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Abstract

Study of microbial populations has always been a topic of interest for researchers.

This is because microorganisms have been of instrumental use in the various studies

related to population dynamics, artificial biofuels etc. Comparatively short lifespan

and availability are two big advantages they have which make them suitable for

aforementioned studies. Their population dynamic helps us understand evolution.

A lot can be revealed about resource consumption of a system by comparing it to

the similar system where bacteria play the role of different factors in the system.

Also, study of population dynamics of bacteria can reveal necessary initial conditions

for the desired state of microbial population at some reference point in future. This

makes it interesting for ecological and evolutionary disciplines.

Chaos is a mathematical concept which characterizes behavior of dynamical sys-

tems that are highly sensitive to the initial conditions. Small differences in the initial

conditions such as those due to rounding errors of values of initial parameters yield

widely diverging outcomes for such dynamical systems. The way biological systems

behave in nature, there is a reason to believe that they do indeed follow chaotic

regime. Various mathematical models have been proposed to mimic biological sys-

tems in nature. We believe that models which follow chaotic regime represent the

biological systems in better way and also are more efficient. We propose a new soft-

ware tool which may help simulate the mathematical model at hand and provide view
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of different set of parameters which can keep the system in chaotic state. This may

help researchers design better and efficient biological models or use existing models

in better way.
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Chapter 1

Introduction

The study of microbial populations has always been a topic of interest for researchers.

This is because microorganisms have been of instrumental use in the various studies

related to population dynamics, artificial bio-fuels etc. Comparatively small lifespan

and availability are the two big advantages they have which make them suitable

for use in the aforementioned studies. Their population dynamic helps us understand

evolution. A lot can be revealed about resource consumption of a system by comparing

it to a similar system where bacteria play the role of different factors in the system.

Also, study of population dynamics of bacteria can reveal necessary initial conditions

for the desired state of microbial population at some reference point in future. This

makes it interesting for ecological and evolutional disciplines.

There have been various attempts to study population dynamics of bacteria

under experimental conditions. Experimenters have tried to change the behavior of

the system by changing some experimental parameters. Experiments done in [5] and

[4] are good examples of that. One important aspect of the population dynamics

which has been discussed in these papers is of chaotic state of dynamical systems

representing population. One way of studying biological systems is to study its chaotic
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dynamics. Various effects of the chaotic state on the biological system are the current

subjects of studies in the area.

Chaos is a mathematical concept which characterizes behavior of dynamical sys-

tems that are highly sensitive to the initial conditions. Small differences in the initial

conditions such as those due to rounding errors of values of initial parameters yield

widely diverging outcomes for such dynamical systems. The fact that biological sys-

tems do indeed enter chaotic regime states that it is not just a theoretical concept.

Chaotic state of the system may have a profound effect on the overall demographics of

the system. One of the most popular examples is the chaotic demographic dynamics

of laboratory populations of flee beetle Tribolium castaneum [3]. It explains chaotic

demographic of flee beetle population with the help of experimental results. It shows

how small perturbations done at the right time might produce larger desired change

in demographic at later time. Computational analysis of chaotic and non-chaotic

regions for the given microbial system may enable us to do the same.

The theoretical proof of chaos in the microbial systems was discussed in [5]. The

readings in this paper were based on an actual biological experiment. A biological

system was nurtured and population readings were taken periodically. Based on the

data collected experimentally it was determined that the microbial system used in

the experiment follows chaotic regime. We also have a mathematical model which

mimics the experiments.These mathematical model goes into a chaotic state for some

parameter values. If it can be showed that the actual biological system represented

by that model follows a chaotic regime when the parameters are set to that of exper-

imental conditions, it strengthens the claim of accuracy for the model. To do this we

developed the tools to do the mathematical simulation of the model. Mathematical

simulations are of great importance as they can generate results faster and minimize

the need of actual experiment. Provided that the mathematical model mimicking the
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biological experiment is accurate, the predictions done by the simulation are highly

useful to understand the effects of changes being made to the system before actually

making them.

Mathematical simulations have been used to predict the outcome of the bio-

logical experiments before. In [4] a study of plant growth promoting rhizobacteria

(PGPR) was done to determine the environmental conditions necessary for their sur-

vival. Mathematical simulations showed that competition for the limiting resources

was the important factor for the survival of PGPR. Finding solution to a biological

problem by mathematical simulation minimized the necessity of real time experiments

and made the system overall more efficient. Success of this experiment underlines the

importance of a system which can generate mathematical simulations and also predict

parameter values for a given mathematical system to be in chaotic state. A system

which is blind to the input mathematical model and capable of simulating and pre-

dicting parameter values for a given dynamical system (so that it remains in chaotic

state) will be of great value.

In this paper we describe Becks’ sets of equations with different number of vari-

ables. Each set mimics a regulated biological system. We experimented with various

parameters of these sets of equations and were able to get the resulting dynamical

system in and out of chaotic state. We also have come up with a system which can

generate mathematical simulations of the given dynamical system and also predict

suitable initialization parameters from the set of variable parameters provided to the

system. We also used the same system to study chaotic dynamics of the mathematical

equations which are based upon the experiments performed in [5]. It uses a genetic

algorithm to predict the parameter values necessary for the chaotic state. The ge-

netic algorithm described, evolves the set of parameters such that their values cause

the system represented by those sets of equations to be in chaotic state. The genetic
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algorithm is explained in later chapters. We believe this feature to be a good addition

in the toolset available for an evolutionary biologist.

It is important to note that there are multiple possible initial points starting

from which a mathematical system can reach a chaotic state. To visualize the effect

of each parameter on the system, it is necessary to be able to see a representative

set of all possible starting points. To achieve this we used a Metropolis algorithm

which simulates a random walk through all possible points’ sample space. All the

points selected using this random walk can be visualized on a screen. We ran the

Metropolis algorithm on Becks’ sets of equations with selected parameter space and

plotted them in the parallel co-ordinate format to understand relationships between

them. Parallel co-ordinate format is good for representing multidimensional data.

It helps researchers to determine effect of a parameter value on the evolution of the

mathematical system with respect to other parameter values. Data generated through

the Metropolis algorithm implementation were made easier to visualize using this

format.

We also found that the combination of the genetic and the Metropolis algorithm

generates better results. We seeded the Metropolis algorithm by the results given by

the genetic algorithm. This approach made sure that larger number of points visited

by the Metropolis algorithm caused underlying dynamical system to be in chaotic

state. Larger number of chaotic points also strengthens the conclusions about the

relation between different parameter values made from the Metropolis algorithm.

