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This paper develops and uses a least squares procedure

for solving complex integral equations in a single real

variable. The procedure is developed in parts 2 and 3

and the problem is solved in parts 4 and 5.

is solved is that of a string of length

The problem that

L rotating with an

angular velocity w in a viscous fluid and having a traveling

wave as a forcing function.

APPROXIMIATION BY POLYNOMIALS.

Let us consider the algebraic polynomial

(iL XZy+G0 tQaYa.
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Hence subdituting in Eq. (1) we obtain a polynomial

of the same degree in q; thus

(1 2 - , D,9 »DA -t -+ -+

Ihr' and G a :snt

polynomial is evidently satisfied by th

of values of q and Z:

(~N Z-N . .(-1,Z_ '), ,Zo ), (1,Zl), (2,Z2

Substituting each of these in (3)

oCi nl12 L

e following pairs

we obtain a set of

2Nl linear equations, thus

,pr ating th ese ecqu a t-I is i nt o :e al adlJ" irn- parts

we get

and

These equations completely determine

linear combinations of tle R ' s and S I s:

the D's and E's as

Thus
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where the B's are constants dependent only upon N. Similarly,

Mulltipling the relationships (6) by q' and the re-

lationships (7) by jq , adding, and comparing the sum on

the left-hand sides with (3), we obtain the polynomial

expressed in the form

or recombining (and. remembring that Z. -R + ) wegt

(10)OZ t KN '+1 t -

(lc IR B 0 R J.RcI- 1,RCI2ti,

1.See Grout"AnApplicatiion of'PlynImialfApproximation to the
Solution of Integral Equations Arising in Physical Problems",
Joun. of Math. and Physics. Vol. XIX. No. p.3 6 , January 1940.
Henceforce this will be referred to as reference 2.
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Ecuation (9) is the same as Eq. (6) in reference 2. The

rest of the material covered in pp. 36-40 of reference 2 can

also be used in the material covered in this paper.

LEAST SQUARE TECHNIQUE FOR COMPLEX EQUATIONS OF A SINGLE

REAL VARIABLE.

If the unknown function in an integral equation is

reploed by the algebraic polynomial approximation

Z()e Eq. (i) and. if the order of inte-

Enri and seuatian IE then2: iner&d ie result is an

expression of the form

A~N

Here t 2 1 s ar the complex valucso 2N+ 1

equally spaced ordinates which serve to specify the poly-

nomial, the K's are Lagrange coefficients [polynomials of

degree 2N obtained before in Eq. (10)]. Tables of which are
x-x

available and q h0 is the distance in h units by which

x lies to the right of the midpoint, x0 , h being the distance

between adjacent ordinates. (See Fig. 1.)

We shall determine te Z1s so that the integral of the

square of the absolute value of the tw6 sides of (11) is a

minimum. Thus

X-INIMUMwl [H:-



where denotes complex conjugation of the symbol beneath

it. Equating the corresponding partial derivatives to

zero, we have
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(12) to be satisfied.2

Replacing the exact by an approximate integration and using

the formular
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T, S CP210 F
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(12
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The matrix of the coefficients of the Z's is hence

hreter and colm nie r Pankfoth

first matrix, and k and i for the second, respectively.

We thus see that the matrix of the system of Eqs. (18) can

be obtained by forming the approximate equations

of this system by the matrix obtained by multiplying the

columns of the conjugated, transposed (unaugmented) matrix

by the integration coefficients D1,D ,...,D -respectively.2 M

This gives as a final solution (expressed in m trix form)

~here therowa amndolumnindice are the ame as given

before and Zi and H(xk) arecolumn vectors.

It is evidently permissible to multiply all of the D's

by any constant r, since this merely multiplies both sides

of the resulting linear equations (18) by r, and hence does

not alter the final results. A given set of integration coeffi-

cients may therefore be arbitrarily magnified before being used

as a set of D's.



