
     Improper Integrals. 

The concept of Riemann integrals as developed in previous chapter 

requires that the range of integration is finite and the integrand 

remains bounded on that domain. if either (or both) of these 

assumptions is not satisfied  it is necessary to attach a new  

interpretation to the integral  

Definition 3.1. In case the integrand f becomes infinite in the 

interval a ≤ 𝑥 ≤ 𝑏, 

That is f has points of infinite discontinuity (singular points) in [a, b] 

or the limits of integration a or b (or both becomes infinite, the 

symbol   ∫ 𝑓𝑑𝑥
𝑏

𝑎
  is called an improper(or infinite or generalised ) integral. 

Thus, 

         ∫
𝑑𝑥

𝑥2

∞

1
 ,          ∫

𝑑𝑥

1+𝑥2

∞

−∞
.   ∫

𝑑𝑥

𝑥(1−𝑥)
 

1

0
 ,  ∫

𝑑𝑥

𝑥(1−𝑥)
 

∞

−1
    

are  examples of improper integrals.

 The integrals which are not improper are called proper integral , thus 

                ∫
𝑠𝑖𝑛𝑥

𝑥

1

0
𝑑𝑥   is a proper integral. 

Integration of Unbounded Function with finite limits of 

integration. 

Definition 3.2. Let a function f be defined in a interval [a, b] 

everywhere except possible at finite number of points. 

    (i) Convergence at left –end. Let a be the only points of infinite   

      discontinuity of   f  so that according to assumption made in the   

      last section, the integral 

              ∫ 𝑓𝑑𝑥
𝑏

𝑎+𝜆
    exists  ∀ 𝜆, 0 < 𝜆 < 𝑏 − 𝑎. 
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    𝑇ℎ𝑒 𝑖𝑚𝑝𝑟𝑜𝑝𝑒𝑟 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 ∫ 𝑓𝑑𝑥
𝑏

𝑎
 is defined as the            

              𝑙𝑖𝑚
𝜆→0+   

∫ 𝑓𝑑𝑥
𝑏

𝑎+𝜆
   so that, 

             ∫ 𝑓𝑑𝑥
𝑏

𝑎
= 𝑙𝑖𝑚

𝜆→0
∫ 𝑓𝑑𝑥

𝑏

𝑎+𝜆
  .  

If this Limit exists and is finite, the improper integral  ∫ 𝑓𝑑𝑥
𝑏

𝑎
 is said 

to converge at (a) if otherwise, it is called divergent. 

𝐍𝐨𝐭𝐞. For any c  , 𝑎 < 𝑐 < 𝑏 

                               ∫ 𝑓𝑑𝑥
𝑏

𝑎
=  ∫ 𝑓𝑑𝑥

𝑐

𝑎
 + ∫ 𝑓𝑑𝑥

𝑏

𝑐
.  

  Then,  

                        ∫ 𝑓𝑑𝑥
𝑏

𝑎
 𝑎𝑛𝑑   ∫ 𝑓𝑑𝑥

𝑐

𝑎
  

  converges and diverges together and  ∫ 𝑓𝑑𝑥
𝑏

𝑐
  is proper. 

    (ii) Convergence at right-end. Let b be the only point of infinite    

        discontinuity the improper integral is then defined by the relation  

            ∫ 𝑓𝑑𝑥
𝑏

𝑎
= lim 

𝜇→0+
 ∫ 𝑓𝑑𝑥

𝑏−𝜇

𝑎
     0< 𝜇 < 𝑏 − 𝑎 . 

 If the limit exists, the improper integral is said to be convergent at 𝑏. Otherwise    

 is called divergent. 

 𝐍𝐨𝐭𝐞 ∶  For the same reason as above,  

   ∫ 𝑓𝑑𝑥
𝑏

𝑐
 and ∫ 𝑓𝑑𝑥

𝑏

𝑎
  converges and diverges together ∀ 𝑐, 𝑎 < 𝑐 < 𝑏. 

   (iii) Convergence at both the end points. If the end points a and   

         b are the only points of infinite discontinuity of  f , then for any   

          point c, a < c < b, 

                 ∫ 𝑓𝑑𝑥
𝑏

𝑎
=     ∫ 𝑓𝑑𝑥

𝑐

𝑎
+ ∫ 𝑓𝑑𝑥

𝑏

𝑐
 

    If both the integrals are convergent as by case (i) and (ii),then 
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    ∫ 𝑓𝑑𝑥
𝑏

𝑎
 is convergent , otherwise it is divergent. The improper integral     

      is also defined as: 

                        ∫ 𝑓𝑑𝑥
𝑏

𝑎
= 𝑙𝑖𝑚

𝜆→0+
𝜇→0+

∫ 𝑓𝑑𝑥
𝑏−𝜇

𝑎+𝜆
. 

    The improper integral exists if the limit exists. 

     (iv)  Convergence at Interior points. If an interior point c,  

     a < c < b, is the only point of infinite discontinuity of f, we get 

            ∫ 𝑓𝑑𝑥
𝑏

𝑎
=     ∫ 𝑓𝑑𝑥

𝑐

𝑎
+ ∫ 𝑓𝑑𝑥

𝑏

𝑐
                                                                       (1) 

         the improper integral   ∫ 𝑓𝑑𝑥
𝑏

𝑎
 exists of the both integral on R.H.S of    

      (1) are exists. 

    Example 3.1. Examine the convergence of: 

    (𝑖)            ∫
𝑑𝑥

𝑥2

1

0
       (ii)      ∫

𝑑𝑥

√𝑖−𝑥

1

0
     (iii)      ∫

𝑑𝑥

2𝑥−𝑥2

2

6
. 

(i) 0 is the point of infinite discontinuity of integrand [0, 1].  

 Thus, 

            ∫
𝑑𝑥

𝑥2

1

0
= 𝑙𝑖𝑚

𝜆→0+
∫

𝑑𝑥

𝑥2

1

𝜆
,              o < 𝜆 < 1 

        =   𝑙𝑖𝑚
𝜆→0+

(
1

𝜆
− 1)  = ∞ 

    Thus the proper integral is divergent. 

(ii) Home Assignment. 

Home Assignment  

   

 



4 
 

 

Comparison Tests for Convergence At ‘a’ of  ∫ 𝒇𝒅𝒙
𝒃

𝒂
 . 

Theorem 3.1. A necessary and sufficient condition for the 

convergence of the improper integral ∫ 𝑓𝑑𝑥
𝑏

𝑎
 at ‘a’ where f is positive in 

[a, b]. This is , ∃ a psoitive number 𝑀, independent of 𝜆 , such that 

                  ∫ 𝑓𝑑𝑥
𝑏

𝑎+𝜆
 < M,    0< 𝜆 < 𝑏 − 𝑎 . 

Proof. We know that the improper integral ∫ 𝑓𝑑𝑥
𝑏

𝑎
 converges at ‘a’ if for 0  

         0 < 𝜆 < 𝑏 − 𝑎,   ∫ 𝑓𝑑𝑥
𝑏

𝑎+𝜆
 tends to finite limit as 𝜆 → 0+ . 

Since f is positive in  [𝑎 + 𝜆, 𝑏], the positive function of 𝜆 , ∫ 𝑓𝑑𝑥
𝑏

𝑎+𝜆
  is 

 monotonic incereasing as  λ , decreases and will therefore tend to a finite limit iff  

 it is bounded above , This is, ∃ a positive number 𝑀 independent of 𝜆, such that 

                         ∫ 𝑓𝑑𝑥
𝑏

𝑎+𝜆
 < M,   0 < 𝜆 < 𝑏 − 𝑎. 

Hence the theorem is proved. 

Note. If no such number M exists, the monotonic increasing function  

∫ 𝑓𝑑𝑥
𝑏

𝑎+𝜆
  is not bounded above and therefore tend to +∞ as  λ → 0+, and 

hence  the improper integral ∫ 𝑓𝑑𝑥
𝑏

𝑎
 diverges to +∞. 

Comparison Test. 

Theorem 3.2: If f and g are two positive functions and ‘a’ is only 

singular point of f and g on [a. b], such that 

                  f(x) ≤ 𝑔(𝑥), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ [𝑎, 𝑏]  

   (i)          ∫ 𝑓𝑑𝑥
𝑏

𝑎
 converges,   if    ∫ 𝑔𝑑𝑥

𝑏

𝑎
   converges .  
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    (ii)         ∫ 𝑔𝑑𝑥
𝑏

𝑎
  diverges, if  ∫ 𝑓𝑑𝑥

𝑏

𝑎
  converges . 

Proof. Since f and g are two positive functions on [a, b] and ‘a’ is only 

singular point of f and g. Therefore 𝑓 and 𝑔 are bound in [𝑎 + 𝜆, 𝑏], for all 

 0 < 𝜆 < 𝑏 − 𝑎. 

Also Since,    f(x) ≤ 𝑔(𝑥), 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑥 ∈ [𝑎, 𝑏], implies          

                      ∫ 𝑓𝑑𝑥
𝑏

𝑎+𝜆
≤   ∫ 𝑔𝑑𝑥

𝑏

𝑎+𝜆
                                                                              (i) 

 (1)   Suppose ∫ 𝑔𝑑𝑥
𝑏

𝑎
 be convergent, so that ∃ 𝑚 > 0 , 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  for all 

    𝜆, 0 < 𝜆 < 𝑏 − 𝑎, 

                                   ∫ 𝑓𝑑𝑥
𝑏

𝑎+𝜆
  < m . 

   From (i) we have  

                      ∫ 𝑓𝑑𝑥
𝑏

𝑎+𝜆
  < m ,                   for all 𝜆 , 0 < 𝜆 < 𝑏 − 𝑎 . 

   Hence    ∫ 𝑓𝑑𝑥
𝑏

𝑎
  is convergent. 

(2) Now suppose ∫ 𝑓𝑑𝑥
𝑏

𝑎
 is divergent then the positive function   

∫ 𝑓𝑑𝑥
𝑏

𝑎+𝜆
is not bounded above. 

   Therefore from (i) it follows that the positive function  ∫ 𝑔𝑑𝑥
𝑏

𝑎+𝜆
 is not    

    bounded above. 

   Hence    ∫ 𝑔𝑑𝑥
𝑏

𝑎+𝜆
 is divergent. This completes the Theorem. 

  Comparison Test   (limit form). 

  Theorem 3.3. If f and g are two positive functions [a, b] and ‘a’ is    

   the only singular point of f and g in [a, b], such that 

            𝑙𝑖𝑚
𝑥→𝑎+

𝑓(𝑥)

𝑔(𝑥)
 =   l     where ‘l’ is a non – zero finite number.  
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   Then, the two integrals ∫ 𝑓𝑑𝑥
𝑏

𝑎
 and ∫ 𝑔𝑑𝑥

𝑏

𝑎
 converges and diverges    

   together at ‘a’. 

   Proof.   Evidently, 1 >  0. Let  𝜀 be positive number such that 1 − 𝜀 > 0 . 

   Since,       𝑙𝑖𝑚
𝑥→𝑎+

𝑓(𝑥)

𝑔(𝑥)
 = 1. 

  Therefore there exists a nbd of ] a, c [ , a < c < b , such that for all  

    x ∈ ]𝑎, 𝑐[ 

                       |
𝑓(𝑥)

𝑔(𝑥)
− 𝑙| < 𝜀 

or            (𝑙 − 𝜀)𝑔(𝑥) < 𝑓(𝑥) < (𝑙 + 𝜀)𝑔(𝑥) . 

 

This implies that 

                              (𝑙 − 𝜀)𝑔(𝑥)  < 𝑓(𝑥)                                       (2) 

  and           

                        𝑓(𝑥) <  (𝑙 + 𝜀)𝑔(𝑥)                                             (3) 

                                                                    ∀ 𝑥 ∈]𝑎, 𝑐[ 

 

If   ∫ 𝑓𝑑𝑥
𝑏

𝑎
 converges, then from (i) 

           ∫ 𝑔(𝑥)𝑑𝑥
𝑏

𝑎
 also converges at 𝑎 . 

If     ∫ 𝑓𝑑𝑥
𝑏

𝑎
 diverges ,  then from (ii) 

          ∫ 𝑓𝑑𝑥
𝑏

𝑎
  diverges at 𝑎 . 

    If in the above Theorem,   𝐿𝑖𝑚
𝑥→𝑎+

𝑓(𝑥)

𝑔(𝑥)
→ 0   and    ∫ 𝑔𝑑𝑥

𝑏

𝑎
 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠, then 
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       ∫ 𝑓𝑑𝑥
𝑏

𝑎
  converges and if 

        𝐿𝑖𝑚
𝑥→𝑎+

𝑓(𝑥)

𝑔(𝑥)
→ ∞  and       ∫ 𝑔𝑑𝑥

𝑏

𝑎
 diverges, then, ∫ 𝑓𝑑𝑥

𝑏

𝑎
  also diverges. 

  Useful Comparison Integral. 

  Theorem 3.4. The improper integral ∫
𝑑𝑥

(𝑥−𝑎)𝑛

𝑏

𝑎
     Converges if and only    

   if n < 1. 

  Proof.  It is proper integral if n ≤ 0 and improper for all other values    

  of n, ‘𝑎’ being only singular point of the integrand. 

  Now    for n ≠ 1 

          ∫
𝑑𝑥

(𝑥−𝑎)𝑛

𝑏

𝑎
    = 𝑙𝑖𝑚

𝜆→0+
∫

𝑑𝑥

(𝑥−𝑎)𝑛

𝑏

𝑎+𝜆
   , 

                        =   𝑙𝑖𝑚
𝜆→0+

 
1

−𝑛+1
[(𝑏 − 𝑎)−𝑛+1-𝜆−𝑛+1] 

                         =      {

1

−𝑛+1
[(𝑏 − 𝑎)−𝑛+1,      𝑖𝑓 𝑛 < 1 

                        
∞                               𝑖𝑓 𝑛 > 1 .

 

   Also for n = 1 

           𝐿𝑖𝑚
𝜆→0+

∫  
𝑑𝑥

𝑥−𝑎

𝑏

𝑎+𝜆
  =       𝑙𝑖𝑚

𝜆→0+
[𝑙𝑜𝑔(𝑏 − 𝑎) − 𝑙𝑜𝑔𝜆] = ∞. 

 Thus,    ∫
𝑑𝑥

(𝑥−𝑎)𝑛

𝑏

𝑎
  converges for n < 1 . 

Note.  A similar result holds for convergence of  ∫
𝑑𝑥

(𝑏−𝑥)

𝑏

𝑎
  𝑎𝑡  𝑏. 

Example 3.2. Test the convergence of  

(i)        ∫
𝑑𝑥

√1−𝑥3

1

0
                                (ii)              ∫

    𝑠𝑖𝑛𝑥

𝑥𝑝

𝜋/2

0
dx  

Solution.   Let f(x) =  
1

√1−𝑥3
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                                =     
1

√(1−𝑥)(1+𝑥+𝑥2)
 

                                =    
1

(1+𝑥+𝑥2)
1
2

  .
1

(1−𝑥)
1
2

  

Clearly,   
1

(1+𝑥+𝑥2)
1
2

   is a bounded function. 

Let M  be its upper bound, then , 

               
1

(1+𝑥+𝑥2)
1
2

  .
1

(1−𝑥)
1
2

≤
𝑀

(1−𝑥)
1
2

  ,         x ∈ [1, 0]. 

Also since   ∫
𝑚𝑑𝑥

(1−𝑥)
1
2

1

0
     is convergent as n = 

1

2
< 1. 

Therefore,  
1

√1−𝑥3
 is convergent. 

(i) For 𝑝 ≤ 1, it is a proper integral for 𝑝 > 1 , it is an improper integral 

 0 being the point of infinite discontinuity  

Now      
𝑠𝑖𝑛𝑥 

𝑥𝑝
  =   

1

𝑥𝑝−1
(

𝑠𝑖𝑛𝑥

𝑥
) 

The function  
𝑠𝑖𝑛𝑥

𝑥
  is bounded and   

𝑠𝑖𝑛𝑥

𝑥
   ≤ 1.  

Therefore,       
𝑠𝑖𝑛𝑥 

𝑥𝑝
     ≤     

1

𝑥𝑝−1
 

Also   ∫
𝑑𝑥

𝑥𝑝−1

𝜋/2

0
    converges only if 𝑝 − 1 < 1  or 𝑝 <  2 . 

Therefore by comparison test ∫
    𝑠𝑖𝑛𝑥

𝑥𝑝

𝜋

2
0

dx   converges for p < 2 and 

diverges for p ≥ 2. 

Note. If  𝑙𝑖𝑚
𝑥→0+

[(𝑥 − 𝑎)𝑛𝑓 (𝑥)]  exists and is non- zero finite, then, the 

integral ∫ 𝑓𝑑𝑥
𝑏

𝑎
 convergs iff 𝑛 < 1. 

Example 3.3. Find the values of 𝑚 and 𝑛 for which the following 

integrals converges. 
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(i)            ∫ 𝑒−𝑚𝑥1

0
𝑥𝑛dx . 

(ii)           ∫ (𝑙𝑜𝑔
1

𝑥
  )𝑚1

0
dx . 

Solution (i)   Let 𝑘 be positive number greater than 1, 

   Then,    𝑒−𝑚𝑥𝑥𝑛 ≤  k𝑥𝑛,     ∀  x ∈ [0 ,1]  and m ; 

Also           ∫ 𝑥𝑛1

0
= ∫

𝑑𝑥

𝑥−𝑛

1

0
    converges for – 𝑛 <  1 , 

 that is,     n > -1 only . 

Thus, ∫ 𝑒−𝑚𝑥1

0
𝑥𝑛𝑑𝑥 converges only for n >-1 and ∀ m. 

(iii) Let(𝑥) = (𝑙𝑜𝑔
1

𝑥
)𝑚    converges at x= 0 and 

∫ (𝑙𝑜𝑔
1

𝑥
)𝑚

1

2
0

𝑑𝑥  is proper integral if 𝑚 ≤ 0. 𝐴𝑙𝑠𝑜‘0’ is the only singular 

point if m > 0. 

  For   m > 0, 

Take   𝑔(𝑥) = 
1

 𝑥𝑝
,                      0 < p < 1, so that    

           𝑙𝑖𝑚
𝑥→0+

𝑓(𝑥)

𝑔(𝑥)
   =  𝑙𝑖𝑚

𝑥→0+
𝑥𝑝(𝑙𝑜𝑔

1

𝑥
)𝑚 

                 =  0,  for  0 <  𝑝 <  1. 

Therefore,  ∫ (𝑙𝑜𝑔
1

𝑥
)𝑚

1

2
0

 𝑑𝑥   converges for all m. 

Convergence at x=1 

  ∫ (𝑙𝑜𝑔
1

𝑥
)𝑚1

1

2

  is proper integral for 𝑚 ≥  0 and ‘1’ is singular point , if m<

 0. 

𝐹𝑜𝑟 𝑚 <  0, take   𝑔(𝑥) =  
1

(1−𝑥)−𝑚
   , so that  𝑙𝑖𝑚

𝑥→1
[

𝑙𝑜𝑔
1

𝑥

1−𝑥
]

𝑚

 =   1. 

Since   ∫ 𝑔𝑑𝑥
1

1

2

  converges for – 𝑚 <  1 that is for 𝑚 > −1. 
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 Thus, ∫ (𝑙𝑜𝑔
1

𝑥
  )𝑚1

0
dx converges for  > −1 . 

 Hence       ∫ (𝑙𝑜𝑔
1

𝑥
  )𝑚1

0
dx    converges for 0 > 𝑚 > −1. 

Example 3.4.  Show that (1)        ∫
𝑙𝑜𝑔𝑥

√𝑥

1

0
dx   is convergent.  

(2)           ∫
√𝑥

𝑙𝑜𝑔𝑥

2

1
𝑑𝑥    is divergent. 

Solution. (1)  Since  
𝑙𝑜𝑔𝑥

√𝑥
  is negative on [0, 1].  

Therefore we take   f(x)    =     -
𝑙𝑜𝑔𝑥

√𝑥
 

                                      = 
𝑙𝑜𝑔𝑥−1

√𝑥
  =

𝑙𝑜𝑔 1/𝑥 

√𝑥
 , 

‘0’ is the only singular point. 

Let 

                        𝑔(𝑥) =  
1

𝑥
3
4

   ,      n = 
3

4
 < 1 

We have  

                   𝑙𝑖𝑚
𝑥→0

𝑓(𝑥)

𝑔(𝑥)
   =  𝑙𝑖𝑚

𝑥→0
𝑥

1

4 𝑙𝑜𝑔
1

𝑥
   = 0 

Since   ∫ 𝑔(𝑥)𝑑𝑥
1

0
    converges. 

 Therefore,   ∫ 𝑓(𝑥)𝑑𝑥
1

0
  converges implies that   ∫

𝑙𝑜𝑔𝑥

√𝑥

1

0
  𝑑𝑥   converges. 

(2)  Let   f(x)  =   ∫
√𝑥

𝑙𝑜𝑔𝑥

2

1
𝑑𝑥 .    

Here x=1 is only singular point.  

  Take      𝑔(𝑥) = 
1

𝑥−1
 ,  then            

              𝑙𝑖𝑚
𝑥→1

𝑓(𝑥)

𝑔(𝑥)
 =    𝑙𝑖𝑚

𝑥→1

(𝑥−1)√𝑥

𝑙𝑜𝑔𝑥
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                             =  𝑙𝑖𝑚
𝑥→1

𝑥
3
2−𝑥

1
2

𝑙𝑜𝑔 𝑥
          

                             =  𝑙𝑖𝑚
𝑥→1

3

2
𝑥

1
2−

1

2
𝑥

−
1
2

1

𝑥

             

                             =  𝑙𝑖𝑚
𝑥→1   

3

2
𝑥

3

2 −
1

2
𝑥

1

2            

                              =  
3

2
−

1

2
= 1(≠ 0). 

Thus,  ∫ 𝑓𝑑𝑥
2

1
   and   ∫ 𝑔𝑑𝑥

2

1
  behave same. 

Since ∫ 𝑔𝑑𝑥
2

1
 is divergent. 

Hence     ∫ 𝑓𝑑𝑥
2

1
  is divergent.       

Example 3.5.   Show that ∫ (
𝑠𝑖𝑛𝑚𝑥

𝑥𝑛
) 𝑑𝑥   𝑒𝑥𝑖𝑠𝑡𝑠 𝑖𝑓𝑓  𝑛 < 𝑚 + 1

𝜋

2
0

 

 Solution.  Let   f(x) = (
𝑠𝑖𝑛𝑚𝑥

𝑥𝑛
) 

                               =  (
𝑠𝑖𝑛𝑥

𝑥
)𝑚.

