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Préface

Quatre des meilleurs algébristes d’aujourd’hui (j’aimerais dire, comme jadis,
�géomètres�, au sens noble, mais hélas désuet du terme) nous donnent ce beau
Livre des Involutions, qu’ils me demandent de préfacer.

Quel est le propos de l’ouvrage et à quels lecteurs s’adresse-t-il? Bien sûr il y
est souvent question d’involutions, mais celles-ci sont loin d’être omniprésentes et le
titre est plus l’expression d’un état d’âme que l’affirmation d’un thème central. En
fait, les questions envisagées sont multiples, relevant toutes de domaines importants
des mathématiques contemporaines ; sans vouloir être exhaustif (ceci n’est pas une
introduction), on peut citer :

- les formes quadratiques et les algèbres de Clifford,
- les algèbres centrales simples (ici les involutions, et notamment celles de

seconde espèce, se taillent une place de choix !) mais aussi les algèbres
alternatives et les algèbres de Jordan,

- les algèbres de Hopf,
- les groupes algébriques, principalement semi-simples,
- la cohomologie galoisienne.

Pour ce qui est du public concerné, la lecture ou la consultation du livre sera
profitable à un large éventail de mathématiciens. Le non-initié y trouvera une
introduction claire aux concepts fondamentaux des domaines en question ; exposés
le plus souvent en fonction d’applications concrètes, ces notions de base sont pré-
sentées de façon vivante et dépouillée, sans généralités gratuites (les auteurs ne sont
pas adeptes de grandes théories abstraites). Le lecteur déjà informé, ou croyant
l’être, pourra réapprendre (ou découvrir) quelques beaux théorèmes jadis �bien
connus� mais un peu oubliés dans la littérature récente, ou au contraire, voir
des résultats qui lui sont en principe familiers exposés sous un jour nouveau et
éclairant (je pense par exemple à l’introduction des algèbres trialitaires au dernier
chapitre). Enfin, les spécialistes et les chercheurs auront à leur disposition une
référence précieuse, parfois unique, pour des développements récents, souvents dûs
aux auteurs eux-mêmes, et dont certains sont exposés ici pour la première fois
(c’est par exemple le cas pour plusieurs résultats sur les invariants cohomologiques,
donnés à la fin du chapitre 7).

Malgré la grande variété des thèmes considérés et les individualités très mar-
quées des quatre auteurs, ce Livre des Involutions a une unité remarquable. Le
ciment un peu fragile des involutions n’est certes pas seul à l’expliquer. Il y a
aussi, bien sûr, les interconnections multiples entre les sujets traités ; mais plus
déterminante encore est l’importance primordiale accordée à des structures fortes,
se prêtant par exemple à des théorèmes de classification substantiels. Ce n’est pas
un hasard si les algèbres centrales simples de petites dimensions (trois et quatre),
les groupes exceptionnels de type G2 et F4 (on regrette un peu que Sa Majesté E8
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viii PRÉFACE

fasse ici figure de parent pauvre), les algèbres de composition, . . . , reçoivent autant
d’attention.

On l’a compris, ce Livre est tout à la fois un livre de lecture passionnant et
un ouvrage de référence d’une extrême richesse. Je suis reconnaissant aux auteurs
de l’honneur qu’ils m’ont fait en me demandant de le préfacer, et plus encore de
m’avoir permis de le découvrir et d’apprendre à m’en servir.

Jacques Tits



Introduction

For us an involution is an anti-automorphism of order two of an algebra. The
most elementary example is the transpose for matrix algebras. A more complicated
example of an algebra over Q admitting an involution is the multiplication algebra
of a Riemann surface (see the notes at the end of Chapter ?? for more details).
The central problem here, to give necessary and sufficient conditions on a division
algebra over Q to be a multiplication algebra, was completely solved by Albert
(1934/35). To achieve this, Albert developed a theory of central simple algebras
with involution, based on the theory of simple algebras initiated a few years earlier
by Brauer, Noether, and also Albert and Hasse, and gave a complete classification
over Q. This is the historical origin of our subject, however our motivation has a
different source. The basic objects are still central simple algebras, i.e., “forms”
of matrix algebras. As observed by Weil (1960), central simple algebras with in-
volution occur in relation to classical algebraic simple adjoint groups: connected
components of automorphism groups of central simple algebras with involution are
such groups (with the exception of a quaternion algebra with an orthogonal involu-
tion, where the connected component of the automorphism group is a torus), and,
in their turn, such groups are connected components of automorphism groups of
central simple algebras with involution.

Even if this is mainly a book on algebras, the correspondence between alge-
bras and groups is a constant leitmotiv. Properties of the algebras are reflected in
properties of the groups and of related structures, such as Dynkin diagrams, and
conversely. For example we associate certain algebras to algebras with involution
in a functorial way, such as the Clifford algebra (for orthogonal involutions) or the
λ-powers and the discriminant algebra (for unitary involutions). These algebras are
exactly the “Tits algebras”, defined by Tits (1971) in terms of irreducible represen-
tations of the groups. Another example is algebraic triality, which is historically
related with groups of type D4 (E. Cartan) and whose “algebra” counterpart is, so
far as we know, systematically approached here for the first time.

In the first chapter we recall basic properties of central simple algebras and in-
volutions. As a rule for the whole book, without however going to the utmost limit,
we try to allow base fields of characteristic 2 as well as those of other characteristic.
Involutions are divided up into orthogonal, symplectic and unitary types. A central
idea of this chapter is to interpret involutions in terms of hermitian forms over skew
fields. Quadratic pairs, introduced at the end of the chapter, give a corresponding
interpretation for quadratic forms in characteristic 2.

In Chapter ?? we define several invariants of involutions; the index is defined for
every type of involution. For quadratic pairs additional invariants are the discrim-
inant, the (even) Clifford algebra and the Clifford module; for unitary involutions
we introduce the discriminant algebra. The definition of the discriminant algebra

ix



x INTRODUCTION

is prepared for by the construction of the λ-powers of a central simple algebra. The
last part of this chapter is devoted to trace forms on algebras, which represent an
important tool for recent results discussed in later parts of the book. Our method of
definition is based on scalar extension: after specifying the definitions “rationally”
(i.e., over an arbitrary base field), the main properties are proven by working over
a splitting field. This is in contrast to Galois descent, where constructions over a
separable closure are shown to be invariant under the Galois group and therefore
are defined over the base field. A main source of inspiration for Chapters ?? and ??
is the paper [?] of Tits on “Formes quadratiques, groupes orthogonaux et algèbres
de Clifford.”

In Chapter ?? we investigate the automorphism groups of central simple alge-
bras with involutions. Inner automorphisms are induced by elements which we call
similitudes. These automorphism groups are twisted forms of the classical projec-
tive orthogonal, symplectic and unitary groups. After proving results which hold
for all types of involutions, we focus on orthogonal and unitary involutions, where
additional information can be derived from the invariants defined in Chapter ??.
The next two chapters are devoted to algebras of low degree. There exist certain
isomorphisms among classical groups, known as exceptional isomorphisms. From
the algebra point of view, this is explained in the first part of Chapter ?? by prop-
erties of the Clifford algebra of orthogonal involutions on algebras of degree 3, 4, 5
and 6. In the second part we focus on tensor products of two quaternion algebras,
which we call biquaternion algebras. These algebras have many interesting proper-
ties, which could be the subject of a monograph of its own. This idea was at the
origin of our project.

Algebras with unitary involutions are also of interest for odd degrees, the lowest
case being degree 3. From the group point of view algebras with unitary involutions
of degree 3 are of type A2. Chapter ?? gives a new presentation of results of Albert
and a complete classification of these algebras. In preparation for this, we recall
general results on étale and Galois algebras.

The aim of Chapter ?? is to give the classification of semisimple algebraic groups
over arbitrary fields. We use the functorial approach to algebraic groups, although
we quote without proof some basic results on algebraic groups over algebraically
closed fields. In the central section we describe in detail Weil’s correspondence [?]
between central simple algebras with involution and classical groups. Exceptional
isomorphisms are reviewed again in terms of this correspondence. In the last section
we define Tits algebras of semisimple groups and give explicit constructions of them
in classical cases.

The theme of Chapter ?? is Galois cohomology. We introduce the formalism
and describe many examples. Previous results are reinterpreted in this setting and
cohomological invariants are discussed. Most of the techniques developed here are
also needed for the following chapters.

The last three chapters are dedicated to the exceptional groups of type G2, F4

and to D4, which, in view of triality, is also exceptional. In the Weil correspon-
dence, octonion algebras play the algebra role for G2 and exceptional simple Jordan
algebras the algebra role for F4.

Octonion algebras are an important class of composition algebras and Chap-
ter ?? gives an extensive discussion of composition algebras. Of special interest
from the group point of view are “symmetric” compositions. In dimension 8 these
are of two types, corresponding to algebraic groups of type A2 or type G2. Triality
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is defined through the Clifford algebra of symmetric 8-dimensional compositions.
As a step towards exceptional simple Jordan algebras, we introduce twisted compo-
sitions, which are defined over cubic étale algebras. This generalizes a construction
of Springer. The corresponding group of automorphisms in the split case is the
semidirect product Spin8 oS3.

In Chapter ?? we describe different constructions of exceptional simple Jordan
algebras, due to Freudenthal, Springer and Tits (the algebra side) and give in-
terpretations from the algebraic group side. The Springer construction arises from
twisted compositions, defined in Chapter ??, and basic ingredients of Tits construc-
tions are algebras of degree 3 with unitary involutions, studied in Chapter ??. We
conclude this chapter by defining cohomological invariants for exceptional simple
Jordan algebras.

The last chapter deals with trialitarian actions on simple adjoint groups of
type D4. To complete Weil’s program for outer forms of D4 (a case not treated
by Weil), we introduce a new notion, which we call a trialitarian algebra. The
underlying structure is a central simple algebra with an orthogonal involution, of
degree 8 over a cubic étale algebra. The trialitarian condition relates the algebra
to its Clifford algebra. Trialitarian algebras also occur in the construction of Lie
algebras of type D4. Some indications in this direction are given in the last section.

Exercises and notes can be found at the end of each chapter. Omitted proofs
sometimes occur as exercises. Moreover we included as exercises some results we
like, but which we did not wish to develop fully. In the notes we wanted to give com-
plements and to look at some results from a historical perspective. We have tried
our best to be useful; we cannot, however, give strong guarantees of completeness
or even fairness.

This book is the achievement of a joint (and very exciting) effort of four very
different people. We are aware that the result is still quite heterogeneous; however,
we flatter ourselves that the differences in style may be viewed as a positive feature.

Our work started out as an attempt to understand Tits’ definition of the Clifford
algebra of a generalized quadratic form, and ended up including many other topics
to which Tits made fundamental contributions, such as linear algebraic groups,
exceptional algebras, triality, . . . Not only was Jacques Tits a constant source of
inspiration through his work, but he also had a direct personal influence, notably
through his threat — early in the inception of our project — to speak evil of
our work if it did not include the characteristic 2 case. Finally he also agreed to
bestow his blessings on our book sous forme de préface. For all that we thank him
wholeheartedly.

This book could not have been written without the help and the encourage-
ment of many friends. They are too numerous to be listed here individually, but
we hope they will recognize themselves and find here our warmest thanks. Richard
Elman deserves a special mention for his comment that the most useful book is
not the one to which nothing can be added, but the one which is published. This
no-nonsense statement helped us set limits to our endeavor. We were fortunate to
get useful advice on various points of the exposition from Ottmar Loos, Antonio
Paques, Parimala, Michel Racine, David Saltman, Jean-Pierre Serre and Sridharan.
We thank all of them for lending helping hands at the right time. A number of
people were nice enough to read and comment on drafts of parts of this book: Eva
Bayer-Fluckiger, Vladimir Chernousov, Ingrid Dejaiffe, Alberto Elduque, Darrell
Haile, Luc Haine, Pat Morandi, Holger Petersson, Ahmed Serhir, Tony Springer,
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Paul Swets and Oliver Villa. We know all of them had better things to do, and
we are grateful. Skip Garibaldi and Adrian Wadsworth actually summoned enough
grim self-discipline to read a draft of the whole book, detecting many shortcomings,
making shrewd comments on the organization of the book and polishing our bro-
ken English. Each deserves a medal. However, our capacity for making mistakes
certainly exceeds our friends’ sagacity. We shall gratefully welcome any comment
or correction.

Jean-Pierre Tignol had the privilege to give a series of lectures on “Central
simple algebras, involutions and quadratic forms” in April 1993 at the National
Taiwan University. He wants to thank Ming-chang Kang and the National Research
Council of China for this opportunity to test high doses of involutions on a very
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Conventions and Notations

Maps. The image of an element x under a map f is generally denoted f(x);
the notation xf is also used however, notably for homomorphisms of left modules.
In that case, we also use the right-hand rule for mapping composition; for the image

of x ∈ X under the composite map X
f−→ Y

g−→ Z we set either g ◦ f(x) or xfg and
the composite is thus either g ◦ f or fg.

As a general rule, module homomorphisms are written on the opposite side of
the scalars. (Right modules are usually preferred.) Thus, if M is a module over a
ring R, it is also a module (on the opposite side) over EndR(M), and the R-module
structure defines a natural homomorphism:

R→ EndEndR(M)(M).

Note therefore that if S ⊂ EndR(M) is a subring, and if we endow M with its
natural S-module structure, then EndS(M) is the opposite of the centralizer of S
in EndR(M):

EndS(M) =
(
CEndR(M)S

)op
.

Of course, if R is commutative, every right R-module MR may also be regarded as a
left R-module RM , and every endomorphism ofMR also is an endomorphism of RM .
Note however that with the convention above, the canonical map EndR(MR) →
EndR(RM) is an anti-isomorphism.

The characteristic polynomial and its coefficients. Let F denote an ar-
bitrary field. The characteristic polynomial of a matrix m ∈ Mn(F ) (or an endo-
morphism m of an n-dimensional F -vector space) is denoted

Pm(X) = Xn − s1(m)Xn−1 + s2(m)Xn−2 − · · ·+ (−1)nsn(m).(0.1)

The trace and determinant of m are denoted tr(m) and det(m) :

tr(m) = s1(m), det(m) = sn(m).

We recall the following relations between coefficients of the characteristic polyno-
mial:

(0.2) Proposition. For m, m′ ∈Mn(F ), we have s1(m)2− s1(m2) = 2s2(m) and

s1(m)s1(m
′)− s1(mm′) = s2(m+m′)− s2(m)− s2(m′).

Proof : It suffices to prove these relations for generic matrices m = (xij)1≤i,j≤n,
m′ = (x′ij )1≤i,j≤n whose entries are indeterminates over Z; the general case follows

by specialization. If λ1, . . . , λn are the eigenvalues of the generic matrix m (in

xiii
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an algebraic closure of Q(xij | 1 ≤ i, j ≤ n)), we have s1(m) =
∑

1≤i≤n λi and

s2(m) =
∑

1≤i<j≤n λiλj , hence

s1(m)2 − 2s2(m) =
∑

1≤i≤n
λ2
i = s1(m

2),

proving the first relation. The second relation follows by linearization, since 2 is
not a zero-divisor in Z[xij , x

′
ij | 1 ≤ i, j ≤ n].

If L is an associative and commutative F -algebra of dimension n and ` ∈ L,
the characteristic polynomial of multiplication by `, viewed as an F -endomorphism
of L, is called the generic polynomial of ` and is denoted

PL,`(X) = Xn − s1(`)Xn−1 + s2(`)X
n−2 − · · ·+ (−1)nsn(`).

The trace and norm of ` are denoted TL/F (`) and NL/F (`) (or simply T (`), N(`)):

TL/F (`) = s1(`), NL/F (`) = sn(`).

We also denote

SL/F (`) = S(`) = s2(`).(0.3)

The characteristic polynomial is also used to define a generic polynomial for central
simple algebras, called the reduced characteristic polynomial : see (??). Generaliza-
tions to certain nonassociative algebras are given in § ??.

Bilinear forms. A bilinear form b : V ×V → F on a finite dimensional vector
space V over an arbitrary field F is called symmetric if b(x, y) = b(y, x) for all
x, y ∈ V , skew-symmetric if b(x, y) = −b(y, x) for all x, y ∈ V and alternating

if b(x, x) = 0 for all x ∈ V . Thus, the notions of skew-symmetric and alternating
(resp. symmetric) form coincide if charF 6= 2 (resp. charF = 2). Alternating forms
are skew-symmetric in every characteristic.

If b is a symmetric or alternating bilinear form on a (finite dimensional) vector
space V , the induced map

b̂ : V → V ∗ = HomF (V, F )

is defined by b̂(x)(y) = b(x, y) for x, y ∈ V . The bilinear form b is nonsingular (or

regular , or nondegenerate) if b̂ is bijective. (It suffices to require that b̂ be injective,
i.e., that the only vector x ∈ V such that b(x, y) = 0 for all y ∈ V is x = 0, since
we are dealing with finite dimensional vector spaces over fields.) Alternately, b is
nonsingular if and only if the determinant of its Gram matrix with respect to an
arbitrary basis of V is nonzero:

det
(
b(ei, ej)

)
1≤i,j≤n 6= 0.

In that case, the square class of this determinant is called the determinant of b :

det b = det
(
b(ei, ej)

)
1≤i,j≤n · F

×2 ∈ F×/F×2.

The discriminant of b is the signed determinant:

disc b = (−1)n(n−1)/2 det b ∈ F×/F×2 where n = dimV .

For α1, . . . , αn ∈ F , the bilinear form 〈α1, . . . , αn〉 on Fn is defined by

〈α1, . . . , αn〉
(
(x1, . . . , xn), (y1, . . . , yn)

)
= α1x1y1 + · · ·+ αnxnyn.

We also define the n-fold Pfister bilinear form 〈〈α1, . . . , αn〉〉 by

〈〈α1, . . . , αn〉〉 = 〈1,−α1〉 ⊗ · · · ⊗ 〈1,−αn〉.
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If b : V × V → F is a symmetric bilinear form, we denote by qb : V → F the
associated quadratic map, defined by

qb(x) = b(x, x) for x ∈ V .

Quadratic forms. If q : V → F is a quadratic map on a finite dimensional
vector space over an arbitrary field F , the associated symmetric bilinear form bq is
called the polar of q; it is defined by

bq(x, y) = q(x + y)− q(x) − q(y) for x, y ∈ V ,
hence bq(x, x) = 2q(x) for all x ∈ V . Thus, the quadratic map qbq associated to bq
is qbq = 2q. Similarly, for every symmetric bilinear form b on V , we have bqb

= 2b.

Let V ⊥ = {x ∈ V | bq(x, y) = 0 for y ∈ V }. The quadratic map q is called
nonsingular (or regular , or nondegenerate) if either V ⊥ = {0} or dimV ⊥ = 1 and
q(V ⊥) 6= {0}. The latter case occurs only if charF = 2 and V is odd-dimensional.
Equivalently, a quadratic form of dimension n is nonsingular if and only if it is

equivalent over an algebraic closure to
∑n/2

i=1 x2i−1x2i (if n is even) or to x2
0 +∑(n−1)/2

i=1 x2i−1x2i (if n is odd).

The determinant and the discriminant of a nonsingular quadratic form q of
dimension n over a field F are defined as follows: let M be a matrix representing q
in the sense that

q(X) = X ·M ·Xt

where X = (x1, . . . , xn) and t denotes the transpose of matrices; the condition that
q is nonsingular implies that M +M t is invertible if n is even or charF 6= 2, and
has rank n−1 if n is odd and charF = 2. The matrix M is uniquely determined by
q up to the addition of a matrix of the form N −N t; therefore, M +M t is uniquely
determined by q.

If charF 6= 2 we set

det q = det
(

1
2 (M +M t)

)
· F×2 ∈ F×/F×2

and

disc q = (−1)n(n−1)/2 det q ∈ F×/F×2.

Thus, the determinant (resp. the discriminant) of a quadratic form is the determi-
nant (resp. the discriminant) of its polar form divided by 2n.

If charF = 2 and n is odd we set

det q = disc q = q(y) · F×2 ∈ F×/F×2(0.4)

where y ∈ F n is a nonzero vector such that (M +M t) · y = 0. Such a vector y is
uniquely determined up to a scalar factor, since M +M t has rank n− 1, hence the
definition above does not depend on the choice of y.

If charF = 2 and n is even we set

det q = s2
(
(M +M t)−1M

)
+ ℘(F ) ∈ F/℘(F )

and

disc q = m(m−1)
2 + det q ∈ F/℘(F )
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where m = n/2 and ℘(F ) = {x + x2 | x ∈ F }. (More generally, for fields of
characteristic p 6= 0, ℘ is defined as ℘(x) = x + xp, x ∈ F .) The following lemma
shows that the definition of det q does not depend on the choice of M :

(0.5) Lemma. Suppose charF = 2. Let M,N ∈Mn(F ) and W = M +M t. If W
is invertible, then

s2
(
W−1(M +N +N t)

)
= s2(W

−1M) + s1(W
−1N) +

(
s1(W

−1N)
)2
.

Proof : The second relation in (??) yields

s2
(
W−1M +W−1(N +N t)

)
=

s2(W
−1M) + s2

(
W−1(N +N t)

)
+ s1(W

−1M)s1
(
W−1(N +N t)

)

+ s1
(
W−1MW−1(N +N t)

)
.

In order to prove the lemma, we show below:

s2
(
W−1(N +N t)

)
=

(
s1(W

−1N)
)2

(0.6)

s1(W
−1M)s1

(
W−1(N +N t)

)
= 0(0.7)

s1
(
W−1MW−1(N +N t)

)
= s1(W

−1N).(0.8)

Since a matrix and its transpose have the same characteristic polynomial, the traces
of W−1N and (W−1N)t = N tW−1 are the same, hence

s1(W
−1N t) = s1(N

tW−1) = s1(W
−1N).

Therefore, s1
(
W−1(N +N t)

)
= 0, and (??) follows.

Similarly, we have

s1(W
−1MW−1N t) = s1(NW

−1M tW−1) = s1(W
−1M tW−1N),

hence the left side of (??) is

s1(W
−1MW−1N) + s1(W

−1M tW−1N) = s1
(
W−1(M +M t)W−1N

)
.

Since M +M t = W , (??) follows.
The second relation in (??) shows that the left side of (??) is

s2(W
−1N) + s2(W

−1N t) + s1(W
−1N)s1(W

−1N t) + s1(W
−1NW−1N t).

Since W−1N and W−1(W−1N)tW (= W−1N t) have the same characteristic poly-
nomial, we have si(W

−1N) = si(W
−1N t) for i = 1, 2, hence the first two terms

cancel and the third is equal to s1(W
−1N)2. In order to prove (??), it therefore

suffices to show

s1(W
−1NW−1N t) = 0.

Since W = M +M t, we have W−1 = W−1MW−1 +W−1M tW−1, hence

s1(W
−1NW−1N t) = s1(W

−1MW−1NW−1N t) + s1(W
−1M tW−1NW−1N t),

and (??) follows if we show that the two terms on the right side are equal. Since
W t = W we have (W−1MW−1NW−1N t)t = NW−1N tW−1M tW−1, hence

s1(W
−1MW−1NW−1N t) = s1

(
(NW−1N t)(W−1M tW−1)

)

= s1(W
−1M tW−1NW−1N t).
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Quadratic forms are called equivalent if they can be transformed into each other
by invertible linear changes of variables. The various quadratic forms representing a
quadratic map with respect to various bases are thus equivalent. It is easily verified
that the determinant det q (hence also the discriminant disc q) is an invariant of the
equivalence class of the quadratic form q; the determinant and the discriminant are
therefore also defined for quadratic maps. The discriminant of a quadratic form (or
map) of even dimension in characteristic 2 is also known as the pseudodiscriminant

or the Arf invariant of the form. See §?? for the relation between the discriminant
and the even Clifford algebra.

Let α1, . . . , αn ∈ F . If charF 6= 2 we denote by 〈α1, . . . , αn〉 the diagonal
quadratic form

〈α1, . . . , αn〉 = α1x
2
1 + · · ·+ αnx

2
n

which is the quadratic form associated to the bilinear form 〈α1, . . . , αn〉. We also
define the n-fold Pfister quadratic form 〈〈α1, . . . , αn〉〉 by

〈〈α1, . . . , αn〉〉 = 〈1,−α1〉 ⊗ · · · ⊗ 〈1,−αn〉
where ⊗ = ⊗F is the tensor product over F . If charF = 2, the quadratic forms
[α1, α2] and [α1] are defined by

[α1, α2] = α1X
2
1 +X1X2 + α2X

2
2 and [α1] = α1X

2,

and the n-fold Pfister quadratic form 〈〈α1, . . . , αn]] by

〈〈α1, . . . , αn]] = 〈〈α1, . . . , αn−1〉〉 ⊗ [1, αn].

(See Baeza [?, p. 5] or Knus [?, p. 50] for the definition of the tensor product of a
bilinear form and a quadratic form.) For instance,

〈〈α1, α2]] = (x2
1 + x1x2 + α2x

2
2) + α1(x

2
3 + x3x4 + α2x

2
4).
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CHAPTER I

Involutions and Hermitian Forms

Our perspective in this work is that involutions on central simple algebras
are twisted forms of symmetric or alternating bilinear forms up to a scalar factor.
To motivate this point of view, we consider the basic, classical situation of linear
algebra.

Let V be a finite dimensional vector space over a field F of arbitrary char-
acteristic. A bilinear form b : V × V → F is called nonsingular if the induced
map

b̂ : V → V ∗ = HomF (V, F )

defined by

b̂(x)(y) = b(x, y) for x, y ∈ V
is an isomorphism of vector spaces. For any f ∈ EndF (V ) we may then define
σb(f) ∈ EndF (V ) by

σb(f) = b̂−1 ◦ f t ◦ b̂
where f t ∈ EndF (V ∗) is the transpose of f , defined by mapping ϕ ∈ V ∗ to ϕ ◦ f .
Alternately, σb(f) may be defined by the following property:

b
(
x, f(y)

)
= b

(
σb(f)(x), y

)
for x, y ∈ V .(∗)

The map σb : EndF (V ) → EndF (V ) is then an anti-automorphism of EndF (V )
which is known as the adjoint anti-automorphism with respect to the nonsingular
bilinear form b. The map σb clearly is F -linear.

The basic result which motivates our approach and which will be generalized
in (??) is the following:

Theorem. The map which associates to each nonsingular bilinear form b on V its

adjoint anti-automorphism σb induces a one-to-one correspondence between equiv-

alence classes of nonsingular bilinear forms on V modulo multiplication by a factor

in F× and linear anti-automorphisms of EndF (V ). Under this correspondence, F -

linear involutions on EndF (V ) (i.e., anti-automorphisms of period 2) correspond

to nonsingular bilinear forms which are either symmetric or skew-symmetric.

Proof : From relation (∗) it follows that for α ∈ F× the adjoint anti-automorphism
σαb with respect to the multiple αb of b is the same as the adjoint anti-automor-
phism σb. Therefore, the map b 7→ σb induces a well-defined map from the set
of nonsingular bilinear forms on V up to a scalar factor to the set of F -linear
anti-automorphisms of End(V ).

To show that this map is one-to-one, note that if b, b′ are nonsingular bilinear

forms on V , then the map v = b̂−1 ◦ b̂′ ∈ GL(V ) satisfies

b′(x, y) = b
(
v(x), y

)
for x, y ∈ V .

1
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From this relation, it follows that the adjoint anti-automorphisms σb, σb′ are related
by

σb(f) = v ◦ σb′(f) ◦ v−1 for f ∈ EndF (V ),

or equivalently

σb = Int(v) ◦ σb′ ,
where Int(v) denotes the inner automorphism of EndF (V ) induced by v:

Int(v)(f) = v ◦ f ◦ v−1 for f ∈ EndF (V ).

