
Apache Camel

 i

Apache Camel

 i

About the Tutorial

Apache Camel is an open source framework that provides rule-based routing and

mediation engine.

Apache Camel essentially provides an implementation of various EIPs. It makes integration

easier by providing connectivity to a very large variety of transports and APIs. For

example, you can easily route JMS to JSON, JSON to JMS, HTTP to JMS, FTP to JMS, even

HTTP to HTTP, and connectivity to Microservices. You simply need to provide appropriate

endpoints at both ends. Camel is extensible and thus in future more endpoints can be

added easily to the framework.

Audience

This tutorial has been prepared for the beginners to help them understand the basic

functionality of Apache Camel.

Prerequisites

For this tutorial, we assume the readers to have prior knowledge of basic software

development using Java or any other programming language.

Copyright & Disclaimer

 Copyright 2019 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)

Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish

any contents or a part of contents of this e-book in any manner without written consent

of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as

possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.

Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our

website or its contents including this tutorial. If you discover any errors on our website or

in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

Apache Camel

 ii

Table of Contents

About the Tutorial .. i

Audience ... i

Prerequisites ... i

Copyright & Disclaimer ... i

Table of Contents .. ii

1. Apache Camel — Introduction .. 1

2. Apache Camel — Overview ... 4

3. Apache Camel — Features .. 7

4. Apache Camel — Architecture .. 8

5. Apache Camel — CamelContext .. 10

Routes .. 11

Language Choice .. 11

Filters ... 12

Custom Processor .. 13

Using XML .. 13

6. Apache Camel — Endpoints .. 15

7. Apache Camel — Components .. 17

Bean ... 17

Direct ... 17

File ... 18

Log ... 18

SEDA .. 18

Timer ... 19

8. Apache Camel — Message Queues ... 20

9. Apache Camel — Camel Project .. 21

Creating New Project ... 21

Apache Camel

 iii

Adding Dependencies .. 21

Creating Java DSL ... 21

Test Results .. 24

10. Apache Camel — Using Camel with Spring .. 25

Creating New Project ... 25

Adding Dependencies .. 25

Creating Java DSL for Spring .. 26

Creating Application Context... 27

Test Results .. 28

Conclusion ... 28

Apache Camel

 1

Consider a situation where a large online grocery store in your town such as the Bigbasket

in India invites you to design an IT solution for them. The stable and scalable solution will

help them overcome the software maintenance problems they are facing today. This online

store has been running its business for the last decade. The store accepts online orders

for different categories of products from their customers and distributes those to the

respective suppliers. For example, suppose you order some soaps, oil and milk; these

three items will be distributed to the three respective suppliers. The three suppliers will

then send their supplies to a common distribution point from where the entire order will

be fulfilled by the delivery center. Now, let us look at the problem they are facing today.

When this store started its business, it was accepting orders in a comma-separated plain

text file. Over a period of time, the store switched to message-driven order placement.

Later, some software developer suggested an XML based order placement. Eventually, the

store even adapted a web service interface. Now, here comes the real problem. The orders

now come in different formats. Obviously, every time the company upgraded the order

acceptance format, it did not want to break the previously deployed interface so as not to

cause confusions in the customer’s mind.

At the same time, as the business kept on growing, the store periodically added new

suppliers to its repertoire. Each such supplier had its own protocol for accepting orders.

Once again, we face the integration issue; our application architecture must be scalable

to accommodate new suppliers with their unique order placement mechanism.

1. Apache Camel — Introduction

Apache Camel

 2

The entire situation is shown in the following figure -

Now, let us see how Apache Camel can come to your rescue to provide an elegant,

maintainable, scalable solution architecture for the described scenario.

Before we proceed with the solution, we need to make a small assumption. For all the

discussions in this tutorial, we will assume that the online orders are placed in XML format.

