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1 (9) is the same as Eq. (6) in reference 2. The

rest of the material covered in pp. 36-40
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It i1s evident that this least square process does not

require the parametens Zi in (11) to arise from the

Lagrangeéan form of the algebralc polynomial, although the

letter Z and the range -N to +N for 1 were chosen with
this in mind; in fact, it does not even require (11) to
arise from an integral equation. Any approximating function
off the form Zlx) = alJl(x) + agwe(x)+,...ann(x) could have
been used.
GENERAL SOLUTION TC THE PROBLEMS

We now illustrate the least square technique by solving

1

the following problem.

i

i

A string of length L and density P(x) is rotat

O

ng with

an angular velocity w in a viscous fluld with a coefficient
of friction e¢. The string is strethed wlith a uniform tenslcn

T, A forcing function w(x,t) is impressed upon the string

v M

o

Find the displacement of the string as a function of x where
d

x

istrance from one end of the s

T

X 1s the Cring.,

THE GREEN'S FUNCTION
This problem will be solved by =
finding the deflection of x due to a
unit forece at u, integrating the pro-

duct of the actuval force times the de-

flection due to a point force over the .f—':ST’“S =N '
7 = L g_‘qﬁT

—> X
=) Y

length of the sting.
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n is the same as equation (11). Using this equation the
least squares method of solutlion wlll be applied.
Por the problemg in thls paper P(x) will be held to

E i . =

the constant” P and equation (32) becomes

(39) L. 0= K Lqe\- Pw(w-3¢)§ 6ex 0 K, [ae)| ou

Because of the large amounts of calculations necessgary,

the prblem willl be solved in segments.

L
THE MATRIX ﬂ; G Lt 0K, (am) )0}
o

While it 1is possible to integrate the integral

2

A
0]
o
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ey

thilis matrlix 1t is s

\
©

r to proceed as follows. Thie equation

Lie

mpl
is a rearrangement of J” X, Sa )2 (e Yo, | Sincel Zlo) 4s
a smooth curve and since ;(x1ﬂ) is smooth on either side

grand 1is smooth o n each side
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e
C
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Q

off the corner at u

1.

of this point, at which 1t too has a corner. Approximate

integration using

o

Simpson's Rule should give good results if

@

no one intepolation polynomial is required to approximate

side of Tthe corner.

L At
olexelg)

r"\

(..i

Let us divide the interval O < u < L into 16 equal

subintervals and apply Simpson's Rule. Each of the intervals

i
R L S

4

r-:i i_l
E

ete. 18 hence approximated by a

second degree polyneomial. Simpson's Rule is used so we can apply

L
&

the =same integration Tformulas regardless of whether

Notice that if P(x) were a variable it could be included as a
welghing function on one of the matrices that would be obtalned
this this problem.
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As the value of G(x juj) 1s zero when s = O only or When

uj =0 or L this matrix will have the same numetrical value
1f 1ts first and lagt columns and it¥s top and botbom rows
are removed. This means that the matrix ‘CG(xkuji} has T
rows and 15 columns. In order that matrilix multipllcation
remain deflned, the top and bottom rows of DJK1~¢'b\;}1HUSt
also be remﬁvedT This does not change the value of the
sum ag the only multiplications that invelve these gquantities
are multiplications by zero. Also as Z_, = 4, = O the first
and last colums of this matyrix can be removed. This means
that the matrx [DjKi'
The row and column indices of the flrst mbrix are X and
respectively while the row and column indices of the second
matrix are J and 1 repectivel The final result of thi is
thet the matrix product of these two matrices has 7 rows and
3 ecolumns, the row index beling k and the column index being
: i

As usual for problems of this nature the first matrix
depend only on the Green's Punction, and hence contains
the physical parts for this particular problem. The segcond

3

matrix depends only on the method of solution, and can be com-
S (B

puted once and for all and used on a variety of problems

7'Note after the first and las

N colums of this matrix heve been
removed these rows consist)of nothlng but zero's anyhow so nothing
is lows when they are regoved.This d)@u not change this set of
equations as H(xy)= JEG( kﬁew(z)\u and this guantity is Zero
for x, = 0 or x,.= Lfas G(0,d=G(L,u)=0) Unless w(0) or w(L) is
infinite. Thisg pogsibility 18 excluded,
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Both equations (38) and (3) are exact.
Carrying out the matrix multiplication of
{G(x sVy ) }{ Q(L}J) }} to get (approximately the mat.rix
{J#(Xk [a(u )jaﬁ]- the results are:

[ 90.34375 33.35937 5 30.8437§
132.875 88.6875 52.875
129.09375 1%3.48U3T 5 T4.59375
(40) {;c(m,&[qhg,.jﬁlozﬁ 166.25 102.5
T4.543750 143.48437 5 129.09375
30,2_-,- 52.875 88.6875 132.875
A30'84375 33.35937 80 90-3437§

Equation (40) is the exact matrix product of Equation

(38) and Equation (39).

