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Preface

This book explores the intersection between the cognitive sciences and the
social sciences. More specifically, it explores the intersection between indi-
vidual cognitive modeling and modeling of multi-agent interaction. The
two contributing fields – computational cognitive modeling (especially
cognitive architectures) and modeling of multi-agent interaction (includ-
ing social simulation and, to some extent, multi-agent systems) – have seen
phenomenal growth in recent years. Both have been seen as breakthrough
developments. However, the interaction of these two fields has not been
sufficiently developed. We believe that the interaction of the two may be
more significant than either alone. They bring with them enormous intel-
lectual capitals. These intellectual capitals can be profitably leveraged in
creating true synergy between the two fields, leading to more in-depth
studies of both individual cognition and sociocultural processes. It is pos-
sible that an integrative field of study in cognitive and social sciences may
be emerging.

This book is intended for researchers and students in cognitive, behav-
ioral, and social sciences. It may also be read by interested laypersons and
people whose primary scholarly interests are elsewhere – they can profit
from general introductions to cognitive modeling (especially cognitive ar-
chitectures) and examples of social simulations. The intellectual issues ex-
plored in the book are broad and significant, and thus the book may appeal
to a sizable audience in philosophy, psychology, sociology, anthropology,
education, economics, neuroscience, artificial intelligence, and so on. As
these issues are central to the understanding of the human mind and hu-
man society, the book may prove to be of lasting theoretical and practical
relevance.

We believe that investigation and simulation of social phenomena need
cognitive science, because such endeavors need a better understanding,
and better models, of individual cognition, which can provide a foun-
dation for understanding social interaction. Conversely, cognitive science

xi



xii Preface

also needs multi-agent systems, social simulation, and social sciences in
general. Cognitive science is very much in need of new theoretical frame-
works and new conceptual tools, especially for analyzing sociocultural
aspects of cognition and cognitive processes involved in multi-agent in-
teraction. Thus, there needs to be an integration (to some extent) of these
two strands. In response to such a need, the present volume addresses the
integration of the studies of the social and the cognitive.

This volume brings together cognitive scientists, social scientists, as well
as AI researchers, with a wide range of background and expertise, to ad-
dress the dual issue of understanding social processes through model-
ing individual cognition (especially through employing cognitive archi-
tectures) and understanding and modeling individual cognition through
taking account of social processes. These two issues are of broad impor-
tance, especially in understanding the relationship between cognitive and
social processes.

This volume consists of four parts. Part 1 contains one introductory
chapter. Part 2 includes three chapters. They review some of the best cog-
nitive architectures in existence, which form the basis of modeling indi-
vidual cognition and may be extended for addressing collective processes.
Part 3 develops models of cognition and social interaction using cognitive
architectures as well as other approaches. Those models shed light on the
relationship between cognitive modeling and multi-agent social simula-
tion, as well as their synergy. To provide a better understanding of these
models and approaches, Part 4 presents theoretical positions, arguments,
and issues concerning various possibilities in integrating cognitive mod-
eling and social simulation.

These chapters, written by leading researchers in various disciplines,
provide provocative new insights into relevant issues, as well as solid re-
search results pertinent to these issues.

I would like to thank all contributing authors. Many of them not only
contributed chapters, but also participated in mutual reviews of drafts,
thus helping to ensure the quality of this book.

Note that this volume is, in many ways, an outgrowth of the workshop
on cognitive modeling of agents and multi-agent interaction, chaired by
Ron Sun, held in Acapulco, Mexico, in the summer of 2003.1 In this regard,
I would like to thank members of the program committee of the workshop:
Christian Lebiere, Cristiano Castelfranchi, Jan Treur, and Robert West, for
their help in organizing the event. Thanks are also due to Greg Trafton,
Catholijn Jonker, Pietro Panzarasa, Jonathan Gratch, Bill Clancey, Frank
Ritter, Robert West, Joseph Giampapa, and a few others for their help in
reviewing papers.

1 For further information about this workshop, see the Web page at: http://www.cogsci.
rpi.edu/∼rsun/wsp03.html
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I would like to thank Cambridge University Press for taking on this
project. In particular, I would like to thank Phil Laughlin of Cambridge
University Press for being such a helpful editor throughout the long process
of putting together this book.

Ron Sun
Troy, New York
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INTRODUCTION
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Prolegomena to Integrating Cognitive Modeling and
Social Simulation

Ron Sun

1 introduction

A multi-agent system (i.e., a society of agents) is a community of au-
tonomous entities each of which perceives, decides, and acts on its own,
in accordance with its own interest, but may also cooperate with others to
achieve common goals and objectives. How to achieve meaningful coordi-
nation among agents in general, however, is a difficult issue and, to a very
large extent, a mystery thus far (despite the fact that it has been extensively
tackled).

Over the years, the notions of agent and agency have occupied a ma-
jor role in defining research in social and behavioral sciences, includ-
ing sociology, philosophy, economics, psychology, and many other fields.
The notion of agent has also invaded computer science and engineer-
ing (in Internet computing and in robotics research in particular). Com-
putational models of agents have been developed in both artificial in-
telligence and cognitive science. In AI, they appear under the rubric
of “intelligent agents.” In cognitive science, they are often known as
“cognitive architectures,” that is, the essential structure and process of
a (broadly-scoped) domain-generic computational cognitive model. They
are often used for broad, cross-domain analysis of cognition and behav-
ior (Newell, 1990; Sun, 2002). Together, these strands of research pro-
vide useful paradigms for addressing some fundamental questions con-
cerning human nature (Newell, 1990; Anderson & Lebiere, 1998; Sun,
2002).

In particular, although traditionally the main focus of research in cogni-
tive science has been on specific components of cognition (e.g., perception,
memory, learning, or language), relatively recent developments in compu-
tational modeling through cognitive architectures provide new avenues
for precisely specifying a range of complex cognitive processes together in

3



4 Ron Sun

tangible ways.1 Computational cognitive modeling, especially with cog-
nitive architectures, has become an essential area of research on cognition
(Anderson & Lebiere, 1998; Sun, 2004). Computational cognitive modeling
has been gradually integrated into larger communities of social and be-
havioral sciences (Schunn & Gray, 2002). A particularly important aspect
of this integration is that by now, mainstream experimental and theoreti-
cal psychology journals have started publishing computational modeling
papers. This fact reflects the growing interest in computational cognitive
modeling and cognitive architectures on the part of traditional psycho-
logical communities. Likewise, significant applications of computational
cognitive models have found their way into some significant application
domains (Pew & Mavor, 1998; Ritter et al., 2003). Such developments, how-
ever, need to be extended to issues of multi-agent interaction. There have
been some promising initial developments in this regard (see, for exam-
ple, a number of recent papers in this area in the journal Cognitive Systems
Research).

Against this background, the present volume brings together cognitive
scientists, social scientists, as well as AI researchers, with a wide range of
background and expertise, to discuss issues in understanding the relation
between cognition and social processes, through exploring the relation be-
tween computational cognitive modeling and social simulation (Axelrod,
1984; Gilbert & Doran, 1994; Gilbert & Conte, 1995; Epstein & Axtell, 1996;
Conte et al., 1997; Moss & Davidsson, 2001; etc.). The questions that are of
particular interest in this endeavor include:

� How do we extend computational cognitive modeling to multi-agent
interaction (i.e., to social simulation)?

� What should a proper computational cognitive model for addressing
multi-agent interaction be like?

� What are essential cognitive features that should be taken into consid-
eration in computational simulation models of multi-agent interaction?

� What additional representations (for example, “motive,” “obligation,”
or “norm”) are needed in cognitive modeling of multi-agent interaction?

� What are the appropriate characteristics of cognitive architectures for
modeling both individual cognitive agents and multi-agent interaction?

1 A cognitive architecture provides a concrete framework for more detailed modeling of cog-
nitive phenomena, through specifying essential structures, divisions of modules, relations
among modules, and a variety of other essential aspects (Sun, 1999). It helps to narrow
down possibilities, provides scaffolding structures, and embodies fundamental theoreti-
cal assumptions. The value of cognitive architectures has been argued many times before;
see, for example, Newell (1990), Anderson and Lebiere (1998), Sun (2002), Sun (2004), and
so on.
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And on the other hand,
� How do we measure cognitive realism of multi-agent (social simulation)

models?
� What can cognitive realism contribute to the understanding of social

processes?
� How should we understand the relation between individual cognition

and collective social phenomena in general?
� What are the fundamental ways of understanding and modeling multi-

agent interaction? How much can they be reduced to individual cogni-
tion?

� How should we characterize the “collective mind”?
� How important is culture in shaping individual cognition and collective

behavior? How can we model the effect of culture on cognition and
behavior?

� How can we best characterize and model social relations, structures,
and organizations in relation to cognition?

� How important is evolution in shaping individual cognition and collec-
tive social phenomena? How can we model that aspect?

So on and so forth. These issues are just a few particularly important ones
among many others important issues.

It should be noted that here we use the term “cognition” in the broadest
sense, including, but not limited to, thinking, reasoning, planning, problem
solving, learning, skills, perception, motor control, as well as motivation
and emotion. That is, we use it to denote everything going on in the mind.

It should also be noted that the study of multi-agent interaction (e.g.,
in AI and in economics) raised some specific issues. These issues include
how to develop coordination strategies (that enable groups of agents effec-
tively to solve problems together), negotiation mechanisms, conflict detec-
tion and resolution strategies, and other mechanisms whereby agents can
contribute to overall system effectiveness whereas still assuming a large
degree of autonomy. Relatedly, issues concerning how organizations of
agents (including teams) can be formed, structured, and utilized have also
been raised. They are very relevant to addressing the questions enumerated
earlier.

2 background

Two approaches dominate traditional social sciences. The first approach
may be termed the “deductive” approach (Axelrod, 1997; Moss, 1999), ex-
emplified by much research in classical economics. It proceeds with the
construction of mathematical models of social phenomena, usually ex-
pressed as a set of closed-form mathematical equations. Such models may
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be simple and elegant. Their predictive power derives from the analysis
of various states (equilibria) through applying the equations. Deduction is
used to find consequences of assumptions in order to help achieve better
understanding of relevant phenomena.

The second approach may be termed the “inductive” approach, exempli-
fied by many traditional approaches to sociology. With such an approach,
insights are obtained by generating generalizations from (hopefully a large
number of) observations. Insights are usually qualitative in nature and de-
scribe social phenomena in terms of general categories and characteriza-
tions of these general categories.

However, a new approach has emerged relatively recently. It involves
computer simulations of social phenomena.2 It starts with a set of explicit
assumptions. But unlike deduction, it does not prove theorems. Instead,
simulations lead to data that can be analyzed inductively to come up with
interesting generalizations. However, unlike typical induction in empiri-
cal social sciences, simulation data come from pre-specified rules, not from
direct measurements of social phenomena. With simulation data, both in-
ductive and deductive methods may be applied: Induction can be used to
find patterns in data, and deduction can be used to find consequences of
assumptions (that is, rules specified for simulations). Thus, simulations are
useful for developing theories, in both directions and in their combinations
thereof (Axelrod, 1997; Moss, 1999).

Among this third approach, a particularly interesting development is
the focus on agent-based social simulations, that is, simulations based on
autonomous individual entities, as defined earlier. Naturally, such simula-
tions focus on the interaction among agents. From their interactions, com-
plex patterns may emerge. Thus, the interactions among agents provide
explanations for corresponding social phenomena (Gilbert, 1995). Agent-
based social simulation has seen tremendous growth in the recent decade.
Researchers frustrated with the limitations of traditional approaches to the
social sciences have increasingly turned to “agents” for studying a diverse
set of theoretical and practical issues.

Despite their stated goals, however, most of the work in social simulation
still assumes very rudimentary cognition on the part of agents. Whereas
often characterizing agents as “intelligent” actors, there have been rela-
tively few serious attempts to emulate human cognition (Thagard, 1992).
Agent models have frequently been custom-tailored to the task at hand, of-
ten amounting to little more than a restricted set of highly domain-specific
rules. Although this approach may be adequate for achieving some lim-
ited objectives of some simulations, it is overall unsatisfactory. It not only
limits the realism, and hence applicability of social simulations, but also

2 It has sometimes been referred to as a “third way” of doing science, as contrary to the two
traditional approaches (Axelrod, 1997; Moss, 1999).
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precludes any possibility of resolving the theoretical question of the micro–
macro link (to be discussed later). At the same time, researchers in cognitive
science, although studying individual cognition in depth, have paid rela-
tively little attention to social phenomena (with some notable exceptions
of course). The separation of the two fields can be seen (1) in the different
journals dedicated to the two different fields (e.g., Journal of Artificial Society
and Social Simulation, Emergence, and Computational and Mathematical Orga-
nization Theory for social simulations, versus Cognitive Science, Cognitive
Systems Research, and Cognitive Science Quarterly for cognitive modeling),
(2) in the different conferences for these two different fields (e.g., the Inter-
national Conferences on Social Simulation versus the International Conference
on Cognitive Modeling), (3) in the different professional organizations (e.g.,
the North American Association for Computational Social and Organizational
Science and the European Social Simulation Association versus the Cognitive
Science Society), as well as (4) in the scant overlap of authors in these two
fields. Moreover, most of the commonly available social simulation tools
(e.g., Swarm and RePast) embody very simplistic agent models, not even
remotely comparable to what has been developed within the field of cog-
nitive architectures (Anderson & Lebiere, 1998; Sun, 2002).

We believe that investigation, modeling, and simulation of social phe-
nomena (whether using multi-agent systems or not) needs cognitive
science (Sun, 2001a,b), because we have reasons to believe that such en-
deavors need a better understanding, and better models, of individual
cognition, only on the basis of which it can develop better models of ag-
gregate processes through multi-agent interaction. Cognitive models may
provide better grounding for understanding multi-agent interaction, by
incorporating realistic constraints, capabilities, and tendencies of individ-
ual agents in terms of their cognitive processes (and also in terms of their
physical embodiment) in their interaction with their environments (both
physical and social environments). This point was argued at length in Sun
(2001b). This point has also been made, for example, in the context of cogni-
tive realism of game theory (Kahan & Rapaport, 1984; Camerer, 1997), or in
the context of deeper models for addressing human–computer interaction
(Gray & Altmann, 2001).

Conversely, cognitive science also needs multi-agent systems, social sim-
ulation, and social sciences in general. Cognitive science is in need of new
theoretical frameworks and new conceptual tools, especially for analyz-
ing sociocultural aspects of cognition and cognitive processes involved in
multi-agent interaction. It needs computational models and theories from
multi-agent work in AI, and also broader conceptual frameworks that can
be found in sociological and anthropological work (as well as in social
psychology to some extent). In particular, computational cognitive mod-
eling, as a field, can be enriched through the integration of these disparate
strands of ideas.
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This present volume is concerned exactly with such integration of the
studies of the social and the cognitive. The underlying goal of what we are
collectively doing here is evident: What we are working towards is not just
a slightly better social simulation, or a more “believable” multi-agent sys-
tem. Much beyond these, what we are actually working towards, whether
we acknowledge it or not, is cognitive social science (or “cognitivized” so-
cial science) – a social science that bases its methodology and theory on
the in-depth study of the human mind. The study of the human mind is
the essential ingredient of any social science and, one may argue, should
be the basis of such science (although we clearly realize that there are op-
posing views on this issue, which may be well entrenched). Going even
beyond that, we are actually working towards computational cognitive so-
cial science – with computational approaches being adopted as the primary
means (Prietula et al., 1998; Sun, 2001b).

3 one hierarchy and many levels

As alluded to before, one striking feature, apparent upon examining the
state of the art in social and cognitive sciences, is the lack of integration and
communication among disciplines. Each discipline considers a particular
aspect and ignores the rest (more or less). Each is substantially divorced
from other, related disciplines. Generally, they do not work together. Con-
sequently, they often talk past each other, instead of to each other.

Here, instead, let us take a broader perspective and look at multiple
“levels” of analysis in social and cognitive sciences. These levels of analysis
can be easily cast as a set of related disciplines, from the most macroscopic to
the most microscopic. These different levels include: the sociological level,
the psychological level, the componential level, and the physiological level
(see Table 1.1). In other words, as has been argued in Sun et al. (2004),
we may view different disciplines as different levels of abstraction in the
process of exploring essentially the same broad set of questions (cf. Newell,
1990).

table 1.1. A Hierarchy of Four Levels.

Level Object of Analysis Type of Analysis Model

1 inter-agent/collective
processes

social/cultural collections of agent models

2 agents psychological individual agent models
3 intra-agent processes componential modular construction of

agent models
4 substrates physiological biological realization of

modules
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First of all, there is the sociological level, which includes collective
behaviors of agents (Durkheim, 1895), interagent processes (Vygotsky,
1986), sociocultural processes, social structures and organizations, as well
as interactions between agents and their (physical and sociocultural)
environments.

Although studied extensively by sociology, anthropology, political sci-
ence, and economics, this level has traditionally been very much ignored in
cognitive science. Only recently, cognitive science, as a whole, has come to
grips with the fact that cognition is, at least in part, a sociocultural process
(Lave, 1988; Hutchins, 1995). To ignore sociocultural processes is to ignore
a major underlying determinant of individual cognition. The lack of under-
standing of sociological processes may result in the lack of understanding
of some major structures in, and constraints on, cognition.3

The next level is the psychological level, which covers individual expe-
riences, individual behaviors, individual performance, as well as beliefs,
concepts, and skills employed by individual agents. In relation to the so-
ciological level, the relationship of individual beliefs, concepts, and skills
with those of the society and the culture, and the processes of change of
these beliefs, concepts, and skills, independent of or in relation to those of
the society and the culture, may be investigated (in inter-related and mu-
tually influential ways). At this level, we may examine human behavioral
data, compared with models and with insights from the sociological level
and details from the lower levels.

The third level is the componential level. At this level, we study and
model cognitive agents in terms of components, with the theoretical lan-
guage of a particular paradigm, for example, symbolic computation or
connectionist networks, or their combinations thereof. At this level, we
may specify computationally an overall architecture and the components
therein. We may also specify some essential computational processes of
each component as well as essential connections among components. Ideas
and data from the psychological level, that is, the psychological constraints
from above, which bear significantly on the division of components and
their possible implementations, are among the most important consider-
ations. This level may also incorporate biological/physiological facts re-
garding plausible divisions and their implementations; that is, it can incor-
porate ideas from the next level down – the physiological level, which offers
the biological constraints. This level results in mechanisms, though they are
computational and thus somewhat abstract compared with physiological-
level details. The importance of this level has been argued for, for example,
in Sun et al. (2004) and Gray and Altmann (2001).

3 See Sun (2001b) for a more detailed argument for the relevance of sociocultural processes
to cognition and vice versa.
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Although this level is essentially in terms of intra-agent processes, com-
putational models developed therein may be used to capture processes at
higher levels, including interaction at a sociological level whereby multi-
ple individuals are involved. This can be accomplished, for example, by
examining interactions of multiple copies of individual agent models or
those of different individual agent models. We may use computation as a
means for constructing agent models at a sub-agent level (the componen-
tial level), but we may go up from there to the psychological level and to
the sociological level (see more discussions of mixing levels later on).

The lowest level of analysis is the physiological level, that is, the bio-
logical substrate, or the biological implementation, of computation. This
level is the focus of a range of disciplines including biology, physiology,
computational neuroscience, cognitive neuroscience, and so on. Although
biological substrates are not our main concern here, they may nevertheless
provide useful input as to what kind of computation is likely employed
and what a plausible architecture (at a higher level) should be like (Piaget,
1971). The main utility of this level is to facilitate analysis at higher levels,
that is, analysis using low-level information to narrow down choices in
selecting computational architectures as well as choices in implementing
componential computation.

Work at this level is basically the reverse-engineering of biological sys-
tems. In such a case, what we need to do is to pinpoint the most basic prim-
itives that are of relevance to the higher-level functioning that we are in-
terested in. Although many low-level details are highly significant, clearly
not all low-level details are significant or even relevant. After identifying
proper primitives, we may study processes that involve those primitives,
in mechanistic/computational terms.

To more clearly illustrate this view of cascading levels, Figure 1.1 shows
the correspondences among levels, with a cascade of maps of various res-
olutions.

4 crossing and mixing levels

Although analysis in modeling and simulation is often limited to within a
particular level at a time (inter-agent, agent, intra-agent, or substrate), this
need not be the case: Cross-level analysis and modeling could be intellec-
tually enlightening, and might even be essential to the progress of science
(Sun et al., 2004). These levels proposed earlier do interact with each other
(e.g., constraining each other) and may not be easily isolated and tackled
alone. Moreover, their respective territories are often intermingled, without
clear-cut boundaries.

For example, the cross-level link between the psychological and the neu-
rophysiological level has been strongly emphasized in recent years (in the
form of cognitive neuroscience; see, for example, LeDoux, 1992; Damasio,
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figure 1.1. The cascading levels of analysis.

1994; Milner & Goodale, 1995). For another example, the psychological
and the social level may also be crossed (and may even be integrated) in
many ways, in order to generate new insights into social phenomena on
the basis of cognitive processes (Boyer & Ramble, 2001) and, conversely, to
generate insights into cognitive phenomena on the basis of sociocultural
processes (Hutchins, 1995; Nisbett et al., 2001). In particular, in the field of
cognitive work analysis, in order to facilitate the design of physical work
environments and group structures that improve work performance, work
activities are analyzed in terms of the cognitive processes involved (such
as memory requirement, visual perception, etc.) to shed light on possible
areas of improvement. In all of these cases, the ability to shift freely be-
tween levels, or to understand the mapping between levels, is a critical
part of scientific work.

Note that when crossing levels, there is no fixed path, from either the
highest level to the lowest level, or vice versa. Instead, analysis at multiple
levels can, and should, be pursued simultaneously and be used to constrain
and to guide each other.

Beyond cross-level analysis, there may be “mixed-level” analysis (Sun
et al., 2004). The idea of mixed-level analysis may be illustrated by the
research at the boundaries of quantum mechanics. In deriving theories,
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physicists often start working in a purely classical language that ignores
quantum probabilities, wave functions, and so forth, and subsequently
overlay quantum concepts upon a classical framework (Greene, 1999).
The very same idea applies to cognitive modeling and social simulation
(Coward & Sun, 2004). One may start with purely social descriptions but
then substitute cognitive principles and cognitive processing details for
simpler descriptions of agents. Thus, the differences and the separations
among levels should be viewed as rather fluid. The separations should not
be pursued dogmatically.

Another scenario of mixing levels is as follows, again using an example
from the physical sciences (Coward & Sun, 2004). In physics, the objects
and the causal relationships among the objects at higher levels of abstrac-
tion may be defined as combinations of more detailed objects and more
detailed causal relationships at a lower level. In the ideal case, the causal
relationships among objects at higher levels can be specified with 100%
accuracy without reference to the internal structure of those objects as
defined at more detailed levels. However, in practice, this ideal is often
not achieved fully, and the simpler causal relationships at a higher level
sometimes generate predictions that are less consistent with observations
than those generated at a more detailed level. A model must therefore
have associated specifications that indicate the conditions under which a
more detailed model must supersede the higher-level model, or in other
words, when the generally negligible effects of the internal structure of
higher-level objects must be taken into account. Therefore, again, it must
be possible to mix models of adjacent levels.

Whereas normal theories begin with the specification of units of analysis
within a specific level, theories that cross and/or mix levels subdivide such
units and therefore delve into deeper explorations. In relation to the focus
of the present volume, we believe that crossing levels and mixing levels
constitute the foundation of the integration of cognitive modeling and
social simulation, as will be explicated in more detail later.

5 a golden triangle

Within this framework of a hierarchy of levels, let us take a (relatively) low-
level view first and look specifically into the question of how cognition fits
into this framework.

In analogy with a triad of cognition–task–artifact as often talked about
in the study of human–computer interaction (Gray & Altmann, 2001),
we may examine a much broader and more general triad of thinking–
motivation–structure.4 First of all, low-level motivations, such as biological

4 Here, the term “thinking” is used in a broader sense, denoting reasoning, planning, skills,
memory, and so on, equivalent to “cognition” in a narrower sense as commonly used in the
literature and as in the original cognition–task–artifact triad.
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needs, arise naturally, and they occur clearly prior to thinking (reasoning,
planning, and so on). Such needs are the most basic and most important
motivators of action and the fundamental underlying themes of everyday
activities.

Needs can be fulfilled only in a physical and sociocultural environment.
The environment may or may not be hospitable to the needs of an agent.
Therefore, effort is often required of an agent to fulfill even the most basic
needs. Evolutionarily speaking, it seems evident that thinking (cognition)
is there mostly to serve the purpose of fulfilling the needs of agents. That
is, thinking (cognition) is evolved mostly to find ways of satisfying such
needs (and their derived goals). It involves embodied reactions on the
one end and deliberative conceptual thinking on the other. Both normally
operate in an existentially pertinent manner. Thinking (cognition) must be
teleologically consistent with an agent’s innate needs and other motivators.
The consistency between the teleological function of thinking (cognition)
and the teleological function of innate needs and other motivators may
result from the evolutionary process that created both. In turn, both are
there to serve the purpose of “competing” in natural selection.

To satisfy needs, one has to deal with environments (including one’s
own embodiment) and their regularities and structures, and to exploit such
regularities and structures in the process, on an individual or a collective
basis. In a sense, thinking (cognition) bridges the needs of an agent and
the environments, physical or social, in which the agent finds itself.

In the reverse direction, existent structures of environments shape the
thinking (cognition) of an agent in many ways, and may even indirectly
shape the needs, desires, and other motivators of an agent. First of all, an
agent has to deal with social and physical environments. Hence, its thinking
is structured and constrained by its environments (Brooks, 1991; Bickhard,
1993; Andersen & Chen, 2002). Second, the structures and regularities of
an environment may be internalized by agents, in the effort to exploit such
structures and regularities to facilitate the attainment of needs. Third, an
environment itself may be utilized as part of the thinking (cognition) of
an agent (Hutchins, 1995; Brooks, 1991), and therefore it may be heavily
reflected in the cognitive process of an agent.

Although in the past there have been calls for cognitive scientists to
ignore external aspects in studying cognition (e.g., Fodor, 1980), the idea
that cognition is, to a large extent, social is not a new one. Hutchins (1995)
has been developing this idea through anthropological field work. Carley
and Newell (1994) attempted to define characteristics of cognitive agents
in a social context. They argued that, in order to be compatible with what
is needed by social sciences, more is needed beyond current theories of
cognition. Their “model social agents” possess a variety of knowledge
and processing capabilities. Their knowledge may be divided into lay-
ers of cultural–historical situations, social goal situations, social structural
situations, real-time interactive situations, multiple agent situations, and
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nonsocial task situations, as termed by Carley and Newell (1994). Whether
one agrees with the details of their analysis, the point that cognition and
sociality are intimately tied together remains valid.

On the other hand, needs and their concomitant thinking (cognition)
lead to action. Actions do change environments (existent structures) in a
variety of possible ways. Changes may be made to physical environments,
for example, in the case of building a shack because of the need to avoid
rain. Changes may also be made to social environments, for example, in the
case of creating a social institution to ensure property rights. The changed
structures then, in turn, affect thinking and motivation.

Thus, the three factors, motivation, thinking, and existent structures,
dynamically interact with one another, through human actions. Moreover,
due to their close, dynamic interactions, they are inextricably tied together
and hence we may view them as integral parts of a thinking–motivation–
structure triad.

The ways in which these three major factors interact can evidently be
highly complex (Sun, 2001a,b). It may therefore be argued, on the basis of
complexity, that the dynamics of their interaction is best understood by
ways of modeling and simulation. One may even claim that the dynamics
of their interaction can be understood only by modeling and simulation,
as some researchers would. In this endeavor, computational modeling and
simulation are the most important means currently available for under-
standing the processes and their underlying mechanisms (as opposed to
strictly mathematical modeling or informal verbal theories; see, for exam-
ple, Gilbert, 1995 and Sawyer, 2003; more later).

Notably, however, researchers in the social sciences sometimes over-
look the importance of cognition in theorizing about social phenomena.
For example, current social simulation tends to ignore the role of cognitive
processes, and adopt extremely simplified models of agents instead (e.g.,
Axelrod, 1984). Social sciences (and “social engineering” in practice) may
ignore cognition (as broadly defined, for example, including motivation)
at their own peril. In human history, there have been numerous examples
of failure of social theories, social institutions, or social practices, due to
the failure to take into account important factors of human cognition. For
example, some socioeconomic theories (for example, utopianism, commu-
nism, etc.) failed, precisely because they failed to take into account human
cognition and human nature (especially motivation, emotion, and other
socially relevant aspects of cognition; see Chapter 4). For another example,
doctrines of different religions have rarely been strictly obeyed, nor is it
likely that they will be strictly obeyed in the future. Although it is almost a
necessity that certain counter-intuitive beliefs, as well as other anomalies,
are instituted in religions (Atran & Norenzayan, 2003), many practices or
ideals that go against essential human nature (cognition, motivation, etc.)
have not been, nor will they ever be, strictly followed.
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To develop social simulation with realistic cognitive models, it is im-
portant that we have computational cognitive models, or computational
cognitive architectures on which computational cognitive modeling can be
based, that take into adequate account the interactive nature of cognition,
in terms of interacting with both physical and social environments. Cer-
tain characteristics of such models have been argued in Sun (2004), which
include considerations of ecological realism and bio-evolutionary realism.
Furthermore, in such models, a sufficient amount of detail concerning in-
dividual cognition needs to be provided, in order to take adequate account
of human cognition and human nature in social simulation. Glossing over
too many details of cognition that are important and that can currently be
captured computationally is one of the most glaring shortcomings of many
social simulation models (Axelrod, 1984; Gilbert & Doran, 1994).

6 a mysterious link

Now that we examined issues surrounding cognition, let us see how we
may move up from there. That is, let us see how we may “mix” levels
by going from the psychological level to a higher level – the sociological
level.

Here, we encounter immediately a key issue at the intersection of the
psychological and the sociological level: That is, how do the intention and
action of individual agents serve social functions? In particular, how do
self-interested agents, by virtue of their self-interest, help with the overall
welfare of the society? Here, we encounter the baffling issue of the micro–
macro link (Alexander et al., 1987) – for example, the “invisible hand”
that directs the actions of agents to serve a social function. Adam Smith
(1976) put it this way: “He generally, indeed, neither intends to promote
the public interest, nor knows how much he is promoting it. . . . He intends
only his own gain, and he is led by an invisible hand to promote an end
which was not part of his intention.” Or, as Castelfranchi (2001) put it:
“The real problem is modeling how we play our social roles, while being
unaware of the functional effects of our actions, not only with our routine
actions but even when doing something deliberately for our own subjective
motives.”

What constitutes that “invisible hand”? This paradox has been troubling
sociologists and economists for decades. There is indeed an apparent gap
between the individual intention in deciding his/her own actions and the
(possibly largely unintended) social function of his/her actions. However,
is this situation similar to the case of artificial neural networks? That is,
is this situation similar to the “paradox” of the simple firing of individual
neurons and the overall computation of a network of neurons as a whole
(Rumelhart et al., 1986)? Each neuron fires at its own “will” and appar-
ently for its own “gain.” But, together, a network of neurons accomplishes
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complex functions unknown to individual neurons. There is, clearly, a
strong analogy there. We may argue that computational modeling, either
using artificial neural networks or using some more complex computa-
tional models, can conceivably provide useful insights into this and other
related issues.

Castelfranchi (2001) examined various forms of emergence from simple
pattern formation to “cognitive emergence.” Among them, cognitive emer-
gence (implicit-to-explicit explication, or “bottom-up” learning, as termed
by Sun, 2002) is important. Along with (collective) evolution, cognitive
emergence may reconcile the aforementioned difference between individ-
ual intention and collective social function of human action. In a nutshell,
it may be hypothesized that collective social function may be lodged in the
mind of individuals, especially in the cognitive unconscious of the mind,
through a long evolutionary process within social contexts. Such hidden
motives, especially through the cognitive unconscious, may serve as (at
least part of) Adam Smith’s “invisible hand,” giving rise to emergent so-
cial function. Then, through cognitive emergence (Sun, 2002), they some-
times may become consciously known to agents as well. As was put by
Habermas (1987): “The first person, who turns back upon himself, . . . can
recapitulate the acts it just carried out. In place of reflectively objectified
knowledge . . . we have a recapitulating reconstruction of knowledge al-
ready employed.” Though full and precise conscious interpretations of the
cognitive unconscious may not always be the case, such reconstruction is
important nevertheless. Computational modeling does shed light on this
process in a tangible way (see Sun, 2002).

One viable computational modeling approach towards exploring the
link between individual cognition and social phenomena is to construct
a much simplified social simulation first, with only a minimum amount
of detail regarding cognition, for example, by simplifying cognition all
the way down to the level of choosing one of two possible actions based
on one previous action by an opponent (for example, as in the game
of prisoner’s dilemma; Axelrod, 1984). Then, on the basis of the simpli-
fied simulation, one may gradually add cognitive details, by examining
more and more information and by involving deeper and deeper process-
ing (Carley & Newell, 1994). This approach is similar to the notion of a
“docking” experiment described by Axtell et al. (1996), that is, connect-
ing a more detailed and more realistic model with a simplified social
simulation. It has been suggested that “docking” is the best way to val-
idate and to understand simulation in terms of importance and signifi-
cance of various contributing factors (Axtell et al., 1996). This “docking”
process can be repeated, through a series of gradually expanding cogni-
tive models. In so doing, various levels of details can be investigated and
validated.
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Alternatively, a complex model, with sufficient social details as well as
cognitive details, may be constructed to begin with. Then various details,
especially parameters concerning cognition, can be tested and validated
in terms of their effects on the outcomes of simulation. One possible way
of doing this is gradually stripping away layers of details and testing
the effects of such stripped-down versions in terms of the outcomes of
simulation.

Whereas verbal or mathematical theories begin with the specification
of units of analysis, computational simulations start with the specification
of units of operation. As a result, more detailed process-based theories
are in place. Because of this shifting of focus to processes, incorporation
of cognitive factors into social theorizing becomes more feasible, more
interesting, and deeper.

Computational social simulation may act as a precise kind of thought
experiment. In fact, computational social simulation may be viewed as
complex thought experiments in which outcomes cannot be clearly estab-
lished except through running simulations on a computer. Results from
simulations may be used to revise existing hypotheses or to generate new
hypotheses. Such thought experiments can easily find their uses in complex
domains like social and cognitive sciences.

What makes computational social simulation, especially computational
cognitive social simulation (based on detailed models of cognitive agents),
different from the long line of social theories and models (such as utility
theory and game theory) includes the fact that it enables us to engage
with observations and data more directly and test various factors more
thoroughly. In analogy with the physical sciences (Sun et al., 2004), good
social theories may be produced on the basis of matching theories with
good observations and data. Cognitive agent based computational social
simulation enables us to gather, organize, and interpret such observations
and data with cognition in mind. Thus, it appears to be a solid means of
developing social–cognitive theories.

There has even been a more radical position that believes (roughly) that
a model is, by itself, a theory (e.g., van Fraasen, 2002). Constructive em-
piricism, as the view is sometimes known, might serve as a philosophical
foundation for computational social simulation in general, and compu-
tational cognitive social simulation in particular. However, regardless of
which philosophical position one subscribes to, computational cognitive
social simulation is useful in more than one way.

7 the root

As alluded to before, there have been some reasons to believe that the
root of the micro–macro link might lie in the process of evolution (e.g.,
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Barkow et al., 1992). Note that when we talk about evolution, we must talk
about both evolution of cognition and evolution of sociocultural processes.
We might view them either as constituting elements of one process or as
separate processes (Kenrick et al., 2003).

How do we test and validate such a hypothesis? To understand the
evolution of these two kinds of processes and their interaction, large-
scale evolutionary simulation (through computational modeling) may be a
necessity. Such an effort requires computational modeling because of its
complexity. Beyond much simplified models of evolution (as in, for exam-
ple, Cecconi & Parisi, 1998; Kenrick et al., 2003), we would need more cog-
nitively realistic computational simulation models of evolution – models
that take into account realistic cognitive processes and constraints, as well
as their changes, phylogenetic and ontogenetic, in addition to capturing
social processes. It is not just social simulation, or just social simulation
with cognitive modeling – it is both plus evolutionary processes on top
of them. One can easily imagine that the complexity of such a simulation
could be overwhelming.

Understanding theoretical issues regarding cognition and sociality re-
quires computational modeling and simulation, not only because of the
complexity of such an undertaking, but also because of the expressive
power of computational models. Unlike mathematical modeling, compu-
tational modeling is not limited by available mathematical tools. Hence it
enjoys greater expressive power. Yet, unlike verbal models, it is precise.5 It
seems to strike a proper balance between rigor and flexibility (or expressive
power) (Sun et al., 2004).

There has been work going on in investigating the purported root of
both cognition and sociality. Such work includes both theoretical hypothe-
ses and arguments as well as empirical investigations and computational
simulations. For example, some theoretical work indicated that human
cognition has evolved in the context of social interaction. Therefore, the
human mind may come equipped with the capabilities for dealing with
social situations (Barkow et al., 1992). Also as a result, certain forms of
social interactions and social groups keep propagating through the human
history. Simulation work by Nolfi and Floreano (1999) indicated that there
might be complex interactions between learning and evolution, or more
generally, between individual cognition and populational changes. Thus,
these two aspects, individual cognition and collective behavior, might be
strongly coupled and thus should be studied together.

Furthermore, beyond the evolutionary–historical interaction, it may be
further hypothesized that at an individual level, as a result of evolution,

5 However, verbal models may often be imaginative and insightful, and therefore useful in
their own right.
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the human mind makes decisions taking into account (likely implicitly,
or unconsciously) social contexts and social implications of their actions
(at least to some extent). This point may be argued on the basis that such
a consideration would benefit the survival of social groups and therefore
would benefit the survival of individuals in them. Therefore, natural se-
lection would favor it. This pre-wired micro–macro consistency, if it exists
(to some extent), is evidently the result of the evolutionary history of the
human mind.

At the individual level, one may argue that this consideration may be un-
conscious or conscious (implicit or explicit) (Rizzello & Turvani, 2000). But
there are reasons to believe that it is mostly implicit, below the conscious
level, because explicit altruistic thoughts are relatively rare (Smith, 1976).
Humans are naturally self-interested, within or without a social group. But
their “self-interested” actions often lead to benefiting society as a whole.
The human mind is the interplay of various factors at many different levels
and scales.

At the collective level, cultural and institutional processes forge and
maintain unifying and stabilizing beliefs and ideologies (Bourdieu &
Wacquant, 1992). These beliefs and ideologies, nevertheless, are mani-
fested through individual beliefs and actions, in an implicit or explicit
form. As viewed by sociologists and anthropologists, cultural and institu-
tional processes may take on their own trajectories and dynamics (as the
“unexpected” outcomes of individual minds as described by Rizzelo and
Turvani 2000, or as the results of deliberate acts), and thus may be viewed as
a separate layer in theorizing (Jung, 1959). A cultural evolutionary process
may be at work with regard to these dynamics, in relation to, but maybe
(to some extent) distinct from, biological evolutionary processes.

In this complex equation, social structures – the enduring, orderly, and
patterned relationship among elements in a society (such as groups and
hierarchies) – are the results of both biological evolution and evolution
of social interaction. Complex social structures, such as those found in
human societies, historically or currently, result from complex biological,
social, cultural, and cognitive adaptation that goes beyond simple biologi-
cal processes. The interplay of these factors (biological, sociocultural, and
cognitive), through the actions of individual agents, gives rise to a variety
of different forms of social structures and sociocultural processes. These
structures and processes in turn impose themselves on individuals. It may
be posited that culture, institutions, and other social structures are needed
for maintaining a proper micro–macro link.

All of the aforementioned factors need to be brought together, because
without any one of them, a full understanding of cognitive and social
processes may not be achieved. In particular, deep roots of their inter-
action need to be explored through all available means, and through
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computational modeling and simulation in particular (Cecconi & Parisi,
1998; Mataric, 2001). Crossing and mixing levels (as discussed before) are
necessary in this intellectual endeavor to expose, explicate, and accentuate
the link between the micro and the macro.

8 a brief overview

Let us have a brief overview of the remainder of this book. In this book,
we are interested in many aspects of cognitive modeling of agents and the
modeling of multi-agent interaction on that basis, including (among other
things):

� Cognitive architectures of individual cognitive agents
� Cognitively-based computational models of multi-agent interaction
� Cognitively-based computational models of multi-agent organizations
� Cognitively-based computational models of co-learning of multiple

agents
� Computational models of evolution of cognition and sociality

Beyond computational models of these aspects6, we are also interested in
having broader theoretical perspectives, and therefore commentaries from
diverse viewpoints are also presented towards the end of this volume.

Specifically, Part 2 of this book reviews some of the best known cog-
nitive architectures, which form the basis of computational modeling of
individual cognition and may be extended to modeling social processes.
Three chapters cover three distinct cognitive architectures. Chapter 2 (by
Niels Taatgen et al.) discusses ACT-R – one of the most successful cogni-
tive architectures in existence. This chapter discusses, in some detail, major
mechanisms in ACT-R that are relevant for capturing important aspects of
cognition, and how they may be used for cognitive modeling of various
kinds. Chapter 3 (by Robert Wray and Randolph Jones) discusses Soar – the
original cognitive architecture of Allen Newell (see Newell, 1990). It covers
the essential features of Soar for modeling cognitive processes. Chapter 4
(by Ron Sun) addresses major aspects of a relatively new cognitive archi-
tecture CLARION, which differs from other cognitive architectures in
many significant ways. The question of why CLARION is suitable for social
simulation is briefly addressed.

Part 3 of this book then develops specific models of both cognition
and social interaction, using cognitive architectures as well as other cogni-
tive/computational models. These approaches shed new light on interac-
tions among cognitive agents and on social phenomena in general. These
approaches also embody the integration of cognitive modeling and social
simulation, and demonstrate their synergy in various ways.

6 Admittedly, some of these issues are better addressed than others in this book.
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Chapter 5 (by West et al.) investigates how cognitive architectures
(ACT-R in particular) may be used to address repeated game situations.
Repeated games (e.g., repeated prisoner’s dilemma) have been an impor-
tant area in understanding some limited cases of social interaction and
hence they are important domains for social simulation. Their work shows
that cognitive architectures may be beneficially applied to such social sim-
ulation, although the work is limited to simple game situations thus far.

Chapter 6 (by Naveh and Sun) delves into effects of cognitive parame-
ters on social simulation – in particular, on a simulation of a simple case
of organizational decision making. It is found that many of these cog-
nitive parameters have significant impact on the outcomes of this social
simulation. A lesson may be drawn from this study that we cannot fully
understand a social process through social simulation unless we take into
account sufficiently various cognitive factors, in order to see the full range
of possibilities in terms of outcomes of social simulation. In this process, as
this work employs a cognitive architecture, it also demonstrates in some
way the usefulness of cognitive architectures in social simulation.

Chapter 7 (by Clancey et al.) focuses on understanding and modeling
daily activities of a crew in a closed environment. With concepts and ideas
from activities theory, ethnography, as well as cognitive modeling, they
investigated fine-grained capturing of daily activities of agents and the in-
teraction of agents in such activities–their joint participation in a task. Their
model attempts to capture both social and cognitive aspects of such activ-
ities, thus uniting cognitive modeling and (small-scale) social simulation.

Chapter 8 (by Best and Lebiere) discusses the application of the ACT-R
cognitive architecture to military simulation. Their simulation is highly
complex and involves vision, navigation, planning, and a variety of other
functionalities. It addresses team cooperation (although in a highly stylized
way) and interactions with opposition teams. This line of work provides a
fertile ground for exploring a variety of interesting and relevant issues in
building complex and realistic social simulations based on cognitive archi-
tectures. Some of these issues are touched upon in this chapter, including
how vision and action execution can be added to cognitive architectures,
how production rules in cognitive architectures can be made more flexible
in real-time interaction, and how hierarchical planning may be applied.

Chapter 9 (by Gratch et al.) deals specifically with the representation of
emotions and their associated coping strategies. This aspect is important
in social interaction, and hence important for realistic social simulations.
This chapter provides useful ideas and some interesting details concerning
how such representations may be developed and used in future social
simulations.

Chapter 10 (by Trafton et al.) addresses an interesting issue in human
social interaction – taking the perspectives of others, and explores how this
process may be modeled computationally. Their work utilizes a variety
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of approaches in addressing this issue. Their results will certainly be of
interest to social simulations that take into account details of individual
cognition and thus may face the issue of perspective taking by individuals
in social interaction.

Chapter 11 (by Shell and Mataric) explores ways of developing mod-
els of cognition and social behaviors in robotic forms, using in particular
“behavior”-based methodologies. They survey a large body of work along
this line, pointing out various successes towards the goal of capturing
cognition and social behaviors in robotic forms, which have significant ap-
plication potentials not just for social simulations but also for a variety of
real-world situations.

Chapter 12 (by Schurr et al.) describes a number of multi-agent frame-
works, for various applications, including possibly for social simulations.
Their discussions range from BDI frameworks to the Soar cognitive ar-
chitecture. They show that cognitively-motivated agent models (such as
BDI and Soar) can be equally applied to social simulations in theoretically
oriented ways (as described by other chapters) and to more practical ap-
plications (as touched upon by this chapter).

Chapter 13 (by Parisi and Nolfi) explores various forms of social behav-
iors that can emerge when evolutionary processes are applied to agents
embodied in neural networks. As they demonstrate, interesting social be-
haviors, from simple cooperative acts to language and culture, do emerge as
a result of evolutionary pressure. Their computational work verifies what
has been extensively discussed by evolutionary theorists (see, e.g., Barkow
et al., 1992) and lends support to some of their claims (see also Section 7
earlier).

Chapter 14 (by Cristiano Castelfranchi) investigates the mental repre-
sentation needed within individual agents to enable social cooperation.
A variety of constructs are discussed, and various possibilities explored.
These issues are of major interest in gaining a better understanding, and in
developing better models, of multi-agent interaction in social simulation.
Further work is very much needed to continue such explorations.

All of these chapters provide new ideas and new perspectives concern-
ing social simulation. In particular, they emphasize the integration of the
modeling of individual cognition and the modeling of social processes, in
different ways and with different objectives. Considering that there has
been relatively so little work in the past on this issue and the issue is such
an important one, these chapters fill a significant gap in the literature.

To help achieve better understanding of the proposed models and archi-
tectures, Part 4 of this book presents various views, issues, and arguments
concerning possibilities of integrating cognitive modeling and social sim-
ulation. Among these short chapters, Moss argues that computational cog-
nitive social simulation is good science because it is observation driven.
Computational cognitive social simulation models capture some intuitive
understanding and draw its implications through simulation experiments.
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Thus, such models help to clarify how macro phenomena emerge from
individual behaviors. Panzarasa and Jennings argue that multi-agent sys-
tems in artificial intelligence can address some important issues involving
social interaction and cognition. The recent conceptual and technical de-
velopment of multi-agent systems may make them suitable for social sim-
ulation. Burns and Roszkowska stress the importance of an extended form
of game theory in integrating social simulation and cognitive modeling. In
their formulation, value, norm, social role, and other sociocognitive factors
are taken into account in modeling interactions among cognitive agents.
Ritter and Norling argue that individual differences and behavioral mod-
erators should be taken into consideration in cognitive modeling and in
social simulation, and they point out some possibilities. Finally, Gilbert dis-
cusses the limits of integrating social simulation and cognitive modeling –
when this approach is not applicable and what one should not do with it.
He also highlights a few other methodological issues that are important for
“mixed-level” analysis (as proposed earlier in this chapter) in social and
behavioral sciences.

9 summary

Within a multilevel framework, this chapter argues for crossing and mixing
some of these levels: the social, the psychological, and the componential.
Hence, the case for the integration of social simulation with cognitive mod-
eling was presented, which opens the way for a more detailed discussion
of integrating social simulation and cognitive modeling in the remainder
of this book.

In particular, this chapter argues for (1) the consistency of individual mo-
tivation and thinking, and (2) the consistency of individual cognition and
collective social function, both from evolutionary considerations. Although
such consistencies are evidently limited, brittle, and controvertible, they
nevertheless serve important teleological functions. They also serve as the
basis of our argument: From the triad of thinking–motivation–structure to
the link between the micro and the macro, these consistencies form a plau-
sible foundation for integrating social simulation and cognitive modeling.

This chapter also argues for the role of computational modeling and
simulation in understanding the social/cognitive interaction, especially
the role of complex computational social simulation with realistic compu-
tational cognitive models (i.e., computational cognitive social simulation),
utilizing cognitive architectures in particular. The argument from complex-
ity and expressive power of computational models did the bulk of the work
in this regard.

It is an open empirical question how much complex computational so-
cial simulation with realistic cognitive models (i.e., computational cogni-
tive social simulation) can accomplish. Addressing this question is what
this book is all about.
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Modeling Paradigms in ACT-R

Niels Taatgen, Christian Lebiere, and John Anderson

1 introduction

In his book “Unified Theories of Cognition,” Newell (1990) called upon
researchers to formulate general theories of cognition in the form of cog-
nitive architectures. A cognitive architecture is a computational modeling
platform for cognitive tasks. An architecture should offer representational
formats together with reasoning and learning mechanisms to facilitate
modeling. For Newell, this was not the most important aspect of an ar-
chitecture. In addition to facilitating modeling, an architecture should also
constrain modeling. Ideally, an architecture should only allow cognitive
models that are cognitively plausible, and it should disallow or reject cog-
nitive models that do not correspond to possible human behavior. Newell
proposed Soar (see Chapter 3) as his candidate theory, but also mentioned
ACT* (Anderson, 1983) as a possible contender.

The ACT-R architecture (Anderson et al., 2004) is the successor of ACT*,
and is, contrary to its predecessor, a fully implemented system that is con-
tinuously updated and expanded. The current version, ACT-R 6.0, is ca-
pable of interacting with the outside world, has been mapped onto brain
structures, and is able to learn to interact with complex dynamic tasks.
Consistent with Newell’s goals, ACT-R is a simulation environment that
supports the creation of cognitive models that are capable of predicting
and explaining human behavior. As such, it can be instrumental in multi-
agent simulations, where an ACT-R-based agent can play the role of a
human. ACT-R’s main source of constraint is the theory of rational analysis.
According to rational analysis, each component of the cognitive system
is optimized with respect to demands from the environment, given its
computational limitations. A consequence of this choice is that truth is not
a fundamental notion in ACT-R (contrary to systems based on logic), but
rather a derivative: useful knowledge is usually true, although true knowl-
edge is not necessarily useful. The memory, performance and learning
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systems that have been built on the basis of rational analysis have been
validated extensively by many models of classical memory and learning
experiments (many of which are discussed in Anderson and Lebiere, 1998).

Contrary to a true symbolic system like Soar, ACT-R assumes both a sym-
bolic and a subsymbolic level to the knowledge represented in its two mem-
ory systems – declarative and procedural memory (see also Chapter 4).
The subsymbolic level allows fine-graded models of learning and perfor-
mance that include forgetting and making errors, and can present char-
acteristics usually associated with neural network models. The symbolic
level makes it possible to construct models that cover many reasoning steps
and larger sets of knowledge. Knowledge in all systems of the architecture,
declarative and procedural, and all levels, symbolic and subsymbolic, can
be learned by the architecture. To properly explain the architecture, we will
start with a general overview, followed by explaining ACT-R’s components
on the basis of five modeling paradigms.

2 overview of act-r

Central to ACT-R is the notion of a declarative memory for facts, and a
procedural memory for rules. ACT-R 6.0 extends this basis with a set of
modules that interact with the outside world. As a consequence, declara-
tive memory has become another module, whereas the production system
implementing procedural memory takes the center position, connecting
all the modules together (Figure 2.1).

The production system does not have unlimited access to the various
modules, but communicates with them through buffers. A buffer can con-
tain only one piece of information at a time. For example, in order to retrieve
a certain fact from declarative memory, a request has to be made to declar-
ative memory in the form of a partially specified pattern. The declarative
module will then try to complete the pattern, after which the result is placed
back in the retrieval buffer, where it can be matched and used by another
rule. Production rules in ACT-R therefore serve a switchboard function,
connecting certain information patterns in the buffers to changes in buffer
content, which in turn trigger operations in the corresponding modules.
Production rules in ACT-R do not have the same representational power
(and the associated computational problems) as classical production sys-
tems. The different modules in the architecture operate asynchronously,
and in parallel. Behavior within a module is largely serial. For instance,
the declarative model can retrieve only one item at a time, and the visual
system can focus its attention on only one item in the visual field at a time.

Items in declarative memory, called chunks, have different levels of
activation to reflect their use: chunks that have been used recently or chunks
that are used very often receive a high activation. This activation decays
over time if the chunk is not used. Activation also includes a component



Modeling Paradigms in ACT-R 31

Matching (Striatum)

Selection (Pallidum)

Execution (Thalamus)P
ro

d
u

ct
io

n
s

(B
as

al
 G

an
g

lia
)

Retrieval Buffer
(VLPFC)

Goal Buffer
(DLPFC)

Manual Buffer
(Motor)

Visual Buffer
(Parietal)

Declarative Module
(Temporal/Hippocampus)

Intentional module
(not identified)

Visual Module
(Occipital/Parietal)

Manual Module
(Motor/Cerebellum)

External World

figure 2.1. Overview of ACT-R 6.0.

that reflects the degree to which this chunk matches the current context,
as well as a noise component that makes activation a stochastic quantity,
and retrieval a probabilistic process. The concept of activation follows from
rational analysis in that it represents the probability (actually, the log odds)
that a chunk is needed and the estimates provided by ACT-R’s learning
equations represent the probabilities in the environment very well. The
level of activation has a number of effects. One effect of activation is that
when ACT-R can choose between chunks, it will retrieve the chunk with
the highest activation. Activation also affects retrieval time, and whether
the chunk can be retrieved at all. The higher a chunk’s activation, the faster
it can be retrieved, and the more likely that activation is to be above a
retrieval threshold. Chunks cannot act by themselves, they need produc-
tion rules for their application. To use a chunk, a production rule has to be
invoked that requests it from declarative memory, and another one that
harvests it from the retrieval buffer and does something with it. Because
ACT-R is a goal-driven theory, chunks are usually retrieved to achieve
some sort of goal.

The selection of production rules is also governed by the principle of ra-
tional analysis. Each production rule has a real-valued quantity associated
with it called utility. This utility is calculated from estimates of the cost and
probability of reaching the goal if that production rule is chosen. The unit



32 Niels Taatgen, Christian Lebiere, and John Anderson

of cost in ACT-R is time. ACT-R’s learning mechanisms constantly update
the parameters used to estimate utility based on experience. If multiple
production rules are applicable to a certain goal, the production rule with
the highest utility is selected. In both declarative and procedural memory,
selections are made on the basis of some evaluation, either activation or
utility. This selection process is noisy, so the item with the highest value
has the greatest probability of being selected, but other items get oppor-
tunities as well. This may produce errors or suboptimal behavior, but it
also allows the system to explore knowledge and strategies that are still
evolving.

In addition to the learning mechanisms that update activation and util-
ity, ACT-R can also learn new chunks and production rules. New chunks are
learned automatically: each time a goal is completed or a perceptual/motor
event is registered, it is added to declarative memory. If an identical chunk
is already present in memory, these chunks are merged and their activa-
tion values are combined. New production rules are learned through the
mechanism of production compilation, which combines two rules that fire
in sequence into a single rule.

The five modeling paradigms that we will use to discuss ACT-R are
the following: Instance learning uses previous experiences to guide choices,
and focuses on ACT-R’s declarative memory and partial matching mecha-
nism. In Competing Strategies several strategies compete to solve a problem.
ACT-R’s utility learning mechanism will ensure that the strategy with the
best probability of success for the lowest costs will be used most often.
When studying Individual Differences, architectural global parameters are
identified that correlate with traits and abilities in individuals. Models that
incorporate Perceptual and Motor Processes use the interaction with the out-
side world as an additional constraint on behavior. Finally, Specialization
of Task-Independent Cognitive Strategies allows ACT-R to learn task-specific
rules on the basis of general strategies, including interpretation of instruc-
tions in declarative memory.

3 instance learning

Instance learning or instance theory, originally developed by Logan (1988),
is a simple but powerful modeling strategy. The basic idea is that as we solve
problems, we store the solutions in memory to retrieve them as examples
for future problem solving. For example, in tasks where participants have
to solve alphabet arithmetic problems, like D + 3 = ?, they initially use
a counting strategy. Evidence for this is the fact that the solution time
increases linearly with the second addend. However, once participants
become more experienced, they are able to retrieve answers from memory,
which is much faster, and the linear increase of solution time with the
second addend disappears.
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It is easy to model instance learning in ACT-R. Achieved goals are al-
ready automatically stored in declarative memory. Items in declarative
memory have an activation value that decays over time, lowering the prob-
ability of correct recall, and is boosted by additional rehearsals, increasing
the probability of recall. Another aspect of instance learning in ACT-R,
which is not covered by Logan’s original theory, is that the retrieval at-
tempt can produce an example that is slightly different from the example
that is searched for. In the case of D + 3 = ?, we might retrieve B + 3 = E
instead, because B is similar to D, which would lead to an error. In many
other areas requiring less precision than arithmetic, however, an example
that is similar to the goal can produce a useful answer, or can serve as a
basis for analogy.

3.1 Activation in Declarative Memory

The activation of a chunk determines whether or not it can be retrieved
and, if it is retrieved, how much time this takes. As has already been stated,
activation reflects past use of a chunk, and its association with the current
goal context. The activation of a chunk is the sum of a base-level activation,
reflecting its general usefulness in the past, and an associative activation,
reflecting its relevance to the current context. The activation of a chunk i is
defined as

Ai = Bi +
∑

j

Wj Sji Activation Equation

where Bi is the base-level activation of the chunk i , the Wj ’s reflect the
attentional weighting of the elements that are part of the current goal, and
the Sji ’s are the strengths of association from the elements j to chunk i . The
activation of a chunk controls both its probability of being retrieved and
its speed of retrieval. In the case where there are multiple candidates for
retrieval, the chunk with the highest activation has the highest probability
of being retrieved.

Base-level activation (Bi ) rises and falls with practice and delay accord-
ing to the equation:

Bi = ln

(
n∑

j=1

tj
−d

)
Base-Level Learning Equation

tj is the time since the j th practice of an item. This equation is based on
the rational analysis of Anderson and Schooler (1991) studying how the
pattern of past occurrences of an item predicts the need to retrieve it. They
found that the above equation reflects the log odds that an item will reoccur
as a function of when it has appeared in the past. In ACT-R, it is assumed
that base-level activation would track log odds. Each presentation has an
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impact on odds that decays away as a power function (producing the power
law of forgetting) and different presentations add up (producing the power
law of practice – see Anderson, Fincham & Douglass, 1999). In the ACT-R
community 0.5 has emerged as the default value for the time-based decay
parameter dover a large range of applications.

There are three equations mapping activation onto probability of re-
trieval and latency. Probability is the probability that the activation will be
greater than a threshold τ .

Pi = 1

1 + e−(Ai −τ )/
√

2s
Probability of Retrieval Equation

where s controls the noise in the activation levels and is typically set at
about 0.4. If there is more than one chunk that matches the request, the
following equation describes the probability that a particular chunk will
be chosen (assuming its activation is above threshold):

Pi = e Ai

/√
2s

∑
k e Ak

/√
2s

Probability to Win Competition Equation

where k ranges over all the chunks that match. The time to retrieve the
chunk is given as

Ti = F e−Ai Latency of Retrieval Equation

where F is a scaling constant mapping activation to (real) time. Given the
mechanism of activation, ACT-R is able to predict under what circum-
stances an instance will be retrieved, and under which circumstances it is
not. An example of such a model (Anderson & Lebiere, 1998, chapter 4) is
a slight variation on alphabet-arithmetic done by Zbrodoff (1995) where
participants have to judge whether an addition with letters and a number
is correct, for example “F + 3 = I?”. By varying the addend in the equation
(from +2 to +4), they were able to show that at some point people shifted
from using counting, where the time to decide increases linearly with the
addend, to memory retrieval, where the time to decide is independent of
the addend.

3.2 Partial Matching in Instance Retrieval

A slightly more general version of instance retrieval is one in which par-
tial matches are allowed besides exact matches. This is not so useful in
alphabet-arithmetic, but in many other tasks an example that is similar to
the current goal is useful if an exact example is not available. ACT-R han-
dles partial matching by decreasing the activations of chunks that do not
exactly match. This deduction is smaller if the two mismatched values are
more similar. If the model tries to retrieve the answer to “F + 3 =?”, then
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the fact “F + 2 = H” would only be mildly penalized, because 2 and 3 are
similar. The formula for calculating activation while taking into account
mismatches now becomes

Ai = Bi +
∑

j

Wj Sji +
∑

k

Pk Mki Activation Equation

In this equation, Mki represents the mismatch between the requested value
and the retrieved value, which can vary between 0 (no mismatch, so no
penalty) and – 1 (complete mismatch). Pk represents the penalty that is
deducted from the activation in case of a complete mismatch. In case of
a complete mismatch the full penalty is applied, but when the requested
value and retrieved value are similar, only a partial penalty is given.

3.3 Example Model: Sugar Factory

Wallach has modeled an experiment by Berry and Broadbent (1984) in
which participants have to control a system called the Sugar Factory
(Taatgen & Wallach, 2002). Each trial in the experiment represents a day
in which participants have to decide on the size of the workforce (W, be-
tween 1 and 9). They are then told the output of the factory for that day
(O, between 1 and 12 tons), and are asked the size of the workforce for
the next day. The output of the factory not only depends on the size of the
workforce, but also on the output of the previous day, and a random factor
of –1, 0 or 1, according to the following equation:

O(t) = 2W(t) − O(t − 1) + random(−1, 0, 1)

If the output is outside the 1 . . . 12 range, it is set to the nearest boundary,
1 or 12. Whereas the output increases linearly with the number of work-
ers, it also decreases linearly with the previous day’s output, a somewhat
counterintuitive relation. Participants were given the goal of bringing the
output to 9 tons of sugar per day, and keeping it at that level.

Berry and Broadbent found that participants improve their behavior in
this experiment with experience, but are not able to explain the relationship
between workers and output after they are done with the task. Wallach’s
model is therefore based on instances, because instance retrieval can im-
prove performance without the model having an explicit representation of
what the rule is. The model stores each experience as a separate chunk in
declarative memory, for example:

Transition1239
Isa sugar-goal
Previous-output 3
Workers 8
Output 12
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This chunk encodes that a previous output of 3 tons of sugar and a work-
force of size 8 resulted in a new output of 12 tons of sugar. To determine a
workforce level for a new day, the model starts with a goal like this:

Transition1252
Isa sugar-goal
Previous-output 7
Workers ?
Output 9

This goal represents that yesterday’s output was 7 tons of sugar, and the
desired target is 9 tons of sugar. To determine the workforce level, the model
will try to retrieve an experience from declarative memory that matches
both the previous output and the new output. To this end it needs the
following two rules, which will be represented in a pseudo-English form,
with variables in italics:

Retrieval-request-rule
IF the goal is to determine the number of workers to achieve output

G and the output of the previous day was O
THEN send a request to declarative memory for an instance with previ-

ous output O and output G

Retrieval-harvest-rule
IF the goal is to determine the number of workers
AND an instance has been retrieved with W workers
THEN set the number of workers to W

Given ACT-R’s activation mechanism, the chunk that has been used or
recreated most often and has the largest similarity to the current goal will
be retrieved, for example:

Transition1236
Isa sugar-goal
Previous-output 6
Workers 8
Output 9

Although this example does not exactly match the current goal, it is close
enough if it has enough activation (it will be penalized for the mismatch
between 6 and 7 in the previous-output slots). Based on this example the
model will choose 8 as its next workforce. As the model gathers more expe-
riences, its decisions will also improve, despite the fact that it does not have
an explicit representation of the relationships between the task variables.
In the experiment, participants improved their on-target decisions from 8
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in the first block of 40 trials to 15 in the second block of 40 trials. The model
matched this fairly well with 9 and 14 trials, respectively.

4 competing strategies

Although instance learning is a powerful method to improve performance,
there is no real evaluation of the knowledge used. This is an advantage for
situations where no information for evaluation is available. If such infor-
mation is available it can be inserted into the instance, but this does not
translate into a higher activation. To directly influence knowledge parame-
ters on the basis of an evaluation, we need to learn the utility of knowledge.
An automatic process to keep track of utility is part of ACT-R’s procedural
memory. One way to use utility learning is to implement several problem-
solving strategies using production rules, and have the mechanism keep
track of the relative merits of these strategies.

With each production rule, ACT-R maintains two parameters: the esti-
mated cost of the rule, and the estimated probability of success. The utility
of a production i is defined as

Ui = Pi G − Ci Production Utility Equation

where Pi is an estimate of the probability that if production i is chosen the
current goal will be achieved, G is the value assigned to that current goal,
and Ci is an estimate of the cost (typically measured in time) to achieve
that goal. As we will discuss, both Pi and Ci are learned from experience,
whereas G is an architectural parameter.

The utilities associated with productions are noisy and on a cycle-to-
cycle basis there is a random variation around the expected value given
above. The highest-valued production is always selected but on some tri-
als one might randomly be more highly valued than another. If there are n
productions that currently match, the probability of selecting the ith pro-
duction is related to the utilities Ui of the n production rules by the formula

P(i) = eUi /t∑n
j eUj /t

Production Choice Equation

where the summation is over all applicable productions and t controls the
noise in the utilities. Thus, at any point in time there is a distribution of
probabilities across alternative productions reflecting their relative utilities.
The value of t is about 0.5 in our simulations and this is emerging as a
reasonable setting for this parameter.

Learning mechanisms adjust the costs Ci and probabilitiesPi that under-
lie the utilities Ui according to a Bayesian framework. Because the example
below is concerned with the learning of the probabilities, we will expand
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on that but the learning of costs is similar. The estimated value of P is
simply the ratio of successes to the sum of successes and failures:

P = Successes
Successes + Failures

Probability of Success Equation

However, there is a complication here that makes this like a Bayesian
estimate. This complication concerns how the counts for Successes and
Failures start out. It might seem natural to start them out at 0. However, this
means that P is initially not defined and after the first experience the esti-
mate of P will be extreme at either the value 1 or 0 depending on whether
the first experience was a success or failure. Rather P is initially defined as
having a prior value θ and this is achieved by setting Successes to θV + m
and Failures to (1 – θ )V + n where m is the number of experienced Suc-
cesses, n is the number of experienced Failures, and V is the strength of the
prior θ . As experience (m + n) accumulates, P will shift from θ to m/(m + n)
at a speed controlled by the value of V. The value of the cost parameter
C is estimated in a similar way as the sum of the efforts invested in a goal
divided by the total number of experiences (both Successes and Failures):

C =
∑

j Effort j

Successes + Failures
Cost Equation

Utility learning is a useful mechanism in tasks where there are multiple
cognitive strategies, but where it is unclear which of these strategies is best.
The basic setup of a model using competing strategies is to have a set of
production rules for each of the strategies. One of these production rules
initiates the strategy, and this rule has to compete with the rules that initiate
the other strategies. As these rules gain experience, their parameters will
reflect their utility, and ACT-R will tend to select the strategy with the high-
est utility. Depending on the level of utility noise the other strategies will
also be sampled occasionally. This makes the system somewhat sensitive
to changes in the utility of strategies.

4.1 Example Model: The Building Sticks Task

In the Building Sticks Task (BST), participants have to construct a stick of
a certain length using an unlimited supply of sticks of three other lengths
(Lovett & Anderson, 1996). For example, the goal might be to build a stick of
length 125 using sticks of length 15, 250, and 55. The goal can be reached by
either addition or subtraction, so building a 125 stick can be achieved by
55 + 55 + 15 or by 250 – 55 – 55 – 15. Instead of being presented with
the numbers, sticks of the appropriate length are shown on a computer
screen, giving only an approximate idea of the real length of a stick. Partic-
ipants started with a stick of length 0, and could subsequently select one
of the three sticks to either add to or subtract from the current stick. A
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figure 2.2. Experimental results and model fit for the Building Sticks Task. The
solid line represents the data, and the dotted line the model prediction.

consequence of only showing approximate lengths is that participants
could not calculate the results of their actions beforehand, and had to build
the goal stick by trial and error. The task was constructed in such a way that
there was always one stick longer than the goal stick, whereas the other two
are shorter, and that one of two strategies called undershoot and overshoot
would lead to the goal. In the undershoot strategy, the two smaller sticks
are used to achieve the goal, first by adding the larger of the two as many
times as possible without exceeding the goal, and then continuing with
the smaller one. In the overshoot strategy the stick that is larger than the
goal is selected first, and then the two smaller sticks are subtracted from
that stick in a manner similar to the undershoot strategy until the goal is
reached. In the earlier example, both undershoot and overshoot lead to the
goal. In almost all of the trials in the experiment, only one of the two led
to the goal, whereas the other just missed it. For example the goal might
be 101, and the building sticks 10, 155 and 22. The solution can be reached
through overshoot (155 – 22 – 22 – 10), but not through undershoot.

Although there are only two distinct strategies, they can be chosen for
different reasons. One can prefer to always use overshoot or undershoot,
but another possibility is to let the choice depend upon which initial step
gets you closer to the goal, thereby following a hill-climbing heuristic. For
example, in the case of the problem with 15 – 250 – 55 sticks and a goal of
125, the 55 stick brings one much closer to the goal than 250. In the problem
with 155 – 22 – 10 sticks and a goal of 101, the 155 stick is closer to the goal.

The solid line in Figure 2.2 shows the result of one of Lovett’s experi-
ments. In Problems 1 and 15, both undershoot and overshoot will lead to the
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goal, in Problems 2 to 8 and 12 to 14 only overshoot succeeds, and in prob-
lems 9 to 11 only undershoot succeeds. The data points indicate the percent-
age of participants that tried overshoot first. The arrows on the data points
indicate which strategy a hill-climbing approach (i.e. the selection first of
the stick closest to the goal stick) would favor: an arrow down means un-
dershoot and an arrow up means overshoot. A double arrow indicates that
there is no clear difference. The figure clearly shows that up to Problem 6,
participants tend to follow a hill-climbing strategy. For example on Prob-
lem 5 the arrow points up, meaning overshoot is favored by hill-climbing,
and over 80% of the participants select overshoot. By Problem 7 they have
discovered that up to then, the only strategy that works is overshoot, so
they start using it all the time. However, by Problem 9 overshoot is no
longer successful, and participants adapt their strategy choice almost im-
mediately. The same is true for Problems 12 to 14, where overshoot is once
more the successful strategy.

The basis for Lovett’s model consists of four competing production rules:

1. Always choose overshoot.
2. Always choose undershoot.
3. Decide for overshoot when the large stick clearly brings you closer

to the goal than the middle stick.
4. Decide for undershoot when the middle stick clearly brings you

closer to the goal than the large stick.

Initially, Rules 3 and 4 were given a slightly higher utility value than
Rules 1 and 2, indicating an initial preference for a hill-climbing strategy.
However, once the model starts interacting with the experiment, it ad-
justs its utility values according to experience. The dotted line in the figure
shows the model’s predictions. By Problem 7, Rule 4 (decide to undershoot)
has sufficiently dropped in utility to allow Rule 1 (always overshoot) to
win the competition and select overshoot despite the fact that undershoot
brings you closer to the goal. In a similar fashion the model adjusts its
behavior according to the successes or failures of the four rules later in the
experiment.

5 individual differences

Cognitive models have the potential to go beyond modeling averages by
having models that exhibit variability in behavior, or even by fitting mod-
els to individual participants. Individual differences can be explored at
many levels, including knowledge and strategy variations, but up to now
the variation of global architectural parameters has mainly been explored,
more specifically working memory capacity. ACT-R has no separate work-
ing memory, but the effects of a limited capacity for unrelated elements
can be simulated by decay and interference in declarative memory. Lovett,
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Reder and Lebiere (1999) found that individual differences in working
memory capacity can be modeled by varying one ACT-R parameter: W,
which controls the amount of spreading activation from the goal. To prop-
erly explain this, reconsider the activation equation:

Ai = Bi +
∑

j

Wj Sji Activation Equation

As has been related earlier, the Sji parameters represent the strengths of
association between chunks. They are set to S – ln(fan j ) where fan j is
the number of chunks associated to chunk j . In many applications S is
estimated to be about 2. The Wj s reflect the attentional weighting of the
elements that are part of the current goal, and are set to W/n where n
is the number of elements in the current goal, and W is a global ACT-R
parameter that is by default set to 1. Lovett et al. (1999) explore a variation
of W in a model of the modified digit span (MODS) task. In this task,
participants had to read aloud sequences of characters made up of letters
and digits. After the reading phase they had to recall the digits in the
sequence. The number of digits that had to be recalled varied between 3
and 6. The characters were presented at a pace that made it very hard for
the participants to do rehearsal. Figure 2.3 shows the performance curves
of three of the participants and makes it clear that there are large individual
differences. The model of the task is very simple: during the study phase
the digits are stored in declarative memory. In the recall phase, the digits
have to be retrieved from memory. The probability of success depends
on the level of activation (see the Probability of Retrieval Equation on
p. 34). To model individuals, Lovett et al. varied the W parameter to match
each of the individual performance profiles: a higher W corresponds with
a higher activation, and therefore with a higher probability of recall. The
figure shows three examples of this, fitting the data (the model is the dotted
line) with values of W of 0.7, 1.0 and 1.1. The model matches not only the
aggregate performance level but the detailed recall pattern as well.

Apart from the W parameter there are other parameters in ACT-R that
can account for individual differences. For example, Taatgen (2002) showed
that W, the speed of production rule learning, and the psycho-motor speed
correlate with performance at different stages of the learning process.

6 perceptual and motor processes

Each of the previous three modeling paradigms seeks to constrain the cog-
nitive theory, either by learning or by capacity limitations. Another source
of constraints is interaction with the outside world. As has already been
shown in Figure 2.1, ACT-R has several modules that communicate with
the outside world. These modules are adapted from the EPIC cognitive ar-
chitecture developed by Meyer and Kieras (1997). The approach involves
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figure 2.3. Proportion of correct recall of the complete list for different list lengths
from three participants on the MODS task with model predictions, adapted from
Daily et al. (1999).

modeling, in approximate form, the basic timing behavior of the percep-
tual and motor systems, the output of the perceptual systems and the input
to the motor system.

6.1 An Example of Perceptual Modules in Parallel

The ACT-R model described by Byrne and Anderson (2001) for the
Schumacher et al. (1997; also reported in Schumacher et al., 2001) experi-
ment is a useful illustration of how the perceptual-motor modules work to-
gether. It involves interleaving multiple perceptual-motor threads and has
little cognition to complicate the exposition. The experiment itself is inter-
esting because it is an instance of perfect time-sharing. It involved two sim-
ple choice reaction time tasks: 3-choice (low-middle-high) tone discrimina-
tion with a vocal response and 3-choice (left-middle-right) visual position
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figure 2.4. Timeline of how the model performs the Schumacher et al. (1997) task.

discrimination with a manual response. Both of these tasks are simple
and can be completed rapidly by experimental participants. Schumacher
et al. (1997) had participants train on these two tasks separately, and they
reached average response times of 445 ms for the tone discrimination task
and 279 ms for the location discrimination task. Participants were then
asked to perform the two tasks together with simultaneous stimulus pre-
sentation and they were encouraged to overlap processing of the two stim-
uli. In the dual-task condition, they experienced virtually no dual-task
interference – 283 ms average response time for the visual-manual task
and 456 ms average response time for the auditory-vocal task.

Byrne and Anderson (2001) constructed an ACT-R model of the two
tasks and the dual-task that makes use of the perceptual and motor mod-
ules. A schedule chart for the dual-task model is presented in Figure 2.4.
Consider the visual-motor task first. There is a quick 50 ms detection of
the visual position (which does not require object identification), a 50 ms
production execution to request the action, followed by the preparation
and execution of the motor action. With respect to the auditory-vocal task,
there is first the detection of the tone (which takes longer than detec-
tion of visual position), then a production executes requesting the speech
and then there is a longer but analogous process of executing the speech.
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According to the ACT-R model, there is nearly perfect time sharing between
the two tasks because the demands on the central production system are
offset in time.

7 specialization of task-independent
cognitive strategies

Production system models are often criticized for the fact that they have
all the task-relevant strategies already encoded into their set of produc-
tion rules, whereas in reality people first have to construct a representation
of the task. For example, in the Byrne and Anderson model of perfect
dual-tasking the relevant production rules have to be learned first (but
see Anderson, Taatgen & Byrne in press for a model that learns the rules).
Indeed, participants can achieve perfect dual-tasking only after several
days of training. Another goal of rule learning is to generalize from exam-
ples. In the Sugar Factory example discussed earlier, generalization was
based on single examples. In many other learning situations one can capi-
talize on regularities found in multiple examples. These goals are achieved
in ACT-R by a combination of production compilation, a mechanism that
learns new rules, and general cognitive strategies.

Production compilation (Taatgen & Anderson, 2002) learns new rules
by combining two existing rules that fire in sequence into one new rule. If
the first of the two rules makes a request to declarative memory the result
of which is used by the second rule, then the retrieved chunk is substi-
tuted into the new rule, effectively eliminating the retrieval. By itself, this
mechanism only produces more efficient and specialized representations
of knowledge that is already available. When the production rules that are
compiled are a general cognitive strategy, however, the resulting rules, al-
though specializations of the general strategy, nevertheless generalize the
specific experience. An example of this is learning the regular past tense
rule in English (Taatgen & Anderson, 2002). A straightforward strategy for
finding past tense is to try to apply instance retrieval with the following
rule:

Retrieve-past-tense
IF the goal is to find the past tense of a word word
THEN issue a request to declarative memory for the past tense of word

If this rule finds the past tense of the word, then a second rule uses it as the
answer. The interesting case is when declarative memory does not produce
the requested past tense, but (through partial matching), a different past
tense. In that case we can apply an analogy strategy: find a pattern in the
retrieved example and apply it to the current word. Suppose the retrieved
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example is a regular verb, then we can apply the pattern to our goal with
a rule like this:

Analogy-find-pattern
IF the goal is to find the past tense of word word1
AND the retrieval buffer contains past tense word2-suffix of word2
THEN set the answer to word1-suffix

Combining the two rules while substituting the retrieved word produces
the regular rule:

Learned-rule
IF the goal is to find the past tense of a word word
THEN set the answer to word-ed

In this example the general cognitive strategy of analogy is compiled into a
task-specific rule that generalizes a regular example. Other strategies that
have been used in combination with production compilation are search
for differences (van Rijn et al., 2003) and interpretation of instructions
(Anderson et al., 2004; Taatgen & Lee, 2003).

A more elaborate illustration of production compilation is based on a
simplified Air Traffic Control task (KA-ATC; Ackerman, 1988). The model
of the task is explained in detail in Taatgen (2002) and Taatgen and Lee
(2003). In this task, participants direct traffic by choosing a plane that is
waiting to land and designating the runway on which the plane should
land. There are four runways, the use of which is restricted by rules that
relate to the length of the runway, the current weather, and the type of
plane that is to be landed. For example, a DC-10 can be landed on a short
runway only if the runway is not icy and the wind is below 40 knots.
Although participants receive an extended instruction, they tend to forget
some rules–especially the more complicated ones regarding weather, plane
type, and runway length. The goal of the model is to capture the learning in
this task by predicting the improvement in performance of the participants
at both a global level and at the level of individual keystrokes.

An example of a production rule from the air traffic control task is the
following:

Expert-ATC-rule
IF The goal is to land a plane and a plane has been selected that can

be landed on the short runway (match of goal buffer)
AND you are currently looking at the short runway and it is not occu-

pied (match of visual buffer)
AND the right hand is not used at this moment (match of manual buffer)
THEN note that we are moving to the short runway (change to goal

buffer)
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AND push the arrow-down key (change to manual-buffer)
AND move attention to the weather information (change to visual

buffer)

This rule reflects knowledge an expert might use at the stage in which a
plane has been selected that has to be directed to the short runway. After
checking whether the short runway is available, the rule issues the first
motor command and also initiates an attentional shift to check the weather,
information that might be needed for landing the next plane.

Although this example rule is very efficient, it is also highly task-specific;
rules like this have to be learned in the process of acquiring the skill. For
novices, the model assumes that all the task-specific knowledge needed
about air traffic control is present in declarative memory, having been put
there by the instructions given to participants. This knowledge has a low
activation because it is new, and might have gaps in it in places where
the participant did not properly memorize or understand the instructions.
The production rules interpret these instructions and carry them out. Two
examples of interpretive rules are these:

Get-next-instruction-rule
IF the goal is to do a certain task and you have just done a certain

step (goal buffer)
THEN request the instruction for the next step for this task (retrieval

buffer)

Carry-out-a-push-key-rule
IF the goal is to do a certain task (goal buffer)
AND the instruction is to push a certain key (retrieval buffer)
AND the right hand is available (manual buffer)
THEN note that the instruction is carried out (goal buffer)
AND push the key (manual buffer)

A characteristic of interpreting instructions is that it results in behavior that
is much slower than that of experts: Retrieving the instructions takes time,
and during this time not much else happens. Also, parts of the instructions
might be forgotten or misinterpreted, leading to even greater time loss.
In such cases, the model reverts to even more general strategies, such as
retrieving past experiences from memory:

Decide-retrieve-memory-rule
IF you have to make a certain decision in the current goal (goal

buffer)
THEN try to recall an experience that is similar to your current goal

(retrieval buffer)
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Decide-on-experience-rule
IF you have to make a certain decision in the current goal (goal

buffer)
AND you have retrieved a similar experience that went well (retrieval

buffer)
THEN make the same decision for the current goal (goal buffer)

This experience-based retrieval strategy, which retrieves the experience
with the highest activation from declarative memory, is based on the as-
sumption that experiences with a high activation are potentially the most
relevant in the current situation. The transition from novice to expert is
modeled by production compilation. This mechanism again takes two ex-
isting rules that have been used in sequence and combines them into one
rule, given that there are no buffer conflicts (for example, as would be
the case when both rules specify using the right hand). For example, the
two rules that retrieve an instruction and push a key, together with the in-
struction to press “enter” when the arrow points to the right plane during
landing, would produce the following rule:

Learned-enter-rule
IF the goal is to land a plane and your arrow points to the right plane

(goal buffer)
AND the right hand is available (manual buffer)
THEN note that the instruction is carried out (goal buffer)
AND push enter (manual buffer)

A rule that retrieves and uses old experiences can also be the source for
production compilation. For example, in a situation in which the plane
to be landed is a DC-10, the runway is dry, and a previous example in
which such a landing was successful on the short runway is retrieved, the
following rule would be produced:

Learned-DC-10-rule
IF you have to decide on a runway and the plane is a DC-10 and the

runway is dry (goal buffer)
THEN decide to take the short runway (goal buffer)

New rules have to be recreated a number of times before they can com-
pete with the parent rule, but once they are established they can be the
source for even faster rules. Eventually the model will acquire a rule set
that performs like an expert. Comparisons with data from experiments by
Ackerman (1988; see Taatgen & Lee, 2003) show that the model predicts
the overall performance increase (in terms of number of planes landed)
and the individual subtasks (e.g., how much time is taken to land a sin-
gle plane) very well. The model also does reasonably well at the level of
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figure 2.5. Numbers of planes landed and landing completion times for trials 1 to
10, data and model predictions.

individual keystrokes. As an illustration, Figure 2.5 shows the actual and
predicted number of planes that are landed in a 10-minute trial and the
average time to land a plane.

8 which paradigm for what problem?

This chapter offers five modeling paradigms that are used frequently by
ACT-R modelers. This enumeration is by no means exhaustive nor ex-
clusive: there are models that use other methods, and there are models
that use multiple modeling paradigms. The model of the Air Traffic Con-
trol task, for example, uses instance learning, perceptual and motor con-
straints, and has been used to explore individual differences. Neverthe-
less modeling paradigms can be guidelines and sources of inspiration for
setting up a model for a new task. We will start by contrasting the three
learning paradigms: utility learning, instance learning and production rule
learning.
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Utility learning is a useful paradigm in tasks where the possible strate-
gies are relatively clear, and where it can be assumed that people already
have some sort of procedural representation of these strategies. When
choosing this paradigm it is important to carefully think about how to
define the set of strategies. For example, in the Building Sticks Task it is not
enough to just have undershoot and overshoot as strategies. To model the
participants’ behavior, a third strategy, hill-climbing, is necessary. Utility
learning can also play a role in models where strategies emerge. In the
model of the past tense, for example, the learned regular rule eventually
has a lower utility than retrieval of instances, explaining why it is used
only if retrieval fails.

Instance learning is useful in situations where the underlying structure
is unclear or absent. In alphabet arithmetic, there is no structure in the
individual additions, so they have to be learned individually. In the Sugar
Factory task there is an underlying rule, but it is unknown to the partici-
pants, and hard to derive on the basis of the behavior of the system. It
is therefore suitable for tasks normally associated with implicit learning
(Wallach & Lebiere, 2003). Instance learning allows for limited general-
ization, especially when used in combination with partial matching. For
generalization to work, though, it must be possible to retrieve the appro-
priate instance on the basis of activation. Such an instance can be found
on the basis of similarity (instances similar to the current goal are useful)
or frequency (instances that are retrieved or encountered often are useful).
Instance learning cannot take utility into account directly, because a single
production rule is responsible for the retrieval process (though see Instance
Based Learning Theory – Gonzalez, Lerch & Lebiere, 2003). Instance learn-
ing is also less suitable for cases where extrapolation from the examples is
needed: if the goal is too far outside the space spanned by the instances,
the instance retrieved will probably not be very useful. In constructing an
instance-based learning model it is important to carefully consider what
should be stored in an instance. In some models a sequence of the last few
actions is stored in an instance instead of just the last action (for example,
in a model of sequence learning by Lebiere & Wallach, 2001).

Production rule learning can unify the two approaches: rules can be
learned out of the instance retrieval process, and these learned rules com-
pete on the basis of utility. To learn interesting rules, some analogy-like
process is necessary to use a retrieved instance that is not identical to the
goal.

Production rule learning also enables learning from instructions, and
therefore supplies the most accurate and complete form of modeling in
experimental situations where a participant is supplied with instructions
for a task and is asked to perform it. Models using this approach are more
complicated; so with any task it is worthwhile to investigate whether one
of the more simple paradigms is sufficient.
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Modeling perceptual and motor processes also makes a model more
complicated, but it may substantially increase the precision of its predic-
tions. Apart from providing precise predictions of the timing of perceptual
and motor processes, the approach also acknowledges that cognition is not
just a process in the head, but also an interaction with the outside world.
For example, it might not be necessary to store information on the screen
in the goal, as long as it is available in the visual buffer.

Although most ACT-R models of individual differences have focused on
working memory capacity, it is nevertheless interesting to explore variabil-
ity of behavior in a broader sense in cognitive models. When modeling be-
havior that is highly variable it is worthwhile to investigate whether noise
in the model is sufficient to explain it (e.g., the AMBR model of Lebiere,
Anderson & Bothell, 2001). Varying parameters like W can provide for ad-
ditional variability. But individual differences in task performance can also
be due to the fact that different individuals employ different strategies. De-
termining the precise content of an individual’s knowledge and strategies
is an arduous task, but programs have been proposed to meet it (Gobet &
Ritter, 2000).

9 summary

The focus of the example models in this chapter has been the modeling
of human performance data, and not really on modeling agents in multi-
agent systems (e.g., Chapter 6). The main reasons are that this is ACT-R’s
research focus and that most modeling projects involve the development of
cognitive models that produce predictions that are matched to human data.
Nevertheless ACT-R can be used to program agents that exhibit human-
like behavior or serve as a theoretical basis to allow agents to construct a
model of their user. The five modeling paradigms discussed can serve as
basic tools or templates for such models. Examples of this can be found
in Chapter 5, where ACT-R is used to play two-player games. In these
games it is important to predict the actions of the opponent in order to
anticipate them. Instance learning can be used to keep track of behav-
ioral patterns in the opponent’s moves, enabling prediction of the most
likely next move. Competing strategies may also be important in game
playing: there may be multiple strategies that can be brought to bear on
a game, and their utilities may shift if the opponent also adjusts his/her
strategies.

Perceptual and motor constraints can be particularly important for
agents immersed in virtual environments meant to recreate the sen-
sory constraints of the real world, such as in first-person shooter games.
Whether they are all used in a given model or not, all aspects of human
cognition are important in some respect in producing human-like agents.
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Considering Soar as an Agent Architecture

Robert E. Wray and Randolph M. Jones

1 introduction

The Soar architecture was created to explore the requirements for gen-
eral intelligence and to demonstrate general intelligent behavior (Laird,
Newell, & Rosenbloom, 1987; Laird & Rosenbloom, 1995; Newell, 1990).
As a platform for developing intelligent systems, Soar has been used across
a wide spectrum of domains and applications, including expert systems
(Rosenbloom, Laird, McDermott, Newell, & Orciuch, 1985; Washington &
Rosenbloom, 1993), intelligent control (Laird, Yager, Hucka, & Tuck, 1991;
Pearson, Huffman, Willis, Laird, & Jones, 1993), natural language (Lehman,
Dyke, & Rubinoff, 1995; Lehman, Lewis, & Newell, 1998), and executable
models of human behavior for simulation systems (Jones et al., 1999; Wray,
Laird, Nuxoll, Stokes, & Kerfoot, 2004). Soar is also used to explore the
integration of learning and performance, including concept learning in
conjunction with performance (Chong & Wray, to appear; Miller & Laird,
1996), learning by instruction (Huffman & Laird, 1995), learning to correct
errors in performance knowledge (Pearson & Laird, 1998), and episodic
learning (Altmann & John, 1999; Nuxoll & Laird, 2004).

This chapter will introduce Soar as a platform for the development of
intelligent systems (see also Chapters 2 and 4). Soar can be viewed as a
theory of general intelligence, as a theory of human cognition, as an agent
architecture, and as a programming language. This chapter reviews the the-
ory underlying Soar but considers Soar primarily as an agent architecture.
The architecture point-of-view is useful because Soar integrates a number
of different algorithms common in artificial intelligence, demonstrating
how they can be used together to achieve general intelligent behavior. This
view of Soar also facilitates comparisons to other agent approaches, such as
Beliefs-Desires-Intentions (BDI) (Bratman, 1987; Wooldridge, 2000), and to
rule-based systems, two approaches with which Soar shares many features.
The Appendix provides pointers to papers, tutorials, and other resources
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interested readers may access to learn the details of Soar at the program-
ming level.

The Soar architecture grew out of the study of human problem solving.
Soar is often used as a tool for the creation of fine-grained cognitive mod-
els that detail and predict aspects of human behavior in the performance
of a task. Newell (1990) has taken this effort as far as proposing Soar as a
candidate unified theory of cognition (UTC) – a theory of human cognition
that spans and unifies the many observed regularities in human behavior.
Evaluating Soar as a UTC remains an active area of work. An example is
Chong’s development of a hybrid architecture that incorporates Elements
of EPIC, ACT-R, and Soar (EASE) (Chong, 2003). However, Soar is increas-
ingly used as a tool useful for building intelligent agents, especially agents
that individually encode significant knowledge and capability. Obviously,
these agents could behave in ways comparable to humans in particular
application domains, but the focus is not limited to human behavior rep-
resentations. This chapter therefore describes the general commitments of
the Soar architecture as a platform for intelligent systems (human and/or
otherwise) and the application of these principles in the development of
intelligent, individual and multiagent systems.

2 soar as a general theory of intelligence

As an intelligent agent architecture, the theoretical principles motivating
Soar’s design are important for two reasons. First, the theory provides
insight in understanding Soar as an implementation platform, especially
in terms of agent design decisions. The processes and representations of
the Soar architecture are derived directly from the theory. Second, just
like any software architecture, Soar biases agent implementations towards
particular kinds of solutions. Allen Newell referred to this as “listening to
the architecture” (Newell, 1990). Understanding the theory makes it easier
to understand these biases in approach and implementation.