To summarize everything here, this report contains some initial background of

theoretical requirements of chaos and methods to determine chaose in the system. In

later chapters it contains the description of mathematical equations based on [5], our

manual experiments with the equations. Then it discusses the genetic algorithm used

to predict initialization values of parameters and Metropolis algorithm to generate
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the representative set of all starting points necessary for the mathematical system to

follow a chaotic regime.
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Chapter 2

Literature Review

Effect of chaotic state on the evolutionary behavior of the system has been a subject

of study in the literature. Studies have been done to investigate effective use of

chaotic state to change the final condition of the system to get the expected results.

Work in [5] studies the dynamics of a defined predator-prey system consisting of

a bacterivorous ciliate and two bacterial prey species. It shows that the dynamic

behavior of such a two-prey, one-predator system includes chaotic behavior, as well as

stable limit cycles and coexistence at equilibrium. While experimental data have been

used to estimate chaotic behavior observed in [5], theoretical inspection of underlying

mathematical model to check whether system can transform in and out of chaotic

state is not present. We analyze underlying system of dynamical equations and check

if it can transform in and out of chaos. Our study of various systems will enable us

to design a tool which can generate possible set of parameter values for any given

dynamical system of equations so that it remains in chaotic state. Also, may grant

an ability to transform the given system in and out of chaotic state by changing

experimentally controllable parameters.
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2.1 Chaos in Biological Systems

Becks et al. [5] is one of the pioneer work in which showed the existence of chaos in

the biological system. Even as large ecological systems as a whole do exhibit chaotic

nature, the same nature was not theoretically shown in the smaller systems which in

reality are a part of larger ecological system. Although in the number of biological

experiments smaller ecological systems i.e. predator-prey systems does show popu-

lation dynamic which appears to be chaotic. Simple predator-prey systems do show

periodicity in the population density of each species with chaotic fluctuations in it.

Predator-prey interactions were supposed to be the driving force for this chaotic na-

ture. Field of chaos became a point of interest after presence of chaotic nature was

shown on the basis of population data of predator-prey system collected experimen-

tally.

2.1.1 Experimental Setup

The experiment involved three species i.e. two prey bacteria and one predator ciliate

species. As preys two coexisting species i.e. rod shaped Pedobacter and coccus Bre-

vundimonas were used and as a predator a ciliate Tetrahymena Pyriformis was used.

In the previous experiments it was observed that Pedobacter had better fitness than

Brevundimonas i.e. when kept in an environment consisting of only these two preys

in the absence of any predator, Pedobacter always outperformed Brevundimonas in

terms of population. It was also observed that ciliate Tetrahymena Pyriformis had a

preference for the better performing prey i.e. Pedobacter.

Cultures of these species were developed inside single stage chemostat system,

which were fed continuously with sterile medium. Rate of inflow of medium (dilution

rate) could be controlled and varied. Interactions between species were studies under
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different dilution rates and reading of population of each species was taken everyday.

Depending on the dilution rate species either formed stable coexistence at equilibrium

or aperiodic chaotic cycles.

2.1.2 Results

Results according to readings taken show different behavior of bacterial population

based on dilution rate. Such as at highest dilution rate Brevundimonas died off

early and rest of the species remained in stable coexistence at equilibrium. While

for lower dilution rate dynamic behavior of the population was observed. From the

experimental data it was shown that system was indeed in chaotic state.

This was an actual experiment which is not possible in every case. Readings in

the above experiment were taken over a period of a month and this time may increase

if readings are to be taken for different setups. Also, initial concentration of all the

species was decided by results obtained from previous experiments. Mathematical

simulation of this system might provide us with the numbers that represent population

behavior in different cases. Additionally, a mechanism which can enable us to decide

how much initial population should be selected can prove very useful in this case.

Mathematical simulations may also be used to get a good idea about other systems

as well.

2.2 Chaos and Population Control of Insect Out-

breaks

Desharnais et al. in [3] have studied population dynamics of flour beetle - Tribolium

Castaneum. This study was done in order to understand how flour beetle population
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dynamics work and can be controlled to reduce overall population. Idea of nudging

the parameters or state variables of system at point where system is most sensitive to

change had been applied before but procedure itself was not tested. This approach

was used and tested in this paper on flour beetle population.

To test the approach few rules were defined i.e. ‘in box’ rule and ‘out box’ rule.

‘In box’ rule corresponds to the changes made to the flour beetle population when

system is highly sensitive to changes and ‘out box’ rule corresponds to the changes

made otherwise. Difference between the effect of changes made by ‘in box’ and ‘out

box’ rule can prove the idea of nudging the parameters when system is sensitive to

changes.

2.2.1 Experimental Setup

For the conduction of the experiment nine lab populations of RR strain of flour beetle

Tribolium Castaneum were developed. Experimental parameters i.e. adult mortality

rate, adult recruitment rate etc. were set based on observations made in previous

experiments on flour beetle population. Each population was maintained in half-pint

milk bottle with 20g of standard media and kept in a dark incubator at 320C. Census

was taken after every two weeks and larval, pupal and adult populations were counted.

The ‘in box’ and ‘out box’ rules were applied to selected populations. Adult

beetles eat larvae and help controlling the population. To the populations following ‘in

box’ rule, adult beetles were added when larvae population was less than 150. In case

of ‘out box’ rule populations, adult beetles were added when larvae population was

more than 150. Biweekly census readings were stored for 132 weeks for all populations.

This whole experiment was also simulated using mathematical simulator and the

results were compared.
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2.2.2 Results

Readings of the all flour beetle populations show that ‘in box’ rule holds. Beetle

larvae population shows significant decline when adult beetles were added using ‘in

box’ rule while adults added using ‘out box’ rule fail to show their effect on larvae

population growth. This rule was also proved by mathematical simulations which

were run to mimic the actual experiment.

One important thing to consider other than experimental results is that math-

ematical simulations also predicted the same result. Thus, it can be concluded that

mathematical simulations may be used to predict the outcome of the experiment.

Every system is represented by a different mathematical model. Thus, a framework

which can incorporate new mathematical models to simulate and provides interface

to determine parameter values to keep system in chaotic state is of a great value.

