basic results. The model matches the basic
trends of normal human subjects, though differs in some particulars. See
(Gratch & Marsella, 2004b) for details.

For evaluating the social impact of our model, we are initially focus-
ing on the phenomena of social referencing, whereby people, when pre-
sented with an ambiguous decision, are influenced by appraisals of others
(Campos, 1983). In our evaluation, we assess the ability of synthetic emo-
tion displays to induce social referencing in human subjects in the context
of the Mission Rehearsal Exercise. Subjects observe the disagreement de-
scribed in the student-sergeant dialog above and are asked to indicate
which course of action is better (sending two squads forward or sending
one squad). As subjects have no military background, the correct action is
ambiguous. Across two experimental conditions, we vary the emotional
displays of the virtual team members that will ultimately have to carry out
the order: in the “reference two squads” condition, the team members uni-
formly exhibit positive emotional displays when “two squads forward” is
proposed and negative displays when “one squad forward” is proposed;
vice versa for the “reference one squad” condition. The hypothesis is that
human subjects both recognize that these displays indicate a preference and
will be influenced to adopt a decision that is consistent with this preference.
The results, shown in Figure 9.8, support this hypothesis. See (Gratch &
Marsella, 2004a) for more details.

One squad |
(] .. :
forward Response to “What action would you
T prefer?”
| M Response to “What action do you believe
the team members preferred?”
Two squads |
forward
Reference Reference
one squad two squads

FIGURE 9.8. Study illustrates that the emotional displays of virtual characters can in-
fluence the decision making of human subjects. Consistent with the phenomenon
of social referencing, when presented with an ambiguous decision, subjects in-
ferred how bystanders appraised the situation through their emotional displays
and factored this information into their decision.

248 Jonathan Gratch, Wenji Mao, and Stacy Marsella

Together, the results lend support to both the fidelity and social impact
of the basic model. The extensions described in Section 4 have yet to be
formally evaluated. The basic structure of this study will follow the basic
structure of the first study, though with material drawn from empirical
studies of attribution theory.

6 SUMMARY

EMA provides a general and comprehensive model of the processes under-
lying cognitive appraisal. In particular, we feel it is the first process model
that explains how the appraisal of an event can change over time (by ty-
ing appraisal to an interpretation that can change with further inference)
and is the first comprehensive attempt to model the range of human cop-
ing strategies. It is also one of the most comprehensive integrations of an
appraisal model with other reasoning capabilities including planning, nat-
ural language processing, and non-verbal behavior. This chapter signifi-
cantly extends the model’s ability to reason about multi-agent situations
by providing a cognitively plausible model of social blame and credit as-
signment based on social attribution theory.

ACKNOWLEDGMENTS

This chapter benefited from insightful feedback from Jerry Hobbs, Andrew
Gordon, David Traum, John Laird, Aaron Sloman, Josef Nerb and the
anonymous reviewers. This work was funded by the Department of the
Army under contract DAAD 19-99-D-0046. Any opinions, findings, and
conclusions expressed in this chapter are those of the authors and do not
necessarily reflect the views of the Department of the Army.

References

Ambros-Ingerson,]. & Steel, S. (1988). Integrating planning, execution and monitoring.
Paper presented at the Seventh National Conference on Artificial Intelligence,
St. Paul, MN.

Anderson, J. R. & Lebiere, C. (2003). The Newell Test for a theory of cognition.
Behavioral and Brain Sciences, 26, 587-640.

André, E,, Rist, T., Mulken, S. V., & Klesen, M. (2000). The automated design of
believable dialogues for animated presentation teams. In J. Cassell, J. Sullivan,
S. Prevost, & E. Churchill (Eds.), Embodied conversational agents (pp. 220-255).
Cambridge, MA: MIT Press.

Austin, J. (1962). How to do things with words. Cambridge, MA: Harvard University
Press.

Blythe, J. (1999, Summer). Decision theoretic planning. AI Magazine, 20(2), 37-54.

Bratman, M. (1987). Intention, plans and practical reason: Harvard University Press.

Modeling Social Emotions and Social Attributions 249

Bratman, M. (1990). What is intention? In P. Cohen,]. Morgan & M. Pollack (Eds.),
Intentions in communication. Cambridge, MA: MIT Press.

Campos, J. J. (1983). The importance of affective communication in social referenc-
ing: A commentary on Feinman. Merrill-Palmer Quarterly, 29, 83-87.

Cassell, J., Bickmore, T., Campbell, L., Vilhjalmsson, H., & Yan, H. (2000). Hu-
man conversation as a system framework: Designing embodied conversational
agents. InJ. Cassell, J. Sullivan, S. Prevost & E. Churchill (Eds.), Embodied conver-
sational agents (pp. 29-63). Boston: MIT Press.

Damasio, A. R. (1994). Descartes’ error: Emotion, reason, and the human brain. New
York: Avon Books.

Davidson, R. J., Scherer, K., & Goldsmith, H. H. (Eds.). (2003). Handbook of affective
sciences. New York: Oxford University Press.

El Nasr, M. S., Yen, J., & Ioerger, T. (2000). FLAME: Fuzzy logic adaptive model of
emotions. Autonomous Agents and Multi-Agent Systems, 3(3), 219-257.

Elliott, C. (1992). The affective reasoner: A process model of emotions in a multi-agent
system. PhD Dissertation No. 32. Evanston, IL: Northwestern University Institute
for the Learning Sciences.

Frank, R. (1988). Passions with reason: the strategic role of the emotions. New York:
W. W. Norton.

Gratch, J. (2000). Emile: Marshalling passions in training and education. Paper pre-
sented at the Fourth International Conference on Intelligent Agents, Barcelona,
Spain.

Gratch, J. & Marsella, S. (2001). Tears and fears: Modeling emotions and emotional
behaviors in synthetic agents. Paper presented at the Fifth International Conference
on Autonomous Agents, Montreal, Canada.

Gratch, J. & Marsella, S. (2003). Fight the way you train: The role and limits of emo-
tions in training for combat. Brown Journal of World Affairs, X(1)(summer /fall).
Gratch, J. & Marsella, S. (2004a). Evaluating a general model of emotional appraisal and
coping. Paper presented at the AAAI Symposium on Architectures for Modeling

Emotion: Cross-disciplinary foundations, Palo Alto, CA.

Gratch, J. & Marsella, S. (2004b). Evaluating the modeling and use of emotion in vir-
tual humans. Paper presented at the 3rd International Joint Conference on Au-
tonomous Agents and Multiagent Systems, New York.

Grice, H. P. (1975). Logic and conversation. In P. Cole & J. Morgan (Eds.), Syntax
and semantics (Vol. 3). Reading, MA: Academic Press.

Grosz, B. & Kraus, S. (1996). Collaborative plans for complex group action. Artificial
Intelligence, 86(2), 269-357.

Lazarus, R. (1991). Emotion and adaptation. New York: Oxford University Press.

Lester, J. C., Stone, B. A., & Stelling, G. D. (1999). Lifelike pedagogical agents for
mixed-initiative problem solving in constructivist learning environments. User
Modeling and User-Adapted Instruction, 9(1-2), 1-44.

Marsella, S. & Gratch, J. (2002). A step toward irrationality: Using emotion to change
belief. Paper presented at the First International Joint Conference on Autonomous
Agents and Multiagent Systems, Bologna, Italy.

Marsella, S. & Gratch, J. (2003). Modeling coping behaviors in virtual humans: Don’t
worry, be happy. Paper presented at the Second International Joint Conference on
Autonomous Agents and Multi-Agent Systems, Melbourne, Australia.

250 Jonathan Gratch, Wenji Mao, and Stacy Marsella

Marsella, S., Johnson, W. L., & LaBore, C. (2000). Interactive pedagogical drama. Pa-
per presented at the Fourth International Conference on Autonomous Agents,
Montreal, Canada.