It is evident that this least square process does not

require the parameters Z. in (11) to arise from the

Lagrangean form of the algebraic polynomial, although the

letter Z and the range -N to +N for i were - chosen with

this in mind; in fact, it does not even require (11) to

arise from an integral equation. Any approximating function

of the form Z(x) = a W (x)+ a2 W2 (x)+, . ..a(x) could have

been used.

GENERAL SOLUTION TO THE PROBLEMS

We now illustrate the least square technique by solving

the following problem.

A string of length L and density P(x) is rotating with

an angular velocity w in a viscous fluid with a coefficient

of frictionc. The string is strethed with a uniform tension

T. A forcing function w(x,t) is impressed upon the string.

Find the displacement of the string as a function of x where

x is the distrance from one end of the string.

THE GREEN'S FUNCTION

This problem will be solvedby

finding the deflection of x due toa

u o u, ie ing the pro-

l f the -I e in . --- ) r



We suppose the string is fixed at both ends and initially

so tightly stretched that nonuniformity of the tension, due

to small deflections can be neglected. If a unit concentrated

load is applied in the Z-direction at an arbitrary point u

(See Fig. 2) the string will then be deflected into 2 linear

parts with a corner at the point x= u. If we denote the (approxi-

a)ifrm tnonby T, the requ'ireents; of force

e Uiir ai th 72-drec ion ledstoth c ondition

(22) TS 6, +TSaiw I

with the notationroCig . 2. For small deflee tions (and

slopes) we have the appoimatonsc

SI -> AWI&

whee is the maxium deletionof the string, at the

loaded point u. The introduction of these approximations into

(22) leads to the relation

Un i d-U

and hence determines the deflection in the form

((-' ~{L U3



The equations of tLe corresponding deflection curve is

readily obtained in the form

(5 /

117; :j9f.> 'I,

Fora string; rotating

n ~~~Y (< 0WN x0

f U- (L'-) < X

uni-ormly above th, x-axic

angular velocity w, with a frictional force of c'times the

velocity,

outwad fro

a loading function w() imposed in the direction

m the axis of revolution the deflection takes the

form

Ljj;7)
0

where G(x,u) is described in Eq. (25) anad

(w7tC) PGC) Z W WO
/

5, HiiIdebrand "Methods of"AppliediMathematicpp.42-4Qi.
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is the total force acting on the string at point x.

Equation (27) then takes the form

(29) z k)z 0(v) +(W') GL)

SE T

It seems physically evident that the deflection curve is

smooth enough to permit good approximation by a fourth degree

polynomial Z(x) passing through the fixed end points. Let

x -0, x_ = 2' 3 x = x2= L and let the values of

Z(x) at these points be Z 2  0', Z1  Zo'Z1 ,Z2  0. Then using

Euation (9) equations (29) and (30) becomes

(K4 { 14C'Q~ 1\ JC)JG(NAre(O)Kj)Jc
1ti

A-).

Equations (28) and (29) obtained from Professor Crout



which is the same as equation (11). Using this equation the

least squares method of solution will be applied.

For the problems in this paper P(x) will be held to

the constant5 P and equation (32) becomes

iecause of the large amounts of calculationsnecessary,

the pblem w'ill be solved inu seent

hew& Oi s possible :ointegrate the :itegrals in

this matrix it is simpler to proceed as follows. TI-s equation

is a rearrangement of G(xk,u)Z(u)3u. Since Z(u) is

a smoothcurve and since G(xku) is smooth on either side

of the corner at u = x the integrand is smooth o n each side

of this point, at which it too has a corner. Approximate

integration using Simpoon's Rule should give good results if

no one intebolation polynomial is required to approximate

both sides of the corner.

Let us divide the interval 0 < u < L into 16 equal

subintervals and apply Simpson's Rule. Each of the intervals

0 < u < 1 L - < u < L etc. is hence approximated by a

second degree polynomial. Simpson's Rule is used so we can apply

the same integration formulas regardless of whether

5 Notice that if P(x) were a variable it could be included as a
weighing function on one of the matrices that would be obtained
this this problem.