2.1 The Knowledge Level, Symbol Level, and Architecture

An agent can be described at three distinct levels: the knowledge level,
the symbol level, and the architecture level (Newell, 1990). The knowledge
level refers to an external, descriptive view of an agent (Newell, 1982).
The knowledge level assumes the principle of rationality, which says that
if an agent has some knowledge that is relevant to the situation, it will
bring it to bear. The knowledge level is a level for analysis; one observes
the actions of an agent and makes assumptions about the knowledge it
has (and does not) based on the observations. However, that knowledge
must be encoded in some form. Soar assumes knowledge is encoded in
a symbol system, which provides the means for universal computation



Considering Soar as an Agent Architecture 55

(Newell, 1980a, 1990). The symbol level is the level in which the “knowl-
edge” of a Soar agent (or any other agent using a symbolic representa-
tion) is represented. Although it is common to think of an agent as having
knowledge, in reality every system (human or otherwise) has only a rep-
resentation of knowledge. The knowledge representations of the symbol
level must be accessed, remembered, constructed, acted on, etc. before an
observer can ascribe knowledge to the agent. The fixed mechanisms and
representations that are used to realize the symbol system comprise the
agent architecture.

An architecture enables the distinct separation of content (the agent pro-
gram) from its processing substrate. Thus, the primary difference in Soar
applications, from simple expert systems, to natural language interpreta-
tion, to real-time models of human behavior, consists of differences in the
encoding of knowledge for these applications. Because Soar (as a symbol
system) provides universal computation, it should be sufficient for any
application requiring intelligent behavior (assuming intelligence can be
captured in computational terms). However, performance efficiency and
the ease with which particular algorithms are encoded and retrieved also
have an impact on the sufficiency of the architecture for producing intelli-
gent behavior in a particular application. When researchers discover that
Soar is unable to produce some desired behavior or that representation
of some behavior is too costly (in terms of performance or solution en-
coding), a search is begun to extend or change the architecture to address
the requirements of the missing capability. Laird and Rosenbloom (1995)
discuss why and how the Soar architecture has evolved since its initial
implementation in the early 1980s.

Finally, although symbol systems may attempt to approximate it, they
will necessarily always fall somewhat short of the perfect rationality of the
knowledge level. One can think of the way in which a system falls short
of the knowledge level as its particular “psychology”; it may not act in
time to appear to have the knowledge, it may use some fixed process for
conflict resolution that leads to a failure to consider some relevant knowl-
edge, etc. One of the fundamental tensions in the development of Soar has
been whether its “psychology” should be minimized as much as possible,
in order to better approximate the knowledge level, or if its limitations
(because every symbol level system will have some limitations) should
attempt to reflect human limitations. Superficially, a single architecture
probably cannot satisfy both constraints. However, one counterargument
is that evolution has provided a good approximation of the knowledge
level in human symbol processing, and taking advantage of that evolu-
tionary design process, by attempting to replicate it, will result in better
symbol systems. For example, a memory decay mechanism for Soar was
resisted for a long time because it appeared to be an artifact of the human
symbol system and provided no functional advantage. However, recent
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research has suggested that the functional role of decay is to reduce in-
terference (Altmann & Gray, 2002) and a recent Soar-based architecture,
EASE, incorporates a decay mechanism (Chong, 2003).

2.2 Problem Space Computational Model

The Problem Space Computational Model (PSCM) (Newell, Yost, Laird,
Rosenbloom, & Altmann, 1991) defines the entities and operations with
which Soar performs computations. Soar assumes that any problem can
be formulated as a problem space (Newell, 1980b). A problem space is de-
fined as a set of (possible) states and a set of operators, which individually
transform a particular state within the problem space to another state in
the set. There is usually an initial state (which may describe some set of
states in the problem space) and a desired state, or goal. Operators are
iteratively selected and applied in an attempt to reach the goal state. The
series of steps from the initial state to a desired state forms the solution or
behavior path.

Figure 3.1 illustrates a problem space for the well-known blocks world
domain. The states consist of the arrangement of blocks on the table and
on each other. The agent perceives the current configuration of blocks and
monitors a specified goal configuration. Assume this problem space in-
cludes only two operators, stack and put-on-table. The diagram highlights
a solution path from the initial state to the goal state. One important con-
tribution of the PSCM, which is not often found in other formulations of
problem spaces, is a distinction between selection of an operator and its
application. Under the PSCM, knowing that some operation can be applied
in some situation is distinct from knowing how to execute that operation.
The knowledge representations of Soar reflect this distinction by requiring
independent representations of these separate classes of knowledge.

An individual problem space defines one view of a particular problem
and a single problem space may be insufficient for completely solving a
problem. For example, in Figure 3.1, the problem space provides enough
information to specify the stacking and unstacking of blocks, but it does
not provide any guidance on how to choose between different operations
that may be simultaneously applicable. Similarly, the example ignores how
a robot would actually move in space to accomplish the problem space
operations. Unless stack is a primitive operation of the robot, once the robot
has chosen to stack two blocks, it next has to decide how to perform this task.

When the knowledge represented within the problem space is not suffi-
cient to solve the problem at hand, an impasse is said to have occurred. An
impasse represents a lack of immediately applicable knowledge. An obvi-
ous response to an impasse is to establish a goal to resolve the impasse.
The PSCM specifies that this goal (deciding between potential candidates,
implementing an operator, etc.) should be pursued in another problem
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figure 3.1. Example problem space for the blocks world domain. The solution path
from the initial to the desired state is illustrated with dark arrows.

space. This second problem space is subordinate to the first and imple-
ments some aspect of the original problem space. The initial conditions and
the specific goal are derived from the original problem space. Figure 3.2
illustrates possible implementation problem spaces for a version of the
blocks world where a robot must execute a series of primitive movement
operations in order to stack a block on another.

Every problem space other than the initial (base) problem space is in-
voked to help a parent problem space.1 The PSCM defines an ontology of
impasses, detailing all the situations that can stop progress in a problem

1 In Soar, the stack of problem spaces is assumed to grow in a downward direction and the
initial problem space is referred to as the “top level space” as well as the base level space.
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table 3.1. The Relationship between Impasses in the Parent Problem Space and
Goals in a Child Problem Space.

Object Impasse Description

State No-change No operators appear to be acceptable in the
current state. The goal in the child problem space
is to find an operator to apply in the parent state.

Operator No-change An operator appeared to be applicable in the
current state but selecting it does not result in
changes to the state. The goal in the child
problem space is to implement the operator,
which may include decomposition (as in
Figure 3.2) or correcting problems in the operator
representation in the parent problem space
(Pearson & Laird, 1998).

Operator Tie Two (or more) operators are applicable to the
current state and the parent problem space lacks
knowledge to determine which should be chosen.
The goal in the child problem space is to compare
the options and make a decision about which
options should be preferred.

Operator Conflict Two (or more) operators are applicable to the
current state but the problem space has
conflicting knowledge about which operator to
pursue. The goal in the child problem space is to
resolve the knowledge conflict.

space; common impasse types are shown in Table 3.1. Each impasse pre-
scribes a specific class of subordinate problem space and the states and
operators in this problem space can be structured to solve the particular
impasse. One significant advantage of the PSCM is that implementations of
different domains all share this same ontology of impasses. The PSCM in-
forms agent development by guiding task formulation and termination in
subgoal problem spaces and identifying and discriminating potential prob-
lems in operator selection and application. This type of informed problem
representation is one of the major advantages of developing agents within
general architecture like Soar.

←
figure 3.2. Implementing elements of a problem space with additional problem
spaces. The initial state in the blocks problem space is defined by the current operator
in the top, structure problem space. Operators in the blocks space pick up and put
down individual blocks. This problem space is then implemented by the gripper
problem space, which moves the gripper in one of four directions, and opens and
closes the robotic hand.
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The PSCM is the overarching constraint in Soar architecture research. All
versions of Soar have adhered to it (Laird & Rosenbloom, 1995). Whereas
the high-level nature of the PSCM enables the exploration of many alter-
native implementations, any Soar-based implementation that violated the
PSCM could not be said to be a version of Soar. More strongly, in terms
of Soar as a Lakatosian research program under Sophisticated Method-
ological Falsification (Lakatos, 1970), the PSCM forms the “hard core” of
Soar as a general theory of intelligence. Whether the PSCM is, itself, strong
enough and constraining enough to constitute a falsifiable hypothesis, and
thus a basis for the core assumptions of Soar as a general theory on intel-
ligence, is debatable. It is also unclear if non-PSCM aspects of Soar (e.g.,
parsimony, in the following section) also should be considered among the
core assumptions.

2.3 Parsimony

A continuing thread of Soar research has been to find a sufficient but mini-
mal set of mechanisms that can be used to realize the full range of intelligent
behavior. Soar commits to individual, uniform representations of long-
term and dynamic knowledge representations, a single symbol level learn-
ing mechanism, and the uniform process of behavior execution and prob-
lem solving defined by the PSCM. Introducing multiple representations or
mechanisms for the same function would violate this principle of parsi-
mony, and, until recently, has not been a seriously challenged assumption.

This commitment to parsimony provides a stable system that is rela-
tively easy to learn at the level of the software architecture. However, as
a consequence, Soar defines a sort of low-level machine for implementing
algorithms and representations not directly supported by the architecture.
Soar programs directly refer to architectural elements rather than higher-
level constructs, resulting in a situation akin to an “assembly language”
for intelligent systems. For example, Soar does not directly support the
representation of plans. One can represent plans in Soar, but to do so one
must build them from the lower level representations of the architecture.
Similarly, most work in Soar assumes a single, architectural learning mech-
anism, chunking (Newell, 1990). Additional types of learning must be re-
alized by mapping the learning requirements to chunking and structuring
and formulating agent knowledge within problem spaces to implement
the learning algorithm. This mapping can be onerous in comparison to im-
plementing a learning algorithm in a less constrained environment. More
recently, students in John Laird’s research group have been exploring addi-
tional symbol level learning mechanisms in Soar such as episodic learning
(Nuxoll & Laird, 2004). What impact, if any, these changes will have on the
PSCM, on Soar as a general theory of intelligence, and on Soar as a minimal
set of mechanisms for intelligence is unresolved.
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3 the soar architecture

Recall from earlier discussion that an architecture comprises the fixed
mechanisms and knowledge representations of the symbol system. Be-
cause these elements are fixed, they transfer from one domain to an-
other. The number of implemented representations and mechanisms is
as small as possible, as dictated by Soar’s assumption of parsimony. Soar’s
architecture-supported representations, the basic sense-decide-act cycle of
processing, and individual processes that act within the basic control loop
are enumerated in the following sections.

3.1 Architectural Representations

Soar supports three basic representations, productions, asserted memory
objects, and preferences, which are represented in production memory,
blackboard memory, and preference memory, respectively. Soar operators
are composed from these others, and the representation of operators spans
the three memories.

3.1.1 Productions and Production Memory
Soar is a production system. Each production (or rule) is specified by a se-
ries of conditions and a set of actions. Conditions are matched against the
contents of a blackboard memory, and, when all conditions are satisfied,
the rule actions are executed, usually specifying changes to objects on the
blackboard. Figure 3.3 shows a Soar production for the blocks world robot
illustrated in Figure 2.2. The production matches against Soar’s input rep-
resentation (the “input-link”) to determine if a block meets a desired state
in the problem space, represented by the current-goal object. The action of
the production is to create an object that indicates the block is in the de-
sired position. This new object may trigger other productions; for example,

figure 3.3. Example of a Soar production. This production tests if a block (repre-
sented on Soar’s input-link) meets the constraints of a desired state of the structure
problem space, which is that the block is on the table. The desired state is repre-
sented by an object called current-goal. The action of the production is to add a new
object to the blackboard memory, which indicates that the block is in the desired
position.
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a production might match against in-desired-position and then explicitly
mark the current-goal object as having been met when the condition is
satisfied.

Productions are often described as “if-then” rules, comparable to the
“case” statements of mainstream programming languages. However, Soar
expresses the conditions and actions of productions in a form of predicate
logic, rather than the propositional logic used in procedural programming
languages. Thus, a production like the one in Figure 3.3 simultaneously
considers all blocks and all current-goals represented on the state. The
match process can generate multiple instantiations of the production, with
variable bindings specific to each match. Thus, in the example, if two
blocks satisfied the current goal description, two instances of the produc-
tion would match. In Soar, both instances would fire in parallel, resulting
in two in-desired-position objects, one for each block.

3.1.2 Assertions and Blackboard Memory
Soar asserts and maintains active memory objects in a blackboard memory,
called the working memory. As the objects expressed on the blackboard
change, they trigger new productions, resulting in further changes to the
blackboard. Unlike many blackboard systems, Soar’s working memory is
highly structured. Working memory is a directed graph, with each object
described by a triple [identifier, attribute, value]. Complex objects can be
created by composing the objects’ triples, as shown in Figure 3.4.

The blackboard is also segmented into state partitions. Soar assigns to
each problem space created in response to an impasse a distinct state object.
Each state partition encapsulates assertions created in the search to resolve
that state’s impasse. Every object in memory can be traced to a specific state.
Soar’s top state also includes an input/output partition, which is divided
into input-link and output-link objects. Individual input and output objects
are represented in the same representation language as other objects. How-
ever, input objects are placed on the input-link by an “input function” that
transforms environmental percepts into the [identifier, attribute, value]
representation required by Soar. An output function interprets objects on
the output-link as commands and attempts to execute them.

3.1.3 Preferences and Preference Memory
The preference data structure expresses preferences between candidate
operators competing for selection. Table 3.2 lists some of the preferences
available in Soar for selecting and comparing operators. Unary preferences
such as “acceptable” and “best” express preferences about a single candi-
date; binary preferences compare one operator to another.

When it is time for Soar to select an operator, a preference semantics pro-
cedure interprets all the preferences to determine if a unique option can be
identified. If no unique choice can be made, Soar generates an impasse; the
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figure 3.4. Example of Soar’s blackboard memory. Each object consists of the triple
(identifier, attribute, value) and can be traced to the root state object. Soar automati-
cally creates some objects, like impasses and operators; architecture-created objects
are shown in grey and objects created by productions are shown in black.

impasse type is indicated by the problem in the preferences. For example,
if all candidates are acceptable, but no other preferences are asserted, an
operator-tie impasse will be generated, allowing Soar to initiate a search
for knowledge that indicates which of the candidates should be chosen.
The specific interpretation of preferences is dictated by the preference
semantics procedure, which is detailed in the Soar Users’ Manual (Laird
& Congdon, 2004).
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table 3.2. Examples of Soar Preferences.

Soar
Representation Name Description

O1 + Acceptable Indicates that operator O1 is an acceptable
candidate for selection

O1 > Best Indicates O1 is the “best” candidate

O1 > O2 Better Indicates operator O1 is a better candidate than
operator O2

O1 ! Require Indicates operator O1 is required for the
(impasse) goal to be achieved

O1 ∼ Prohibit Indicates selection of operator O1 will cause the
(impasse) goal to be unable to be achieved

O1 = Indifferent Indicates operator O1 can be chosen randomly
from the set of all candidates with indifferent
preferences.

B1 − Reject Indicates object B1 is not a candidate for selection

Soar stores preferences in a preference memory, which is impenetrable to
productions. That is, productions cannot test whether one operator is better
than another, or if an indifferent preference has been asserted for a partic-
ular operator. The exception is the preference that represents whether an
operator should be considered at all. This “acceptable” preference is repre-
sented in Soar’s blackboard memory and thus can be tested by productions.
Testing the acceptable preference allows productions to assert additional
preferences about the acceptable candidate(s).

Preferences are used in Soar programs to distinguish between situations
in which some operation could apply, and when it should apply (it is the
more/most preferable choice). For example, in Figure 3.1, when the top
block is placed on the table, the stack operator could be used to put the
block back on the stack of remaining blocks. A Soar production would
propose the stack operator, as shown in the figure, making it an acceptable
action to take at this point in the problem solving. However, additional
preference productions could be used to prohibit or reject this candidate,
because it undoes a previous step, or because in the current situation,
the block already meets a partial condition of the goal. The advantage
of the preference mechanism is that all the options and constraints on
them do not need to be worked out at design time, but the agent can
make a choice based on its current situation, resulting in least-commitment
execution. Further, because “proposal” and “evaluation” productions are
distinct representations, an agent can learn to change its preferences in
useful ways, without having to modify the representation of operator pre-
or postconditions.
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3.1.4 Operators
Soar’s operators are equivalent, conceptually, to operators in state-based
planning systems, such as those based on STRIPS (Fikes & Nilsson,
1971). These operators represent small procedures, specifying precondi-
tions (what must be true for the operator to be activated) and actions (what
the operator does). In Soar the representation of an operator is distributed
across productions, preferences, and memory objects within the architec-
ture. The preconditions of an operator are expressed in one or more pro-
posal productions, which assert an acceptable preference for the operator
into working memory. When an operator is selected (during the execution
of the decision procedure, described below), Soar creates an operator object
in the blackboard, as shown in Figure 3.4. Soar allows each state exactly
one selected operator at any time. Therefore, attempting to create zero or
multiple operator objects will result in an impasse for that state’s prob-
lem space. Once the selected operator is represented in the blackboard, it
can trigger productions that produce the postconditions of the operator,
resulting in operator application. In the blocks world example, this could
mean internally changing the position of the blocks (in a planning task) or
sending output commands to the robot for execution in the environment.

3.2 The Soar Decision Cycle

At a high level, many agent systems can be described by a sense-decide-
act (SDA) cycle, as represented in the left of Figure 3.5. Soar’s general
processing loop, its decision cycle, maps directly to the SDA loop, as shown in
the middle diagram. Individual components of the Soar decision cycle are
termed phases. During the INPUT PHASE, Soar invokes the input function
(as described previously), communicating any changes indicated by the
environment to the agent through the input-link. In the OUTPUT PHASE,
the agent invokes the output function, which examines the output-link

figure 3.5. Common representation of an abstract agent as a cycle of percep-
tion, reasoning, and action (left), a high-level view of Soar’s sense-decide-act loop
(middle), and a more detailed Soar representation (right).
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and executes any new commands indicated there. Proprioceptive feedback
about the execution of commands is provided during the INPUT PHASE.

The reasoning within Soar’s decision cycle is focused on the selection
(and application) of operators. Each Soar decision consists of three phases
within the “decide” portion of the SDA loop. During the ELABORATION
PHASE, the agent iteratively fires any productions other than operator
applications that match against the current state, including new input. This
process includes “elaborating” the current state with any derived features
(such as in-desired-position in Figure 3.3), proposing new operators, and
asserting any preferences that evaluate or compare proposed operators.
This phase uses Soar’s reason maintenance system to compute all available
logical entailments (i.e., those provided by specific productions) of the
assertions in the blackboard.

When no further elaboration productions are ready to fire, the decision
cycle is said to have reached quiescence. At this point, the elaboration pro-
cess is guaranteed to have computed the complete entailment of the current
state; any immediately knowledge applicable to the proposal and com-
parison of operators will have been asserted. At quiescence, Soar enters
the DECISION PHASE and invokes the preference semantics procedure
to sort and interpret preferences for operator selection. If a single operator
choice is indicated, Soar adds the operator object to memory and enters the
APPLICATION PHASE. In this phase, any operator application produc-
tions fire, resulting in further changes to the state, including the creation of
output commands. Application productions are similar to elaboration pro-
ductions with two exceptions: their conditions must include a test for the
existence of a selected operator, and any changes they make to the black-
board are persistent. Persistent objects do not get retracted automatically
by Soar’s reason maintenance system. They must be deliberately removed
by another operator. If there is not a unique choice for an operator, Soar
creates a new state object in response to the impasse, so that the agent can
undertake a deliberate search for knowledge that will resolve the impasse
and thus enable further progress in the original state.

Soar’s decision cycle conceptually is divided into these five distinct
phases, as shown in the rightmost diagram of Figure 3.5. In this abstract
form, Soar’s decision cycle is roughly equivalent to the reasoning loop of
BDI agents (Wooldridge, 2000). The BDI control loop consists of polling the
world for new input (corresponding to Soar’s INPUT PHASE), updating
the world model (ELABORATION PHASE), generating desires (roughly
comparable to the proposal of operators in the ELABORATION PHASE),
selecting an intention from the desires (DECISION PHASE), and then
choosing and acting on a plan (APPLICATION PHASE).

Soar does not directly support a plan representation. Operators are used
to execute individual actions (corresponding to plan steps in BDI) as well
as to represent the plan itself (i.e., hierarchical decomposition via problem
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spaces, as in Figure 3.2). Another important difference between Soar and
BDI at the level of the control loop is that the preference semantics for
making decisions is fixed in Soar, whereas in BDI, decision and recon-
sideration can be customized for decisions about specific types of objects
(e.g., intentions vs. plans). Thus, when using Soar, one must map alternate
kinds of decision strategies (e.g., decision theory) to Soar preferences. This
is another example where Soar programming can seem like assembly lan-
guage. However, because the basic decision process is uniform and fixed, it
is reasonably straightforward both to implement and to explore a range of
decision strategies and also to cache specific decisions using Soar’s built-
in learning mechanism. This uniformity provides structure for additional
reuse across Soar models.

3.3 Architectural Processes

Within the decision cycle, Soar implements and integrates a number of
influential ideas and algorithms from artificial intelligence. In particular,
Soar is a production system that performs operator-based reasoning within
problem spaces. The mix of productions and operators is not unique;
most rule-based systems can also be seen as operator-like systems. The
main difference in Soar is that individual rules do not map to individ-
ual operators; rather, as outlined above, a Soar operator is implemented
by a collection of rules that individually perform one of the PSCM func-
tions of proposal, comparison, or application. The following introduces
algorithms within the decision cycle, focusing on highlighting the dif-
ferences between Soar and traditional rule-based systems (RBS) such as
OPS5, CLIPS, and JESS, and production system cognitive architectures,
such as ACT-R (Anderson & Lebiere, 1998, see also Chapter 1 this volume)
and CLARION (see Chapter 4 this volume). Examples will be presented
from both the blocks world and TacAir-Soar, a tactical aircraft pilot model
(Jones et al., 1999) that better demonstrates the role of Soar in dynamic
domains.

3.3.1 Pattern-Directed Control
Soar brings to bear any knowledge relevant to the current problem via asso-
ciative pattern matching in a parallel match-fire production system. Thus,
flow of control in Soar is determined by the associations made in memory,
rather than a sequential, deterministic control structure. Because the rea-
soning of the agent is always sensitive to context, Soar readily supports
both reactive and goal-driven styles of execution, and is able to switch
between them during execution. Soar uses an extension of the Rete al-
gorithm (Forgy, 1982) to ensure efficient pattern matching across the en-
tire knowledge base. A research demonstration showed that Soar can
handle as many as one million rules without a significant slowdown
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in reasoning (Doorenbos, 1994). TacAir-Soar, which includes more than
8,000 productions, runs in (soft) real-time.

Typical rule-based systems are also pattern directed. However, most
use conflict resolution to choose between matching rules rather than firing
all of them. Conflict resolution in typical RBS usually depends on syntac-
tic features of rules; for example, preferring the rule instantiated with the
most recent memory elements or the largest number of them. Soar uses
no conflict resolution at the level of individual rules. Instead, conflict res-
olution occurs when choosing between operator candidates, allowing the
decision to be mediated by available knowledge (in the form of preferences)
rather than relying on syntactic features of the situation.

3.3.2 Reason Maintenance
Soar uses computationally inexpensive reason maintenance algorithms
(Doyle, 1979) to update its beliefs about the world. For example, if a pilot
agent computes a collision course with a target it is intercepting, and the
target’s course changes, a Soar agent can use its justification-based truth
maintenance (JTMS) to update the collision course automatically without
additional deliberation. Every nonpersistent object in Soar’s blackboard
memory is subject to reason maintenance, including impasses and operator
selections (Wray & Laird, 2003). Reason maintenance ensures that agents
are responsive to their environments. It also embeds knowledge about the
dynamics of belief change in the architecture, with the result that agent de-
velopers are freed from having to create knowledge to manage revisions
to current beliefs.

Typical rule-based systems do not include reason maintenance, meaning
that every change to an agent’s context must be the result of a deliberate
commitment. This requirement is one source of the perception that rule-
based systems are generally brittle and inflexible, because they overcommit
to particular courses of action. However, there are alternative approaches to
reassessment of beliefs. For example, ACT-R uses an activation and decay
mechanism that provides a functionally similar role, allowing elements to
disappear from active memory after their activation falls below threshold
(Anderson & Lebiere, 1998). This ACT-R mechanism has been used within
EASE, a variant of Soar (Chong, 2003).

Whereas implementations of reason maintenance within Soar can some-
times make Soar agents overly reactive to their environments, they guaran-
tee Soar agents take persistent actions only when the agent internal state
is fully entailed and consistent with external perceptions. Further, they
encourage the development of fully reentrant agent programs, so that an
agent can generally recover from interruption and resume its activity if
warranted (Wray & Laird, 2003).
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3.3.3 Preference-Based Deliberation
An agent in a dynamic environment must be able to deliberate and commit
to goals. Soar balances automatic reason maintenance within the decision
cycle with the deliberate selection of operators. Assertions that result from
deliberation (i.e., operator applications) persist independently of reason
maintenance. A Soar pilot agent could commit to a particular course based
on a target’s position at a particular point in time. Even as the target’s po-
sition changed, the agent would remember its previously derived course.

In a typical RBS, individual rules are the operators. Because operator
preconditions and action components are implemented as separate rules,
Soar agents recognize available options and reason about which option to
take. Although this separation may appear to require more productions,
in practice it can also result in fewer total productions. A single precon-
dition production can pair with any number of action productions (and
vice versa). In contrast, when precondition and action combine in a single
rule, as in RBS, the agent needs rules for every possible combination of
precondition and action, leading to a potential combinatorial explosion in
rules.

3.3.4 Automatic Subgoaling and Task Decomposition
In some cases, an agent may find it has no available options or has con-
flicting information about its options. Soar responds to these impasses and
automatically creates a new problem space, in which the desired goal is
to resolve the impasse. The agent can now bring new knowledge to bear
on the problem. It might use planning knowledge to consider the future
and determine an appropriate course for this particular situation. It might
compare this situation to others it knows about and, through analogy, de-
cide on a course of action. The full range of reasoning and problem-solving
methods available to the agent can be brought to bear to solve the prob-
lem indicated by the particular impasse. However, these methods must be
encoded by the agent developer.

Automatic subgoaling provides agents the ability to reason about their
own reasoning. Thus, Soar agents can use identical knowledge represen-
tations both to act in the world (push the fire button) and to reason about
actions (what will happen if I push the fire button?). This contrasts with
RBS, where there is typically only a single state, making it difficult to use
the same rules in multiple contexts.

Automatic subgoaling enables task decomposition. At each step in de-
composition, the agent is able to focus its knowledge on the particular
options at just that level, filtering considerations at other levels. Automatic
subgoaling leads to a hierarchy of distinct states. This process of hierarchi-
cal decomposition narrows a potentially exponential number of considera-
tions into a much smaller set of choices. Moreover, the resulting knowledge
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base is naturally compartmentalized, providing a scalable infrastructure
with which to build very large knowledge bases.

3.3.5 Adaptation via Generalization of Experience
Knowledge search refers to the process of searching one’s knowledge base
to attempt to find knowledge representations relevant to a given situation.
Problem search refers to the deliberate attempt to solve a problem by ana-
lyzing the situation, considering and weighing alternative responses, etc.
In general, Soar performs knowledge search at the architecture level, em-
ploying the Rete match process, whereas a problem search engages both
the architecture and the production knowledge representations. A fun-
damental assumption in Soar is that a knowledge search should be less
expensive than a problem search, because a knowledge search is an “inner
loop” used in the problem search process.

The chunking mechanism converts the results of the problem search
within an impasse to new production representations that summarize the
problem search that occurred within the impasse. Once the agent comes to a
decision that resolves the impasse, chunking generates a new production
that has as conditions those memory objects that were referenced in the
solution of the impasse and as actions the result of the problem solving in
the impasse state. This process results in new knowledge that will allow
the agent to avoid a similar impasse. For example, without any preference
knowledge, Soar will reach an operator-tie impasse after moving the top
block to the table in Figure 3.1. In the resulting impasse state, Soar might
simulate the action of the two operators and recognize that restacking the
block should be rejected in this situation because it undoes the previous
action, resulting in a cycle. When the impasse is resolved, Soar will create
a new production that rejects operators that undo a preceding action.2

Soar’s chunking mechanism is fully integrated within the architecture,
pervasive (it automatically applies to all reasoning), and flexible (it can
be used to realize a variety of different kinds of adaptation). Because the
learning algorithm is an integral part of the overall system, Soar also pro-
vides a structure that addresses when learning occurs (when impasses are
resolved), what is learned (a summarization of impasse processing), and
why learning occurs (a preference for a knowledge search over a problem
search). The drawback of Soar’s learning mechanism is that all higher-
level learning styles must be realized within the constraints imposed by
Soar’s basic learning mechanism. For example, although chunking can be
used for knowledge level learning (Dietterich, 1986), achieving this new

2 Conceptually, this description is correct. In practice, generating a chunk with the correct
function, at the right level of generality, is often highly dependent on the developer-designed
knowledge representations. Creating agents that learn automatically is more a design art
than a wholly automatic function of the architecture.
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learning generally requires the execution of a multistep inductive reason-
ing algorithm carefully constructed to provide the desired result (Young &
Lewis, 1999). Thus, whereas Soar provides constraint in integrating mul-
tiple learning methods with behavior, realizing any individual learning
style is often more straightforward in a typical RBS.

Chunking is wholly focused on caching the results of a problem search
into new productions because of the assumption that a knowledge search
is less expensive. Not all systems share this assumption. For example, in
ACT-R, models repeatedly consider whether to attempt to retrieve an ob-
ject from declarative memory (knowledge search) or to construct the de-
sired object (problem search). In ACT-R, declarative retrieval depends on
processes other than matching, such as the activation of the declarative
memory objects and the perceived utility of the rule attempting retrieval.
Soar’s retrieval is based on complete matching and its efficiency derives
from the underlying Rete match algorithm. However, unless one chooses
object representations carefully, chunking can result in rules that are com-
putationally expensive to match (Tambe, Newell, & Rosenbloom, 1990).
As Soar evolves and additional mechanisms complement or augment the
Rete match, the general assumption of preferring the knowledge search to
the problem search may need to be reconsidered.

4 soar agents within multiagent systems

The discussion thus far has focused on Soar in an individual agent context,
describing the specific mechanisms of the architecture and the resulting
behavior enabled by the architecture. However, in nearly all current-day
applications (and most research systems), Soar agents are employed in
a multiagent context, where a group of agents act collectively (in both
cooperative and adversarial roles). TacAir-Soar is a good example of a
Soar multiagent system. TacAir-Soar agents can fly together as a tight team
(lead and wing), provide status and control information to other agents as a
controller (radar observation aircraft), decide to change their mission based
on the multiagent context (e.g., fighter-bomber aircraft on a strike mission
could decide to abandon the bombing mission and intercept enemy aircraft
due to the lack of other aircraft in the vicinity), etc. This section introduces
some of the constraints Soar introduces in multiagent system design.

Typical Soar multiagent systems adopt multiagent constraints from hu-
man behavior. In general, these constraints encourage agents that coor-
dinate as actual human agents do, taking advantage of shared, common
knowledge, observation, and communication when appropriate or neces-
sary. For example, Soar agents do not share state with one another. Soar
provides no mechanism by which an agent can inspect the internal as-
sertions of another agent. To make decisions (such as predictions) about
another agent’s objectives or goals, the agent must observe other agents
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and use its knowledge and inference to come to conclusions about the
intentions of other agents. In a collaborative environment, an agent may
be able to assume a shared goal or joint intention (Tambe, 1997). This as-
sumption may derive from shared domain knowledge. For example, in
TacAir-Soar (and other military applications), each agent has a representa-
tion of the command hierarchy, the role of other agents in the mission, and
the knowledge of the doctrine used in executing the mission, just as hu-
man participants share this knowledge. This shared “understanding” can
make it much easier to predict and interpret the actions of other agents. To
make it easier to encode and share domain knowledge, Soar systems are
now able to incorporate ontological representations via a straightforward
translation process (Wray, Lisse, & Beard, 2004). This approach simplifies
some knowledge development and maintenance (via the use of tools for
building and maintaining ontologies, such as Protégé) and makes it pos-
sible to guarantee that agents with different execution knowledge (e.g.,
controller and pilot) share the same knowledge of the domain.

Communication is also critical in multiagent contexts. Whereas agents
may share general knowledge of the domain, they have unique perceptions
and views of a situation that may need to be explicitly communicated with
other agents. For example, if one member of an air patrol decides to inter-
cept an observed enemy, it is possible that his partner may have not sighted
the enemy. In this case, the second pilot might behave inappropriately for
the intercept situation (e.g., not maintaining formation strictly enough),
unless the lead communicates the intercept decision. In this specific case,
military doctrine prescribes explicit communication between the actors, to
minimize the likelihood of misunderstanding and mistake. In general, the
Soar multiagent philosophy is to communicate only in situations where hu-
mans actually also routinely communicate (in the case of human behavior
models) or where it seems likely communication would have high utility
(e.g., Tambe, 1997). This approach contrasts with other attempts to achieve
coordinated multiagent action via high bandwidth, frequent communica-
tion (e.g., see Best & Lebiere, Chapter 8). However, the Soar multiagent
approach does lead to behavior that can be disrupted in the same ways
human behavior can be (e.g., radio jamming preventing communication
between entities). The result is that agents will sometimes make mistakes.

Although Soar multiagent systems are generally constrained at the be-
havior level by human–system constraints, Soar agents do take advan-
tage of existing multiagent standards and infrastructure to facilitate multi-
agent interaction. One example is the use of ontological representations in
Soar agents mentioned previously. As another example, both the Knowl-
edge Query and Manipulation Language (KQML) and the Foundation for
Intelligent Physical Agents–Agent Communication Language (FIPA-ACL)
have been supported in Soar via software wrappers in the output function
(Wray et al., 2002). Neither KQML or FIPA-ACL are content languages
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for communication, but rather enable message passing between Soar (and
non-Soar) agents and simplify the parsing of incoming communications
by explicitly declaring the speech act of the message (tell, ask, reply, etc.).

5 listening to the architecture: comparing soar to bdi

Soar biases solutions to behavior representation problems in unique ways.
This bias is present in models of human cognition and in the development
of multiagent systems in which individual Soar agents are used, as intro-
duced in the previous section. This section explores some of the repercus-
sions of the Soar approach and contrasts Soar solutions to those within the
Beliefs-Desires-Intentions (BDI) framework (Wooldridge, 2000). Because
both BDI and Soar can be viewed as alternatives for the implementation of
knowledge-intensive, multiagent systems (Jones & Wray, 2004), this com-
parison highlights some of the tradeoffs one encounters when using Soar
to develop multiagent systems.

Whereas the control loops of Soar and BDI are similar, the representa-
tions and processes comprising BDI architectures are quite different from
those of Soar. For example, BDI architectures do not make an explicit dis-
tinction between justified assertions and persistent assertions. Instead, they
usually use some form of belief revision. However, the most important dif-
ference between Soar and BDI is Soar’s assumption of parsimony and the
consequences of this assumption on knowledge representations.

Soar accomplishes all deliberation via a single representation: the oper-
ator. In contrast, BDI specifies multiple representations that are mediated
by deliberation, including desires, intentions, plans, and, in some cases, be-
liefs. For each of these representations, there can be a distinct mechanism
of choice. Committing to an intention may use some decision-theoretic
computation, although committing to a particular plan could result from
a simple table lookup. Similarly, the process of reconsideration (deciding
if a commitment should be continued) can also be tailored to the specific
representation and its role in the agent system (Wooldridge, 2000).

Because Soar uses only operators for deliberation, there is one mecha-
nism each for commitment (the decision procedure) and reconsideration
(reason maintenance). Essentially, the reconsideration algorithms assume
it is cheaper to retract and repeat some problem searches, if necessary,
rather than attempt to decide whether some deliberate selection should
continue to be supported (Wray & Laird, 2003).

This uniform approach to reconsideration has important consequences
for the design of agent systems. For example, because reconsideration
will interrupt a deliberate process as soon as a potential inconsistency
is detected, no deliberate step can be assumed to directly follow another.
Thus, (robust) Soar systems must be designed to be reentrant at every
step in execution. These reentrance requirements contrast with some BDI
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implementations, which enable the execution of plans of arbitrary length
or even traditional, serial procedures (Howden, Rönnquist, Hodgson, &
Lucas, 2001), within a single pass of the agent control loop. BDI systems
thus provide immediate power in the representation of complex proce-
dures and plans, but at the cost of having to manage the execution of these
procedures with other (potentially competing) procedures. The lack of an
explicit plan representation in Soar lends flexibility in terms of plan ex-
ecution (including interleaved execution with other plans). However, it
also requires that a developer consider plan representation in the design of
agent knowledge and plan for interruption and reentrant execution with-
out exception.

Another consequence of the uniformity in representation in Soar is that
any new representations must be implemented as symbolic representations
of knowledge, rather than at the architecture level. Within the BDI commu-
nity, there is presently a focus on extending the basic BDI representations
of beliefs, desires, and intentions, to other, multiagent-oriented representa-
tions, such as teams, values, and norms (e.g., see Beavers & Hexmoor, 2002;
Broersen, Dastani, Hulstijn, Huang, & van der Torre, 2001; and other chap-
ters in this volume). Within a BDI framework, these new representations
must be integrated with the other representations and processes used for
commitment and reconsideration, which leads to exploration at the archi-
tecture level. Within Soar, operators and the processes of the decision cycle
define the basic architectural mechanisms. Algorithms that make decisions
about new representations map to different Soar operators, where they are
integrated by the built-in conflict resolution procedure. For example, the
Soar-Teamwork (STEAM) model mentioned previously3 (Tambe, 1997) an-
notated individual Soar operators with team goals, to enable team-specific
processing for each operator. The drawback of the Soar approach is that
the architecture will not readily support decision and conflict resolution
that does not map easily to the architectural decision process. For exam-
ple, to make decision-theoretic communication decisions, STEAM relies on
extra-architectural procedures.

Of course, one could have used Soar operators to make those decision-
theoretic calculations. One of the fundamental tensions that arises in
“listening to the Soar architecture” is whether to follow its advice. In gen-
eral, listening to Soar requires mapping any deliberate step to an operator.
In the most recent version of Soar, any sequence of deliberate steps can
be interrupted, which encourages fine-grained, single-step operator im-
plementations (Wray & Laird, 2003). However, because elaboration occurs
as a loop within the decision, splitting the execution of a procedure over

3 Tambe and colleagues have extended their original Soar-Teamwork model to a more general
computational approach to teamwork within the BDI framework; Chapter 12 in this volume
introduces this work.
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multiple deliberation steps can appear inefficient. Many Soar developers
spend significant time and effort attempting to implement computations
within the elaboration cycle of Soar that would be trivial to accomplish
via deliberation. In theory, Soar also resolves this dilemma by compiling
the results of multistep sequences into more compact, efficient representa-
tions. However, in practice, using chunking in performance environments
remains difficult, even after the successful resolution of a number of recog-
nized interactions between chunking and interaction with external envi-
ronments (Wray & Jones, 2001; Wray, Laird, & Jones, 1996). In summary, it is
often difficult to discern if an implementation challenge is the result of not
“listening to the architecture” closely enough, a flaw in the current imple-
mentation, or an inadequacy in the theory. Of course, these challenges are
not unique to Soar and all approaches to computational intelligence must
be evaluated both in the context of idealized theories and implementations
of those theories that may not fully live up to those ideals.

6 summary

The Soar project reflects an attempt to articulate a theory of general intelli-
gence through a specific computational model, an architecture foundation
that implements the computational model, and artifacts that guide evalua-
tion and refinement of the theory. Defining characteristics of the Soar com-
putational model include pattern-directed processing, least-commitment
execution, subgoaling and task decomposition, knowledge-mediated con-
flict resolution, and learning integrated with performance.

A downside of the Soar approach is that, by specifying general mecha-
nisms, it underspecifies some capabilities that must be built into intelligent
agents. Most of an agent’s competence arises from the encoded knowl-
edge representations (i.e., the set of rules) that Soar’s mechanisms oper-
ate on. Thus, agent knowledge representations must be created to realize
any high-level intelligent capability. For instance, whereas Soar has been
used to build planning systems, in comparison to other AI planning sys-
tems, Soar offers little immediately evident power. Soar only specifies very
low-level constraints on how planning can occur, so Soar agent designers
must develop their own plan languages and algorithms, although these
are provided in most planning systems. However, Soar does provide a
natural, scalable methodology for integrating planning with plan execu-
tion, as well as natural language understanding, reasoning by analogy, etc.
By focusing on a uniform substrate that allows any available knowledge
to mediate any decision, Soar provides a tool with which to realize inte-
grated approaches. Soar therefore trades off powerful, but often overly con-
strained processes for the flexibility to integrate solutions, and this integra-
tion has been demonstrated across a broad spectrum of intelligent system
applications.
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appendix: additional resources

Soar is supported by a community of academic and industry researchers,
developers, and users. The Soar homepage (http://sitemaker.umich.edu/
soar) includes links to the executable and source versions of the Soar soft-
ware, tutorials that introduce Soar as a programmable system, a Soar
programming manual, and tools for creating and debugging Soar pro-
grams. Soar is a freely available, open-source project and continuing
architecture development is hosted at Source Forge (http://sourceforge.
net/projects/soar/). The multi-site, multinational Soar community in-
teracts via the Soar mailing list (see http://sourceforge.net/mail/?group
id=65490 for subscription information) and a yearly “Soar Workshop,” usu-
ally held in June in Ann Arbor, Michigan, USA. The Soar Frequently Asked
Questions (FAQ) (http://acs.ist.psu.edu/soar-faq/soar-faq.html) answers
common questions about the theory, software architecture, and program-
ming of Soar. Theoretical motivations and descriptions of the basic princi-
ples of Soar may be found in The Soar Papers (Rosenbloom, Laird, & Newell,
1993).
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4

The CLARION Cognitive Architecture: Extending
Cognitive Modeling to Social Simulation

Ron Sun

1 introduction

This chapter presents an overview of a relatively recent cognitive architec-
ture for modeling cognitive processes of individual cognitive agents (in a
psychological sense) (see Sun et al., 1998, 2001; Sun, 2002). We will start
with a look at some general ideas underlying this cognitive architecture as
well as the relevance of these ideas to social simulation.

To tackle a host of issues arising from computational cognitive mod-
eling that are not adequately addressed by many other existent cogni-
tive architectures, such as the implicit-explicit interaction, the cognitive-
metacognitive interaction, and the cognitive-motivational interaction,
CLARION, a modularly structured cognitive architecture, has been de-
veloped (Sun, 2002; Sun et al., 1998, 2001). Overall, CLARION is an inte-
grative model. It consists of a number of functional subsystems (for ex-
ample, the action-centered subsystem, the metacognitive subsystem, and
the motivational subsystem). It also has a dual representational structure –
implicit and explicit representations being in two separate components in
each subsystem. Thus far, CLARION has been successful in capturing a
variety of cognitive processes in a variety of task domains based on this
division of modules (Sun et al., 2002). See Figure 4.1 for a sketch of the
architecture.

A key assumption of CLARION, which has been argued for amply be-
fore (see Sun et al., 1998, 2001; Sun, 2002), is the dichotomy of implicit
and explicit cognition. Generally speaking, implicit processes are less ac-
cessible and more “holistic,” whereas explicit processes are more acces-
sible and more crisp (Reber, 1989; Sun, 2002). This dichotomy is closely
related to some other well-known dichotomies in cognitive science: the di-
chotomy of symbolic versus subsymbolic processing, the dichotomy of con-
ceptual versus subconceptual processing, and so on (Smolensky, 1988; Sun,
1994). This dichotomy can be justified psychologically, by the voluminous
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figure 4.1. The CLARION architecture. ACS denotes the action-centered subsys-
tem, NACS, the non–action-centered subsystem, MS, the motivational subsystem,
and MCS, the metacognitive subsystem.

empirical studies of implicit and explicit learning, implicit and explicit
memory, implicit and explicit perception, and so on (Reber, 1989; Seger,
1994; Cleeremans et al., 1998; Sun, 2002). In social psychology, there are
similar dual-process models for describing socially relevant cognitive pro-
cesses (Chaiken & Trope, 1999). Denoting more or less the same distinction,
these dichotomies serve as justifications for the more general notions of im-
plicit versus explicit cognition, which is the focus of CLARION. See Sun
(2002) for an extensive treatment of this distinction.

Beside the previous oft-reiterated point about CLARION, there are also a
number of other characteristics that are pertinent to its application to social
simulation, such as its focus on (1) the cognition-motivation-environment
interaction, (2) the bottom-up and top-down learning, and (3) the cognitive-
metacognitive interaction.

For instance, one particularly pertinent characteristic of this cognitive
architecture is its focus on the cognition-motivation-environment interac-
tion. Essential motivations of an agent, its biological needs in particular,
arise naturally, prior to cognition (but interact with cognition of course).
Such motivations are the foundation of action and cognition. In a way,



The CLARION Cognitive Architecture 81

cognition is evolved to serve the essential needs and motivations of an
agent. Cognition, in the process of helping to satisfy needs and following
motivational forces, has to take into account environments, their regular-
ities and structures. Furthermore, some needs and motivations are inher-
ently social or socially oriented. Thus, cognition bridges the needs and
motivations of an agent and its environments (be it physical or social),
thereby linking all three in a “triad” (see Chapter 1 of this book for more
discussions of this point).

Another important characteristic of this cognitive architecture is that
an agent may learn on its own, regardless of whether or not there is a
priori or externally provided domain knowledge. Learning may proceed
on a trial-and-error basis. Furthermore, through a bootstrapping process,
or “bottom-up learning” as has been termed (Sun et al., 2001), explicit and
abstract domain knowledge may be developed, in a gradual and incre-
mental fashion (Karmiloff-Smith, 1986). This is significantly different from
other cognitive architectures (e.g., Anderson & Lebiere, 1998). Likewise, in
CLARION, it is not necessary to have a priori explicit knowledge of needs,
desires, and other motivational structures. Explicit knowledge of needs,
desires, and motivations may also be acquired through a bottom-up pro-
cess, gradually and incrementally.

It should be noted that, although it addresses trial-and-error and bottom-
up learning, the architecture does not exclude innate biases and innate
behavioral propensities from being represented within the architecture. In-
nate biases and propensities may be represented, implicitly or even explic-
itly, and they interact with trial-and-error and bottom-up learning, in terms
of constraining, guiding, and facilitating learning. In addition to bottom-
up learning, top-down learning, that is, assimilation of explicit/abstract
knowledge from external sources into internal implicit forms, is also pos-
sible in CLARION (Sun, 2003).

Yet another important characteristic of this architecture is that multi-
ple subsystems interact with each other constantly. In this architecture,
these subsystems have to work closely with each other in order to accom-
plish cognitive processing. The interaction among these subsystems may
include some “executive control” of some subsystems. It may also include
metacognitive monitoring and control of ongoing processing. It is worth
noting that such cognitive-metacognitive interaction has not yet been fully
addressed by other cognitive architectures such as ACT-R or Soar (but see,
e.g., Sloman, 2000). Note that social interaction is made possible by the (at
least partially) innate ability of cognitive agents to reflect on, and to mod-
ify dynamically, their own behaviors (Tomasello, 1999). The metacognitive
self monitoring and control enables agents to interact with each other and
with their environments more effectively, for example, by avoiding social
impasses – impasses that are created because of the radically incompatible
behaviors of multiple cognitive agents (see, for example, Sun, 2001).
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As mentioned earlier, the architecture also includes motivational struc-
tures and, therefore, the interaction between motivational structures and
other subsystems within the architecture is also prominent (again signif-
icantly different from other cognitive architectures such as ACT-R and
Soar). This characteristic is also important for social interaction. Each agent
in a social situation carries with it its own needs, desires, and motiva-
tions. Social interaction is possible in part because agents can understand
and appreciate each other’s (innate or acquired) motivational structures
(Tomasello, 1999; Bates et al., 1992). On that basis, agents may find ways to
cooperate.

In the remainder of this chapter, first, the overall structure of CLARION
is presented in the next section. Then, each subsystem is presented in sub-
sequent sections. Together, these sections substantiate the characteristics of
CLARION discussed above. A discussion section follows, which addresses
some general issues in extending cognitive modeling to social simulation
with CLARION. It further explicates how these characteristics discussed
earlier support cognitive modeling and social simulation in substantial
ways. A summary section then completes this chapter.

2 the overall architecture

CLARION is intended for capturing all the essential cognitive processes
within an individual cognitive agent. As mentioned before, CLARION is
an integrative architecture, consisting of a number of distinct subsystems,
with a dual representational structure in each subsystem (implicit versus
explicit representations). Its subsystems, shown in Figure 4.1, include the
action-centered subsystem (the ACS), the non–action-centered subsystem
(the NACS), the motivational subsystem (the MS), and the metacognitive
subsystem (the MCS). The role of the ACS is to control actions, regardless
of whether the actions are for external physical movements or for internal
mental operations. The role of the NACS is to maintain general knowledge,
either implicit or explicit. The role of the MS is to provide underlying
motivations for perception, action, and cognition, in terms of providing
impetus and feedback (e.g., indicating whether outcomes are satisfactory or
not). The role of the MCS is to monitor, direct, and modify the operations of
the ACS dynamically as well as the operations of all the other subsystems.

Each of these interacting subsystems consists of two levels of represen-
tation (i.e., a dual representational structure): Generally, in each subsystem,
the top level encodes explicit knowledge and the bottom level encodes im-
plicit knowledge; this distinction has been argued for earlier (see also Reber,
1989; Seger, 1994; and Cleeremans et al., 1998). Let us consider the repre-
sentational forms that need to be present for encoding these two different
types of knowledge. Notice the fact that the relatively inaccessible nature of
implicit knowledge may be captured by subsymbolic, distributed represen-
tation provided, for example, by a backpropagation network (Rumelhart
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et al., 1986). This is because distributed representational units in the hidden
layer(s) of a backpropagation network are capable of accomplishing com-
putations but are subsymbolic and generally not individually meaningful
(Rumelhart et al., 1986; Sun, 1994). This characteristic of distributed repre-
sentation, which renders the representational form less accessible, accords
well with the relative inaccessibility of implicit knowledge (Reber, 1989;
Seger, 1994; Cleeremans et al., 1998). In contrast, explicit knowledge may
be captured in computational modeling by symbolic or localist represen-
tation (Clark & Karmiloff-Smith, 1993), in which each unit is more easily
interpretable and has a clearer conceptual meaning. This characteristic of
symbolic or localist representation captures the characteristic of explicit
knowledge being more accessible and more manipulable (Smolensky, 1988;
Sun, 1994).

Accessibility here refers to the direct and immediate availability of men-
tal content for the major operations that are responsible for, or concomitant
with, consciousness, such as introspection, forming higher-order thoughts,
and verbal reporting. The dichotomous difference in the representations of
the two different types of knowledge leads naturally to a two-level archi-
tecture, whereby each level uses one kind of representation and captures
one corresponding type of process (implicit or explicit).

Let us now turn to learning. First, there is the learning of implicit knowl-
edge at the bottom level. One way of implementing a mapping function to
capture implicit knowledge is to use a multi-layer neural network (e.g., a
three-layer backpropagation network). Adjusting parameters of this map-
ping function to change input/output mappings (that is, learning implicit
knowledge) may be carried out in ways consistent with the nature of dis-
tributed representation (e.g., as in backpropagation networks), through
trial-and-error interaction with the world. Often, reinforcement learning
can be used (Sun et al., 2001), especially Q-learning (Watkins, 1989), im-
plemented using backpropagation networks. In this learning setting, there
is no need for a priori knowledge or external teachers providing desired
input/output mappings. On the other hand, in the learning settings where
desired input/output mappings are available, straight backpropagation (a
supervised learning algorithm) can be used (Rumelhart et al., 1986). Such
(implicit) learning may be justified cognitively. For instance, Cleeremans
(1997) argued at length that implicit learning could not be captured by
symbolic models but neural networks. Sun (2002) and Sun et al. (2005a)
made similar arguments.

Explicit knowledge at the top level can also be learned in a variety
of ways (in accordance with localist/symbolic representation used there).
Because of its representational characteristics, one-shot learning (for ex-
ample, based on hypothesis testing) is preferred during interaction with
the world (Bruner et al., 1956; Busemeyer & Myung, 1992; Sun et al., 2001).
With such learning, an agent explores the world, and dynamically acquires
representations and modifies them as needed.
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The implicit knowledge already acquired in the bottom level may be
utilized in learning explicit knowledge at the top level, through bottom-up
learning (Sun et al., 2001). That is, information accumulated in the bot-
tom level through interacting with the world is used for extracting and
then refining explicit knowledge. This is a kind of “rational reconstruc-
tion” of implicit knowledge at the explicit level. Conceivably, other types
of learning of explicit knowledge are also possible, such as explicit hypoth-
esis testing without the help of the bottom level. Conversely, once explicit
knowledge is established at the top level, it may be assimilated into the
bottom level. This often occurs during the novice-to-expert transition in
instructed learning settings (Anderson & Lebiere, 1998). The assimilation
process, known as top-down learning (as opposed to bottom-up learning),
may be carried out in a variety of ways (Sun, 2003).

Figure 4.1 presents a sketch of this basic architecture of a cognitive agent,
which includes the four major subsystems interacting with each other. The
following four sections will describe, one by one and in more detail, these
four subsystems of CLARION.

3 the action-centered subsystem

The action-centered subsystem (the ACS) of CLARION is meant to capture
the action decision making of an individual cognitive agent in its interac-
tion with the world (see also Chapter 11 by Shell and Matarić in this book).
The ACS is the central part of CLARION. In the ACS, the process for action
decision making is essentially the following: Observing the current state of
the world, the two levels of processes within the ACS (implicit or explicit)
make their separate decisions in accordance with their own knowledge,
and their outcomes are somehow “combined.” Thus, a final selection of an
action is made and the action is then performed. The action changes the
world in some way. Comparing the changed state of the world with the
previous state, the agent learns (in accordance with Q-learning of Watkins,
1989, as mentioned earlier). The cycle then repeats itself.

In this subsystem, the bottom level is termed the IDNs (the Implicit Deci-
sion Networks), implemented with neural networks involving distributed
representations, and the top level is termed the ARS (the Action Rule Store),
implemented using symbolic/localist representations.

The overall algorithm for action decision making by an agent during its
interaction with the world is as follows:

1. Observe the current state x.
2. Compute in the bottom level (the IDNs) the “value” of each of

the possible actions (ai ’s) associated with the state x : Q(x, a1),
Q(x, a2), . . . , Q(x, an). Stochastically choose one action according to
these values.
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3. Find out all the possible actions (b1, b2, . . . , bm) at the top level (the
ARS), based on the current state x (which goes up from the bottom
level) and the existing explicit rules in place at the top level. Stochas-
tically choose one action.

4. Choose an appropriate action, by stochastically selecting the out-
come of either the top level or the bottom level.

5. Perform the action, and observe the next state y and (possibly) the
reinforcement r.

6. Update the bottom level in accordance with an appropriate algo-
rithm (to be detailed later), based on the feedback information.

7. Update the top level using an appropriate algorithm (for extracting,
refining, and deleting rules, to be detailed later).

8. Go back to Step 1.

The input (x) to the bottom level consists of three sets of information:
(1) sensory input, (2) working memory items, and (3) the selected item of
the goal structure. The sensory input is divided into a number of input
dimensions, each of which has a number of possible values. The goal in-
put is also divided into a number of dimensions. The working memory is
divided into dimensions as well. Thus, input state x is represented as a set
of dimension-value pairs: (d1, v1)(d2, v2) . . . (dn, vn).

The output of the bottom level is the action choice. It consists of three
groups of actions: working memory actions, goal actions, and external
actions.1

In each network (encoding implicit knowledge), actions are selected
based on their values. A Q value is an evaluation of the “quality” of an
action in a given state: Q(x, a ) indicates how desirable action a is in state x.
At each step, given state x, the Q values of all the actions (i.e., Q(x, a ) for all
a ’s) are computed. Then the Q values are used to decide probabilistically on
an action to be performed, through a Boltzmann distribution of Q values:

p(a |x) = e Q(x,a )/α∑
i e Q(x,ai )/α

(4.1)

where α controls the degree of randomness (temperature) of the decision-
making process. (This method is also known as Luce’s choice axiom;
Watkins, 1989.)

The Q-learning algorithm (Watkins, 1989), a reinforcement learning al-
gorithm, may be used for learning implicit knowledge at the bottom level.

1 Note that aforementioned working memory is for storing information temporarily for the
purpose of facilitating subsequent decision making (Baddeley, 1986). Working memory
actions are used either for storing an item in the working memory, or for removing an
item from the working memory. Goal structures, a special case of working memory, are for
storing goal information specifically.
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In the algorithm, Q(x, a ) estimates the maximum (discounted) total rein-
forcement that can be received from the current state x on. Q values are
gradually tuned, on-line, through successive updating, which enables re-
active sequential behavior to emerge through trial-and-error interaction
with the world. Q-learning is implemented in backpropagation networks
(see Sun, 2003 for details).

Next, explicit knowledge at the top level (the ARS) is captured by rules
and chunks. The condition of a rule, similar to the input to the bottom level,
consists of three groups of information: sensory input, working memory
items, and the current goal. The output of a rule, similar to the output from
the bottom level, is an action choice. It may be one of the three types: work-
ing memory actions, goal actions, and external actions. The condition of a
rule constitutes a distinct entity known as a chunk; so does the conclusion
of a rule.

Specifically, rules are in the following form: state-specification −→ action.
The left-hand side (the condition) of a rule is a conjunction (i.e., logic AND)
of individual elements. Each element refers to a dimension xi of state x,
specifying a value range, for example, in the form of xi ∈ (vi1, vi2, . . . , vin).
The right-hand side (the conclusion) of a rule is an action recommendation.

The structure of a set of rules may be translated into that of a network
at the top level. Each value of each state dimension (i.e., each feature) is
represented by an individual node at the bottom level (all of which together
constitute a distributed representation). Those bottom-level feature nodes
relevant to the condition of a rule are connected to the single node at the
top level representing that condition, known as a chunk node (a localist
representation). When given a set of rules, a rule network can be wired up at
the top level, in which conditions and conclusions of rules are represented
by respective chunk nodes, and links representing rules are established
that connect corresponding pairs of chunk nodes.

To capture the bottom-up learning process (Stanley et al., 1989; Karmiloff-
Smith, 1986), the Rule-Extraction-Refinement algorithm (RER) learns rules
at the top level using information in the bottom level. The basic idea of
bottom-up learning of action-centered knowledge is as follows: If an ac-
tion chosen (by the bottom level) is successful (i.e., it satisfies a certain
criterion), then an explicit rule is extracted at the top level. Then, in sub-
sequent interactions with the world, the rule is refined by considering the
outcome of applying the rule: If the outcome is successful, the condition
of the rule may be generalized to make it more universal; if the outcome is
not successful, then the condition of the rule should be made more specific
and exclusive of the current case.

An agent needs a rational basis for making these above decisions. Nu-
merical criteria have been devised for measuring whether a result is suc-
cessful or not, used in deciding whether or not to apply these operations.
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The details of the numerical criteria measuring whether a result is success-
ful or not can be found in Sun et al. (2001). Essentially, at each step, positive
and negative match counts are updated (through measuring whether a rule
or a potential rule leads to a positive or negative outcome). Then, on that
basis, an information gain measure is computed, which compares differ-
ent rules and chooses better ones (by essentially comparing their respec-
tive positive match ratios). The aforementioned rule learning operations
(extraction, generalization, and specialization) are determined and per-
formed based on the information gain measure (see Sun, 2003, for details).

On the other hand, in the opposite direction, the dual representation
(implicit and explicit) in the ACS also enables top-down learning. With ex-
plicit knowledge (in the form of rules) in place at the top level, the bottom
level learns under the guidance of the rules. That is, initially, the agent
relies mostly on the rules at the top level for its action decision making.
But gradually, when more and more knowledge is acquired by the bot-
tom level through “observing” actions directed by the rules (based on the
same Q-learning mechanism as described before), the agent becomes more
and more reliant on the bottom level (given that the inter-level stochastic
selection mechanism is adaptable). Hence, top-down learning takes place.

For the stochastic selection of the outcomes of the two levels, at each step,
with probability PBL, the outcome of the bottom level is used. Likewise,
with probability PRER, if there is at least one RER rule indicating a proper
action in the current state, the outcome from that rule set is used; otherwise,
the outcome of the bottom level is used (which is always available). Other
components may be included in a like manner. The selection probabilities
may be variable, determined through a process known as “probability
matching”: that is, the probability of selecting a component is determined
based on the relative success ratio of that component. There exists some
psychological evidence for such intermittent use of rules; see, for example,
Sun et al. (2001).

In addition, a set of equations specifies the response times of different
components of the ACS and their combination – the overall response time.
Those response time equations are based on “base-level activation” – a
priming mechanism with gradually fading activation (Anderson & Lebiere,
1998; see Sun, 2003, for details).

This subsystem has been used for simulating a variety of psychologi-
cal tasks, including process control tasks in particular (Sun et al., 2005b).
In a process control task, participants were supposed to control a (simu-
lated) sugar factory. The output of the sugar factory was determined by
the current and past inputs from the participants into the factory, often
through a complex and non-salient relationship. In the ACS of CLARION,
the bottom level acquired implicit knowledge (embodied by the neural
network) for controlling the sugar factory, through interacting with the



88 Ron Sun

(simulated) sugar factory in a trial-and-error fashion. On the other hand,
the top level acquired explicit action rules for controlling the sugar fac-
tory, mostly through bottom-up learning (as explained before). Different
groups of participants were tested, including verbalization groups, explicit
instruction groups, and explicit search groups (Sun et al., 2005b). Our sim-
ulation succeeded in capturing the learning results of different groups of
participants, mainly through adjusting one parameter that was hypothe-
sized to correspond to the difference among these different groups (that is,
the probability of relying on the bottom level; Sun et al., 2005b).

Besides simulating process control tasks, this subsystem has been em-
ployed in simulating a variety of other important psychological tasks,
including alphabetic arithmetic tasks, artificial grammar learning tasks,
Tower of Hanoi, and so on, as well as social simulation tasks such as or-
ganizational decision making (see Chapter 6 by Naveh and Sun in this
book).

4 the non–action-centered subsystem

The non–action-centered subsystem (the NACS) is used for representing
general knowledge about the world that is not action-centered, for the
purpose of retrieving information and making inferences about the world.
It stores such knowledge in a dual representational form (the same as in the
ACS): that is, in the form of explicit “associative rules” (at the top level), as
well as in the form of implicit “associative memory” (at the bottom level).
Its operation is under the control of the ACS.

First, at the bottom level of the NACS, “associative memory” networks
(AMNs for short) encode non–action-centered implicit knowledge. Asso-
ciations are formed by mapping an input to an output. The regular back-
propagation learning algorithm, for example, can be used to establish such
associations between pairs of input and output (Rumelhart et al., 1986).

On the other hand, at the top level of the NACS, a general knowledge
store (the GKS) encodes explicit non–action-centered knowledge (cf. Sun,
1994). As in the ACS, chunks are specified through dimensional values. The
basic form of a chunk consists of a chunk id and a set of dimension-value
pairs. A node is set up in the GKS to represent a chunk (which is a localist
representation). The chunk node connects to its constituting features (i.e.,
dimension-value pairs) represented as individual nodes in the bottom level
(a distributed representation in the AMNs). Additionally, in the GKS, links
between chunks encode explicit associations between pairs of chunk nodes,
which are known as associative rules. Such explicit associative rules may
be formed (i.e., learned) in a variety of ways in the GKS of CLARION (see
Sun, 2003).

On top of that, similarity-based reasoning may be employed in the
NACS. A known (given or inferred) chunk may be automatically compared
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with another chunk. If the similarity between them is sufficiently high, then
the latter chunk is inferred.

Similarity-based and rule-based reasoning can be intermixed. As a result
of mixing similarity-based and rule-based reasoning, complex patterns of
reasoning may emerge. As shown by Sun (1994), different sequences of
mixed similarity-based and rule-based reasoning capture essential patterns
of human everyday (mundane, commonsense) reasoning.

As in the ACS, top-down or bottom-up learning may take place in the
NACS, either to extract explicit knowledge in the top level from the implicit
knowledge in the bottom level, or to assimilate the explicit knowledge of
the top level into the implicit knowledge in the bottom level.

As in the ACS, a set of equations determines the response times of differ-
ent components within the NACS (again based on “base-level activation”;
see Sun, 2003).

The NACS of CLARION has been used to simulate a variety of psycho-
logical tasks. For example, in artificial grammar learning tasks, participants
were presented with a set of letter strings. After memorizing these strings,
they were asked to judge the grammaticality of new strings. Despite their
lack of complete explicit knowledge about the grammar underlying the
strings, they nevertheless performed well in judging new strings. More-
over, they were also able to complete partial strings in accordance with their
implicit knowledge. The result showed that participants acquired fairly
complete implicit knowledge although their explicit knowledge was frag-
mentary at best (Domangue et al., 2004). In simulating this task, although
the ACS was responsible for controlling the overall operation, the NACS
was used for representing most of the relevant knowledge. The bottom
level of the NACS acquired implicit associative knowledge that enabled
it to complete partial strings. The top level of the NACS recorded explicit
knowledge concerning sequences of letters in strings. When given partial
strings, the bottom level or the top level might be used, or the two levels
might work together, depending on circumstances. Based on the previous
setup, the simulation succeeded in capturing fairly accurately human data
in this task across a set of different circumstances (Domangue et al., 2004).
In addition, many other tasks have been simulated using the NACS.

Let us also look into social situations in which the representations of self
and others are important (e.g., Tomasello, 1999; Andersen & Chen, 2002).
The social-cognitive model of transference claims that in an encounter with
a new person, an underlying representation of some significant others is
activated in a perceiver, leading the perceiver to interpret the new person in
ways derived from the stored representation and to respond accordingly.
The information one stores for significant others constitutes a system of
knowledge that can be activated and brought to the fore in similar contexts.
Within CLARION, such representations may be constructed in simulation
using both the NACS and the ACS. In the NACS, information about others
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is stored at both levels as usual: through implicit associative memory as
well as through explicit associative rules. Similarity of a new person to
a stored representation of a significant other may be detected within the
NACS through the working of the two levels, in ways as sketched earlier. In
turn, the detected similarity may trigger associated inferences – deriving
information about the new person from the stored information. Similar
detection may occur in the ACS. However, in the ACS, instead of infer-
ential processes, actions may be chosen in accordance with the detected
similarity.

5 the motivational subsystem

Supervisory processes over the operations of the ACS and the NACS are
made up of two subsystems in CLARION: the motivational subsystem
and the metacognitive subsystem. The motivational subsystem (the MS)
is concerned with drives and their interactions (Toates, 1986). That is, it is
concerned with why an agent does what it does – why an agent chooses the
actions it takes. Simply saying that an agent chooses actions to maximize
gains, rewards, or payoffs leaves open the question of what determines
gains, rewards, or payoffs. The relevance of the motivational subsystem
to the main part of the architecture, the ACS, lies primarily in the fact
that it provides the context in which the goal and the reinforcement of the
ACS are determined. It thereby influences the working of the ACS, and by
extension, the working of the NACS.

As an aside, for several decades by now, criticisms of commonly ac-
cepted models of human motivations, for example in economics, have fo-
cused on their overly narrow views regarding motivations, for example,
solely in terms of simple reward and punishment (economic incentives
and disincentives). Many critics opposed the application of this overly
narrow approach to social, behavioral, cognitive, and political sciences.
Complex social motivations, such as desire for reciprocation, seeking of
social approval, and interest in exploration, also shape human behav-
ior. By neglecting these motivations, the understanding of some key so-
cial and behavioral issues (such as the effect of economic incentives on
individual behavior) may be hampered. Similar criticisms may apply
to work on reinforcement learning in AI (for example, Sutton & Barto,
1998).

A set of major considerations that the motivational subsystem of an
agent must take into account may be identified. Here is a set of considera-
tions using drives as the main construct (cf. Simon, 1967; Tyrell, 1993):

� Proportional activation. The activation of a drive should be proportional
to corresponding offsets, or deficits, in related aspects (such as food or
water).
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figure 4.2. The structure of the motivational subsystem.

� Opportunism. An agent needs to incorporate considerations concerning
opportunities. For example, the availability of water may lead one to
prefer drinking water over gathering food (provided that food deficits
are not too great).

� Contiguity of actions. There should be a tendency to continue the current
action sequence, rather than switching to a different sequence, in order
to avoid the overhead of switching.

� Persistence. Similarly, actions to satisfy a drive should persist beyond
minimum satisfaction, that is, beyond a level of satisfaction barely
enough to reduce the most urgent drive to be slightly below some other
drives.2

� Interruption when necessary. However, when a more urgent drive arises
(such as “avoid-danger”), actions for a lower-priority drive (such as
“get-sleep”) may be interrupted.

� Combination of preferences. The preferences resulting from different drives
should be combined to generate a somewhat higher overall preference.
Thus, a compromise candidate may be generated that is not the best for
any single drive but the best in terms of the combined preference.

A bipartite system of motivational representation is as follows (cf.
Simon, 1967; Nerb et al., 1997). The explicit goals (such as “finding food”)
of an agent (which is tied to the working of the ACS, as explained before)
may be generated based on internal drive states (for example, “being hun-
gry”) of the agent. This explicit representation of goals derives from, and
hinges upon, implicit drive states. See Figure 4.2.3

2 For example, an agent should not run toward a water source and drink only a minimum
amount, then run toward a food source and eat a minimum amount, and then go back to
the water source to repeat the cycle.

3 Note that it is not necessarily the case that the two types of representations directly corre-
spond to each other (e.g., one being extracted from the other), as in the case of the ACS or
the NACS.
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Specifically, we refer to as primary drives those drives that are essential
to an agent and are most likely built-in (hard-wired) to begin with. Some
sample low-level primary drives include (cf. Tyrell, 1993):

Get-food. The strength of this drive is proportional to 0.95 ∗ max (food-
deficit, food-deficit ∗ food-stimulus). The maximum strength of this drive is
0.95. The actual strength is determined by two factors: food-deficit felt by
the agent, and the food-stimulus perceived by it.

Get-water. The strength of this drive is proportional to 0.95 ∗ max (water-
deficit, water-deficit ∗ water-stimulus). This situation is similar to get-food.

Avoid-danger. The strength of this drive is proportional to 0.98 ∗ danger-
stimulus ∗ danger-certainty. The maximum strength of this drive is 0.98.
It is proportional to the danger signal: its distance, severity (disincentive
value), and certainty. The first two factors are captured by danger-stimulus
(which is determined by distance and severity), and the third factor by
danger-certainty.4

These drives may be implemented in a (pre-trained) backpropagation neu-
ral network, representing evolutionarily pre-wired instincts.

Beyond such low-level drives (concerning physiological needs), there
are also higher-level drives. Some of them are primary, in the sense of
being “hard-wired.” The “need hierarchy” of Maslow (1987) identifies
some of these drives. A few particularly relevant high-level drives include:
belongingness, esteem, self-actualization, and so on (Sun, 2003).

Whereas primary drives are built-in and relatively unalterable, there
are also “derived” drives, which are secondary, changeable, and acquired
mostly in the process of satisfying primary drives. Derived drives may in-
clude: (1) gradually acquired drives, through “conditioning” (Hull, 1951);
(2) externally set drives, through externally given instructions. For exam-
ple, due to the transfer of the desire to please superiors into a specific
desire to conform to their instructions, following the instructions becomes
a (derived) drive.

Explicit goals may be set based on these (primary or derived) drives, as
will be explored in the next section (Simon, 1967; Nerb et al., 1997).

6 the metacognitive subsystem

Metacognition refers to one’s knowledge concerning one’s own cogni-
tive processes and their outcomes. Metacognition also includes the ac-
tive monitoring and consequent regulation and orchestration of these pro-
cesses, usually in the service of some concrete goal (Flavell, 1976; Mazzoni

4 Other drives include get-sleep, reproduce, and a set of “avoid saturation” drives, for exam-
ple, avoid-water-saturation or avoid-food-saturation. There are also drives for curiosity
and avoid-boredom. See Sun (2003) for further details.
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& Nelson, 1998). This notion of metacognition is operationalized within
CLARION.

In CLARION, the metacognitive subsystem (the MCS) is closely tied
to the motivational subsystem. The MCS monitors, controls, and regu-
lates cognitive processes for the sake of improving cognitive performance
(Simon, 1967; Sloman, 2000). Control and regulation may be in the forms
of setting goals for the ACS, interrupting and changing ongoing processes
in the ACS and the NACS, setting essential parameters of the ACS and
the NACS, and so on. Control and regulation are also carried out through
setting reinforcement functions for the ACS on the basis of drive states.

In this subsystem, many types of metacognitive processes are available,
for different metacognitive control purposes. Among them, there are the
following types (Sun, 2003; Mazzoni & Nelson, 1998):

(1) behavioral aiming:
setting of reinforcement functions
setting of goals

(2) information filtering:
focusing of input dimensions in the ACS
focusing of input dimensions in the NACS

(3) information acquisition:
selection of learning methods in the ACS
selection of learning methods in the NACS

(4) information utilization:
selection of reasoning methods in the ACS
selection of reasoning methods in the NACS

(5) outcome selection:
selection of output dimensions in the ACS
selection of output dimensions in the NACS

(6) cognitive mode selection:
selection of explicit processing, implicit processing, or a combination
thereof (with proper integration parameters) in the ACS

(7) setting parameters of the ACS and the NACS:
setting of parameters for the IDNs
setting of parameters for the ARS
setting of parameters for the AMNs
setting of parameters for the GKS

Structurally, the MCS may be subdivided into a number of modules.
The bottom level consists of the following (separate) networks: the goal
setting network, the reinforcement function network, the input selection
network, the output selection network, the parameter setting network (for
setting learning rates, temperatures, etc.), and so on. In a similar fashion, the
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figure 4.3. The structure of the metacognitive subsystem.

rules at the top level (if they exist) can be correspondingly subdivided. See
Figure 4.3 for a diagram of the MCS. Further details, such as monitoring
buffer, reinforcement functions (from drives), goal setting (from drives),
information selection, and so on, can be found in Sun (2003).

This subsystem may be pre-trained before the simulation of any partic-
ular task (to capture evolutionary pre-wired instincts, or knowledge/skills
acquired from prior experience).

7 discussions

Let us turn to the question of the relevance of this cognitive architecture
to cognitive modeling and social simulation. First of all, let us examine its
contributions to computational cognitive modeling. Compared with other
existent cognitive architectures, it is unique in that it contains (1) built-in
motivational constructs, (2) built-in metacognitive constructs, (3) the sepa-
ration of the two dichotomies: the dichotomy of implicit versus explicit rep-
resentation and dichotomy of action-centered versus non–action-centered
representation, and (4) both top-down and bottom-up learning. These fea-
tures are not commonly found in other existing cognitive architectures.
Nevertheless, these features are crucial to the enterprise of cognitive archi-
tectures, as they capture important elements in the interaction between an
agent and its social and physical world.

For instance, without motivational constructs, a model agent would be
literally aimless. It would wander around the world aimlessly accomplish-
ing hardly anything. Or it would have to rely on knowledge hand coded
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into it (for example, regarding goals and procedures) in order to accomplish
some relatively minor things, usually only in a controlled environment. Or
it would have to rely on external “feedback” (reinforcement, reward, pun-
ishment, etc.) in order to learn. But the requirement of external feedback
begs the question of how such a signal is obtained in the natural world. In
contrast, with the motivational subsystem as an integral part of CLARION,
it is able to generate such feedback internally and learn on that basis, with-
out requiring a “special” external feedback signal or externally provided
and hand coded a priori knowledge (Edelman, 1992).

Furthermore, with the two separate, built-in dichotomies, a variety of
different types of knowledge may be represented. They include implicit
and explicit action-centered knowledge, and implicit and explicit non–
action-centered knowledge. These types of knowledge are not only im-
portant for modeling individual agents, but also important for modeling
social interactions among agents. They capture habitual everyday rou-
tines for coping with the everyday world involving other agents, delib-
erate plans for specific tasks taking into account other agents, general,
explicit, conceptual knowledge about the world and about other agents,
implicit associations (formed from prior experiences) for priming other
knowledge that may involve other agents, and so on. Cognitive models
of agents would be much less capable without some of these knowledge
types. Social simulation would, likewise, be much less realistic without
some of these knowledge types.

On top of that, with the ability to learn in both top-down and bottom-
up directions, CLARION captures more realistic learning capabilities of
more cognitively realistic agents. The combination of these learning di-
rections, especially bottom-up learning, enables the modeling of the com-
plex interaction of an agent and its environment in learning a variety of
different types of knowledge, in a variety of different ways (Sun et al.,
2001). In particular, they enable the capturing of complex sociocultural
learning.

Compared with existing social simulations, there are reasons to believe
that CLARION has a lot to contribute towards more cognitively realistic
social simulation. In existing social simulations, only very rudimentary
models of agents have been used for the most part, without detailed, cog-
nitively realistic processes and mechanisms (see, for example, Axelrod,
1984; Gilbert & Doran, 1994; Prietula et al., 1998; and so on), which may
or may not serve well the intended purposes of these social simulations.
Compared with such models, cognitive architectures provide a cognitively
grounded way of understanding multi-agent interaction, by embodying re-
alistic cognitive constraints and cognitive capabilities of individual agents
in their interaction with their environments and with other agents, which
may be highly relevant in many circumstances (see, for example, the chap-
ters in Part 3 of this book). This is because cognitive architectures embody
detailed (but generic) mechanisms and processes of individual cognition.
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This point about the importance of cognitive realism has also been made
by others, for example, in the context of cognitive realism of game theory
(Kahan & Rapoport, 1984; Camerer, 2003) and cognitive realism of social
simulation (Edmonds & Moss, 2001). We may even attempt to develop
cognitive principles of sociocultural processes (e.g., Boyer & Ramble, 2001;
Atran & Norenzayan, in press).

CLARION has been successful in simulating a variety of psychologi-
cal tasks. These tasks include serial reaction time tasks, artificial grammar
learning tasks, process control tasks, categorical inference tasks, alphabeti-
cal arithmetic tasks, and the Tower of Hanoi task (see Sun, 2002). Some of
these tasks have been explained earlier. In addition, extensive work has
been done on a complex minefield navigation task (Sun et al., 2001). We
have also tackled human reasoning processes through simulating reason-
ing data. Simulations involving motivational structures and metacogni-
tive processes are also under way. Therefore, we are now in a good po-
sition to extend the effort on CLARION to the capturing of a wide range
of social phenomena through integrating cognitive modeling and social
simulation.

Let us take a brief look at some rather preliminary applications of
CLARION to social simulation. In one instance, CLARION was substituted
for simpler models previously used in organizational decision making
modeling. An exploration was made of the interaction between cognitive
parameters that govern individual agents, placement of agents in different
organizational structures, and performance of the organization. By vary-
ing some factors and measuring the effect on collective performance, a
better picture of the interaction between individual cognition and organi-
zational decision making was arrived at (see Chapter 6 by Naveh and Sun
in Part 3 of this book). In another instance, CLARION was used to simulate
the collective process of academic publication. CLARION reproduced the
empirically observed power curves concerning number of publications,
based on rather detailed modeling of the individual cognitive processes
involved. Various cognitive parameters were also tested and various ef-
fects observed. In yet another instance, tribal societies were simulated, on
the basis of CLARION modeling individual cognitive processes. In the
simulation, different forms of social institutions (such as food distribution,
political system, and enforcement of law) were investigated and related
back to factors of individual cognition. Social institutions affect agents’
actions and behaviors, which in turn affect social institutions. In this inter-
action, individual motivational factors are being taken into consideration,
which include social norms, ethical values, need for social acceptance, em-
pathy, imitation, and so on. The role of metacognitive control is also being
investigated in this process. It has been suggested that such simulations are
the best way to understand or to validate the significance of contributing
cognitive, motivational, and metacognitive factors (see, e.g., Chapter 1 in



The CLARION Cognitive Architecture 97

this book). The reader is referred to the chapters in Part 3 of this book for
more examples of such social simulations.

8 summary

In summary, this chapter covers the essentials of the CLARION cognitive
architecture, and focuses in particular on the distinguishing features of the
architecture. CLARION is distinguished by its inclusion of multiple, inter-
acting subsystems: the action-centered subsystem, the non–action-centered
subsystem, the motivational subsystem, and the metacognitive subsystem.
It is also distinguished by its focus on the separation and the interaction
of implicit and explicit knowledge (in these different subsystems, respec-
tively). Different representational forms have been used for encoding these
different types of knowledge, and different learning algorithms have been
developed. Both top-down and bottom-up learning have been incorpo-
rated into CLARION. With these mechanisms, especially the motivational
and metacognitive mechanisms, CLARION has something unique to con-
tribute to cognitive modeling and social simulation.

For the full technical details of CLARION, see Sun (2003), which is avail-
able at http://www.cogsci.rpi.edu/∼rsun/CLARION-pub.html.

CLARION has been implemented as a set of Java packages, available at
http://www.cogsci.rpi.edu/∼rsun/CLARION.html.
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Cognitive Architectures, Game Playing,
and Human Evolution

Robert L. West, Christian Lebiere,
and Dan J. Bothell

1 introduction

Game playing is an excellent domain for researching interactive behaviors
because any time the outcomes of the interactions between people are
associated with payoffs the situation can be cast as a game. Because it is
usually possible to use game theory (von Neumann & Morgenstern, 1944)
to calculate the optimal strategy, game theory has often been used as a
framework for understanding game-playing behavior in terms of optimal
and sub-optimal playing. That is, players who do not play according to the
optimal game theory strategy are understood in terms of how they deviate
from it. In this chapter we explore whether or not this is the right approach
for understanding human game-playing behavior, and present a different
perspective, based on cognitive modeling.

Optimal game theory models have been shown to be predictive of com-
petitive strategies used by some animals (see Pool, 1995 for a review), lead-
ing to the argument that the process of evolution acts as a genetic algorithm
for producing optimal or near-optimal competitive behaviors. However,
game theory models have not been very successful in predicting human
behavior (Pool, 1995). In fact, psychological testing indicates that, from
a game theory perspective, humans do not have the necessary cognitive
skills to be good players. According to the classical game theory view, two
abilities are needed to be a good game player (note, game theorists do not
claim that game theory describes the cognitive process underlying game
playing; however, these two abilities are necessary to play in the manner
described by game theory): (1) the player needs the ability to calculate
or learn the optimal probabilities for performing each move, and (2) the
player needs to be able to select moves at random, according to these prob-
abilities. Humans are remarkably poor at both of these tasks. For example,
in a simple guessing task in which a signal has an 80% chance of appearing
in the top part of a computer screen and a 20% chance of appearing in

103



104 Robert L. West, Christian Lebiere, and Dan J. Bothell

the bottom, instead of adhering to the game theory solution and always
guessing that the signal will be in the top part (for an optimal hit rate of
80%) people will fruitlessly try to predict when the signal will appear in the
bottom part (for a hit rate of approximately 68%); which causes us humans
to perform significantly worse than rats (Gazzaniga, 1998). Likewise, in
addition to being poor at finding optimal probabilities, humans have been
shown to be very poor at behaving randomly across a wide variety of tasks
(see Tune, 1964, and Wagenaar, 1972 for reviews).

Given that humans are, arguably, the most successful species on earth, it
does not seem reasonable that we should fail to fit the profile of a successful
competitor. The answer to this problem lies in the unique adaptive strategy
adopted by humans. In almost all cases, other creatures have evolved niche
strategies. That is, they have adapted to compete as effectively as possi-
ble within particular environments and/or against particular opponents.
These strategies tend to be near optimal, in the game theory sense, and
also tend to be relatively inflexible. In contrast, humans have evolved to
use learning, reasoning, problem solving, and creative thought to respond
in highly adaptive ways across a wide variety of conditions.

From a game-playing perspective, these two evolutionary strategies
equate to two different types of players. As noted above, niche players can
often be understood as optimal or near-optimal players. Optimal players
conform to game theory expectations in that (1) their choice of moves across
time can be described in terms of selecting moves according to fixed prob-
abilities and (2) these probabilities delineate an optimal or near-optimal
approach to the game. In contrast, the strategy of using some form of learn-
ing or thinking to try to improve the choice of future moves is a maximizing
strategy. Maximal players do not use a fixed way of responding. Instead
they attempt to adjust their responses to exploit perceived weaknesses in
their opponent’s way of playing. We argue that humans have evolved to
be maximal rather than optimal players. That is, in competitive situations,
humans attempt to exploit their opponent’s weaknesses, rather than play
optimally. Furthermore, we argue that evolution has evolved the human
cognitive system to support a superior ability to operate as a maximizing
player.

1.1 Maximal Versus Optimal

Maximal agents are potentially more effective than optimal agents against
non-optimal agents. The optimal game theory solution is calculated by
assuming that the opponent will play rationally. What this amounts to is an
assumption that all players will assume that all other players will attempt
to find the optimal strategy. If an opponent is using a sub-optimal strategy
the optimal player will generally fail to exploit it. For example, the game
theory solution for the game of Paper, Rock, Scissors is to play randomly
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1/3 paper, 1/3 rock, 1/3 scissors (in this game paper beats rock, rock beats
scissors, and scissors beats paper). If an opponent plays 1/2 paper, 1/4
rock, and 1/4 paper, the optimal strategy will tend to produce ties instead
of the wins that could be produced by maximizing and playing scissors
more. Nevertheless, it is also true that if a maximal agent plays against an
optimal agent the best they can do is tie. However, keep in mind that for an
optimal agent to be safe against all maximizing agents it needs the ability
to behave truly randomly, something that may not be all that common
in the natural world. Overall, we can characterize optimal agents as being
designed to avoid losing, whereas maximizing agents can be characterized
as being designed to try to win by as much as possible, at the risk of losing.

1.2 Understanding Maximizing Strategies

Game theory provides a mathematical model for understanding and cal-
culating optimal strategies. In this framework it is generally possible to
calculate who should win, how often they will win, and how much they
will win by. However, for games between maximizing players it can be
very difficult to predict these things. The reason for this is that when two
maximizing agents interact they form a dynamically coupled system. To
adjust their behavior to exploit their opponent they have to sample their
opponent’s behavior to find a weakness. After they alter their behavior
to exploit their opponent, the opponent will eventually detect the change
and alter its behavior to exploit weaknesses in the new behavior. Thus,
maximizing agents can end up chasing each other, trying to stay on top
with the best strategy. This could result in an agent ending up in equilib-
rium, where the agent maintains a single strategy, or a limit cycle, where
an agent repeatedly cycles through a limited set of strategies. However
another possibility is that the coupled system, composed of the two in-
teracting agents, could fail to settle into a stable pattern and instead pro-
duce a chaos-like situation (the term chaos-like is used instead of chaos as
truly chaotic systems, i.e., systems that never repeat, exist only in math-
ematics or in physical, analog systems. In this case, chaos-like is simply
meant to refer to dynamic systems that appear to an observer to behave
randomly).

Clark (1997, 1998) refers to these chaos-like interactions as reciprocal
causation. Reciprocal causation is associated with emergent properties,
that is, these systems often produce unexpected, higher-level patterns of
behavior. In terms of game playing, the ability of one player to beat an-
other at a greater than chance rate is the higher-level pattern of interest.
Clark (1997) also notes that, due to the chaos-like properties of recipro-
cal causation systems, it is often difficult to deliberately design systems
to produce specific emergent properties. This is because predicting the re-
sults of these types of interactions is often mathematically intractable. To
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deal with this problem, maximizing strategies are usually studied by using
computer simulations to create games between agents programmed with
specific maximizing strategies.

This approach has been used by game theorists is to study the role of
learning in game theory. A central question in this area of research has been
whether or not players could learn the optimal move probabilities through
their experience in a game. More specifically, if both players adjusted their
move probabilities to create an advantage for themselves based on the
history of their opponent’s moves, would they eventually settle into an
equilibrium equivalent to the game theory solution? If so, it would mean
that the optimal game theory solution would still be relevant for under-
standing maximizers. However, research has shown that maximizers can
co-evolve to non-optimal solutions (e.g., see Fudenberg & Levine, 1998;
Sun & Qi, 2000), meaning that the optimal strategy is not predictive of
behavior in these cases.

We also used the simulation approach, but with one important differ-
ence. Rather than adapting the basic game theory model to include learn-
ing, we based our model on psychological findings describing the way
people process information in game-like situations. Thus we draw a dis-
tinction between game theory maximizers (i.e. the game theory model with
the proviso that the move probabilities be learned) and cognitive maximiz-
ers (i.e., models based directly on the way human cognition works). Our
contention is that these two approaches are very different and that the cog-
nitive maximizer perspective is necessary for understanding human game
playing behavior.

1.3 Experimental Psychology and Reciprocal Causation

Humans frequently interact in complex and dynamic ways. Despite this,
experimental psychology is based almost exclusively on studying indi-
viduals in isolation, interacting with static situations (i.e., situations that
do not feed back or do not feed back in a way that could produce re-
ciprocal causation). This has allowed psychology to avoid the difficulties
associated with studying complex dynamic systems, and to amass a large
body of facts and models describing how people respond under these con-
ditions. However, it may also be preventing psychology from forming a
complete picture of human behavior. Hutchins (1995) has argued that much
of what humans have achieved is due to distributed cognition rather than
individual cognition – where distributed cognition refers to the fact that
cognition (the processing of symbolic information) can occur across brains
(linked by language and other means of communication). Likewise Clark
(1997) has noted that much of human behavior seems to form reciprocal
causation linkages to the world and to other humans (e.g., the economic
system).
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Others (e.g., van Gelder & Port, 1995) have pointed to the limited num-
ber of studies showing that dynamic systems theory (i.e., mathematical,
dynamic systems models) can be used to describe human behavior, and
argued that traditional cognitive models (i.e., computational, symbolically
based models) need to be abandoned in favor of dynamic systems models.
We agree with Hutchins and Clark that humans ultimately need to be un-
derstood in terms of the dynamic, interactive behaviors that make up most
of their lives, but we disagree with the view that existing cognitive models
need to be thrown out in favor of dynamic systems models. Instead we
argue that experimental psychology has produced good models of specific
cognitive mechanisms, and that these should form the building blocks for
modeling complex interactive behavior.

However, interactive human behavior is often complex, involving more
than one specific cognitive mechanism. Because of this need to go beyond
the study of individual, isolated cognitive mechanisms, and the need to
simulate interactions between agents, we argue that the use of cognitive
architectures is the best way to proceed.

2 cognitive architectures

Cognitive architectures (specifically, production systems) were proposed
by Newell (1973b) as a solution to the problems that he raised in a com-
panion paper (Newell, 1973a) about the state of the study of cognition.
The basic problem as he saw it was that the field of cognitive psychol-
ogy practiced a strategy that was too much divide and too little conquer.
Increasingly specialized fields were being carved out and esoteric distinc-
tions being proposed, without any resolution that could lead to an in-
tegrated understanding of the nature of human cognition. Although the
extent to which our cognitive abilities result from specialized capacities
or from general-purpose mechanisms remains a hotly debated question,
Newell’s concept of cognitive architectures addresses the underlying sys-
temic problem of unification by providing computational accounts of the
findings of each specialized area in a comprehensive and integrated archi-
tecture of cognition. He later developed and proposed his own Soar archi-
tecture as a candidate for such a unified theory of cognition (Newell, 1990).

Cognitive architectures can provide some insights into the nature of
cognition, but they do not constitute a panacea. Cognitive architectures
specify, often in considerable computational detail, the mechanisms un-
derlying cognition. However, performance in a given task depends not
only on those mechanisms but also on how a given individual chooses
to use them. Individual differences include not only fundamental capac-
ities such as working memory or psychomotor speed, but also a bewil-
dering array of different knowledge states and strategies. Limiting the
complexity and degrees of freedom of such models is a major challenge
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figure 5.1. The component structure of ACT-R.

in making cognitive modeling a predictive rather than merely explanatory
endeavor.

Hybrid architectures (see Wermter & Sun, 2000, for a review) have
become increasingly popular over the last decade to remedy the re-
spective shortcomings of purely symbolic or connectionist approaches.
Symbolic architectures (e.g. Soar) can produce very complex, structured
behavior but find it difficult to emulate the adaptivity and robustness
of human cognition. Connectionist approaches (e.g., see McClelland &
Rumelhart, 1986) provide flexible learning and generalization to new situ-
ations, but have not been successful in modeling complex, knowledge-rich
behavior.