Marsella, S., Johnson, W. L., & LaBore, C. (2003). Interactive pedagogical drama for
health interventions. Paper presented at the Conference on Artificial Intelligence
in Education, Sydney, Australia.

McCarty, L. (1997). Some arguments about legal arquments. Paper presented at the
sixth International Conference on Artificial Intelligence and Law, Melbourne,
Australia.

Mele, A. R. (2001). Self-deception unmasked. Princeton, NJ: Princeton University
Press.

Minsky, M. (1986). The society of mind. New York: Simon and Schuster.

Moffat, D. & Frijda, N. (1995). Where there’s a will there’s an agent. In Workshop on
Agent Theories, Architectures and Languages. New York: Springer-Verlag, 245-260.

Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard University
Press.

Oatley, K. & Johnson-Laird, P. N. (1987). Cognitive theory of emotions. Cognition
and Emotion, 1(1).

Ortony, A., Clore, G., & Collins, A. (1988). The cognitive structure of emotions.
Cambridge, UK: Cambridge University Press.

Peacock, E. & Wong, P. (1990). The stress appraisal measure (SAM): A multidimen-
sional approach to cognitive appraisal. Stress Medicine, 6, 227-236.

Perrez, M. & Reicherts, M. (1992). Stress, coping, and health. Seattle, WA: Hogrefe
and Huber Publishers.

Rickel, J., Marsella, S., Gratch, J., Hill, R., Traum, D., & Swartout, W. (2002). Toward
a new generation of virtual humans for interactive experiences. IEEE Intelligent
Systems, July/August, 32-38.

Rothbaum, B. O., Hodges, L. F.,, Alarcon, R., Ready, D., Shahar, E,, Graap, K., et al.
(1999). Virtual environment exposure therapy for PTSD Vietnam veterans: A case
study. Journal of Traumatic Stress, 12(2), 263-272.

Ryokai, K., Vaucelle, C., & Cassell, J. (2003). Virtual peers as partners in storytelling
and literacy learning. Journal of Computer Assisted Learning, 19(2), 195-208.

Sadek, M. D. (1990). Logical task modeling for man-machine dialogue. Paper presented
at the National Conference on Artificial Intelligence, Boston, MA.

Scherer, K. (1984). On the nature and function of emotion: A component process
approach. In K. R. Scherer & P. Ekman (Eds.), Approaches to emotion (pp. 293-317).
Hillsdale, NJ: Erlbaum.

Scherer, K. R., Schorr, A., & Johnstone, T. (Eds.). (2001). Appraisal processes in emotion.
New York: Oxford University Press.

Searle, J. R. (1969). Speech acts. Cambridge, UK: Cambridge University Press.

Searle, J. R. (1979). Expression and meaning. Cambridge, UK: Cambridge University
Press.

Shaver, K. G. (1985). The attribution of blame: Causality, responsibility, and blamewor-
thiness. New York: Springer-Verlag.

Shaw, E., Johnson, W. L., & Ganeshan, R. (1999). Pedagogical agents on the Web.
Paper presented at the Proceedings of the Third International Conference on
Autonomous Agents, Seattle, WA.

Modeling Social Emotions and Social Attributions 251

Silverman, B. G. (2002). Human behavior models for game-theoretic agents: Case
of crowd tipping. CogSci Quarterly, Fall.

Simon, H. A. (1967). Motivational and emotional controls of cognition. Psychological
Review, 74, 29-39.

Sloman, A. & Croucher, M. (1981). Why robots will have emotions. Paper presented at
the International Joint Conference on Artificial Intelligence, Vancouver, Canada.

Smith, C. A. & Lazarus, R. (1990). Emotion and adaptation. In Pervin (Ed.), Handbook
of Personality:Theory & research (pp. 609-637). New York: Guilford Press.

Traum, D. & Allen, J. F. (1994). Discourse obligations in dialogue processing. Pro-
ceeding of the 32nd Annual Meeting of the Association for Computational Linguistics,
(pp. 1-8), Las Cruces, NM.

Traum, D., Rickel, J., Gratch, J., & Marsella, S. (2003). Negotiation over tasks in hybrid
human-agent teams for simulation-based training. Paper presented at the Interna-
tional Conference on Autonomous Agents and Multiagent Systems, Melbourne,
Australia.

Velasquez, J. (1998). When robots weep: Emotional memories and decision-making. Paper
presented at the 15th National Conference on Artificial Intelligence, Madison, WI.

Weiner, B. (1986). An attributional theory of motivation and emotion. New York:
Springer.

Weiner, B. (1995). The judgment of responsibility. A Foundation for a theory of social
conduct. New York: Guilford Press.

Weiner, B. (2001). Responsibility for social transgressions: An attributional analysis.
In B. FE. Malle, L. J. Moses & D. A. Baldwin (Eds.), Intentions and intentionality:
Foundations of social cognition. Cambridge, MA: The MIT Press.

10

Communicating and Collaborating with
Robotic Agents

J. Gregory Trafton, Alan C. Schultz,

Nicholas L. Cassimatis, Laura M. Hiatt,
Dennis Perzanowski, Derek P. Brock,
Magdalena D. Bugajska, and William Adams

1 INTRODUCTION

For the last few years, the Naval Research laboratory has been attempting
to build robots that are similar to humans in a variety of ways. The goal has
been to build systems that think and act like a person rather than look like a
person, because the state of the art is not sufficient for a robot to look (even
superficially) like a human person. There are at least two reasons to build
robots that think and act like a human. First, how an artificial system acts
has a profound effect on how people act towards the system. Second, how
an artificial system thinks has a profound effect on how people interact
with the system.

2 HOW PEOPLE ACT TOWARDS ARTIFICIAL SYSTEMS

“Everyone” knows that computers have no feelings, attitudes, or desires.
Most people do not worry about hurting a toaster’s feelings or cursing at
a VCR. However, in a surprising series of studies, Cliff Nass has shown
that people in some situations do, in fact, treat computer systems as social
entities. Nass has shown that it takes very little “social-ness” for a person
to treat computers (including robots, Al programs, etc.) as social creatures.

For example, Nass and Moon (2000) examined people’s application of
social categories to computers. Nass and Moon (2000) compared users’ in-
teractions with two computer systems — a tutor and an evaluator — using
different combinations of male and female voices. Even though the par-
ticipants indicated that they knew they were interacting with a computer,
and explicitly reported that the voice did not relate to the “gender” of the
computer, or even the computer programmer, there were distinct gender-
related biases in the experiment data. The evaluator, whose job was to
evaluate both the user and the tutor, was said to be less friendly when
connected to a female voice than a male. Similarly, the tutor system was

252

Communicating and Collaborating with Robotic Agents 253

evaluated as more competent when praised by a male evaluator than a
female evaluator (Nass & Moon, 2000). This application of social rules to
computers, and similar studies involving ethnicity, politeness, and person-
ality, enforces Nass’s hypothesis that humans treat computers as having
social properties.

Nass has also conducted experiments showing that not only do humans
transfer social properties to computers, but they also treat different com-
puters as distinct social actors (Nass, Steuer, & Tauber, 1994). Nass et al.
showed this by injecting notions of “self” and “other” into participants’
interactions with different computer boxes and voice output. Interestingly,
the participants associated this embodiment with the computer’s voice
output (i.e. one voice per social actor) as opposed to the physical com-
puter. In other words, two voices on one computer was considered by the
user as two different social actors; the same voice on two computers was
considered to be the same actor both times.