(9
Now having found the numerical values of 2jé(xku)kl[q

return to the procblem of finding {Ii(x)

ﬁi(xk )}

An approximate integration will be used in the least
squares procedure, this is reduced (by use of an approxi-

mate integration using Simpson's Rule) to the problem of

finding the numbers to go into a matrix of ‘the form {ki(qki}

As the answer 1is expected to be a relatively smooth curve

"a forth degree polynomial approximation will again be used.

This means that 1 takes on the valuves -2,-1,0,1,2 and Q.

o ﬂi v
takes on the values -2, 1,- §,O + §’ %2,2 Lhis 18 a

tabulated function (the Lagrangean interpolation polynomial)

and is here copied from Reference No. 2. Table 3, p. 85.

(ulé@k
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‘ 1 0 0 0 o\T
.2734375 1.09375 -.546875 .21875 -.0390625
0 1 0 0 0
.0390625 46875 .703125 =-.15625 0234375
(4) {K(a M= 0 0 1 0 0
.0234375 -.15625 .703125 46875 .0390625
0 0 0 i 0
.0390625 .21875 -.546875 1.09375 2734375
L 0 0 0 0 £
where k and i1 are the row and column indices respectively.
As 7,=2,=0 the first and last columns of the matrix {ki(qkﬂ

can be removed without changing the problem. With these columns
removed the top and bottom rows become all zeros and can be

removedg. With these simplifications addition of the two matrices

{k:(qki} and ;}E(xk,u)k.[q(u)jau is defimed.

Using the equations (34) we get(for set values of X, )

(u2) %I x 3} BK (3 )} Pw(w- )g){]‘(l.‘.v)l( [qwﬂbu}}

Using equations (40), (41), and (42) we get

g

SEE COMMENTS ON THIS SIMPUFICATION  oN PASE [
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(43)
{

L4l)

(45)

3 . 3 -
— WL (W-3<) ; Pw C{w-3<) : o Pw L w-y
1.09375-90.34375 23072,1, - .546875-33.359375 ——B—OJTW— .21875-30.84375 30757 3
1-132.875 gslr;.gfwwc.) -88.6875 PBWLEZ\AJ-.)L.) “Ba 875!;)5.7(2\%1-.)&)
.46875-129.09375 '%QT(—E"’T‘M .703125-143. 48437 S %%97_2_";_.1‘) -.15615-Tk. 59375 Trrsadr
PRt (s~ Q) Poli(w-3c) Pl -3
];-(éﬂ’: -102.5 30721 1-16625 3oToT -102.5 30757
< ‘ 2
‘ 9 s Pyl (ve) ) : PWe (w-30) : P (v=)0)
- .15625-T4 .59375 '3‘?)"7‘?1‘“‘0 703125-143.1284375 e .46875-129.09375 ]
-52.875 SRETY™ -88.6875 i “) 1-132.875 LN
,_ P (w-3C) P (W= 0) Pwd (w30
[21879—30.84375 - - .546875-33.359375 mpeamr——  1.04375-90.34375 30721 ]
This corresponds to a system of 7 equations in 3 unknowns 2 Z s The second

=1’ 1°
equation of this system is

f1-132.875 %,T‘*é%’_’_‘\kl i 88.6875 ;é‘,;;;“? {52 875 ‘;‘37‘ “"““‘) =,

As this set of equations would be very difficult to solve as they are, they definitions
will be made

| T b= @
e~ g% e %T D G -

then equation (43) becomes:



[1.09375D-90.34375(1-Jg)  -.546875D-33.359375(1) .21875D-30.84375(1-Jg) e
o D-132.875(1-Jg) -88.6875(1-Jg) -52.875(1-Jg)

%F?Qﬁié .46875D-129.09375(1) .703125D-143.484375(13g) -.15625D-74.59375(1-Jg)
-102.6(1-3g) D=166.25(1-jg) -102.5(1-3g)
-.15625D-T4.59375(1-Jg)  .703125D-143.484375(1-Jg) .46875D-129.09375(1-jg)
-52.875(1-Jjg) -88.6875(1-Jg) D-132.875(1-Jg)
L;21875D"3°‘8”375(1‘5g) - .546875D-33.359375(1~Jg) 1.09375D-90.34375(1-Jg )

Equation (44) then becomes:

(D-132.875 + 132.875)g)2_,+ (88.687542-88.6875)z + (52.8754¢-52.875)2; = Q_,
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L

where Q_, is the numerical value of D Jf G(x_e,u)w(u)au. (The
top row of (44) corresponds to a k inde; of-3 instead of a
k index of -4 because the top row of the original system con-
sists of zero's and hence has been ommited. [See note on page
18]

If Z(x) were actually a fourth degree polynomial in the
line from x = 0 to x = L then the equatlions obtainable from
(43) would be exact instead of approximate except for small
errors introduced by the approximate integrations; hoever,
Z(x) ismt a polynomial, to our problem is to determine the
3 Z's of the 1 index so that for a given set of H's all seven of
these equations will be satisfied closely, though none will
be satisfied exactly except by accildent. Using the least squares
rocedure_ obtained in part 3 we proceed as follows.
D, I, (xi)¥
-2~ The quantities Dk are, except for an arbitrary constant
multiplier, the coefficients in an approximate integration formula
for the 9 points of the k index. The equations for k = + 4 have
been removed because the equations wodd be of the farm 0=0 as
shown above on page 1§.

A consideration of those two equations would have led to
the addition of a row of zeros at the top and bottom of (43)
and (46). Choosing Simpson's rule as the source of the D's
leaving all comment for Section & , we have

=i

e D T il SO b Wk P Rt P TR PR L st
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D-& and D4 will, of course, not be used.
We now take the complex conjugate of equation (46),
multiply each now by the corresponding D from (47)

[Kth

row multiplied by Dk] and finally interchange the
rows and columns of othe resulting matrix, thereby obtaining

the "derived matrix" (48). (This matrix has been transposed)

¥
2.1875D-180.6875(1+jg) -1.09375D-66.71875(1+jg) .43750_61.6875u{éﬂ
D-132.875(1+Jg) -88.6875 (1+jg) -52.875(1+Jg)
(4¢y |.9375D-258.1875(1+jg) 1.40625D-286.96875(1+jg) -.3125D-1 . .
_ -149,1875(1+Jg)
= 005 (1) D-166.25(1+Jg) -102.5(1+jg)

-.3125D-149.1875(1+jg) 1.40625D-286.96875(1+Jjg) .9375D-
258.1875(1+3ig)

-52.875(1+Jg) -88.6875(1+Jg) D-132.875(1+jg)

| 4375D-61.6875(1+Jg) -1.09 375D-66.71875(1+jg) 2.1875D
-180.8875(1499) |
L2 DL

THE LINEAR EQUATIONS

Combining equations (47),(48) and 21) we get 3 linear

- 3072T

equations in 3 unknowns (where g = % and D = PWAl from

Equation (45)' these egquations are also exact.



93
(:9) §3.97656 25 92-833.’421875&93,643-2890625(1+g'2)} Z_4
+{- 99609 375D2-522.3203125D + 9.546875]jgD

+100,051.75390 625(1+92)}-zo

- {2.18750-180.6875(1+ ) Y @ + {D-132.875(1%)} Q_
+§ .9375D -~ 25%.#7s (1129} Q- + §-10205 O3] @, *
+{-.3125D-149.1875(1+Jg) y@; + {-52.875(1+jg)} Q,,

Q

= §-.99609375D%-522.3203125D-9.. 546875 1D
+100,051.75390625(1+82) } 2,

.09375D-66.71875(1+38) } a_; + {-88.6875(1+3gfe_,

+ {1.506250-286.96875(1+3g)} 0_,+ {D-l66-25(1—3g}3§ +

Il
|
(]
oQ
3

1.420625D-286.96875(149g ¥

-)

- §88.6875(1+38)}0,, + §-1.09375D-66.71875(1+Jg)} o5

¢.‘ =
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3 )) { .6640625D%-378.921875D+T4,222.28§0625(1+g> )} Z_q

{-.996093751)2-522.320312533 + 9.5&6875395
+ 100,051.75390625(1+g2) } z

f3 .9765625D2-883 .421875D+93, 643 .2890625(1+g2 )} Z4
= £.4375D-61.6875(1+Jg) ¢ Qg+ {-52.875(1+Jg) 3 95
- §£.3125D-149.1875(1+jg)} o_; + §-102.5(1+jg)}e,

+  £.9375D-258.1875(1+Jg)}e; + {D-132.875(1+ig)} @

+ {2.1875D-180.6875(1+3g) }- Qs

These 3 equations are symmetric in that if in the 3

equations Qk is replaced by Q-k and Zi is replaced by Z—i

| equation (49) becomes equation (51), equation (51) becomes
equation (49) and equation (50) remains unchanged. Therefore

! JET kagk then Zl=Z_1.

| As these equations would become too difficult to solve as

| they are,values of D & g must be assumed. Before doing this the
| form of H(x) (and hence Q(x)) will be determined.