Therefore, if σb = σb′ , then v ∈ F× and b, b′ are scalar multiples of each other.
Moreover, if b is a fixed nonsingular bilinear form on V with adjoint anti-

automorphism σb, then for any linear anti-automorphism σ′ of EndF (V ), the com-

posite σb ◦ σ′−1
is an F -linear automorphism of EndF (V ). Since these automor-

phisms are inner, by the Skolem-Noether theorem (see (??) below), there exists

u ∈ GL(V ) such that σb ◦σ′−1
= Int(u). Then σ′ is the adjoint anti-automorphism

with respect to the bilinear form b′ defined by

b′(x, y) = b
(
u(x), y

)
.

Thus, the first part of the theorem is proved.
Observe also that if b is a nonsingular bilinear form on V with adjoint anti-

automorphism σb, then the bilinear form b′ defined by

b′(x, y) = b(y, x) for x, y ∈ V
has adjoint anti-automorphism σb′ = σ−1

b . Therefore, σ2
b = Id if and only if b and b′

are scalar multiples of each other; since the scalar factor ε such that b′ = εb clearly
satisfies ε2 = 1, this condition holds if and only if b is symmetric or skew-symmetric.

This shows that F -linear involutions correspond to symmetric or skew-sym-
metric bilinear forms under the bijection above.

The involution σb associated to a nonsingular symmetric or skew-symmetric
bilinear form b under the correspondence of the theorem is called the adjoint in-

volution with respect to b. Our aim in this first chapter is to give an analogous
interpretation of involutions on arbitrary central simple algebras in terms of hermit-
ian forms on vector spaces over skew fields. We first review basic notions concerning
central simple algebras. The first section also discusses Severi-Brauer varieties, for
use in §??. In §?? we present the basic definitions concerning involutions on cen-
tral simple algebras. We distinguish three types of involutions, according to the
type of pairing they are adjoint to over an algebraic closure: involutions which are
adjoint to symmetric (resp. alternating) bilinear forms are called orthogonal (resp.
symplectic); those which are adjoint to hermitian forms are called unitary. Invo-
lutions of the first two types leave the center invariant; they are called involutions

of the first kind. Unitary involutions are also called involutions of the second kind ;
they restrict to a nontrivial automorphism of the center. Necessary and sufficient
conditions for the existence of an involution on a central simple algebra are given
in §??.

The theorem above, relating bilinear forms on a vector space to involutions
on the endomorphism algebra, is generalized in §??, where hermitian forms over
simple algebras are investigated. Relations between an analogue of the Scharlau
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transfer for hermitian forms and extensions of involutions are also discussed in this
section.

When F has characteristic 2, it is important to distinguish between bilinear
and quadratic forms. Every quadratic form defines (by polarization) an alternating
form, but not conversely since a given alternating form is the polar of various quad-
ratic forms. The quadratic pairs introduced in the final section may be regarded
as twisted analogues of quadratic forms up to a scalar factor in the same way that
involutions may be thought of as twisted analogues of nonsingular symmetric or
skew-symmetric bilinear forms. If the characteristic is different from 2, every or-
thogonal involution determines a unique quadratic pair since a quadratic form is
uniquely determined by its polar bilinear form. By contrast, in characteristic 2 the
involution associated to a quadratic pair is symplectic since the polar of a quadratic
form is alternating, and the quadratic pair is not uniquely determined by its asso-
ciated involution. Quadratic pairs play a central rôle in the definition of twisted
forms of orthogonal groups in Chapter ??.

§1. Central Simple Algebras

Unless otherwise mentioned, all the algebras we consider in this work are finite-
dimensional with 1. For any algebra A over a field F and any field extension K/F ,
we write AK for the K-algebra obtained from A by extending scalars to K:

AK = A⊗F K.
We also define the opposite algebra Aop by

Aop = { aop | a ∈ A },
with the operations defined as follows:

aop + bop = (a+ b)op, aopbop = (ba)op, α · aop = (α · a)op

for a, b ∈ A and α ∈ F .
A central simple algebra over a field F is a (finite dimensional) algebra A 6= {0}

with center F (= F ·1) which has no two-sided ideals except {0} and A. An algebra
A 6= {0} is a division algebra (or a skew field) if every non-zero element in A is
invertible.

1.A. Fundamental theorems. For the convenience of further reference, we
summarize without proofs some basic results from the theory of central simple
algebras. The structure of these algebras is determined by the following well-known
theorem of Wedderburn:

(1.1) Theorem (Wedderburn). For an algebra A over a field F , the following

conditions are equivalent :

(1) A is central simple.

(2) The canonical map A⊗F Aop → EndF (A) which associates to a⊗bop the linear

map x 7→ axb is an isomorphism.

(3) There is a field K containing F such that AK is isomorphic to a matrix algebra

over K, i.e., AK 'Mn(K) for some n.
(4) If Ω is an algebraically closed field containing F ,

AΩ 'Mn(Ω) for some n.
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(5) There is a finite dimensional central division algebra D over F and an integer r
such that A 'Mr(D).

Moreover, if these conditions hold, all the simple left (or right) A-modules are

isomorphic, and the division algebra D is uniquely determined up to an algebra

isomorphism as D = EndA(M) for any simple left A-module M .

References : See for instance Scharlau [?, Chapter 8] or Draxl [?, §3].

The fields K for which condition (??) holds are called splitting fields of A.
Accordingly, the algebra A is called split if it is isomorphic to a matrix algebra
Mn(F ) (or to EndF (V ) for some vector space V over F ).

Since the dimension of an algebra does not change under an extension of scalars,
it follows from the above theorem that the dimension of every central simple algebra
is a square: dimF A = n2 if AK 'Mn(K) for some extension K/F . The integer n is
called the degree of A and is denoted by degA. The degree of the division algebraD
in condition (??) is called the index of A (or sometimes the Schur index of A) and
denoted by indA. Alternately, the index of A can be defined by the relation

degA indA = dimF M

where M is any simple left module over A. This relation readily follows from the
fact that if A 'Mr(D), then Dr is a simple left module over A.

We rephrase the implication (??) ⇒ (??) in Wedderburn’s theorem:

(1.2) Corollary. Every central simple F -algebra A has the form

A ' EndD(V )

for some (finite dimensional) central division F -algebra D and some finite-dimen-

sional right vector space V over D. The F -algebra D is uniquely determined by A
up to isomorphism, V is a simple left A-module and degA = degD dimD V .

In view of the uniqueness (up to isomorphism) of the division algebra D (or,
equivalently, of the simple left A-module M), we may formulate the following defi-
nition:

(1.3) Definition. Finite dimensional central simple algebras A, B over a field F
are called Brauer-equivalent if the F -algebras of endomorphisms of any simple left
A-module M and any simple left B-module N are isomorphic:

EndA(M) ' EndB(N).

Equivalently, A and B are Brauer-equivalent if and only if M`(A) ' Mm(B)
for some integers `, m.

Clearly, every central simple algebra is Brauer-equivalent to one and only one
division algebra (up to isomorphism). If A and B are Brauer-equivalent central
simple algebras, then indA = indB; moreover, A ' B if and only if degA = degB.

The tensor product endows the set of Brauer equivalence classes of central
simple algebras over F with the structure of an abelian group, denoted Br(F ) and
called the Brauer group of F . The unit element in this group is the class of F
which is also the class of all the matrix algebras over F . The inverse of the class of
a central simple algebra A is the class of the opposite algebra Aop, as part (??) of
Wedderburn’s theorem shows.

Uniqueness (up to isomorphism) of simple left modules over central simple
algebras leads to the following two fundamental results:
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(1.4) Theorem (Skolem-Noether). Let A be a central simple F -algebra and let

B ⊂ A be a simple subalgebra. Every F -algebra homomorphism ρ : B → A extends

to an inner automorphism of A: there exists a ∈ A× such that ρ(b) = aba−1 for all

b ∈ B. In particular, every F -algebra automorphism of A is inner.

References : Scharlau [?, Theorem 8.4.2], Draxl [?, §7] or Pierce [?, §12.6].

The centralizer CAB of a subalgebra B ⊂ A is, by definition, the set of elements
in A which commute with every element in B.

(1.5) Theorem (Double centralizer). Let A be a central simple F -algebra and let

B ⊂ A be a simple subalgebra with center K ⊃ F . The centralizer CAB is a simple

subalgebra of A with center K which satisfies

dimF A = dimF B · dimF CAB and CACAB = B.

If K = F , then multiplication in A defines a canonical isomorphism A = B⊗FCAB.

References : Scharlau [?, Theorem 8.4.5], Draxl [?, §7] or Pierce [?, §12.7].

Let Ω denote an algebraic closure of F . Under scalar extension to Ω, every
central simple F -algebra A of degree n becomes isomorphic to Mn(Ω). We may
therefore fix an F -algebra embedding A ↪→ Mn(Ω) and view every element a ∈ A
as a matrix in Mn(Ω). Its characteristic polynomial has coefficients in F and is
independent of the embedding of A in Mn(Ω) (see Scharlau [?, Ch. 8, §5], Draxl [?,
§22], Reiner [?, §9] or Pierce [?, §16.1]); it is called the reduced characteristic

polynomial of A and is denoted

PrdA,a(X) = Xn − s1(a)Xn−1 + s2(a)X
n−2 − · · ·+ (−1)nsn(a).(1.6)

The reduced trace and reduced norm of a are denoted TrdA(a) and NrdA(a) (or
simply Trd(a) and Nrd(a)):

TrdA(a) = s1(a), NrdA(a) = sn(a).

We also write

SrdA(a) = s2(a).(1.7)

(1.8) Proposition. The bilinear form TA : A×A→ F defined by

TA(x, y) = TrdA(xy) for x, y ∈ A
is nonsingular.

Proof : The result is easily checked in the split case and follows in the general case
by scalar extension to a splitting field. (See Reiner [?, Theorem 9.9]).

1.B. One-sided ideals in central simple algebras. A fundamental result
of the Wedderburn theory of central simple algebras is that all the finitely generated
left (resp. right) modules over a central simple F -algebra A decompose into direct
sums of simple left (resp. right) modules (see Scharlau [?, p. 283]). Moreover, as
already pointed out in (??), the simple left (resp. right) modules are all isomorphic.
If A = Mr(D) for some integer r and some central division algebra D, then Dr is
a simple left A-module (via matrix multiplication, writing the elements of Dr as
column vectors). Therefore, every finitely generated left A-module M is isomorphic
to a direct sum of copies of Dr:

M ' (Dr)s for some integer s,
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hence

dimF M = rs dimF D = s degA indA.

More precisely, we may represent the elements in M by r× s-matrices with entries
in D:

M 'Mr,s(D)

so that the action of A = Mr(D) on M is the matrix multiplication.

(1.9) Definition. The reduced dimension of the left A-module M is defined by

rdimAM =
dimF M

degA
.

The reduced dimension rdimAM will be simply denoted by rdimM when the al-
gebra A is clear from the context. Observe from the preceding relation that the re-
duced dimension of a finitely generated left A-module is always a multiple of indA.
Moreover, every left A-module M of reduced dimension s indA is isomorphic to
Mr,s(D), hence the reduced dimension classifies left A-modules up to isomorphism.

The preceding discussion of course applies also to right A-modules; writing the
elements of Dr as row vectors, matrix multiplication also endows Dr with a right
A-module structure, and Dr is then a simple right A-module. Every right module
of reduced dimension s indA over A = Mr(D) is isomorphic to Ms,r(D).

(1.10) Proposition. Every left module of finite type M over a central simple F -

algebra A has a natural structure of right module over E = EndA(M), so that

M is an A-E-bimodule. If M 6= {0}, the algebra E is central simple over F and

Brauer-equivalent to A; moreover,

degE = rdimAM, rdimEM = degA,

and

A = EndE(M).

Conversely, if A and E are Brauer-equivalent central simple algebras over F , then

there is an A-E-bimodule M 6= {0} such that A = EndE(M), E = EndA(M),
rdimA(M) = degE and rdimE(M) = degA.

Proof : The first statement is clear. (Recall that endomorphisms of left modules
are written on the right of the arguments.) Suppose that A = Mr(D) for some
integer r and some central division algebra D. Then Dr is a simple left A-module,
hence D ' EndA(Dr) and M ' (Dr)s for some s. Therefore,

EndA(M) 'Ms

(
EndA(Dr)

)
'Ms(D).

This shows that E is central simple and Brauer-equivalent to A. Moreover, degE =
s degD = rdimAM , hence

rdimEM =
rs dimD

s degD
= r degD = degA.

Since M is an A-E-bimodule, we have a natural embedding A ↪→ EndE(M). Com-
puting the degree of EndE(M) as we computed deg EndA(M) above, we get

deg EndE(M) = degA,

hence this natural embedding is surjective.
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For the converse, suppose that A and E are Brauer-equivalent central simple
F -algebras. We may assume that

A = Mr(D) and E = Ms(D)

for some central division F -algebraD and some integers r and s. Let M = Mr,s(D)
be the set of r × s-matrices over D. Matrix multiplication endows M with an A-
E-bimodule structure, so that we have natural embeddings

A ↪→ EndE(M) and E ↪→ EndA(M).(1.11)

Since dimF M = rs dimF D, it is readily computed that rdimEM = degA and
rdimAM = degE. The first part of the proposition then yields

deg EndA(M) = rdimAM = degE and deg EndE(M) = rdimEM = degA,

hence the natural embeddings (??) are surjective.

Ideals and subspaces. Suppose now that A = EndD(V ) for some central
division algebra D over F and some finite dimensional right vector space V over D.
We aim to get an explicit description of the one-sided ideals in A in terms of
subspaces of V .

Let U ⊂ V be a subspace. Composing every linear map from V to U with the
inclusion U ↪→ V , we identify HomD(V, U) with a subspace of A = EndD(V ):

HomD(V, U) = { f ∈ EndD(V ) | im f ⊂ U }.
This space clearly is a right ideal in A, of reduced dimension

rdimHomD(V, U) = dimD U degD.

Similarly, composing every linear map from the quotient space V/U to V with
the canonical map V → V/U , we may identify HomD(V/U, V ) with a subspace of
A = EndD(V ):

HomD(V/U, V ) = { f ∈ EndD(V ) | ker f ⊃ U }.
This space is clearly a left ideal in A, of reduced dimension

rdim HomD(V/U, V ) = dimD(V/U) degD.

(1.12) Proposition. The map U 7→ HomD(V, U) defines a one-to-one correspon-

dence between subspaces of dimension d in V and right ideals of reduced dimen-

sion d indA in A = EndD(V ). Similarly, the map U 7→ HomD(V/U, V ) defines a

one-to-one correspondence between subspaces of dimension d in V and left ideals

of reduced dimension degA− d indA in A. Moreover, there are canonical isomor-

phisms of F -algebras :

EndA
(
HomD(V, U)

)
' EndD(U) and EndA

(
HomD(V/U, V )

)
' EndD(V/U).

Proof : The last statement is clear: multiplication on the left defines an F -algebra
homomorphism EndD(U) ↪→ EndA

(
HomD(V, U)

)
and multiplication on the right

defines an F -algebra homomorphism

EndD(V/U) ↪→ EndA
(
HomD(V/U, V )

)
.

Since rdim
(
HomD(V, U)

)
= dimD U degD, we have

deg EndA
(
HomD(V, U)

)
= dimD U degD = deg EndD(U),
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so the homomorphism EndD(U) ↪→ EndA
(
HomD(V, U)

)
is an isomorphism. Simi-

larly, the homomorphism EndD(V/U) ↪→ EndA
(
HomD(V/U, V )

)
is an isomorphism

by dimension count.
For the first part, it suffices to show that every right (resp. left) ideal in A has

the form HomD(V, U) (resp. HomD(V/U, V )) for some subspace U ⊂ V . This is
proved for instance in Baer [?, §5.2].

(1.13) Corollary. For every left (resp. right) ideal I ⊂ A there exists an idempo-

tent e ∈ A such that I = Ae (resp. I = eA). Multiplication on the right (resp. left)
induces a surjective homomorphism of right (resp. left) EndA(I)-modules :

ρ : I → EndA(I)

which yields an isomorphism: eAe ' EndA(I).

Proof : If I = HomD(V/U, V ) (resp. HomD(V, U)), choose a complementary sub-
space U ′ in V , so that V = U⊕U ′, and take for e the projection on U ′ parallel to U
(resp. the projection on U parallel to U ′). We then have I = Ae (resp. I = eA).

For simplicity of notation, we prove the rest only in the case of a left ideal I .
Then EndA(I) acts on I on the right. For x ∈ I , define ρ(x) ∈ EndA(I) by

yρ(x) = yx.

For f ∈ EndA(I) we have

(yx)f = yxf = yρ(x
f ),

hence

ρ(xf ) = ρ(x) ◦ f,
which means that ρ is a homomorphism of right EndA(I)-modules. In order to see
that ρ is onto, pick an idempotent e ∈ A such that I = Ae. For every y ∈ I we
have y = ye; it follows that every f ∈ EndA(I) is of the form f = ρ(ef ), since for
every y ∈ I ,

yf = (ye)f = yef = yρ(e
f ).

Therefore, ρ is surjective.
To complete the proof, we show that the restriction of ρ to eAe is an isomor-

phism eAe ∼−→ EndA(I). It is readily verified that this restriction is an F -algebra
homomorphism. Moreover, for every x ∈ I one has ρ(x) = ρ(ex) since y = ye for
every y ∈ I . Therefore, the restriction of ρ to eAe is also surjective onto EndA(I).
Finally, if ρ(ex) = 0, then in particular

eρ(ex) = ex = 0,

so ρ is injective on eAe.

Annihilators. For every left ideal I in a central simple algebraA over a field F ,
the annihilator I0 is defined by

I0 = {x ∈ A | Ix = {0} }.
This set is clearly a right ideal. Similarly, for every right ideal I , the annihilator I0

is defined by

I0 = {x ∈ A | xI = {0} };
it is a left ideal in A.
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(1.14) Proposition. For every left or right ideal I ⊂ A, rdim I+rdim I0 = degA
and I00 = I.

Proof : Let A = EndD(V ). For any subspace U ⊂ V it follows from the definition
of the annihilator that

HomD(V, U)0 = HomD(V/U, V ) and HomD(V/U, V )0 = HomD(V, U).

Since every left (resp. right) ideal I ⊂ A has the form I = HomD(V/U, V ) (resp.
I = HomD(V, U)), the proposition follows.

Now, let J ⊂ A be a right ideal of reduced dimension k and let B ⊂ A be the
idealizer of J :

B = { a ∈ A | aJ ⊂ J }.
This set is a subalgebra of A containing J as a two-sided ideal. It follows from the
definition of J0 that J0b ⊂ J0 for all b ∈ B and that J0 ⊂ B. Therefore, (??) shows
that the map ρ : B → EndA(J0) defined by multiplication on the right is surjective.
Its kernel is J00 = J , hence it induces an isomorphism B/J ∼−→ EndA(J0).

For every right ideal I ⊂ A containing J , let

Ĩ = ρ(I ∩ B).

(1.15) Proposition. The map I 7→ Ĩ defines a one-to-one correspondence between

right ideals of reduced dimension r in A which contain J and right ideals of reduced

dimension r − k in EndA(J0). If A = EndD(V ) and J = HomD(V, U) for some

subspace U ⊂ V of dimension r/ indA, then for I = HomD(V,W ) with W ⊃ U , we

have under the natural isomorphism EndA(J0) = EndD(V/U) of (??) that

Ĩ = HomD(V/U,W/U).

Proof : In view of (??), the second part implies the first, since the map W 7→W/U
defines a one-to-one correspondence between subspaces of dimension r/ indA in V
which contain U and subspaces of dimension (r − k)/ indA in V/U .

Suppose that A = EndD(V ) and J = HomD(V, U), hence J0 = HomD(V/U, V )
and B = { f ∈ A | f(U) ⊂ U }. Every f ∈ B induces a linear map f ∈ EndD(V/U),
and the homomorphism ρ : B → EndA(J0) = EndD(V/U) maps f to f since for
g ∈ J0 we have

gρ(f) = g ◦ f = g ◦ f.
For I = HomD(V,W ) with W ⊃ U , it follows that

Ĩ = { f | f ∈ I and f(U) ⊂ U } ⊂ HomD(V/U,W/U).

The converse inclusion is clear, since using bases of U , W and V it is easily seen
that every linear map h ∈ HomD(V/U,W/U) is of the form h = f for some f ∈
HomD(V,W ) such that f(U) ⊂ U .

1.C. Severi-Brauer varieties. Let A be a central simple algebra of degree n
over a field F and let r be an integer, 1 ≤ r ≤ n. Consider the Grassmannian

Gr(rn,A) of rn-dimensional subspaces in A. The Plücker embedding identifies
Gr(rn,A) with a closed subvariety of the projective space on the rn-th exterior
power of A (see Harris [?, Example 6.6, p. 64]):

Gr(rn,A) ⊂ P(
∧rn

A).
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The rn-dimensional subspace U ⊂ A corresponding to a non-zero rn-vector u1 ∧
· · · ∧ urn ∈

∧rn
A is

U = {x ∈ A | u1 ∧ · · · ∧ urn ∧ x = 0 } = u1F + · · ·+ urnF.

Among the rn-dimensional subspaces in A, the right ideals of reduced dimension r
are the subspaces which are preserved under multiplication on the right by the
elements of A. Such ideals may fail to exist: for instance, if A is a division algebra,
it does not contain any nontrivial ideal; on the other hand, if A 'Mn(F ), then it
contains right ideals of every reduced dimension r = 0, . . . , n. Since every central
simple F -algebra becomes isomorphic to a matrix algebra over some scalar extension
of F , this situation is best understood from an algebraic geometry viewpoint: it is
comparable to the case of varieties defined over some base field F which have no
rational point over F but acquire points over suitable extensions of F .

To make this viewpoint precise, consider an arbitrary basis (ei)1≤i≤n2 of A.
The rn-dimensional subspace represented by an rn-vector u1 ∧ · · · ∧ urn ∈

∧rn
A

is a right ideal of reduced dimension r if and only if it is preserved under right
multiplication by e1, . . . , en2 , i.e.,

u1ei ∧ · · · ∧ urnei ∈ u1 ∧ · · · ∧ urnF for i = 1, . . . , n2,

or, equivalently,

u1ei ∧ · · · ∧ urnei ∧ uj = 0 for i = 1, . . . , n2 and j = 1, . . . , rn.

This condition translates to a set of equations on the coordinates of the rn-vector
u1 ∧ · · · ∧ urn, hence the right ideals of reduced dimension r in A form a closed
subvariety of Gr(rn,A).

(1.16) Definition. The (generalized) Severi-Brauer variety SBr(A) is the vari-
ety of right ideals of reduced dimension r in A. It is a closed subvariety of the
Grassmannian:

SBr(A) ⊂ Gr(rn,A).

For r = 1, we write simply SB(A) = SB1(A). This is the (usual) Severi-Brauer
variety of A, first defined by F. Châtelet [?].

(1.17) Proposition. The Severi-Brauer variety SBr(A) has a rational point over

an extension K of F if and only if the index indAK divides r. In particular, SB(A)
has a rational point over K if and only if K splits A.

Proof : From the definition, it follows that SBr(A) has a rational point over K if
and only if AK contains a right ideal of reduced dimension r. Since the reduced
dimension of any finitely generated right AK-module is a multiple of indAK , it
follows that indAK divides r if SBr(A) has a rational point over K. Conversely,
suppose r = m indAK for some integer m and let AK ' Mt(D) for some division
algebra D and some integer t. The set of matrices in Mt(D) whose t−m last rows
are zero is a right ideal of reduced dimension r, hence SBr(A) has a rational point
over K.

The following theorem shows that Severi-Brauer varieties are twisted forms of
Grassmannians:

(1.18) Theorem. For A = EndF (V ), there is a natural isomorphism

SBr(A) ' Gr(r, V ).
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In particular, for r = 1,

SB(A) ' P(V ).

Proof : Let V ∗ = HomF (V, F ) be the dual of V . Under the natural isomorphism
A = EndF (V ) ' V ⊗F V ∗, multiplication is given by

(v ⊗ φ) · (w ⊗ ψ) = (v ⊗ ψ)φ(w).

By (??), the right ideals of reduced dimension r in A are of the form HomF (V, U) =
U ⊗ V ∗ where U is an r-dimensional subspace in V .

We will show that the correspondence U ↔ U ⊗ V ∗ between r-dimensional
subspaces in V and right ideals of reduced dimension r in A induces an isomorphism
of varieties Gr(r, V ) ' SBr(A).

For any vector space W of dimension n, there is a morphism Gr(r, V ) →
Gr(rn, V ⊗W ) which maps an r-dimensional subspace U ⊂ V to U⊗W ⊂ V ⊗W . In
the particular case where W = V ∗ we thus get a morphism Φ: Gr(r, V )→ SBr(A)
which maps U to U ⊗ V ∗.

In order to show that Φ is an isomorphism, we consider the following affine
covering of Gr(r, V ): for each subspace S ⊂ V of dimension n− r, we denote by US
the set of complementary subspaces:

US = {U ⊂ V | U ⊕ S = V }.
The set US is an affine open subset of Gr(r, V ); more precisely, if U0 is a fixed
complementary subspace of S, there is an isomorphism:

HomF (U0, S) ∼−→ US
which maps f ∈ HomF (U0, S) to U = {x+ f(x) | x ∈ U0 } (see Harris [?, p. 65]).
Similarly, we may also consider US⊗V ∗ ⊂ Gr(rn,A). The image of the restriction
of Φ to US is

{U ⊗ V ∗ ⊂ V ⊗ V ∗ | (U ⊗ V ∗)⊕ (S ⊗ V ∗) = V ⊗ V ∗ } = US⊗V ∗ ∩ SBr(A).

Moreover, there is a commutative diagram:

US
Φ|US−−−−→ US⊗V ∗

'
y

y'

HomF (U0, S)
φ−−−−→ HomF (U0 ⊗ V ∗, S ⊗ V ∗)

where φ(f) = f ⊗ IdV ∗ . Since φ is linear and injective, it is an isomorphism of
varieties between HomF (U0, S) and its image. Therefore, the restriction of Φ to US
is an isomorphism Φ|US : US ∼−→ US⊗V ∗ ∩ SBr(A). Since the open sets US form a
covering of Gr(r, V ), it follows that Φ is an isomorphism.

Although Severi-Brauer varieties are defined in terms of right ideals, they can
also be used to derive information on left ideals. Indeed, if J is a left ideal in a
central simple algebra A, then the set

Jop = { jop ∈ Aop | j ∈ J }
is a right ideal in the opposite algebra Aop. Therefore, the variety of left ideals
of reduced dimension r in A can be identified with SBr(A

op). We combine this
observation with the annihilator construction (see §??) to get the following result:
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(1.19) Proposition. For any central simple algebra A of degree n, there is a

canonical isomorphism

α : SBr(A) ∼−→ SBn−r(A
op)

which maps a right ideal I ⊂ A of reduced dimension r to (I0)op.

Proof : In order to prove that α is an isomorphism, we may extend scalars to a
splitting field of A. We may therefore assume that A = EndF (V ) for some n-
dimensional vector space V . Then Aop = EndF (V ∗) under the identification fop =
f t for f ∈ EndF (V ). By (??), we may further identify

SBr(A) = Gr(r, V ), SBn−r(A
op) = Gr(n− r, V ∗).

Under these identifications, the map α : Gr(r, V ) → Gr(n − r, V ∗) carries every
r-dimensional subspace U ⊂ V to U 0 = {ϕ ∈ V ∗ | ϕ(U) = {0} }.

To show that α is an isomorphism of varieties, we restrict it to the affine open
sets US defined in the proof of Theorem (??): let S be an (n − r)-dimensional
subspace in V and

US = {U ⊂ V | U ⊕ S = V } ⊂ Gr(r, V ).

Let U0 ⊂ V be such that U0 ⊕ S = V , so that US ' HomF (U0, S). We also have
U0

0 ⊕ S0 = V ∗, US0 ' HomF (U0
0 , S

0), and the map α restricts to α|US : US → US0 .
It therefore induces a map α′ which makes the following diagram commute:

US
α|US−−−−→ US0

'
y

y'

HomF (U0, S)
α′−−−−→ HomF (U0

0 , S
0).