1L. 1 L 3 3 L o 7
xk 3L, iy L IL, ,L, L

This formula is

J. )
{0) )

Li

where the 17 values of j refer

the 16 equal subintervals and th

to tie 17 points boLndiIng

e f's are the ordinates at

these points; Also

D~ L.7

bj == D1 = D )7 h IF

The q(v) is defined by q() =4L -2 where u. is found

from the j-index in Fig. 3.

Ghematixof t -quation (35)may be written

as tho (row times column) product of two matrices; thus6

(37)

e th d oum indc! e s ck d jo t f rt

and and i frthe second matrixrespecti;Giy.

0L

6.If P(x) were a(given)variable,
mtrix Eo that thismtrta

it couldbe abs into, theoo secnd
the for

0 j)

It (; 0.,))) *11 Di L (OW)II



As the value ofG(x )iszerowhen = 0 or L; or when

u 0 or L this matrix will have the same numerical value

1 2

also be removed TI c tevue of the

sum as the only multiplications that involve these quantities

are multiplications by zero. Also as Z- = Z2 0 the first

and last colums of this matrix can be removed. This means

tht tK u[q(u)]] has 15 rows and 3 columns.

Th L.ec) ro and omn indices of the first rEb'ix are Kand j

respectively while the row and column indices of the second

matrix are j and i ropectively. The final result of thi is

that the matrix product of these two matrices has 7 rows and

3columns, the row index being k and the column index being

1.

As usual for problems of this nature the first matrix

depend only on the Green's Function, and hence contains

the physical parts for this particular problem. The second

matrix depends only on the method of solution, and can be cam-

puted once and for all and2used on a variety of problems

7 Note after the first and last colums of thie matrix have been
removed these rows consi:.f of nothing but zero's anyhow so nothing
is lows when they are -e red.This does not change this set of
equations as H(xG(xk)w(u)u d this auantity is zero.
.- r xk = 0 or(x L" &( ,uG(L,u)=0)unless w0) or w(L) is
ininite. This i y lity ie exclu ,

J'See Ref. 2, pg. 44

-14-



(27) G(xk u, ) m

12 18 24 22 20 18 16 14 12 10 8

15 20 25 30 27 24 21 1 15 129 6

12 6 20
6 9 12 15

24 28 32 28 24 20 16 12 8

18 21 24 27 30 25 20 15 10
4 6 8 10 12 14 16 18 20 22 24 18 12

1

As the too andbottom rows are removed a can be
72,

0 ~ 2

ii Li

C (

D K# ElN fI L

.0390 625
S 3750

2 - 715 625

1- qQ 625
-875 0

. 1015 625

.96679 6875 -41015

.54687 5

.68554 6875
0

.21875

25

.75195 31250 -.21484

.7Q312 5
375

-15625 i
1.84570 3125 -. 24609

S 5 .8 1,
.24609 375 1.84570 3125

- -15625
-1484 375

.25390 625

.21875

.70312 5

.41015 <2

.4687'

.75195 3125 1.50390
0

.685r,46875 2.28517-

.54687 5
.96679 c5

1.09375
1.503L 3 25

(§j~)

6 4

1 21 10 1? <~ 7

Using Equation beeamel:

J- (J,, ) -L
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Both equations (38) and (3) are exact.

Carrying out the matrix multiplication of

LG(xk,u,#) D k [q(i)] to get (approximately the matrix

jjG(xklu)ki[q(u)]u)} the results are:

90•34375

132.875
129.09375

(40 )tZ4K 102.5

74.543750
2o -r 52.875

30.84375

33.35937 5
88.6875
143.48437 5
166.25
143.48437 5
88.6875

33.35937 50

30.84375

52.875
74.59375

102.5

129.09375

132.875
90.34375

Equation (40) is the exact matrix product of Equation

(38) and Equation (39).