ACT-R (Anderson & Lebiere, 1998) is a cognitive architecture developed
over the last 30 years at Carnegie Mellon University. At a fine-grained scale
it has accounted for hundreds of phenomena from the cognitive psychol-
ogy and human factors literature. The most recent version, ACT-R 5.0, is
a modular architecture composed of interacting modules for declarative
memory, perceptual systems such as vision and audition, and motor sys-
tems, all synchronized through a central production system (see Figure 5.1).
This modular view of cognition is a reflection both of functional constraints
and of recent advances in neuroscience concerning the localization of brain
functions.

ACT-R is a hybrid system that combines a tractable symbolic level that
enables the easy specification of complex cognitive functions, with a sub-
symbolic level that tunes itself to the statistical structure of the environment
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to provide the graded characteristics of cognition such as adaptivity, ro-
bustness, and stochasticity. The subsymbolic level is controlled by func-
tions that control the access to the symbolic structures. As ACT-R gains
experience in a task the parameter values of these functions are tuned to
reflect a rational adaptation to the task (Anderson, 1990), where “ratio-
nal” refers to a general ability to respond rationally to our environment, as
opposed to a rational analysis of the specific task. Using this approach,
Anderson (1990) demonstrated that characteristics of human cognition
thought of as shortcomings could actually be viewed as optimally adapted
to the environment. For example, forgetting provides a graceful implemen-
tation of the fact that the relevance of information decreases with time.

The symbolic level of ACT-R is primarily composed of chunks of infor-
mation, and production rules that coordinate the flow of information and
actions between modules based on the current goals of the system, also
represented as chunks. Chunks are composed of a small number of pieces
of information (typically less than half a dozen), which can themselves be
chunks. Chunks stored in declarative memory can be retrieved according
to their associated subsymbolic parameter called activation. The activation
of a chunk is influenced by several factors that cause activation to increase
with frequency of access, decay with time, and vary with the strengths
of association to elements of the context and the degree of the match to
requested patterns (chunks are requested by production rules). The chunk
with the highest level of activation is the one that is retrieved.

Production rules are condition–action pairs that fire based on matching
their if condition with chunks in the buffers providing the interface with
the other modules. When production rules execute their then condition
they change the information in these buffers. This act can trigger actions,
request information, or change the current goal. Because several produc-
tions typically match in a cycle, but only one can fire at a time, a conflict
resolution mechanism is required to decide which production is selected.
Productions are evaluated based on their associated subsymbolic parame-
ter called expected utility. The expected utility of a production is a function
of its probability of success and cost (to accomplish the current goal). Over
time, productions that tend to lead to success more often and/or at a lower
cost receive higher utility ratings. Both chunk activation and production
utility include noise components so declarative memory retrieval and con-
flict resolution are stochastic processes (for a more extensive discussion on
ACT-R see Chapter 2 by Taatgen, Lebiere, and Anderson in this book).

3 methodology

In this chapter we want to show that humans are “good” maximal players,
but there is no direct way to do this. As noted above, it is often not possible
to calculate whether one maximizing strategy is better than another. Also,
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because different maximizing strategies may draw on different abilities, it
is not possible, as it is with game theory, to identify the essential abilities and
test them in isolation (in game theory these are the ability to learn or calcu-
late the right probabilities and the ability to play randomly). Our solution
to this was to create a cognitive model of how people play games and then
to play this model against artificial intelligence (AI) models designed to
play a particular game as well as possible. Although providing qualitative
rather than definitive answers, this approach has led to important insights
in the area of perfect information games. Perfect information games are games
where it is, in principle, possible to calculate the best move on every turn.
One of the best-known examples is the game of chess, which has provided
important insights into human cognitive abilities through the matches be-
tween humans and computers; another good example is the game of go.
These games are too complex for even the fastest computer to come close
to finding the best move for every situation, but it is possible for them to
search very deeply into future possibilities. What surprised many was the
enormous amount of computing power required to beat a skilled human.
Even today it is debatable whether or not computers have truly surpassed
the best humans in chess, and it is definitely not the case for go.

Game theory applies to imperfect information games. In imperfect infor-
mation games it is not, in principle, possible to calculate the best move
on every turn because that would require knowing what your opponent
was going to do. For example, in Paper, Rock, Scissors, if your opponent
is going to play rock then your best move is to play paper, but you cannot
be sure when they will play rock. Game theory is a way to calculate the
optimal way to play for these types of games. Generally, it is assumed that
people are poor at imperfect information games and can easily be beaten
by a well-programmed computer. The main reason for this is probably
that people are poor at the basic skills required to be an optimal player,
whereas computers are ideal for optimal playing. Prior to having humans
play against computers, similar assumptions were made about perfect in-
formation games because of the belief that perfect information games were
all about how deeply a player could search a game tree (i.e., the outcome of
future moves). Similarly, we believe that the current view of people as poor
imperfect information players is based on an erroneous view of imperfect
information games; specifically that game theory delineates the essential
skills. Demonstrating that the way people play games competes well with
AI models designed to play specific games would support our hypothesis.
Alternatively, if we are wrong, the human model should be badly beaten
by the AI models.

4 how do humans play?

The first question that we need to ask is, do people play games in the
way described by game theory? If they do, we have no need for cognitive
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figure 5.2. A lag 3 network model for playing paper, rock scissors. The model can
be converted to a lag 2 model by getting rid of the lag 3 inputs, or a lag 1 model by
getting rid of the lag 2 and 3 inputs.

models. The standard game theory model requires that the players be able
to select moves at random according to preset probabilities. However, re-
search has repeatedly shown that people are very poor at doing this (see
Tune, 1964, and Wagenaar, 1972, for reviews) suggesting that our evolu-
tionary success is not based on this ability. Instead of trying to learn advan-
tageous move probabilities, people try to detect sequential dependencies in
the opponent’s play and use this to predict the opponent’s moves (Lebiere
& West, 1999; West & Lebiere, 2001). This is consistent with a large amount
of psychological research showing that when sequential dependencies ex-
ist, people can detect and exploit them (e.g., Anderson, 1960; Estes, 1972;
Restle, 1966; Rose & Vitz, 1966; Vitz & Todd, 1967). It also explains why
people tend to do poorly on tasks that are truly random – because they per-
sist in trying to predict the outcome even though it results in sub-optimal
results (e.g., Gazzaniga, 1998; Ward, 1973; Ward, Livingston, & Li, 1988).

West and Lebiere (2001) examined this process using neural networks
designed to detect sequential dependencies in the game of Paper, Rock,
Scissors. The networks were very simple two-layer networks rewarded
by adding 1 and punished by subtracting 1 from the connection weights,
which all started with a weight of 0. The inputs to the network were the op-
ponent’s moves at previous lags and the outputs were the moves the player
would make on the current play (see Figure 5.2). West and Lebiere (2001)
found four interesting results: (1) the interaction between two agents of this
type produces chaos-like behavior, and this is the primary source of ran-
domness; (2) the sequential dependencies that are produced by this process
are temporary and short lived; (3) processing more lags creates an advan-
tage; and (4) treating ties as losses (i.e., punishing the network for ties)
creates an advantage. West & Lebiere (2001) also tested people and found
that they played similarly to a lag 2 network that is punished for ties. That
is, people are able to predict their opponent’s moves by using information
from the previous two moves, and people treat ties as losses. Although both
the network model and game theory predicted that people would play pa-
per, rock, and scissors with equal frequency, the network model predicted
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that people would be able to beat a lag 1 network that was punished for ties
and a lag 2 network that was not punished for ties; whereas the game the-
ory solution predicted they would tie with these opponents. The results
showed that people were reliably able to beat these opponents, demon-
strating that the game theory solution could not account for all the results.

4.1 The ACT-R Model

Although ACT-R was not designed to detect sequential dependencies, it
turns out that there is a straightforward way to get the architecture to
do this. The model learns sequential dependencies by observing the re-
lationship between what happened and what came before on each trial.
After each turn, a record of this is stored in the ACT-R declarative memory
system as a chunk. Each time the same sequence of events is observed it
strengthens the activation of that chunk in memory. Thus, chunk activation
level reflects the past likelihood of a sequence occurring. For example, if the
opponent’s last move was P (where P = Paper, R = Rock, and S = Scissors)
and the model was set to use information from the previous move (i.e., lag
1 information), then the model would choose one of the following chunks
based on activation level: PR, PS, PP (where the first letter represents the
opponent’s lag 1 move and the second letter represents the expected next
move). The model would then use the retrieved chunk to select its own
move based on what it expected its opponent to do. Thus if PR had the
highest activation the model would play P to counter the expected move
of R. The model would then see what the opponent actually did and store a
record of it (e.g., assume the opponent played S, the model would then store
PS), which would strengthen the activation of that sequence. Also, in addi-
tion to the correct chunks being strengthened on each trial, the activation
levels of the chunks that are not used are lowered according to the ACT-R
memory decay function (Figure 5.3 shows this process for a lag 2 model).

4.2 Accounting for Human Data

In theory, ACT-R represents fundamental cognitive abilities directly in the
architecture, whereas learned abilities are represented as information pro-
cessed by the architecture. The model described above is based directly on
the ACT-R architecture and therefore represents a strong prediction about
the way people detect sequential dependencies (i.e., because it is not influ-
enced by assumptions about how learned information could influence the
task). Also, it should be noted that our results do not depend on parameter
tweaking. All parameters relevant for this model were set at the default
values found to work in most other ACT-R models.

Simulations and testing with human subjects confirmed that the model
could account for the human Paper, Rock, Scissors (PRS) findings (Lebiere
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figure 5.3. The process for an ACT-R, lag 2 model: (1) retrieve a chunk represent-
ing memory of the last two trials, with the chunk slot representing the current trial
blank, (2) find the matching chunks, (3) retrieve the matching chunk with the high-
est activation level, (4) use the value in the current slot to predict the opponent’s
current move and play a move to counter it, (5) see what the opponent actually did,
(6) create a chunk representing what actually happened, (7) put it into declarative
memory where it will strengthen the activation of the chunk with the same slot
values, and (8) the activation level of all other chunks decays.

& West, 1999). This was very significant as the aspects of the architecture
that we used were developed to model the human declarative memory
system, not our ability to play games. It suggests that the evolutionary pro-
cesses that shaped declarative memory may have been influenced by com-
petition (in the game theory sense) for resources and mating privileges. It
also indicates amazing design efficiency, as it suggests that humans use the
same system for competition as they do for learning facts about the world.
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The same model, without any changes other than adapting it to han-
dle different games, has also been shown to account for batting results in
baseball players (Lebiere, Gray, Salvucci, & West, 2003) and strategy shifts
in 2X2 mixed strategy games, including the famous prisoner’s dilemma
(Lebiere, Wallach, & West, 2000). These findings indicate that this general
mechanism is fundamental to human game playing abilities. However, we
would not go so far as to claim that this simple mechanism could com-
pletely account for all human game playing. The structure of the ACT-R
architecture itself suggests that under certain conditions people may learn
specific production rules (using the procedural memory system) that can
interact with or override the system we have described. Another possi-
bility is that people may use the declarative memory system in different
ways. For example, if a person does not have a strong feeling (activation
strength) about the opponent’s next move, they might instead opt to play
a sequence that has caused the opponent to behave predictably in the past.
Such sequences would also be learned through the declarative memory
system. In game playing terms, having this type of flexibility is advanta-
geous as it means that it would be difficult to develop systems that could
routinely beat ACT-R models.

5 comparison with other architectures

We chose ACT-R to model human game playing because of the substantial
body of work showing that ACT-R is a good model of human cognition.
However, it is not the case that ACT-R is the only architecture capable of
playing in this way. Any architecture capable of detecting sequential de-
pendencies could most likely be adjusted to produce similar results for
individual games. In fact, as noted above, we have used both neural net-
works and ACT-R to model human playing. ACT-R is often contrasted
with neural networks but the ACT-R declarative memory system possesses
network-like abilities. The ACT-R model presented in this chapter can be
thought of as roughly equivalent to a simple network (no hidden layer)
with feedback that rewards the correct answer on each trial whereas the
wrong answers are punished through the decay function. In addition to
neural networks, hybrid architectures embodying some form of network
(e.g., CLARION – see Ron Sun’s chapter 4 on CLARION in this book for
a description) as well as models based directly on sequential dependency
detection algorithms could potentially be adjusted to produce similar re-
sults (see Ward, Livingston, & Li, 1988 for an example of how this might
be done with a sequential dependency detection algorithm). However, the
ACT-R architecture can be viewed as a good choice for four reasons: (1) the
architecture severely constrains how the declarative memory system could
detect sequential dependencies, (2) it works with no parameter tweaking
(all relative parameters were set to default values), (3) it locates the pro-
cess within a well studied model of a particular brain function, and (4) the
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same process can also be used to explain other, non-game results, such as
implicit learning (Lebiere & Wallach, 1998).

Models that do not play by detecting sequential dependencies may also
be able to capture some game results. For example, the classic game theory
model can capture the result that across time and across individuals, hu-
man players seem to play paper, rock, and scissors with equal frequency.
Also, ACT-R can be programmed to play through the production learning
system rather than through the declarative memory system. The strategy
shift in the prisoner’s, dilemma, which can be fairly well accounted for
using the ACT-R declarative memory system (Lebiere, Wallach, & West,
2000), can also be fairly well accounted for using the ACT-R production
learning system (Cho & Schunn, 2002). Note that the production system
model is the same general type as the maximizing game theory models
mentioned earlier, where each move (represented by a production) has
a certain probability of being chosen, and these probabilities are learned
through experience. However, this approach does not account for the find-
ings that humans use sequential dependency information and are bad at
being random. Also, it is seems unlikely that this type of model could repli-
cate the West and Lebiere (2001) data demonstrating that humans could
beat some of the network models. This is because the only way to beat the
network models was to somehow capitalize on the short-lived sequential
dependencies that they produced. However, it is possible that some people
may play this way for some games. For example, some people may have
well learned rules for cooperation that would influence how they play the
prisoner’s dilemma, and would be more appropriately modeled through
the ACT-R production system.

6 comparisons with human data

All of our assertions so far concerning our model have been based on the
claim that the model’s behavior matches human behavior. Thus it is impor-
tant to also evaluate the process by which we have compared the model to
human behavior. One criticism of cognitive modeling is that many differ-
ent models can be fit to a human data set by tuning the model parameters
(Roberts & Pashler, 2000). This is a legitimate concern, but it applies only
to studies limited to fitting a particular model to a single data set. In addi-
tion, it is important to note that this type of study is still useful, especially
in the early stages of developing a model, as it shows that, in principle, a
certain type of model can account for a certain type of human behavior. A
second criticism is that it is difficult to set a criterion for when something
is considered a close fit. This is because the logic of significance testing is
based on evaluating when there is a significant difference, not when there
is a significant similarity. Generally, the fit for cognitive models is evalu-
ated through the visual inspection of graphs comparing the behavior of the
cognitive model and the human subjects. Although informal, this process
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is legitimate. If a model is truly poor at fitting the data it will be visually
obvious. Likewise, if one model is better than another at fitting the data it
will often be visually obvious.

However, the initial goal is not always to closely fit the data. Models can
also be evaluated in terms of qualitatively fitting the data. This is relevant
when the human data displays interesting or important qualitative prop-
erties. For example, human PRS play displays the qualitative property of
appearing to be random. The game theory model can easily account for
this quality because moves are selected at random according to set prob-
abilities. However, the sequential dependency model, whether modeled
using neural networks or ACT-R, does not choose moves at random (ex-
cept when two moves are equally weighted). Thus, although inspired by
empirical results, it was an open question whether or not this type of model
could generate a random-like output. Demonstrating that the model could
produce this effect through a chaos-like process (Lebiere & West, 1999; West
& Lebiere, 2001) provided important, early support for the model.

Overall, the key to demonstrating the validity of a model is to evaluate
converging evidence from different sources. One way to do this is to
use different ways to test the model against the data. In terms of the game
playing research our model has been compared against the average game
outcomes (i.e., the final scores), the win rate (i.e., the probability for each
trial that a player will get a win), the time course function (i.e., the function
describing the rate of winning across time – it is linear), the distribution of
final scores, the distribution of moves across players, and the distribution
of moves across time. In each case the model provided a good fit to the
data.

In addition to directly comparing the model to human results, we have
also used model tracing (Anderson, Corbett, Koedinger, & Pelletier, 1995).
Playing PRS in the manner suggested by our model involves learning se-
quential dependencies that produce positive results and then unlearning
them as the opponent learns not to produce them anymore. We wanted
to know approximately how long the learned sequential dependencies re-
mained viable, but this could not be directly observed in the human play-
ers. To get an indirect estimate we assumed that our model was valid and
used model tracing as a way of estimating this parameter. Model tracing
involves forcing the model to make the same behaviors as a human on
each trial. West & Lebiere (2001) forced a lag 2 network model to make
the same moves as a human subject in a game against a lag 1 network
model (the lag 1 model was also forced to make the same moves as the lag
1 model the human played against). We were then able to examine how
long the sequential dependencies remained viable in the lag 2 model. The
results showed that the learned sequential dependencies were very short
lived (mostly less than 5 trials). To further test the validity of the model
we compared these results to the results from a lag 2 model played against
a lag 1 model without any constraints. The model tracing results closely
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matched the unconstrained results for both the lag 1 and lag 2 models. This
provided further support for the model by demonstrating that the model
behaves the same when it is unconstrained as when it is forced to play
exactly the same as a human.

A second source of converging evidence comes from testing a model on
different tasks, hypothesized to engage the same basic mechanisms. Here it
is generally necessary to modify the model for the new task. Naturally the
modifications should be as small as possible. In our case, because the ACT-R
model made very direct use of the architecture, the changes were minimal.
For PRS (Lebiere & West, 1999), prisoner’s dilemma (Lebiere, Wallach, &
West, 2000), and baseball (Lebiere, Gray, Salvucci, & West, 2003), the model
required only minor modifications that did not alter the basic strategy of
using the declarative memory system for detecting sequential dependen-
cies. Note also that these three games tested the model in very different
ways. The PRS model (Lebiere & West, 1999) showed that the model could
account for the novel effects found by West and Lebiere (2001), when they
had humans play against different versions of the neural network model. In
both of these studies, humans played against dynamic models that contin-
uously altered their play in an attempt to find and maintain an advantage.

In contrast, in the baseball study, the human subjects played against a
stochastically based opponent (the pitcher threw different pitches accord-
ing to fixed probabilities – the humans were batters). Thus the task was
to learn a stable, stochastic truth about the opponent. Another important
feature of the baseball study was that it used human data gathered in a
simulated batting environment, where subjects had to physically swing a
bat (see Gray, 2001, for a description). This was important because it could
be argued that self-paced computer games, such as our version of PRS, are
artificial and do not relate to games involving fast physical actions. Also,
the baseball study used experienced baseball players, thus further adding
to the realism.

The prisoner’s dilemma study (Lebiere, Wallach & West, 2000) used data
generated by humans playing against other humans, rather than humans
playing against computer models. This addressed the concern that hu-
mans playing against computers is a situation qualitatively different from
humans playing against humans. The prisoner’s dilemma study focused
on an observed shift in behavior that has been found to occur at a certain
point in this type of game. This shift has been attributed to a change in
attitude about cooperation (Rapoport, Guyer, & Gordon, 1976). However,
our model produced the shift with no added assumptions whatsoever. This
finding is important because it shows there is no need to invoke higher-
level mechanisms, such as attitude shifts, to account for this result.

Finally, a third source of converging evidence that is particularly relevant
for testing cognitive models of game playing, is the testing of counterfac-
tual scenarios (see Bechtel, 1998, for a detailed discussion of counterfactual
testing, dynamic systems, and cognition). As West & Lebiere (2001) note,



118 Robert L. West, Christian Lebiere, and Dan J. Bothell

the opponent is a key element in game playing, and it is possible to generate
many different counterfactual situations by creating different opponents
using the computer. Therefore it is possible to test both humans and the
model against a range of opponents, not found in nature (i.e., counterfac-
tual). If the model is valid it should produce the same results as the humans
against all of the opponents, without any changes to the structure of the
model or the parameter values. We have used this approach to test the PRS
model against opponents set at different lags (i.e., lag 1 and lag 2) as well as
different strategies (i.e., treating ties as neutral and treating ties as losses).
In both cases the human data could be accounted for without any changes
to the original model (Lebiere & West, 1999; West & Lebiere, 2001).

One point that is critical for understanding cognitive modeling is that,
unlike experimental psychology, it is often necessary to look across mul-
tiple studies to fully evaluate a model. This reflects the fact that cognitive
models often cannot be reduced to simple hypotheses that can be fully
evaluated within one study. However, this is the whole point of cognitive
modeling – to advance the study of human behavior to more complex behaviors.
When viewed across studies, there is compelling convergent evidence indi-
cating that our model is a valid representation of how humans play simple
games.

7 how well does act-r play?

We have argued, based on the evolutionary success of the human race,
that the way people play games likely constitutes a good, general-purpose
design for maximizing agents. To test this, we entered our ACT-R model in
the 1999 International RoShamBo Programming Competition (RoShamBo
is another term for Paper, Rock, Scissors). Although Paper, Rock, Scissors is
a simple game, it is not easy to design effective maximizing agents for this
game due to the reasons described previously. The goal of the competition
was to illustrate this fact and explore solutions (see Billings, 2000, for details
and discussion).

Overall, ACT-R placed 13th out of 55 entries in the round robin com-
petition (scores calculated based on margin of victory across games, e.g.,
+5 for winning by 5 and −5 for losing by 5). However, to get a better idea
of how ACT-R compared to the other models we will focus on the open
event, where ACT-R faced all the models. In this event ACT-R placed 15th
in terms of margin of victory and 9th in terms of wins and losses. That
is, the ACT-R model, with no modifications, was able to beat most of the
other models.

To further test our claim we entered the same model in the 2000 Interna-
tional RoShamBo Programming Competition. However, the code for the
winning program in 1999, which had been able to infer the ACT-R strategy
well enough to beat it by a large margin, had been released (see Egnor,
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2000). Therefore we expected a lot more programs would have this abil-
ity in 2000. To counteract this, we created a second model that retained
the essential features of the first model but incorporated a strategy to pre-
vent other programs from locking onto the ACT-R strategy. This model
was called ACT-R-Plus. ACT-R-Plus simultaneously ran 30 ACT-R models
that looked at both the opponent’s history and its own history. The lags
were set at 0, 1, 2, 3, 4, and 5 (lag = 0 would just keep track of what the
most likely move is, regardless of history) and for each of these there was
a version with noise on and noise off (the ACT-R chunk retrieval process
involves a noise component that can be turned off). These were then com-
bined with 3 strategies for choosing a move based on the prediction of the
opponent’s move: play the move that beats the move predicted, play the
move predicted, or play the move that loses to the move predicted. As
with the ACT-R model, the prediction with the highest activation value
was chosen. Of course, ACT-R-Plus does not represent how humans play
Paper, Rock, Scissors. Instead, it was an experiment in combining brute
strength tactics with a human-inspired architecture. In a sense, playing
against ACT-R-Plus is like playing against a committee of agents, each
with slightly different approaches as to how to use the ACT-R architecture
to play the game.

In the round robin event, ACT-R came in 31st out of 64 whereas ACT-
R-Plus came in 14th. In the open event ACT-R came in 32nd according
to margin of victory and 28th according to wins and losses. ACT-R-Plus
came in 9th according to margin of victory and 16th according to wins and
losses. It was interesting to note that ACT-R was once again able to beat
most of the models, despite the fact that the code that could beat it had
been released and had influenced many of the new models. However, as
this program still placed 3rd in the competition, we speculate that in trying
to improve on the code, many people actually made it worse. This again
highlights the difficulties in designing maximizing agents.

The models in the competition could be divided into two types, historical
models that searched for specific patterns in the history of the game, and sta-
tistical models that searched for statistical trends in the history of the game.
To get a better idea of how well ACT-R performed, Figure 5.4 shows the
open event results for ACT-R; ACT-R-Plus; the first-placed model, which
was historical; and the second-placed model, which was statistical. From
this graph we can see that, although it was not able to exploit some models
as well as the history model or the statistical model, ACT-R-Plus compares
quite well. It mostly wins and when it loses it does not lose by much.
ACT-R loses more but only the first-placed history model is able to exploit
it in a big way (this can be seen in the first point for ACT-R and the second
big spike for the history model). Otherwise, overall, the performance of the
basic ACT-R model is not bad, especially when you consider its relative
simplicity and the fact that it was not designed for this competition.
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Statistical
ACT-R

ACT-R-Plus

figure 5.4. ACT-R results in the open event of the 2000 International RoShamBo
Programming Competition.

8 summary

When viewed from a traditional game theory perspective, humans do not
appear to be particularly skillful game players. However, this is difficult
to reconcile with our evolutionary success, which indicates that we are
very effective competitors. We argued that this is because human game
playing needs to be viewed as a maximizing strategy rather than the opti-
mizing strategy suggested by traditional game theory analysis. However,
it is difficult to evaluate the effectiveness of different types of maximiz-
ing strategies because competing maximizers can feed back on each other
and form dynamically coupled systems that can give rise to emergent prop-
erties that are difficult to foresee (Clark, 1997). This was demonstrated in
the results of the International RoShamBo Programming Competitions,
which showed that even for the very simple game of Paper, Rock, Scissors
it is difficult to predict the results of this type of interaction.

In support of our position we reviewed a series of findings on hu-
man game playing abilities. Consistent with our view that humans are
maximizing players we found that, under close examination, standard
game theory models do not describe human game playing very well (at
least for the games we investigated). Instead of trying to optimize move
probabilities, humans try to maximize by exploiting the short-lived sequen-
tial dependencies produced when they interact with another maximizing
player (West & Lebiere, 2001). We also found that this type of interaction
produces complex (chaos-like) behaviors and higher-level emergent prop-
erties resulting in one or the other player receiving an advantage. Following
this we showed that these behaviors could be accounted for in a detailed
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and straightforward way by using the ACT-R cognitive architecture, and
that the model could account for human behavior across a number of dif-
ferent games. This finding supports our contention that the human cogni-
tive architecture, in addition to supporting individual activities, supports
a level of functionality that can be accessed only by studying the dynamic
interactions that occur between people. Finally, we demonstrated that the
way humans play games, as represented by the ACT-R model, compares
well to agents specifically created to play a particular game.

When considering the tournament results it is important to keep in mind
that the ACT-R model was much simpler than the other models shown in
Figure 5.4 and that the ACT-R model can play many different games with-
out modifying the basic strategy. We also showed that the basic ACT-R
model could be adapted to deal with specific limitations of the basic ACT-R
model for a particular game (e.g., ACT-R –Plus). Although the adaptations
that we made were not cognitively inspired, it is possible that with suf-
ficient experience, humans could effectively augment their basic strategy.
The main point however is that the general human strategy was competi-
tive with and, in many cases, superior to AI strategies designed specifically
for this game.

Finally, it is important to note that the same architectural components
that we have shown to be important for game playing have also been
shown to be important in a wide variety of other tasks unrelated to game
playing (e.g., tasks involving problem solving and learning). Humans do
not have a separate, dedicated system for game playing; we use the same
cognitive system for a vast array of divergent tasks. Thus, the human cog-
nitive system represents a highly efficient, multipurpose mechanism that
has evolved to be as effective as possible across a wide variety of behaviors,
including game playing.
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6

Simulating a Simple Case of Organizational
Decision Making

Isaac Naveh and Ron Sun

1 introduction

Computational models of cognitive agents that incorporate a wide range of
cognitive functionalities (such as various types of memory/representation,
various modes of learning, and sensory motor capabilities) have been de-
veloped in both AI and cognitive science (e.g., Anderson & Lebiere, 1998;
Sun, 2002). In cognitive science, they are often known as cognitive archi-
tectures. Recent developments in cognitive architectures provide new av-
enues for precisely specifying complex cognitive processes in tangible ways
(Anderson & Lebiere, 1998).

In spite of this, however, most of the work in social simulation still as-
sumes very rudimentary cognition on the part of the agents. At the same
time, although researchers in cognitive science have devoted considerable
attention to the workings of individual cognition (e.g., Anderson, 1983;
Klahr et al., 1987; Rumelhart & McClelland, 1986; Sun, 2002), sociocultural
processes and their relations to individual cognition have generally not
been sufficiently studied by cognitive scientists (with some notable excep-
tions; e.g., Hutchins, 1995; Resnick et al., 1991; Lave, 1988).

However, there are reasons to believe that better models of individual
cognition can lead us to a better understanding of aggregate processes
involving multi-agent interaction (Moss, 1999; Castelfranchi, 2001; Sun,
2001). Cognitive models that incorporate realistic tendencies, biases, and
capacities of individual cognitive agents (Boyer & Ramble, 2001) can serve
as a more realistic basis for understanding multi-agent interaction. This
point has been made before in different contexts (e.g., Edmonds & Moss,
2001; Kahan & Rapoport, 1984; Sun, 2001).

As noted earlier, research on social simulation has mostly dealt with
simplified versions of social phenomena, involving much simplified agent
models (e.g., Gilbert & Doran, 1994; Levy, 1992). Such agents are clearly
not cognitively realistic, and thus may result in important cognition-related
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insights being left by the wayside. Social interaction is, after all, the result
of individual cognition (which includes instincts, routines, and patterned
behaviors, as well as complex conceptual processes). Therefore, the mech-
anisms underlying individual cognition cannot be ignored in studying
multi-agent interaction. At least, the implications of these mechanisms
should be understood before they are abstracted away.

By using cognitively realistic agents in social simulation, explanations
of observed social phenomena may be provided based on individual cog-
nitive processes. This allows us to start to do away with assumptions that
are not cognitively grounded. Often, in simulations, rather arbitrary as-
sumptions were made, simply because they were important for generating
simulations that matched observed data. In this chapter, we instead make
assumptions at a lower level. This allows us to put more distance between
assumptions and outcomes, and thereby to provide deeper explanations.

In the remainder of this chapter, first, a more realistic cognitive architec-
ture, named CLARION, will be described, which captures the distinction
between explicit and implicit learning (e.g., Sun, 1997; Sun, 2002; see also
Chapter 4). This model will then be applied to the problem of organizational
design as presented in Carley et al. (1998). The idea here is to substitute
more sophisticated agents, based on CLARION, for the (mostly) simple
agents used in Carley et al. (1998).

The previous experiments and simulations (e.g., Carley et al., 1998) left
open the question of whether their results were generic or tied specifi-
cally to particular settings of the experiments/simulations or to particular
assumptions regarding cognitive parameters. The work reported here is
designed in part to explore a wider range of possibilities and ascertain
some answers to the above question.

2 the model

2.1 Explicit vs. Implicit Learning

The role of implicit learning in skill acquisition has been widely recognized
in recent years (e.g., Reber, 1989; Stanley et al., 1989; Seger, 1994; Proctor
& Dutta, 1995; Stadler & Frensch, 1998). Although explicit and implicit
learning have both been actively studied, the question of the interaction
between these two processes has rarely been broached. However, despite
the lack of study of this interaction, it has recently become evident that
rarely, if ever, is only one of type of learning engaged. Our review of exper-
imental data (e.g., Reber, 1989; Stanley et al., 1989; Sun et al., 2001) shows
that although one can manipulate conditions so that one or the other type
of learning is emphasized, both types of learning are nonetheless usually
present.
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To model the interaction between these two types of learning, the cog-
nitive architecture CLARION was developed (Sun & Peterson, 1998; Sun
et al., 2001), which captures the combination of explicit and implicit learn-
ing. CLARION mostly learns in a bottom-up fashion, by extracting explicit
knowledge from implicit knowledge (see Sun, 2002, for details). Such pro-
cesses have also been observed in humans (e.g., Willingham et al., 1989;
Stanley et al., 1989; Mandler, 1992).

A major design goal for CLARION was to have a set of tunable pa-
rameters that correspond to aspects of cognition. This is in contrast to
some models in which performance depends on a set of variables that are
mathematically motivated (and hence do not translate into mechanisms of
individual cognition). We have avoided this, so as to be able to manipulate
the parameters of the model and observe the effect on performance as a
function of cognition.

2.2 A Summary of the CLARION Model

CLARION is an integrative cognitive architecture with a dual represen-
tational structure (Sun, 1997; Sun et al., 1998; Sun et al., 2001; Sun, 2002).
It consists of two levels: a top level that captures explicit learning, and a
bottom level that captures implicit learning (see Figure 6.1).

At the bottom level, the inaccessibility of implicit learning is captured by
subsymbolic distributed representations. This is because representational
units in a distributed environment are capable of performing tasks but are
generally not individually meaningful (Sun, 1995). Learning at the bottom
level proceeds in trial-and-error fashion, guided by reinforcement learning

action-centered
explicit representation

action-centered
implicit representation

non--action-centered
implicit representation

non--action-centered
explicit representation

Top Level

Bottom Level
figure 6.1. The CLARION architecture.
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(i.e., Q-learning) implemented in backpropagation neural networks (Sun &
Peterson, 1998).

At the top level, explicit learning is captured by a symbolic representa-
tion, in which each element is discrete and has a clearer meaning. This
accords well with the directly accessible nature of explicit knowledge
(Smolensky, 1988; Sun, 1995). Learning at the top level proceeds by first
constructing a rule that corresponds to a “good” decision made by the bot-
tom level, and then refining it (by generalizing or specializing it), mainly
through the use of an “information gain” measure that compares the suc-
cess ratios of various modifications of the current rule.

A high-level pseudo-code algorithm that describes the action-centered
subsystem of CLARION is as follows:

1. Observe the current state x.
2. Compute in the bottom level the Q-value of each of the possible ac-

tions (ai ’s) associated with the state x: Q(x, a1), Q(x, a2), . . . , Q(x, an).
3. Find out all the possible actions (b1, b2, . . . , bm) at the top level, based

on the state x and the rules in place at the top level.
4. Compare the values of ai ’s with those of b j ’s, and choose an appro-

priate action a .
5. Perform the action a , and observe the next state y and (possibly) the

reinforcement r.
6. Update the bottom level in accordance with the Q-Learning-

Backpropagation algorithm, based on the feedback information.
7. Update the top level using the Rule-Extraction-Refinement algorithm.
8. Go back to Step 1.

At the bottom level, a Q-value is an evaluation of the “quality” of an
action in a given state: Q(x, a ) indicates how desirable action a is in state
x. Actions can be selected based on Q-values. To acquire the Q-values,
Q-learning, a reinforcement learning algorithm (Watkins, 1989), is used.

In this simulation, a simplified Q function as follows is used:

�Q(x, a ) = α(r + γ maxb Q(y, b) − Q(x, a )) = α(r − Q(x, a ))

where x is the current state, a is one of the actions, r is the immediate
feedback, and γ maxb Q(y, b) is set to zero for the organizational decision
task, because immediate feedback is relied upon here (see details below).
�Q(x, a ) provides the error signal needed by the backpropagation algo-
rithm and then backpropagation takes place. That is, learning is based on
minimizing the following error at each step:

erri =
{

r − Q(x, a ) if ai = a
0 otherwise

where i is the index for an output node representing the action ai . Based
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on the above error measure, the backpropagation algorithm is applied to
adjust internal weights of the network.

In the top level, explicit knowledge is captured in a simple prepositional
rule form. We devised an algorithm for learning rules using information
from the bottom level (the Rule-Extraction-Refinement, or RER, algorithm).
The basic idea is as follows: if an action decided by the bottom level is suc-
cessful then the agent extracts a rule (with its action corresponding to that
selected by the bottom level and with its condition corresponding to the
current state), and adds the rule to the top level. Then, in subsequent inter-
actions with the world, the agent refines the extracted rule by considering
the outcome of applying the rule: if the outcome is successful, the agent
may try to generalize the condition of the rule to make it more universal. If
the outcome is unsuccessful, the agent may try to specialize the rule, by nar-
rowing its condition down and making them exclusive of the current state.

The information gain (IG) measure of a rule is computed (in this orga-
nizational decision task) based on the immediate feedback at every step
when the rule is applied. The inequality, r > thresholdRER determines the
positivity/negativity of a step and the rule matching this step (where r
is the feedback received by an agent). The positivity threshold (denoted
thresholdRER) corresponds to whether or not an action is perceived by the
agent as being reasonably good. Based on the positivity of a step, PM (Pos-
itive Match) and NM (negative match) counts of the matching rules are
updated. IG is calculated based on PM and NM:

IG(A, B) = log2
PMa (A) + c1

PMa (A) + NMa (A) + c2

− log2
PMa (B) + c1

PMa (B) + NMa (B) + c2

where Aand B are two different rule conditions that lead to the same action
a , and c1 and c2 are two constants representing the prior (by default, c1 =
1, c2 = 2). Essentially, the measure compares the percentages of positive
matches under conditions A and B.

The generalization operator is based on the IG measure. Generalization
amounts to adding an additional value to one input dimension in the con-
dition of a rule, so that the rule will have more opportunities of matching
input. For a rule to be generalized, the following must hold:

IG(C, all) > thresholdGEN and maxC ′IG(C ′, C) ≥ 0

where C is the current condition of a rule (matching the current state and
action), all refers to the corresponding match-all rule (with the same action
as specified by the original rule but an input condition that matches any
state), and C ′ is a modified condition equal to C plus one input value.
If it holds, the new rule will have the condition C ′ with the highest IG
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measure. The generalization threshold (denoted thresholdGEN) determines
how readily an agent will generalize a rule.

The specialization operator works in an analogous fashion, except that
a value in an input dimension is discarded, rather than being added. Like-
wise, a rule must perform worse than the match-all rule, rather than better,
to be considered for specialization. This process is described in greater de-
tail elsewhere (Sun et al., 2001). (Due to running-time considerations, the
specialization threshold is held constant in all simulations reported in this
chapter.)

To avoid the proliferation of useless rules, a RER density measure is in
place. A density of 1/x means that a rule must be invoked once per x steps
to avoid deletion due to disuse. This corresponds to the agent’s memory
for rules, necessitating that a rule come up every once in a while in order
to be retained.

To integrate the outcomes from the two levels, a number of methods
may be used. Here, levels are chosen stochastically, using a probability of
selecting each level. Other selection methods are available as well (see Sun
et al., 2001).

When the outcome from the bottom level is chosen, a stochastic process
based on the Boltzmann distribution of Q values is used for selecting an
action:

p(a |x) = e Q(x,a )/t∑
i e Q(x,ai )/t

where x is the current state, a is an action, and t controls the degree of
randomness (temperature) of the process.1

At each level of the model, there may be multiple modules, both action-
centered modules and non–action-centered modules (Schacter 1990). In the
current study, we focus only on the action-centered subsystem. There are also
other components, such as working memory, goal structure, and so on.

3 organizational design

Research on organizational performance has usually focused either on an
organization’s design (i.e., its structure) or on the cognition of its members
(i.e., how smart/capable individuals in the organization are). However, the
interaction of these two factors – cognition and structure – is rarely stud-
ied. Carley et al. (1998) introduced a classification task involving different
types of organizational structures and agents. By varying agent type and
structure separately, they were able to study how these factors interact with
each other. Here, we will build on that research, with the aim of studying

1 This method is also known as Luce’s choice axiom (Watkins, 1989). It is found to match
psychological data in many domains.
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the interaction of cognition and design in the context of a more realistic
cognitive architecture (i.e., CLARION).

3.1 Task

A typical task faced by organizations is classification decision making. In
a classification task, agents gather information about problems, classify
them, and then make further decisions based on the classification. In this
case, the task is to determine whether a blip on a screen is a hostile aircraft,
a flock of geese, or a civilian aircraft (Carley et al., 1998). Hence, this is
a ternary choice task. It has been used before in studying organizational
design (e.g., Kang et al., 1998; Carley & Prietula, 1992; Ye & Carley, 1995;
Carley & Lin, 1995).

In each case, there is a single object in the airspace. The object has nine
different attributes, each of which can take on one of three possible values
(e.g., its speed can be low, medium, or high). An organization must de-
termine the status of an observed object: whether it is friendly, neutral or
hostile. There are a total of 19,683 possible objects, and 100 problems are
chosen randomly (without replacement) from this set. The true status of
an object is determinable by adding up all nine attribute values. If the sum
is less than 17, then it is friendly; if the sum is greater than 19, it is hostile;
otherwise, it is neutral. Because this is a simplified decision-making task,
we ignore extraneous factors such as weather, device malfunctions, and
so on.

No one single agent has access to all the information necessary to make
a choice. Decisions are made by integrating separate decisions made by
different agents, each of which is based on a different subset of information.
Of course, each organization is assumed to have sufficient personnel to
observe all the necessary information (in a distributed way).

In terms of organizational structures, there are two archetypal struc-
tures of interest: (1) teams, in which agents act autonomously, individ-
ual decisions are treated as votes, and the organization decision is the
majority decision; and (2) hierarchies, which are characterized by agents
organized in a chain of command, such that information is passed from
subordinates to superiors, and the decision of a superior is based solely on
the recommendations of his/her subordinates (Carley, 1992). In this task,
only a two-level hierarchy with nine subordinates and one supervisor is
considered.

In addition, organizations are distinguished by the structure of infor-
mation accessible by each agent. There are two varieties of information
access: (1) distributed access, in which each agent sees a different subset of
three attributes (no two agents see the same subset of three attributes), and
(2) blocked access, in which three agents see exactly the same attributes. In
both cases, each attribute is accessible to three agents.
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table 6.1. Human and Simulation Data for the Organizational Design Task.
D Indicates Distributed Information Access, Whereas B Indicates Blocked Information
Access. All Numbers are Percentage Correct.

Agent/Org. Team (B) Team (D) Hierarchy (B) Hierarchy (D)

Human 50.0 56.7 46.7 55.0
Radar-Soar 73.3 63.3 63.3 53.3
CORP-P-ELM 78.3 71.7 40.0 36.7
CORP-ELM 88.3 85.0 45.0 50.0
CORP-SOP 81.7 85.0 81.7 85.0

Several simulation models were considered in the study of Carley et al.
(1998). Among them, CORP-ELM produced the most probable classifi-
cation based on an agent’s own experience, CORP-P-ELM stochastically
produced a classification in accordance with the estimate of the probability
of each classification based on the agent’s own experience, CORP-SOP fol-
lowed organizationally prescribed standard operating procedure (which
involved summing up the values of the attributes available to an agent)
and thus was not adaptive, and Radar-Soar was a (somewhat) cognitive
model built in Soar, which is based on explicit, elaborate search in problem
spaces (Rosenbloom et al., 1991).

3.2 Previous Experimental Results

The experiments by Carley and her colleagues (1998) were done in a 2 × 2
fashion (organization × information access). In addition, human data for
the experiment were compared to the results of the four aforementioned
artificial models. The data appeared to show that agent type interacted
with organizational design. The human data and the simulation results
from this study (Carley et al., 1998) are shown in Table 6.1.

The human data showed that humans generally performed better in
team situations, especially when distributed information access was in
place. Moreover, distributed information access was generally better than
blocked information access. The worst performance occurred when hier-
archal organizational structure and blocked information access were used
in conjunction.

It also suggested that which type of organizational design exhibits the
highest performance depends on the type of agent. For example, human
subjects performed best as a team with distributed information access,
whereas Radar-Soar and CORP-ELM performed the best in a team with
blocked information access. Relatedly, increasing general “intelligence”
(i.e., increasing the adaptiveness of agents) tended to decrease the per-
formance of hierarchal organization. With a non-adaptive agent such as
CORP-SOP, there was no difference between the two organization types.
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The above results are interesting because they brought up the issue of the
interaction between organizational type and intelligence level. However,
from the point of view of matching human performance, the agent mod-
els used were to a large extent simplistic. The “intelligence” level in these
models was rather low (including, to a large extent, the Soar model, which
essentially encoded a set of simple rules). Moreover, learning in these sim-
ulations was rudimentary: there was no complex learning process as one
might observe in humans.

With these shortcomings in mind, it is worthwhile to undertake a sim-
ulation that involves more complex, more comprehensive agent models
that more accurately capture human performance in more realistic ways.
Moreover, with the use of more cognitively realistic agent models, we may
investigate individually the importance of different cognitive capacities
and process details in affecting the performance. In CLARION, we can
easily vary parameters and options that correspond to different cognitive
capacities and test the resulting performance.

4 simulation i: matching human data

Below, we present three simulations involving the CLARION model. The
first experiment uses the aforementioned radar task (Carley et al., 1998)
but substitutes a different cognitive model. The second simulation uses the
same task, but extends the duration of training given to the agents. Finally,
in the third simulation, we vary a wide range of cognitive parameters of
the model in a factorial design.

In the first simulation, we use the same setup as used by Carley and her
colleagues (1998; see Section 3.1), but substitute CLARION-based agents
for the simpler agents used previously. Our aim here is to gauge the effect
of organization and information access on performance (as in the original
study), but in the context of the more cognitively realistic model CLARION.

4.1 Simulation Setup

There are two organizational forms: team and hierarchy. Under the team
condition, the input to each agent consists of three of the attributes, se-
lected according to a blocked or distributed information access scheme.
Thus, each agent sees only one-third of the total attributes, and must make
a decision on the basis of partial information. The condition where a hi-
erarchy is used is similar to the team condition, except that a supervisor
agent is added. The input to the supervisor corresponds to the outputs of
all nine subordinates.

The actions of each agent are determined by CLARION. At the top level,
RER rule learning is used to extract rules. At the bottom level, each agent
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table 6.2. Simulation Data for Agents Running for 3,000 Cycles. The Human Data
from Carley et al. (1998) are Reproduced here for Ease of Comparison. Performance of
CLARION is Computed as Percentage Correct Over the Last 1,000 Cycles.

Agent/Org. Team (B) Team (D) Hierarchy (B) Hierarchy (D)

Human 50.0 56.7 46.7 55.0
CLARION 53.2 59.3 45.0 49.4

has a single network that is trained, over time, to respond correctly. The
network receives an external feedback of 0 or 1 after each step, depending
on whether the target was correctly classified. Due to the availability of
immediate feedback in this task, simplified Q-learning is used (as explained
before).

All agents run under a single (uniform) set of cognitive parameters2,
regardless of their role in the organization.

4.2 Results

The results of our simulation are shown in Table 6.2. 3,000 training cycles
(each corresponding to a single problem, followed by a single decision by
the entire organization) were included in each group. As can be seen, our
results closely accord with the patterns of the human data, with teams out-
performing hierarchal structures, and distributed access proving superior
to blocked access. Also, as in humans, performance is not grossly skewed
towards one condition or the other, but is roughly comparable across all
conditions (unlike some of the simulation results from Carley et al., 1998).
The match with the human data is far better than in the simulations con-
ducted in the original study (Carley et al., 1998).

To understand these results and their interpretation better, let us exam-
ine the curve that represents the learning process more closely. As can be
seen in Figure 6.2, a team organization, using distributed access, quickly
achieves a high level of performance. However, thereafter there is very
little gain. By contrast, a team using blocked access (Figure 6.3) starts out
slowly but eventually achieves a performance nearly as high as that in
the distributed condition. Thus, the loose organization of teams appears to
help them master simple tasks relatively quickly, although learning pro-
ceeds more quickly when there is a diverse range of “perspectives” on the
problem than when there is a redundancy of viewpoints.

2 The following parameters were used for all agents: Temperature = 0.05; Learning Rate =
0.5; Probability of Using Bottom Level = 0.75; RER Positivity Criterion = 0; Density = 0.01;
Generalization Threshold = 4.0. See Section 2.2 for a description of the cognitive parameters.
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figure 6.2. Training curve for team organization with distributed access.

As can be seen in Figures 6.4 and 6.5, hierarchies not only take longer
to learn the task than teams, but their learning is also characterized by
a greater amount of “noise.” Under distributed access (Figure 6.4), per-
formance dips in the first few hundred cycles, but afterward it improves
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figure 6.3. Training curve for team organization with blocked access.
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figure 6.4. Training curve for hierarchal organization with distributed access.

steadily. This should not surprise us, since two layers of agents are being
trained (rather than one), with the output of the upper layer depending
on that of the lower layer. In addition, the higher input dimensionality of
the supervisor (nine inputs vs. three inputs for a subordinate) increases the
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figure 6.5. Training curve for hierarchal organization with blocked access.
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complexity of the task, leading to a longer training time for the network
and to a slower process of rule refinement. The supervisor must assimilate
considerably more information than its subordinates, which places strains
on the system as a whole. This is analogous to the case of humans, where
input dimensionality is known to be one of the chief determinants of task
complexity (e.g., Berry & Broadbent, 1988). With respect to information ac-
cess, the situation is similar to the team condition, with distributed access
being superior to blocked access. In the latter condition, performance is so
poor that there is little discernible progress made throughout the simula-
tion.

5 simulation ii: extending the simulation temporally

So far, we have considered agents trained for only 3,000 cycles. The results
were interesting, because they were analogous to those of humans. The
human data were arguably the result of limited training. However, it is
interesting to see what will happen if we extend the length of the training.
In particular, we are interested in knowing if the trends seen earlier (in
Section 4.2) will be preserved in the long run. It is important that before
we draw any conclusion about human performance, we understand the
context and conditions under which data are obtained, and thereby avoid
overgeneralizing our conclusions (e.g., team vs. hierarchy, blocked vs. dis-
tributed; Carley et al., 1998).

Figures 6.6–6.9 show learning as it occurs over 20,000 (rather than 3,000)
cycles. Previously, the best-performing condition was team organization
with distributed information access. As can be seen in Figure 6.6, this con-
dition continues to improve slowly after the first 3,000 cycles. However, it
is overtaken by team organization with blocked access (Figure 6.7). Thus, it
seems that although teams benefit from a diversified (distributed) knowl-
edge base in the initial phase of learning, a well-trained team with redun-
dant (blocked) knowledge performs better in the long run.

In the hierarchal conditions, too, we can see either a reversal or dis-
appearance of the initial trends. Hierarchies using distributed access
(Figure 6.8) now show not only the best, but also the most stable (least
variance) performance of any condition. Likewise, a hierarchy with blocked
access (Figure 6.9), previously a weak performer, shows impressive gains
in the long run. Thus, whereas hierarchies take longer to train, their perfor-
mance is superior in the long run. In a hierarchy, a well-trained supervisor
is capable of synthesizing multiple data points with greater sensitivity
than a simple voting process. Likewise, the reduced individual variation
in blocked access leads to less fluctuation in performance in the long run.

There is a serious lesson here: limited data can allow us to draw only
limited conclusions – only with regard to the specific situation under which
the data were obtained. There is a natural tendency for researchers to
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figure 6.6. Training curve for team organization with distributed access.

overgeneralize their conclusions, which can only be remedied by more
extensive investigations. Given the high cost of human experiments, sim-
ulation has a large role to play in exploring alternatives and possibilities,
especially social simulation coupled with cognitive architectures.
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figure 6.7. Training curve for team organization with blocked access.
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figure 6.8. Training curve for hierarchal organization with distributed access.

6 simulation iii: varying cognitive parameters

In the two preceding simulations, agents were run under a fixed set of
cognitive parameters. Next, let us see what happens when we vary these
parameters, analogous to varying the training length earlier. This again
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figure 6.9. Training curve for hierarchal organization with blocked access.
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allows us to see the variability of results, and thus avoid overgeneraliza-
tion. As mentioned above, the ability to vary different aspects of cognition
is one feature that sets CLARION apart from many specialized models that
are devised to tackle a specific task. Because CLARION captures a wide
range of cognitive processes and phenomena, its parameters are generic
rather than task-specific. Thus, we have the opportunity of studying spe-
cific issues, such as organizational design, in the context of a general theory
of cognition.

In our third simulation, parameters were varied in a factorial design,
such that combinations of parameter values were considered. This allowed
us to study both the influence of individual parameters and their inter-
actions with each other.

6.1 Simulation Setup

Two different sets of parameters of CLARION were separately varied (to
avoid the prohibitively high cost of varying all parameters simultane-
ously). These parameters were described in detail in Section 2.2. The first
set of parameters consisted of fundamental parameters of the model, in-
cluding: (1) Reliance on the top versus the bottom level, expressed as a
fixed probability of selecting each level. (2) Learning rate of the neural net-
works. (3) Temperature, or degree of randomness. The second set consisted
of parameters related to RER rule extraction, including: (1) RER positivity
threshold, which must be exceeded for a rule to be considered “success-
ful.” (2) RER density measure, which determined how often a rule must be
invoked in order to be retained. (3) RER generalization threshold, which
must be exceeded for a rule to be generalized.

The two sets of parameters above, along with information access and
organization, were varied in a factorial design. For each parameter, 2 or 3
different levels were tested, resulting in a 3 × 2 × 2 × 2 × 2 (probability of
using bottom level × learning rate × temperature × organization × infor-
mation access) design for the first set of parameters, and a 2 × 3 × 2 × 2 × 2
(RER positivity × RER density × RER generalization × organization × in-
formation access) design for the second set.

6.2 Results

We are interested in observing performance at both ends of the learning
curve – that is, both after a moderate amount of training (because results
at that point corresponded closely to the human results) and after exten-
sive training. Therefore, in all conditions of the variable-factor simulation,
performance was measured both near the start of the simulation (after
3,000 cycles) and at the end (after 20,000 cycles).

An ANOVA (analysis of variance) confirmed the effects of organi-
zation [F (1, 24) = 30.28, p < 0.001, MSE = 0.05] and information access
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figure 6.10. The effect of organization on performance over time.

[F (1, 24) = 7.14, p < 0.05, MSE = 0.01] to be significant. Moreover, the
interaction of these two factors with length of training was signifi-
cant [F (1, 24) = 59.90, p < 0.001, MSE = 0.73 for organization; F (1, 24) =
3.43, p < 0.05, MSE = 0.01 for information access]. These interactions,
which can be seen in Figures 6.10 and 6.11, reflect the trends discussed
earlier: the superiority of teams and distributed information access at the
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figure 6.11. The effect of information access on performance over time.
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figure 6.12. The effect of probability of using the bottom level on performance over
time.

start of the learning process, and either the disappearance or reversal of
these trends towards the end. This finding is important, because it shows
that these trends persist robustly across a wide variety of settings of cog-
nitive parameters, and do not critically depend on any one setting of these
parameters.

The effect of probability of using the top vs. the bottom level was like-
wise significant [F (2, 24) = 11.73, p < 0.001, MSE = 0.02]. More interest-
ingly, however, its interaction with length of training was significant as well
[F (2, 24) = 12.37, p < 0.001, MSE = 0.01]. As can be seen in Figure 6.12,
rule learning is far more useful at the early stages of learning, when in-
creased reliance on them tends to boost performance, than towards the
end of the learning process. This is because rules are crisp guidelines that
are based on past success, and as such, they provide a useful anchor at
the uncertain early stages of learning. However, by the end of the learning
process, they become no more reliable than highly-trained networks. This
corresponds to findings in human cognition, where there are indications
that rule-based learning is widely used in the early stages of learning, but is
later increasingly supplanted by similarity-based processes (Palmeri, 1997;
Smith & Minda, 1998) and skilled performance (Anderson & Lebiere, 1998).
Such trends may partially explain why hierarchies do not perform well ini-
tially (see Section 4.2): because a hierarchy’s supervisor is burdened with a
higher input dimensionality, it takes a longer time to encode rules (which
are essential at the early stages of learning).
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figure 6.13. The effect of learning rate on performance over time.

Predictably, the effect of learning rate was significant [F (2, 24) =
32.47, p < 0.001, MSE = 0.07]. As can be seen in Figure 6.13, groups with a
higher learning rate (0.5) outperformed the groups with the lower learning
rate (0.25) by between 5 and 14%. However, there was no significant inter-
action between learning rate and organization or information access. This
suggests that quicker learners do not differentially benefit from, say, a hier-
archy versus a team. By the same token, the poorer performance of slower
learners cannot be mitigated by recourse to a particular combination of
organization and information access.

Let us now turn to the parameters related to RER rule learning.
Figure 6.14 shows the effect of generalization threshold, which determines
how readily an agent will generalize a successful rule. As can be seen, it is
unquestionably better to have a higher rule generalization threshold than
a lower one (up to a point3). An ANOVA confirmed the significance of
this effect [F (1, 24) = 15.91, p < 0.001, MSE = 0.01]. Thus, if one restricts
the generalization of rules only to those rules that have proved relatively
successful (by selecting a fairly high generalization threshold), the result is
a higher-quality rule set, which leads to better performance in the long run.

Relatedly, whereas the effect of rule density on performance was in-
significant, the interaction between density (i.e., “memory” for rules) and

3 If we raise the threshold above a certain point, performance dips and an overall “U-curve”
is observed. The same is true for other parameters.



Simulating a Simple Case of Organizational Decision Making 143

.76

.64

.66

.68

.70

.72

.74

.30 .60

P
er

fo
rm

an
ce

Generalization Threshold

figure 6.14. The effect of generalization threshold on the final performance.

generalization threshold was significant [by an ANOVA; F (2, 24) =
2.93; p < 0.05; MSE = 0.01]. As we can see in Figure 6.15, when rules are
of relatively high quality (i.e., under a high generalization threshold) it is
advisable to have more of them available (which is achievable by lower-
ing the density parameter). By contrast, when the average quality of rules
is lower (i.e., under a low generalization threshold) it is advantageous to
have a quicker forgetting process in place, as embodied by a high density
parameter.

Finally, the interaction between generalization threshold and organiza-
tion was significant at the start of the learning process [by an ANOVA;
F (1, 24) = 5.93, p < 0.05, MSE = 0.01], but not at the end. This result
(shown in Figure 6.16) is more difficult to interpret, but probably reflects
the fact that hierarchies, at the start of the learning process, do not encode
very good rules to begin with (due to the higher input dimensionality of
the supervisor and the resulting learning difficulty). Thus, generalizing
these rules, even incorrectly, causes relatively little further harm.

For the rest of the factors considered previously (including tempera-
ture and RER positivity threshold), no statistically significant effects were
found.

This simulation confirmed an earlier observation – namely, that which
organizational structure (team vs. hierarchy) or information access scheme
(distributed vs. blocked) is superior depends on the length of the training.
It also showed that some cognitive parameters (e.g., learning rate) have a
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monolithic, across-the-board effect under all conditions, whereas in other
cases, complex interactions of factors are at work. This illustrates, once
again, the importance of limiting one’s conclusions to the specific cognitive
context in which data were obtained.

7 discussion

This study shows that a more cognitively realistic simulation, with
CLARION, can better capture human performance data in the radar task.
Unlike simpler models, which often exhibit specialized intelligence, and
thus do very well on some conditions, but poorly on others (for instance, in
teams vs. in hierarchies), our model, with its more general-purpose learn-
ing architecture, performs reasonably well across a variety of conditions.
This is consistent with the human results (Carley et al., 1998). Furthermore,
after a certain amount of training, the trends observed closely match the hu-
man data. More specifically, teams learn faster and better than hierarchies,
due to the simpler structure of teams and the difficulty of training a com-
petent supervisor. Additionally, distributed access is superior to blocked
access, showing the advantages of a variegated knowledge base at the early
stages of learning. Thus, cognitive realism in social simulation can lead to
models that more closely capture human results, although currently most
social and organizational simulations tend to be at a higher level and thus
often gloss over details of cognitive processes.

Moreover, by using CLARION, we are able to formulate deeper expla-
nations for the results observed. For instance, based on our observations,
one may formulate the following possible explanation: the poorer per-
formance of hierarchies early on (see Section 4.2) may be due, at least
in part, to the longer training time needed to encode high-dimensional
information for the supervisor, which leads to fewer useful rules being
acquired at the top level. This in turn impacts performance, because rule
learning is especially important in the early stages of learning (see Section
6.2). Such explanations are only possible when the model is cognitively
realistic.

In addition to offering deeper explanations, cognitive realism can lead
to greater predictive power for social simulations. The results of social sim-
ulations should not be taken as “facts,” but rather as predictions that can be
empirically verified. The ability to produce testable predictions, then, is a
measure of the usefulness of a simulation. In this connection, there are two
significant advantages to using cognitively realistic agents in social simu-
lations. First, if the model is truly reflective of human cognitive processes,
then its predictions will more often prove accurate. Second, predictions
that contain references to aspects of human cognition (e.g., explicit vs. im-
plicit learning) should be more illuminating and relevant than those that
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refer to the internal parameters of an artificial model (e.g., momentum in
a neural network) or to external measures only (e.g., percent correct).

In CLARION, we can vary parameters and options that correspond
to cognitive processes and test their effects on performance. In this way,
CLARION can be used to predict human performance, and furthermore to
help performance by prescribing optimal or near-optimal cognitive abili-
ties for specific tasks and organizational structures. Such prescriptions fall
into two general categories. First, they may help us to develop a more rig-
orous methodology for building organizations (Belbin, 1993), by assigning
agents to organizational roles based on their individual cognitive capabili-
ties. For instance, we may learn that a hierarchy’s performance hinges cru-
cially on having a quick-learning agent as its supervisor, or alternatively,
we may discover that quicker-learning supervisors do not significantly
affect the overall performance of the organization. Second, prescriptions
generated by CLARION may help us to formulate organizational policies.
Recall, again, the high importance of rule learning at the beginning of the
learning process. Based on this, an organization may decide to emphasize
standard operational procedures (i.e., rules) when training new personnel,
but to emphasize case studies (i.e., exemplars) when training experienced
employees. The value of such prescriptions is contingent on the cognitive
realism of the models employed. The more faithfully a model captures as-
pects of human cognition, the wider the applicability of its predictions and
prescriptions.

We think of individual cognitive processes as a “lower-level” descrip-
tion, and of social phenomena as a “higher-level” description. It is therefore
evident that the density of descriptions at the higher level is much greater
than the density at the lower level. This means that a higher-level descrip-
tion may correspond to a vast multiplicity of lower-level descriptions. Each
instance at the higher (or social) level corresponds to a large set of instances
at the lower (or cognitive) level.

The processes that occur at the higher level represent merely a tiny
fraction of the ones that could conceivably occur, given a particular com-
bination of entities at the lower level. Although nearly any imaginable
high-level process may be described in terms of the low-level entities, the
actual high-level processes that occur depend on a particular combination
of conditions at the lower level (in the physical sciences, these are known
as “boundary conditions”). There is no a priori way of determining, based
on the lower-level entities, which of the higher-level processes will actually
occur. Thus, social processes are in this sense “emergent.”

It can be argued that our approach is needlessly reductionist. A higher-
level entity may consist of numerous lower-level entities. Likewise, causal
relationships at the higher level may be a product of causal relationships at
the lower level. Nevertheless, it is possible to describe causal relationships
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at the higher level without referring to relationships at the lower level.
Why, then, is cognitive realism in social simulation necessary? The answer
is that an effective scientific theory must be capable, in principle at least, of
mapping social phenomena to cognitive attributes. The ability to accurately
model high-level phenomena through a high-level theory is a necessary,
but not sufficient, condition for validity. Thus, for example, the Ptolemaic
method of predicting planetary motion based on epicycles around a series
of mathematical points was at least as accurate as the Copernican model of
motion when the latter was first proposed. By adding additional epicycles,
the Ptolemaic method could be more accurate still. Nonetheless, a theory
based on epicycles around a series of theoretical mathematical points could
not provide the deeper account offered by the Copernican theory of motion,
in which an orbit can be traced to the presence of an astronomically iden-
tifiable body in the center of the orbit (Coward & Sun 2004). This is the
primary reason why we need to bridge the two levels.

8 summary

We have tested the approach of cognitively realistic social simulation by
deploying the CLARION cognitive architecture in an organizational sim-
ulation involving multi-agent interaction. The results have been encour-
aging, yielding several results that are consistent with the psychological
literature, as well as a few testable hypotheses. The empirical verification of
these hypotheses should be relatively straightforward in the case of some
cognitive factors (e.g., learning rate, which can be plausibly equated with
scores on some standardized tests), but admittedly trickier in others (e.g.,
generalization threshold).

Along the way, we have argued for an integration of two separate strands
of research; namely, cognitive modeling and social simulation. Such inte-
gration could, on the one hand, enhance the accuracy of social simulation
models (by taking into account the potentially decisive effects of individ-
ual cognition), and on the other hand, it could lead to greater explanatory
power from these models (by identifying the precise role of individual
cognition in collective social phenomena).
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7

Cognitive Modeling of Social Behaviors

William J. Clancey, Maarten Sierhuis, Bruce Damer,
and Boris Brodsky

1 introduction

The driving theme of cognitive modeling for many decades has been that
knowledge affects how and which goals are accomplished by an intelli-
gent being (Newell, 1991). But when one examines groups of people living
and working together, one is forced to recognize that whose knowledge is
called into play, at a particular time and location, directly affects what the
group accomplishes. Indeed, constraints on participation, including roles,
procedures, and norms, affect whether an individual is able to act at all
(Lave & Wenger, 1991; Jordan, 1992; Scribner & Sachs, 1991).

To understand both individual cognition and collective activity, perhaps
the greatest opportunity today is to integrate the cognitive modeling ap-
proach (which stresses how beliefs are formed and drive behavior) with
social studies (which stress how relationships and informal practices drive
behavior). The crucial insight is that norms are conceptualized in the in-
dividual mind as ways of carrying out activities (Clancey 1997a, 2002b).
This requires for the psychologist a shift from modeling only goals and
tasks – why people do what they do – to modeling behavioral patterns –
what people do – as they are engaged in purposeful activities. Instead of
a model that exclusively deduces actions from goals, behaviors are also,
if not primarily, driven by broader patterns of chronological and located
activities (akin to scripts).

This analysis is particularly inspired by activity theory (Leont’ev, 1979).
Although acknowledging that knowledge (relating goals and operations) is
fundamental for intelligent behavior, activity theory claims that a broader
driver is the person’s motives and conceptualization of activities. Such un-
derstanding of human interaction is normative (i.e., viewed with respect to
social standards), affecting how knowledge is called into play and applied
in practice. Put another way, how problems are discovered and framed,
what methods are chosen, and indeed who even cares or has the authority
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to act, are all constrained by norms, which are conceived and enacted by
individuals.

Of special interest for the cognitive modeler, and emphasized in so-
cial theory (Lave, 1988), is how norms are reinforced and shaped through
behavior. Each enacting of a norm potentially reinforces the behavior pat-
tern for the individual, as well as the group observing and relating to
the behavior. But also, each action potentially changes the norm, includ-
ing functional adaptations to the current circumstances as well as per-
sonal whim. One might refer to understanding of norms as an individual’s
“social knowledge”; but many or perhaps most norms are tacit – the pat-
terns are not necessarily experienced or described. Of major interest for
cognitive modeling is how individuals formulate situation-action rules of
behavior (i.e., they develop models of norms) to deliberately accomplish
goals in novel ways (i.e., they deduce how to relate and adapt available
methods to permissible behaviors). For example, a leader may develop the
group’s capability by humorously violating a norm, reinforcing each indi-
vidual’s understanding of the group’s structure and ways of interacting.

Our understanding of how to relate goals, knowledge, behaviors, and
social concepts in a cognitive model has been developing over more than
a decade in the Brahms modeling and simulation system (Clancey et al.,
1998, 2002b; Sierhuis, 2001). It has taken a long time to break out of the
task analysis perspective to understanding the social notion of activity
(Lave, 1988; Suchman, 1987) as a behavioral and not functional description,
and to ground it in a cognitive architecture. The significant breakthroughs
included:
� Understanding activities as patterns of what people do, when, and

where, using what tools or representations;
� Representing activities in a cognitive model using a subsumption ar-

chitecture (i.e., conceptualization of activities occurs simultaneously on
multiple levels);

� Understanding that conceptualization of activities is tantamount to con-
ceptualization of identity, “What I’m doing now,” which is the miss-
ing link between psychological and social theory (Clancey, 1997b, 1999;
Wenger, 1998).

� Simulating collective behavior in a multi-agent simulation with an ex-
plicit “geographic model” of places and facilities, using the Brahms tool.

A Brahms model is a way of formalizing (expressing, collecting, and
organizing) field observations so they can be correlated, shared, and used
in work system design (Sierhuis & Clancey, 2002; Sierhuis et al., 2003; Seah,
Sierhuis, & Clancey 2005). The primary objective is not necessarily to con-
struct a predictive model of human behavior, which is often emphasized in
scientific modeling, including cognitive modeling, but to have a systematic
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way of relating disparate sources of information, including video, notes,
and surveys.

To illustrate these ideas, this chapter presents an extract from a Brahms
simulation of the Flashline Mars Arctic Research Station (FMARS), in which
a crew of six people are living and working for a week, physically simu-
lating a Mars surface mission (Clancey, 2002a). This Brahms simulation of
this mission is broadly described in Clancey (2002b); this chapter focuses
on one part, the Brahms simulation of a planning meeting. How people be-
have during the meeting (e.g., standing at the table) exemplifies the nature
of norms; this is modeled at the individual agent level in Brahms. The ex-
ample shows how physiological constraints (e.g., hunger, fatigue), facilities
(e.g., the habitat’s layout), and high-level events during the meeting inter-
act. This chapter describes the methodology for constructing such a model
of practice, from video and first-hand observation, and how this modeling
approach fundamentally changes how one relates goals, knowledge, and
cognitive architecture.

Relating physical behaviors to a meeting and producing a visual display
with realistic timing involves integrating diverse information (topography,
agent beliefs, posture, meeting structure). No attempt is made here to ana-
lyze or model the group dynamics of decision making in detail (e.g., raising
one’s voice, misunderstandings, domination, digressions). Rather the ef-
fort here is intended to provide a framework within which such analysis
could be meaningfully embedded. Specifically, we hypothesize that being
able to model apparently superficial multi-agent behaviors, as we have
here, is a necessary first step in understanding the cognitive and social na-
ture of norms. Recognizing how norms are manifested, violated, adapted,
etc., will enable us to subsequently use activity-based analysis to better
analyze the quality of group decision making.

Following the analytic approach of Schön (1987), this research effort
shifts from studying technical knowledge in isolation to modeling the con-
text in which behavior occurs and how it unfolds over time through in-
teractions of people, places, and tools. The resulting simulation model of
practice is a powerful complement to task analysis and knowledge-based
simulations of reasoning, with many practical applications for work system
design, operations management, and training.

2 the brahms approach for relating cognitive
and social processes

The Brahms simulation system was developed as a means of systemat-
ically relating information gained from the anthropological method of
observing by participating in some activity, called “participant observa-
tion” (Spradley, 1980; Clancey in preparation, in press). Being a participant



154 William J. Clancey, Maarten Sierhuis, Bruce Damer, and Boris Brodsky

allows the observer to detect and understand events that people would not
otherwise report (e.g., a swimmer would probably not mention “you have
to be in water; alive,” Wynn, 1991, p. 49). Brahms’ patented design was
conceived in 1992 to complement business process modeling tools by rep-
resenting how work actually gets done. As a model of practice, in contrast
with formal processes, Brahms simulations emphasize informal commu-
nications and assistance (i.e., actions that are not specified in task require-
ments or procedures), and circumstantial interactions (e.g., how place-
ment of people and tools affects what information is shared or how long a
job takes).

The Brahms modeling language enables representing and relating the
following:
� people (as agents having beliefs, factual properties, and belonging to

one or more groups)
� locations (as a hierarchy of geographic areas)
� tools and furniture (represented as objects having factual properties)
� computer systems (e.g., databases, represented as objects with stored

beliefs that can be read or modified by agents)
� robotic systems (represented as agents)
� behavior of people and systems (represented as activities).

Activities are represented as prioritized situation-action rules called work-
frames and conditional inference rules called thoughtframes. Workframes
have four parts:
� preconditions (matched against agent beliefs)
� actions (activities or primitive actions)
� detectables (conditions associated with actions, modeling perception of

the world)
� consequences (changes to beliefs and the state of the world).

Primitive actions occur for a fixed duration (or the duration may be ran-
domly generated from a specified interval). The simulation engine man-
ages agent and object behaviors as a discrete event simulation.

The state of the world (physical properties of agents and objects) is
modeled in Brahms as facts. Detectables match against facts, resulting in
agent beliefs (which may be different from the facts), modeling how what
is perceived is conditional on what an agent is doing. Changed beliefs
then activate workframes for the activities in which the agent is currently
engaged. Detectables may also abort or complete an activity. Thus, agent
behaviors are largely data-driven within the context of activities. The lan-
guage provides two special primitive actions: Move (to a specified location,
taking a particular time) and Communicate (ask or tell another agent a be-
lief matching a specified proposition, which applies as well to reading and
writing beliefs to an object, e.g., a computer screen).
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An agent is engaged in a hierarchy of activities at any particular time,
constituting a subsumption architecture. For example, an FMARS crew
member might be ParticipatingInPlanningMeeting while ConductingPlan-
ningMeeting during the course of LivingOneDayinTheMarsHabitat. The
agent is doing all of these activities at a particular moment, and thus a stack
of activities is always active for every agent. The workframes and thought-
frames of these activities may activate, depending on the agents beliefs
and the priorities of the workframes. Furthermore, any of the detectables
on the current line of workframe activation may be triggered, according to
the facts in the world that the agent encounters (subject to area and line of
sight restrictions). Workframes may thus be interrupted or resumed as the
agent behaves, gets new beliefs, and modifies the world. Furthermore, the
initial beliefs of the agent, as well as the potential activities are inherited by
group membership. Groups may belong to groups, providing an efficient
way of representing beliefs and behaviors.

The Brahms language, architecture, and simulation engine are described
in detail by Sierhuis (2001). Besides the original simulations of office work
(Clancey et al., 1998) constructed for NYNEX (the former New York New
England telephone company), Brahms has been used to model NASA’s
mission operations, deployment of instruments on the lunar surface by
Apollo astronauts (Sierhuis, 2001), how procedures are followed on the
International Space Station (Acquisiti et al., 2002), activities of scientists
controlling the Mars Exploration Rovers (MER) (Seah, Sierhuis, & Clancey,
in preparation), and teleoperations from earth of a proposed lunar rover
(Sierhuis et al., 2003).

Before examining the Brahms model of the FMARS planning meeting,
a few aspects of activity-based modeling should be emphasized:

� A model of activity is a model of practice, what people do. It should be
contrasted with idealized or written models of procedures (what people
are supposed to do).

� Tasks and activities are different units for viewing and describing hu-
man behavior. Like functional and behavioral models of artifacts such
as electronic circuits, a task model can be related to, but does not strictly
map onto an activity model. Most notably, many activities, such as eat-
ing, which can occur at any time during work, are omitted from task
models. Simply put, a task model describes input and output relations
as a kind of idealized specification of what should be accomplished.
An activity model describes located, chronological behaviors and per-
ceptual experiences. See Clancey (2002b) for extensive discussion and
comparison of task analysis to Brahms, especially the historical relation
to scripts.

� The emphasis on modeling behavior is not the same as behavior-
ism. Agent actions are totally driven by their perceptions, beliefs, and
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conceptualization of activities (represented by workframes and
thoughtframes).

� Brahms activities are models of conceptualizations – which are largely
non-verbal. Models of activities are quite different from the models
of technical information and task-oriented procedures in knowledge-
based systems.

� Brahms models are first and foremost investigators’ models, not neces-
sarily patterns articulated by the people being modeled. However, by
incorporating agent beliefs (perhaps unarticulated), perception, condi-
tional actions, and inferences, Brahms models have many characteristics
of cognitive models.

� An agent’s beliefs include how other people relate to activities, objects,
and procedures, that is, social knowledge.

� Attitude, emotion, and personality are of fundamental importance in
understanding human activity, but are not included in the FMARS
model. For example, the crew’s attitude towards each other is revealed
by their posture and spacing around the meeting table. These character-
istics of people are essential for the application domain of long-duration
space missions. In related work the FMARS data and simulation is being
used to understand what aspects of personality for example are relevant
in understanding the crew’s behavior.

� Broadly speaking, a person’s activities are identities. For example, one
crew member was simultaneously being an American woman, a graduate
student in geophysics at MIT, an FMARS crew member, and a person at-
tending a planning meeting. These identities are dynamically composed
and blended conceptions of “what I’m doing now,” such that norms at
each level are tacitly attended to and integrated (Clancey, 1999, 2002b).

� Both formal structures (e.g., roles and procedures) and informal, emer-
gent interactions (e.g., friendship) are part of the conceptualization of
activity, but rules are always only consciously interpreted guides, not
rigid controllers of behavior, as in computer programs.1 Observing and
documenting how preplanned procedures are adapted in practice is a
central part of understanding the nature and role of cognition in the real
world (Suchman, 1987).

1 In this form, situated cognition concerns the dynamic nature of human memory: Knowledge
does not consist of stored structures such as rules and procedures that are indexed, retrieved,
and subconsciously executed as in the von Neumann computer architecture. In general,
social scientists promoting situated cognition in the 1980s did not present alternative neural
arguments, and used sometimes confusing language (e.g., “The point is not so much that
arrangements of knowledge in the head correspond in a complicated way to the social
world outside the head, but that they are socially organized in such as a fashion as to be
indivisible,” Lave, 1988.) Some claims were absurdly interpreted by some researchers as
“there is no knowledge in the head.” For examples and discussion see Clancey (1993, 1994,
1995, especially 1997b, “Remembering Controversies,” chapter 3).
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3 simulation model of mars crew planning meeting

Developing a Brahms model of a planning meeting exploited a unique
opportunity and involved many steps:
� A crew of six people was living in the Mars analog mission for a week

(at FMARS on Devon Island in the Canadian Arctic during July 2001).
� Clancey was selected to participate in the mission as a member of the

crew (serving as journalist and meteorologist).
� The crew’s activities were systematically observed and recorded.
� Time-lapse video was analyzed to map out patterns of what people did,

when, and where.
� Selected multi-agent interactions were simulated (a planning meeting,

filling the water tank, and preparing to work outside–an extra-vehicular
activity, EVA).

� The Brahms simulation was integrated with a graphic rendering of agent
postures, movements, object manipulations, etc. in the Brahms Virtual
Environment (BrahmsVE) described in this chapter, implemented in
Adobe r© AtmosphereTM(a commercially available, browser-based ren-
dering engine).

� The simulation was refined by analyzing and further specifying the
interaction of physiological, cognitive, and social structures (referring
to the time-lapse video, photographs, and ethnographic field notes).

Over the course of a week, an FMARS participant observer can induce
the typical pattern of the day, including what individuals do at different lo-
cations habitually. One approach is to keep an accumulating outline that is
revised each day as part of the observer’s field notes. The resulting Brahms
model has a hierarchical activity structure, shown here chronologically:

LivingOneDayinTheMarsHabitat
Sleeping
GoingToRestroom
MovingToArea

GettingUp
EatingBreakfast

HeatingWater
BringingBreakfast

DoingPersonalItemsAfterBreakfast
StartingPlanningMeeting

AnnouncingReadinessForPlanning
Gathering
ChattingBeforePlanning
AnnouncingStartOfPlanning

ConductingPlanningMeeting
ParticipatingInPlanningMeeting
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CoveringAgendaItemWeather
CoveringAgendaItemWater

AnnouncingEndOfPlanningMeeting
ConductingEVAPreparation

DonningSuit
DepressurizingInChamber

ConductingEVA
EatingSnack
TakingNap

Many details in the model are omitted here, such as the steps in donning
the suit and activities relating to specific roles and tasks (e.g., working with
particular laboratory equipment).

The present model of the FMARS planning meeting does not attempt
to replicate the conversational details of how people plan in a group by
articulating and negotiating alternatives. As will become clear, there are
many other issues to consider in simulating a planning meeting. The top-
ics of the planning meeting, such as discussing the weather and reviewing
the habitat’s systems (power, water), are modeled as a sequence of events,
with fixed durations. Even within such a restricted framework, individ-
ual agents can opportunistically change the topic (a subactivity) of the
meeting or carry out a given subactivity in a way that changes what other
agents are doing. For example, if there is a fire alarm, the meeting will
be interrupted and the activity of responding to the alarm would begin.
This flexibility results from the combination of detectables, thoughtframes,
communications, inheritance of activities through group membership, and
the subsumption architecture for interrupting and resuming activities.

Subsequent sections explain in more detail how the planning meeting
model is created and what its structure reveals about the relation of cogni-
tion and social behavior.

3.1 Planning Meeting Time Lapse

Using methods developed over several expedition field seasons (Clancey,
2001), Clancey systematically recorded most of several days using a time-
lapse apparatus. A quarter-frame (320 × 240 pixels) wide-angle view
(Figure 7.1) was captured direct to computer disk every 3 seconds, such that
the entire upper deck outside of the staterooms is visible. These frames were
manually abstracted in a spreadsheet to show where people are (columns)
at different times (rows).2 From this, statistics and graphs are generated.
Meetings such as the morning planning meeting are often video-recorded
in full, so the conversations can also be analyzed.

2 Foster-Miller, Inc. has been funded by NASA to develop the Crew Activity Analyzer, which
uses image processing to automate most of the time-lapse analysis.
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figure 7.1. FMARS planning meeting of July 13, 2001, after KQ has moved from
far left seat to standing on right. Commander sits on one long side of the table;
Clancey is on the right. Ladder to lower deck is out of camera range on far left;
staterooms are to far right.

The following are some typical observations about how people sit and
stand at different places and times. These are all based on the time lapse
of July 13, 2001. The identity of individuals is part of the public record (the
meeting was filmed by the Discovery Channel); initials are used here.

1) [09:17:14] Everyone is at the table, and the meeting is started (then KQ
and BC leave to get notebooks and clothing). Prior to this point there
were never more than three people sitting at the table, although at
different points in time the informal, pre-meeting conversation was
joined by CC (at workstation), SB (at galley cabinet), and KQ (by the
table).

2) Outside the formal meeting, SB rarely sits, whereas CC never leaves
his workstation (aside from getting a drink). Those two appear to
represent two ends of a volatility spectrum. CC works on one project,
his paper; SB has many problems with the satellite network, walkie-
talkies, power, etc. to resolve.

3) Later in the day, people spend relatively long times standing and
pacing around the table: KQ ([11:54:49 - [11:55:52]); SB ([11:55:40] -
[12:16:01]); CC( [12:06:53] - [12:08:59]). BC also has his notepad on
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figure 7.2. Location of crew members during planning meeting. The timeline is
broken into two parts, starting at top left. Shading indicates seated at table, other-
wise the activity is indicated. See text for analysis.

the table, to which he returns periodically and makes notes while
standing. The chairs are obviously still available, but they have been
moved to the workstation and the lab on the lower deck, where they
“belong,” and nobody returns them to the table.

4) [15:01:24] VP sets up his laptop on the wardroom table, even though
there is plenty of space available at the workstation area (only two
people are there). At [15:16:55], all but SB are sitting at their laptops.

A graph of the planning meeting (Figure 7.2) reveals some surprising
patterns and provides a basis for characterizing behavior in terms of norms.

To understand what one needs to know about the structure of the meet-
ing in order to simulate it, consider the problem of representing the lo-
cations and postures of the individual agents. At a first-order evaluation
of simulation fidelity, before the model can be used to explain what is
happening, the interacting agent behaviors must visibly resemble real life.
This means that the graphic simulation must appear plausible to someone
familiar with such settings. For example, it would be implausible to have
the six people taking their chairs simultaneously or leaving at the same
moment – any crew member knows that this never occurs.

The chart reveals what kinds of events are plausible, though they may
still be unexpected to analysts because people do not necessarily reflect
on even highly structured social behavior. Thus one observes a kind of
“vetoing” of the meeting start when BC leaves his chair, just as RZ calls the
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meeting to order, which is the moment when SB and KB have sat for the
first time. Shortly after, RZ (meeting organizer) and VP leave. RZ begins
the meeting when BC returns; simultaneously CC spins his chair around
(waiting to the last moment to leave his personal work). Equally interesting
is that KQ stands during about a third of the meeting, after reheating
her drink in the microwave. This establishes a norm for the group: It is
permissible to stand during the meeting, at least near the food area. At the
very end of the meeting RZ stands and holds his chair in a way that appears
to signify an ending. If someone were to stand and hold his/her chair in
the same way in the middle of the meeting, it might appear that they are
planning to leave for a moment, for example to go to the bathroom. VP &
BC return to table after checking water (signifying that the meeting is not
over). CC turns his chair around as the meeting ends, although two people
remain at the table.

In short, modeling how individual agents carry out a group activity, as
conditional actions organized into activity conceptualizations, begins to
reveal how collective (social) behavior relates to individual cognition (in-
volving perception, motive, and action). However, common sense knowl-
edge about social behavior is far more complex than has been modeled
in Brahms. In addition, social theorists (e.g., Lave, 1988) suggest that ev-
ery action within a group involves learning for all participants: Norms are
being reinforced through their reproduction, but also adapted and even
purposefully violated (e.g., for humor to confirm or deny emotional re-
lationships). The FMARS simulation does not represent this learning (i.e.,
reinforcement or adaptation of workframes). Other social analyses suggest
(Wenger, 1998) that activity conceptualizations involve dynamic blending
of identities, another aspect of learning that occurs as action that may not
be deliberately planned. For example, FMARS crew members are always
improvising their roles, as seen through their prior conceptualizations (e.g.,
“being a scientist on an expedition” “being a NASA representative”). In
some respects, the interleaving of actions in different parallel activity con-
ceptualizations models this blending in Brahms.

3.2 Planning Meeting Model Details

To create a model of the planning meeting, Brodsky and Clancey analyzed
the time lapse video and wrote elaborate descriptions of the chronology
of events. The following excerpt uses formatting to indicate the located
activities of AGENTS using objects:

RZ requests weather info from BC. (They need it to decide whether to go for
EVA).
BC gets up from his chair, walks to workstation area, to his laptop (in a
subarea), and checks weather report (for ∼7 min; sitting facing laptop). After
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BC is done, he walks back to wardroom table area, approaches his chair area,
and sits down on his chair. He then communicates the weather data to RZ.
Shortly after BC goes to check the weather, RZ gets up from his chair, walks
to water tank area, climbs the water tank ladder, and checks water level
(by looking into the water tank–standing on the ladder at the upper rim of
water tank level, facing it).

On this basis, Brahms locations, agents, activities, and objects are related
by declaring group-agent-activity relationships and writing workframes.
For example, one part of the above sequence of events is modeled by this
workframe (Brahms language constructs appear in bold):

workframe CheckWaterLevel
when (unknown(current.timeToFillWaterTank))
detectable DetectWaterLevel {

detect((WaterTank.waterLevel = 0))
then continue;}

do { Getup();
Walk(GalleyLadderArea);
Upladder(WaterTankArea);
CheckWaterLevel();
Downladder(GalleyLadderArea);
Walk(WardroomTableArea);
conclude((current.waterLevelChecked = true)); }

The subactivities in the do part are defined by other workframes, most of
which use the move primitive activity.

After the simulation is run, the modeler may display agent actions using
the AgentViewer (Figure 7.3). While RZ is checking the water level, BC is
checking the weather report. Figure 7.4 shows this moment graphically
using the Brahms Virtual Environment (BrahmsVE; Damer 2004).

In the 2002 implementation, the simulation output is recorded in a
database and mapped by BrahmsVE onto graphic primitives and scripts.
The scripts generate short, agent-specific movements or gestures, such as
walking up the ladder. In general, the scripts are created by analyzing pho-
tographs and videos, then developing storyboards, as if creating a cartoon
or movie (Figure 7.5). These were reviewed for accuracy and plausibility,
based on the ethnographer’s memory and records of events. For example,
whether people would be able to or choose to squeeze between CC and
the table instead of walking around is a matter of practice and should be
rendered accurately. In general, the simulation might generate interactions
that are not based on specific events; these must be evaluated for plausi-
bility based on similar known events.

To illustrate the interface between Brahms simulation engine and the
rendering system, consider the simple example of RZ doing the action:
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figure 7.4. Frame 3:24 from animation showing RZ checking the water level
whereas BC is reading the weather report at his workstation [9:25:19]. Developed by
DigitalSpace Corporation.

figure 7.5. Initial storyboard showing ending of the planning meeting (Digital-
Space Corporation).

164
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move Upladder(BaseAreaDef loc) {max duration: 5; location: loc;} where
loc is GalleyLadderArea. A program called OWorld Service converts this
simulation event into the following scheduled animation:

activity|move|164|169|projects.
fmarsvre.RZ|Upladder||projects.
fmarsvre.GalleyLadderArea|
projects.fmarsvre.WaterTankArea

Another program, OWorld Parser (implemented as Javascript in Adobe r©
AtmosphereTM), sends this scheduled animation to the BrahmsVE agent
object queue. The RZ agent’s Upladder action script executes the move-
ment details. Figure 7.4 shows one of the frames.

All together, three complex FMARS scenarios are simulated in
BrahmsVE: the planning meeting (requiring 200 OWorld scripts), filling
the water tank (67 scripts), and the EVA preparation (gathering equipment
and helping each other don space suits, 423 scripts).

In this implementation, the rendering occurs in batch mode, after the
simulation is completed. The timings of primitive motions and renderings
are adjusted dynamically by the individual scripts, so they properly add
up to the durations of Brahms activities. For example, a primitive activity
in Brahms such as moving to the Galley Ladder Area, would require seven
animation scripts, for getting out of a chair and walking, which together
should total the five seconds declared in the Brahms model:
� Head Track Horizontal
� Head Track Vertical
� Stand Up From Chair
� Walk
� Turn While Walking
� Idle Standing(s)
� Breathe

The idle animations (e.g., shifting weight, moving arms) are random
within the available time. Timing of primitive motions and renderings
are not hard-coded in scripts, rather scripts are designed to play faster or
slower to take the amount of time the Brahms model requires. An ani-
mation such as walking may take five seconds in real time, but if told by
Brahms to take two, it will be accelerated, or it could be slowed if necessary.
Waypoints must be specified by the graphic designers (one purpose of the
storyboards), so the agents don’t run through objects or into each other.
Primitive motions refer to the waypoints in a general way, so they needn’t
be encoded in the script itself.

Using BrahmsVE, an analyst can now visualize postures and layout of
the planning meeting. For example, one can see how RZ sits alone on one
long end of the table (Figure 7.1), which is not visible in the AgentViewer.
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In effect, the graphic scripts of BrahmsVE represent part of the practice of
the activity – the details of how people sit and move.

3.3 Modeling Biological Motives and Behaviors vs. Goals

Developing a multi-agent model of a day in the life of the FMARS crew
naturally leads to including biological drivers of behavior, such as fatigue,
hunger, and the need to use the bathroom. Such aspects of human behavior
are ignored by most cognitive models (but see CLARION in Part 2 of this
volume), but are emphasized by the discipline of psychology and design
called human factors (e.g., Kantowitz and Sorkin, 1983). Thus, a Brahms
activity model provides a way to relate human factor concerns to cognition.

An activity model necessarily reveals that how people accomplish tasks
within an activity (e.g., recording data while working at the computer in the
workstation area) is affected by biological concerns (e.g., interrupting work
in order to put on a sweater). At the same time, activities such as eating are
interleaved with group activities (such as the planning meeting) and how
they are carried out reflects the group’s norms (e.g., one may get something
to eat during an FMARS meeting, but would do this in a business office
setting only if the food were already laid out for the participants in the
meeting room).

In the FMARS simulation, biological needs are modeled in a simple way;
the initial research objectives did not require replicating the state of the art
of physiological modeling. Each factor is represented by a single parameter
(physical energy, hunger, urine in the bladder) that accumulates over time
and is reset by a compensating action (rest, eating, elimination).

The inclusion of biological motives in explaining human behavior pro-
vides an interesting problem for cognitive modeling. For example, consider
KQ warming her drink in the microwave and then standing by the side
of the table (Figures 7.1 & 7.6). There are many explanations for this be-
havior: Her drink may be cold; she might be cold; her back may hurt; she
may be bored with the meeting; someone at the table who hasn’t had a
shower in a week may smell, etc. One doesn’t know her goals, aside from,
perhaps, warming her drink. Even this may be a kind of convenient cover
for accomplishing her “real intention.”

Perhaps most interesting, the single action of standing to the side may
be satisfying for several reasons, none of which need be conscious (i.e.,
deliberately reasoned to create a plan that the action carries out). Behavior
may be determined by many physiological, personal, and social functions
at the same time, and these need not be articulated or distinguished by
the person. A functional (goal-based) analysis tends to ascribe a single
purpose to an action. A broad analysis of a day-in-the-life of the FMARS
crew shows that of course all human activity is purposeful, but not every
activity accomplishes a task (i.e., the work of the crew) nor can it easily
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be assigned to a single goal (i.e., a conscious proposition). This follows
especially from the subsumption architecture in which multiple activity
conceptualizations on different levels are affecting behavior by inhibiting,
enabling, or blending actions (e.g., people in a meeting conventionally
wait for an appropriate moment to use the bathroom). In contrast, when
the crew discusses what EVA is to do on this day, including where to go
for what purpose, including what equipment and who should go, they are
clearly engaged in goal articulation and planning. What is revealing is how
much else is occurring that is modulated by perception of the environment
and each other, physiological needs, and relationships (e.g., how people
sit at the table, who chooses to remain silent) – modeled in the FMARS
simulation without reasoning about goals and alternative plans of action.