In other experiments, Nass and his colleagues have shown that com-
puters can elicit social behavior from humans without explicitly display-
ing emotions. Nass has also shown that people transfer social categories
to computational systems, view computers as distinct social entities, and
apply social behaviors to their conversations with artificial agents (Nass
& Moon, 2000; Nass et al., 1994). In short, Nass and his colleagues have
gathered strong evidence that with very minor social cues, people interact
with computers the same way people interact with other people.

Nass’s overall hypothesis and evidence have at least two implications
for how people act toward robots and other artificial systems. First, it means
that embodied artificial systems do not have to look like a person in order
for people to act in a social manner toward the robot: subtle social cues
can cause people to think of computers as social entities. It is not clear
how human (or non-human) a robot needs to look in order to elicit social
behavior (e.g., would a polite mound of “goo” elicit polite behavior?).
Second, if robots act socially, people have a “built in” way of dealing with
them — exactly how they would deal with another person.

3 HOW PEOPLE INTERACT WITH ARTIFICIAL SYSTEMS

How do people perceive and interact with artificial systems? In most cases,
people want the system to help them solve their task or problem while
making no mistakes and being polite about it (see above). Our desire for
this type of interaction has probably been influenced by popular robots
like C3PO (from Star Wars), Data (from Star Trek), and even Robbie the
Robot (from Forbidden Planet).

For example, movies and television often portray people interacting
with robots as if they were human. They use normal conversation and other
modalities of communication associated with humans, such as gestures.

254 Greg Trafton et al.

o
. 0O
R0 \ A\ j
Q@‘B \50 50 0\\%
\-}0(\ ,\a\e'o o o - el c
@@ @ &° @ 0%
,&\60 @ao e N Qeﬁ’"
direct control dynamic autonomy

FIGURE 10.1. Levels of human interaction with autonomous system.

These robots refer to objects and have the near-perfect ability of recognizing
these objects. Also, they are able to reason about space and time. In reality,
however, the interaction humans have with mobile robots is closer to tele-
operation — in which humans directly (or in some cases indirectly) control
the robot’s behavior.

Figure 10.1 shows the scale of human interaction with the robot as a con-
tinuum from teleoperation, where the human directly controls the robot’s
motions, to dynamic autonomy, where the robot can exercise its own ini-
tiative and set its own goals while collaborating with the human.!

Teleoperation requires that a human attend to the robot one hundred
percent of the time. The human is completely responsible for all actions
of the robot. Examples of robots that fall into this category include the
robots used to help find victims and assess damage in the World Trade
Center (WTC) collapse (Casper, 2002), and the small robots used by the
U.S. Army in Afghanistan to explore caves. Teleoperation, however, can
be very difficult. One of the main problems is ensuring that the human
has enough awareness of the environment to understand the robot’s po-
sition (Blackburn, Everett, & Laird, 2002). For example, rescue workers at
the WTC had trouble determining if the robots were right side up with
their camera view. Also, teleoperation requires a high-bandwidth commu-
nications channel between the human and the robot in order to supply the
real-time video.

By providing the robot with some basic skills, for example collision
avoidance, the human is freed from having to control the vehicle at such
a low level. This mode, mediated (also known as safe-guarded) teleop-
eration, allows the human to concentrate on other, higher-level decision
making, such as choosing a path for the robot.

Moving further along the continuum, supervisory control gives the
robot even more autonomy. Here the human picks one or more locations

1 Various scales have been devised to show the level of autonomy of an unmanned vehi-
cle, the best known being the Sheridan Levels of Autonomy (Sheridan, 1992). Figure 10.1
deemphasizes the notion of full autonomy that minimizes human interaction, and instead
emphasizes the varying levels of collaboration, but in fact implies that the vehicle has the
ability to operate autonomously.

Communicating and Collaborating with Robotic Agents 255

and other constraints (such as time), and the vehicle autonomously nav-
igates to those waypoints. Now the human is freed from actually driv-
ing the vehicle and can concentrate on analyzing the robot’s situation
and making higher-level decisions. This level of interaction is particularly
suited to very remote operations, such as the exploration of Mars during
the Mars Pathfinder and Mars Exploration Rover missions, because the
lag in round-trip communications does not support the quick execution
of a human’s decisions or for scientists and controllers to get real-time
video.

Moving along the scale towards collaboration, the interactions become
more complex and require that the human and the robot share more com-
mon knowledge about the world and about how things within the envi-
ronment are related. To achieve these kinds of interactions and knowledge,
the robot and the human must participate in a dialog to achieve common
goals. Collaborative control refers to the ability of the robot and the hu-
man to ask each other for help in completing a task (Fong, Thorpe, & Bauer,
2003).

This level of interaction requires mixed initiative, or the ability of any
agentina collaborative act to initiate action in solving a task. In other words,
each participant takes advantage of unique skills, location, and perspective
of the current situation. We believe that at this level and beyond, the robot
should utilize representations and procedures that are similar to those
used by humans, rather than the other way around, in order to collaborate
successfully; this is called the representational hypothesis. There are at
least three reasons why a system with human-like representations and
procedures will collaborate better with a person than a system that does
not have human-like representations and procedures.

First, because algorithms written for traditional real-time robotic sys-
tems have to be computationally efficient, they tend to use efficient math-
ematical representations, such as matrices and polar coordinates, which
may not be natural, or at best are extremely cumbersome, for people to
use. For example, most position and motion information in robotics is con-
veyed using position vectors and transformation and rotation matrices.
In general, people do not think or reason in this format. Instead, peo-
ple seem to use a combination of spatial and propositional knowledge
(Anderson, Conrad, & Corbett, 1989; Anderson & Lebiere, 1998; Shepard
& Metzler, 1971; Taylor, 1992; Trafton et al., 2000; Trickett, Ratwani, &
Trafton, under review). Thus, in order to interact with a human, the sys-
tem must translate the robot’s representation to the person’s representa-
tion. However, because a person’s representation of space is so complex
(Harrison & Schunn, 2002, 2003a, 2003b; Previc, 1998), this is not a triv-
ial task. Another, more functional argument is that traditional Al spatial
reasoning techniques do not adequately capture how people perform spa-
tial reasoning; a model based on human spatial reasoning will provide

256 Greg Trafton et al.

some robust advantages over those systems that do not reason as a person
would.

Second, if a human is going to collaborate in shared space with a robot,
the robot should not exhibit unexpected, unnatural, or “martian” behaviors
(Petty, 2001). Although the robot may be able to perform a task efficiently,
using, for example, a behavior-based approach, if the resulting behavior
is perceived to be unnatural by the human, further interaction suffers as
a kind of cognitive disruption. From this it follows to create some robot
behaviors by modeling how humans perform such tasks.

Finally, some tasks for robots can best be programmed not by using more
traditional control algorithms, but by understanding how humans solve
the task and then creating a computational model of that understanding.
So, for example, a robot that could search for hidden snipers would prob-
ably perform best if it had been programmed with knowledge about how
humans hide.

Two reasons for building artificial systems that think and act like a per-
son have been presented. First, systems that act like people will elicit more
social behaviors from people and make such systems more natural for
people to deal with, and second, artificial systems that think like a per-
son will interact with people with far greater ease than systems that do
not. The specific interest is in how to build robots, so the remainder of
our discussion will focus on robotic agents. One issue with working with
physically embodied robots is that, because they are physical and move
around, people must interact with them in non-trivial ways: social inter-
action will probably occur, and communication and collaboration should
occur. The overall goal is to build robotic systems that think and act like
people do in order to enable natural social behavior and allow better and
easier communication and collaboration. It should be noted, however, that
our primary point can be generalized to all types of physically embodied
systems.

In the following sections, one robotic system will be described and
three examples that show humans and robots collaborating and work-
ing together on various tasks will be presented. In the first example, the
robot is taught how to hide (based on data obtained from a 33-year-old
child’s behaviors in learning how to hide) and then it is asked to seek us-
ing these representations and strategies. The second and third examples
use perspective-taking situations to facilitate human-robot communica-
tion and interaction. The first model of perspective taking emphasizes a
good cognitive model of the representation used by humans, and the sec-
ond perspective-taking model emphasizes the human process of using
mental simulations to imagine another’s perspective.