A typical format for the order file that we will be using throughout our discussions is shown

here -

<?xml version="1.0" encoding="UTF-8"?>

<OrderID Order="001">

 <order product="soaps">

 <items>

 <item>

 <Brand>Cinthol</Brand>

 <Type>Original</Type>

 <Quantity>4</Quantity>

 <Price>25</Price>

 </item>

 <item>

 <Brand>Cinthol</Brand>

 <Type>Lime</Type>

Apache Camel

 3

 <Quantity>6</Quantity>

 <Price>30</Price>

 </item>

 </items>

 </order>

 <order product="Oil">

 <items>

 <item>

 <Brand>Saffola</Brand>

 <Type>Gold</Type>

 <Quantity>2</Quantity>

 <Price>649</Price>

 </item>

 <item>

 <Brand>Fortune</Brand>

 <Type>Sunlite</Type>

 <Quantity>1</Quantity>

 <Price>525</Price>

 </item>

 </items>

 </order>

 <order product="Milk">

 <items>

 <item>

 <Product>Milk</Product>

 <Brand>Amul</Brand>

 <Type>Pure</Type>

 <Quantity>2</Quantity>

 <Price>60</Price>

 </item>

 </items>

 </order>

</OrderID>

We will be using the above XML template to illustrate the Camel examples in this tutorial.

Apache Camel

 4

Camel is a black box that receives messages from some endpoint and sends it to another

one. Within the black box, the messages may be processed or simply redirected.

So why have a framework for this? In practical situations as seen in the introduction case

study, there may be many senders and many receivers each following its own protocol

such as ftp, http and jms. The system may require many complex rules such as message

from sender A should be delivered only to B & C. In situations, you may have to translate

the message to another format that the receiver expects. This translation may be subject

to certain conditions based on the message contents. So essentially you may need to

translate between protocols, glue components together, define routing rules, and provide

filtering based on message contents. This is illustrated in the following figure -

2. Apache Camel — Overview

Apache Camel

 5

To meet the above requirements and design a proper software architecture for many such

situations, Enterprise Integration Patterns (EIP) were documented by Gregor Hohpe and

Bobby Woolf in 2003. Apache Camel provides the implementation of these patterns and

the purpose of this tutorial is to teach you how to use Camel in situations like the one

described in the introduction.

Apache Camel is an open source framework. It is a message-oriented middleware that

provides rule-based routing and mediation engine. You can define rules such as if it is a

“milk” order redirect it to a milk vendor and if it is an “oil” order redirect it to an oil vendor,

and so on. Using Camel, you will be able to implement these rules and do the routing in a

familiar Java code. It means that you can use your familiar Java IDE to define these rules

in a type-safe environment. We do not need to use XML configuration files, which typically

tend to be bulky. Camel though supports XML configuration through Spring framework, if

you prefer to use XML for configuring the rules. You may even use Blueprint XML

Configuration files and even a Scala DSL, if you are a Scala lover. It also means that you

can use your favorite Java, Scala IDE or even a simple XML editor to configure the rules.

The input to this engine can be a comma-delimited text file, a POJO (Plain Old Java Object),

XML are any of the several other formats supported by Camel. Similarly, the output of the

engine can be redirected to a file, to a message queue or even your monitor screen for

you to view the orders sent to respective vendors. These are called the endpoints and

Camel supports the Message Endpoint EIP pattern. The Camel endpoints are discussed

later in the Endpoints chapter.

http://www.informit.com/store/enterprise-integration-patterns-designing-building-9780321200686
http://camel.apache.org/message-endpoint.html

Apache Camel

 6

Camel is typically used with Apache ServiceMix, Apache ActiveMQ and Apache CXF to

implement service-oriented architectures.

http://servicemix.apache.org/
http://activemq.apache.org/
http://cxf.apache.org/

Apache Camel

 7

Having seen an overview of Apache Camel, let us now delve into its features to see what

it offers. We already know Apache Camel is an open source Java framework that essentially

provides an implementation of various EIPs. Camel makes the integration easier by

providing connectivity to a very large variety of transports and APIs. For example, you can

easily route JMS to JSON, JSON to JMS, HTTP to JMS, FTP to JMS, even HTTP to HTTP, and

connectivity to Microservices. You simply need to provide appropriate endpoints at both

ends. Camel is extensible and thus in future more endpoints can be added easily to the

framework.

To wire EIPs and transports together, you use Domain Specific Languages (DSLs) such as

Java, Scala, and Groovy. A typical Java routing rule may look like:

 from ("file:/order").to("jms:orderQueue");

This routing rule loads the files from the order directory, creates a JMS message with the

contents of the file and sends that message to a queue called orderQueue.

Here are some of the most important features of Camel that you would find useful in

developing Camel applications:

● Camel supports pluggable data formats and type converters for such message

transformations, so new formats and converters can be added in future. Currently,

it supports several popular formats and converters; to name a few - CSV, EDI,

JAXB, JSON, XmlBeans, XStream, Flatpack, Zip.