Conventional goal/task analysis is a descriptive abstraction of human
behavior, imposed by an observer, which may be an agent doing an ac-
tivity. Goal/task analysis has implied that every human behavior has a
direct goal as its cause (i.e., knowledge explains behavior). In contrast,
the subsumption architecture in Brahms represents a conceptual nesting
of activities, each of which has many implicit goal structures, so any be-
havior may make sense from multiple perspectives. It is far from clear
whether KQ stands for one reason or five. (Notice how the “rationalist”
framework suggests analyzing behavior in terms of reasons or reasoning.)
Did a combination of activations cause her to stand at that time or were
other satisfying relations emergent in the action (e.g., standing aside, she
discovered that she related to the conversation better as an observer than
as a direct participant)? It is highly problematic (if not theoretically im-
possible) to uniquely explain by subgoals behaviors that have not been
deliberately planned.3 Instead, a Brahms activity model represents the con-
text in which the behavior occurs and (ideally) descriptively captures all
gross movements, sequences, and communications. A goal–subgoal anal-
ysis can always be imposed later, and certainly a task analysis is necessary
for designing layouts, procedures, work flow tools, etc.

4 discussion: lessons about activity modeling

This section considers lessons about the use of the virtual environment
interface, methodology of constructing a Brahms model, how individual

3 One can distinguish sensory stimuli (e.g., an odd feeling in the body), perceptual categoriza-
tion (e.g., recognizing hunger), and conceptualization of a goal (e.g., “I will get something
to eat”). Some perceptual categorizations may be reactive and not conceptually coordi-
nated, as occurs in the stroop task, where the meaning of a word and its physical color
conflict. Goal conceptualizations may also form reactively (which is one interpretation of
KQ’s standing), without reasoning about alternative motives, subgoals, or methods (i.e.,
deliberative planning).
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behaviors reflect and reinforce group dynamics, the relation of cognitive
modeling and social interaction, and what can be learned by reconsider-
ing Newell’s social band framework. The section concludes with some re-
marks about applications of multi-agent simulations like FMARS to failure
analysis.

4.1 Use of the Virtual Environment Interface

The most important finding about the graphic interface is that it is not
merely a display, but rather constitutes a second simulation – of the phys-
ical world – that must be integrated with the perceptual and action multi-
agent model. That is, the modeler relegates to the virtual world simulation
the physics of the real world influencing where and how agents and ob-
jects move (e.g., the microgravity of the International Space Station), line
of sight, auditory range, and placement of objects on surfaces. In gen-
eral, one would incorporate an anthropometric (human body) model, rep-
resenting reachability and physical coordination in moving and holding
objects. Work is underway to integrate the BrahmsVE with the agent simu-
lation engine such that primitive actions with fixed durations and location
would be modified during the physical simulation in the virtual environ-
ment. This is important not only for computing appropriate motion paths,
but also to enable interruption of movements, for example, to allow two
agents to encounter each other on the ladder and have a conversation. In
effect, the notion of a primitive activity is fully open in Brahms, both to
the purposes of the model (e.g., is fidelity in modeling the hand required?)
and the possible interactions that may occur between objects, agents, and
the facility (e.g., an open stateroom door enables calling someone from
outside).

The virtual environment itself was first conceived as an appropriate
way to both construct and view Brahms simulations. The browser-based,
distributed nature of the interactive 3D Adobe Atmosphere platform en-
ables collaborative design and engineering, by which a common virtual
world (e.g., FMARS) incorporates avatars (Damer, 1997) that may inter-
act with simulated agents, objects, and each other. In general, this could
be a suitable framework for teleoperating teams of robots, especially with
astronauts present, such as constructing and maintaining a lunar base. A
more futuristic application would involve uploading agents to deep space
such as to Mars or asteroids, where a time delay prevents conversation
with Earth. Astronauts could converse with simulated agents, surrogates
for human counterparts on Earth (e.g., the remote science team and special-
ized engineers), serving as coaches or assistants in real-time during Mars
operations. The resulting interactions could be transmitted back to Earth
and replayed to analyze and improve the work system design.
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4.2 Methodology of Constructing a Brahms Model

The experiment of constructing a day-in-the-life FMARS model has rein-
forced the view that a Brahms model is a way of stating and organizing
information about a work system. For example, after creating the model,
Clancey received from CC a paper (Cockell et al., 2003) about doing biology
in FMARS. The paper includes CC’s view of his daily schedule. Using the
full-day FMARS model, one could verify whether his summary fits what
was observed (including time-lapse data).

CC distinguishes in his experience between an EVA day and a sample
analysis day. A typical day includes an EVA, but not everyone goes out
every day, and the model does not include what CC does on “an analysis
day.” The lesson learned is that simulating a sequence of multiple days is a
heuristic for capturing work practices. Also, a simple interview may have
revealed this distinction; one could ask, “Do you spend your time in the
same way every day?”

CC gives details about his scientific work that were not recorded or
modeled (e.g., the names of his tools and their parts, and the lab equip-
ment is in sequential order for sample processing). He says he performed
a procedure 100 times in two weeks; to verify this claim, another recording
method is required, such as time-lapse on the lower deck or a log book
near CC’s microscope. He also tells us that he sent images to a colleague,
an activity that was not observed, but might be learned by examining his
email record.

The idea of modeling “a day in the life” is a starting point. The FMARS
day simulated in Brahms is not intended to be a particular day, but a
pastiche, something generalized from the available data, a typical day.
The next step might be to refine the overall pattern to characterize types of
typical days. Certainly modeling a sequence of days is as important for real
applications (e.g., instruction and developing work flow tools) as having
a full-day model.

Cockell et al. (2003) relate that CC had to abort his analysis work at
one point to provide support for an EVA team, indicating how he detected
the need for assistance: “during the science activity it is necessary for the
scientist to be concentrating but aware of other activities . . . having an EVA
radio close-by.” This shows how an overarching activity (being the EVA
support person) blends with a familiar activity (writing a paper), so it is
carried out in a different modality. Furthermore, he says he was “constantly
shuttling” between the decks. Time-lapse data provides the frequency on
some days. If that were in the model, the statistics could be provided to
Cockell for his own report.

Related work by Clancey during NASA’s Haughton-Mars Project in 2003
showed that people were not accurate in estimating how often they were
interrupted and for how long (e.g., a group stopped to navigate during an
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EVA every 3.7 minutes on average, whereas they estimated they drove for
ten minutes between stops). These data suggest that people in highly inter-
active settings prone to interruption are not aware of the broader structure
of emergent patterns, including the frequency of events. The analysis and
simulation of group behavior is obviously of great value for capturing and
visualizing these patterns.

Developing a model of social behavior consequently has a special chal-
lenge that conventional cognitive modeling may not – patterns are often
undetected by participants who are immersed in the setting, and even an
observer may miss the regularities. A striking example is Clancey’s (2001)
analysis of the Haughton-Mars expedition in 1999, revealing that what
people called the “work tent” was most often visited for less than two
minutes, and was in fact primarily a place for storing things. This pattern
was not detected while working inside the tent, but was only clear from
the statistical analysis of the group’s behavior over a day, which time-lapse
video allowed. Thus, some means is required for capturing located behav-
iors over time, so that what individuals are doing becomes visible. The
statistical patterns (e.g., frequency of interruption) may be emergent in the
simulation as it is run for many simulated hours, but one must somehow
learn what activities are occurring. An observer working in a “work tent”
will not easily see all the people coming and going, because they are part
of the background and tuned out like so many gnats. In contrast, a conven-
tional cognitive model is constructed from a task whose parameters are
fully defined by the modeler, and all that must be observed are operations
for transforming the materials or describing the situation.

In summary, a fundamental problem in constructing a model of social
behavior is knowing what everyone is doing at all times. A Brahms model
provides a way of organizing observations (and redesigns), so particular
information can be easily viewed and brought into juxtaposition and re-
lated. Conventional ethnographic text (e.g., field notes or analytic memo)
does not enable relating data in this way. As the examples illustrate, it is
particularly interesting to attempt to discover and replicate frequencies of
recurrent events, such as how often people are interrupted in their work
setting.

4.3 How Individual Behaviors Reflect and Reinforce
Group Dynamics

Throughout the FMARS analysis we have been struck by how individual
behavior ranging from seconds to minutes is sensitive to other people’s
interpretations and actions. A good example is the process by which in-
dividuals stop what they are doing and arrive at the meeting. As known
from common experience, groups tolerate varying degrees of lateness, and
in a situation where communication is possible, as in the FMARS habitat,
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one may negotiate the start of the meeting (“I just need a few minutes to
finish [photographing this rock slice]”).

More interesting is how people notice, through their peripheral aware-
ness of the group arriving at the table, that they must hurry. For example,
someone on the lower deck can hear the difference between four people
at the table and two, and may notice that he/she is now alone. Whether
a meeting starts on time and how an individual may cause others to wait
is a paradigmatic norm for the group. More broadly, how individuals bal-
ance their own agendas as scientists (with papers and sponsors to satisfy)
against the group’s objectives and imposed responsibilities (e.g., chores)
is starkly revealed when individual work is simulated within a day-in-
the-life context. This is a rich phenomenon for further investigation. How
are individuals rationalizing their actions, and where do they draw the
line in compromising or adapting their original plans as problems such as
resource constraints develop within the group?

Finally, the effort to graphically render the FMARS Brahms simulation
has allowed us to model gestures, routes, and field of view, though none of
these are yet incorporated in the simulated agents’ perception and hence
do not affect simulated actions. Research continues to close the loop so
the physics model in BrahmsVE feeds back to the simulation while it is
running, thus routes will affect how long a movement takes, and fields of
view (and hearing) will affect what the agent can perceive. Modeling an
agent’s perception of gestures and relating them to individual behavior
is complex, but is fundamental for relating cognition to social behavior.
Figure 7.7 provides a glimmer of what could be involved.

4.4 Distinguishing Ways of Working Together

Another understanding that has resulted from this work is recognizing that
people are often working together but not collaborating. For example, the
group sometimes sits in the habitat, reading and working on computers
without talking, in effect, “working together alone” (Figure 7.8). They are
cooperating in sharing a resource (the facility), but not working on the
same project.

The FMARS investigation, plus related work studying field scientists
(Clancey, 2004b), has suggested the following distinctions:

� Coordination: Sharing a common resource via scheduling or ordering,
without requiring changes to how individuals or subgroups behave,
e.g., sharing the habitat’s “mess table” during the day. Literally, “co-
ordinating,” ordering in time and place to avoid any possible interfer-
ence with others’ activities.

� Cooperation: Sharing a common resource in a way that requires ad-
justing how individuals or subgroups carry out an activity, e.g., sharing
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figure 7.7. Unusual posture at end of planning meeting. Square standing distri-
bution suggests a balanced or stable relationship. Individuals move into and hold
the encounter in this position. Possibly an important issue is being reconsidered.

space on the table during the meeting. Literally, “co-operating,” oper-
ating in a way that relates individual actions in time and place. Work
flow typically describes how different functional roles cooperate, with
one product feeding into another task.

� Collaboration: Working on a common project, e.g., most of the planning
meeting is devoted to the daily EVA, which will require three or four
members of the crew to work together for half of the day or more.
Literally, “co-laboring,” conceiving and carrying out a single project.
Most generally, this is a triad, two or more agents (or groups) and a
group. The relation is in general asymmetric: A and B collaborate on a
project originated by A (but might do no work together on B’s project).
For example, a geologist may help a biologist do a study in the field, but
the biologist doesn’t contribute to the geologist’s investigation (Clancey
2004b).

“Working quietly in the hab” is a cooperative group activity, in which
individuals pursue their own agendas. In general, the crew’s schedule
is designed to balance collaborations (common projects) with individual
agendas stemming from personal needs and interests (e.g., reading a book
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figure 7.8. The activity of working alone together, an example of cooperating with-
out collaborating. FMARS initial habitation, August 2000.

about the Arctic), disciplinary specialization (e.g., microphotography), and
institutional commitments (e.g., writing a column for a news organization).
Understanding the relation between individual drivers of behavior and
group activities is a fundamental aspect of understanding how cognition
relates to social interactions.

4.5 Summary of Relation Between Cognitive Modeling
and Social Interaction

To summarize the example and discussion to this point, consider some of
the questions posed by Sun (Chapter 1) for relating cognitive modeling
and social interactions:

1) What are the appropriate characteristics of cognitive architectures
for modeling both individual cognitive agents and multi-agent in-
teractions?

Experience constructing six work practice models in Brahms sug-
gests that the following Brahms language features are relevant:
a. Subsumption architecture for conceptualization of activity
b. Physical layout of facilities modeled explicitly; all behaviors are

located



Cognitive Modeling of Social Behaviors 175

c. Communication of beliefs (Ask and Tell)
d. Context-dependent perception (activity-specific detectables)
e. Interruption of activities based on priorities and detected

conditions
f. Model representational objects that agents can read and write

(e.g., documents)
2) What are the fundamental ways of understanding and modeling

multi-agent interactions? How much can they be reduced to indi-
vidual cognition?
a. Reductionism is inappropriate; it is better to begin by asking: How

can patterns of social interactions emerge from individual cogni-
tion and behaviors? What is the nature and role of subconscious
perception of interactions by individuals (cf. Figure 7.7)?

b. Ethnography (participant observation) is the fundamental way
of understanding and modeling multi-agent interactions: pho-
tos, video, time-lapse, activity mapping (person, time, and place)
(Clancey, 2001, 2004a, 2004b; Jordan, 1992; Scribner & Sachs, 1991;
Wynn, 1991).

c. As a heuristic, model at least a day in the life of the group
(24 hours); move to multiple days as soon as practical; especially,
consider the rhythm of a week (Clancey, 2002a).

d. Model both group and individual activities; consider how the
methods for accomplishing goals are adapted in cooperative ac-
tivities; recognize that not all group activities are collaborative.

3) What additional representations are needed in cognitive modeling
of multi-agent interactions?
a. Activities (including motives, goals, and operations) described by

Activity Theory (Leont’ev, 1979)
b. Biological needs (fatigue, hunger, toilet, cold) affect choice of ac-

tivity and manner of carrying it out
c. Perception of posture, attitude, tone of voice, etc. affect relation-

ships (not included in Brahms)
d. Perception of space, line of sight, voices (e.g., to determine paths,

what is visible, what can be heard)
e. Facilities (e.g., lack of proper heating at FMARS, available

work space) influence personal experience and attitude towards
cooperation

4) How can we best characterize and model social relations, structures,
and organizations in relation to individual cognition?
a. See 2nd
b. In a multi-agent simulation, social structure can be modeled in

terms of the activities of groups to which agents belong.
c. Model roles (e.g., meteorologist) and identities (e.g., graduate stu-

dent) as inherited group behaviors.
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d. Model behaviors descriptively: What individuals do when and
where for how long – do not focus on goals and tasks.

e. Model the broad activity chronology of a day and refine to tasks
to the level required for the application of the model.

f. Focus on how group activities begin, the norms for how they are
carried out, and how they are brought to a closing.

g. Attempt to model belief change as much as possible in terms of
communication, perception, and forward-chaining; goal-directed
inference occurs during planning activities (e.g., deciding what to
do next) – observe why and how often it occurs.

h. Do a statistical analysis of where people are located and what they
are doing throughout a day.

i. Observe reminders and peripheral attending (how individuals
keep each other synchronized); group and individual tolerance
for delays.

j. Consider how the group decides whose knowledge will be called
into play and how individual methods of working are facilitated,
blended, or inhibited by the group’s schedule, other goals, or
conflicting modes of operation (e.g., when one is driving in a
caravan during an EVA it may be impossible to stop and take
photographs).

k. Recognize that some social patterns (e.g., paths left by ATVs) may
be perceived and direct individual behavior; others may be only
tacitly conceived and yet be influencing individual behavior (e.g.,
how people arrange themselves and interact, Figures 7.1, 7.2, 7.7,
and 7.8).

This outline resembles more a list of examples than a comprehensive per-
spective and goes beyond what is incorporated in the planning model.
Thus at least from the perspective of this project it represents the edge of
scientific understanding.

4.6 Relation to Newell’s Social Band Framework

One way of appraising progress is to compare the FMARS planning model
to Newell’s (1990) discussion of the “social band” in Unified Theories of
Cognition. Newell’s position was comprehensive and contains many sound
pieces of advice: “models of the individual as intelligent agents interact-
ing with . . . real worlds would seem essential” (p. 493). The aspect of his
analysis that appears perhaps most foreign is the “system levels” called
“bands.” By analogy to physical computer systems, the bands are defined
in terms of time scales, with the social band having “time units” of days
to months (p. 152). In contrast, simulating the most simple norms, such
as standing at a table during a meeting, involves momentary dynamics of



Cognitive Modeling of Social Behaviors 177

perceiving and moving within a conceptualization of the conscious person
(“what I’m doing now,” Clancey, 1999).

Possibly Newell viewed “social” as just meaning direct, physical interac-
tion with others: “As the time scale increases from days to weeks to months,
the systems involved become social. They comprise multiple individuals
in interaction. Humans do not lead solitary lives at the level of days and
above” (p. 154). The idea that all human activity is socially conceived (in terms
of the norms of roles, methods, purpose), so solitary activity is always in-
herently social, was apparently not part of Newell’s notion of social or
his notion of knowledge. He viewed knowledge as “socially conditioned”
(p. 490) as opposed to being formulated in social terms (“who am I being
now?” Clancey, 1997a).

Anderson (2002) makes a similar conclusion: “Newell thought that
issues of cognitive architecture became relatively unimportant at the
Rational Band and were completely irrelevant at the Social Band” (p. 3–4).
Indeed, Anderson disagrees with Newell: “fine-grained temporal factors
at the Biological Band do influence higher-level outcomes” (p. 4). But
Anderson’s analysis focuses on the mechanism of “unit-task” learning,
rather than the individual’s conceptualization of motivation and value (Lave
& Wenger, 1991) – social factors that explain why learning is occurring at
all.

Newell claimed that “the group’s behavior is explainable and pre-
dictable by its use of knowledge in service of its goals” (p. 154). This is
by definition true when one constructs a model that refers to conditional
actions as “knowledge” and describes all behavior as deriving from goals.
However, as shown in this chapter, other kinds of models are possible.
More generally, a group’s behavior is explainable and predictable by 1)
interacting normative behaviors of individuals (e.g., when the planning
meeting begins depends on how long they delay after the commander’s
call to order) and 2) habitual patterns of “how we do things,” which are not
all scheduled or reasoned about in plans (e.g., sharing hot water during
breakfast, allowing people to stand during the middle of a meeting).

Referring to all human behaviors as determined by goals and knowl-
edge seems inappropriate when a day in the life of a group such as the
FMARS crew is considered. The task-goal-knowledge analysis applies best
when people are working on specific tasks, focusing on using laboratory
equipment, downloading and analyzing EVA science data, or preparing a
meal. Put another way, at the time scale of 10 seconds or more – Newell’s
“Intendedly Rational Band” (p. 150) – behavior is both deliberately rea-
soned about and habitually patterned by previous interactions. Although
one may ignore biological impulses during intendedly rational activities
(e.g., continuing to read a fascinating book chapter despite having the
urge to use the bathroom), all behaviors are always in a social context, that
is, they are conceived with respect to social norms, relations, and values.
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People frame their activity in terms of their socially constructed identi-
ties; this determines what they do, when, where, and how, including what
problems they discover or tackle and what methods they use to resolve
them (for elaboration, see Clancey, 2002b).

In summary, the heuristic of modeling a day in the life of a group living
and working together reveals an interaction of biological, task-oriented
cognitive, and social influences that cannot be separated into temporal
bands. Social behavior is not only occurring (or rolling up) over longer
time scales as Newell posits, in the manner of individual actions accumu-
lating into a social history or a person being forced to interact with others
(e.g., going to the store to buy milk). The “bands” in Newell’s analysis are
not isolated systems in practice. Different emergent aspects of the scene (bi-
ological, task-goal oriented, and collective) causally influence each other:

Biology and culture interpenetrate in an inextricable manner. . . . Individuals are
not real and primary, with collectivities . . . merely constructed from their accumu-
lated properties. Cultures make individuals too; neither comes first, neither is more
basic. . . . Thus, we cannot factor a complex social situation into so much biology on
one side, and so much culture on the other. (Gould, 1987, p. 153)

Cognition – whether the person is physically alone or in a group – is im-
mersed in norms and emergent physiological, physical, and cooperative
constraints (Wynn, 1991)4.

4.7 Application to Failure Analysis

Because NASA’s failure analysis reports (e.g., CAIB, 2003) consistently
emphasize social problems, it is worth considering how a Brahms activity
analysis might be useful in understanding or identifying organizational
and cultural problems in a highly structured task setting. One approach
is to represent how people are actually conceiving of a given activity in
broad terms. For example, as MER scientists are working at JPL during
a Mars rover mission, do they conceive of their activity as geologists ex-
ploring Mars or see the mission through the eyes of the “flight control”
team operating a rover? How do these conceptions interact as concerns
in practice and influence the quality of the outcome from scientific and
engineering perspectives? Notice how this analysis is different from a task
model that frames the problem in one way (e.g., controlling the rover) or
uses a multi-tasking or linear architecture (e.g., first I solve the geology
planning problem, then I solve the flight control sequencing problem). In
practice, these tasks are not strictly partitioned into different roles, nor
when they are separated organizationally can the constraints be strictly

4 For a more detailed discussion, see the chapter “Dialectic Mechanism” in Clancey (1997b)
as well as the discussion of Maturana’s “structural coupling” (p. 89).
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ordered. An activity analysis asks how a given individual might be blend-
ing alternative ways of perceiving, interpreting, and acting, such that they
experience conflicts in their judgment (e.g., as a geologist, I’d first take a
look over the top of this crater I’m standing in and possibly return, but the
mission success criteria imply that the rover’s path must omit loops). In a
task analysis, these are just “conflicting goals.”

One purpose of a social simulation of work practices is to under-
stand how “intendedly rational” behaviors fail to accomplish goals within
broader time scales because behavior derives from norms and emotions,
and not just local reasoning about technical matters. An example appears
in the Columbia Accident Investigation Board Report (2003), involving a man-
agement meeting that reviewed and accepted a faulty damage analysis.
People based decisions on previous interpretations of similar problems
and scheduling constraints for subsequent launches. A social analysis is
required to explain why knowledge and concerns of individuals and sub-
teams were not brought to bear. In this case the norms of management
prevented specialists from getting data they needed to support their ten-
tative damage analyses, creating a Catch-22 situation.

The Columbia disaster highlights how the group’s roles, schedules,
and even representational practices (e.g., PowerPoint bullets; Tufte, 2003,
pp. 7–11) determine the salience of events – how to evaluate a situation,
what effects are important, and hence what constitutes a problem and how
or to what extent it is resolved. The FMARS models shows how cognitive
modeling might apply to real-world applications by developing a multi-
agent simulation, with multiple groups interacting over a day or more. Just
as conventional task analysis works backwards from goals to knowledge,
an activity-based analysis works backwards from the quality of the work
product (e.g., ways in which it fails) to the representations (e.g., presen-
tations at meetings), interactive patterns (e.g., how time is allocated dur-
ing a meeting), and norms of authority that influence who may speak to
whom about what, when, and where. Modeling these relations and effects
in Brahms in a general way is an open research problem.

How were people during the Columbia management meetings conceiv-
ing of their activity? Planning for the next launch or trying to return the
crew safely? Were they conceiving the meeting as managing the agenda
(i.e., controlling who participates and how) or trying to ferret out and
understand anomalies? Of special interest to the Columbia analysis are in-
formal (not role or task-defined) communications by which people assist
or influence each other, a consideration naturally revealed when a mod-
eler focuses on describing behaviors instead of only goals and inferences.
In other words, communication of information is not necessarily trace-
able to missing or wrong technical knowledge, but instead will point to
misconceptions about practice, a presumption about how the work is sup-
posed to be done, including especially lines of authority and when and how
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people are allowed to influence the group’s work. Thus modeling how peo-
ple conceive of their activity, which is always pervaded by social relations,
is essential for explaining human behavior. This is a very different kind of
cognitive model than emphasized heretofore in understanding expertise
and problem solving ability.

5 summary

Simulating an FMARS planning meeting in Brahms produced several
surprises:
� “Off-task” activities of eating, resting, using the toilet, and recreation

(e.g., playing games or talking at the table) must be included in a work
practice simulation because they causally affect the duration, timing,
and methods by which tasks are accomplished.

� Characteristics and experiences of people often studied by human fac-
tor specialists (e.g., hunger and fatigue), which are typically excluded
from cognitive models, must be included in a work practice simulation
because they determine when off-task activities occur.

� Everyday behaviors, such as getting something to eat, are carried out
according to norms, but improvised in a way (e.g., standing while eating
during a meeting) that exercise the open nature of norms, while possibly
accomplishing many goals simultaneously. Such behaviors appear to
blend rituals or habits with both premeditated intentions and emergent
affects (e.g., calling attention to oneself and hence being better able to
influence the decisions being made).

� The non-immersive virtual display of BrahmsVE, which was at first
considered to be only a “visualization tool,” provides a means of simu-
lating line of sight and movement paths – information that is essential
for simulating what agents can detect in the environment and how long
movement between two points requires.

The heuristics of modeling a full “day in the life” of the habitat and simu-
lating all agent movements and use of tools were crucial for making these
discoveries.

The modeling experiment shed a different light on what cognition ac-
complishes and how perception and action are related through concep-
tualization of activity. For example, a conventional cognitive model of a
planning meeting would focus on the discourse structure of the meeting’s
conversation. Such fine-grained explanations of topic relationships, based
on the semantics of what is being presented, explained, and decided, might
be improved by including what the FMARS model focused upon: postures
(e.g., which may convey boredom or disagreement to participants), transi-
tional activities (e.g., how individual agent behaviors become coordinated
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into a coherent group activity), and biological motives (e.g., fatigue, which
may affect the meeting’s agenda).

In some respects, behaviors emphasized in the FMARS model might
be viewed as noise in a conventional discourse model. For example, it
might appear humorous to ask a cognitive modeler, “What if the person
is hungry and doesn’t want to continue talking?” Cognitive simulations
often assume that people are motivated (i.e., the goals of the task at hand are
not in question) and that work occurs in a controlled setting. The FMARS
simulation emphasizes that the context includes people’s activities, which
have both broad and narrow forms that influence what goals and methods
are established, how they are adapted – affecting the quality of the resulting
work.

This chapter has focused on what can be learned from the use of a virtual
environment interface, the methodology of constructing a Brahms model
of practice, how individual behaviors reflect and reinforce group dynam-
ics, the relation of cognitive modeling and social interaction, and what can
be learned by reconsidering Newell’s social band framework. The exam-
ples throughout illustrate many aspects of behavior that protocol analysis
would not consider because they are visual relationships (e.g., how people
stand when talking), off-task (i.e., would not be included in an experimen-
tal setting that presents a task to a subject), and conceptualizations that are
not articulated in common experience or sought in task-oriented studies
(e.g., understanding of norms, how participation is negotiated).

The observational methodology used in the FMARS study includes both
systematic (e.g., time lapse video) and informal (e.g., field notes) records. By
design, the recording is intended to record and learn more than can practi-
cally be analyzed, and thus (perhaps) include information that is only later
found to be useful (as illustrated by the analysis of the July 13, 2001 plan-
ning meeting). Clancey (in preparation, in press) shows how time-lapse,
diaries, and surveys can be systematically recorded and analyzed to pro-
duce information about productivity and work system design problems.

The focus of the FMARS simulation is to provide a proof of concept that
the simulation can fit what actually occurs. The main criteria used were
the episodes visible on the time lapse (e.g., movement of crew members
during the planning meeting for different reasons) and the duration of
events. As discussed in considering CC’s report of his crew experiences,
to more thoroughly verify the model would require simulating at least
a week, which is well beyond what modeling resources have permitted.
The present model includes three episodes identified as recurrent and in-
volving distinctive combinations of attention and interpersonal interac-
tion (the planning meeting, refilling the water tank, and preparing for an
EVA; Clancey, 2002a). From the perspective of practical design and ongo-
ing Mars analog investigations, the most important scientific product of
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such research is identifying new issues to systematically study (e.g., the
frequency of interruptions; Clancey, in press).

Although cognition is sometimes considered narrowly as relating goals,
inference, and actions, cognitive science (as represented by the journal and
society of that name) more broadly includes perception, the nature of con-
ceptualization, social interaction during learning, and many other topics.
This chapter focuses on relating collective (social) behavior to individual
cognition (involving perception, motive, and action) by emphasizing that
individual behaviors are conceptually coordinated with respect to an un-
derstanding of norms. Such an investigation touches upon the nature of
culture, as embodied in individuals (Lave, 1988), and realized in episodes
that exercise, extend, test, and interpret other people’s conception of how
to behave. These normative behaviors include: What topics should be dis-
cussed when, by whom, and using what tools?

Thus, the analysis presented is part of a much larger project that might
examine the decisions made during the planning meeting, and tie them to
interpretations of the group’s role structure, competing motivations, and so
on. This analysis would again be primarily episodic until many such meet-
ings had been analyzed and statistically related. The FMARS 2001 rotation
studied here ended after a week, and the group never lived or worked to-
gether again. Developing a full-fledged theory of such social interactions
may therefore require a series of related studies in other contexts.

Finally, the FMARS modeling experiment illustrates what mechanisms
other than backward chaining of goals capture, given a focus on simulating
the activities of a typical day, rather than automating a task. The project
revealed the relation of different levels of analysis (biological, psycholog-
ical, social). A contrast can be drawn with multi-agent models that focus
on functional actions. For example, Brahms’ design was inspired by the
Phoenix system (Cohen et al., 1989), which showed how an environment
model of a fire-fighting setting interacted with a hierarchal communica-
tion and command structure. If modeling fire-fighting in Brahms using the
same approach used for FMARS, one would model the entire day, includ-
ing where the fire-fighters camp, how meals are prepared, how they are
transported to the work site, etc. This day-in-the-life model would comple-
ment Cohen’s multi-agent task analysis, revealing how mundane activities
are interleaved with and constrain how work is actually done.

Understanding the nature and influence of individual emotions, agen-
das, preferences, ambitions, etc. is a significant next step. Thus, the intersec-
tion of cognitive and social analyses broadens the research perspective –
from what knowledge is required to accomplish a task, to why certain
people are participating at all. How do leaders in high-risk situations man-
age fear and temerity in assigning individuals to tasks? To allowing some-
one to present a contrary view and plan to the group? A question for
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cognitive modeling then becomes, what knowledge and motives affect
who is allowed to participate and in what manner?
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Cognitive Agents Interacting in Real
and Virtual Worlds

Bradley J. Best and Christian Lebiere

1 introduction

This chapter describes agents, based on the ACT-R cognitive architecture,
which operate in real robotic and virtual synthetic domains. The virtual
and robotic task domains discussed here share nearly identical challenges
from the agent modeling perspective. Most importantly, these domains
involve agents that interact with humans and each other in real-time in
a three-dimensional space. This chapter describes a unified approach to
developing ACT-R agents for these environments that takes advantage of
the synergies presented by these environments.

In both domains, agents must be able to perceive the space they move
through (i.e., architecture, terrain, obstacles, objects, vehicles, etc.). In some
cases the information available from perception is raw sensor data, whereas
in other cases it is at a much higher level of abstraction. Similarly, in both
domains actions can be specified and implemented at a very low level (e.g.,
through the movement of individual actuators or simulated limbs) or at
a much higher level of abstraction (e.g., moving to a particular location,
which depends on other low-level actions).

Controlling programs for both robots and synthetic agents must operate
on some representation of the external environment that is created through
the processing of sensory input. Thus, the internal robotic representation
of the external world is in effect a simulated virtual environment. Many of
the problems in robotics then hinge on being able to create a sufficiently
rich and abstract internal representation of the world from sensor data
that captures the essential nuances necessary to perceive properly (e.g.,
perceiving a rock rather than a thousand individual pixels from a camera
sensor bitmap) and a sufficiently abstract representation of actions to allow
it to act properly.

Robotic and virtual platforms must deal with the vision problem, ei-
ther by bypassing it (e.g., through the use of radio beacons to mark paths,

186
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structured data describing architecture, and volumetric solids), or by solv-
ing relevant problems in vision (producing a depth map from stereo cam-
eras, segmenting images, identifying objects, etc.). Virtual synthetic do-
mains may make bypassing some of the issues in vision straightforward
but this is not a given – some virtual environments may simply present an
agent with raw sensor data such as a bitmap. In either case, the problem is
the same: producing a representation of the environment from raw sensor
data that the agent can use to reason with. Although this representation
will have its own problems (uncertainty, incomplete information, nonmon-
tonic changes, etc.) and should not be viewed as an idealized version of
the underlying reality, it is nonetheless essential in insulating higher-level
processes from the details of lower-level processes and providing a layered
way for complex cognitive agents to interact with a complex world, reflect-
ing the earlier insights of Marr (1982) in the nature of visual information
processing.

Actions the agent can take in the environment range from domain-
general actions such as locomotion to domain-specific actions such as
weapon loading, and span levels of abstraction from very low-level ac-
tions such as changing wheel actuator velocities or changing a virtual pose
to higher-level actions such as movement from point to point. Domain-
general high-level actions such as locomotion are typically abstracted in
both environments such that a simple API with high-level commands will
produce equivalent movements in both a virtual environment and on a
robotic platform.

In the cases of both perception and action, though the low-level imple-
mentation of an action or the processing of a sensory input will be differ-
ent in the two domains, the high-level specification may remain the same.
These parallels between real robotic and synthetic virtual domains encour-
aged the development of a common platform allowing the same agents to
be developed and deployed in either robotic or virtual domains. This will
in turn facilitate the development of increasingly large and complex teams
of agents to populate both real world entities and virtual avatars.

2 act-r

ACT-R is a unified architecture of cognition developed over the last 30 years
at Carnegie Mellon University. At a fine-grained scale it has accounted for
hundreds of phenomena from the cognitive psychology and human factors
literature. The most recent version, ACT-R 5.0, is a modular architecture
composed of interacting modules for declarative memory, perceptual sys-
tems such as vision and audition modules, and motor systems such as
manual and speech modules, all synchronized through a central produc-
tion system (see Figure 8.1). This modular view of cognition is a reflection
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figure 8.1. ACT-R architecture.

both of functional constraints and of recent advances in neuroscience con-
cerning the localization of brain functions. ACT-R is also a hybrid system
that combines a tractable symbolic level that enables the easy specification
of complex cognitive functions, with a subsymbolic level that tunes itself
to the statistical structure of the environment to provide the graded char-
acteristics of cognition such as adaptivity, robustness, and stochasticity.

The central part of the architecture is the production module. A produc-
tion can match the contents of any combination of buffers, including the
goal, which holds the current context and intentions, the retrieval buffer,
which holds the most recent chunk retrieved from declarative memory, vi-
sual and auditory buffers, which hold the current sensory information, and
the manual buffer, which holds the current state of the motor module (e.g.
walking, firing, etc.). The highest-rated matching production is selected to
effect a change in one or more buffers, which in turn trigger an action in
the corresponding module(s). This can be an external action (e.g., move-
ment) or an internal action (e.g., requesting information from memory).
Retrieval from memory is initiated by a production specifying a pattern
for matching in declarative memory. Each chunk competes for retrieval,
with the most active chunk selected and returned in the retrieval buffer.
The activation of a chunk is a function of its past frequency and recency of
use, the degree to which it matches the requested pattern, plus stochastic
noise. Those factors confer memory retrievals, and behavior in general,
desirable “soft” properties such as adaptivity to changing circumstances,
generalization to similar situations, and variability (Anderson & Lebiere,
1998).
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The current goal is a central concept in ACT-R, which as a result pro-
vides strong support for goal-directed behavior. However, the most recent
version of the architecture (ACT-R 5.0) is less goal-focused than its pre-
decessors by allowing productions to match to any source of information,
including the current goal, information retrieved from declarative memory,
objects in the focus of attention of the perceptual modules, and the state
of the action modules. This emphasis on asynchronous pattern matching
of a wide variety of information sources better enables ACT-R to operate
and react efficiently in a dynamic fast-changing world through flexible
goal-directed behavior that gives equal weight to internal and external
sources of information.

There are three main distinctions in the ACT-R architecture. First, there
is the procedural-declarative distinction that specifies two types of knowl-
edge structures – chunks for representing declarative knowledge and pro-
ductions for representing procedural knowledge. Second, there is the sym-
bolic level, which contains the declarative and procedural knowledge, and
the sub-symbolic level of neural activation processes that determine the
speed and success of access to chunks and productions. Finally, there is
a distinction between the performance processes by which the symbolic
and sub-symbolic layers map onto behavior and the learning processes by
which these layers change with experience.

Human cognition can be characterized as having two principal compo-
nents: (1) the knowledge and procedures codified through specific train-
ing within the domain, and (2) the natural cognitive abilities that manifest
themselves in tasks as diverse as memory, reasoning, planning, and learn-
ing. The fundamental advantage of an integrated architecture like ACT-R
is that it provides a framework for modeling basic human cognition and
integrating it with specific domain knowledge.

The advantage of a symbolic system like ACT-R’s production system
is that, unlike connectionist systems for example, it can readily represent
and apply symbolic knowledge of the type specified by domain experts
(e.g., rules specifying what to do in a given condition, a type of knowl-
edge particularly well-suited for representation as production rules). In
ACT-R, performance described by symbolic knowledge is mediated by
parameters at the sub-symbolic level that determine the availability and
applicability of symbolic knowledge. Those parameters underlie ACT-R’s
theory of memory, providing effects such as decay, priming, and strength-
ening, which make cognition adaptive, stochastic, and approximate, ca-
pable of generalization to new situations and robustness in the face of
uncertainty. Those qualities provide ACT-R models with capacities of in-
ference, planning, reasoning, learning, and decision-making that are both
powerful and general without the computational complexity and spe-
cialization of standard AI techniques (e.g., Sanner, Anderson, Lebiere, &
Lovett, 2000).
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3 using a cognitive architecture to create agents
for virtual and robotic environments

One major goal of this work was to provide training opponents for Mili-
tary Operations in Urban Terrain (MOUT) scenarios rendered in a virtual
environment. The state of the art in both commercial gaming packages and
virtual training systems is the use of finite state machines for behavioral
control. Finite state machines provide simplicity of development, but at
the cost of producing brittle behavior, combinatorial explosions of poten-
tial state transitions as the number of states increase, and low levels of
realism and variability. Teamwork among synthetic opponents is often ei-
ther lacking or completely absent. Anecdotally, human players often learn
to game the finite state machine and take advantage of the idiosyncrasies
of the opponents.

Rather than basing behavior on finite state machines, we have chosen
to use the ACT-R architecture as the basis for cognitive agents with the
intent of maximizing realism, adaptivity, unpredictability, and teamwork.
These properties are a natural aspect of human performance in many task
environments, and as such are also an inherent aspect of the ACT-R ar-
chitecture, making it a good match for creating agents to play the role of
opponents in the MOUT domain in particular, and for creating agents that
simulate human behavior in general.

ACT-R also provides a platform for simulating the way humans rep-
resent space and navigate about it (e.g., Schunn & Harrison, 2001). Many
of the pitfalls of robotic performance in the field involve behavior that
would never be conceived of by a human in the same situation. Recogni-
tion of this has inspired the creation of robotic agents that simulate a human
in the same situation as the robot with a goal of producing robust robot
behaviors. Selecting a representation of the environment that is psycho-
logically plausible enables portability by leveraging the flexibility of the
human cognitive and perceptual systems: people can effortlessly switch
from navigating their own bodies in space to controlling virtual entities
in a computer simulation to remotely teleoperating robotic platforms in
real-world environments. An agent endowed with a reasonable facsimile
of the spatial and cognitive abilities of humans ought to be able to as well,
requiring changes only in the low-level layers that provide information to
and act upon the orders of that agent.

4 simulation platforms

A major trend in modeling and simulation is the use of gaming platforms
for use in research. Using a gaming platform to provide a virtual environ-
ment, however, provides many of the same opportunities and challenges
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figure 8.2. Two agents prepare to enter room.

as working on a robotic platform. The parallels and differences between
these two types of platforms are discussed below.

4.1 Unreal Tournament (UT) as a Platform for MOUT

The UT environment (see Figure 8.2) can easily be used to construct a basic
urban battlefield – buildings, the areas around them, and the areas beneath
them. UT supports a range of built-in weapons including those meant
to simulate military weapons (such as rifles, grenades, rocket launchers,
handguns, and machine guns), as well as others that are non-violent (such
as bubble wands, nets, etc.), either directly as part of the game or as part
of freely available “mods.”

UT allows for a wide range of player motion and action. Weapons can be
picked up, thrown down, and often used in different modes (e.g., shoot-
ing from the hip with the handgun is fast but inaccurate). Players may
crouch, jump, pivot, sidestep, run, swim, look up or down, and even feign
death. Messages in the form of text may be freely transferred from one
player to another, from a player to all players on the same team, or from a
player to all players in the game. This allows simulation of radio commu-
nication within a team or spoken communication between players.

Unreal Tournament handles multi-user games by means of a client-
server architecture, allowing multiple agents running on separate
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figure 8.3. ActivMedia Pioneer P3-DX robot.

machines to interact via the virtual environment. The client provides static
information about the map in which the agent is playing (i.e., architecture)
whereas the server sends messages to the client regarding dynamic ele-
ments, such as objects that can be picked up and other players that are in
the immediate environment of the agent.

Creating a synthetic agent involves opening a TCP/IP socket to the UT
server and creating a process that catches and handles the messages that
the server sends. Any messages received or sent on a socket affect only the
agent for which it was created. This interface allows for the isolation of
agents from each other, forcing interaction to take place through the game
itself (e.g., through text messaging between agents), providing an equal
footing for both humans and agents.

4.2 ActivMedia Robotics as a Platform

The ActivMedia robotics platform is a platform for mobile robotics that
consists of controlling software and a range of physical robots including
all-terrain robots, high-payload robots, human-interaction robots, team
robots, and the robot used in this project: the Pioneer P3-DX, a general-
purpose robot (see Figure 8.3).

Available perceptual inputs (sensors) for the P3-DX include sonar, ladar,
contact bumpers, video cameras, range-finding infrared, stereo cameras,
and compasses and gyros (as well as various actuator sensors). Available
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action outputs (actuators) include the wheel motors, a speaker, pan-tilt-
zoom camera controls, a gripper, and a robotic arm.

The ActivMedia software provides APIs that allows for access to low-
level raw sensor data and high-level processed sensor data. Similarly, ac-
tions can be specified through the APIs as either high-level actions, such
as move to an (x, y) position, or low-level actions such as changes in wheel
motor velocity. The high-level action APIs permit a straightforward
mapping of the synthetic agent API for ACT-R UT bots directly onto the
ActivMedia APIs.

The controlling software includes a simulation environment for the
robot to allow faster testing and prototyping of control code without the
need to run the real robot, or to be in the actual location being tested. The
simulated ActivMedia platform provides reasonably high fidelity and in-
cludes aspects of the real platform such as sensor noise and wheel slippage.

4.3 Time Synchronization Details for UT and ActivMedia

Unlike many production systems, ACT-R exactly specifies the real-world
timing of production matching and execution to the millisecond (a result
of its role as a high-fidelity theory of human cognition). The explicit tim-
ing of ACT-R events allows for a straightforward integration of an ACT-R
agent with a real-time simulation environment. At the beginning of each
cycle, ACT-R is provided with an up-to-date representation of the simu-
lation environment, and ACT-R is allowed to perform whatever action it
chooses. The ACT-R clock is then advanced by the amount of time con-
sumed by the action, and ACT-R will not be called for another recognize-
act cycle until the simulated time has moved beyond the current ACT-R
time.

The effect of this scheme is that the cognitive agent always lags slightly
behind the real world. If updates are passed from the simulation to ACT-
R at a reasonably high frequency (e.g., 10 Hz), the effect of this lag is
negligible (and, in fact, roughly matches the latency of the human visual
system). Thus, the ACT-R system acts on information that is, on average,
slightly out of date but is never perceived before it could exist (updates are
never early).

In the time synchronization scheme used, ACT-R is allowed to produce
an immediate action, subject to the communication lag between ACT-R
and the network infrastructure across which the agent is communicating
with the simulation. In this case the network latency combined with the
real time required to run an ACT-R cycle approximates the actual time
required for an action. For the real-time systems described here, there is
no obvious need for a more complicated mechanism (the agents can, for
example, successfully track targets in real-time).
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5 the mout domain: requirements for intelligent
agents in military operations on urban terrain
(mout) and close quarter battle (cqb) domains

MOUT environments are distinguished from the terrain of rural battlefields
by the dominant features of densely packed manmade structures and mul-
tiple avenues of approach. MOUT tactics have been developed through the
analysis of historical urban conflict and extrapolation to the capabilities of
modern soldiers. These tactics prescribe methods for clearing blocks of
buildings, individual buildings, floors in buildings, and individual rooms
and hallways. Important aspects of terrain in MOUT environments in-
clude fields of view, the closely related fields of fire (which depend on the
available weapons and the field of view), available cover and concealment,
obstacles to navigation, available lighting, and avenues of approach and
escape. Close-quarter fighting in and around buildings makes command
and control extremely difficult. The main approach to this problem is to
systematically clear zones in the battlefield, sector by sector, with certain
units assigned to particular zones, and the use of clear and explicit pro-
cedures implemented by small teams. The work described here involves
the implementation of collaborative doctrinal tactics at the level of the
individual infantry soldier by intelligent agents.

Doctrinal MOUT tactics are extremely well-defined. Movement tech-
niques taught in MOUT training specify how to move while reducing the
exposure to enemy fire. Open areas between buildings are crossed along
the shortest possible path. Movement inside building hallways is done
along the walls instead of down the center of the hallway with support-
ing personnel leapfrogging each other, alternating covering and moving.
Clearing techniques specify which teammates will direct fire where, and
how to arrange units prior to room entry.

As an example of the specificity involved in this training, in a doctrinal
room entrance, a pair of soldiers assumes a “stacked” position along the
wall outside the doorway. The lead soldier directs his weapon towards the
far corner whereas the second soldier steps around and behind them and
tosses a grenade into the room. The use of a grenade is signaled to other
assault team members nonverbally if possible, but otherwise verbally. After
grenade detonation, the first shooter steps through the doorway (one step
away from the wall, two steps in) and clears their immediate area using
weapon fire if necessary. The second shooter (who was stacked behind)
steps through the doorway, buttonhooks, and clears their section of the
room. Both shooters start from the outside corners and rotate towards the
center wall, eventually converging after supressing any threats. A second
two-person team provides covering fire and security in the hallway behind
the first team. The clearing team and covering team also communicate
with a series of doctrinal statements, such as “Clear,” “Coming out,” etc.
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Though there are many variations, it is worth noting the explicit nature of
the teamwork involved.

Clearing hallways is similarly well specified. To clear an L-shaped hall-
way, a team of two soldiers will each take one wall of the initial portion of
the hall. The soldier on the far wall will advance to just before the inter-
section whereas the soldier on the near wall parallels this movement. The
soldiers then, on a signal, move together into the hallway, one crouching
and the other standing, clearing all targets.

Modeling the continuum of behavior from structured doctrinal behavior
to unstructured reactive behavior allows testing a range of opposing force
behaviors against the expected doctrinal strategy. Unlike friendly force
behaviors, opposing force behavior is not well specified and ranges from
coordinated, planned attacks by well-trained forces who carefully aim their
weapons to disorganized sporadic attacks from enemies using the “pray
and spray” weapon discharge technique. Thus, opposing forces should be
capable of using doctrinal techniques, but also should be free to diverge
substantially from them.

5.1 Doctrinal Approaches to Building Clearing – Case Study:
Clearing an L-Shaped Hallway

The vignette described here involves a pair of soldiers starting at the end of
an L-shaped hallway whose mission is to clear the floor of opposing forces.
The friendly forces employ doctrinal tactics and first clear the hallway it-
self using the covering movements described earlier. The cleared hallway
presents the soldiers with several doorways. The soldiers then stack them-
selves at the doorways, enter the room (also described earlier), and clear
any inner rooms discovered.

Opposing forces return fire if they are cornered or run and escape if
they can (while firing some poorly aimed shots). These forces are very
reactive compared to the friendly forces. Their planning is limited to the
hiding spots and defensive positions they initially assumed – their goal is
to defend the building they are in. As they spot the entering soldiers, they
hastily fire a shot or two while falling back. When cornered, they dig in
and fight (one of many possible scenarios).

5.2 Sample ACT-R Models

An overall ACT-R model for building clearing involves components that
handle route planning (e.g., clear the first floor, then the second, etc.), spec-
ify what to do on hostile contact, and include doctrinal approaches to
many subtasks within the domain. Space limitations preclude detailing a
complete building clearing agent, so instead agents involved in clearing
an L-shaped hallway will be focused on clearing it. The possible actions
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encoded by agents that are faced with an L-shaped corner in a hallway will
be detailed for one set of attacking agents and one set of defending agents.
Below are English abstractions of some of the relevant productions used
in ACT-R models for the attacking force and the opposing force:

Opposing Force Sample Productions:

1. If there is an enemy in sight and there is no escape route then shoot
at the enemy.

2. If there is an enemy in sight and there is an escape route then set a
goal to escape along that route.

3. If there is a goal to escape along a route and there is an enemy in
sight then shoot at the enemy and withdraw along the route

Attacking Force Productions (a space is a room or hallway):

1. If there is a goal to clear a building and there is an entrance to the
current space that has not been cleared and it is closer than any other
entrance to the current space that has not been cleared then set a goal
to clear the adjoining space through that entrance.

2. If there is a goal to clear a space and an enemy is in sight then shoot
at the enemy.

3. If there is a goal to clear a space and I am the lead shooter then take
up position on the near side of the entrance to that space.

4. If there is a goal to clear a space and I am the second shooter then
get behind the lead shooter.

5. If there is a goal to clear a space and I am the lead shooter and I
am positioned at the entrance and the second shooter is positioned
behind me then signal to the second shooter to move, step into the
entrance, and clear the area to the left.

6. If there is a goal to clear a space and I am the lead shooter and I
am positioned at the entrance and the second shooter is positioned
behind me then signal to the second shooter to move, step into the
entrance, and clear the area to the right.

7. If there is a goal to clear a space and the lead shooter has signaled to
enter the space then step into the entrance and clear the area to the
opposite side of the lead shooter.

8. If there is a goal to clear a space and I am the lead shooter and there
is no enemy in sight then pan towards the opposite corner.

9. If there is a goal to clear a space and I am the lead shooter and I have
panned to the second shooter and there are no enemies in sight then
signal to the second shooter that the space is clear and note that the
space is cleared.

10. If there is a goal to clear a space and the current space is cleared and
there is no other entrance to the space that has not been cleared then
remove the goal to clear the space and return to the adjoining space
through the entrance.
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Note that productions 5 and 6 differ only by which way they specify to
move. This allows for variability of behavior – either of these two produc-
tions can match the conditions for entering a room. The conflict resolution
process will decide which of these productions will fire in any given sit-
uation. The basis for that decision will be each production’s utility. Those
utilities, even if the system learns them to be different, have a stochastic
component that will make the choice probabilistic, though not random
because it is sensitive to the quality of each choice.

6 getting around the vision problem

Much of the previous discussion presupposes a working real-time per-
ceptual system that provides a useful description of where enemies and
friendly forces are, and how the surrounding architecture is arranged.
Although substantial progress has been made in the field of computer
vision in the last decade, real-time algorithms for space perception and
object identification are not yet realities. This necessitates bypassing the
vision problem. In many synthetic environments, object identity and loc-
ation are passed to agents in the domain as structured symbolic data
rather than as image-based data. This allows these agents to perform as
if they had the results of high-level vision. In robotic domains it is more
common to develop a special-purpose sensor and provide a distinct cue
for that sensor in the location where the object of interest is. For exam-
ple, a researcher could hang a large blue square on a piano and identify
all large blue squares as pianos. Alternatively, a researcher could place
a radio beacon on a location and identify that location as the piece of
cheese in a maze (or the intercontinental ballistic missile to destroy). In
both of these examples, the robot does not perceive the actual target of
the identification, but rather an easier-to-identify stand-in. This section
will elaborate on the methods used for the ACT-R MOUT agents and
the ACT-R ActivMedia agents for getting from the basic sensor data pro-
vided by the simulation to a high-level representation usable in a cognitive
agent.

6.1 Extracting Cognitive Primitives in Unreal Tournament

For an agent to navigate and act within a space it must have a represen-
tation of the environment that supports these actions, with more com-
plex planning and teamwork requiring a more complete representation of
space. This representation can be constructed from basic elements available
within the particular virtual environment, in this case UT.

The representation we have used is generated from a process that can be
divided into two parts: (1) a low-level implementation-dependent feature
extraction process, and (2) a method for translating this to a model-level
representation usable by the agent. Although the extraction process will
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vary for each environment the abstract representation is implementation-
independent. Implementations on other platforms would focus on extract-
ing low-level primitives available in that environment and mapping them
onto the model-level representation.

The low-level spatial primitives available in UT are fairly sparse, be-
ing limited primarily to a range-finding mechanism. The challenge was
to use this mechanism to automatically build up a cognitively plausible
representation of space that could be used across platforms.

6.2 Sampling the Space

One of the messages that can be sent from an agent is a request for informa-
tion on whether a particular point in UT space (using a three-dimensional
x, y, z coordinate system) is reachable in a straight line from the current
location of the agent. This mechanism can be used to determine the bound-
aries of walls. Given a current location, it is possible to extend a ray out
from this point and at various points along the ray query the UT engine.
Eventually, traveling out on a ray from the current location, because a UT
level is a finite space that is bounded by unreachable borders, a point will
be far enough away that it is unreachable. The transition from reachable to
unreachable defines a boundary between open space and some solid object
(e.g., a wall) (see Figure 8.4).

From a particular location, an agent can perform this range sensing in
any direction (this is analogous to laser range sensing as provided on the
ActivMedia platform). By standing in one place and rotating, an agent can
determine the distance to the outer edges of the space it is in. If an agent
also moves to other parts of the space, it is possible to sample all of the
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figure 8.4. Sampled range sensing data.
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figure 8.5. Parametric form of line equation.

available spaces in a UT level. The model reported here uses three-
dimensional sampling to allow for the detection of upward sloping ramps,
stairs, etc.

6.3 Converting Sampled Points to a Line Segment Representation

The ActivMedia platform provides utility programs to produce a line seg-
ment representation from sampled sensor data, reducing this process to a
single step. Unfortunately, the Unreal Tournament environment does not
provide this facility, making the derivation of a line segment representation
from sensor data a more laborious process, described in detail here.

Given a set of points that fall along walls on a map, determining which
point falls on which wall and how to group them can be solved using a
method known as the Hough transform (e.g., Illingworth & Kittler, 1988).
The equation of a line can be represented in the following parametric form:

r = x cos θ + y sin θ

In this form, r represents the distance from the origin to the line along the
normal, and theta (θ ) represents the angle between the normal to the line
and the x axis.

With a large number of points, it is possible to search the parameter
space for line equations that many points could potentially fall on. Using
this technique, each individual point will provide several values of r as
theta (θ) is iterated across. Given a particular x, y, and theta, the resulting
r gives an index into the accumulator array that is incremented to indicate
a solution for this point. These parameters (r and theta) represent the lines



200 Bradley J. Best and Christian Lebiere

figure 8.6. Candidate lines voted for by points.

crossing through that point. If two points in space are processed in this
way, each will individually vote for several values of R and theta, but the
only value of r and theta that receives votes from both points will be the
line they both fall on.

Continuing this process with each new point, the accumulator array will
be incremented the most at locations corresponding to line equations that
cross through many of the points, resulting in a set of cells that correspond
to lines that intersect large numbers of the input points.

6.4 An Autonomous Mapping Agent for UT

Based on the sensor to line-segment process described in the sections
above, we developed an autonomous mapping agent for UT that navigates
the environment and gradually builds a representation of the space (see
Figure 8.7).

Using the range-sensing data as the only spatial primitive, and a
Hough transform to detect straight lines within the data, a cognitive-level
description that consists of walls, corners, rooms, and openings is

figure 8.7. Autonomous mapping process.



Cognitive Agents Interacting in Real and Virtual Worlds 201

constructed. From this static representation, the dynamic perceptual pres-
ence of architectural primitives relative to the agents’ current location can
be determined in real-time (Best et al., 2002).

6.5 Mapping for ActivMedia Robotics Platforms

The robotic platform presents a nearly identical challenge to UT in sam-
pling the space. Unlike Unreal Tournament, however, the ActivMedia plat-
form provides direct support for obtaining a line-segment representation
of a particular environment, making the development of an automated
map-building agent unnecessary. Mapping may be accomplished in sev-
eral ways on the ActivMedia platform. The robots are packaged with a
utility that allows them to randomly wander, sampling the space as they
go. Due to the lack of guidance in this wandering, maps derived in this
way are often very incomplete. The alternative, and likely the most com-
mon approach, is for a human operator to teleoperate the robot during this
process. In this case, the operator essentially pilots the robot around the
spaces to be mapped, ensuring the robot enters all of the corners, openings,
and dead ends to provide complete coverage of the space.

6.6 Data Structures: Line Segments, Bounding Volumes, and Binary
Space Partitioning Trees

At this point in building the spatial representation, there is a set of wall
segments defined by endpoints and openings (doors) aligned with those
wall segments. Searching for the walls that bound a location and deter-
mining which walls are visible from a particular location can be aided by
a data structure called a binary space partitioning tree (BSP tree).

A BSP tree represents space hierarchically. In the two-dimensional case,
each node in the tree subdivides the space recursively with a splitting
plane aligned with a wall segment. The root node in the BSP tree divides
the whole plane with a line. Given the normal to that line, every point
on the plane is either in front of, behind, or on the line. This node has
two children: one child further subdivides the front half-space of the plane
whereas the other child subdivides the back half-space of the plane. This
recursive subdivision continues until all of the segments have been used as
splitters. The resulting data structure provides a means for computation-
ally efficient determination of visibility determination that can be used to
quickly determine the visible surfaces of the space surrounding an agent.

6.7 Algorithms for Calculating Analytic Visibility

Although many algorithms for calculating analytic visibility exist, many
of them are too computationally expensive to be used in real-time. One
way around this difficulty, and the approach we have taken here, is the
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figure 8.8. BSP Tree Splits map along wall segments.

use of a BSP tree for computing visibility. The primary benefit of the BSP
tree representation is that it guarantees that an in-order tree traversal will
draw edges in the tree in either front to back or back to front visibility
order, so that no edge will ever be drawn before a potentially occluding
edge is drawn. This allows the fast calculation of walls and obstructions vis-
ible from a particular vantage point by traversing the tree in-order, which
results in drawing walls from front to back (i.e., closest walls first), and
short-circuiting the process when all of the space around the agent is en-
closed by an occluding wall. This technique is an extension of a z-buffer
technique where the tree traversal is done when all of the pixels in the
buffer have been drawn once.

7 cognitive representation of space and perception:
egocentric and allocentric representations
of distance and bearing

To perceive, react, navigate, and plan, it is necessary for the agents to have
a robust spatial representation. Like people, agents can represent things in
two fundamental ways: where something is relative to the agent’s location,
or egocentrically (e.g., something is to my left); or where something is in
absolute terms relative to a world coordinate system, or allocentrically
(e.g., something is at a particular latitude/longitude).

The egocentric representation of an item used includes both the distance
to the item and relative bearing, in both quantitative and qualitative terms
(see Figure 8.9). A qualitative distance is how distant something is relative
to the current visual horizon, and ranges across a set of logarithmically
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figure 8.9. Cognitive representation of space used by agents.

spaced rings denoted “here,” “near,” “far,” and “very far,” whereas a quan-
titative distance is the distance to the object in numerical units (e.g., 7 meters
away). Bearing is represented quantitatively as absolute compass bearing
to target relative to current orientation (e.g., 30 degrees to the left, 5 degrees
up), and qualitatively as “right,” “left,” “ahead,” “behind,” or any of the
four intermediate bearings “ahead right,” “ahead left,” “behind right,” or
“behind left.”

The allocentric representation of an item includes the location of an item
in the world coordinate system (in this case, x, y, and z) and potentially
its orientation relative to that coordinate system (pitch, yaw, and roll – the
angles relative to the axes). An allocentric representation is particularly
important in reference to maps (which are typically defined relative to
some world coordinate system), and correspondingly to navigation tasks.

Many of the doctrinal rules for MOUT can be spelled out clearly using
an egocentric representation. For example, the following describes how to
employ the cross method of clearing a room:

When employing the cross method, two Marines position themselves on either
side of the entryway. Each Marine faces into the room covering the corner of the
room opposite his position. On a prearranged signal, each Marine alternately enters
the room. Each Marine crosses quickly to the opposite corner while covering the
half of the room toward which he is moving. Once in the near corner, he assumes
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an outboard kneeling position to reduce his silhouette and continues to maintain
coverage of his half of the room. (MWCP, p. A-34)

However, for other purposes, the use of an allocentric representation
is preferable to an egocentric representation. For instance, tasks such as
navigation need a representation of the features in a global frame of ref-
erence that allows for computations (such as the path between a given
room and the exit of the building) independently of the current location
and its immediate environment. The challenge is to integrate the two rep-
resentations, using each where it is best while maintaining consistency
between them. That integration takes the form of an accumulation of ego-
centric information provided at each instant that is particularly useful for
reactive behavior into a global, persistent map of the environment in an al-
locentric representation suitable for navigation and other global planning
behaviors.

8 navigation

Navigation is one of the most essential tasks an agent must undertake
in a spatial environment. Navigation is accomplished through combining
basic locomotive behavior with the immediate results of perception – that
which is perceived at that moment – and interaction with a memory-based
cognitive map of the environment.

8.1 Navigational Primitives

Locomotion is simply moving from one location to another. This is a fun-
damental behavior that need not be attended to once it is initiated, and
thus may occur in parallel with other activities. The basic behavior of lo-
comotion involves commencing movement to a location, the continuation
of that movement while not at the destination, the abandonment of that
movement if an obstacle, or threat is encountered or a change in plans
is initiated, and the cessation of movement upon arrival at the destina-
tion. Locomotion can be performed in several modes: walking, running,
stalking, and sidestepping while facing another direction.

8.2 Higher-Order Navigational Behavior

Higher-order navigational behavior involves an interaction of the cognitive
map of the environment (the allocentric reference frame) with the current
visual scene (egocentric cues) and memory for goals and past events (paths
followed and destinations). As such, it represents a significant theoretical
challenge in both cognitive psychology (Klatzky, 1998) and robotics (Beetz,
2002; Frank, 2000).
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Agents in this simulation use a node-link representation for rooms and
pathways between them. Attacking agents build up a representation of
rooms visited and episodic traces of items and other agents seen there.
When moving from the current room through a doorway to a new room,
the agent creates a chunk in declarative memory corresponding to that path
allowing an overall map to be built. Defending agents, who are assumed
to have intimate knowledge of the area to be defended, are given a com-
plete representation of the rooms and pathways connecting them allowing
them to fluidly and quickly choose paths for attack and escape that real
defenders would have knowledge of (but attackers would not).

8.3 The Interaction of Memory and Perception in Navigation

Although memory for paths exists in a complete form in the defenders’
declarative memories, the attackers may be forced to rely on other meth-
ods. In addition to remembering the path followed, attackers may also
encode individual moves at particular situations. This is similar to the
heuristic applied by some people who “retrace their footsteps” when try-
ing to find their way. These previous moves include actions relative to
landmarks (e.g., turn left at the L-shaped hall), actions relative to an allo-
centric frame (e.g., proceed at a compass bearing of 90 degrees), or actions
relative to an egocentric frame (e.g., turn left 45 degrees). These represen-
tations are complementary, and are typically used by people as the context
allows. Landmarks are often preferred, but in a situation where landmarks
are impoverished, people quickly adopt the other strategies. If going to
a house in a subdivision where all of the houses look alike, people com-
monly depend on memory for the moves such as “turn left at the second
street in the subdivision and go to the fourth house on the right.” In a
navigation context, an allocentric frame such as that encoded in a map is
often used. This is particularly useful in military situations for exchanging
information about threats, destinations, and movements, because allocen-
tric coordinates such as GPS coordinates are unambiguous, whereas ego-
centric coordinates depend on knowing the egocentric orientation of the
perceiver and are therefore often less useful.

9 communication

Planning, as presented above, requires at the least the ability for agents
to signal each other. We have provided a grammar that the agents use
to communicate that includes signaling, acknowledgment, sending and
receiving orders, communication of intention, and specification of the type
and location of a contact (e.g., friendly fire, from location (x, y, z)).

The most fundamental of these, simple communication, involves the
passing of signals and the acknowledgment of their receipt. For example,
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saying “On the count of three, go” requires the receipt of the signal
“three” while ignoring other signals. In the UT environment, this is im-
plemented by passing text messages between the agents. Although the
agents could have passed tokens in a coded language, the agents use actual
English phrases for readability and extensibility to interactions with human
players.

The passing of orders initiates execution of schematic plans. These plans
include actions such as clearing an L-shaped hallway, supplying covering
fire, moving to a particular location, standing guard, providing assistance
in storming a particular room, or retreating from overwhelming fire. These
schematic plans depend on doctrinally defined simple communications.
For example, when storming a room, attackers typically “stack” outside
the doorway. Attackers in front are signaled by the attackers behind that
they are in position to enter the room, obviating the need to turn away
from a potentially hazardous entrance at a critical moment. Although it is
possible for real combatants to signal each other non-verbally (e.g., with a
touch on the back), agents in this environment are limited to the passing
of text messages.

In addition to orders, agents can also share information, such as a spot
report of enemy activity. A spot report includes a brief description of the
enemy forces spotted including their numbers and armament if known,
their location, and their movement (if any). Other agents may use this
information to provide coordinated ambushes and attacks.

10 implementing planning and teamwork
in act-r for mout

Within the framework developed for this project, a set of productions in-
terprets the schema within the current context, leading to a literal inter-
pretation of the schema for that context. In this way, an abstract plan plus
a context results in a set of concrete actions. This allows the abstract plan
to be fairly brief and vague until the agent actually selects it to be put into
action. At that point, the plan will be instantiated in a manner consistent
with the details of the current situation.

The current modeling effort includes plans for a team of two for clear-
ing: rooms with and without doors, halls, L-corners, T-intersections, and
stairs. In addition, plans are included for advancing and retreating in a
leapfrog style, and for firing a defensive shot in an attempt to cause casu-
alties immediately prior to escaping (cut and run). A sample chart of the
interactions of two agents clearing an L-shaped hallway is presented in
Figure 8.10.

At each step of the plan, agents perform an action, communicate, or
wait for a predetermined signal or length of time before moving on to
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figure 8.10. Schematic representation of plan to clear L-shaped hallway.

their next action. In this way, the agents synchronize their actions taking
turns appropriately. The plans the agents adhere to are not ad-hoc but in-
stead come directly from doctrinal MOUT documents. Doctrine typically
not only specifies how one agent should be positioned relative to another
for activities such as clearing L-shaped halls but even specifies the exact
language to be used in this situation. This knowledge is typically a set of
steps spelled out in declarative form with the particular actions, triggers,
and synchronization of action all clearly defined. Given the cookbook na-
ture of some of these doctrinal maneuvers, we noticed an opportunity to
create an authoring tool to aid in the conversion of doctrine to cognitive
models.

The model for the agents described here was authored like a typical
ACT-R model. However, the knowledge structures, especially declarative
chunks of information and production rules, were written using an abstract
notation rather typical of production systems. Table 8.1 presents a typical
example of a production rule and related chunks:

The production implements the sequential retrieval of a piece of an
action plan, and the declarative chunks represent some of those action
pieces. The situation involves two agents, L for Leader and F for Follower,
moving in coordinated fashion through a sequence of positions and ac-
tions, as shown in Figure 8.10. Their various positions are indicated by
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table 8.1. Production Rule Used in Planning and
Relevant Chunks Representing a Plan.

(p get-next-action (action11
=goal> isa action

isa action plan 1
plan =plan index 1
index =index type move
type nil argument 11)
argument nil (action 12

=action> isa action
isa action plan 1
plan =plan index 2
index =index type wait
type =type argument go)
argument =argument (action13

==> isa action
=goal> plan 1

index (1+ =index) index 3
type =type type end
argument =argument) argument none)

an index. Solid arrows between successive positions indicate movement.
Dotted arrows indicate when an agent waits for the other to have per-
formed an action (such as reached a position) to proceed with the next step
of its plan. Dashed arrows indicate synchronized actions between the two
agents. Other codes specific to the domain can be added to the graphical
interface in a modular fashion.

All those codes transform readily into a piece of the plan for each agent as
encoded in declarative chunks in Table 8.1. Each chunk contains a number
of slots. The index of the plan, plan, and the index of each action, index,
can easily be supplied automatically by the interface. The nature of the
action, type, depends on the code used in the graphical interface, e.g. a
solid line would translate into a move action, etc. A list of interfaces codes
and associated actions can simply be encoded into the interface for each
domain. The last slot, argument, is an action qualifier, such as where to
move, e.g. to position L2. This argument represents the most difficult part
of the mapping, because obviously one does not want to encode a specific
location but instead one that will generalize to similar situations (in this
case, the position nearest the corner of the L-shaped hallway). Humans,
even non-experts, usually understand readily a set of spatial relationships
between the various positions and landmarks to generalize them across
situations, e.g., to symmetrical situations. The challenge before us is to
provide in the model a sufficient knowledge base to supply those spatial
relationships automatically.



Cognitive Agents Interacting in Real and Virtual Worlds 209

table 8.2. Schematic Plan for Clearing an L-Corner.

(p get-next-action (action-L1
=goal> isa action

isa action plan take-L-corner
plan =plan index 1
index =index type move
type nil argument inside-corner)
argument nil (action-L2

=action> isa action
isa action plan take-L-corner
plan =plan index 2
index =index type wait
type =type argument go)
argument =argument (action-L3

==> isa action
=goal> plan take-L-corner

index (1+ =index) index 3
type =type type move
argument =argument) argument around-corner)

10.1 Schematic Plans

A large part of the teamwork exhibited by these agents hinges on shar-
ing common knowledge about how to approach certain tasks. The details
on how to do this come directly from military doctrinal manuals (e.g., see
MCWP in the references) and are routinely taught to trainees as part of their
fundamental training. Each agent knows, as a trained human combatant
does, what actions to perform when playing any of the roles in different
scripts. This knowledge is stored as a set of chunks in declarative memory
of the agent. These chunks, analogous to a schema, are a somewhat general
description of what to do in a certain situation. The details are then filled
in by productions that interpret the declarative script given the currently
perceived environmental context. Table 8.2 gives an example of a produc-
tion that selects the next step in an action plan as well as three steps of the
plan.

Plans in which an abstract script is filled with details later are sometimes
referred to as “skeletal plans,” or sometimes simply as “scripts” (Stefik,
1995). We have chosen to use “schematic plans,” because the plans we are
dealing with here have a spatial component, and are most easily visualized
using a schematic diagram.

For example, when clearing an L-shaped hallway, the procedure for
clearing the hallway is well-defined (see Figure 8.10). A pair of attackers
will split up and take position along the front wall (agent L in the diagram)
and back wall (agent F) respectively. Agent L then moves forward close
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figure 8.11. Agent viewing teammate preparing to clear L-shaped corner.

to the corner as agent F waits for a signal. Once in position, agent L sig-
nals agent F to move. Agent F then advances to a position almost directly
across the hall from agent L. At this point, agent L waits for F to signal the
next move. Upon agent F’s signal, L and F simultaneously move into the
hallway, L staying close to the corner and dropping to a crouch whereas
F sidesteps along the back wall. This brings both of their weapons to bear
on the hallway simultaneously, although allowing both of them an unob-
structed field of fire including the whole hallway.

These schematic plans, then, are scripts with a spatial component that
describe how multiple agents are expected to work together in a particular
situation. For both human combatants and agents, this bypasses the poten-
tially deadly inefficiency of trying to decide what to do at each step. Each
agent knows what to do, and what to expect from a partner. Signals are
predefined and the potential for confusion is relatively low. The MOUT
environment provides a clear example of a domain where teamwork is
explicitly taught at a fine level of detail. A visual snapshot of two agents
performing this script in UT is presented in Figure 8.11 (viewed from the
perspective of one of the agents).
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figure 8.12. Hierarchical plan levels and components.

10.2 Hierarchical and Partial Planning

Due to the dynamic nature of the task environment, it is not possible to fully
develop a plan prior to performing the first actions. Instead, a rough plan
consisting of abstract steps is developed. The abstract steps themselves can
be implemented by the schematic plans described earlier. In turn, individ-
ual actions to accomplish the schematic plans are combined with elements
from declarative memory and perception to form an action plan on an as-
needed basis (see Figure 8.12 for a diagram of the hierarchical planning
framework). This provides flexibility and robustness in the actual actions
taken because they are planned with the immediately perceived context in
mind.

This method of planning has roots in means-ends analysis and has much
in common with skeletal planning and hierarchical match algorithms (see
Stefik, 1995, for a discussion of this). Because the plan can be modified at
several abstract levels, it may be better described as hierarchical planning.
However, the individual action steps themselves are highly constrained
whereas the planning at the more abstract levels is less constrained. This
significantly reduces planning complexity as the sequence of action nodes
is most often predefined by a schematic plan. The interesting implication
is that human combatants have developed schematic plans to deal with
exactly those situations that present many options. In any case, this type
of hierarchical planning, modified by on-the-fly circumstances, provides
planned, goal-directed behavior that is sensitive to context. The abstract
plan of clearing the two floors will not change under most circumstances,
but the details of carrying out these steps often cannot be known in advance
(Schank & Abelson, 1977). This provides an efficient compromise between
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figure 8.13. Proceduralization of retrievals.

the need for flexibility in robustly adapting one’s behavior to unforeseen
(and unforeseeable) circumstances with the need for efficiency in executing
any actions in dealing with immediate threats. This tradeoff is represen-
tative of many everyday though less dramatic human environments, e.g.
driving.

11 proceduralization, generalization, and flexibility

Plans of action are represented in the form of a list of declarative chunks
(see Table 8.2 for an instance) each representing a particular step of action
such as moving to a location, waiting for a partner, firing at a target, etc. The
execution of those plans takes the form illustrated in Figure 8.13. Each cycle
consists of a production firing requesting the retrieval of the next step (PR),
the retrieval itself (Ret), then one or more production firings implementing
that course of action (PA).

Although production firings are quite rapid (usually taking about 50 mil-
liseconds), retrieval of a chunk of information from declarative memory
typically takes several hundreds of milliseconds. This corresponds to a
poorly trained opponent who consistently thinks about his actions rather
than simply executing them. To represent a better trained opponent able
to execute plans of action much more quickly and efficiently, one can take
advantage of a feature of the ACT-R architecture that compiles consecutive
productions, together with an intervening information request such as re-
trieval from memory, into a single production (PC), specialized to the task
at hand, which can then fire much more quickly than the series of interpre-
tive steps that it replaced. However, one feature of declarative retrievals is
the ability to generalize to related situations based on similarities between
components such as distances, angles, appearances, etc. This is quite useful
in applying plans of action flexibly to situations that do not quite match
the original design. Therefore, to allow proceduralized plans to retain the
flexibility of interpreted plans, we need to provide production rules with
the same kind of flexible matching primitives as declarative memory.

Perhaps the most significant difficulty in authoring production system
models (e.g. expert systems) is specifying the conditions under which
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productions can apply. Because of the lack of a conventional control struc-
ture, it is often difficult for the author to forecast exactly the full range of
symbolic conditions under which an action is applicable. Moreover, in dy-
namic, approximate and uncertain domains (such as a MOUT simulation),
the all-or-none symbolic conditions (i.e. either specify a specific value re-
quired or else no restriction on that value) that determine production rules’
applicability have significant limitations in capturing the loose range of
conditions under which a behavior might be applicable. What is desired is
the ability to specify a canonical case for which a production is applicable,
then have the production system generalize it to related situations.

A similar need for flexibility on matching chunks of information in
declarative memory has long been recognized and addressed with the
addition of a partial matching mechanism to memory retrieval, allowing
chunks that only partially match the desired pattern specified by a produc-
tion retrieval request to qualify for matching. A chunk’s activation, which
represents in ACT-R the likelihood of a chunk being relevant to a partic-
ular situation, is decreased by the amount of mismatch, thereby reducing
the probability of retrieving that chunk but not eliminating it altogether.
The similarity values used in specifying partial matches between chunk
values can be viewed as a high-level equivalent to distributed represen-
tations (specifically, to the dot product between representation vectors) in
PDP networks. It seems logical to implement the same mechanism for pro-
duction rule matching, thereby emphasizing the symmetry between the
declarative and procedural parts of architecture by unifying their match-
ing mechanisms. Practically, this allows pieces of knowledge that were
specified and used as declarative instances to seamlessly transition to pro-
duction rules.

Currently, only production rules whose conditions match perfectly to
the current state of various information buffers (goal, memory retrieval,
perceptual, etc.) qualify to enter the conflict set. Because ACT-R specifies
that only one production can fire at a time, the rule with the highest ex-
pected utility is selected from the conflict set as the one to fire. The utility
of a production rule is learned by a Bayesian mechanism as a function of
its past history to reflect the probability and cost of achieving its goal. In a
manner similar to partial matching in declarative memory, all rules (sub-
ject to types of restrictions for tractability reasons) will now be applicable
but the new mechanism of production rule matching will scale the utility
of a rule by the degree to which its conditions match the current state of
the buffers. Specifically, the scale utility (SUp) of a rule p is specified as:

SUp = Up +
∑

conds

MP · Simvd Scaled Utility Equation

where Up is the usual utility of the rule, and the penalty term is a product
of MP, a mismatch scaling constant, and Simvd , the similarity between the
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actual value v present in a buffer and the desired value d specified in the
production condition, summed over all production conditions. Similarities
are 0 for a perfect match, leading to no change in production utility, and
negative for less-than-perfect matches, leading to decrement in utility that
lowers the probability of the rule being selected with the degree of mis-
match. The mismatch penalty MP can be seen as a regulating factor, with
large values trending towards the usual all-or-none symbolic matching.

Our experiences using this mechanism, show that it succeeds in pro-
viding the desired approximate and adaptive quality for production rule
matching. All things being equal, productions will generalize equally
around their ideal applicability condition. However, productions with
higher utility will have a broader range of applicability, up to the point
where they reach their limits and failures lower their utility, thereby pro-
viding a learning mechanism for the range of applicability of production
rules. Moreover, the range of applicability of a production rule will be a
function of the presence of production rules with similar competing con-
ditions. In the initial learning of a new domain, a few production rules will
be generalized broadly as all-purpose heuristics. As more knowledge of
the domain is accumulated and new production rules created, the range of
application of those rules will be increasingly restricted.

Using this modification to the ACT-R production-matching scheme, no
“hard” boundaries exist between conditions for matching productions; the
boundaries are instead continuous. For example, if production A is appro-
priate when a doorway is to the front, whereas production B is appropriate
when a doorway is to the left side, both productions may match when a
doorway is both ahead and to the left. Although specifying directions such
as “left” as a range makes it possible to match a production in a symbolic
system to a range of situations, specifying “left” as a precise direction and
allowing productions to match based on similarity to that condition allows
both cleaner specification of the underlying representation (i.e., “left” is
90 degrees to the left instead of between 45 degrees and 135 degrees to the
left), and easier authoring of the productions with a reduction in unwanted
interactions between pieces of procedural knowledge. In this case, if the
author later decided that a new production, production C, was appropri-
ate when a doorway was ahead and to the left, adding the new production
C to the system would result in that production predominating over the
others without any revision of productions A and B.

This feature has significant theoretical and practical importance, because
it imbues the ACT-R architecture with many of the properties of a case-
based reasoning system, or a fuzzy matching rule-based system (similar
to the similarity-based reasoning proposed in Sun, 1995). Partial matching
in procedural memory allows ACT-R to automatically select the closest
(imperfectly) matching production in a case where no production is ex-
actly appropriate. This provides similarity based generalization where the
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figure 8.14. Production selection frequency by similarity to condition.

similarity metric can be determined from a psychologically appropriate
model of the stimulus domain (e.g., logarithmic scales to determine sim-
ilarity in the size of geometric solids). On the practical side, this feature
allows the ACT-R pattern matcher to select the most appropriate produc-
tion when faced with a novel situation, and can provide a substantial boost
to robustness by preventing the system from falling into a behavioral black
hole where, as no rule is exactly applicable, it does nothing.

12 action vs. reaction

The schematic plans outlined earlier indicate that the system is capable of
goal-directed activity. However, in a real-time system such as this, the en-
vironment may change in a way that is incompatible with the current goal.
As an example, an agent may have a goal to move towards the doorway
of an unexplored room. If an enemy enters the hallway within sight, the
agent clearly should abandon exploration and deal with the threat. ACT-R
5.0 provides a mechanism built into the architecture that allows for inter-
ruption by critical events – multiple buffers. In this case, a buffer is used
to keep track of any perceived threats. Exploratory behavior continues in
the absence of a threat, but once a threat is perceived, the perception of the
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threat interrupts the current system goal and forces the agent to deal with
the threat (though the agent could then choose to ignore the threat, that
choice still must be made explicitly).

Similarly, occasionally it is desirable to simultaneously pursue two
goals. For example, while moving from one location to another, an informa-
tional message may be received. Although it would be simple to abandon
the movement to handle the incoming transmission, the preferred solu-
tion is to continue the agent’s movement while handling the transmission.
This is also accomplished through the use of a buffer for keeping track of
an initiated movement. The human behavioral equivalent is driving from
place to place – often once the drive is initiated, other goal-directed be-
havior occurs without interrupting the drive. It is not that the two goals
are being serviced at the same time but that the pursuit of compatible si-
multaneous goals can be achieved without simultaneous actions – actions
can be interleaved through the use of architectural primitives such as goal
retrievals and buffer switching, which do not provide all-powerful ways
to multi-task but instead a knowledge-based, robust, and flexible way to
reconcile goal-directed and reactive behavior.

13 summary

The focus of this work has been the development of agents capable of inter-
acting in small teams within a spatial domain and real-time environments.
The social interactions within these domains are particularly well-defined
and cooperation is either ensured (in the case of teammates in a military
domain or a robot assistant in a robotic domain), or deliberately avoided
(in the case of opponents). Teamwork, in these cases, depends on the ability
to share interleaved plans, the ability to effectively communicate the inten-
tion to execute a plan and the current step involved, and the ability to share
a representation for describing the surrounding space. Cognitive modeling
in these domains provides for straightforward implementation of human
behavior that provides a demonstration of how explicit fully-committed
teamwork functions. The cognitive models discussed in this chapter will
hopefully enable the abstraction of deeper principles of teamwork from
a fully-specified domain that can then be generalized to domains where
things are not spelled out quite so literally.

In addition to the emphasis on teamwork, this chapter has brought out
what we believe to be a significant synergy in research efforts for virtual
synthetic and real robotic platforms. In this case we have demonstrated
that the same framework for action and perception at the cognitive level
used in the ACT-R agents discussed earlier can be used to control behavior
in both virtual and robotic domains. By insulating low-level perception
and action from higher-level cognition through a principled, cognitively
plausible spatial and motor representation, we have shown that a mature,
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validated cognitive architecture can be used to provide robust high-level
behavior in a broad range of spatial environments, real and virtual. Agents
built in this manner are insulated from an overly tight dependency on the
low-level details of their environment, providing the opportunity for reuse
of models or parts of models across environments, thereby allowing the
porting of previously validated models at a low relative effort.
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Modeling Social Emotions and Social Attributions

Jonathan Gratch, Wenji Mao, and Stacy Marsella

1 introduction

Emotions play a crucial role in mediating human social relationships
(Davidson, Scherer, & Goldsmith, 2003). Whether articulated through body
movements, voice, deed, or through the ways we justify our actions, hu-
man relationships are laden with emotion. Emotion can act as a signal,
communicating information about the sender’s mental state, indicating
his or her future actions, and indirectly inducing emotions in the mind of
observers.Emotion can also act as a mental process, altering how people
see the world, how they form decisions, and how they respond to the en-
vironment. In our work we seek to develop testable computational models
that emphasize the relationship between emotion and cognition (Gratch
& Marsella, 2001; Marsella & Gratch, 2003). In this chapter, we focus on
emotions that have a social component: the rage arising from a perceived
offence, the guilt we feel after harming another. Such emotions arise from
social explanations involving judgments not only of causality but inten-
tion and free will (Shaver, 1985). These explanations underlie how we act
on and make sense of the social world. In short, they lie at the heart of
social intelligence. With the advance of multi-agent systems, user inter-
faces, and human-like agents, it is increasingly important to reason about
this uniquely human-centric form of social inference. Here we relate recent
progress in modeling such socio-emotional judgments.

Modeling emotions is a relatively recent focus in artificial intelligence
and cognitive modeling and deserves some motivation. Although such
models can ideally inform our understanding of human behavior, we see
the development of computational models of emotion as a core research
focus that will facilitate advances in the large array of computational sys-
tems that model, interpret or influence human behavior. On the one hand,
modeling applications must account for how people behave when ex-
periencing intense emotion including disaster preparedness (e.g., when
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modeling how crowds react in a disaster (Silverman, 2002)), training (e.g.,
when modeling how military units respond in a battle (Gratch & Marsella,
2003)), and even macro-economic models (e.g., when modeling the eco-
nomic impact of traumatic events such as 9/11 or the SARS epidemic). On
the other hand, many applications presume the ability to correctly inter-
pret the beliefs, motives and intentions underlying human behavior (such
as tutoring systems, dialog systems, mixed-initiative planning systems,
or systems that learn from observation) and could benefit from a model
of how emotion motivates action, distorts perception and inference, and
communicates information about mental state. Emotions play a powerful
role in social influence, a better understanding of which would benefit ap-
plications that attempt to shape human behavior, such as psychotherapy
applications (Marsella, Johnson, & LaBore, 2000; Rothbaum et al., 1999),
tutoring systems (Lester, Stone, & Stelling, 1999; Ryokai, Vaucelle, & Cas-
sell, in press; Shaw, Johnson, & Ganeshan, 1999), and marketing applica-
tions (André, Rist, Mulken, & Klesen, 2000; Cassell, Bickmore, Campbell,
Vilhjálmsson, & Yan, 2000). Lastly, models of emotion may give insight
into building models of intelligent behavior in general. Several authors
have argued that emotional influences that seem irrational on the surface
have important social and cognitive functions that would be required by
any intelligent system (Damasio, 1994; Minsky, 1986; Oatley & Johnson-
Laird, 1987; Simon, 1967; Sloman & Croucher, 1981). For example, social
emotions such as anger and guilt may reflect a mechanism that improves
group utility by minimizing social conflicts, and thereby explains people’s
“irrational” choices in social games such as prison’s dilemma (Frank, 1988).
Similarly, “delusional” coping strategies such as wishful thinking may re-
flect a rational mechanism that is more accurately accounting for certain
social costs (Mele, 2001).

1.1 Virtual Humans and “Broad” Cognitive Models

Although much of cognitive science and cognitive modeling has focused
on accurately modeling relatively narrow psychological phenomena, our
work is part of a growing trend to demonstrate cognitive models within
the context of “broad agents” that must simultaneously exhibit multiple
aspects of human behavior (Anderson & Lebiere, 2003). Arguably, the
most ambitious of such efforts focus on the problem of developing virtual
humans, intelligent systems with a human-like graphical manifestation.
Building a virtual human is a multi-disciplinary effort, joining traditional
artificial intelligence problems with a range of issues from computer graph-
ics to social science. Virtual humans must act and react in their simulated
environment, drawing on the disciplines of automated reasoning and plan-
ning. To hold a conversation, they must exploit the full gamut of natural
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figure 9.1. Two applications that use virtual humans to teach people to cope with
emotionally-charged social situations. The image on the left illustrates the first au-
thor interacting through natural language with the MRE system, designed to teach
leadership skills. The image on the left is from Carmen’s Bright Ideas (Marsella,
Johnson, & LaBore, 2003), developed by the third author, and designed to teach
coping skills to parents of pediatric cancer patients.

language research, from speech recognition and natural language under-
standing to natural language generation and speech synthesis. Providing
human bodies that can be controlled in real time delves into computer
graphics and animation. And because a virtual human looks like a hu-
man, people readily detect and are disturbed by discrepancies from human
norms. Thus, virtual human research must draw heavily on psychology
and communication theory to appropriately convey non-verbal behavior,
emotion, and personality. Through their breadth and integrated nature,
virtual humans provide a unique tool for assessing cognitive models.

In developing computational models of emotional phenomena, we focus
on models that can influence and exploit the wide range of capabilities that
a virtual human provides. In particular, we have used emotion models to
mediate the cognitive and communicative behavior of virtual humans in
the context of the Mission Rehearsal Exercise (MRE) training system. In
this system, students can engage in face-to-face spoken interaction with the
virtual humans in high-stress social settings (Figure 9.1 left) (Gratch, 2000;
Gratch & Marsella, 2001; Marsella & Gratch, 2002, 2003; Rickel et al., 2002).
Emotional models help create the non-verbal communicative behavior and
cognitive biases one might expect if trainees were interacting with real
people in similar high-stress settings. Our scenarios focus on dialog and
group decision-making, rather than physical action, so the focus of our
emotional models is on cognitive source of emotions, emotion’s influence
on cognition (decision-making, planning, and beliefs) and external verbal
and non-verbal communicative behavior that reflect the virtual human’s
emotional state.
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1.2 Social Emotions

Allowing naı̈ve users to freely interact with a broad cognitive model can
quickly reveal its limitations, and the work described here is motivated
by the following example of “novel” emotional reasoning on the part of
our virtual humans. In the Mission Rehearsal Exercise, trainees have the
opportunity to make bad decisions. In one instance, a human user issued
a particular flawed order to his virtual subordinate. The subordinate sug-
gested a better alternative, but when this was rejected, the subordinate, in
turn, ordered lower level units to execute the flawed order. Rather than
blaming the trainee, however, the virtual human assigned blame to the
lower-level characters that executed the plan.In contrast, human observers
universally assign blame to the trainee, as the subordinate was clearly fol-
lowing orders and even attempted to negotiate for a different outcome.
The virtual human’s “novel” attribution of blame was traced to some sim-
plifying assumptions in the model: the model assigns blame to whoever
actually executes an act with undesirable consequence. In this case, how-
ever, the action was clearly coerced. Such results indicate an impoverished
capacity to judge credit or blame in a social context. How we addressed
this limitation is the subject of the second half of this chapter.

1.3 Overview

This chapter provides an overview of EMA (named after Emotion and
Adaptation by Lazarus (1991)), our current model of emotion, and then
describes our efforts to extend the model with respect to its ability to
reason about social (multi-agent) actions. The following section gives a
review of cognitive appraisal theory, the theoretical underpinning of our
model. Next, we outline our current computational approach, and then
contrast our model with related work and describes some limitations. A
discussion of how we can extend the model to better account for attribu-
tions of social credit and blame follows. Some concluding remarks end the
chapter.

2 cognitive appraisal theory (a review)

Motivated by the need to model the influence of emotion on symbolic
reasoning, we draw theoretical inspiration from cognitive appraisal the-
ory, a theory that emphasizes the cognitive and symbolic influences of
emotion and the underlying processes that lead to this influence (K. R.
Scherer, Schorr, & Johnstone, 2001) in contrast to models that emphasize
lower-level processes such as drives and physiological effects (Velásquez,
1998). In particular, our work is informed by Smith and Lazarus’ cognitive-
motivational-emotive theory (Smith & Lazarus, 1990).
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Appraisal theories argue that emotion arises from two basic processes:
appraisal and coping. Appraisal is the process by which a person assesses
his or her overall relationship with the environment, including not only
current conditions, but events that led to this state and future prospects. Ap-
praisal theories argue that appraisal, although not a deliberative process in
itself, is informed by cognitive processes and, in particular, those process in-
volved in understanding and interacting with the environment (e.g., plan-
ning, explanation, perception, memory, linguistic processes). Appraisal
maps characteristics of these disparate processes into a common set of in-
termediate terms called appraisal variables. These variables serve as an inter-
mediate description of the person–environment relationship and mediate
between stimuli and response. Appraisal variables characterize the signifi-
cance of events from an individual’s perspective. Events do not have signif-
icance in and of themselves, but only by virtue of their interpretation in the
context of an individual’s beliefs, desires and intention, and past events.