Because robots will be used for all these tasks, mobile robots and their
capabilities and sensors will be described first.

Communicating and Collaborating with Robotic Agents 257

4 MOBILE ROBOTS

The empirical results were obtained by running the computational cogni-
tive models, along with more traditional, reactive control software, on an
indoor mobile robot in a laboratory environment.

4.1 Hardware

The robot is a commercial Nomadic Technologies Nomad200 suited to
operation in interior environments. It has a zero turn radius drive system,
an array of range, image, and tactile sensors, and an onboard network of
Linux and Windows computers with a wireless Ethernet link to the external
computer network.

4.2 Software

A combination of non-cognitive methods (primarily for robot mobility and
object recognition), cognitively-inspired interactions (primarily for com-
municating with a person), and computational cognitive models (primarily
for the high-level thinking and reasoning) were used. In previous work the
utility of combining low-level reactive systems with cognitive models has
been shown (Bugajska, Schultz, Trafton, Mintz, & Gittens, 2001; Bugajska,
Schultz, Trafton, Taylor, & Mintz, 2002; Trafton, Schultz, Bugajska, Gittens,
& Mintz, 2001).

4.3 Non-cognitive Methods

This project draws on the robot mobility capabilities of the previously de-
veloped WAX system (Schultz, Adams, & Yamauchi, 1999), which includes
components for map building, self-localization, path planning, collision
avoidance, and on-line map adaptation in changing environments. The
robot’s lowest level of information comes from a dead-reckoning com-
ponent that integrates motion over time to compute the robot’s current
location. As the robot moves, it gathers range data from its 16 ultrasonic
transducers and a laser-based structured light rangefinder. In a process de-
veloped by Moravec and Elfes (Moravec & Elfes, 1985), the range data are
interpreted using a sensor model that converts the raw range data to a set
of occupancy probabilities for the sensed area. In this manner, data from
multiple sensors can be fused into a single short-term occupancy map of
the robot’s vicinity, represented as a three-dimensional array of discrete
cells, each containing the probability that it is occupied or empty.

Robot odometry suffers from gradual drift, sometimes punctuated by
larger errors from wheel slippage, rough ground, or collisions, so odometry

258 Greg Trafton et al.

alone is insufficient. Using the process of continuous localization (CL)
(Schultz & Adams, 1998), a temporally overlapping progression of short-
term perception maps is maintained. At periodic intervals, the oldest short-
term map, which has the most data, is registered against a long-term map
of the larger environment (typically a room) to determine the correction
needed to correct the odometric drift. The long-term map can be supplied a
priori, or learned through a careful exploration, as was done by Yamauchi,
Schultz, and Adams (1998). For this work, mapping was not the focus,
so an a priori map was used. As a byproduct of correcting odometry, the
long-term map can also be adapted to incorporate the now-corrected new
readings from the short-term map. Thus, as the robot moves, it not only
maintains an accurate estimate of its position but also keeps the long-term
map up to date with any changes to the environment.

Because the robot’s basic motor system is geometry-based and metric
maps can be easily produced, it is a matter of practicality to state goal
locations as points in Cartesian space. These goals are passed to the Trulla
path planner (Hughes, Tokuta, & Ranganathan, 1992), which uses the long-
term map to determine the best path to the goal. Because there may have
been changes to the environment that are beyond the robot’s sensor range,
or recent changes such as people walking near the robot, the paths made
by Trulla cannot be followed blindly. Instead, they are passed as a single
vector field to the Vector Field Histogram (VFH) process (Borenstein &
Koren, 1991). VFH uses the robot’s current position to retrieve from the
vector field the direction the robot should move to head toward the goal.
This vector is compared to an occupancy histogram built from the short-
term map (which has the recent data close to the robot), and the robot is
steered in the unblocked direction closest to the one indicated by the vector.
In effect, Trulla handles the room-level navigation whereas VFH provides
collision avoidance. If the robot is blocked, VFH prevents collision. CL
learns the changes and produces a new adapted long-term map, and Trulla
replans around the obstruction.

In addition to general mobility, the robot needs to recognize objects in its
environment for the high-level cognition that will be demonstrated later.
Rather than providing the robot with a priori information about discrete
objects, the robot is instead equipped with limited computer vision in or-
der to detect some objects autonomously. This also allows objects to be
rearranged, added, or removed with the robot reacting accordingly. The
CMVision package (Bruce, Balch, & Veloso, 2000) was used to provide sim-
ple color blob detection using an inexpensive digital camera mounted on
the robot.

Relevant objects in the environment are tagged with color markers that
are easily distinguished from the surroundings. The marker color is the
identifier for the characteristics of an object. For example, all lime green
objects are “chairs” and have the same characteristics. The bearing to the

Communicating and Collaborating with Robotic Agents 259

object is then determined from its location in the camera image, and the
range to it is obtained from a scanning laser rangefinder.

4.4 Cognitively Inspired Methods

To communicate with a person, several methods that have some basis in
human cognition are used. The methods that are used here allow a user to
communicate with the robot using spoken language, gestures in the real
world, and gestures on a Palm Personal Digital Assistant (PDA).

The human user can interact with the mobile robot using natural lan-
guage and gestures that are part of our multimodal interface (Perzanowski,
Schultz, & Adams, 1998; Perzanowski et al., 2002; Perzanowski, Schultz,
Adams, & Marsh, 1999, 2000; Perzanowski, Schultz, Adams, Marsh, &
Bugajska, 2001). The natural language component of the interface uses
a commercial off-the-shelf speech recognition engine, ViaVoice, to analyze
spoken utterances. The speech signal is translated to a text string that is
further analyzed by our in-house natural language understanding system,
Nautilus (Wauchope, 1994), to produce a regularized expression. This lat-
ter representation is linked, where necessary, to gesture information, and
an appropriate robot action or response results.

For example, the human user can tell the robot “Coyote, go hide and
I'll try to find you.” The speech signal is analyzed into a text string that
when parsed produces the following representation, simplified here for
expository purposes.

(and (imperative (p-hide: hide)
(system: you
(name: coyote)))
(future (p-attempt: try)
(agent: I)
(action (p-find: find)
(agent: I)
(system: you
(name: coyote)))))

Basically, Nautilus parses the utterance into appropriate commands (e.g.
the imperative structure in our example) and statements (e.g. the future
declaration in our example), and the various verbs or predicates of the ut-
terance (e.g. hide, try, and find) are mapped into corresponding semantic
classes (p-hide, p-attempt, and p-find) that have particular argument struc-
tures (agent, system), which result in a semantic interpretation of the utter-
ance. With gesture information, where appropriate, a combined representa-
tion incorporating both the linguistic and gestural information is then sent
to the robotic component whose modules translate the representations into
appropriate actions. In the example above, no further gesture information

260 Greg Trafton et al.

is required to complete the command. Coyote will, therefore, respond “I
will go and hide,” in order to inform the user that it has understood the
utterance. The appropriate behavior based on the cognitive model for the
hide-and-seek activity is invoked and appropriate robot action according
to the model ensues.

If a gesture is required to disambiguate the speech, as in “Coyote, hide
somewhere over there,” the gesture information obtained from the laser
rangefinder mounted on the top of the robot indicates the desired location,
and this information is included in the interpreted utterance for further
analysis by the robotic system.

