
Utah State University Utah State University

DigitalCommons@USU DigitalCommons@USU

All Graduate Theses and Dissertations Graduate Studies

8-2018

Word Recognition in Nutrition Labels with Convolutional Neural Word Recognition in Nutrition Labels with Convolutional Neural

Network Network

Anuj Khasgiwala
Utah State University

Follow this and additional works at: https://digitalcommons.usu.edu/etd

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Khasgiwala, Anuj, "Word Recognition in Nutrition Labels with Convolutional Neural Network" (2018). All
Graduate Theses and Dissertations. 7101.
https://digitalcommons.usu.edu/etd/7101

This Thesis is brought to you for free and open access by
the Graduate Studies at DigitalCommons@USU. It has
been accepted for inclusion in All Graduate Theses and
Dissertations by an authorized administrator of
DigitalCommons@USU. For more information, please
contact digitalcommons@usu.edu.

https://digitalcommons.usu.edu/
https://digitalcommons.usu.edu/etd
https://digitalcommons.usu.edu/gradstudies
https://digitalcommons.usu.edu/etd?utm_source=digitalcommons.usu.edu%2Fetd%2F7101&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.usu.edu%2Fetd%2F7101&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.usu.edu/etd/7101?utm_source=digitalcommons.usu.edu%2Fetd%2F7101&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@usu.edu
http://library.usu.edu/
http://library.usu.edu/

WORD RECOGNITION IN NUTRITION LABELS WITH CONVOLUTIONAL

NEURAL NETWORK

by

Anuj Khasgiwala

A thesis submitted in partial fulfillment
of the requirements for the degree

of

MASTER OF SCIENCE

in

Computer Science

Approved:

Vladimir Kulyukin, Ph.D. Xiaojun Qi, Ph.D.
Major Professor Committee Member

Haitao Wang, Ph.D. Mark R. McLellan, Ph.D.
Committee Member Vice President for Research and

Dean of the School of Graduate Studies

UTAH STATE UNIVERSITY
Logan, Utah

2018

ii

Copyright c© Anuj Khasgiwala 2018

All Rights Reserved

iii

ABSTRACT

Word Recognition in Nutrition Labels with Convolutional Neural Network

by

Anuj Khasgiwala, Master of Science

Utah State University, 2018

Major Professor: Vladimir Kulyukin, Ph.D.
Department: Computer Science

An imperative part of a healthy eating regimen is the understanding and maintenance

of nutritional data and comprehension of how extraordinary food items and nutrition con-

stituents influence our bodies.

This dissertation is the descriptive form of developing a procedure to encapsulate Deep

Learning along with Computer Vision based algorithm for extracting nutritional informa-

tion from nutritional labels (NLs) accessible on most packaged food items which is most

important for proactive nutrition management. In light of the fact that it enhances the

user’s ability to capture continuous nutrition information accumulation and analysis.

The system′s front end will be a smartphone application which will be used to capture

an image of nutrition table on any packaged food item. The system′s back end is a system

where images are first processed in Java using OpenCV, vision based algorithms and wavelet

algorithms. The image obtained are then sent to Deep Convolution Neural Network for word

classification of all nutrition labels (NL).

(49 pages)

iv

PUBLIC ABSTRACT

Word Recognition in Nutrition Labels with Convolutional Neural Network

Anuj Khasgiwala

Nowadays, everyone is very busy and running around trying to maintain a balance

between their work life and family, as the working hours are increasing day by day. In such

a hassled life people either ignore or do not give enough attention to a healthy diet. An

imperative part of a healthy eating routine is the cognizance and maintenance of nourishing

data and comprehension of how extraordinary sustenance and nutritious constituents influ-

ence our bodies. Besides in the USA, in many other countries, nutritional information is

fundamentally passed on to consumers through nutrition labels (NLs) which can be found

in all packaged food products in the form of nutrition table. However, sometimes it turns

out to be challenging to utilize this information available in these NLs notwithstanding for

consumers who are health conscious as they may not be familiar with nutritional terms and

discover it hard to relate nutritional information into their day by day activities because of

lack of time, inspiration, or training. So it is essential to automate this information gath-

ering and interpretation procedure by incorporating Machine Learning based algorithm to

abstract nutritional information from NLs on the grounds that it enhances the consumer’s

capacity to participate in nonstop nutritional information gathering and analysis.

v

ACKNOWLEDGMENTS

I would like to utilize this opportunity to express my most profound thanks to my

major professor, Dr. Vladimir Kulyukin, for his advice, guidance, and patience throughout

my graduate level education. His recommendations and suggestions have been invaluable to

me. His experience and knowledge is the secret behind the accomplishment of the project.

I would also like to acknowledge my gratitude to my graduate committee members, Dr.

Xiaojun Qi and Dr. Haitao Wang for all their help and suggestions on this dissertation.

Finally, I appreciate the continuous support and encouragement of my beloved parents

and my brother throughout the duration of my academic pursuits.

Anuj Khasgiwala

vi

CONTENTS

Page

ABSTRACT . iii

PUBLIC ABSTRACT . iv

ACKNOWLEDGMENTS . v

LIST OF TABLES . viii

LIST OF FIGURES . ix

ACRONYMS . x

1 INTRODUCTION . 1
1.1 Background . 1
1.2 Nutrition Label Tracking . 2

1.2.1 Image Segmentation and OCR . 2
1.2.2 Deep Learning . 3

1.3 Process Flow . 3
1.4 Research Scope . 5

2 RELATED WORK . 6
2.1 Introduction . 6
2.2 Text Skew Angle Detection - Background 6
2.3 Deep Learning . 9

3 IMAGE SEGMENTATION AND OCR . 11
3.1 Introduction . 11
3.2 Image Rotation . 12
3.3 Rotated Image to OCR . 14
3.4 Training Tesseract . 15
3.5 OCR Output vs Trained OCR . 16
3.6 Improvement to Text Chunking . 17

4 IMAGE CLASSIFICATION . 18
4.1 Introduction . 18
4.2 Supervised Learning . 18
4.3 Deep Learning . 18
4.4 Back Propagation to Train Multilayer Architecture 19
4.5 Convolution Neural Network . 21
4.6 Image Classification . 21
4.7 Dataset and Labeling . 22
4.8 Tuning . 23
4.9 Design CNN . 24

vii

5 EXPERIMENTS AND RESULTS . 26
5.1 Introduction . 26
5.2 CNN Hyper-parameters . 26

5.2.1 Optimizers . 27
5.2.2 Epoch . 28
5.2.3 Dropout . 29
5.2.4 Reduced Validate Dataset . 29
5.2.5 Convolution Layer, Layer Block . 30
5.2.6 Adamax Optimizer . 31
5.2.7 Filters, Kernel . 31

6 CONCLUSION . 33
6.1 Lower Accuracy Reason . 34

6.1.1 Dataset . 34
6.1.2 Image Augmentation . 35
6.1.3 High Loss . 35
6.1.4 Hyper-Parameters . 36

6.2 Future Work . 36

REFERENCES . 37

viii

LIST OF TABLES

Table Page

4.1 Dataset Information . 23

5.1 Experiment results on changing Optimizers 28

5.2 Experiment results on changing Epochs . 29

5.3 Experiment results on reducing Dropout . 29

5.4 Experiment results on reducing validation dataset 30

5.5 Experiment results on changing Convolution layer and Convolution Block . 30

5.6 Experiment results on changing epoch for Adamax optimizer 31

5.7 Experiment results on changing Filters . 31

5.8 Experiment results on changing Kernel size 32

ix

LIST OF FIGURES

Figure Page

1.1 Flow Chart . 4

3.1 Skew chunked image . 13

3.2 Rotated chunked image . 14

3.3 The UI of jTessBoxEditor . 15

3.4 The input image . 16

3.5 Output of image . 16

4.1 Example of Convolutional Neural Network 21

4.2 Cropped training image . 22

4.3 The validation image . 22

4.4 The validation image . 22

4.5 Example Convolutional Neural Network . 24

4.6 Feature map of the CNN architecture . 25

x

ACRONYMS

NL Nutrition label

NLEA Nutrition Education and Labelling Act

OCR Optical Character Recognition

TSAW Text Skew Angle Wavelets

2DHWT 2D Haar Wavelet Transform

CNN Convolutional Neural Network

DNN Deep Neural Network

JBIG Joint Bi-level Image Experts Group

FDA Food and Drug Administration

ML Machine Learning

No. Number

CHAPTER 1

INTRODUCTION

1.1 Background

According to a study done by U.S. Department of Agriculture, it was estimated that, US

resident′s calorie intake has grown on an average by 523 calories per day in last 30 years [1].