1

𝑥𝑛−𝑚
 

Here as   𝑥 → 𝑜+, 𝑓(𝑥) → 0 if   𝑛 −  𝑚 <  0, and f (x)→∞ if  𝑛 − 𝑚 >  0 . 

Thus it is proper integral if 𝑛 ≤   𝑚 and improper if 𝑛 >  𝑚. 

‘0’ being the only point of infinite discontinuity.   

When    𝑚 >  𝑛 , 

 Let           𝑔(𝑥)    =   
1

𝑥𝑛−𝑚
 , so that       

         𝑙𝑖𝑚
𝑥→0

𝑓(𝑥)

𝑔(𝑥)
  =    𝑙𝑖𝑚

𝑥→0
(

𝑠𝑖𝑛𝑥

𝑥
)𝑚    =    1. 

Also,  ∫ 𝑔𝑑𝑥
𝜋

2
0

    =∫
1

𝑥𝑛−𝑚
𝑑𝑥

𝜋

2
0

    converges, Iff n−m < 1.   

That is,    n <  m + 1 . 
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Therefore   ∫ (
𝑠𝑖𝑛𝑚𝑥

𝑥𝑛
) 𝑑𝑥  also converges iff   𝑛 < 𝑚 + 1 

𝜋

2
0

. 

Example  3.6. (Beta Function). Show that  ∫ 𝑥𝑚−1(1 − 𝑥)𝑛−1𝑑𝑥
1

0
    

exists iff 𝑚, 𝑛 are both positive. 

Proof.  It  is a proper integral for 𝑚 ≥ 1, 𝑛 ≥ 1 , 0  and  1 are the only 

points of  infinite discontinuity; 0 when m < 1 and  1.  

When n < 1,  we have       

       ∫ 𝑥𝑚−1(1 − 𝑥)𝑛−1𝑑𝑥
1

0
=  ∫ 𝑥𝑚−1(1 − 𝑥)𝑛−1𝑑𝑥

1

2
0

   + ∫ 𝑥𝑚−1(1 − 𝑥)𝑛−1𝑑𝑥
1

1

2

   

                        

convergence at ‘0’ , when m < 1. 

Let         f(x)  =  𝑥𝑚−1(1 − 𝑥)𝑛−1 

                     =   
(1−𝑥)𝑛−1

𝑥1−𝑚
   .  

Take      𝑔(𝑥)  =   
1

𝑥1−𝑚
 , 

 Then   𝐿𝑖𝑚
𝑥→0

𝑓(𝑥)

𝑔(𝑥)
= 1 . 

Since ∫ 𝑔𝑑𝑥
1

2
0

   converges if and only if, 1-m < 1 or  m> 0.                                 

Thus,    ∫ 𝑥𝑚−1(1 − 𝑥)𝑛−1𝑑𝑥
1

2
0

   converges for m > 0. 

Convergence at x=1 ,  

When   n< 1,  

Let     f(x) =   𝑥𝑚−1(1 − 𝑥)𝑛−1 

                  =   
(1−𝑥)𝑚−1

𝑥1−𝑛
     

 Take   𝑔(𝑥)  =   
1

𝑥1−𝑛
 ,     then 
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          𝐿𝑖𝑚
𝑥→1

𝑓(𝑥)

𝑔(𝑥)
= 1. 

 

Also,  ∫ 𝑔𝑑𝑥
1

1

2

 = ∫
1

(1−𝑥)1−𝑛

1
1

2

dx converges if and only if   1−n < 1 or n > 0. 

Thus,   ∫ 𝑥𝑚−1(1 − 𝑥)𝑛−1𝑑𝑥
1

1

2

  converges if n > 0. 

Hence ∫ 𝑥𝑚−1(1 − 𝑥)𝑛−1𝑑𝑥
1

0
  converges if m > 0 , n > 0 . 

Example 3.7. For what values of m and n is the integral 

    ∫ 𝑥𝑚−1(1 − 𝑥)𝑛−1𝑙𝑜𝑔𝑥 𝑑𝑥
1

0
   convergent. 

Solution . The integrand is negative in [0, 1], therefore we shall test 

for the convergence of  

  ∫ −𝑥𝑚−1(1 − 𝑥)𝑛−1𝑙𝑜𝑔𝑥𝑑𝑥
1

0
 

                             = ∫ 𝑥𝑚−1(1 − 𝑥) 𝑙𝑜𝑔
1

𝑥
𝑑𝑥

1

0
 

Since 0 and 1 are only possible singular points of integrand. We  have 

                      ∫ 𝑥𝑚−1(1 − 𝑥)𝑛−1 𝑙𝑜𝑔
1

𝑥
𝑑𝑥

1

0
 

             =  ∫ 𝑥𝑚−1(1 − 𝑥)𝑛−1 𝑙𝑜𝑔
1

𝑥
𝑑𝑥

1

2
0

 + ∫ 𝑥𝑚−1(1 − 𝑥)𝑛−1 𝑙𝑜𝑔
1

𝑥
𝑑𝑥

1
1

2

 . 

Convergence at 0.   

It is proper integral for  m-1 > 0 and improper for m ≤1.‘0’ being the 

only point of infinite discontinuity. 

 Then, for  m ≤ 1 

 Let       f(x)   =  𝑥𝑚−1(1 − 𝑥)𝑛−1 𝑙𝑜𝑔
1

𝑥
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                    =   (1 − 𝑥)𝑛−1 𝑙𝑜𝑔
1

𝑥

𝑥1−𝑚
 

Take       𝑔(𝑥)  =  
1

𝑥𝑝
 

Also ,   𝑙𝑖𝑚
𝑥→0+

𝑓(𝑥)

𝑔(𝑥)
   =  𝑙𝑖𝑚

𝑥→0+
𝑥𝑝+𝑚−1(1-x)𝑛−1 𝑙𝑜𝑔

1

𝑥
 

                            =   0 

  If    p + m-1 >   or  m > 1- p .      

Also     ∫
1

𝑥𝑝

1

2
0

 dx converges for 1- p > 0. 

Thus 

             ∫ 𝑥𝑚−1(1 − 𝑥)𝑛−1 𝑙𝑜𝑔
1

𝑥
𝑑𝑥

1

2
0

 converges for 𝑚 > 1 − 𝑝 > 0. 

 converges at x=1 

For    n < 0 , 

 Let      f(x)   =  𝑥𝑚−1(1-x)𝑛−1 𝑙𝑜𝑔
1

𝑥
 

                    =    
𝑥𝑚−1 𝑙𝑜𝑔

1

𝑥

(1−𝑥)−𝑛+1
  

     Take   𝑔(𝑥)   =   
1

(1−𝑥)𝑞
 .   

Therefore    ∫ 𝑔(𝑥)
1

1

2

  converges for q-1< 0. 

Also   𝑙𝑖𝑚
𝑥→1_

𝑓(𝑥)

𝑔(𝑥)
  =   𝑙𝑖𝑚

𝑥→1_

𝑥𝑚−1 𝑙𝑜𝑔
1

𝑥

(1−𝑥)1−𝑛−𝑞
    =  l 

  where l is infinite if 1-n-q≤1. 

     That is if   n ≥ -q > -1. 

  Thus,   ∫ 𝑓𝑑𝑥 𝑐𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑠 𝑖𝑓 𝑛 > −1
1

1

2

. 
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 Hence the given integral is convergent when m > 0, n >-1. 

Example 3.8.  Show that ∫ 𝑙𝑜𝑔 𝑠𝑖𝑛𝑥𝑑𝑥
𝜋

2
0

  converges and also evaluate it. 

Solution.  Let  f(x) = log sinx , then f  is negative in [0,π/2] . 

Therefore we consider –f instead of f. 

Clearly ‘0’ is only point  of infinite discontinuity. 

 Let     g(x)  =  
1

𝑥𝑚
    ,  m < 1, 

 Then, 

          𝑙𝑖𝑚
𝑥→0+

−𝑓(𝑥)

𝑔(𝑥)
   =    𝑙𝑖𝑚

𝑥→0+
− 𝑥𝑚logsinx   = 0, m < 1 

Since     ∫
1

𝑥𝑚

𝜋

2
0

dx converges for m< 1, thus  

           ∫ 𝑙𝑜𝑔 𝑠𝑖𝑛𝑥𝑑𝑥
𝜋

2
0

  converges. 

Let    I  =   ∫ 𝑙𝑜𝑔 𝑠𝑖𝑛𝑥𝑑𝑥
𝜋

2
0

 . 

We know that,   sin2x   = 2sinxcosx. 

Therefore, logsin2x  =  log2 + logsinx + logcosx. 

This implies that 

     ∫ 𝑙𝑜𝑔 𝑠𝑖𝑛2𝑥𝑑𝑥
𝜋

2
0

 = ∫ 𝑙𝑜𝑔 2𝑑𝑥
𝜋

2
0

+ ∫ 𝑙𝑜𝑔 𝑠𝑖𝑛𝑥𝑑𝑥
𝜋

2
0

+ ∫ 𝑙𝑜𝑔 𝑐𝑜𝑠𝑥𝑑𝑥
𝜋

2
0

  

                      =   
𝜋

 2
log2+I+∫ 𝑙𝑜𝑔 𝑐𝑜𝑠𝑥𝑑𝑥

𝜋

2
0

   

Put   2x =  t.  

 In the Ist integral and x =   
𝜋

2
− 𝑦 in the last integral, therefoe we get 

          
1

2
∫ 𝑙𝑜𝑔 𝑠𝑖𝑛𝑡𝑑𝑡 =  

𝜋

2

𝜋

0
 log2 + I + ∫ 𝑙𝑜𝑔𝑠𝑖𝑛𝑦(−𝑑𝑦)

0
𝜋

2

 

                                              =  
𝜋

2
𝑙𝑜𝑔2 + 𝐼 + ∫ 𝑙𝑜𝑔 𝑠𝑖𝑛𝑥𝑑𝑥 .

𝜋

2
0
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1

2
∫ 𝑙𝑜𝑔 𝑠𝑖𝑛𝑥𝑑𝑥

𝜋

2
0

+ ∫ 𝑙𝑜𝑔 𝑠𝑖𝑛𝑥𝑑𝑥 =  
𝜋

2
𝑙𝑜𝑔2 + 2𝐼 

𝜋
𝜋

2

.  

This implies        
1

2
[𝐼 + ∫ 𝑙𝑜𝑔 𝑠𝑖𝑛 (𝑦 +

𝜋

2
) 𝑑𝑦]

𝜋

2
0

=  
𝜋

2
𝑙𝑜𝑔2 + 2𝐼.   

Thus,      
1

2
[𝐼 + ∫ 𝑙𝑜𝑔 𝑐𝑜𝑠𝑥𝑑𝑥

𝜋

2
0

 ] =  
𝜋

2
𝑙𝑜𝑔2 + 2𝐼 

                                         = 
1

2
[𝐼 + 𝐼] =

𝜋

2
𝑙𝑜𝑔2 + 2𝐼 

                                            =
𝜋

2
𝑙𝑜𝑔2 + 2𝐼 

ℎℎℎℎℎ                 𝐼 =
𝜋

2
 log2 + 2I 

This Implies that  𝐼 =   −
𝜋

2
𝑙𝑜𝑔2 . 

Hence ∫ 𝑙𝑜𝑔 𝑠𝑖𝑛𝑥𝑑𝑥
𝜋

2
0

 =    ∫ 𝑙𝑜𝑔 𝑐𝑜𝑠𝑥𝑑𝑥
𝜋

2
0

    = −
𝜋

2
𝑙𝑜𝑔2. 

Exercises. 

(1)∫
𝑑𝑥

1−𝑥

1

0
 dx                                        (2)  ∫

𝑥𝑛

1+𝑥

1

0
 dx                    

(3) ∫
𝑠𝑖𝑛𝑥

𝑥
3
2

1

0
 dx 

(4)∫
𝑥2+1

𝑥2−4

3

1
 dx                                        (5)∫

√𝑥

𝑠𝑖𝑛𝑥

𝜋

0
dx                      

(6) ∫
𝑥𝑛𝑙𝑜𝑔𝑥

(1+𝑥)2

1

0
dx          

Answer (1) divergent (2) convergent for n >-1 (3)  convergent (4) 

divergent  

(5) divergent (6) convergent for n > -1 
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General Test for Convergence.  (Integrand May Change Sign). 

We now discuss a general test for convergence of an improper 

integral (finite limits of integration, but discontinuous integrand) 

which holds whether or not integrand keeps the same sign. 

Theorem 3.5 (Cauchy’s Tests). 

 The improper integral ∫ 𝑓𝑑𝑥
𝑏

𝑎
 converges at a  iff  to every ε> 0 ,  

there  corresponds  δ > 0,  such that  

                              |∫ 𝑓𝑑𝑥
𝑎+𝜇2

𝑎+𝜇1
|< ε                                  0 

<  𝜇1<𝜇2 < δ . 

Proof.   The improper integral ∫ 𝑓𝑑𝑥
𝑏

𝑎
  is said to  be exists . 

 When ,       𝑙𝑖𝑚
𝜇→0+

∫ 𝑓𝑑𝑥
𝑏

𝑎+𝜇
   exists finitely. 

    Let      F(μ) = ∫ 𝑓𝑑𝑥
𝑏

𝑎+𝜇
 . 

So F(μ) is a function of μ . 

According to Cauchy’s Criterion for finite limits F(μ) tends to a finite 

limit as μ→0 . If and only if to every ε > 0 , there corresponds δ>0, 

such that for all possible  𝜇1  ,  𝜇2 <  δ  ; 

                               |𝐹(𝜇1) − 𝜇2)|<ε 

That is,                 |∫ 𝑓𝑑𝑥 − ∫ 𝑓𝑑𝑥
𝑏

𝑎+𝜇2

𝑏

𝑎+𝜇1
|  < ε 

or                           |∫ 𝑓𝑑𝑥
𝑎+𝜇2

𝑎+𝜇1
| . 

 

Absolute Convergence. 

Definition  3.3 .   The improper integral ∫ 𝑓𝑑𝑥
𝑏

𝑎
 is said to  be absolutely  
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 convergent if       ∫ |𝑓|𝑑𝑥
𝑏

𝑎
  is convergent .  

Theorem   3.6.    Every absolutely convergent integral is convergent . 

        That is,       ∫ 𝑓𝑑𝑥
𝑏

𝑎
   exist if    ∫ |𝑓|𝑑𝑥

𝑏

𝑎
  exist. 

Proof.   Since ∫ |𝑓|𝑑𝑥
𝑏

𝑎
 exist. 

Therefore by Cauchy’s test, to every ε >0 ∃ δ >0, such that  

                  |∫ |𝑓|𝑑𝑥
𝑎+𝜇2

𝑎+𝜇1
| < ε  ,             o<𝜇1<𝜇2< δ                                            

(4) 

 Since          |∫ 𝑓𝑑𝑥
𝑎+𝜇2

𝑎+𝜇1
| ≤ ∫ |𝑓|𝑑𝑥

𝑎+𝜇2

𝑎+𝜇1
                                                               (5) 

  and              |∫ |𝑓|𝑑𝑥
𝑎+𝜇2

𝑎+𝜇1
| = |∫ |𝑓|𝑑𝑥

𝑎+𝜇2

𝑎+𝜇1
| . 

Therefore     (4) and (5) gives 

                       |∫ 𝑓𝑑𝑥
𝑎+𝜇2

𝑎+𝜇1
|<  ε,                      ∀  ε>0,  0<𝜇1<𝜇2<δ. 

Thus ,      ∫ 𝑓𝑑𝑥
𝑏

𝑎
     is convergent.  

Alternative Method 3.6. 

Since    f ≤ |𝑓|   implies that    |𝑓| − 𝑓 ≥  0 . 

Also ,     |𝑓| − 𝑓 ≤ 2 |𝑓|                                                                                       (6) 

Thus,  |𝑓| − 𝑓   is a non- negative function on [𝑎, 𝑏] and satisfying (6).   

Also   ∫ 2|𝑓|𝑑𝑥
𝑏

𝑎
   is convergent. Therefore by (1) and comparison test, 

we get 

          ∫ (𝑓 − |𝑓|)𝑑𝑥
𝑏

𝑎
  is convergent . 

This gives that ∫ {(𝑓 − |𝑓|) + |𝑓|} 𝑑𝑥
𝑏

𝑎
  is convergent . 
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Hence  ∫ 𝑓𝑑𝑥
𝑏

𝑎
 is convergent . 

Example 3.9. Show that  ∫
𝑠𝑖𝑛

1

𝑥

𝑥𝑝

1

0
 dx ,  p>0 converges absolutely for 

p<1.  

Solution.   Let    f(x) = 
𝑠𝑖𝑛

1

𝑥

𝑥𝑝
  ,             p > 0; 

‘0’ is the only point of infinite discontinuity and f does not keeps the 

same sign in [0, 1]. 

                             |𝑓(𝑥)| =  
|𝑠𝑖𝑛

1

𝑥
|

𝑥𝑝
 < 

1

𝑥𝑝 
 

Also,      ∫
1

𝑥𝑝

1

0
𝑑𝑥 converges for 𝑝 < 1 .  

Thus       ∫ |
𝑠𝑖𝑛

1

𝑥

𝑥𝑝
| 𝑑𝑥

1

0
 converges if and only if p > 0. 

Hence    ∫ |
𝑠𝑖𝑛

1

𝑥

𝑥𝑝
| 𝑑𝑥 

1

0
 is  absolutely  convergent if and only if  𝑝 < 1 . 

Infinite range of integration. 

We shall now consider the convergence of improper integral of bounded 

integrable function with infinite range of integration (𝑎 or b both 

infinite). 

 Definition 3.4.   (Convergence at ∞). 

  The symbol    ∫ 𝑓𝑑𝑥
∞

𝑎
,             𝑥≥ 𝑎                                  (7) 

is defined as limit of ∫ 𝑓𝑑𝑥
𝑋

𝑎
 when 𝑋 → ∞, so that  

                          ∫ 𝑓𝑑𝑥
∞

𝑎
=  𝑙𝑖𝑚

𝑋→∞
∫ 𝑓𝑑𝑥

𝑋

𝑎
                                 (8) 

If the limit exists and is finite then the improper integral (8) is said to 

be divergent. 
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Note.  For  𝑎1 > 𝑎 ,      ∫ 𝑓𝑑𝑥
𝑋

𝑎
 = ∫ 𝑓𝑑𝑥 +

𝑎1

𝑎
∫ 𝑓𝑑𝑥

𝑋

𝑎1
 

which implies that the integrals ∫ 𝑓𝑑𝑥 𝑎𝑛𝑑
∞

𝑎
 ∫ 𝑓𝑑𝑥

∞

𝑎1
  are either both 

convergent or both divergent. 

 Exercises. 

 (i)    ∫
𝑥𝑑𝑥

1+𝑥2

∞

0
                          (ii)    ∫

𝑑𝑥

√𝑥

∞

1
                               

(iii)   ∫ 𝑠𝑖𝑛𝑥𝑑𝑥
∞

𝑎
 . 

Solution.  (i)   For X > 0, we have  

                                 ∫
𝑥𝑑𝑥

1+𝑥2

𝑋

0
     =  

1

2
∫

2𝑥𝑑𝑥

1+𝑥2

𝑋

0
 

                                                    =   
1

2
[𝑙𝑜𝑔(1 + 𝑥2)] 𝑋

0
 

                                                     = 
1

2
[𝑙𝑜𝑔(1 + 𝑥2)] 

Clearly ,        𝑙𝑖𝑚
𝑋→∞

∫
𝑥𝑑𝑥

1+𝑥2

𝑋

0
    =  ∞  

Hence   ∫
𝑥𝑑𝑥

1+𝑥2

∞

0
  is divergent. 

Solution (iii)       We have  

                           ∫ 𝑠𝑖𝑛𝑥𝑑𝑥
𝑋

𝑎
    =    (−𝑐𝑜𝑠𝑥) 𝑋

𝑎
      X > 𝑎 

                                                 =  cos 𝑎 −  cosX 

Clearly,    𝑙𝑖𝑚
𝑋→∞

(𝑐𝑜𝑠𝑎 − 𝑐𝑜𝑠𝑋)  exists finitely but not uniquely. 

Thus,   𝑙𝑖𝑚
𝑋→∞

∫ 𝑠𝑖𝑛𝑥𝑑𝑥
𝑋

𝑎
 does not exit . 

Hence ∫ 𝑠𝑖𝑛𝑥𝑑𝑥
∞

𝑎
 diverges.  
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Convergence at   −∞.   

                             ∫ 𝑓𝑑𝑥
𝑏

−∞
,       𝑥 ≤  𝑏                                                             (9) 

is defined by equation 

       ∫ 𝑓𝑑𝑥
𝑏

−∞
,     =   𝑙𝑖𝑚

𝑋→−∞
∫ 𝑓𝑑𝑥

𝑏

𝑋
                                       (10) 

If the limit exists and is finite the integral (9) converges otherwise it 

diverges. 

Convergence at both ends. 

                      ∫ 𝑓𝑑𝑥
∞

−∞
   , ∀   𝑥                                                         (11) 

Is understood to mean 

                           ∫ 𝑓𝑑𝑥
𝑐

−∞
 + ∫ 𝑓𝑑𝑥

∞

𝑐
                                                                  (12) 

 where c is any real number . 

 If both integrals in (12) converges according to definition (I) and (II), 

 then, the integral ∫ 𝑓𝑑𝑥
∞

−∞
  also converges, otherwise it diverges. 

Exercises. 

Examine for convergence the integrals 

(I)∫ 𝑠𝑖𝑛𝑥𝑑𝑥
∞

0
                            (II)∫

𝑑𝑥

1+𝑥2

∞

−∞
                    (III) ∫

2𝑥2𝑑𝑥

𝑥4−1

∞

2
    

(IV)∫
𝑑𝑥

(𝑥2+1)2

∞

−∞
                         (V)∫ 𝑥3𝑒−𝑥2∞

0
𝑑𝑥 

Solution :-(I) try yourself    (limit does not exist) 

Solution:-(II)   ∫
𝑑𝑥

1+𝑥2

∞

−∞
     =   𝑙𝑖𝑚

𝑋→∞
𝑌→−∞

∫
𝑑𝑥

1+𝑥2

𝑋

𝑌
                

                                       =  𝑙𝑖𝑚
𝑋→∞

𝑌→−∞

(𝑡𝑎𝑛−1𝑥) 𝑋
𝑌
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                                       =  𝑙𝑖𝑚
𝑋→∞

𝑌→−∞

(𝑡𝑎𝑛−1𝑋 − 𝑡𝑎𝑛−1𝑌) 

                                       =    
𝜋

2
+

𝜋

2
 

                                       =   π . 

Thus the integral converges and is equal to π . 