5 HIDE AND SEEK

The first domain in which robotic agents that think and act like people will
be demonstrated will be the children’s game commonly known as “hide
and seek.” Hide and seek is a simple game in which one child is “It,” stays
in one place counting to ten with eyes closed, and then goes to seek, or
find, the other child or children who have hidden. This game allows us
to address our high-level goals of understanding how human representa-
tion and processing of spatial information (Skubic, Perzanowski, Blisard,
Schultz, & Adams, 2004) can aid in designing better human-robot interac-
tion in collaborative spaces. This work is described more fully elsewhere
(Trafton, Schultz et al., under review); a summary of the findings is dis-
cussed here.

The study had two primary goals: (1) to understand how children learn
to play hide and seek via computational cognitive modeling; and (2) to
build a system that thinks and acts like people do. This latter point should
serve to facilitate human-robot interaction. The first point will be briefly
summarized and more fully described to show how our system thinks and
acts like children learning how to play.

Hide-and-seek game-playing behavior was gathered from a 31-year-
old child. Previous research suggests that 33-year-old children do not, in
general, have perspective-taking ability (Huttenlocher & Kubicek, 1979;
Newcombe & Huttnelocher, 1992; Wallace, Allan, & Tribol, 2001), but they
are able to play a credible game of hide and seek (supported mostly by
anecdotal evidence of the game-playing behavior at local parks and play-
grounds, because there are almost no empirical investigations of the natu-
ralistic game of hide and seek). Spatial perspective taking is clearly needed
fora “good” game of hide and seek: a good hider needs to take into account
where “It” will come into a room, where “It” will search first, and where
to hide behind an object taking the perspective of “It” (Lee & Gamard,
2003) so that “It” will not be able to find the hider easily. Additionally, the
hider must know that just because the hider can’t see “It” doesn’t mean
that “It” can’t see the hider. The research question was to explore how

Communicating and Collaborating with Robotic Agents 261

31-year-old children learned to play hide and seek without perspective tak-
ing. The hypothesis (which was supported by computational simulation)
was that 31-year-old children were able to learn relationships of objects
to play hide and seek. For example, a child may learn that hiding under
or inside of an object was a good hiding place. In contrast, hiding behind
an object occurred rarely because that required spatial perspective taking.
Evidence was obtained from a child learning to play hide and seek; subse-
quently, computational simulations in ACT-R (Anderson & Lebiere, 1998)
were written that learned how to play hide and seek in the same manner as
the child did. Additionally, the computational system was put on our robot
and hide and seek was played (Trafton, Schultz et al., under review) with it.

To show the benefits of a system that thinks and acts like a person,
we wanted to show how the computational system could be generalized
to a different situation where similar but not exact knowledge would be
needed. The most obvious task to explore was the “seeking” part of hide
and seek, because the computational cognitive model that was written
focused solely on learning how to hide. The seeking system should exhibit
several interesting behaviors. First, it should seek according to its own
model of hiding. Thatis, it should search in places thatit thinks are plausible
for “It” to hide in.2 Second, it should be able to deal with novel objects or
objects that were not in its original environment. Third, it should be able to
accomplish this seeking behavior without new learning mechanisms while
using its current representations and algorithms. This seeking behavior
would be a proof of concept for the representational hypothesis: building
a system that thinks and acts like a person would make the system more
“natural” in some ways. In this case, a child would presumably find a
system that plays hide and seeks like another child more fun than a system
thathides or seeks in very odd places (e.g., a robot that hid in a very difficult
location would not be much fun to play with).

To explore how our existing system would seek for a person after it
had learned how to hide, several straightforward steps were gone through.
First, the model was run as above, allowing the robot to learn different per-
tinent features of objects and object-relations. The model was then “frozen.”
To allow the robot to seek, two more pieces of information were given to
it: (1) what a person “looked like” (e.g., the person might wear a blue shirt,
which was identifiable by CMVision) and (2) how to start the game (e.g.,
a location to start from; what to count to, etc.). To seek for a person, the
computational cognitive model determined where it would best hide and
then gave those coordinates to the robot where it would then look. If it

2 Because our robot cannot bend or change shape like a young child, as a simplification for
both the model and the robot, we assumed that our hider is small (approximately the size
of a small child) and does not contort itself a great deal or squeeze itself into a location that
is smaller than itself.

262 Greg Trafton et al.

did not find the person in that location, it searched in the next place that
it would have hidden until either it had found the person or it had run
out of locations to search. The model’s “individual preferences” (e.g., lo-
cations that had higher or lower levels of activation) were not cleared. The
model searched those locations in approximate (because of noise) order
of activation. The environment was changed slightly as well (i.e., added
additional objects it already knew something about, moved the location of
other objects, etc.).

Both the model and robot behaved as expected. The robot system-
atically searched different locations that it had learned were acceptable
hiding places until it found the person hiding. Over multiple games, it
searched locations in different orders. Most importantly, it did not at-
tempt to search for a person in locations that would have been very “odd.”
For example, while it could have found a person hiding out in the open
(like children do when they’re first learning how to play hide and seek),
it did not systematically search all the open space for a person hiding
out in the open. Instead, the robot searched where it thought it would
have hidden. A full set of movies of the robot seeking can be found at
http: //www.nrl.navy.mil/aic/iss/aas/Cognitive Robots.phf.

The fact that the robot and computational system were able to find a
hiding person successfully by using its own representations and processes
supports our representational-level hypothesis; namely, a computational
or robotic system that thinks and acts like a person will interact well with
the person. This hypothesis was supported by taking the “hiding” model
and applying it to seeking. The model successfully searched for a person
using the same representations and processes that it had learned and used
while learning how to hide. Our hypothesis also states that by using similar
representations and processes, alien behaviors could be avoided. As shown
above, our system did not search for or hide in unusual places; instead, it
only considered those places that a human would consider.

Clearly, this approach could lead the system to make systematic errors:
it would not expect a person to have climbed a rope and clung to it, etc.
It also could not use perspective taking for seeking or even assume that
the hider would move locations because that information was not built
into the original hiding model. However, 3 1/2 year olds do not typically
climb ropes or use perspective taking to hide from someone, and they do
not typically look for hiders in these types of odd places, either (Trafton,
Schultz et al., under review).

6 PERSPECTIVE TAKING

The second and third domains for exploring robots that think and act like
people involve the basic cognitive skill of perspective taking.

Communicating and Collaborating with Robotic Agents 263

Imagine two astronauts working together on a collaborative construc-
tion project. Whereas they might be able to talk and gesture to each other
to get their job done, they would be dressed in full spacesuits and con-
sequently have diminished perceptual abilities and decreased freedom of
movement. Given these limitations, their work could be facilitated by a
robotic system that could hand them tools and follow simple instructions,
or perhaps even give them instructional assistance. To determine the kinds
of instructions and utterances the robots would need to understand and
process in this situation, we have analyzed data that were collected during
a specific astronaut training session. When astronauts train for missions,
part of their training occurs in various simulated microgravity environ-
ments, such as the Neutral Buoyancy Laboratory (NBL) at NASA /JSC. In
the NBL, astronauts conduct a wide variety of training for extravehicular
activity (EVA); i.e., working outside the space shuttle, including working
out the procedures and defining roles to perform EVAs.

One issue that astronauts must deal with is spatial language and spa-
tial perspective taking. Virtually all of the experimental work on spatial
language and perspective taking to-date has focused on five frames of
reference: exocentric (world-based, such as “Go north”), egocentric (self-
based, “Turn to my left”), addressee-centered (other-based, “Turn to your
left”), deictic (“Go here [points]”), and object-centric (object-based, “The
fork is to the left of the plate”) (Carson-Radvansky & Logan, 1997; Carson-
Radvansky & Radvansky, 1996; Goldin-Meadow, 1997; Levelt, 1984;
McNeill, 1992; Mintz, Trafton, Marsh, & Perzanowski, in press). Unfortu-
nately, astronauts must deal with frames of references and spatial situations
that people here on Earth do not typically have to deal with. For example,
“up” may mean something completely different in space in different situ-
ations (i.e., up may mean toward the ceiling of the spaceship rather than
with reference to the normal sense of gravity here on Earth). In general,
astronauts do not have problems themselves in understanding the spatial
language and taking another’s point of view, but one of the challenges for
robotic systems is to understand what someone else is talking about from
a different spatial perspective.