2.3 Lyapunov Exponents

The claim whether the given system is showing chaotic behavior has to be backed

by mathematical analysis. Lyapunov exponents of the given system are quite strong

indicators to determine that. Lyapunov Exponents are roughly described for a tra-

jectory of a dynamical system as mean exponential rate of divergence of trajectories

surrounding it [1]. A dynamical system is said to be in chaotic state if at least one

Lyapunov Exponent is positive. A dynamical system in chaotic state represents a bac-

terial population where each species and resource is active in the environment. Thus,

determining whether a given bacterial system is in chaos becomes important. Various

techniques have been discussed in the literature to calculate Lyapunov Exponents.
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2.4 Theory

By definition Lyapunov Exponent is the mean exponential rate of diversion in the

trajectories. Quantitatively, if δZ0 is the initial separation in the two trajectories and

δZ(t) is the final separation, Lyapunov Exponent can be calculated as:

λ =
1

t
ln
|δZ(t)|
|δZ0|

Thus, calculating Lyapunov Exponent for single dimension dynamical system is

easy. In a dynamical system with more than one variable, diversion in each direction

can be different. Hence, for each dimension a separate Lyapunov Exponent can be

calculated. Thus, as a result for a given system we get a spectrum of Lyapunov Ex-

ponents. Thus, if we are considering a continuous dynamical system in n-dimensional

phase space, initial state can be viewed as n-sphere of initial conditions. Sphere

will become an n-ellipsoid as the system evolves with time. The ith one-dimensional

Lyapunov Exponent is defined in terms of length of ellipsoidal principal axis pi(t).

λi = lim
t→∞

1

t
log2

pi(t)

pi(0)

To explain above formula, let us consider a typical dynamical system equation.

A continuous dynamical system is defined as

U̇ = p(U ; r)

where U is a vector of phase space coordinates of dimension n, and r is vector of

control parameters. The evolution of volume in phase space is given by a Jacobian

matrix J.
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J =

[
∂p(i)

∂U(j)

]
for all i, j, where p(i) is ith function in p and U (j) is jth component of U . Application

of the Jacobian introduces stretching and rotation of a phase space. For example,

consider Jacobian matrix J and its effect on a circle going through points (1, 0) and

(0, 1).

J =

a b

c d

 ∴

a b

c d


1

0

 =

a
c

 (2.1)

a b

c d


0

1

 =

b
d

 (2.2)

As shown in fig 1, circle is transformed into an ellipse and points (1,0) and

(0,1) are placed at new coordinates i.e. (a, c) and (b, d). A repeated application of

a Jacobian matrix J to points on initial circle will make evolving ellipse more and

more elongated. This happens because application of J stretches the phase space in

the direction of major principal axis of the ellipse. i.e. in the direction of (a, c).

Given enough number of iterations, the length of major principal axis of ellipse would

become so large that lengths of other principal axes would be negligible.

This insight is very useful in the decision of the selection of the method to

calculate Lyapunov Exponents. One of the tests to verify if the given dynamical

system is in a chaotic state is to check if the Maximal Lyapunov Exponent (MLE)

of the system is positive. As this is the chief reason for us to calculate Lyapunov

Exponents, we will concentrate on calculating MLE of the system instead of the

whole Lyapunov Spectrum.
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Figure 2.1: Effect of Jacobian

2.5 Calculating method

As discussed in the previous section after enough number of iterations of Jacobian J

multiplication with U , the overall change brought to the initial value of U is mainly

in a single direction i.e. the direction of the major principal axis of the ellipse. Also,

changes in other directions in a phase space are negligible as compared to the first.

So if a reference trajectory experiences some random perturbation, the difference

between the final state of reference and perturbed trajectory is mainly comprised of

difference in a single direction i.e. the direction in which application of J stretches

the phase space which is same as the direction of major principal axis. Hence, MLE

can be calculated using formula:

λmax = ln
||γ(t)||
δt

.

where, γ is the difference between reference and perturbed trajectories. This can be

achieved using following algorithm:

1. Introduce a small perturbation in the initial

state U(0) i.e. U‘(0).
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2. Measure the magnitude of the difference

(d0 = ||U(0) - U‘(0)||).

3. Evolve both trajectories.

4. After short time interval measure the magnitude

of difference between both trajectories (d1).

5. Calculate Lyapunov Exponent using formula:

λ = ln
d1

d0

6. Again set perturbation trajectory at distance d0

from reference trajectory.

7. Repeat steps 1-6 for n times.

8. Calculate arithmetic mean of all Lyapunov Exponents

calculated.

To verify the algorithm, it was tested against the known dynamical systems for

values of MLE. Both discrete-time and continuous-time dynamical system were used

for the verification.

2.5.1 Henon system

Henon map is a discrete-time dynamical system with two variables. This system has

been widely studied for its chaotic behavior. It is described as follows:
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Xn+1 = 1− aX2 + Yn

Yn+1 = bXn

As can be seen from equations values of Xn+1 and Yn+1 depend on Xn, Yn and

two parameters a and b. Calculation of MLE in this case is done by introducing

perturbation at any step n and taking ratio of difference in values at step n+ 1.

Figure 2.2: Henon Map

2.5.2 Lorenz System

Lorenz dynamical system is continuous-time dynamical system with three variables.

The Lorenz model is also widely studied model as it represents atmospheric convec-

tion.
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Ẋ = σ(Y −X)

Ẏ = X(ρ− Z)− Y

Ż = XY − βZ

Figure 2.3: Lorenz Attractor

As this system is continuous, calculation of MLE can proceed as described in the

algorithm mentioned above. Value of MLE depends on the parameters ρ, σ, β and

initial state of the system.

System Known Value of MLE Calculated Value of MLE
Henon 0.42 0.419
Lorenz 1.50 1.50
Rossler 0.097 0.080

Table 2.1: Known and calculated Maximum Lyapunov Exponent values
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Above readings show that algorithm calculates the approximate value of MLE

for given system. For the decision about chaos in the system only sign of Lyapunov

Exponent is sufficient. Hence, this algorithm does satisfy requirements of the deter-

mination of chaos in the system.
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Chapter 3

Mathematical models

3.1 Selection of model

After having decided on the method to calculate Lyapunov Exponent, next impor-

tant task is to select appropriate mathematical model which should be subjected to

test. There are multiple mathematical models available that simulate the microbial

population evolution. The experiment done in [5] is better simulated by the dynam-

ical system of equations similar to one described in [2]. Hence, it makes more sense

to design a system which is similar to this system and mathematically verify if it is

possible to transform it in and out of chaotic state. Moreover, the microbial system

described in [5] has been proved to be in a chaotic state based on the population data

collected. If our mathematical model also shows the similar behavior and if it also

can be shown to be in chaotic state, it may strengthen the claim that our equations

represent the system used in the experiment accurately.
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3.2 Becks Mathematical Model for Microbial Sys-

tems

As mentioned above, this model is very much similar to the one described in [2]. It

has been designed by taking into consideration the facts we know about experimental

conditions and characteristics of different species used. Every specie used in the

experiment grows in number by certain rate. This parameter is called growth rate

for particular specie and represented by µ.