World Health Organization indicated in their annual report, obesity causes maladies such

as diabetes, kidney failures, and strokes, and predicts these diseases will be one of the

dominating factor for death in the whole world [2]. It has been considered that unorganized

diet is the reason behind 30-35 percent of cancer cases. The health-care has evolved so much

recently but still there is no long lasting cure found yet for diabetes and cancer, but most

nutritionists and dietitians suggest nutrition management as the key to forestall diseases

to their patients. Therefore having knowledge of nutrition label (NLs) is required to have

a proper diet. Besides in the USA, in many other countries, putting nutrition information

is required on every packaged food items by the Nutrition Education and Labeling Act

(NLEA) of 1990 [3, 4].

There are 18 core nutrition labels, each of which contains a lot of information. People

make important decisions regarding their health with the information they infer from these

labels. [5]. This information is exhibited in the form of a standard table. Although, once

in a while the information in these labels might be hard to decipher by the common user

who may find it hard to discover and understand nutritional terms on numerous packaged

items [6].

Evolution in the computer science can be the key in understanding procedure and give

consumers the ability to pick what is ideal for them by making the nutritional information

more easy for client understanding. In a grocery store environment, a easily accessible

method of innovation is the mobile phone which remains extremely underutilized. The

2

gigantic processing power of these gadgets can be put to use to extricate nutritional in-

formation from NLs accessible on most packaged items, utilizing computer vision based

procedures to implement a proactive nutrition management framework which will enhance

the user’s capacity to participate in consistent nutritious information accumulation and

analysis.

1.2 Nutrition Label Tracking

Vision based identification of NLs will use the cell phone cameras to capture images

of NLs for ensuing handling and extraction of nutrition information. This incorporates

restricting the NL in the picture and utilizing Deep Learning to peruse the text information

from the NL. Skew angle is the angle that the text lines in the digital image makes with the

horizontal direction. Text in such cases is rotated or twisted and corrupts the performance

of further processing and may genuinely influence the performance of consequent phases of

division and acknowledgment, since the contemporary Optical Character Recognizer (OCR)

frameworks can not deal with pivoted text and perform well just in perceiving text that

are linearly adjusted. While the horizontally adjusted text is effortlessly identified and

perceived, skewed text represents a provocation to recognition.

1.2.1 Image Segmentation and OCR

Text Skew Angle Wavelets (TSAW) algorithm was designed to use 2D Haar Wavelet

Transform (2DHWT). This algorithm takes nutrition table as input and applies numerous

iterations of 2DHWT to calculate horizontal, vertical and diagonal change matrices of image.

After this, the image is chunked into multiple images and then passed to OCR to convert

images to text. But this algorithm and process flow had lots of drawbacks or limitations.

The OCR does not work well with rotated images or images which are not vertical. So

we added a feature of rotating the image to make it vertical before passing it to OCR.

The other limitation of using OCR, Tesseract, was the font style because the OCR are not

trained for font style Helvetica which is the standard font style used for nutrition table, due

to which the OCR gets confused to transform image into text like, ’g’ as ’9’. This issue

3

was resolved by training Tesseract using a tool, named, jTessBoxEditor. This improved

the accuracy of Tesseract, but still the accuracy was not enough. The TSAW algorithm

was unable to process and segment images in few scenarios like, images that were already

vertical. This algorithm was unable to segment images if there is lots of noise available in

the nutrition table images passed as input. We did analysis and made some alterations to

TSAW for noise reduction.

1.2.2 Deep Learning

Applying different changes on image segmentation and OCR for converting images

to text, increased the accuracy of nutrition label prediction, but after these changes the

accuracy became stagnant and no further changes were helped in increasing the accuracy.

Machine Learning has always attracted all technically evolving sectors by analyzing

the trend and predicting the outcome. The increase in research and use of machine learning

algorithms in different scenarios has opened doors for innovations and high accuracy.

Machine learning algorithms can be categorized into 2 categories: Supervised and Un-

supervised learning. Our scenario of classifying the word comes under supervised learning

category because we have both, train and validation data labeled and we are trying to find

a function to map input with output.

Designing any machine learning algorithm has been a very complicated task because

it requires to find the significant and required features. To surpass this limitation, a new

system was developed called Deep Learning. Deep learning automatically finds the best

features needed for prediction.

Convolution Neural Network has been specially designed for image classification and it

has been proven that CNN is the best for images by achieving very high accuracy. Lots of

Universities and companies are performing their research using deep learning and CNN for

driver-less cars, image recognition, natural language processing etc.

1.3 Process Flow

The process flow used in this research consist of following steps:

4

1. Capture image of nutrition tables using smartphone.

2. The captured image is then passed to modified TSAW algorithm which segment the

image into multiple images. These images consists of different NLs.

3. The segmented images are then rotated to vertical if required.

4. The rotated images are passed to Tesseract, so that, we can have a a ground truth to

compare with CNN.

5. The rotated images are manually cropped into region of interest and then labeled.

6. The labeled images are passed to CNN for training and validation.

7. CNN is then able to classify images into different NL.

The complete process flow is converted into pictorial form shown in Fig. 1.1.

Fig. 1.1: Flow Chart

5

1.4 Research Scope

The main role of this research is to verify the hypothesis that nutrition data can be

extricated utilizing integration of vision based procedures and deep learning from pictures

of packaged food items, which were taken with the help of a hand-held smart-phone camera

in a supermarket.

This research exhibits an algorithm that introduces a framework that can be utilized

to distinguish the skew angle of a NL with no imperatives on the rotation magnitude and

in this manner extricate nutrition information from it by utilizing Deep Learning.

This research was done in 2 stages. The first stage was the advancement of TSAW

algorithm. The second and the final stage was to implement a Deep CNN for classification

of images into nutrition labels.

The remaining dissertation is organized as follows: In chapter 2, we give some founda-

tion information and talk about related work. In chapter 3, we discuss about the advance-

ment brought to TSAW algorithm and OCR for more accuracy. In chapter 4, we have tried

to talk about how Deep Learning has changed the world and how it will help us get higher

accuracy. In chapter 5, we will try to describe all the experiments performed to design CNN

and the results. In chapter 6, we have shared the inferences we have formed, the reason for

less accuracy and future scope.

6

CHAPTER 2

RELATED WORK

2.1 Introduction

In this chapter we will discuss the foundation and related works related to nutrition

detection and tracking. We partition the chapter into two areas viz. related work on text

skew angle detection, reading, and use of Machine Learning (ML) for nutrition tracking.

2.2 Text Skew Angle Detection - Background

Vision-based object detection has been the center of many researches and innovative

projects from a very long time. An assortment of algorithms have been created to determine

the text skew angle. They can be classified by the methodologies that they take to solve

the problem.

The primary class of algorithms normally utilize horizontal or vertical projection pro-

files. A horizontal and vertical projection profile is a 1-dimensional array whose size is

equivalent to the number of rows and number of columns in the image respectively. Every

location in a projection profile stores a count of number of black pixels related with text

in the corresponding row or column of the image. Projections can be thought of as a 1D

histograms.