       (III)  ∫
2𝑥2𝑑𝑥

𝑥4−1

∞

2
   =  𝑙𝑖𝑚

𝑋→∞
∫ 2𝑥2𝑋

2
𝑑𝑥 

                                       =  𝑙𝑖𝑚
𝑋→∞

[𝑡𝑎𝑛−1𝑥 − 𝑡𝑎𝑛−12 +
1

2
𝑙𝑜𝑔

𝑋−1

𝑋+1
 + 

1

2
𝑙𝑜𝑔3] 

                                        = 
𝜋

2
− 𝑡𝑎𝑛−12 +

1

2
𝑙𝑜𝑔3 .  

Thus the integral converges. 

 (IV) ∫
𝑑𝑥

(𝑥2+1)2

∞

−∞
  = 2 ∫

𝑑𝑥

(𝑥2+1)2

∞

0
 

                      = 2 𝑙𝑖𝑚
𝑋→∞

2 ∫
𝑑𝑥

(𝑥2+1)2

𝑋

0
 

                      = 𝑙𝑖𝑚
𝑋→∞

[𝑡𝑎𝑛−1𝑥 +
𝑥

1+𝑥2
] .  

By Putting    𝑥 = tan 𝜃                      

                                   = π/2 

(V) ∫ 𝑥3𝑒−𝑥2∞

0
𝑑𝑥    = ½ , converges. 

Comparison test for convergence at ∞. 

 Theorem 3.7. A necessary and sufficient condition for the       

convergence of ∫ 𝑓𝑑𝑥
∞

𝑎
, where 𝑓 is  positive in [𝑎, ∞), that there exists 

 a positive number 𝑀, independent of  X, such that  

                                              ∫ 𝑓𝑑𝑥 
𝑋

𝑎
 < M, ∀ X ≥ a. 
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Proof. The integral ∫ 𝑓𝑑𝑥
𝑋

𝑎
 is said to be convergent if ∫ 𝑓𝑑𝑥

𝑋

𝑎
 tends to a finite 

limit as X→∞. Since f is positive in [a, X] ,   ∀ X ≥ 𝑎 and ∫ 𝑓𝑑𝑥
𝑋

𝑎
 is  

 monotonic increasing function on X i.e.  ∫ 𝑓𝑑𝑥
𝑋

𝑎
 increases as X increases.  

Also since  ∫ 𝑓𝑑𝑥
𝑋

𝑎
< 𝑀, 𝑓𝑜𝑟  𝑠𝑜𝑚𝑒  𝑚 > 0  𝑎𝑛𝑑   ∀  𝑋 ≥ 𝑎 . 

That is,  ∫ 𝑓𝑑𝑥
𝑋

𝑎
 is bounded above. 

Therefore, 𝑙𝑖𝑚
𝑋→0

∫ 𝑓𝑑𝑥
𝑋

𝑎
   exist finitely.  

Conversely, suppose ∫ 𝑓𝑑𝑥
∞

𝑎
 is convergent, then 𝑙𝑖𝑚

𝑋→∞
∫ 𝑓𝑑𝑥

𝑋

𝑎
 𝑒𝑥𝑖𝑠𝑡𝑠 𝑓𝑖𝑛𝑖𝑡𝑒𝑙𝑦. 

Therefore, ∃ M > O, such that ∀ X ≥ 𝑎 

                            ∫ 𝑓𝑑𝑥
𝑋

𝐴
 <  𝑀  

 as    ∫ 𝑓𝑑𝑥
𝑋

𝐴
  increases as X increases.  

Hence the theorem is proved completely. 

Comparison Test I. 

Theorem 3.8. If 𝑓  and 𝑔 are positive and  𝑓(𝑥)  ≤  𝑔(𝑥) , for all 𝑥 ∈ [𝑎, 𝑏].  

 Then,       (I)  ∫ 𝑓𝑑𝑥
∞

𝑎
 converges if   ∫ 𝑔𝑑𝑥

∞

𝑎
 converges.  

                (II)  ∫ 𝑔𝑑𝑥
∞

𝑎
   𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑠  if ∫ 𝑓𝑑𝑥

∞

𝑎
 diverges. 

Proof.    Suppose ∫ 𝑔𝑑𝑥
∞

𝑎
 converges.  

Therefore ∃ M> 0 such that ∀ X ≥𝑎 , 

                           ∫ 𝑔𝑑𝑥
𝑋

𝑎
  <M. 

This gives        ∫ 𝑓𝑑𝑥
𝑋

𝑎
 < 𝑀  
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Hence         ∫ 𝑓𝑑𝑥
∞

𝑎
  converges . 

(II)        Suppose  ∫ 𝑓𝑑𝑥
∞

𝑎
  diverges then ∃ 𝑋1, such that  

                          ∫ 𝑓𝑑𝑥
𝑋1

𝑎
 > M, ∀ M>0  

This implies that  ∫ 𝑔𝑑𝑥
𝑋1

𝑎
 > M, ∀ M>0 

This gives   ∫ 𝑔𝑑𝑥
∞

𝑎
  diverges. 

Note. Since f and 𝑔 are bounded in [𝑎, X]. 

Therefore,     f(x) ≤ 𝑔(x). 

This implies that  ∫ 𝑓𝑑𝑥
𝑋

𝑎
  ≤      ∫ 𝑔𝑑𝑥

𝑋

𝑎
      ∀   𝑋 ≥ 𝑎 . 

 

Comparison Test –II. 

Theorem 3.9. If 𝑓 and 𝑔 are positive functions in [𝑎 , X] and 

                   𝑙𝑖𝑚
𝑋→∞

𝑓(𝑥)

𝑔(𝑥)
    = l   (≠0), 

then two integrals converges or diverges together. 

 

Also if  𝑙𝑖𝑚
𝑋→∞

𝑓

𝑔
 =0 and ∫ 𝑔 𝑑𝑥

∞

𝑎
   converges, then ∫ 𝑓𝑑𝑥

∞

𝑎
  converges and if           

  𝑙𝑖𝑚
𝑋→∞

𝑓(𝑥)

𝑔(𝑥)
  = ∞ and  ∫ 𝑔 𝑑𝑥

∞

𝑎
   diverges, then ∫ 𝑓𝑑𝑥

∞

𝑎
  also diverges. 

Proof.   Evidently l > 0  choose > 0 , such that  𝑙 −  𝜀 >  0 

Since      𝑙𝑖𝑚
𝑋→∞

𝑓(𝑥)

𝑔(𝑥)
    = l 

Therefore    ∀ 𝜀 > 0 , ∃  𝑘 > 0 such that  

             |
𝑓(𝑥)

𝑔(𝑥)
− 𝑙|  < ε      whenever |𝑥|  > k . 
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That is       𝑙 − 𝜀 <  
𝑓(𝑥)

𝑔(𝑥)
  <   𝑙 + 𝜀         ∀ 𝜀 > 0, 𝑤𝑖𝑡ℎ 𝑥 > 𝑘 

              (𝑙 − 𝜀)𝑔(𝑥)  <  𝑓(𝑥)                                                   (13) 

      

             𝑓(𝑥) < ( 𝑙 +  𝜀)𝑔(𝑥)                                                    (14) 

                                                             for 𝑥 >  𝑘 𝑎𝑛𝑑 ∀ 𝜀 > 0. 

Clearly   𝑙 − 𝜀 > 0, by choosing ε so small. 

Therefore by comparison test and (13) and (14) we get  

∫ 𝑔(𝑥)𝑑𝑥
∞

𝑎
 diverges  if ∫ 𝑓𝑑𝑥

∞

𝑎
  converges. 

Again  

                                   𝑙𝑖𝑚
𝑋→∞

𝑓(𝑥)

𝑔(𝑥)
    = 0 

    implies that          𝑓(𝑥) < 𝑔(𝑥),                                          ∀ 𝑥  > 𝑘  

    Therefore if   ∫ 𝑓𝑑𝑥
∞

𝑎
  is divergent, then ∫ 𝑔𝑑𝑥

∞

𝑎
  is convergent and if 

        ∫ 𝑔𝑑𝑥
∞

𝑎
  is convergent then ∫ 𝑓𝑑𝑥

∞

𝑎
   is convergent. 

    Also if,            𝑙𝑖𝑚
𝑋→∞

𝑓(𝑥)

𝑔(𝑥)
    = ∞ 

   This implies      
𝑓(𝑥)

𝑔(𝑥)
  > M, ∀  𝑥 > 𝑘 

    Therefore            𝑓(𝑥) > 𝑀𝑔(𝑥),      ∀  x >  k 

   Hence if ∫ 𝑔𝑑𝑥
∞

𝑎
  is divergent, then ∫ 𝑓𝑑𝑥

∞

𝑎
  is divergent. 

 

Useful Comparison Integral. 

Theorem 3.10. Show that the improper integral ∫ 𝑓𝑑𝑥
∞

𝑎
 =∫

𝑐

𝑥𝑛
𝑑𝑥

∞

𝑎
, a>0 

where c is a positive constant, converges if and only if   𝑛 >  1 . 

Proof. We have 
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                   ∫
𝑐

𝑥𝑛
𝑑𝑥

∞

𝑎
  = {

𝑐 𝑙𝑜𝑔
𝑥

𝑎
               ,    𝑛 = 1

1

1−𝑛
[

1

𝑥𝑛−1
−

1

𝑎𝑛−1
] , 𝑛 ≠ 1

} 

                𝑙𝑖𝑚
𝑋→∞

∫
𝑐

𝑥𝑛

𝑋

𝑎
𝑑𝑥 = {  

∞           ,            𝑖𝑓 𝑛 ≤ 1
𝑐

(𝑛−1)𝑛−1
         𝑖𝑓     𝑛 > 1      } . 

Thus, ∫
𝑐

𝑥𝑛
𝑑𝑥

∞

𝑎
  converges if and only if n>1.  

From this useful integral and comparison test, the improper integral 

∫ 𝑓𝑑𝑥
∞

𝑎
 𝑐onverges if there exists a positive number 𝑛 > 1 such that  

  𝑓(𝑥) ≤  
𝑀

𝑥𝑛
   for some 𝑀 >  0 and for some all 𝑥 ≥  𝑎. 

Also if, 𝑙𝑖𝑚
𝑥→∞

𝑥𝑛𝑓(𝑥)  exists and is non- zero, then integral ∫ 𝑓𝑑𝑥
∞

𝑎
 

converges if and only if 𝑛 > 1. 

Exercises. 

(I)∫
𝑑𝑥

𝑥√𝑥2+1

∞

1
                                        (II)   ∫

𝑥2𝑑𝑥

√𝑥5+1

∞

0
                         

(III)∫ 𝑒−𝑥2
𝑑𝑥

∞

0
 

(IV)∫
𝑙𝑜𝑔𝑥

𝑥2

∞

0
dx                                      (V)∫ 𝑥𝑛∞

1
𝑒−𝑥dx               

(VI)∫
𝑠𝑖𝑛2𝑥

𝑥2

∞

0
dx 

Solution :- (I) Take       𝑓(𝑥)  =  
𝑑𝑥

𝑥√𝑥2+1
  and  

                                               𝑔(𝑥) =   
1

𝑥2
    

 Then                 𝑙𝑖𝑚
𝑥→∞

𝑓(𝑥)

𝑔(𝑥)
   = 1(≠0) 

Thus                   ∫ 𝑓𝑑𝑥
∞

1
 =  ∫

𝑑𝑥

𝑥√𝑥2+1

∞

1
     converges. 

(II)   Let               𝑓(𝑥 ) =   
x2dx

√x5+1
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Take                   𝑔(𝑥  =  
1

√𝑥
  , 

 Then         𝑙𝑖𝑚
𝑥→∞

𝑓(𝑥)

𝑔(𝑥)
  =  1  (≠0) 

Thus      ∫
𝑥2𝑑𝑥

√𝑥5+1

∞

0
   diverges. 

(IV)   Let    𝑓(𝑥)  = 
𝑙𝑜𝑔𝑥

𝑥2
    

Take             𝑔(𝑥) =   𝑥
3

2      ,    

Then      𝑙𝑖𝑚
𝑋→∞

𝑥
3
2𝑙𝑜𝑔

𝑥2
 = 𝑙𝑖𝑚

𝑥→∞

𝑙𝑜𝑔𝑥

𝑥
1
2

 

                           =    𝑙𝑖𝑚
𝑥→∞

1

𝑥

1

2
𝑥

−
1
2

 

        𝐿𝑖𝑚
𝑥→∞

2 (
1

𝑥
1
2

)    =  0        

Since ∫
𝑑𝑥

𝑥
3
2

∞

1
   is convergent. 

Therefore   ∫
𝑙𝑜𝑔𝑥

𝑥2

∞

0
dx    is convergent. 

(V) Let f(x) = xne−xdx 

     Take   𝑔(𝑥) =  𝑥2 . 

   Then,       𝑙𝑖𝑚
𝑥→∞

𝑥2 . 𝑥𝑛𝑒−𝑥 =   𝑙𝑖𝑚
𝑥→∞

(𝑛 + 2)! 𝑒−𝑥  = 0    and      

  ∫
1

𝑥2

∞

1
𝑑𝑥     is convergent. 

Therefore   ∫ 𝑥𝑛𝑒−𝑥𝑑𝑥
∞

1
  is convergent. 

(III)  Let   𝑓(𝑥)  = ∫ 𝑒−𝑥2
𝑑𝑥

∞

0
 . 

Clearly 0 is not point of infinite discontinuity, we may write        
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             ∫ 𝑒−𝑥2
𝑑𝑥

∞

0
= ∫ 𝑒−𝑥2

𝑑𝑥
1

0
   +  ∫ 𝑒−𝑥2

𝑑𝑥
∞

1
 =𝐼1+ 𝐼2 . 

Clearly I1 is proper and  I2 is improper integral. 

We test for   𝐼2 = ∫ 𝑒−𝑥2
𝑑𝑥

∞

1
 . 

We have                  𝑒−𝑥2
 >  𝑥2                                  ∀ 𝑥 ∈  𝑅 

                            
1

𝑒−𝑥2   <   
1

𝑥2
                                  ∀ 𝑥 ∈  𝑅 

This implies that     𝑒−𝑥2
  <    

1

𝑥2
                                    ∀ 𝑥 ∈  𝑅.      

Again ,  ∫
1

𝑥2
𝑑𝑥

∞

1
  is convergent. 

Therefore,  ∫ 𝑒−𝑥2
𝑑𝑥

∞

1
  is convergent.  

Hence   ∫ 𝑒−𝑥2
𝑑𝑥

∞

0
  is convergent. 

(VI)   ∫
𝑠𝑖𝑛2𝑥

𝑥2

∞

0
𝑑𝑥 is convergent because  𝑠𝑖𝑛2𝑥  ≤   1,      ∀ 𝑥 ∈ 𝑅.     

Exercises.  

(I) ∫
𝑥𝑡𝑎𝑛−1𝑥

(1+𝑥4)
1
3

∞

0
𝑑𝑥              (𝐼𝐼) ∫

𝑑𝑥

𝑥𝑙𝑜𝑔𝑙𝑜𝑔𝑥

∞

𝑒2             (III) ∫ (
1

𝑥

∞

0
−

1

𝑠𝑖𝑛ℎ𝑥
). 

Solution (I). Let   𝑓(𝑥)  =  
𝑥𝑡𝑎𝑛−1𝑥

(1+𝑥4)1/3
       (~𝑥−

1

3) 

 Take   𝑔(𝑥)  =  
1

𝑥
1
3

  , then   𝑙𝑖𝑚
𝑥→∞

𝑓(𝑥)

𝑔(𝑥)
  =  π/2 . 

Since ∫
1

𝑥
1
3

𝑑𝑥    𝑖𝑠 𝑑𝑖𝑣𝑒𝑟𝑔𝑒𝑛𝑡.
∞

0
  

Therefore   ∫ 𝑓𝑑𝑥
∞

0
   is divergent.  

(II) Put   𝑙𝑜𝑔𝑥 =    𝑡,  we get  

           ∫
𝑑𝑥

𝑥𝑙𝑜𝑔𝑙𝑜𝑔𝑥

∞

𝑒2   = ∫
𝑑𝑡

𝑙𝑜𝑔𝑡

𝑡

2
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                         = ∫
𝑑𝑥

𝑙𝑜𝑔𝑥

∞

2
 

Let       𝑓(𝑥)   =     
1

𝑙𝑜𝑔𝑥 
 

Take   𝑔(𝑥) =
1

𝑥𝑚
   , then 

      𝑙𝑖𝑚
𝑥→∞

𝑥𝑚

𝑙𝑜𝑔𝑥
  = 𝑙𝑖𝑚

𝑥→∞

𝑥

𝑙𝑜𝑔𝑥
 by taking 𝑚 = 1  

Therefore  𝑙𝑖𝑚
𝑥→∞

𝑥

𝑙𝑜𝑔𝑥
  =𝑙𝑖𝑚

𝑥→∞
𝑥 = ∞ . 

Since ∫
𝑑𝑥

𝑥

∞

2
   is divergent, so that   ∫

𝑑𝑥

𝑙𝑜𝑔𝑥

∞

2
  is also divergent . 

Hence  ∫
𝑑𝑥

𝑥𝑙𝑜𝑔𝑙𝑜𝑔𝑥

∞

𝑒2  is divergent.  

(I) 𝑓(𝑥)  =  (
1

𝑥
−

1

𝑠𝑖𝑛ℎ𝑥
)/𝑥  

Clearly 0 is not point of infinite discontinuity, because  

     𝑙𝑖𝑚
𝑥→0+

𝑓(𝑥)  = 
1

6
      (By L Hospital’s rule) 

We have 𝑓(𝑥)  =  (
1

𝑥
−

1

𝑠𝑖𝑛ℎ𝑥
)

1

𝑥
  

                           =
1

𝑥2
−

1

𝑥𝑠𝑖𝑛ℎ𝑥
 

                           =   
1

𝑥2
−

1

𝑥
[

1

𝑒𝑥−𝑒−𝑥/  2
] 

                           = 
1

𝑥2
−

1

𝑥
[

2

𝑒𝑥−𝑒−𝑥
] 

                                   = 
1

𝑥2
−

1

𝑥
[

2𝑒−𝑥

1−𝑒−2𝑥
]. 

Take     𝑔(𝑥)  =   
1

𝑥2
   , then 

            𝑙𝑖𝑚
𝑥→∞

𝑓(𝑥)

𝑔(𝑥)
    =  l       (≠0) 

Thus,  ∫ 𝑓𝑑𝑥
∞

0
  is convergent. 
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Note.  𝑙𝑖𝑚
𝑥→∞

𝑓(𝑥)

𝑔(𝑥)
= 𝑙𝑖𝑚

𝑥→∞
𝑥2 [

1

𝑥2
−

1

𝑥

2𝑒−𝑥

1−𝑒−2𝑥
  ] 

                    =𝑙𝑖𝑚
𝑥→∞

[1 −
2𝑥𝑒−𝑥

1−𝑒−2𝑥
] . 

We have   𝑙𝑖𝑚
𝑥→∞

𝑥𝑒−𝑥 = 𝑙𝑖𝑚
𝑥→∞

  
𝑥

𝑒𝑥
 

                            =𝑙𝑖𝑚
𝑥→∞

    
1

𝑒𝑥
 = 0. 

Therefore        𝑙𝑖𝑚
𝑥→∞

  [1 −
2𝑥𝑒−𝑥

1−𝑒−2𝑥
] =  1 −

0

1−0
  = 1 (≠0). 

Example 3.10. (Gamma Function). 

 The integral ∫ 𝑥𝑚−1∞

0
𝑒−𝑥𝑑𝑥   is convergent if and only if  𝑚 > 0 . 

Solution.  Let  𝑓(𝑥)  =  𝑥𝑚−1𝑒−𝑥   . 

If     𝑚 <  1 , the ‘0’ infinite discontinuity. 

So we must examine the convergence of above improper integral at 

both 0 and ∞. 

            ∫ 𝑥𝑚−1∞

0
𝑒−𝑥𝑑𝑥   =∫ 𝑥𝑚−11

0
𝑒−𝑥𝑑𝑥   + ∫ 𝑥𝑚−1∞

1
𝑒−𝑥𝑑𝑥    

Convergence at 0 for 𝒎 < 1: 

Let        𝑔(𝑥)  =  
1

𝑥1−𝑚
 ,   

Then ,   𝑙𝑖𝑚
𝑥→0+

𝑓(𝑥)

𝑔(𝑥)
   =   𝑙𝑖𝑚

𝑥→0+
  𝑒−𝑥 =1 (≠0). 

Since ∫
1

𝑥1−𝑚
𝑑𝑥 

1

0
  converges, if and only if m>0. 

Therefore ∫ 𝑥𝑚−11

0
𝑒−𝑥𝑑𝑥  converges if and only if  𝑚 > 0 . 

Converges at ∞. 

Let   𝑔(𝑥)  =  
1

𝑥2
 , so that  
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              𝑙𝑖𝑚
𝑥→∞

𝑓(𝑥)

𝑔(𝑥)
   =   𝑙𝑖𝑚

𝑥→∞
   𝑥𝑚+1 / 𝑒𝑥     

                          =   𝑙𝑖𝑚
𝑥→∞

  
(𝑚+1)!

𝑒𝑥
  = 0. 

Since ∫
1

𝑥2
𝑑𝑥 

∞

1
 is convergent. 

Thus,  ∫ 𝑥𝑚−1∞

1
𝑒−𝑥𝑑𝑥   is convergent ∀ 𝑚 . 

Hence ∫ 𝑥𝑚−1∞

1
𝑒−𝑥𝑑𝑥 is convergent if and only if 𝑚 >  0 and is denoted 

by  <  𝑚) . 

Thus,    Γ (m)   =  ∫ 𝑥𝑚−1∞

0
𝑒−𝑥𝑑𝑥 , m>0.    

Thus Γ(0), Γ(-1), etc. are not exists . 

Example 3.11.  Examine for the convergence of ∫
𝑑𝑥

𝑥2+𝑥−2

∞

3
  and                                 

𝐺(𝑥)  =  
1

𝑥2
, then     𝑙𝑖𝑚

𝑥→∞

𝑓(𝑥)

𝑔(𝑥)
   =     𝑙𝑖𝑚

𝑥→∞

𝑥2

𝑥2+𝑥−2
  

                                      =   𝑙𝑖𝑚
𝑥→∞

1

1+
1

𝑥
−

2

𝑥2

 

                                      =    1 . 

Thus,  ∫
𝑑𝑥

𝑥2+𝑥−2

∞

3
   is convergent. 

Again let us decompose the integrand into partial fraction. 

We have   
1

𝑥2+𝑥−2
    =    

1

3(𝑥−1)
 −  

1

3(𝑥+2)
  . 