We now proceed to show that α′ is an isomorphism of (affine) varieties.
Every linear form in U0

0 restricts to a linear form on S, and since V = U0⊕S we
thus get a natural isomorphism U 0

0 ' S∗. Similarly, S0 ' U∗
0 , so HomF (U0

0 , S
0) '

HomF (S∗, U∗
0 ). Under this identification, a direct calculation shows that the map α′

carries f ∈ HomF (U0, S) to −f t ∈ HomF (S∗, U∗
0 ) = HomF (U0

0 , S
0). It is therefore

an isomorphism of varieties. Since the open sets US cover Gr(r, V ), it follows that
α is an isomorphism.

If V is a vector space of dimension n over a field F and U ⊂ V is a subspace of
dimension k, then for r = k, . . . , n the Grassmannian Gr(r − k, V/U) embeds into
Gr(r, V ) by mapping every subspace W ⊂ V/U to the subspace W ⊃ U such that
W/U = W . The image of Gr(r − k, V/U) in Gr(r, V ) is the sub-Grassmannian of
r-dimensional subspaces in V which contain U (see Harris [?, p. 66]). There is an
analogous notion for Severi-Brauer varieties:

(1.20) Proposition. Let A be a central simple F -algebra and let J ⊂ A be a right

ideal of reduced dimension k (i.e., a rational point of SBk(A)). The one-to-one

correspondence between right ideals of reduced dimension r in A which contain J
and right ideals of reduced dimension r − k in EndA(J0) set up in (??) defines an

embedding :

SBr−k
(
EndA(J0)

)
↪→ SBr(A).

The image of SBr−k
(
EndA(J0)

)
in SBr(A) is the variety of right ideals of reduced

dimension r in A which contain J .
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Proof : It suffices to prove the proposition over a scalar extension. We may therefore
assume that A is split, i.e., that A = EndF (V ). Let then J = HomF (V, U) for some
subspace U ⊂ V of dimension k. We have J0 = HomF (V/U, V ) and (??) shows
that there is a canonical isomorphism EndA(J0) = EndF (V/U). Theorem (??)
then yields canonical isomorphisms SBr(A) = Gr(r, V ) and SBr−k

(
EndA(J0)

)
=

Gr(r− k, V/U). Moreover, from (??) it follows that the map SBr−k
(
EndA(J0)

)
→

SBr(A) corresponds under these identifications to the embedding Gr(r−k, V/U) ↪→
Gr(r, V ) described above.

§2. Involutions

An involution on a central simple algebra A over a field F is a map σ : A→ A
subject to the following conditions:

(a) σ(x+ y) = σ(x) + σ(y) for x, y ∈ A.
(b) σ(xy) = σ(y)σ(x) for x, y ∈ A.
(c) σ2(x) = x for x ∈ A.

Note that the map σ is not required to be F -linear. However, it is easily checked
that the center F (= F · 1) is preserved under σ. The restriction of σ to F is
therefore an automorphism which is either the identity or of order 2. Involutions
which leave the center elementwise invariant are called involutions of the first kind.
Involutions whose restriction to the center is an automorphism of order 2 are called
involutions of the second kind.

This section presents the basic definitions and properties of central simple alge-
bras with involution. Involutions of the first kind are considered first. As observed
in the introduction to this chapter, they are adjoint to nonsingular symmetric or
skew-symmetric bilinear forms in the split case. Involutions of the first kind are
correspondingly divided into two types: the orthogonal and the symplectic types.
We show in (??) how to characterize these types by properties of the symmetric ele-
ments. Involutions of the second kind, also called unitary, are treated next. Various
examples are provided in (??)–(??).

2.A. Involutions of the first kind. Throughout this subsection, A denotes
a central simple algebra over a field F of arbitrary characteristic, and σ is an
involution of the first kind on A. Our basic object of study is the couple (A, σ); from
this point of view, a homomorphism of algebras with involution f : (A, σ) → (A′, σ′)
is an F -algebra homomorphism f : A→ A′ such that σ′ ◦ f = f ◦σ. Our main tool
is the extension of scalars: if L is any field containing F , the involution σ extends
to an involution of the first kind σL = σ ⊗ IdL on AL = A ⊗F L. In particular, if
L is a splitting field of A, we may identify AL = EndL(V ) for some vector space V
over L of dimension n = degA. As observed in the introduction to this chapter,
the involution σL is then the adjoint involution σb with respect to some nonsingular
symmetric or skew-symmetric bilinear form b on V . By means of a basis of V , we
may further identify V with Ln, hence also A with Mn(L). For any matrix m, let
mt denote the transpose of m. If g ∈ GLn(L) denotes the Gram matrix of b with
respect to the chosen basis, then

b(x, y) = xt · g · y
where x, y are considered as column matrices and gt = g if b is symmetric, gt = −g
if b is skew-symmetric. The involution σL is then identified with the involution σg
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defined by

σg(m) = g−1 ·mt · g for m ∈Mn(L).

For future reference, we summarize our conclusions:

(2.1) Proposition. Let (A, σ) be a central simple F -algebra of degree n with in-

volution of the first kind and let L be a splitting field of A. Let V be an L-vector

space of dimension n. There is a nonsingular symmetric or skew-symmetric bilin-

ear form b on V and an invertible matrix g ∈ GLn(L) such that gt = g if b is

symmetric and gt = −g if b is skew-symmetric, and

(AL, σL) '
(
EndL(V ), σb

)
'

(
Mn(L), σg

)
.

As a first application, we have the following result:

(2.2) Corollary. For all a ∈ A, the elements a and σ(a) have the same reduced

characteristic polynomial. In particular, TrdA
(
σ(a)

)
= TrdA(a) and NrdA

(
σ(a)

)
=

NrdA(a).

Proof : For all m ∈ Mn(L), g ∈ GLn(L), the matrix g−1 · mt · g has the same
characteristic polynomial as m.

Of course, in (??), neither the form b nor the matrix g (nor even the splitting
field L) is determined uniquely by the involution σ; some of their properties reflect
properties of σ, however. As a first example, we show in (??) below that two types
of involutions of the first kind can be distinguished which correspond to symmetric
and to alternating1 forms. This distinction is made on the basis of properties of
symmetric elements which we define next.

In a central simple F -algebra A with involution of the first kind σ, the sets of
symmetric, skew-symmetric, symmetrized and alternating elements in A are defined
as follows:

Sym(A, σ) = { a ∈ A | σ(a) = a },
Skew(A, σ) = { a ∈ A | σ(a) = −a },
Symd(A, σ) = { a+ σ(a) | a ∈ A },

Alt(A, σ) = { a− σ(a) | a ∈ A }.
If charF 6= 2, then Symd(A, σ) = Sym(A, σ), Alt(A, σ) = Skew(A, σ) and A =
Sym(A, σ) ⊕ Skew(A, σ) since every element a ∈ A decomposes as a = 1

2

(
a +

σ(a)
)

+ 1
2

(
a− σ(a)

)
. If charF = 2, then Symd(A, σ) = Alt(A, σ) ⊂ Skew(A, σ) =

Sym(A, σ), and (??) below shows that this inclusion is strict.

(2.3) Lemma. Let n = degA; then dim Sym(A, σ) + dim Alt(A, σ) = n2. More-

over, Alt(A, σ) is the orthogonal space of Sym(A, σ) for the bilinear form TA on A
induced by the reduced trace:

Alt(A, σ) = { a ∈ A | TrdA(as) = 0 for s ∈ Sym(A, σ) }.
Similarly, dim Skew(A, σ)+dim Symd(A, σ) = n2, and Symd(A, σ) is the orthogonal

space of Skew(A, σ) for the bilinear form TA.

1If char F 6= 2, every skew-symmetric bilinear form is alternating; if char F = 2, the notions
of symmetric and skew-symmetric bilinear forms coincide, but the notion of alternating form is
more restrictive.
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Proof : The first relation comes from the fact that Alt(A, σ) is the image of the
linear endomorphism Id−σ of A, whose kernel is Sym(A, σ). If a ∈ Alt(A, σ), then
a = x− σ(x) for some x ∈ A, hence for s ∈ Sym(A, σ),

TrdA(as) = TrdA(xs) − TrdA
(
σ(x)s

)
= TrdA(xs) − TrdA

(
σ(sx)

)
.

Corollary (??) shows that the right side vanishes, hence the inclusion

Alt(A, σ) ⊂ { a ∈ A | TrdA(as) = 0 for s ∈ Sym(A, σ) }.
Dimension count shows that this inclusion is an equality since TA is nonsingular
(see (??)).

The statements involving Symd(A, σ) readily follow, either by mimicking the
arguments above, or by using the fact that in characteristic different from 2,
Symd(A, σ) = Sym(A, σ) and Alt(A, σ) = Skew(A, σ), and, in characteristic 2,
Symd(A, σ) = Alt(A, σ) and Skew(A, σ) = Sym(A, σ).

We next determine the dimensions of Sym(A, σ) and Skew(A, σ) (and therefore
also of Symd(A, σ) and Alt(A, σ)).

Consider first the split case, assuming that A = EndF (V ) for some vector
space V over F . As observed in the introduction to this chapter, every involution
of the first kind σ on A is the adjoint involution with respect to a nonsingular
symmetric or skew-symmetric bilinear form b on V which is uniquely determined
by σ up to a factor in F×.

(2.4) Lemma. Let σ = σb be the adjoint involution on A = EndF (V ) with respect

to the nonsingular symmetric or skew-symmetric bilinear form b on V , and let

n = dimF V .

(1) If b is symmetric, then dimF Sym(A, σ) = n(n+ 1)/2.
(2) If b is skew-symmetric, then dimF Skew(A, σ) = n(n+ 1)/2.
(3) If charF = 2, then b is alternating if and only if tr(f) = 0 for all f ∈
Sym(A, σ). In this case, n is necessarily even.

Proof : As in (??), we use a basis of V to identify (A, σ) with
(
Mn(F ), σg

)
, where

g ∈ GLn(F ) satisfies gt = g if b is symmetric and gt = −g if b is skew-symmetric.
For m ∈Mn(F ), the relation gm = (gm)t is equivalent to σg(m) = m if gt = g and
to σg(m) = −m if gt = −g. Therefore,

g−1 · Sym
(
Mn(F ), t

)
=

{
Sym(A, σ) if b is symmetric,

Skew(A, σ) if b is skew-symmetric.

The first two parts then follow from the fact that the space Sym
(
Mn(F ), t

)
of n×n

symmetric matrices (with respect to the transpose) has dimension n(n+ 1)/2.
Suppose now that charF = 2. If b is not alternating, then b(v, v) 6= 0 for some

v ∈ V . Consider the map f : V → V defined by

f(x) = vb(v, x)b(v, v)−1 for x ∈ V .
Since b is symmetric we have

b
(
f(x), y

)
= b(v, y)b(v, x)b(v, v)−1 = b

(
x, f(y)

)
for x, y ∈ V ,

hence σ(f) = f . Since f is an idempotent in A, its trace is the dimension of its
image:

tr(f) = dim im f = 1.
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Therefore, if the trace of every symmetric element in A is zero, then b is alternating.
Conversely, suppose b is alternating; it follows that n is even, since every al-

ternating form on a vector space of odd dimension is singular. Let (ei)1≤i≤n be
a symplectic basis of V , in the sense that b(e2i−1, e2i) = 1, b(e2i, e2i+1) = 0 and
b(ei, ej) = 0 if |i− j| > 1. Let f ∈ Sym(A, σ); for j = 1, . . . , n let

f(ej) =

n∑

i=1

eiaij for some aij ∈ F ,

so that tr(f) =
∑n

i=1 aii. For i = 1, . . . , n/2 we have

b
(
f(e2i−1), e2i

)
= a2i−1,2i−1 and b

(
e2i−1, f(e2i)

)
= a2i,2i;

since σ(f) = f , it follows that a2i−1,2i−1 = a2i,2i for i = 1, . . . , n/2, hence

tr(f) = 2

n/2∑

i=1

a2i,2i = 0.

We now return to the general case where A is an arbitrary central simple F -
algebra and σ is an involution of the first kind on A. Let n = degA and let L be a
splitting field of A. Consider an isomorphism as in (??):

(AL, σL) '
(
EndL(V ), σb

)
.

This isomorphism carries Sym(AL, σL) = Sym(A, σ)⊗FL to Sym
(
EndL(V ), σb

)
and

Skew(AL, σL) to Skew
(
EndL(V ), σb

)
. Since extension of scalars does not change

dimensions, (??) shows

(a) dimF Sym(A, σ) = n(n+ 1)/2 if b is symmetric;
(b) dimF Skew(A, σ) = n(n+ 1)/2 if b is skew-symmetric.

These two cases coincide if charF = 2 but are mutually exclusive if charF 6= 2;
indeed, in this case A = Sym(A, σ)⊕Skew(A, σ), hence the dimensions of Sym(A, σ)
and Skew(A, σ) add up to n2.

Since the reduced trace of A corresponds to the trace of endomorphisms under
the isomorphism AL ' EndL(V ), we have TrdA(s) = 0 for all s ∈ Sym(A, σ) if
and only if tr(f) = 0 for all f ∈ Sym

(
EndL(V ), σb

)
, and Lemma (??) shows that,

when charF = 2, this condition holds if and only if b is alternating. Therefore, in
arbitrary characteristic, the property of b being symmetric or skew-symmetric or
alternating depends only on the involution and not on the choice of L nor of b. We
may thus set the following definition:

(2.5) Definition. An involution σ of the first kind is said to be of symplectic type

(or simply symplectic) if for any splitting field L and any isomorphism (AL, σL) '(
EndL(V ), σb

)
, the bilinear form b is alternating; otherwise it is called of orthogonal

type (or simply orthogonal). In the latter case, for any splitting field L and any
isomorphism (AL, σL) '

(
EndL(V ), σb

)
, the bilinear form b is symmetric (and

nonalternating).

The preceding discussion yields an alternate characterization of orthogonal and
symplectic involutions:

(2.6) Proposition. Let (A, σ) be a central simple F -algebra of degree n with in-

volution of the first kind.
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(1) Suppose that charF 6= 2, hence Symd(A, σ) = Sym(A, σ) and Alt(A, σ) =
Skew(A, σ). If σ is of orthogonal type, then

dimF Sym(A, σ) = n(n+1)
2 and dimF Skew(A, σ) = n(n−1)

2 .

If σ is of symplectic type, then

dimF Sym(A, σ) = n(n−1)
2 and dimF Skew(A, σ) = n(n+1)

2 .

Moreover, in this case n is necessarily even.

(2) Suppose that charF = 2, hence Sym(A, σ) = Skew(A, σ) and Symd(A, σ) =
Alt(A, σ); then

dimF Sym(A, σ) = n(n+1)
2 and dimF Alt(A, σ) = n(n−1)

2 .

The involution σ is of symplectic type if and only if TrdA
(
Sym(A, σ)

)
= {0}, which

holds if and only if 1 ∈ Alt(A, σ). In this case n is necessarily even.

Proof : The only statement which has not been observed before is that, if charF =
2, the reduced trace of every symmetric element is 0 if and only if 1 ∈ Alt(A, σ).
This follows from the characterization of alternating elements in (??).

Given an involution of the first kind on a central simple algebra A, all the other
involutions of the first kind on A can be obtained by the following proposition:

(2.7) Proposition. Let A be a central simple algebra over a field F and let σ be

an involution of the first kind on A.

(1) For each unit u ∈ A× such that σ(u) = ±u, the map Int(u) ◦σ is an involution

of the first kind on A.

(2) Conversely, for every involution σ′ of the first kind on A, there exists some

u ∈ A×, uniquely determined up to a factor in F×, such that

σ′ = Int(u) ◦ σ and σ(u) = ±u.
We then have

Sym(A, σ′) =

{
u · Sym(A, σ) = Sym(A, σ) · u−1 if σ(u) = u

u · Skew(A, σ) = Skew(A, σ) · u−1 if σ(u) = −u
and

Skew(A, σ′) =

{
u · Skew(A, σ) = Skew(A, σ) · u−1 if σ(u) = u

u · Sym(A, σ) = Sym(A, σ) · u−1 if σ(u) = −u.

If σ(u) = u, then Alt(A, σ′) = u · Alt(A, σ) = Alt(A, σ) · u−1.

(3) Suppose that σ′ = Int(u) ◦ σ where u ∈ A× is such that u = ±u. If charF 6= 2,
then σ and σ′ are of the same type if and only if σ(u) = u. If charF = 2, the

involution σ′ is symplectic if and only if u ∈ Alt(A, σ).

Proof : A computation shows that
(
Int(u) ◦ σ

)2
= Int

(
uσ(u)−1

)
, proving (??).

If σ′ is an involution of the first kind on A, then σ′ ◦ σ is an automorphism
of A which leaves F elementwise invariant. The Skolem-Noether theorem then
yields an element u ∈ A×, uniquely determined up to a factor in F×, such that

σ′ ◦ σ = Int(u), hence σ′ = Int(u) ◦ σ. It follows that σ′2 = Int
(
uσ(u)−1

)
, hence

the relation σ′2 = IdA yields

σ(u) = λu for some λ ∈ F×.
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Applying σ to both sides of this relation and substituting λu for σ(u) in the resulting
equation, we get u = λ2u, hence λ = ±1. If σ(u) = u, then for all x ∈ A,

x− σ′(x) = u ·
(
u−1x− σ(u−1x)

)
=

(
xu− σ(xu)

)
· u−1.

This proves Alt(A, σ′) = u · Alt(A, σ) = Alt(A, σ) · u−1. The relations between
Sym(A, σ′), Skew(A, σ′) and Sym(A, σ), Skew(A, σ) follow by straightforward com-
putations, completing the proof of (??).

If charF 6= 2, the involutions σ and σ′ have the same type if and only if
Sym(A, σ) and Sym(A, σ′) have the same dimension. Part (??) shows that this
condition holds if and only if σ(u) = u. If charF = 2, the involution σ′ is symplectic
if and only if TrdA(s′) = 0 for all s′ ∈ Sym(A, σ′). In view of (??), this condition
may be rephrased as

TrdA(us) = 0 for s ∈ Sym(A, σ).

Lemma (??) shows that this condition holds if and only if u ∈ Alt(A, σ).

(2.8) Corollary. Let A be a central simple F -algebra with an involution σ of the

first kind.

(1) If degA is odd, then A is split and σ is necessarily of orthogonal type. Moreover,

the space Alt(A, σ) contains no invertible elements.

(2) If degA is even, then the index of A is a power of 2 and A has involutions of

both types. Whatever the type of σ, the space Alt(A, σ) contains invertible elements

and the space Sym(A, σ) contains invertible elements which are not in Alt(A, σ).

Proof : Define a homomorphism of F -algebras

σ∗ : A⊗F A→ EndF (A)

by σ∗(a ⊗ b)(x) = axσ(b) for a, b, x ∈ A. This homomorphism is injective since
A ⊗F A is simple and surjective by dimension count, hence it is an isomorphism.
Therefore, A ⊗F A splits2, and the exponent of A is 1 or 2. Since the index and
the exponent of a central simple algebra have the same prime factors (see Draxl [?,
Theorem 11, p. 66]), it follows that the index of A, indA, is a power of 2. In
particular, if degA is odd, then A is split. In this case, Proposition (??) shows
that every involution of the first kind has orthogonal type. If Alt(A, σ) contains an
invertible element u, then Int(u)◦σ has symplectic type, by (??); this is impossible.

Suppose henceforth that the degree of A is even. If A is split, then it has
involutions of both types, since a vector space of even dimension carries nonsingular
alternating bilinear forms as well as nonsingular symmetric, nonalternating bilinear
forms. Let σ be an involution of the first kind on A. In order to show that Alt(A, σ)
contains invertible elements, we consider separately the case where charF = 2. If
charF 6= 2, consider an involution σ′ whose type is different from the type of σ.
Proposition (??) yields an invertible element u ∈ A such that σ′ = Int(u) ◦ σ
and σ(u) = −u. Note also that 1 is an invertible element which is symmetric
but not alternating. If charF = 2, consider a symplectic involution σ′ and an
orthogonal involution σ′′. Again, (??) yields invertible elements u, v ∈ A× such
that σ′ = Int(u) ◦ σ and σ′′ = Int(v) ◦ σ, and shows that u ∈ Alt(A, σ) and
v ∈ Sym(A, σ) r Alt(A, σ).

2Alternately, the involution σ yields an isomorphism A ' Aop by mapping a ∈ A to�
σ(a)

�op
∈ Aop, hence the Brauer class [A] of A satisfies [A] = [A]−1.
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Assume next that A is not split. The base field F is then infinite, since the
Brauer group of a finite field is trivial (see for instance Scharlau [?, Corollary 8.6.3]).
Since invertible elements s are characterized by NrdA(s) 6= 0 where NrdA is the
reduced norm in A, the set of invertible alternating elements is a Zariski-open subset
of Alt(A, σ). Our discussion above of the split case shows that this open subset is
nonempty over an algebraic closure. Since F is infinite, rational points are dense,
hence this open set has a rational point. Similarly, the set of invertible symmetric
elements is a dense Zariski-open subset in Sym(A, σ), hence it is not contained in
the closed subset Sym(A, σ)∩Alt(A, σ). Therefore, there exist invertible symmetric
elements which are not alternating.

If u ∈ Alt(A, σ) is invertible, then Int(u)◦σ is an involution of the type opposite
to σ if charF 6= 2, and is a symplectic involution if charF = 2. If charF = 2 and
v ∈ Sym(A, σ) is invertible but not alternating, then Int(v) ◦ σ is an orthogonal
involution.

The existence of involutions of both types on central simple algebras of even
degree with involution can also be derived from the proof of (??) below.

The following proposition highlights a special feature of symplectic involutions:

(2.9) Proposition. Let A be a central simple F -algebra with involution σ of sym-

plectic type. The reduced characteristic polynomial of every element in Symd(A, σ)
is a square. In particular, NrdA(s) is a square in F for all s ∈ Symd(A, σ).

Proof : Let K be a Galois extension of F which splits A and let s ∈ Symd(A, σ).
It suffices to show that the reduced characteristic polynomial PrdA,s(X) ∈ F [X ]
is a square in K[X ], for then its monic square root is invariant under the action
of the Galois group Gal(K/F ), hence it is in F [X ]. Extending scalars from F to
K, we reduce to the case where A is split. We may thus assume that A = Mn(F ).
Proposition (??) then yields σ = Int(u) ◦ t for some invertible alternating matrix
u ∈ A×, hence Symd(A, σ) = u · Alt

(
Mn(F ), t

)
. Therefore, there exists a matrix

a ∈ Alt
(
Mn(F ), t

)
such that s = ua. The (reduced) characteristic polynomial of s

is then

PrdA,s(X) = det(X · 1− s) = (detu)
(
det(X · u−1 − a)

)
.

Since u and X ·u−1− a are alternating, their determinants are the squares of their
pfaffian pf u, pf(X · u−1 − a) (see for instance E. Artin [?, Theorem 3.27]), hence

PrdA,s(X) = [(pf u) pf(X · u−1 − a)]2.

Let degA = n = 2m. In view of the preceding proposition, for every s ∈
Symd(A, σ) there is a unique monic polynomial, the pfaffian characteristic polyno-

mial, Prpσ,s(X) ∈ F [X ] of degree m such that

PrdA,s(X) = Prpσ,s(X)2.

For s ∈ Symd(A, σ), we define the pfaffian trace Trpσ(s) and the pfaffian norm

Nrpσ(s) ∈ F as coefficients of Prpσ,s(X):

Prpσ,s(X) = Xm − Trpσ(s)X
m−1 + · · ·+ (−1)mNrpσ(s).(2.10)
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Thus, Trpσ and Nrpσ are polynomial maps of degree 1 and m respectively on
Symd(A, σ), and we have

TrdA(s) = 2 Trpσ(s) and NrdA(s) = Nrpσ(s)
2(2.11)

for all s ∈ Symd(A, σ). Moreover, we have PrdA,1(X) = (X − 1)2m, hence
Prpσ,1(X) = (X − 1)m and therefore

Trpσ(1) = m and Nrpσ(1) = 1.(2.12)

Since polynomial maps on Symd(A, σ) form a domain, the map Nrpσ is uniquely
determined by (??) and (??). (Of course, if charF 6= 2, the map Trpσ is also
uniquely determined by (??); in all characteristics it is uniquely determined by the
property in (??) below.) Note that the pfaffian norm Nrpσ (or simply pfaffian) is
an analogue of the classical pfaffian. However it is defined on the space Symd(A, σ)
whereas pf is defined on alternating matrices (under the transpose involution).
Nevertheless, it shares with the pfaffian the fundamental property demonstrated in
the following proposition:

(2.13) Proposition. For all s ∈ Symd(A, σ) and all a ∈ A,

Trpσ
(
σ(a) + a

)
= TrdA(a) and Nrpσ

(
σ(a)sa

)
= NrdA(a) Nrpσ(s).

Proof : We first prove the second equation. If s is not invertible, then NrdA(s) =
NrdA

(
σ(a)sa

)
= 0, hence Nrpσ(s) = Nrpσ

(
σ(a)sa

)
= 0, proving the equation in

this particular case. For s ∈ Symd(A, σ) ∩ A× fixed, consider both sides of the
equality to be proved as polynomial maps on A:

f1 : a 7→ Nrpσ
(
σ(a)sa

)
and f2 : a 7→ NrdA(a) Nrpσ(s).

Since NrdA
(
σ(a)sa

)
= NrdA(a)2 NrdA(s), we have f2

1 = f2
2 , hence (f1 + f2)(f1 −

f2) = 0. Since polynomial maps on A form a domain, it follows that f1 = ±f2.
Taking into account the fact that f1(1) = Nrpσ(s) = f2(1), we get f1 = f2.

The first equation follows from the second. For, let t be an indeterminate over
F and consider the element 1 + ta ∈ AF (t). By the equation just proven, we have

Nrpσ
((

1− tσ(a)
)
(1− ta)

)
= NrdA(1− ta) = 1− TrdA(a)t+ SrdA(a)t2 − . . .

On the other hand, for all s ∈ Symd(A, σ) we have

Nrpσ(1− s) = Prpσ,s(1) = 1− Trpσ(s) + · · ·+ (−1)mNrpσ(s),

hence the coefficient of −t in Nrpσ
((

1− tσ(a)
)
(1− ta)

)
is Trpσ

(
σ(a) + a

)
; the first

equality is thus proved.

2.B. Involutions of the second kind. In the case of involutions of the
second kind on a simple algebra B, the base field F is usually not the center of the
algebra, but the subfield of central invariant elements which is of codimension 2
in the center. Under scalar extension to an algebraic closure of F , the algebra B
decomposes into a direct product of two simple factors. It is therefore convenient
to extend our discussion of involutions of the second kind to semisimple F -algebras
of the form B1 ×B2, where B1, B2 are central simple F -algebras.

Throughout this section, we thus denote by B a finite dimensional F -algebra
whose center K is a quadratic étale3 extension of F , and assume that B is either
simple (if K is a field) or a direct product of two simple algebras (if K ' F × F ).

3This simply means that K is either a field which is a separable quadratic extension of F , or
K ' F × F . See §?? for more on étale algebras.
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We denote by ι the nontrivial automorphism of K/F and by τ an involution of the
second kind on B, whose restriction to K is ι. For convenience, we refer to (B, τ)
as a central simple F -algebra with involution of the second kind, even though
its center is not F and the algebra B may not be simple.4 A homomorphism
f : (B, τ) → (B′, τ ′) is then an F -algebra homomorphism f : B → B′ such that
τ ′ ◦ f = f ◦ τ .

If L is any field containing F , the L-algebra BL = B ⊗F L has center KL =
K ⊗F L, a quadratic étale extension of L, and carries an involution of the second
kind τL = τ ⊗ IdL. Moreover, (BL, τL) is a central simple L-algebra with involution
of the second kind.

As a parallel to the terminology of types used for involutions of the first kind,
and because of their relation with unitary groups (see Chapter ??), involutions of
the second kind are also called of unitary type (or simply unitary).

We first examine the case where the center K is not a field.

(2.14) Proposition. If K ' F × F , there is a central simple F -algebra E such

that

(B, τ) ' (E ×Eop, ε),

where the involution ε is defined by ε(x, yop) = (y, xop). This involution is called

the exchange involution.