As discussed in the previous chapter, to calculate Lyapunov Exponent we intro-

duce a small perturbation. We evolve two different trajectories i.e. one with and one

without perturbation for small number of timesteps. We calculate the diversion and

in turn Lyapunov Exponent and set perturbation back to its original value.

The model discussed in [2] can be designed for different number of species. The

larger the number of species, the higher is the complexity of the model. We started

with a model of two variables i.e. one specie and one nutrient and then continued to

add one specie at a time till we had model of four variables.

3.3 Becks equations - 2 variables

This model consists of one nutrient and one bacterial specie which lives off the nutri-

ent. This is the simplest model for the bacterial population simulation. It is described

as follows:

dx

dt
= x(

µnr ∗ y
y + knr

− dr)−D ∗ x

dy

dt
= D ∗N0− xµnrmry

ynr(y + knr)
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where x is a bacterial population, y is nutrient content, µnr is growth rate of

bacteria, knr is half-saturation constant, dr is death rate, N0 is initial nutrient content

and D is a dilution rate for given chemostat experiment. As given system with two

variables is a continuous dynamical system in Euclidean plan, according to Poincare-

Bendixson theorem such a system cannot exhibit chaotic behavior. As a result we

did not find chaos in the two variable system.

3.4 Becks equations - 3 variables

This model consists of one nutrient and two bacteria species. Single selected nutrient

is essential for the growth of both bacteria and its flow is controlled. Both bacteria

feed on the single nutrient and compete for it. The equations for this model are as

follows:

dx

dt
= x(

µnr ∗ z
z + knr

− dr)−Dx

dy

dt
= y(

µnc ∗ z
z + knc

− dc)−Dy

dz

dt
= D ∗N0− x ∗ µnr

ynr ∗ z(z + knr)
− y ∗ µnc
ync ∗ z(z + knc)

−Dz

where x,y is bacteria population, z is nutrient content, µnr and µnc are the growth

rates and dr and dc are the death rates of bacteria species.

After experimenting with the dynamical system with different parameter values

and initial conditions it was found that system always stays in chaotic state. Change

in the growth and death rates of bacteria, dilution rates does not transform the

system out of chaotic state. One of the possible reasons might be because this is
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Figure 3.1: Chaotic behavior of 3 variable system

a purely mathematical system, variables do hold negative values which does not

necessarily have any biological meaning but they exist as a part of dynamical system.

This prevents the system from achieving any equilibrium it possibly could attain by

complete extinction of any specie. Figure 3.1 shows an example where system is in

chaotic state for given set of parameter values.

3.5 Becks equations - 4 variables

This model consists of one nutrient, two prey bacterial and one predator bacteria

which has preference for one of the preys. Nutrient flow is controlled. Prey bacteria

feed on nutrient and the predator feeds on both preys. This model is described as

follows:

dx

dt
= x(

µnr ∗ w
w + knr

− dr)−
µpr ∗mpxz

yprmr ∗ (kpr
mr

+ x)
−Dx
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Figure 3.2: Chaotic behavior of 4 variable system

dy

dt
= y(

µncw

w + knc
− dc)−

µpc ∗mpyz

ypcmc ∗ (kpc
mc

+ y)
−Dy

dz

dt
= z(

µprx

(kpr
mr

+ x)
+

µpc ∗ y
(kpc
mc

+ y)
− dp)−Dz

dw

dt
= D ∗N0− xµnr ∗mrw

ynr(knr + w)
− yµncmcw

ync(knc + w)
−Dw

where x, y are prey population, z is predator population, w is nutrient, ypr, ypc,

ync and ynr are yield coefficients. Experimenting with this particular system resulted

in a range of outcomes. System could be transformed in and out of chaotic state by

changing values of parameters. It was also possible to bring system in and out of

chaos by changing dilution rate which is experimentally controllable parameter. Here

we present 2 cases where given dynamical system is in chaos in first and out of chaos

in second case. This state change was brought about by changing the dilution rate

of the system.

Dilution rate of system in Figure 3.2 was 0.9 whereas that of system in Figure
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Figure 3.3: 4 variable system out of chaotic state

3.3 was 0.1 (1/day)

3.6 Conclusion

In all we can conclude that a given system can be transformed in and out of chaotic

state by changing parameter values which are experimentally controllable. If we can

develop a system which can generate the values of parameters for which the system

stays in chaos and values for which it does not, it will be of great help to perform

biological experiments dealing with population evolution of micro-organisms.
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Chapter 4

The genetic Algorithm

4.1 Introduction

Previous chapter displays results of experimental variations in the dynamical system.

As displayed, variation in starting concentrations, growth rates of bacteria and di-

lution rate parameters may bring the given dynamical system in and out of chaotic

state. How to determine that for which set of parameters given dynamical system

might enter the chaotic regime is an interesting problem. As there is no single specific

solution for this problem different approach than usual solution finding algorithm is

needed. A genetic evolutionary algorithm is one of the methods to reach a solu-

tion to a problem where non-specific solution is needed. Here, starting conditions of

the dynamical system can be viewed as characteristics of the system which can be

evolved using the genetic algorithm and the optimal solution is reached after several

generations. Hence, we used the genetic search algorithm to address this problem.
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4.2 The genetic Algorithm

4.2.1 Background

A genetic algorithm is search heuristic that mimics the process of natural selection.

This is routinely used in the optimization problems. Finding a solution using a genetic

algorithm usually consists of evolving of optimal solution from set the candidate

solutions. The steps can be discribed as explained below.

A genetic algorithm starts with a set of random candidate solutions. These

candidate solutions differ from each other in terms of the values of parameters which

decide the behavior of a solution. For every candidate solution, based on values of its

parameters fitness is calculated. Similar to process of evolution, candidate solutions

with maximum fitness are allowed to reproduce to form the next generation. A section

of candidate solutions is retained and continues in the next generation. Now, again

fitness of all newly formed candidate solutions is calculated and the whole process

is repeated for several generations. In the end, candidate solution with the highest

fitness is taken as an optimized solution to the given problem.