The idea of projection profiles was spearheaded [7] and subsequently patented by Postl

[8]. Postl’s algorithm utilizes the horizontal projection profile for text skew angle detection.

The algorithm computes the horizontal projection profiles for angles in the vicinity of 0

and 180 degrees in little additions. It utilizes the aggregate of squared differences between

contiguous components of the projection profile as the criterion function and picks the

profile that boosts that esteem.

7

Hull [9] proposes a text skew angle detection algorithm similar to Postl′s. Hulls al-

gorithm is more effective, in light of the fact that it rotates individual pixels instead of

rotating whole image. In particular, the coordinates of each black pixel are rotated to save

temporary storage and in this manner to decrease the calculation that would be required

for a brute force implementation.

Bloomberg et al. [10] additionally utilize projection profiles to decide the text skew

angle. Their algorithm contrasts from Postl’s and Hull’s algorithm in a manner that the

images are down sampled before the projection profiles are ascertained to decrease compu-

tational expenses. The criterion function used to appraise the text skew angle is the change

of the quantity of black pixels in a scan line.

Kanai and Bagdanov [11] display another text skew angle estimation algorithm based on

projection profiles. The algorithm removes fiducial points and utilizes them as perspectives

in the image by translating the most minimal resolution layer of the JBIG compressed

image. The JBIG standard comprises of two strategies, a dynamic encoding strategy and

a lossless compression technique for the least resolution layer. These points are projected

along parallel lines into a collector matrix. The text skew angle is calculated as the angle of

projection inside a pursuit interim that expands arrangement of the fiducial focuses. This

algorithm recognizes a skew angle in the restricted range from ± 5 degrees to ± 45 degrees.

Papandreou and Gatos [12] utilize vertical projections for text skew detection with the

standard capacity being the sum of squares of the projection components. This technique is

guaranteed to be impervious to noise and image twisting and to work best for the dialects

where most characters incorporate no less than one vertical line, which is valid for Latin-

based dialects. In a later publication [13], Papandreou et al. report utilizing least bouncing

box zones of joined horizontal and vertical projection profiles to decide record text skews.

They assert that this approach is more impervious to noise and image twist, has no range

limitations on text skews, and is appropriate for printed archives.

Li, Shen, and Sun [14] integrate projection profiles with wavelet disintegration. Doc-

ument images are isolated into sub-images with the discrete wavelet change (DWT). The

8

matrix with the absolute values of the horizontal sub-band coefficients is rotated through a

range of angles. A step size of 2 degrees is utilized to process an underlying gauge of the

skew angle α. A better inquiry is then executed from α - 1 to α + 1 with a step of 0.5

degrees. The algorithm is assessed on an informational index with skews from 0 to ± 15

degrees.

Shivakumara et. al. [15] propose a document skew angle estimation approach in light

of linear regression. They utilize linear regression formula keeping in mind the end goal to

evaluate a skew angle for every text line section of a content document. A piece of the text

line is removed utilizing static and dynamic thresholds from the projection profiles. This

technique depends on the presumption that there is space between text lines. The technique

loses precision for the documents having skew angle more prominent than 30 degrees and

seems to work best for printed documents with separated lines.

Second class of algorithms utilize texture based ways to deal with assess document

skew angles. Algorithms in this classification calculates discriminative features on pieces of

text utilizing image filters to find pattern that are novel to the language or the script.

Chaudhury et. al [16] proposed utilizing a frequency domain portrayal of projection

profiles of horizontal text lines. Busch et. al [17] exhibit a broad assessment of an expansive

number of texture features, including projection profiles, Gabor and wavelet features and

gray-level co-occurrence grids for distinguishing the content. This class of methodologies

has the downsides of requiring extensive and adjusted homogeneous districts of text in

one script, and of the features being referred to frequently being neither exceptionally

discriminative nor reliable to compute within the sight of noisy or skewed text.

The third class contains algorithms which instrument associated components based

techniques. These use shape and stroke attributes of individual associated components.

Hochberg et. al [18] proposed utilizing content specific layouts by clustering often

occurring character or word shapes. Spitz et. al [19] developed shape codes that catch the

concavities of characters, and utilize them to first order them as Latin-based or Han-based,

and afterward inside those classifications utilizing different shape features.

9

Ma et. al [20] utilize Gabor-channels with a closest neighbor classifier to decide content

and font-type at the word-level. A few hybrid variations of local and global approaches have

likewise been recommended [21].

Kulyukin et. al [22] tried to localize NLs skewed upto 35-40 degrees either side from

vertical. It utilizes edge detection, line detection, and corner detection. This technique

is used to detect the NFT boundaries assuming that the image is not cropped and it is

horizontally or vertically aligned. Once the boundaries are detected it is used for text

chunking. The restriction of this algorithm is its inability to handle arbitrary text skews.

Zaman et. al [23] utilizes several iterations of 2DHWT for down-sampling image to

identify horizontal, vertical and diagonal change of an image and store them in different n x

n matrices. These matrices are utilized to compute the change set. Once the change set is

obtained then convex hull algorithm is used to find minimum area rectangle which is then

used to calculate the skew of text from the rotation of minimum area rectangle.

2.3 Deep Learning

Wang, Wu, Coates and Ng et. al [24] proposed to use sliding detector to discover lines

in the image which helped in word segmentation and recognition. This was achieved using

2 convolutional layers with different filter values in a CNN. In this developed system, it was

assumed that they have a lexicon which is a list of words. This was a substantial assumption

as we can use previous information to oblige the search to only certain words in numerous

applications.

Zhang, Zhao, LeCun et. al [25] used modular design to achieve optimization. The

main module is convolutional module which calculates 1D convolution of the input. The

model acknowledge a succession of encoded characters as input. The encoding is completed

by endorsing an alphabet of size m for the input dialect, and after that quantize each

character utilizing 1-of-m encoding. They developed 2 CNN both 9 layers deep consisting

6 convolutional layers and 3 fully-connected layers. Lastly, they used data augmentation to

reduce the generalization error of deep learning network.

Joulin, Grave, Bojanowski, Mikolov et. al [26] tried to show that linear models with

10

a rank constraint and a fast loss approximation can train on a billion words within ten

minutes, while achieving performance on par with the state-of-the-art.

Ciregan, Meier and Schmidhuber et. al [27] tries to prove that unsupervised pre-

training of deep, hierarchical neural networks improves supervised pattern classification and

using backpropagation on them improves the accuracy. DNNs fully unfold their potential

when they are wide (many maps per layer) and deep (many layers).

Xue, Xing, Yang, Yu et. al [28] first tried to explore ways to increase text classification.

They divided their approach into 2 phases. In first, they organized the hierarchy into

flat categories, where they tried to find related categories of document. They prioritized

categories. In second, they trained a classification model on a small set and then classified

the input document. The architecture is utilized to improve the accuracy.

11

CHAPTER 3

IMAGE SEGMENTATION AND OCR

3.1 Introduction

Vision-based extraction of nutritional information from nutrition labels (NLs) accessi-

ble on most available packaged food products is the key for proactive nutrition management,

since it enhances the client’s capacity to take part in ceaseless nutritional information ac-

cumulation and analysis. Computer vision can be the key in the food selection process

by bestowing consumers with real time text analysis of NLs, which will probably lock in

consumers in proactive nutrition management [29]. An algorithm was built in past, a

vision-based localization calculation for on a level plane or vertically adjusted NLs on for

horizontally or vertically aligned NLs on smart phones [29]. The algorithm was subsequently

changed to process not just adjusted NLs, yet in addition marginally skewed ones. A re-

striction of the algorithm was its powerlessness to handle self-assertive content skews [22].

New algorithm was proposed after modification in the older algorithm which was called

TSAW(Text Skew Angle Wavelets) and was implemented in Java.