● Camel supports pluggable languages to write predicates in DSL. Some of the

supported languages include JavaScript, Groovy, Python, PHP, Ruby, SQL, XPath,

XQuery.

● Camel supports the POJO model so that you can plug in Javabeans at various

points.

● Camel eases testing of such large distributed and asynchronous systems by using

messaging.

Let us now understand the architecture of Camel and see how the various features are

implemented.

3. Apache Camel — Features

http://camel.apache.org/data-format.html
http://camel.apache.org/languages.html

Apache Camel

 8

The Camel architecture consists three components – Integration Engine and Router,

Processors, and Components. This is illustrated in the following figure -

The Camel core itself is very small and contains 13 essential components. The rest 80+

components are outside the core. This helps in maintaining a low dependency on where it

is deployed and promotes extensions in future. The Components module provides an

Endpoint interface to the external world. The Endpoints are specified by URIs, such as

file:/order and jms:orderQueue that you have seen in the last chapter.

The Processors module is used for manipulating and mediating messages between

Endpoints. The EIPs that I mentioned earlier are implemented in this module. It currently

supports 40+ patterns as documented in the EIP book and other useful processing units.

4. Apache Camel — Architecture

http://www.informit.com/store/enterprise-integration-patterns-designing-building-9780321200686

Apache Camel

 9

The Processors and Endpoints are wired together in Integration Engine and Router

module using DSLs. While wiring these, you may use filters to filter messages based on

user-defined criteria. As mentioned earlier, you have several options in writing these rules.

You may use Java, Scala, Groovy, or even XML for this.

Now, we come to the most important component of Camel, which may be considered as

the core – the CamelContext.

Apache Camel

 10

CamelContext provides access to all other services in Camel as shown in the following

figure -

Let us look at the various services. The Registry module by default is a JNDI registry,

which holds the name of the various Javabeans that your application uses. If you use

Camel with Spring, this will be the Spring ApplicationContext. If you use Camel in OSGI

container, this will be OSGI registry. The Type converters as the name suggests

contains the various loaded type converters, which convert your input from one format to

another. You may use the built-in type converters or provide your own mechanism of

conversion. The Components module contains the components used by your application.

The components are loaded by autodiscovery on the classpath that you specify. In case

of the OSGI container, these are loaded whenever a new bundle is activated. We have

already discussed the Endpoints and Routes in the previous chapters. The Data formats

module contains the loaded data formats and finally the Languages module represents

the loaded languages.

The code snippet here will give you a glimpse of how a CamelContext is created in a

Camel application:

 CamelContext context = new DefaultCamelContext();

 try {

 context.addRoutes(new RouteBuilder() {

 // Configure filters and routes

 }

);

The DefaultCamelContext class provides a concrete implementation of CamelContext.

In addRoutes method, we create an anonymous instance of RouteBuilder. You may

create multiple RouteBuilder instances to define more than one routing. Each route in

the same context must have a unique ID. Routes can be added dynamically at the runtime.

A route with the ID same as the one previously defined will replace the older route.

5. Apache Camel — CamelContext

Apache Camel

 11

What goes inside the RouteBuilder instance is described next.

Routes

The router defines the rule for moving the message from to a to location. You use

RouteBuilder to define a route in Java DSL. You create a route by extending the built-in

RouteBuilder class. The route begins with a from endpoint and finishes at one or more

to endpoints. In between the two, you implement the processing logic. You may configure

any number of routes within a single configure method.

Here is a typical example of how route is created:

 context.addRoutes(new RouteBuilder() {

 @Override

 public void configure() throws Exception {

 from("direct:DistributeOrderDSL")

 .to("stream:out");

 }

 }

We override the configure method of RouteBuilder class and implement our routing and

filtering mechanism in it. In the current case, we redirect the input received from the

Endpoint DistributeOrderDSL to the console, which is specified by the Endpoint

stream:out.