4.2.2 Implementation

As stated above, the genetic algorithm starts with random solutions. If starting

solutions were plotted in a phase space, they can be represented as n dimensional

data points in the n dimensional ellipsoid. All these starting solutions are allowed to

evolve with the hope that just like in the process of evolution the fittest solution will

be selected and passed on to the next generation as a result of which optimal solution

can be reached. Theoretically every generation passed, improves the final solution by

small amount i.e. it gets closer to the optimal solution by small amount.
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Figure 4.1: Genetic Algorithm - Phase Space

This phenomenon is explained in the Figure 4.1. It shows a three dimensional

phase space. X0 and Y0 are the points representing random starting candidate so-

lutions and Xn and Yn are the final solutions returned by the genetic algorithm as

a result of evolution. The genetic algorithm evolves the best performing solution in

each generation. Hence, in the end of each generation we get a new solution which

performs best among the overall population. These best solutions in the intermediate

generations are shown by the points on the trajectories between points X0 to Xn

and Y0 to Yn. However, these two trajectories seem to move in different directions

which highlights an important observation about the working of a genetic algorithm.

The same genetic algorithm acts on X0 and Y0. Optimal solutions in both cases

returned by the genetic algorithm are significantly different from each other. Thus,

it is clear that the final solution given by the genetic algorithm is dependent on the

initial candidate solution population. Moreover, if same initial condition is given as

input, the genetic algorithm still may end up producing different result than previous
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run. This is in accordance with the fact the there is an element of randomness in the

evolutionary process.

The fact that the genetic algorithm is dependent on the initial candidate solu-

tion population becomes important in a solution space having local maxima. The

trajectory followed by the genetic algorithm when fed with initial candidate solution

Y0 ended up at local maxima which has lower value than global maxima. There

is no theoretical guaranty that the genetic algorithm will not end up at local max-

ima. Hence, the genetic algorithm should be properly seeded to reach the optimum

solution. This can be achieved by trying random starting candidate solutions.

4.2.3 Approach

Figure 4.2: Expected Solution Format

To help clear the understanding of the working of the genetic algorithm, we present

a symbolic example implementation. Expected solution from the genetic algorithm

is a solution shown in Figure 4.2. A population of candidate solutions is given as

input to the algorithm. A candidate solution is represented in exactly same way as
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an expected solution. A randomly created population of candidate solutions is given

as an input to the algorithm. Size of this randomly created input population depends

on the implementation. It may be fixed or variable. As input candidate population

is randomly created, each candidate solution is different from other and there is no

relation among them or their parameter values. Figure 4.3 shows input candidate

solution population to the algorithm.

Figure 4.3: Expected Solution Format

Next importent step in the algorithm is to calculate the fitness of each candidate

solution. Fitness of a candidate solution generally depends upon performance of

the solution or closeness of candidate solution to the optimal solution. Therefore, if

the candidate solutions in the population represents combination of parameter values

used to recognize a face, fitness of candidate is more if that particular parameter

values combination has higher rate of face recognition. In our case, we needed a

combination of parameter values for which the mathematical model shows a chaotic

behavior. Positive Lyapunov Exponent being an indication of chaotic behavior, it

28



makes sense to calculate fitness based on the same. By treating Lyapunov Exponent

as a fitness, the genetic algorithm ends up returning a solution which has maximum

fitness i.e. maximum Lyapunov Exponent.

Once the fitness for each candidate solution is calculated, top performing candi-

dates can be selected to be a part of next generation and also to reproduce offsprings

which are similar to them in terms of parameter values. A combination of these top

performing candidates and new offsprings forms next generation and poor performing

candidates are discarded. Fitness calculation and selection steps are repeated for next

generation again and the whole process continues through number of generations. At

the end of last generation, top performing candidate solution is returned as a solution

by the genetic algorithm.

The complete process is explained in the flowchart shown in Figure 4.4.
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Figure 4.4: Genetic Algorithm Flow
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4.3 Genetic Algorithm for Becks Equations

Becks dynamical system discussed in the previous chapter consists of initial concen-

trations of each species and nutrient. It also uses the growth rate and the death

rate of species and the dilution rate used in the experiment. For given species, the

growth rate and the death rate is unlikely to change by large values. Hence, varying

initial concentrations to see if it takes system into and out of chaotic state is a most

appropriate way to experiment with the system. Because of this we designed the

candidate solutions to the problem with parameter values of initial concentrations of

the species. To get given dynamical system into a chaotic state, selected parameters

should cause system’s Lyapunov Exponent to become positive. To draw final solution

with higher and higher positive Lyapunov Exponent, we set it as a fitness measure

of the candidate solution as mentioned in previous section. Thus, candidate solution

with maximum Lyapunov Exponent is treated as the best performing solution and

next generation of candidate solutions is formed from the candidate solution with

maximum Lyapunov Exponent from the previous generation. The genetic algorithm

thus returns the solution with local maximum Lyapunov Exponent. This solution

can be used as an input for a desired chaotic state of the system.

4.4 Algorithm

Let n be the number of generations to be simulated.

1. Initialize a set of 20 candidate solutions with random

parameter values where parameter values represent initial

concentration of all species and nutrients.

2. Calculate Lyapunov Exponent as a fitness for each candidate
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solution.

3. Select candidate solution with the maximum Lyapunov

Exponent.

4. Form 10 new candidate solutions by varying parameter values

of candidate solution selected in step 4.

5. Top 10 candidate solutions from previous generation and 10

new candidate solutions form the population pool.

6. Repeat steps 2-5 for n generations.

4.5 Results

The genetic algorithm described above was run for 50 generations on a population set

of 20 candidate solutions. The returned values were then compared to experimentally

found values for a dynamical system in a chaotic state.

Parameter Experimental Genetic Algorithm

Prey1 2.1e-7 4.05e-7

Prey2 4.56e-7 1.41e-6

Predator 4.3e-7 8.90e-7

Nutrient 4.0e-5 2.2e-4

Dilution rate 0.9 0.0011

It can be observed from the table that the parameter values returned by the

genetic algorithm are from the region where the dilution rate is low. This is signifi-

cantly different from the value which was obtained experimentally. This shows that

the genetic algorithm may be able to find the unidentified parameter values which

also might lead to the system in chaotic state.
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Chapter 5

Metropolis Algorithm

A genetic algorithm is designed to return an optimized solution for a given problem.