Coping determines how the organism responds to the appraised signif-
icance of events, preferring different responses depending on how events
are appraised (Peacock & Wong, 1990). For example, events appraised as
undesirable but controllable motivate people to develop and execute plans
to reverse these circumstances. On the other hand, events appraised as un-
controllable lead people toward denial or resignation. Appraisal theories
typically characterize the wide range of human coping responses into two
classes. Problem-focused coping strategies attempt to change the environ-
ment. Emotion-focused coping (Lazarus, 1991) are inner-directed strategies
that alter one’s mental stance towards the circumstances, for example, by
discounting a potential threat or abandoning a cherished goal.

The ultimate effect of these strategies is a change in a person’s inter-
pretation of his or her relationship with the environment, which can lead
to new (re-)appraisals. Thus, coping, cognition, and appraisal are tightly
coupled, interacting and unfolding over time (Lazarus, 1991; K. Scherer,
1984); an agent may “feel” distress for an event (appraisal), which moti-
vates the shifting of blame (coping), which leads to anger (re-appraisal). A
key challenge for a computational model is to capture this dynamics.

3 a computational model of appraisal and coping

EMA is a computational model of emotion processing that we have
been developing and refining over the last few years (Gratch, 2000;
Gratch & Marsella, 2001, 2004a; Marsella & Gratch, 2003). EMA is im-
plemented within Soar, a general architecture for developing cognitive
models (Newell, 1990; Chapter 3 of this book). Here, we sketch the basic
outlines of the model and some of the details of its Soar implementation.
Soar is intended to model the mixture of parallel and sequential reasoning
that has been posited to underlie human cognition and can be seen as a
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figure 9.2. EMA’s reinterpretation of Smith and Lazarus.

blackboard model. It provides an unstructured working memory (in terms
of objects with attributes and values that can be other objects). Persistent
changes to working memory are made by operators that are proposed in
parallel but selected sequentially and are intended to model the sequential
bottleneck of deliberative reasoning. Elaboration rules fire rapidly and in
parallel and make transitory elaborations to working memory. Soar also
provides a model of learning via a chunking mechanism and a model of
universal subgoaling, though these last two features do not play a role in
our current model.

3.1 EMA Overview

A central tenet in cognitive appraisal theories in general, and Smith and
Lazarus’ work in particular, is that appraisal and coping center around a
person’s interpretation of their relationship with the environment (See Fig-
ure 9.2.). This interpretation is constructed by cognitive processes, main-
tained in a working memory, summarized by appraisal variables and
altered by coping responses. To capture this interpretative process in com-
putational terms, we have found it most natural to build on decision-
theoretic planning representations (e.g., (Blythe, 1999)) and on methods
that explicitly model commitments to beliefs and intentions (Bratman,
1990; Grosz & Kraus, 1996). Planning representations provide a concise
description of the causal relationship between events and states, key for
assessing the relevance of events to an agent’s goals and for forming causal
attributions. The appraisal variables of desirability and likelihood find
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natural analog in the concepts of utility and probability as characterized by
decision-theoretic methods. In addition to inferences about causality, attri-
butions of blame or credit involve reasoning if the causal agent intended
or foresaw the consequences of his or her actions, most naturally repre-
sented by explicit representations of beliefs and intentions. As we will see,
commitments to beliefs and intentions also play a key role in assigning
social blame and credit. Admittedly, these methods and representational
commitments have issues from the standpoint of cognitive plausibility, but
taken together they form a first-approximation of the type of reasoning that
underlies cognitive appraisal.

In EMA, the agent’s current interpretation of its “agent–environment
relationship” is reified by an explicit representation of beliefs, desires, in-
tentions, plans, and probabilities that correspond to the agent’s working
memory. Following a blackboard-type model, this representation encodes
as the input, intermediate results, and output of reasoning process that
mediate between the agent’s goals and its physical and social environment
(e.g., perception, planning, explanation, and natural language processing).
These incremental processes are implemented as Soar operators, though
we use the more general term cognitive operators to refer to these processes
and adopt the term causal interpretation to refer to this collection of data
structures to emphasize the importance of causal reasoning as well as the
interpretative (subjective) character of the appraisal process. At any point
in time, the causal interpretation encodes the agent’s current view of the
agent–environment relationship, an interpretation that may subsequently
change with further observation or inference. EMA treats appraisal as a
set of feature detectors that map features of the causal interpretation into
appraisal variables. For example, an effect of an action that threatens a
desired goal would be assessed as a potential undesirable event. Coping
acts by creating control signals that prioritize or trigger the processing
of cognitive operators, guiding them to overturn or maintain features of
the causal interpretation that yield high-intensity appraisals. For example,
coping may resign the agent to the threat by abandoning the desired goal.
Figure 9.2 illustrates a reinterpretation of Smith and Lazarus’ cognitive-
motivational-emotive system consistent with this view.

Figure 9.3 illustrates the representation of a causal interpretation. In
the figure, an agent has a single goal (affiliation) that is threatened by
the recent departure of a friend (the past action “friend departs” has one
effect that deletes the “affiliation” state). This goal might be re-established
if the agent “joins a club.” Appraisal assesses every instance of an act
facilitating or inhibiting a fluency in the causal interpretation. In the figure,
the interpretation encodes two “events,” the threat to the currently satisfied
goal of affiliation, and the potential re-establishment of affiliation in the
future.
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figure 9.3. An example causal interpretation.

Each event is appraised in terms of several appraisal variables by
domain-independent functions that examine the syntactic structure of the
causal interpretation:

� Perspective: from whose perspective is the event judged
� Desirability: what is the utility of the event if it comes to pass, from the

perspective taken (i.e., does it causally advance or inhibit a state of some
utility)

� Likelihood: how probable is the outcome of the event
� Causal attribution: who deserves credit or blame (i.e., what entity per-

formed the action leading to the desirable/undesirable outcome)
� Temporal status: is this past, present, or future
� Controllability: can the outcome be altered by actions under control of

the agent whose perspective is taken
� Changeability: can the outcome be altered by some other causal agent

Each appraised event is mapped into an emotion instance of some type
and intensity, following the scheme proposed by Ortony, Clore, and Collins
(1988). A simple activation-based focus of attention model computes a
current emotional state based on most-recently accessed emotion instances.

Coping determines how one responds to the appraised significance of
events. Coping strategies are proposed to maintain desirable or overturn
undesirable in-focus emotion instances. Coping strategies essentially work
in the reverse direction of appraisal, identifying the precursors of emotion
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in the causal interpretation that should be maintained or altered (e.g., be-
liefs, desires, intentions, expectations). Strategies include:

� Action: select an action for execution
� Planning: form an intention to perform some act (the planner uses such

intentions to drive its plan generation)
� Seek instrumental support: ask someone who is in control of an outcome

for help
� Procrastination: wait for an external event to change the current circum-

stances
� Positive reinterpretation: increase utility of positive side-effect of an act

with a negative outcome
� Resignation: drop a threatened intention
� Denial: lower the probability of a pending undesirable outcome
� Mental disengagement: lower utility of desired state
� Shift blame: shift responsibility for an action toward some other agent
� Seek/suppress information: form a positive or negative intention to

monitor some pending or unknown state

Strategies give input to the cognitive processes that actually execute
these directives. For example, planful coping will generate an intention to
perform the “join club” action, which in turn leads to the planning system
to generate and execute a valid plan to accomplish this act. Alternatively,
coping strategies might abandon the goal, lower the goal’s importance, or
re-assess who is to blame.

Not every strategy applies to a given stressor (e.g., an agent cannot
engage in problem-directed coping if he or she is unaware of an action that
has an impact on the situation), however, multiple strategies can apply.
EMA proposes these in parallel but adopts strategies sequentially. EMA
adopts a small set of search control rules to resolve ties. In particular, the
model prefers problem-directed strategies if control is appraised as high
(take action, plan, seek information), procrastination if changeability is
high, and emotion-focus strategies if control and changeability is low.

In developing EMA’s model of coping, we have moved away from
the broad distinctions of problem-focused and emotion-focused strategies.
Formally representing coping requires a certain crispness that is otherwise
lacking in the problem-focused/emotion-focused distinction. In particu-
lar, much of what counts as problem-focused coping in the clinical liter-
ature is really inner-directed in an emotion-focused sense. For example,
one might form an intention to achieve a desired state – and feel better as
a consequence – without ever acting on the intention. Thus, by perform-
ing cognitive acts like planning, one can improve one’s interpretation of
circumstances without actually changing the physical environment.
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1. Construct and maintain a causal interpretation of ongoing w

beliefs, desires, plans and intentions. 

2. Generate multiple appraisal frames that characterize featu

tation in terms of appraisal variables 

3. Map individual appraisal frames into individual instances 

4. Aggregate instances and identify current emotional state. 

5. Propose and adopt a coping strategy in response to the cur

figure 9.4. Stages in EMA’S emotional reasoning.

3.2 Soar Implementation

The overall model consists of the repeated application of the five stages
listed in Figure 9.4. Note that similar stages have been suggested by other
cognitive modeling architectures. In particular, they are analogous to the
standard problem-solving cycle used in the Soar architecture (Newell,
1990), of which we take advantage in our Soar implementation. Here we
describe these stages in some detail.

3.2.1 Construct Causal Interpretation
The causal interpretation is a structured representation built atop Soar’s
working memory. This representation can be viewed as an explicit rep-
resentation of a partial order plan in the sense of (Ambros-Ingerson &
Steel, 1988). Certain working memory elements correspond to actions that
are linked to precondition and effect objects. Other objects represent re-
lationships between actions such as establishment relations (this action
establishes a precondition of that action), threat relations (this action has
an effect that disables a precondition of that action), and ordering rela-
tions (this action should be executed before that action). There is also an
explicit representation of beliefs, desires, and intentions (e.g, actions have
attributes indicating if they are intended, states have attributes represent-
ing their worth to the agent and if they are believed to be true in the current
world).

The causal interpretation is constructed sequentially through the appli-
cation of operators (a process analogous to deliberation). These operators
adjust the causal interpretation at a micro level. For example, an update-
belief operator will change the belief associated with a single state object.
An add-step operator will add a signal step to the current plan, and so
forth.
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3.2.2 Appraise the Causal Interpretation
Appraisal is performed by elaboration rules that trigger automatically and
in parallel based on changes to working memory. For example, if an add-
step operator adds a new operator to the plan, elaboration rules automati-
cally fire to assess the significance of this new action from the perspective
of the agent’s goals: Does the action have an effect that facilitates or in-
hibits certain desired states? How does this action have an impact on the
likelihood of goal achievement, etc? These conclusions are represented by
explicit appraisal frames stored in working memory. A separate frame ex-
ists for each state object represented in working memory and these are
automatically created or modified as a side effect of operators manipulat-
ing the causal interpretation.

3.2.3 Construct Emotion Instances
Emotion instances are generated automatically and in parallel from ap-
praisal rules operating on the appraisal variables listed in each appraisal
frame. One or more objects representing an emotion type and intensity are
associated with the appraisal frame that generates them. The emotion type
of the instance is determined by a fixed mapping based on the configura-
tion of appraisal variables. For example, a frame with low desirability and
high likelihood would yield to intense fear.

3.2.4 Determine Emotional State
EMA uses an activation-based sub-symbolic process, modeled outside of
the Soar architecture and loosely motivated by ACT-R, to identify a partic-
ular emotional instance to exhibit and cope with. This activation is based on
two factors: (1) how recently cognitive structures associated by the instance
were “touched” by a Soar operator, and (2) how congruent the instance is
to the other emotion instances in memory (this latter factor is intended to
account for mood-congruent effects of emotion). For the activation factor,
each time a Soar operator accesses an element of the causal interpretation
that has an associated appraisal frame, this frame is assigned an activation
level equal to its intensity (this currently decays to zero upon the next ap-
plication of a Soar operator). For example, an “add-step” operator would
tend to activate an instance of hope that the step will address the threat
and fear that the goal is threatened. For the congruence factor, EMA com-
municates the type and intensity of all current instances to a module that
decays their intensities according to a fixed rate and sums the intensities
of instances of a given type into an overall score that can be viewed as the
agent’s mood (e.g., there is an overall fear score that consists of the sum
of the intensities of each instance of fear). A small fraction of this mood
vector is added to the activation-level of activated instances. The instance
with the most activation becomes the emotion to be displayed and coped
with.
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3.2.5 Propose and Adopt a Coping Strategy
Soar elaboration rules propose individual coping strategies that could po-
tentially address the emotion instance identified in the previous stage. The
strategy itself is implemented by a Soar operator and each of these opera-
tors is proposed in parallel but only one is ultimately selected by Soar to
sequentially apply.

3.3 Limitations and Related Work

EMA relates to a number of past appraisal models of emotion. Although
we are perhaps the first to provide an integrated account of coping, compu-
tational accounts of appraisal have advanced considerably over the years.
In terms of these models, EMA contributes primarily to the problem of
developing general and domain-independent algorithms to support ap-
praisal, and by extending the range of appraisal variables amenable to a
computational treatment. Early appraisal models focused on the mapping
between appraisal variables and behavior and largely ignored how these
variables might be derived, instead requiring domain-specific schemes to
derive their value variables. For example, Elliott’s (1992) Affective Rea-
soner, based on the OCC model (1988), required a number of domain
specific rules to appraise events. A typical rule would be that a goal at a
football match is desirable if the agent favors the team that scored. More re-
cent approaches have moved toward more abstract reasoning frameworks,
largely building on traditional artificial intelligence techniques. For exam-
ple El Nasr and colleagues (2000) use markov decision processes (MDP)
to provide a very general framework for characterizing the desirability
of actions and events. An advantage of this method is that it can repre-
sent indirect consequences of actions by examining their impact on fu-
ture reward (as encoded in the MDP), but it retains the key limitations of
such models: they can only represent a relatively small number of state
transitions and assume fixed goals. The closest approach to what we pro-
pose here is WILL (Moffat & Frijda, 1995), which ties appraisal variables
to an explicit model of plans (which capture the causal relationships be-
tween actions and effects), although they, also, did not address the issue
of blame/credit attributions, or how coping might alter this interpretation.
We build on these prior models, extending them to provide better charac-
terizations of causality and the subjective nature of appraisal that facilitates
coping.

There are several obvious limitations in the current model. The model
could be viewed as overemphasizing the importance of task-oriented goals.
Many psychological theories refer to more abstract concepts such as ego-
involvement (Lazarus, 1991). Other theories, for example, the theory of
Ortony, Clore, and Collins (1988), emphasize the importance of social
norms or standards in addition to goal processing. For example, fornica-
tion may satisfy a personal goal but violate a social standard. Our approach
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is to represent social standards by (dis-utility) utility over states or actions
that (violate) uphold the standard, which we have found to be sufficient
in practice. Perhaps the largest deficiency of the model concerns the im-
poverished reasoning underlying causal attributions (and social reasoning
in general), which we will address in the second half of this chapter. Cur-
rently the model assumes the executor of an act deserves responsibility for
its outcomes, but this can lead to nonsensical conclusions in the case of
social actions. We address this limitation in the next section.

4 modeling social attributions

EMA must be extended with respect to its ability to form social attributions
of blame and credit. Currently, an entity is assumed credit/blameworthy
for an outcome if it actually performed the act. Although this works well in
single-entity scenarios, in multi-agent settings it can often fall short. For ex-
ample, when someone is coerced by another to perform an undesirable act,
people tend to blame the coercer rather than the actor. People also excuse
social blame in circumstances where the act was unintentional or the out-
come unanticipated. Failing to account for these mitigating circumstances
can lead EMA to produce nonsensical appraisals. The following example
from one of our training exercises is illustrative. In the exercise, a trainee
(acting as the commander of a platoon) ordered his sergeant (played by
a virtual human) to adopt a course of action that the sergeant agent con-
sidered highly undesirable. The command was such that it could not be
executed directly by the sergeant, but rather the sergeant had to, in turn, or-
der his subordinates to perform the act. The current model assigned blame
to the subordinates as they actually performed the undesirable action with
the result that the sergeant became angry at his subordinates, even though
he commanded them to perform the offensive act. Clearly, such results indicate
an impoverished ability to assign social credit and blame.

To address this limitation we turn to social psychology. This is in con-
trast to most computational work on blame assignment that, inspired by
philosophy or law, emphasizes prescriptive approaches that try to identify
“ideal” principles of responsibility (e.g., the legal code or philosophical
principles) and ideal mechanisms to reason about these, typically contra-
dictory principles (e.g., non-monotonic or case-based reasoning) (McCarty,
1997). As our primary goal is to inform the design of realistic virtual hu-
mans that mimic human communicative and social behavior, our work
differs from these models in emphasizing descriptive rather than prescrip-
tive models.

Our extension of EMA is motivated by psychological attribution theory,
specifically the work of Weiner (Weiner, 1995) and Shaver (Shaver, 1985), as
their symbolic approaches mesh well with our existing approach. Indeed,
Lazarus pointed to Shaver as a natural complement to his own theory. In
these theories, the assignment of credit or blame is a multi-step process
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figure 9.5. Process model of blame/credit attribution (adapted from Shaver).

initiated by events with positive or negative consequences and mediated
by several intermediate variables (see Figure 9.5). First one assesses causal-
ity, distinguishing between personal versus impersonal causality (i.e., is
causal agent a person or a force of nature). If personal, the judgment
proceeds by assessing key factors: did the actor foresee its occurrence; was
it the actor’s intention to produce the outcome; was the actor forced under
coercion (e.g., was the actor acting under orders)? As the last step of the pro-
cess, proper degree of credit or blame is assigned to the responsible agent.1

We extend EMA by incorporating these mediating factors (foreseeabil-
ity, coercion, etc.) into our assignment of causal attribution. The variables
mediating blame in these models are readily derived by representations
underlying appraisal and we show how planning and dialog processing
can inform and alter these assessments. Causality and intention map to our
representations of action, beliefs, desires, and intentions. Coercion requires
a representation of social relationships and understanding of the extent to
which it limits one’s range of options. For example, one may be ordered to
carry out a task but to satisfy the order, there may be alternatives that vary
in blame or creditworthiness. In the remainder of this section, we describe
this extension in detail.

4.1 Computational Representation

4.1.1 Actions and Consequences
EMA represents causal information through a hierarchical plan represen-
tation. Actions consist of a set of propositional preconditions and effects.
Each action step is either a primitive action (i.e., an action that can be

1 Note that we did not strictly follow the process model of Shaver in our approach. As it is
explained in later sections, we model the same basic inferences but relax the strict sequential
nature of his model. This generalization follows more naturally from the model and, indeed,
has been argued for by subsequent theorists (e.g., Weiner).
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directly executed by some agent) or an abstract action. An abstract action
may be decomposed hierarchically in multiple ways and each alternative
consists of a sequence of primitive or abstract sub-actions. The desirability
of action effects (i.e., effects having positive/negative significance to an
agent) is represented by utility values (Blythe, 1999) and the likelihood of
preconditions and effects is represented by probability values.

A non-decision node (or And-node) is an abstract action that can be de-
composed only in one way. A decision node (or Or-node), on the other hand,
can be decomposed in more than one way. In a decision node, an agent
needs to make a decision and select among different options. If a decision
node A can be decomposed in different ways a1, a2, . . . an, we will refer
to a1, a2, . . . an as alternatives of each other. Clearly, a primitive action is a
non-decision node, whereas an abstract action can be either a non-decision
node or a decision node.

Consequences or outcomes (we use the terms as exchangeable in this
chapter) of actions are represented as a set of primitive action effects. The
consequence set of an action A is defined recursively from leaf nodes (i.e.,
primitive actions) in plan structure to an action Aas follows. Consequences
of a primitive action are those effects with non-zero utility, and all the
consequences of a primitive action are certain. For an abstract action, if
the abstract action is a non-decision node, then the consequence set of the
abstract action is the union of the consequences of its sub-actions. If the
abstract action is a decision node, we need to differentiate two kinds of
consequences. If a consequence p of a decision node occurs among all the
alternatives, we call p a certain consequence of the decision node; otherwise
p is an uncertain consequence of the node.

In addition, each action step is associated with a performer (i.e., the agent
that performs the action) and an agent who has authority over its execution.
The performer cannot execute the action until authorization is given by the
authority. This represents the hierarchical organizational structure of social
agents.

4.1.2 Attribution Variables
Weiner and Shaver define the attribution process in terms of a set of key
variables:2

Causality refers to the connection between actions and the effects they
produce. In our approach, causal knowledge is encoded via hierarchical task
representation. Interdependencies between actions are represented as a set
of causal links and threat relations. Each causal link specifies that an effect
of an action achieves a particular goal that is a precondition of another
action. Threat relations specify that an effect of an action threatens a causal
link by making the goal unachievable before it is needed.

2 Note that these models differ in terminology. Here we adopt the terminology of Shaver.
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Foreseeability refers to an agent’s foreknowledge about actions and con-
sequences. We use know and bring-about to represent foreseeability. If an
agent knows that an action brings about certain consequence before its
execution, then the agent foresees that the action brings about the conse-
quence.

Intention is generally conceived as a commitment to work toward a cer-
tain act or outcome. Intending an act (i.e., act intention) is distinguished
from intending an outcome of an act (i.e., outcome intention) in that the for-
mer concerns actions whereas the latter concerns consequences of actions.
Most theories argue that outcome intention rather than act intention is the
key factor in determining accountability and intended outcome usually de-
serves more elevated accountability judgments (Weiner, 1986, 2001). We use
intend with do to represent act intention and intend with achieve for outcome
intention. Because our work is applied to rich social context, comparing
with (Bratman, 1987; Grosz & Kraus, 1996), we include indirect intentions
in our work. For example, an agent intends an action or a consequence,
but may not be the actor himself/herself (i.e., by intending another agent
to act or achieve the consequence), or an agent intends to act but is coerced
to do so.

Similar difference exists in coercion. An agent may be coerced to act (i.e.,
act coercion) yet not be coerced to achieve any outcome of the action (i.e.,
outcome coercion), depending on whether the agent has choices in achiev-
ing different outcomes among alternatives. It is important to differentiate
act coercion and outcome coercion, because it is the latter that actually
influences our judgment of behavior, and is used to determine the respon-
sible agent. We use coerce with do to represent act coercion and coerce with
achieve for outcome coercion. In the case of outcome coercion, the respon-
sible agent for a specific outcome is the performer or the authority of an
action, but the action may not be the primitive one that directly leads to the
outcome.

4.1.3 Representational Primitives
In modeling Shaver and Weiner’s attribution theory, we need to map at-
tribution variables into representational features of an agent’s causal in-
terpretation. Here we define a number of specific primitive features that
support this mapping.

Let x and y be different agents. Let A and B be actions and p a proposi-
tion. The following primitives are adopted in the system:

(1) and-node(A): A is a non-decision node in plan structure.
(2) or-node(A): A is a decision node in plan structure.
(3) alternative(A, B): A and B are alternatives of performing the same

higher-level action.
(4) effect(A): Effect set of a primitive action A.
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(5) consequence(A): Certain consequence set of A.
(6) performer(A): Performing agent of A.
(7) authority(A): Authorizing agent of A.
(8) know(x, p): x knows p.
(9) intend(x, p): x intends p.

(10) coerce(y, x, p): y coerces x to achieve the proposition p.
(11) want(x, p): x wants p.
(12) by(A, p): By acting A to achieve p.
(13) bring-about(A, p): A brings about p.
(14) do(x, A): x does A.
(15) achieve(x, p): x achieves p.
(16) responsible(p): Responsible agent for p.
(17) superior(y, x): y is a superior of x.

4.1.4 Axioms
We identify the interrelations of attribution variables, expressed as axioms.
The axioms are used either explicitly as commonsense inference rules for de-
riving key attribution values, or implicitly to keep the consistency between
different inference rules.

Let x and y be different agents. Let A be an action and p a proposition.
The following axioms hold from a rational agent’s perspective (To simplify
the logical expressions, we omit the universal quantifiers in this chapter,
and substitute A for do(∗, A) and p for achieve(∗, p) here).

(1) ∃y(coerce(y, x, A)) ⇒ intend(x, A)
(2) intend(x, A) ∧ ¬(∃y(coerce(y, x, A)) ⇒ ∃p(p ∈ consequence(A) ∧

intend(x, p))
(3) intend(x, p) ⇒ ∃A(p ∈ consequence(A) ∧ intend(x, A))
(4) intend(x, by(A, p)) ⇒ know(x, bring-about(A, p))

The first axiom shows that act coercion entails act intention. It means that
if an agent is coerced to perform an action A by another agent, then the
coerced agent intends A.3 The second and the third axioms show the
relations between act intention and outcome intention. The second one
means that if an agent intends an action A and the agent is not coerced to
do so (i.e. A is a voluntary act), then the same agent must intend at least one
consequence of A. The third means that if an agent intends a consequence p,
the same agent must intend at least one action that has p as a consequence.4

Note that in both axioms, intending an action or a consequence includes

3 The notion of intention in this axiom is not identical to the typical implication of intention
in literatures, as here it is applied to coercive situations.

4 This axiom is not true in general cases, as the agent may not know that an action brings
about p. Here we apply it within the restrictive context of after-action evaluation, where
actions have been executed and the consequence has occurred.
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the case in which an agent intends another agent to act or achieve the con-
sequence. The last one shows the relation between intention and foresee-
ability. It means that if an agent intends acting A to achieve a consequence
p, the same agent must know that A brings about p.

4.1.5 Attribution Rules
Social credit assignment focuses on consequences with personal signifi-
cance to an agent. This evaluation is always from the perspective of a per-
ceiving agent and based on the attribution values acquired by the individ-
ual perceiver. As different perceivers have different preferences, different
observations, and different knowledge and beliefs, it may well be the case
that for the same situation, different perceivers form different judgments.

Nevertheless, the attribution process and rules are general, and applied
uniformly to different perceivers. Following Weiner’s (2001) attribution
theory, we use coercion to determine the responsible agent for credit or
blameworthiness, and intention and foreseeability in assigning the intensity
of credit/blame.

If an action performed by an agent brings about a positive/negative con-
sequence, and the agent is not coerced to achieve the consequence, then
credit/blame is assigned to the performer of the action. Otherwise, assign
credit/blame to the authority. If the authority is also coerced, the process
needs to be traced further to find the responsible agent for the consequence.
The back-tracing algorithm for finding the responsible agent will be given
later.

Rule 1: If <consequence> of <action> is positive/negative and
<performer> is not coerced the <consequence>
Then Assign credit/blame to the <performer>

Rule 2: If <consequence> of <action> is positive/negative and
<performer> is coerced the <consequence>
Then Assign credit/blame to the <responsible agent>

We adopt a simple categorical model of intensity assignment, though one
could readily extend the model to a numeric value by incorporating proba-
bilistic rules of inference. If the responsible agent intends the consequence
while acting, the intensity assigned is high. If the responsible agent does
not foresee the consequence, the intensity is low.

4.2 Commonsense Inference

Judgments of causality, foreseeability, intentionality, and coercion are in-
formed by dialog and causal evidence. Some theories have formally ad-
dressed subsets of this judgment task. For example, Sadek (1990) addresses
the relationship between dialog and inferences of belief and intention.
These theories have not tended to consider coercion. Rather than trying to
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synthesize and extend such theories, we introduce small number of com-
monsense rules that, via a justification-based truth maintenance system
(JTMS), allow agents to make inferences based on this evidence.

4.2.1 Dialog Inference
Conversational dialog between agents is a rich source of information for
deriving values of attribution variables. In a conversational dialog, a speaker
and a hearer take turns alternatively. When a speech act (Austin, 1962; Searle,
1969, 1979) is performed, a perceiving agent (who can be one of the par-
ticipating agents or another agent) makes inferences based on observed
conversation and current beliefs. As the conversation proceeds, beliefs are
formed and updated accordingly.

Assume conversations between agents are grounded (Traum & Allen,
1994) and they conform to Grice’s maxims of Quality5 and Relevance6 (Grice,
1975). Social information (agents’ social roles, relationship, etc) is also im-
portant, for example, an order can be successfully issued only to a subor-
dinate, but a request can be made of any agent.

x and y are different agents. p and q are propositions and t is time.
For our purpose, we analyze following speech acts that help infer agents’
desires, intentions, foreknowledge, and choices in acting.

(1) inform(x, y, p, t): x informs y that p at t.
(2) request(x, y, p, t): x requests y that p at t.
(3) order(x, y, p, t): x orders y that p at t.
(4) accept(x, p, t): x accepts p at t.
(5) reject(x, p, t): x rejects p at t.
(6) counter-propose(x, p, q , t): x counters p and proposes q at t.

We have designed commonsense rules that allow perceiving agents to infer
from dialog patterns. These rules are general. Hence, they can be combined
flexibly and applied to variable-length dialog sequences with multiple par-
ticipants.

Let z be a perceiving agent. If at time t1, a speaker (s) informs a hearer
(h) that p, then after t1 a perceiving agent can infer that both the speaker
and the hearer know that p as long as there is no intervening contradictory
belief.

Rule 3: inform(s, h, p, t1) ∧ t1< t3 ∧ ¬(∃t2)(t1< t2< t3 ∧
believe(z, ¬know(s, p)∨ ¬know(h, p), t2)) ⇒ believe(z,
know(s, p)∧ know(h, p), t3)

A request gives evidence of the speaker’s desire (or want). An order gives
evidence of the speaker’s intent.

5 The Quality maxim states that one ought to provide true information in conversation.
6 The Relevance maxim states that one’s contribution to conversation ought to be pertinent

in context.
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Rule 4: request(s, p, t1) ∧ t1< t3 ∧ ¬(∃t2)(t1< t2< t3 ∧
believe(z, ¬want(s, p), t2)) ⇒ believe(z, want(s, p), t3)

Rule 5: order(s, p, t1) ∧ t1< t3 ∧ ¬(∃t2)(t1< t2< t3 ∧
believe(z, ¬intend(s, p), t2)) ⇒ believe( z, intend(s, p), t3)

The hearer may accept, reject, or counter-propose. If the speaker wants (or
intends) and the hearer accepts, it can be inferred that the hearer intends.
An agent can accept via speech or action execution. If the hearer accepts
what the superior wants (or intends), there is evidence of coercion.

Rule 6: believe(z, want/intend(s, p), t1) ∧ accept(h, p, t2) ∧
¬superior(s, h) ∧ t1< t2< t4 ∧ ¬(∃t3)(t2< t3< t4 ∧
believe(z, ¬intend(h, p), t3)) ⇒ believe(z, intend(h, p), t4)

Rule 7: believe(z, want/intend(s, p), t1)∧ accept(h, p, t2) ∧
superior(s, h) ∧ t1< t2< t4 ∧ ¬(∃t3)(t2< t3< t4 ∧
believe(z, ¬coerce(s, h, p), t3)) ⇒
believe(z, coerce(s, h, p), t4)

In the rules above, if act coercion is true, act intention can be deduced from
Axiom 1.

If the speaker wants (or intends) and the hearer rejects, infer that the
hearer does not intend.

Rule 8: believe(z, want/intend(s, p), t1) ∧ reject(h, p, t2) ∧
t1< t2< t4 ∧ ¬(∃t3)(t2< t3< t4 ∧ believe(z, intend(h, p), t3)) ⇒
believe(z, ¬intend(h, p), t4)

If the hearer counters acting A and proposes acting B instead, both the
speaker and the hearer are believed to know that A and B are alternatives.
It is also believed that the hearer does not want A and wants B instead.

Rule 9: counter-propose(h, do(h, A), do(h, B), t1) ∧ t1< t3 ∧
¬(∃t2)(t1< t2< t3 ∧ believe(z, ¬know(h, alternative(A, B)) ∨
¬know(s, alternative(A, B)), t2)) ⇒ believe(z, know(h,
alternative(A, B)) ∧ know(s, alternative(A, B)), t3)

Rule 10: counter-propose(h, p, q , t1) ∧ t1< t3 ∧ ¬(∃t2)(t1< t2< t3 ∧
believe(z, want(h, p) ∨ ¬want(h, q ), t2)) ⇒ believe(z,
¬want(h, p)∧want(h, q ), t3)

If the speaker has known that two actions are alternatives and still requests
(or orders) one of them, infer that the speaker wants (or intends) the chosen
action instead of the alternative. The beliefs that the speaker wants (or
intends) the chosen action can be deduced from Rules 4 and 5.

Rule 11: believe(z, know(s, alternative(A, B)), t1)∧ request/order(s,
do(h, A), t2) ∧ t1< t2< t4 ∧ ¬(∃t3)(t2< t3< t4 ∧ believe(z, want
(s, do(h, B)), t3)) ⇒ believe(z, ¬want/intend(s, do(h, B)), t4)
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4.2.2 Causal Inference
Causal knowledge encoded in plan representation also helps derive values
of attribution variables. Different agents may have access to different plans
in memory. Although plans are specific to certain domains, the structure
and features of plans can be described using domain-independent terms
such as action types, alternatives, and action effects. We adopt the hierar-
chical task formalism that differentiates action types, explicitly expresses
consequences of alternatives, and separates certain consequences of an
action from its uncertain ones.

An agent’s foreknowledge can be derived simply by checking primitive
action effects. If a consequence p is an effect of a primitive action A, then
the agents involved (i.e., the performer and the authority) should know
that A brings about p.

Rule 12: p∈effect(A) ⇒ believe(z, know(performer(A), bring-about(A,
p)))
p∈effect(A) ⇒ believe(z, know(authority(A), bring-about(A,
p)))

Outcome intent can be partially inferred from evidence of act intent and
comparative features of consequence sets of action alternatives. According
to Axiom 2, if an agent intends a voluntary action A, the agent must intend at
least one consequence of A. If Ahas only one consequence p, then the agent
is believed to intend p. In more general cases, when an action has multiple
consequences, in order to identify whether a specific outcome is intended
or not, a perceiver may examine alternatives the agent intends and does
not intend, and compare the consequences of intended and unintended
alternatives.

If an agent intends an action Avoluntarily and does intend its alternative
B, we can infer that the agent either intends (at least) one consequence that
only occurs in A or does not intend (at least) one consequence that only
occurs in B, or both. If the consequence set of A is a subset of that of B,
the rule can be simplified. As there is no consequence of A not occurring
in the consequence set of B, we can infer that the agent does not intend (at
least) one consequence that only occurs in B. In particular, if there is only
one consequence p of B that does not occur in the consequence set of A,
infer that the agent does not intend p.

Rule 13: believe(z, intend(x, A) ∧ ¬intend(x, B) ∧ ¬(∃y(superior(y, x)∧
coerce(y, x, A)))) ∧ alternative(A, B) ∧ consequence(A) ⊂
consequence(B) ⇒ ∃p(p /∈consequence(A) ∧ p ∈ consequence
(B) ∧ believe(z, ¬intend(x, p)))

On the other hand, given the same context that an agent intends an action
A and does not intend its alternative B, if the consequence set of B is a
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subset of that of A, infer that the agent intends (at least) one consequence
that only occurs in A. In particular, if there is only one consequence p of
A that does not occur in the consequence set of B, the agent must intend p.

Rule 14: believe(z, intend(x, A) ∧ ¬intend(x, B) ∧ ¬(∃y(superior(y, x)∧
coerce(y, x, A)))) ∧ alternative(A, B) ∧ consequence(B) ⊂
consequence(A) ⇒∃p(p ∈consequence(A) ∧ p /∈
consequence(B) ∧ believe(z, intend(x, p)))

Outcome coercion can be properly inferred from evidence of act coercion
and consequence sets of different action types. In a non-decision node (i.e.,
and-node), if an agent is coerced to act, the agent is also coerced to achieve
the consequences of subsequent actions, for the agent has no other choice.

Rule 15: ∃y(superior(y, x) ∧ believe(z, coerce(y, x, A)) ∧ and-node(A) ∧
p ∈ consequence(A) ⇒ believe(z, coerce(y, x, p)))

In a decision node (i.e., or-node), however, an agent must make a decision
among multiple choices. Even if an agent is coerced to act, it does not follow
that the agent is coerced to achieve a specific consequence of subsequent
actions. To infer outcome coercion, we examine the choices at a decision
node. If an outcome is a certain consequence of every alternative, then it is
unavoidable and thus outcome coercion is true. Otherwise, if an outcome is
an uncertain consequence of the alternatives, then the agent has the option
to choose an alternative to avoid this outcome and thus outcome coercion
is false. Our definition of consequence set ensures the consistency when
the rules are applied to actions at different levels of plan structure.

Rule 16: ∃y(superior(y, x) ∧ believe(z, coerce(y, x, A)) ∧ or-node(A)∧ p ∈
consequence(A) ⇒ believe(z, coerce(y, x, p)))
∃y(superior(y, x) ∧ believe(z, coerce(y, x, A)) ∧ or-node(A) ∧
p /∈ consequence(A) ⇒ believe(z, ¬coerce(y, x, p)))

4.3 Back-Tracing Algorithm

We have developed a back-tracing algorithm for evaluating the responsible
agent for a specific consequence. The evaluation process starts from the
primitive action that directly causes a consequence with positive or nega-
tive utility. Because coercion may occur in more than one level in a hierar-
chical plan structure, the process must trace from the primitive action to the
higher-level actions. We use a back-tracing algorithm to find the respon-
sible agent. The algorithm takes as input some desirable or undesirable
consequence of a primitive action (step 1) and works up the task hierarchy.7

During each pass through the main loop (step 2), the algorithm initially as-
signs default values to the variables (step 2.2). Then apply dialog rules to

7 Given that the evaluating agent is aware of the task hierarchy.
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infer variable values at the current level (step 2.3). If there is evidence that
the performer was coerced to act (step 2.4), the algorithm proceeds by ap-
plying plan inference rules (step 2.5). If there is outcome coercion (step 2.6),
the authority is deemed responsible (step 2.7). If current action is not the
root node in plan structure and outcome coercion is true, the algorithm
enters next loop and evaluates the next level up in the task hierarchy.

After the execution of the algorithm, the responsible agent for the out-
come is determined. Meanwhile, through applying inference rules, the
algorithm also acquires values of intention and foreknowledge about the
agents. The variable values are then used by the attribution rules (Rules
1 and 2) to assign credit or blame to the responsible agent with proper
intensity.

Events may lead to more than one desirable/undesirable consequence.
For evaluating multiple consequences, we can apply the algorithm the
same way, focusing on one consequence each time during its execution.
Then, to form an overall judgment, the results can be aggregated and
grouped by the responsible agents.

Backtrace (consq, plan structure):
1. parent = A, where consq is an effect of action A
2. DO

2.1 node = parent
2.2 coerce(authority(node), performer(node), node) = unknown

coerce(authority(node), performer(node), consq) = unknown
responsible(consq) = performer(node)

2.3 Search dialog history on node and apply dialog inference rules
2.4 IF coerce(authority(node), performer(node), node) THEN
2.5 apply plan inference rules on node
2.6 IF coerce(authority(node), performer(node), consq) THEN
2.7 responsible(consq) = authority(node)
2.8 parent = P , where P is the parent of node in plan structure
WHILE parent �= root of plan structure AND

coerce(authority(node), performer(node), consq)
3. RETURN responsible(consq)

4.4 Illustrative Example

The need to extend EMA was motivated by a number of odd social at-
tributions generated by agents in the Mission Rehearsal Exercise (MRE)
leadership training system (Rickel et al., 2002), to which EMA was ap-
plied. By extending EMA with a more realistic social attribution process,
we eliminated the obvious departures of the model from normal human be-
havior. Here we illustrate how the model operates on one of these previous
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Support Eagle 1-6
Authority: std
Performer: std

One Squad Forward
Authority: std
Performer: sgt

4th Squad Recon
Authority: sgt
Performer: sld

Remaining Fwd
Authority: sgt
Performer: sld

Two squads Forward
Authority: std
Performer: sgt

1st & 4th Fwd
Authority: sgt
Performer: sld

2nd & 3rd Fwd
Authority: sgt
Performer: sld

AND AND

OR

Route Secure 1-6 supported

Unit fractured

1-6 supported Not fractured

figure 9.6. Team plan from the sergeant’s perspective

defects. The example arises from the following extract of dialog taken from
an actual run of the system. Details on how this negotiation is automati-
cally generated and how natural language is mapped into speech acts can
be found in (Traum, Rickel, Gratch, & Marsella, 2003):

student: Sergeant. Send two squads forward.
sergeant: That is a bad idea, sir. We shouldn’t split our forces. Instead

we should send one squad to recon forward.
student: Send two squads forward.
sergeant: Against my recommendation, sir. Lopez! Send first and

fourth squads to Eagle 1-6’s location.
lopez: Yes, sir. Squads! Mount up!

We focus on three social actors, the student, the sergeant, and the squad
leader (Lopez), who act as a team in this example. The student is a human
trainee and acts as an authority over the sergeant. The squad leader acts
as a subordinate of the sergeant. Conversations between agents are rep-
resented within the system as speech acts and a dialog history as in the
MRE. Figure 9.6 illustrates the causal knowledge underlying the exam-
ple. Take the sergeant’s perspective as an example. The sergeant perceives
the conversation between the actors and task execution. Dialog history in-
cludes the following acts, ordered by the time the speakers addressed them
(std, sgt and sld stand for the student, the sergeant, and the squad leader,
respectively. t1<t2< · · · <t6).

(1) order(std, do(sgt, two-sqds-fwd), t1)
(2) inform(sgt, std, bring-about(two-sqds-fwd, unit-fractured), t2)
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(3) counter-propose(sgt, do(sgt, two-sqds-fwd), do(sgt, one-sqd-fwd), t3)
(4) order(std, do(sgt, two-sqds-fwd), t4)
(5) accept(sgt, do(sgt, two-sqds-fwd), t5)
(6) order(sgt, do(sld, 1st-and-4th-to-celic), t6)

To simplify the example, we illustrate part of the task structure from MRE
scenario and evaluate one of the negative consequences, though we can
generally apply the approach in the chapter to more complex judgments.
The sergeant has access to a partial plan, where one squad forward and
two squads forward are two choices of action support eagle-1-6. One squad
forward is composed of two primitive actions, 4th squad (recon) forward and
remaining (squads) forward. Two squads forward consists of 1st and 4th (squads)
to celic and 2nd and 3rd (squads) to celic. Two action effects are salient to the
sergeant, (eagle) 1-6 supported and unit fractured. 1-6 supported is a desirable
team goal. Assume the sergeant assigns negative utility to unit fractured
and this consequence serves as input to the back-tracing algorithm. We
illustrate how to find the blameworthy agent given the sergeant’s task
knowledge and observations.

Loop 1: The algorithm starts from primitive action 1st-and-4th-to-celic, of
which unit-fractured is an effect. The sergeant perceived that the squad leader
performed the action.

Step 2.2: Initially, coerce(sgt, sld, 1st-and-4th-to-celic) and coerce(sgt, sld,
unit-fractured) are unknown. Assign the squad leader to the responsible
agent.

Step 2.3: Relevant dialog history is act 6. Because the sergeant ordered the
squad leader the act, apply Rule 5. The algorithm infers that the sergeant
believes he intended the squad leader to act. Because the squad leader ac-
cepted by executing the action and the sergeant is the superior, apply Rule
7. The sergeant believes that he coerced the squad leader to act.

Steps 2.4–2.5: Because coerce(sgt, sld, 1st-and-4th-to-celic) is true and the
primitive action is an and-node in the plan structure, apply Rule 15. The
sergeant believes he coerced the squad leader to fracture the unit. Because
unit-fractured is an effect of the primitive action, apply Rule 12. The sergeant
believes that both he and the squad leader knew the action bringing about
unit-fractured.

Steps 2.6–2.7: Because coerce(sgt, sld, unit-fractured) is true, assign the
sergeant to the responsible agent. The sergeant believes that he is responsi-
ble for unit-fractured and he has the foreknowledge while acting.

Because parent node is not the root of plan structure and outcome coercion
is true, the algorithm enters next loop.
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Loop 2: The action is two-sqds-fwd, performed by the sergeant. Relevant
dialog history is Acts 1–5. A variety of beliefs can be inferred from com-
monsense rules by analyzing the task structure and conversation history.
The results are given below.

(1) believe(sgt, intend(std, do(sgt, two-sqds-fwd))) (act 1 or 4, rule 5)
(2) believe(sgt, know(sgt, bring-about(two-sqds-fwd, unit-fractured))) (act 2, rule 3)
(3) believe(sgt, know(std, bring-about(two-sqds-fwd, unit-fractured))) (act 2, rule 3)
(4) believe(sgt, know(sgt, alternative(one-sqd-fwd, two-sqds-fwd))) (act 3, rule 9)
(5) believe(sgt, know(std, alternative(one-sqd-fwd, two-sqds-fwd))) (act 3, rule 9)
(6) believe(sgt, ¬ want(sgt, do(sgt, two-sqds-fwd))) (act 3, rule 10)
(7) believe(sgt, want(sgt, do(sgt, one-sqd-fwd))) (act 3, rule 10)
(8) believe(sgt, ¬ intend(std, do(sgt, one-sqd-fwd))) (act 4, result 5, rule 11)
(9) believe(sgt, coerce(std, sgt, two-sqds-fwd)) (act 5, result 1, rule 7)
(10) believe(sgt, coerce(std, sgt, unit-fractured)) (act 5, result 9, rule 15)

After Loop 2, the sergeant believes the student coerced him to fracture the
unit (Result 10). So the student is responsible for the outcome.

Loop 3: The action is support-eagle-1-6, performed by the student. There is no
relevant dialog in history. The initial values and the responsible agent are
as default. There is no clear evidence of coercion, so the sergeant believes
that the student is the responsible agent. Parent node is the root of plan. The
algorithm terminates.

Now the sergeant also believes that the student intended to send two
squads forward and did not intend to send one squad forward (Results 1
and 8). Because the consequence set of one-sqd-fwd (i.e., 1-6-supported) is a
subset of that of two-sqds-fwd (i.e., 1-6-supported and unit-fractured), apply
Rule 14. The sergeant believes that the student intended unit-fractured and
foresaw the outcome (Result 3), so the student is to blame for unit-fractured
with high intensity.

4.5 Discussion

By incorporating this richer model of causal attribution into EMA, the sys-
tem now gives reasonable inferences on situations that arise in our current
MRE application. As the work moves forward, several issues need further
attention. We must incorporate probabilistic reasoning to deal with uncer-
tainty in observations and judgment process. For modeling more complex
multi-agent teamwork, we need to consider joint responsibility and shar-
ing responsibility among teammates (the current model assumes one agent
has sole responsibility) and less hierarchical relationships between social
actors. Some inference rules are too restrictive and need to make better
use of plan knowledge, particularly considering how preconditions and
effects indirectly limit one’s choices in acting. As our task representation
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has already encoded information about action preconditions and effects,
this should be a natural extension of our existing methods.

A critical issue is formal evaluation. Although the work is based on
psychological theory and seems to provide reasonable responses in prac-
tice, we would like to more systematically assess the veracity of the ap-
proach. This is a challenge given that social attributions are more variable
than many phenomena studied by cognitive science, differing widely both
within and across individuals depending on non-observable factors like
goals, beliefs, cultural norms, etc. And unlike work in decision making,
there is no accepted normative model of such attributions or their dynam-
ics that we can use as a gold standard for evaluating techniques. We would
like to build on the “situational psychology” methodology we have used in
evaluating the basic model (Gratch & Marsella, 2004a). Under this method-
ology, people are presented with a description of an evolving situation and
queried as to their feelings and interpretations during several intermediate
stages of the episode. In using this methodology to assess the extensions
related to social attribution, we must identify or create a corpus of situ-
ations involving social attributions and compare the results of the model
against human data.

5 evaluation

Given the broad influence emotions have over behavior, evaluating the
effectiveness of such a general architecture presents some unique chal-
lenges. Emotional influences are manifested across a variety of levels and
modalities. For instance, there are telltale physical signals: facial expres-
sions, body language, and certain acoustic features of speech. There are
also influences on cognitive processes, including coping behaviors such as
wishful thinking, resignation, or blame-shifting. Unlike many phenomena
studied by cognitive science, emotional responses are also highly variable,
differing widely both within and across individuals depending on non-
observable factors like goals, beliefs, cultural norms, etc. And unlike work
in rational decision making, there is no accepted, idealized model of emo-
tional responses or their dynamics that we can use as a gold standard for
evaluating techniques.

In evaluating our model, we adopt a multi-pronged approach, identify-
ing certain specific functions that emotions play in humans and assessing
the extent that the model reproduces those functions. Here we briefly sum-
marize two recent evaluation studies, each illustrating this multi-pronged
approach. In the first study, we address the question of process dynamics:
does the model generate cognitive influences that are consistent with hu-
man data on the influences of emotion, specifically with regard to how emo-
tion shapes perceptions and coping strategies, and how emotion and cop-
ing unfold over time. In the second, we address the question of behavioral
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Averse (human)
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Phase

1

Seek information 

Take action 

Suppress information 

Procrastinate 
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Phase

2

Mental disengagement 

Suppress information

Mental disengagement 

Suppress information 

Resignation

Wishful thinking

Good Accept responsibility 

Bad Mental disengagement 

Suppress information 

Mental disengagement 

Suppress information 

figure 9.7. Some results from the emotion process evaluation. The experiment
compares human and model responses to two emotion evoking scenarios (”aver-
sive” and “loss”). Each scenario evolves over three phases, ending in either a good
or bad outcome and subjects are queried as to their emotional state, appraisals,
and coping strategies after each phase. The model fits the basic trends of human
subjects, though differs in specific ratings.

influence: do external behaviors have the same social influence on a human
subject that one person’s emotion has on another person, specifically with
regard to how emotional displays influence third-party judgments.

In the first study, we fit our model to a standard instrument used in
the clinical psychological evaluation of a person’s emotional and coping
response to stressful situations, and in particular, how these responses
evolve over time. In the Stress and Coping Process Questionnaire (Perrez
& Reicherts, 1992), a subject is presented a stereotypical situation, such
as an argument with their boss. They are asked how they would respond
emotionally and how they would cope. They are then given subsequent
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updates on the situation and asked how their emotions/coping would
dynamically unfold in light of systematic variations in both expectations
and perceived sense of control. Based on their evolving pattern of re-
sponses, subjects are scored as to how closely their reactions correspond to
those of normal healthy adults. In our evaluation, we encode these evolv-
ing situations in EMA’s domain language, run the scenarios, and compare
EMA’s appraisals and coping strategies to the responses indicated by the
scale. Figure 9.7 illustrates the basic results. The model matches the basic
trends of normal human subjects, though differs in some particulars. See
(Gratch & Marsella, 2004b) for details.

For evaluating the social impact of our model, we are initially focus-
ing on the phenomena of social referencing, whereby people, when pre-
sented with an ambiguous decision, are influenced by appraisals of others
(Campos, 1983). In our evaluation, we assess the ability of synthetic emo-
tion displays to induce social referencing in human subjects in the context
of the Mission Rehearsal Exercise. Subjects observe the disagreement de-
scribed in the student–sergeant dialog above and are asked to indicate
which course of action is better (sending two squads forward or sending
one squad). As subjects have no military background, the correct action is
ambiguous. Across two experimental conditions, we vary the emotional
displays of the virtual team members that will ultimately have to carry out
the order: in the “reference two squads” condition, the team members uni-
formly exhibit positive emotional displays when “two squads forward” is
proposed and negative displays when “one squad forward” is proposed;
vice versa for the “reference one squad” condition. The hypothesis is that
human subjects both recognize that these displays indicate a preference and
will be influenced to adopt a decision that is consistent with this preference.
The results, shown in Figure 9.8, support this hypothesis. See (Gratch &
Marsella, 2004a) for more details.

Reference
one squad

Reference
two squads

Response to “What action would you 

prefer?”

Response to “What action do you believe 

the team members preferred?”

One squad  
forward

Two squads  
forward

figure 9.8. Study illustrates that the emotional displays of virtual characters can in-
fluence the decision making of human subjects. Consistent with the phenomenon
of social referencing, when presented with an ambiguous decision, subjects in-
ferred how bystanders appraised the situation through their emotional displays
and factored this information into their decision.
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Together, the results lend support to both the fidelity and social impact
of the basic model. The extensions described in Section 4 have yet to be
formally evaluated. The basic structure of this study will follow the basic
structure of the first study, though with material drawn from empirical
studies of attribution theory.

6 summary

EMA provides a general and comprehensive model of the processes under-
lying cognitive appraisal. In particular, we feel it is the first process model
that explains how the appraisal of an event can change over time (by ty-
ing appraisal to an interpretation that can change with further inference)
and is the first comprehensive attempt to model the range of human cop-
ing strategies. It is also one of the most comprehensive integrations of an
appraisal model with other reasoning capabilities including planning, nat-
ural language processing, and non-verbal behavior. This chapter signifi-
cantly extends the model’s ability to reason about multi-agent situations
by providing a cognitively plausible model of social blame and credit as-
signment based on social attribution theory.
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1 introduction

For the last few years, the Naval Research laboratory has been attempting
to build robots that are similar to humans in a variety of ways. The goal has
been to build systems that think and act like a person rather than look like a
person, because the state of the art is not sufficient for a robot to look (even
superficially) like a human person. There are at least two reasons to build
robots that think and act like a human. First, how an artificial system acts
has a profound effect on how people act towards the system. Second, how
an artificial system thinks has a profound effect on how people interact
with the system.

2 how people act towards artificial systems

“Everyone” knows that computers have no feelings, attitudes, or desires.
Most people do not worry about hurting a toaster’s feelings or cursing at
a VCR. However, in a surprising series of studies, Cliff Nass has shown
that people in some situations do, in fact, treat computer systems as social
entities. Nass has shown that it takes very little “social-ness” for a person
to treat computers (including robots, AI programs, etc.) as social creatures.

For example, Nass and Moon (2000) examined people’s application of
social categories to computers. Nass and Moon (2000) compared users’ in-
teractions with two computer systems – a tutor and an evaluator – using
different combinations of male and female voices. Even though the par-
ticipants indicated that they knew they were interacting with a computer,
and explicitly reported that the voice did not relate to the “gender” of the
computer, or even the computer programmer, there were distinct gender-
related biases in the experiment data. The evaluator, whose job was to
evaluate both the user and the tutor, was said to be less friendly when
connected to a female voice than a male. Similarly, the tutor system was
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evaluated as more competent when praised by a male evaluator than a
female evaluator (Nass & Moon, 2000). This application of social rules to
computers, and similar studies involving ethnicity, politeness, and person-
ality, enforces Nass’s hypothesis that humans treat computers as having
social properties.

Nass has also conducted experiments showing that not only do humans
transfer social properties to computers, but they also treat different com-
puters as distinct social actors (Nass, Steuer, & Tauber, 1994). Nass et al.
showed this by injecting notions of “self” and “other” into participants’
interactions with different computer boxes and voice output. Interestingly,
the participants associated this embodiment with the computer’s voice
output (i.e. one voice per social actor) as opposed to the physical com-
puter. In other words, two voices on one computer was considered by the
user as two different social actors; the same voice on two computers was
considered to be the same actor both times.

In other experiments, Nass and his colleagues have shown that com-
puters can elicit social behavior from humans without explicitly display-
ing emotions. Nass has also shown that people transfer social categories
to computational systems, view computers as distinct social entities, and
apply social behaviors to their conversations with artificial agents (Nass
& Moon, 2000; Nass et al., 1994). In short, Nass and his colleagues have
gathered strong evidence that with very minor social cues, people interact
with computers the same way people interact with other people.

Nass’s overall hypothesis and evidence have at least two implications
for how people act toward robots and other artificial systems. First, it means
that embodied artificial systems do not have to look like a person in order
for people to act in a social manner toward the robot: subtle social cues
can cause people to think of computers as social entities. It is not clear
how human (or non-human) a robot needs to look in order to elicit social
behavior (e.g., would a polite mound of “goo” elicit polite behavior?).
Second, if robots act socially, people have a “built in” way of dealing with
them – exactly how they would deal with another person.

3 how people interact with artificial systems

How do people perceive and interact with artificial systems? In most cases,
people want the system to help them solve their task or problem while
making no mistakes and being polite about it (see above). Our desire for
this type of interaction has probably been influenced by popular robots
like C3PO (from Star Wars), Data (from Star Trek), and even Robbie the
Robot (from Forbidden Planet).

For example, movies and television often portray people interacting
with robots as if they were human. They use normal conversation and other
modalities of communication associated with humans, such as gestures.
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figure 10.1. Levels of human interaction with autonomous system.

These robots refer to objects and have the near-perfect ability of recognizing
these objects. Also, they are able to reason about space and time. In reality,
however, the interaction humans have with mobile robots is closer to tele-
operation – in which humans directly (or in some cases indirectly) control
the robot’s behavior.

Figure 10.1 shows the scale of human interaction with the robot as a con-
tinuum from teleoperation, where the human directly controls the robot’s
motions, to dynamic autonomy, where the robot can exercise its own ini-
tiative and set its own goals while collaborating with the human.1

Teleoperation requires that a human attend to the robot one hundred
percent of the time. The human is completely responsible for all actions
of the robot. Examples of robots that fall into this category include the
robots used to help find victims and assess damage in the World Trade
Center (WTC) collapse (Casper, 2002), and the small robots used by the
U.S. Army in Afghanistan to explore caves. Teleoperation, however, can
be very difficult. One of the main problems is ensuring that the human
has enough awareness of the environment to understand the robot’s po-
sition (Blackburn, Everett, & Laird, 2002). For example, rescue workers at
the WTC had trouble determining if the robots were right side up with
their camera view. Also, teleoperation requires a high-bandwidth commu-
nications channel between the human and the robot in order to supply the
real-time video.

By providing the robot with some basic skills, for example collision
avoidance, the human is freed from having to control the vehicle at such
a low level. This mode, mediated (also known as safe-guarded) teleop-
eration, allows the human to concentrate on other, higher-level decision
making, such as choosing a path for the robot.

Moving further along the continuum, supervisory control gives the
robot even more autonomy. Here the human picks one or more locations

1 Various scales have been devised to show the level of autonomy of an unmanned vehi-
cle, the best known being the Sheridan Levels of Autonomy (Sheridan, 1992). Figure 10.1
deemphasizes the notion of full autonomy that minimizes human interaction, and instead
emphasizes the varying levels of collaboration, but in fact implies that the vehicle has the
ability to operate autonomously.
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and other constraints (such as time), and the vehicle autonomously nav-
igates to those waypoints. Now the human is freed from actually driv-
ing the vehicle and can concentrate on analyzing the robot’s situation
and making higher-level decisions. This level of interaction is particularly
suited to very remote operations, such as the exploration of Mars during
the Mars Pathfinder and Mars Exploration Rover missions, because the
lag in round-trip communications does not support the quick execution
of a human’s decisions or for scientists and controllers to get real-time
video.

Moving along the scale towards collaboration, the interactions become
more complex and require that the human and the robot share more com-
mon knowledge about the world and about how things within the envi-
ronment are related. To achieve these kinds of interactions and knowledge,
the robot and the human must participate in a dialog to achieve common
goals. Collaborative control refers to the ability of the robot and the hu-
man to ask each other for help in completing a task (Fong, Thorpe, & Bauer,
2003).

This level of interaction requires mixed initiative, or the ability of any
agent in a collaborative act to initiate action in solving a task. In other words,
each participant takes advantage of unique skills, location, and perspective
of the current situation. We believe that at this level and beyond, the robot
should utilize representations and procedures that are similar to those
used by humans, rather than the other way around, in order to collaborate
successfully; this is called the representational hypothesis. There are at
least three reasons why a system with human-like representations and
procedures will collaborate better with a person than a system that does
not have human-like representations and procedures.

First, because algorithms written for traditional real-time robotic sys-
tems have to be computationally efficient, they tend to use efficient math-
ematical representations, such as matrices and polar coordinates, which
may not be natural, or at best are extremely cumbersome, for people to
use. For example, most position and motion information in robotics is con-
veyed using position vectors and transformation and rotation matrices.
In general, people do not think or reason in this format. Instead, peo-
ple seem to use a combination of spatial and propositional knowledge
(Anderson, Conrad, & Corbett, 1989; Anderson & Lebiere, 1998; Shepard
& Metzler, 1971; Taylor, 1992; Trafton et al., 2000; Trickett, Ratwani, &
Trafton, under review). Thus, in order to interact with a human, the sys-
tem must translate the robot’s representation to the person’s representa-
tion. However, because a person’s representation of space is so complex
(Harrison & Schunn, 2002, 2003a, 2003b; Previc, 1998), this is not a triv-
ial task. Another, more functional argument is that traditional AI spatial
reasoning techniques do not adequately capture how people perform spa-
tial reasoning; a model based on human spatial reasoning will provide
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some robust advantages over those systems that do not reason as a person
would.

Second, if a human is going to collaborate in shared space with a robot,
the robot should not exhibit unexpected, unnatural, or “martian” behaviors
(Petty, 2001). Although the robot may be able to perform a task efficiently,
using, for example, a behavior-based approach, if the resulting behavior
is perceived to be unnatural by the human, further interaction suffers as
a kind of cognitive disruption. From this it follows to create some robot
behaviors by modeling how humans perform such tasks.

Finally, some tasks for robots can best be programmed not by using more
traditional control algorithms, but by understanding how humans solve
the task and then creating a computational model of that understanding.
So, for example, a robot that could search for hidden snipers would prob-
ably perform best if it had been programmed with knowledge about how
humans hide.

Two reasons for building artificial systems that think and act like a per-
son have been presented. First, systems that act like people will elicit more
social behaviors from people and make such systems more natural for
people to deal with, and second, artificial systems that think like a per-
son will interact with people with far greater ease than systems that do
not. The specific interest is in how to build robots, so the remainder of
our discussion will focus on robotic agents. One issue with working with
physically embodied robots is that, because they are physical and move
around, people must interact with them in non-trivial ways: social inter-
action will probably occur, and communication and collaboration should
occur. The overall goal is to build robotic systems that think and act like
people do in order to enable natural social behavior and allow better and
easier communication and collaboration. It should be noted, however, that
our primary point can be generalized to all types of physically embodied
systems.

In the following sections, one robotic system will be described and
three examples that show humans and robots collaborating and work-
ing together on various tasks will be presented. In the first example, the
robot is taught how to hide (based on data obtained from a 3 1

2 -year-old
child’s behaviors in learning how to hide) and then it is asked to seek us-
ing these representations and strategies. The second and third examples
use perspective-taking situations to facilitate human–robot communica-
tion and interaction. The first model of perspective taking emphasizes a
good cognitive model of the representation used by humans, and the sec-
ond perspective-taking model emphasizes the human process of using
mental simulations to imagine another’s perspective.

Because robots will be used for all these tasks, mobile robots and their
capabilities and sensors will be described first.
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4 mobile robots

The empirical results were obtained by running the computational cogni-
tive models, along with more traditional, reactive control software, on an
indoor mobile robot in a laboratory environment.

4.1 Hardware

The robot is a commercial Nomadic Technologies Nomad200 suited to
operation in interior environments. It has a zero turn radius drive system,
an array of range, image, and tactile sensors, and an onboard network of
Linux and Windows computers with a wireless Ethernet link to the external
computer network.

4.2 Software

A combination of non-cognitive methods (primarily for robot mobility and
object recognition), cognitively-inspired interactions (primarily for com-
municating with a person), and computational cognitive models (primarily
for the high-level thinking and reasoning) were used. In previous work the
utility of combining low-level reactive systems with cognitive models has
been shown (Bugajska, Schultz, Trafton, Mintz, & Gittens, 2001; Bugajska,
Schultz, Trafton, Taylor, & Mintz, 2002; Trafton, Schultz, Bugajska, Gittens,
& Mintz, 2001).

4.3 Non-cognitive Methods

This project draws on the robot mobility capabilities of the previously de-
veloped WAX system (Schultz, Adams, & Yamauchi, 1999), which includes
components for map building, self-localization, path planning, collision
avoidance, and on-line map adaptation in changing environments. The
robot’s lowest level of information comes from a dead-reckoning com-
ponent that integrates motion over time to compute the robot’s current
location. As the robot moves, it gathers range data from its 16 ultrasonic
transducers and a laser-based structured light rangefinder. In a process de-
veloped by Moravec and Elfes (Moravec & Elfes, 1985), the range data are
interpreted using a sensor model that converts the raw range data to a set
of occupancy probabilities for the sensed area. In this manner, data from
multiple sensors can be fused into a single short-term occupancy map of
the robot’s vicinity, represented as a three-dimensional array of discrete
cells, each containing the probability that it is occupied or empty.

Robot odometry suffers from gradual drift, sometimes punctuated by
larger errors from wheel slippage, rough ground, or collisions, so odometry
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alone is insufficient. Using the process of continuous localization (CL)
(Schultz & Adams, 1998), a temporally overlapping progression of short-
term perception maps is maintained. At periodic intervals, the oldest short-
term map, which has the most data, is registered against a long-term map
of the larger environment (typically a room) to determine the correction
needed to correct the odometric drift. The long-term map can be supplied a
priori, or learned through a careful exploration, as was done by Yamauchi,
Schultz, and Adams (1998). For this work, mapping was not the focus,
so an a priori map was used. As a byproduct of correcting odometry, the
long-term map can also be adapted to incorporate the now-corrected new
readings from the short-term map. Thus, as the robot moves, it not only
maintains an accurate estimate of its position but also keeps the long-term
map up to date with any changes to the environment.

Because the robot’s basic motor system is geometry-based and metric
maps can be easily produced, it is a matter of practicality to state goal
locations as points in Cartesian space. These goals are passed to the Trulla
path planner (Hughes, Tokuta, & Ranganathan, 1992), which uses the long-
term map to determine the best path to the goal. Because there may have
been changes to the environment that are beyond the robot’s sensor range,
or recent changes such as people walking near the robot, the paths made
by Trulla cannot be followed blindly. Instead, they are passed as a single
vector field to the Vector Field Histogram (VFH) process (Borenstein &
Koren, 1991). VFH uses the robot’s current position to retrieve from the
vector field the direction the robot should move to head toward the goal.
This vector is compared to an occupancy histogram built from the short-
term map (which has the recent data close to the robot), and the robot is
steered in the unblocked direction closest to the one indicated by the vector.
In effect, Trulla handles the room-level navigation whereas VFH provides
collision avoidance. If the robot is blocked, VFH prevents collision. CL
learns the changes and produces a new adapted long-term map, and Trulla
replans around the obstruction.

In addition to general mobility, the robot needs to recognize objects in its
environment for the high-level cognition that will be demonstrated later.
Rather than providing the robot with a priori information about discrete
objects, the robot is instead equipped with limited computer vision in or-
der to detect some objects autonomously. This also allows objects to be
rearranged, added, or removed with the robot reacting accordingly. The
CMVision package (Bruce, Balch, & Veloso, 2000) was used to provide sim-
ple color blob detection using an inexpensive digital camera mounted on
the robot.

Relevant objects in the environment are tagged with color markers that
are easily distinguished from the surroundings. The marker color is the
identifier for the characteristics of an object. For example, all lime green
objects are “chairs” and have the same characteristics. The bearing to the
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object is then determined from its location in the camera image, and the
range to it is obtained from a scanning laser rangefinder.

4.4 Cognitively Inspired Methods

To communicate with a person, several methods that have some basis in
human cognition are used. The methods that are used here allow a user to
communicate with the robot using spoken language, gestures in the real
world, and gestures on a Palm Personal Digital Assistant (PDA).

The human user can interact with the mobile robot using natural lan-
guage and gestures that are part of our multimodal interface (Perzanowski,
Schultz, & Adams, 1998; Perzanowski et al., 2002; Perzanowski, Schultz,
Adams, & Marsh, 1999, 2000; Perzanowski, Schultz, Adams, Marsh, &
Bugajska, 2001). The natural language component of the interface uses
a commercial off-the-shelf speech recognition engine, ViaVoice, to analyze
spoken utterances. The speech signal is translated to a text string that is
further analyzed by our in-house natural language understanding system,
Nautilus (Wauchope, 1994), to produce a regularized expression. This lat-
ter representation is linked, where necessary, to gesture information, and
an appropriate robot action or response results.

For example, the human user can tell the robot “Coyote, go hide and
I’ll try to find you.” The speech signal is analyzed into a text string that
when parsed produces the following representation, simplified here for
expository purposes.

(and (imperative (p-hide: hide)
(system: you

(name: coyote)))
(future (p-attempt: try)

(agent: I)
(action (p-find: find)

(agent: I)
(system: you

(name: coyote)))))

Basically, Nautilus parses the utterance into appropriate commands (e.g.
the imperative structure in our example) and statements (e.g. the future
declaration in our example), and the various verbs or predicates of the ut-
terance (e.g. hide, try, and find) are mapped into corresponding semantic
classes (p-hide, p-attempt, and p-find) that have particular argument struc-
tures (agent, system), which result in a semantic interpretation of the utter-
ance. With gesture information, where appropriate, a combined representa-
tion incorporating both the linguistic and gestural information is then sent
to the robotic component whose modules translate the representations into
appropriate actions. In the example above, no further gesture information
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is required to complete the command. Coyote will, therefore, respond “I
will go and hide,” in order to inform the user that it has understood the
utterance. The appropriate behavior based on the cognitive model for the
hide-and-seek activity is invoked and appropriate robot action according
to the model ensues.

If a gesture is required to disambiguate the speech, as in “Coyote, hide
somewhere over there,” the gesture information obtained from the laser
rangefinder mounted on the top of the robot indicates the desired location,
and this information is included in the interpreted utterance for further
analysis by the robotic system.

5 hide and seek

The first domain in which robotic agents that think and act like people will
be demonstrated will be the children’s game commonly known as “hide
and seek.” Hide and seek is a simple game in which one child is “It,” stays
in one place counting to ten with eyes closed, and then goes to seek, or
find, the other child or children who have hidden. This game allows us
to address our high-level goals of understanding how human representa-
tion and processing of spatial information (Skubic, Perzanowski, Blisard,
Schultz, & Adams, 2004) can aid in designing better human–robot interac-
tion in collaborative spaces. This work is described more fully elsewhere
(Trafton, Schultz et al., under review); a summary of the findings is dis-
cussed here.

The study had two primary goals: (1) to understand how children learn
to play hide and seek via computational cognitive modeling; and (2) to
build a system that thinks and acts like people do. This latter point should
serve to facilitate human–robot interaction. The first point will be briefly
summarized and more fully described to show how our system thinks and
acts like children learning how to play.

Hide-and-seek game-playing behavior was gathered from a 3 1
2 -year-

old child. Previous research suggests that 3 1
2 -year-old children do not, in

general, have perspective-taking ability (Huttenlocher & Kubicek, 1979;
Newcombe & Huttnelocher, 1992; Wallace, Allan, & Tribol, 2001), but they
are able to play a credible game of hide and seek (supported mostly by
anecdotal evidence of the game-playing behavior at local parks and play-
grounds, because there are almost no empirical investigations of the natu-
ralistic game of hide and seek). Spatial perspective taking is clearly needed
for a “good” game of hide and seek: a good hider needs to take into account
where “It” will come into a room, where “It” will search first, and where
to hide behind an object taking the perspective of “It” (Lee & Gamard,
2003) so that “It” will not be able to find the hider easily. Additionally, the
hider must know that just because the hider can’t see “It” doesn’t mean
that “It” can’t see the hider. The research question was to explore how
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3 1
2 -year-old children learned to play hide and seek without perspective tak-

ing. The hypothesis (which was supported by computational simulation)
was that 3 1

2 -year-old children were able to learn relationships of objects
to play hide and seek. For example, a child may learn that hiding under
or inside of an object was a good hiding place. In contrast, hiding behind
an object occurred rarely because that required spatial perspective taking.
Evidence was obtained from a child learning to play hide and seek; subse-
quently, computational simulations in ACT-R (Anderson & Lebiere, 1998)
were written that learned how to play hide and seek in the same manner as
the child did. Additionally, the computational system was put on our robot
and hide and seek was played (Trafton, Schultz et al., under review) with it.

To show the benefits of a system that thinks and acts like a person,
we wanted to show how the computational system could be generalized
to a different situation where similar but not exact knowledge would be
needed. The most obvious task to explore was the “seeking” part of hide
and seek, because the computational cognitive model that was written
focused solely on learning how to hide. The seeking system should exhibit
several interesting behaviors. First, it should seek according to its own
model of hiding. That is, it should search in places that it thinks are plausible
for “It” to hide in.2 Second, it should be able to deal with novel objects or
objects that were not in its original environment. Third, it should be able to
accomplish this seeking behavior without new learning mechanisms while
using its current representations and algorithms. This seeking behavior
would be a proof of concept for the representational hypothesis: building
a system that thinks and acts like a person would make the system more
“natural” in some ways. In this case, a child would presumably find a
system that plays hide and seeks like another child more fun than a system
that hides or seeks in very odd places (e.g., a robot that hid in a very difficult
location would not be much fun to play with).

To explore how our existing system would seek for a person after it
had learned how to hide, several straightforward steps were gone through.
First, the model was run as above, allowing the robot to learn different per-
tinent features of objects and object-relations. The model was then “frozen.”
To allow the robot to seek, two more pieces of information were given to
it: (1) what a person “looked like” (e.g., the person might wear a blue shirt,
which was identifiable by CMVision) and (2) how to start the game (e.g.,
a location to start from; what to count to, etc.). To seek for a person, the
computational cognitive model determined where it would best hide and
then gave those coordinates to the robot where it would then look. If it

2 Because our robot cannot bend or change shape like a young child, as a simplification for
both the model and the robot, we assumed that our hider is small (approximately the size
of a small child) and does not contort itself a great deal or squeeze itself into a location that
is smaller than itself.
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did not find the person in that location, it searched in the next place that
it would have hidden until either it had found the person or it had run
out of locations to search. The model’s “individual preferences” (e.g., lo-
cations that had higher or lower levels of activation) were not cleared. The
model searched those locations in approximate (because of noise) order
of activation. The environment was changed slightly as well (i.e., added
additional objects it already knew something about, moved the location of
other objects, etc.).

Both the model and robot behaved as expected. The robot system-
atically searched different locations that it had learned were acceptable
hiding places until it found the person hiding. Over multiple games, it
searched locations in different orders. Most importantly, it did not at-
tempt to search for a person in locations that would have been very “odd.”
For example, while it could have found a person hiding out in the open
(like children do when they’re first learning how to play hide and seek),
it did not systematically search all the open space for a person hiding
out in the open. Instead, the robot searched where it thought it would
have hidden. A full set of movies of the robot seeking can be found at
http://www.nrl.navy.mil/aic/iss/aas/Cognitive Robots.phf.

The fact that the robot and computational system were able to find a
hiding person successfully by using its own representations and processes
supports our representational-level hypothesis; namely, a computational
or robotic system that thinks and acts like a person will interact well with
the person. This hypothesis was supported by taking the “hiding” model
and applying it to seeking. The model successfully searched for a person
using the same representations and processes that it had learned and used
while learning how to hide. Our hypothesis also states that by using similar
representations and processes, alien behaviors could be avoided. As shown
above, our system did not search for or hide in unusual places; instead, it
only considered those places that a human would consider.

Clearly, this approach could lead the system to make systematic errors:
it would not expect a person to have climbed a rope and clung to it, etc.
It also could not use perspective taking for seeking or even assume that
the hider would move locations because that information was not built
into the original hiding model. However, 3 1/2 year olds do not typically
climb ropes or use perspective taking to hide from someone, and they do
not typically look for hiders in these types of odd places, either (Trafton,
Schultz et al., under review).

6 perspective taking

The second and third domains for exploring robots that think and act like
people involve the basic cognitive skill of perspective taking.
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Imagine two astronauts working together on a collaborative construc-
tion project. Whereas they might be able to talk and gesture to each other
to get their job done, they would be dressed in full spacesuits and con-
sequently have diminished perceptual abilities and decreased freedom of
movement. Given these limitations, their work could be facilitated by a
robotic system that could hand them tools and follow simple instructions,
or perhaps even give them instructional assistance. To determine the kinds
of instructions and utterances the robots would need to understand and
process in this situation, we have analyzed data that were collected during
a specific astronaut training session. When astronauts train for missions,
part of their training occurs in various simulated microgravity environ-
ments, such as the Neutral Buoyancy Laboratory (NBL) at NASA/JSC. In
the NBL, astronauts conduct a wide variety of training for extravehicular
activity (EVA); i.e., working outside the space shuttle, including working
out the procedures and defining roles to perform EVAs.

One issue that astronauts must deal with is spatial language and spa-
tial perspective taking. Virtually all of the experimental work on spatial
language and perspective taking to-date has focused on five frames of
reference: exocentric (world-based, such as “Go north”), egocentric (self-
based, “Turn to my left”), addressee-centered (other-based, “Turn to your
left”), deictic (“Go here [points]”), and object-centric (object-based, “The
fork is to the left of the plate”) (Carson-Radvansky & Logan, 1997; Carson-
Radvansky & Radvansky, 1996; Goldin-Meadow, 1997; Levelt, 1984;
McNeill, 1992; Mintz, Trafton, Marsh, & Perzanowski, in press). Unfortu-
nately, astronauts must deal with frames of references and spatial situations
that people here on Earth do not typically have to deal with. For example,
“up” may mean something completely different in space in different situ-
ations (i.e., up may mean toward the ceiling of the spaceship rather than
with reference to the normal sense of gravity here on Earth). In general,
astronauts do not have problems themselves in understanding the spatial
language and taking another’s point of view, but one of the challenges for
robotic systems is to understand what someone else is talking about from
a different spatial perspective.

As part of this project a series of astronaut utterances has been ana-
lyzed as they performed a cooperative assembly task for Space Station
Mission 9A, specifically the construction of the first right-side Truss seg-
ment and the Crew and Equipment Translation Aid (CETA) Cart A in the
NBL (Trafton, Cassimatis et al., in press). This analysis project is still under
progress, but several critical issues have already surfaced. First, astronauts
seem to switch reference frames quite often, just as people do while giving
directions (Franklin, Tversky, & Coon, 1992). Second, astronauts in this col-
laborative process must frequently take another’s perspective, even when
they cannot see the person whose perspective they are taking. For example,
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table 10.1. Dialog between two astronauts and an observer.

EV1 EV2 Ground
Bob, if you come straight down from
where you are, uh, and uh kind of peek
down under the rail on the nadir side,
by your right hand, almost straight
nadir, you should see the uh,

Mystery
hand-rail

The mystery hand-rail, exactly
OK

There’s a mystery
hand-rail?

Oh, it’s that sneaky one. It’s there’s only
one in that whole face.

Oh, yeah, a mystery
one.

And you kinda gotta cruise around until
you find it sometimes.

I like that name.

the following conversation (Table 10.1) occurred between three individu-
als – two astronauts (EV1 and EV2) in the neutral buoyancy tank at NBL
and one person (Ground) outside of the tank in mission control. The latter
watched the two astronauts through a video feed of the activity.

Notice several things about this conversation. First, the mission control
person mixes reference frames from addressee-centered (“by your right
hand”) and exocentric (“straight nadir” which means towards the earth)
in one instruction, the very first utterance. Second, the participants come
up with a new name for a unique unseen object (“the mystery hand-rail”)
and then tacitly agree to refer to it with this nomenclature later in the dialog.

This short excerpt shows that an automated reasoning system needs to
be able not only to mix perspectives, but to do so in a rather sophisticated
manner. One of the most difficult aspects of this problem is the addressee-
centered point of view, which happens quite often in the corpus that was
examined. Thus, in order for a robotic system to be truly helpful, it must be
able to take into account multiple perspectives, especially another person’s
perspective.

At this point we turn to a discussion of two further projects that show
how robots can think and act like people. The first project uses similar
processes (specifically simulation) that people use when they take another
person’s perspective, and the second project uses the same spatial repre-
sentations that people use.
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6.1 Perspective Taking Using Similar Processes: Polyscheme

The hypothesis that humans and robots interact better when they share
similar representations and when robots can take the perspective of
humans has helped determine how to implement the cognitive subsystem
of our robots. First, because robots must share similar representations with
humans, a cognitive architecture that had cognitively-inspired spatial
and logical reasoning mechanisms was used. Second, an architecture that
provides a mechanism for simulating alterative states of the world was
used so that the robots could reason about the perspective of other people.
The Polyscheme (Cassimatis, 2002) cognitive architecture fulfills both
requirements.

Polyscheme is a cognitive architecture based on the ability to conduct
mental simulations of past, future, distant, occluded, and/or hypothetical
situations. Our approach has been to use Polyscheme to enable robots to
simulate the world from the perspective of people with whom they are
interacting and to understand and predict the actions of humans.

Polyscheme uses several modules, called specialists, which use special-
ized representations for representing some aspect of the world. For ex-
ample, Polyscheme’s space specialist uses cognitive maps to represent the
location of and spatial relations among objects. Its physics specialist uses
causal rules to represent the causal relation between events. Using these
specialists, Polyscheme’s specialists can simulate, i.e., represent the state
and predicted subsequent states of situations it cannot see at present, either
because they occurred in the past or future, they are occluded from view,
and/or they are hypothetical.

Polyscheme modelers have the ability to set strategies for choosing
which situations to simulate in what order. Modelers use these strategies to
implement reasoning and planning algorithms, including perspective tak-
ing. For example, the counterfactual simulation strategy, “when uncertain
about A, simulate the world where A is true and the world where A is false,”
implements a backtracking search when used repeatedly. The stochastic
simulation strategy, “when A is more likely to be true than false, simulate
the world where A is true more often than the world where A is false,”
implements an approximate form of probabilistic reasoning (often used,
e.g., to estimate probabilities in a Bayesian network). Polyscheme’s abil-
ity to combine multiple simulations from multiple strategies and to share
simulations among strategies is the key to its ability to tightly integrate
multiple reasoning and planning algorithms (Cassimatis, Trafton, Schultz,
& Bugajska, 2004). Because each simulation is conducted by specialists that
use multiple representations (e.g., perceptual, spatial, etc.), the integration
of reasoning with sensation and multiple forms of reasoning is constant.

Using this framework, we have been able to improve human–robot
interaction by giving robots the ability to simulate the world from the
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figure 10.2. The robot needs to take the perspective of the person to determine to
which cone the human has referred.

perspective of humans they interact with. An important problem when
humans and robots communicate using natural language is that most
verbal commands or questions have multiple literal meanings. Although
humans are normally able to use contextual information to eliminate most
possible interpretations and thus identify the speaker’s intent, this has
remained a difficult problem for computers and hence robots.

By using Polyscheme to implement the perspective simulation strategy,
“when a person, P, takes action, A, at time, T, simulate the world at time T
from A’s perspective”, we have given our robots the ability to reason about
the world from the perspective of people and to thereby disambiguate their
utterances. In many cases, for instance, an utterance is ambiguous given the
listener’s knowledge, but unambiguous given the speaker’s knowledge.
Figure 10.2 is an example. The figure shows a robot and a person facing
each other. The robot can see that there are two cones in the room, cone1
and cone2, but the person only knows about cone2 because cone1 is hidden
from her. When the person commands, “Robot, go to the cone,” the phrase
“the cone” is potentially ambiguous to the robot because there are two
cones, though unambiguous to the person because he only knows of the
existence of one cone. Intuitively, if the robot could take the perspective of
the person in this task, it would see that, from that perspective, cone2 is
the only cone and therefore “the cone” must refer to cone2.

Polyscheme was used to implement this sort of reasoning on the robot
described earlier. The following list outlines the sequence of simulations
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that enable the robot to properly disambiguate the person’s utterance:
� Simulate current real world (i.e., perceive it):

◦ Perception specialist notices the existence and location of person,
cone1, cone2, and obstacle.

◦ Language specialist hears “Coyote, go to the cone” and infers that
there is an object, C, that is a cone and that the person wants it to go
to.

◦ Identity hypothesis specialist infers that C can be identical to cone1
or cone2:
� C = cone1, C = cone2

◦ Identity constraint specialist notices a contradiction.
◦ This contradiction triggers the counterfactual simulation strategy.

� Simulate the world where C = cone1
◦ Because in this world Person has referred to cone1, the perspective-

simulation strategy is triggered:
◦ Simulate the world where C = cone1 and Robot = Person.

� The spatial reasoning perspective indicates that cone1 does not exist
in this world because person cannot see it.

� Thus, C ! = cone1.
� Simulate the world where C = cone2

◦ Because in this world Person has referred to cone2, the perspective-
simulation strategy is triggered.

◦ Simulate the world where C = cone2 and Robot = Person
� Because cone2 is visible in this world, there is no contradiction in

this world.
� Infer that C = c2, i.e., that “the cone” refers to cone2.

This example illustrates how robots can use their own mechanisms for
reasoning about the world to reason about the beliefs and intentions of
other agents without needing elaborate machinery for social reasoning. An
online video of this example can be found at http://www.aic.nrl.navy.mil/
∼trafton/movies/perspective-2objects-mp4.mov.

Polyscheme is able to solve this problem by using mental simulation,
a human-level ability that is, in general, not well used in other cogni-
tive architectures. By using mental simulation (a similar mental process
to what people do), it greatly increases the human–robot interaction in
this situation: without this kind of machinery, the robot would need to
ask “Which cone?” which could lead to confusion on the person’s part
if she did not know there was more than one cone. Other work not only
provides a more complete description of Polyscheme, but also provides
more details about other tasks, including the perspective-taking examples
used here (Cassimatis, 2002; Cassimatis, Trafton, Bugajska, & Schultz, 2004;
Cassimatis et al., 2004; Trafton, Cassimatis et al., in press).
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chunk_cone:
isa: cone
color: gray
speaker_can_see: true
location: (x,y)

production_take_cone:
if isa cone

and speaker_can_see
and (my_x, my_y) = (x,y)

then take_cone

figure 10.3. An ACT-R memory chunk and production rule.

6.2 Perspective Taking Using Similar Representations: ACT-R

Polyscheme showed that mental simulation could be used to solve a prob-
lem in perspective taking, and shows an example of how to build a robot
that thinks and acts like a person. Could a similar perspective-taking task
be accomplished by focusing on the spatial representations that people
have? We attempted to answer this question by using ACT-R/S (Harrison
& Schunn, 2002, 2003a, 2003b).

The cognitive architecture jACT-R is a java version of the ACT-R archi-
tecture (Anderson & Lebiere, 1998). To represent declarative memory, it
uses chunks of various types of elements. These chunks can be accessed
through a memory retrieval buffer. To use and manipulate the chunks of
memory, ACT-R provides a framework for production rules. A sample
chunk and production rule are shown in Figure 10.3. ACT-R then simu-
lates cognitive behavior and thought based on activation values and prop-
agation of chunks and higher-level goals. ACT-R also includes support
for perceptual and motor cognitive tasks, such as Precognitive Remote
Perception tasks, by including a second visual buffer for viewing objects in
space.

ACT-R/S extends jACT-R to implement a theory about spatial reason-
ing (http://simon.lrdc.pitt.edu/∼harrison/actrs.html). It posits that spa-
tial representations of objects are temporary, egocentric and dynamically
updated (Wang & Spelke, 2002). ACT-R/S has three buffers for spatial cog-
nition: the configural buffer, the manipulative buffer, and the visual buffer.
The configural buffer represents spatial extents of objects that are updated
during self-locomotion and is used during navigation, path-computation,
object-avoidance, etc. The manipulative buffer represents the metric spa-
tial bounds of an object and is used for spatial transformations of objects
(Trafton, Marshall, Mintz, & Trickett, 2002; Trafton, Trickett, & Mintz, in
press). The visual buffer is the same as the “standard” perceptual-motor
buffer in ACT-R/PM (Byrne & Anderson, 1998).
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ACT-R/S represents objects using vectors to the visible sides of the ob-
ject. It has the ability to track these objects through the configural buffer,
a data structure analogous to the other buffers of ACT-R that store each
object once it has been identified. The coordinate vectors of the objects in
the buffer are then dynamically updated as the agent moves throughout
the spatial domain. The configural buffer, unlike the visual and retrieval
buffers of ACT-R, can hold more than one object to account for the fact
that animals have been shown to track more than one landmark at once
while moving through the world (Harrison & Schunn, 2003a). To focus on
the representational aspects of perspective taking, our model uses only the
spatial representations within jACT-R/S.

Using the configural extension begins with locating and attending to
an object via the visual buffer provided by the standard Perceptual-Motor
extension to ACT-R. Once an object is found, it is possible to request that
the ACT-R/S visual object at that location, if one exists, be placed in the
configural buffer. The model then begins tracking this object, creating the
initial vectors and updating them as the agent moves around in the world.
The updating transformation is done by adding or subtracting vectors
representing the agent’s movement to the vectors and object’s location.

To demonstrate the results of perspective taking using jACT-R/S, the
same perspective-taking task that Polyscheme solved was implemented:
disambiguating which cone a person referred to when the robot could see
two cones but the person could only see one. For this example, the full
system was not implemented on a physical robot. In the simulated world,
two agents (hereafter referred to as the “speaker” and the “robot”) are in a
room with two cones and a screen. The screen blocks the view of one of the
cones from the speaker, but not the robot. Then, the speaker asks the robot
to hand them the cone, using some locative clue such as “in front of me.”
If both of the cones match this description, then the robot should hand the
speaker the cone that it knows the speaker can see.

The model thus uses the ACT-R/S architecture in order to use spatial
perspective taking to complete its task. There are several components to
the perspective taking that it goes through in order to do so.

6.2.1 Perspective-Taking Process
The production rules involved in the perspective-taking process are the
most important part of the model, as they implement the heart of its theory
of spatial perspective taking. Taking the perspective of someone at position
and orientation B, from position and orientation A, the over all procedure
is to:

1. Turn to face position B
2. Walk to position B
3. Face orientation B
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4. Extract the desired information from the visual knowledge at this
position and orientation

5. Face position A
6. Walk back to position A
7. Return to orientation A.

The key to this process is that all of these movements – i.e. turning and
walking – are mentally done by only transforming the configural buffer
contents by the appropriate vector, leaving everything else the same. Thus,
the physical location of the robot does not change; it is only its mental
perspective that changes.

6.2.2 Initial Scan for Objects
The model first uses perspective taking to deduce where it should begin
looking for the cone. When the speaker says “in front of me,” or “to my
left,” etc., the robot interprets that information by taking the speaker’s
perspective and mentally placing itself in his or her shoes. It then looks
at a location in front of it, or to its left (as indicated by the speaker’s ini-
tial instructions), and keeps track of that location as it returns to its own
perspective. This is where it begins its search for the cone.

6.2.3 Deciding Which Cone To Go To
The model also uses perspective taking once a cone has been found. When
it has located a cone in the desired location, it looks around for obstacles
that could possibly block the speaker’s view of the cone. If it finds any
such obstacles, it takes the speaker’s perspective again in order to judge
whether or not it can see that particular cone.

This time, however, once the robot has taken the speaker’s perspective,
instead of turning to match the speaker’s orientation, it turns to face the
located cone. Determining whether or not the cone is visible by the speaker
is then done by comparing the transformed location vectors of the target
object with the location vectors of the possible obstacles, making sure that
the obstacle’s vectors do not completely surround the target object’s vec-
tors. This ensures that the speaker has the ability to see at least part of the
cone.

If the speaker can in fact see the cone, the robot goes to that cone. If the
speaker cannot see the cone, the robot continues to look for a cone that the
speaker can see. Although building a model that completes this task could
be done in a variety of ways, what distinguishes jACT-R/S from other spa-
tial cognitive models is that it uses the spatial representation of humans in
order to complete the perspective-taking task. Once again, this representa-
tion entails creating and updating a set of vectors to the edges of each object
currently being attended to. Using this representation allows the cognitive
agent to undergo perspective taking by imagining movement throughout
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the world by simply altering the representation of the objects in the config-
ural buffer. This ultimately results in true perspective taking in the sense
that the agent’s representation of objects, once it has imagined movement
to the second agent’s location, roughly matches the second agent’s own
representation of these objects, truly seeing the world as the second agent
does. In the end, this provides a more natural and human-like interaction
with the second agent, because the cognitive agent responds as a human
plausibly would instead of introducing into the conversation an item (here,
a cone), that the second agent might not even know exists.