Proof : Let B = B1 × B2 where B1, B2 are central simple F -algebras. Since the
restriction of τ to the center K = F ×F interchanges the two factors, it maps (1, 0)
to (0, 1), hence

τ
(
B1 × {0}

)
= τ

(
(B1 ×B2) · (1, 0)

)
= (0, 1) · (B1 ×B2) = {0} ×B2.

It follows that B1 and B2 are anti-isomorphic. We may then define an F -algebra
isomorphism f : Bop

1
∼−→ B2 by the relation

τ(x, 0) =
(
0, f(xop)

)
,

and identify B1 ×B2 with B1 ×Bop
1 by mapping (x1, x2) to

(
x1, f

−1(x2)
)
. Under

this map, τ is identified with the involution ε.

In view of this proposition, we may define the degree of the central simple
F -algebra (B, τ) with involution of the second kind by

deg(B, τ) =

{
degB if K is a field,

degE if K ' F × F and (B, τ) ' (E ×Eop, ε).

Equivalently, deg(B, τ) is defined by the relation dimF B = 2
(
deg(B, τ)

)2
.

If the center K of B is a field, (??) applies to BK = B ⊗F K, since its center
is KK = K ⊗F K ' K ×K. In this case we get a canonical isomorphism:

(2.15) Proposition. Suppose that the center K of B is a field. There is a canon-

ical isomorphism of K-algebras with involution

ϕ : (BK , τK) ∼−→ (B ×Bop, ε)

which maps b⊗ α to
(
bα,

(
τ(b)α

)op)
for b ∈ B and α ∈ K.

4We thus follow Jacobson’s convention in [?, p. 208]; it can be justified by showing that (B, τ)
is indeed central simple as an algebra-with-involution.
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Proof : It is straightforward to check that ϕ is a homomorphism of central simple
K-algebras with involution of the second kind. It thus suffices to prove that ϕ has
an inverse. Let α ∈ K r F . Then the map Ψ: B ×Bop → BK defined by

Ψ(x, yop) =

(
τ(y)α − xι(α)

α− ι(α)

)
⊗ 1 +

(
x− τ(y)
α− ι(α)

)
⊗ α

is the inverse of ϕ.

In a semisimple algebra of the form B1 × B2, where B1, B2 are central sim-
ple F -algebras of the same degree, the reduced characteristic polynomial of an
element (b1, b2) may be defined as

(
PrdB1,b1(X),PrdB2,b2(X)

)
∈ (F × F )[X ],

where PrdB1,b1(X) and PrdB2,b2(X) are the reduced characteristic polynomials of
b1 and b2 respectively (see Reiner [?, p. 121]). Since the reduced characteristic
polynomial of an element does not change under scalar extension (see Reiner [?,
Theorem (9.27)]), the preceding proposition yields:

(2.16) Corollary. For every b ∈ B, the reduced characteristic polynomials of b
and τ(b) are related by

PrdB,τ(b) = ι(PrdB,b) in K[X ].

In particular, TrdB
(
τ(b)

)
= ι

(
TrdB(b)

)
and NrdB

(
τ(b)

)
= ι

(
NrdB(b)

)
.

Proof : If K ' F × F , the result follows from (??); if K is a field, it follows
from (??).

As for involutions of the first kind, we may define the sets of symmetric, skew-
symmetric, symmetrized and alternating elements in (B, τ) by

Sym(B, τ) = { b ∈ B | τ(b) = b },
Skew(B, τ) = { b ∈ B | τ(b) = −b },
Symd(B, τ) = { b+ τ(b) | b ∈ B },

Alt(B, τ) = { b− τ(b) | b ∈ B }.
These sets are vector spaces over F . In contrast with the case of involutions of the
first kind, there is a straightforward relation between symmetric, skew-symmetric
and alternating elements, as the following proposition shows:

(2.17) Proposition. Symd(B, τ) = Sym(B, τ) and Alt(B, τ) = Skew(B, τ). For

any α ∈ K× such that τ(α) = −α,

Skew(B, τ) = α · Sym(B, τ).

If deg(B, τ) = n, then

dimF Sym(B, τ) = dimF Skew(B, τ) = dimF Symd(B, τ) = dimF Alt(B, τ) = n2.

Proof : The relations Skew(B, τ) = α · Sym(B, τ) and Symd(B, τ) ⊂ Sym(B, τ),
Alt(B, τ) ⊂ Skew(B, τ) are clear. If β ∈ K is such that β + ι(β) = 1, then every
element s ∈ Symd(B, τ) may be written as s = βs + τ(βs), hence Sym(B, τ) =
Symd(B, τ). Similarly, every element s ∈ Skew(B, τ) may be written as s = βs −
τ(βs), hence Skew(B, τ) = Alt(B, τ). Therefore, the vector spaces Sym(B, τ),
Skew(B, τ), Symd(B, τ) and Alt(B, τ) have the same dimension. This dimension
is 1

2 dimF B, since Alt(B, τ) is the image of the F -linear endomorphism Id − τ

of B, whose kernel is Sym(B, τ). Since dimF B = 2 dimK B = 2n2, the proof is
complete.
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As for involutions of the first kind, all the involutions of the second kind on B
which have the same restriction to K as τ are obtained by composing τ with an
inner automorphism, as we now show.

(2.18) Proposition. Let (B, τ) be a central simple F -algebra with involution of

the second kind, and let K denote the center of B.

(1) For every unit u ∈ B× such that τ(u) = λu with λ ∈ K×, the map Int(u) ◦ τ is

an involution of the second kind on B.

(2) Conversely, for every involution τ ′ on B whose restriction to K is ι, there

exists some u ∈ B×, uniquely determined up to a factor in F×, such that

τ ′ = Int(u) ◦ τ and τ(u) = u.

In this case,

Sym(B, τ ′) = u · Sym(B, τ) = Sym(B, τ) · u−1.

Proof : Computation shows that
(
Int(u) ◦ τ

)2
= Int

(
uτ(u)−1

)
, and (??) follows.

If τ ′ is an involution on B which has the same restriction to K as τ , the
composition τ ′ ◦ τ is an automorphism which leaves K elementwise invariant. The
Skolem-Noether theorem shows that τ ′ ◦ τ = Int(u0) for some u0 ∈ B×, hence

τ ′ = Int(u0) ◦ τ . Since τ ′2 = Id, we have u0τ(u0)
−1 ∈ K×. Let λ ∈ K× be such

that τ(u0) = λu0. Applying τ to both sides of this relation, we get NK/F (λ) = 1.

Hilbert’s theorem 90 (see (??)) yields an element µ ∈ K× such that λ = µι(µ)−1.
Explicitly one can take µ = α+ λι(α) for α ∈ K such that α+ λι(α) is invertible.
The element u = µu0 then satisfies the required conditions.

2.C. Examples.

Endomorphism algebras. Let V be a finite dimensional vector space over
a field F . The involutions of the first kind on EndF (V ) have been determined
in the introduction to this chapter: every such involution is the adjoint involution
with respect to some nonsingular symmetric or skew-symmetric bilinear form on V ,
uniquely determined up to a scalar factor. Moreover, it is clear from Definition (??)
that the involution is orthogonal (resp. symplectic) if the corresponding bilinear
form is symmetric and nonalternating (resp. alternating).

Involutions of the second kind can be described similarly. Suppose that V
is a finite dimensional vector space over a field K which is a separable quadratic
extension of some subfield F with nontrivial automorphism ι. A hermitian form

on V (with respect to ι) is a bi-additive map

h : V × V → K

such that

h(vα,wβ) = ι(α)h(v, w)β for v, w ∈ V and α, β ∈ K
and

h(w, v) = ι
(
h(v, w)

)
for v, w ∈ V .

The form h is called nonsingular if the only element x ∈ V such that h(x, y) = 0
for all y ∈ V is x = 0. If this condition holds, an involution σh on EndK(V ) may
be defined by the following condition:

h
(
x, f(y)

)
= h

(
σh(f)(x), y

)
for f ∈ EndK(V ), x, y ∈ V .
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The involution σh on EndK(V ) is the adjoint involution with respect to the hermit-
ian form h. From the definition of σh, it follows that σh(α) = ι(α) for all α ∈ K,
hence σh is of the second kind. As for involutions of the first kind, one can prove
that every involution τ of the second kind on EndK(V ) whose restriction to K is
ι is the adjoint involution with respect to some nonsingular hermitian form on V ,
uniquely determined up to a factor in F×.

We omit the details of the proof, since a more general statement will be proved
in §?? below (see (??)).

Matrix algebras. The preceding discussion can of course be translated to
matrix algebras, since the choice of a basis in an n-dimensional vector space V
over F yields an isomorphism EndF (V ) ' Mn(F ). However, matrix algebras are
endowed with a canonical involution of the first kind, namely the transpose involu-
tion t. Therefore, a complete description of involutions of the first kind on Mn(F )
can also be easily derived from (??).

(2.19) Proposition. Every involution of the first kind σ on Mn(F ) is of the form

σ = Int(u) ◦ t
for some u ∈ GLn(F ), uniquely determined up to a factor in F×, such that ut = ±u.
Moreover, the involution σ is orthogonal if ut = u and u 6∈ Alt

(
Mn(F ), t

)
, and it

is symplectic if u ∈ Alt
(
Mn(F ), t

)
.

If Mn(F ) is identified with EndF (Fn), the involution σ = Int(u) ◦ t is the
adjoint involution with respect to the nonsingular form b on F n defined by

b(x, y) = xt · u−1 · y for x, y ∈ F n.
Suppose now that A is an arbitrary central simple algebra over a field F and

that is an involution (of any kind) on A. We define an involution ∗ on Mn(A) by

(aij)
∗
1≤i,j≤n = (aij)

t
1≤i,j≤n.

(2.20) Proposition. The involution ∗ is of the same type as . Moreover, the

involutions σ on Mn(A) such that σ(α) = α for all α ∈ F can be described as

follows :

(1) If is of the first kind, then every involution of the first kind on Mn(A) is of

the form σ = Int(u) ◦ ∗ for some u ∈ GLn(A), uniquely determined up to a factor

in F×, such that u∗ = ±u. If charF 6= 2, the involution Int(u) ◦ ∗ is of the same

type as if and only if u∗ = u. If charF = 2, the involution Int(u)◦ ∗ is symplectic

if and only if u ∈ Alt
(
Mn(A), ∗

)
.

(2) If is of the second kind, then every involution of the second kind σ on Mn(A)
such that σ(α) = α for all α ∈ F is of the form σ = Int(u)◦∗ for some u ∈ GLn(A),
uniquely determined up to a factor in F× invariant under , such that u∗ = u.

Proof : From the definition of ∗ it follows that α∗ = α for all α ∈ F . Therefore, the
involutions ∗ and are of the same kind.

Suppose that is of the first kind. A matrix (aij)1≤i,j≤n is ∗-symmetric if and
only if its diagonal entries are -symmetric and aji = aij for i > j, hence

dim Sym
(
Mn(A), ∗

)
= n dim Sym(A, ) + n(n−1)

2 dimA.

If degA = d and dim Sym(A, ) = d(d+ δ)/2, where δ = ±1, we thus get

dim Sym
(
Mn(A), ∗

)
= nd(nd+ δ)/2.
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Therefore, if charF 6= 2 the type of ∗ is the same as the type of .
Since TrdMn(A)

(
(aij)1≤i,j≤n

)
=

∑n
i=1 TrdA(aii), we have

TrdMn(A)

(
Sym

(
Mn(A), ∗

))
= {0} if and only if TrdA

(
Sym(A, )

)
= {0}.

Therefore, when charF = 2 the involution ∗ is symplectic if and only if is sym-
plectic.

We have thus shown that in all cases the involutions ∗ and are of the same
type (orthogonal, symplectic or unitary). The other assertions follow from (??)
and (??).

In §?? below, it is shown how the various involutions on Mn(A) are associated
to hermitian forms on An under the identification EndA(An) = Mn(A).

Quaternion algebras. A quaternion algebra over a field F is a central simple
F -algebra of degree 2. If the characteristic of F is different from 2, it can be shown
(see Scharlau [?, §8.11]) that every quaternion algebra Q has a basis (1, i, j, k)
subject to the relations

i2 ∈ F×, j2 ∈ F×, ij = k = −ji.
Such a basis is called a quaternion basis ; if i2 = a and j2 = b, the quaternion
algebra Q is denoted

Q = (a, b)F .

Conversely, for any a, b ∈ F× the 4-dimensional F -algebra Q with basis (1, i, j, k)
where multiplication is defined through the relations i2 = a, j2 = b, ij = k = −ji
is central simple and is therefore a quaternion algebra (a, b)F .

If charF = 2, every quaternion algebra Q has a basis (1, u, v, w) subject to the
relations

u2 + u ∈ F, v2 ∈ F×, uv = w = vu+ v

(see Draxl [?, §11]). Such a basis is called a quaternion basis in characteristic 2. If
u2 + u = a and v2 = b, the quaternion algebra Q is denoted

Q = [a, b)F .

Conversely, for all a ∈ F , b ∈ F×, the relations u2 +u = a, v2 = b and vu = uv+ v
give the span of 1, u, v, uv the structure of a quaternion algebra.

Quaternion algebras in characteristic 2 may alternately be defined as algebras
generated by two elements r, s subject to

r2 ∈ F, s2 ∈ F, rs+ sr = 1.

Indeed, if r2 = 0 the algebra thus defined is isomorphic to M2(F ); if r2 6= 0 it
has a quaternion basis (1, sr, r, sr2). Conversely, every quaternion algebra with
quaternion basis (1, u, v, w) as above is generated by r = v and s = uv−1 satisfying
the required relations. The quaternion algebra Q generated by r, s subject to the
relations r2 = a ∈ F , s2 = b ∈ F and rs+ sr = 1 is denoted

Q = ‖a, b‖F .
Thus, ‖a, b‖F ' M2(F ) if a (or b) = 0 and ‖a, b‖F ' [ab, a)F if a 6= 0. The
quaternion algebra ‖a, b‖F is thus the Clifford algebra of the quadratic form [a, b].

For every quaternion algebra Q, an F -linear map γ : Q→ Q can be defined by

γ(x) = TrdQ(x) − x for x ∈ Q
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where TrdQ is the reduced trace in Q. Explicitly, for x0, x1, x2, x3 ∈ F ,

γ(x0 + x1i+ x2j + x3k) = x0 − x1i− x2j − x3k

if charF 6= 2 and

γ(x0 + x1u+ x2v + x3w) = x0 + x1(u+ 1) + x2v + x3w

if charF = 2. For the split quaternion algebra Q = M2(F ) (in arbitrary character-
istic),

γ

(
x11 x12

x21 x22

)
=

(
x22 −x12

−x21 x11

)

Direct computations show that γ is an involution, called the quaternion con-

jugation or the canonical involution. If charF 6= 2, then Sym(Q, γ) = F and
Skew(Q, γ) has dimension 3. If charF = 2, then Sym(Q, γ) is spanned by 1, v, w
which have reduced trace equal to zero. Therefore, the involution γ is symplectic
in every characteristic.

(2.21) Proposition. The canonical involution γ on a quaternion algebra Q is the

unique symplectic involution on Q. Every orthogonal involution σ on Q is of the

form

σ = Int(u) ◦ γ
where u is an invertible quaternion in Skew(Q, γ)rF which is uniquely determined

by σ up to a factor in F×.

Proof : From (??), it follows that every involution of the first kind σ on Q has the
form σ = Int(u) ◦ γ where u is a unit such that γ(u) = ±u. Suppose that σ is
symplectic. If charF = 2, Proposition (??) shows that u ∈ Alt(Q, γ) = F , hence
σ = γ. Similarly, if charF 6= 2, Proposition (??) shows that γ(u) = u, hence
u ∈ F× and σ = γ.

Unitary involutions on quaternion algebras also have a very particular type, as
we proceed to show.

(2.22) Proposition (Albert). Let K/F be a separable quadratic field extension

with nontrivial automorphism ι. Let τ be an involution of the second kind on a

quaternion algebra Q over K, whose restriction to K is ι. There exists a unique

quaternion F -subalgebra Q0 ⊂ Q such that

Q = Q0 ⊗F K and τ = γ0 ⊗ ι
where γ0 is the canonical involution on Q0. Moreover, the algebra Q0 is uniquely

determined by these conditions.

Proof : Let γ be the canonical involution on Q. Then τ ◦ γ ◦ τ is an involution
of the first kind and symplectic type on Q, so τ ◦ γ ◦ τ = γ by (??). From this
last relation, it follows that τ ◦ γ is a ι-semilinear automorphism of order 2 of Q.
The F -subalgebra Q0 of invariant elements then satisfies the required conditions.
Since these conditions imply that every element in Q0 is invariant under τ ◦ γ, the
algebra Q0 is uniquely determined by τ . (It is also the F -subalgebra of Q generated
by τ -skew-symmetric elements of trace zero, see (??).)

The proof holds without change in the case where K ' F × F , provided that
quaternion algebras over K are defined as direct products of two quaternion F -
algebras.
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Symbol algebras. Let n be an arbitrary positive integer and let K be a field
containing a primitive nth root of unity ζ. For a, b ∈ K×, write (a, b)ζ,K for the
K-algebra generated by two elements x, y subject to the relations

xn = a, yn = b, yx = ζxy.

This algebra is central simple of degree n (see Draxl [?, §11]); it is called a symbol

algebra.5 Clearly, quaternion algebras are the symbol algebras of degree 2.
If K has an automorphism ι of order 2 which leaves a and b invariant and maps

ζ to ζ−1, then this automorphism extends to an involution τ on (a, b)ζ,K which
leaves x and y invariant.

Similarly, any automorphism ι′ of order 2 of K which leaves a and ζ invariant
and maps b to b−1 (if any) extends to an involution σ′ on (a, b)ζ,K which leaves x
invariant and maps y to y−1.

Tensor products.

(2.23) Proposition. (1) Let (A1, σ1), . . . , (An, σn) be central simple F -algebras

with involution of the first kind. Then σ1 ⊗ · · · ⊗ σn is an involution of the first

kind on A1⊗F · · · ⊗F An. If charF 6= 2, this involution is symplectic if and only if

an odd number of involutions among σ1, . . . , σn are symplectic. If charF = 2, it

is symplectic if and only if at least one of σ1, . . . , σn is symplectic.

(2) Let K/F be a separable quadratic field extension with nontrivial automorphism ι
and let (B1, τ1), . . . , (Bn, τn) be central simple F -algebras with involution of the

second kind with center K. Then τ1 ⊗ · · · ⊗ τn is an involution of the second kind

on B1 ⊗K · · · ⊗K Bn.
(3) Let K/F be a separable quadratic field extension with nontrivial automorphism ι
and let (A, σ) be a central simple F -algebra with involution of the first kind. Then

(A⊗F K,σ ⊗ ι) is a central simple F -algebra with involution of the second kind.

The proof, by induction on n for the first two parts, is straightforward. In
case (??), we denote

(A1, σ1)⊗F · · · ⊗F (An, σn) = (A1 ⊗F · · · ⊗F An, σ1 ⊗ · · · ⊗ σn),

and use similar notations in the other two cases.
Tensor products of quaternion algebras thus yield examples of central simple

algebras with involution. Merkurjev’s theorem [?] shows that every central simple
algebra with involution is Brauer-equivalent to a tensor product of quaternion alge-
bras. However, there are examples of division algebras with involution of degree 8
which do not decompose into tensor products of quaternion algebras, and there are
examples of involutions σ on tensor products of two quaternion algebras which are
not of the form σ1⊗σ2 (see Amitsur-Rowen-Tignol [?]). A necessary and sufficient
decomposability condition for an involution on a tensor product of two quaternion
algebras has been given by Knus-Parimala-Sridharan [?]; see (??) and (??).

2.D. Lie and Jordan structures. Every associative algebra A over an arbi-
trary field F is endowed with a Lie algebra structure for the bracket [x, y] = xy−yx.
We denote this Lie algebra by L(A). Similarly, if charF 6= 2, a Jordan product can
be defined on A by x q y = 1

2 (xy + yx). If A is viewed as a Jordan algebra for the
product q, we denote it by A+.

5Draxl calls it a power norm residue algebra.
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The relevance of the Lie and Jordan structures for algebras with involution
stems from the observation that for every algebra with involution (A, σ) (of any
kind), the spaces Skew(A, σ) and Alt(A, σ) are Lie subalgebras of L(A), and the
space Sym(A, σ) is a Jordan subalgebra of A+ if charF 6= 2. Indeed, for x, y ∈
Skew(A, σ) we have

[x, y] = xy − σ(xy) ∈ Alt(A, σ) ⊂ Skew(A, σ)

hence Alt(A, σ) and Skew(A, σ) are Lie subalgebras of L(A). On the other hand,
for x, y ∈ Sym(A, σ),

x q y = 1
2

(
xy + σ(xy)

)
∈ Sym(A, σ),

hence Sym(A, σ) is a Jordan subalgebra of A+. This Jordan subalgebra is usually
denoted by H(A, σ).

The algebra Skew(A, σ) is contained in the Lie algebra

g(A, σ) = { a ∈ A | a+ σ(a) ∈ F };
indeed, Skew(A, σ) is the kernel of the Lie algebra homomorphism6

µ̇ : g(A, σ)→ F

defined by µ̇(a) = a+ σ(a), for a ∈ g(A, σ). The map µ̇ is surjective, except when
charF = 2 and σ is orthogonal, since the condition 1 ∈ Symd(A, σ) characterizes
symplectic involutions among involutions of the first kind in characteristic 2, and
Symd(A, σ) = Sym(A, σ) if σ is of the second kind. Thus, g(A, σ) = Skew(A, σ) if
σ is orthogonal and charF = 2, and dim g(A, σ) = dim Skew(A, σ) + 1 in the other
cases.

Another important subalgebra of L(A) is the kernel A0 of the reduced trace
map:

A0 = { a ∈ A | TrdA(a) = 0 }.
If σ is symplectic (in arbitrary characteristic) or if it is orthogonal in characteristic
different from 2, we have Skew(A, σ) ⊂ A0; in the other cases, we also consider the
intersection

Skew(A, σ)0 = Skew(A, σ) ∩ A0.

(2.24) Example. Let E be an arbitrary central simple F -algebra and let ε be
the exchange involution on E ×Eop. There are canonical isomorphisms of Lie and
Jordan algebras

L(E) ∼−→ Skew(E ×Eop, ε), E+ ∼−→ H(E ×Eop, ε)

which map x ∈ E respectively to (x,−xop) and to (x, xop). Indeed, these maps are
obviously injective homomorphisms, and they are surjective by dimension count
(see (??)). We also have

g(A, σ) = { (x, α− xop) | x ∈ E, α ∈ F } ' L(E × F ).

Jordan algebras of symmetric elements in central simple algebras with involu-
tion are investigated in Chapter ?? in relation with twisted compositions and the
Tits constructions. Similarly, the Lie algebras of skew-symmetric and alternating
elements play a crucial rôle in the study of algebraic groups associated to algebras

6The notation µ̇ is motivated by the observation that this map is the differential of the
multiplier map µ : Sim(A,σ) → F× defined in (??).
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with involution in Chapter ??. In this section, we content ourselves with a few basic
observations which will be used in the proofs of some specific results in Chapters
?? and ??.

It is clear that every isomorphism of algebras with involution f : (A, σ) ∼−→
(A′, σ′) carries symmetric, skew-symmetric and alternating elements in A to ele-
ments of the same type in A′ and therefore induces Lie isomorphisms Skew(A, σ) ∼−→
Skew(A′, σ′), Alt(A, σ) ∼−→ Alt(A′, σ′) and a Jordan isomorphism H(A, σ) ∼−→
H(A′, σ′). Conversely, if the degrees of A and A′ are large enough, every iso-
morphism of Lie or Jordan algebras as above is induced by an automorphism of
algebras with involution: see Jacobson [?, Chapter X, §4] and Jacobson [?, Theo-
rem 11, p. 210]. However, this property does not hold for algebras of low degrees;
the exceptional isomorphisms investigated in Chapter ?? indeed yield examples
of nonisomorphic algebras with involution which have isomorphic Lie algebras of
skew-symmetric elements. Other examples arise from triality, see (??).

The main result of this subsection is the following extension property, which is
much weaker than those referred to above, but holds under weaker degree restric-
tions:

(2.25) Proposition. (1) Let (A, σ) and (A′, σ′) be central simple F -algebras with

involution of the first kind and let L/F be a field extension. Suppose that degA > 2
and let

f : Alt(A, σ) ∼−→ Alt(A′, σ′)

be a Lie isomorphism which has the following property : there is an isomorphism

of L-algebras with involution (AL, σL) ∼−→ (A′L, σ
′
L) whose restriction to Alt(A, σ)

is f . Then f extends uniquely to an isomorphism of F -algebras with involution

(A, σ) ∼−→ (A′, σ′).
(2) Let (B, τ) and (B′, τ ′) be central simple F -algebras with involution of the second

kind and let L/F be a field extension. Suppose that deg(B, τ) > 2 and let

f : Skew(B, τ)0 ∼−→ Skew(B′, τ ′)0

be a Lie isomorphism which has the following property : there is an isomorphism of

L-algebras with involution (BL, τL) ∼−→ (B′
L, τ

′
L) whose restriction to Skew(B, τ)0

is f . Then f extends uniquely to an isomorphism of F -algebras with involution

(B, τ) ∼−→ (B′, τ ′).

The proof relies on the following crucial lemma:

(2.26) Lemma. (1) Let (A, σ) be a central simple F -algebra with involution of the

first kind. The set Alt(A, σ) generates A as an associative algebra if degA > 2.
(2) Let (B, τ) be a central simple F -algebra with involution of the second kind. The

set Skew(B, τ)0 generates B as an associative F -algebra if deg(B, τ) > 2.

Proof : (??) Let S ⊂ A be the associative subalgebra of A generated by Alt(A, σ).
For every field extension L/F , the subalgebra of AL generated by Alt(AL, σL) =
Alt(A, σ) ⊗F L is then SL; therefore, it suffices to prove SL = AL for some exten-
sion L/F .

Suppose that L is a splitting field of A. By (??), we have

(AL, σL) '
(
EndL(V ), σb

)

for some vector space V over L and some nonsingular symmetric or skew-symmetric
bilinear form b on V .
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Suppose first that σ is symplectic, hence b is alternating. Identifying V with Ln

by means of a symplectic basis, we get

(AL, σL) =
(
Mn(L), σg

)

where g is the n× n block-diagonal matrix

g = diag
((

0 1
−1 0

)
, . . . ,

(
0 1
−1 0

))

and σg(m) = g−1 ·mt · g for all m ∈Mn(L). The σg-alternating elements in Mn(L)
are of the form

g−1 · x− σg(g−1 · x) = g−1 · (x+ xt),

where x ∈ Mn(L). Let (eij)1≤i,j≤n be the standard basis of Mn(L). For i = 1,
. . . , n/2 and j 6= 2i− 1, 2i we have

e2i−1,j = g−1 · (e2i−1,2i + e2i,2i−1) · g−1 · (e2i,j + ej,2i)

and

e2i,j = g−1 · (e2i−1,2i + e2i,2i−1) · g−1 · (e2i−1,j + ej,2i−1),

hence e2i−1,j and e2i,j are in the subalgebra SL of Mn(L) generated by σg-alterna-
ting elements. Since n ≥ 4 we may find for all i = 1, . . . , n/2 some j 6= 2i−1, 2i; the
elements e2i−1,j , e2i,j and their transposes are then in SL, hence also the products
of these elements, among which one can find e2i−1,2i−1, e2i−1,2i, e2i,2i−1 and e2i,2i.
Therefore, SL = Mn(L) and the proof is complete if σ is symplectic.

Suppose next that σ is orthogonal, hence that b is symmetric but not alternat-
ing. The vector space V then contains an orthogonal basis (vi)1≤i≤n. (If charF = 2,
this follows from a theorem of Albert, see Kaplansky [?, Theorem 20].) Extending L
further, if necessary, we may assume that b(vi, vi) = 1 for all i, hence

(AL, σL) '
(
Mn(L), t

)
.