It is obvious ∫
1

3(𝑥−1)
 𝑑𝑥     𝑎𝑛𝑑    ∫

1

3(𝑥+2)
𝑑𝑥 

∞

3

∞

3
   are both divergent . 

Thus,   ∫
𝑑𝑥

𝑥2+𝑥−2

∞

3
   =    ∫

1

3(𝑥−1)
 𝑑𝑥   +    ∫

−𝑑𝑥

3(𝑥+2)
 

∞

3

∞

3
  is not correct. 

Now we evaluate above improper integral. 

We have    ∫
𝑑𝑥

𝑥2+𝑥−2

∞

3
 = 𝑙𝑖𝑚

𝑥→∞
∫

𝑑𝑥

𝑥2+𝑥−2

𝑥

3
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                              =𝑙𝑖𝑚
𝑥→∞

   [∫
𝑑𝑥

3(𝑥−1)
− ∫

𝑑𝑥

3(𝑥+2)

𝑥

3

𝑥

3
] 

                             =𝑙𝑖𝑚
𝑥→∞

 [
1

3
{𝑙𝑜𝑔(𝑥 − 1) − 𝑙𝑜𝑔 (𝑥 + 2} 𝑥

3
] 

                              = 𝑙𝑖𝑚
𝑥→∞

1

3
[𝑙𝑜𝑔(

𝑥−1

𝑥+2
)] 𝑥

3
 

                             =𝑙𝑖𝑚
𝑥→∞

  
1

3
[𝑙𝑜𝑔 (

𝑥−1

𝑥+2
)] − 𝑙𝑜 𝑔 (

2

5
)  

                                             = 𝑙𝑖𝑚
𝑥→∞

1

3
[𝑙𝑜𝑔 [

5(𝑥−1)

2(𝑥+2)
]]       

                             =𝑙𝑖𝑚
𝑥→∞

1

3
[

𝑙𝑜𝑔[5−
5

𝑥
]

2+
4

𝑥

]                    

                            =1/3 𝑙𝑜𝑔 5/2  . 

   

General test for convergence at ∞ (Integrand may change sign). 

Theorem 3.11. (Cauchy’s Test). 

The integral ∫ 𝑓𝑑𝑥
𝑋

𝑎
 converges at ∞ if and only if to every > 0 ,  ∃  X0,

such that 

                      |∫ 𝑓𝑑𝑥
𝑋2

𝑋1
| <  ϵ   ∀   𝑋1, 𝑋2  > 𝑋0 . 

Proof. The improper integrand ∫ fdx
∞

a
 exists if lim

x→∞
∫ fdx

x

a
  exists finitely  

Let      𝐹(𝑋)  = ∫ 𝑓𝑑𝑥
∞

𝑎
,   a function of X . 

According to Cauchy’s criterion for finite limits, 𝐹(𝑥) tends to a finite 

limits as 𝑥 → ∞ if to a finite 𝜖 > 0 ∃ X0, such that  ∀   𝑋1, 𝑋2  > 𝑋0 

                                     |𝐹(𝑋1) − 𝐹(𝑋2)|  <  ϵ 

That is      |∫ 𝑓𝑑𝑥
𝑋2

𝑋1
| < ϵ .           
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Example 3.12.  Show that   ∫
𝑠𝑖𝑛𝑥

𝑥

∞

0
𝑑𝑥 is convergent . 

Solution.  Since 𝑙𝑖𝑚
𝑥→0

𝑠𝑖𝑛𝑥

𝑥
  = 1. 

Therefore   ‘0’ is not infinite discontinuity, we may put  

                ∫
𝑠𝑖𝑛𝑥

𝑥

∞

0
 𝑑𝑥    =  ∫

𝑠𝑖𝑛𝑥

𝑥

1

0
 𝑑𝑥+∫

𝑠𝑖𝑛𝑥 

𝑥

∞

1
 𝑑𝑥 . 

We now test for the convergence of ∫
𝑠𝑖𝑛 

𝑥
 

∞

1
𝑑𝑥   as ∫

𝑠𝑖𝑛𝑥

𝑥

1

0
 𝑑𝑥  is proper 

integral. For any𝜖 > 0 , 

 Let 𝑥1,𝑥2 be two numbers both greater than 
2

ϵ
  , 

Now    ∫
𝑠𝑖𝑛𝑥

𝑥

𝑥2

𝑥1
𝑑𝑥    = [−

𝑐𝑜𝑠𝑥

𝑥
] 𝑥2

𝑥1
  − ∫

𝑐𝑜𝑠𝑥

𝑥2

𝑥2

𝑥1
𝑑𝑥  

 so that,     |∫
𝑠𝑖𝑛𝑥

𝑥
𝑑𝑥

𝑥2

𝑥1
|    ≤    |

𝑐𝑜𝑠𝑥1

𝑥1
−

𝑐𝑜𝑠𝑥2

𝑥2
| + |∫

𝑐𝑜𝑠𝑥

𝑥2

𝑥2

𝑥1
𝑑𝑥 | 

                                 ≤  
1

𝑥1
+

1

𝑥2
+ ∫

𝑑𝑥

𝑥2

𝑥2

𝑥1
     

                                 =2.
𝜖

2
  = 𝜖 . 

Therefore, by Cauchy’s test the improper integral ∫
𝑠𝑖𝑛𝑥

𝑥

∞

0
𝑑𝑥 is 

convergent. 

 

Absolute Convergence. 

Definition 3.4. The improper integral ∫ 𝑓𝑑𝑥
∞

𝑎
 is said to be absolutely 

convergent if ∫ |𝑓|
∞

𝑎
𝑑𝑥 is convergent.  

Theorem 3.12.   

Absolute convergences of ∫ 𝑓𝑑𝑥
∞

𝑎
  implies convergence of  ∫ 𝑓𝑑𝑥

∞

𝑎
  

i.e.,     ∫ 𝑓𝑑𝑥
∞

𝑎
 exists if  ∫ |𝑓|

∞

𝑎
𝑑𝑥 exist. 
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Proof. Suppose ∫ |𝑓|
∞

𝑎
𝑑𝑥 exists, then by Cauchy’s Test, ∀ 𝜀 > 0, ∃ 

𝑋0 , 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

                 |∫ |𝑓|𝑑𝑥
𝑥2

𝑥1
|  <  ϵ     ,  𝑥1, 𝑥2,> 𝑥0. 

We have   |∫ 𝑓𝑑𝑥
𝑥2

𝑥1
|    ≤   ∫ |𝑓|𝑑𝑥

𝑥2

𝑥1
    <    ϵ         𝑥1, 𝑥2,> 𝑥0 . 

Thus by Cauchy’s test  ∫ 𝑓𝑑𝑥
∞

𝑎
 converges. 

Example 3.13. Show that ∫
𝑠𝑖𝑛𝑥

𝑥𝑝

∞

1
 𝑑𝑥  converges absolutely if 𝑝 > 1 

Solution. We have  |
𝑠𝑖𝑛𝑥

𝑥𝑝
|   =   

|𝑠𝑖𝑛𝑥|

𝑥𝑝
   ≤   

1

𝑥𝑝
  ,   ∀  𝑥 ≥ 1 , 

 and     ∫
1

𝑥𝑝
𝑑𝑥

∞

1
   converges  for 𝑝 >  1 .                      

Thus,    ∫ |
𝑠𝑖𝑛𝑥

𝑥𝑝
|  𝑑𝑥  

∞

1
converges for 𝑝 > 1 . 

Therefore,  ∫
𝑠𝑖𝑛𝑥

𝑥𝑝

∞

1
 𝑑𝑥 converges absolutely for 𝑝 > 1. 

 

Integrand as a product of functions (convergent at ‘∞’). 

A test for absolutely convergence.   

Theorem 3.13. If a function 𝜑 is bounded in [𝑎, ∞] and integrable in 

[𝑎, 𝑥], ∀ 𝑥 ≥  𝑎. 

Also if ∫ 𝑓𝑑𝑥
∞

𝑎
 is absolutely convergent at ∞, then ∫ 𝑓𝜑𝑑𝑥

∞

𝑎
 is also 

absolutely convergent at ∞. 

Proof. Since f is bounded in [𝑎, ∞), therefore ∃ 𝑘 > 0, such that  

                   |𝜑(𝑥)|   ≤    𝑘,  ∀  𝑥 ∈ [𝑎, ∞)                  (15) 

Again since |f|is positive in [𝑎, ∞),and ∫ |𝑓|𝑑𝑥
∞

𝑎
  is convergent. 
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Therefore we can find m, such that   

          ∫ |𝑓|𝑑𝑥
𝑥

𝑎
  < 𝑚,   ∀   𝑥 ≥  𝑎                                           (16) 

Using (1) we have 

              |𝑓𝜑|  =  |𝑓||𝜑|  

                     ≤   k|𝑓|,       ∀  𝑥 ∈ [𝑎, ∞). 

  Therefore,   ∫ |𝑓𝜑|𝑑𝑥
𝑥

𝑎
   ≤ k∫ |𝑓|𝑑𝑥

𝑥

𝑎
 

                                  <  𝑘𝑚        ∀   𝑥 ≥  𝑎 . 

Thus,            ∫ |𝑓𝜑|𝑑𝑥
𝑥

𝑎
   ≤   𝑘𝑚      ∀   𝑥 ≥  𝑎 .  

Therefore, ∫ |𝑓𝜑|𝑑𝑥
𝑥

𝑎
 is convergent. 

Hence ∫ 𝑓𝜑𝑑𝑥
𝑥

𝑎
   is absolutely convergent. 

 

Test for convergence.  

Theorem (Abel’s Test) 3.14. If 𝜑 is bounded and monotonic in [𝑎, ∞) 

and ∫ 𝑓𝑑𝑥
∞

𝑎
 is convergent at ∞, then, ∫ 𝑓𝜑𝑑𝑥

∞

𝑎
  is convergent at ∞. 

Proof.   Since φ is monotonic in [𝑎, ∞), 𝑡ℎ𝑒𝑛  is integrable in [𝑎, 𝑥],                 

∀   𝑋 ≥  𝑎 .  

Also since 𝑓 is integrable in  [𝑎, 𝑥] , we have by 2nd mean value theorem  

         ∫ 𝑓𝜑
𝑋2

𝑋1
𝑑𝑥 = φ(𝑋1)∫ 𝑓𝑑𝑥

𝑦

𝑋1
 +φ(𝑋2)∫ 𝑓𝑑𝑥

𝑋2

𝑦
                          (17) 

                                                                                                 𝑓𝑜𝑟     𝑎 <  𝑋1  < 𝑌 ≤ 𝑋2. 

Let  𝜖 > 0 be arbitrary. 

Since φ is bounded in  [𝑎, ∞) , a positive number k exists, such that  
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               |𝜑(𝑥)|  ≤    𝑘,    ∀   𝑋 ≥  𝑎 .  

In particular, 

                   |𝜑(𝑥1)| ≤   k,            |𝜑(𝑥2)|≤   k,                         (18) 

Again since ∫ 𝑓𝑑𝑥
∞

𝑎
   is convergent, therefore their exists 𝑋0, such that  

               |∫ 𝑓𝑑𝑥
𝑥2

𝑥1
| <  

𝜖

2𝑘
      ,       ∀   𝑋1, 𝑋2>𝑋0                           (19) 

Since, 𝑋1≤ Y≤ 𝑋2 . 

Therefore,    |∫ 𝑓𝑑𝑥
𝑦

𝑥1
| <  

𝜖

2𝑘
   𝑎nd  

                |∫ 𝑓𝑑𝑥
𝑋2

𝑦
| < 

𝜖

2𝑘
                                                                                     (20) 

Thus from (17), (18),(19), and (20), we deduce that ∃  X0, such that 

for all , X1, X2>X0 and 𝜖 > 0 

     |∫ 𝑓𝜑𝑑𝑥
𝑋2

𝑋1
|  ≤  |𝜑(𝑥1)| |∫ 𝑓𝑑𝑥

𝑦

𝑋1
| +  |𝜑(𝑥2)| |∫ 𝑓𝑑𝑥

𝑋2

𝑦
| < k 

𝜖

2𝑘
+ 𝑘

𝜖

2𝑘
    =   𝜖 . 

Hence   ∫ 𝑓𝜑𝑑𝑥
∞

𝑎
  is convergent. 

Theorem Drichlet’s Test 2.15.  If 𝜑 is bounded and monotonic in 

[𝑎, ∞) and tends to 0 as 𝑥 → ∞   and ∫ 𝑓𝑑𝑥
𝑥

𝑎
 is bound for  𝑋 ≥  𝑎 , 

then     ∫ 𝑓𝜑𝑑𝑥
∞

𝑎
  convergent at ∞. 

Proof. Since 𝜑 is bounded and integrable in [𝑎, 𝑥] . Also since f is 

integrable in [𝑎, 𝑥], therefore by second mean value theorem: 

         ∫ 𝑓𝜑𝑑𝑥
𝑥2

𝑥1
= φ(𝑥1)∫ 𝑓𝑑𝑥

𝑦

𝑥1
 + φ(𝑥2)∫ 𝑓𝑑𝑥

𝑥2

𝑦
                          (21) 

                             for  𝑎 <  𝑋1 ≤  𝑌 ≤  𝑋2. 

Again, since   ∫ 𝑓𝑑𝑥
𝑥

𝑎
 is bound when 𝑋 ≥  𝑎, therefore ∃ 𝑘, such that  

              |∫ 𝑓𝑑𝑥
𝑥

𝑎
|    ≤ k,  ∀  𝑋 ≥  𝑎 . 
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Therefore, 

              | ∫ 𝑓𝑑𝑥
𝑦

𝑥1
|   =   |∫ 𝑓𝑑𝑥

𝑦

𝑎
− ∫ 𝑓𝑑𝑥

𝑥1

𝑎
| 

                            ≤| ∫ 𝑓𝑑𝑥
𝑦

𝑎
|   +|∫ 𝑓𝑑𝑥

𝑥1

𝑎
| 

                            ≤ 2k,           for   𝑋1,  ≥   𝑎 . 

Similarly,  

               | ∫ 𝑓𝑑𝑥
𝑥2

𝑦
| ≤ 2k,     for   X2  ≥  𝑎 . 

Let   𝜖 > 0 be arbitrary.  

Since 𝜑 → 0   as → ∞ ,  there exists a positive X0, such that  

              |𝜑(𝑋1)|  <
𝜖

4𝑘
   ,   |𝜑(𝑋2)|  <

𝜖

4𝑘
    where       𝑋2≥ 𝑋1≥ 𝑋0 . 

Let the numbers X1, X2 in (21) be ≥X0, so that from (17), (18), (19) & 

(20), we get 

                   |∫ 𝑓𝜑𝑑𝑥
𝑋2

𝑋1
|   <  

𝜖

4𝑘
2𝑘 +

𝜖

4𝑘
2𝑘  

                                    =  𝜖     ∀   𝑋2≥ 𝑋1≥ 𝑋0 .       

Hence by Cauchy’s test ∫ fφdx
∞

a
  is convergent at ∞. 

Example 3.14.The improper integral ∫
𝑠𝑖𝑛𝑥

𝑥𝑝
𝑑𝑥 

∞

1
 is divergent for p>0. 

Solution.  Take φ(x) =  
1

𝑥𝑝
   , 𝑝 > 0 and                   

                        𝑓(𝑥)   =    𝑠𝑖𝑛𝑥 . 

Then 𝜑(𝑥)  is monotonic decreasing and tends to 0 as 𝑥 → ∞. 

Also,        |∫ 𝑓𝑑𝑥
𝑥

1
|    =   |∫ 𝑠𝑖𝑛𝑥

𝑥

1
𝑑𝑥| 

                             =|𝑐𝑜𝑠1 − 𝑐𝑜𝑠𝑥| 
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                             ≤ |𝑐𝑜𝑠1|+|𝑐𝑜𝑠𝑥| 

                             ≤  1+1 = 2,   ∀ 𝑋 ≥ 1 . 

Thus,     |∫ 𝑠𝑖𝑛𝑥𝑑𝑥
𝑥

1
|  ≤ 2   ∀ 𝑋 ≥ 2 . 

Therefore   ∫ 𝑠𝑖𝑛𝑥 𝑑𝑥
𝑥

1
  is bounded.  

Hence by Drichlet’s test   ∫ 𝑠𝑖𝑛𝑥
1

𝑥𝑝

∞

1
  =  ∫

𝑠𝑖𝑛𝑥

𝑥𝑝
𝑑𝑥 

∞

1
is convergent   𝑝 >  0. 

Also, we know that   ∫
𝑠𝑖𝑛𝑥

𝑥𝑝
𝑑𝑥 

∞

1
  is absolutely convergent if and only if  𝑝 > 1 

Thus,  ∫
sinx

xp
dx 

∞

1
 is conditional convergent for 0 < 𝑝≤1 . 

 

Conditionally Convergent. 

 An improper integral ∫ 𝑓𝑑𝑥
∞

𝑎
 is conditionally convergent at ∞ if ∫ 𝑓𝑑𝑥

∞

𝑎
 is 

convergent at ∞, but ∫ |𝑓|𝑑𝑥 
∞

𝑎
is not convergent .That is the improper 

integral is said to be conditionally convergent if it is convergent but not 

absolutely. 

Example 3.15.  Show that ∫
𝑠𝑖𝑛𝑥

𝑥

∞

0
 𝑑𝑥  is convergent, but not absolutely. 

Solution.   We have      ∫
𝑠𝑖𝑛𝑥

𝑥

∞

0
 𝑑𝑥  =  ∫

𝑠𝑖𝑛𝑥

𝑥

1

0
 𝑑𝑥  + ∫

𝑠𝑖𝑛𝑥

𝑥

∞

1
 𝑑𝑥   

Now ,      ∫
𝑠𝑖𝑛𝑥

𝑥

1

0
 𝑑𝑥 is proper integral. 

To examine the convergence of ∫
𝑠𝑖𝑛𝑥

𝑥

∞

1
 𝑑𝑥 at ∞, we see that  

           |∫ 𝑠𝑖𝑛𝑥𝑑𝑥
𝑋

1
|   = |𝑐𝑜𝑠1 − 𝑐𝑜𝑠𝑋|  ≤ |𝑐𝑜𝑠1| + |𝑐𝑜𝑠𝑋| < 2  , so that    

|∫ 𝑠𝑖𝑛𝑥𝑑𝑥
𝑋

1
|    is bounded above for all X ≥ 1. 

Also, 1/𝑥 is a monotonic decreasing function tending  to 0 𝑎𝑠 𝑥 → ∞. 
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Therefore by Dirchlet’s test ∫
𝑠𝑖𝑛𝑥

𝑥

∞

0
 𝑑𝑥 is convergent. 

Hence ∫
𝑠𝑖𝑛𝑥

𝑥

∞

0
 𝑑𝑥 is convergent. 

To show that ∫
𝑠𝑖𝑛𝑥

𝑥

∞

0
 𝑑𝑥 is not absolutely convergent, we proceed as 

follows: 

            ∫ |
𝑠𝑖𝑛𝑥

𝑥
| 𝑑𝑥

𝑛𝜋

0
 =  ∑ ∫

|𝑠𝑖𝑛𝑥|

𝑥
𝑑𝑥

𝑟𝜋

(𝑟−1)𝜋
𝑛
𝑟=1  

Now,   ∀ 𝑥 ∈  [(𝑟 − 1)𝜋, 𝑟𝜋] 

            ∫
|𝑠𝑖𝑛𝑥|

𝑥

𝑟𝜋

(𝑟−1)𝜋
𝑑𝑥    ≥  ∫

|𝑠𝑖𝑛𝑥|

𝑟𝜋

𝑟𝜋

(𝑟−1)𝜋
𝑑𝑥     

Putting,  𝑥 = (𝑟 − 1)𝜋 + 𝑦 

      ∫
|𝑠𝑖𝑛𝑥|

𝑟𝜋

𝑟𝜋

(𝑟−1)𝜋
𝑑𝑥     = ∫

|𝑠𝑖𝑛(𝑟−1)𝜋+𝑦|𝑑𝑦

𝑟𝜋

𝜋

0
 

                            =
1

𝜋𝑟
∫ 𝑠𝑖𝑛𝑦𝑑𝑦

𝜋

0
     =    

2

𝑟𝜋
 . 

Hence     ∫
|𝑠𝑖𝑛𝑥|

𝑥
𝑑𝑥

𝑛𝜋

0
   =   ∑ ∫

|𝑠𝑖𝑛𝑥|

𝑥
𝑑𝑥

𝑟𝜋

(𝑟−1)𝜋
𝑛
𝑖=𝑟    ≥   ∑

2

𝑟𝜋

𝑛
𝑖=1  . 

But    ∑
2

𝑟𝜋

𝑛
𝑟=1   is a divergent series. 

Therefore,  𝑙𝑖𝑚
𝑛→

∫
|𝑠𝑖𝑛𝑥|

𝑥
𝑑𝑥

𝑛𝜋

0
  ≥   𝑙𝑖𝑚

𝑛→∞
∑

2

𝑟𝜋

𝑛
𝑖=1  . 

This implies that    𝑙𝑖𝑚
𝑛→∞

∫
|𝑠𝑖𝑛𝑥|

𝑥
𝑑𝑥

𝑛𝜋

0
   is infinite. 

Now, let 𝑡 be a real number, there exists positive integer 𝑛 , such that  

                   𝑛𝜋 ≤  𝑡 <  (𝑛 + 1)𝜋 . 

We have,   ∫
|𝑠𝑖𝑛𝑥|

𝑥
𝑑𝑥

𝑡

0
 ≥∫

|𝑠𝑖𝑛𝑥|

𝑥
𝑑𝑥

𝑛𝜋

0
. 

Let 𝑡 → ∞, so that 𝑛 → ∞, thus we see that  

               ∫
|𝑠𝑖𝑛𝑥|

𝑥
𝑑𝑥

𝑡

0
→ ∞ . 
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This implies   ∫
|𝑠𝑖𝑛𝑥|

𝑥
𝑑𝑥

∞

0
   does not converge. 

This example show that  ∫
𝑠𝑖𝑛𝑥

𝑥𝑝

∞

𝑜
𝑑𝑥 , 0 < 𝑝 ≤ 1, is convergent but not  

absolutely . 

Example 3.16.  Show that ∫
𝑐𝑜𝑠𝑥

𝑙𝑜𝑔𝑥
𝑑𝑥

∞

2
  is conditionally convergent. 

Solution. Let   φ(x) =  
1

𝑙𝑜𝑔𝑥
,   𝑓(𝑥) = 𝑐𝑜𝑠𝑥 . 

         |∫ 𝑐𝑜𝑠𝑥𝑑𝑥
𝑋

2
|  =   |𝑠𝑖𝑛𝑋 − 𝑠𝑖𝑛2|≤|𝑠𝑖𝑛𝑋| +  |𝑠𝑖𝑛2| ≤ 2,   so that 

∫ 𝑐𝑜𝑠𝑥 𝑑𝑥   
𝑋

2
 is bounded for all   X ≥   2 

Also, φ(x) =  
1

𝑙𝑜𝑔𝑥
 is monotonic decreasing function tending to 0 as 𝑥 → ∞ . 