6.3 Summary of Perspective Taking

When a task needs perspective taking, there are, of course, many ways
to solve the task. For example, a straightforward method of solving the
“Go to the cone” problem discussed above would be to simply ask the
person “Which cone?” Alternatively, the robot could simply guess and
go to a cone. Unfortunately, both these solutions break down under more
complex conditions and under conditions where speed and accuracy are
critical (like the astronaut construction task discussed earlier). Having a
robot ask many questions would quickly get boring, bringing the level
of autonomy to a level that hurts team performance. Similarly, if a robot
is going to guess frequently, team performance will likely degrade and
interaction with the robot will quickly become frustrating.

Using the forms of perspective taking that have been outlined here,
we believe that we are building robots that think and act like people (to
a limited degree). The main advantage of this approach is that if a robot
thinks and acts like a person, not only will a person treat it (approximately)
as a person, but also the interaction with the robot will be quite natural for
the person.

7 future directions in social perspective taking

This work on perspective taking attempts to create a robot that thinks and
acts like a person; this presents several future research questions and op-
portunities that fall into two broad categories. The first involves improving
robots’ abilities to infer and represent the perspective of humans and the
second pertains to actions that they can take to ensure that human and
robot representations are synchronized and to make corrections should
they begin to diverge.

In much of the work that has been described in this chapter, robots
infer a human’s perspective by observing which objects are currently visi-
ble to him from his perspective. There are several other factors robots can
use to infer the human perspective, each of which enables them to coordi-
nate their behavior with humans in more complex situations. These factors
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include perceptual salience, the history of a person’s attentional gaze and
predictions of future actions formed by predicting the intent of past actions.

Robots must not only be able to represent the perspective of a person,
but also be able to identity which aspects of his perspective are most salient.
Such a perceptual capacity in a robot would be valuable in many practi-
cal circumstances. Studies of human–human interaction have shown that
people can make ambiguous references to objects that other people can
easily disambiguate by choosing the most salient interpretation. Clark,
Schreuder, and Buttrick (1983), for example, found that a group of thirty
students individually made the same choice with an average of 70% or
better when asked to either choose an ambiguous reference, choose what
another person would choose, or simply choose what was most salient in
various scenes of similar objects. In addition, it was found that the students’
ratings of confidence in their choices correlated highly with the concurrence
of their choices. In accord with our theme that robots with human-like rep-
resentations will generate more predictable behavior and be easier to deal
with, we suspect endowing robots with a sense of salience similar to that
of humans will lead to more advanced human–robot interaction.

Robots must also be able to infer the perspective of a person, not only
from his current spatial location, but also from the history of where he has
been and what he has looked at. This kind of inference is such a fundamen-
tal part of what humans expect of an interaction, that it has been found
to underlie the behavior of infants and very young children. For example,
Baldwin (1991) has found that when toddlers are learning the name for an
object, they do not merely associate the visual and auditory stimuli they are
currently perceiving. Instead, they keep track of what a speaker was look-
ing at while naming an object and attach the word he uttered to his object
of attention even if they do not actually see the object until later. Wimmer
and Perner (1983) have found that four-year-old children can predict the
actions of another person based on what that person has seen in the past,
even if that requires them to represent that another person has an incorrect
view of the world. These studies indicate that humans have a basic ability
to infer other people’s perspective using not only information about what
that person is currently looking it, but by referring to the history of their
interaction. We hope that endowing robots with this ability will enable
them to interact in more complex tasks with people by needing less infor-
mation and time to construct richer models of their joint activities.

In addition to using more information to “see” other people’s perspec-
tives, robots must constantly monitor how well synchronized their view of
the world is with that of the people they are working with and take actions
to correct these views when their views or representations diverge. There is
extensive evidence that humans constantly engage in this behavior when
interacting among themselves and we assume that they will expect the
same of the robots with which they interact.
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One simple strategy that people use to communicate that they under-
stand each other is the use of “backchannel responses.” For example, dur-
ing conversations, people will nod their heads, smile, or make brief ut-
terances such as “uh huh” to indicate that they understand each other.
These behaviors are not just occasional conversational ticks but are part of
spectrum of behaviors that exhibit understanding that people expect and
whose absence can lead to substantial miscommunication (Brennan, 1998;
Brennan & Hulteen, 1995; Clark & Brennan, 1991). We believe that recent
advances in the expressiveness of robots create an opportunity for the use
of backchannel responses to make robots act even more like people than
ever before. These types of backchannel responses, in fact, may very well
be a primary way that robots can act like people and cause people to act
toward robots in a social manner.

On many occasions, people take more overt actions to indicate how
well synchronized their representation of the world is with the people
they are cooperating with. In cases where a person wants to verify that
he understands the intent of a speaker’s utterance, he will reformulate the
speaker’s meaning with another utterance. For example, Clark and Wilkes-
Gibbs (1986) found that in scenarios where a speaker attempted to refer to
an object, the listener would sometimes find a new way of referring to the
object and ask the speaker if this was his meaning, e.g., speaker A says,
“Um, third one is the guy reading, holding his book to the left,” speaker
B asks, “Okay, kind of standing up?” and speaker A answers. “Yeah.” In
cases where one person in a conversation detects a mismatch between the
representations of the participants, he will initiate “repair” utterances to
resynchronize the representations as in this example, again from Clark and
Wilkes-Gibbs (1986):

a. Uh, person putting a shoe on.
b. Putting a shoe on?
a. Uh huh. Facing left. Looks like he’s sitting down.
b. Okay.

These future research directions indicate that many superficially disparate
aspects of interaction are all applications of the principle that humans and
robots should share the same kinds of representations and should con-
tinually engage in activities to make sure these are synchronized. It also
enables the large body of research in human–human interaction, especially
including work that indicates what humans expect of those they interact
with, to create systems that think and act like people.

8 summary

The main point of this chapter has been to present, explore, and sup-
port ways of building robots that think and act like people. The strongest
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examples have focused on how to build robots that think like people. We
also presented a representational hypothesis – using similar representa-
tions and processes as a person will improve and facilitate interaction.
This chapter has shown three strong demonstrations of robots that think
and act like people. First, we showed that a model of hiding could be used
to seek. The model used the same representations and strategies to seek
as to hide. These human-based representations and strategies allowed the
robot to interact with a person without violating the person’s expectations.
Second, we showed two different perspective taking models that solved a
complex task in different ways. The first model, written in Polyscheme, fo-
cused on mental simulation to solve the task. The second model, written in
jACT-R/S, focused on the spatial representations that people are thought
to have. Both models successfully solved the perspective-taking problem
presented to it.

In sum, the systems presented here take seriously the idea that people
can be used as models for computational systems, specifically robots. The
two primary advantages that flow from this idea are (1) that people will
act socially toward systems that act as a human would; and (2) that people
will interact with a system that “thinks” like a person would.
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Behavior-Based Methods for Modeling
and Structuring Control of Social Robots

Dylan A. Shell and Maja J. Matarić

1 introduction

People and robots are embodied within and act on the physical world. This
chapter discusses an action-centered methodology for designing and un-
derstanding control, perception, representation, adaptation, and learning
in physical robots, inspired by evidence from social biological systems. A
working robotic implementation based on a biologically plausible model
provides strong support for that model. Primarily it provides a demonstra-
tion of classes of behavior for which the underlying theory is sufficient. In
addition to ensuring that the underlying theory has been specified with
algorithmic rigor, it also assures that the model is effective even in the pres-
ence of noise and various other effects of a dynamic environment. Short-
comings of the implementation may highlight concrete issues on which
a later and further refined theory may focus, thereby playing an impor-
tant role in the hypothesize-test-rehypothesize cycle. Robotic systems are
one of the few ways to provide a complete end-to-end validation of social
theories that deal with self-referential notions and require validation.

A central postulate of the action-centered methodology is that intelli-
gent behavior in an embodied system is fundamentally structured by the
actions the system is capable of carrying out. In societal systems the indi-
viduals’ social behavior, including communicative and interaction actions,
similarly structures the large-scale behavior. This is supported by neuro-
science evidence and has a key impact on the way human activity and
robot control are understood and modeled.

The belief that reasoning agents/systems should be built upon action-
centered characteristics such as the physical dynamics and task constraints
toward effective cognitive capabilities embodies what is known in the AI
community as a bottom-up philosophy, and contrasts with other so-called
top-down views. Behavior-based controllers are a means of principally en-
coding bottom-up robot control strategies through the use of underlying
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building blocks termed behaviors. Primitives are another key modularity
construct of the action-centered methodology, and are essentially behav-
iors intended for articulated body motor control. The bottom-up formu-
lation, and in particular the action-centered framework, unifies a swathe
of robotics research, as demonstrated first in examples from humanoid
robotics (Section 2), then in more traditional behavior-based robots (Sec-
tion 3), and finally in robot groups and teams (Section 4). Those three
sections are arranged to present the foundational biological and neuro-
scientific evidence incrementally when most pertinent and suitably il-
lustrated by robotic examples. Humanoid motor control through motion
primitive structures is described first, because it most closely resembles
the organization of natural behavior. This is followed by more general
behavior-based control, which in turn is followed by a description of robot
teams employing the behavior-based controllers. The exact relationship
between primitives and behaviors is described in Section 3.3 and is related
to properties of sets of these structures.

This chapter’s focus is on social interactions with robots. The term
“social” is interpreted in two complementary ways. The first refers to rich
interactions between people and robots. This is illustrated in an imitation-
inspired approach to skill acquisition, that allows teaching rather than pro-
gramming robots, as well as methods based on human motion that enable
humanoid robots to act naturally. The second interpretation refers to the
bottom-up use of artificial societies or communities of robots as models of
social behaviors. Together, these components of the chapter are intended
as a starting point for those studying models or implementations of neuro-
cognitive theories in robots, and for whom social implications and issues
of those theories are of primary interest.

2 control and imitation in humanoid robots

Humanoid robots are designed to resemble the human form. This morphol-
ogy is expected to allow such robots to effectively utilize human tools
and exploit man-made environments in a manner originally intended for
humans, in order to perform a variety of tasks. Furthermore, humanoid
robots are expected to interact with humans in a natural manner. These two
major goals – that humanoids are intended as generalists, and that they
are expected to be socially capable – present major research challenges.

Moving beyond task-specific robots requires complex Artificial Intelli-
gence (AI) questions be addressed, notably those dealing with representa-
tional issues and programming/control methodologies (Russell & Norvig,
2002). How to go about structuring information and knowledge and com-
puting on those structures, in a way that is sufficiently open-ended yet
time-efficient, is a difficult and unsolved problem. The fast (technically
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real-time) responses required of real robots make these traditionally
difficult problems harder still.

Building sociable robots presents a host of new issues, which include
(but are not limited to) social learning, imitation, gesture and natural lan-
guages communication, emotion and interaction recognition (Fong et al.,
2003). Perception is notoriously challenging and makes recognition of in-
teraction cues difficult, whereas limited actuation often results in robots’
actions appearing overly simplistic. Nevertheless, even current robots that
were designed with social competency in mind far surpass the more stan-
dard research robots in terms of appeal and ability to engage people.

Such robots, when socially embedded, can help to inform theories about
human behavior in two ways. The first is in the design of the robots them-
selves. Various theories are applied during the design process, and the
validity of those theories is considered in terms of the final result. Breazeal
(2002) describes the application of ideas from developmental psychology
in the design of a social robot. Here the robot implementation provides
verification of the psychological theory, and interaction with the robot
may provide pertinent insights or suggest further issues for study both in
robotics and psychology. The second way of informing theories of human
behavior is through the development of a robot as an artifact that people
can interact with, in order to study the people themselves. In this case the
robot allows experimental conditions to be controlled more precisely than
would otherwise be possible. Work by Scassellati (2001) uses robotics to
control experimental conditions in the process of diagnosing autistic chil-
dren, with the potential of providing both more consistent diagnosis and
a novel means of socializing the patients. Breazeal (2002) shows specific
instances of the robot performing simple tracking of salient features in the
environment with its eyes, and appearing to have a sophisticated under-
standing of the content being communicated by a human subject. This may
provide insight into the types of nonverbal cues that account for a signif-
icant portion of channel bandwidth in human face-to-face interpersonal
communication (Argyle, 1988).

The remainder of this section discusses a body of research that uses
neuroscience evidence about motor control and movement recognition in
order to structure movement for humanoid robots. The work is focused
on an action-centered philosophy that brings together movement, activ-
ity recognition, and generation within a unified representation. The main
component of that representation is the notion of complete generalized
movement behaviors, called primitives.

Such primitives are the main focus of this section because they lay the
foundation for a central idea of this chapter: that a sparse set of exemplar
structures can be used to capture the inherent regularity of a larger reper-
toire of behavior. This sparse set can be learned and can be used to recover
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that broader repertoire. The approach is useful for reducing complexity in
the study of social interactions at a number of different levels, as discussed
in later sections.

In this section the focus is on the definition of motor primitives and their
use for control of humanoid robots at the kinematic level. (“Kinematic”
refers to the relationship of motion between the robot constituent parts,
ignoring the effects of masses or forces and torques.) The empirical ev-
idence for both primitives and mirror neurons is discussed; mirror neu-
rons are another concept from neuroscience that has had a key impact on
action-centered methodologies, especially in the area of imitation learning,
an important form of social interaction. Section 2.4 elaborates the import
of this unified representation through a discussion of the implications of
an imitation-based methodology for human–robot interaction. Thus, the
primitives-based approach to structuring robot (and human) behavior can
be used in the development social robots, and hence studies of human
behavior through social robotics.

2.1 From Biological Evidence and Neuroscience Inspirations

Robots can serve as helpful scientific tools, used to validate or reinforce
research hypotheses about the behavior of natural systems. Matarić (1998,
pg. 5) cites examples of robotic (and faithful simulation) models of a vari-
ety of natural behavior ranging from general models of reflexive behavior
selection (Connell, 1990) and evolutionary approaches for single (Nolfi
et al., 1994) and multi-robot (Agah & Bekey, 1997) systems. Subjects in-
clude crickets (Webb, 1994), lobsters (Ayers & Crisman, 1992; Grasso et al.,
1996), frogs (Arbib, 1989), flies (Franceschini, 1975; Cliff, 1990) and various
other insects (Deneubourg et al., 1990; Kube & Zhang, 1993; Beckers et al.,
1994). Section 4 will deal specifically with the design and analysis of sys-
tems like these, which feature many, often cognitively simple, interacting
constituents.

In a manner very similar to the examples of social robots already de-
scribed, humanoid robots are embodied models that can provide strong
validation and insights for neuroscientists interested in primate behavior.
Thus these robots can be seen as scientific tools in order to study human
behavior, social or otherwise (Atkeson et al., 2000). This subsection and
the next will deal with single robots designed to be relatively competent in
social circumstances. Social constraints are, for the most part, outside the
roboticists realm of controllable design parameters; consequently, robots
that operate within existing social systems provide insights about inter-
faces to those systems.

The primitives-based approach holds that the foundation for robot con-
trol should be a set of parsimonious and composable primitives, or mo-
tor control programs. This scheme for modularizing control is an excellent
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example of cross-pollination of ideas and approaches between biology and
engineering, and more specifically between neuroscience and robotics. En-
gineers are interested in building robots with better performance, but the
complexity of physically embodiment means that natural analogs find their
role in implementations based on solely pragmatic goals.

The widely cited biological evidence from Mussa-Ivaldi and Giszter
(1992) and Giszter et al. (1993), which provides the foundation for the
theory of motor primitives, points to the existence of spinal field motor
primitives that encode a complete movement (or behavior). Experiments
with spinalized frogs and rats have shown that when an individual field
is activated, the limb executes a complete behavior, such as reaching or
wiping. Similar movements are exhibited by numerous individuals from
the same species. Thus, these motor primitives are referenced, or indexed,
through a spatial organization that is universal for that species. Mussa-
Ivaldi et al. (1994) further showed that simultaneous simulation of multiple
fields results in either linear superposition or the domination of one field
over the others. Finally, only a small number of such distinct fields has been
identified in the frog’s spine; indicating that only about a dozen primitives
may be sufficient for encoding the frog’s entire motor repertoire, through
sequencing and superposition of supra-spinal inputs through descending
pathways (Bizzi et al., 1991).

Extensive research into limb biomechanics has resulted in an organiza-
tional model of the motor control system that is both modular and elegant.
The resulting models, in which entire behaviors are used as motor prim-
itives, whose composition permits the production of a host of additional
outputs, provide the core ideas behind a general control paradigm. Addi-
tional principles derived from the frog and rat data include the following:

1. The set of primitives is parsimonious.
2. The primitives span and partition the range of achievable actions.
3. Each of the primitives consists of exemplar movements. When trig-

gered individually, each produces an archetypal motion.
4. Linear superposition and temporal sequencing are used to produce

more complex, composite movements.

Although motor primitives have served as the inspiration and foundation
for modularization of movement, both in animals and in robots, another
movement-related line of evidence, for mirror neurons, has also had a ma-
jor impact on theories of natural and artificial movement – in particular
imitation. Gallese et al. (1996) describe neurons in area F5 of the macaque
monkey that appear to functionally connect vision and the motor control
system. The neurons are dubbed “mirror neurons” because they fire when
the monkey observes a specific movement in another monkey (or human)
as well as when it executes the same movement itself. Rizzolatti et al. (1996)
describe the similar faculty in the human brain, and Iacoboni et al. (1999)
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established a link with the imitation mechanism. The mirror system thus
becomes the foundation of the capability to mimic and imitate, both are
fundamental social skills. The notion of true imitation, which involves ac-
quiring entirely novel skills by observation, is (currently) recognized only
in chimpanzees, dolphins, and humans (Bryne & Russon, 1998). Monkeys
and other species are believed to be capable only of mimicry, involving the
mirror system as the means of mapping the observed to the known, but
not the ability to expand the known repertoire through this process. Arbib
(2002) argues for the mirror system as a keystone in the evolution of the
social mechanisms of communication and language. The mirror system is
said to provide a mechanism for understanding the grounding of observed
actions in a manner consistent with other neural theories.

The combination of a structured representation grounded in action (as
enabled by motor primitives) and the bridging of perception and action (as
enabled by the mirror system) allows for a general and powerful action-
centered model of representation, control, and learning. Humanoid robots
employing such a scheme could recognize, imitate, and learn motor skills
through natural interaction with other robots and humans.

2.2 Extracting Natural Structure in Human Motion

The preceding sections have described the original biological inspiration
for the notion of primitives, and their role in modularizing robot con-
trol and social interaction. Next, considerations regarding the origin or
selection of an appropriate set of primitives are addressed. An obvious ap-
proach commonly employed by roboticists is to manually design a set of
primitives that capture an effective structure and modularity of the system.
However, the ability to automatically derive such a set is highly desirable.
Fod et al. (2002b) and Jenkins and Matarić (2004) showed how such auto-
mated derivation of primitives is possible, in the context of humanoid
upper-body control, by using human movement data as input.

Jenkins and Matarić (2004) showed empirically that natural human
movement forms a smooth manifold, at least for certain activities, because
even a small number of representative sample trajectories can give suf-
ficient support for a range of expressive actions. This is the key require-
ment that allows for automated derivation. The next step was to develop a
methodology that was sufficiently powerful to statistically extract the un-
derlying structure in human movement, without the use of programmer
bias or pre-programming.

Fod et al. (2002b) described the application of principal components
analysis (PCA) to reduce the dimensionality of human upper-body joint
angle data. Segmented data are converted into vectors, and eigenvectors
extracted. The resulting “eigenmovements” can be combined as low-level
primitives to synthesize general motion. Jenkins and Matarić (2004) devel-
oped Spatio-temporal Isomap (ST-Isomap) to address the shortcomings of
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using PCA, specifically those issues arising in parameterization of motion
toward controller synthesis. Consequently, prototypical motions that ex-
ploit the structure and redundancy inherent in human movement were
successfully automatically derived using this method.

Experiments performed on human subjects also inform the process of
determining a set of primitives. Matarić (2002a, pg. 7) describes the impor-
tance of an appropriate choice of parameterization frame for primitives
for a given system and discusses the use of extrinsic end-effector coordi-
nates in the control of humanoid robots. The selection of reference frame
depends on the requirements of the task and activity being performed.
Matarić and Pomplun (1998) describes human psychophysical data indi-
cating that people pay attention to and track (as indicated by the fixations
of their eyes) the end-effector of a limb being observed (such as a finger of
a hand, or the tip of a pointer).

2.3 Robot Control and Perception

Although control of manipulators (i.e., arms and arm-like effectors) is a
well-studied problem in robotics, the industrial automation roots of tra-
ditional approaches render them ill-equipped for the challenges facing
robots working in human, social environments. The large number of de-
grees of freedom (DOF) in any realistic humanoid makes for a complex
control problem. The human arm has seven DOF, the hand 23, and the
spine an order of magnitude more. Reasonable safety measures dictate
that robots should be submissive to external impulses, which fundamen-
tally alters the acceptable engineering approaches that can employed. Fur-
thermore, issues of usability advocate that effective humanoid movement
should also be human-like, a quality that is difficult to formalize and
codify.

A number of distinct humanoid motor control methods exist. Alter-
natives to primitive-based control involve run-time trajectory planning,
requiring search or optimization algorithms that are currently too compu-
tationally complex for real-time on-line computation required of a physical
robot. The primitives-based approach has emerged in part as a response
to this need for time-efficient movement computation and in part in re-
sponse to the principles from biology and neuroscience. It attempts to
capture the crucial properties of the functionality of biological systems,
rather than their exact mechanisms. The primitives-based model, which is
consistent with behavior-based control, postulates that the motor system is
structured as collection of primitives, or motor programs, that encode com-
plete stereotypical movements (Matarić, 2002a). These can be executed se-
quentially or concurrently (through parameterized superposition), to cre-
ate a large movement repertoire. This general organization of the motor
systems is then used by the mirror system to instantiate direct sensory-
motor mappings into executable motor programs.
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An early humanoid torso using the primitives-based philosophy is de-
scribed by Williamson (1996) and Marjanović et al. (1996). Four static pos-
tures were used as the foundational set of primitives to generate motor
controls for a six-DOF robot arm. Schaal and Sternad (1998) used nonlinear
dynamics to create attractors that define types of primitives. This approach
has more recently been demonstrated in complex simulated humanoids
(with between 20 and 132 DOF with dynamics (Matarić et al., 1998, 1999;
Drumwright & Matarić, 2003), as well as articulated a Sony Aibo dog. Addi-
tionally, automatically derived primitives are being deployed on platforms
like Vanderbilt University’s ISAC humanoid (Kawamura et al., 2004).

Consistent with the action-centered philosophy, movement primitives
have also been proposed as effective mechanisms for movement prediction
(Matarić, 2002a). Jenkins and Matarić (2004) describes the use of future state
prediction with primitives encoded as dynamical systems. Drumwright
and Matarić (2003) used primitives encoded as a set of parameterized joint
space exemplars to enable highly accurate humanoid upper-body behavior
recognition and classification using a probabilistic estimation framework.

2.4 Skill Acquisition for Social Robots

As noted above, the mirror neuron system provides another powerful line
of biological evidence arguing for action-centered perception and imita-
tion. It is postulated to have played a foundational role in the evolution
of social interaction and even language (Arbib, 2002). Consequently, en-
dowing robots with similar capabilities effectively sets the stage for social
robotics.

Matarić (2002a) describes two additional lines of evidence, also from
neuroscience, that enable imitation: selective attention and classification-based
learning. The latter is a machine learning term for an algorithm with the
ability to map various observed instances into one of a finite set of classes,
frequently improving the mapping through experience. Together, these
components permit a model of imitation that captures movement, percep-
tion, and learning. Learning in this sense refers to the expansion of the
skill vocabulary, through the attainment of new behaviors, not only the
improvement of fixed abilities.

If true imitation is attainable, it promises to be far more than just a
mechanism for natural programming of robots. Rather, it presents an open-
ended, generative means of activity representation and learning, crucial for
social interaction. Imitation integrates cognitive systems from the lowest
levels of perception and motor control to the highest levels of cognition.
The motivation for studying imitation thus comes from the challenge of
understanding this complex and powerful natural phenomenon, and from
its potential in enabling social robotics (Matarić, 2002a). Much can be done
with simpler (nonhumanoid) robots in terms of engaging humans and
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pursuing nontrivial interactions. The section that follows takes up these
sorts of issues while focusing on problems with higher cognitive require-
ments than the motor control examined here.

3 general behavior-based control

Questions regarding representation and behavioral organization are of piv-
otal concern in AI and robotics. Control architectures provide a means of
principally constraining the space of possible solutions, often focusing on
particular representational or planning methodologies, in order to render
practical problems achievable. A variety of architectures with different
underlying principles have been proposed and demonstrated for robot
control.

This section discusses the behavior-based methodology (Matarić, 1997a;
Arkin, 1998) and its connections with the primitive-based philosophy de-
scribed earlier. Behavior-based control modularizes complex control prob-
lems into a set of concurrently executing modules, called behaviors, each
processing input and producing commands for the robot’s effectors and/or
for other behaviors in the system. The dynamics of interaction among the
behaviors and the physical world result in the robot’s aggregate perfor-
mance. The behavior-based approach favors a parallel, decentralized ap-
proach to control, while still allowing for substantial freedom of interpre-
tation (Matarić, 1998).

The behavior-based and movement primitives philosophies stem from
the same biological evidence. Early behavior-based work, specifically mo-
tor schemas (Arkin, 1989), was based on the same neuroscience evidence
found in frogs (Bizzi et al., 1991) that has guided the work in movement
primitives. Subsequently, the behavior-based methodology has further
generalized and adapted the conceptual organization toward a variety of
control domains, and away from direct motor control.

The behavior-based methodology has been widely misunderstood,
largely due to its lingering confusion with reactive control methods. Criti-
cism frequently focuses on the role of representation, and specifically the ca-
pabilities commonly typified by high-level symbolic reasoning. Arguments
typically stem from the fact that a variety of early behavior-based work
was minimalist in nature, typically reactive and thus incapable of lasting
representation and learning. Additionally, the behavior-based approaches
foundations lie in observations of biological motor control, a rudimentary
low-level mechanism requiring seemingly minimal mental competency. In
the last decade, clear distinctions have been drawn between simple reac-
tive and more complex behavior-based systems (Matarić, 2002b), shown
to be as expressive as planner-based methods.

This section presents a summary of work that has extended previously
accepted limits on the behavior-based paradigm, particularly in terms of
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representational capabilities. Methods used to understand behavioral com-
position and coordination of multiple behaviors and arbitration mecha-
nisms are also described. The section also illustrates how the behavior
structure provides an effective substrate for higher-level capabilities such
as path planning for navigation, and learning behavior coordination.

3.1 Behavioral Structure and Artificial Intelligence

Historically, the AI community had worked on disembodied agents, with
the robots being unconventional exceptions. Unfortunately, the assump-
tion that subsystems could be “ported” to robots when technologically na-
ture proved to be unrealistic. The challenges faced by an embodied agent,
including uncertainty in perception and action and a dynamic and un-
predictable world, were the very same challenges that had been abstracted
away, and thus remained unaddressed. Deliberation alone was not a mech-
anism that would enable a robot to deal with the contingencies of the real
world; most effective criticisms came from practitioners who experimented
directly with physical robots (Brooks, 1991).

Brooks’ widely cited paper (Brooks, 1986) describes the difference be-
tween traditional control architectures – consisting of functional mod-
ules performing perception, modeling, planning, and motor control – and
a new decomposition into task-achieving modules layered to produce in-
creasing competence and complexity. Crucially, the task-achieving mod-
ules connect perception to action, guaranteeing a reactive, timely re-
sponse to the physical world. Brooks (1991, pg. 3) further outlines a
justification for focusing on “being and reacting” from an evolutionary
timescale based argument. The proposed “Subsumption Architecture”
was a means of structuring a reactive system and is the forerunner of
contemporary behavior-based robotics, which has evolved since. Work
by Arkin (1989) constrained behaviors to perform in a manner much closer
to the biologically-inspired vector-fields described in Section 2.1. The no-
tion of behavior has been significantly broadened. Fundamentally, con-
straints on the behaviors reduce their expressiveness in favor of special-
purpose efficacy. The behavior-based methodology attempts to conserve
organizational principles from biology and neuroscience at an abstract
“informational” level, so that the constituent behaviors are minimally con-
strained, for maximal system flexibility. This flexibility, illustrated by a
wide variety of implemented behavior-based systems, has unfortunately
also fostered an ongoing confusion about the nature and limitations of the
methodology.

Current behavior-based controllers are still characterized by a bottom-
up construction, with each module corresponding to an observable pattern
of interaction between the robot and its environment. The modules, typ-
ically called behaviors, operate concurrently and at similar time-scales,
and interact with one another. This forms the substrate for embedding
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representation into behavior-based systems (Matarić, 1992); the represen-
tation is inherently distributed. Behavior-based systems are best suited for
environments with significant dynamic changes, where fast response and
adaptivity are necessary, but the ability to do some looking ahead and
avoid past mistakes is also useful (Matarić, 2002b).

System decomposition by activity (Brooks, 1991) ensures a concrete
connection between perception and action, a principle already described
above, in the context of primitives. Behaviors represent “activities” not be-
cause of the semantics of their labels, as in classical AI, but because they
capture inherent regularity of the interaction dynamics of the robot and
the world. Behaviors are thus encapsulations of dynamics, and are made
general through parametrization.

The repercussions of the new behavioral organization continue to have
an impact on robotics and AI. What had essentially been suggested was that
the direction that had been taken since the field’s inception was incorrect
and founded on the idea that would not carry over to physical robots. In
many cases the traditional behavioral organization was assumed at the
time to be the only way to structure systems. Many had assumed that
scaling issues (e.g., to large or continuous state-spaces), issues of partial-
observability, non-stationarity, and uncertainty, could (and further should)
be addressed from within their traditional representation.

3.2 Representational Issues

The pioneering role of the Subsumption Architecture, the title of Brooks
(1991), and an unfortunate lexical collision with “behaviorism” in psychol-
ogy have all resulted in the broadly accepted misconception that behavior-
based systems do not permit representation. As early as Matarić (1992),
representation was introduced into behavior-based systems, in that case in
the context of topological spatial mapping and path-finding.

Matarić (1992, 1997a) describes the work with Toto, a mobile robot that
was first to use dynamic behaviors, created and activated whenever needed
to represent landmarks in the environment. Planning, previously absent in
behavior-based systems, is achieved in Toto through spreading activation
within the network of map behaviors. Matarić (1992) describes high-level
competencies for landmark detection using unique time-extended sensory
signatures. The landmark behaviors are used to fill behavioral-slots, re-
sulting in a graph of active map locations. This coupling of action, percep-
tion, and representation is similar to the mirror-neuron and motor prim-
itive model already described, but Toto’s most significant behaviors are
several cognitive degrees of separation from basic motor control. Matarić
(1992) mentions that this mechanism falls under the broad umbrella of
ideas termed cognitive maps, and that it is representative of a particular
interpretation of the organization and function of the rat hippocampus.
The faithfulness of this type of representation to the actions that the robot
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could perform and the constraints and dynamics that structure its action
space are summed up in the maxim: “behavior-based systems think the
way they act.” (Matarić, 2002b).

Decety (1996) and Jeannerod and Decety (1995) provide evidence indi-
cating that biological systems may operate in the same manner, showing
that both imagined and executed movements share the same neural sub-
strate. When simply imagining or visualizing a movement, subjects’ motor
pathways exhibited activation similar to that which occurs during actually
performing the movement. This evidence points to principles employed
by behavior-based architectures from a organization level, as well as to
their embodied approach to representation.

The traditional view holds that higher-level cognitive capabilities are
best modeled symbolically. As an alternative, Nicolescu and Matarić (2002)
describe a hierarchical behavior-based architecture that enables behaviors
to represent more abstract concepts. The inclusion of both external and se-
quential preconditions allows their abstract behaviors, to cope with temporal
sequencing whereas maintaining the conventional concurrent execution.
Their network abstract behavior hides the details of an entire network of be-
haviors, and presents an external interface as if it were a single behavior; re-
cursive application enables general hierarchical representations. The work
thus allows for representing temporal sequences and hierarchical struc-
tures, without using plan operators or symbolic mechanisms. As a result,
there is no need to produce a “middle layer” to bridge the difference-in-
kind between reactive and symbolic layers in hybrid systems, the common
alternative to behavior-based systems. Nicolescu (2002, pg. 68) describes
expressive power of the framework in terms of a particular human–robot
interaction task.

Here, and in the Toto work, and generally in behavior-based systems,
representations are stored in a distributed fashion, so as to best match the
underlying modularity that produces the robot’s observable behavior. If
a robot needs to make high-level decisions (e.g., plan ahead), it does so
in a network of communicating behaviors, rather than a single compo-
nents (e.g., a centralized planner). Thus, the very same characteristics that
structure the robot’s action space also have an impact on the way the robot
represents and reasons about the world, as in biological evidence indicated
above.

3.3 Behavior Composition

The previous sections have, for the most part, discussed only single be-
haviors; important questions arise when collections of behaviors are con-
sidered. Typically, behaviors are hand-designed to perform a particular
activity, attain a goal, or maintain some state. It is, of course, impossible
to define an “optimal” behavior set. Nevertheless, practical experience has
established a number of consistent guiding principles.
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Matarić (1995) describes basis behaviors as a useful tool for structuring
and thus simplifying behavior synthesis, i.e., design. Basis behaviors are a
set of behaviors that are necessary in the sense that each either achieves, or
helps achieve, a relevant goal that cannot be achieved by other members
of the set. Furthermore, a basis behavior set is sufficient for achieving the
goals of the system/robot. Other desirable properties include simplicity,
stability, robustness, and scalability.

Section 2 noted that primitives are to be (1) parsimonious and (2) re-
quired for the generation of appropriate behavior. These two properties
distinguish basis behaviors from a larger space of feasible behaviors. In a
sense, basis behaviors are homomorphic with primitives. The word “basis”
was selected to be indicative of the similar notion within a linear algebra1.
The property of parsimony (or necessity) is analogous to the idea of linear
independence; the property of sufficiency is similar to the linear algebraic
concept of a span.

An additional third condition, namely that behaviors each individually
generate prototypical interactions, suggests that not all sets of basis be-
haviors will necessarily be equal. Thus, a set of natural basis behaviors can
be defined such that, continuing the algebraic metaphor, the additional
constraint of most natural individual interactions is respected. This third
provision attempts to capture the fact that it may be beneficial (certainly
in a biological system) to have frequently performed actions become part
of the basis set. Under realistic conditions, a particular “projection” may
be better than another; this idea of a natural basis undertakes to express
that notion. Motion primitives described above, and particularly those that
are the desired output of data-driven derivation methods, are thus simply
described as a natural basis set intended for motor control of humanoid
robots and other articulated manipulators.

Another recognized organizational principle is orthogonality. Two be-
haviors are orthogonal if they do not interfere with one another, each induc-
ing no side-effects in the other (see further discussion on pages 296–297).
Toto’s obstacle-avoiding navigation system is an example; its four low-
level, reactive navigation behaviors were triggered by mutually exclusive
sensory conditions (Matarić, 1992). Another method is to have different
behaviors control separate degrees of freedom (DOF) of the system. This
form of factorization is feasible only when the robot’s dynamics do not
inhibit the separability. An extreme example of highly coupled DOF are
helicopters; Saripalli et al. (2002) have demonstrated that behavior-based
control is still feasible for particular behavioral regimes.

In addition to the choice of behaviors themselves, an important issue in
behavior-based systems is the action selection mechanism. This is a well

1 In various other references, including Matarić (1992, 1995, 1997b), the words “basic” and
“basis” have been used interchangeably. Afterthought suggests that the latter is in fact
preferable.
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studied problem that deals with coordinating individual behaviors in a
manner that produces the most coherent global results in spite of possible
disparities or conflicts between behavioral units. Two frequently employed
methods are prioritization and fusion. Prioritization, wherein one behavioral
unit is given the ability to overrule the output of others, is particularly use-
ful for modeling those situations in which safety or survival dictates fast
actions. Fusion involves the combination of output from various behaviors
so that effects of each are incorporated, often using a weighted average, or
related ideas. Fusion is useful for performing actions that make progress
toward the achievement of multiple concurrent goals. In spite of the sim-
plicity of the prioritization and fusion operations, they are often employed.
Many more sophisticated alternatives exist; Pirjanian (1999) provides an
extensive review of significant work addressing the challenges of behavior
selection.

3.4 Adaptation and Learning

Adaptation and learning are some of the most fundamental properties
for intelligent systems. Robotic domains present serious challenges for
learning: the physical world involves very large, if not infinite, state-spaces,
the robot’s world is partially observable, the robot’s actions are nondeter-
ministic, and feedback from the environment (including people and other
robots) may be grossly delayed or entirely unavailable.

A reinforcement learning robot is given an external reward signal (in
robotics typically from a benevolent system designer) from which it must
separate good actions from bad ones. The correlations between rewards
and actions can be nontrivial because of possible delays between action and
reward, or due to environmental dynamics that constrain or aid a robot’s
actions and alter the reward critically. Further complications arise in social
situations where the actions of multiple individuals may be responsible
for a single global reward, or factor into each robots’ own reward.

Matarić (1997a) describes a reformulation of the reinforcement learning
methodology, using basis behaviors as the atomic representation. The use
of goal-achieving behaviors that hide low-level control details allows the
full state space to be replaced with a smaller set of behavior conditions.
Because behaviors, by their definition, capture the underlying task dynam-
ics and its intrinsic structure, they capture only the details necessary for
the learning system. Conditions are much fewer than states, so their use
diminishes the robot’s learning space and speeds up any reinforcement
learning algorithm.

The nonstationary character of real environments, coupled with un-
certainty in sensing and action, requires additional mechanisms in order
to make learning feasible within a suitable time span. Mahadevan and
Connell (1992) demonstrated the first major success in applying
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reinforcement learning to a mobile robot, which learned to push a box.
The problem was made tractable through the use of a behavior-based
structure, in which the robot learned not in the prohibitive global state
space, but within the context of each behavior. The behavior structure thus
provides a means of accelerating learning. Matarić (1997a) used a related
idea: shaped reinforcement, which provides informational cues for the robot
during the execution of a given behavior, and upon its termination, is an-
other means of taking advantage of the modularity afforded through the
behavior structure.

Beyond learning to coordinate behaviors more appropriately, another fo-
cus has been on learning behaviors themselves, in particular from demon-
stration through some form of imitation. The idea is that new skills are
acquired through the robot’s own experience, and the demonstrator –
typically a person who will play the role of teacher – guides the robot.
Thus, the robot’s own embodiment is exploited. Nicolescu (2002) describes
an example of this approach: the robot is allowed to learn the effect of its
actions on the perceived world, while guided by a human coach. To be
accurate, the robot learns about an entire task and task representations,
not just a single behavior, or even how to coordinate existing behavior.

Behaviors present an effective substrate for robot learning. The learning
mechanism can operate at a meta-level, responsible for adjusting various
parameters. Alternatively it may affect the very heart of the behaviors
themselves, and the process of behavior construction. Matarić (2001) pro-
vides an overview of work in behavior-based robot learning.

Within the behavior-based paradigm, task dynamics affects the behavior
choice. The structure in the space of goal-driven actions biases the means for
perception, the form of representation, and what is subsequently learned
later by the system. Thus, the way behavior-based robots act not only affects
the way they think, but also the way they learn.

4 collective behavior-based robotics

Practitioners who build behavior-based systems often do so in order to
demonstrate some behavioral theory, and may occasionally focus on bio-
logically plausible techniques. This bottom-up methodology relies on the
ability to generate selected behavior; synthetically producing appropriate
behavior demonstrates that a model includes all essential details. For exam-
ple, the above described Toto experiments in Matarić (1992) demonstrated
that a particular high-level model of the rat hippocampus was indeed suf-
ficient to achieve certain spatial awareness.

The same focus on generating behavior has been relatively success-
ful with groups of robots, where the focus is on demonstrating collective
phenomena. The research typically concentrates on employing minimal-
ist robots in order to demonstrate particular social phenomena. This area
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is broadly known as swarm robotics, due to the focus on synergistic ef-
fects from simple constituents. An elegant example is presented by Beckers
et al. (1994), effectively demonstrating how physical dynamics of simple
non-communicating robots enable repeatable and robust clustering global
behavior in a manner even simpler than the uncomplicated mechanism
postulated by Deneubourg et al. (1990).

Coordinating a set of robots is a demanding problem, and adding robots
to a system makes the problem more complex. A multi-robot system, like
a humanoid system, consist of many degrees of freedom, but, unlike a
humanoid, is loosely coupled without the same physical constraints. In-
dividual components in a multi-robot system may (and usually do) only
have local perception, communication, and computation capabilities. Such
a system may also deal with possibly unpredictable (Darley, 1994) emer-
gent collective dynamics. Multi-robot coordination involves issues of dis-
tributed task allocation, communication, and action selection, all under
uncertainty. The same problems, but without physical uncertainty proper-
ties, are also studied by the multi-agent research community, resulting in
some shared and some quite divergent insights (Gerkey & Matarić, 2004).

This section discusses the application of basis behaviors to multi-robot
coordination analysis and synthesis. Composition of basis behaviors en-
ables a small set of local rules, known to produce predictable spatial pat-
terns, to be used in the generation of a repertoire of global behaviors.
The classic work that demonstrated the applicability of basis behaviors
to groups is described, which demonstrates the production of social skills
from other far simpler behaviors. Arguments for basis behaviors as an ap-
propriate level of description for learning can be extended to learning in
groups; validating experiments are also summarized below.

4.1 Behavior Composition

Section 3.3 described basis behaviors as those that are both sufficient and
necessary for achieving some system task or goal. The notion has been
demonstrated to be particularly useful at the collective level; it was origi-
nally implemented in that context.

Matarić (1995) describes work done with the Nerd Herd, a homogeneous
troupe of 20 autonomous mobile robots with very limited sensing and com-
putational abilities. The robots were equipped with a simplistic gripper
used for holding and releasing metal pucks. Each robot was programmed
with an identical small set of behaviors: following (following a single robot
in front), wandering (moving about without collisions and without a par-
ticular goal), homing (moving toward a particular Cartesian goal location),
aggregation (moving toward the nearest neighbors), and dispersion (mov-
ing away from nearest neighbors).
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Although the behaviors consisted of reactive rules based on local sensory
information they are named for collective group phenomena they produce.
Thus, when together, individuals executing these local behaviors produced
global patterns, such as aggregation into a single group, spreading out over
an area, herding, surrounding, docking, flocking, and foraging (Matarić,
1995).

For flocking, the vectorial components of four behaviors (following be-
ing the exception) are simple weighted sums, with empirically obtained
values for the weights. In the case of surrounding, sums of the outputs
from aggregation and following are sufficient. The case of herding is in-
teresting because it involves flocking and surrounding, both of which are
compound behaviors.

To produce foraging, temporal sequencing and behaviors triggered by
nonmutual sensor states are used. Four basis behaviors (aggregation is ex-
cluded), triggered by different sensing states (an example would be: switch
to homing when a puck is held by the gripper), produce collective forag-
ing. Matarić (1995) provides details and a pseudo-algorithmic description
for the basis behaviors, as well as foraging and flocking compounds.

The basis behaviors were designed to conserve energy by minimizing
interference between robots. Interference is one of the chief determinants of
performance in multi-robot systems and is often the defining impediment,
resulting reduction in performance with the addition of robots past a par-
ticular critical number (Arkin et al., 1993; Balch & Arkin, 1994). Goldberg
(2001) describe a methodology for evaluation and minimization of inter-
ference and interference causing circumstances.

Matarić (1997b) describes the problem of learning social rules in order to
minimize the negative effects of groups and maximize synergy. Two func-
tionally distinct types of competition are identified: the first, goal compe-
tition, is the result of individuals who possess conflicting goals and hence
must compete; the second, resource competition, is a consequence of mul-
tiple embodied robots.

Goal competition arises when dealing with multiple agents, even those
that are not situated within a world with dynamics of its own. It is
studied generally within the distributed AI and multi-agents community.
Chapter 12 by N. Schurr, S. Okamoto, R. T. Maheswaran, P. Scerri and M.
Tambe in this volume provides one such example. Resource competition
is the result of physical coexistence; robots take up space, consume energy,
etc. Resource issues tend to become further exacerbated by the addition
of robots, and thus they can be the factors that limit the scalability of a
particular system.

In the foraging studies the space around the “Home” area (to which for-
aged pucks must be returned) rapidly becomes congested. Goldberg (2001)
studied methods for reducing this resource contention, including spatial
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(territorial) and temporal (time-sharing) division. He also developed a sta-
tistical mechanism that allows robots to model interaction dynamics on-
line (i.e., through experiences within an experiment) so that behavioral
decisions could explicitly consider (and estimate) interactions. This is an
attractive way to deal with interaction dynamics, because the robot can
sense those effects (emergent or otherwise) that are most important and
reason about or act on them. Section 4.2 discusses more of the specifics for
behavior-based learning in multi-agent systems.

Matarić (1995) enumerates a number of examples of biological groups
that exhibit those five basis behaviors, showing that they are plausible
activities for individuals within a group to perform. An interesting unan-
swered question is whether some other less obvious basis set exists that
may produce the same collective behaviors. Of course, foraging and flock-
ing are also social activities that occur in nature and clearly involve more
competence than merely the outlined basis behaviors. Certainly the se-
quencing of distinct activities, as in foraging, introduces a degree of com-
plexity. In the case of flocking, intuitively it seems that acceptable behavior
is far more constrained that any of the four constituent basis behaviors.
For example, the dispersion and aggregation competencies provide lower
and upper bounds on robot-to-robot distances.

This demonstrates a central behavior-based principle first described in
Brooks (1986): the addition of competencies frequently decreases the size of
the feasible set of actions because behaviors provide an increasing number
of constraints. A “blank-slate” robot has no limitations on which actions it
can perform in a given situation. A robot that has an obstacle-avoid behav-
ior has the constraint that it may not perform a forward action while facing
a wall. Thus, adding layers, and hence increasing the cognitive capabilities
of the robot, refines the suitable actions for particular situations.

Another interesting example of collective behavior modeled using sim-
ple rules and through computational methods is the work by Helbing et al.
(2000). In this case the social phenomena of interest is crowd behavior,
and the work demonstrates that simple force laws between the modeled
people is sufficient to produce a number of naturally observable macro-
scopic effects, like self-organized lane formation, oscillatory behavior at
bottlenecks, and herding during panic. Again, interference patterns are a
fundamental sign of nonlinearities. Shell and Matarić (2004) suggest that
robots interacting with large numbers of people, and attempting to direct
the ensemble behavior, may result in useful systems in the future.

The two cases of the foraging and flocking robot behaviors are combined
in a manner that thoughtfully employs a high degree of orthogonality.
Basis behaviors are orthogonal in the sense that they have a degree of inde-
pendence and minimal interference with one another. The term is adopted
from the mathematical notion of orthogonal functions, where two functions
have an inner product that is zero. In the flocking behavior orthogonality is
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achieved through the distance thresholds, which were selected so as to have
least possible overlap. In the foraging case, temporal sequencing allows cer-
tain concurrent execution, but minimizes the basis behaviors that directly
conflict (i.e. maximizing orthogonality). In both cases, orthogonality makes
it is easy to construct an intuitive argument for the prescribed collective
behavior. Whereas this makes the modeling easier, it is very hard to achieve
in general; for compelling examples see the unexpected complications in
Holland and Melhuish (1999) versus serendipitous success in Beckers et al.
(1994). Small effects may be multiplied through positive feedback or auto-
catalytic effects toward either fortuitous or undesirable consequences.

Such multiplication effects can be used in collective decision making. For
example, it is well known that certain species of ants lay pheromone trails
during exploration and food transport tasks (Hölldobler & Wilson, 1990). In
cases where multiple navigable paths exist, symmetry breaking results in a
single path for the entire swarm. The ants’ rules for pheromone placement
and physical (including dissipation and evaporation) favor those paths of
minimum length; overall the swarm collectively “chooses” good routes to
food sources.

Matarić (1995) describes ethnologically inspired foraging with homo-
geneous robots. Working with physical robots and real hardware means
that no two agents are truly identical. Unique sensory and actuator prop-
erties and other variability between robots may become multiplied over
time. Flaws, such as wheels with differing frictional properties, which can
result in a general sub-optimal behavior like turning left more often than
right, may be averaged out when using multiple robots. Systematic flaws
are likely to be amplified, because, as in this example, all robots would be
similarly biased and may produce globally consistent consequences.

Balch (1998) describes a methodology for quantitatively measuring di-
versity in teams of robots, so that a single metric for degree of heterogeneity
can be applied to behaviorally distinct individuals. When a task demands
heterogeneous robots rather than groups of homogeneous ones is not well
understood yet. Variability, either intentional as in a team with differently
equipped robots, or unintentional through physical inconsistencies, cre-
ates a demand for robust and adaptive behavior and provides stringent
tests for basis sets.

4.2 Learning

Section 3.4 mentioned the basis behavior approach to reinforcement learn-
ing, enabling tractable learning for the noisy, nondeterministic, and uncer-
tain environments. Matarić (1997c) proposed this methodology as a means
of managing the state-space size in the multi-robot case, as well as the inter-
actions between robots, including interference, that make the environment
far more stochastic than facing a typical single robot (Matarić, 1997a).
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Adaptations of reinforcement learning have been made effective in the
single- and multi-robot domains. The use of behaviors as a substrate has in
particular been effective in making learning feasible in complex multi-robot
domains. The method has been validated within the foraging domain,
using the same herd of twenty robots.

Three structural mechanisms were used in the design of the learning
system:

Conditions The size of the state-space can be drastically reduced by fo-
cusing on only those states that are important for the systems behaviors.
Thus, conditions are that small subset of the states that are necessary and
sufficient for triggering behaviors. The basis-behavior set provides a
perspective from which relevant states can be identified and irrelevant
one rejected.

Progress Estimators Estimators of behavioral progress are maintained for
feasible behaviors, allowing useful feedback for the learning mecha-
nism during behavioral execution. For example while moving toward a
region labeled “Home,” a useful progress estimator is the distance still
remaining. Estimators are internal to the robots, but are tied to the phys-
ical task achievement. Thus, distance already traveled is not sufficient
because unforeseen circumstances may invalidate that progress.

Shaped Reinforcement The provision of reinforcement to behaviors
rather than the entire robot helps bypass the credit assignment prob-
lem (which is the challenge of deciding which actions are responsible
for a particular reward). The combination of internal progress estima-
tors (temporal information) and behavioral reinforcement are together
called Shaped Reinforcement.

Without the additional information provided by the progress estimators
and shaped reinforcement, or the space reduction of conditions, the real-
world challenges could not be faced head-on by the learning algorithm.
The demonstration that these three additions simplify the reinforcement
learning problem enough to make it feasible for multi-robot foraging with
physical robots provides strong support for the behavior-based approach
to collective robot control.

Matarić (1997b) reports on the challenges of using these mechanisms to
produce altruistic behavior aimed at a collective good out of robots that
often act greedily, and perhaps even irrationally. Robots acting within a
social setting have additional sources of information. For example, ob-
servation of a peer performing a successful action constitutes a reinforce-
ment signal. Particularly when coupled with internal progress estimators
this signal can provide useful feedback. If robots may assume that their
peers are running similar learning algorithms, then the observation behav-
ioral changes in other robots also allows inference of previously received
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signals. This type of vicarious reinforcement is only feasible for many
robots – permitting a partially parallel exploration of the state and reward
spaces.

A learning mechanism involving high-level social interactions between
robots is described in Nicolescu (2002, pg. 96). An implementation of learn-
ing via demonstration for skill exchange between robots is demonstrated;
one robot teaches another through an imitation-like mechanism. The same
machinery used to learn from a human teacher (Nicolescu & Matarić, 2001)
can be seamlessly employed for robot-to-robot interactions.

This framework has a number of advantages. First, the robots learn
the dynamics of the world in situ, through their own experiences. Second,
the rich interactions make a small number of trials sufficient for learning
and generalization. Task learning from even a single example has been
demonstrated. Third, the mechanism is natural for human users. Finally,
the work is a demonstration of learning and generalization at a cognitive
level through a physically grounded experience. Such a methodology can
permit two robots, each with different histories, internal representations,
and differing morphologies, to impart knowledge on one another. This and
related reproduction of this sort of effect within synthetic systems suggest
that these tools are becoming suitable for modeling and studying an exten-
sive range of social phenomena, including those involving sophisticated
interactions.

4.3 Activity Modeling

In much the same flavor as the data-driven methods described in Section 2.2
for deriving humanoid movement primitives, recent work has aimed at
tracking the spatial patterns of people form during natural daily activities.
Fod et al. (2002a) describe an algorithm for fusing the data from several
laser ranging devices, permitting people’s motions to be tracked while they
move. Yan and Matarić (2002) demonstrate the use of proxemics-inspired
spatial features for modeling activity tracked from the laser devices. The
work also provides an empirical methodology for validating the proxemics
theory; the use of natural dimensionality reduction techniques may pro-
duce the same prescriptive rules through more mechanistic means.

Panangadan et al. (2004) describe a statistical approach to estimating
when a type of interaction occurs between people, and demonstrates it
on tracking data from a table tennis game. Intuitively, the method infers
a degree of interaction by estimating the degree of “influence” a person’s
actions have on those of others; thus the model does not rely on physical
proximity as a sign of interaction and is able to detect interactions even in
spatially distal scenarios. Models of people’s natural social interactions are
important for robots in human environments. There may be applications
in which robots may need to interact with large groups of people (Shell
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& Matarić, 2004), or where such models can be useful for evacuation and
other related uses (Shell & Matarić, 2003).

5 discussion

The common thread connecting the body of work described above is the
unifying action-centered bottom-up philosophy and approach taken to
address problems of control, perception, and representation in physically
embodied agents. The robot’s capabilities, i.e., behaviors, form the foun-
dational structure from which all other capabilities are derived. The large
space of feasible actions is factorized into a smaller set of behaviors whose
purpose is to span the action space while reflecting its structure. This is the
essence of the basis behavior methodology.

Composition, through operations like superposition and sequencing, is
used to recover the complete action space. In practice, the basis set and
compositional operators may not fully reproduce the space of actions, and
hence the approach imposes limitations on the robot. The reduction of
dimensionality also involves some loss of information, but, importantly,
not a loss of structure.

The basis behavior methodology has been applied to the so-called inverse
problems. For example, motion primitives can be used for producing joint-
angle trajectories for humanoids (Drumwright & Matarić, 2004), thereby
sidestepping the traditional inverse kinematics calculation by trading off
computation for lookup. Other inverse problems, like achieving a desired
swarm behavior through local rules, have also been studied in this con-
text (Kube & Zhang, 1993). In general inverse problems are often under-
constrained, making the basis behavior methodology an elegant solution,
but only after a required amount of designer creativity.

Alternative composable mechanisms, including vector fields and motor
programs, have been proposed for use in robotics (Arkin, 1989). The no-
tion of basis behaviors, in contrast, is more general, and thus applicable at
various levels of abstraction. The basis behavior approach has been demon-
strated in a range of circumstances from low-level motor control to social
interactions. The dynamics and task-level constraints, which behaviors are
designed to exploit, are present in and responsible for structuring many
levels of behavior. This reoccurring structure makes the behavior-based
approach particularly suitable for analysis of a range of complex systems,
where choosing a correct level of system description traditionally is a key
difficulty.

The applicability of these same ideas is suitably exemplified by com-
paring the imitation inspired mechanisms in work by Jenkins and Matarić
(2004) and Nicolescu (2002). The former considers “skill learning,” the
derivation of motor primitives for control that can later be used for per-
forming more complex behaviors. The latter considers “task learning,”
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focusing on higher-level behavior notions and generation of abstract be-
haviors. Both use a basis behavior set, but focus on behaviors that fall in
contrasting parts of the cognitive spectrum. Jenkins et al. (2004) addresses
the distinctions between these levels of learning.

Neither the vast majority of behaviors nor systems described herein
are linear in nature. The nomenclature adopted throughout this paper,
however, is linear algebraic in origin. The described properties, such as
spanning, irreducibility, and independence, are not formally proved in the
discussed work, but the algebraic analogy may prove useful. Similarly, in
the generation of movements for humanoids, a trajectory formed through
composition of two natural exemplars need not look natural at all, in theory.
In practice, however, for many operational regimes it does. Nonlinearities
have been observed and are in some cases the origin of the complex behav-
ior that make these systems interesting. One example mentioned above is
the failure of PCA to produce a natural set of basis behaviors from hu-
man motion data, whereas a nonlinear method (ST-Isomap) proved highly
effective (Jenkins & Matarić, 2004).

6 summary

This chapter has described a united action-centric methodology for gener-
ating a wide range of robot behavior. The produced behavioral complexity
ranges from natural motor control for humanoids to effective collective
behavior for robot teams. The reviewed basis behavior methodology ad-
vocates a sparse set of composable behaviors whose achieved goals are not
reducible to the other behaviors in the basis set. Thus, for a given goal,
the cardinality of the basis set is bounded below through the requirement
of sufficiency, and bounded above by necessity. The methodology is in-
spired by a spectrum of biological evidence ranging from neuroscience to
cognitive science to ethology. The most compelling support stems from
the neural foundation for motor control; evolutionary and sociological jus-
tifications were also discussed. The basis behavior approach is an out-
growth of the behavior-based methodology, which is rooted in the tight
perception–action loops justified by biological evidence.

Central to the discussion throughout has been the applicability of the
basis behavior methodology for designing “social” robots. These have been
demonstrated through two different, but complementary, approaches. The
first is through the synthesis and study of complete artificial micro-societies
of robots that work together, producing global effects through local oper-
ations. In this case, basis behaviors have been an illuminating mechanism
sufficient for linking the local action to their global results. The second ap-
proach considered robot interaction with humans; imitation was presented
as a principled and expressive mechanism for human–robot interaction and
learning. For humanoid robots this can take the form of learning “natural”
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skills. The effectiveness of learning from demonstration in mobile robots,
through rich task descriptions gleaned from situated interactions, was also
described.

The work described herein demonstrates the belief that the concept of
action-centric behaviors or primitives, stable prototypical interactions that
exploit the dynamics of a given system to achieve or maintain goals, can be
generalized through the levels of adaptive control, from low-level motor
actions to social interactions, thereby providing a methodology for design
and analysis of complex behavior.
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J. Pollack, & S. W. Wilson (Eds.). Proceedings, From Animals to Animats 4, Fourth
International Conference on Simulation of Adaptive Behavior (SAB-96) (pp. 35–44).
Cambridge, MA: MIT Press.
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Evolution of a Teamwork Model

Nathan Schurr, Steven Okamoto, Rajiv T. Maheswaran,
Paul Scerri, and Milind Tambe

1 introduction

For heterogeneous agents working together to achieve complex goals,
teamwork (Jennings, 1995; Yen, Yin, Ioerger, Miller, Xu, & Volz, 2001;
Tambe, 1997a) has emerged as the dominant coordination paradigm. For
domains as diverse as rescue response, military, space, sports, and collabo-
ration between human workmates, flexible, dynamic coordination between
cooperative agents needs to be achieved despite complex, uncertain, and
hostile environments. There is now emerging consensus in the multiagent
arena that for flexible teamwork among agents, each team member is pro-
vided with an explicit model of teamwork, which entails commitments
and responsibilities as a team member. This explicit modeling allows the
coordination to be robust, despite individual failures and unpredictably
changing environments.

Building on the well-developed theory of joint intentions (Cohen &
Levesque, 1991) and shared plans (Grosz & Kraus, 1996), the STEAM
teamwork model (Tambe, 1997a) was operationalized as a set of domain-
independent rules that describe how teams should work together. This
domain-independent teamwork model has been successfully applied to
a variety of domains. From combat air missions (Hill, Chen, Gratch,
Rosenbloom, & Tambe, 1997) to robot soccer (Kitano, Asada, Kuniyoshi,
Noda, Osawa, & Matsubara, 1997) to teams supporting human organ-
izations (Pynadath & Tambe, 2003) to rescue response (Scerri, Pynadath,
Johnson, P., Schurr, Si, & Tambe, 2003), applying the same set of STEAM
rules has resulted in successful coordination between heterogeneous
agents. The successful use of the same teamwork model in a wide variety
of diverse domains provides compelling evidence that it is the principles
of teamwork, rather than exploitation of specific domain phenomena, that
underlie the success of teamwork-based approaches.
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Because the same rules can be successfully used in a range of domains,
it is desirable to build a reusable software package that encapsulates those
rules in order to provide a lightweight and portable implementation. The
emerging standard for deploying such a package is via proxies (Pynadath &
Tambe, 2003). Each proxy works closely with a single domain agent, repre-
senting that agent in the team. The second generation of teamwork proxies,
called Machinetta (Pynadath & Tambe, 2003; Scerri et al., 2003), currently
being developed, is described in this chapter. The Machinetta proxies use
fewer computing resources and are more flexible than the proxies they
have superseded.

Although approaches to teamwork have been shown to be effective for
agent teams, new emerging domains of teamwork require agent–human
interactions in teams. These emerging domains and the teams that are
being developed for them introduce a new set of issues and obstacles. Two
algorithms that need to be revised in particular for these complex domains
are the algorithms for adjustable autonomy (for agent–human interaction)
and algorithms for role allocation. This chapter focuses in particular on the
challenge of role allocation.

Upon instantiation of a new plan, the roles needed to perform that plan
are created and must be allocated to members of the team. To allocate
a dynamically changing set of roles to team members, previous mecha-
nisms required too much computation and/or communication and did
not handle rapidly changing situations well for teams with many mem-
bers. A novel algorithm has been created for role allocation in these extreme
teams. Generally in teamwork, role allocation is the problem of assigning
roles to agents so as to maximize overall team utility (Nair, Ito, Tambe, &
Marsella, 2002; Tidhar, Rao, & Sonenberg, 1996; Werger & Matarić, 2000).
Extreme teams emphasize key additional properties in role allocation:
(i) domain dynamics may cause tasks to disappear; (ii) agents may per-
form one or more roles, but within resource limits; (iii) many agents can
fulfill the same role. This role allocation challenge in extreme teams will be
referred to as extended GAP (E-GAP), as it subsumes the generalized as-
signment problem (GAP), which is NP-complete (Shmoys & Tardos, 1993).

2 before machinetta: steam in soar

Machinetta has evolved from STEAM, which was implemented in Soar
(Newell, 1990), and thus has historical roots in the Soar language. For more
on Soar, refer to Chapter 3 in this volume. The two aspects of Machinetta
where Soar’s influence is most apparent are the Team Oriented Plan (TOP)
and the coordination component (see Section 3).

Even though there has been a conversion to Machinetta, the team plans
come from Soar. The language and syntax used to describe the TOP are
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derived from the syntax of the operators that Soar used. This allows for
the same human readable expression of team plans that STEAM had.

The Belief-Desire-Intention (BDI) (Georgeff, Pell, Pollack, Tambe, &
Wooldrige, 1998) framework of joint intentions (Cohen & Levesque, 1991)
is used to guide communication between proxies. This takes the form of
a policy that decides which beliefs to communicate and which proxies to
communicate these beliefs to. For Machinetta, these policy algorithms were
translated from Soar into Java in the coordination component of the proxy.
For an example of some of these Soar rules, see the Appendix.

Indeed, the Soar model can be viewed as a BDI architecture, enabling us
to borrow from BDI theories. In the rest of this section, a mapping of Soar
to BDI is presented, and readers unfamiliar with Soar may wish to proceed
forward to Section 3.

To see the mapping from Soar to BDI, let us consider a very abstract
definition of the Soar model. Soar is based on operators, which are similar
to reactive plans, and states (which include the agent’s highest-level goals
and beliefs about its environment). Operators are qualified by precondi-
tions that help select operators for execution based on an agent’s current
state. Selecting high-level operators for execution leads to subgoals and
thus a hierarchical expansion of operators ensues. Selected operators are
reconsidered if their termination conditions match the state. Although this
abstract description ignores significant aspects of the Soar architecture,
such as (i) its meta-level reasoning layer, and (ii) its highly optimized rule-
based implementation layer, it will be sufficient for the sake of defining an
abstract mapping between BDI architectures and Soar as follows:

1. Intentions are selected operators in Soar
2. Beliefs are included in the current state in Soar
3. Desires are goals (including those generated from operators which

are subgoals)
4. Commitment strategies are strategies for defining operator termina-

tion conditions. For instance, operators may be terminated only if
they are achieved, unachievable, or irrelevant

In Soar, a selected operator (commitment) constrains the new operators
(options) that the agent is willing to consider. In particular, the operator
constrains the problem space that is selected in its subgoal. This problem
space in turn constrains the choice of new operators that are considered in
the subgoal (unless a new situation causes the higher-level operator itself
to be reconsidered). Interestingly, such insights from Soar have parallels
in BDI architectures. Both Soar and BDI architectures have by now been
applied to several large-scale applications. Thus, they share concerns of ef-
ficiency, real-time, and scalability to large-scale applications. Interestingly,
even the application domains have also overlapped. For instance, PRS and
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dMARS have been applied in air-combat simulation, which is also one of
the large-scale applications for Soar.

Despite such commonality, there are some key differences between Soar
and conventional BDI models. Interestingly, in these differences, the two
models appear to complement each other’s strengths. For instance, Soar
research has typically appealed to cognitive psychology and practical ap-
plications for rationalizing design decisions. In contrast, BDI architectures
have appealed to logic and philosophy. Furthermore, Soar has often taken
an empirical approach to architecture design, where systems are first con-
structed and some of the underlying principles are understood via such
constructed systems. Thus, Soar includes modules such as chunking, a
form of explanation-based learning, and a truth maintenance system for
maintaining state consistency, which as yet appear to be absent from BDI
systems. In contrast, the approach in BDI systems appears is to first clearly
understand the logical and philosophical underpinnings and then build
systems.

3 machinetta proxies

Proxies are pieces of software that facilitate the actions and communication
necessary for robots, agents, and people (RAPs) to work cooperatively on a
team plan. Each team member has a proxy that represents it in team collabo-
ration. This section will describe the inner workings of a Machinetta proxy.
Machinetta proxies are implemented as lightweight, domain-independent
Java programs, capable of performing the activities required to get a large
group of heterogeneous entities to work together. The proxies are designed
to run on a number of platforms including laptops, robots, and handheld
devices.

3.1 Components

The Machinetta proxy’s software is made up of five components as seen in
Figure 12.1. Each component abstracts away details allowing other com-
ponents to work without considering those details.

Communication: communication with other proxies
Coordination: reasoning about team plans and communication
State: the working memory of the proxy
Adjustable Autonomy: reasoning about whether to act autonomously or

pass control to the team member
RAP Interface: communication with the team member

The adjustable autonomy component addresses the circumstances un-
der which the proxy should act autonomously as opposed to waiting
for input from a team member. Such reasoning is vital to the successful
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figure 12.1. Proxy software architecture.

deployment of heterogeneous teams containing people. However, other
components and proxies are insulated from this reasoning process by the
adjustable autonomy component and need know only the ultimate deci-
sion made by the proxy, whether that decision was made autonomously
or by the team member.

The RAP interface component is the only part of the proxy that needs
to be designed for a specific type of team member. For example, the RAP
interface for a person playing the role of fire chief in the disaster rescue
domain is a large graphical interface, whereas for agents a simple socket
communicating a small, fixed set of messages is sufficient. With some ex-
tensions, these techniques were used to allow Machinetta to scale up to
run 200 proxies on two desktop computers.

3.2 TOP

A team of proxies implements Team Oriented Plans (TOPs). A TOP is a
team-level description of the activities that need to be performed in order
to achieve the goals of the team. It consists of reactive team plans, roles,
relationships between roles, and conditions for initiating a plan and termi-
nating a plan. The proxies dynamically instantiate plans when, during the
course of execution, their current states match a plan’s required trigger con-
ditions. The proxy communication policy determines precisely which mes-
sages should be sent among proxies to ensure that cohesion is maintained.

In developing Machinetta, much of the focus has been on joint intentions
theory (Cohen & Levesque, 1991) due to its detailed formal specification
and prescriptive power. The joint intentions framework provides a modal
logic specification of a team’s mental state, called a joint intention. A team
has a joint intention to commit a team action if its team members are jointly
committed to completing that team action, while mutually believing that
they are completing it. A joint commitment in turn is defined as a joint
persistent goal (JPG). The team T ’s JPG to achieve p, where p stands for
completion of a team action, is denoted (JPG T p q ). The variable q is
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a relevance term and is true if and only if p is still relevant; if the team
mutually believes q to be false, then there is no need to achieve p (i.e.,
no need to perform the team action) and so the JPG can be abandoned.
For illustrative purposes, only teams with two members x and y will be
considered here, with their JPG to achieve p with respect to q denoted
(JPG x y p q ). The following definitions can be extended in a straightfor-
ward manner to larger teams.

The joint intentions framework uses temporal operators such as � (even-
tually) and � (always), individual propositional attitude operators such as
(BEL x p) and (GOAL x p) (agent x has p as a belief and as a goal, re-
spectively), and joint propositional attitude operators such as (MB x y p)
and (MG x y p) (agents x and y have p as a mutual belief and as a mutual
goal, respectively) to build more complex modal operators to describe both
individual and team mental states. Two other operators, the weak achieve-
ment goal (WAG) operator and the weak mutual goal (WMG) operator, are
needed to define a JPG.

Weak Achievement Goal

(WAG x y p q )
�= (¬(BEL x p) ∧ (GOAL x � p)) ∨

[(BEL x p) ∧ (GOAL x � (MB x y p))] ∨
[(BEL x �¬p) ∧ (GOAL x � (MB x y �¬p))] ∨
[(BEL x¬q ) ∧ (GOAL x � (MB x y¬q ))]

An agent x on a team with another agent y will have p as a WAG with
respect to q when at least one of four conditions holds:

1. x does not believe that p has been achieved, and x has as a goal for
p to be achieved;

2. x believes that p has been achieved, and has as a goal for the team
to mutually believe that p has been achieved;

3. x believes that p is unachievable, and has as a goal for the team to
mutually believe that p is unachievable; or

4. x believes that p is irrelevant, and has as a goal for the team to
mutually believe that p is irrelevant.

Notice that the first condition merely requires that x not believe that p
has been achieved; it is not necessary for x to believe that p has not been
achieved.

Weak Mutual Goal

(WMG x y p q )
�= (MB x y (WAG x y p q ) ∧ (WAG y x p q ))

A team with members x and y has p as a WMG with respect to q when
there is a mutual belief among team members that each team member has
p as a WAG.
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Joint Persistent Goal

(J PG x y p q )
�= (MBxy¬p) ∧ (MG x y p) ∧

(UNTIL[(MB x y p) ∨ (MB x y�¬p) ∨ (MBxy¬q )]
(WMG x y p q ))

For a team with members x and y to have p as a JPG with respect to q , four
conditions must hold:

1. All team members mutually believe that p is currently unachieved;
2. All team members have p as their mutual goal, i.e., they mutually

know that they want p to be true eventually; and
3. Until p is mutually known to be achieved, unachievable or irrelevant,

the team holds p as a WMG.

To enter into a joint commitment (JPG) in the first place, all team members
must establish appropriate mutual beliefs and commitments. The commit-
ment to attain mutual belief in the termination of p is a key aspect of a
JPG. This commitment ensures that team members stay updated about the
status of team activities, and thus do not unnecessarily face risks or waste
their time.

These principles are embodied in Machinetta in the following way.
When a team plan is instantiated, the proxies may communicate with their
respective RAPs about whether to participate in the plan. Upon success-
fully triggering a new plan, the proxies perform the “establishJointCom-
mitment” procedure specified by their coordination policy to ensure that
all proxies agree on the plan. Because each proxy maintains separate beliefs
about these joint goals, the team can detect (in a distributed manner) any
inconsistencies among team members’ plan beliefs. The proxies then use
termination conditions, specified in the TOP, as the basis for automatically
generating the communication necessary to jointly terminate a team plan
when those conditions are met.

3.3 Role Allocation

Roles are slots for specialized execution that the team may potentially fill at
runtime. Assignment of roles to team members is of critical importance to
team success. This is especially true for heterogeneous teams, where some
team members have little or no capability to perform certain roles. How-
ever, even for homogeneous teams, team members can usually perform
only a limited number of roles simultaneously and so distributing roles
satisfactorily throughout the team is of great importance.

Upon instantiation of a newly triggered plan, Machinetta proxies also
instantiate any associated roles. The initial plan specification may name
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particular team members to fill these roles, but often the roles are unfilled
and are then subject to role allocation. The proxies themselves have no
ability to achieve goals at the domain level; instead, they must ensure
that all of the requisite domain-level capabilities are brought to bear by
informing team members of their responsibility to perform instantiated
roles that are allocated to them. One role allocation algorithm successfully
used in Machinetta is described in Section 5.

3.4 Example

To see how joint intentions and role allocation affect team behavior, con-
sider an example of personal assistant proxies in an office environment.
A group of three researchers, Scientist1, Scientist2, and Scientist3, need to
make a joint presentation of their work at a meeting. Each person has a
proxy (Proxy1 for Scientist1, etc.) that facilitates his participation in team
plans. The task of making the presentation together is represented by a team
plan, which is shared by all the proxies in a TOP as seen in Figure 12.2.
The presentation involves multiple roles that should be allocated to diff-
erent group members.

Scientist1 Scientist2 Scientist3

Proxy1 Proxy2 Proxy3

Team Beliefs

Scientist 1 : Capability – Present Intro

Scientist 2 : Capability – Present Intro, DemoProgram

Scientist 3 : Capability – Present Intro, PresentConclusion

Give Presentation Plan

Precondition: PresentationBelief.needspresenting == true

Body: Present Intro Role

Demo Program Role

Present Conclusion Role

Postcondition: PresentationBelief.needsPresenting == false

figure 12.2. Office assistant TOP and architecture.
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The team plan is instantiated once the belief exists that there is a pre-
sentation that needs to be done. Only one proxy considers taking on a
role at a time in order to eliminate redundancy of plan roles. At the time
of consideration, the proxy can either ask the person it represents if that
role should be taken or the proxy can decide autonomously whether or
not the role should be accepted. If the proxy decides to act autonomously,
it determines whether to accept the role by estimating a capability level
of the person, based on the person’s ability to do the task and how many
roles that person currently has. If that capability level is higher than a
threshold that is set for that particular role, the proxy accepts the role and
notifies the person. Otherwise, the role is rejected and passed on to another
proxy in the hopes of it being allocated to someone more capable.

For the purposes of this example, suppose that the roles are success-
fully allocated, with Scientist1 presenting the introduction, Scientist2 pre-
senting the demonstration, and Scientist3 presenting the conclusion. The
researchers begin preparing their respective portions of the presentation.
The proxies all have the JPG of making the presentation.

Now consider four ways in which this joint commitment can be termi-
nated. In the first case, suppose that the meeting time arrives and the three
scientists present their respective portions. As each completes his part of
the presentation, his proxy is updated of the status. Once Proxy3 is notified
that the conclusion has been presented, it knows that the presentation has
been completed and so the JPG has been achieved. It now communicates
this fact to the other proxies, so that all members of the team mutually
believe that the presentation has been completed.

In the second case, suppose that Scientist3 becomes sick on the day of the
presentation. He informs his proxy that he will be unable to attend. Proxy3
realizes that without Scientist3’s participation the JPG is unachievable, and
so it drops its goal of making the presentation. Under its joint commitment,
it then communicates this information to the other proxies, who can then
notify their users. This allows team members to stop preparations for the
presentation and attend to other business. Once mutual belief that the goal
is unachievable is established, the joint commitment dissolves. Because
Scientist3 is the only team member capable of presenting the conclusion,
there is no way to salvage the team plan.

The third case is similar to the second, but it is Scientist1 who falls ill.
Proxy1 then notifies Proxy2 and Proxy3 that the goal is unachievable, and
so they drop the JPG. In this case, however, Proxy2 and Proxy3 recognize
that it may be possible to still make the presentation; Proxy2 and Proxy3
then enter into a new joint commitment to repair the team plan. They do
so by reallocating the introduction presentation to someone other than
Proxy1; for the sake of this example, say that Proxy2 accepts this role. The
new, repaired team plan can now be instantiated and Proxy2 and Proxy3
enter into a JPG to perform the presentation. Scientist2 is informed that
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he must present the introduction as well as the demonstration, and the
meeting can go on as scheduled.

In the last case, Proxy3 learns that the meeting has been cancelled and
so the presentation has become irrelevant. As a result, it drops its goal
of presenting, and the JPG of presenting becomes false as well. However,
as in the case of the goal being unachievable, the team behavior is not
completely dissolved, because only Proxy3 knows that the presentation
is irrelevant; a WAG to make the presentation persists. Proxy3 now must
take action to achieve mutual belief among all team members that the
presentation is irrelevant. To achieve this, it notifies the other two proxies
that the meeting has been cancelled. These proxies in turn notify their users
of the cancellation. Only when there is mutual belief that the presentation
is irrelevant are the proxies fully released from their joint commitment.

4 domains

The proxy approach has been applied earlier to several domains such as
battlefield simulations (Tambe, 1997b) and RoboCup soccer simulations
(Pynadath & Tambe, 2003; Kitano et al., 1997). This section will describe
three additional domains that have been used to explore proxy-based
teamwork. In each of these domains the same teamwork approach has
been applied and been shown to be effective without changes to the key
ideas.

The first domain is that of a team of personal assistant agents. Individual
software agents embedded within an organization represent each human
user in the organization and act on their behalf. These personal assistant
agents work together in teams toward service of cooperative tasks. Such
agentified organizations could potentially revolutionize the way a vari-
ety of tasks are carried out by human organizations. In an earlier research
project called “Electric Elves,” an agent system was deployed at USC with
a small number of users and ran continuously for nine months (Chalupsky,
Gil, Knoblock, Lerman, Oh, Pynadath, Russ, & Tambe, 2002). The longest
running multiagent system in the world, it provided personal assistant
agents (proxies) for about a dozen researchers and students and integrated
several schedulers and information agents. The resulting small-scale team
of 15–20 agents aided in daily tasks such as rescheduling meetings, select-
ing presenters for research meetings, tracking people, and ordering meals.
Communicating with palm pilots and cell phones, the personal assistant
agents adjusted their autonomy appropriately. Partly building on this ex-
perience, work has begun work on a more comprehensive joint project
with SRI International that is known as CALO. The aim of CALO is to
create a wide-ranging and functional personal assistant agent that main-
tains a persistent presence by continuously learning from its user and act-
ing on its user’s behalf. Designing a ubiquitous agent that propagates its
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figure 12.3. Disaster response using Machinetta proxies.

utilization by providing incentives to both institutions and individuals
critically depends on the development of efficient and effective teamwork.

In the second domain, disaster response (see Figure 12.3), teams are cre-
ated to leverage the unique capabilities of RAPs. Proxy-facilitated team-
work is vital to effective creation of RAP teams. A major challenge stems
from the fact that RAP entities may have differing social abilities and hence
differing abilities to coordinate with their teammates. To fully model these
challenges, the experimental platform in this project is an extension of
the RoboCup Rescue simulation environment (Kitano, Tadokoro, Noda,
Matsubara, Takahashi, Shinjoh, & Shimada, 1999) that enables human–
robot interactions. Fire brigade agents act in a virtual city, whereas human
and robot team members act in the physical world. The fire brigades can
search the city after an earthquake has hit and can extinguish any fires that
are found. The agents try to allocate themselves to fires in a distributed
manner, but can call on the expertise of the human fire chief if required.
The fire chief can allocate trucks to fires easily both because of a more
global view of the situation and because the spatial, high-level reasoning
required is well suited to human capabilities. Thus, the fire chief’s proxy
must carefully adjust its own autonomy when accepting and rejecting
roles.
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figure 12.4. Unmanned aerial vehicle simulator.

The third domain involves a type of Unmanned Aerial Vehicle (UAV)
known as Wide Area Search Munitions (WASMs), which are part UAV and
part munition (Scerri, Xu, Liao, Lai, & Sycara, 2004). Experiments were
performed using a simulation environment. Figure 12.4 shows a screenshot
of the simulation environment in which a large group of WASMS (small
spheres) are flying in protection of a single aircraft (large sphere). Various
surface-to-air missle sites are scattered around the environment. Terrain
type is indicated by the color of the ground. As many as 200 WASMs were
simulated, each with its own Machinetta proxy. In the experiments, a team
of WASMs coordinate to find and destroy ground-based targets in support
of a manned aircraft that they are guarding.

5 novel role allocation method

To allocate unfilled roles to team members, a novel role allocation algorithm
has been developed that draws upon ideas from distributed constraint
optimization problems (DCOPs). Based on valued constraints, DCOP is
a powerful and natural representation for the role allocation problem.
Mapping the problem to a well-known paradigm like DCOP allows a
large body of work to be leveraged for the algorithm. DCOP-based algo-
rithms have been previously applied to limited role allocation problems,
but have several shortcomings when used for very large teams in dy-
namic environments. The DCOP-based role allocation algorithm for teams,
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Low-communication, Approximate DCOP (LA-DCOP), is designed to
overcome these shortcomings in extreme teams.

Details of the LA-DCOP algorithm are provided in the following two
sections. First, a formal description role allocation problem is presented.
The second subsection presents the LA-DCOP algorithm and describes
how it solves a DCOP representation of the role allocation problem.

5.1 Problem Description

Simple role allocation problems for a single point in time can be formulated
as a generalized assignment problem (GAP), which is a well-known rep-
resentation. Under this formulation, roles are assigned to team members,
subject to resource constraints, yielding a single, static allocation. GAP
must be extended to include more complex aspects of role allocation such
as dynamism. The solution of this extended GAP (E-GAP) is a series of
allocations through time. LA-DCOP solves a DCOP representation of the
E-GAP. The next two subsections provide formal descriptions of GAP and
E-GAP.

5.1.1 GAP
A GAP problem adapted for role allocation is defined by team mem-
bers for performing roles and roles to be assigned (Shmoys & Tardos,
1993). Each team member, ei ∈ E , is defined by its capability to per-
form roles, R = {r1, . . . , rn}, and their available resources. The capability
of a team member, ei , to perform a role, ri , is quantitatively given by:
Cap(ei , ri ) → [0, 1]. Capability reflects the quality of the output, the speed
of task performance, or other factors affecting output. Each role requires
some resources of the team member in order to be performed. Resource re-
quirements of a team member ek for a role r j are written as Resources(ek , r j )
and the available resources of an agent, e, as e.resources.

Following convention, we define a matrix A, where ai, j is the value of
the ith row and j th column and

ai, j = 1 if ei is performing r j otherwise ai, j = 0.

Thus, the matrix A defines the allocation of roles to team members. The
goal in GAP is to maximize:

f (A) =
∑
e∈E

∑
r∈R

Cap (e, r ) × ae,r

such that

∀i

(
∀e ∈ E

(∑
r∈R

Resources(e, r ) × ae,r ≤ e.resources

))
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and

∀r ∈ R
∑
e∈E

ae,r ≤ 1.

Intuitively, this says that the goal is to maximize the capabilities of the
agents assigned to roles, subject to the resource constraints of team mem-
bers, ensuring that at most one team member is assigned to each role but
potentially more than one role per team member.

5.1.2 Extended GAP
To introduce the dynamics of extreme teams into GAP, make R, E , Ca p
and Resources functions of time. The most important consequence of this
is that a single allocation A is no longer sufficient; rather, a sequence of
allocations is needed, A→, one for each discrete time step. A delay cost
function, DC(ri , t), captures the cost of not performing ri at time t. Thus,
the objective of the E-GAP problem is to maximize:

f (A→) =
∑

t

∑
e∈E

∑
r∈R

(Cap (e, r, t) × ae,r,t)

−
∑

t

∑
r∈R

(
1 −

∑
e∈E

ae,r,t

)
× DC(r, t)

such that

∀i

(
∀e ∈ E

(∑
r∈R

Resources(e, r ) × ae,r,t ≤ e.resources

))

and

∀r ∈ R
∑
e∈E

ae,r,t ≤ 1

Thus, extreme teams must allocate roles rapidly to accrue rewards, or else
incur delay costs at each time step.

5.2 LA-DCOP

Given the response requirements for agents in extreme teams, they must
solve E-GAP in an approximate fashion. LA-DCOP is a DCOP algorithm
that is being proposed for addressing E-GAP in a distributed fashion. LA-
DCOP exploits key properties of extreme teams that arise due to large-
scale domains and similarity of agent functionality (e.g., using probabil-
ity distributions), while simultaneously addressing special role-allocation
challenges of extreme teams (e.g., inability of strong decomposition into
smaller subproblems). In DCOP, each agent is provided with one or more
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variables and must assign values to variables (Fitzpatrick & Meertens,
2001; Zhang & Wittenburg, 2002; Modi, Shen, & Tambe, 2002). LA-DCOP
maps team members to variables and roles to values, as shown in Algo-
rithm 1. Thus, a variable taking on a value corresponds to a team member
taking on a role. Because team members can take on multiple roles simul-
taneously, each variable can take on multiple values at once, as in graph
multi-coloring.

In E-GAP, a central constraint is that each role should be assigned to
only one team member, which corresponds to each value being assigned
by only one variable. In DCOP, this requires having a complete graph of not
equals constraints between variables (or at least a dense graph, if not strictly
E-GAP) – the complete graph arises because agents in extreme teams have
similar functionality. Dense graphs are problematic for DCOP algorithms
(Modi et al., 2002; Fitzpatrick & Meertens, 2001), so a novel technique is
required. For each value, create a token. Only the team member currently
holding a token representing a value can assign that value to its variable.
If the team member does not assign the value to its variable, it passes the
token to a teammate who then has the opportunity to assign the value
represented by the token. Essentially, tokens deliberately reduce DCOP
parallelism in a controlled manner. The advantage is that the agents do not
need to communicate to resolve conflicts.

Given the token-based access to values, the decision for the agent be-
comes whether to assign values represented by tokens it currently has to
its variable or to pass the tokens on. First the agent must check whether
the value can be assigned while respecting its local resource constraints
(Algorithm 1, line 10). If the value cannot be assigned within the resource
constraints of the team member, it must choose a value(s) to reject and pass
on to other teammates in the form of a token(s) (Algorithm 1, line 13). The
agent keeps values that maximize the use of its capabilities (performed in
the MaxCap function, Algorithm 1, line 11). Notice that changing values
corresponds to changing roles and may not be without cost. Also notice
that the agent is “greedy” in that it performs the roles it is best at.

Algorithm 1: VarMonitor(Cap, Resources)
(1) V ← ∅
(2) while true
(3) msg ← getMsg()
(4) token ← msg
(5) if token.threshold = NULL
(6) token.threshold ← ComputeThreshold(token)
(7) if token.threshold < Cap (token.value)
(8) V ← V ∪ token.value

(10) if
∑

v∈V Resources(v) ≥ agent.resources
(11) out ← V− MaxCap(Values)
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(12) foreach v ∈ out
(13) PassOn(new token(v))
(14) Values ← Values − out

(16) else
(17) PassOn(token) /∗ Cap < threshold ∗/

Secondly, a team member must decide whether it is in the best interests
of the team for it to assign the value represented by a token to its variable
(Algorithm 1, line 7). The key question is whether passing the token on will
lead to a more capable team member taking on the role. Using probabilistic
models of the members of the team and the roles that need to be assigned,
the team member can choose the minimum capability the agent should
have in order to assign the value. Notice that it is the similar functionality
of the agents in extreme teams and their large numbers that allows us to
apply probabilistic models. Intuitively, the agent estimates the likely capa-
bility of an agent performing this role in a good allocation. This minimum
capability is referred to as the threshold. The threshold is calculated once
(Algorithm 1, line 6), and attached to the token as it moves around the team.
Computing thresholds that maximize expected utility is a key part of this
algorithm; once thresholds are calculated, agents simply circulate tokens
until each token is held by an agent with capability above threshold for
the role and within resource constraints. (To avoid agents passing tokens
back and forth, each token maintains the list of agents it has visited; if all
agents have been visited, the token can revisit agents, but only after a small
delay.)

6 experiments

LA-DCOP has been tested extensively in three environments. The first is
an abstract simulator that allows many experiments to be run with very
large numbers of agents (Okamoto, 2003). In the simulator, agents are ran-
domly given capabilities for each type of role, with some percentage being
given zero capability. Given many agents with overlapping capabilities for
role types, dense constraint graphs result, where a constraint ensures that
two agents do not take the same role. For each time step that the agent has
the role, the team receives ongoing rewards based on the agent’s capability.
Message passing is simulated as taking one time step and messages always
get through. New roles appear spontaneously and the corresponding to-
kens are distributed randomly. The new roles appear at the same rate that
old roles disappear, hence keeping the total number of roles constant. Each
data point represents the average from 20 runs.

The first experiments tests LA-DCOP against three competitors. The
first is DSA, which is shown to outperform other approximate DCOP
algorithms in a range of settings (Modi et al., 2002; Fitzpatrick &



Evolution of a Teamwork Model 323

(a) (b)

figure 12.5. (a) Comparing the average output per agent per time step versus the
number of agents. (b) The number of messages sent versus the number of agents

Meertens, 2001); empirically determined best parameters were used for
DSA (Zhang & Wittenburg, 2002). DSA does not easily allow multiple
roles to be assigned to a single agent, so the comparison focuses on the
case where each agent can take only one role. As a baseline, LA-DCOP
is also compared against a centralized algorithm that uses a “greedy” as-
signment (Castelpietra, Iocchi, Nardi, Piaggio, Scalzo, & Sgorbissa, 2002)
and against a random assignment. Figure 12.5(a) shows the relative perfor-
mance of each algorithm. The experiment used 2000 roles over 1000 time
steps. The y-axis shows the total reward per agent per time step, while
the x-axis shows the number of agents. Not surprisingly, the centralized
algorithm performs best and the random algorithm performs worst. Of the
distributed algorithms, LA-DCOP performs statistically better than DSA.
However, the real key is the amount of communication used, as shown in
Figure 12.5(b). Notice that the y-axis is a logarithmic scale, thus LA-DCOP
uses approximately three orders of magnitude fewer messages than the
greedy algorithm and four orders of magnitude fewer messages than DSA.
Thus, LA-DCOP performs better than DSA despite using far less commu-
nication, and only marginally worse than a centralized approach despite
using only a tiny fraction of the number of messages.

Figure 12.6 shows how the performance of LA-DCOP scales with the
number of agents in the system. The y-axis shows the output per agent
per time step (left-hand side) and average number of messages per agent
(right-hand side) and the x-axis shows the number of agents. Notice that
the algorithm’s poorest performance is actually when the number of agents
is fairly small. This is because the probability models are “less reliable”
for small numbers of agents. However, for large numbers of agents, the
number of messages per agent and performance per agent stay constant,
suggesting that LA-DCOP can be applied to very large extreme teams. Al-
though these results are a pleasant surprise, the scope of their application –
rapid role allocation for extreme teams – should be noted.
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figure 12.6. The average output per agent per time step (left-hand y-axis) and
number of messages per agent (right-hand y-axis) as the number of agents is
scaled up.

A key feature of extreme teams domains is that the roles to be assigned
change rapidly and unpredictably. In Figure 12.7, LA-DCOP is shown to
perform well even when the change is very rapid. The four lines represent
different rates of change, with 0.01 meaning that every time step (i.e., the
time it takes to send one message), 1% of all roles are replaced with roles
requiring a different capability. At middling capability (50%), with 1% dy-
namics, LA-DCOP loses 10% of reward per agent on average, but complete
DCOP algorithms today cannot even handle dynamics.

The second set of experiments used 200 LA-DCOP enhanced versions
of Machinetta proxies (Scerri et al., 2003), distributed over a network, ex-
ecuting plans in two simple simulation environments. This was possibly

figure 12.7. The effects of different proportions of roles changing each step. The
y-axis shows the output per agent per time step, x-axis shows the percentage of
agents with capability > 0.
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figure 12.8. (a) Shows the number of fires extinguished by 200 fire trucks versus
threshold. (b) Shows the number of targets hit by UAVs versus threshold.

larger than any previously published report on complex multiagent teams,
and certainly an order of magnitude jump over the last published reports
of teamwork based on proxies (Scerri et al., 2003). Previous published tech-
niques for role allocation in the proxies fail to scale up to extreme teams of
200 agents – complete DCOP fails on dense graphs, and symbolic matching
ignores quantitative information. The proxies execute sophisticated team-
work algorithms as well as LA-DCOP and thus provide a realistic test of
LA-DCOP. The first environment is a version of a disaster response domain
where fire trucks must fight fires. Capability in this case is the distance of
the truck from the fire, because this affects the time until the fire is extin-
guished. Hence, in this case, the threshold corresponds to the maximum
distance the truck will travel to a fire. Figure 12.8(a) shows the number of
fires extinguished by the team versus threshold. Increasing thresholds ini-
tially improves the number of fires exstinguished, but too high a threshold
results in a lack of trucks accepting roles and a decrease in performance. In
the second domain (Figure 12.8(b)), 200 simulated UAVs explore a battle
space, destroying targets of interest. Although in this domain LA-DCOP
effectively allocates roles across a large team, thresholds are of no benefit.
The key point of these experiments is to show that LA-DCOP can work
effectively in a fully distributed environment with realistic domains and
large teams.