Now having found the numerical values of fG(xku)ki[q(u u

return to the problem of finding

i (xk)I

An approximate integration will be used in-the least

squares procedure, this is reduced (by use of an approxi-

mate integration using Simpson's Rule) to the problem of

finding the numbers to go into a matrix of 'the form k k

As the answer is expected to be a relatively smooth curve

a forth degree polynomial approximation will again be used.

This means that i takes on the values -2,-l,0,l,2 and qk

takes on the values -2,-3,-,-,0,+ 1,1 ,2. This is a

tabulated function (the Lagrangean interpolation polynomial)

and is here copied from Reference No. 2. Table 3, p. 85.

ii (x) .



1

.2734375

0

.0390625
0

.0234375

0

.0390625
0

0

1.09375
1

.46875
0

-. 15625
0

0

-.546875
0

0 0

.21875 -.0390625
0

.703125 -.15625
1

.703125
0

.21875 -.546875
0 0

0

.46875
1

1.09375
0

0

.0234375

0

.0390625
0

.2734375

1

where k and i are the row and column indices respectively.

As Z2 =Z2 =0 the first and last columns of the matrix ki(qk

can be removed without changing the problem. With these columns

removed the top and bottom rows become all zeros and can be

9removed .With these simplifications addition of the two matrices

k( k)I and f/G(xku)ki[q(u)]u is defined.

Using the equations (34) we get(for set values of xk)

Using equations (40), (41), and (42) we get

¶ 2SrF'mtAEPlTrI ag 'Tt ShAMPLIFIAItosw -ON PA6E6'+.

'

(41) t



1.09375-90.34375 3 L('-)
3072T

1-132.875Lva-a pCz)

.46875-129.09375 0 2,
PWC"(aW-Je.372-102.5 3-0-7-2

-102.3072T

-.15625-74.59375 302T

-52.875 PO Wv-C-)

21875-30.84375 3 T

-. 546875-33.359375 302 T

-88.6875 W'~3072T

.703125-143.484375 3 )
1--16625 3073

3072T2T
703125-143.484375 2

-88.6875

-. 546875-33.359375 PW 32

.21875-30.84375 30 2

-52.875

-. 15615-74. 59 37 L
-102.5 -- t

3072T

.46875-129.09375 3 72

1-132.875 3

1.01375-90.343753072T

This corresponds to a system of 7 equations in 3 unknowns Z1 ,Z,Z . The second

equation of this system is

1-132.875 3072T 1886875 7072 o- 352.87 2 Z)T=

As this set of equations would be very difficult to solve as they are, they definitions

will be made

.O72.T IDC-. 9 kA)
blA(. Q

then equation (43) becomes:

{iL~4V

G.. / W C-- I Z -,- ) < I



1.09375D-90-34375(1-Jg)

D-132.875(1-jg)

.46875D-129.09375(1-g)

-102.5(i-jg)

- .15625D-74.59375(1-Jg)

-52.875(1-jg)

-.546875D-33.359375(1)g)

-88.6875(1-Jg)

.703125D-143.484375(1-5,)

D-:166.25(1-Jg)

*703125D-143. 484375(1-jg)

-88.6875(1-jg)

- .546875D-33-359375(1-jg)

.21875D-30.84375(1-jg)

-52.875(1-Jg)

- .15625D-74.59375(1-jg)

-102.5(1-jg)

.46875D-129.O9375(1-jg)

D-132.875(1-jg)

1.o9375D-90.34375(1- Jg
.21875D-30.84375(1-Jg)

Equation (44) then becomes:

(D-132.875 + 132.875jg)Z-+ (88.6875jg-88.6875)Zo+ (52.875Jg-52.875) Zi = Q

L)
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where Q is the numerical value of D G(x- 2 ,u)w(u))u. (The
0

top row of (44) corresponds to a k index of-3 instead of a

k index of -4 because the top row of the original system con-

sists of zero's and hence has been ommited. [See note on page

1 )j

If Z(x) were actually a fourth degree polynomial in the

line from x = 0 to x = L then the equations obtainable from

(43) would be exact instead of approximate except for small

errors introduced by the approximate integrations; haever,

Z(x) isrot a polynomial, to our problem is to determine the

3 Z's of the i index so that for a given set of H's all seven of

these equations will be satisfied closely, though none will

be satisfied exactly except by accident. Using the least squares

procedure obtained in part 3 we proceed as follows.
Dkl%,(xk)}

The quantities Dk are, except for an arbitrary constant

multiplier, the coefficients in an approximate integration formula

for the 9 points of the k index. The equations for k = + 4 have

been removed because the equations wold be of the fcrm 0=0 as

shown above on page 1%.