This is why we used it to find a parameter value combination so that mathematical

system using those parameter values remains in a chaotic state. But as we know that

there are many parameters which control this chaotic behavior of a mathematical

system, it is logical to conclude that more than one combination of those parameter

values causes the mathematical system to be in a chaotic state. Optimized answer

may not represent for all the parameter value combinations possible which can keep

system in chaotic state. Thus, instead of just having an optimized answer, a set of

points in a phase space which represents all parameter value combinations sufficient

for chaotic state might prove to be a desirable. However, computing set of all points

which represent chaotic behavior in a mathematical system may be very expensive.

Instead, a set of points which may act as representative set for all points can be

computed. An algorithm used to compute this set of representative points is also

known as the Metropolis algorithm.
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5.1 Random Walk

The goal of generating a representative set of points which shows the distribution of

entire set of points is achieved by randomly generating chain of points where every

point in the chain differs the previous one in exactly one co-ordinate value. The

process of generating data points randomly by varying the co-ordinates randomly is

also known as a ’random walk’. Starting with the first point, every next point is

generated by randomly selecting a co-ordinate and introducing random change in its

value. This new point is then selected to be a part of the representative set with some

probability.

‘Random walk’ as the term suggests, is not required to be simulated in the exact

same manner as discussed above. A walk can be truly random instead of changing

value only in one dimension at a time. Depending on the application different types

of random walks are used in various fields i.e. ecology, economics, psychology, biology

etc. the Metropolis algorithm discussed in this chapter requires random walk to be

simulated with change in only one dimension at a time. Figure 5.1 shows an example

of random walk in 2D plane. O(0,0) is a starting point of the walk. From there

path represented by straight lines is followed. As change can be made only in one

dimension, we see all the transition lines parallel to X and Y axes. It can also be

observed that magnitude of change is also random in the random walk.
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Figure 5.1: Random walk

The notion of points generated by random walk acting as a representative set of

points seems counter intuitive. But, it can be showed that this generated set possesses

same statistical properties as the complete set of points. The whole notion is based

on a concept that if one takes a random walk, at some point he will come back to the

point where he started and the places he visited on his path act as a representative

set of the whole neighborhood. The points visited during the random walk in the

Metropolis algorithm form a Markov chain. This is explained in the next section.

5.2 Markov Chain

Markov chain is named after a Russian mathematician Andrey Markov. It is a math-

ematical system which forms a chain of states that can transition from one state to

another based on some probability. States which form a chain are valid configurations
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system can be in. States are connected with other states by links called transitions.

The process starts with the initial state and moves through the chain of states. At

each state process may move to next state or remain in the same state through links

with some probability. This probability is called transition probability. This transi-

tion probability does not depend previous states system was in. It only depends on

the current state system is in.

This can be explained with an example shown in Figure 5.2. Figure shows an

ordinary Markov chain consisting of three states S = {S1, S2, S3}. Each state is

defined by set of parameters X. X1 is parameter set of state S1, X2 is for state S2

and so on. Each of X1, X2 and X3 may contain multiple elements such that X1 can be

represented as X1 = {X1
1 , X

2
1 , ....X

n
1 }. X2 and X3 can also be represented similarly.

P is a set of transition probabilities. The transition probability of a particular state

transition is denoted by Pij, i.e. probability of transition from state i to j. So

probability of transition from state S1 to S2 is denoted by P12. As can be seen

in Figure 5.2 system can transition from any state to any other state i.e. transition

probabilities for all the links are non-zero. Although, this is not a necessary condition

for the structure to be called as Markov chain.
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Figure 5.2: Markov Chain

Markov chain is an apt model to represent a random walk. In random walk, next

state is dependent only on current state which is similar to the Markov chain system.

To obtain a next state while performing a random walk, sampling of current state is

needed so that next state is very close to current state. This is achieved by checking

of potential next state obtained by changing only a single parameter of current state.

Markov chain in theory can have next state with more than one parameter different

than current state but Markov chain simulating random walk follows a restriction of

having only single parameter value difference between two successive states.

The difference between an ordinary Markov chain and random walk can be ex-

plained with the help of example shown in Figure 5.3.
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Figure 5.3: (a) ordinary Markov chain (b) Markov chain representing a random walk

Figure 5.3(a) shows an ordinary Markov chain. The initial state of chain has

parameters X1 = (1, 1). The next state has parameters X2 = (3, 4). It can be

seen that second state has all parameters different from initial state. Theoretically

this Markov chain also can be interpreted as a random walk. But in a problem

statement where possible number of states one can visit is infinite, it makes sense to

make transitions between states that are most likely to happen. From a state with

a particular set of parameters transitioning to a state with only single parameter

different is much more likely event than that of transitioning to a state with more

parameters have different values. As shown in Figure 5.3(b) each successive state

differs the previous one by only single parameter value. In the next section we describe

the Metropolis algorithm, advantages it brings to the data representation and its

implementation details.
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5.3 Metropolis Algorithm

As mentioned earlier we are using this algorithm to represent the data so that a

researcher may find it easier to visualize chaotic landscape of the mathematical system

at hand. The Metropolis algorithm is based on random walk approach through the

available data and this characteristic of the algorithm helps enabling us to represent

best approximation of entire dataset at hand graphically. The representative set

generated by the algorithm is highly useful as there are ways available to represent

it even if data that is in high dimensional form. One of the techniques that used to

represent high dimensional data is ’parallel co-ordinates’. This would be discussed

later in this section. The Metropolis process of visiting different points by changing

parameter value in one dimension at a time, gives a closely linked Markov chain. This

chain contains representative set of points which cause the system to be in chaotic

state. Though the Metropolis algorithm cannot produce hard limits on the values of

parameters of the mathematical system at hand to keep it in or out of chaotic state,

it may give an estimation of boundary values. Its main advantage comes from the

ability that may give a sense of relation between parameter values for chaotic behavior.

For example, in case of 4-dimensional Becks equations executions of the Metropolis

algorithm showed a relation between dilution rate and initial nutrient concentration

i.e. their relative values leading to chaotic behavior of the Becks system.

5.3.1 Implementation

Approach to simulate the Metropolis algorithm starts with an initial point in a Markov

chain. This initial point is taken from the Genetic algorithm output. This is not a

necessary step but doing so produces better results of generated representative set.