As part of this project a series of astronaut utterances has been ana-
lyzed as they performed a cooperative assembly task for Space Station
Mission 9A, specifically the construction of the first right-side Truss seg-
ment and the Crew and Equipment Translation Aid (CETA) Cart A in the
NBL (Trafton, Cassimatis et al., in press). This analysis project is still under
progress, but several critical issues have already surfaced. First, astronauts
seem to switch reference frames quite often, just as people do while giving
directions (Franklin, Tversky, & Coon, 1992). Second, astronauts in this col-
laborative process must frequently take another’s perspective, even when
they cannot see the person whose perspective they are taking. For example,

264 Greg Trafton et al.

TABLE 10.1. Dialog between two astronauts and an observer.

EV1 EV2 Ground

Bob, if you come straight down from
where you are, uh, and uh kind of peek
down under the rail on the nadir side,
by your right hand, almost straight
nadir, you should see the uh,

Mystery
hand-rail
The mystery hand-rail, exactly
OK
There’s a mystery
hand-rail?
Oh, it’s that sneaky one. It’s there’s only
one in that whole face.
Oh, yeah, a mystery
one.

And you kinda gotta cruise around until
you find it sometimes.

I like that name.

the following conversation (Table 10.1) occurred between three individu-
als — two astronauts (EV1 and EV2) in the neutral buoyancy tank at NBL
and one person (Ground) outside of the tank in mission control. The latter
watched the two astronauts through a video feed of the activity.

Notice several things about this conversation. First, the mission control
person mixes reference frames from addressee-centered (“by your right
hand”) and exocentric (“straight nadir” which means towards the earth)
in one instruction, the very first utterance. Second, the participants come
up with a new name for a unique unseen object (“the mystery hand-rail”)
and then tacitly agree to refer to it with this nomenclature later in the dialog.

This short excerpt shows that an automated reasoning system needs to
be able not only to mix perspectives, but to do so in a rather sophisticated
manner. One of the most difficult aspects of this problem is the addressee-
centered point of view, which happens quite often in the corpus that was
examined. Thus, in order for a robotic system to be truly helpful, it must be
able to take into account multiple perspectives, especially another person’s
perspective.

At this point we turn to a discussion of two further projects that show
how robots can think and act like people. The first project uses similar
processes (specifically simulation) that people use when they take another
person’s perspective, and the second project uses the same spatial repre-
sentations that people use.

Communicating and Collaborating with Robotic Agents 265

6.1 Perspective Taking Using Similar Processes: Polyscheme

The hypothesis that humans and robots interact better when they share
similar representations and when robots can take the perspective of
humans has helped determine how to implement the cognitive subsystem
of our robots. First, because robots must share similar representations with
humans, a cognitive architecture that had cognitively-inspired spatial
and logical reasoning mechanisms was used. Second, an architecture that
provides a mechanism for simulating alterative states of the world was
used so that the robots could reason about the perspective of other people.
The Polyscheme (Cassimatis, 2002) cognitive architecture fulfills both
requirements.

Polyscheme is a cognitive architecture based on the ability to conduct
mental simulations of past, future, distant, occluded, and/or hypothetical
situations. Our approach has been to use Polyscheme to enable robots to
simulate the world from the perspective of people with whom they are
interacting and to understand and predict the actions of humans.

Polyscheme uses several modules, called specialists, which use special-
ized representations for representing some aspect of the world. For ex-
ample, Polyscheme’s space specialist uses cognitive maps to represent the
location of and spatial relations among objects. Its physics specialist uses
causal rules to represent the causal relation between events. Using these
specialists, Polyscheme’s specialists can simulate, i.e., represent the state
and predicted subsequent states of situations it cannot see at present, either
because they occurred in the past or future, they are occluded from view,
and/or they are hypothetical.

Polyscheme modelers have the ability to set strategies for choosing
which situations to simulate in what order. Modelers use these strategies to
implement reasoning and planning algorithms, including perspective tak-
ing. For example, the counterfactual simulation strategy, “when uncertain
about A, simulate the world where A is true and the world where A is false,”
implements a backtracking search when used repeatedly. The stochastic
simulation strategy, “when A is more likely to be true than false, simulate
the world where A is true more often than the world where A is false,”
implements an approximate form of probabilistic reasoning (often used,
e.g., to estimate probabilities in a Bayesian network). Polyscheme’s abil-
ity to combine multiple simulations from multiple strategies and to share
simulations among strategies is the key to its ability to tightly integrate
multiple reasoning and planning algorithms (Cassimatis, Trafton, Schultz,
& Bugajska, 2004). Because each simulation is conducted by specialists that
use multiple representations (e.g., perceptual, spatial, etc.), the integration
of reasoning with sensation and multiple forms of reasoning is constant.

Using this framework, we have been able to improve human-robot
interaction by giving robots the ability to simulate the world from the

266 Greg Trafton et al.

Robot
Conel A A Cone2
Obstacle
A
Person

FIGURE 10.2. The robot needs to take the perspective of the person to determine to
which cone the human has referred.

perspective of humans they interact with. An important problem when
humans and robots communicate using natural language is that most
verbal commands or questions have multiple literal meanings. Although
humans are normally able to use contextual information to eliminate most
possible interpretations and thus identify the speaker’s intent, this has
remained a difficult problem for computers and hence robots.

By using Polyscheme to implement the perspective simulation strategy,
“when a person, P, takes action, A, at time, T, simulate the world at time T
from A’s perspective”, we have given our robots the ability to reason about
the world from the perspective of people and to thereby disambiguate their
utterances. In many cases, for instance, an utterance is ambiguous given the
listener’s knowledge, but unambiguous given the speaker’s knowledge.
Figure 10.2 is an example. The figure shows a robot and a person facing
each other. The robot can see that there are two cones in the room, conel
and cone2, but the person only knows about cone2 because conel is hidden
from her. When the person commands, “Robot, go to the cone,” the phrase
“the cone” is potentially ambiguous to the robot because there are two
cones, though unambiguous to the person because he only knows of the
existence of one cone. Intuitively, if the robot could take the perspective of
the person in this task, it would see that, from that perspective, cone?2 is
the only cone and therefore “the cone” must refer to cone2.

Polyscheme was used to implement this sort of reasoning on the robot
described earlier. The following list outlines the sequence of simulations

Communicating and Collaborating with Robotic Agents 267

that enable the robot to properly disambiguate the person’s utterance:

e Simulate current real world (i.e., perceive it):

o Perception specialist notices the existence and location of person,
conel, cone2, and obstacle.

o Language specialist hears “Coyote, go to the cone” and infers that
there is an object, C, that is a cone and that the person wants it to go
to.

o Identity hypothesis specialist infers that C can be identical to conel
or cone2:

s C=conel, C=cone2
o Identity constraint specialist notices a contradiction.
o This contradiction triggers the counterfactual simulation strategy.
* Simulate the world where C = conel

o Because in this world Person has referred to conel, the perspective-
simulation strategy is triggered:

o Simulate the world where C = conel and Robot = Person.

» The spatial reasoning perspective indicates that conel does not exist
in this world because person cannot see it.
» Thus, C ! =conel.
* Simulate the world where C = cone2

o Because in this world Person has referred to cone2, the perspective-
simulation strategy is triggered.

o Simulate the world where C = cone2 and Robot = Person
= Because cone? is visible in this world, there is no contradiction in

this world.
e Infer that C=c2,i.e., that “the cone” refers to cone2.