TSAW takes printed text images and down-samples them with a few repetitive times

application of the 2D Haar Wavelet Transform (2D HWT). It first calculates the contour

of the input image followed by computing the skew angle of the image and finding 4 corner

co-ordinates. The skew angle is the angle of the image from vertical. This image is then

chunked into different rows on the basis of horizontal line separators, as each row consists of

different nutrition labels (NLs) with their daily value percent. These images were supposed

to be sent to OCR (Tesseract) to get the text from the images. But the limitation here

is that the OCR does not detect the whole word correctly, it does not work with rotated

images, OCR is trained for converting image into text for font style ”Arial” but US Food

and Drug Administration (FDA) has standardized the font style as ”Helvetica”, for which

12

Tesseract is not trained. TSAW was designed in such a way that it had a great feature of

correcting the text obtained as output from OCR. We calculate the distance of text from

all the nutrition labels (NLs) stored in the form of Dictionaries using Levenshtein Distance

algorithm.

Levenshtein Distance boosts the accuracy of the output. But still the other limitation

makes the product less efficient. Apart from this, there are scenarios where even the Lev-

enshtein Distance does not help us get the correct nutrition label. To improve it some more

features were added to the algorithm.

In this chapter, we will try to explain all the modifications done to the algorithm TSAW

to overcome the limitations. The original implementation of TSAW was done in Java and

is openly available on git [30]. The new proposed changes were done in Java. To provide

the reproducibility and truthfulness of the outcomes provided here, we have made our code

publicly accessible on the git [31].

3.2 Image Rotation

The chunked images obtained from TSAW are skewed images which when passed to

OCR, no OCR will be able to convert these images into text. The reason behind this is the

skewed images and OCR works for vertical images or for images where text is horizontal.

The output of the TSAW algorithm is shown in Fig. 3.1. All images are nothing but a

2D matrix where each index contains the pixel value of the image. The key to perform any

operation on an image can be done by performing the operation on the matrix or the pixel

values and these changes can be seen on the image. So to get the best out of any OCR we

need to give the input images in the form OCR understands the best. The best possible

solution for this is to use the skewed angle obtained from TSAW algorithm to rotate all the

images to vertical.

13

Fig. 3.1: Skew chunked image

The rotation of any 2D object is done about a certain point. We considered center

of the image as the point of rotation. We take the skew angle calculated in TSAW and

subtract it from 90 and use this value as the angle for image rotation. To rotate the image

we will calculate the affine matrix. The function that calculates affine matrix is:

 α β (1 − α) · center · x− β · center · y

−β α β · center · x+ (1 − α) · center · y


where,

α = scale · cos angle

β = scale · sin angle

(3.1)

After getting affine matrix, we apply affine transformation on the image. Affine trans-

formation is a direct mapping technique that conserve points, straight lines, and planes. The

affine transformation procedure is ordinarily used to counteract for geometric contortions

14

or distortions that happen with non-ideal camera angles.

dst(x, y) = src(M11 · x+M12 · y +M13,M21 · x+M22 · y +M23) (3.2)

The rotated matrix of the original image is then saved on file system in the form of

image. The output of the rotated image can be seen in Fig. 3.2.

Fig. 3.2: Rotated chunked image

3.3 Rotated Image to OCR

As the images we passed to the OCR were not rotated, the accuracy of OCR was very

less. In the last section, we have tried to find a way to rotate all the chunked images to

make them vertical so that we can pass them to OCR as it is trained only to convert images

to text which are vertical. We now pass these rotated images to OCR one by one and save

all the text obtained in the text file.

We analyzed the output text file of OCR and found the words obtained from OCR

were more close to NLs and more accurate. But we found that there were still lots of words

Tesseract was unable to convert for example, the OCR was converting the ”g” representing

15

grams in the nutrition table as ”9” and there were other similar errors. This inaccuracy

was because of font style difference. As the font styles OCR or Tesseract are trained for

does not contain the font style used for creating nutrition table. This was restricting us to

increase the accuracy.

3.4 Training Tesseract

After analyzing the output we observed that the rotated images passed to OCR im-

proved the accuracy of the word prediction but, still it had issues of not identifying few

characters as discussed in previous section. This was because of the font style training of

OCR. The OCR used here is Tesseract which is the best OCR to convert images to text.

Tesseract is trained for various font styles but the FDA standards use Helvetica as the font

style which is not present in Tesseract.

Fig. 3.3: The UI of jTessBoxEditor

The best way to overcome this restriction was to train Tesseract for the specific font

style and font size. After doing some research on the ways to train Teseract, the best tool

to train Tesseract can be achieved using a Java based tool called ”jTessBoxEditor”. It is

shown in Fig. 3.3. It is a box editor that can be used for full automation training of

16

Tesseract. It can read common image format which includes multi page .tiff file as input

and then click the ”Run” button. It also allows us to customize the imported text from

the files by providing the dimensions of the letters. Once the training is complete, save the

trained state of tesseract. After saving this state, whenever we try to access Tesseract, we

will have access to the new trained font style.

3.5 OCR Output vs Trained OCR

Once the Tesseract is trained and easily accessible, we can use it to convert the image

passed as input to text for the trained font with more accuracy. We observed that the

output obtained from trained OCR was able to predict more words and characters or words

more close to the actual nutrition labels. But still it was not sufficient to achieve good

accuracy and cannot be relied on too much because if in future FDA change the fonts again

it may be too much efforts.

Fig. 3.4: The input image Fig. 3.5: Output of image

The image given as input is shown in Fig. 3.4. This image is processed and chunked

into different rows using the lines in the image. When these chunked images after rotation

17

are passed to OCR, the OCR converts the image to text. The output obtained after applying

Levenshtein Distance on the output of OCR output is saved in the form of a text file shown

in Fig. 3.5.

3.6 Improvement to Text Chunking

Apart from all the changes done earlier, there were still some scenarios in which the

image chunking wasn’t working which was restricting us to create a dataset of images on

which we can test. The reason behind image segmentation not working includes processing

and chunking vertical image or we can say images with angle 90 degree. To improve image

chunking, we modified the existing code by adding the logic of calculating the coordinates of

the image in vertical image scenario because the 4 corner coordinates of image are the base of

calculating the line segments and all other calculations required for the image segmentation.

The algorithm behind calculating 4 corners of image can be seen in Algo. 4.1.

Algorithm 3.1 Cropping a Nutrition Label from an image

Input:
Calculate the 4 corners of vertical image

Output:
4 coordinates of the vertical image

Begin
Find the list of points in the image whose pixel value
Find minimum area rectangle from list of points
Using the minimum area rectangle we can find the angle of rectangle
Find the vertices of minimum area rectangle
Calculate the height and width of minimum area rectangle

End

We also analyzed that the image had some noise which was affecting the image segmen-

tation and OCR output. So, we made some calculation changes to avoid the black borders

using the comparison of black pixel count and line segment length. Modified the algorithm

little bit to reduce the noise content in the images. Noise reduction was required because

each time when we read and write the image, some noise is introduced inside the image.

18

CHAPTER 4

IMAGE CLASSIFICATION

4.1 Introduction

We tried to bring lots of improvements to OCR and image processing algorithm to in-

crease the accuracy, but after some time we analyzed that the improvement in the efficiency

to classify the nutrition labels (NL) got stagnant. No further improvements were adding

anything new to the implementation.

After some research we came to a conclusion to encapsulate image processing with

Machine Learning (ML) algorithms to get better accuracy. Innovations on machine learning

has powered various sectors of modern society: starting from web search to content filtering

on social networks to suggestions on e-commerce websites, and it is expanding towards

consumer products like cameras and smartphones.