Language Choice

You may create the routes in different languages. Here are a few examples of how the

same route is defined in three different languages:

Java DSL

 from ("file:/order").to("jms:orderQueue");

Spring DSL

<route>

 <from uri="file:/order"/>

 <to uri="jms:orderQueue"/>

 </route>

Scala DSL

 from "file:/order" -> "jms:orderQueue"

Apache Camel

 12

Filters

You use filter to select a part of input content. To set up a filter, you use any arbitrary

Predicate implementation. The filtered input is then sent to your desired destination

Endpoint. In this example, we filter out all orders for the soap so that those can be

collectively sent to a soap supplier.

 from("direct:DistributeOrderDSL")

 .split(xpath("//order[@product='soaps']/items"))

 .to("stream:out");

In the example, we have used xpath predicate for filtering. If you prefer to use Java class

for filtering, use the following code -

 from("direct:DistributeOrderDSL")

 .filter()

 .method(new Order(),"filter")

 .to("stream:out");

The Order is your custom Java class with your own filtering mechanism.

You may combine multiple predicates in a single routing as here -

 from("direct:DistributeOrderDSL")

 .choice()

 .when(header("order").isEqualTo("oil"))

 .to("direct:oil")

 .when(header("order").isEqualTo("milk"))

 .to("direct:milk")

 .otherwise()

 .to("direct:d");

So now all “oil” orders will go to oil vendor, “milk” orders will go to milk vendor and the

rest to a common pool.

http://camel.apache.org/predicate.html

Apache Camel

 13

Custom Processor

You may also use custom processing. The example below creates a custom processor

called myCustomProcessor and uses it in the route builder.

 Processor myCustomProcessor = new Processor() {

 public void process(Exchange exchange) {

 // implement your custom processing

 }

 };

 RouteBuilder builder = new RouteBuilder() {

 public void configure() {

 from("direct:DistributeOrderDSL")

 .process(myProcessor);

 }

 };

You may use custom processors along with choice and filtering to get a better control on

your mediation and routing:

 from("direct:DistributeOrderDSL")

 .filter(header("order").isEqualTo("milk"))

 .process(myProcessor);

Using XML

The routes may be defined in bulkier XML, if you prefer it. The following XML snippet shows

how to create a route along with some filtering via Spring XML:

 <camelContext xmlns="http://camel.apache.org/schema/spring">

 <route>

 <from uri="direct:DistributeOrderXML"/>

 <log message="Split by Distribute Order"/>

 <split>

 <xpath>//order[@product='Oil']/items</xpath>

 <to uri="file:src/main/resources/order/"/>

 <to uri="stream:out"/>

 </split>

Apache Camel

 14

 </route>

 </camelContext>

Having seen how routes are built, we will now see the various techniques of creating

Endpoints.

Apache Camel

 15

We have learnt about how the endpoints look like in our integration code. The expressions

that we have used so far such as file:/order, jms:orderQueue,

direct:distributeOrderDSL are the endpoints. As you see, they follow the URI

specification formats. While evaluating this URI, the CamelContext creates the Endpoint

instance; you need not worry about instantiating Endpoint implementation in your DSL.

Taking our earlier examples, you specify endpoints in Java DSL as here –

 from ("file:/order").to("jms:orderQueue");

And in Spring as here –

<route>

 <from uri="file:/order"/>

 <to uri="jms:orderQueue"/>

 </route>

In both the cases, the endpoint is a constant string. In certain cases, you may like to build

this string at runtime. You can do so by using Java String formatter methods. Camel

provides another simpler approach to create these URI strings at runtime. For this purpose,

Camel provides fromF and toF methods that accept the arguments with the user-specified

parameters. The following statement illustrates the use of toF method:

from("direct:distributeOrderDSL”).toF("file://%s?fileName=%s", path, name);

Because of these methods, the need for using the Java built-in String formatter methods

is obviated.

Camel uses Simple language by default to compute the endpoint expression. The Simple

language was designed primarily to evaluate Expressions and Predicates without

bothering much about the intricacies of XPath. For evaluating predicates, you can combine

another language such as xpath with the default Simple language. This is done by using

the plus sign to separate the other language. The code snippet here shows how to

concatenate xpath string to the expression written in Simple.

from("direct:start")

.toD("jms:${orderQueue}+language:xpath:/order/@id");

6. Apache Camel — Endpoints

http://camel.apache.org/simple.html

Apache Camel

 16

In Spring, you can achieve the same as here –

<route>

<from uri="direct:start"/>

<toD uri="jms:${orderQueue}+language:xpath:/order/@id"/>

</route>

You may concatenate as many languages as you want, each separated with a plus sign

from the previous one. The list of supported languages can be found here.

http://camel.apache.org/languages.html

Apache Camel

 17

Camel provides several pre-built components.