7 summary

This chapter reports on Machinetta, a proxy-based approach to enabling
teamwork among diverse entities. This approach is implemented in Java
and is derived from an earlier model, STEAM, that was implemented in
Soar. The Machinetta proxies equip each team member with a model of the
commitments and responsibilities necessary for teamwork. This model is
derived from a BDI framework and the notion of joint intentions. These
proxies have been effectively applied to a variety of domains ranging from
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personal assistants to disaster rescue to UAVs. Across each of these do-
mains, a key challenge that these proxies must attack is role allocation.
These Machinetta proxies and the BDI framework have led to the creation
of a new role-allocation algorithm (LA-DCOP). This innovation has al-
lowed for the construction of proxies that have repeatedly and definitively
demonstrated effective teamwork in diverse domains.

appendix

Soar Communication Rules:
Step 1: The rules in file create-communicative-goals are used to match an

agent’s private state (beliefs) with any of the team operator’s termination
conditions – i.e., conditions that would make the team operator achieved,
unachievable, or irrelevant. These communicative goals are possible only
as communicative goals at this juncture.

Step 2: The rules in file terminate-jpg-estimate-tau are used to estimate
the likelihood that the given communicative goals are the common knowl-
edge in the team. The likelihood is specified as high, low, or medium.

Step 3: The rules in file elaborate-communicative-goals are used to match
the specified likelihoods with the communication costs to check if commu-
nication is possible

Step 4: If communication is possible, rules in communicate-private-
beliefs are used to communicate the relevant information to others in the
team.

Step 5: Due to communication or high likelihood that relevant informa-
tion is mutually believed, agents assume that certain knowledge is now
mutually believed.
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Sociality in Embodied Neural Agents

Domenico Parisi and Stefano Nolfi

1 introduction

This chapter addresses the topic of how embodied neural agents coordinate
together to exhibit interesting social behaviors. Embodied neural agents are
defined in this Introduction. Sections 2 through 5 describe simulations of
collective phenomena emerging from the interactions among embodied
neural agents living in the same environment. Section 2 discusses spa-
tial aggregation and proto-social behavior, Section 3 communication, and
Section 4 cultural evolution. Section 5 summarizes the chapter and draws
some conclusions.

Neural agents are agents whose behavior is controlled by neural net-
works, that is, by control systems that reproduce in simplified ways the
physical structure and the physical way of functioning of the nervous sys-
tem. A neural network is a set of units (neurons) linked by unidirectional
connections (synapses between neurons). Connections have a quantitative
weight (number of synaptic sites between pairs of neurons) and a plus or
minus sign (excitatory and inhibitory synapses). At any given time every
unit has an activation level (firing rate of neurons) that depends on either
physico/chemical events outside the network (input units) or the sum of
excitations and inhibitions arriving to the unit from connected units (in-
ternal and output units). Activation propagates from the input units to the
output units through one or more intermediate layers of internal units. The
pattern of activation of the output units determines some effect outside the
network.

At the level of the individual agent the network’s architecture of con-
nections and the weights of the individual connections can change as a
consequence of the agent’s interactions with the external environment, and
these changes translate into changes in behavior (learning). At the popula-
tion level an agent is a member of an evolving population of individually
different agents and the architecture of connections and/or the connection
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weights of the agent’s neural network are encoded in the agent’s inher-
ited genotype. Individual genotypes reproduce selectively and with the
constant addition of new variants (genetic mutations) and this results in
neural/behavioral changes in successive generations of agents (evolution).

Neural networks are simulation models, that is, they are theoretical
models that are expressed as computer programs. Neural networks can
be viewed as part of Artificial Life, which is an attempt at studying all
phenomena of life by reproducing them in artificial systems, either sim-
ulated in a computer or physically realized in robots and other physical
artifacts. When neural networks are seen in the framework of Artificial
Life, research using neural networks tends to be different from classical
neural network research in a number of respects (Parisi, Cecconi & Nolfi,
1990; Cliff, 1991; Cliff, Harvey & Husbands, 1993; Nolfi & Parisi, 1997; Nolfi
& Floreano, 2000; Parisi, 2001). Although classical neural networks do not
have a body, do not interact with a physical environment (their only “envi-
ronment” is the researcher), are viewed as isolated individuals, and change
only because of individual learning, neural networks in an Artificial Life
perspective:
� have a body
� live in and interact with a physical environment
� are members of biologically and, possibly, culturally evolving popula-

tions of networks
� have a genotype that results from biological evolution and that deter-

mines important aspects of the network’s structure and development
and therefore of the individual’s behavior.

Embodied neural agents adopt the same conceptual and explanatory
apparatus of the natural sciences and they try to fully integrate the study of
behavior in the study of nature. Everything that takes place inside a neural
network and in the network’s interactions with the outside environment
and with the rest of the organism’s body (Parisi, 2004) are physical causes
producing physical effects, and everything is ultimately quantitative in
nature.

Embodied neural agents are part of a new research paradigm that has
recently challenged the traditional view according to which intelligence is
an abstract process that can be studied without taking into consideration
the physical aspects of natural systems (Pfeifer & Scheier, 1999). The new
paradigm tends to stress situatedness, i.e., the study of systems that are
situated in and interact with an environment (Brooks, 1991; Clark, 1997);
embodiment, i.e., the assumption that systems have bodies, receive input
from physically situated sensors, and produce motor actions as output
(Brooks, 1991; Clark, 1997); and emergence, i.e., the view of behavior and
intelligence as the emergent result of the fine-grained interactions be-
tween the control system of the agent, its body structure, and the external
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environment. An important consequence of this view is that the agent and
the environment constitute a single system, i.e., the two aspects are so in-
timately connected that a description of each of them in isolation does not
make much sense (Maturana & Varela, 1980, 1988; Beer, 1995).

Although embodied neural agents tend to be simple and to live in simple
environments, if one places many agents together in the same environment
interesting collective behaviors tend to emerge from their interactions. In
the next three sections various aspects of sociality are explored using col-
lections of simple embodied neural agents that live in the same environ-
ment: spatial aggregation, simple coordination, communication, and the
emergence and evolution of culture. The agents do not initially possess
any ability or any interesting behavior as their behavior results from the
connection weights of their neural network and these connections weights
initially are random. The connection weights change in the course of the
simulation until the appropriate behaviors underlying interesting social
phenomena emerge. In other words, the system that controls the behavior
of the agents is not designed by the researcher but is evolved or learned, and
the researcher creates only the conditions in which evolution or learning
take place.

Evolution can be either biological or cultural and in both cases it can be
simulated using a genetic algorithm. In biological evolution an agent in-
herits from its parent(s) a genotype encoding the connection weights of the
agent’s neural network. Reproduction is selective in that not all individuals
have the same number of offspring. Furthermore, reproduction is accom-
panied by the constant addition of new variants to the pool of genotypes
because random errors may occur when copies of genotypes are made
and because portions of one parent’s genotype may be recombined with
portions of the other parent’s genotype if sexual reproduction is adopted.
In cultural evolution information is transmitted not via copied genotypes
but through learning from others. One individual, the “student,” learns
to behave in the same way as another individual, the “teacher,” by being
exposed to the same input to which the other individual is exposed and by
using the output of the other individual as teaching input to change its own
connection weights as part of the backpropagation procedure. Also in this
case, reproduction is selective in that not all teachers have the same number
of students, and it is accompanied by the constant addition of new vari-
ability to the cultural pool because random errors occur when a behavior is
transmitted from teacher to student and because new behavioral variants
which are recombinations of parts of existing variants may be invented. If
the individuals that reproduce or the teachers that have students are indi-
viduals that are better able at exhibiting some particular behavior than the
individuals that do not reproduce or do not have students, and if the new
variants happen to be better than the existing variants, what is observed in
both cases is the evolutionary emergence of initially nonexistent behaviors.
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2 spatial aggregation and coordination

The environment in which embodied neural agents live can contain non-
living objects, organisms belonging to other species, conspecifics, and arte-
facts created by conspecifics. Because neural agents have a body and they
live in a physical environment, all interactions of neural agents with their
environment are physical interactions. If the environment contains many
embodied agents, all interactions among embodied neural agents consist
in alterations of the external environment that are caused by the behavior
of one agent and that affect other agents.

Consider the following simulation. A collection of agents live in the
same environment, which contains randomly distributed food elements.
The neural network that controls an agent’s behavior has input units en-
coding the position of the single food element that is currently nearest to
the agent and output units that allow the agent to move in the environ-
ment. The neural networks of all agents have the same architecture but at
the beginning of the simulation each individual agent is assigned a geno-
type that encodes a different random set of connection weights for the
agent’s neural network. Each individual lives for a total number of time
units (input/output cycles of its neural network), which is identical for
all individuals. At birth each individual has zero energy but its energy is
incremented by one unit each time the individual by moving in the envi-
ronment reaches (eats) a food element. When the energy of the individual
reaches a threshold, the individual generates a new individual (offspring)
that inherits the same genotype of its (single) parent, with the addition of
some random changes to the quantitative value of some of the weights.
The offspring is placed near its parent and the parent’s energy returns to
zero.

Although at the beginning of the simulation the agents are not very good
at reaching food because of the random connection weights, the selective
reproduction of the individuals that are better able to reach food and to in-
crease their energy, and the constant addition of new variability to the pool
of genotypes because of the random variations in the inherited connection
weights, lead to an improvement in the average ability to reach food in
the population with each successive generation. After an initial transient
phase, population size stabilizes at a value that reflects the quantity of
food present in the environment (carrying capacity). Food is periodically
re-introduced to compensate for the food eaten, and the carrying capacity
of the environment, and therefore, population size, are functions of the
length of the interval between successive food re-introductions.

The results of the simulation show that if food is re-introduced suffi-
ciently frequently, the population distributes itself homogeneously in the
environment. However, if food is reintroduced less frequently, an interest-
ing collective phenomenon emerges with respect to the spatial distribution
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figure 13.1. Oscillatory migratory waves of agents. (1) The agents concentrate in
a zone of the environment that happens to have more food than other zones.
(2) After having depleted the original zone of food, the agents migrate toward
the periphery of the environment where food has accumulated in the meantime.
(3) The agents have reached the periphery. (4) After having depleted the periphery,
they return to the original zone of concentration where food has returned since
they left the zone.

of the population: one observes oscillatory migratory waves of the agents
in the environment. The entire population of agents may concentrate in a
particular zone of the environment but, after a while, the population leaves
the zone and disperses in the environment, with different individuals go-
ing in different directions. When the agents reach the wall that limits the
environment, they remain near the wall for a while and then they slowly
return to the initial zone in which they concentrate again. This oscillatory
movement of the population repeats itself periodically until the end of the
simulation (Figure 13.1).

How can one explain this collective phenomenon of periodic oscillatory
migratory waves? For reasons that are purely based on chance some zone of
the environment may contain more food than other zones and therefore the
agents looking for food tend to move toward the zone with more food and
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concentrate there. However, as more and more agents concentrate in the
same zone and eat the food found there, the zone tends to become progres-
sively deprived of food. As the zone empties, the agents leave the zone in
different directions to migrate in more peripheral zones that, having been
without agents for some time, contain much food. The same phenomenon
repeats itself in the zones located peripherally with respect to the initial
zone. As the peripheral zones are emptied of food because of the many
agents that have reached those zones, an opposite wave of migration to-
wards the initial concentration zone takes place. Therefore, the population
ends up periodically migrating from a more centrally located zone to the
periphery and back to the central zone (Parisi, Piazzalunga, Cecconi &
Denaro, 1994).

The simulation demonstrates that interesting collective phenomena may
emerge in populations of very simple neural agents even if the agents can-
not be said to possess social behaviors or social abilities. The agents in this
simulation do not even perceive each other. They only perceive the food el-
ements. Furthermore, food is randomly and, therefore, at the appropriate
scale, equally distributed in the entire environment. This notwithstand-
ing, an interesting collective spatial pattern emerges from the simulation.
As already mentioned, the agents do not perceive each other and they
respond to input from the nonsocial environment (food) with behavior
uniquely directed to the nonsocial environment (eating the food). How-
ever, if a population of agents lives together in the same physical environ-
ment, by altering the physical environment with their behavior (eating the
food) individual agents can have an indirect influence on other individuals
because each agent responds to an environment altered by the behavior of
other agents. This can produce emerging collective phenomena in the spa-
tial distribution of the population such as the oscillatory migratory waves
observed in the simulation.

The agents described periodically aggregate and disaggregate (disperse)
spatially as a result of the changes that their behavior causes in a nonso-
cial environment in which the resources by themselves are randomly dis-
tributed. In real populations, both animal and human, social aggregation
can result from the particular spatial distribution of resources in the en-
vironment. Many individuals can end up near each other simply because
they tend to approach the same localized resource such as a food patch or
a water source or a lecture in a classroom. In these circumstances too, the
agents’ behavior, which results in social aggregation, has not evolved for
that function. Each individual approaches food or water or the classroom
for eating or drinking or learning, not for social purposes. However, even
if it is a simple by-product of nonsocial behaviors social aggregation can
be a favorable pre-condition for the emergence of social behaviors such as
communication and economic exchange among individuals that happen
to find themselves near each other.
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In other circumstances, however, social aggregation may not be simply
a by-product of behavior that has emerged for other purposes but is the
result of behavior that has emerged exactly because it produces spatial
aggregation. One can distinguish between two types of social behavior
that results in social aggregation and, more generally, social interaction. In
Type 1 social behavior, one individual alters the environment of another
individual but it does so for its own, nonsocial, reasons, whereas the sec-
ond individual responds to the alteration of the environment by the first
individual with a behavior that has emerged with the function of produc-
ing social aggregation or interaction. In Type 2 social behavior, both the
behavior of the individual that alters the environment of another individ-
ual and the behavior of the individual that reponds to this alteration of the
environment on the part of the first individual emerge with the function
of producing social aggregation or other social phenomena.

Let us consider Type 1 social behavior first. Imagine a population of
agents very similar to the agents of our previous simulation with the only
difference that an individual’s life is made up of two successive stages. In
the first life stage the individual is a “child,” which means that the input
units of its neural network encode the current position of the individual’s
parent, not the position of the nearest food. In other words, a child sees
its parent but does not see the food. This means that a child cannot find
food by itself and would starve and die unless its parent gives some of its
food to the child. In the second stage of an individual’s life the individual
becomes an “adult” and is exactly identical to the agents of our previous
simulation. An adult’s neural network encodes the position of the nearest
food and the individual responds by approaching and capturing the food.
However, some portion of the food captured by an adult individual is not
eaten by the individual but is given by the adult individual to its children
provided the individual has children.

But children are not passive receivers of food. To obtain food from their
parents it is their responsibility to remain in close proximity to their parents.
This is why the input units of a child’s neural network encode the current
location of the child’s parent in the environment. The child must be able to
respond to this input by approaching its parent. Because a child’s parent
moves in the environment looking for food, this means that children should
follow their parents so that a child’s distance from its parent never exceeds
a certain threshold. This in fact is the children’s behavior observed after a
certain number of generations in the simulation (Parisi, Cecconi & Cerini,
1995) (Figure 13.2).

In the simulation adults and their children tend to form small social ag-
gregations of kin-related individuals (families) that move together in the
environment. These social aggregations are exclusively due to the evolved
behavior of children, which respond to visual input originating from
their parents by approaching their parents and remaining in their vicinity.
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figure 13.2. A “child” (small square) evolves the behavior of following its “parent”
(large rectangle), which is looking for food (circles) because this allows the “child”
to obtain food from its “parent.”

Parents do not contribute with their behavior to these social aggregations
because, as adults, they simply look for food. This, then, is a Type 1 situa-
tion in which agents (children) evolve a behavior in response to the input
provided by conspecifics (parents) but the parents’ behavior that provides
this input for their children evolves for independent, nonsocial, reasons
(looking for food).

One moves toward a Type 2 situation if one assigns also to the parents a
role in maintaining the spatial aggregation of their family. In the simulation
that has been described the behavior of parents that give some of their food
to their children is hardwired and not evolved but also this behavior can
be evolved. Children would starve to death unless their parents provide
them with food, and in these circumstances their parents’ genes would
not be transmitted to the next generation. Therefore, it is in the parents’
genetic interest to give some of their food to their children. In the new
simulation an agent’s genotype includes not only the genes that encode the
connection weights of the agent’s neural network but also an additional
gene, which encodes in a simple quantitative way the agent’s tendency,
when it becomes an adult, to give some of its food to its children. The
value of the gene varies among the agents and at the beginning of the
simulation is randomly generated for each agent. Offspring inherit the
same value of the gene of their parents with random mutations that may
slightly increase or decrease the gene’s value. The individuals that tend
to reproduce are individuals that not only are good at finding food but
also have a propensity to give some of their food to their children. Even if
giving food to one’s children reduces an individual’s chances to generate
additional children, the results of the simulation show that after a certain
number of generations the “give food to your children” gene stabilizes at
an intermediate quantitative value, which takes into consideration both an
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individual’s need to generate additional children and its need to keep alive
and bring to sexual maturity the children that the individual has already
generated. By their evolved tendency to give food to their children parents
contribute to social aggregation because it is this tendency of parents that
motivate children to remain near their parents.

Many real-life collective behaviors, e.g., the behavior exhibited by
schools of fish or flocks of birds, are in between Type 1 and Type 2. Many
fish and birds move together when they look for food or, in the case of
birds, migrate to distant places. If being in the vicinity of conspecifics con-
fers some adaptive advantage in terms of increasing the probability of
finding food or avoiding predation, agents that are able to perceive their
conspecifics will evolve a tendency to approach their conspecifics so as to
maintain proximity even as the group of agents collectively moves in the
environment. As in the preceding simulation in which children actively
maintain proximity to their parents, the behavior of responding to the in-
put originating in a conspecific evolves because it produces proximity to
conspecifics but the behavior of the conspecific that generates this input has
not necessarily evolved for this reason. However, the spatial aggregation
that is maintained in a collection of agents is different from the behavior
of the pair of agents constituted by a parent and its child (or children). A
parent that moves in the environment looking for food is not influenced
by the behavior of its children and, in our simulations, the parent does not
even perceive its children. In contrast, in a group of agents moving together
in the environment each individual both perceives and is perceived by its
conspecifics and each individual, either directly or indirectly, both influ-
ences and is influenced by the other individuals in the group. In fact, in a
group of agents maintaining spatial proximity and moving together in the
environment local causes become global causes. A local cause is an event
that takes place in one particular agent and has some direct influence on
another agent. A global cause is an event or state at the level of the entire
group of agents that has some influence on each individual agent belong-
ing to the group. In our simulations a parent’s behavior is a local cause
of its children’s behavior. In a school of fish or in a flock of birds each agent
is influenced by the other agents and therefore when an individual agent
influences another individual agent this influence reflects the state of the
entire group. The behavior of each agent is both a local and a global cause
of the behavior of the other agents.

The collective behavior of a group of agents that move together in
the environment has been simulated by various researchers. For example,
Reynolds (1993) evolved the control system of a group of agents (flock of
birds) placed in an environment containing obstacles for the ability to col-
lectively avoid the obstacles. The group of agents splits before an obstacle
and re-unites after passing the obstacle. Baldassarre, Nolfi and Parisi (2003)
(cf. also Baldassarre, Parisi & Nolfi, 2004) have simulated various collective
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behaviors with groups of robots (“swarmbots”). A group of, say, four robots
each with its own control system (neural network) are physically linked
in various spatial configurations. For example, the four robots can form
a line with each robot physically linked to the next robot in the line. The
neural network of each robot has input units encoding the strength with
which the individual robot is pushed or pulled by the other robots and the
direction in which the robot is pushed or pulled by the other robots. The
network’s output units control two wheels that allow the robot to move in
the environment. These “swarms” of robots cannot be said to form sponta-
neously because the robots are already united through the physical links,
but they evolve various interesting collective behaviors: they quickly line
up their wheels in order to move coherently, i.e., in the same direction, and
they are able to negotiate obstacles, to reach light targets if each robot is
provided with additional input units encoding the location of the target,
and to help single members that happen to fall in holes (Figure 13.3). These
collective behaviors appear to be very robust in that they are exhibited even
when the robots become members of new “swarms” made up of different
numbers of robots and with different spatial configurations with respect
to the originary “swarm” in which the robots have evolved. In all these
simulations each robot causes inputs for the other robots and at the same
time is influenced by the inputs caused by the other robots. Therefore, a
local influence of one robot on another robot is at the same time a global
influence of the entire “swarm” of robots on each individual robot.

Coordinated behavior in embodied agents spontaneously emerges also
with other types of tasks such as herding in response to predators and the
collective building of structures. In an attempt to study the evolutionary
origin of herding, Werner and Dyer (1993) co-evolved two populations
of predators and prey agents that were selected for the ability to catch
prey and for the ability to find food and escape predators, respectively.
The author observed that, after some generations during which predators
evolved an ability to catch prey, prey agents converged into small herds
which were constantly splitting up and re-forming. More recently, Ward,
Gobet and Kendall (2001) evolved groups of artificial fish able to display
schooling behavior. Two populations of predator and prey fish, respec-
tively, were evolved in an environment containing randomly distributed
food elements. The neural network controlling a prey’s behavior included
sensory neurons encoding distance and direction of nearest prey, predator,
and food, and the amount of changes in water pressure in proximity to the
agent, and two motor neurons encoding speed and direction of motion of
the agent. An analysis of distances between prey and food and between
prey and predator suggests that schooling behavior is correlated with an
increased probability to find food clumps and a better protection from
predation. Finally, Theraulaz & Bonabeau (1995) evolved a population of
constructor agents who collectively build a nest structure by depositing
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figure 13.3a,b,c. Top-Left: The hardware prototype of an individual robot. Top-
Right: Four simulated robots linked up to form a linear structure. Bottom: The
trajectory followed by a star-shaped swarmbot made up of eight individual robots
in an environment with obstacles, furrows, and holes. The swarmbot is depicted
in its final position near the light target represented by the white sphere. The black
irregular lines indicate the trajectories followed by the eight robots forming the
swarmbot. Whereas isolated robots (indicated by arrows) get stuck in furrows, the
swarmbot passes over the furrows, succeeds in freeing its component robots that
fall in holes, and searches and finds the light that was not visible from the starting
position (center of the graph).

bricks according to their perception of the local environment and to a set
of behavioral rules.

An interesting phenomenon that can be studied with collective tasks is
the emergence of specialization, with different individual agents sponta-
neously assuming different roles in the execution of the task. Specialization
emerges both when the agents involved in a collective task are geneti-
cally different individuals (Yong & Miikkulainen, 2001) and when they are
clones (Quinn, Smith, Mayley & Husbands, 2003). In Baldassarre, Nolfi,
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and Parisi’s (2003) simulations, clone agents first have to aggregate and
then move together toward a target. The most effective strategy includes
primitive forms of “situated” specialization in which identical individu-
als play different roles according to the circumstances such as leading or
following the group (see next section). These forms of functional specializa-
tion seem to be due to the need to reduce interference between potentially
conflicting sub-goals such as moving toward the rest of the group to main-
tain aggregation and moving toward the target.

3 communication

“Swarm” simulations still have to do with Type 1 social behavior or, per-
haps, with behavior that is intermediate between Type 1 and Type 2. But of
course behavior can evolve in agents for the explicit function of providing
inputs to conspecifics. This behavior is called communication and the in-
puts that are provided to conspecifics are called signals. Communication
clearly involves Type 2 situations.

Imagine a group of agents that has to reach a target in the environment
but to be rewarded they must approach the target by maintaining recipro-
cal proximity. If the agents are initially dispersed in the environment, they
may be unable to perceive each other and therefore they may be unable
to aggregate and then move together toward the target. The solution is to
evolve some signaling behavior that by providing an input to conspecifics
allows the group to aggregate. The neural network that controls the be-
havior of an agent has both input units that visually encode the position
of the target and input units that encode acoustic input originating from
the behavior of conspecifics (signals). The output units encode both be-
havior that allows the agent to move in the environment and behavior that
produces a sound that can be heard by conspecifics. The sounds that are
produced by individual conspecifics sum together and result in a louder
compound sound. The agents evolve an ability to recognize the direction
from which the loudest sound arrives to their sensors, and therefore the di-
rection in which the conspecifics are aggregating spatially, and to respond
by moving in that direction. The results of the simulation show that the
agents first respond to the sounds that they hear by aggregating together
and ignoring the input from the target, and then they respond to both the
sounds and the visual input from the target by moving toward the target
while maintaining spatial aggregation (Baldassarre, Nolfi & Parisi, 2003).

As already mentioned, evolved agents show a form of situated spe-
cialization. Individuals that are located on the frontal side of the group
with respect to the light target (“leaders”) do not turn toward the rest of
the group but keep their orientation toward the light, sometimes moving
backward to avoid losing contact with the rest of the group. On the contrary,
individuals located behind (“followers”) turn and move toward the other
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members of the group. Moreover, once a compact group has formed and
the group starts to move toward the light, each individual tries to maintain
its current role. The final result is that the “leader” drives the whole group
toward the light whereas the “followers” only try to remain in proximity
to the “leader” and to each other so that the whole group continues to be
compact (see Figure 13.4).

Figure 13.4 shows how the agents play different functions in different
circumstances. Figure 13.4a shows how the individual closer to the light
target assumes and maintains the function of “leader.” The individual turns
toward the light and waits for the rest of the group before driving the
entire group toward the light target. It may move backward to speed up
the formation of a compact group but, as soon as the rest of the group gets
closer, it starts to move toward the light target thus keeping the frontal
position with respect to the rest of the group. Figure 13.4b shows another
situation in which the individual closer to the light target does not turn
toward the rest of the group but keeps its relative position by waiting for
the rest of the group and by starting to move toward the light as soon as the
rest of the group approaches. Figure 13.4c shows that individuals that are
shadowed by other individuals and cannot see the light target (in this case
the second robot from the left) turn and move toward the rest of the group.
Finally, Figure 13.4d shows that a couple of individuals located in similar
conditions with respect to the light target and to the rest of the group can
assume and maintain the role of both leaders or followers. The overall
result of being able to display and maintain “situated” specializations is
that agents can quickly form a compact group and then move straight
toward the light target.

In the simulation that has been described the behavior of producing
a sound that can be heard by conspecifics is hardwired. One could do
another simulation in which the behavior evolves spontaneously as it is
clearly advantageous for an individual to produce such a sound. Unless
an individual produces the sound, the conspecifics may not be able to
know where the individual is located and to approach the individual.
However, the behavior of producing signals raises an interesting problem.
Communication is a Type 2 situation. It requires the evolution at the same
time of the behavior of emitting the appropriate signals in the appropriate
circumstances (altering the external environment in the appropriate way)
and the behavior of responding to the signal appropriately (responding to
the alteration in the environment in the appropriate way). Furthermore,
both behaviors must be exhibited by each individual. From an evolution-
ary point of view, a behavior tends to emerge only if it is advantageous for
the individual that exhibits the behavior. Therefore, for communication to
emerge it is necessary that both the behavior of emitting the appropriate
signal is advantageous for the emitter of the signal and the behavior of
responding appropriately to the signal is advantageous for the receiver of
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(a)

(b)

(c)

(d)

figure 13.4. Behavior displayed by four agents initially located in four different
starting positions and orientations. In all cases the light target is located on the left
side. The lines represent the trajectories of the four agents and the circles represent
the final position of the agents after a given amount of time. The arrows indicate
quick changes in the orientation of individual agents.
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the signal. In some circumstances the two conditions may not be both
satisfied and this may prevent communication from emerging. If emitters
do not emit the appropriate signals in the appropriate circumstances, there
are no useful signals for receivers to respond to appropriately. If receivers
do not respond to signals appropriately, it makes no sense for emitters
to emit the appropriate signals in the appropriate circumstances. Hence,
emitting and receiving signals cannot evolve separately but they need to
co-evolve.

One can imagine situations in which both the emitters of signals ben-
efit if they emit the appropriate signals in the appropriate circumstances
and the receivers of signals benefit if they respond appropriately to the
signals. Consider the following simulation. A population lives in an envi-
ronment in which there are large prey that can be captured and killed only
if a sufficiently large group of individuals are present and hunt together
the prey. The agents initially disperse in the environment and when an in-
dividual finds the prey it communicates to the other individuals where
the prey is located so that the other individuals can use this informa-
tion and converge to the prey’s location. There are two solutions to this
problem. One is a more primitive and limited solution. The individual
that has found the prey immediately emits some sound (or some simi-
lar signal that can be perceived from a distance) and the other individu-
als perceive the sound and its direction and they immediately approach
the source of the signal. This solution is primitive and limited because it
works only if a number of conditions are satisfied: (a) the signal is pro-
duced by the emitter as soon as it finds the prey, (b) the signal can be
perceived at sufficiently large distances, (c) the conspecifics respond im-
mediately and, of course, (d) producing the signal does not cause the prey to
escape.

A more sophisticated solution is the emergence of a true language in
which different signals describe the particular location in which the prey
has been found. For example, in the simulation the environment may con-
tain various landmarks and different signals are emitted by the individual
which has found the prey which co-vary with, i.e., designate, the specific
landmark near which the prey has been found (e.g., “(near the) mountain,”
“(near the) river,” etc.). This more sophisticated solution does not have the
limitations of the former, simpler, one. A signal can be produced and re-
sponded to at any time, it does not have to be strong to be perceived at
large distances, and it needs not cause the prey to escape.

Notice that in the situation that has been described a communication
system, whether simple or more complex, emerges because it is advanta-
geous for both the emitters and the receivers of signals. Because the prey
is too large to be hunted individually, the individual that finds the prey
and emits the signal is advantaged because its signalling behavior causes
other individuals to come where the prey is located so that the prey can
be hunted collectively. At the same time, the individuals that receive the
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signal are advantaged in responding appropriately to the signal by go-
ing to where the prey is located because this allows them, again, to hunt
collectively the prey. One can imagine also other situations in which a sig-
nalling system can evolve because it is advantageous to both emitters and
receivers of signals. An agent can emit a signal asking another individual
to do something that seems to be useful only to the emitter of the signal, but
in fact the receiver of the signal responds as required because this allows
the receiver to get some advantage such as avoiding being punished by
the emitter of the signal or exchanging roles with the current emitter of the
signal in some future occasion.

However, there may be other conditions in which the receivers of sig-
nals may be advantaged by being able to respond appropriately to the
signals but the emitters of the signals have no advantages in emitting the
appropriate signals in the appropriate circumstances. If this is the case, a
signalling system may fail to emerge.

This has been studied in the following simulation (Mirolli & Parisi,
2004a; 2004b). A population of agents lives in an environment that contains
both edible and poisonous mushrooms. Edible and poisonous mushrooms
are perceptually different but, in order to recognize them and eat the edible
mushrooms whereas avoiding the poisonous ones, an individual must be
sufficiently close to an encountered mushroom to see the mushroom ap-
propriately. If the agent is alone and it encounters a mushroom, the only
available strategy is in all cases to approach the mushroom until the agent
is sufficiently close to the mushroom and is able to recognize whether the
mushroom is edible or poisonous. This is not a very efficient strategy, how-
ever, as it involves a waste of time and energy if the mushroom turns out
to be poisonous. If a second individual is also present and is closer to the
mushroom, the second individual can send a signal to the first individual
telling the first individual whether the mushroom is edible or poisonous.
This behavior of the second individual, the emitter of the signal, is clearly
advantageous for the first individual, the receiver of the signal, but is it
advantageous for the emitter of the signal? Why should the behavior of
emitting the appropriate signal in the appropriate circumstances emerge
evolutionarily if it provides no advantages for the individual exhibiting
the behavior?

As a matter of fact, the results of the simulation show that if the emitter
and the receiver in any given encounter are randomly selected from the
entire population, a useful signalling system fails to emerge. Emitters fail
to produce the appropriate signals in the appropriate circumstances (one
particular signal for edible mushrooms and another, different, signal for
poisonous mushrooms) and, therefore, in the absence of useful signals,
receivers of signals cannot evolve the behavior of responding appropriately
to the received signals. An appropriate signalling system would benefit
only receivers of signals but not emitters of signals and this prevents such
a signalling system from emerging.
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However, it is possible to create conditions in which, given the same
simulation scenario, the correct signalling system will emerge. In the simu-
lation that has been described the signalling system is genetically transmit-
ted in that it results from the neural network’s connection weights, which
are encoded in the agents’ genotypes. These connection weights determine
both which signals are produced by emitters and how receivers respond
to signals. If emitters and receivers of signals in social encounters are ran-
domly chosen from the population, the “egoism of the gene” prevents the
signalling system from emerging because in any particular encounter the
emitter of the signal and the receiver of the signal tend to have different
genes, i.e., they are not kin-related individuals. An emitter that produces
the appropriate signals increases the reproductive chances of the receiver
of the signal, which will tend to evolve an ability to respond appropri-
ately to the signal because this ability is in its own interest. However, the
receiver of the signal may not produce the appropriate signals when its
role changes and it becomes an emitter of signals. Hence, by increasing the
reproductive chances of the receiver of the signal, a good emitter of signals
may increase the reproductive chances of a bad emitter of signals. In these
conditions individuals that are at the same time good emitters and good
receivers of signals tend not to emerge.

But if one changes the simulation scenario and introduces the condition
that in any particular encounter the emitter and the receiver of the signal are
kin-related individuals, i.e., they have the same (or similar) genes because
they are the offspring of the same parent, then a good signalling system
does emerge as predicted by kin-selection theory. Good signallers, i.e., indi-
viduals that emit the appropriate signals in the appropriate circumstances,
provide advantages to the conspecifics that receive their signals and not to
themselves but, because the receivers of the signals have the same genes
as the emitters of signals, good signalling genes are maintained in the
population.

This simulation seems to imply that language, at least for the particu-
lar use of language considered in the simulation, can emerge only within
small groups of kin-related individuals. However, language is more use-
ful if it can be used in larger groups of non–kin-related individuals. How
can language emerge in such larger groups? Furthermore, whereas in the
simulation language is genetically transmitted and it evolves biologically,
human language, unlike most animal signalling systems, is learned from
others and culturally rather than genetically transmitted. Can the cultural
emergence and cultural transmission of language be simulated?

One way in which language can emerge in groups of non–kin-related
individuals is if language is used not only to speak to others but also to
speak to oneself, i.e., to think. In the simulation that has been described it
is assumed that the receiver of a signal is able to keep in memory the signal
heard from the emitter while the receiver is approaching the mushroom. In
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a variant of the same simulation, memory is not assumed but the receiver
of the signal must evolve an ability to repeat the signal to itself in order
to remember the signal of the emitter. This implies that good receivers of
signals must also be good emitters of signals if they must benefit from
the signals that they receive. In these conditions a good signalling system
emerges in the population even if the emitter and the receiver of signals in
any particular social encounter are not kin-related individuals.

Another condition in which an appropriate and useful signalling system
does emerge is a condition in which the signalling behavior is culturally
rather than genetically transmitted and there is a genetically inherited ten-
dency to learn from others. This genetically inherited tendency to learn
from others has been called “docility” by Herbert Simon (Simon, 1990).
Human beings appear to possess docility more than other animals. Docil-
ity has become part of the human genotype because of the great advantages
it bestows on an individual who can directly learn from others many useful
abilities and behaviors without going through long, tiresome, and some-
times dangerous individual experiences. Docility implies “blind” learning.
Young individuals learn anything adults care to teach them and, in par-
ticular, without first determining if what they learn is advantageous for
themselves or for others. This may explain the emergence of language as a
learned and culturally transmitted ability. When an individual is learning
language, the individual is learning to both emit and understand signals
that in some of their uses can be advantageous for the emitter of the signal
and in other uses can be advantageous for the receiver of the signals.

In the new simulation an agent’s connection weights that are responsible
for emitting linguistic signals and for responding to received signals are not
encoded in the agent’s genotype but are culturally learned by the individ-
ual at the beginning of its life. Cultural learning, i.e., learning from others,
is simulated by using the behavior of another individual, the teacher, as
teaching input for the learner as the learner is learning language on the
basis of the backpropagation learning algorithm. The learner’s connection
weights are randomly assigned at birth and the learner’s parent functions
as its teacher. In any given learning trial both the learner and the teacher
are exposed to the same input and both respond with some output on the
basis of their respective connection weights. When the learner is learning
to emit linguistic signals, both its neural network and the neural network
of its teacher encode the perceptual properties of an encountered mush-
room and the output units of both networks encode a signal that classifies
(names) the mushroom as either edible or poisonous. In the early stages
of learning the learner tends to emit inappropriate signals but, by com-
paring its own signal with the signal emitted by the teacher in response
to the same mushroom and changing its connection weights to reduce
the discrepancy between the two signals, the learner progressively learns
to emit the same signals as the teacher. When the learner is learning to
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understand the signals, the input is a signal and the output is the behavior
of either approaching or avoiding the mushroom. Again, in the early stages
of learning the learner responds differently from its teacher, but after a cer-
tain number of trials it learns to respond in the same way as its teacher.

Considering that in the simulation only individuals that are parents
function as teachers, this means that teachers are individuals that have
been selected for reproduction and therefore tend to have a better lan-
guage than the individuals not selected for reproduction. Furthermore,
the teaching input from a teacher is slightly and randomly changed when
it is used by the learner for learning language, which means that, analo-
gously to what happens with random genetic mutations, learners can in
some (rare) circumstances develop a better language than their teachers’
language. At the beginning of the simulation language is very bad because
the teachers belonging to the first generation that teach language to the
members of the second generation have random connection weights like
their learners. But language gradually emerges culturally. As in biological
evolution, the selection of the best individuals as teachers and the constant
addition of new variability by adding some random noise to the teach-
ing input progressively lead to the emergence of a useful language in the
population – a culturally rather than biologically evolved language. Notice
also that docility is not hardwired in our agents but it evolves biologically.
Docility is encoded in a special gene that initially has a random value and
is biologically inherited from parents to offspring with the usual random
mutations. This value determines how many language learning trials a
newborn individual will have and therefore how much language it will
learn. Because docility is useful to the individual, the average value of the
gene tends to increase in the population and when the simulation stabi-
lizes all individuals tend to be born with a genetically inherited tendency
to learn language from their parents.

4 culture

Culture is behavior (and beliefs, attitudes, values) learned from others.
Behavior can be learned from others either directly, by imitating another
individual or by being taught by another individual, or indirectly, by inter-
acting with technological artefacts made by other individuals. Interactions
among agents may result in learning from others. Therefore, agents that live
in the same environment and interact together may learn from each other.
The individuals of one generation may learn from the individuals of the
preceding generation and in this way behavior can be transmitted from
one generation to the next. Cultural transmission, like genetic transmis-
sion, is accompanied by cultural change or cultural evolution. Individual
agents tend to exhibit different variants of the same behavior and these dif-
ferent variants are differentially transmitted to the next generation, with
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some variants generating more “copies” of themselves than other variants.
Furthermore, new variants of behaviors are constantly introduced because
of random errors in the “copying” process, invention of new variants, and
“copying” of variants existing in other cultures. Groups of agents that in-
teract together more than with members of other groups tend to develop
different cultures because of progressive divergence and random drift.

As illustrated in the preceding section, neural agents can be used to
study cultural transmission by having agents learn by using the output
of other agents as teaching input, on the basis of the backpropagation
procedure. In any given trial both the learner and the teacher are exposed
to the same input and they both generate an output in response to this
input which depends on the connection weights of their respective neural
networks. The output of the learner is compared with the output of the
teacher and the learner’s connection weights are changed in such a way
that, after a certain number of trials, they tend to produce an output similar
to the teacher’s output in response to the same input. Hence, any behavior
or ability which is initially possessed by the teacher but not by the learner
is transferred to the learner.

If one assumes that the teacher already knows how to find food in the
environment, i.e., to respond to visual input encoding the food’s position
with some motor output which allows the agent to approach the food, a
learner with random connection weights at birth and therefore no initial
ability to approach food will progressively learn to approach food by imi-
tating the teacher. If one adds some random noise to the teaching input, i.e.,
in how the learner perceives the teacher’s behavior, in some (rare) cases
learners can end up being better able than their teachers to approach food
(Denaro & Parisi, 1996; Parisi, 1997).

For cultural evolution to take place, two conditions must be satisfied:
learners must be spatially near to teachers in order to be able to observe and
imitate the teachers’ behavior and, furthermore, the best individuals of the
previous generation must be selected as teachers. If these two conditions
are hardwired in the simulation, a population of neural agents, which at
birth have random connection weights will progressively acquire, in suc-
cessive generations, the appropriate connection weights that allow them
to approach food efficiently. The connection weights are not genetically
inherited but they are culturally acquired by each individual by imitating
one or more individuals of the preceding generation. In the early genera-
tions teachers do not have much to teach but this gradually changes and
the ability to find food builds up through selective cultural transmission
and the addition of random novelties (noise) to teaching inputs.

Both the learners’ tendency to remain in proximity to teachers in order
to learn from them and their ability to select as teachers the best individ-
uals of the preceding generation may evolve genetically, with a process
of co-evolution of both biology and culture. In one simulation the agent’s
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figure 13.5. At the beginning of the simulation agents are randomly distributed in
the environment (left). At the end of the simulation agents have evolved a tendency
to stay close to each other in order to learn from each other (right).

genotype encodes the connection weights that cause the agent to approach
a teacher and therefore to be in the position to learn from the teacher how
to approach food. These connection weights are randomly assigned to the
members of the first generation and therefore the agents are initially un-
able to approach teachers and learn from them. However, the connection
weights that cause agents to stay close to each other in order to learn from
each other evolve because they are selectively transmitted with the addition
of random genetic mutations from one generation to the next (Figure 13.5).
For biological evolution to produce better connection weights, i.e., con-
nection weights that encode the behavior of approaching teachers, the
individuals that inherit these weights must also be individuals that are
able to learn from teachers the behavior of approaching food. Hence, nei-
ther biological evolution (approaching teachers) can take place without
cultural evolution (approaching food) nor cultural evolution without bio-
logical evolution. The two must co-evolve (Parisi, Piazzalunga, Cecconi &
Denaro, 1994).

The ability to identify good teachers, i.e., to select as teachers the indi-
viduals of the preceding generation that are best able to approach food,
can also evolve. This ability is encoded in a gene, which is represented
by a single number. The individuals that inherit genes with higher values
are better able to select the best teachers. The gene is genetically inherited
with some random noise, i.e., a randomly selected quantity is added to or
subtracted from the gene’s current value. Gene values are randomly as-
signed in the initial population of agents but, with successive generations,
the average value of the gene tends to increase since selecting as teachers
the best individuals of the preceding generation is a prerequisite for the
cultural emergence of the ability to approach food.
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Cultural transmission can be direct or mediated by technological arte-
facts. Although direct transmission requires face-to-face interaction, indi-
rect cultural transmission requires only that an individual interacts with
an artefact made by another individual. Particular technological artefacts
tend to induce specific behaviors in the agents that use them and therefore
different individuals can learn to behave in similar ways because they use
the same technological artefacts. But technological artefacts are not only
mediators of cultural transmission. Technological artefacts themselves can
evolve. They can be transmitted from one generation to the next and, if
technological transmission is accompanied by the selective reproduction
of the best artefacts and the constant addition of new variants of the arte-
facts, what is obtained is technological evolution.

Imagine that the agents that have to look for food in the environment
in order to survive and reproduce inherit not only a genotype that en-
codes the connection weights underlying their food searching behavior
but also some technological artefacts, e.g., vases for storing, transporting,
or cooking food. These artefacts allow them to extract more energy from
the food they find in the environment and therefore to increase their sur-
vival and reproductive chances. The inherited artefacts cannot be directly
used by the agents that inherit them, however, but they can function only
as models to be copied in order to make new artefacts. Each agent has two
neural networks: a network for looking for food and a network for copy-
ing artefacts. Whereas the connection weights of the network for looking
for food are genetically inherited, the connection weights of the network
for copying existing artefacts are randomly assigned at birth and they are
learned using the backpropagation procedure. The observed properties
of a model artefact that has to be copied function both as input to the
artefact-copying network and as teaching input for learning. The network
learns to produce an artefact that has the same properties of the model
artefact (technically, an auto-association task). This is the artefact that the
agent uses.

The individual artefacts are not all identical and some artefacts are better
than others, i.e., they allow their users to extract more energy from food.
If the artefacts of the preceding generation, which are used as models to
be copied by the individuals of the next generation are the best artefacts
and if some random noise is added to the teaching input so that in some
(rare) cases copies of artefacts turn out to be better then their models, what
is observed is technological evolution. At the beginning of the simulation
artefacts have random properties and therefore their average quality is very
low. But the selective reproduction of the best artefacts and the constant
addition of new artefacts due to the random noise progressively improve
the average quality of the artefacts.

A number of interesting phenomena can be explored using this sim-
ulation scenario. For example, how is the selection of the best artefacts
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figure 13.6. Evolutionary increase in the quality of artefacts when model artefacts
to be reproduced are selected from among all the artefacts of the population (top),
from among the artefacts of the local community (middle), and are those used by
an agent’s parent (bottom).

effected? The best results are obtained if the actual best artefacts are
directly selected for reproduction. However, it may be closer to reality
to select for reproduction those artefacts that are used by the most success-
ful agents. In other words, when an agent has to decide which artefacts
to select for reproduction, the agent does not directly judge the quality of
the artefacts (which may be something too complicated and tiresome to
do) but it judges how successful their users are. This inevitably gives a less
good evaluation of the quality of the artefacts because the success of an
individual, i.e., the total quantity of energy that the individual is able to
collect, depends both on its personal ability to find food and on the quality
of the artefacts the agent uses. Hence, selecting artefacts for reproduction
on the basis of the success of their users tends to be less efficient than se-
lecting them in terms of their directly assessed quality. An agent can collect
much energy because the agent is very good at finding food whereas the
artefacts the agent uses may not be of very high quality. However, even in
these conditions one observes technological evolution, i.e., a progressive
improvement in the quality of artefacts.

Another interesting question concerns the size of the group within which
artefacts evolve. If the group is the family and an agent simply uses as
models to be reproduced the artefacts used by one’s parent, evolution is
very slow as the artefacts used by one’s parent may not be very good
(Figure 13.6). Technological evolution is faster if the group is larger. In a
simulation two populations of agents are contrasted. One population lives
as a single integrated community. The other population is segmented into
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a number of separate communities (enclaves). If the population of artefact
users is divided up into communities of agents that do not interact together,
artefacts are selected for reproduction among the best artefacts of the local
community, not the absolutely best artefacts at the level of the entire popu-
lation. This has the consequence that technological improvement is slowed
down (Figure 13.6). (For some real historical cases, see Diamond, 1997).

A final result that emerges from the simulations is that the presence of
artefacts tends to increase the average energy (wealth) of a population of
agents, which is inevitable since artefacts augment the quantity of energy
extracted from food, but also to increase the economic stratification of the
population. In other words, in a population with artefacts there is a greater
difference in energy (wealth) between the average individual and the best
individual than in a population without artefacts. This may have occurred
in historical reality, for example with the introduction of farming technolo-
gies in populations that previously obtained their food from hunting and
gathering (Haas, 2001).

5 summary

In this chapter some computer simulations have been described that show
how interactions among simple embodied neural agents living together in
the same environment can produce interesting social phenomena related
to spatial aggregation, the performance of tasks that require social coordi-
nation, communication, and cultural and technological transmission and
evolution.

Agents may aggregate spatially because they modify the external envi-
ronment for other reasons, and other agents respond to these modifications
in ways that produce spatial aggregation but do not have this function, or
they may aggregate spatially because they develop behaviors that have
the function to keep them in proximity to other agents. Agents that are
near to each other can coordinate their respective behaviors to accomplish
tasks that no individual agent would be able to accomplish by itself alone.
Communicating agents develop behaviors that cause specific inputs for
other agents and the other agents develop an ability to respond appropri-
ately to these inputs. Communication may be difficult to develop because
it requires agents that are able to both emit and understand signals and
both behaviors must be advantageous for the individual that exhibits them.
Finally, agents that interact may learn by imitating other agents and new
behaviors and new technological artefacts can emerge if behaviors and
artefacts are selectively transmitted from one generation to the next and
with the constant addition of new variants.

Embodied neural agents tend to be simple in the sense that the neural
networks that control their behavior contain a small number of units con-
nected together in simple architectures and result in simple behaviors and
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abilities. Human beings have larger and more structurally complex neural
networks, which result in much more complex behaviors. Furthermore,
the neural networks of human beings have lots of recurrent connections
that produce the kind of self-generated inputs that underlie what is called
“mental life”: mental images, rememberings, thoughts, predictions, eval-
uations of courses of action, decisions. However, there appear to be no
obstacles in principle to progressively moving from simple to more com-
plex neural networks and behaviors for embodied agents.

The reason why neural agents tend to be so simple is that neural net-
works cannot be designed or programmed but they must evolve or learn
whatever abilities or behaviors they possess. The behavior of a neurally
controlled agent depends on the particular architecture and connection
weights of its neural network, and the architecture and connection weights
that result in some desired behavior cannot be identified a priori and pro-
grammed by the researcher. This is why research using neural agents tends
to be concerned with simple behaviors: any complex behavior must start
as simple and must become progressively more complex by a spontaneous
process of learning or evolution. This, however, might be seen as an asset
rather than a liability if one assumes that in order to really understand
how human agents behave individually and socially one should be able to
reconstruct how their behavior has become what it is.
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Cognitive Architecture and Contents for Social
Structures and Interactions

Cristiano Castelfranchi

1 introduction

The aim of this chapter is to answer some of the crucial questions of this
book from a specific position: that of a group of theoretical psychologists
and social scientists working within the domain of Artificial Intelligence,
“Agents” and Multi-Agent Systems, and Social Simulation. The crucial
questions

What is needed in an agent’s architecture designed for MAS, social theory, and
a non-reductive social simulation (Sun, 2001)? What is required at the individual
cognition level to produce collective behavior, the emergent order; to perform the
social roles; to build institutions; to play functions? Which are the peculiar fea-
tures of Social Structures as they emerge among cognitive agents? Which mental
representations supporting or implementing cooperation, groups, norms, insti-
tutions, roles, etc. are needed? Is methodological individualism (plus cognitive
representations) sufficient for social theory? Are social phenomena (collectively)
intended by the agents? Or how are they related to the agents’ understanding and
intending?

In this chapter it is argued (although in a synthetic way and necessarily
pointing to specific work) that

� Social and cultural phenomena cannot be deeply accounted for without
explaining how they work through the individual agents’ minds (mental
“counterparts” or “mediators”);

� This requires a richer cognitive model (architecture) for “Agents,” mov-
ing from formal and computational AI and ALife models, closer to those
developed in psychology, cognitive science (see several chapters in this
book), and in cognitive approaches in economics, sociology, and orga-
nization studies.

� However, the “individualistic + cognitive” approach is not sufficient for
the social theory (even when modeling joint and collective attitudes and
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actions). The social actors do not understand, negotiate, and plan for all
their collective activities and results. As is well known, many social
phenomena are not mentally represented: they are self-organizing and
“objective” (prior to and independent from human understanding and
planning). Modeling minds and actions is necessary but not sufficient
for understanding social phenomena.

It is also necessary to explain the peculiar point of view of this chapter,
which otherwise might look either ignorant or arrogant from the wrong
perspective. For the author, models of mind are not the exclusive do-
main of psychology and cognitive science (it is enough to cite the ex-
ample of economics and of the tremendous impact of its model of the
rational mind). The problem we face in this book is not simply that of
“exporting” psychological and cognitive-science models in the sciences
of the artificial – which eventually decided to model social interaction
and collective and institutional phenomena; neither is it adequate – on
the side of social artificial intelligence, of agent theory and multi-agent
systems, and of agent-based social simulation – to “import” and simply
implement models (possibly already formal or computational) from eco-
nomics, sociology, psychology, cognitive science (as they are doing with
Game Theory). This author is against such a simplistic and reductive
view of interdisciplinary relationships and of the role of artificial intel-
ligence. Something quite different will and should happen. Also because
the nature of coordination, cooperation, roles, norms, social networks, val-
ues, shared knowledge, etc. are not theoretically clear or well modeled.
Economics, sociology, psychology, cognitive science will not simply
“apply” – as they wish and expect – their models in the development
of computational social studies and of artificial societies (Sawyer, 2003)
(both aimed at scientific or at applicative purposes); what will really
happen is a bit different: computational studies, AI, and ALife will pro-
vide not only new “experimental” methods and environments1, but also
new conceptual, formal, and theoretical instruments, new ways of model-
ing mental and social processes, that will deeply transform current so-
cial sciences (and their models of mind). We will take part in the devel-
opment of the Computational Social Sciences. The programmatically naive
methodological attitude of this chapter is that “agent” studies must have

1 “One of the new ways in which scientists are able to conduct research on complex sys-
tems is by using computer technology to develop “agent-based models,” which simulate
the likely real-life behavior of the system being studied. This exciting new technology has
been called the “third” way of doing science, with traditional experimentation and obser-
vation/description being the other two.” (p. 6) T. I. Sanders & J. A. McCabe, The Use of
Complexity Science – A Report to the U.S. Dept. of Education; October 2003. Washington
Center for Complexity & Public Policy.
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room to elaborate their own architectures of mind, and their own models
of social interaction and structure. Obviously these models should not
only “compete” but should also be compared to and integrated with
the models of the other sciences more “entitled” to model mind or
society.2

This AI approach to cognitive architectures – as not identical to psy-
chological models – will for example, in our perspective, avoid the bad
alternative currently emphasized in economic studies between (Olympic
or bounded) formal simple models of rationality and too empirically ori-
ented, data driven, non-formal and non-general models of human eco-
nomic choices based on experiments (behavioral economics). A more ad-
equate and realistic but abstract, general, formal model of cognition and
action is possible and useful, and AI (especially the autonomous agents
theory and architectures) needs its elaboration. These architectures will
prove their sufficiency and motivation in social simulation, where one
should be parsimonious about the postulated dependent and independent
variables.

We will first consider some limits in current cognitive architectures,
suggesting some necessary extensions for modeling social minds and in-
teractions; second, we will explain that for modeling social phenomena,
modeling the minds of the agents is not enough: a lot of very important
social phenomena are not represented within the individual or the com-
position of the distributed minds of the participants, although they feed
back on the individuals – from whose behaviors and mental states they
emerge (in a spontaneous, unintended and unaware way) – and change
those mental representations.

Both the way up and the way down must be modeled – not simply in
terms of collective agreements, shared assumptions, joint intentions, and
so forth.

2 what should a proper cognitive model
for mas and social theory be like?

In this section a few relevant aspects of a socialized mind are examined. Of
course it is not a complete repertoire. Only some aspects crucial in the cur-
rent debate in Agents literature or relevant to the following argumentation
are taken into account. Some of them are obvious (but not already solved
in current models and architectures); others are less obvious but necessary
and challenging.

2 The usual objection to AI is that it always “rediscovers the wheel/umbrella”; however, any
rediscovery in different contexts and for different purposes implies true discoveries.
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2.1 Beyond BDI: A Layered Architecture + Emotions

Apart from a structurally guaranteed “autonomy” (see Section 4.4), first
of all a layered architecture is needed one that integrates different mech-
anisms governing behavior. The complexity of these mechanism would
vary, and be more or less stimulus-driven (reactive) or involving mental
representations and solving problems by working on them (intelligence). It
is clear from cognitive sciences studies (from psychology, to neurosciences,
to economics) that in order to account for human behavior, decision and
reasoning are not enough. Also in artificial agents studies one tries to com-
pare or combine high-level mechanisms based on instrumental reasoning,
Beliefs, Desires, Intentions, with more reactive mechanisms related to rein-
forcement learning or to emotional responses. For a reasonable cognitive
architecture we need both reasoning and simple rule-based behaviors with
associative properties and reinforcement learning; low-level expectations
(anticipatory classifiers; Butz et al., 2003) but also high-level expectations
like predictions for decisions, intentions, planning (Castelfranchi et al.,
2003).

We will consider for example social phenomena that presuppose specific
mental states in the agents (like objective conflicts of interests that presup-
pose goals), others that require to be (partially) understood and explicitly
represented in their minds (like competition or fighting, or like norms, or
“count-as” effects and conventions), others that are based on unintended
effects and simple reinforcement learning, or on rule-based actions and
routines. A reasonable architecture should encompass and orchestrate all
these layers, especially for modeling and simulating both kinds of social
constructions.

A good model should also be able to integrate emotions; because many
social behaviors in humans are emotionally driven or influenced – and also
in artificial agents there is a strong trend towards modeling emotions for
interaction (“affective computing”; for example Picard, 1997; Canamero,
2003; Paiva, 2000; Castelfranchi, 2000b). The problem is:

� how emotions influence the cognitive-decision process (by changing the
goals taken into account or their value, by modifying the accessibility
and credibility of beliefs, by altering decision procedure and heuristics,
and even time for deciding),

� how they can bypass the decision at all by activating some executive
“impulse” (Loewenstein, 1996).

A layered, rich, and complex (BDI-like + rule-based & associative +
emotions) architecture obviously is not needed for modeling every social
phenomena or for any kind of social simulation with MAS; but all those
components are necessary. Thus one should have an idea about their pos-
sible architectural integration although not using all of them combined in
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one architecture in all experiments. Depending on what one should model
(panic, courtship, organizations and roles, negotiation, reputation, mar-
ket, . . . ) one will chose the appropriate components. But the ideal would
be maintaining a common skeleton where (in a principled way, not in some
ad hoc and farraginous way) problem-specific components will be embed-
ded; i.e. having an “incremental” architecture.3

2.2 The “Intentional Stance”

Another really fundamental requirement of an architecture of the social
mind is Dennet’s “intentional stance”; the capability to deal with (for ex-
ample to predict and explain) the behavior of the other in terms of its
“reasons” i.e. of the mental states causing and governing it. AI agents need
both implementing a “theory of mind” (see for example Carruthers and P.
Smith, 1996) and the simulation of the other’s mind in the subject’s mind
(“simulation theory”; for example: Gordon, 1986; Nichols et al., 1996).
The former – symbolic – looks simpler, because AI already uses logics
with nested mental predicates. But the latter is necessary for example for
imagining what the other might see, or feel, or believe; to have a decen-
tered view of the world, to feel identification and empathy. X has to feel
or conceive something while “running” its own mind and imagining itself
to be in the position of the other, and then has to ascribe to the other its
own subjective experience due to imagination/simulation. For example,
without imagining what the other can see, an Agent will never be able to
successfully hide itself from the other.

A “theory of mind” is necessary for much more subtle representations
of what the other in fact knows, believes, on which basis she believes what
she believes and decides as she decides. What she believes that we believe
or that we want, and what she desires that we believe or intend. All this
also in order to plan interventions on her mind for changing her beliefs,
desires, intentions, emotions. This means that it is needed also some sort
of “mental model” of how the mind works: how a belief can be accepted
(being believable), how a decision can be changed, how an intention can
be activated or dropped out, how a specific emotion can be induced or
sedated by beliefs.

Contrary to a quite diffuse view, the main advantage of the representa-
tion of the other’s mind is not simply the possibility to predict her behavior
in order to anticipatorily coordinate with it. An even more important ad-
vantage for social interaction is understanding and predicting for acting
upon the mind of the other. We do not only have beliefs about the other’s
mind (beliefs, desires, intentions, feelings, . . . ); we in fact have goals and

3 An example of a complex architecture integrating several cognitive and meta-cognitive
processes and emotions is CLARION in Chapter 4.
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plans about it, and we act in order to change the other’s mind in order to
obtain the behavior that we need.4

Is our cognitive agent able to reason a representation of the other’s
mind and to plan strategies for modifying it and obtaining the desired
behavior? This is an unavoidable feature of a social mind, for competition,
cooperation, organization, institutions. Norms, for example, are precisely
social artifacts for doing this: changing people’s behavior by changing their
minds (Conte and Castelfranchi, 1995).

There is no social mind without representations like:

(Bel x (Bel y (Bel x p))) “I believe that she believes that I believe p”
(Bel x (Goal y (Bel x p))) “I believe that she wants that I believe p”
(Bel x (Goal y (Intend x a))) “I believe that she wants that I intend to

do a”
(Goal x (Bel y (Bel x p))) “I want that she believes that I believe p”

and so on.
Any trivial act of reciprocal coordination, help, or competition (like play-

ing soccer) or deception requires something like this. Even simple imita-
tion and adoption of tools or behaviors from another agent assumed as a
“model” usually requires a representation of the other’s mind (Tomasello,
1999; Castelfranchi, 2001b). And several forms of cooperation, in a strict
sense, presuppose a mutual representation like this (common goal):

(Bel x (Goal x p & Goal y p))
(Bel x (Bel y (Goal x p & Goal y p)))
(Bel x (Bel y (Bel x (Goal x p& Goal y p))))

and so on for y.

2.3 Social Motives and a New Micro-Foundation

A socialized mind needs additional “motives.” Notice that this is not nec-
essarily an architectural change.

For several years criticisms of economic models and reductionism fo-
cused in fact on a limited view of human motives and incentives. This
has been for example the classical Pizzorno’s criticism in the 80s to
the application of the economic view of man to the social and polit-
ical sciences. But also currently we have this kind of criticism. In an
important recent paper Fehr and Falk (2002) reproach the economists
they “tend to constrain their attention to a very narrow and empiri-
cally questionable view of human motivation.” They claim that “powerful

4 It is important to stress (although in passing) that to this purpose we do not use only com-
munication (another commonplace in MAS); we can change the other’s mind by modifying
its practical environment and perception, via its autonomous learning, etc.
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non-pecuniary motives like desire to reciprocate, desire to gain social ap-
proval, or intrinsic enjoyment in interesting tasks, also shape human be-
havior. By neglecting these motives economists may fail to understand the
levels and the changes in behavior. . . . [They] may even fail to understand
the effect of economic incentives on behavior if they neglect these motives”
(p. 1). In this perspective Fehr and Falk explicitly recognize that together
with “rational decision theory” (RDT) economists usually sell an implicit
theory of human motives, but they accept this as theoretically correct al-
though empirically questionable and limiting. On the contrary:
� it is well known that there is no reason in principle in the RDT, in game

theory, in general economic theory (see for example the classic Lionel
Robins’ definition) for restricting economic models to economic incen-
tives: it is a misuse of the theory itself, like the wrong identification
between a “self-motivated” or “self-interested” agent and a “selfish”
agent (see next section);

� RDT, economic and utilitarian views are in principle compatible with
any kind of incentives and motives: selfish or altruistic, external or internal
rewards, economic, moral, aesthetic, social or whatever, personal and
idiosyncratic or culturally shared.

Criticisms limited to human motives are not well addressed and are
insufficient for changing the “model of mind.” A better theory of human
individual and social behavior depends not only on a better spectrum
of human incentives. Analogously, Pizzorno’s recent interesting attempt
to find a different micro-foundation (agent/actor’s mind model) for the
social sciences, different from RDT, looks unclear (Pizzorno, 1996). For a
different micro-foundation, for changing the model of the actor’s mind,
it is not enough (it is not a real change of the RDT model) postulating
additional “values,” as he suggests. This presupposes and accepts that the
unjustified theory or assumption that “rational motives” be an intrinsic
part of RDT.

In fact, Pizzorno seems to identify the search for a “new micro-
foundation” of social sciences with individual pro-social motives like mem-
bership, identity, recognition, altruism and social responsibility, etc. But unfor-
tunately this is not a new micro-foundation: simply because no motive
can subvert the very model of utilitarian economic man. A new micro-
foundation necessarily requires (also) a different “mechanism” governing
decision and action (Hardin, 1995), a different architecture. Several of
those mechanisms, for example different decision strategies and biases
or mechanisms that found ritual or routine behavior or conformity, not in-
volving true deliberation, have already been modeled in psychological
terms.

Both changes are necessary for a new organic micro-foundation of the
social sciences – which is still necessary – i.e. for a new abstract, normative



362 Cristiano Castelfranchi

model of a social mind:

� a broader and explicit account of motives (included pro-social ones) not
replaced by the general notion of utility maximization, misrepresented
as the real motive of the subject;

� the inclusion of different mechanisms governing behavior, beyond ex-
plicit decision making; including rule-based behavior, routines, and the
multi-faceted role of emotional processes in this.

2.4 Social Sources for Beliefs and Goals

Another structural modification of the individual mind for a social world
is the possibility to have social “sources” for both the agent’s beliefs and
goals.

The others are the origin/source of some goals (for example duties vs
desires) (social goal-adoption – Conte and Castelfranchi, 1995). The others
are the origin/source of some beliefs (for example reputation, referrals).

A cognitive agent’s beliefs have three origins or sources:

� direct perception and experience of the world (“I saw it”);
� inference, i.e. reasoning: the beliefs that one autonomously and endoge-

nously derives from previous beliefs (“I think so,” “I conclude that”);
� social communication, i.e. reported facts, the knowledge that the others

share with us (“they say that,” “It is in the newspaper”).

A belief’s degree of credibility is a precise function of its sources:

� the more reliable/credible the source the more credible the belief;
� the more convergent independent sources the more credible the belief.

A social mind should admit this kind of source and “evidence” or “rea-
son” for believing, and should be able to “adopt” beliefs from other agents
even when non-communicated to him, but just “observed”: (Bel x (Bel y p))
==> (Bel x p)

Of course this requires some measure of the trustworthiness of the
source, of its “competence” (and – in case of communication – “sincerity”)
(Falcone et al., 2001).

The others are not only the source of many of our beliefs (the exchange
of knowledge is one of the main advantages of sociality; a single agent
might never capitalize on such an amount of relevant information), they
are also the source of many of our goals.

A social mind is autonomous (see Section 4.4) but it regularly “adopts”
goals from others. Because society is – as we claimed – based not simply
on coordination of individual actions and goals but on their (reciprocal)
intentional modification, we need minds not only able to have intentions
about the other’s mental states, but also able to modify their mental states as
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a result of the other’s actions; for example, able to change their desires and
intentions. In this perspective for example one of the limits of classical BDI
architectures is that there is only an endogenous source of goals (Desires),
and goal cannot derive from outside (Castelfranchi, 1998a). It is misleading
to consider as “desires,” for example, duties and obligations that generate
some of our intentions. I may have the personal “desire” to be a good guy
and to conform to norms, but the goal that I have to pursue (for example,
join the army) is the content and the outcome of the norm, and is a “duty”
of mine not a desire. So, a social mind has to be able to “adopt” goals from
the other agents, be “influenced” in a non-automatic way by them and by
their requests, orders, persuasive acts, norms, etc.

2.5 “We” Concept, Mental Groupness, etc.

Having pro-social motives (like approval, reputation, pity, friendship, love,
altruism, or honesty and morality) is not enough. Some more “collective”
intentionality in needed in individual minds, and it is necessary also to
have pro-collective motives like group advantage, feelings of identifica-
tion, groupness, etc. However, this new level seems to presuppose the
capability of specific and new mental representations: the representation
of those social/collective entities: what is – from the mental representation
point of view – entities like “they,” “the group,” “you,” and in particular
“we/us,” which presupposes the representation of “ego” as belonging, as
a member of a collective of individuals. Minimally, these representations
are necessary:

We/Us: (Group X) & (Member-of Ego, X)
They: (Group X) & (Not (Member-of Ego, X))
You: (Group X) & (Not (Member-of Ego, X)) & (Member-of

Addressee, X)

Without these mental constructs it is impossible to “conceive” a joint in-
tention and plan (that implies that in my individual mind I represent that
“we intend to do so and so, and to achieve goal G” and that within this
collective intention “You intend to and will do your share (and I/we rely
on this), whereas I intend to and will do my share (and you/we rely on
this) (Tuomela, 1988; 1993; Gilbert, 1989, 1999). Without these mental con-
structs it is impossible to have in mind a collective concern, the goal and
possibly the preference of the group/collective interest. And also related
emotions (like pride for being “one of us/you,” being offended for insult
to a category or group) and motives (like the goal of being a member of, or
that our group wins against the other group) would also be impossible.

In sum, a fundamental step is the mental representation of collective con-
structs, and a new generation of beliefs, goals, intentions, and emotions.
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Consider, just for a short example, how cognitively complex is the sim-
ple belief (that has very important related feelings) of being an actual
(accepted) member of a given community or group (not just a category like
males, or doctors, that does not need to “accept” you nor interact with you).

A subjectively accepted member of group G is a member that

� believes (and feels) himself to be “like you and one of you,” and
� desires to be like you and one of you; and
� believes that the others, the G, consider (i.e. believe) him to be “like us

and one of us” and accept him, i.e. want him to be “one of us,” and also
� he believes and wants that the G know about the fact that he believes

and wants to be one of them, and
� he knows that they consider him so and accept him as a member.

But also the group believes and wants that he knows himself to be consid-
ered and accepted as a member of the G; etc. . . .

There are several levels of embedding in the representation of the other
mind about my mind, and so on. This in fact means the seemly trivial feeling
of being an “accepted” member of a group.5 Important motivations drive
these goals (social identity for example; to be approved and accepted; etc.),
and important emotions are elicited by some disruption of this frame. For
example, if I consider myself “one of you” and want you to consider me
“one of you,” but you do not, I will feel rejected or unrecognized, with a
crisis of identity. I have an even more serious crisis of identity if I believe
myself to be “one of you” (and that you consider me “one of you”) although
I do not want/like to be “one of you.” And so on.

The issue of “collective intentionality” and of “collective mental states”
(we intend, we believe, we have to, . . . ) obviously is more complex than
this (www.helsinki.fi/∼pylikosk/collint/). Here only one peculiar aspect
of this is considered.

2.6 “As If” Minds and the Mysterious Count-As

A very special and crucial cognitive and social entity is needed for
accounting for the most peculiar and foundational aspect of society:
institutions. Not all the aspects of society are based upon a conventional
construct (consider interference and interdependence relations; consider
social functions (Sections 3.2.1 & 4.3); etc.); Searle is not so clear on this. One
should not identify society with institutions. But for sure the institutional
creation is the most important challenge for social theory together with the
unplanned self-organization of a social order (“the invisible hand”).

How to account for the conventional, artificial, and “performative”
value of institutionalized actions, when a normal act of agent X “counts as”

5 No ‘simulation’ theory can deal with these layers of meta-beliefs and goals, and with this
mutual knowledge.
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a conventional or institutional action, and acquires special effects – which
are not natural effects of that action – thanks to an institutional context
(Goldman’s “conventional generation”)? The institutional level uses both
“natural” (personal and interpersonal) mechanisms and special mecha-
nisms.

“Count-as” actions in general, like “committing a crime” (that is a
“crime” purely on the basis of social rules) or “buying,” and institutional ac-
tions (meaning actions in an institutional role) are special actions endowed
with special conventional or “count-as” effects. Especially important are
actions in a role and the necessary empowerment for them. For example, the
action of “marrying” a couple requires some ritual conditions. The per-
former must be a clergy person (actually in his function, and conscious,
etc.) and in order to be valid (effective) the action must be performed fol-
lowing certain constitutive rules; for example by saying specific words like
“I pronounce you husband and wife” (in the Italian rite). Performing this
action in those specific conditions actually produces the “marrying” effect.
This is one kind of special, “count as” effect. As Searle (1969, 1995) – see
also Tuomela, 2002; and Jones and Sergot, 1996 – have theorized and for-
malized, the action A performed by X in that context or institution “counts
as” action A′, and by bringing it about that p, X brings it about that q (let
us call this: “performative” effect).

Consider now another example: X can be a member of a group/
organization in an official role, acting in the quality/role of, and “on behalf
of” the group, and this means that when X performs a given action in her
role the organization or the group has performed it. X’s action “counts as”
group action. This is another kind of special effect (“representative effect”)
(Carmo & Pachego, 2000).

True Institutional Empowerment (the Count-As empowerment) is a
strange process compared with simple interpersonal empowerment be-
cause actually – at a deeper level of analysis – it is not a simple bilateral
interpersonal process and transfer. In real institutions the compliance of a
third party is strictly necessary: the public, the people involved in the institu-
tion. The efficacy of the conventional institutional act in fact presupposes
a tacit agreement or consensus of people in front of it. People (P) must:

a) recognize X’s act as a special one and
b) act on such a basis;

actually it is this that gives the act its special social effect.
If X’s action Ax counts as action Ai of the institution Ist, people must

act “as if” Ai has happened. This count-as effect implies a sort of self-
fulfilling prophecy: because X believes that the other will conform to the
convention and will act accordingly, X will act accordingly, but this is one
of the reasons why the others will in fact do as expected; moreover, because
and as long as people expect that Ax counts as Ai, it counts as Ai thanks to their
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expecting so and acting accordingly.6 They must (conditionally) believe
or at least “accept” (Meijers, 2002) that this is true and that the others
believe/accept as they do and will act accordingly. The effectiveness of the
count-as effect passes through the minds and the consequential behavior of
people.

To act “as if” the agent should be able to think “as if”; not only to
trivially associate to or infer from one representation the other one, but
having hypothetical and counterfactual reasoning, and having the idea
that some action or agent replaces and/or represents another one.

Although endowing X with this special power the institution is tacitly
prescribing people to accept this and to act on such a basis. Thanks to people
P’s compliance with Ist, and its delegation and empowerment, X is really
empowered; in fact by both Ist and P. P obviously do not recognize this
role; they simply believe in order to acknowledge what already exists, but
in fact they are creating it thanks to their acknowledgment. Any Count-as
effect (convention) and any true institutional empowerment is due to a collective
acceptance of the fact (in a given community), and to a diffuse or to collective
intention of acting accordingly (Tuomela, 2002).

Not all social (and societal) reality is “acceptance”-based, a collective
construction; the conventional result of some explicit and organizational,
or diffused and tacit agreement and pact. Part of social reality is merely
emerging and self-organizing in an “objective” way; it is given, independent
of human awareness, decision and even acceptance. (Conte and Castel-
franchi, 1995; Castelfranchi, 2001). This is also the reason why we must
discuss the notion of Dependence and the Dependence network.

3 mind: necessary but not sufficient

Social structures and interactions cannot be reduced to individual cognition: on
the one side even individual cognition does not only hold in the internal
individual mental states but uses and works through external cognitive
artifacts (included social interactions) (Vygotskij’s view)7; on the other side,
a lot of social phenomena consist not only in the mental representations
and in the actions of the individuals.

The chapter also tries to answer these questions: How can we characterize
and model social structures and organizations in relation to individual cognition?
What is required at the individual cognition level to produce the collective be-
havior, the emergent order, to play the social role, to build institutions, to play
functions?

6 In general, the emergence and working of conventions requires expectations about the others’
minds and behavior, tacit commitments, and normative mental ingredients (Castelfranchi
et al., 2003).

7 In this chapter the distributed cognition aspects are put aside, although it creates very impor-
tant requirements for the structure of cognition and action of the agent (Hutchins, 1995).
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Two dialectic claims are sustained (Castelfranchi, 2000a):

Thesis: Macro-level social phenomena are implemented through the (social)
actions and minds of the individuals. Without an explicit theory of the agents’
minds that underlies agents’ behavior we cannot understand and explain
macro-level social phenomena, and in particular how they work. One should
identify the mental counterparts and cognitive mediators of societal entities
(not always the explicit representations of them);

We will apply this to social cooperation, social norms, and social
functions.

AntiThesis: Mind is not enough: the theory of individual (social) mind and
action is not enough to understand and explain several macro-level social phe-
nomena. First, there are pre-cognitive, “objective” social structures that con-
strain the actions of the agents independent of their awareness or intention;
second, there are “emergent,”8 self-organizing, unintended forms of coopera-
tion, organization, and intelligence produced by both the rule-based and the
deliberated actions of the agents.

We will apply this to: interference and dependence relations, unplanned
forms of cooperation, and social functions.

Then a Synthesis between the two theses is attempted.

3.1 Cognitive Mediators of Social Phenomena

Cognitive agents act on the basis of their representations. More precisely they
act on the basis of

� their beliefs about the current state of the world, and about their abilities,
resources, and constraints;

� their expectations about the effects of their possible actions, and about
possible future events (including the actions of other agents);

� their evaluations about what is good and what is bad, and about situa-
tions, agents, objects;

� their goals and preferences;
� the plans they know (“know how”) for these goals.

In other words, those representations are not just reflections of the ac-
tion, or an epiphenomenon without any causal impact on the agents’

8 “Objective” here means (close to several sociological traditions, like Marxism) previous
to and independent from subjects’ consciousness, intention, and decision: several social
relationships – like common or adverse interest relations – are there also without any
human decision and independently on their awareness. “Emergent” here means: (a) a
macro self-organizing structure or order, not deliberately designed and built; (b) that is
not simply “in the eye of the beholder” (like constellations) but plays a causal role in
nature/society.
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behavior; they play a crucial causal role: the action is caused and guided
by those representations. The behavior of cognitive agents is a teleonomic
phenomenon, directed towards a given result that is pre-represented, an-
ticipated in the agent’s mind (that is why we call it “action” and not simply
“behavior”).

The success (or failure) of their actions depends on the adequacy of
their limited knowledge and on their rational decisions, but it also depends
on the objective conditions, relations, and resources, and on unpredicted
events.

These properties of the micro-level entities and of their actions have
important consequences at the macro-level and for the emergence process.
Let’s discuss only a couple of examples of necessary “cognitive mediators”:
for team activity and for norms.

3.1.1 Individual Mind and Social Cooperation: “Joint Activity”
and “Teamwork”

One cannot understand and explain collaboration (Grosz, 1996), coopera-
tion (Tuomela, 1993; Tuomela and Miller, 1988; Conte and Castelfranchi,
1995; Jennings, 1993), that is, teamwork, without explicitly modeling the
beliefs, intentions, plans, and commitments of the involved agents.

Let us take the important analysis of teamwork by Cohen and Levesque
(Levesque et al., 1990; Cohen and Levesque, 1991) as an example of the AI
approach (and of its contradiction).

In Cohen and Levesque’s (1991) terms, cooperation is accounted for in
terms of joint intentions. x and y jointly intend to do some action if and only
if it is mutually known between x and y that:
� they each intend that the collective action occur,
� they each intend to do their share (as long as the other does it),
� this mutual knowledge persists until it is mutually known that the activ-

ity is over (successful, unachievable, etc.). Moreover, a team, a group, a
social agent (Rao et al., 1992), etc. are defined in terms of Joint Persistent
Goals.

This approach (like the original analysis by Tuomela) shows that to model
and formalize team cooperation it is necessary to model the minds of the
involved agents: the beliefs of the agents about each other and the joint
plan, and the commitments of the agents towards each other. More than
this: we think that this approach is not sufficient to account for a group or a
truly cooperative work because a much richer representation of the social
minds is needed (Conte and Castelfranchi, 1995). In fact in these models
there is only a limited account of the individual mental states in cooperation.
First, one should explicitly model not only the beliefs about the intentions
and the shares of the others, but also the goals about the actions and the
intentions of the others (Grosz and Kraus, 1996): each member not only
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expects but wants that the others do their job. And conversely one should
model the social commitment to the others also in terms of delegation
of goals/task (Castelfranchi and Falcone, 1998) and compliance with the
others’ expectations: i.e. as goal-adoption (Conte and Castelfranchi, 1995).

Second, in order to provide a good definition of teamwork (and to design
an artificial agent who is able to cooperate) it is necessary to provide a theory
of the agents’ specific motives for participating in teamwork; how cooperation
is formed from individual needs and desires; which rewards one expects
and obtains.

In other words, not only the direction of causation from Macro to micro
should be accounted for, but also the way up. Not only the direction from
the group to the individual (task allocation, etc.) should be studied, but also
that from the individual to the group. We need definitions that imply the
reasons why agents adopt (and hence share) others’ goals. Motivations are part
of the notion of group, or of cooperation, or of joint activity, and allow, for
example, exchange to be clearly distinguished from cooperation: whereas
in strict cooperation agents intend to do their share to reach a common goal,
and defeating is self-defeating, in exchange they have their private goals,
are indifferent to the achievements of the others, and are leaning to cheat
and to defeat (as well explained by game theory). The cognitive capabilities
required of the agents widely differ in the two conditions.

So, personal motivations and beliefs and social beliefs and goals (about
the minds of the other agents), social commitments and expectations must
be explicitly modeled to understand deliberated forms of cooperation in
strict sense: exchange, teamwork, organization. The lack of this is one of
the main “cognitive” limits of the game theory framework.9

Without representing the agents’ minds, in a way much richer than in
RDT, we cannot distinguish between altruist and selfish acts, or between
gifts and merchandise or between exchange and coercion (Castelfranchi,
84). We cannot predict the behavior of the agents in these very different
social relations, for example how the agent is leaning towards abandon its
commitment without informing the other.

3.1.2 Norms as Mental Objects and the Need for Their Recognition
as Norms

A norm (N) emerges as a norm only when it emerges as a norm into the
mind of the involved agents; not only through their mind (like in approaches
based on imitation or behavioral conformity, such as Bicchieri, 1990). Not
only without some mental counterpart of social norms we could not explain

9 Finally, this also entails (mental) representations of obligations and norms without which
there is neither true agreement, nor social commitment; and without which the speech
act theory itself is vacuous, because a fundamental aspect of speech acts is precisely the
formation of obligations in both speaker and hearer.
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how they succeed in regulating the agents’ behaviors, i.e. in producing
intentions, but, this mental counterpart is the acknowledgement and the
adoption of the norm N itself. N works as a N only when the agents recognize
it as a N, use it as a N, “conceive” it as a N (Conte and Castelfranchi, 1995).

Norm emergence and formation implies what we call “cognitive emer-
gence”: the explicit mental representation of norm (thus cognitive agents).
A social N is really a N only after its cognitive emergence (see 3.2.1; Castel-
franchi, 1998b).

As long as the agents interpret the normative behavior of the group
merely as a statistical “norm,” and comply by imitation, the real norma-
tive character of the N remains unacknowledged, and the efficacy of such
“misunderstood N” is quite limited. Only when the normative (which
implies “prescriptive”) character of the N becomes acknowledged by the
agent the N starts to operate efficaciously as a N through the true norma-
tive behavior of that agent. Thus the effective “cognitive emergence” of N in
the agent’s mind is a precondition for the social emergence of the N in the group,
for its efficacy and complete functioning as a N.

Notice that this CE is partial: for their working it is not necessary that
social Ns as a macro-phenomenon be completely understood and trans-
parent to the agents. What is necessary (and sufficient) is that the agents
recognize the prescriptive and non-personal character of the N; the enti-
tled authority, and the implicit pretence of the N to protect or enforce some
group-interest (which may be against particular interests). It is not neces-
sary that the involved agents (for example the addressee or the controller)
understand or agree about the specific function or purpose of that N. They
should respect it because it is a N (or, sub-ideally, thanks to surveillance
and sanctions), but in any case because they understand that it is a N, and
do not mix it up with a diffused habit or a personal order or expectation.
Norms, to work as norms, cannot remain unconscious to the addressee,
but the agent can remain absolutely ignorant of the emerging effects of the
prescribed behavior in many kinds of Norm-adoption (Conte and Castel-
franchi, 1995) . Normative behavior has to be intentional and conscious:
it has to be based on knowledge of the norm (prescription), but this does
not necessarily imply consciousness and intentionality relative to all the
functions of the norm.

3.2 Mind Is Not Enough: Objective Social Structures and Emergent
Forms of Cooperation

Against the Hyper-Cognitive View. Given the ability of cognitive agents
to have representations of others’ minds, the social world, and their in-
teractions, a wrong interpretation of the initial thesis can follow. To claim
that social action and functioning at the macro-level are implemented in
and work through the individual minds of the agents is not the same as
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claiming that this macro-social functioning is reflected in the minds of the
agents, is represented in them, known, and deliberately or contractually
constructed. A large part of the macro-social phenomena works thanks to the
agents’ mental representations but without being mentally represented. How is
this possible?

“Cognitive mediators” of social action or “mental counterparts” of so-
cial phenomena (like norms, values, functions, etc.) are not necessarily
synonyms of “cognitive representation” and awareness of them (see later
Section 3.3).

Conte and Castelfranchi (1995) call the hyper-cognitive view and sub-
jectivism the reduction of social structures, social roles and organization,
social cooperation, to the beliefs, the intentions, the shared and mutual
knowledge, the commitments of the agents. Agents are modeled as having
in their minds the representations of their social links. These links seem
to hold precisely by virtue of the fact that they are known or intended
(subjectivism): any social phenomenon (be it global cooperation, the group,
or an organization) is explicitely represented in the agents” minds (such as
Harré, 1993) and even consists of such representations (such as Bond, 1989;
Bond and Gasser, 1988; Gasser, 1991).

3.2.1 Objective Social Structures
Some social structures are deliberately constructed by the agents through
explicit or implicit negotiation (at least partially; for example role structures
in organizations); others are emerging in an objective way.

Let us focus in particular on one structure: the network of interdepen-
dencies, not only because it is the most basic one for social theory, but also
because it is emerging before and beyond any social action, contract, and
decision of the involved agents.

An Emergent Objective Structure: The Dependence Network. There is
“interference” (either positive or negative) between two agents if the effects
of the actions of the former can affect (favor or damage) the goals/outcomes
of the other (Castelfranchi, 1998a). Among interfering agents, there is
“dependence” when an agent needs an action or a resource of the other
agent to fulfill one (or more) of its goals.

The structure of interference and interdependence among a population
of agents is an emergent and objective one, independent of the agents’ awareness
and decisions, but it constrains the agents’ actions by determining their
success and efficacy.

Given a group of agents in a common world, and given their goals and
their different and limited abilities and resources, they are interdependent
on each other: a dependence structure emerges. In fact, given agent A with
its goal Ga, and its plan Pa for Ga, and given the fact that this plan requires
actions a1 and a2 and resource r1, if agent A is able to do a1 and a2 and
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owns resource r1, we say that it is self-sufficient relative to Ga and Pa;
when on the contrary A either is not able to perform, for example, a1, or
cannot access r1 (thus it does not have the power of achieving Ga by itself)
and there is another agent B, which is able to do a1 or possesses r1, we
say that A depends on B as for a1 or r1 for the goal Ga and the plan Pa.
A objectively depends on B (even if it ignores this or does not want this):
actually it cannot achieve Ga if B does not perform a1 or does not make r1
accessible (Castelfranchi et al., 1992).

There are several typical dependence patterns, such as the OR-
Dependence, a disjunctive composition of dependence relations, and the
AND-dependence, a conjunction of dependence relations. To give a flavor of
those distinctions let us just detail the case of a two-way dependence be-
tween agents (bilateral dependence). There are two possible kinds of bilateral
dependence:
� Mutual dependence, which occurs when x and y depend on each other

for realizing a common goal p, which can be achieved by means of a
plan including at least two different acts such that x is depending on y’s
doing ay, and y is depending on x’s doing ax.

Cooperation is a function of mutual dependence: in cooperation, in
the strict sense, agents depend on one another to achieve one and the
same goal (Conte and Castelfranchi, 1995); they are co-interested in the
convergent result of the common activity.

� Reciprocal dependence, which occurs when x and y depend on each
other for realizing different goals, that is, when x is depending on y for
realizing x’s goal that p, while y is depending on x for realizing y’s goal
that q , with p �= q .

Reciprocal dependence is to social exchange what mutual dependence is to
cooperation.

The dependence network determines and predicts partnerships and coali-
tion formation, competition, cooperation, exchange, functional structure
in organizations, rational and effective communication, and negotiation
power, and there is simulation-based evidence of this (Castelfranchi and
Conte, 1996). Notice that this emerging structure is very dynamic: by sim-
ply introducing a new agent or eliminating one agent, or simply changing
some goal or some plan or some ability of one agent, the entire network
could change. Moreover, after the feedback of the network itself on the
agent’s mind (next section), and the consequent dropping of some goal or
the adoption of new goals, the dependence relations change.

Nets of Minds. One should highly stress the obvious fact that those struc-
tures, which are not mentally represented (just objectively emergent), pre-
suppose and incorporate mental representations!
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new social relations

cognitive emergence

emergence of objective
social relations or phenomena

individual behaviour & features

figure 14.1. A social situations model.

We provide an “individualistic” and cognitive (but non-conventional)
foundation of some social structures. For example, the dependence net-
work (which is not a mental representation) exists only because and until
agents have goals, and needs for them. We not only stress (following a long
tradition on social networks) how important are the net and the individual
“positions” for explaining individual and interactive behaviors, but we
provide a theory about where the social net comes from. Also other important
social phenomena presuppose and incorporate mental representations in
the agents’ minds (for example, individual opinions about Y) but consist
in the global, unplanned, resultant effect of such a “net of minds” (for ex-
ample, Y’s reputation in the community; Conte and Paolucci, 2003). These
truly are social structures for cognitive agents.

Cognitive Emergence of Objective Relations and Its Effect. When the
micro-units of emerging dynamic processes are cognitive agents, a very
important and unique phenomenon can arise: cognitive emergence (CE)
(Castelfranchi, 1998b), also called “immergence.”

There is “cognitive emergence” when agents become aware, through a given
“conceptualization,” of a certain “objective” pre-cognitive (unknown and non-
deliberated) phenomenon that is influencing their results and outcomes, and
then, indirectly, their actions. CE is a feedback effect of the emergent phe-
nomenon on its ground elements (the agents): the emergent phenomenon
changes their representations in a special way: it is (partially) represented in
their minds. The “cognitive emergence” (through experience and learning,
or through communication) of such “objective” relations, strongly changes
the social situation (Figure 14.1): relations of competition/aggression or ex-
ploitation can rise from known interference; power over relations, goals of
influencing, possible exchanges or cooperation, will rise from acknowl-
edged dependence.
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In other words with CE part of the macro-level expression, of the emerging
structures, relations, and institutions , or compound effects

� are explicitly represented in the micro-agents minds, are partially un-
derstood, known by (part of) them;

� there are opinions and theories about it;
� there might be goals and plans about it, and even a deliberated construc-

tion of it (either centralized or distributed and cooperative).

From Subjective Dependence to Social Goals, from “Power Over”
to “Influencing Power.” The pre-cognitive structure illustrated in Sec-
tion 3.2.1 can “cognitively emerge”: i.e. part of these constraints can be-
come known. The agents, in fact, may come to have beliefs about their de-
pendence and power relations. Either through this “understanding” (CE)
or through blind learning (based for example on reinforcement), the objec-
tive emergent structure of interdependencies feeds back into the agents”
minds, and changes them (Figure 14.1). Some goals or plans will be aban-
doned as impossible, others will be activated or pursued (Sichman, 1995).
Moreover, new goals and intentions will rise, especially social goals: the
goal of exploiting some action of the other; the goal of blocking or aggress-
ing against another, or helping it; the goal of influencing another to do or
not to do something; the goal of changing dependence relations. So, de-
pendence relations not only spontaneously and unconsciously emerge and
can be understood (CE), but they can even be planned and intended (CE).

Analogously, when B becomes aware of its “power over” A, it will have
the goal of using this power in order to influence A to do or not to do
something: influencing power. It might for example promise A to do a1, or
threaten A of not doing a1, in order to obtain something from A (Castel-
franchi, 2003).

Without the emergence of this self-organizing (undecided and non-
contractual) objective structure, and usually without its CE, social goals
would never evolve or be derived.

3.3 Social Cooperation Does Not Always Need Agents’
Understanding, Agreement, or Rational and Joint Planning

Unlike what it is claimed by Bond and Gasser (1988, 1989, 1991) social re-
lations and organizations are not held or created by commitments (mutual
or social) of the individuals. Most social relations and part of the social
structures pre-exist the interactions and commitments of the individuals.
Agents find themselves in a network of relations (dependence, compe-
tition, power, interests, etc.) that are independent of their awareness and
choice. There might be for example a conflict of interest the involved agents
are not (yet) aware of; or an agent might be dependent on another without
knowing this.
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Analogously, social cooperation does not always need the agents’ un-
derstanding, agreement, contracts, rational planning, or collective decision
(Macy, 1998). There are forms of cooperation that are deliberated and con-
tractual (like a company, a team, an organized strike), and other forms of
cooperation that are self-organizing: non-contractual and even unaware.
It is very important to model them not just among sub-cognitive Agents
(Steels, 1980; Mataric, 1992), but also among cognitive and planning Agents
whose behavior is regulated by anticipatory representations. In fact, also
these agents cannot understand, predict, and control all the global and compound
effects of their actions at the collective level. Some of these effects are self-
reinforcing and self-organizing.