This is somewhat intuitive to assume as the Genetic algorithm gives a starting point
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which causes system to be in chaotic state. As we are generally interested in looking

at parameter value representation which keeps the system in chaotic state, starting

at a point responsible for chaotic state helps generating more points as points closer

to initial point may show similar behavior.

The entire set of points showing chaotic behavior has a very complex distribution.

Let that complex distribution function be π(x) (x may contain multiple parameters

such that x = {x(1), x(2)...x(n)} ). Also, π̃(x) be some known function which we will

simulate to generate representative set of points for π(x). Generally a Boltzmann

distribution function is used as a π̃(x). The Boltzmann distribution is used to simulate

a distribution with various possible states of points. This works very well with our

need as all points in our sample set have one of the two possible states i.e. chaotic

and non-chaotic.

The Boltzmann distribution function is of the form π̃(x) = eE(x) where E(x) is

an energy function which is used to differentiate between two or more states to which

points belong. This energy function can be replaced by the Lyapunov Exponent

calculating function as states of points in our distribution depend on the Lyapunov

Exponent value.
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Figure 5.4: Parallel Co-ordinates

The relation between π(x) and π̃(x) is given by: π(x) = π̃(x)
z

where z is com-

putationally very expensive to calculate. We start at the initial state x0 ∈ x. Next

potential point is obtained by sampling against π̃(x). This sample is done by selecting

a single parameter of x0 and adding a random value to it. This can be understood

by observing the Figure 5.4. First point is represented by x0 = {x(1)0 , x
(2)
0 , x

(3)
0 , x

(4)
0 }

and second point by x1 = {x(1)1 , x
(2)
1 , x

(3)
1 , x

(4)
1 }. P1 − P4 are the parameters that rep-

resent the co-ordinates of x. Here, x1 is obtained from x0 by randomly changing 3rd

co-ordinate.

In the next step we sample a variable u against uniform distribution p(0, 1).

New potential point x1 can be accepted if the ratio π̃(x1)
π̃(x0)

is greater than u. Else, x1

is obtained again by resampling in same way described above. Once x1 is accepted

rest of the points also can be generated using the same process. This process can be
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summarized as follows:

for i = 1, 2, 3,... n-1

1. Sample π̃(x) against symmetric probability distribution Q(x|y).

2. Sample u against a uniform distribution p(0, 1).

3. If u < π̃(x)
π̃(xi)

then, accept x as xi+1.

All generated points are too close in parameter values with each other. Hence,

a subset of these points can be selected to shown in the results. This simplifies the

results and make them readable.

5.3.2 Hybrid Approach

As mentioned earlier the Metropolis algorithm usually performs better when the

initial point or state is taken as an input from the genetic search algorithm. There

is a logical explanation for this behavior by the Metropolis algorithm. Of all points

which can be used to represent parameter value sets for the mathematical system,

only subset of those points leads to a chaotic behavior. At some points system may

not be in valid state and at some points even if system is in valid state, it may not

exhibit a chaotic behavior. Typically system follows chaotic regime only in selected

set of points i.e. to a limited region in a phase space. If the Metropolis algorithm

starts off in a region in a phase space which is non-chaotic, random walk from that

point is less likely to reach a region with chaotic state or it may take a large number

of steps before random walk reaches chaotic space. This in turn may directly affect

the number of chaotic points collected as representative set.

This can be illustrated with an example in Figure 5.5. Consider a two dimensional

phase space where P1 and P2 are the two parameters. Grey area shown in figure
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contains value combinations of parameters P1 and P2 which lead system to have

chaotic state. If the Metropolis algorithm starts off at point X1 it has much larger

chance to get large number of points which belong to chaotic region. Instead if it

starts off at point X2 then the random walk performed by the Metropolis may end

up taking lot of points which do not lead to a chaotic state of a system.

This is why hybrid approach is used to get maximum chaotic points representa-

tion in the dataset.

Figure 5.5: Hybrid algorithm approach
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Figure 5.6: Parameter values leading to chaotic state of system

5.4 Results

We executed the Metropolis algorithm on the Becks set of equations and used a

starting point given by the genetic search algorithm. To display the results we used

parallel co-ordinate plotting system which is also shown in previous sections. This

system is very useful in displaying high dimensional data and helps giving sense of

relation between parameters being searched by the Metropolis algorithm.

When the Metropolis algorithm was executed, we got a representative set of

points which lead to a system with chaotic state. When plotted all the points in

parallel co-ordinate format they showed large number of values concentrated with

dilution rate parameter close to zero.
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Figure 5.7: Metropolis Algorithm Flowchart

45



Chapter 6

Chaos Analysis Library

Previous chapters have described the basics of Chaos theory, dynamical systems,

genetic and Metropolis algorithms. This chapter describes structure and working

of Chaos Analysis Library (CAL) in detail. The experimental simulation of work-

ing of the mathematical models and algorithms is highly essential for any theory

to get approved. CAL has facilitated the experimental simulations of tests done on

Becks’ mathematical model. It may perform similar role for many other mathemati-

cal models for the researchers. Next section discusses prime reasons which led to the

development of this library. After that implementation details of CAL are discussed.

6.1 Need for CAL

As discussed before, study of chaotic behavior of various phenomena is rapidly devel-

oping research area in computational biology. Researchers in the fields like systems

biology, biostatistics, evolutionary biology etc. often want to explore effects of chaos

and chaotic state on the mathematical and in turn real biological systems. Due to

large number of personnel working in this area, an easy to use tool which can be used
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for any type of mathematical model containing dynamical systems will have a greater

impact on the way biological experiments are performed in the future.

Personnel working on experiments in the field of systems biology, evolutionary

biology etc are not expected to have extensive knowledge of programming. Instead of

writing long programs or scripts for each type of mathematical model, writing small

set of instructions defining equations of new mathematical model and using the rest

of the functionality through CAL is very much easier task to do. This may also help

speed up the overall research process.

Extendibility: CAL is extendable. Even if CAL’s algorithm set contains only

two algorithms i.e. the genetic search and Metropolis algorithm, it can be extended

to support any number of other algorithms or mathematical operations. Once a new

algorithm is added to CAL’s algorithm set it can be used for any previously defined

mathematical models using this library.

CAL facilitates use of hybrid model discussed in previous chapter where combi-

nation of the genetic search and the Metropolis algorithm is used to develop repre-

sentative set of points that keep system in chaotic state.

In the next section implementation details of CAL are discussed.