If i, j, k ∈ {1, . . . , n} are pairwise distinct, then we have eij − eji, eik − eki ∈
Alt

(
Mn(L), t

)
and

eii = (eij − eji)2 · (eik − eki)2, eij = eii · (eij − eji),
hence alternating elements generate Mn(L).

(??) The same argument as in (??) shows that it suffices to prove the propo-
sition over an arbitrary scalar extension. Extending scalars to the center of B if
this center is a field, we are reduced to the case where (B, τ) ' (E × Eop, ε) for
some central simple F -algebra E, by (??). Extending scalars further to a splitting
field of E, we may assume that E is split. Therefore, it suffices to consider the case
of

(
Mn(F )×Mn(F )op, ε

)
. Again, let (eij)1≤i,j≤n be the standard basis of Mn(F ).

For i, j, k ∈ {1, . . . , n} pairwise distinct we have in Mn(F )×Mn(F )op

(eij ,−eopij ) · (ejk ,−eopjk) = (eik, 0) and (ejk,−eopjk) · (eij ,−e
op
ij ) = (0, eopik ).

In each case, both factors on the left side are skew-symmetric of trace zero, hence

Skew
(
Mn(F )×Mn(F )op, ε

)0
generates Mn(F )×Mn(F )op if n ≥ 3.

(2.27) Remarks. (1) Suppose that A is a quaternion algebra over F and that
σ is an involution of the first kind on A. If charF = 2 or if σ is orthogonal,
the space Alt(A, σ) has dimension 1, hence it generates a commutative subalgebra
of A. However, (??.??) also holds when degA = 2, provided charF 6= 2 and σ is
symplectic, since then A = F ⊕Alt(A, σ).
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(2) Suppose B is a quaternion algebra over a quadratic étale F -algebra K and that
τ is an involution of the second kind on B leaving F elementwise invariant. Let
ι be the nontrivial automorphism of K/F . Proposition (??) shows that there is a
quaternion F -algebra Q in B such that

(B, τ) = (Q, γ)⊗F (K, ι),

where γ is the canonical involution on Q. It is easily verified that

Skew(B, τ)0 = Skew(Q, γ).

Therefore, the subalgebra of B generated by Skew(B, τ)0 is Q and not B.

Proof of (??): Since the arguments are the same for both parts, we just give the
proof of (??). Let g : (AL, σL) ∼−→ (A′L, σ

′
L) be an isomorphism of L-algebras with

involution whose restriction to Alt(A, σ) is f . In particular, g maps Alt(A, σ)
to Alt(A′, σ′). Since degAL = degA′L and the degree does not change under
scalar extension, A and A′ have the same degree, which by hypothesis is at least 3.
Lemma (??) shows that Alt(A, σ) generates A and Alt(A′, σ′) generates A′, hence
g maps A to A′ and restricts to an isomorphism of F -algebras with involution
(A, σ) ∼−→ (A′, σ′). This isomorphism is uniquely determined by f since Alt(A, σ)
generates A.

It is not difficult to give examples to show that (??) does not hold for alge-
bras of degree 2. The easiest example is obtained from quaternion algebras Q, Q′

of characteristic 2 with canonical involutions γ, γ ′. Then Alt(Q, γ) = L(F ) =
Alt(Q′, γ′) and the identity map Alt(Q, γ) ∼−→ Alt(Q′, γ′) extends to an isomor-
phism (QL, γL) ∼−→ (Q′

L, γ
′
L) if L is an algebraic closure of F . However, Q and Q′

may not be isomorphic.

(2.28) Remark. Inspection of the proof of (??) shows that the Lie algebra struc-
tures on Alt(A, σ) or Skew(B, τ)0 are not explicitly used. Therefore, (??) also
holds for any linear map f ; indeed, if f extends to an isomorphism of (associative)
L-algebras with involution, then it necessarily is an isomorphism of Lie algebras.

§3. Existence of Involutions

The aim of this section is to give a proof of the following Brauer-group charac-
terization of central simple algebras with involution:

(3.1) Theorem. (1) (Albert) Let A be a central simple algebra over a field F .

There is an involution of the first kind on A if and only if A⊗F A splits.

(2) (Albert-Riehm-Scharlau) Let K/F be a separable quadratic extension of fields

and let B be a central simple algebra over K. There is an involution of the second

kind on B which leaves F elementwise invariant if and only if the norm7 NK/F (B)
splits.

In particular, if a central simple algebra has an involution, then every Brauer-

equivalent algebra has an involution of the same kind.

We treat each part separately. We follow an approach based on ideas of
T. Tamagawa (oral tradition—see Berele-Saltman [?, §2] and Jacobson [?, §5.2]),
starting with the case of involutions of the first kind. For involutions of the second
kind, our arguments are very close in spirit to those of Deligne and Sullivan [?,
Appendix B].

7See (??) below for the definition of the norm (or corestriction) of a central simple algebra.
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3.A. Existence of involutions of the first kind. The fact that A ⊗F A
splits when A has an involution of the first kind is easy to see (and was already
observed in the proof of Corollary (??)).

(3.2) Proposition. Every F -linear anti-automorphism σ on a central simple al-

gebra A endows A with a right A⊗F A-module structure defined by

x ∗σ (a⊗ b) = σ(a)xb for a, b, x ∈ A.

The reduced dimension of A as a right A⊗F A-module is 1, hence A⊗F A is split.

Proof : It is straightforward to check that the multiplication ∗σ defines a right
A⊗F A-module structure on A. Since dimF A = deg(A⊗F A), we have rdimA = 1,
hence A⊗F A is split, since the index of a central simple algebra divides the reduced
dimension of every module of finite type.

(3.3) Remark. The isomorphism σ∗ : A ⊗F A ∼−→ EndF (A) defined in the proof
of Corollary (??) endows A with a structure of left A ⊗F A-module, which is less
convenient in view of the discussion below (see (??)).

To prove the converse, we need a special element in A⊗F A, called the Goldman

element (see Knus-Ojanguren [?, p. 112] or Rowen [?, p. 222]).

The Goldman element. For any central simple algebra A over a field F we
consider the F -linear sandwich map

Sand: A⊗F A→ EndF (A)

defined by

Sand(a⊗ b)(x) = axb for a, b, x ∈ A.

(3.4) Lemma. The map Sand is an isomorphism of F -vector spaces.

Proof : Sand is the composite of the isomorphism A⊗F A ' A⊗F Aop which maps
a⊗ b to a⊗ bop and of the canonical F -algebra isomorphism A⊗F Aop ' EndF (A)
of Wedderburn’s theorem (??).

Consider the reduced trace TrdA : A → F . Composing this map with the
inclusion F ↪→ A, we may view TrdA as an element in EndF (A).

(3.5) Definition. The Goldman element in A ⊗F A is the unique element g ∈
A⊗F A such that

Sand(g) = TrdA .

(3.6) Proposition. The Goldman element g ∈ A⊗FA satisfies the following prop-

erties :

(1) g2 = 1.
(2) g · (a⊗ b) = (b⊗ a) · g for all a, b ∈ A.

(3) If A = EndF (V ), then with respect to the canonical identification A ⊗F A =
EndF (V ⊗F V ) the element g is defined by

g(v1 ⊗ v2) = v2 ⊗ v1 for v1, v2 ∈ V .

Proof : We first check (??) by using the canonical isomorphism EndF (V ) = V ⊗F
V ∗, where V ∗ = HomF (V, F ) is the dual of V . If (ei)1≤i≤n is a basis of V and
(e∗i )1≤i≤n is the dual basis, consider the element

g =
∑

i,j ei ⊗ e∗j ⊗ ej ⊗ e∗i ∈ V ⊗ V ∗ ⊗ V ⊗ V ∗ = EndF (V )⊗F EndF (V ).
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For all f ∈ EndF (V ), we have

Sand(g)(f) =
∑

i,j(ei ⊗ e∗j ) ◦ f ◦ (ej ⊗ e∗i ) =
∑

i,j(ei ⊗ e∗i ) · e∗j
(
f(ej)

)
.

Since
∑
i ei ⊗ e∗i = IdV and

∑
j e

∗
j

(
f(ej)

)
= tr(f), the preceding equation shows

that

Sand(g)(f) = tr(f) for f ∈ EndF (V ),

hence g is the Goldman element in EndF (V ) ⊗ EndF (V ). On the other hand, for
v1, v2 ∈ V we have

g(v1 ⊗ v2) =
∑
i,j(ei ⊗ e∗j )(v1)⊗ (ej ⊗ e∗i )(v2)

=
(∑

i ei · e∗i (v2)
)
⊗

(∑
j ej · e∗j (v1)

)

= v2 ⊗ v1.
This completes the proof of (??).

In view of (??), parts (??) and (??) are easy to check in the split case A =
EndF (V ), hence they hold in the general case also. Indeed, for any splitting field L
of A the Goldman element g in A⊗F A is also the Goldman element in AL ⊗L AL
since the sandwich map and the reduced trace map commute with scalar extensions.
Since AL is split we have g2 = 1 in AL ⊗L AL, and g · (a⊗ b) = (b⊗ a) · g for all a,
b ∈ AL, hence also for all a, b ∈ A.

Consider the left and right ideals in A⊗F A generated by 1− g:
J` = (A⊗F A) · (1− g), Jr = (1− g) · (A⊗F A).

Let

λ2A = EndA⊗A(J`), s2A = EndA⊗A(J0
r ).

If degA = 1, then A = F and g = 1, hence J` = Jr = {0} and λ2A = {0},
s2A = F . If degA > 1, Proposition (??) shows that the algebras λ2A and s2A are
Brauer-equivalent to A⊗F A.

(3.7) Proposition. If degA = n > 1,

rdim J` = rdimJr = degλ2A = n(n−1)
2 and deg s2A = n(n+1)

2 .

For any vector space V of dimension n > 1, there are canonical isomorphisms

λ2 EndF (V ) = EndF (
∧2

V ) and s2 EndF (V ) = EndF (S2V ),

where
∧2

V and S2V are the exterior and symmetric squares of V , respectively.

Proof : Since the reduced dimension of a module and the degree of a central simple
algebra are invariant under scalar extension, we may assume that A is split. Let
A = EndF (V ) and identify A⊗F A with EndF (V ⊗ V ). Then

J` = HomF

(
V ⊗ V/ ker(Id− g), V ⊗ V

)
and Jr = HomF

(
V ⊗ V, im(Id− g)

)
,

and, by (??),

λ2A = EndF
(
V ⊗ V/ ker(Id− g)

)
and s2A = EndF

(
V ⊗ V/ im(Id− g)

)
.

Since g(v1 ⊗ v2) = v2 ⊗ v1 for v1, v2 ∈ V , there are canonical isomorphisms
∧2

V ∼−→ V ⊗ V/ ker(Id− g) and S2V ∼−→ V ⊗ V/ im(Id− g)
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which map v1 ∧ v2 to v1 ⊗ v2 + ker(Id − g) and v1 · v2 to v1 ⊗ v2 + im(Id − g)

respectively, for v1, v2 ∈ V . Therefore, λ2A = EndF (
∧2 V ), s2A = EndF (S2V )

and

rdim Jr = rdim J` = dim
(
V ⊗ V/ ker(Id− g)

)
= dim

∧2
V.

Involutions of the first kind and one-sided ideals. For every F -linear
anti-automorphism σ on a central simple algebra A, we define a map

σ′ : A⊗F A→ A

by

σ′(a⊗ b) = σ(a)b for a, b ∈ A.

This map is a homomorphism of right A ⊗F A-modules, if A is endowed with the
right A ⊗F A-module structure of Proposition (??). The kernel kerσ′ is therefore
a right ideal in A⊗F A which we write Iσ :

Iσ = kerσ′.

Since σ′ is surjective, we have

dimF Iσ = dimF (A⊗F A)− dimF A.

On the other hand, σ′(1⊗ a) = a for a ∈ A, hence Iσ ∩ (1⊗A) = {0}. Therefore,

A⊗F A = Iσ ⊕ (1⊗A).

As above, we denote by g the Goldman element in A ⊗F A and by J` and Jr the
left and right ideals in A⊗F A generated by 1− g.

(3.8) Theorem. The map σ 7→ Iσ defines a one-to-one correspondence between

the F -linear anti-automorphisms of A and the right ideals I of A ⊗F A such that

A ⊗F A = I ⊕ (1 ⊗ A). Under this correspondence, involutions of symplectic type

correspond to ideals containing J0
` and involutions of orthogonal type to ideals con-

taining Jr but not J0
` . In the split case A = EndF (V ), the ideal corresponding to the

adjoint anti-automorphism σb with respect to a nonsingular bilinear form b on V is

HomF

(
V ⊗ V, ker(b ◦ g)

)
where b is considered as a linear map b : V ⊗ V → F . (If

b is symmetric or skew-symmetric, then ker(b ◦ g) = ker b.)

Proof : To every right ideal I ⊂ A ⊗F A such that A ⊗F A = I ⊕ (1 ⊗ A), we
associate the map σI : A → A defined by projection of A ⊗ 1 onto 1 ⊗ A parallel
to I ; for a ∈ A, we define σI (a) as the unique element in A such that

a⊗ 1− 1⊗ σI(a) ∈ I.
This map is clearly F -linear. Moreover, for a, b ∈ A we have

ab⊗ 1− 1⊗ σI(b)σI (a) =
(
a⊗ 1− 1⊗ σI (a)

)
· b⊗ 1

+
(
b⊗ 1− 1⊗ σI (b)

)
· 1⊗ σI (a) ∈ I,

hence σI (ab) = σI(b)σI (a), which proves that σI is an anti-automorphism.
For every anti-automorphism σ of A, the definition of Iσ shows that

a⊗ 1− 1⊗ σ(a) ∈ Iσ for a ∈ A.
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Therefore, σIσ = σ. Conversely, suppose that I ⊂ A⊗F A is a right ideal such that
A⊗F A = I ⊕ (1⊗A). If x =

∑
yi ⊗ zi ∈ kerσ′I , then

∑
σI(yi)zi = 0, hence

x =
∑(

yi ⊗ zi − 1⊗ σI (yi)zi
)

=
∑(

yi ⊗ 1− 1⊗ σI(yi)
)
· (1⊗ zi).

This shows that the right ideal kerσ′I is generated by elements of the form

a⊗ 1− 1⊗ σI (a).
Since these elements all lie in I , by definition of σI , it follows that kerσ′I ⊂ I .
However, these ideals have the same dimension, hence kerσ′I = I and therefore
IσI = I .

We have thus shown that the maps σ 7→ Iσ and I 7→ σI define inverse bijections
between anti-automorphisms of A and right ideals I in A⊗F A such that A⊗F A =
I ⊕ (1⊗A).

In order to identify the ideals which correspond to involutions, it suffices to
consider the split case. Suppose that A = EndF (V ) and that σ = σb is the adjoint
anti-automorphism with respect to some nonsingular bilinear form b on V . By
definition of σb (see equation (??) in the introduction to this chapter),

b ◦
(
σ(f)⊗ 1− 1⊗ f

)
= 0 for f ∈ EndF (V ).

Since Iσ is generated as a right ideal by the elements f ⊗ 1− 1 ⊗ σ(f), and since
g ◦ (f1 ⊗ f2) = (f2 ⊗ f1) for f1, f2 ∈ EndF (V ), it follows that

Iσ ⊂ {h ∈ EndF (V ⊗ V ) | b ◦ g ◦ h = 0 } = HomF

(
V ⊗ V, ker(b ◦ g)

)
.

Dimension count shows that the inclusion is an equality.
As observed in the proof of Proposition (??), J0

` = HomF

(
V ⊗ V, ker(Id− g)

)
,

hence the inclusion J0
` ⊂ HomF

(
V ⊗V, ker(b ◦ g)

)
holds if and only if ker(Id− g) ⊂

ker(b ◦ g). Since ker(Id− g) is generated by elements of the form v ⊗ v, for v ∈ V ,
this condition holds if and only if b is alternating or, equivalently, σ is symplectic.

On the other hand, Jr ⊂ HomF

(
V ⊗ V, ker(b ◦ g)

)
if and only if

b ◦ g ◦ (Id− g)(v1 ⊗ v2) = 0 for v1, v2 ∈ V .

Since the left side is equal to b(v2, v1) − b(v1, v2), this relation holds if and only if
b is symmetric. Therefore, σ is orthogonal if and only if the corresponding ideal
contains Jr but not J0

` .

(3.9) Remark. If charF 6= 2, then J0
` = (1 + g) · (A ⊗F A). Indeed, 1 + g ∈ J0

`

since (1− g)(1 + g) = 1− g2 = 0; on the other hand, if x ∈ J0
` then (1 − g)x = 0,

hence x = gx = (1 + g)x/2. Therefore, an involution σ is orthogonal if and only if
the corresponding ideal Iσ contains 1 − g; it is symplectic if and only Iσ contains
1 + g.

Let degA = n. The right ideals I ⊂ A ⊗F A such that I ⊕ (1⊗A) = A⊗F A
then have reduced dimension n2 − 1 and form an affine open subvariety

U ⊂ SBn2−1(A⊗F A).

(It is the affine open set denoted by U1⊗A in the proof of Theorem (??).)
On the other hand, since rdim Jr = n(n−1)/2 by (??) and s2A = EndA⊗A(J0

r )
by definition, Proposition (??) shows that the right ideals of reduced dimension
n2− 1 in A⊗F A which contain Jr form a closed subvariety So ⊂ SBn2−1(A⊗F A)
isomorphic to SBm(s2A) where

m = (n2 − 1)− 1
2n(n− 1) = 1

2n(n+ 1)− 1 = deg s2A− 1.
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By (??), this variety is also isomorphic to SB
(
(s2A)op

)
.

Similarly, for n > 1 we write Ss ⊂ SBn2−1(A⊗F A) for the closed subvariety of
right ideals of reduced dimension n2−1 which contain J0

` . This variety is isomorphic
to SB 1

2n(n−1)−1(λ
2A) and to SB

(
(λ2A)op

)
.

With this notation, Theorem (??) can be rephrased as follows:

(3.10) Corollary. There are natural one-to-one correspondences between involu-

tions of orthogonal type on A and the rational points on the variety U ∩ So, and, if

degA > 1, between involutions of symplectic type on A and the rational points on

the variety U ∩ Ss.
Inspection of the split case shows that the open subvariety U ∩ So ⊂ So is

nonempty, and that U ∩ Ss is nonempty if and only if degA is even.
We may now complete the proof of part (??) of Theorem (??). We first observe

that if F is finite, then A is split since the Brauer group of a finite field is trivial
(see for instance Scharlau [?, Corollary 8.6.3]), hence A has involutions of the first
kind. We may thus assume henceforth that the base field F is infinite.

Suppose that A ⊗F A is split. Then so are s2A and λ2A and the varieties
SB

(
(s2A)op

)
and SB

(
(λ2A)op

)
(when degA > 1) are projective spaces. It follows

that the rational points are dense in So and Ss. Therefore, U ∩ So has rational
points, so A has involutions of orthogonal type. If degA is even, then U ∩ Ss also
has rational points8, so A also has involutions of symplectic type.

(3.11) Remark. Severi-Brauer varieties and density arguments can be avoided in
the proof above by reducing to the case of division algebras: if A ⊗F A is split,
then D ⊗F D is also split, if D is the division algebra Brauer-equivalent to A. Let
I ⊂ D⊗F D be a maximal right ideal containing 1− g. Then dim I = d2−d, where
d = dimF D, and I intersects 1⊗D trivially, since it does not contain any invertible
element. Therefore, dimension count shows that D ⊗F D = I ⊕ (1 ⊗D). It then
follows from (??) that D has an (orthogonal) involution of the first kind which we
denote by . An involution ∗ of the first kind is then defined on Mr(D) by letting

act entrywise on Mr(D) and setting

a∗ = at for a ∈Mr(D).

This involution is transported to A by the isomorphism A 'Mr(D).

3.B. Existence of involutions of the second kind. Before discussing in-
volutions of the second kind, we recall the construction of the norm of a central
simple algebra in the particular case of interest in this section.

The norm (or corestriction) of central simple algebras. Let K/F be a
finite separable field extension. For every central simple K-algebra A, there is a
central simple F -algebra NK/F (A) of degree (degA)[K:F ], called the norm of A,
defined so as to induce a homomorphism of Brauer groups

NK/F : Br(K)→ Br(F )

which corresponds to the corestriction map in Galois cohomology.
In view of Theorem (??), we shall only discuss here the case where K/F is a

quadratic extension, referring to Draxl [?, §8] or Rowen [?, §7.2] for a more general
treatment along similar lines.

8If deg A = 2, the variety Ss has only one point, namely J0
`
; this is a reflection of the fact

that quaternion algebras have a unique symplectic involution, see (??).
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The case of quadratic extensions is particularly simple in view of the fact that
separable quadratic extensions are Galois. Let K/F be such an extension, and let

Gal(K/F ) = {IdK , ι}
be its Galois group. For any K-algebra A, we define the conjugate algebra

ιA = { ιa | a ∈ A }
with the following operations:

ιa+ ιb = ι(a+ b) ιaιb = ι(ab) ι(αa) = ι(α)ιa

for a, b ∈ A and α ∈ K. The switch map

s : ιA⊗K A→ ιA⊗K A

defined by

s(ιa⊗ b) = ιb⊗ a
is ι-semilinear over K and is an F -algebra automorphism.

(3.12) Definition. The norm NK/F (A) of the K-algebra A is the F -subalgebra
of ιA⊗K A elementwise invariant under the switch map:

NK/F (A) = {u ∈ ιA⊗K A | s(u) = u }.
Of course, the same construction can be used to define the norm NK/F (V ) of

any K-vector space V .

(3.13) Proposition. (1) For any K-algebra A,

NK/F (A)K = ιA⊗K A and NK/F (ιA) = NK/F (A).

(2) For any K-algebras A, B,

NK/F (A⊗K B) = NK/F (A)⊗F NK/F (B).

(3) For any finite dimensional K-vector space V ,

NK/F
(
EndK(V )

)
= EndF

(
NK/F (V )

)
.

(4) If A is a central simple K-algebra, the norm NK/F (A) is a central simple F -

algebra of degree degNK/F (A) = (degA)2. Moreover, the norm induces a group

homomorphism

NK/F : Br(K)→ Br(F ).

(5) For any central simple F -algebra A,

NK/F (AK) ' A⊗F A.
Proof : (??) Since NK/F (A) is an F -subalgebra of ιA⊗K A, there is a natural map
NK/F (A) ⊗F K → ιA ⊗K A induced by multiplication in ιA ⊗K A. This map is
a homomorphism of K-algebras. It is bijective since if α ∈ K r F every element
a ∈ ιA⊗K A can be written in a unique way as a = a1 + a2α with a1, a2 invariant
under the switch map s by setting

a1 =
s(a)α− aι(α)

α− ι(α)
and a2 =

a− s(a)
α− ι(α)

.

In order to prove the second equality, consider the canonical isomorphism of K-
algebras ι(ιA) = A which maps ι(ιa) to a for a ∈ A. In view of this isomorphism,
NK/F (ιA) may be regarded as the set of switch-invariant elements in A⊗K ιA. The
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isomorphism ιA⊗K A ∼−→ A⊗K ιA which maps ιa⊗ b to b⊗ ιa commutes with the
switch map and therefore induces a canonical isomorphism NK/F (A) = NK/F (ιA).

(??) This is straightforward (Draxl [?, p. 55] or Scharlau [?, Lemma 8.9.7]).
The canonical map NK/F (A) ⊗F NK/F (B) → NK/F (A ⊗K B) corresponds, after
scalar extension to K, to the map

(ιA⊗K A)⊗K (ιB ⊗K B)→ ι(A⊗K B)⊗K (A⊗K B)

which carries ιa1 ⊗ a2 ⊗ ιb1 ⊗ b2 to ι(a1 ⊗ b1)⊗ (a2 ⊗ b2).
(??) There is a natural isomorphism

ιEndK(V ) = EndK(ιV )

which identifies ιf for f ∈ EndK(V ) with the endomorphism of ιV mapping ιv to
ι
(
f(v)

)
. We may therefore identify

ι EndK(V )⊗K EndK(V ) = EndK(ιV ⊗K V ),

and check that the switch map s is then identified with conjugation by sV where
sV : ιV ⊗K V → ιV ⊗K V is the ι-linear map defined through

sV (ιv ⊗ w) = ιw ⊗ v for v, w ∈ V .

The F -algebra NK/F
(
EndK(V )

)
of fixed elements under s is then identified with

the F -algebra of endomorphisms of the F -subspace elementwise invariant under sV ,
i.e., to EndF

(
NK/F (V )

)
.

(??) If A is a central simple K-algebra, then ιA ⊗K A also is central simple
over K, hence NK/F (A) is central simple over F , by part (??) and Wedderburn’s
Theorem (??). If A′ is Brauer-equivalent to A, then we may find vector spaces
V , V ′ over K such that

A⊗K EndK(V ) ' A′ ⊗K EndK(V ′).

It then follows from parts (??) and (??) above that

NK/F (A)⊗F EndF
(
NK/F (V )

)
' NK/F (A′)⊗F EndF

(
NK/F (V ′)

)
,

hence NK/F (A) and NK/F (A′) are Brauer-equivalent. Thus NK/F induces a map
on Brauer groups and part (??) above shows that it is a homomorphism.

To prove (??), we first note that if A is an F -algebra, then ι(AK) = AK under
the identification ι(a⊗ α) = a⊗ ι(α). Therefore,

ι(AK)⊗K AK ' A⊗F A⊗F K
and NK/F (A) can be identified with the F -algebra elementwise invariant under the
F -algebra automorphism s′ of A⊗F A⊗F K defined through

s′(a1 ⊗ a2 ⊗ α) = a2 ⊗ a1 ⊗ ι(α).

On the other hand, A⊗F A can be identified with the algebra of fixed points under
the automorphism s′′ defined through

s′′(a1 ⊗ a2 ⊗ α) = a1 ⊗ a2 ⊗ ι(α).

We aim to show that these F -algebras are isomorphic when A is central simple.
Let g ∈ A⊗F A be the Goldman element (see (??)). By (??), we have

g2 = 1 and g · (a1 ⊗ a2) = (a2 ⊗ a1) · g for all a1, a2 ∈ A,

hence for all x ∈ A⊗F A, s′(x⊗ 1) = gxg−1 ⊗ 1. In particular

s′(g ⊗ 1) = g ⊗ 1,
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and moreover

s′′(y) = (g ⊗ 1) · s′(y) · (g ⊗ 1)−1 for y ∈ A⊗F A⊗F K.

Let α ∈ K be such that ι(α) 6= ±α and let

u = α+ (g ⊗ 1)ι(α) ∈ A⊗F A⊗F K.
This element is invertible, since u ·

(
α− (g⊗ 1)ι(α)

)
= α2− ι(α)2 ∈ K×; moreover,

s′(u) = ι(α) + (g ⊗ 1)α = u · (g ⊗ 1).

Therefore, for all x ∈ A⊗F A⊗F K,

s′(uxu−1) = u · (g ⊗ 1) · s′(x) · (g ⊗ 1)−1 · u−1 = u · s′′(x) · u−1.

This equation shows that conjugation by u induces an isomorphism from the F -
algebra of invariant elements under s′′ onto the F -algebra of invariant elements
under s′, hence

A⊗F A ' NK/F (AK).

(3.14) Remark. Property (??) in the proposition above does not hold for ar-
bitrary F -algebras. For instance, one may check as an exercise that NC/R(CC) '
R× R× C whereas C⊗R C ' C× C. (This simple example is due to M. Ojanguren).
The proof of (??.??) in [?, p. 55] is flawed; see the correction in Tignol [?] or
Rowen [?, Theorem 7.2.26].

Involutions of the second kind and one-sided ideals. We now come back
to the proof of Theorem (??). As above, letK/F be a separable quadratic extension
of fields with nontrivial automorphism ι. Let B be a central simple K-algebra. As
in the case of involutions of the first kind, the necessary condition for the existence
of an involution of the second kind on B is easy to prove:

(3.15) Proposition. Suppose that B admits an involution τ of the second kind

whose restriction to K is ι. This involution endows B with a right ιB⊗KB-module

structure defined by

x ∗τ (ιa⊗ b) = τ(a)xb for a, b, x ∈ B.