4.2 Supervised Learning

The most widely recognized type of machine learning is supervised learning. Amid

training, the machine is demonstrated with a picture and delivers an output as a vector

of scores, one for every classification. We calculate an objective function that evaluates

the error (or distance) between the output scores and the coveted example of scores. The

machine at that point alters its interior customizable parameters to lower this error. These

customizable parameters, mostly called weights, are real numbers that can be viewed as

’handles’ that characterize the inputoutput function of the machine.

4.3 Deep Learning

Machine-learning frameworks are utilized to recognize objects in images, transform

speech into text, match news items, find posts or products of users interests, and select sig-

nificant results of search [32]. Conventional machine-learning techniques were restricted in

19

their capacity to process normal information in their raw shape. Since a long time, designing

a pattern-recognition or machine-learning framework required a cautious engineering and

significant domain proficiency to design a feature extractor that metamorphose raw data

(for example pixel value) of an image into a reasonable inward portrayal or feature vector

from which the learning subsystem, often a classifier, could identify or classify patterns in

the info. To overcome this limitation, we can make use of a class of systems called deep

learning.

Representation learning is an arrangement of techniques that enables a machine to be

sustained with raw information and to naturally discover the representations required for

detection or classification of objects. Deep-learning techniques are representation learning

techniques with different levels of portrayal, acquired by making straightforward however

not-changing modules that each change the representation at one level into a representation

at a higher, marginally more dynamic level.

The key part of deep learning is that these layers of features are not developed by hu-

man designers: they are gained from information utilizing a broadly useful learning strategy.

Deep learning is making real advances in tackling issues that have opposed the best endeav-

ors of the artificial intelligence group for a long time. It has ended up being great at finding

multifaceted structures in high-dimensional information and is therefore appropriate to be

applied to numerous domains of science, business and government.

4.4 Back Propagation to Train Multilayer Architecture

From the preliminary times of pattern recognition, researchers endeavor to achieve has

been to supplant hand-designed features with trainable multilayer networks. Multilayer

architectures can be trained by straightforward stochastic gradient descent. For whatever

length of time that the modules are generally smooth functions of their inputs furthermore,

their internal weights, one can process gradients utilizing the backpropagation technique.

The backpropagation strategy to process the gradient of an objective function regarding

the weights of a multilayer stack of modules is simply a practical use of the chain rule for

derivatives. The simple form of backpropogation algorithm for weight updation cosists of 3

20

steps with the following equations:

1. Feed forward training instances

xi = fi(Wi · xi) (4.1)

where,

xi is input vextor

fi is activation function

Wi is weight

2. Calculate the error for layer l

δl = ((wl+1)T · l+1) � σ′(zl) (4.2)

where,

(wl+1)T is transpose of weight matrix for l+1 layer

l+1 is the error at layer l+1 �σ′(zl) is Hadamard product

3. update the weights

Wi = Wi − α · wi (4.3)

where, α is learning rate

The key knowledge is that the subordinate (or gradient) of the goal regarding the

contribution of a module can be calculated by working in reverse from the gradient regarding

the output of that module.

21

4.5 Convolution Neural Network

ConvNets are intended to process information that come as numerous arrays. There

are four key concept behind ConvNets that exploit the properties of regular signals: local

connections, shared weights, pooling and the utilization of numerous layers.

Fig. 4.1: Example of Convolutional Neural Network

The architecture of a simple CNN is organized as a arrangement of stages as shown in

the form of an example in Fig. 4.1 [33].The part of the convolutional layer is to identify

nearby conjunctions of features from the previous layer, the part of the pooling layer is to

consolidate semantically comparable features into one. Deep neural networks exploit the

property that numerous characteristic signs are compositional hierarchies of command, in

which more elevated amount of features are acquired by forming lower-level ones. In images,

local combinations of edges shape motifs, motifs gather into parts, and parts shape objects.

4.6 Image Classification

To start, we embrace the CNN representation to handle the issue of image classification

of items and scenes. The framework ought to dole out (possibly various) semantic labels to

an image. Keep in mind as opposed to object detection, object image classification requires

no limitation of the objects. The CNN representation has been optimized for the object

image classification.

22

4.7 Dataset and Labeling

The data has been collected by going to grocery store and taking the snaps of nutrition

tables printed on packaged food items using smartphone samsung s3 which has 8MP rear

camera. These images are then copied on the computer and passed to the modified java

implementation of TSAW. The rotated output of the TSAW is shown in previous chapter.

The data obtained from TSAW was manually cropped and labeled into 24 classes for

training data.The nutrition label images obtained in the previous chapters have the % value

in images, which needs to be removed. So these train images were manually cropped and

put in the labeled set. This manual cropping and labeling is done only for the training

dataset. The train image can be seen in Fig. 4.2.

Fig. 4.2: Cropped training image

Similar to training dataset we have to create validation dataset but instead of cropping

validation images manually, we wrote a python code for segmenting the image into nutrition

label part and percent part with the use of black pixel mean. The algorithm can been in

Alg. 4.1.

The output of the cropping image algorithm can be seen in Fig. 4.3 and 4.4.

Fig. 4.3: The validation im-
age

Fig. 4.4: The validation im-
age

23

Algorithm 4.1 Cropping image to obtain only Nutrition Labels

Input:
All images whose extension is *.jpg

Output:
All segmented images taken as input is saved as *.jpg

Begin
Apply Dilate morphological operation on image of kernel size 5
Apply Erode morphological operation on image of kernel size 2
For each 3 columns in all columns of image

For all rows in image
if pixel value = 255

count number of black pixel
Calculate mean of 3 count of black pixels for 3 columns at a time

Find drops and spikes in the means
For each 3 values check if the difference ¡ 3

get the value of drop
End

After all these operations we got the dataset for CNN. The dataset used for training

and validation of the CNN can be seen in Table 4.1:

Table 4.1: Dataset Information

No. of Train images 1266

No. of Validation images 128

No. of Classes 24

4.8 Tuning

There is no specific and decided architecture of any neural network including CNN.

Everyone has to work on designing and finding the best model and architecture of the CNN.

This can be achieved by altering the hyper-parameters of the CNN. Hyper-parameters can

be anything starting from number of filters to activation function or changing the layers

of CNN in architecture to number of epochs. We performed changing of most of these

24

parameters to improve the accuracy of the CNN to its maximum.

4.9 Design CNN

CNN has proven to be very efficient in image classification and recognition. There

is a restriction in engineering artificial neural network or any traditional machine learning

algorithms to have domain knowledge but CNN surpass this limitation as it automatically

adjust itself for different domains.

In our scenario, we have used an architecture where we have used 2 convolution layers

followed by 1 pooling/sub-sampling layer. The pooling layer is then followed by fully con-

nected layer. The complete architecture of the CNN used in our scenario is shown in Fig.

4.5

Fig. 4.5: Example Convolutional Neural Network

The layers in any deep learning algorithms are connected and takes the output of

previous layer as input. When a layer in Deep Learning perform computation on the

matrix passed as input gives an output for the next layer. Each filter in convolution layer is

duplicated across the whole layer. This replicated filters form feature maps. Each position

brings about an activation of the neuron and the output is gathered in the feature map.

25

Feature map can also be considered as an encoding where feature stands for what is available

in the image while map encodes where this feature is present in the image. The feature

map of my CNN architecture is shown in Fig. 4.6

Fig. 4.6: Feature map of the CNN architecture

26

CHAPTER 5

EXPERIMENTS AND RESULTS

5.1 Introduction

In previous chapter, we discussed the architecture and feature map of CNN. We also

saw how CNN is a good option for image classification. While engineering any machine

learning or deep learning algorithms, there is no single standalone solution to problems. The

architectures of any algorithm vary in different ways for different scenarios. The architecture

of any ML algorithm designed and optimized for one type of input may or may not work

for other types of input.

To design or optimize any ML algorithm we have to tune it for specific scenarios by

changing different parameters or components to see in which scenario it performs best or

gives the highest accuracy.