In this chapter, we will discuss a few important components from the camel-core module.

Bean

The Bean component binds beans to Camel message exchanges. The URI to create an

Endpoint is specified as bean:beanID, where beanID is the name of the bean as specified

in the Registry.

JndiContext jndiContext = new JndiContext();

jndiContext.bind("MilkOrder", new MilkOrderProcessor());

CamelContext camelContext = new DefaultCamelContext(jndiContext);

camelContext.addRoutes(new RouteBuilder() {

 public void configure() {

 from("direct:bigBasket")

 .to("bean:MilkOrder?method=placeOrder");

 }

});

Note how the endpoint is specified using the bean: protocol. You may optionally specify

the bean method that is to be invoked; in this case, the method called placeOrder will be

invoked while evaluating the Endpoint expression. The MilkOrder is a JNDI name to the

MilkOrderProcessor Javabean as registered in the first two lines of the code snippet.

The definition of MilkOrderProcessor itself is omitted here for brevity.

Direct

You must have noticed the use of Direct in our previous examples. To send an order to

an oil vendor, we used direct:oil in the Endpoint specification. The use of Direct

component allows you to synchronously invoke an endpoint. The following two code

snippets from our previous examples illustrate the use of Direct -

 .when(header("order").isEqualTo("oil"))

 .to("direct:oil")

7. Apache Camel — Components

Apache Camel

 18

And,

 from("direct:DistributeOrderDSL")

 .process(myProcessor);

File

The File component provides access to the file system on your machine. Using this

component, you will be able to save messages from other components to a local disk. In

addition, it allows other Camel components to process the local files. You may use either

file:directoryName[?options] or file://directoryName[?options] as a URI format

while using the File component. You have earlier seen the use of this component -

 from ("file:/order").to("jms:orderQueue");

Note that the File component by default takes the directory name. Therefore, the contents

of the order directory will be taken as input contents. To specify a particular file in the

order directory, you will use the following statement -

 from ("file:/order?fileName=order.xml").to("jms:orderQueue");

Log

The Log component allows you to log messages to the underlying logging mechanism.

Camel uses Simple Logging Facade for Java (SLF4J) as an abstraction to various logging

frameworks. You may use java.util.logging, logback, log4j for logging. This code

snippet illustrates the use of the Log component -

 from("direct:DistributeOrderDSL")

 .to("bean:MilkOrder?method=placeOrder")

 .to("log:com.example.com?level=INFO&showBody=true");

SEDA

The SEDA component allows you to asynchronously call another endpoint in the same

CamelContext. If you want to call across CamelContext instances, you need to use VM

component. The use of SEDA is illustrated here -

 from("direct:DistributeOrderDSL")

 // send it to the seda queue that is async

 .to("seda:nextOrder")

In this route, we will simply route the orders to nextOrder asynchronous queue. A client

who has subscribed to this queue will pick up the messages from this queue.

Apache Camel

 19

Timer

The Timer component is used for sending out messages at regular intervals and can thus

be very useful while testing Camel applications. The code snippet here fires a test message

to the console every two seconds -

 from("timer://testTimer?period=2000")

 .setBody()

 .simple("This is a test message ${header.timer}")

 .to("stream:out");

Apache Camel

 20

Most of the integration projects use messaging as it helps in creating loosely coupled

application architecture. Messaging can be either synchronous or asynchronous. JMS

supports both point-to-point and publish-subscribe models. You use a Queue for

point-to-point and Topic for a publish-subscribe model. On a Java platform, JMS - Java

Messaging Service provides an interface to a messaging server. Apache activeMQ is one

such open source JMS provider. Camel does not ship with a JMS provider; however, it can

be configured to use activeMQ. To use this component, you need to include the following

jars in your project - activemq, camel-spring, and camel-jms.

The following code snippet shows how to configure Camel for activeMQ.

<bean id="jms" class="org.apache.camel.component.jms.JmsComponent">

<property name="connectionFactory">

<bean class="org.apache.activemq.ActiveMQConnectionFactory">

<property name="orderQueue" value="tcp://localhost:61000" />

</bean>

</property>

</bean>

Here, the Camel application will start listening to a queue called orderQueue. The queue

itself is set up in the activeMQ messaging server running on the local host and listing to

port 61000. Once this is done, your application can send or receive message to this queue

from any of the endpoints defined in your application.