The multiplication ∗τ induces a right NK/F (B)-module structure on Sym(B, τ) for

which rdim Sym(B, τ) = 1. Therefore, NK/F (B) is split.

Proof : It is straightforward to check that ∗τ defines on B a right ιB⊗K B-module
structure. For a, b, x ∈ B we have

τ
(
x ∗τ (ιa⊗ b)

)
= τ(x) ∗τ (ιb⊗ a).

Therefore, if u ∈ ιB ⊗K B is invariant under the switch map, then multipli-
cation by u preserves Sym(B, τ). It follows that ∗τ induces a right NK/F (B)-
module structure on Sym(B, τ). Since dimF Sym(B, τ) = degNK/F (B), we have
rdimSym(B, τ) = 1, hence NK/F (B) is split.

(3.16) Remark. Alternately, the involution τ yields a K-algebra isomorphism
τ∗ : B ⊗K ιB → EndK(B) defined by τ∗(a ⊗ ιb)(x) = axτ(b). This isomorphism
restricts to an F -algebra isomorphism NK/F (B)→ EndF

(
Sym(B, τ)

)
which shows

that NK/F (B) is split. However, the space Sym(B, τ) is then considered as a left

NK/F (B)-module; this is less convenient for the discussion below.
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Let τ ′ : NK/F (B)→ Sym(B, τ) be defined by

τ ′(u) = 1 ∗τ u for u ∈ NK/F (A).

Since rdim Sym(B, τ) = 1, it is clear that the map τ ′ is surjective, hence ker τ ′ is a
right ideal of dimension n4 − n2 where n = degB. We denote this ideal by Iτ :

Iτ = ker τ ′.

Extending scalars to K, we have NK/F (B)K = ιB ⊗K B and the map τ ′K : ιB ⊗K
B → B induced by τ ′ is

τ ′K(ιa⊗ b) = τ(a)b.

Therefore, the ideal (Iτ )K = Iτ ⊗F K = ker τ ′K satisfies (Iτ )K ∩ (1 ⊗ B) = {0},
hence also

ιB ⊗K B = (Iτ )K ⊕ (1⊗B).

(3.17) Theorem. The map τ 7→ Iτ defines a one-to-one correspondence between

involutions of the second kind on B leaving F elementwise invariant and right ideals

I ⊂ NK/F (B) such that

ιB ⊗K B = IK ⊕ (1⊗B)

where IK = I ⊗F K is the ideal of ιB ⊗K B obtained from I by scalar extension.

Proof : We have already checked that for each involution τ the ideal Iτ satisfies
the condition above. Conversely, suppose I is a right ideal such that ιB ⊗K B =
IK ⊕ (1⊗B). For each b ∈ B, there is a unique element τI(b) ∈ B such that

ιb⊗ 1− 1⊗ τI(b) ∈ IK .(3.18)

The map τI : B → B is ι-semilinear and the same arguments as in the proof of
Theorem (??) show that it is an anti-automorphism on B.

In order to check that τ2
I (b) = b for all b ∈ B, we use the fact that the ideal IK

is preserved under the switch map s : ιB ⊗K B → ιB ⊗K B since it is extended
from an ideal I in NK/F (B). Therefore, applying s to (??) we get

1⊗ b− ιτI(b)⊗ 1 ∈ IK ,
hence τ2

I (b) = b.
Arguing as in the proof of Theorem (??), we see that the ideal IτI associated

to the involution τI satisfies (IτI )K = IK , and conclude that IτI = I , since I (resp.
IτI ) is the subset of invariant elements in IK (resp. (IτI )K) under the switch map.

On the other hand, for any given involution τ on B we have

ιb⊗ 1− 1⊗ τ(b) ∈ (Iτ )K for b ∈ B,

hence τIτ = τ .

Let degB = n. The right ideals I ⊂ NK/F (B) such that ιB ⊗K B = IK ⊕
(1 ⊗ B) then have reduced dimension n2 − 1 and form a dense open subvariety V
in the Severi-Brauer variety SBn2−1

(
NK/F (B)

)
. The theorem above may thus be

reformulated as follows:

(3.19) Corollary. There is a natural one-to-one correspondence between involu-

tions of the second kind on B which leave F elementwise invariant and rational

points on the variety V ⊂ SBn2−1

(
NK/F (B)

)
.
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We may now complete the proof of Theorem (??). If F is finite, the algebras
B and NK/F (B) are split, and (??) shows that B carries unitary involutions. We
may thus assume henceforth that F is infinite. If NK/F (B) splits, then the variety

SBn2−1

(
NK/F (B)

)
is a projective space. The set of rational points is therefore

dense in SBn2−1

(
NK/F (B)

)
and so it intersects the nonempty open subvariety V

nontrivially. Corollary (??) then shows B has unitary involutions whose restriction
to K is ι.

(3.20) Remark. As in the case of involutions of the first kind, density arguments
can be avoided by reducing to division algebras. Suppose that B 'Mr(D) for some
central division algebra D over K and some integer r. Since the norm map NK/F

is defined on the Brauer group of K, the condition that NK/F (B) splits implies
that NK/F (D) also splits. Let I be a maximal right ideal in NK/F (D). We have

dimF I = dimF NK/F (D)−degNK/F (D) = (dimK D)2−dimK D. Moreover, since
D is a division algebra, it is clear that IK ∩ (1⊗D) = {0}, hence

ιD ⊗K D = IK ⊕ (1⊗D),

by dimension count. Theorem (??) then shows that D has an involution of the
second kind leaving F elementwise invariant. An involution τ of the same kind
can then be defined on Mr(D) by letting act entrywise and setting

τ(a) = at.

This involution is transported to A by the isomorphism A 'Mr(D).

Part (??) of Theorem (??) can easily be extended to cover the case of semi-
simple F -algebras E1×E2 with E1, E2 central simple over F . The norm N(F×F )/F

is defined by

N(F×F )/F (E1 ×E2) = E1 ⊗F E2.

This definition is consistent with (??), and it is easy to check that (??) extends to
the case where K = F × F .

If E1×E2 has an involution whose restriction to the center F ×F interchanges
the factors, then E2 ' Eop

1 , by (??). Therefore, N(F×F )/F (E1 × E2) splits. Con-
versely, if N(F×F )/F (E1 × E2) splits, then E2 ' Eop

1 and the exchange involution
on E1 ×Eop

1 can be transported to an involution of the second kind on E1 ×E2.

§4. Hermitian Forms

In this section, we set up a one-to-one correspondence between involutions on
central simple algebras and hermitian forms on vector spaces over division algebras,
generalizing the theorem in the introduction to this chapter.

According to Theorem (??), every central simple algebra A may be viewed as
the algebra of endomorphisms of some finite dimensional vector space V over a
central division algebra D:

A = EndD(V ).

Explicitly, we may take for V any simple left A-module and set D = EndA(V ).
The module V may then be endowed with a right D-vector space structure.

Since D is Brauer-equivalent to A, Theorem (??) shows that A has an invo-
lution if and only if D has an involution. Therefore, in this section we shall work
from the perspective that central simple algebras with involution are algebras of
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endomorphisms of vector spaces over division algebras with involution. More gen-
erally, we shall substitute an arbitrary central simple algebra E for D and consider
endomorphism algebras of right modules over E. In the second part of this section,
we discuss extending of involutions from a simple subalgebra B ⊂ A in relation to
an analogue of the Scharlau transfer for hermitian forms.

4.A. Adjoint involutions. Let E be a central simple algebra over a field F
and let M be a finitely generated right E-module. Suppose that θ : E → E is
an involution (of any kind) on E. A hermitian form on M (with respect to the
involution θ on E) is a bi-additive map

h : M ×M → E

subject to the following conditions:

(1) h(xα, yβ) = θ(α)h(x, y)β for all x, y ∈M and α, β ∈ E,
(2) h(y, x) = θ

(
h(x, y)

)
for all x, y ∈M .

It clearly follows from (??) that h(x, x) ∈ Sym(E, θ) for all x ∈ M . If (??) is
replaced by

(??′) h(y, x) = −θ
(
h(x, y)

)
for all x, y ∈M ,

the form h is called skew-hermitian. In that case h(x, x) ∈ Skew(E, θ) for all x ∈M .
If a skew-hermitian form h satisfies h(x, x) ∈ Alt(E, θ) for all x ∈ M , it is called
alternating (or even). If charF 6= 2, every skew-hermitian is alternating since
Skew(E, θ) = Alt(E, θ). If E = F and θ = Id, hermitian (resp. skew-hermitian,
resp. alternating) forms are the symmetric (resp. skew-symmetric, resp. alternating)
bilinear forms.

Similar definitions can be set for left modules. It is then convenient to re-
place (??) by

(??′) h(αx, βy) = αh(x, y)θ(β) for all x, y ∈M and α, β ∈ E.

The results concerning hermitian forms on left modules are of course essentially the
same as for right modules. We therefore restrict our discussion in this section to
right modules.

The hermitian or skew-hermitian form h on the right E-module M is called
nonsingular if the only element x ∈M such that h(x, y) = 0 for all y ∈M is x = 0.

(4.1) Proposition. For every nonsingular hermitian or skew-hermitian form h
on M , there exists a unique involution σh on EndE(M) such that σh(α) = θ(α) for

all α ∈ F and

h
(
x, f(y)

)
= h

(
σh(f)(x), y

)
for x, y ∈M .

The involution σh is called the adjoint involution with respect to h.

Proof : Consider the dual M∗ = HomE(M,E). It has a natural structure of left
E-module. We define a right module θM∗ by

θM∗ = { θϕ | ϕ ∈M∗ }
with the operations

θϕ+ θψ = θ(ϕ+ ψ) and (θϕ)α = θ
(
θ(α)ϕ

)
for ϕ, ψ ∈M∗ and α ∈ E.

The hermitian or skew-hermitian form h induces a homomorphism of right
E-modules

ĥ : M → θM∗
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defined by

ĥ(x) = θϕ where ϕ(y) = h(x, y).

If h is nonsingular, the map ĥ is injective, hence bijective since M and θM∗ have
the same dimension over F . The unique involution σh for which the condition of
the proposition holds is then given by

σh(f) = ĥ−1 ◦ θf t ◦ ĥ
where θf t : θM∗ → θM∗ is the transpose of f , so that

θf t(θϕ) = θ
(
f t(ϕ)

)
= θ(ϕ ◦ f) for ϕ ∈M∗.

The following theorem is the expected generalization of the result proved in the
introduction.

(4.2) Theorem. Let A = EndE(M).

(1) If θ is of the first kind on E, the map h 7→ σh defines a one-to-one correspon-

dence between nonsingular hermitian and skew-hermitian forms on M (with respect

to θ) up to a factor in F× and involutions of the first kind on A.

If charF 6= 2, the involutions σh on A and θ on E have the same type if h is

hermitian and have opposite types if h is skew-hermitian.

If charF = 2, the involution σh is symplectic if and only if h is alternating.

(2) If θ is of the second kind on E, the map h 7→ σh defines a one-to-one correspon-

dence between nonsingular hermitian forms on M up to a factor in F× invariant

under θ and involutions σ of the second kind on A such that σ(α) = θ(α) for all

α ∈ F .

Proof : We first make some observations which do not depend on the kind of θ. If
h and h′ are nonsingular hermitian or skew-hermitian forms on M , then the map

v = ĥ−1 ◦ ĥ′ ∈ A× is such that

h′(x, y) = h
(
v(x), y

)
for x, y ∈M .

Therefore, the adjoint involutions σh and σh′ are related by

σh = Int(v) ◦ σh′ .
Therefore, if σh = σh′ , then v ∈ F× and the forms h, h′ differ by a factor in F×.

If θ is of the second kind and h, h′ are both hermitian, the relation h′ = v · h
implies that θ(v) = v. We have thus shown injectivity of the map h 7→ σh on the
set of equivalence classes modulo factors in F× (invariant under θ) in both cases
(??) and (??).

Let D be a central division algebra Brauer-equivalent to E. We may then
identify E with Ms(D) for some integer s, hence also M with Mr,s(D) and A with
Mr(D), as in the proof of (??). We may thus assume that

A = Mr(D), M = Mr,s(D), E = Ms(D).

Theorem (??) shows thatD carries an involution such that α = θ(α) for all α ∈ F .
We use the same notation ∗ for the maps A→ A, E → E andM →Ms,r(D) defined
by

(dij)
∗
i,j = (dij)

t
i,j .
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Proposition (??) shows that the maps ∗ on A and E are involutions of the same
type as .

Consider now case (??), where is of the first kind. According to (??), we may
find u ∈ E× such that u∗ = ±u and θ = Int(u) ◦ ∗. Moreover, for any involution of
the first kind σ on A we may find some g ∈ A× such that g∗ = ±g and σ = Int(g)◦∗.
Define then a map h : M ×M → E by

h(x, y) = u · x∗ · g−1 · y for x, y ∈M .

This map is clearly bi-additive. Moreover, for α, β ∈ E and x, y ∈M we have

h(xα, yβ) = u · α∗ · x∗ · g−1 · y · β = θ(α) · h(x, y) · β
and

h(y, x) = u ·
(
u∗ · x∗ · (g−1)∗ · y

)∗ · u−1 = δθ
(
h(x, y)

)
,

where δ = +1 if u−1u∗ = g−1g∗ (= ±1) and δ = −1 if u−1u∗ = −g−1g∗ (= ∓1).
Therefore, h is a hermitian or skew-hermitian form on M . For a ∈ A and x, y ∈M ,

h(x, ay) = u · x∗ · (ga∗g−1)∗ · g−1 · y = h
(
σ(a)x, y

)
,

hence σ is the adjoint involution with respect to h. To complete the proof of (??),
it remains to relate the type of σ to properties of h.

Suppose first that charF 6= 2. Proposition (??) shows that the type of θ (resp.
of σ) is the same as the type of if and only if u−1u∗ = +1 (resp. g−1g∗ = +1).
Therefore, σ and θ are of the same type if and only if u−1u∗ = g−1g∗, and this
condition holds if and only if h is hermitian.

Suppose now that charF = 2. We have to show that h(x, x) ∈ Alt(E, θ) for
all x ∈ M if and only if σ is symplectic. Proposition (??) shows that this last
condition is equivalent to g ∈ Alt(A, ∗). If g = a − a∗ for some a ∈ A, then
g−1 = −g−1g(g−1)∗ = b− b∗ for b = g−1a∗(g−1)∗. It follows that for all x ∈M

h(x, x) = u · x∗ · b · x− θ(u · x∗ · b · x) ∈ Alt(E, θ).

Conversely, if h is alternating, then x∗ · g−1 ·x ∈ Alt(E, ∗) for all x ∈M , since (??)
shows that Alt(E, ∗) = u−1 · Alt(E, θ). In particular, taking for x the matrix ei1
whose entry with indices (i, 1) is 1 and whose other entries are 0, it follows that the
i-th diagonal entry of g−1 is in Alt(D, ). Let g−1 = (g′ij)1≤i,j≤r and g′ii = di − di
for some di ∈ D. Then g−1 = b− b∗ where the matrix b = (bij)1≤i,j≤r is defined by

bij =





g′ij if i < j,

di if i = j,

0 if i > j.

Therefore, g = −gg−1g∗ = gb∗g∗ − (gb∗g∗)∗ ∈ Alt(A, ∗), completing the proof
of (??).

The proof of (??) is similar, but easier since there is only one type. Propo-
sition (??) yields an element u ∈ E∗ such that u∗ = u and θ = Int(u) ◦ ∗, and
shows that every involution σ on A such that σ(α) = α for all α ∈ F has the form
σ = Int(g) ◦ ∗ for some g ∈ A× such that g∗ = g. The same computations as
for (??) show that σ is the adjoint involution with respect to the hermitian form h
on M defined by

h(x, y) = u · x∗ · g−1 · y for x, y ∈M .
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The preceding theorem applies notably in the case where E is a division alge-
bra, to yield a correspondence between involutions on a central simple algebra A
and hermitian and skew-hermitian forms on vector spaces over the division algebra
Brauer-equivalent to A. However, (??) shows that a given central simple algebra
may be represented as A = EndE(M) for any central simple algebra E Brauer-
equivalent to A (and for a suitable E-module M). Involutions on A then corre-
spond to hermitian and skew-hermitian forms on M by the preceding theorem. In
particular, if A has an involution of the first kind, then a theorem of Merkurjev [?]
shows that we may take for E a tensor product of quaternion algebras.

4.B. Extension of involutions and transfer. This section analyzes the
possibility of extending an involution from a simple subalgebra. One type of exten-
sion is based on an analogue of the Scharlau transfer for hermitian forms which is
discussed next. The general extension result, due to Kneser, is given thereafter.

The transfer. Throughout this subsection, we consider the following situa-
tion: Z/F is a finite extension of fields, E is a central simple Z-algebra and T is a
central simple F -algebra contained in E. Let C be the centralizer of T in E. By
the double centralizer theorem (see (??)) this algebra is central simple over Z and

E = T ⊗F C.
Suppose that θ is an involution on E (of any kind) which preserves T , hence also C.
For simplicity, we also call θ the restriction of θ to T and to C.

(4.3) Definition. An F -linear map s : E → T is called an involution trace if it
satisfies the following conditions (see Knus [?, (7.2.4)]):

(1) s(t1xt2) = t1s(x)t2 for all x ∈ E and t1, t2 ∈ T ;
(2) s

(
θ(x)

)
= θ

(
s(x)

)
for all x ∈ E;

(3) if x ∈ E is such that s
(
θ(x)y

)
= 0 for all y ∈ E, then x = 0.

In view of (??), condition (??) may equivalently be phrased as follows: the only
element y ∈ E such that s

(
θ(x)y

)
= 0 for all x ∈ E is y = 0. It is also equivalent

to the following:

(??′) ker s does not contain any nontrivial left or right ideal in E.

Indeed, I is a right (resp. left) ideal in ker s if and only if s
(
θ(x)y

)
= 0 for all

θ(x) ∈ I and all y ∈ E (resp. for all x ∈ E and y ∈ I).
For instance, if T = F = Z, the reduced trace TrdE : E → F is an involution

trace. Indeed, condition (??) follows from (??) if θ is of the first kind and from (??)
if θ is of the second kind, and condition (??) follows from the fact that the bilinear
(reduced) trace form is nonsingular (see (??)).

If E = Z and T = F , every nonzero linear map s : Z → F which commutes
with θ is an involution trace. Indeed, if x ∈ Z is such that s

(
θ(x)y

)
= 0 for all

y ∈ Z, then x = 0 since s 6= 0 and Z = { θ(x)y | y ∈ Z } if x 6= 0.
The next proposition shows that every involution trace s : E → T can be ob-

tained by combining these particular cases.

(4.4) Proposition. Fix a nonzero linear map ` : Z → F which commutes with θ.
For every unit u ∈ Sym(C, θ), the map s : E → T defined by

s(t⊗ c) = t · `
(
TrdC(uc)

)
for t ∈ T and c ∈ C

is an involution trace. Every involution trace from E to T is of the form above for

some unit u ∈ Sym(C, θ).
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Proof : Conditions (??) and (??) are clear. Suppose that x =
∑

i ti ⊗ ci ∈ E is

such that s
(
θ(x)y

)
= 0 for all y ∈ E. We may assume that the elements ti ∈ T

are linearly independent over F . The relation s
(
θ(x) · 1⊗ c

)
= 0 for all c ∈ C then

yields `
(
TrdC

(
uθ(ci)c

))
= 0 for all i and all c ∈ C. Since ` is nonzero, it follows

that TrdC
(
uθ(ci)c

)
= 0 for all i and all c ∈ C, hence uθ(ci) = 0 for all i since the

bilinear reduced trace form is nonsingular. It follows that θ(ci) = 0 for all i since u
is invertible, hence x = 0.

Let s : E → T be an arbitrary involution trace. For t ∈ T and c ∈ C,

t · s(1⊗ c) = s(t⊗ c) = s(1⊗ c) · t,
hence the restriction of s to C takes values in F and s = IdT ⊗s0 where s0 : C → F
denotes this restriction. Since ` is nonzero and the bilinear reduced trace form is
nonsingular, the linear map C → HomF (C,F ) which carries c ∈ C to the linear map
x 7→ `

(
TrdC(cx)

)
is injective, hence also surjective, by dimension count. Therefore,

there exists u ∈ C such that s0(x) = `
(
TrdC(ux)

)
for all x ∈ C. If u is not

invertible, then the annihilator of the left ideal generated by u is a nontrivial right
ideal in the kernel of s0, contrary to the hypothesis that s is an involution trace.
Finally, observe that for c ∈ C,

s0
(
θ(c)

)
= `

(
θ
(
TrdC

(
cθ(u)

)))
= `

(
TrdC

(
θ(u)c

))
,

hence the condition s0
(
θ(c)

)
= s0(c) for all c ∈ C implies that θ(u) = u.

(4.5) Corollary. For every involution trace s : E → T , there exists an involution

θs on C such that

s
(
θ(c)x

)
= s

(
xθs(c)

)
for c ∈ C, x ∈ E.

The involutions θs and θ have the same restriction to Z.

Proof : Fix a nonzero linear map ` : Z → F which commutes with θ. According
to (??), we have s = IdT ⊗ s0 where s0 : C → F is defined by s0(c) = `

(
TrdC(uc)

)

for some symmetric unit u ∈ C×. Let θs = Int(u) ◦ θ. For c, c′ ∈ C,

TrdC
(
uθ(c)c′

)
= TrdC

(
θs(c)uc

′) = TrdC
(
uc′θs(c)

)
,

hence for all t ∈ T ,

s
(
θ(c) · (t⊗ c′)

)
= t · `

(
TrdC

(
uθ(c)c′

))
= s

(
(t⊗ c′) · θs(c)

)
.

Therefore, the involution θs satisfies

s
(
θ(c)x

)
= s

(
xθs(c)

)
for c ∈ C, x ∈ E.

The involution θs is uniquely determined by this condition, because if s
(
xθs(c)

)
=

s
(
xθ′s(c)

)
for all c ∈ C and x ∈ E, then property (??) of involution traces in (??)

implies that θs(c) = θ′s(c) for all c ∈ C.
Since θs = Int(u) ◦ θ, it is clear that θs(z) = θ(z) for all z ∈ Z.

Using an involution trace s : E → T , we may define a structure of hermitian
module over T on every hermitian module over E, as we proceed to show.

Suppose that M is a finitely generated right module over E. Since T ⊂ E, we
may also consider M as a right T -module, and

EndE(M) ⊂ EndT (M).

The centralizer of EndE(M) in EndT (M) is easily determined:
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(4.6) Lemma. For c in the centralizer C of T in E, let rc ∈ EndT (M) be the

right multiplication by c. The map cop 7→ rc identifies Cop with the centralizer of

EndE(M) in EndT (M).

Proof : Every element f ∈ EndT (M) in the centralizer of EndE(M) may be viewed
as an endomorphism of M for its EndE(M)-module structure. By (??), we have
EndEndE(M)(M) = E, hence f is right multiplication by some element c ∈ E. Since
f is a T -module endomorphism, c ∈ C.

Suppose now that h : M ×M → E is a hermitian or skew-hermitian form with
respect to θ. If s : E → T is an involution trace, we define

s∗(h) : M ×M → T

by

s∗(h)(x, y) = s
(
h(x, y)

)
for x, y ∈M .

In view of the properties of s, the form s∗(h) is clearly hermitian over T (with
respect to θ) if h is hermitian, and skew-hermitian if h is skew-hermitian. It is
also alternating if h is alternating, since the relation h(x, x) = e− θ(e) implies that
s∗(h)(x, x) = s(e)− θ

(
s(e)

)
.

(4.7) Proposition. If h is nonsingular, then s∗(h) is nonsingular and the adjoint

involution σs∗(h) on EndT (M) extends the adjoint involution σh on EndE(M):
(
EndE(M), σh

)
⊂

(
EndT (M), σs∗(h)

)
.

Moreover, with the notation of (??) and (??),

σs∗(h)(rc) = rθs(c)

for all c ∈ C.

Proof : If x ∈M is such that s∗(h)(x, y) = 0 for all y ∈M , then h(x,M) is a right
ideal of E contained in ker s, hence h(x,M) = {0}. This implies that x = 0 if h is
nonsingular, proving the first statement.

For f ∈ EndE(M) and x, y ∈M we have

h
(
x, f(y)

)
= h

(
σh(f)(x), y

)
.

Hence, applying s to both sides,

s∗(h)
(
x, f(y)

)
= s∗(h)

(
σh(f)(x), y

)
.

Therefore, σs∗(h)(f) = σh(f).
On the other hand, for x, y ∈M and c ∈ C,

s∗(h)(xc, y) = s
(
θ(c)h(x, y)

)
.

The defining property of θs shows that the right side is also equal to

s
(
h(x, y)θs(c)

)
= s∗(h)

(
x, yθs(c)

)
,

hence σs∗(h)(rc) = rθs(c).

(4.8) Example. Suppose that E is central over F , hence the centralizer C of T
in E also is central over F . Let M be a finitely generated right module over E. The
algebra EndE(M) is a central simple F -subalgebra in EndT (M), and (??) shows
that its centralizer is isomorphic to Cop under the map which carries cop ∈ Cop
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to the endomorphism rc of right multiplication by c. Hence there is an F -algebra
isomorphism

Ψ: EndE(M)⊗F Cop ∼−→ EndT (M)

which maps f ⊗ cop to f ◦ rc = rc ◦ f for f ∈ EndE(M) and c ∈ C.
Pick an invertible element u ∈ Sym(C, θ) and define an involution trace s : E →

T by

s(t⊗ c) = t · TrdC(uc) for t ∈ T , c ∈ C.

The proof of (??) shows that θs = Int(u) ◦ θ. Moreover, (??) shows that for every
nonsingular hermitian or skew-hermitian form h : M×M → E, the involution σs∗(h)

on EndT (M) corresponds under Ψ to σh⊗θops where θops (cop) =
(
θs(c)

)op
for c ∈ C:

Ψ:
(
EndE(M)⊗F Cop, σh ⊗ θops

) ∼−→
(
EndT (M), σs∗(h)

)
.

As a particular case, we may consider T = F , E = C and M = C. Then one
sees that EndE(M) = C by identifying c ∈ C with left multiplication by c, and the
isomorphism Ψ is the same as in Wedderburn’s theorem (??):

Ψ: C ⊗F Cop ∼−→ EndF (C).

If h : C × C → C is defined by h(x, y) = θ(x)y, then σh = θ and the result above
shows that σTrd∗(h) corresponds to θ ⊗ θ under Ψ.

(4.9) Example. Suppose that C is the center Z of E, so that

E = T ⊗F Z.
Let N be a finitely generated right module over T and h : N × N → T be a
nonsingular hermitian form with respect to θ. Extending scalars to Z, we get a
module NZ = N⊗F Z over E and a nonsingular hermitian form hZ : NZ×NZ → E.
Moreover,

EndE(NZ) = EndT (N)⊗F Z and EndT (NZ) = EndT (N)⊗ EndF (Z).

Pick a nonzero linear map ` : Z → F which commutes with θ and let

s = IdT ⊗ ` : E → T

be the induced involution trace on E. We claim that under the identification above,

σs∗(hZ) = σh ⊗ σk,
where k : Z × Z → F is the hermitian form defined by

k(z1, z2) = `
(
θ(z1)z2

)
for z1, z2 ∈ Z.

Indeed, for x1, x2 ∈ N and z1, z2 ∈ Z we have

hZ(x1 ⊗ z1, x2 ⊗ z2) = h(x1, x2)⊗ θ(z1)z2,
hence

s∗(hZ) = h⊗ k.

We now return to the general case, and show that the involutions on EndT (M)
which are adjoint to transfer forms s∗(h) are exactly those which preserve EndE(M)
and induce θs on the centralizer.
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(4.10) Proposition. Let σ be an involution on EndT (M) such that

σ
(
EndE(M)

)
= EndE(M) and σ(re) = rθs(e)

for all e ∈ CET . There exists a nonsingular hermitian or skew-hermitian form

h : M ×M → E with respect to θ such that σ = σs∗(h).