This example illustrates how robots can use their own mechanisms for
reasoning about the world to reason about the beliefs and intentions of
other agents without needing elaborate machinery for social reasoning. An
online video of this example can be found at http: /www.aic.nrl.navy.mil/
~trafton/movies/perspective-2objects-mp4.mov.

Polyscheme is able to solve this problem by using mental simulation,
a human-level ability that is, in general, not well used in other cogni-
tive architectures. By using mental simulation (a similar mental process
to what people do), it greatly increases the human-robot interaction in
this situation: without this kind of machinery, the robot would need to
ask “Which cone?” which could lead to confusion on the person’s part
if she did not know there was more than one cone. Other work not only
provides a more complete description of Polyscheme, but also provides
more details about other tasks, including the perspective-taking examples
used here (Cassimatis, 2002; Cassimatis, Trafton, Bugajska, & Schultz, 2004;
Cassimatis et al., 2004; Trafton, Cassimatis et al., in press).

268 Greg Trafton et al.

chunk_cone:
isa: cone
color: gray
speaker_can_see: true
location: (X,y)

production_take_cone:
if isa cone
and speaker_can_see
and (my_x, my_y) = (x,y)
then take_cone

FIGURE 10.3. An ACT-R memory chunk and production rule.

6.2 Perspective Taking Using Similar Representations: ACT-R

Polyscheme showed that mental simulation could be used to solve a prob-
lem in perspective taking, and shows an example of how to build a robot
that thinks and acts like a person. Could a similar perspective-taking task
be accomplished by focusing on the spatial representations that people
have? We attempted to answer this question by using ACT-R/S (Harrison
& Schunn, 2002, 2003a, 2003b).

The cognitive architecture JACT-R is a java version of the ACT-R archi-
tecture (Anderson & Lebiere, 1998). To represent declarative memory, it
uses chunks of various types of elements. These chunks can be accessed
through a memory retrieval buffer. To use and manipulate the chunks of
memory, ACT-R provides a framework for production rules. A sample
chunk and production rule are shown in Figure 10.3. ACT-R then simu-
lates cognitive behavior and thought based on activation values and prop-
agation of chunks and higher-level goals. ACT-R also includes support
for perceptual and motor cognitive tasks, such as Precognitive Remote
Perception tasks, by including a second visual buffer for viewing objects in
space.

ACT-R/S extends jJACT-R to implement a theory about spatial reason-
ing (http://simon.Irdc.pitt.edu/~harrison/actrs.html). It posits that spa-
tial representations of objects are temporary, egocentric and dynamically
updated (Wang & Spelke, 2002). ACT-R/S has three buffers for spatial cog-
nition: the configural buffer, the manipulative buffer, and the visual buffer.
The configural buffer represents spatial extents of objects that are updated
during self-locomotion and is used during navigation, path-computation,
object-avoidance, etc. The manipulative buffer represents the metric spa-
tial bounds of an object and is used for spatial transformations of objects
(Trafton, Marshall, Mintz, & Trickett, 2002; Trafton, Trickett, & Mintz, in
press). The visual buffer is the same as the “standard” perceptual-motor
buffer in ACT-R/PM (Byrne & Anderson, 1998).

Communicating and Collaborating with Robotic Agents 269

ACT-R/S represents objects using vectors to the visible sides of the ob-
ject. It has the ability to track these objects through the configural buffer,
a data structure analogous to the other buffers of ACT-R that store each
object once it has been identified. The coordinate vectors of the objects in
the buffer are then dynamically updated as the agent moves throughout
the spatial domain. The configural buffer, unlike the visual and retrieval
buffers of ACT-R, can hold more than one object to account for the fact
that animals have been shown to track more than one landmark at once
while moving through the world (Harrison & Schunn, 2003a). To focus on
the representational aspects of perspective taking, our model uses only the
spatial representations within jJACT-R/S.

Using the configural extension begins with locating and attending to
an object via the visual buffer provided by the standard Perceptual-Motor
extension to ACT-R. Once an object is found, it is possible to request that
the ACT-R/S visual object at that location, if one exists, be placed in the
configural buffer. The model then begins tracking this object, creating the
initial vectors and updating them as the agent moves around in the world.
The updating transformation is done by adding or subtracting vectors
representing the agent’s movement to the vectors and object’s location.

To demonstrate the results of perspective taking using jJACT-R/S, the
same perspective-taking task that Polyscheme solved was implemented:
disambiguating which cone a person referred to when the robot could see
two cones but the person could only see one. For this example, the full
system was not implemented on a physical robot. In the simulated world,
two agents (hereafter referred to as the “speaker” and the “robot”) are in a
room with two cones and a screen. The screen blocks the view of one of the
cones from the speaker, but not the robot. Then, the speaker asks the robot
to hand them the cone, using some locative clue such as “in front of me.”
If both of the cones match this description, then the robot should hand the
speaker the cone that it knows the speaker can see.

The model thus uses the ACT-R/S architecture in order to use spatial
perspective taking to complete its task. There are several components to
the perspective taking that it goes through in order to do so.

6.2.1 Perspective-Taking Process

The production rules involved in the perspective-taking process are the
most important part of the model, as they implement the heart of its theory
of spatial perspective taking. Taking the perspective of someone at position
and orientation B, from position and orientation A, the over all procedure
is to:

1. Turn to face position B
2. Walk to position B
3. Face orientation B

270 Greg Trafton et al.

4. Extract the desired information from the visual knowledge at this
position and orientation

5. Face position A

6. Walk back to position A

7. Return to orientation A.

The key to this process is that all of these movements —i.e. turning and
walking — are mentally done by only transforming the configural buffer
contents by the appropriate vector, leaving everything else the same. Thus,
the physical location of the robot does not change; it is only its mental
perspective that changes.

6.2.2 Initial Scan for Objects

The model first uses perspective taking to deduce where it should begin
looking for the cone. When the speaker says “in front of me,” or “to my
left,” etc., the robot interprets that information by taking the speaker’s
perspective and mentally placing itself in his or her shoes. It then looks
at a location in front of it, or to its left (as indicated by the speaker’s ini-
tial instructions), and keeps track of that location as it returns to its own
perspective. This is where it begins its search for the cone.

6.2.3 Deciding Which Cone To Go To

The model also uses perspective taking once a cone has been found. When
it has located a cone in the desired location, it looks around for obstacles
that could possibly block the speaker’s view of the cone. If it finds any
such obstacles, it takes the speaker’s perspective again in order to judge
whether or not it can see that particular cone.

This time, however, once the robot has taken the speaker’s perspective,
instead of turning to match the speaker’s orientation, it turns to face the
located cone. Determining whether or not the cone is visible by the speaker
is then done by comparing the transformed location vectors of the target
object with the location vectors of the possible obstacles, making sure that
the obstacle’s vectors do not completely surround the target object’s vec-
tors. This ensures that the speaker has the ability to see at least part of the
cone.

If the speaker can in fact see the cone, the robot goes to that cone. If the
speaker cannot see the cone, the robot continues to look for a cone that the
speaker can see. Although building a model that completes this task could
be done in a variety of ways, what distinguishes jJACT-R/S from other spa-
tial cognitive models is that it uses the spatial representation of humans in
order to complete the perspective-taking task. Once again, this representa-
tion entails creating and updating a set of vectors to the edges of each object
currently being attended to. Using this representation allows the cognitive
agent to undergo perspective taking by imagining movement throughout

Communicating and Collaborating with Robotic Agents 271

the world by simply altering the representation of the objects in the config-
ural buffer. This ultimately results in true perspective taking in the sense
that the agent’s representation of objects, once it has imagined movement
to the second agent’s location, roughly matches the second agent’s own
representation of these objects, truly seeing the world as the second agent
does. In the end, this provides a more natural and human-like interaction
with the second agent, because the cognitive agent responds as a human
plausibly would instead of introducing into the conversation an item (here,
a cone), that the second agent might not even know exists.