A consideration of those two equations would have led to

the addition of a row of zeros at the top and bottom of (43)

and (46). Choosing Simpson's rule as the source of the D's

leaving all comment for Section o , we have

(47) Do? ~:y~2)
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D_ 4and D 4 will, of course, not be used.

We now take the complex conjugate of equation (46),

multiply each now by the corresponding D from (47)

[Kth row multiplied by Dk] and finally interchange the

rows and columns ofothe resulting matrix, thereby obtaining

the "derived matrix" (48). (This matrix has been transposed)

2.1875D-180.6875(1+jg)

D-132.875(1+jg)

.9375D-258.1875(1+jg)

-102.5 (1+jg)

- .3125D-149.1875(1+ jg )

-52.875(i+jg)

4375D-61.6875(l--jg)

-1.09375D-66.71875(1+jg)

-88.6875 (1+jg)

1.40625D-286.96875(1+jg)

D-166.25(1+jg)

1.40625D-286.96875(1-Jg)

-88.6875(1+Jg)

-1.09.375D-66.71875(1+jg)

.43750-61.6875(1-j

-52.875(1+-jg)

- .3125D-
-14911875(1+4jg )

-102.5(1+Jg)

.9375D-
258.1875(1+Jg)

D-132.875(1+jg)

2.1875D
-180.6875(ii39)

THE LINEAR EQUATIONS

Combining equations (47),(48) and 21) we get 3 linear
Cequations in 3unknowns (whereg k/ andD- 3072TP k

Equation (45)` these equations are also exact.

from

D fLkTr(*x)



(-9 .97 T25 D 2-803.421875D ,64 3 .2890625(1g 2)}Z 1

-{- 99:9 375D2-522.32C3125D 9.546875jgD

100,051.75390 625(12) z0
.66406 25D2 -378.921875D + 74,222.2890625(1:g2)}Z 1

(2.13-7-:D-18C .675-j - (3 {D-132.875(1+4 ) q
+ .. 9375-D , * 7s . Ins i g)} -- C
-f.3125D-i-1875(=jg} - f2-52.875( jg)J2

S 375 - 1875(1g) A

71151

~j-.960975D-522.32(03125D-9.546875JgD

- 100,-51.7390 625(1 g2) }3 go 62 D I- 1

- j -1732812D2 -993 .6523375D-130,172.462890625(1+:g 2

-T%. 9693752 -2 320 312D-94 6875igTD

1~ 3(1 .7539C625(

- -.G9375D-66.7175(+jg ) S(-88.687(+ ig-2

(1.-025D-286.96875( jg)JQ1 D-166.25(1i-jcs

(1.-,625D-286.96875(1ig

S - 1.09375D-6.71875(1+-g ) Q3{-8.675(=8 .,



{.6640625D2-378.921875D+74,222.28q625(1+g2 )}Z 1

+ {-.99609375D2-522.3203125D + 9.546875j9 I

+ 100,051.75390625(1+2)J Z

+ [3.9765625D2-883.421875D+93,643.2890625(+ 2 )JZ

=[.4375D-61.6875(1+jg) a / f-52.875(1+Jg) 2

+ f-.3125D-149.1875(l )}Q_  + -lo2.5(1+Jg)}Qo

+~ f.9375D-258.1875(1+jg))Qi + (D-132.875(lj0) Q+2

+ (2.1875D-180.6875(1lJg)>Q3

These 3 equations are symmetric in that if in the 3

equations Qk is replaced by Q-k and Z is replaced by Z

equation (49) becomes equation (51), equation (51) becomes

equation (49) and equation (50) remains unchanged. Therefore

if Qk k then Z 1 =Z .