This solution will work for any forcing function w(x,t)
SUCH THAT THE £ PAXLY CRW 126 LMOVED Ny coMPIE X NOTAT/aN AND

that will produce a reasonable curve when integrated with

L
G(x,u) to obtain H(x) = JG(x,u)w(u)au.lo

THE SOLUTION OF THE SPECIFIC PROBLEM.

The specific problem to be solved in this part is that

10. This is necessary so that this function can be reasonably
approximated at the 7 points - ' og.'%a avd 2 ) that
are used in equations (47 )to( 51 éke function will be zero at

x=0,L as G(x,u) =0 for x =O,Lfor any VU and any finite w( v )



2B

of a string rotating in a viscous mediuvam with a traveling wave
as its forcing function

Chapter 1. Q(x)

Let w(x,t) = A,SN [%‘h ( )\‘-\/oTﬂ

where LS

is the wave length of the forecing function, t is
time and v

is the velocity of the travelling waves
down the line.

as they travel

(887 wilpE) = {A %nvm} sm‘“" “"{Agu“"’ }cosﬂx

W W,

As complex notation has been used throughout to remove the time

he tii
varing component of the problem, equation (52) can be rewriteen as

(53) Wix 3y = A%a.‘% = Sf\cos’ﬂ%\%
Now H () = ;6(7; L) W(v) Ju AnD
Gex )z & (Lev)  For LU AND
GC%, 0):

72 (L-n  for XU

r So
X
(58)  He = £X (owewse + % f(f- W & (V) 9V
= o Ky
x
= JLU‘U(U)()U——-‘?L,{ Y W) dv
8 %"‘!”“’3‘)“ = iuwu)ao

117 Equations(51}(53)were given to the author by Professor Crout
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X i 3 c
(55) H(w = #—guwcwu e gwwék\- = %‘u RIBPI
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o
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oS A7 cos o X Wo T
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~ITT o3 We W,
N T

C

. X BN W T - M\xf e .
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= AX W aNL mL
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E g S 3 %W, i W T

w

By use of Equations (55}(58) we get
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After cancelling terms we get

AW § we zm.-w_.z<_,m-73
A0 = = -{_ T SIM We LT e ['VA

-*..A Awo — wb CQS):—T—& \-k)g - Wo Cos 1TL WQX
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60y Qw=~ DHGO =3ZET R =

BT I8 & cas%i’%os%f;‘)}

Equation (60) is the equation needed in equations
(49)-(51). It vanghes identically at x=0 and x=L as 1s
necessary due to the fact that G(x,u)=0 whenever x=0,L
or u=0,L. (In this equation w_=the wave length of the
forcing function.)

Chapter 2. Numerical calculations Ip obtaining the

solution to the problem numerical values must be given for

.w, ¢, A, and w_.

@]
Let W ='%E. . . This is the first critical
angular velocity for the case of a string rotating in a
frictionless medium'® and using this D= 3_9”1%

Let W 2L. This quantity which can be defined
independently of w is, however, defined such that the real
paft of the forcing function 1s of the same shape as the
curve the string would take if it were rotating in a
frictionless mediuphat its first critical speed.

As in equations (49)-(51) c is set equal to gw, ¢

must be determined in terms of w. By proper choice ofjgvﬁf—

v

w will have a numerical value less than 10. Using this, c¢

- 3
can be set equal to o giving a value of g = o

1 sce RILDE RRAND TADVANCED CALCULUY For CN6INECRS PAG 204




~80.

i

_ 10,000 T 'T

Let A . Using these calculations equation

(60) becomes

o 2 .
(61) a(x T L 'nxli}

4 1=10,000 {sin e = Hee 21 COS e

where Xy takes on these values as 1 goes from -3 to + 3:

L L T L
S T Rl e S
(62)
_ oL - 3% -
Xy =g Xp, = qr-and X3 = g
Using these above found value of D = 32x?) the above ob-

tained value of g= f%, and equation (61) equations (49)-
(51) becomes:

(63) 204,864.16Z_; + {-158,027.96+297.154763}zO

i 21;357-46924,1 = 43:589-067—2:293:73§53

(64) 4-158,027.96 + 297.15476)f 2_,+226,559.927  *

{-158,027‘.96 -+ 297.15#763} Z+1== -135,106.88+872,986.49]

(65) 21,357.4692_1 + { -158,027.96+297.15476q] Z
+204,864.16z+1 = 147,034 .47+887,809.66]

These equations were obtained using 8 place tables of

R

sines, cosines and T The calculations were done treating

these 8 place values as they were exact and then after all
13 The tables of sines and cosines were obtained from "8 Place
tables of trigonometric functions" by Dr.. J. Peters yhile the
8 place value of = was obtained from Burington's‘Handbook
Of Mathematical Tables and Forcfobas®
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calculations were compleated these equations were rounded off to
8 significant places.