6.2 Implementation Details

In this section we will discuss implementation details of Chaos Analysis Library, its

overall structure and ways to use it. CAL is designed such that it reduces the need

of rewriting of lot of programs and enables a user with a good toolset without having

a steep learning curve. User can extend library by following minimal set of easy to

follow instructions. This in turn helps in expedite the research work in effective way.

CAL is implemented on the top of Apache Commons Math API. As shown in
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figure 6.1, Apache Commons API sits on the top of Core Java API. CAL is designed

so that it calls APIs from Apache Commons library putting it in the upper layer to

that of Apache Commons library. CAL consists of two main components as shown

in figure 6.1. 1. Mathematical Models 2. Algorithms. These two components are

responsible for facilitating new mathematical model implementation and new and old

algorithms support for mathematical models.

Figure 6.1: Chaos Analysis Library (CAL) API structure

6.2.1 Mathematical Models

This component is responsible to facilitate implementation of new mathematical mod-

els and also make sure that they follow the rules to be able to get support of algorithms

from Algorithms component. At the base of this component is an abstract class Math-

Model. Every class that defines a new mathematical model has to extend MathModel

class. MathModel class implements FirstOrderDifferentialEquations interface. This

interface is a part of Apache Commons library and is responsible for implementing
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first order differential equations.

MathModel class declares few methods which have to be implemented by every

subclass.

1. getFeatureVector()

generateObject(double[] featureVector):

These two methods are essentially getters and setters of featureVector. ‘fea-

tureVector’ is an array which hold all the parameters which are supposed to be varied

as a part of genetic search algorithm. For example, Becks 4 variable mathematical

model consists of various parameters in the equations i.e. initial values of each vari-

able x1, x2, x3, x4(a, b, c, d respectively), D (dilution rate), etc. Depending on different

values of these parameters Becks system enters or comes out of chaotic state. If a ge-

netic algorithm is supposed to vary only a, b and D and check for what values system

goes into chaotic state, featureVector will contain only these three parameter values.

getFeatureVector should return values of these three parameters as a featureVector.

generateObject method accepts the featureVector (with same parameter values in

same order) and generates a new object of mathematical model being used.

2. setFitness(double fitness)

getFitness():

These two methods are used to get and set the value of ‘fitness’ of parameter set.

Typically fitness of parameter set is assigned to Lyapunov Exponent of the mathe-

matical system with current set of parameter values. These two methods are used by

genetic algorithm hence, have to be implemented. getFitness should contain the logic

to calculate the value of fitness variable and setFitness should set the value of fitness.
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3. getMetropolisParams()

setMetropolisParams(double[] metropolisParams):

Similar to featureVector, metropolisParams is a way to convey Metropolis algo-

rithm which parameter values are to be varied to generate representative sample of

points. getMetropolisParams should return parameter values which are to be varied

and setMetropolisParams should implement the logic to set parameter values in the

same order from the array passed to the method.

4. isValid(double[] y):

This method is used to check whether mathematical model is in valid state for

given set of values. Mathematical models for some initial conditions may end up

having one or more variable (x1, x2...xn) values to be negative. As these variables

generally represent physical quantities negative values do not make sense and hence

that state is considered invalid. Default implementation of this method checks only

for values of x1, x2...xn. If some other conditions are to be included to verify validity

of state, this method should be overridden.

Here is implementation of MathModel class as shown below.

import org.apache.commons.math3.ode.FirstOrderDifferentialEquations;

public abstract class MathModel implements FirstOrderDifferentialEquations,

Comparable<MathModel>

{

public abstract double[] getFeatureVector();

public abstract MathModel generateObject(double[] featureVector);

public abstract void setFitness(double fitness);
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public abstract double getFitness();

public abstract void setMetropolisParams(double[] metropolisParams);

public abstract double[] getMetropolisParams();

final public int compareTo(MathModel o)

{

if (this.fitness < o.getFitness())

return 1;

else

return -1;

}

public boolean isValid(double[] y)

{

boolean flag = true;

for (int i=0; i<y.length; i++)

if(y[i] < 0.0)

{

flag = false;

break;

}

return flag;

}

}
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6.2.2 Algorithms

Algorithms component of CAL provides two main algorithms. The two main algo-

rithms are 1. Genetic search algorithm and

2. Metropolis algorithm.

Genetic Search Algorithm

This algorithm as name suggests performs a genetic search. It evolves population of

different parameter sets to return a parameter set which may keep the mathematical

system in chaotic state. This algorithm is implemented inside class GeneticSearch.

To use this algorithm a method shown below from GeneticSearch class should be

used.

MathModel genetic(MathModel model, double[] y):

This method is easy to use. It requires object of a mathematical model class

and initial conditions array as an input. The initial condition refers to the initial

system variable values i.e. values of x1, x2...xn. After the complete execution, this

method returns an object of mathematical model class. This object consists of up-

dated parameter values which successfully keep the system in a chaotic state. This

object can be used to get parameter values causing a chaotic state or as an input to

the Metropolis algorithm which produces the representative set of points.

Metropolis Algorithm

This algorithm performs random walk using the Metropolis algorithm over a given

parameter space. This random walk then produces a set of points which may give a

visual aid to show relation between two or more parameter values. This algorithm is

implemented inside the class Metropolis.
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generateDistribution(MathModel model, double[] y, double[] metropolisParams, dou-

ble[] alpha):

This method generates the distribution of visited points during random walk.

The arguments passed to the function are as follows:

1. model - object of mathematical model i.e. class MathModel

2. y - initial state of system

3. metropolisParams - initial values of parameters on which random walk is to be

performed

4. alpha - this is the tolerance of each parameter under which value that parameter

is to be varied.

For example, if dilution rate (D) is one of the parameters which is to be varied. If

alpha value for D is 1.0 then value of D can be changed by 1.0 at the most in a

single step. The value by how much to change D is selected at random from interval

[0.0, 1.0] everytime. Choice of an alpha value is important as too high alpha value

will allow value for that parameter to be varied on large scale and if chaotic behavior

in that direction has limited range then it might directly affect number of points

generated which show chaotic behavior and if it is too small, it might not be able to

show expected varience in the value of parameter. Repeated executions of Metropolis

algorithm may help determining right alpha value for each parameter.

CAL also contains one more mathematical model designed as a part of the Math-

ematical Models component. This model is designed after the Kravchenko set of equa-

tions. Along with the Becks equations experiments were also done on the Kravchenko

equations.
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