Hence by Dirichlet’s test  ∫
𝑐𝑜𝑠𝑥

𝑙𝑜𝑔𝑥
𝑑𝑥

∞

2
  is convergent. 

For absolute convergence consider 

     I=   ∫ |
𝑐𝑜𝑠𝑥

𝑙𝑜𝑔𝑥
  | 𝑑𝑥 

∞

2
 = ∫

|𝑐𝑜𝑠𝑥|

𝑙𝑜𝑔𝑥

3𝜋

2
2

𝑑𝑥 + ∫
|𝑐𝑜𝑠𝑥|

𝑙𝑜𝑔𝑥

5𝜋

2
3𝜋

2

𝑑𝑥-----      

                                                      +∫
|𝑐𝑜𝑠𝑥|

𝑙𝑜𝑔𝑥

(2𝑛+1)𝜋

2
(2𝑛−1)𝜋

2

𝑑𝑥+---- 

Therefore,  

      I= ∫
|𝑐𝑜𝑠𝑥|

𝑙𝑜𝑔𝑥

2
𝜋

2

𝑑𝑥+ ∫
|𝑐𝑜𝑠𝑥|

𝑙𝑜𝑔𝑥

3𝜋

2
2

𝑑𝑥+-----∫
|𝑐𝑜𝑠𝑥|

𝑙𝑜𝑔𝑥

(2𝑛+1)𝜋

2
(2𝑛−1)𝜋

2

𝑑𝑥+ …..                                                       

                                                                                         − ∫
|𝑐𝑜𝑠𝑥|

𝑙𝑜𝑔𝑥

2
𝜋

2

𝑑𝑥   

                            =  ∑ ∫
|𝑐𝑜𝑠𝑥|

𝑙𝑜𝑔𝑥

(2𝑛+1)𝜋

2
(2𝑛−1)𝜋

2

𝑑𝑥𝑛
𝑟=1   - ∫

|𝑐𝑜𝑠𝑥|

𝑙𝑜𝑔𝑥

2
𝜋

2

𝑑𝑥   

Now,  

                ∫
|𝑐𝑜𝑠𝑥|

𝑙𝑜𝑔𝑥

(2𝑛+1)𝜋

2
(2𝑛−1)𝜋

2

𝑑𝑥  ≥  
1

𝑙𝑜𝑔(2𝑟+1)𝜋/2 
  |∫ 𝑐𝑜𝑠𝑥𝑑𝑥

(2𝑟+1)𝜋

2
(2𝑟−1)𝜋

2

| 
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                            =   
1

𝑙𝑜𝑔[
(2𝑟+1)𝜋

2
]
  |𝑠𝑖𝑛 [(2𝑟 + 1)

𝜋

2
] − 𝑠𝑖𝑛 [(2𝑟 − 1)

𝜋

2
]| 

                           =  
|2(−1)𝑟|

𝑙𝑜𝑔[
(2𝑟+1)𝜋

2
]
 

                           =  
2

𝑙𝑜𝑔
(2𝑟+1)𝜋

2

 . 

Therefore,   I ≥  ∑
2

𝑙𝑜𝑔
(2𝑟+1)𝜋

2

∞
𝑟=1   − ∫

|𝑐𝑜𝑠𝑥|

𝑙𝑜𝑔𝑥

2
𝜋

2

𝑑𝑥 . 

But       ∑
1

𝑙𝑜𝑔𝑥
   ∞

𝑟=2 is divergent and   ∫
|𝑐𝑜𝑠𝑥|

𝑙𝑜𝑔𝑥

2
𝜋

2

𝑑𝑥 is proper integral. 

Hence I=∫
|𝑐𝑜𝑠𝑥|

𝑙𝑜𝑔𝑥

∞

0
𝑑𝑥 is divergent and so ∫

𝑐𝑜𝑠𝑥

𝑙𝑜𝑔𝑥
𝑑𝑥

∞

2
 is conditionally 

convergent. 

Example 3.17. Using ∫
𝑠𝑖𝑛𝑥

𝑥

∞

0
𝑑𝑥 =

𝑛

2
, show that  

                                      ∫
𝑠𝑖𝑛2𝑥

𝑥2

∞

0
𝑑𝑥 =  

𝜋

2
 . 

Solution. To compute it let us integrate by parts, therefore  

                            ∫
𝑠𝑖𝑛2𝑥

𝑥2

∞

0
𝑑𝑥 = [

−𝑠𝑖𝑛2𝑥

𝑋
] ∞

0
  +  ∫  

𝑠𝑖𝑛2𝑥

𝑋

∞

0
𝑑𝑥   

 Hence       ∫
𝑠𝑖𝑛2𝑥

𝑥2

∞

0
𝑑𝑥  = ∫

𝑠𝑖𝑛𝑡

𝑡
𝑑𝑡 =     

𝜋

2

∞

0
 . 

Example 3.18.The function 𝑓 is defined on [0, ∞ [by f(x) = (-1)n−1 , 

𝑓𝑜𝑟   𝑛 − 1 ≤  𝑥 < 𝑛, 𝑛 ∈  𝑁 ,    show that the integral ∫ 𝑓(𝑥)𝑑𝑥
∞

0
  does not 

converge. 

Solution. Consider 

     ∫ 𝑓(𝑥)𝑑𝑥
2𝑛

0
  =  ∫ (−1)0𝑑𝑥

1

0
+ ∫ (−1)𝑑𝑥

2

1
 +   

                                                          + ∫ (−1)2𝑑𝑥
3

2
+ ⋯ ∫ (−1)2𝑛−1𝑑𝑥

2𝑛

2𝑛−1
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                                       =1 − 1 + 1 − 1 + 1 − 1 … … … . . +1 − 1. 

and  

     ∫ 𝑓(𝑥)𝑑𝑥
2𝑛+1

0
  =    ∫ 𝑑𝑥

1

0
+ ∫ (−1)𝑑𝑥

2

1
 +…   ….… ∫ (−1)2𝑛2𝑛+1

2𝑛
𝑑𝑥 

                       =1 − 1 + 1 … … … . . −1 + 1  =1 

           𝑙𝑖𝑚
𝑛→∞

∫ 𝑓(𝑥)𝑑𝑥
2𝑛

0
 = 0   

and      𝑙𝑖𝑚
𝑛→∞

∫ 𝑓(𝑥)𝑑𝑥
2𝑛+1

0
 =  1. 

Hence the integral does not exist and therefore it is not convergent. 

Example 3.19.  Test the convergence of  

   (I)         ∫
𝑥𝑑𝑥

1+𝑥4𝑐𝑜𝑠2𝑥
 

∞

0
                  (𝐼𝐼) ∫

𝑑𝑥

1+𝑥4𝑐𝑜𝑠2𝑥
  .

∞

0
 

Solution. The integral is positive for positive value of x but the tests 

obtained for the convergence of positive integrands so far, are not 

applicable. In order to show the integral convergent we proceed as 

follows:  

Consider     ∫
𝑥𝑑𝑥

1+𝑥4𝑐𝑜𝑠2𝑥
 

𝑛𝜋

0
. 

 Therefore    ∫
𝑥𝑑𝑥

1+𝑥4𝑐𝑜𝑠2𝑥
 

𝑛𝜋

0
  =  ∑ ∫

𝑥𝑑𝑥

1+𝑥4𝑐𝑜𝑠2𝑥
   .

𝑟𝜋

(𝑟−1)𝜋
𝑛
𝑟=1  

Now,  ∀  𝑥 ∈ [(𝑟 − 1)𝜋, 𝑟𝜋]. 

 We have 

                       
𝑥

1+𝑥4𝑐𝑜𝑠2𝑥
   ≥  

(𝑟−1)𝜋

1+𝑟4𝑐𝑜𝑠2𝑥
 

Therefore  ∫
𝑥𝑑𝑥

1+𝑥4𝑐𝑜𝑠2𝑥
 

𝑟𝜋

(𝑟−1)𝜋
   ≥  ∫

(𝑟−1)𝜋𝑑𝑥

1+𝑥4𝑐𝑜𝑠2𝑥
 

𝑟𝜋

(𝑟−1)𝜋
 

Putting   𝑥 =  (𝑟 − 1)𝜋 + 𝑦 , we see that  
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            ∫
(𝑟−1)𝜋𝑑𝑥

1+𝑥4𝑐𝑜𝑠2𝑥
 

𝑟𝜋

(𝑟−1)𝜋
  =    ∫

(𝑟−1)𝜋𝑑𝑦

1+𝑟4𝜋4𝑐𝑜𝑠2{(𝑟−1)𝜋+𝑦)}

𝜋

0
 

                                 = ∫
(𝑟−1)𝜋𝑑𝑦

1+𝑟4𝜋4𝑐𝑜𝑠2𝑦

𝜋

0
 

                                  = 2(r-1)π∫
𝑑𝑦

1+𝑟4𝜋4𝑐𝑜𝑠2𝑦

𝜋

2
0

 

                                  = 2(r-1)π∫
𝑠𝑒𝑐2𝑦𝑑𝑦

1++𝑡𝑎𝑛2𝑦+𝑟4𝜋4

𝜋

2
0

 

                                  = 
2(𝑟−1)𝜋

√1+𝑟4𝜋4
 𝑡𝑎𝑛−1(

𝑡𝑎𝑛𝑦

√1+𝑟4𝜋4
) |

𝜋

2
0
    = 

(𝑟−1)𝜋2

√1+𝑟4𝜋4
 . 

 Therefore,     ∑ ∫
𝑥𝑑𝑥

1+𝑥4𝑐𝑜𝑠2𝑥
 

𝑟𝜋

(𝑟−1)𝜋
𝑛
𝑟=1    ≥   ∑

(𝑟−1)𝜋2

√1+𝑟4𝜋4
𝑛
𝑟=1  . 

Hence   𝑙𝑖𝑚
𝑛→∞

∫
𝑥𝑑𝑥

1+𝑥4𝑐𝑜𝑠2𝑥
 

𝑛𝜋

0
 ≥ 𝑙𝑖𝑚

𝑛→∞
∑

(𝑟−1)𝜋2

√1+𝑟4𝜋4
𝑛
𝑟=1   . 

But        ∑
(𝑟−1)𝜋2

√1+𝑟4𝜋4
𝑛
𝑟=1   is a divergent series (~ ∑

1

𝑟

𝑛
𝑟=1 ) . 

 Therefore    ∫
𝑥𝑑𝑥

1+𝑥4𝑐𝑜𝑠2𝑥
 

∞

0
   is divergent. 

(II)        ∫
𝑑𝑥

1+𝑥4𝑐𝑜𝑠2𝑥
 

∞

0
 try yourself        

 

 

Inequalities. 

Definition 3.5. If 𝑎1, 𝑎2, 𝑎3, … … 𝑎𝑛 are n real numbers, then their 

Arithmetic mean is defined as   

                   A   = 
𝑎1+𝑎2+⋯𝑎𝑛

𝑛
 

                          = ∑
𝑎𝑖

𝑛

𝑛
𝑖=1  . 

If the above numbers are positive then, their Geometric mean is 

defined by  
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                  G = (𝑎1, 𝑎2, 𝑎3, … … 𝑎𝑛)
1

𝑛  

and  the recipocial of the  arithmetic  mean of  the  recipocials of   a1, a2, a3, … … an   

is defined  to be the harmonic mean  

                  H=  
𝑛

1

𝑎1
+

1

𝑎2
+⋯+

1

𝑎𝑛

   where H is the Harmonic Mean. 

 

Arithmetic Mean - Geometric mean Inequality. 

Theorem 3.16. Let 𝑎1, 𝑎2, 𝑎3, … … 𝑎𝑛 be n positive numbers. If A denotes 

their Arithmetic mean and G denotes their Geometric mean, then 𝐴 ≥

 𝐺 . Equality  sign holds if and only if    𝑎1= 𝑎2= 𝑎3=…..=𝑎𝑛 . 

Proof. For 𝑛 = 1, there is nothing to prove as 𝐴 = 𝑎1 = 𝐺 . 

For 𝑛 = 2, we have to show that  

                  
𝑎1+𝑎2

2
    ≥  (𝑎1𝑎2)1/2 . 

We know that    (√𝑎1- √𝑎2)2   ≥    0   

                           𝑎1 + 𝑎2 − 2√𝑎1 √𝑎2   ≥ 0 

Therefore ,     
𝑎1+𝑎2

2
   ≥   (𝑎1𝑎2)

1

2 . 

Thus result holds for  n=2  𝑎𝑛𝑑 𝑡ℎ𝑒 𝑒𝑞𝑢𝑎𝑙𝑖𝑡𝑦 ℎ𝑜𝑙𝑑𝑠 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑎1 = 𝑎2 . 

Now we used induction on n.  For 𝑛 = 4 = 2
2  , we  have  

                  
𝑎1+𝑎2+𝑎3+𝑎4

22
  = 

𝑎1+𝑎2+𝑎3+𝑎4

4
  =

2

22

4321
aaaa 




                      

                                             
(𝑎1𝑎2)

1
2+(𝑎3𝑎4)

1
2

2
       (By previous case).                                 
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                                                ≥   [((𝑎1𝑎2)
1

2(𝑎3𝑎4)
1

2 ] 2

1

 

Thus,            (  
𝑎1+𝑎2+𝑎3+𝑎4

4
  )  ≥  (𝑎1𝑎2𝑎3𝑎4)

1

4  . 

Thus result holds for 𝑛 = 4   i.e. ,  .2
2
 

Suppose result holds for 𝑛 = 𝑚 that is, for 2𝑚 . 

Let n be a positive integer not of the form  2𝑚. 

We choose k suitable, such that  .2 n
m
  

Thus n
m
2   is a positive integer. 

Let    
n

K
n321

a ...  +a+aa 
                                                           (22) 

      Kaaaand mnn


 221
...                                                  (23) 

Consider the product ( ).........
22131 maaaaaaa

nnnn 
which has 2𝑚  form. 

Since the inequality is supposed to be true for all positive integral 

powers of 2, we have  

            
m

nn

n

mm

m

aaaaa
aaaa

2

......
.......

2121
2

1

221






  

               
mm

m m

nn

n

aaaaa
aaaa

22121

221
}

2

)...()...(
.......






 

                                          = 
 

m

KnnK
m

2

2









 
 

With equality iff   𝑎1= 𝑎2= 𝑎3=…..=𝑎𝑛 . 
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mnm

KKaaa
n

22

21
.... 



 

   n

n
Kaaa ....

21
 

     Kaaa n

n


1

21
....  

or            
n

aaa
aaa

nn

n




...
....

21

1

21
 

with equality iff 𝑎1= 𝑎2= 𝑎3=…..=𝑎𝑛 . 

Combing this result with the earlier one, we come to the conclusion 

that if 𝑎1, 𝑎2, 𝑎3, … … 𝑎𝑛    are n positive numbers, then  

                          n

n

n
aaa

n

aaa
1

21

21
....

...



 

or     𝐴 ≥  𝐺 .                      

        

Corollary. If 𝑎1, 𝑎2, 𝑎3, … … . , 𝑎𝑛 are n positive real numbers , then 

                                    𝐺 ≥  𝐻. 

Proof. We know that for any positive integer n, 

           
 𝑎1+𝑎2+⋯𝑎𝑛

𝑛
    ≥   (𝑎1𝑎2𝑎3 … … . 𝑎𝑛)

1

𝑛   where 𝑎𝑖 > 0 ∀   𝑖,    1 ≤ 𝑖 ≤ 𝑛 . 

Thus result holds for 
1

𝑎1
,

1

𝑎2
, … …

1

𝑎𝑛
. 

Therefore      

                     

1

𝑎1
+

1

𝑎2
+⋯………………

1

𝑎𝑛

𝑛
   ≥ (𝑎1𝑎2𝑎3 … … . 𝑎𝑛)

1

𝑛 .              
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𝑛

1

𝑎1
+

1

𝑎2
+⋯+

1

𝑎𝑛

  ≤ 
n

n
aaaa

1

321

1
...

1
.

1
.

1














                        

                    

         𝐻 ≤  𝐺 . 

 Equality holds if and only if  𝑎1 = 𝑎2 = ⋯ . = 𝑎𝑛 . 

 Corollary. Since    𝐴 ≥  𝐺 and  𝐺 ≥  𝐻 , thus        

                                     𝐴 ≥  𝐺 ≥  𝐻 . 

  This gives  
 𝑎1+𝑎2+⋯𝑎𝑛

𝑛
    ≥   

𝑛
1

𝑎1
+

1

𝑎2
+⋯………………

1

𝑎𝑛

 . 

Therefore,    ∑ 𝑎𝑖 ∑
1

𝑎𝑖

𝑛
𝑖=1

𝑛
𝑖=1   ≥ 𝑛2. 

 

Theorem Cauchy Schwarz Inequality 3.17. 

If 𝑎1, 𝑎2, 𝑎3, … … . , 𝑎𝑛  and 𝑏1, 𝑏2, 𝑏3, … … . , 𝑏𝑛are real numbers, then 

              
i

n

i

i
ba

1

≤   (∑ 𝑎𝑖
2 𝑛

𝑖=1 ))
1

2 ( ∑ 𝑎𝑖
2)

1

2𝑛
𝑖=1   . 

Proof.  Let    be a real number, then 

      0)(
2


ii
ba     with equality iff ..,.3,2,10  iforba

ii
 n. 

This implies  ..,.3,2,102
222

 iforbbaa i
iii
  

 Adding for i=1, 2, 3. . .    ,  we get 

        0)(2
2

11

22

1

 


i

n

i

ii

n

i

i

n

i

bbaa   

i.e.,      realeveryforCBAf 02
2
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𝑤ℎ𝑒𝑟𝑒   




n

i

iaA

1

2              
i

n

i

i
baB 





1

   𝑎𝑛𝑑           C = 


n

i

i
b

1

.

2

  

Now obviously .oA   

If A=0, then there is nothing to prove because both sides of the 

proposed inequality reduce to zero. 

So, let .oA   

We claim that   .,
2

ACBimplieseveryforof    

If this is not true, then soACB ,
2
  

    .0
_

2

22

2




















 

A

ACB
C

A

B
B

A

AB

A

B
f  

Thus, for   0, 


  f
A

B
   which contradicts the fact that 

  .0  realeveryforf   

Hence our supposition that ACB 
2 is wrong. 

Therefore  ACB 
2   must be true. 

           


























 



n

i

i

i

i

n

i

ii
baba

1

2

1

2

2

1

 

or        |∑ 𝑎𝑖𝑏𝑖
𝑛
𝑖=1 |  ≤  (∑ 𝑎𝑖

2𝑛
𝑖=1 )

1

2(∑ 𝑏𝑖
2)

1

2𝑛
𝑖=1  

Hence we have Cauchy’s - Schwarz Inequality, with equality iff  

..,.3,2,10  iforba
ii

 n. 
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Convex Function.  

Let  𝑦 = 𝑓(𝑥) be well defined in some interval and  𝑙𝑒𝑡 𝑥1 ≠ 𝑥2 . 𝑆𝑎𝑦 𝑥1 <

 𝑥2  be the abscissa the graph of 𝑦 = 𝑓(𝑥) so that the point 𝑃 and 𝑄 are 

 [𝑥1, 𝑓(𝑥1)]    𝑎𝑛𝑑  [𝑥2, 𝑓(𝑥2)]  respectively.            

                    Y 

                                                                                                                                                          

                                                                                                                                                      

                                                                                                                 𝑄(𝑋2, 𝑓(𝑋2))                                                                                                                            

                               𝑦 = 𝑓(𝑥) 

                                                                                                                    

                                                                                                    

                                               𝑋1              
𝑋1 + 𝑋2

2
                 𝑋2 

                   O  X 

 

If the graph of f(x) between P and Q lies below the cord PQ,then the 

function is said to be convex downwards or simply convex. The 

equation of the straight line through PQ is said to be convex 

downwards or simply convex. 

The equation of the straight line 𝑃𝑄 is  

                             
𝑦−𝑓(𝑥1)

𝑥−𝑥1
 =

𝑓(𝑥2)−𝑓(𝑥1)

𝑥2−𝑥1
 

That is      𝑦 = 𝑓(𝑥1) +  
𝑥−𝑥1

𝑥2−𝑋1
[𝑓(𝑥2) − 𝑓(𝑥1)]. 
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Since the point 
𝑥1+𝑥2

2
  lies between 𝑥1and  𝑥2 and     the curve is convex, 

the y coordinate of the curve must be less than the y coordinate of the 

cord i.e., we must have 

    𝑓 (
𝑥1 + 𝑥2

2
)   ≤    

𝑓(𝑥1) + 𝑓(𝑥2)

2
                                 

Thus,       𝑓 (
𝑥1+𝑥2

2
)   ≤    

𝑓(𝑥1)+𝑓(𝑥2)

2
  for convex function f.   

Theorem 3.16.  Prove that if 𝑓 is convex function, then 

       𝑓 (
𝑥1 + 𝑥2 + ⋯ 𝑥𝑛

𝑛
)  ≤   

𝑓(𝑥1) + 𝑓(𝑥) + ⋯ 𝑓(𝑥𝑛)

𝑛
  .                               

 Proof. For 𝑛 =  1, there is nothing to prove. 

We will first prove the result for all positive integer 𝑚 =  2𝑛  by using 

induction on 𝑛.   

For   𝑛 = 1 , then result holds, because  𝑓 (
𝑥2+𝑥1

2
)   ≤    

𝑓(𝑥1)+𝑓(𝑥2)

2
 . 

For a convex function, suppose result holds for  2𝑘. 

That is  

           𝑓 (
𝑥1+𝑥2+⋯𝑥

2𝑘

2𝑘
)  ≤  

𝑓(𝑥1)+𝑓(𝑥2)+⋯𝑓(𝑥
2𝑘)

2𝑘
                                  (24) 

We will show that result holds for2𝑘+1, we have 

    𝑓 (
𝑥1+𝑥2+⋯𝑥

2𝑘+𝑥
1+2𝑘+⋯𝑥

2𝑘+1

2𝑘
)  ≤    𝑓 (

𝑥1+𝑥2+⋯𝑥
2𝑘

2𝑘 + 
𝑥

1+2𝑘+⋯𝑥
2𝑘+1

2𝑘

2
)      

                                                  ≤    
𝑓 (

𝑥1 + 𝑥2 + ⋯ 𝑥2𝑘

2𝑘 ) + 𝑓 (
𝑥1+2𝑘 + ⋯ 𝑥2𝑘+1

2𝑘 )

2
 

because result holds 2 terms. 