5.2 CNN Hyper-parameters

We have discussed about tuning a CNN in previous chapter and previous section. Hyper

parameters are the parameters passed to any layers in model which can be anything like

loss, activation function, filters dropout etc. I initially designed my CNN with 2 convolution

layers followed by 1 pooling layer then again 2 convolution layers followed by pooling layer

and finally a fully connected layer. The filters in first block of convolution is 256 and 512

respectively. The number of filters in fully connected layer is kept at 512. The train set is

divided into a batch size of 32. The Kernel size is a window of 3x3 and then it is slided

by 1 pixel. Sliding the kernel window is called stride. The kernel size in pooling layer is

2x2. Each layer block had ReLU as activation function. The value of Dropout function was

0.25. We used Categorical Cross Entropy as the loss function and the number of epochs

were 20. But this was the initial state of the CNN. We changed various parameters and

27

analyzed the accuracy and loss of the CNN. If we got higher accuracy and lower loss then

we moved forward with keeping those changes otherwise we reverted the model to previous

state. Below we have discussed few hyper parameters and how changing them affected our

accuracy.

5.2.1 Optimizers

A loss function or cost function is a capacity that maps a values of at least one variable

onto a real number instinctively representing to some ”cost” related with the event. A loss

function deliberates the nature of a specific arrangement of parameters based on how well

the instigated scores fit with the ground truth labels in the training data. The objective of

optimizer is to discover weight W that reduces the loss function. There are different types

of optimizers that can be used in deep learning.

• SGD - SGD stands for Stochastic Gradient Descent, update the parameters for every

training set.

• RMSprop - It is an adaptive learning method.

• Adagrad - This is an algorithm for gradient optimization. It adjusts the learning rate

to the parameters.

• Adadelta - It is an enhancement to Adagrad that tries to lower learning rate.

• Adam - It stands for Adaptive Moment Estimation, which calculates adaptive learning

rate for each and every parameter. It can be seen as the integration of RMSprop and

momentum.

• Adamax - It is a variation of Adam built on infinity norm.

• Nadam - It stands for Nesterov Adam optimizer. It is an mixture of Adam and NAG.

The output of the CNN for optimizer is shown in table 5.1.

28

Table 5.1: Experiment results on changing Optimizers

Epoch Training Loss Validation Loss Training Accuracy Validation Accuracy

SGD 20 2.8793 3.1366 16.28 15.64

RMSprop 20 2.0867 2.57 33.30 31.24

Adagrad 20 13.7311 14.5645 14.81 15.64

adadelta 20 2.2812 2.7533 31.12 30.04

Adam 20 2.0868 2.1265 33.87 32.03

Adamax 20 2.0856 2.9450 34.85 31.47

Nadam 20 2.8532 3.9982 13.03 12.31

After analyzing these experiments, we can interpret that Adam and Adamax outper-

form in accuracy than other optimizers.

5.2.2 Epoch

Epoch is very much similar to iterations, but can be better defined as one forward

and backward pass of all the training examples available. It can also be considered as the

number of times the model sees training set. We analyzed that 20 epochs is very less so we

tried different epochs like 60 for optimizer Adam as the network gave best output in Adam.

The output of the CNN for Epoch is shown in table 5.2

The output of the CNN for increasing epochs for Adam optimizer is shown in table

5.2.

29

Table 5.2: Experiment results on changing Epochs

Number of Epoch Training Loss Validation Loss Training Accuracy Validation Accuracy

60 1.1860 1.5082 60.20 58.27

After this experiment our decision to increase epoch was effective as the accuracy

increased.

5.2.3 Dropout

In previous section we found that increasing epoch helped us achieve higher accuracy

so we will move ahead with this new architecture. Dropout layers have a particular purpose

in neural systems. This layer ”drops out” an arbitrary set of activations in that layer by

making them zero. It ensures that the system is not getting excessively ”fitted” to the

training data and accordingly reduces the overfitting issue. The output of the CNN for

Dropout is shown in table 5.3.

Table 5.3: Experiment results on reducing Dropout

Dropout value Training Loss Validation Loss Training Accuracy Validation Accuracy

0.2 1.0825 1.4666 64.79 61.73

In this experiment we observed that the accuracy of the CNN increased by reducing

the value of Dropout.

5.2.4 Reduced Validate Dataset

In previous section of experiment, we saw that the accuracy increased with the ar-

chitecture change so we will proceed with those changes, but reducing validation data can

30

be effective as the validation data has noisy data. There were lots of images which in the

validation dataset which were very noisy due to which they were not properly chunked by

the python code written to chunk them. The algorithm is discussed in previous chapter.

So, we removed all such images. The output of the CNN for reduced validate set is shown

in table 5.4.

Table 5.4: Experiment results on reducing validation dataset

Training Loss Validation Loss Training Accuracy Validation Accuracy

Reduced Validation dataset 0.9253 1.1567 69.38 68.56

Epoch 70, Reduced Validation dataset 0.9103 1.1648 69.88 68.23

Epoch 80, Reduced Validation dataset 0.8979 0.9119 70.15 69.64

Epoch 120, Reduced Validation dataset 0.7128 0.7896 76.85 74.50

Epoch 180, Reduced Validation dataset 0.5176 .0.8359 83.04 82.84

In this section we see that the accuracy increased by removing noisy data.

5.2.5 Convolution Layer, Layer Block

The architecture changes done to CNN till now has helped us get higher accuracy. In

previous section, we discussed the architecture having 2 convolution layers and 1 pooling

layer. We considered it as a block. We added 1 extra convolution layer in the block and

tried adding and removing the whole layer block. The output of the CNN for reduced

validate set is shown in table 5.5.

Table 5.5: Experiment results on changing Convolution layer and Convolution Block

Training Loss Validation Loss Training Accuracy Validation Accuracy

Adding convolution layer 1.5300 1.6295 49.85 46.73

Adding layer block 15.92 17.35 6.48 4.66

Removing layer block 0.9680 1.2271 68.02 66.94

Epoch 70, Removing layer block 1.3246 1.7945 57.85 56.81

31

In this experiment, we can observe that removing layer block also gave a good accuracy.

5.2.6 Adamax Optimizer

In previous section, we discussed about Adamax optimizer. We also observed that

Adamax gave good accuracy same as Adam optimizer. So we tried performing some similar

experiments performed on Adam with Adamax optimizer function. The output of the CNN

for reduced validate set is shown in table 5.6.

Table 5.6: Experiment results on changing epoch for Adamax optimizer

Training Loss Validation Loss Training Accuracy Validation Accuracy

60 Epoch with decreased layer block 1.0745 1.2212 66.51 64.97

70 Epoch with decreased layer block 1.0521 1.153 66.27 63.45

In these experiments we can infer that although Adamax gave good accuracy but its

not higher than Adam.

5.2.7 Filters, Kernel

In this section we tried to make changes to filters value and kernel size to see if we can

achieve higher accuracy. The first layer of any CNN can only be a Convolutional Layer.

The input to this convolution layer will be an array containing pixel values of the image.

A filter is represented by a vector of weights with which we convolve the input. Filters are

also known as neuron. A vital note is that the depth of the filter must be the same as the

depth of the input. The output of the CNN for reduced validate set is shown in table 5.7.

Table 5.7: Experiment results on changing Filters

Training Loss Validation Loss Training Accuracy Validation Accuracy

Decreasing Filter to 128 0.9852 1.2903 66.99 63.14

32

Decreasing filters value has given good results but it decreased the accuracy by a small

margin.

Every convolution operation has a kernel which can be a matrix of any size lesser than

the original image in width and height. Every kernel is valuable for a specific work, for

example, sharpening, obscuring, edge detection, and many more. The output of the CNN

for reduced validate set is shown in table 5.8.