Proof : Since θs|Z = θ|Z by (??), it follows that σ(rz) = rθs(z) = rθ(z) for all
z ∈ Z. Therefore, Theorem (??) shows that the restriction of σ to EndE(M) is the
adjoint involution with respect to some nonsingular hermitian or skew-hermitian
form h0 : M ×M → E. Proposition (??) (if θ|F = IdF ) or (??) (if θ|F 6= IdF )
yields an invertible element u ∈ EndT (M) such that

σ = Int(u) ◦ σs∗(h0)

and σs∗(h0)(u) = ±u. By (??), the restriction of σs∗(h0) to EndE(M) is σh0 which
is also the restriction of σ to EndE(M). Therefore, u centralizes EndE(M). It
follows from (??) that u = re for some e ∈ C×. Proposition (??) shows that
σs∗(h0)(rc) = rθs(c) for all c ∈ C, hence

σ(rc) = u ◦ rθs(c) ◦ u−1 = re−1θs(c)e.

Since we assume that σ(rc) = rθs(c) for all c ∈ C, it follows that e ∈ Z×. Moreover,
θ(e) = ±e since σs∗(h0)(u) = ±u. We may then define a nonsingular hermitian or
skew-hermitian form h : M ×M → E by

h(x, y) = e−1h0(x, y) for x, y ∈M .

If δ = θ(e)e−1 (= ±1), we also have

h(x, y) = δh0(xe
−1, y) = δh0

(
re−1 (x), y

)
,

hence

σs∗(h) = Int(re) ◦ σs∗(h0) = σ.

(4.11) Example. Suppose E is commutative, so that E = Z = C and suppose
that T = F . Assume further that θ = IdE . Let V be a finite dimensional vector
space over F and fix some F -algebra embedding

i : Z ↪→ EndF (V ).

We may then consider V as a vector space over Z by defining

v · z = i(z)(v) for v ∈ V , z ∈ Z.

By definition, the centralizer of i(Z) in EndF (V ) is EndZ(V ).
Suppose that σ is an involution on EndF (V ) which leaves i(Z) elementwise

invariant and that s : Z → F is a nonzero linear map. By (??), we have θs = θ =
IdZ . On the other hand, since σ preserves i(Z), it also preserves its centralizer
EndZ(V ). We may therefore apply (??) to conclude that there exists a nonsingular
symmetric or skew-symmetric bilinear form b : V × V → Z such that σ = σs∗(b).

By (??), the restriction of σ to EndZ(V ) is σb. If b is symmetric, skew-
symmetric or alternating, then s∗(b) has the same property. If charF 6= 2, the
bilinear form s∗(b) cannot be simultaneously symmetric and skew-symmetric, or it
would be singular. Therefore, b and s∗(b) are of the same type, and it follows that
σ has the same type as its restriction to EndZ(V ). If charF = 2, it is still true that
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σ is symplectic if its restriction to EndZ(V ) is symplectic, since s∗(b) is alternating
if b is alternating, but the converse is not true without some further hypotheses.

To construct a specific example, consider a field Z which is finite dimensional
over its subfield of squares Z2, and let F = Z2. Pick a nonzero linear map s : Z → F
such that s(1) = 0. The nonsingular symmetric bilinear form b on V = Z defined
by b(z1, z2) = z1z2 is not alternating, but s∗(b) is alternating since s vanishes on Z2.
Therefore, the involution σs∗(b) on EndF (Z) is symplectic, but its restriction σb to
EndZ(Z) is orthogonal. (Indeed, EndZ(Z) = Z and σb = IdZ .)

These observations on the type of an involution compared with the type of its
restriction to a centralizer are generalized in the next proposition.

(4.12) Proposition. Let A be a central simple F -algebra with an involution σ of

the first kind and let L ⊂ A be a subfield containing F . Suppose that σ leaves L
elementwise invariant, so that it restricts to an involution of the first kind τ on the

centralizer CAL.

(1) If charF 6= 2, the involutions σ and τ have the same type.

(2) Suppose that charF = 2. If τ is symplectic, then σ is symplectic. If L/F is

separable, then σ and τ have the same type.

Proof : We first consider the simpler case where charF = 2. If τ is symplectic,
then (??) shows that the centralizer CAL contains an element c such that c+τ(c) =
1. Since τ(c) = σ(c), it also follows from (??) that σ is symplectic.

If τ is orthogonal, then TrdCAL

(
Sym(CAL, τ)

)
= L by (??). If L/F is separa-

ble, the trace form TL/F is nonzero, hence

TL/F ◦ TrdCAL

(
Sym(CAL, τ)

)
= F.

Since TL/F ◦ TrdCAL(c) = TrdA(c) for all c ∈ CAL (see Draxl [?, p. 150]), we have

TL/F ◦ TrdCAL

(
Sym(CAL, τ)

)
⊂ TrdA

(
Sym(A, σ)

)
,

hence TrdA
(
Sym(A, σ)

)
6= {0}, and σ is orthogonal. This completes the proof in

the case where charF = 2.
In arbitrary characteristic, let F ′ be a splitting field of A in which F is alge-

braically closed and such that the field extension F ′/F is separable (for instance, the
function field of the Severi-Brauer variety SB(A)). The composite L·F ′ (= L⊗F F ′)
is then a field, and it suffices to prove the proposition after extending scalars to F ′.
We may thus assume that A = EndF (V ) for some F -vector space V . If charF 6= 2
the result then follows from the observations in (??).

(4.13) Corollary. Let M be a maximal subfield of degree n in a central simple

F -algebra A of degree n. Suppose that charF 6= 2 or that M/F is separable. Every

involution which leaves M elementwise invariant is orthogonal.

Proof : We have CAM = M by (??). Therefore, if σ is an involution on A which
leaves M elementwise invariant, then σ|CAM = IdM and (??) shows that σ is
orthogonal if charF 6= 2 or M/F is separable.

The result does not hold in characteristic 2 when M/F is not separable, as
example (??) shows.
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Extension of involutions. The following theorem is a kind of “Skolem-
Noether theorem” for involutions. The first part is due to M. Kneser [?, p. 37].
(For a different proof, see Scharlau [?, §8.10].)

(4.14) Theorem. Let B be a simple subalgebra of a central simple algebra A over

a field F . Suppose that A and B have involutions σ and τ respectively which have

the same restriction to F . Then A has an involution σ′ whose restriction to B is τ .
If σ is of the first kind, the types of σ′ and τ are related as follows :

(1) If charF 6= 2, then σ′ can be arbitrarily chosen of orthogonal or symplectic

type, except when the following two conditions hold : τ is of the first kind and the

degree of the centralizer CAB of B in A is odd. In that case, every extension σ′

of τ has the same type as τ .
(2) Suppose that charF = 2. If τ is of symplectic or unitary type, then σ′ is

symplectic. If τ is of orthogonal type and the center of B is a separable extension

of F , then σ′ can be arbitrarily chosen of orthogonal or symplectic type, except when

the degree of the centralizer CAB is odd. In that case σ′ is orthogonal.

Proof : In order to show the existence of σ′, we first reduce to the case where the
centralizer CAB is a division algebra. Let Z = B ∩ CAB be the center of B,
hence also of CAB by the double centralizer theorem (see (??)). Wedderburn’s
theorem (??) yields a decomposition of CAB:

CAB = M ·D 'M ⊗Z D
where M is a matrix algebra: M 'Mr(Z) for some integer r, and D is a division
algebra with center Z. Let B′ = B ·M ' B⊗ZM be the subalgebra of A generated
by B and M . An involution ∗ on Mr(Z) of the same kind as τ can be defined by
letting τ |Z act entrywise and setting

a∗ = τ(a)t for a ∈Mr(Z).

The involution τ ⊗ ∗ on B ⊗Mr(Z) extends τ and is carried to an involution τ ′

on B′ through an isomorphism B ⊗Z Mr(Z) ' B ·M = B′. It now remains to
extend τ ′ to A. Note that the centralizer of B′ is a division algebra, i.e., CAB

′ = D.
Since σ and τ ′ have the same restriction to the center F of A, the Skolem-

Noether theorem shows that σ ◦ τ ′ is an inner automorphism. Let σ ◦ τ ′ = Int(u)
for some u ∈ A×, so that

σ ◦ τ ′(x)u = ux for x ∈ B′.(4.15)

Substituting τ ′(x) for x, we get

σ(x)u = uτ ′(x) for x ∈ B′

and, applying σ to both sides,

σ ◦ τ ′(x)σ(u) = σ(u)x for x ∈ B′.(4.16)

By comparing (??) and (??), we obtain u−1σ(u) ∈ CAB
′. At least one of the

elements a+1 = 1 + u−1σ(u), a−1 = 1− u−1σ(u) is nonzero, hence invertible since
CAB

′ is a division algebra. If aε is invertible (where ε = ±1), we have

σ ◦ τ ′ = Int(u) ◦ Int(aε) = Int(uaε)

since aε ∈ CAB
′, and uaε = u + εσ(u) ∈ Sym(A, σ) ∪ Skew(A, σ). Therefore,

σ ◦ Int(uaε) (= Int
(
(uaε)

−1
)
◦ σ) is an involution on A whose restriction to B′ is

τ ′. This completes the proof of the existence of an extension σ′ of τ to A.
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We now discuss the type of σ′ (assuming that it is of the first kind, i.e., τ |F =
IdF ). Suppose first that charF 6= 2. Since σ′ extends τ , it preserves B, hence also
its centralizer CAB. It therefore restricts to an involution on CAB. If τ is of the
second kind, we may find some v ∈ Z× such that σ′(v) = −v. Similarly, if τ is
of the first kind, then (??) shows that we may find some v ∈ (CAB)× such that
σ′(v) = −v, except when the degree of CAB is odd. Assuming we have such a v,
the involution σ′′ = Int(v) ◦ σ′ also extends τ since v ∈ CAB, and it is of the type
opposite to σ′ since v ∈ Skew(A, σ′) (see (??)). Therefore, τ has extensions of both
types to A.

If the degree of CAB is odd and σ′ leaves Z elementwise invariant, consider the
restriction of σ′ to the centralizer CAZ. Since B has center Z we have, by (??),

CAZ = B ⊗Z CAB.
The restriction σ′|CAZ preserves both factors, hence it decomposes as

σ′|CAZ = τ ⊗ σ′|CAB .

Since the degree of CAB is odd, the involution σ′|CAB is orthogonal by (??). There-
fore, it follows from (??) that the involution σ′|CAZ has the same type as τ . Propo-
sition (??) shows that σ′ and σ′|CAZ have the same type and completes the proof
in the case where charF 6= 2.

Suppose next that charF = 2. If τ is unitary, then it induces a nontrivial
automorphism of order 2 on Z, hence there exists z ∈ Z such that z + τ(z) = 1.
For every extension σ′ of τ to A we have that z + σ′(z) = 1, hence 1 ∈ Alt(A, σ′)
and σ′ is symplectic by (??). Similarly, if τ is symplectic then 1 ∈ Alt(B, τ) hence
also 1 ∈ Alt(A, σ′) for every extension σ′ of τ . Therefore, every extension of τ is
symplectic.

Suppose finally that τ is orthogonal and that Z/F is separable. As above, we
have CAB = B ⊗Z CAB. If degCAB is even, then (??) shows that we may find an
involution θ1 on CAB of orthogonal type and an involution θ2 of symplectic type.
By (??), the involution τ ⊗ θ1 (resp. τ ⊗ θ2) is orthogonal (resp. symplectic). It
follows from (??) that every extension of this involution to A has the same type.

If degCAB is odd, the same arguments as in the case where charF 6= 2 show
that every extension of τ is orthogonal.

If the subalgebra B ⊂ A is not simple, much less is known on the possibility
of extending an involution from B to A. We have however the following general
result:

(4.17) Proposition. Let A be a central simple algebra with involution of the first

kind. Every element of A is invariant under some involution.

Proof : Let a ∈ A and let σ be an arbitrary orthogonal involution on A. Consider
the vector space

V = {x ∈ A | σ(x) = x, xσ(a) = ax }.
It suffices to show that V contains an invertible element u, for then Int(u) ◦σ is an
involution on A which leaves a invariant.

Let L be a splitting field of A. Fix an isomorphism AL 'Mn(L). The existence
of g ∈ GLn(L) such that gt = g and gat = ag is shown in Kaplansky [?, Theorem 66]
(see also Exercise ??). The involution τ = Int(g) ◦ t leaves a invariant, and it is
orthogonal if charF 6= 2. By (??), there exists an invertible element u ∈ AL such
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that τ = Int(u) ◦σL and σL(u) = u. Since τ leaves a invariant, we have u ∈ V ⊗L.
We have thus shown that V ⊗L contains an element whose reduced norm is nonzero,
hence the Zariski-open subset in V consisting of elements whose reduced norm is
nonzero is nonempty. If F is infinite, we may use density of the rational points to
conclude that V contains an invertible element. If F is finite, we may take L = F
in the discussion above.

Note that if charF 6= 2 the proof yields a more precise result: every element is
invariant under some orthogonal involution. Similar arguments apply to involutions
of the second kind, as the next proposition shows.

(4.18) Proposition. Let (B, τ) be a central simple F -algebra with involution of

the second kind of degree n and let K be the center of B. For every b ∈ B whose

minimal polynomial over K has degree n and coefficients in F , there exists an

involution of the second kind on B which leaves b invariant.

Proof : Consider the F -vector space

W = {x ∈ B | τ(x) = x, xτ(b) = bx }.
As in the proof of (??), it suffices to show that W contains an invertible element.
By (??), we may find a field extension L/F such that BL ' Mn(L) ×Mn(L)op.
Fix such an isomorphism. Since the minimal polynomial of b has degree n and
coefficients in F , its image in Mn(L) ×Mn(L)op has the form (m1,m

op
2 ) where

m1, m2 are matrices which have the same minimal polynomial of degree n. We
may then find a matrix u ∈ GLn(L) such that um2u

−1 = m1. If ε is the exchange
involution on Mn(L) × Mn(L)op, the involution Int(u, uop) ◦ ε leaves (m1,m

op
2 )

invariant. This involution has the form Int(v) ◦ τL for some invertible element
v ∈ W ⊗ L. If F is infinite, we may conclude as in the proof of (??) that W also
contains an invertible element, completing the proof.

If F is finite and K ' F × F , the arguments above apply with L = F . The
remaining case where F is finite and K is a field is left to the reader. (See Exer-
cise ??.)

§5. Quadratic Forms

This section introduces the notion of a quadratic pair which is a twisted ana-
logue of quadratic form in the same way that involutions are twisted analogues of
symmetric, skew-symmetric or alternating forms (up to a scalar factor). The full
force of this notion is in characteristic 2, since quadratic forms correspond bijec-
tively to symmetric bilinear forms in characteristic different from 2. Nevertheless
we place no restrictions on the characteristic of our base field F .

As a preparation for the proof that quadratic pairs on a split algebra EndF (V )
correspond to quadratic forms on the vector space V (see (??)), we first show
that every nonsingular bilinear form on V determines a standard identification
EndF (V ) = V ⊗F V . This identification is of central importance for the definition
of the Clifford algebra of a quadratic pair in §??.

5.A. Standard identifications. In this subsection, D denotes a central di-
vision algebra over F and θ denotes an involution (of any kind) on D. Let V be
a finite dimensional right vector space over D. We define9 a left vector space θV

9Note that this definition is consistent with those in §?? and §??.
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over D by

θV = { θv | v ∈ V }
with the operations

θv + θw = θ(v + w) and α · θv = θ
(
v · θ(α)

)

for v, w ∈ V and α ∈ D. We may then consider the tensor product V ⊗D θV which
is a vector space over F of dimension

dimF V ⊗D θV =
dimF V ⊗F V

dimF D
= (dimF V )2 dimF D.

Now, let h : V × V → D be a nonsingular hermitian or skew-hermitian form on V
with respect to θ. There is an F -linear map

ϕh : V ⊗D θV → EndD(V )

such that

ϕh(v ⊗ θw)(x) = v · h(w, x) for v, w, x ∈ V .

(5.1) Theorem. The map ϕh is bijective. Letting σh denote the adjoint involution

on EndD(V ) with respect to h, we have

σh
(
ϕh(v ⊗ θw)

)
= δϕh(w ⊗ θv) for v, w ∈ V ,

where δ = +1 if h is hermitian and δ = −1 if h is skew-hermitian. Moreover,

TrdEndD(V )

(
ϕh(v ⊗ θw)

)
= TrdD

(
h(w, v)

)
for v, w ∈ V

and, for v1, v2, w1, w2 ∈ V ,

ϕh(v1 ⊗ θw1) ◦ ϕh(v2 ⊗ θw2) = ϕh
(
v1h(w1, v2)⊗ θw2

)
.

Proof : Let (e1, . . . , en) be a basis of V over D. Since h is nonsingular, for i ∈
{1, . . . , n} there exists a unique vector e]i ∈ V such that

h(e]i , ej) =

{
1 if i = j,

0 if i 6= j,

and (e]1, . . . , e
]
n) is a basis of V over D. Every element x ∈ V ⊗D θV therefore has

a unique expression of the form

x =

n∑

i,j=1

eiaij ⊗ θe]j for some aij ∈ D.

The map ϕh takes the element x to the endomorphism of V with the matrix
(aij)1≤i,j≤n (with respect to the basis (e1, . . . , en)), hence ϕh is bijective. Moreover,
we have

TrdEndD(V )

(
ϕh(x)

)
=

n∑

i=1

TrdD(aii) =
n∑

i,j=1

TrdD
(
h(e]j , eiaij)

)
,

hence in particular

TrdEndD(V )

(
ϕh(v ⊗ θw)

)
= TrdD

(
h(w, v)

)
for v, w ∈ V .

For v, w, x, y ∈ V we have

h
(
x, ϕh(v ⊗ θw)(y)

)
= h(x, v)h(w, y)
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and

h
(
ϕh(w ⊗ θv)(x), y

)
= h

(
wh(v, x), y

)
= θ

(
h(v, x)

)
h(w, y),

hence σh
(
ϕh(v ⊗ θw)

)
= δϕh(w ⊗ θv).

Finally, for v1, w1, v2, w2, x ∈ V ,

ϕh(v1 ⊗ θw1) ◦ ϕh(v2 ⊗ θw2)(x) = v1h(w1, v2)h(w2, x)

= ϕh
(
v1h(w1, v2)⊗ θw2

)
(x),

hence ϕh(v1 ⊗ θw1) ◦ ϕh(v2 ⊗ θw2) = ϕh
(
v1h(w1, v2)⊗ θw2

)
.

Under ϕh, the F -algebra with involution
(
EndD(V ), σh

)
is thus identified with

V ⊗D θV endowed with the product

(v1 ⊗ θw1) ◦ (v2 ⊗ θw2) = v1h(w1, v2)⊗ θw2 for v1, v2, w1, w2 ∈ V

and the involution σ defined by

σ(v ⊗ θw) = δw ⊗ θv for v, w ∈ V ,

where δ = +1 if h is hermitian and δ = −1 if h is skew-hermitian. We shall refer
to the map ϕh in the sequel as the standard identification of

(
EndD(V ), σh

)
with

(V ⊗D θV, σ). Note that the map ϕh depends on the choice of h and not just on the
involution σh. Indeed, for any α ∈ F× fixed by θ we have σαh = σh but ϕαh = αϕh.

The standard identification will be used mostly in the split case where D = F .
If moreover θ = IdF , then θV = V , hence the standard identification associated to
a nonsingular symmetric or skew-symmetric bilinear form b on V is

ϕb : (V ⊗F V, σ) ∼−→
(
EndF (V ), σb

)
, ϕb(v ⊗ w)(x) = vb(w, x),(5.2)

where σ(v ⊗ w) = w ⊗ v if b is symmetric and σ(v ⊗ w) = −w ⊗ v if b is skew-
symmetric.

(5.3) Example. As in (??), for all integers r, s let ∗ : Mr,s(D)→Ms,r(D) be the
map defined by

(aij)
∗
i,j =

(
θ(aij)

)t
i,j
.

Let V = Dr (= Mr,1(D)) and let h : Dr ×Dr → D be the hermitian form defined
by

h(x, y) = x∗ · g · y for x, y ∈ Dr,

where g ∈Mr(D) is invertible and satisfies g∗ = g.
Identify Mr(D) with EndD(Dr) by mapping m ∈Mr(D) to the endomorphism

x 7→ m · x. The standard identification

ϕh : Dr ⊗D Dr ∼−→Mr(D)

carries v ⊗ w ∈ Dr ⊗D Dr to the matrix v · w∗ · g, since for all x ∈ Dr

v · w∗ · g · x = vh(w, x).
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5.B. Quadratic pairs. Let A be a central simple algebra of degree n over a
field F of arbitrary characteristic.

(5.4) Definition. A quadratic pair on A is a couple (σ, f), where σ is an involution
of the first kind on A and f : Sym(A, σ) → F is a linear map, subject to the
following conditions:

(1) dimF Sym(A, σ) = n(n+ 1)/2 and TrdA
(
Skew(A, σ)

)
= {0}.

(2) f
(
x+ σ(x)

)
= TrdA(x) for all x ∈ A.

Note that the equality x + σ(x) = x′ + σ(x′) holds for x, x′ ∈ A if and only
if x − x′ ∈ Skew(A, σ). Therefore, condition (??) makes sense only if the reduced
trace of every skew-symmetric element is zero, as required in (??).

If charF 6= 2, the equality TrdA
(
Skew(A, σ)

)
= {0} holds for every involution

of the first kind, by (??), hence condition (??) simply means that σ is of orthogonal
type. On the other hand, the map f is uniquely determined by (??) since for
s ∈ Sym(A, σ) we have s = 1

2

(
s+ σ(s)

)
, hence f(s) = 1

2 TrdA(s).
If charF = 2, Proposition (??) shows that condition (??) holds if and only

if σ is symplectic (which implies that n is even). Condition (??) determines the
value of f on the subspace Symd(A, σ) but not on Sym(A, σ). Indeed, in view
of (??), condition (??) simply means that f is an extension of the linear form
Trpσ : Symd(A, σ) → F . Therefore, there exist several quadratic pairs with the
same symplectic involution.

(5.5) Example. Let τ be an involution of orthogonal type on A. Every element
a ∈ A such that a+τ(a) is invertible determines a quadratic pair (σa, fa) as follows:
let g = a+ τ(a) ∈ A× and define

σa = Int(g−1) ◦ τ and fa(s) = TrdA(g−1as) for s ∈ Sym(A, σa).

From (??), it follows that σa is orthogonal if charF 6= 2 and symplectic if charF =
2. In order to check condition (??) of the definition of a quadratic pair, we compute

fa
(
x+ σa(x)

)
= TrdA(g−1ax) + TrdA

(
g−1ag−1τ(x)g

)
for x ∈ A.

Since ag−1τ(x) and τ
(
ag−1τ(x)

)
= xg−1τ(a) have the same trace, the last term on

the right side is also equal to TrdA
(
xg−1τ(a)

)
, hence

fa
(
x+ σa(x)

)
= TrdA

(
xg−1

(
a+ τ(a)

))
= TrdA(x).

We will show in (??) that every quadratic pair is of the form (σa, fa) for some
a ∈ A such that a+ τ(a) is invertible.

We start with a couple of general results:

(5.6) Proposition. For every quadratic pair (σ, f) on A,

f(1) = 1
2 degA.

Proof : If charF 6= 2, we have f(1) = 1
2 TrdA(1) = 1

2 degA. If charF = 2, the
proposition follows from (??) since f(1) = Trpσ(1).

(5.7) Proposition. For every quadratic pair (σ, f) on A, there exists an element

` ∈ A, uniquely determined up to the addition of an element in Alt(A, σ), such that

f(s) = TrdA(`s) for all s ∈ Sym(A, σ).

The element ` satisfies `+ σ(`) = 1.
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Proof : Since the bilinear reduced trace form on A is nonsingular by (??), every
linear form A → F is of the form x 7→ TrdA(ax) for some a ∈ A. Therefore,
extending f arbitrarily to a linear form on A, we may find some ` ∈ A such that
f(s) = TrdA(`s) for all s ∈ Sym(A, σ). If `, `′ ∈ A both satisfy this relation, then
TrdA

(
(`− `′)s

)
= 0 for all s ∈ Sym(A, σ), hence (??) shows that `− `′ ∈ Alt(A, σ).

Condition (??) of the definition of a quadratic pair yields

TrdA
(
`
(
x+ σ(x)

))
= TrdA(x) for x ∈ A.

Since TrdA
(
`σ(x)

)
= TrdA

(
xσ(`)

)
, it follows that

TrdA
((
`+ σ(`)

)
x
)

= TrdA(x) for x ∈ A,

hence `+ σ(`) = 1 since the bilinear reduced trace form on A is nonsingular.

(5.8) Proposition. Let τ be an orthogonal involution on A. Every quadratic pair

on A is of the form (σa, fa) for some a ∈ A such that a+ τ(a) ∈ A×. If a, b ∈ A
are such that a+ τ(a) ∈ A× and b+ τ(b) ∈ A×, then (σa, fa) = (σb, fb) if and only

if there exists λ ∈ F× and c ∈ Alt(A, τ) such that a = λb+ c.

Proof : Let (σ, f) be a quadratic pair on A. By (??), there exists an invertible
element g ∈ A× such that σ = Int(g−1) ◦ τ and g ∈ Sym(A, τ) if charF 6= 2, and
g ∈ Alt(A, τ) if charF = 2. Moreover, (??) yields an element ` ∈ A such that
σ(`) + ` = 1 and f(s) = TrdA(`s) for all s ∈ Sym(A, σ). Let a = g` ∈ A. Since
τ(g) = g and σ(`) + ` = 1, we have a + τ(a) = g, hence σa = σ. Moreover, for
s ∈ Sym(A, σ),

fa(s) = TrdA(g−1as) = TrdA(`s) = f(s),

hence (σ, f) = (σa, fa).
Suppose now that a, b ∈ A are such that a+ τ(a), b+ τ(b) are each invertible

and that (σa, fa) = (σb, fb). Writing g = a + τ(a) and h = b + τ(b), we have
σa = Int(g−1) ◦ τ and σb = Int(h−1) ◦ τ , hence the equality σa = σb yields g = λh
for some λ ∈ F×. On the other hand, since fa = fb we have

TrdA(g−1as) = TrdA(h−1bs) for s ∈ Sym(A, σa) = Sym(B, σb).

Since Sym(A, σb) = Sym(A, τ)h and g = λh, it follows that

λ−1 TrdA(ax) = TrdA(bx) for x ∈ Sym(A, τ),

hence a− λb ∈ Alt(A, τ), by (??).

This proposition shows that quadratic pairs on A are in one-to-one correspon-
dence with equivalence classes of elements a + Alt(A, τ) ∈ A/Alt(A, τ) such that
a+ τ(a) is invertible, modulo multiplication by a factor in F×.

In the particular case where A = Mn(F ) and τ = t is the transpose involution,
the elements in A/Alt(A, τ) may be regarded as quadratic forms of dimension n,
by identifying a + Alt(A, τ) with the quadratic form q(X) = X · a · X t where
X = (x1, . . . , xn). The matrix a + at is invertible if and only if the corresponding
quadratic form is nonsingular (of even dimension if charF = 2). Therefore, quad-
ratic pairs on Mn(F ) are in one-to-one correspondence with equivalence classes of
nonsingular quadratic forms of dimension n modulo a factor in F× (with n even if
charF = 2).
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(5.9) Example. Suppose that n = 2 and charF = 2. Straightforward compu-
tations show that the quadratic pair on M2(F ) associated to the quadratic form
aX2 + bXY + cY 2 is (σ, f) with

σ

(
a11 a12

a21 a22

)
=

(
a22 a12

a21 a11

)

and

f

(
a11 a12

a21 a11

)
= a11 + ab−1a12 + cb−1a21.

The observation above explains why quadratic pairs on central simple algebras
may be thought of as twisted forms of nonsingular quadratic forms up to a scalar
factor. We next give another perspective on this result by relating quadratic forms
on a vector space V to quadratic pairs on the endomorphism algebra EndF (V ).