6.3 Summary of Perspective Taking

When a task needs perspective taking, there are, of course, many ways
to solve the task. For example, a straightforward method of solving the
“Go to the cone” problem discussed above would be to simply ask the
person “Which cone?” Alternatively, the robot could simply guess and
go to a cone. Unfortunately, both these solutions break down under more
complex conditions and under conditions where speed and accuracy are
critical (like the astronaut construction task discussed earlier). Having a
robot ask many questions would quickly get boring, bringing the level
of autonomy to a level that hurts team performance. Similarly, if a robot
is going to guess frequently, team performance will likely degrade and
interaction with the robot will quickly become frustrating.

Using the forms of perspective taking that have been outlined here,
we believe that we are building robots that think and act like people (to
a limited degree). The main advantage of this approach is that if a robot
thinks and acts like a person, not only will a person treat it (approximately)
as a person, but also the interaction with the robot will be quite natural for
the person.

7 FUTURE DIRECTIONS IN SOCIAL PERSPECTIVE TAKING

This work on perspective taking attempts to create a robot that thinks and
acts like a person; this presents several future research questions and op-
portunities that fall into two broad categories. The first involves improving
robots’ abilities to infer and represent the perspective of humans and the
second pertains to actions that they can take to ensure that human and
robot representations are synchronized and to make corrections should
they begin to diverge.

In much of the work that has been described in this chapter, robots
infer a human’s perspective by observing which objects are currently visi-
ble to him from his perspective. There are several other factors robots can
use to infer the human perspective, each of which enables them to coordi-
nate their behavior with humans in more complex situations. These factors

272 Greg Trafton et al.

include perceptual salience, the history of a person’s attentional gaze and
predictions of future actions formed by predicting the intent of past actions.

Robots must not only be able to represent the perspective of a person,
butalso be able to identity which aspects of his perspective are most salient.
Such a perceptual capacity in a robot would be valuable in many practi-
cal circumstances. Studies of human-human interaction have shown that
people can make ambiguous references to objects that other people can
easily disambiguate by choosing the most salient interpretation. Clark,
Schreuder, and Buttrick (1983), for example, found that a group of thirty
students individually made the same choice with an average of 70% or
better when asked to either choose an ambiguous reference, choose what
another person would choose, or simply choose what was most salient in
various scenes of similar objects. In addition, it was found that the students’
ratings of confidence in their choices correlated highly with the concurrence
of their choices. In accord with our theme that robots with human-like rep-
resentations will generate more predictable behavior and be easier to deal
with, we suspect endowing robots with a sense of salience similar to that
of humans will lead to more advanced human-robot interaction.

Robots must also be able to infer the perspective of a person, not only
from his current spatial location, but also from the history of where he has
been and what he has looked at. This kind of inference is such a fundamen-
tal part of what humans expect of an interaction, that it has been found
to underlie the behavior of infants and very young children. For example,
Baldwin (1991) has found that when toddlers are learning the name for an
object, they do not merely associate the visual and auditory stimuli they are
currently perceiving. Instead, they keep track of what a speaker was look-
ing at while naming an object and attach the word he uttered to his object
of attention even if they do not actually see the object until later. Wimmer
and Perner (1983) have found that four-year-old children can predict the
actions of another person based on what that person has seen in the past,
even if that requires them to represent that another person has an incorrect
view of the world. These studies indicate that humans have a basic ability
to infer other people’s perspective using not only information about what
that person is currently looking it, but by referring to the history of their
interaction. We hope that endowing robots with this ability will enable
them to interact in more complex tasks with people by needing less infor-
mation and time to construct richer models of their joint activities.

In addition to using more information to “see” other people’s perspec-
tives, robots must constantly monitor how well synchronized their view of
the world is with that of the people they are working with and take actions
to correct these views when their views or representations diverge. There is
extensive evidence that humans constantly engage in this behavior when
interacting among themselves and we assume that they will expect the
same of the robots with which they interact.

Communicating and Collaborating with Robotic Agents 273

One simple strategy that people use to communicate that they under-
stand each other is the use of “backchannel responses.” For example, dur-
ing conversations, people will nod their heads, smile, or make brief ut-
terances such as “uh huh” to indicate that they understand each other.
These behaviors are not just occasional conversational ticks but are part of
spectrum of behaviors that exhibit understanding that people expect and
whose absence can lead to substantial miscommunication (Brennan, 1998;
Brennan & Hulteen, 1995; Clark & Brennan, 1991). We believe that recent
advances in the expressiveness of robots create an opportunity for the use
of backchannel responses to make robots act even more like people than
ever before. These types of backchannel responses, in fact, may very well
be a primary way that robots can act like people and cause people to act
toward robots in a social manner.

On many occasions, people take more overt actions to indicate how
well synchronized their representation of the world is with the people
they are cooperating with. In cases where a person wants to verify that
he understands the intent of a speaker’s utterance, he will reformulate the
speaker’s meaning with another utterance. For example, Clark and Wilkes-
Gibbs (1986) found that in scenarios where a speaker attempted to refer to
an object, the listener would sometimes find a new way of referring to the
object and ask the speaker if this was his meaning, e.g., speaker A says,
“Um, third one is the guy reading, holding his book to the left,” speaker
B asks, “Okay, kind of standing up?” and speaker A answers. “Yeah.” In
cases where one person in a conversation detects a mismatch between the
representations of the participants, he will initiate “repair” utterances to
resynchronize the representations as in this example, again from Clark and
Wilkes-Gibbs (1986):

A. Uh, person putting a shoe on.

Putting a shoe on?

. Uh huh. Facing left. Looks like he’s sitting down.
. Okay.

= P

These future research directions indicate that many superficially disparate
aspects of interaction are all applications of the principle that humans and
robots should share the same kinds of representations and should con-
tinually engage in activities to make sure these are synchronized. It also
enables the large body of research in human-human interaction, especially
including work that indicates what humans expect of those they interact
with, to create systems that think and act like people.

8 SUMMARY

The main point of this chapter has been to present, explore, and sup-
port ways of building robots that think and act like people. The strongest

274 Greg Trafton et al.

examples have focused on how to build robots that think like people. We
also presented a representational hypothesis — using similar representa-
tions and processes as a person will improve and facilitate interaction.
This chapter has shown three strong demonstrations of robots that think
and act like people. First, we showed that a model of hiding could be used
to seek. The model used the same representations and strategies to seek
as to hide. These human-based representations and strategies allowed the
robot to interact with a person without violating the person’s expectations.
Second, we showed two different perspective taking models that solved a
complex task in different ways. The first model, written in Polyscheme, fo-
cused on mental simulation to solve the task. The second model, written in
JACT-R/S, focused on the spatial representations that people are thought
to have. Both models successfully solved the perspective-taking problem
presented to it.

In sum, the systems presented here take seriously the idea that people
can be used as models for computational systems, specifically robots. The
two primary advantages that flow from this idea are (1) that people will
act socially toward systems that act as a human would; and (2) that people
will interact with a system that “thinks” like a person would.

ACKNOWLEDGMENTS

This work was partially supported by the Office of Naval Research to Greg
Trafton and Alan Schultz under work order number N0001402WX20374.
Additional funding was supplied by DARPA IPTO under the MARS pro-
gram. The views and conclusions contained in this document should not
be interpreted as necessarily representing the official policies, either ex-
pressed or implied, of the U.S. Navy.

References

Anderson, J. R, Conrad, F. G., & Corbett, A. T. (1989). Skill acquisition and the
LISP tutor. Cognitive Scien