The sclution to these equations 1s

(66) 2 _%+.102 69144 -24.941 463 J
l Z, = -.017 200 14 - 18.846 552]
4.4 =000 409 73 - 1643 9704,

Mhen the solution is applied to equations (63)-(65),

The maximum error was numerically less than one. However,
it takes a large change in the variables to cause a small change
in the error Yorms. This 1s partially due to the fact that the
angular veloclty 1s set to be the first critical angular
velocity. The equations (&)-(65) involve an approximate
integration as well as approximate numerical calculations. Due
to these considerations equation (66) probably has no more than
6 significant places.

Using these answers with equation (9) and table 3 of
reference 2. The values of Z(x) are calculated for 21 equally
placed points that divide the length L into 20 equal segments.
These values are printed in the table on page;BT?s%key were
calculated treating Z_l,Zo and Z+1 as if these values were
exact and then rounding off to 4 figures. These graphs of the

ARE
curves (see Fig. 5) +& drgwn from the data of this table.



Table 1

9 (0

0 i 0
E%r -1.8 |+108k - 9.2893
%% -1.6 |+.2657-16.0693
3% -1.4 |+.2526-20.7143
20
Ly, e
- -1.2 |+.1888-23.566
5L - 1 4
L <1 +.1027-24 941
%% -.8 |+.0179-25,131]
%% -.6 |-.0472-21.395]
8L : ;
- <4 |-.0794-22,9003
IL | :
- -.2 |-.0705-21.060]
{
10L :
L 0 |~-.0172-18.847]
1L 2 |+.0784-16.482j
12L , - -
1% 4 |+.2092-14.092j

% p .
%%_ 6 +L9681-11 . F7 4

n
%7% 8 |+.5230-9.596
%%Q 1 |+.6664-7.604]
16L . :
S 1.2|+.7660-5.812]
j%?ﬁ 1.4| +7893-4.208;
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Table 1 continued

%%Iﬂ 1.6 +46987 -2.7543
19L b ¢ - 82 1
le.a 4515 -1.3833
200
55— | 2 0

% 19 2 ()
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CONCLUSIONS.

As this particular problemles been solved before there
is no other solution with which to compare this solution.
in order to get a measure of the ailr, The alr is due partlaliy
to polynomial approximation, partially to the approximate
integration, and partially due to numerical errors that arise
from the use of approximate values of the sines and cosines.
Due to the value chosen for w, the values of the real part
of Z(x) vary greatly with only a slight change in the error.
However, the changes were such that the real part never
became much greater than one.

The problem was solved for a forcing function that

‘has a sine curve as its real part and a cosine curve for its
imaginary part. After the integration required to produce

H(x) the real part remains a sine curve but the cosine curve

becomes 1-—0031“% - X . This function is 0 at x = O,% JAnD
e
L & At all other points this function is less than f%ﬁ.

The deflection curve is such that the deflection of the real
part is almost zero, while the deflection of the imaginary
part is large. This deflectlion of the imaginary part appears
to be similar to a distorted sine curve with a phase lage. The
small values for the real part show that the string's rotation
is essentially in a plane. Comparing - the real part of the
deflection with the imaginary part of H(x) and the imaginary
part of the deflection with the real part Of-H(x)lgﬁ st

Hgee Figure 6
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it can be seen that there 1s an apparent similarity between
the curves. Thls can be accounted for by conslidering a phase

shift of —90O between the force and the resulting deflection.

Fi16 6 ;
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The general conclusions are that this complex least
square method can be used on any integral equation that can be
solved by the regular method of solving integral equatlions by
polynomial approximations. The speéific conclusions above
this problem including the fact that equations ©)-(51) are
set up for all time and can be used for any specified forcing
function that can be integrated (approximated if necessary)
with respect to the Green's function. If the mass of the string
is nonuniform the problem can be solved by solved by multiplying
each row of equation (39) by the mass associated with that point

to get the matrix {DJP(uJ)ki[q(uj ))} and using this matrix
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in place of the matrix {Djki(qwj ):)} in all subsequent
calculations. If the forcing function is ideﬁtically Zero
the equations can be solved to find the value of D and

hence of the value of w.
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