Cheatography

Computer Architecture Cheat Sheet by Sheetocheat via cheatography.com/119472/cs/22138/

CPU Components

Arithmetic Logic Unit (ALU): Responsible for carrying out Arithmetic calculations & Making logical decisions

Control Unit: Responsible for sending signals to how data moves around the CPU & Coordinates the CPU operations

Cache: Provides fast access to frequently used instructions & data Information written to cache is retrieved quicker then information written to RAM

Clock: An electronic unit that synchronises related components by generating pulses at a constant rate

Registers: Tiny, super fast pieces of onboard memory inside the CPU Each has a very specific purpose

Program Counter: Holds the address in memory which data or an instruction needs to be read from or written to

Memory Data Register: Holds either data or an instruction which has been fetched from memory of is about to be written back to memory

Memory Address Register: Holds either data or an instruction which has been fetched from memory of is about to be written back to memory

Accumulator: Set of general purpose registers

Buses: Collection of wires through which data & instructions are transmitted from one component to another

Address bus: Unidirectional Carries the addresses which data needs to be written to or read from

Data bus: Bidirectional Carries the actual data or instructions

Control bus: Bidirectional Carries command & control signals telling components when they should be receiving reads or writes etc.

By Sheetocheat

cheatography.com/sheetocheat/

Fetch Decode Execute

Computer: An electronic device which takes input, processes data & delivers output

Simple Example: Input - 5 Process -Multiply by 2 Output - 10

Complex Example: Input - Buttons on controller Process - Conversion in the console Output - Update to a monitor, sound out of a speaker or vibration feedback through a controller

In order to process data a computer follows a set of instructions known as a computer program in addition their are 2 critical components that allow this to happen RAM: Stores the programs & CPU: Carries out instructions

Fetch Stage: Fetches the next instruction from RAM & Brings it back to the CPU

Decode Stage: Inspects the instruction & works out what it is that needs doing

Execute Stage: Carries out the instruction which could involve many thing such as going back to RAM to grab some data, performing a calculation or storing information back into main memory

Clock speed: Amount of cycles per second measured in Hertz e.g. 3GHz = 3 billion cycles per second

Von Neuman & Harvard Architectures		
Von Neuman Archit- ecture	Harvard Archit- ectures	
Instruction & data are shared/stored with the same memory space/- format	Instructions & data are stored in separate memory units	
Each have the same set of buses (System	Each having their own set of buses	

Not published yet. Last updated 24th March, 2020. Page 1 of 1.

Bus)

Von Neuman & Harvard Architectures (cont)

A single control unit	Reading & writing
or processor follows	data can be done at
a linear fetch,	the same time as
decode, execute	fetching an instru-
cycle	ction
One instruction at a	Used by RISC
time	processers
Registers are used	
as fast access to	
instruction & data	

Alternative Architecture			
Parallel	Multiple	Distributed	
Proces-	Instructions	computing:	
sing:	on Multiple	Each	
Single	Data	computer on	
Instruction	(MIMD)	the network	
on Multiple	Using	takes part in	
Data	multiple	the problem	
(SIMD)	cores		

Sponsored by Readable.com Measure your website readability! https://readable.com