This implies that  
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            𝑓 (
𝑥1+𝑥2+⋯𝑥

2𝑘+1

2𝑘+1
)   ≤        

𝑓(𝑥1)+𝑓(𝑥2)+⋯𝑓(𝑥
2𝑘)

2𝑘  + 
𝑓(𝑥

1+2𝑘)+⋯𝑓(𝑥
2𝑘+1)

2𝑘

2
           by  ( 24) . 

 Therefore    

           𝑓 (
𝑥1+𝑥2+⋯𝑥

2𝑘+1

2𝑘+1
)   ≤    

𝑓(𝑥1)+𝑓(𝑥2)+⋯𝑓(𝑥
2𝑘+1)

2.2𝑘
 

 =  
𝑓(𝑥1) + 𝑓(𝑥2) + ⋯ 𝑓(𝑥2𝑘+1)

2𝑘+1
 . 

Thus result holds for  2𝑘+1 . 

Hence by principal of Mathematical induction result holds for all 

integers of the form  2𝑛 , 𝑛 ≥  1. 

Now, let 𝑛 be any positive integer. Choose positive integer 𝑚, 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡   

                                  2𝑚 > 𝑛 

Let          
𝑥1+𝑥2+⋯𝑥𝑛

𝑛
 = 𝐾                                                                                 (25) 

        𝑥𝑛+1 = 𝑥𝑛+2 = ⋯ = 𝑥2𝑚 = 𝐾                                                                (26) 

          𝑓( 𝑥1) + 𝑓( 𝑥2) + ⋯ + 𝑓( 𝑥𝑛) =  𝐾1                                                       (27) 

We  have  

                    𝑓 (
𝑥1+𝑥2+⋯𝑥𝑛+⋯𝑥2𝑚

2𝑚
)  ≤  

𝑓( 𝑥1)+𝑓( 𝑥2)+⋯+𝑓( 𝑥𝑛)+𝑓( 𝑥𝑛+1)+⋯𝑓( 𝑥2𝑚) 

2𝑚
 . 

This implies that  

                       𝑓 (
𝑛𝐾+(2𝑚−𝑛)𝐾

2𝑚
)   ≤   

𝐾1+(2𝑚−𝑛)𝑓(𝑘)

2𝑚
    

                            𝑓(𝐾) ≤  
𝐾1+2𝑚𝑓(𝐾)−𝑛𝑓(𝐾)

2𝑚
 

                     2𝑚𝑓(𝐾) ≤  𝐾1 + 2𝑚𝑓(𝐾) − 𝑛𝑓(𝐾) 

                           0 ≤  𝐾1 − 𝑛𝑓(𝐾) 

This implies  𝑛𝑓(𝐾)  ≤  𝐾1 or  𝑓(𝐾)  ≤  
𝐾1

𝑛
 .     
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Therefore, 𝑓 (
𝑥1+𝑥2+⋯𝑥𝑛

𝑛
)  ≤ 

𝑓( 𝑥1)+𝑓( 𝑥2)+⋯+𝑓( 𝑥𝑛)

𝑛
  for all n, not of the form 2𝑚. 

Hence   𝑓 (
𝑥1+𝑥2+⋯𝑥𝑛

𝑛
)  ≤  

𝑓( 𝑥1)+𝑓( 𝑥2)+⋯+𝑓( 𝑥𝑛)

𝑛
   for all 𝑛 ≥  1, if f is convex.                                                       

Proposition . Suppose  𝑓 is defined 𝑖𝑛 [𝑎, 𝑏] and 𝑓′′(𝑥) exists, 𝑓′′(𝑥) ≥ 0  

in this interval. Then 𝑓 is convex . 

Proof. Let  𝑡1 ≠  𝑡2, say 𝑡1 <  𝑡2 i.e., any two points in [𝑎, 𝑏] =  𝐼 , so that 

                          𝑡1 <
 𝑡1+𝑡2

2
<  𝑡2 . 

Then ,    𝑓(𝑡1) = 𝑓 (
𝑡1+𝑡2

2
) + (

𝑡1−𝑡2

2
) 𝑓′ (

𝑡1+𝑡2

2
) +

1

2
(

𝑡1−𝑡2

2
)

2

𝑓′′(𝐶1) 

                                                                                      where  t1 <   C1 <  
t1+t2

2
 . 

Also,   f(t2) =  f (
t1+t2

2
) + (

t2−t1

2
) f ′ (

t1+t2

2
) +

1

2
(

t2−t1

2
)

2

f ′′(C2)                

                                                           where  
t1+t2

2
< C2 < t2 . 

Adding these two equations, we get 

 𝑓(𝑡1) + 𝑓(𝑡2) = 2𝑓 (
𝑡1+𝑡2

2
) + 𝐸       𝑤ℎ𝑒𝑟𝑒 𝐸 =  

1

2
(

𝑡2−𝑡1

2
)

2

[𝑓′′(𝐶1) + 𝑓′′(𝐶2)]≥ 0. 

 Therefore,   𝑓(𝑡1) + 𝑓(𝑡2) ≥ 2𝑓 (
𝑡1+𝑡2

2
). 

This  implies that   𝑓 (
𝑡1+𝑡2

2
) ≤  

𝑓(𝑡1)+𝑓(𝑡2)

2
  . 

Therefore f is convex. 

 Proposition. If 𝑓 is convex and 𝑓′′ exist in [𝑎, 𝑏], then 𝑓′′ ≥ 0 𝑖𝑛 [𝑎, 𝑏] .                      

Proof.  Let    ℎ >  0 

Take    𝑥 − ℎ = 𝑥1,   𝑥 + ℎ = 𝑥2 . 

Since 𝑓 is convex. 
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Therefore      𝑓 (
𝑥2+𝑥1

2
)   ≤    

(𝑥1)+𝑓(𝑥2)

2
 . 

This implies that     

              𝑓 (
𝑥−ℎ+𝑥+ℎ

2
) ≤

𝑓(𝑥−ℎ)+𝑓(𝑥+ℎ)

2
 

                     𝑓(𝑥) ≤
𝑓(𝑥−ℎ)+𝑓(𝑥+ℎ)

2
 . 

This gives       𝑓(𝑥 − ℎ) + 𝑓(𝑥 + ℎ) − 2𝑓(𝑥) ≥ 0                              (28) 

Since 𝑓′′(𝑥) exists , we have  

            𝑙𝑖𝑚
ℎ→0

𝑓(𝑥 − ℎ) + 𝑓(𝑥 + ℎ) − 2𝑓(𝑥)

ℎ2
= 𝑓′′(𝑥) . 

Therefore by (28) , we have     𝑓′′(𝑥) ≥ 0.  

 

In the year 1906 Jenson obtained some considerable extensions of the 

AM-GM inequality. These extensions were based on the theory of 

convex functions, founded by Jenson himself. 

Theorem Jensen’s Inequality 3.18. 

Suppose 𝑓 is convex and 𝑓′′(𝑥) exists finitely in [a, b] and 𝑥1, 𝑥2, … . 𝑥𝑛 

are n-points in this interval. Further let 𝑎1, 𝑎2, … . 𝑎𝑛 be n positive 

numbers. Then 

            𝑓 (
𝑎1𝑥1+𝑎2𝑥2+⋯𝑎𝑛𝑥𝑛

𝑎1+𝑎2+⋯𝑎𝑛
) ≤  

𝑎1𝑓(𝑥1)+𝑎2𝑓(𝑥2)+⋯𝑎𝑛𝑓(𝑥𝑛)

𝑎1+𝑎2+⋯𝑎𝑛
  . 

Proof.  Since f is convex and 𝑓′′(𝑥)  exists finitely in [a, b], 

therefore  𝑓′′(𝑥) ≥ 0. 

Let       β = 
𝑎1𝑥1+𝑎2𝑥2+⋯𝑎𝑛𝑥𝑛

𝑎1+𝑎2+⋯𝑎𝑛
 =  

∑ 𝑎𝑖𝑥𝑖
𝑛
𝑖=1

∑ 𝑎𝑖
𝑛
𝑖=1

 . 
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This implies that   ∑ 𝑎𝑖𝑥𝑖
𝑛
𝑖=1 − 𝛽 ∑ 𝑎𝑖

𝑛
𝑖=1 = 0                                                  (29)                    

By Taylors theorem on f(x) defined in [a,b], we  have  

         𝑓(𝑥𝑖) = 𝑓(𝛽) + (𝑥𝑖 − 𝛽)𝑓′(𝛽) +
(𝑥𝑖−𝛽)2

2
 𝑓′′(𝐶𝑖)            

                                                                      𝑤here  β <𝐶𝑖 ≤ 𝑥𝑖   𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 = 1,2,3, … . . , 𝑛 .                                       

Multiplying both sides by ai, 𝑤𝑒 𝑔𝑒𝑡 

  𝑎𝑖 𝑓(𝑥𝑖) = 𝑎𝑖𝑓(𝛽) + (𝑎𝑖𝑥𝑖 − 𝑎𝑖𝛽)𝑓′(𝛽) +
𝑎𝑖(𝑥𝑖−𝛽)2

2!
 𝑓′′(𝐶𝑖)  for 𝑖 = 1,2,3, … 𝑛 . 

Since     
𝑎𝑖(𝑥𝑖−𝛽)2

2!
 𝑓′′(𝐶𝑖) ≥ 0. 

Therefore,  𝑎𝑖 𝑓(𝑥𝑖)  ≥  𝑎𝑖𝑓(𝛽) + (𝑎𝑖𝑥𝑖 − 𝑎𝑖𝛽)𝑓′(𝛽). 

 By adding, we get 

          ∑ 𝑎𝑖  𝑓(𝑥𝑖)𝑛
𝑖=1  ≥  𝑓(𝛽) ∑ 𝑎𝑖  𝑛

𝑖=1 + (∑ (𝑎𝑖𝑥𝑖 − 𝑎𝑖𝛽)𝑓′(𝛽)𝑛
𝑖=1 ) . 

By (29) coefficient 𝑓′(𝑥) is zero. 

Therefore    ∑ 𝑎𝑖  𝑓(𝑥𝑖)𝑛
𝑖=1  ≥  𝑓(𝛽) ∑ 𝑎𝑖  𝑛

𝑖=1 . 

This implies that   𝑓(𝛽) ≤  
∑ 𝑎𝑖 𝑓(𝑥𝑖)𝑛

𝑖=1

∑ 𝑎𝑖 𝑛
𝑖=1

 . 

This gives    𝑓 (
∑ 𝑎𝑖𝑥𝑖

𝑛
𝑖=1

∑ 𝑎𝑖
𝑛
𝑖=1

)  ≤  
∑ 𝑎𝑖 𝑓(𝑥𝑖)𝑛

𝑖=1

∑ 𝑎𝑖 𝑛
𝑖=1

              which is required Inequality. 

Deduction from Jensen’s Inequality. 

 Consider the function  

                            𝑓(𝑥) =  −𝑙𝑜𝑔 𝑥 ,             𝑥 >  0 . 

Then          𝑓′′(𝑥) =
1

𝑥2
> 0,                𝑥 > 0 . 

Therefore f is convex function for all positive x. 

Let   𝑡1, 𝑡2, … . , 𝑡𝑛 be positive numbers and 𝑎1, 𝑎2, … . 𝑎𝑛 be positive 

numbers. Then by Jensen’s Inequality  
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              𝑓 (
𝑎1𝑡1+𝑎2𝑡2+⋯𝑎𝑛𝑡𝑛

𝑎1+𝑎2+⋯𝑎𝑛
) ≤  

𝑎1𝑓(𝑡1)+𝑎2𝑓(𝑡2)+⋯𝑎𝑛𝑓(𝑡𝑛)

𝑎1+𝑎2+⋯𝑎𝑛
 

This implies that     

          – 𝑙𝑜𝑔 𝑥 [
𝑎1𝑡1+𝑎2𝑡2+⋯𝑎𝑛𝑡𝑛

𝑎1+𝑎2+⋯𝑎𝑛
]  ≤  

−[𝑎1𝑙𝑜𝑔𝑡1+𝑎2𝑙𝑜𝑔𝑡2+⋯+𝑎𝑛 𝑙𝑜𝑔 𝑡𝑛]

𝑎1+𝑎2+⋯𝑎𝑛
                                                                          

This implies 

      𝑙𝑜𝑔 𝑥 [
𝑎1𝑡1+𝑎2𝑡2+⋯𝑎𝑛𝑡𝑛

𝑎1+𝑎2+⋯𝑎𝑛
]  ≥ 𝑙𝑜𝑔(𝑡1

𝑎1 . 𝑡2
𝑎2 … . 𝑡𝑛

𝑎𝑛)
1

𝑎1+𝑎2+⋯𝑎𝑛   

This implies that     
𝑎1𝑡1+𝑎2𝑡2+⋯𝑎𝑛𝑡𝑛

𝑎1+𝑎2+⋯𝑎𝑛
  ≥  (𝑡1

𝑎1 . 𝑡2
𝑎2 … . 𝑡𝑛

𝑎𝑛)
1

𝑎1+𝑎2+⋯𝑎𝑛              (30) 

Set 𝑎1 = 𝑎2 = ⋯ 𝑎𝑛 = 𝐼 ,so we get from (30)      

                         
 𝑡1+𝑡2+⋯𝑡𝑛

𝑛
  ≥  (𝑡1, 𝑡2, … . , 𝑡𝑛)

1

𝑛 .                     

              𝐴. 𝑀 ≥  𝐺. 𝑀. 

Holder’s Inequality and Minkowski’s Inequality 3.19. 

 If 1 < 𝑝 <  ∞ and 
1

𝑝
+

1

𝑞
= 1 and 𝑎𝑗 , 𝑏𝑗 ,   𝑗 = 1,2,3, … . , 𝑛   are real numbers , then  

            ∑ |𝑎𝑗𝑏𝑗|𝑛
𝑗=1  ≤  (∑ |𝑎𝑗|

𝑝𝑛
𝑗=1 )

1

𝑝(∑ |𝑏𝑗|
𝑞𝑛

𝑗=1 )
1

𝑞                                    (a) 

Proof. For the proof, we first prove Lemma. 

Lemma.  If  1 <  𝑝 <  ∞  and q be such that 
1

𝑝
+

1

𝑞
= 1 , then for any non-

negative real numbers a and b, we have 

                   𝑎𝑏 ≤
𝑎𝑝

𝑝
+

𝑏𝑞

𝑞
 . 

Proof of lemma. If  𝑏 =  0 , then there is nothing to prove.  

Let then b > 0, then for  𝑡 ∈  𝑅 . 

 Let            𝑓(𝑡) =
1

𝑞
+ (

1

𝑝
) 𝑡 − 𝑡

1

𝑝  . 
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Then               𝑓′(𝑡) =
1

𝑝
[1 − 𝑡

1

𝑝
−1

] 

                          =
1

𝑝
[1 − 𝑡

−
1

𝑞]  

so that for   𝑡 <  1 ,  𝑓′(𝑡) < 0  𝑎𝑛𝑑 𝑓𝑜𝑟 𝑡 > 1 , 𝑓′(𝑡) > 0. 

Also   𝑓′(𝑡) = 0 . 

This implies     𝑡 = 1    𝑎𝑛𝑑    𝑓′′(𝑡) =
1

𝑝
[

1

𝑞
 𝑡

1

𝑞
−1

]         

                                                       =   
1

𝑝𝑞
𝑡

−
1

𝑝  =
1

𝑝𝑞
              𝑓𝑜𝑟 𝑡 = 1 .           

That is                  𝑓′′(𝑡) > 0,              𝑓𝑜𝑟  𝑡 = 1 . 

   f(t) has minimum value at 𝑡 =  1 . 

 Thus       𝑓(𝑡)  ≥  𝑓(1) ,     ∀  𝑡 ∈  𝑅    this implies that  
1

𝑞
+

1

𝑝
𝑡 − 𝑡

1

𝑝  ≥ 0 .         

           𝑡
1

𝑝  ≤
1

𝑞
+ (

1

𝑝
) 𝑡. 

Letting 𝑡 =
𝑎𝑝

𝑏𝑞
 , we get  

               (
𝑎𝑝

𝑏𝑞
)

1

𝑝
 ≤  

1

𝑞
+ (

1

𝑝
)

𝑎𝑝

𝑏𝑞
 . 

                              
𝑎

𝑏
𝑞
𝑝

   ≤  
1

𝑞
+ (

1

𝑝
)

𝑎𝑝

𝑏𝑞
  

                              
𝑎𝑏𝑞

𝑏
𝑞
𝑝

 ≤
𝑏𝑞

𝑞
+ 

𝑎𝑝

𝑝
 

               𝑎𝑏
𝑞−

𝑞

𝑝    ≤  
𝑏𝑞

𝑞
+ 

𝑎𝑝

𝑝
 

             𝑎𝑏′ ≤  
𝑏𝑞

𝑞
+ 

𝑎𝑝

𝑝
     (because

1

𝑝
+

1

𝑞
= 1 . Implies that

𝑞

𝑝
+ 1 = 𝑞) . 
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Therefore,     𝑎𝑏 ≤  
𝑏𝑞

𝑞
+ 

𝑎𝑝

𝑝
 .                                                             (31)  

This completes the lemma. 

Proof of the theorem.    

                Let α = (∑ |𝑎𝑗|
𝑝𝑛

𝑗=1 )
1

𝑝 

                     β = (∑ |𝑏𝑗|
𝑞𝑛

𝑗=1 )
1

𝑞                                 (32) 

 

If either 𝛼 =  0  or  𝛽 =  0 , then both sides of the Inequality (a) are 

zero. 

Let then   𝛼 ≠  0   ,   𝛽 ≠  𝑜  f𝑜𝑟  𝑗 =  1,2,3, … . 𝑛.  

Letting    𝑎 =     
|𝑎𝑗|

𝛼
    and       𝑏 =

|𝑏𝑗|

𝛽
  , then from (31), we have 

          (
|𝑎𝑗|

𝛼
 ) (

|𝑏𝑗|

𝛽
)  ≤ 

1

𝑃
(

|𝑎𝑗|

𝛼
)

𝑃

 
1

𝑞
  (

|𝑏𝑗|

𝛽
 )

𝑞

  . 

Taking summation on both sides, we get 

         ∑ |𝑎𝑗|𝑛
𝑗=1 |𝑏𝑗|  ≤ αβ [

1

𝑝
∑ |𝑎𝑗|

𝑝𝑛
𝑗=1

𝛼𝑝
+

1

𝑞

∑ |𝑏𝑗|
𝑞𝑛

𝑗=1

𝛽𝑞
]. 

This implies that   

           ∑ |𝑎𝑗|𝑛
𝑗=1 |𝑏𝑗|  ≤  𝛼𝛽 [

1

𝑝
.

𝛼𝑝

𝛼𝑝
+  

1

𝑞
.

𝛽𝑞

𝛽𝑞
 ]   by (32) gives     

          ∑ |𝑎𝑗|𝑛
𝑗=1 |𝑏𝑗| ≤ 𝛼𝛽 (

1

𝑝
+

1

𝑞
)  =  𝛼𝛽 

                                           = (∑ |𝑎𝑗|
𝑝𝑛

𝑗=1 )
1

𝑝(∑ |𝑏𝑗|
𝑞𝑛

𝑗=1 )
1

𝑞  . 

This completes the Holder’s Inequality. 

    Minkowski’s Inequality 3.20. 

    𝐼𝑓  𝑎𝑗 , 𝑏𝑗 , 𝑗 =        1,2,3, … , 𝑛 are real numbers, and 1 < 𝑝 < ∞, 1 < 𝑞 < ∞ ,     

    such that     
1

𝑝
+

1

𝑞
= 1 , 𝑡ℎ𝑒𝑛  
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             (∑ |𝑎𝑗 + 𝑏𝑗|
𝑝𝑛

𝑗=1 )
1

𝑝  ≤ (∑ |𝑎𝑗|
𝑝𝑛

𝑗=1 )
1

𝑝+(∑ |𝑏𝑗|
𝑞𝑛

𝑗=1 )
1

𝑞 . 

  Proof. Let   Y =  ∑ (|𝑎𝑗| + |𝑏𝑗|)
𝑝𝑛

𝑗=1  

                =  ∑ (|𝑎𝑗| + |𝑏𝑗|)
𝑝−1𝑛

𝑗=1 (|𝑎𝑗| + |𝑏𝑗|) 

                = ∑ |𝑎𝑗|𝑛
𝑗=1 (|𝑎𝑗| + |𝑏𝑗|)

𝑝−1
+ ∑ |𝑏𝑗|𝑛

𝑗=1 (|𝑎𝑗| + |𝑏𝑗|)
𝑝−1

 

                ≤ (∑ |𝑎𝑗|
𝑝𝑛

𝑗=1 )
1

𝑝. (∑ (|𝑎𝑗| + |𝑏𝑗|)
(𝑝−1)𝑞𝑛

𝑗=1 )

1

𝑞
+ 

                                                              +  (∑ |𝑏𝑗|
𝑝𝑛

𝑗=1 )
1

𝑝. (∑ (|𝑎𝑗| + |𝑏𝑗|)
(𝑝−1)𝑞𝑛

𝑗=1 )

1

𝑞
 . 

By Holder’s Inequality 

        =   ((∑ |𝑎𝑗|
𝑝𝑛

𝑗=1 )
1

𝑝 + (∑ |𝑏𝑗|
𝑝𝑛

𝑗=1 )
1

𝑝) 𝑌
1

𝑞                               (33) 

                                                          as  (𝑝 − 1)𝑞 = 𝑝 

Thus         

      (∑ |𝑎𝑗 + 𝑏𝑗|
𝑝𝑛

𝑗=1 )
1

𝑝  ≤ 𝑌
1

𝑝 = 𝑌
1−

1

𝑞 

                                   =  𝑌′. 𝑌
−

1

𝑞  ≤ ((∑ |𝑎𝑗|
𝑝𝑛

𝑗=1 )
1

𝑝 + (∑ |𝑏𝑗|
𝑝𝑛

𝑗=1 )
1

𝑝) 

                                    = 𝑌
1

𝑞 . 𝑌
−

1

𝑞        𝑏𝑦 (33). 

Therefore   

                  (∑ |𝑎𝑗 + 𝑏𝑗|
𝑝𝑛

𝑗=1 )
1

𝑝  ≤ (∑ |𝑎𝑗|
𝑝𝑛

𝑗=1 )
1

𝑝+(∑ |𝑏𝑗|
𝑞𝑛

𝑗=1 )
1

𝑞. 

This completes the proof. 

Holder’s Inequality from Jensen’s Inequality 3.21. 