Finally, it is time now to put everything together in a project to get a deeper understanding

of how Camel applications are created.

8. Apache Camel — Message Queues

Apache Camel

 21

We will use Maven to build a Camel project. Although, we preferable use IntelliJ IDE for

development. You may use any IDE of your choice for this project.

Creating New Project

Create a new Maven project and specify the following -

GroupId: Basket

ArtifactId: Basket

Select the default location for your project or if you prefer specify the directory of your

choice.

Adding Dependencies

You need to add few dependencies to use Camel. The dependencies are added in

pom.xml. So open pom.xml and add following two dependencies -

<dependencies>

 <dependency>

 <groupId>org.apache.camel</groupId>

 <artifactId>camel-core</artifactId>

 <version>2.20.0</version>

 </dependency>

 <dependency>

 <groupId>org.apache.camel</groupId>

 <artifactId>camel-stream</artifactId>

 <version>2.20.0</version>

 </dependency>

</dependencies>

Note: We need the bare minimum dependencies for our application. As you use more

Camel components from its libraries, you will need to add the corresponding dependencies

in this pom.xml file.

Creating Java DSL

Next, you will write your filtering and routing code in a Java DSL. Create a new Java class

called DistributeOrderDSL. Add the following code to it -

9. Apache Camel — Camel Project

Apache Camel

 22

public class DistributeOrderDSL {

 public static void main(String[] args) throws Exception {

 CamelContext context = new DefaultCamelContext();

 try {

 context.addRoutes(new RouteBuilder() {

 @Override

 public void configure() throws Exception {

 from("direct:DistributeOrderDSL")

 .split(xpath("//order[@product='soaps']/items"))

 .to("stream:out");

 // .to("file:src/main/resources/order/");

 }

 });

 context.start();

 ProducerTemplate orderProducerTemplate =

 context.createProducerTemplate();

 InputStream orderInputStream = new

FileInputStream(ClassLoader.getSystemClassLoader()

.getResource("order.xml").getFile());

 orderProducerTemplate.sendBody(

"direct:DistributeOrderDSL", orderInputStream);

 } finally {

 context.stop();

 }

}

Apache Camel

 23

In the main method, first we create CamelContext by instantiating a default

implementation provided in DefaultCamelContext class.

 CamelContext context = new DefaultCamelContext();

Next, we add a route by creating an anonymous RouteBuilder instance -

 context.addRoutes(new RouteBuilder() {

We override the configure method to add a route from a direct URI DistributeOrderDSL

to the system console. We provide some filtering by using the xpath query.

 public void configure() throws Exception {

 from("direct:DistributeOrderDSL")

 .split(xpath("//order[@product='soaps']/items"))

 .to("stream:out");

 // .to("file:src/main/resources/order/");

 }

After adding the route, we start the context -

 context.start();

Next, we add the code for creating our direct URI - DistributeOrderDSL.

 ProducerTemplate orderProducerTemplate =

 context.createProducerTemplate();

 InputStream orderInputStream = new

FileInputStream(ClassLoader.getSystemClassLoader()

.getResource("order.xml").getFile());

Finally, we start the processing -

 orderProducerTemplate.sendBody(

"direct:DistributeOrderDSL", orderInputStream);

Apache Camel

 24

Now, as your Java DSL code is completed, the only thing that remains before testing the

application is to add the order.xml file to your project. You may use the sample XML

shown in the Introduction chapter for this purpose.

Test Results

When you run the application, you would see the following output -

<items>

 <item>

 <Brand>Cinthol</Brand>

 <Type>Original</Type>

 <Quantity>4</Quantity>

 <Price>25</Price>

 </item>

 <item>

 <Brand>Cinthol</Brand>

 <Type>Lime</Type>

 <Quantity>6</Quantity>

 <Price>30</Price>

 </item>

</items>

Note that only orders for Soaps are listed here. If you wish to store this to a local file, just

comment the stream.out line and uncomment the following line in your configure

method:

 // .to("file:src/main/resources/order/");

In our subsequent section, we will learn how to use Camel with Spring.

Apache Camel

 25

We will now recreate the application from the previous chapter using Spring. This will give

us an idea of how to create Camel routing in XML rather than a DSL.