As these equations would become too difficult to solve as

they are,values of D 4-g must be assumed. Before doing this the

form of H(x) (and hence Q(x)) will be determined.

This solution will work for any forcing function w(x,t)

that will produce a reasonable curve when integrated with
L

G(x,u) to obtain H(x)= fG(x,u)w(u))u.10
0

THE SOLUTION OF THE SPECIFIC PROBLEM.

The specific problem to be solved in this part is that

10. Thsis necessary so that this function can be reasonably
approximated at the 7 points ( =1 4- 1 , ,{ ) S ) that
are used in equations (47)to(51).e ffunction will be zero at
x=O, L as G(x, u ) = 0 for x =0,L for any X) and any finite w( u )

_24-



of a string rotating in a viscous mediuam with a traveling wave

as its forcing function.

Chapter 1. Q(x)

Let

where w0  is the wave length of the forcing function, t is

time and v 0 is the velocity of the travelling waves as they travel

down the line.

t . as__I

As complex notation has been used throughout to remove the time

varing component of the problem, equation (52) can be rewriteen as1 1

A s-e S Cs CS X

(YA X4tU

FO@.OfU

AN 1)

So
/

(54) H() qr U j Is A- V) &Q(U) dUr t,

j (0) OU :FL WtVIJU

-f- %K
T L v w(d) a 0

11- Equations(51)(53)were given to the author by Professor Crout

(52) ViLCt)-r- f :'!zos 1W9

Now

=X)-.. Ai Simj ((x-\/ TA
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Equation (60) is theequationneededinequations

(4.I9-(51). It vanthes identically atx=0 and x=Las is

necessaryduetothefact thatG(x,u)=whenever x=0,L

or u=0,L . (In this equation w0 ~the wave length of the

forcing function .)

Chapter 2.N NueialcaluliationsIn obtaining the

solution to the problemnumerical values must begivenfor

w, c, A, and wi .

Let w . This is the first critical

angular velcityforthecaseofastringrotatingina

frictionless medium1 2 and usingthis D0 72

Let wo= 2L. This quantity whichcan bedefined

independentlyofwis, however, defined such that the real

part of the forcing function is of the sameshape asthe

curve the stringwouldtake if itwere rotating in a

frictionless mediu#\at its first critical speed.

As in equations (49)-(51) c is set equal to gw, c

must be determined in terms of w. By proper choice of

w will have a numerical value less than 10. Using this, c

can be set equal to 1 giving a value of g

n H 9)L DE S. IoruO ' AVANC&OCAL c A Luv pon, P
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Let A = 10000 T T . Using these calculations equation

(60)becomes

-TX 2x iI~
(61) Q(xi)=10,000 {sinlyi- Li -1 + cos

where x takes on these values as i goes from -3 to + 3:

x L x L 3X 3L fx L
-3 -2 I 0 -

(62)
X 5L$ 3L adx 7Lx= - x 2  - and x 3

Using these above found value of D = 3 ) the above ob-

tained value of g= 1, and equation (61) equations (49)-

(51) becomes:

(63) 204,864.16Z_1 + -158,027.96+297 .15476i z0

+ 21,357.469Z1 t. 43,589.067-2,293,73 5J

(64) '--158,027.96 + 297.15476j Z_ 1 +226,559.92Z0 +

-{--158,027.96 + 297.15476j'}Z+1= -135,io6.88+872,986.49j

(65) 21,357.469Z_ 1 + ( -158,027.96+297.15476j z0

+204,864.16Z+i = 147,034.47+887,809.66j

These equations were obtained using 8 place tables of

sines, cosines and 1 13 The calculations were done treating

these 8 place values as they were exact and then after all

13 The tables of sines and cosines were obtained from "8 Place
tables of trigonometric functions" by Dr.. J. Peters hile the
8 place value of = was obtained from Burington's Handbook
Of Mathematical Tables and FioRptW6As.
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calculations were compleated these equations were rounded off to

8 significant places.