Consider a function   𝑓(𝑥) =  𝑥𝑞  ,       𝑥 > 0, 𝑞 > 1 , 𝑡ℎ𝑒𝑛 

                            𝑓′′(𝑥) = 𝑞(𝑞 − 1)𝑥𝑞−2 > 0 . 

Therefore f is convex functions. 

Let  𝛼1, 𝛼2, … , 𝛼𝑛 and 𝛽1, 𝛽2, … 𝛽𝑛 be all positive , then by Jensen′s Inequality  
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         𝑓 (
𝛼1𝛽1+𝛼2𝛽2+⋯𝛼𝑛𝛽𝑛

𝛼1+𝛼2+⋯+𝛼𝑛
) ≤    

𝛼1𝑓(𝛽1)+𝛼2𝑓(𝛽2)+⋯+𝛼𝑛𝑓(𝛽𝑛)

𝛼1+𝛼2+⋯+𝛼𝑛
 

   This implies that   𝑓 [ 
∑ 𝛼𝑗𝛽𝑗

𝑛
𝑗=1

∑ 𝛼𝑗
𝑛
𝑗=1

]    ≤  (
𝛼𝑗𝑓(𝛽𝑗)

∑ 𝛼𝑗
𝑛
𝑗=1

)  . 

                             [ 
∑ 𝛼𝑗𝛽𝑗

𝑛
𝑗=1

∑ 𝛼𝑗
𝑛
𝑗=1

]
𝑞

≤  
𝛼𝑗𝛽𝑗

𝑞

∑ 𝛼𝑗
𝑛
𝑗=1

    

                          
∑ 𝛼𝑗𝛽𝑗

𝑛
𝑗=1

∑ 𝛼𝑗
𝑛
𝑗=1

   ≤ [∑ (
𝛼𝑗𝛽𝑗

𝑞

∑ 𝛼𝑗
𝑛
𝑗=1

)𝑛
𝑗=1 ]

1

𝑞

 

  Thus              ∑ 𝛼𝑗𝛽𝑗
𝑛
𝑗=1  ≤  ∑ 𝛼𝑗

𝑛
𝑗=1 (∑ 𝛼𝑗

𝑛
𝑗=1 )

−
1

𝑞.∑ 𝛼𝑗𝛽𝑗
𝑞𝑛

𝑗=1  . 

 This implies that 

                   ∑ 𝛼𝑗𝛽𝑗
𝑛
𝑗=1  ≤  (∑ 𝛼𝑗

𝑛
𝑗=1 )

1/𝑝
. ∑ 𝛼𝑗𝛽𝑗

𝑞𝑛
𝑗=1     where  

1

𝑝
+

1

𝑞
=1 . 

 Set 𝛼𝑗 = 𝑎𝑗
𝑝, and 𝛼𝑗𝛽𝑗

𝑞 = 𝑏𝑗
𝑞 ,so that  

               𝛽𝑗
𝑞 =  

𝑏𝑗
𝑞

𝑎𝑗
𝑝
 . 

 Therefore      𝛼𝑗𝛽𝑗 = 𝑎𝑗
𝑝. (

𝑏𝑗
𝑞

𝑎𝑗
𝑝
)

1

𝑞
 

                           = 𝑎𝑗
𝑝−

𝑝

𝑞𝑏𝑗 =  𝑎𝑗𝑏𝑗 

 Therefore   ∑ 𝛼𝑗𝛽𝑗
𝑛
𝑗=1 =  ∑ 𝑎𝑗𝑏𝑗

𝑛
𝑗=1   ≤ (∑ 𝑎𝑗

𝑝𝑛
𝑗=1 )

𝑝
(∑ 𝑏𝑗

𝑞𝑛
𝑗=1 )

𝑞
 

                                                                  where 
1

𝑝
+

1

𝑞
= 1  

which is Holder’s Inequality . 

 

Problem. If 𝑎, 𝑏, 𝑐, are positive and 𝑎 + 𝑏 + 𝑐 = 1 , then prove that  

              (
𝟏

𝒂
− 1) (

1

𝑏
− 1) (

1

𝑐
− 1)  ≥ 8 , when  does equality hold.  
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𝐒𝐨𝐥𝐮𝐭𝐢𝐨𝐧.   We have 

           (
𝟏

𝒂
− 1) (

1

𝑏
− 1) (

1

𝑐
− 1) =  

(1−𝑎)(1−𝑏)(1−𝑐)

𝑎𝑏𝑐
 

                                                       =
𝑏+𝒄

𝑎
.

𝑐+𝑎

𝑏
.

𝑎+𝑏

𝑐
 

                                                              ≥  
2√𝑏𝑐. 2√𝑎𝑐. 2√𝑎𝑏

𝑎𝑏𝑐
 

                                                              =    
8𝑎𝑏𝑐

𝑎𝑏𝑐
                  ( as    

𝑥 + 𝑦

2
 ≥  √𝑥𝑦 

                                                    

Thus     (
1

𝑎
− 1) (

1

𝑏
− 1) (

1

𝑐
− 1)    ≥   8   and equality holds if and only if  

               𝑎 = 𝑏 = 𝑐. 

But then             (
1

𝑎
− 1)3   = 8    implis   

                                 (
1

𝑎
− 1)  =   2 

           𝑎  =    
1

3
 . 

Thus equality holds if and only if   𝑎 = 𝑏 = 𝑐 . 

Problem. Prove that the volume of the maximum rectangular 

parallelepiped which can be inscribed in the ellipsoid 

        .
33

8
1

2

2

2

2

2

2
abc

bygivenis
c

z

b

y

a

x
  

Solution. Let the semi edges of the rectangular box be x, y, z then its 

volume is 8xyz.Thus, V= 8xyz . 

We have to maximize V subject to the condition that 

                 .1
2

2

2

2

2

2


c

z

b

y

a

x

 



61 
 

We have  

             
.1

3

2

2

2

2

2

2

3

1

2

2

2

2

2

2





















c

z

b

y

a

x

c

z

b

y

a

x

 

Thus               3

13

1

2

2

2

2

2

2

















c

z

b

y

a

x
 

or           
3

1

..

.. 3

2
















cba

zyx

 

or          

2

1

27

1

..

..
























cba

zyx
 

or            .
33

abc
zyx   

Hence the required maximum volume is given by .

33

8 abc
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    Functions of several variables. 

We already know about the functions of a single independent variable 

and their related concepts with regard to their limits, continuity, 

differentiability etc. In this unit we will be discussing the functions of 

several variables and their characteristic properties.  

Definitions 4.1. 

Consider the set of n independent variables 
n

xxxx ...,,,
321

 and one 

dependent variable u, then the equation    
n

xxxfu ....,
21

   denotes the 

functional relation and is known as a function of several variables. In this 

case 
n

xxxx ...,,,
321

 are n arbitrary assigned variables, the corresponding 

values of the dependent variable u is determined by the function relation.  

The function represented above is an explicit function but where several 

variables are concerned it is rarely possible to obtain an equation 

expressing one of the variables explicitly in terms of the others. Thus most 

of the functions of more than one variable are implicit functions, that is to 

say we are given a functional relation     0....,
21


n

xxx  connecting the 

n variables, it is not in general possible to solve this equation to find an 

explicit function which expresses one of these variable say x, in terms of 

the other n-1 variables. 

 

   Limits and Continuity of functions of two or more variables. 

   Let u=f(x, y) be a function of two independent variables x and y    

   which is defined in some domain 2
RD  . Let   ., Dba   

   We say limit       writeweandltoequalisandbayxasexistsyxf ,,,   

                       
   

  .,lim
,,

lyxf

bayx
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   If given 0 , howsoever small we can find a positive number , such that 

          lylxeverwhenlyxf ,,  

  We should note that    batotendcanyx ,, in any manner i.e., along    

  any path and the value of f(x, y) is independent of the path choosen    

  joining the point     .,int, bapothetoyx  

  Example 4.1. Let        
   

 yxffindyxas
yx

xy
yxf

bayx

,,0,0,
2

, lim
,,

22






 . 

  Solution. We approach the origin (0, 0) along the path y=mx.     

  Then,   paththisalonghaveweandxasy 00                  

   

   

 

.
1

2

1

2

2

,,

22

0

222

0

00,0,

lim

lim

limlim

mofvaluesdifferentthereforeisandmondependswhich
m

m

m

m

xmx

mxx

mxxfyxf

x

x

xyx


















 

 Hence we conclude that 
   

 yxf

bayx

,lim
,, 

 does not exist. 

 Example 4.2. Let         
   

  .,,0,0,, lim
,,

24

2

yxffindyxas
yx

yx
yxf

bayx 




  

 Solution. We approach the origin (0, 0) along the path 2
mxy   . 

 Then paththisalonghaveweandxasy 00   
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.
1

2

1

,,

22

0

424

2

0

2

00,0,

lim

lim

limlim

mofvaluesdifferentthereforeisandmondependswhich
m

m

m

m

xmx

mxx

mxxfyxf

x

x

xyx


















 

 Hence we conclude that 
   

 yxf

bayx

,lim
,, 

 does not exist. 

 Example 4.3. Let      
   

  .,,0,0,
2

, lim
,,

42

2

yxffindyxas
yx

xy
yxf

bayx 




  

 Solution. We approach the origin (0, 0) along the path mxy   .   

 Then paththisalonghaveweandxasy 00   

   

   

 

.
1

2

)1(

2

2

,,

222

2

0

222

0

00,0,

lim

lim

limlim

mofvaluesdifferentthereforeisandmondependswhich
m

m

mx

mx

xmx

mxx

mxxfyxf

x

x

xyx


















 

Hence we conclude that 
   

 yxf

bayx

,lim
,, 

 does not exist. 

 Example 4.4. Let      
   

  .,,0,0,
2

, lim
,,

22

yxffindyxas

yx

xy
yxf

bayx 





  

 Solution. We approach the origin (0, 0) along the path mxy  .   
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 Then paththisalonghaveweandxasy 00              

   

   

 

 

.

.0

1

2

1

2

2

,,

2
0

22

2

0

222
0

00,0,

limlim

lim

limlim























m

xm

mx

mx

xmx

mxx

mxxfyxf

xx

x

xyx

 

 This shows that 
   

 yxf

bayx

,lim
,, 

 exists and is equal to 0. We now show    

  that 
   

  thatshowingbyyxf

bayx

0,lim
,,





 

               000, yandxforyxf  

  i.e., we show that   haveweyandxforyxf ,,    

           realyxforyx ,0
2

  

  or     02
22

 xyyx  

   22
2 yxxy   

   1
2

22





yx

xy
 

   22

22

2
yx

yx

xy




  

 Hence    iyxyx

yx

xy
yxf

2222

22

2
, 



  

We choose  .

2

,

2







 yx  

Now, by equation (i),we have 
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      .
22

0,
2

22

22



 yxyxf  

 Thus,   .

2

0

2

00,





  yandxforyxf  

 Therefore, 
   

  .0,lim
,,





yxf

bayx

 

Definition 4.2. The limit      yxfyxf

axbybyax

,;, limlimlimlim


   are    

 known as repeated limits whereas the limit .  

The 
   

 yxf

bayx

,lim
,, 

  is known as the simultaneous limit or a double limit. 

 Example 4.5. Show that for the following functions the two repeated    

 limits exist at (0, 0) and are unequal but simultaneous limit or double   

 limit does not exists. 

(i)       .0,0,, 



 yx

yx

yx
yxf  

(ii)       .0,0,,
22

22





 yx

yx

yx
yxf  

 Solution. (i) We have 

                          

 

.11

0

,

lim

lim

limlimlimlim

0

0

000







































































x

x

xyx

yx

yx

yx

yx

y

yxf
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 Again,  

                  

 

  .11

0

,

lim

lim

limlimlimlim

0

0

000







































































y

y

yxy

yx

yx

yx

yx

x

yxf

    .,, limlimlimlim yxfyxfHence

axbybyax 

    

Hence, the two repeated limits exist but are not equal. 

To see that the simultaneous limit exists or not we approach the origin 

along the path mxy  . Then paththisalonghaveweandxasy 00   

      

   

   

.

1

1

1

1

,,

lim

lim

limlim

0

0

00,0,

mofvaluesdifferentthereforeisandmondependswhich

m

m

m

m

mxx

mxx

mxxfyxf

x

x

xyx
























 

Hence the simultaneous limit does not exist. 

(ii) This is left to the student as an exercise. 

Continuity of functions of two or more variables. 

Let u=f(x, y) be a function of two independent variables x and y which 

is defined in some domain 2
RD  . Let   ., Dba   
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A function    bapoaatscontinuioubetosaidisyxf ,int, if given 0 , howsoever 

small we can find a positive number  , such that 

      byaxforbafyxf ,,,  

In other words the function     ifDbapoaatscontinuioubetosaidisyxf ,int,

   

   bafyxf

bayx

,,lim
,,





. The function   Dinscontinuioubetosaidisyxf , if it is 

continuous at all points of D. 

Example 4.6. Discuss the continuity of the function  

                  
 

 
   

    .0,0,0

0,0,,
22

22









yxas

yxas
yx

yxxy
yxf

 

Solution. We show the function    0,0int, poaatscontinuiouisyxf  

by showing that  

                    
   

    .00,0,lim
,,





fyxf

bayx

 

In fact we show that  

                   0,00,0, yxforfyxf  

     or             yxforyxffyxf ,,0,0,  

   

 
 

 

 
yx

yx

yxyx

yx

yxxy

yx

yxxy

yx

yxxy
yxfhaveWe






















22

22

22

22

22

22

22

22

,
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Thus,             yxyxf , . 

We choose     . 

 

.

,









yandxfor

yxyxf

 

Therefore 

               .0,00,0,   yxforfyxf  

This shows that  
   

    .00,0,lim
0,0,





fyxf

yx

 

Hence the function     .0,0int, poaatscontinuiouisyxf  

Example 4.7. Discuss the continuity of the function  

                  
     

    .0,0,0

0,0,,
2244

22








yx

yx
yxyx

yx
yxf

 

Solution. Here   .00,0 f  

To see whether 
   

 yxf

yx

,lim
0,0, 

  exists or not, we approach the origin 

along a path mxy   , then paththisalonghaveweandxasy 00   

      

   

   

.

1

,,

24

2

0

24444

222

0

00,0,

lim

lim

limlim

mofvaluesdifferentthereforeisandmondependswhich

mm

m

mxxmx

xmx

mxxfyxf

x

x

xyx
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Therefore, 
   

 yxf

yx

,lim
0,0, 

 does not exist. 

Hence the function  yxf , is discontinuous at the origin. 

Example 4.8. Discuss the continuity of the following function at the origin  

                  
     

    .0,0,;0

0,0,;
1

sin
1

sin,




























yx

yx
x

y
y

xyxf
 

Solution. To see whether 
   

 yxf

yx

,lim
0,0, 

  exists or not, we approach the 

origin along a path mxy   , then paththisalonghaveweandxasy 00   

   

   

.0

1
sin

1
sin

,,

lim

limlim

0

00,0,




























x
xm

mx
x

mxxfyxf

x

xyx

 

Therefore 
   

 yxf

yx

,lim
0,0, 

 exists as    0,0, yx   and is equal to zero. 

Now         

              
       

.

1
sin

1
sin,0,0,0,

yx

x
y

y
xyxfyxffyxf





 

We choose    .
22





  yandx  

Therefore the function  yxf , is continuous at the origin. 

Partial differential of function of two or more variables. 

Let    yxfu ,  be a function of two independent variables x and y 

which is defined in some domain 2
RD  , then partial derivative of  
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 yxf ,  with respect x at a point  ba , where   Dba , which is denoted 

by    baforba
x

f

x
,,




 is defined as 

                    
   

h

bafbhaf
baforba

x

f

h

x

,,
,, lim

0










 

Similarly the partial derivative of  yxf ,  with respect y at a point 

 ba , where   Dba , which is denoted by    baforba
y

f

y
,,




 is defined 

as 

                  
   

k

bafkbaf
baforba

y

f

k

y

,,
,, lim

0










 

More generally if  
n

xxxf ...,,
21

 is a function of n independent 

variables. Then the partial derivative of f with respect nix
i

...,3,2,1    

 at the point  
n

xxx ...,,
21

 is defined by  

       

   

   

....,2,1

...,,,......,

...,,,...,,,

32121

0

321321

lim

nifor

h

aaaafahaaaf

asdefinedisandaaaaforaaaa
x

f

nni

h

nxn

i

i











 

Example 4.9. A function   
     

   0,0,0

0,0,,

33









yx

yx
yx

yx
yxf

 

Show that first order partial derivative of    0,0int, poaatyxf exists but 

the function     .0,0int, poaatiousdiscontinuisyxf  
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Solution. We have 

                 

 
   

   

.0

0

0,00,

0,00,0
0,0

lim

lim

lim

lim

0

3

0

0

0

























h

h

h

h

h

fhf

h

fhf

x

f

h

h

h

h

 

Similarly 

                  

 
   

   

.0

0

0,0,0

0,00,
0,0

lim

lim

lim

lim

0

2

0

0

0
























k

k

k

k

fkf

k

fkhf

x

f

k

k

k

k

 

Hence, the first order partial derivative exist at (0,0) and are both 

equal to zero. 

To see whether 
   

 yxf

yx

,lim
0,0, 

 exists or not we approach the origin 

along the curve curvethisalonghaveweandxasythenmxxy ,00,
3

  

   

   

 

 

 

.

211

,,

2

0

3

3
23

0

3

00,0,

lim

lim

limlim

mofvaluesdifferentthereforeisandmondependswhich

mm

xm

xmxx

xmxx

mxmxxfyxf

x

x

xyx
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Therefore, 
   

 yxf

yx

,lim
0,0, 

 does not exist and hence the function  yxf , is 

discontinuous at the origin. 

 

Total differentiation. 

Let   yxfu ,  be a function of two independent variables x and y, then                                

                         dy
y

u
dx

x

u
du









  

i.e.,                   dy
y

f
dx

x

f
df









  

 where         .yanxoffunctionscontinuousare
y

f
and

x

f








 

Proof. We have  yxfu , . 

Let x and y receive simultaneous increments yandx   respectively. 

Let the corresponding increments of u be u ,then we have  

           yyxxfuu   ,                        

             
   

           iyxfyyxfyyxfyyxxf

yxfyyxxfu

,,,,

,,








 

Thus we have expressed u as a sum of two differences in which for 

the first difference y remains constant at the value yy   and x varies 

from x to .xx   In the second difference x remains constant at the 

value x and y varies from  y to yy  . 

By Mean value theorem, we have  

              10,,,
11
  whereyyxxfyxfyyxxf

xx
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 and 

             10,,,
22
  whereyyxfyxfyyxf

yy
 

  Using this in equation (i), we get 

                  yyxfyyxxfu
yyxx


21

,,   

Since 
yx

fandf  are continuous functions of x and y in the domain 

considered. 

              
   

   yxfyyxxf
xx

yx

,,
1

0,0,

lim 







 

   

   yxfyyxfand
yy

yx

,,
2

0,0,

lim 







 . 

Hence, we have 

             0,0,0,,
111

 yxaswhereyxfyyxxf
xx

  

   
22

,,   yxfyyxfand
yy

   0,0,0
2

 yxaswhere   

 Using this equation in (ii), we get 

       
21

21
][][





yx
y

f
y

x

f
x

fyfxuf
yx














 

                                                       .0,0,0,0
21

 yxaswhere   

The principle part in the increment is called the total differential of u 

with respect to x and y and is denoted by du. Hence, we have 

                      iiy
y

f
x

x

f
ud 
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If in particular, we take u=x, then 0,1 









y

u

x

u
 and so .xdu  Also 

,dxdu  since u=x. Hence xdx  . Similarly we can have ydy  by 

putting u=y. Hence (ii) becomes  

                 dy
y

f
dx

x

f
du









  

    or              dy
y

f
dx

x

f
df









  

Remark. If   yxfu ,  is a function of two variables in x and y and 

these variables are functions of a variable t, then 

                   
dt

dy

y

u

dt

dx

x

u

dt

du









  

  and if    styandstx ,,   , then         

                          
t

y

y

u

t

x

x

u

dt

du

















  

                          .
s

y

y

u

s

x

x

u

ds

du

















    

Mean Value Theorem.  If   
y

f

x

f
yxf








,,,   are all continuous 

functions in a circular domain D of Centre  ba ,  and radius large 

enough for the point   thenDwithinbetokbha ,,   

        .10,,,,   wherekbhafkkbhafhbafkbhaf
yx

Proof. Consider a function     .10,  twheretkbthaFtg    

Then   tg  is a continuous function in the closed interval [0, 1] and 

differential in the open interval (0, 1), therefore by Lagrange’s Mean 

Value Theorem, we have 
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                       .100101
/

 twhereggg   

      .1001
/

 twheregggor   

But,              kbhaFg  ,1  

Thus                
/

,, gbaFkbhaF   itwhere 10   

Now                        yxFktbhtaFtg ,,   

where          
ktay

htax




 

 Thus    k
dt

dy
andh

dt

dx
  

Therefore  

                    

   tkbthafktkbthafh

kyxfhyxf

dt

dy

y

f

dt

dx

x

f

dt

dg

yx

yx















,,

,,  

Using this in eq. (i), we get 

        .10,,,,   wherekbhafkkbhafhbaFkbhaF
yx

 

 

Theorem 4.1. If  yxfu ,  then dy
y

u
dx

x

u
du











holds no matter what the independent variables be. In other words  

                 dy
y

u
dx

x

u
du









   

holds regardless of whether x, y are independent or dependent 

variables. 
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Proof. Let   yxfu ,  be a function of two variables x and y. If x, y are 

independent variables, then we have already proved that 

.dy
y

u
dx

x

u
du









  

Now suppose x, y are dependent variables, say       

                   srysrx ,,    

Then         
      

 srf

srsrfyxfu

,

,,,,



 
 

              

.var, iablestindependenaresrwhereds
s

u
dr

r

u
du









  

We show     

                

ds
s

s
dr

r

u
dy

y

u
dx

x

u




















 

    

s

y

y

u

s

x

x

u

s

u
and

r

y

y

u

r

x

x

u

r

u

Now













































..

..

,

 

Substituting the values, we get

   ds
s

y

y

u

s

x

x

u
dr

r

y

y

u

r

x

x

u
ds

s

u
dr

r

u













































....
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 ds

s

y
dr

r

y

y

u
ds

s

x
dr

r

x

x

u



































 ..

                      

ds
s

y
dr

r

y
dyand

ds
s

x
dr

r

x
dxbecause

dy
y

u
dx

x

u































Thus          dy
y

u
dx

x

u
du









  

 and the theorem is completely proved. 

Differentiability of functions of two variables.  