Creating New Project

Create a new Maven project and specify the following -

GroupId: BasketWithSpring

ArtifactId: BasketWithSpring

Select the default location for your project or if you prefer specify the directory of your

choice.

Adding Dependencies

In addition to the core dependencies that you used in the earlier application, you need to

add few more dependencies to use Spring. The dependencies are added in pom.xml. Now,

open pom.xml and add the following dependencies -

<dependencies>

...

 <dependency>

 <groupId>org.springframework</groupId>

 <artifactId>spring-context</artifactId>

 <version>5.1.3.RELEASE</version>

 </dependency>

 <dependency>

 <groupId>org.apache.activemq</groupId>

 <artifactId>activemq-pool</artifactId>

 <version>5.15.2</version>

 </dependency>

 <dependency>

 <groupId>org.apache.activemq</groupId>

 <artifactId>activemq-pool</artifactId>

 <version>5.15.1</version>

 </dependency>

 <dependency>

10. Apache Camel — Using Camel with Spring

Apache Camel

 26

 <groupId>org.apache.camel</groupId>

 <artifactId>camel-spring</artifactId>

 <version>2.15.1</version>

 </dependency>

</dependencies>

Creating Java DSL for Spring

Let us now create a new Java class called DistributeOrderXML. Add the following code

to it -

public class DistributeOrderXML {

 public static void main(String[] args) throws Exception {

 ApplicationContext appContext = new ClassPathXmlApplicationContext(

 "SpringRouteContext.xml");

 CamelContext camelContext = SpringCamelContext.springCamelContext(

 appContext, false);

 try {

 camelContext.start();

 ProducerTemplate orderProducerTemplate =

 camelContext.createProducerTemplate();

 InputStream orderInputStream = new

FileInputStream(ClassLoader.getSystemClassLoader()

.getResource("order.xml").getFile());

 orderProducerTemplate.sendBody(

"direct:DistributeOrderXML", orderInputStream);

 } finally {

 camelContext.stop();

 }

 }

}

In the main method, first we create an instance of ApplicationContext, which is the

central interface within a Spring application. In its constructor, we specify the name of the

XML file that contains our routing and filtering information.

 ApplicationContext appContext = new ClassPathXmlApplicationContext(

Apache Camel

 27

 "SpringRouteContext.xml");

Next, we create CamelContext specifying the above created ApplicationContext in its

parameter.

 CamelContext camelContext = SpringCamelContext.springCamelContext(

 appContext, false);

At this point, our routing and filtering is set up. Therefore, we start the CamelContext

using its start method. As in the earlier case, we define the Endpoint for loading the

order.xml file and start the processing. Now, let us understand how routing is defined in

XML.

Creating Application Context

Add a new XML file to the project and call it SpringRouteContext.xml. Cut-n-paste the

following contents to this file.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://camel.apache.org/schema/spring

 http://camel.apache.org/schema/spring/camel-spring.xsd

 ">

 <camelContext xmlns="http://camel.apache.org/schema/spring">

 <route>

 <from uri="direct:DistributeOrderXML"/>

 <log message="Split by Distribute Order"/>

 <split>

 <xpath>//order[@product='Oil']/items</xpath>

 <to uri="file:src/main/resources/order/"/>

 <to uri="stream:out"/>

 </split>

 </route>

 </camelContext>

Apache Camel

 28

</beans>

Here, we define the xpath query as follows, note that we now select all orders for “oil”.

 <xpath>//order[@product='Oil']/items</xpath>

The output Endpoints are multiple. The first endpoint specifies the order folder and the

second one specifies the console.

 <to uri="file:src/main/resources/order/"/>

 <to uri="stream:out"/>

Run the application.

Test Results

When you run the application, you will see the following output on screen.

<items>

 <item>

 <Brand>Cinthol</Brand>

 <Type>Original</Type>

 <Quantity>4</Quantity>

 <Price>25</Price>

 </item>

 <item>

 <Brand>Cinthol</Brand>

 <Type>Lime</Type>

 <Quantity>6</Quantity>

 <Price>30</Price>

 </item>

</items>

Check out the order folder in the path specified by you. You will find a newly created file

that contains the above XML code.

Conclusion

Camel provides a ready-to-use framework that implements EIPs to ease your integration

projects. It supports coding in domain-specific languages and also the use of XML.

Apache Camel

 29