Table 5.8: Experiment results on changing Kernel size

Training Loss Validation Loss Training Accuracy Validation Accuracy

Increasing Kernel to 5x5 12.98 13.8903 13.99 10.14

Decreasing Kernel to 2x2 1.0888 1.4739 63.87 59.94

In this experiment, increasing the kernel size reduced the efficiency by a huge factor

while decreasing kernel size has given good results but it decreased the accuracy by a small

margin.

33

CHAPTER 6

CONCLUSION

A legitimate comprehension of nutrition labels (NLs) is fundamental to guarantee eat-

ing a healthy, unprejudiced eating routine. These labels give data on the measures of 13

fundamental nutrients and calories in a measure of food, alongside a % Daily Value pointer

to enable individuals to make informed decision over food choices. This information is in-

troduced as a standardized table. Commonality with the terms of the NLs enables a buyer

to make a superior choice while looking for packaged food items and contrasting one item to

another. Nonetheless, numerous customers think that its hard to interpret the nutritional

information on items and feel less motivated to monitor their nutrient utilization. One ap-

proach to enhance the cognizance and maintenance of nutritional data by consumers is to

utilize computer vision algorithms that can keep running on a cell phone. This incorporates

filtering the Nutrition Label itself and separating the nutritional information from it.

The primary challenge of this dissertation is to classify nutrition labels and the values

in the input image of nutrition table. But before solving that we have to make lots of

changes to the TSAW algorithm used to find out the skew angle of the image. Because the

chunked image obtained after TSAW are to be passed in OCR which was considered to be

the ground truth for the image classification protocol. But the limitations of TSAW were

analyzed and were improved by first applying the image rotation on the chunked images of

nutrition labels because OCR can transform horizontal images to text in a very efficient way.

After passing the rotated images to OCR we found the reason for lower accuracy was also

the font style for which OCR is trained is not the same as the font style used in nutrition

table. To come over this limitation we should train the OCR for the specific font style.

For this we used a tool called jTessBoxEditor where we can train Tesseract OCR for any

font style and font size and then use the output of this tool for OCR. After making these

changes we observed that the TSAW was unable to handle the vertical images passed as

34

input. We made couple of changes for calculating the coordinates of the image for vertical

images. We also made some changes to remove borders from images because they act as

noise if we pass them to OCR or any machine learning algorithm.

To deal with the main challenge of image classification we can use machine learning

algorithms. But a special class of algorithms was developed called Deep Learning which has

proven to be very efficient in various sectors. Deep learning has various algorithms which

are specifically designed for specific scenarios. In our case we have to classify images and

CNN has been specially designed keeping in mind classification and recognitions in images,

audio and video. Our scenario was a supervised learning because we had labeled training

set and validation set. The biggest thing to get the most optimum neural network is tuning

them by changing the hyper parameters. The architecture used by us of CNN was 2 layer

blocks each having 2 convolution layers with 1 pooling layer. These 2 layer blocks were

followed by fully connected layer.

6.1 Lower Accuracy Reason

The highest accuracy we were able to achieve was ≈ 69 % which was greater than the

highest accuracy achieved using TSAW and OCR. But still this accuracy is not enough

because CNN are well known for very efficient and higher accuracy between 80-99%. The

reason behind low accuracy are:

6.1.1 Dataset

The dataset we use consists of training and validation dataset.

• Input image dimension - The input image we are using has little variations in the

height and width of the image.

• Small Dataset - Any machine learning algorithm requires thousands of images to train

and have higher predictions. Even for CIFAR-10 dataset they have around 60000

images in 10 classes with 6000 images in each class. In our scenario we have around

24 classes for classification. A lot of times it is suggested that each class should have

35

at-least 1000 images in each class. This could be a very big reason of lower accuracy

as we only have 1266 images for training.

• Noise - If the training dataset has noisy data or mislabeled data, it can be a reason

behind lower accuracy. In our scenario, we do not have any mislabeled data but the

train dataset has too much noise or unwanted black pixels added to images. The

images in training dataset is not very clear.

• Batch Size - It is defined as number of samples used in the network at a time. Higher

batch size reduces the generalization of the CNN which affects the accuracy of the

model. The batch size used in our scenario is 32. It is a huge possibility that by

decreasing the batch size to 16 or 8 to get higher accuracy.

6.1.2 Image Augmentation

Image Augmentation can be defined as a technique of manipulating the images in

training dataset to create multiple interpolated images. This provides more images to train

and also provides wide varieties of lightning, coloring and skewed images for CNN to train.

We are using image augmentation for our cnn. But not proper augmentation on the train

set may reduce the accuracy. We may need to change the rotation angle, blurring value etc.

6.1.3 High Loss

The loss is calculated by taking the negative ln of 10% of number of classes used. In

our scenario we have 24 classes. So, it will be -ln(0.24). The loss calculated is 1.427.

Another big factor in lesser accuracy could be ”Pattern too complex to learn”. It is

a possibility because we have 24 classes of classification and images have some noise which

makes the training set more complicated. The patterns have different curves and edges

which brings variety of data and makes training complex. If the image resolution is big

then 2 layers can be not sufficient to train network for big image.

36

6.1.4 Hyper-Parameters

Hyper parameters are the values used for tuning a CNN.

• Number of epochs - In our scenario we are using epochs as 60 and we did experiments

by increasing the epochs to 70 and 80, but this is very less because sometimes MNIST

gives 99% accuracy at epoch 300 where data is 32·32 resolution image so we may need

to try higher epochs.

• Learning rate - Low learning rate cause the model to converge slowly, on the other

hand, high learning rate decreases loss but not able to find solution. The learning

rate Adam optimizer has is 0.001 but Adamax has learning rate of 0.002 so we can

try by making a custom optimizer.

6.2 Future Work

Our future work mainly focuses on collecting more training and validation images as

we had only 1266 train images and any machine learning algorithms gives higher accuracy

on tens of thousands of images. We will also focus on tuning the CNN more and more

by changing other parameters. Then we can create a user interface for the smart phones,

android and ios both, so that users can use it for keeping track of their nutrition intake.

This app will also be able to give suggestions to users on the basis of their health. But

CNN require high computation so we can deploy it on a GPU based computation server.

37

REFERENCES

[1] U. S. D. of Agriculture, “Economic research service data.”
[Online]. Available: https://www.ers.usda.gov/amber-waves/2005/november/
us-food-consumption-up-16-percent-since-1970/

[2] W. H. Organization, “Annual world health statistics.” [Online]. Available:
www.who.int

[3] N. Labeling and E. A. of 1990. [Online]. Available: http://en.wikipedia.org/wiki/
Nutrition Labeling and Education Act of 1990

[4] F. L. to Advance Better Education for Life. [Online]. Available: www.flabel.org/en

[5] D. H. S. Sinclair and S. Goodman, “Sociodemographic differences in the comprehension
of nutritional labels on food products,” Journal of Nutr. Educ. Behav., vol. 45(6), pp.
767–72, 2013.

[6] R. J. D.J. Graham, “Location, location, location: eye tracking evidence that consumers
preferentially view prominently positioned nutrition information,” J. Am. Diet. Assoc,
vol. 111, p. 17041711, 2011.

[7] W. Postl, “Detection of linear oblique structures and skew scan in digitized documents,”
in In Proc. of International Conference on Pattern Recognition, 1986, pp. 687–689.

[8] ——, “Method for automatic correction of character skew in the acquisition of a text
original in the form of digital scan results,” Feb. 2 1988, uS Patent 4,723,297.

[9] J. Hull, “Document image skew detection: survey and annotated bibliography.ws,” In
J.J. Hull, S.L. Taylor (eds.), Document Analysis Systems II, World Scientific Publish-
ing Co., pp. 40–64, 1997.

[10] D. S. Bloomberg, G. E. Kopec, and L. Dasari, “Measuring document image skew and
orientation,” in Document Recognition II, vol. 2422. International Society for Optics
and Photonics, 1995, pp. 302–317.