Let  yxfu ,  be a function of two variables in x and y which is defined 

in some domain .
2

RD   

Let   Dba , , then

         

        .0.0,0,0,

,,,,,
22














khaskhwhere

khkhba
y

f
kba

x

f
hbafkbhaf





 

 

Example 4.10.  Discuss the continuity and differentiability of the function 

                
     

.00

0,0,,
22

origintheatyxas

yxas

yx

xy
yxf









 

 

Solution. We first show that the function  yxf ,  is continuous at   .0,0    
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We approach the origin along a path  mxy   , then 

paththisalonghaveweandxasy 00        

   

   

.0

1

1

,,

2
0

2
0

00,0,

lim

lim

limlim



















m

mx

mx

mxx

mxxfyxf

x

x

xyx

 

This shows that 
   

     0,0,,lim
0,0,





yxasyxf

yx

 exists along the path 

mxy   and is equal to 0.  

We now show that  
   

    .00,0,lim
0,0,





fyxf

yx

 

We have  

                  

     

 

 i
yx

xy

yxf

yxffyxf

22

,

0,0,0,









 

Now            realyxforyx ,0
2

  

  or     02
22

 xyyx  

   xyyx 2
22

  

   xy
yx





2

22

 

   
2

22
yx

xy
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2

22

22

yx

yx

xy 




  

We choose    2  for  22  yandx  

Now from eq. (i), we have  

           









2

22

2
,

2222
yx

yxf . 

Hence      20200,0,  yandxforfyxf  

We now show that  yxf , is not differentiable at (0,0).  yxf , will be 

differentiable at (0,0) if 

         

       0.0,0,0,

,0,00,00,00,0
22














khaskhwhere

khkh
y

f
k

x

f
hfkhf





 

           

       0.0,0,0,

,0,00,00,0,
22














khaskhwhere

iikhkh
y

f
k

x

f
hfkhfor





 

Now  

                   

 
   

   

.0
00

0,00,

0,00,0
0,0

lim

lim

lim

0

0

0






















h

h

fhf

h

fhf

x

f

h

h

h

 

Similarly  
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.0
00

0,0,0

0,00,0
0,0

lim

lim

lim

0

0

0






















k

k

fkf

k

fkf

y

f

h

h

h

 

Hence from eq. (ii),  yxf , will be differentiable at (0, 0) if   

    khkhkhkhkh

kh

hk
,,0.0.0

2222

22

 



 

 where       0,0,0,  khaskh  and hence  
22

,
kh

hk
kh


 . 

Here we shall approach the origin along the path     

                                                            getwehaskthenmhk ,00      

     

   

   

2

22

0

00,0,

1

,,

lim

limlim

m

m

kh

mhh

mhhkh

x

xkh















                   

which depends on m and is different for different values of m. Hence                                                        

   

 kh

kh

,lim
0,0,





 does not exist and as such  yxf , is not differentiable at 

(0, 0). 

 

Second and higher order partial derivatives.  

Let  yxfu ,  be a function of two variables in x and y which is defined 

in some domain thenRD ,
2
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yyxyyxxx

f
y

f
f

xy

f
f

yx

f
f

x

f





















2

222

2

2

,,,  

 

are called second order partial derivatives of the function f. 

In general      
xy

f

yx

f









22

. 

We have      
   

 baf
h

bafbhaf
ba

x

f

x
h

,
,,

lim,
0











 

            
   

 baf
k

bafkbaf
ba

y

f

y
k

,
,,

lim,
0











 

Now        
   

h

bafbhaf
baf

x

f

yx

f yy

h
y

,,
lim,

0

2 













 

                  
       

}
,,

lim
,,

lim{
1

lim
000 k

bafkbaf

k

bhafkbhaf

h kkh









 

                           bafkbafbhafkbhaf
hkkh

,,,,
1

limlim
00




 

Thus      
 

hk

khf

yx

f
f

kh
xy

,
limlim

2

00

2










 

 where              bafkbafbhafkbhafkhf ,,,,,
2

  . 

Similarly    
   

k

bafkbaf
baf

y

f

xy

f
xx

h
x

,,
lim,

0

2














 

                     
       

}
,,

lim
,,

lim{
1

lim
000 h

bafbhaf

h

kbafkbhaf

k kkh









 

                               bafbhafkbafkbhaf
hkhk

,,,,
1

limlim
00




 

Thus     
 

hk

khf

xy

f
f

hk
yx

,
limlim

2

00

2










 . 
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Since, in general  

                     
   

.
,

limlim
,

limlim

2

00

2

00 hk

khf

hk

khf

hkkh








 

Therefore in general .
yxxy

ff   

 

Example 4.11.   Let     
 

 
   

.00

0,0,,
22

22









yxas

yxas
yx

yxxy
yxf

 

Show that   .0,0atff
yxxy

  

Solution. We have for     .0,0, yx  

                       






















22

33

,
yx

xyyx

x
yxf

x
 

                                  
     

 
2

22

333222
23

yx

xxyyxyyxyx




  

and                
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33

,
yx

xyyx

y
yxf

y
 

                                
     

 
2

22

332322
23

yx

yxyyxxyxyx




  

Also           
   

h

fhf
f

h
x

0,00,0
lim0,0

0






 

                                         .0
00

lim
0





 hh

 

and                            
   

k

fkf
f

k
y

0,00,0
lim0,0

0






 

                                           .0
00

lim
0





 kk
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Therefore       
   

h

fhf
f

x
f

yy

h
yxx

0,00,0
lim0,00,0

0











 

                                           .1lim

0

lim
3

3

0

2

3

0






 h

h

h

h

h

hh

 

Also              
   

k

fkf
f

y
f

xx

k
xyy

0,00,0
lim0,00,0

0











 

                                          .1lim

0

lim
3

3

0

2

3

0









 k

k

k

k

k

hh

 

Hence                        .0,00,0
yxxy

ff   

 

Sufficient conditions for the equality of .
yxxy

fandf  

We now give two theorems which we show that under what conditions 

yxxy
fandf are equal at a certain point which are known as sufficient 

conditions for equality of .
yxxy

fandf  

 

Theorem 4.2 (Young’s Theorem). 

If 
yx

fandf  exist in the neighborhood of the point (a, b) and 
yx

fandf  

are differentiable at the point (a, b), then  

                    ., baatff
yxxy

  

Proof. We shall prove this result by taking equal increment h for both 

x and y and calculate f
2

 in two different ways 

 where            khbafhbafbhafhbhaff  ,,,,
2  
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Now, consider the function         bxfhbxfxH ,,   

Then                                     bhafhbhafhaH ,,   so that 

                      bafhbafbhafhbhafaHhaH ,,,,   

                                  f
2

 . 

Thus            f
2

    aHhaH  . 

Since 
x

f  exists in the neighborhood of the point (a, b); we apply 

Lagrange’s mean value theorem to H(x) in the interval (a, a +h), we 

get  

        f
2

       10
/

  wherehaHhaHhaH  

                =       ibhafhbhafh
xx

,,    

Since 
x

f  is differentiable at (a,b), then  

       
1

22
,,  hfhfhbafhbhaf

xyxxxx
 00

1
 haswhere   

   
2

,,  hfhbafbhafand
xxxx
           00

2
 haswhere   

Hence  

      

   

.00

1

]1[,,

21

2

21

2







hasand

wherehfh

hfhbhafhbhaf

xy

xyxx







 

Using this in eq. (i), we get 

                     .00][
22

 haswherefhf
xy

  

 and therefore 
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                               iibaatf
h

f

xy
h

,lim
2

2

0






 

We now consider the function  

                        yafyhafyK ,,   

then               hbafhbhafhbK  ,,  , so that 

         
           

f

bafbhafhbafhbhafbKhbK

2

,,,,




 

By the same procedure as done earlier, we get 

              iiibaatf
h

f

yx
h

,lim
2

2

0






 

From eqs. (ii) and (iii), we get  

  ., baatff
xyyx

  

This proves the Theorem. 

Theorem 4.3 (Schwartz Theorem). 

If 
yx

fandf  and 
xy

f  all exist in the neighborhood of the point (a, b) and 

xy
f  is continuous at the point (a, b). Then  

yx
f  also exists and  

                    ., baatff
yxxy

  

Proof. We have 

                      

 

 
.

,
limlim

,
limlim

2

00

2

00

hk

khf
fand

hk

khf
f

hk
xy

kh
yx
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 where               bafkbafbhafkbhafkhf ,,,,,
2

  

Now, consider the function   

                                        bafkbafaH ,,   

Then                             bhafkbhafhaH ,,   so that 

                      bafkbafbhafkbhafaHhaH ,,,,   

                                   khf ,
2

 . 

Thus             khf ,
2

    aHhaH  . 

Since 
x

f  exists in the neighborhood of the point (a, b); we apply 

Lagrange’s mean value theorem to H(x) in the interval (a, a +h), we 

get  

         khf ,
2

       10
/

  wherehaHhaHhaH  

                =       ibhafkbhafh
xx

,,    

Since 
xy

f  exists in the neighborhood of the point (a, b); we apply 

Lagrange’s mean value theorem again to the R.H.S of eq.(i) and get 

          khf ,
2

 =   },
21
kbhafkh

xy
                                 

                          iiwhere 10&10
21
   

Since 
xy

f is continuous at (a,b), then  

         
   

   bafkbhaf
xyxy

kh

,,lim
21

0,0,




  

henceand         bafkbhaf
xyxy

,,
21

     .0,0,0  khaswhere        

Using this in eq. (ii), we get 
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                 .0,0,0][,
2

 khaswherefkhkhf
xy

  

or              
 

    .0,0,0
,

2




khaswheref
hk

khf

xy
  

We first take limits when getwehwhenthenandk ,00   

  

 

 
.

,
limlim

,
limlim

2

00

2

00

hk

khf
fBut

f
hk

khf

kh
yx

xy
kh









  

and thus   ., baatff
xyyx

  

This proves the result. 

Change of variables.  

Let  yxfu ,  be a function of two variables in x and y, then                                

    dy
y

u
dx

x

u
du









           

     

















 dy

y

u
dx

x

u
ddudud

2     





























 dy

y

u
ddx

x

u
d  

yd
y

u
dy

y

u
dxd

x

u
dx

x

u
d

22









































                    

    yd
y

u
dy

y

u
dydx

yx

u
xd

x

u
dxdy

xy

u
dx

x

u 22

2

22

2

2

2

2

2
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Thus 

    yd
y

u
dy

y

u
xd

x

u
dydx

yx

u
dx

x

u
ud

22

2

2

2

2

2

2

2

2
2
























  

Now, if x and y are independent variables, then dx, dy are constants 

so that thatsoydandxd ,00
22

  

         .2
2

2

22

2

2

2

2
dy

y

u
dydx

yx

u
dx

x

u
ud














  

Example 4.12. Prove that    
2

2

2

2

y

u

x

u









  is invariant for change of 

rectangular axes.  

Solution. Let the axes turn through an angle then,  

                        sincos
//

yxx   

                        cossin
//

yxy   

where   yx ,  are the co-ordinates of a point with respect to XOY and  

 //
, yx  are the co-ordinates of a point with respect to .

//
OYX  

Thus, we have  

     iyd
y

u
dy

y

u
xd

x

u
dydx

yx

u
dx

x

u
ud

22

2

2

2

2

2

2

2

2
2
























  

     iidy

y

u
dydx

yx

u
dx

x

u
ud

2
/

2
/

2

//

//

2
2

/

2
/

2

2
2














  

//
, yx   are independent variables so that .00

/2/2
 ydandxd  

Now                  sincos
//

yxx   
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                  cossin
//

yxy   

       sincos
//

dydxdx   

       cossin
//

ydxddy   

.0,0
22

 ydxdand  

Putting these values in eq.(i), we get

    

 



cossin

cossinsincos2sincos

//

2

2

////

2
2

//

2

2

2

dydx
y

u

dydxdydx
yx

u
dydx

x

u
ud


















     

   

 iiidydxB

dy
y

u

yx

u

x

u
dx

y

u

yx

u

x

u

//

2
/

2

2

2

2

2

2

2
2

/

2

2

2

2

2

2

2
cossincos2sinsinsincos2cos



























































 

 

where B is the coefficient of //
dydx . 

Now comparing eq. 9ii) and (iii), we get  

   

   vdy
y

u

yx

u

x

u

y

u

ivdx
y

u

yx

u

x

u

x

u

2
/

2

2

2

2

2

2

2

2
/

2

2
/

2

2

2

2

2

2

2

2
/

2

cossincos2sin

sinsincos2cos







































































 

Adding eq’s (iv) and (v), we have  

 



91 
 

       
2

/

2

2
/

2

y

u

x

u









=

2

2

2

2

y

u

x

u









 . 

Thus  
2

2

2

2

y

u

x

u









 is invariant for the change of rectangular axes. 

 

Maxima and Minima of function of two or more variables. 

Let  yxfu ,  be a function of two variables in x and y which is defined 

in some domain .
2

RD   

Let   ., Dba   

If    bafyxf ,,   for all points  yx ,  belonging to a neighborhood of 

the point   ba ,  , then  yxf ,  is said to have a relative or local 

maximum at  ba ,  and if    bafyxf ,,   for all points  yx ,  belonging 

to a neighborhood of the point   ba ,  , then  yxf ,  is said to have a 

relative or local minimum at  ba ,  . 

At a stationary point i.e., at an extreme point, we have 

                        00 









x

f
and

y

f
  

and              
2

2

22

2

2

2

2
2 dy

y

f
dydx

yx

f
dx

x

f
fd














 . 

At a stationary point   .0
yx

f

x

f









 

Now         































































dy

dx

y

f

yx

f

yx

f

x

f

dydxfd

2

22

2

2

2

2 . 
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If  ba ,  is a stationary point of  yx ,  then  yxf ,  will have a relative 

minima at  ba ,  if fd
2  is positive i.e., .0

2
fd  

i.e., fd
2  is a positive definite quadratic form, which is possible if    

        and
x

f
0

2

2





  .0.

2
2

2

2

2

2





























yx

f

y

f

x

f
 

Now,  yxf ,  will have a relative maxima at  ba ,  if  fd
2  is negative 

i.e., 0
2

fd  which is possible if  

        and
x

f
0

2

2





  .0.

2
2

2

2

2

2





























yx

f

y

f

x

f
 

Example 4.13. Find the maxima and minima of the function   

.63
22

yyxZ   

Solution. At a stationary point 

       .106602 








yy

y

Z
andx

x

Z
 

Thus x=0 and y= 1. 

Now     .60,2
2

22

2

2
















y

Z
and

yx

Z

x

Z
 

Thus     .01206.2.

2
2

2

2

2

2





























yx

f

y

f

x

f
 

Hence yyxZ 63
22
  has a minima at the point (0, 1).  

Restricted Maxima and Minima. 

Lagrange’s method of undetermined multipliers for maxima and minima. 
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Let  
n

xxxfu ,...,,
21

  be a function of n variables which are connected 

with m equations of the form 

             0,...,,
211


n

xxxf  

 

             0,...,,
212


n

xxxf                                            (I) 

            . 

             0,...,,
21


nm

xxxf  

The problem is to find the stationary values of  
n

xxxfu ,...,,
21

  

subject to m given conditions.  

Lagrange’s method of undetermined multipliers consists of the 

following  

             
mmnn

fffxxxfxxxF   ...,...,,,,
22112121

 

                                                   
m

where  ...,,
21

 are multipliers. 

The stationary point of f may be found by determining the stationary 

points of F. 

At a stationary point of F, we have  

          0,...,0,0

21
















n
x

F

x

F

x

F
 

which gives 
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 II

x

f

x

f

x

f

x

f

x

f

x

f

x

f

x

f

x

f

x

f

x

f

x

f

n

m

n

nnn

m

n

m

n


























































































0...

.

.

.

0...

0...

2

2

1

1

22

2

2

2

1

1

2

11

2

2

1

1

1

1







 

(II) are n equations out of which we shall find the value of m 

multipliers 
m

 ...,,
21

are put these values in the remaining 

(n-m) equations of the system (II). These (n-m) equations 

will be free of s' . These (n-m) equations taken together with 

m equations of the system (I) or in all n-m+m=n equations, 

which are sufficient to determine the values of 
n

xxx ,...,,
21

 

which will give rise to the stationary values of f. 

 

Example 4.14. Find the volume of the greatest rectangular 

parallelopiped that can be inscribed in the ellipsoid 

                      .1
2

2

2

2

2

2


c

z

b

y

a

x
 

Solution. Let x, y, z be the half of the sides of a required 

parallelepiped that can be inscribed in an ellipsoid .1
2

2

2

2

2

2


c

z

b

y

a

x
 

Then the volume of parallelepiped is 

                              .82.2.2 xyzzyxV   

We have to find the maximum value xyzV 8  subject to the condition  
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.1
2

2

2

2

2

2


c

z

b

y

a

x
 

We consider the function  

                 













 18,,

2

2

2

2

2

2

c

z

b

y

a

x
xyzzyxF   

 

At a stationary point of F, we have  

                        i
a

x
yz

x

F
0

2
8

2




 
 

                        ii
b

y
xz

y

F
0

2
8

2




 
 

                        iii
c

z
xy

z

F
0

2
8

2




 
 

Multiplying eq. (i) by x, eq. (ii) by y and eq. (iii) by z and then adding 

the result, we get 

                     0224
2

2

2

2

2

2

















c

z

b

y

a

x
xyz   

  01224  xyz  

 or xyz12  

Putting this value of  in eq. (i), we get 

                       0
122

8
2





a

xyzx
yz  

3

a
x   
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Similarly      
3

b
y      and     

3

c
z  . 

Hence   Volume (V) = 8xyz = 
33

8 abc
. 

We show this volume is maximum by showing f
2

 is negative. 

 i.e.,       















3

,

3

,

3

0
2 cba

atf . 

At a stationary point of  















3

,

3

,

3

,,
cba

zyx  . 

 

                 













 xd

x

f
dydx

yx

f
dx

x

f
f

2

2

2

2

2

2
2  

                       dydxzdx
a

82
2 2

2


 

                    







 dydx

c

a

dx

3

162

2

  

                    







 dydxc

a

dx

3

16
2

2

  

                    







 dydxc

a

dx
xyz

3

16
122

2

 

                   idydxc
a

dx
abc  










3

16

3

8
2

 

We have        1
2

2
a

x
 

or                0
2

2
dx

a

x
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 and therefore at 














3

,

3

,

3

cba
,we get 

                0
3

2
2

dx
a

a

 

   ii
a

dx

a

dx
or 00

3

2
 

Eq.(ii) gives       0

2













a

dx
                         {     abaa 12

22

 } 

02

2









 

b

dy

a

dx

a

dx
 

2

2  









a

dx

abc

dxdyc
or  

2

2
 










a

dxabc
dxdyc  

Putting this in eq.(i), we get 

                   


















22

2

32

16

3

8

a

dxabc

a

dxabc
fd  

                         

























 0

3

16

3

8

3

8
222

a

dxabc

a

dxabc

a

dxabc
 

i.e.,   0
2

fd and therefore, maximum volume is given by .

33

8 abc
 

Jacobians.  

Let  
n

FFF ...,,
21

 denote n differential functions of (n+ p) variables

pn
xxxuuu ...,,;...,,

2121
, then the functional determinant  
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...

..

...

21

2

2

2

1

2

1

2

1

1

1

n

nnn

n

n

u

F

u

F

u

F

u

F

u

F

u

F

u

F

u

F

u

F

J





































 

is called the Jacobian of the n functions with respect to n variables

n
uuu ...,,

21
 and is denoted by  

                        
 

 
n

n

uuu

FFF
J

,...,,

,...,,

21

21




  . 

Example 4.15. Let findthenvuyvux ,, 
 

 vu

yx
J

,

,




  

Solution. We have  
 

 vu

yx
J

,

,




  

                                

v

y

u

y

v

x

u

x

















  
11

11


  = -2. 

Example 4.16. Let findthenvuyvux ,, 
 

 vu

yx
J

,

,




  

Solution. We have  
 

 vu

yx
J

,

,




  

                                

v

y

u

y

v

x

u

x

















  
vv

11
  = u- v. 
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Example 4.17. Let findthenryrx ,sin,cos  
 

 vu

yx
J

,

,




  

Solution. We have  
 

 vu

yx
J

,

,




  

                                

v

y

u

y

v

x

u

x

















  




cossin

sincos

r

r
   

                                =  
22

sincos r  = r. 

Example 4.18.  Prove that if      thatshowthen
x

xff ,
1

1
,00

2

/


       

              .
1




















xy

yx
fyfxf  

Solution.  Let     
xy

yx
vandyfxfu






1
 

 

                 
 

 vu

yx
J

,

,




  

v

y

u

y

v

x

u

x

















  

   

   
2

2

2

2

//

1

1

1

1

xy

x

xy

y

yfxf









   

                                            

   
2

2

2

2

22

1

1

1

1

1

1

1

1

xy

x

xy

y

yx











  = 0. 

Thus J = 0.  

Therefore, there is a fundamental relation between u and v say  vu   
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i.e.,                     .
1




















xy

yx
yfxf   

 Put y=0, we get  

                         xfxf  0             

But                   00 f  

Therefore             .xxxf    

 or                  f  

and hence         .
1




















xy

yx
fyfxf  

Theorem 4.4. If 
n

uuu ...,,
21

 are n differentiable functions of the 

independent variables 
n

xxx ...,,
21

 and there exists an identical 

differentiable functional relation   0...,,
21


n

uuuf which does not involve 

sx '  explicitly then,  the  Jacobian 
 

 
n

n

uuu

FFF
J

,...,,

,...,,

21

21




  provided   as a 

function of su ' has no stationary values in the domain considered. 

Proof.  We have    0...,,
21


n

uuu . 

Therefore   0d  which implies that  

                       idu
u

du
u

du
u

n

n

0...
2

2

1

1














 
 

But                0...
1

2

2

1

1

1

1

1

















n

n

du
x

u
du

x

u
dx

x

u
du  

                    0...
2

2

2

2

1

1

2

2

















n

n

du
x

u
du

x

u
dx

x

u
du  

                        . 
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                        . 

                   0...
2

2

1

1

















n

n

nnn

n
du

x

u
du

x

u
dx

x

u
du . 

Hence from eq. (i), we get 
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n
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x

u

u

2

2

2

2

1

1

2

2

...


   

                                              + 0...
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 iidx
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u
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u

u

dx
x

u
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u

u
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x

u
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u

u
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n
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Since 
n

dxdxdx ,...,,
21

  are arbitrary differentials of independent variables, 

it follows from eq. (ii) that 

 

 iii
x

u
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u

u

x
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u
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u

u
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Since   has no stationary values in the domain considered, therefore 

                 0,...,0,0

21
















n
uuu


. 

Eliminating 
n

uuu 









 
,...,,

21

from the systems of equations (iii), we get 

                        0
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u
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u
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 or                    0
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i.e.,        
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