Thus, there are important forms of cooperation (agents non-accidentally
working for the same, shared goal), which do not require joint intention,
shared plans, or mutual awareness among the cooperating agents, as in
many MAS models. The cooperative plan, where the sub-plans represented
in the mind of each participant and their actions are “complementary,” is
not represented in their minds.

� This is the case of hetero-directed or orchestrated cooperation where only a
boss’ mind conceives and knows the plan, whereas the involved agents
may even ignore the existence of each other and of a global plan; and per-
haps even the boss does not know the entire plan, because some part has
been developed by the delegated agents (Conte and Castelfranchi, 1995).

� This is also the case of functional self-organizing forms of social cooperation
(like the technical division of labor) where no one mind conceives
or knows the emerging plan and organization. Each agent is simply
interested in its own local goal, interest and plan; nobody directly takes
care of the task distribution, of the global plan and equilibrium.

4 towards a bridge between cognition and emergence;
intention and functions; autonomous
goal-governed agents and goal-oriented social
systems

Synthesis: The real challenge is how to reconcile cognition with emergence
(Gilbert, 1995), intention and deliberation with unknown or unplanned so-
cial functions and “social order.” Both objective structures and unplanned self-
organizing complex forms of social order and social function emerge from the
interactions of agents in a common world and from their individual mental
states; both these structures and self-organizing systems feed back on agents’
behaviors through the agents’ individual minds either by their understanding
(part of) the collective situation (cognitive emergence) or by constraining and
conditioning agent goals and decisions. These feedbacks (from macro-emergent
structures/systems) either reinforce or change the individual social behavior
producing either the dynamics or the self-reproduction of the macro-system.
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We will sketch some bridge-theories between micro and macro:

� a theory of the relationship between external and internal goals in goal-
governed systems;

� a theory of cognitive and motivational autonomy;
� a theory of social functions, which presupposes in turn:
� a theory of unintended expected effects and
� a theory of cognitive reinforcement learning in intentional agents.

4.1 “External Goals” on Goal-Oriented Agents

As said at the beginning, a social system works thanks to the behav-
iors of its members, and then through their goals and their capacity to
pursue them based of their beliefs. From this, several questions can be
raised:

How do social systems regulate the behaviors of their members? How
do these behaviors happen to respond to the goals of the social system?
What is the origin of the social system’s goals? What is in other words the
relationship existing between the social system’s goals and the goals internal to
its members, which directly and actually regulate their actions? Are the mem-
bers able to understand and represent explicitly in their minds the social
system’s goals? Or are the goals of the social system simply a projection or
promotion of the goals of (some of) its members? Or, do the members’ goals
and plans happily coincide with those of the social system? We believe that
these solutions are neither necessary nor sufficient.

There may be goals that are external to a given finalistic system and
that determine its structural or functional characteristics from without,
and in varying ways (Castelfranchi, 1982). These, which will be called
external goals, can be imposed upon inert objects, determining their use,
destination, or function. They may also be placed on goal-governed systems
of varying levels of complexity (a boiler-thermostat, a horse, a child, a
traffic policeman and any other role player). Moreover we claim that an
analogous relation exists between the internal goals of a goal-governed
agent and the biological or social finalities its behavior responds to. So, the
general problem is that of the relationships between the intra-psychic and
the extra-psychic finalistic, teleonomic notions (Mayr, 1974).

The basic unifying questions are as follows:

(a) Many features, behaviors, and goals of micro-systems serve and de-
rive from an external pressure, request, advantage or need. These
requirements may be either imposed on those systems by some de-
signer, educator, authority; or may not be imposed by anyone, but
simply result from an adaptive pressure or a social practice. But how
can agents’ features and goals be derived from external requirements
and pressures?
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(b) Many natural and social behaviors exhibit a teleological character.
Nevertheless, they could not be defined as goal-governed: we neither
want to attribute represented goals – e.g. intentions – to all kinds
of animals; nor consider the functional effects of social action (like
technical division of labor) as necessarily deliberate; nor attribute
a mind to society as a whole. Is there a concept that accounts for
the teleological character of (social) behavior without postulating
internal goals?

4.1.1 Goal-Oriented and Goal-Governed Systems
There are two basic types of system with finalistic (teleonomic) behavior:
Merely goal-oriented systems and goal-governed systems.

Goal oriented systems (McFarland, 1983) are systems whose behavior is
finalistic, aimed at realizing a given result (that is not necessarily under-
stood or explicitly represented – as an anticipatory representation – within
the system controlling the behavior).

A typical sub-type of these are Merely Goal-oriented systems which
are rule-based (production rules or classifiers) or reflex-, or releaser-, or
association-based: they react to a given circumstance with a given adap-
tive behavior (thanks to either learning or selection); there is no internally
represented and pursued “goal.”

Goal-governed systems are anticipatory systems. We call goal-governed a
system or behavior that is controlled and regulated purposively by a goal
internally represented, a “set-point” or “goal-state” (cf. Rosenblueth et al.,
1968)). As we will see,
� a “goal-governed” system responds to external goals through its internal goals.

It is important to stress that merely goal-oriented systems and goal-
governed systems are mutually exclusive classes, but that goal-governed
systems are another subclass of goal-oriented.

Moreover, goal-government can be not complete. It implements and im-
proves goal-orientation, but it does not (completely) replace the latter: it
does not make the latter redundant (contrary to Elster’s claim that inten-
tional behavior excludes functional behavior).

Goal-government (by explicitly represented goals) is in general a way to guar-
antee and to serve external adaptive functions. In fact, not only a behavior can
be functional or adaptive (selected) but obviously also the mechanisms
selected to produce and control that behavior: goals included! Thus in-
ternal explicit goals may be instrumental to external (non-represented)
functions: in this case the goal-governed apparatus is part of a more global
goal-oriented behavior.

Consider, for example, those cultures discussed in anthropology that
ignored the relation between making sex and making children. For sure
reproduction remains a function of the mating behavior and of the sexual
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goal (sex is instrumental to this), however within the mind of an agent
such a (biological) function, being not understood and known, does not
directly control the behavior. Relative to the goal of making sex the sexual
behavior is goal-governed (intentional), but relative to the higher goal of
making children that behavior is simply goal-oriented (like for example a
simple reflex), and the goal-governed mechanism is a way of implementing
such a goal-oriented behavior. (Consider that also in our culture, though
we are aware of the relation between sex and reproduction, our intention
frequently enough ignores or is against this relationship).

Current goal-governed models (for example planning agents in AI) or
goal-driven agents in psychology (Cranach et al., 1982) still seem limited. In
particular, they focus mainly on the self-regulation of the various systems.
They always define a goal in terms of something internal to the system
that regulates the system’s behavior. They ignore the fact that there may
be goals that are externally impinging on the system and that determine
such a system from without, and in varying ways.

Let us first examine goals that are external to a system, but are also
internal to another system. Once the concept of external goal has been
introduced as explicitly represented in some mind, we use it as a bridge to
reach a more radical unification of the concept of goal and all functional
concepts up to and embracing biological (and later social) functions. In
substance, we will assume that there may be goals external to a goal-governed
system that are not internal to any other’s (i.e. goals that are simply external).
We call these goals “finalities” or “functions.” This, of course, requires a
reformulation of the very concept of goal (Castelfranchi, 1982).

4.1.2 The Notion of “External Goal”: From Mind to Mind
When we speak of an external goal “from mind to mind” we will refer
to a goal-governed system x whose goals are internal regulatory states
governing its actions, and look at the effects that the existence of such
regulatory states within x have on goal-governed external systems.

One of the relationships that comes about between system x and another
system y, as a result of x’s regulatory state gx, is the emergence of an
external goal placed on y. Let us suppose that a goal of system x mentions
an entity y. Suppose y’s lot is somehow influenced or determined not only
by chance but by the fact that it is mentioned in one of x’s goals. In this case,
we say that y has an external goal, or that x has placed an external goal on y.

4.1.3 External Goals on Goal-Governed Systems
We call a “respondent internal goal” an internal goal of system y (that is not
identical to this external goal), by means of which y is able to respond to the
external goal placed on it by another system.

Consider a mother and her child. The mother wants her child to brush
his teeth every evening, in order to avoid decay. The child adopts the
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Goal:

Goal:

to prevent
decay

Goal:

Goal:

to make
mommy
happy

child brushes
his teeth

child brushes
his teeth

MOTHER CHILD

figure 14.2. The child is ignorant of the mother’s ultimate goal, which is internal
to her part external to him.

goal in order to obey his mother and to make her happy, as in Figure
14.2; he ignores and couldn’t understand the real function of his be-
havior (the higher goals in the mother’s mind). What, relative to the
intentional behavior and the mind of the child, is just an external goal
and a function (see later), is an intended goal in the mother’s mind.

Exactly the same kind of relation often holds between government and
citizens. The government pushes citizens to do something it considers nec-
essary for the public utility, for some common interest; but it asks the
citizens to do this by using rewards or sanctions. It does not rely on the
citizens’ “cooperation,” on their understanding of the ultimate functions of
their behaviors, and on their motivation for public welfare; it relies on the
citizens’ motivation for money or for avoiding punishment.

4.1.4 From External to Internal Goals
How can the goals of x (external to y) be translated into goals within y’s
mind? Does y always adopt x’s goals?

An external goal can be implemented or better translated into a goal-
governed system in two different ways:

(a) As a copy-goal: an internal goal identical to the external goal and
derived from it. The external goal is explicitly represented within the
mind. This mind may be aware of the fact that its goal p is also an
external goal (somebody’s will, a norm, a biological function), or it
may ignore this. We will call internalization this type of translation.
External goals may be internalized thanks to a number of different
processes and mechanisms (goal-adoption, selection, training).

(b) As a respondent goal: an internal goal that is functional to and de-
rived from an external goal, but not identical to it. The external goal is
not represented within that mind, but, in a certain sense, it is implicit
in it.
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An external goal placed on a goal-governed system and referring not to
a trait of this system but to its action, is a social goal (Castelfranchi, 1997):

GOAL x (DO y act))

or better, as this formula could also cover external goals placed on merely
goal-oriented behaviors (e.g. bacteria), the correct representation should
be

(GOAL x (GOAL y (DO y act)),

where the goal mentions a mental attitude of the other.
In particular, an external goal implies an influencing goal if it mentions

an action, or better, a goal, of y’s. If x wants y to act, because y is a goal-
governed agent, x wants y to have the goal (and possibly intends) to act.
An “influencing goal” is the goal that the other agent (wants to do and)
does something.

We will not discuss here the uses and destinations of people by other
people and higher level systems (groups, organizations) or people’s func-
tions in groups and organization, i.e. their “roles.” In these contexts the
claim is the same: the role player achieves (responds to) his external goals by
pursuing internal goals, that is, through some goal-governed actions.

Generally a series of sub-goals that y pursues to fulfill the function of her
role are left up to her. This means that they are not merely copies of external
goals. Once y has adopted the basic goals of the role, it is left up to her to
reach them in a way appropriate to varying circumstances, that is, to formu-
late contingent sub-goals (autonomy) (Castelfranchi and Falcone, 1998).

4.2 Finalities as External Goals

So far, we have considered a true goal as a state that is always represented
in at least one goal-governed system, endowed with a series of controls
and actions in order to achieve that state in the world. In doing so, we
have been using a notion of “goal” that does not cover biological finalities
(adaptive functions or phylogenetic goals) and social functions. However,
these notions are not unrelated. There must be a concept that provides a
bridge between them.

Biological functions are certainly not goals in the above-mentioned
sense: neither nature, nor species, nor selection nor any other analogous
entity is a goal-governed system in the defined sense. However, we claim
that
� finalities work on organisms in a way that is analogous to external goals oper-

ating on objects or goal-governed systems,

and what is needed is a theory of the translation of external into inter-
nal goals, which is very close to what we developed for true goals (see
Figure 14.3). We cannot extensively discuss here biological functions and



Cognitive Architecture and Contents for Social Structures and Interactions 381

external
functions

top goals
(motivations)

G

G

G

G G

MIND

figure 14.3. External functions–mind model.

their relations with internal goals of the organisms (see Castelfranchi, 1982;
Conte and Castelfranchi 1995 ch. 8).

We also suggest that all the claims about biological functions also apply
to social functions. We discuss social functions in Section 5, but let us specify
the analogy.

There is a genetic and explanatory link between external and internal
goals; and there is a functional link; this is true for both biological and social
functionalities. We mean that in the social case the macro-system’s goals
–which constitute its “functioning”– run through their implementation in
the micro-system’s internal goals. This implementation follows the general
principles we just sketched.

This is the general, abstract nature of the relationship between social
entities (norms, values, roles, functions, groups, structures, etc.) and their
mental counterparts:

� either the social entity α is explicitly represented and considered (either
at a conscious or at an unconscious level) within the agent mind,

� or it is implicit, not known, not represented as such: for producing the
social entity α it is sufficient that the mental entity β: α works through
β.

4.3 Autonomous Gears? The Theory of Cognitive and Motivational
Autonomy

How to use an autonomous intentional agent as a functional device in a
social system?
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How can a deliberative (intentional) agent be influenced and oriented
by the functions, norms, and requests of the macro-level impinging on
it (so as to guarantee the role and the performances functionally needed
by the macro-system) while maintaining autonomy, personal motivations,
self-interest?

The solution to this paradox is found precisely in the cognitive agent
architecture, in its mind and in what it means to be self-interested or self-
motivated although liable to social influence and control.

We claim that an agent is socially autonomous if these conditions hold:

(1) it has its own goals: endogenous, not derived from other agents’ will;
(2) it is able to make decisions concerning multiple conflicting goals (be they

its own goals or goals adopted from outside);
(3) it adopts goals from outside, from other agents; it is liable to being influenced;
(4) it adopts other agents’ goals as a consequence of a choice among them and

other goals
(5) it adopts other agents goals only if it sees the adoption as a way of enabling

itself to achieve some of its own goals (i.e. the autonomous agent is a
self-interested or self-motivated agent);

(6) it is not possible to directly modify the agent’s goals from outside: any
modification of its goals must be achieved by modifying its beliefs (thus,
the control over beliefs becomes a filter, an additional control over
the adoption of goals);

(7) it is impossible to change automatically the beliefs of an agent. The adop-
tion of a belief is a special “decision” that the agent takes on the basis
of many criteria. This protects its cognitive autonomy (Castelfranchi,
1995)

The importance of principle (5) deserves to be stressed: An autonomou-
sand rational agent makes someone else’s goal its own (i.e. it adopts it)
only if it believes it to be a means for achieving its own goals.10 Of course the
agent, although understanding and accepting the societal requests, norms
or roles does not necessarily understand or accept all the societal plans
or functions. As we saw, society delegates to the agent sub-goals of its
own explicit or implicit plans. And very frequently it does not rely on the
agent’s “cooperation” (common goal and shared mind/plan) but on its
self-interested adoption for private reasons.

10 Notice that this postulate does not necessarily coincide with a “selfish” view of the agent.
To be “self-interested” or “self-motivated” is not the same as being “selfish.” The agent’s
“own” goals, for the purpose of which he decides to adopt certain aims of someone else,
may include “benevolence” (liking, friendship, affection, love, compassion, etc.) or impul-
sive (reactive) behaviors/goals of the altruistic type. The child in our example adopts the
mother’s goal (that he brushes his teeth) to make her happy.
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5 modeling emergent and unaware social order
(cooperation) among intentional agents: cognition
and social functions

The case of social functions is very different from that of social norms
(Section 3.1.2). Of course, functional behavior also requires some cognitive
counterpart or mediator, but in this case the external goal impinging on
the behavior is not understood or explicitly represented as a goal: we just
have an internal goal unconsciously serving the external function (Figure
14.3). In other words, the problematic issue in the theory of social functions
is the relationship between social functions and intentions governing the
functional behavior.

Elster (1982) is right when he claims that for a functional explanation
to be valid it is indeed necessary that a detailed analysis of the feedback
mechanism is provided; in the huge majority of the cases this will imply
the existence of some filtering mechanism thanks to which the advantaged
agents are both able to understand how these consequences are caused,
and have the power of maintaining the causal behavior. However he is
wrong in concluding that: “this is just a complex form of causal/intentional
explanation; it is meaningless to consider it as a “functional’ explanation.
Thus, functional explanation is in an unfortunate dilemma: either it is not a
valid form of scientific explanation (it’s arbitrary, vague, or tautological),
or it is valid, but is not a specifically functional explanation” (Elster, 1982).
In other terms, according to Elster a theory of social functions is either
superfluous or impossible among intentional agents.

By contrast, the real point is precisely that we cannot build a correct theory
of social functions without a good theory of mind and specifically of intentions dis-
criminating intended from unintended (aware) effects, and without a good
theory of associative and reinforcement learning on cognitive representations
(see Section 3.1), and finally without top-down and not only a unilateral
bottom-up (from micro to macro) view of the relationship between behav-
ior and functions. We need a theory of cognitive mediators and counter-
parts of social functions. The aim of this section is to analyze this crucial
relationship.

This relationship is so crucial for at least two reasons:

(a) on the one hand, no theory of social functions is possible and tenable
without clearly solving this problem;

(b) on the other hand, without a theory of emerging functions among cogni-
tive agents social behavior cannot be fully explained.

In our view, current approaches to cognitive agent architectures (in terms
of beliefs and goals) allow for a solution of this problem; though per-
haps we need more treatment of emotions. One can explain quite pre-
cisely this relation between cognition and social functions’ emergence and
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reproduction. In particular, functions install and maintain themselves par-
asitically to cognition:
� functions install and maintain themselves thanks to and through the agents’

mental representations but not as mental representations: i.e. without being
known or at least intended.

As we said, for a social norm to work as a social norm and be fully
effective, agents should understand it as a social norm. On the contrary
the effectiveness of a social function is independent of the agents’ under-
standing of this function of their behavior:

(a) the function can rise and maintain itself without the awareness of
the agents;

(b) one might even claim that if the agents intend the results of their be-
havior, these would no longer be “social functions” of their behavior
but just “intentions.”

So, we start from Elster’s crucial objection to classical functional notions,
but we think that it is possible to reconcile intentional and functional be-
havior. With an evolutionary view of “functions” it is possible to argue that
intentional actions can acquire unintended functional effects. Let us frame the
problem as follows.
� Because functions should not be what the observer likes or notices,

but should be indeed observer-independent, and be based on self-
organizing and self-reproducing phenomena, “positive nature” can just
consist in this. Thus, we cannot exclude phenomena that could be bad,
i.e. negative from the observer‘s point of view, from the involved agents’
point of view, or for the OverSystem’s point of view. We cannot exclude
“negative functions” (Merton’s “dysfunctions”) from the theory: per-
haps the same mechanisms are responsible for both positive and nega-
tive functions.

� If a system acts intentionally and on the basis of the evaluation of the
effects relative to its internal goals, how is it possible that it reproduces
bad habits thanks to their bad effects? And, even more crucial, if a be-
havior is reproduced thanks to its good effects – that are good relative to
the goals of the agent (individual or collective) who reproduces them
by acting intentionally – there is no room for “functions.” If the agent
appreciates the goodness of these effects and the action is replicated in
order to reproduce these effects, they are simply “intended.” The notion
of intention seems sufficient and invalids the notion of function.

We argue that, to solve this problem, it is not sufficient to put deliberation
and intentional action (with intended effects) together with some reactive
or rule-based or associative layer/ behavior (Section 1.1) and let emerge
from this layer some socially unintended function, and let operate on this
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layer the feedback of the unintended reinforcing effects (van Parijs, 1982).
The real issue is precisely the fact that the intentional actions of the agents, not
(only) their unintentional behaviors,give rise to functional, unknown collective
phenomena (such as the division of labor). How to build unknown functions
and cooperation on top of intentional actions and intended effects? How
is it possible that positive results –thanks to their advantages– reinforce
and reproduce the actions of intentional agents, and self-organize and re-
produce themselves, without becoming simple intentions? This is the real
theoretical challenge for reconciling emergence and cognition, intentional
behavior and social functions, planning agents and unaware cooperation.

A possible solution to this problem is searching for a more complex form
of reinforcement learning based not just on classifiers, rules, associations,
etc. but on the cognitive representations governing the action, i.e. on beliefs and
goals (Castelfranchi, 2001).

In this view “the consequences of the action, which may or may not have
been consciously anticipated, then modify the probability that the action
will be repeated next time the input conditions are met” (Macy, 1998). More
precisely:

Functions are just effects of the behavior of the agents, that go beyond the
intended effects (i.e. they are not intended) and succeed in reproducing themselves
because they reinforce the beliefs and the goals of the agents that caused that
behavior. Then:
� First, behavior is goal-governed and reason-based; i.e. it is intentional

action. The agent bases its goal-adoption, its preferences and decisions,
and its actions on its beliefs (this is the definition of “cognitive agents”).

� Second, there is some effect of those actions that is unknown or at least
unintended by the agent.

� Third, there is circular causality: a feedback loop from those unintended
effects to incrementally reinforce the beliefs or the goals that generated
those actions.

� Fourth, this “reinforcement” increases the probability that in similar
circumstances (activating the same beliefs and goals) the agent will pro-
duce the same behavior, then “reproducing” those effects (Figure 14.4).

� Fifth, at this point such effects are no longer “accidental” or unimpor-
tant: although remaining unintended they are teleonomically produced
(Conte and Castelfranchi, 1995, ch 8): that behavior exists (also) thanks to
its unintended effects; it was selected by these effects, and it is functional to
them. Even if these effects could be negative for the goals or the interest
of (some of) the involved agents, their behavior is “goal-oriented” to
these effects.

Notice that the agents do not necessarily intend or suspect to reinforce their
beliefs or their goals, and then their own behavior and the behavior of the
other. This is the basic mechanism.
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figure 14.4. Goals-act-effects model.

It is very important to notice (contrary to Bourdieu & Wacquant’s (1992)
view) not only that the subject plays his social roles and responds to so-
cial functions through his routine behavior, his habitus, his scripts, but
also that his intelligent, deliberated, planned and intentional action can
implement and support an (unconscious) social function or a social role.
Functions exploit and reinforce intentions (not only rules) although being
unintended.

6 summary

In this chapter we have attempted to answer the following questions:

� What should a proper cognitive model for MAS and social theory be like?
� What is required at the individual cognition level to produce collective behavior,

an emergent order, to play the social role, to build institutions, to play functions?
� What characterizes “social structures” among cognitive agents? Are they self

organizing or deliberated?

It has been claimed (among many other things) that

� Social and cultural phenomena can not be deeply accounted for without
explaining how they work through the agents’ minds;

� Agent minds must have some complexity and some specific contents
for implementing macro-social phenomena;

� The agents do not understand, negotiate, and plan for all their collective
activities and results. Modeling mind is necessary but not sufficient for
understanding social phenomena.

An “individualistic” approach is not sufficient for the social theory, how-
ever, it is necessary. The micro–macro cognitive-based approach to social
phenomena (Conte and Castelfranchi, 1995) is not aimed at reduction. It



Cognitive Architecture and Contents for Social Structures and Interactions 387

simply claims that the attempt to found sociological concepts in a com-
pletely autonomous way, without any explicit relationship with the micro-
level notions, and refusing to look at the obvious links between the indi-
vidual and the sociological level, is not a heuristic move. It does not make
sociological theory stronger. The problem is not that of reducing sociology
to psychology, or unilaterally founding sociological constructs on psycho-
logical ones; the problem is accounting for the bilateral grounding and the
bilateral influence between the micro and the macro layers.

Moreover, it is important to consider that what appears as a (partially)
individualistic (psychological) foundation is in fact an abstract, “agent-”
based foundation. If collective entities (like groups, team, organizations)
can be conceived as abstract, complex or high-level agents, all the theory
that we have just exposed for individuals (such as dependence, power,
cooperation, influence) can be abstracted and applied both to individ-
ual agents and to abstract agents. In other words, among groups, orga-
nizations, and nations we find all the social relationships that one calls
“interpersonal” but that are in fact “inter-agent.” The same – abstract –
theory applies to different layers of organization of action and sociality.

We also sketched some paths for reconciling emergence and cognition,
planning and self-organization, intentions and functions, building functions
even on top of intentional behavior not simply and simplistically on rule-
based behavior. We believe that this reconciliation is the main challenge of
the next few years at the frontier between the cognitive and social sciences.

Let’s consider how agent-based social simulation jointly with cogni-
tively oriented AI models of agents can eventually solve this problem (the
invisible hand in human life) by formally modeling and simulating at the
same time the individual minds and behaviors, the emerging collective ac-
tion, structure, or effect, and their feedback to shape minds and reproduce
themselves.

The merging of cognitive modeling (from both cognitive science and AI
traditions) with social simulation (Sun, 2001) is an unavoidable path, with
revolutionary impact on the social sciences, thanks to its making explicit
and operational non-simplistic and rationalistic models of mind, and to its
providing the social sciences with an experimental method that they never
had.
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Cognitive Science and Good Social Science

Scott Moss

1 introduction

The underlying premise of this commentary is that good science and
bad science are distinguished by their reliance, or lack thereof, on ob-
servation and evidence. Moreover, science that eschews observation in
favour of formalisms is rife in the social sciences. The issue addressed
here is whether cognitive science and agent design can contribute to
a basis or a framework for good, observation-based social science (see
Chapter 1).

This commentary is organised as follows: In Section 1, a justification
is offered for the claim that orthodox economics as represented by the
April 2004 issue of a leading journal and mainstream agent-based comput-
ing as represented by the work of leading protagonists are both bad science.
Admittedly, economics is a particularly easy target because of the domi-
nant role of a conventional modelling approach. To the extent that the eco-
nomic formalisms and statistical approaches have been adopted in other
social sciences, the claim that economics is bad science pertains to those
areas of other social sciences where their techniques have been adopted. In
Section 2, a procedure and examples are outlined for validating simula-
tion models of social processes against both micro and macro level data.
Section 3 contains a discussion of a role for cognitive science in agent and
mechanism design.

2 economics is bad science

Whenever I want to demonstrate to non-economists that economics is bad
science, I just describe the contents of the latest issue of almost any leading
journal in the field. My choice this time is the April, 2004 issue of The
Economic Journal – the most recent issue at the time of writing.
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There are 12 articles in that issue. Two of these articles1 report statistical
analysis based on conventional uses of the Cobb–Douglass production
function which takes the form

Y = aK α L1−α

where K is an aggregate value of capital, L is labour, and Y is the value of
output, usually gross domestic product.

It was demonstrated in the 1960s (see Harcourt, 1972) that this function
(or any other linear homogenous function) could actually relate inputs of
capital and labour to outputs in only a few cases. One of these is where
capital and output are the same homogenous good, which is perfectly
divisible and malleable. A good example would be the use of yeast to
produce more yeast – provided you don’t need anything like a spoon to
stir it or a pot to hold it. Otherwise, the formal relationships required
of the Cobb–Douglass production function are found only in a perfect
equilibrium where the output of every good and service is equal to the
corresponding demand and prices are set to ensure that the rate of profit
in the production of every good or service is the same as for every other
good or service and the output of every good and service grows at the
same rate and this growth rate is equal to the common, equilibrium rate of
profit. That no such conditions have ever been observed is evidently of no
consequence to the authors, the reviewers or the editors of The Economic
Journal or, I believe, any other core economics journal.

None of the remaining ten papers in that issue of The Economic Journal
describes any actual economic or any other behavior of any individual or
group of individuals. Nor is there any description of how individuals inter-
act in the real world. That is doubtless because, as Granovettor (1985) had it,
economic agents are not socially embedded in the sense that the behaviour
of no individual is influenced by interaction with any other individual.

It is true that several of the papers report the results of experiments in
which (usually) students are asked to participate in some game or other
economic function. However such experimental evidence is always eval-
uated against the precepts and predictions of economic theory and not
against real world behavior and outcomes.

My claim is that economics is bad science because it gives pride of place
to formal theory over observation and that formal proofs that established
theories are either wrong or incompatible with any observed evidence are
ignored.

A corollary of the conventional stance of economists in ignoring ev-
idence when it conflicts with their own prior theories is the positivist

1 Clemens and Williamson, “Wealth Bias in the First Global Capital Market Boom, 1870–1913,”
pp. 304–337; and Crafts, “Steam as a General Purpose Technology: A Growth Accounting
Perspective,” pp. 338–351.
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methodological position that the test of a theory is its predictive accuracy.
In particular, a theory is not to be evaluated in terms of the descriptive
accuracy of its assumptions (Friedman, 1953). In practice this means that
economic models are used to inform the specification of statistical models
to be parameterised against social statistics aggregated both over time and
over individuals. Unfortunately, I know of only one test of the consistency
of such parameterisations over time. This test (Mayer, 1975) was reported
in The Economic Journal some 30 years ago in its Notes and Memoranda
section that contains announcements and papers that are not quite full
articles. Mayer showed that when econometric models were ranked by
goodness of fit to data from some sample period, refitting those models
to data obtained after the models were published generally changed the
ranking of models. It is evidently not in keeping with conventional eco-
nomic research method to investigate the reasons for such changes both in
goodness of fit and the ranking of alternative model specifications on the
same data.

In his conclusion, Mayer noted:

This could be due to excessive data mining, to frequent structural change, to good-
ness of fit being frequently not very different for various hypotheses, to the failure
to meet classical least-square assumptions, or to the hypotheses not being nested.

Agent-based social simulation offers one possible explanation of a failure
to meet classical least-square assumptions. The description of that possi-
ble explanation suggests a wider use of cognitive science in the empirical
assessment of the likelihood of that or other explanations that depend on
validation.

I have previously shown (Moss, 2002) that sufficiently fine-grain data for
fast-moving consumer goods can show the same kind of clustered volatil-
ity as we observe in organised financial markets. Because of the clustered
volatility, frequency distributions of relative changes over time are fat tailed
implying that, if the observed sales values or volumes were drawn from
any underlying population distribution, that distribution will not have any
moments defined beyond the first and, over half of the parameter space of
the distribution’s characteristic function, even the first moment (the mean)
will not be defined (Mandelbrot, 1963). In these circumstances, paramet-
ric statistical analysis is not applicable (Fama, 1963). This is one possible
explanation for Mayer’s finding. In these circumstances, the law of large
numbers will not hold. Consequently, even with ever larger samples, the
sample mean and standard deviation will not converge towards a popu-
lation mean and standard. As a result, for any two subsets of the sample
data, there is no reason to expect that differences between sample means
and standard deviations will appear to be statistically insignificant.

Statistical techniques have been devised to produce econometric mod-
els that cohere with both clustered volatility and the assumption that the
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data reflects an equilibrium in which all agents successfully optimise their
behaviour using the correct model of the unobserved data generating mech-
anism (Bollerslev, 2001). However, despite a long search, no evidence has
been found to indicate that either these or any other econometric models
have ever produced correct forecasts of any volatile event. Even if someone
should be able to claim the odd correct forecast, such forecasts are hardly
produced systematically.

If one is prepared to accept that volatile clusters in economic data can-
not be forecast any more accurately than earthquakes, specific avalanches,
species extinctions, or any of a whole host of phenomena subject to volatile
episodes, then an explanation for both the presence of clustered volatility
and its inherent unpredictability is available. The explanation turns on
the design of agents for social simulation. Experience shows that unpre-
dictable, clustered volatility and approximately power law size distribu-
tions can be produced with agent-based simulation models in which the
agents are metastable (some threshold of stimulus is required to provoke
a response) and socially embedded (they interact with and are influenced
by other agents) and exist within a set of social arrangements that are not
swamped by external stimuli and events. See, for example, (Palmer et al.,
1993; Lux, 1998; Axtell, 1999; Moss, 2000). Metastability and social em-
beddedness are crucial elements of the argument and will be revisited in
Section 3.

3 participatory validation of agent-based models

All agent-based models that purport to describe real social institutions can
in practice be validated qualitatively at micro level. Demonstrations of this
feature of agent-based social simulation have been produced in several
European projects on the impacts of climate change, particularly on water
resource management (Downing et al., 2000). As far as I know, all such
models have been validated by engaging stakeholders in the process of
agent and mechanism design and validation. The behaviour of the agents,
with what other agents they interact, and how, have all been specified to re-
flect descriptions are provided by participating stakeholders. The outputs
from models implemented on the basis of these descriptions have then
been explored with the stakeholders to ensure that the behaviour of the
individual agents accurately describes the behaviour of the decision mak-
ers the agents represent and that the macro level consequences of agent
interaction accurately describe the qualitative features of the target social
institutions.

There are several examples where such a procedure has led to the iden-
tification of statistical signatures and social phenomena that had not pre-
viously been observed but which were subsequently found.
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A particularly nice example was an early use of the Virtual Design Team
(VDT) model reported by (Jin & Levitt, 1996). The prototype VDT was
used to produce a model of the design process for a space launch vehicle
and identified two particular weaknesses in the design process. On its
first launch, the space vehicle had to be destroyed for the safety of such
existing installations as the City of San Francisco. On subsequent analysis
of the telemetry data from the vehicle, two systems were found to have
failed – the two identified as being at risk by the VDT model.

Two other examples were clustered volatility in fine-grain data antic-
ipated by models designed and implemented by myself. The empirical
model, reported by Moss and Edmonds (2003), was designed on the basis
of a participatory stakeholder process with UK water supply companies
and the relevant regulatory agencies and government departments. The is-
sue being investigated was the response of householders to exhortations by
policy authorities to conserve water during periods of drought. The agent
design and interaction involved metastability and social embeddedness in
a manner suggested and validated by the stakeholders. I was then not sur-
prised to find that the simulated time series for domestic water demand
showed clustered volatility. We then obtained daily water consumption
data produced by neighbourhood level water meters in several different
parts of southern England. This data showed much more volatility with
more pronounced fat-tailed frequency distributions than the simulation
data. However, because the simulations used monthly physical data to
identify drought conditions, the water demand was modelled to corre-
spond to monthly time steps. Aggregating data into larger time intervals
amounts to taking averages of samples so that, by the central limit theo-
rem, the distribution of such sample data should increasingly approximate
a normal distribution. By aggregating the daily data into 32-day periods,
the observed volatility was reduced and, therefore, the fat tails of the dis-
tribution made thinner so that they more closely approximated the data
modelled at a monthly scale.

Both we and the VDT team can reasonably claim some empirical validity
for our models both qualitatively at the micro level and statistically or phe-
nomenologically at the macro level. When models are qualitatively well
validated at the micro level, they have on at least several occasions pro-
duced macro level numerical output characterised by clusters of volatility
that cannot be forecast using statistical techniques and that turn out to be
validated statistically at macro level by clustered volatility in correspond-
ing time series data.

Although these models are empirically validated at both micro and
macro level and both qualitatively and statistically, they are not forecasting
models. The purpose of agent-based models such as these is to understand
the target social institutions and relationships and how these emerge from
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individual behavior. Model design and micro validation with stakeholder
participation provides an evaluation of the extent to which formal models
capture the perceptions of the stakeholders with regard to the consequences
of their own and other stakeholders’ behaviour.

I argue that this approach is good science because it is evidence and ob-
servation driven. The problems attacked with these models are not “sim-
plified” to make them tractable with respect to any particular analytical
technique. Both agent and mechanism design are driven by stakeholder
perceptions and therefore no claim can be made to the effect that the mod-
els and their outputs are either realistic or yield good predictions. The best
claim that can be made is that the models capture stakeholder perceptions
and, by stating those perceptions formally and drawing the implications of
those perceptions through simulation experiments, the models help stake-
holders to clarify and develop their perceptions of others’ behaviour and
the consequences of their own behaviour.

4 cognitive science in agent and mechanism design

Cognitive science has of course had an enormous impact on agent-based
modelling through the work of Alan Newell’s unified theories of cogni-
tion (Newell, 1990) and his collaborators in the Soar (Laird et al., 1987) and
the ACT-R (Anderson 1993) programmes (see also Chapters 2, 3, and 4).
Both Soar and ACT-R are based on experimental cognitive science and
both seek to formalise understanding of cognition as computer program-
ming languages. Even without using SOAR and ACT-R themselves, the
implementation of their representations of cognitive processes and struc-
tures within the implementations of agents in other languages provides
agents with properties that are independent of the particular model and
are independently validated by cognitive scientists. In other words, the
virtues of independent validation can be captured for agent-based mod-
els by ensuring that the specification of agent cognition is well verified
with respect to formal models from cognitive science understanding that
those formal models are themselves well validated experimentally and
observationally.

Presuming that cognitive science is good science according to the cri-
teria specified here, then the verification of agent designs with respect to
cognitive science by adopting SOAR and ACT-R specifications supports
good social science via social simulation.

In the case described above, there is an empirical question about the
importance of unpredictable, clustered volatility. Apart from statistical sig-
natures in times series data from financial markets and macroeconomies,
the extent to which such episodes are prevalent is simply unknown. The
clustering of volatility can be hidden by taking coarse-grain time series
data. Aggregating from daily data exhibiting clustered volatility up to say
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quarterly data will hide the volatility. This is because the aggregation
amounts to taking sample means of 365/4 observations for each year of
data. The distribution of sample means will by the central limit theorem
tend to be normal. The distributions of relative changes will lose their fat
tails. For this reason, the investigation of the existence of clustered volatili-
ty in time series data generally requires the acquisition of fine-grain data
of the sort that is readily available from financial markets and from super-
market sales.

The position we have reached is that recent simulation results indicate
that agent metastability and social embeddedness in social arrangements
that are not overwhelmed by external events together produce macro level
social statistics that violate the conditions for parametric statistical analy-
sis. Conversely, where we find social statistics characterised by clustered
and unpredictable volatility, a possible reason for those statistical charac-
teristics is individual metastability and social embeddedness. Questions
of social embeddedness – choice of other individuals with whom to in-
teract and by whom to be influenced – is the subject of study by social
psychologists. Individual metastability – decisions to act only once some
non-negligible stream of stimulation has been encountered – is the sub-
ject of study of cognitive scientists. These three areas of study are naturally
brought together in agent-based social simulation models provided that the
agents are designed to describe the behaviour of target individuals. By im-
plementing formal representations of empirically well-validated theories
of cognition and empirically well-validated theories of social interaction,
we can observe whether the resulting agent-based social simulation models
generate system-level numerical output with the same statistical signature
as corresponding social statistics. If so, then we have a model that has been
validated at the micro level both by incorporating behavioural descriptions
by stakeholders and previously validated concepts from cognitive science
and social psychology and also at the macro level by capturing the sta-
tistical signatures of observed time series. Such multiple cross-validation
grounds the models empirically and guides not only the development of
simulation models as an alternative to social theory but can also be ex-
pected to raise additional empirical questions and, so, to guide empirical
research into individual behaviour and social interaction.
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Collective Cognition and Emergence
in Multi-Agent Systems

Pietro Panzarasa and Nicholas R. Jennings

1 introduction

In the last few decades, the study of collective cognition has become an
increasingly interdisciplinary area of research, weaving together an array
of scientific contributions from a wide variety of scholarly fields including
social psychology, organisation science, complex adaptive systems, social
network analysis, business studies, cognitive science, computer science
and philosophy of mind (e.g. Argote, 1999; Carley & Hill, 2001; Harrison &
Carroll, 2001; Hutchins, 1995; Resnick et al., 1993). The fundamental idea
underpinning most of these studies is that cognition is a social phenomenon
that takes place and evolves in a reality jointly constructed by agents who
interact within a network of social relations. To capture this idea, several
“group mind”–like constructs have been introduced that extend to the
group level a range of cognitive phenomena traditionally considered as
belonging to the realm of the individual agent’s mind (e.g. Halpern &
Moses, 1990; Wegner, 1995). Such notions as mutual beliefs, transactive
memory, joint intentions, joint goals and joint commitments are relatively
recent developments intended to convey the idea that cognition extends
beyond, and does not reduce to, the individual’s mind.

However, despite the apparent enthusiasm for the subject, a number of
important foundational issues still remain to be addressed. One of these
(see Chapter 1 of this volume) is concerned with the nature of the relation
connecting the two levels – individual and collective – at which cognition
occurs within a multi-agent system (MAS). What is puzzling about this
relation is the fact that one level – the collective – is determined by, and
depends on, the other – the individual – and yet takes on an autonomous
existence. It is the objective of this chapter to make this seemingly unten-
able combination of dependence and autonomy more intelligible. To this
end, we propose a general, if rudimentary, conceptual framework in which
an account of the inter-level relation between individual and collective

401
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cognition will be predicated on the notion of emergence. This account will
be motivated and outlined in Section 2. Sections 3 through 6 are devoted to
a discussion of its main properties and implications, particularly in terms of
the modelling of cognitive architectures, multi-agent interactions, and the
use of computational agent-based social simulations. Section 7 summarises
the main results.

2 collective cognition as an emergent property

The study of the varying forms in which cognition occurs in a MAS can
be carried out using a three-tiered account of the micro–macro link hier-
archically organised into three progressively higher levels: atomistic, ag-
gregative, and collective (DiMaggio, 1991). From this perspective, we claim
that for a form of cognition to be collective, it must emerge from a lower
cognitive level. This can be motivated by showing that what is tradition-
ally emphasised by “group mind”–like constructs is in fact an example of
genuinely emergent properties.

Typically, collective cognition is taken to imply a mental state or pro-
cess that is qualitatively different from the mental states and processes of
individual agents (Resnick et al., 1993). This is, for example, what is tra-
ditionally implied by such notions as group beliefs, organisational knowl-
edge and memory, corporate vision, and goals. All these forms of cognition
are collective in that they are embedded within, but extend beyond, and
cannot be reduced to, the realm of individual agents’ cognition (Carley
and Hill, 2001; Hutchins, 1995). They are group-level phenomena that are
at once grounded in and yet transcending the underlying mental states of
the interacting agents to which they are collectively ascribed. This idea of
dependent yet irreducible standing is precisely what is captured by the
notion of emergence.

Emergence is an inter-level relation that provides a path between depen-
dence and autonomy (Pepper, 1926). Seeing collective cognition as emer-
gent from individual cognition allows us to explain why the former is
dependent on, and yet autonomous with respect to, the latter. More specif-
ically, like any other emergent property, collective cognition is nomologically
dependent on its emergence base, and yet is ontologically autonomous. On the
one hand, individual cognition is necessary for collective cognition to come
into existence: thus, the latter nomologically depends on the former. On the
other, individual cognition does not co-occur within collective cognition.
Once “used up” in producing emergence, individual cognition goes out of
existence within collective cognition. This fact makes for the ontological
autonomy of the latter with respect to the former.

Using the notion of emergence allows us to shed light on a number
of important cognitive phenomena. No form of collective cognition takes
place in a vacuum. All such forms as organisational knowledge, goals,



Collective Cognition and Emergence in Multi-Agent Systems 403

memory, practices, procedures and norms require agents’ individual cog-
nition to come into existence in the first place. However, once they have
contributed to the generation of collective cognition, the agents’ cognitive
states and processes are no longer discernible as separable autonomous
entities. This explains why collective cognition can be partially insensitive
to agents’ turnover (Argote, 1999). Agents may leave without necessarily
causing knowledge depreciation or a radical change in the system’s norms,
practices or goals. The specific instances of individual cognition that con-
tributed to the emergence of such forms of collective cognition lose their
autonomous existence once emergence has taken place. Collective cog-
nition is ontologically autonomous and, as such, it can be enduring and
resilient.

3 the emergence base: implications for individual
cognitive modelling

Instances of agents’ individual cognition represent the emergence base that
is nomologically necessary for any form of collective cognition to come
into existence. More specifically, for collective cognition to emerge, agents’
cognitive states and processes need to be intertwined in some way. In
Panzarasa et al. (2001) the notion of a social cognitive structure has been
introduced as the cognitive milieu from which collective cognition ensues.
A social cognitive structure connotes a situation in which agents belong
to a weakly connected network of cognitive relations that allow them to
become aware of each other’s mental attitudes. In the generation of this
structure, the agents’ abilities to represent, and reason about, each other in
cognitive terms play a pivotal role (Nichols & Stich, 2003). More specifi-
cally, two types of cognitive skills are needed. Firstly, agents need detecting
skills to attribute mental attitudes to other agents. Secondly, they also need
reasoning skills to use information about other agents’ mental attitudes
and make predictions about those agents’ further mental attitudes and be-
haviour. For collective cognition to emerge, both these skills are needed.
Agents need to believe that others believe they all belong to the same cog-
nitive network; hence, they need to represent each other in cognitive terms.
But they also need to be able to reason about each other in a way that beliefs
about each other’s beliefs can be inferred from their local knowledge.

The fact that collective cognition rests on the agents’ detecting and rea-
soning skills has major consequences in terms of individual cognitive mod-
elling (e.g. Sun, 2001). A number of suggestions can be derived as to which
characteristics and contents of the cognitive architectures are required for
modelling a suitable MAS for simulation purposes (see Part 2 of this vol-
ume). In fact, if the MAS is meant to be used as a simulation tool for the
study of collective cognition, the underpinning agent’s cognitive architec-
ture needs to be supplemented with a separate mental “workspace” that
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draws on a systematic and explicit account of the cognitive components
and mechanisms that underlie agents’ “mind reading” abilities. This men-
tal workspace can be variously modelled, either as a set of separate modules
containing additional information and clusters of algorithms (Leslie, 1994),
or as a decision-making mechanism that agents can take “off-line” and sup-
ply with “pretend” mental attitudes for simulation purposes (Nichols et al.,
1996).

4 the emergence mechanism: multi-agent
social interaction

Collective cognition is not instantiated simply because individual cogni-
tion is instantiated, as the supervenience argument would suggest (Kim,
1993). Rather, it is the move from agents’ cognition to a social cognitive
structure via social interaction that brings about a new form of collective
cognition (Chapter 1). The emergence relation is precisely what is required
to formulate an account of collective cognition explicitly based on the role
of multi-agent social interaction in “transforming” individual cognition
into higher-level forms of cognition. This generating function played by
interaction is central for all emergent properties (Humphreys, 1997): it is in
virtue of interactions among lower-level properties that new higher-level
ones emerge.

By focusing on multi-agent interaction, a number of possible research
questions can be suggested (see Chapter 6). Is it possible to map out the
impact of different coordination mechanisms on the generation of collec-
tive cognition? What is the most effective and efficient pattern of social
interaction for generating, say, a joint goal or a mutual belief? What is the
impact of the degree of connectivity and/or clustering of the social network
on the resulting form of collective cognition? In principle, different forms
and instances of collective cognition can emerge from the same emergence
base, depending on which patterns of social relations and coordination
mechanisms are used by the agents to interact with one another. Whether
or not there is a relation between a mode of social interaction and an in-
stance of collective cognition is an empirical question to be determined by
empirical study. In this respect, computer-based social simulations repre-
sent an invaluable tool of analysis. For example, it has been shown that
different emergent cognitive patterns result by varying the underlying or-
ganisation’s structure and the agents’ interaction style (Carley & Hill, 2001).
Similarly, collective cognition depends on the patterns of social relation-
ships that provide the agents with the structural context in which they can
exercise social influence. In our previous work, for example, we showed
how the type of agreement resulting from negotiation is affected by the
network of relations among agents and the order in which interactions
occur within the network (Panzarasa & Jennings, 2002).
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Agent-based social simulations thus allow the researcher to relate build-
ing blocks at the higher level to interactions of building blocks at the lower
one. This, in general, represents a great step forward towards a better un-
derstanding of emergent properties (Holland, 1995). Being able to find
law-like connections between individual cognition and interaction pat-
terns, on the one hand, and collective cognition, on the other, allows us to
investigate the conditions under which the latter takes place. More specif-
ically, social simulations can be used to produce one-way conditionals of
the form (X → Y) that specify a nomologically sufficient condition for a
given instantiation of collective cognition. Specific connections between
different levels can thus be derived and then used to uncover more gen-
eral principles that govern the emergence of the higher level from the
lower one.

5 holism and novelty

Regarded as an emergent property, collective cognition is holistic in the
sense of being essentially macroscopic rather than a mere summation of
microscopic local properties. A group belief, for example, is something
that transcends the sum of the members’ individual beliefs. It includes
these beliefs as non-separable mental attitudes in a way that resembles
the non-separability between states in quantum entanglements described
by Schrödinger (1935) for compound systems. The individual cognitive
components of collective cognition are non-intersubstitutable, and the net-
work of relations among these components is significant as it may exhibit
cooperative or inhibitory features. Furthermore, collective cognition is sen-
sitive to additions or removals of individual components (Wimsatt, 1997).
Threshold phenomena are good examples of non-aggregativity: the addi-
tion or removal of the Nth agent may result in a qualitative change in the
type of cognition developed within the system. Agreements may become
impossible to reach, rules and norms ineffective, joint commitments too
weak to trigger joint action. Or, similarly, new agreements, rules, norms
and commitments may become possible to establish.

The idea that collective cognition transcends the mere sum of individual
cognitive instances implies that the whole becomes not only more than, but
different from, the sum of its components (Anderson, 1972). In this view,
collective cognition is qualitatively novel. Novelty is perhaps the most char-
acteristic feature of emergent properties (Humphreys, 1996). In its crudest
interpretation, novelty means that a previously uninstantiated property
comes to have an instance. Clearly, it is important to have a novelty crite-
rion to spot cases of genuine emergence. If the new value of, say, aggregate
expertise in a MAS comes about by mere rearrangement (e.g. addition or
exclusion) of existing expertise contributed by different agents, then we
say that the “novel” property instance was already there all along; it just
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was not instanced by the group of agents that now has it. What we want
from collective cognition is not a new value of an existing individual or ag-
gregate cognitive form, but a novel kind of cognition, qualitatively different
from the agents’ cognition from which it emerges.

6 irreducibility and downward causation

The emergentist account of collective cognition can be further articulated
in terms of two concepts: irreducibility and downward causation. Firstly,
as an emergent property collective cognition is essentially irreducible to its
emergence base (Beckermann et al., 1992). It is logically or nomologically
impossible for an individual agent to possess a form of cognition that is
collectively held by a MAS. Thus, there is no reason to identify collective
cognition with, or to reduce it to, mere combinations of individual agents’
cognitive states or processes. A group belief, for example, cannot be held
by any of the members in isolation in the same way as phenomena of
macroscopic systems such as phase transitions, dissipative processes and
biological growth do not occur in, and are not reducible to, the atomic world
(Sewell, 1986). And because it cannot be reduced to its microconstituents,
it cannot be explained in terms of them. As a result, collective cognition is
governed by laws that are distinctively different from the laws that cover
individual cognition.

Secondly, collective cognition has causal or explanatory relevance, and
it can exercise its distinctive casual powers with respect to the lower-level
domain from which it emerges (Beckermann et al., 1992; Kim, 1993). Thus,
once emerged, collective cognition can directly affect its constituents. It af-
fects the agents’ cognition and behaviour in the same way as the state of a
compound system determines the states of its components. Once formed,
collective cognition acquires a novel causal power that can be exerted back
upon individual cognition. And this causal power cannot be explained in
terms of, and cannot be equated with, that of individual cognition. Collec-
tive cognition bears its influence in a direct, “downward” fashion, rather
than via the causal power of its constituents.

This explains a number of social and organisational phenomena. For
example, the norms, procedures and joint goals of a MAS affect the mem-
bers’ behaviour and cognition, regardless of whether these members are
the agents who contributed directly to the generation of such forms of
collective cognition. Moreover, it is possible for an instance of collective
cognition to be directly transformed into a different instance, or to directly
transform another, already existing, instance. For example, a norm may
change over time and affect the generation of new norms, rules, practices
and values. And this may happen without the mediation of the agents who
generated the original norm in the first place. Similarly, different visions
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or joint goals can influence each other, without necessarily involving the
causal powers of the agents out of whom they emerged. Simply because
the instances of individual cognition that generated collective cognition
no longer exist once emergence has taken place, they play no role in these
causal transformations.

7 summary

Collective cognition enjoys properties that are irreducible to those of indi-
vidual cognition. For example, it exhibits resilience, endurance and direct
influential power that cannot be explained in terms of the agents that con-
tributed to its generation. Evidently, collective cognition must be, in some
sense, autonomous with respect to individual cognition. By the same to-
ken, however, the generation of collective cognition depends on individual
cognition. This seems to present a dilemma: How to reconcile autonomy
with dependence? In this chapter, the inter-level relation of emergence has
been proposed as a solution of that dilemma. As an emergent property,
collective cognition is nomologically dependent on, and yet ontologically
autonomous with respect to, individual cognition.

Computational agent-based social simulations have the potential of
making the relation between collective and individual cognition more in-
telligible. For example, they allow the researcher to investigate the role
played by different interaction patterns and coordination mechanisms in
transforming combinations of instances of individual cognition into in-
stances of collective cognition. In this way, law-like connections can be
produced between building blocks at the higher level and interactions of
building blocks at the lower. As pointed out in Chapter 1 in this volume,
in a field where empirical evidence is hard to collect, real experiments and
empirical surveys are time-consuming, and variables are difficult to oper-
ationalise and manipulate, social simulations offer a promising alternative
towards a better understanding of the inter-level relations occurring within
the realm of cognition.
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Social Judgment in Multi-Agent Systems

Tom R. Burns and Ewa Roszkowska

1 introduction

Game theory in its several variants can be viewed as a contribution to
multi-agent modeling. One relevant development of classical game the-
ory, Generalized Game Theory (GGT), entails its extension and generaliza-
tion through the formulation of the mathematical theory of rules and rule
complexes (Gomolińska, 1999, 2004; Burns & Gomolińska, 1998; Burns &
Roszkowska, 2004). Informally speaking, a rule complex is a set consist-
ing of rules and/or other rule complexes.1 Social theory concepts such as
norm, value, belief, role, social relationship, and institution as well as game
can be defined in a uniform way in terms of rules and rule complexes. This
has led to a number of applications: among others, the formalization of
social relationships, roles, and judgment and action modalities (Burns &
Gomolińska, 2000; Burns, Gomolińska, & Meeker, 2001; among others);
reconceptualization of prisoners’ dilemma game and other classical games
as socially embedded games (Burns, Gomolińska, & Meeker, 2001; Burns
& Roszkowska, 2004); models of societal conflict resolution and regulation
(Burns, Caldas, & Roszkowska, 2005; Burns & Roszkowska, 2005); rethink-
ing the Nash equilibrium (Burns & Roszkowska, 2004); fuzzy games and
equilibria (Burns & Roszkowska, 2004; Roszkowska & Burns, 2002); socio-
cognitive analysis (Burns & Gomolińska, 2001; Roszkowska & Burns, 2002);

1 The notion of rule complex was introduced as a generalization of a set of rules. The mo-
tivation behind the development of this concept has been to consider repertoires of rules
in all their complexity with complex interdependencies among the rules and, hence, to not
merely consider them as sets of rules. The organization of rules in rule complexes provides
us with a powerful tool to investigate and describe various sorts of rules with respect to
their functions as values, norms, judgment rules, prescriptive rules, and meta-rules as well
as more complex objects such as roles, routines, algorithms, models of reality as well as
social relationships and institutions.
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simulation studies in which GGT is applied, for instance, in the formulation
of multi-agent simulation models of regulatory processes (Burns, Caldas,
& Roszkowska, 2005).

In the GGT approach, a well-specified game at time t, G(t), is a particular
multi-agent interaction situation where the participating actors typically
have defined roles and role relationships. Most modern social systems of in-
terest can be characterized in this way. That is, there are already pre-existing
institutional arrangements or social structures shaping and regulating in-
teraction (see Figure 17.2). Given a situation St in context t (time, space,
social environment), a general game structure is represented as a particu-
lar rule complex G(t) (Burns & Gomolińska, 1998; Gomolińska, 1999).The
G(t) complex includes as subcomplexes of rules the players’ social roles
vis-à-vis one another along with other relevant norms and rules. Suppose
that a group or collective I = {1, . . . , m} of actors is involved in a game
G(t). ROLE(i , t, G) denotes actor i ’s role complex in G(t) (we drop the “G”
indexing of the role):

ROLE (i, t) ⊆g G(t) (17.1)

The game structure G(t) consists then of a configuration of two or more
roles together with R, some general rules (and rule complexes) of the game:

G(t) = [ROLE (1, t), ROLE (2, t), . . . , ROLE (k, t); R]. (17.2)

R contains rules (and rule complexes), which describe and regulate the
game such as the ”rules of the game,” general norms, practical rules (for
instance, initiation and stop rules in a procedure or algorithm) and meta-
rules, indicating, for instance, how seriously or strictly the roles and rules
of the game are to be implemented, and possibly rules specifying ways to
adapt or to adjust the rule complexes to particular situations.

An actor’s role is specified in GGT in terms of a few basic cognitive and
normative components, that is rule subcomplexes (see Figure 17.1): (1) a
particular complex of beliefs, MODEL(i, t), that frame and define the situa-
tional reality, key interaction conditions, causal mechanisms, and possible
scenarios of the interaction situation; (2) a complex of values, VALUE(i, t),
including values and norms relating, respectively, to what is good or bad
and what should be done and not done in the situation; (3) repertoires
of possible strategies, programs, and routines in the situation, ACT(i, t);
(4) a judgment complex or function, J(i, t), to organize the determination
of decisions and actions in relation to other agents in situation St. The
judgment complex consists of rules that enable the agent i to come to con-
clusions about truth, validity, value, or choice of strategic action(s) in a
given situation. In general, judgment is a process of operation on objects
(see Figure 17.1). The types of objects on which judgments can operate
are: values, norms, beliefs, data, and strategies as well as other rules and
rule complexes. Also there are different kinds of outputs or conclusions of
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Context of Actor i’s Judgment

Conclusion:
In particular cases:

Value
Norm
State of the
World
Action(s)
Data
Rule
Other

Judgment
complex J(i,t)

Universum U:
Objects:

Norm
Value
State of
the World
Data
Action(s)
Other

Situation S

i’s Comparative-
Judgment process
with respect to
objects from U
in situation S

figure 17.1. General model of judgment.

judgment operations such as evaluations, beliefs, data, programs, proce-
dures, and other rules and rule complexes.

Judgment is a core concept in GGT (Burns & Gomolińska, 2000, 2001;
Burns, Gomolińska, & Meeker, 2001; Burns & Roszkowska, 2004). The ma-
jor basis of judgment is a process of comparing and determining similarity.
The capacity of actors to judge similarity or likeness (that is, up to some
threshold, which is typically specified by a meta-rule or norm of strin-
gency) plays a major part in the construction, selection, and judgment of
action. This is also the foundation for rule-following or rule-application ac-
tivity. In this paper, the focus is on similarity of the properties of an object
with the properties specified by a rule such as a value or norm. But there
may also be comparison-judgment processes entailing the judgment of the
similarity (or difference) of an actual pattern or figure with a standard or
prototypical representation (Sun, 1995).

Several types of judgments can be distinguished, for instance, value
judgments, factual judgments, action judgments, among others. For our
purposes here, we concentrate on judgments and decisions about action.

2 the principle of action determination:
a type of judgment

In making their judgments and decisions about an action or object B (or
choosing between A and B), players activate relevant or appropriate
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values, norms, and commitments. These are used in the assessments of
options through a comparison–evaluation process. In determining or de-
ciding action, a player(s) compares and judges the similarity between an
option B or pair of options, Aand B, and the appropriate, primary value or
goal to which the actor is oriented – for instance, she is expected in her role
to – realize or achieve in the situation. More precisely, the actor judges if a
finite set of expected or predicted qualia or attributes of option B, Q(B), are
sufficiently similar to the set of those qualia Q(v), which the primary norm
or value v (or a vector of values) prescribes.

The principle of action determination states: Given the interaction situ-
ation St and game G(t), and actor i in Role (i ,t) oriented to the value v (or
a vector of values) specifying dimensions and standards Q(v), which i is
expected to focus on and realize in role decisions and performances in G(t),
then i tries to construct, or to find and select, an action pattern or option
B where B is characterized by dimensions and levels Q(B), satisfying the
following rough or approximate equation,2

J (i, t)(Q(B), Q(v)) = sufficiently similar (17.3)

Then, an action B satisfying this equation implies that actor i should “enact
B” (in other words, the conclusion of the judgment process is to “do B”
because Q(B) is judged sufficiently similar to Q(v); or, in the case that there
are several options, Q(B) is judged more similar to Q(v) than are the other
options, and actor i should do B (rather than A).

Most modern social systems of interest can be characterized as multi-
agent systems in which the agents have different roles and role relation-
ships and operate according to the action determination principle. That is,
there are already pre-existing institutional arrangements or social struc-
tures in the context of which agents in two or more roles (1, 2, 3, . . . , m)
vis-à-vis one another interact (or conduct games) generating interaction
patterns, outcomes, and developments. Consider a two role model (see
Figure 17.2).

Human judgment and action are multi-dimensional and open to mul-
tiple interpretations and modalities. The focus may be on, for instance:
(i) the outcomes of the action (“consequentialism” or “instrumental
rationality”); (ii) the adherence to a norm or law prescribing particular
action(s) (“duty theory” or normativism); (iii) the emotional qualities of
the action (“feel good theory”); (iv) the expressive qualities of the action
(action oriented to communication and the reaction of others as in “dra-
maturgy”); (v) symbolic communication and rituals; or (vii) combinations
of these.

2 Elsewhere (Burns & Roszkowska, 2004; Roszkowska & Burns, 2002) we have elaborated
this model using a fuzzy set conceptualization. The general formulation of equation (3)
relates to the notion of “satisficing” introduced by Simon (1969).
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CULTURE/INSTITUTIONAL ARRANGEMENTS

SOCIAL AGENT A SOCIAL AGENT B

SPECIFIC
INTERACTION
CONDITIONS

PHYSICAL
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STRUCTURES:
TIME, SPACE
AND OTHER
CONDITIONS

INTERACTIONS
AND OUTCOMES

MODEL(1, t)

J(1, t)

VALUE(1, t) ACT(1, t)

MODEL(2, t)

J(2, t)

VALUE(2, t) ACT(2, t)

ROLE1 ROLE2

figure 17.2. Two-role model of interaction embedded in cultural–institutional and
natural context

Role incumbents in a concrete interaction situation focus on, and make
action judgments on the basis of, particular qualia or properties associated
with actions because, among others, (1) such behavior is prescribed by
their roles, (2) the behavior is institutionalized in the form of routines, (3)
there is a lack of time, computational capability, or necessary information
to deal with other dimensions. For our purposes here, we focus on the first
two patterns, (i) and (ii). Cognitively and evaluatively, these are specific
modalities of action determination.

In both cases, action determination takes place according to the princi-
ple of action determination (Equation (3) entailing the application of given
value(s) in an action judgment process). The value-guided judgment pro-
cess constructs a particular action, program, or procedure or selects among
available action alternatives, programs, and procedures. That is, the actor
or actors check to see if an appropriate value or values are realized in the
actions he/she or they might undertake vis-à-vis one another.

(I) Consequentialist-oriented action and interactions. Given a context t,
the game G(t), and the rule complex {ROLE(1, t), ROLE(2, t), R} ⊆g G(t),
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the actors 1 and 2 orient to trying to realize role-specified values in the
outcomes or payoffs (con) of the action(s) under consideration. More precisely,
a value v specifies Q(v) the consequences (con) of which an action B,
Q(con(B)), is to satisfy. One form of such a mode of action determination is
found in classical game theory, entailing the game players who are assumed
to be self-interested, autonomous agents, attempting to maximise or optimise
a result or outcome purely for the gain of self, that is, very particular conse-
quences among all the possible consequences that might be considered.
Related forms of interaction have been investigated by Burns (1990, 1994),
Burns, Gomolińska and Meeker (2001), Burns and Roszkowska (2004),
Roszkowska and Burns (2002). These entail, among other things, varia-
tion in the goals of the actors: actors may be oriented strategically to one
another, for instance, in striving for “outcomes” that are good (bad) for the
other; or, they may be oriented to joint or collectively beneficial outcomes.

(II) Normativist-oriented interactions. Given a context t, the game G(t),
and the rule complex {ROLE(1, t), ROLE(2, t), R} ⊆g G(t), the actors in the
situation are expected to pay attention to, and make judgments about, par-
ticular qualities of their actions and interactions such as, for instance, “the
quality of cooperation,” “the degree they take one another into account,” or
“the level of fair play.” These determinations entail a comparison-judgment
of an action or actions focusing on intrinsic properties (pro) of the actions that
satisfy or realize one or more norms v’. That is, v’ specifies qualities Q(v’)
that an action Awith relevant qualities Q(pro(A)) is to realize. Again, actors
in solidary relationships focus on the production of actions and interac-
tions that are characterizable as “cooperative,” “solidary,” “fair play,” etc.
Rivals would focus, in contrast, on producing “competitive-like activities.”

3 summary

The judgment modalities for determining action are substantially different,
cognitively and normatively. This applies also to other modalities referred
to earlier such as emotional and expressive. Clearly, the information and
cognitive requirements differ among the modalities of action determina-
tion, because of the different focuses of attention and the different judgment
bases. In consequentialist judgment, the actor is value oriented to action
outcomes and their qualities. This contrasts to a normativist orientation
where the value focus is on the intrinsic qualities of the actions themselves.
Of course, both types of value judgment may apply at the same time and
even result in, for instance, the classic contradiction between “ends” and
“means.” Generally, actors are oriented to multiple values in their interac-
tion situations. This may result in dilemmas, or contradictory conclusions
about what to do. Typically, their action judgment process under such
conditions will involve the use of procedures such as weighting schemes,
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lexicographic, and other methods to resolve dilemmas. Resolution may
be achieved through higher order or meta-rules giving priority to one or
another of the contradictory values, or even finding ways of transcendence
(Burns, Gomolińska, & Meeker, 2001).

As Naveh and Sun (Chapter 6 in this volume) rightly stress, cogni-
tive processes such as those of judgment should be systematically investi-
gated in the context of multi-agent interaction. Typically research on social
simulation has dealt with very simplified versions of cognitive and social
phenomena. In our own simulation work (Burns, Caldas, & Roszkowska,
2005), agents are socially embedded in cultural-institutional orders that
to a greater or lesser extent shape and regulate the cognitive-normative
models employed by agents in their multi-agent interactions. The different
cognitive-normative models of judgment and action determination out-
lined in this chapter can be introduced and investigated in multi-agent
simulation studies, as we are currently doing in our own research.
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Including Human Variability in a Cognitive
Architecture to Improve Team Simulation

Frank E. Ritter and Emma Norling

1 introduction

When sophisticated models of human behavior are used in synthetic en-
vironments or video games, they typically attempt to capture normative
behavior by providing homogenous agents from a cognitive architecture.
A recognized shortcoming of this approach is that in reality people do not
always behave in exactly the same manner: no matter how well trained
a person might be, there are always instances when they deviate from
what is prescribed by their training. Even when following doctrine, there
can be considerable variability across individuals (Pew & Mavor, 1998;
Ritter et al., 2003). This variability, even after differences in knowledge are
removed, arises both from individual differences, where different abili-
ties can lead to marked differences in behavior, and also from behavior
moderators – internal and external factors, typically related to time, that
moderate individual differences, compounding the effect of individual dif-
ferences. As well as having a considerable impact on individual behav-
ior, such variability will also strongly influence team and organizational
performance.

Much of organizational theory and practice is designed to study indi-
vidual differences and their impact on team performance, however most
existing cognitive architectures create homogenous models unaffected by
time. Some social simulation models do explore the impact of individual
differences (e.g., cooperative versus non-cooperative agents in Axelrod,
1997; and papers in NAACSOS Conferences), but in such cases, the dif-
ferences are usually modeled at a coarse level, or simply as differences
in knowledge alone. As discussed below, more subtle individual differ-
ences can have considerable impact on teams and larger organizational
units. COJACK, the architecture introduced in this chapter, is designed to
model individual differences and variability in a psychologically plausible
manner, facilitating simulation of such phenomena.
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After very briefly reviewing how individual differences can modify
teamwork in Section 2, in Section 3 we provide examples of architectures
that support modeling variability. In Section 4 we then discuss the types
of variability that should be supported by architectures, briefly outlining
how this can be achieved. Finally, we conclude with a discussion of how
these considerations have influenced the design of COJACK, and issues
that will affect other architectures.

2 human variability and its influence on teamwork

Several areas of research have long recognized that human variability
plays an important role in team dynamics, and that different combina-
tions of team members will have considerable impact on the overall per-
formance of teams. In social psychology, the Myers–Briggs personality
test often is used to study how team composition affects team perfor-
mance. In the area of human factors research, for example, numerous
authors in this book and in McNeese et al.’s (2001) book examine how
team member’s information processing capabilities will modify team per-
formance and attempt to design optimal teams based on tasks and team
member capabilities.

In management science, Belbin (1993) identified nine ”team roles” for
members of management teams, where each role type contributes in differ-
ent ways to the team. These roles are based on a range of factors, including
cognitive ability and personality factors. For a team to perform well, it
must contain a balance of these roles. He also notes that some individuals
do not obviously fit in one particular role, but that this can be a strength
or weakness depending on how the individual reacts to it. It can mean
that this person is flexible and able to take on different team roles as the
need arises, but it can also mean that the individual is not a good “team
player.” Belbin’s work focuses on management teams. Other sources of
human variability will be important for other types of teams. For a team
engaged in physical work, the perceptual/motor ability of individual team
members will make them more or less suited to particular roles. The perfor-
mance of team members will also be constrained by the abilities of others –
for example, a team traveling together cannot progress together any faster
than its slowest member.

3 variability in existing cognitive architectures

There are considerable differences in the types of variability supported
by existing cognitive architectures. Here we briefly outline some of the
architectures that provide lessons in this area.
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3.1 ACT-R, Soar, and CLARION

Like almost all cognitive architectures, ACT-R, Soar, and CLARION (Chap-
ters 2, 3, and 4 in this book) support modeling individual differences as
differences in knowledge. There have been several efforts to extend Soar
and ACT-R to incorporate further aspects of variability, and CLARION
can be used in this way (Chapter 6 by Naveh & Sun). In Soar, Chong (e.g.,
1999) has started to include moderators such as fear, but his models do not
allow for changes in the influence of the moderators over time: the models
start and stay fearful. The work by Gratch and colleagues (e.g., Gratch &
Marsella (2004); and Chapter 9 here) incorporates a model of appraisal that
updates the agent’s emotional state over time. A model of teamwork has
been developed in Soar (STEAM: Tambe, 1997), but human variability has
not yet been explored within STEAM to our knowledge.

The most recent version of ACT-R (5.0) includes a model of perception
and action with noise parameters that can be increased to cause more vari-
ation, in addition to the cognitive parameters provided by previous ver-
sions. There have been a few projects that have attempted to include more
aspects of individual differences (e.g., Daily, Lovett, & Reder, 2001) and
the body and its effects on cognition (Jongman, 1998; Ritter, Avraamides,
& Councill, 2002), but none of these have also examined teamwork.

3.2 Other Cognitive Architectures

There are several other architectures that support human variability (e.g.,
Epic: Meyer, Glass, Mueller, Seymour, & Kieras, 2001). We only review a
few examples here. PSI (Dörner, 2003), one of the more complete, includes
a body and a sense of time, in addition to parameters related to individual
differences. These two aspects play an important role in modeling human
variability. PSI’s behavior in a complex task has been compared with hu-
man behavior (Detje, 2000), demonstrating that models and humans need
a complex task with several subtasks to express variability – if there is
only one task, the model cannot give up on that task, or prefer a different
task. The human data in this complex task showed that the behaviors and
behavior orders varied across individuals. Finally, varying the drives and
individual parameters in the model gave rise to different types of behavior.
MAMID (Hudlicka, 2004) is a similar architecture that starts to model the
effects of moderators on cognition but extends this to model the effects
on leadership; PMFserv includes moderators and has been used to model
crowd behavior (Silverman, 2004).

Sloman (2000) has argued the need to include emotions in human
modeling, and has developed the Sim Agent toolkit to explore these
types of architectures (Sloman & Logan, 1999). The use of this toolkit has
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illustrated that there is a wide range of differences to explore. Social science
simulations such as appear at the NAACSOS Conference model teams, but
have tended either not to model cognition in detail or else not to model
variability. There are no doubt further exceptions.

4 adding support for human variability

Human variability can be viewed as consisting of three types of variability.
The first type is inherent individual differences of abilities, such as work-
ing memory capacity. The second and third types represent external and
internal factors that cause an individual to vary their behavior over time
(Ritter, 1993). A variety of reviews have been undertaken that provide sup-
port for modeling these differences, including Boff and Lincoln’s general
review (1988), and Silverman’s (2004) focused survey.

This section summarizes the types of parameters that we propose to start
to model individual differences and to support modeling behavioral mod-
erators, and is taken from a more detailed review (Ritter & Norling, 2003).

4.1 Individual Differences

Our initial survey identified approximately sixty architectural parameters
that have been studied because they give rise to individual differences that
can be broadly classified into four groups: cognition, perception, action,
and physiology. Although this parameter set is not exhaustive (it would
certainly be possible to find many more parameters that influence human
reasoning and action), we believe that this set is a sufficient initial set to
capture the main elements that contribute to human variability. We briefly
describe each group, presenting examples to illustrate how they can influ-
ence agent behavior.

4.1.1 Cognition
The parameters that we have selected to capture variability in cognition are
primarily taken from ACT-R 5.0 (Anderson et al., 2002). This parameter set
has been extensively validated. In addition to these parameters, we have
identified a number of higher-level parameters affecting cognition, such
as the number of parallel tasks that can be maintained. We have included
a few personality variables such as acquiescence. Ultimately, however, we
believe, these higher-level effects should arise from the effects of lower
level parameters.

4.1.2 Perception
The majority of simulated environments provide most perceptual data as
visual data, sometimes also including sound. Here we focus on visual per-
ception. A similar parameter set has been developed for aural perception.
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table 18.1. Example parameters of visual perception. Defaults are taken from the
literature. Suggested standard deviations, in parentheses, in most cases are estimated.

Parameter Default Description

Saccade time 120 ms
(10 ms)

Time taken to move the eye to a new
location.

Fovea size 3 deg.
(0.2 deg)

The size of the cone of vision for which full
visual detail is available.

Visual working
memory

3
(0.5)

The number of items that can be stored in
the visual buffer.

Table 18.1 provides several examples. These parameters (and the mecha-
nisms that they influence) are assumed to be separate from other cognitive
mechanisms. This approach treats perception as impenetrable, in that cog-
nition is assumed not to modify how perception works (Pylyshyn 1999).
This assumption is useful because it makes it easier to create cognitive
agents. There are already suggestions that this approach is too modular
when taken to this extreme, and should only be seen as a useful working
hypothesis.

4.1.3 Action
Existing models that have typically included motor output have often done
so at the level of hand movements and typing (e.g., ACT-R/PM: Byrne,
2001; EPIC: Meyer et al., 2001; SegMan: St. Amant & Riedl, 2001; Sim-eyes
and -hands: Jones, Ritter, & Wood, 2000; Norling & Ritter, 2001; Ritter et al.,
2000). The more accurate models include parameters to modify both speed
and accuracy. Speed particularly is not constant over time, with variance
under standard conditions that can itself be affected by moderators.

The fine-grained level of mouse and keyboard inputs does not, however,
correspond to the level of detail provided by the simulation environments
in which many agents will operate. The architecture should also provide
support for movement at other levels of granularity, such as walking.
Parameters and mechanisms for gross motor movements are likely to be
particularly important for modeling fatigue, both as a variable that is influ-
enced by moderators, but also because motor output over time increases
fatigue.

4.1.4 Physiology
Physiological parameters are necessary to represent fundamental aspects
of the agent’s body. Initial settings will represent individual differences.
They will also help implement the effects of other moderators and time.
Many physiological aspects of a body may influence the agent via their
interaction with other parameters rather than or in addition to directly
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influencing the reasoning/action of the agent. As such, they can themselves
be seen as behavior moderators. For example, heart rate and blood pressure
influence how quickly stimulants are taken up and then excreted.

Parameters we have included in this set include heart rate, blood pres-
sure, body temperature, and levels of various naturally occurring hor-
mones (such as cortisol). One of the difficulties of including these parame-
ters at this stage is that the effects of many of these variables on cognition
have not been extensively studied particularly with models in mind, giv-
ing us limited data to work with (Silverman, 2004). As a result, it is likely
that the initial versions of architectures will contain only placeholders for
these parameters, without attempting to capture their full influence. They
do, however, provide useful suggestions for further research.

4.2 Behavior Moderators

Extending Ritter’s (1993) earlier analysis, we have grouped behavior mod-
erators and the variables to implement them into three classes: external
(arising outside the entity), internal (arising from internal changes in the
entity), and task-based (arising from processing). Task-based moderators
can be seen as a special sub-class of internal moderators. They have im-
portant implications for modeling behavior, so we keep them separate.

4.2.1 External Moderators
External moderators are external events or conditions that affect the entity’s
behavior. These include things such as temperature, noise, and time of day.
The range of external moderators that could be modeled is extensive, but
the choice of moderators to include will depend on the model, the task
to be performed, and most importantly, the perceptions that are available
from the model’s environment.

External moderators influence the agent’s body, and will have to be
implemented as changes to intermediate, physiological parameters that
are time dependent. The effect of temperature, for example, is a cumula-
tive function. These parameters can then be used to moderate cognitive
parameters.

4.2.2 Internal Moderators
Internal moderators are those that arise out of changes within the individ-
ual, especially over time. Variations in the values of the entity’s param-
eters can themselves lead to variations in other parameters. Task-based
moderators (discussed next) are a special sub-class of internal moderators.
Other types of internal moderators include changes in physiology with
time (e.g., caffeine) and sleep and fatigue-related factors.

Chemical moderators such as caffeine are, in a way, like external mod-
erators. These moderators originate outside the body, but it is their effect
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on the body (and subsequently on the brain) that produce the changes in
behavior. Typically, an initial dose is ingested, which may take some time
to be absorbed, and then over time the chemical is excreted. The level of
the chemical affects various aspects of cognition, perception, and action.

4.2.3 Task-Based Moderators
Task-based moderators are those associated with the information being
processed and the passage of time. Most cognitive architectures assume
that their mechanisms are fixed across time; however, there are many ele-
ments of the task that can moderate behavior, including time itself. Sample
task-based moderators include boredom, fatigue, and appraisal/emotive
moderators. We know, for example, that performance on a vigilance task
drops 20% over as little time as an hour (Boff & Lincoln, 1988, Ch. 7.403).

4.3 Including Variability for Team Studies

Differences across individuals and over time within an individual are im-
portant when studying team performance. Obviously, some of the param-
eters that we have identified will have more of an impact on teamwork
than others. For some of the lower level parameters, their influence on
teamwork may be indirect and not yet known. However, many behavioral
differences arise from the interaction of parameters and moderators, so
consideration must be made before discarding any particular parameter.
The effect of reaction time, for example, on teamwork, appears to be little
studied, yet Gratch and Marsella (2004 and Chapter 9 in this book) report
reaction time as important for interpreting social agent cognition. In the
absence of better measures, those parameters that are most clearly under-
stood should be implemented first, providing a framework for testing the
implementations of less studied or more complex parameters.

5 modeling team and organizational effects of
individual differences

We present here an overview of COJACK, a project to create a cognitive
architecture that supports human variability. It is based on the lessons from
the architectures reviewed and uses the parameter set we have developed
(Ritter & Norling, 2003). Many aspects of this architecture will also be
important in other cognitive architectures in the future.

5.1 The Development of COJACK

COJACK is based upon an existing agent programming language, JACK
(www.agent-software.com.au). As JACK is a Belief-Desires-Intentions
(BDI)-based language, its core constructs correspond to folk psychological
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figure 18.1. Schematic of the COJACK cognitive agent-based architecture.

concepts. This level of representation facilitates both knowledge capture
from the experts to be modeled and understanding the models that are de-
veloped (Norling & Sonenberg, 2004). JACK provides a level of abstraction
useful for knowledge acquisition and model understanding; COJACK fills
in the details needed to support variability. We aim to maintain the usability
of JACK while supporting cognitive plausibility.

COJACK is a software overlay for JACK that supports individual dif-
ferences through the set of parameters outlined earlier, and behavior mod-
erators via active modifications to these parameters. These parameters
vary across time in a particular individual, as well as across individuals.
Finally, COJACK is tied to the environment through a simulation intercon-
nect layer, which remains an important aspect of modeling (Ritter, Baxter,
Jones, & Young, 2000). COJACK’s implementation has been tested with
a model of serial subtraction, a task commonly used to stress subjects.
Figure 18.1 provides a schematic of COJACK. This framework includes
constraints on its processing mechanisms. These processes degrade with
time on task (or are refreshed with rest).

The behavior moderator modules, which look like a type of key in
the figure, represent different settings of these parameters, including how
the parameters influence each other and how fast they change with time.



Human Variability in a Cognitive Architecture 425

Currently, settings are designed to be used in isolation to modify the cog-
nitive architecture as an overlay, but in time they will interact to produce
cumulative effects. This merging will be limited by our attention as well
as the paucity of data of how multiple moderators interact.

Graphical interfaces and traces will be supported though the cognitive
modeling framework as well as the base agent architecture. These displays
and traces are necessary for debugging and for explanation to users.

5.2 The Addition of a Simulated Body

Cognitive aspects alone are not enough to support human-like variability;
the interactions between perception/action/physiology/cognition are im-
portant. Several architectures have included parts of bodies, particularly
perception and action, but it is time to start to include further parame-
ters related to a body, such as reservoirs related to sleep and energy (as in
PMFserv and PSI). The full range of interactions between physiology and
cognition are not yet understood, but capturing more of these effects will
prove important.

5.3 The Importance of Time and Usability

Few existing cognitive architectures alter their behavior because of changes
in physiology with the passage of time. However, the effects of nearly all of
the important moderators considered here (e.g., fatigue, stimulants) change
as time passes. Architectures that wish to model such moderators will have
to include the effects of time, and modify their bodies and information
processing mechanisms accordingly.

Modeling these additional physiological processes and time will require
that some attention be paid to usability. The overlays will have to be clear,
with their effects included in model traces, and to be inspectable because
these parameters will intentionally vary across individuals, with time, and
with initial settings. The overlays will draw on research that most cognitive
modelers are not familiar with. All these factors will make the models
harder to use, ironically, making models more like the humans they are
meant to simulate.
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When Does Social Simulation Need
Cognitive Models?

Nigel Gilbert

Contributors to this volume have explored the ways in which cognitive
models or architectures may be helpful or even essential for building sim-
ulations. In this epilogue, I shall be considering whether cognitive models
are always necessary – is a social simulation necessarily inadequate if it
has no or only a very simple model of cognition? If not, is it possible to
specify classes of simulations for which cognitive models are necessary or
unnecessary?

I begin by rehearsing the issue of “levels,” which has been touched
on by a number of contributors, suggesting that analytically at least it
is possible to distinguish a biological, a cognitive and a social level, in
which the characteristics of phenomena at one level are emergent from
the behavior of phenomena at levels below (see Chapter 1). This leads to
a consideration of when social models need to take account of the details
of cognitive architectures (and when cognitive architectures need to take
account of social phenomena). Finally, I discuss the problem of how to
select among the cognitive architectures being offered when it has been
decided that one does need to include a cognitive model in one’s social
simulation.

The idea of “levels” is quite difficult to pin down, although common-
place not only in the social simulation community but also more generally
in science. It expresses the idea that small-scale details can be abstracted
away when considering phenomena at a more macroscopic scale (Gilbert,
1995). For example, to understand the behavior of ordinary physical ob-
jects, you do not need to know about the composition of atoms; similarly to
understand ecology, you do not need to be familiar with intra-cellular pro-
cesses. Just as, conventionally, a distinction is made between sub-atomic
and atomic, and between cellular and ecological “levels,” a similar distinc-
tion is made between the cognitive (i.e. the individual) and social “levels”
in the social sciences. Social theorists often make a further distinction be-
tween the organisational and the social.

428
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Phenomena at a higher level are said to “emerge” from behavior at the
lower level. Emergent phenomena are ones where there is an observation
mechanism for the emergent phenomenon that does not apply to struc-
tures at the lower level (Baas & Emmeche, 1997). For example, the mind is
an emergent phenomenon of brain cells; political parties (and all social or-
ganisations) are emergent phenomena of interactions between individuals;
and identity is an emergent phenomenon of cognition. In each case, what
we can observe at the higher level (a political party, for instance) is not a
possibility at the lower level (an individual cannot be a political party). It
is important to note that the definition of emergence involves an external
“observation mechanism.” This may be as simple as collecting public infor-
mation about the existence of a political party, or as complex as magnetic
resonance imaging, but without an appropriate observation mechanism,
emergence cannot be detected. Different mechanisms can yield different
observations and so different conclusions about emergence. This implies
that emergence and indeed the separation of structures into levels is a mat-
ter of scientific convention: there is a sense in which it is true to say that
emergence is in the eye of the beholder.

The reductionist programme of scientific research argues that one
should start with immediately perceptible phenomena and then dive down
into successively deeper levels. This programme has been outstandingly
successful in physics, effective to a degree in biology, where it has given
us molecular biology and the human genome programme, and may also
be part of the justification for this volume where contributors argue for
the importance of understanding the cognitive in order to understand the
social. But humans differ from atoms and ants, in that they are able to
comprehend macro patterns (what sociologists call institutions) and these
institutions can change individual behavior. For example, voters can be
influenced to support a political party by the success of the party’s cam-
paign, which was intentionally constructed by its leaders to maximise its
support. Here individuals are influencing the party’s platform, and the
platform is influencing the voter, who might join the party and help to
shift its political priorities. The example illustrates the interaction between
the organisational and individual levels which, if successful, could become
self-reinforcing. Neither a reductionist programme that attempts to explain
the politics of the party from the actions of its individual members, nor a
structuralist programme that aims to understand the political actions of
the individuals solely by reference to the manifesto of the party are ade-
quate in isolation: we need to understand the dynamics of the interaction
between the two levels.

The example shows that, whereas analysis at just one level, such as the
social or the cognitive, can in some circumstances be methodologically
attractive, there can be important interactions between levels that should
not be ignored. On the other hand, it is simpler to remain on one level, for
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example, to be concerned only with the social and not have to worry about
the cognitive, or vice versa, and this is an adequate methodological strategy
if it does not do too much damage to the analysis. It would therefore be
useful to have some rules of thumb about when one can analyse at just one
level.

The most common reason for ignoring other levels is that the properties
of the actors at these other levels can be assumed to be constant. When there
is no endogenous change at the other levels and no ‘leakage’ from the level
under analysis to other levels, it may be possible to confine one’s attention
to one level. Economists do this when they examine markets in equilibrium
and assume that individual actors’ preferences remain constant. They are
duly criticised when the assumption is false – for example, when there are
network effects such that the utility of a good changes because many other
people have bought it. The famous example is the video cassette, where
there was “lock in” to the VHS format although the competing Betamax
was technically superior, because there were overwhelming advantages
to buying the same format as the majority of others had already chosen
(Arthur, 1990).

A second reason for ignoring other levels arises when there are many al-
ternative processes at the lower level, which could give rise to the same phe-
nomenon at the level of primary interest. For example, a famous early so-
cial simulation was Schelling’s model of residential segregation (Schelling,
1971). This model made only the crudest assumptions about the moti-
vations of individual households and completely failed to examine why
households might want to move out of neighbourhoods where they are
in a minority. But for Schelling’s purpose, which was to demonstrate the
unintended consequences of the households’ migration, the underlying
motivations are not relevant and did not need to be modelled (Gilbert,
2002). This is fortunate because there are many reasons why a household
might want to move. For example, members of a black household might
want to move out of a white area because they wanted to be close to others
of the same ethnicity, because they were priced out of an expensive white
neighbourhood, because they were the victims of abuse and discrimina-
tion, or any number of other reasons. A multilevel analysis would need to
examine and select between these motivations, but for Schelling, a study
of them would have gotten in the way of the point he wanted to make.

Correspondingly, there are studies where it is impossible or unwise to
confine the analysis to one level. Instances of these can be found throughout
this volume. The most straightforward example is where the analysis of
the lower level provides constraints on the phenomena at the higher level
(see, for example, Chapter 5 by West, Lebiere and Bothell and Chapter 7
by Clancey et al. in this volume). There are restrictions on the speed of
cognitive processing, on the physical location of bodies, and on the physical
possibilities of interaction, all of which impose constraints on the behavior
of social organisations, such as planning meetings and teams, but working
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out exactly what these constraints are and how they apply may require a
very detailed analysis of cognition and even physiology.

One also needs to model both the social and the cognitive levels if the
descriptions at one level are or can be applied at the lower level (what Sun
calls “mixed-level” analysis; see Chapter 1 by Sun). An example often re-
ferred to in this volume is the Belief-Desire-Intention (BDI) cognitive model
(Georgeff, Pell, Pollack, Tambe, & Wooldridge, 1998). This model seems to
have been developed in the 1990s specifically to provide a plausible, yet
computationally tractable model of cognition for artificial intelligence re-
search. It is not based on experimental evidence or on theoretical analyses
of human cognition, but rather on what we might call “folk psychology.”
Typically, in contemporary western culture we evaluate our peers’ actions
by attempting to assess their intentions, referring to our knowledge or as-
sumptions about their beliefs and desires. We do this without regard to
either psychological knowledge about cognition, or, as philosophers (e.g.
Winch, 1958) have pointed out, the logical puzzles that can arise when one
tries to pin down “intention” and separate it from “action.” Philosophical
analysis has emphasised that the vocabulary of intentions is completely
suffused with social action and cannot exist outside a social context. Thus,
it is arguable that interpretations of action in terms of beliefs, desires, and
intentions are social constructs, products of a particular culture, and yet
these have been pressed into service as a cognitive model by researchers.
The BDI model is often useful, but perhaps no more so than a billiard ball
model of the atom can be useful in understanding nuclear fission. Unlike
some of the other cognitive architectures described in this volume, it is not
corroborated by numerous experiments with human subjects under con-
trolled conditions, but takes its plausibility from its effectiveness within
our culture in making sense of others’ actions. In short, it is a model that
mixes levels, using a socially constructed vocabulary to examine cognitive
phenomena.

The BDI model is a different kind of model from the others described in
this volume, which are more firmly based on psychological theorising and
experimental evidence. That still leaves the analyst with a choice to make,
however. Should the social simulator opt for ACT-R or Soar, a connectionist
neural network, CLARION, or some other model? Most of the contributors
to this volume do not explain how they selected which cognitive model to
use, nor the implications of their choice. An exception is Chapter 5 by West
et al., who are explicit about the reasons why they believe ACT-R is the best
model for their study: it is a good model of human cognition (but the pro-
ponents of other models would no doubt argue that theirs are good models
also) and, more importantly, it was able to reproduce the pattern of sequen-
tial dependencies that they were aiming to model without “tweaking” or
special modifications. But as West et al. note, the same is true of several
other architectures. Here we have an example of where several cognitive
architectures have the potential to generate an emergent phenomenon (the
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sequential dependencies) and so if one’s attention is focused on the social
level, all the candidate architectures are more or less equally appropriate.
To distinguish between them, one would need to identify cognitive or so-
cial level features where the models made different predictions and then
see which of these is most in accord with data from observations of human
individual and group behavior. Until this is done, the choice of a cognitive
model from among those described in previous chapters will probably de-
pend on pragmatic issues such as how easy they are to obtain, previous
experience with them and their use in related research.

I have argued that social simulations do not always need to be coupled
to cognitive models. In some circumstances that I have begun to explicate,
using cognitive models would only complicate the research. On the other
hand, there are also studies where mixed-level modelling seems inevitable
given the approach taken, such as those that use BDI models, and other
studies where a mixed-level analysis is essential. The benefits of a mixed-
level approach are apparent in several chapters in this volume, such as
Chapter 12 by Schur et al., where individual agents maintain cognitive
models (at the cognitive level) of the team as a whole (i.e. the social level),
in order to improve the coordination of the agents’ actions. Another type
of example is provided in Chapter 13 by Parisi and Nolfi in this volume in
which they discuss very simple agents that exhibit behavior similar to the
flocking of birds or the schooling of fish, and show that this behavior can
be the result of the interaction of individual (which they call “local”) and
social (“global”) factors. Thus, the chapters in this volume provide some
excellent examples of the problems and benefits of mixed level models,
and we can look forward to more as the relationship between the social
and cognitive levels is explored more deeply.
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