[11] J. Kanai and A. Bagdanov, “Projection profile based skew estimation algorithm for jbig
compressed images,” International Journal on Document Analysis and Recognition, pp.
43–51, 1998.

[12] A. Papandreou and B. Gatos, “A novel skew detection technique based on vertical pro-
jections,” In Proc. of International Conference on Document Analysis and Recognition
(ICDAR), pp. 384–388, Sept 2011.

[13] A. Papandreou, S. P. B. Gatos, and I. Gerardis, “Efficient skew detection of printed
document images based on novel combination of enhanced profiles,” Int. J. Doc. Anal.
Recognit, pp. 433–454, 2014.

https://www.ers.usda.gov/amber-waves/2005/november/us-food-consumption-up-16-percent-since-1970/
https://www.ers.usda.gov/amber-waves/2005/november/us-food-consumption-up-16-percent-since-1970/
www.who.int
http://en.wikipedia.org/wiki/Nutrition_Labeling_and_Education_Act_of_1990
http://en.wikipedia.org/wiki/Nutrition_Labeling_and_Education_Act_of_1990
www.flabel.org/en

38

[14] Q. S. S.T. Li and J. Sun, “Skew detection using wavelet decomposition and projection
profile analysis,” Pattern Recognition Letters, pp. 555–562, 2007.

[15] D. G. P. Shivakumara, G. Hemantha Kumar and P. Nagabhushan, “Skew estimation
of binary document images using static and dynamic thresholds useful for document
image mosaicing,” In Proc. of National Workshop on IT Services and Applications
(WITSA 2003), pp. 51–55, Feb 2003.

[16] S. Chaudhury and R. Sheth, “Trainable script identification strategies for indian lan-
guages,” Proc. 5th IEEE Intl. Conf. on Document Analysis and Recognition (ICDAR),
pp. 657–680, 1999.

[17] W. B. A. Busch and S. Sridharan, “Texture for script identification,” IEEE Trans.
Pattern Analysis and Machine Intelligence (PAMI), vol. 27(11), pp. 1720–1732, 2005.

[18] T. T. J. Hochberg, P. Kelly and L. Kerns, “Automatic script identification from docu-
ment images using cluster-based templates,” IEEE Transactions on Pattern Analysis
and Machine Intelligence (PAMI), pp. 176–181, 1997.

[19] A. Spitz, “Determination of the script and language content of document images,”
IEEE Trans. Pattern Analysis and Machine Intelligence (PAMI), pp. 235–245, 1997.

[20] H. Ma and D. Doermann, “Gabor filter based multi-class classifier for scanned doc-
ument images,” Proc. 7th IEEE Intl. Conf. on Document Analysis and Recognition
(ICDAR), pp. 968–972, 2003.

[21] Y. L. L.J Zhou and C. Tan, “Bangla/english script identification based on analysis of
connected component profiles,” 7th IAPR Workshop on Document Analysis Systems
(DAS), pp. 243–254, 2006.

[22] V. Kulyukin and C. Blay, “An algorithm for mobile vision-based localization of skewed
nutrition labels that maximizes specificity,” in Emerging Trends in Image Processing,
Computer Vision and Pattern Recognition. Elsevier, 2015, pp. 277–293.

[23] T. Zaman and V. Kulyukin, “Text skew angle detection in vision-based scanning of
nutrition labels,” in Proceedings of the International Conference on Image Processing,
Computer Vision, and Pattern Recognition (IPCV). The Steering Committee of The
World Congress in Computer Science, Computer Engineering and Applied Computing
(WorldComp), 2015, p. 139.

[24] T. Wang, D. J. Wu, A. Coates, and A. Y. Ng, “End-to-end text recognition with con-
volutional neural networks,” in Pattern Recognition (ICPR), 2012 21st International
Conference on. IEEE, 2012, pp. 3304–3308.

[25] X. Zhang, J. Zhao, and Y. LeCun, “Character-level convolutional networks for text
classification,” in Advances in neural information processing systems, 2015, pp. 649–
657.

[26] A. Joulin, E. Grave, P. Bojanowski, and T. Mikolov, “Bag of tricks for efficient text
classification,” arXiv preprint arXiv:1607.01759, 2016.

39

[27] D. Ciregan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks for
image classification,” in Computer vision and pattern recognition (CVPR), 2012 IEEE
conference on. IEEE, 2012, pp. 3642–3649.

[28] G.-R. Xue, D. Xing, Q. Yang, and Y. Yu, “Deep classification in large-scale text hi-
erarchies,” in Proceedings of the 31st annual international ACM SIGIR conference on
Research and development in information retrieval. ACM, 2008, pp. 619–626.

[29] V. Kulyukin, T. Zaman, and S. Andhavarapu, “Effective use of nutrition labels on
smartphones,” in 15th Int. Conf. Internet Computing and Big Data, 2014, pp. 21–24.

[30] “Java source code of the tsaw algorithm:.” [Online]. Available: https://github.com/
tanwirzaman/HaarTextSkewDetection

[31] A. Khasgiwala, “Word recognition in nutrition labels with convolu-
tional neural network.” [Online]. Available: https://github.com/anujkhasgiwala/
Word-Recognition-in-Nutrition-Labels-with-Convolutional-Neural-Network

[32] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, p.
436, 2015.

[33] MathWorks, “Convolutional neural network.” [Online]. Avail-
able: https://www.mathworks.com/content/mathworks/www/en/discovery/
convolutional-neural-network/jcr:content/mainParsys/image copy.adapt.full.high.jpg/
1492406018870.jp

https://github.com/tanwirzaman/HaarTextSkewDetection
https://github.com/tanwirzaman/HaarTextSkewDetection
https://github.com/anujkhasgiwala/Word-Recognition-in-Nutrition-Labels-with-Convolutional-Neural-Network
https://github.com/anujkhasgiwala/Word-Recognition-in-Nutrition-Labels-with-Convolutional-Neural-Network
https://www.mathworks.com/content/mathworks/www/en/discovery/convolutional-neural-network/jcr:content/mainParsys/image_copy.adapt.full.high.jpg/1492406018870.jp
https://www.mathworks.com/content/mathworks/www/en/discovery/convolutional-neural-network/jcr:content/mainParsys/image_copy.adapt.full.high.jpg/1492406018870.jp
https://www.mathworks.com/content/mathworks/www/en/discovery/convolutional-neural-network/jcr:content/mainParsys/image_copy.adapt.full.high.jpg/1492406018870.jp

	Word Recognition in Nutrition Labels with Convolutional Neural Network
	Recommended Citation

	ABSTRACT
	PUBLIC ABSTRACT
	ACKNOWLEDGMENTS
	LIST OF TABLES
	LIST OF FIGURES
	ACRONYMS
	INTRODUCTION
	Background
	Nutrition Label Tracking
	Image Segmentation and OCR
	Deep Learning

	Process Flow
	Research Scope

	RELATED WORK
	Introduction
	Text Skew Angle Detection - Background
	Deep Learning

	IMAGE SEGMENTATION AND OCR
	Introduction
	Image Rotation
	Rotated Image to OCR
	Training Tesseract
	OCR Output vs Trained OCR
	Improvement to Text Chunking

	IMAGE CLASSIFICATION
	Introduction
	Supervised Learning
	Deep Learning
	Back Propagation to Train Multilayer Architecture
	Convolution Neural Network
	Image Classification
	Dataset and Labeling
	Tuning
	Design CNN

	EXPERIMENTS AND RESULTS
	Introduction
	CNN Hyper-parameters
	Optimizers
	Epoch
	Dropout
	Reduced Validate Dataset
	Convolution Layer, Layer Block
	Adamax Optimizer
	Filters, Kernel

	CONCLUSION
	Lower Accuracy Reason
	Dataset
	Image Augmentation
	High Loss
	Hyper-Parameters

	Future Work

	REFERENCES