The solution to these equations is

(66) Z.-+.l02 69144 -24.941 463 J

Z = -. 017 200 14.- 18.846 552J

Z+1-= +.666.409 73 - 7.603 970J.

\Ahen the solution is applied to equations (63)-(65),

The maximum error was numerically less than one. However,

it takes a large change in the~variables to cause a small change

in the error Torms. This is partially due to the fact that the

angular velocity is set to be the first critical angular

velocity. The equations (E3)-(65) involve an approximate

integration as well as approximate numerical calculations. Due

to these considerations equation (66) probably has no more than

6 significant places.

Using these answers with equation (9) and table 3 of

reference 2. The values of Z(x) are calculated for 21 equally

placed points that divide the length L into 20 equal segments.

These values are printed in the table on pagej37T They were

calculated treating Z_1 ,Zo and Z+1 as if these values were

exact and then rounding off to 4 figures. These graphs of the

curves (see Fig. 5) +& drAwn from the data of this table.



Table 1

-2

1

0

8

1.21+.7660-5.812j

1.41 +.7893-4.208j

I-

2L

3L3

4L3

5L3

6L3

20

-1.2

-1

-. 6

-. 4

-. 2

0

.2

6

8

+1944 - 9.289j

+.2657-16.069j

.2526-20.714i

+.1888-23.566j

+.1027-24.941

+.0179-25.131J

-.0472-24.395J

-.0794-22.969j

-.0705-21.06oj

-.0172-18.847j

+.0784--16.482j

+.2092-14.092j

+.3631-11.773J

+.5230-9.596j

+.6664-7.604j

9L3

11L3

1233

1333

15L3

16L3

17L

I
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Table 1 continued

18L
1. +.6987 -2.754J

19L1.
21 .8 +.4515 -1.3 8 3J

2DL,
-il 2 10

1 1 -2 (K)



CONCLUSIONS.

As this particular problemhas been solved before there

is no other solution with which to compare this solution.

in-order to get a measure of the air. The air is due partially

to polynomial approximation, partially to the approximate

integration, and partially due to numerical errors that arise

from the use of approximate values of the sines and cosines.

Due to the value chosen for w, the values of the real part

of Z(x) vary greatly with only a slight change in the error.

However, the changes were such that the real part never

became much greater than one.

The problem was solved for a forcing function that

has a sine curve as its real part and a cosine curve for its

imaginary part. After the integration required to produce

H(x) the real part remains a sine curve but the cosine curve

becomes 1-cos!K _ This function is 0 at x = 0,L

L . At all other points this function is less than --A.

The deflection curve is such that the deflection of the real

part is almost zero, while the deflection of the imaginary

part is large. This deflection of the imaginary part appears

to be similar to a distorted sine curve with a phase lage. The

small values for the real part show that the string's rotation

is essentially in a plane. CmQparing- the real part of the

deflection with the imaginary part of H(x) and the imaginary

part of the deflection with the real part ofIH(x)

14See Figure 6



it can be seen that there is an apparent similarity between

the curves. This can be accounted for by considering a phase

shift of -90 between the force and the resulting deflection.

The general conclusions are that this complex least

square method can be used on any integral equation that can be

solved by the regular method of solving integral equations by

polynomial approximations .The specific conclusions above

this problem including the fact that equations (9)-(51) are

set up for all time andcan beused forany specified forcing

function that can beintegrated (approximated if necessary)

with respect tothe Green's function. If the mass ofthe string

is nonuniform the problem can be solved by solved bymultiplying

each row of equation (39) by the mass associated with that point

to get the matrix D ~ k~~ and using this matrix



in place of the matrix [D kCq(uj)DI in all subsequent

calculations. If the forcing function is identically zero

the equations canbe solved to find the-value of D and

hence of the value of w.
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