Let V be a vector space of dimension n over F and let q : V → F be a quadratic
form on V . We recall that bq is the polar symmetric bilinear form of q,

bq(x, y) = q(x+ y)− q(x)− q(y) for x, y ∈ V ,

which we assume to be nonsingular. This hypothesis implies that n is even if
charF = 2, since the bilinear form bq is alternating in this case. We write simply
σq for the adjoint involution σbq on EndF (V ) and

ϕq : V ⊗F V → EndF (V ), ϕq(v ⊗ w)(x) = vbq(w, x)(5.10)

for the standard identification ϕbq of (??). Under this identification, we have

(V ⊗ V, σ) =
(
EndF (V ), σq

)
,

where σ : V ⊗ V → V ⊗ V is the switch.

(5.11) Proposition. There is a unique linear map fq : Sym
(
EndF (V ), σq

)
→ F

such that

fq ◦ ϕq(v ⊗ v) = q(v) for x, y ∈ V .

The couple (σq , fq) is a quadratic pair on EndF (V ). Moreover, assuming that

dimF V is even if charF = 2, every quadratic pair on EndF (V ) is of the form

(σq , fq) for some nonsingular quadratic form q on V which is uniquely determined

up to a factor in F×.

Proof : Let (e1, . . . , en) be a basis of V . The elements ϕq(ei⊗ei) for i = 1, . . . , n and
ϕq(ei⊗ej+ej⊗ei) for i, j ∈ {1, . . . , n}, j 6= i, form a basis of Sym

(
EndF (V ), σq

)
=

ϕq
(
Sym(V ⊗ V, σ)

)
. Define

fq
(
ϕq(ei ⊗ ei)

)
= q(ei), fq

(
ϕq(ei ⊗ ej + ej ⊗ ei)

)
= bq(ei, ej)

and extend by linearity to a map fq : Sym
(
EndF (V ), σq

)
→ F . For v =

∑n
i=1 eiαi ∈

V we have

fq ◦ ϕq(v ⊗ v) = fq ◦ ϕq
(∑

1≤i≤n ei ⊗ eiα2
i +

∑
1≤i<j≤n(ei ⊗ ej + ej ⊗ ei)αiαj

)

=
∑

1≤i≤n q(ei)α
2
i +

∑
1≤i<j≤n bq(ei, ej)αiαj = q(v),

hence the map fq thus defined satisfies the required condition. Uniqueness of fq is
clear, since Sym

(
EndF (V ), σq

)
is spanned by elements of the form ϕq(v ⊗ v).
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Since the bilinear form q is symmetric, and alternating if charF = 2, the
involution σq is orthogonal if charF 6= 2 and symplectic if charF = 2. To check
that (σq , fq) is a quadratic pair, it remains to prove that

fq
(
x+ σ(x)

)
= TrdEndF (V )(x) for x ∈ EndF (V ).

Since both sides are linear, it suffices to check this formula for x = ϕq(v ⊗w) with
v, w ∈ V . The left side is then

fq ◦ ϕq(v ⊗ w + w ⊗ v) = fq ◦ ϕq
(
(v + w) ⊗ (v + w)

)
− fq ◦ ϕq(v ⊗ v)

− fq ◦ ϕq(w ⊗ w)

= bq(v, w)

and the claim follows, since (??) shows that bq(v, w) = bq(w, v) = Trd
(
ϕq(v ⊗w)

)
.

Suppose now that (σ, f) is an arbitrary quadratic pair on EndF (V ). As shown
in the introduction to this chapter (and in (??)), the involution σ is the adjoint
involution with respect to some nonsingular symmetric bilinear form b : V ×V → F
which is uniquely determined up to a factor in F×. Use the standard identification
ϕb (see (??)) to define a map q : V → F by

q(v) = f ◦ ϕb(v ⊗ v) for v ∈ V .

From the definition, it is clear that q(vα) = q(v)α2 for α ∈ F . Moreover, for v,
w ∈ V we have

q(v + w)− q(v)− q(w) = f ◦ ϕb(v ⊗ w) + f ◦ ϕb(w ⊗ v)
= f

(
ϕb(v ⊗ w) + σ

(
ϕb(v ⊗ w)

))
.

Since (σ, f) is a quadratic pair, the right side is equal to

TrdEndF (V )

(
ϕb(v ⊗ w)

)
= b(w, v) = b(v, w).

Therefore, q is a quadratic form with associated polar form b, and it is clear that
the corresponding quadratic pair (σq , fq) is (σ, f). Since b is uniquely determined
up to a factor in F×, the same property holds for q.

For later use, we give an explicit description of an element ` ∈ EndF (V ) satis-
fying property (??) for the quadratic pair (σq , fq). It suffices to consider the case
where charF = 2, since otherwise we may take ` = 1

2 .

(5.12) Proposition. Let (V, q) be a nonsingular quadratic space of even dimension

n = 2m over a field F of characteristic 2 and let (e1, . . . , en) be a symplectic basis

of V for the bilinear form bq, i.e., a basis such that

bq(e2i−1, e2i) = 1, bq(e2i, e2i+1) = 0 and bq(ei, ej) = 0 if |i− j| > 1.

Set

` = ϕq
(∑m

i=1 e2i−1 ⊗ e2i−1q(e2i) + e2i ⊗ e2iq(e2i−1) + e2i−1 ⊗ e2i
)
∈ EndF (V ).

(1) The element ` satisfies tr(`s) = f(s) for all s ∈ Sym
(
EndF (V ), σq

)
.

(2) The characteristic polynomial of ` equals

Pc`(X) =
(
X2 +X + q(e1)q(e2)

)
· · ·

(
X2 +X + q(e2m−1)q(e2m)

)
,

hence

s2(`) =
(∑m

i=1 q(e2i−1)q(e2i)
)

+ m(m−1)
2 .
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Proof : It suffices to check the equation for s of the form ϕq(v⊗v) with v ∈ V , since
these elements span Sym

(
EndF (V ), σ

)
. If v =

∑n
i=1 eiαi, we have bq(e2i−1, v) = α2i

and bq(e2i, v) = α2i−1, hence

`ϕq(v ⊗ v) =

ϕq
(∑m

i=1(e2i−1 ⊗ v)α2iq(e2i) + (e2i ⊗ v)α2i−1q(e2i−1) + (e2i−1 ⊗ v)α2i−1

)
.

It follows that

tr
(
`ϕq(v ⊗ v)

)
=

m∑

i=1

(
bq(v, e2i−1)α2iq(e2i) + bq(v, e2i)α2i−1q(e2i−1)

+ bq(v, e2i−1)α2i−1

)

=

n∑

i=1

α2
i q(ei) +

m∑

i=1

α2i−1α2i = q(v).

Since q(v) = f ◦ ϕq(v ⊗ v), the first assertion is proved. Identifying EndF (V ) with
Mn(F ) by means of the basis (e1, . . . , en) maps ` to the matrix

` =



`1 0

. . .

0 `m


 where `i =

(
1 q(e2i)

q(e2i−1) 0

)

The characteristic polynomial of ` is the product of the characteristic polynomials
of `1, . . . , `m. This implies the second assertion.

(5.13) Example. Suppose that charF = 2 and let (1, u, v, w) be a quaternion
basis of a quaternion F -algebra Q = [a, b)F . In every quadratic pair (σ, f) on Q,
the involution σ is symplectic. It is therefore the canonical involution γ. The space
Sym(Q, γ) is the span of 1, v, w, and Alt(Q, γ) = F . Since 1 = u + γ(u) and
TrdQ(u) = 1, the map f may be any linear form on Sym(Q, γ) such that f(1) = 1.
An element ` corresponding to f as in (??) is

` = u+ f(w)b−1v + f(v)b−1w.

(For a given f , the element ` is uniquely determined up to the addition of an element
in F .)

Quadratic pairs on tensor products. Let A1, A2 be central simple F -
algebras. Given a quadratic pair (σ1, f1) on A1 and an involution σ2 on A2, we
aim to define a quadratic pair on the tensor product A1 ⊗F A2. If charF 6= 2, this
amounts to defining an orthogonal involution on A1 ⊗F A2, and it suffices to take
σ1 ⊗ σ2, assuming that σ2 is orthogonal, see (??). For the rest of this section, we
may thus focus on the case where charF = 2.

(5.14) Lemma. Let (A1, σ1) and (A2, σ2) be central simple algebras with involu-

tion of the first kind over a field F of characteristic 2.

(5.15) Symd(A1, σ1)⊗ Symd(A2, σ2) =

Symd(A1, σ1)⊗ Sym(A2, σ2) ∩ Sym(A1, σ1)⊗ Symd(A2, σ2);

(5.16) Symd(A1 ⊗A2, σ1 ⊗ σ2) ∩
(
Sym(A1, σ1)⊗ Sym(A2, σ2)

)
=

Symd(A1, σ1)⊗ Sym(A2, σ2) + Sym(A1, σ1)⊗ Symd(A2, σ2);
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(5.17) Sym(A1 ⊗A2, σ1 ⊗ σ2) =

Symd(A1 ⊗A2, σ1 ⊗ σ2) +
(
Sym(A1, σ1)⊗ Sym(A2, σ2)

)
.

Proof : Equation (??) is clear. For x1 ∈ A1 and s2 ∈ Sym(A2, σ2),(
x1 + σ1(x1)

)
⊗ s2 = x1 ⊗ s2 + (σ1 ⊗ σ2)(x1 ⊗ s2),

hence Symd(A1, σ1)⊗ Sym(A2, σ2) ⊂ Symd(A1 ⊗A2, σ1 ⊗ σ2). Similarly,

Sym(A1, σ1)⊗ Symd(A2, σ2) ⊂ Symd(A1 ⊗A2, σ1 ⊗ σ2),

hence the left side of (??) contains the right side. To prove the reverse inclusion,
consider x ∈ A1 ⊗ A2. If x + (σ1 ⊗ σ2)(x) ∈ Sym(A1, σ1) ⊗ Sym(A2, σ2), then
x+ (σ1 ⊗ σ2)(x) is invariant under σ1 ⊗ IdA2 , hence

x+ (σ1 ⊗ IdA2)(x) + (IdA1 ⊗ σ2)(x) + (σ1 ⊗ σ2)(x) = 0.

Therefore, the element u = x+(σ1⊗ IdA2)(x) is invariant under IdA1 ⊗σ2, hence it
lies in A1 ⊗ Sym(A2, σ2). Similarly, the element v = (σ1 ⊗ IdA2)(x) + (σ1 ⊗ σ2)(x)
is in Sym(A1, σ1) ⊗ A2. On the other hand, it is clear by definition that u ∈
Symd(A1, σ1)⊗A2 and v ∈ A1 ⊗ Symd(A2, σ2), hence

u ∈ Symd(A1, σ1)⊗ Sym(A2, σ2) and v ∈ Sym(A1, σ1)⊗ Symd(A2, σ2).

Since x+ (σ1 ⊗ σ2)(x) = u+ v, the proof of (??) is complete.
Since the left side of equation (??) obviously contains the right side, it suf-

fices to prove that both sides have the same dimension. Let ni = degAi, so that
dimF Sym(Ai, σi) = 1

2ni(ni + 1) and dimF Symd(Ai, σi) = 1
2ni(ni − 1) for i = 1, 2.

From (??), it follows that

dimF

(
Symd(A1, σ1)⊗ Sym(A2, σ2) + Sym(A1, σ1)⊗ Symd(A2, σ2)

)
=

1
4n1n2(n1 − 1)(n2 + 1) + 1

4n1n2(n1 + 1)(n2 − 1)− 1
4n1n2(n1 − 1)(n2 − 1)

= 1
4n1n2(n1n2 + n1 + n2 − 3).

Therefore, (??) yields

dimF

(
Symd(A1 ⊗A2, σ1 ⊗ σ2) + Sym(A1, σ1)⊗ Sym(A2, σ2)

)
=

1
2n1n2(n1n2 − 1) + 1

4n1n2(n1 + 1)(n2 + 1)− 1
4n1n2(n1n2 + n1 + n2 − 3)

= 1
2n1n2(n1n2 + 1) = dimF Sym(A1 ⊗A2, σ1 ⊗ σ2).

(5.18) Proposition. Suppose that charF = 2. Let (σ1, f1) be a quadratic pair

on a central simple F -algebra A1 and let (A2, σ2) be a central simple F -algebra

with involution of the first kind. There is a unique quadratic pair (σ1 ⊗ σ2, f1∗) on

A1 ⊗F A2 such that

f1∗(s1 ⊗ s2) = f1(s1) TrdA2(s2)

for s1 ∈ Sym(A1, σ1) and s2 ∈ Sym(A2, σ2).

Proof : Since σ1 is symplectic, (??) shows that σ1 ⊗ σ2 is symplectic. To prove the
existence of a quadratic pair (σ1⊗σ2, f1∗) as above, we have to show that the values
that f1∗ is required to take on Symd(A1 ⊗ A2, σ1 ⊗ σ2) because of the quadratic
pair conditions agree with the prescribed values on Sym(A1, σ1)⊗ Sym(A2, σ2). In
view of the description of Symd(A1 ⊗A2, σ1 ⊗ σ2) ∩

(
Sym(A1, σ1)⊗ Sym(A2, σ2)

)

in the preceding lemma, it suffices to consider the values of f1∗ on elements of the
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form
(
x1 + σ1(x1)

)
⊗ s2 = x1 ⊗ s2 + (σ1 ⊗ σ2)(x1 ⊗ s2) or s1 ⊗

(
x2 + σ2(x2)

)
=

s1 ⊗ x2 + (σ1 ⊗ σ2)(s1 ⊗ x2) with xi ∈ Ai and si ∈ Sym(Ai, σi) for i = 1, 2. Since
(σ1, f1) is a quadratic pair on A1, we have

f1
(
x1 + σ1(x1)

)
TrdA2(s2) = TrdA1(x1) TrdA2(s2) = TrdA1⊗A2(x1 ⊗ s2),

as required. For the second type of element we have

f1(s1) TrdA2

(
x2 + σ2(x2)

)
= 0.

On the other hand, since σ1 is symplectic we have TrdA1(s1) = 0, hence

TrdA1⊗A2(s1 ⊗ x2) = TrdA1(s1) TrdA2(x2) = 0.

Therefore,

f1(s1) TrdA2

(
x2 + σ2(x2)

)
= TrdA1⊗A2(s1 ⊗ x2)

for s1 ∈ Sym(A1, σ1) and x2 ∈ A2, and the existence of the quadratic pair (σ1 ⊗
σ2, f1∗) is proved.

Uniqueness is clear, since the values of the linear map f1∗ are determined on
the set Symd(A1⊗A2, σ1⊗σ2) and on Sym(A1, σ1)⊗Sym(A2, σ2), and (??) shows
that these subspaces span Sym(A1 ⊗A2, σ1 ⊗ σ2).

(5.19) Example. Let (V1, q1) be a nonsingular quadratic space of even dimen-
sion and let (V2, b2) be a nonsingular symmetric bilinear space over a field F of
characteristic 2. Let (σ1, f1) be the quadratic pair on A1 = EndF (V1) associ-
ated with q1 (see (??)) and let σ2 = σb2 denote the adjoint involution with re-
spect to b2 on A2 = EndF (V2). We claim that, under the canonical isomorphism
A1 ⊗A2 = EndF (V1 ⊗ V2), the quadratic pair (σ1 ⊗ σ2, f1∗) is associated with the
quadratic form q1 ⊗ b2 on V1 ⊗ V2 whose polar form is bq1 ⊗ b2 and such that

(q1 ⊗ b2)(v1 ⊗ v2) = q1(v1)b2(v2, v2) for v1 ∈ V1 and v2 ∈ V2.

Indeed, letting ϕ1, ϕ2 and ϕ denote the standard identifications V1 ⊗ V1
∼−→

EndF (V1), V2 ⊗ V2
∼−→ EndF (V2) and (V1 ⊗ V2) ⊗ (V1 ⊗ V2)

∼−→ EndF (V1 ⊗ V2)
associated with the bilinear forms bq1 , b2 and bq1 ⊗ b2, we have

ϕ(v1 ⊗ v2 ⊗ v1 ⊗ v2) = ϕ1(v1 ⊗ v1)⊗ ϕ2(v2 ⊗ v2)

and

f1
(
ϕ1(v1 ⊗ v1)

)
TrdA2

(
ϕ2(v2 ⊗ v2)

)
= q1(v1)b2(v2, v2),

hence

f1∗
(
ϕ(v1 ⊗ v2 ⊗ v1 ⊗ v2)

)
= q1 ⊗ b2(v1 ⊗ v2).

(5.20) Corollary. Let (A1, σ1), (A2, σ2) be central simple algebras with symplectic

involutions over a field F of arbitrary characteristic. There is a unique quadratic

pair (σ1 ⊗ σ2, f⊗) on A1 ⊗A2 such that f⊗(s1 ⊗ s2) = 0 for all s1 ∈ Skew(A1, σ1),
s2 ∈ Skew(A2, σ2).

Proof : If charF 6= 2, the linear form f⊗ which is the restriction of 1
2 TrdA1⊗A2 to

Sym(A1 ⊗A2, σ1 ⊗ σ2) satisfies

f⊗(s1 ⊗ s2) = 1
2 TrdA1(s1) TrdA2(s2) = 0
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for all s1 ∈ Skew(A1, σ1), s2 ∈ Skew(A2, σ2). Suppose next that charF = 2.
For any linear form f1 on Sym(A1, σ1) we have f1(s1) TrdA2(s2) = 0 for all s1 ∈
Sym(A1, σ1), s2 ∈ Sym(A2, σ2), since σ2 is symplectic. Therefore, we may set

(σ1 ⊗ σ2, f⊗) = (σ1 ⊗ σ2, f1∗)

for any quadratic pair (σ1, f1) on A1. Uniqueness of f⊗ follows from (??).

(5.21) Definition. The quadratic pair (σ1⊗σ2, f⊗) of (??) is called the canonical

quadratic pair on A1 ⊗A2.

Exercises

1. Let A be a central simple algebra over a field F and fix a ∈ A. Show that there
is a canonical F -algebra isomorphism EndA(aA) ' EndA(Aa) which takes f ∈
EndA(aA) to the endomorphism f̂ ∈ EndA(Aa) defined by (xa)f̂ = xf(a) for
x ∈ A, and the inverse takes g ∈ EndA(Aa) to the endomorphism g̃ ∈ EndA(aA)
defined by g̃(ax) = agx for x ∈ A.

Show that there is a canonical F -algebra isomorphism EndA(Aa)op ∼−→
EndAop(aopAop) which, for f ∈ EndA(Aa), maps fop to the endomorphism

f̃ defined by f̃(mop) = (mf )op. Therefore, there is a canonical isomorphism
EndA(Aa)op ' EndAop(Aopaop). Use it to identify (λkA)op = λk(Aop), for
k = 1, . . . , degA.

2. Let Q be a quaternion algebra over a field F of arbitrary characteristic. Show
that the conjugation involution is the only linear map σ : Q → Q such that
σ(1) = 1 and σ(x)x ∈ F for all x ∈ F .

3. (Rowen-Saltman [?]) Let V be a vector space of dimension n over a field F and
let τ be an involution of the first kind on EndF (V ). Prove that τ is orthogonal
if and only if there exist n symmetric orthogonal10 idempotents in EndF (V ).
Find a similar characterization of the symplectic involutions on EndF (V ).

4. Let A be a central simple algebra with involution σ of the first kind. Show
that σ is orthogonal if and only if it restricts to the identity on a maximal étale
(commutative) subalgebra of A.

Hint : Extend scalars and use the preceding exercise.
5. Show that in a central simple algebra with involution, every left or right ideal is

generated by a symmetric element, unless the algebra is split and the involution
is symplectic.

6. (Albert) Let b be a symmetric, nonalternating bilinear form on a vector space V
over a field of characteristic 2. Show that V contains an orthogonal basis for b.

7. Let (ai)i=1,...,n2 be an arbitrary basis of a central simple algebra A, and let
(bi)i=1,...,n2 be the dual basis for the bilinear form TA, which means that
TrdA(aibj) = δij for i, j = 1, . . . , n2. Show that the Goldman element of

A is
∑n2

i=1 ai ⊗ bi.
Hint : Reduce by scalar extension to the split case and show that it suffices

to prove the assertion for the standard basis of Mn(F ).

10Two idempotents e, f are called orthogonal if ef = fe = 0.



64 I. INVOLUTIONS AND HERMITIAN FORMS

8. Let (1, i, j, k) be a quaternion basis in a quaternion algebra Q of characteristic
different from 2. Show that the Goldman element in Q⊗Q is g = 1

2 (1⊗ 1+ i⊗
i−1 + j ⊗ j−1 + k⊗ k−1). Let (1, u, v, w) be a quaternion basis in a quaternion
algebra Q of characteristic 2. Show that the Goldman element in Q ⊗ Q is
g = 1⊗ 1 + u⊗ 1 + 1⊗ u+ w ⊗ v−1 + v−1 ⊗ w.

9. Let K/F be a quadratic extension of fields of characteristic different from 2,
and let a ∈ F×, b ∈ K×. Prove the “projection formula” for the norm of the
quaternion algebra (a, b)K :

NK/F (a, b)K ∼
(
a,NK/F (b)

)
F

(where ∼ denotes Brauer-equivalence). Prove corresponding statements in
characteristic 2: if K/F is a separable quadratic extension of fields and a ∈ F ,
b ∈ K×, c ∈ K, d ∈ F×,

NK/F [a, b)K ∼
[
a,NK/F (b)

)
F

and NK/F [c, d)K ∼
[
TK/F (c), d

)
F
.

Hint (when charF 6= 2): Let ι be the non-trivial automorphism of K/F
and let (1, i1, j1, k1) (resp. (1, i2, j2, k2)) denote the usual quaternion basis of(
a, ι(b)

)
K

= ι(a, b)K (resp. (a, b)K). Let s be the switch map on ι(a, b)K ⊗K
(a, b)K . Let u = 1

2

(
1+a−1i1⊗ i2 + b−1j1⊗ j2− (ab)−1k1⊗ k2

)
∈

(
a, ι(b)

)
K
⊗K

(a, b)K . Show that s(u)u = 1, and that s′ = Int(u) ◦ s is a semi-linear auto-
morphism of order 2 of ι(a, b)K ⊗K (a, b)K which leaves invariant i1 ⊗ 1, 1⊗ i2
and j1 ⊗ j2. Conclude that the F -subalgebra of elements invariant under s′ is
Brauer-equivalent to

(
a,NK/F (b)

)
F
. If b 6∈ F , let v = 1 + u; if b ∈ F , pick

c ∈ K such that c2 6∈ F and let v = c + uι(c). Show that u = s′(v)−1v and
that Int(v) maps the subalgebra of s-invariant elements onto the subalgebra of
s′-invariant elements.

10. (Knus-Parimala-Srinivas [?, Theorem 4.1]) Let A be a central simple algebra
over a field F , let V be an F -vector space and let

ρ : A⊗F A→ EndF (V )

be an isomorphism of F -algebras. We consider V as a left A-module via av =
ρ(a ⊗ 1)(v) and identify EndA(A) = A, HomA(A, V ) = V by mapping every
homomorphism f to 1f . Moreover, we identify EndA(V ) = Aop by setting

va
op

= ρ(1⊗ a)(v) for v ∈ V , a ∈ A
and HomA(V,A) = V ∗(= HomF (V, F )

)
by mapping h ∈ HomA(V,A) to the

linear form

v 7→ TrdA(vh) for v ∈ V .

Let

B = EndA(A⊕ V ) =

(
EndA(A) HomA(A, V )

HomA(V,A) EndA(V )

)
=

(
A V
V ∗ Aop

)
;

this is a central simple F -algebra which is Brauer-equivalent to A, by Proposi-
tion (??). Let γ = ρ(g) ∈ EndF (V ), where g ∈ A⊗F A is the Goldman element.
Show that (

a v
f bop

)
7→

(
b γ(v)

γt(f) aop

)

is an involution of orthogonal type of B.
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11. (Knus-Parimala-Srinivas [?, Theorem 4.2]) Let K/F be a separable quadratic
extension with nontrivial automorphism ι, let A be a central simple K-algebra,
let V be an F -vector space and let

ρ : NK/F (A)→ EndF (V )

be an isomorphism of F -algebras. Set W = V ⊗F K and write

ρ̃ : A⊗K ιA→ EndK(W )

for the isomorphism induced from ρ by extension of scalars. We consider W as
a left A-module via av = ρ̃(a⊗ 1)(v). Let

B = EndA(A⊕W ) =

(
EndA(A) HomA(A,W )

HomA(W,A) EndA(W )

)
=

(
A W
W ∗ ιAop

)

with identifications similar to those in Exercise ??. The K-algebra B is Brauer
equivalent to A by (??). Show that

(
a w
f ιbop

)
7→

(
b ι(w)

ι(f) ιaop

)

is an involution of the second kind of B.
12. Let A be a central simple F -algebra with involution σ of the first kind. Recall

the F -algebra isomorphism

σ∗ : A⊗F A→ EndF A

defined in the proof of Corollary (??) by

σ∗(a⊗ b)(x) = axσ(b) for a, b, x ∈ A.

Show that the image of the Goldman element g ∈ A⊗A under this isomorphism
is δσ where δ = +1 if σ is orthogonal and δ = −1 if σ is symplectic. Use this
result to define canonical F -algebra isomorphisms

s2A '
{

EndF
(
A/Alt(A, σ)

)
' EndF

(
Sym(A, σ)

)op
if δ = +1,

EndF
(
A/ Symd(A, σ)

)
' EndF

(
Skew(A, σ)

)op
if δ = −1,

λ2A '
{

EndF
(
Alt(A, σ)

)
if δ = +1,

EndF
(
Symd(A, σ)

)
if δ = −1.

13. (Saltman [?, Proposition 5]) Let A, B be central simple algebras of degreesm, n
over a field F . For every F -algebra homomorphism f : A → B, define a map
f ′ : Aop⊗F B → B by f ′(aop⊗ b) = f(a)b. Show that f ′ is a homomorphism of
right Aop ⊗F B-modules if B is endowed with the following Aop ⊗F B-module
structure:

x ∗f (aop ⊗ b) = f(a)xb for a ∈ A and b, x ∈ B.
Show that ker f ′ ⊂ Aop⊗F B is a right ideal of reduced dimension mn− (n/m)
generated by the elements aop ⊗ 1− 1⊗ f(a) for a ∈ A and that

Aop ⊗F B = (1⊗B)⊕ ker f ′.

Conversely, show that every right ideal I ⊂ Aop ⊗F B of reduced dimension
mn− (n/m) such that

Aop ⊗F B = (1⊗B)⊕ I
defines an F -algebra homomorphism f : A→ B such that I = kerf .
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Deduce from the results above that there is a natural one-to-one correspon-
dence between the set of F -algebra homomorphisms A → B and the rational
points in an open subset of the Severi-Brauer variety SBd(A

op ⊗F B) where
d = mn− (n/m).

14. Let (A, σ) be a central simple algebra with involution of the first kind over
a field F of characteristic different from 2. Let a ∈ A be an element whose
minimal polynomial over F is separable. Show that a is symmetric for some
symplectic involution on A if and only if its reduced characteristic polynomial
is a square.

15. Let (A, σ) be a central simple algebra with involution of orthogonal type. Show
that every element in A is the product of two symmetric elements, one of which
is invertible.

Hint : Use (??).
16. Let V be a finite dimensional vector space over a field F of arbitrary character-

istic and let a ∈ EndF (V ). Extend the notion of involution trace by using the
structure of V as an F [a]-module to define a nonsingular symmetric bilinear
form b : V × V → F such that a is invariant under the adjoint involution σb.

17. Let K/F be a separable quadratic extension of fields with nontrivial automor-
phism ι. Let V be a vector space of dimension n over K and let b ∈ EndK(V )
be an endomorphism whose minimal polynomial has degree n and coefficients
in F . Show that V is a free F [b]-module of rank 1 and define a nonsingular her-
mitian form h : V ×V → K such that b is invariant under the adjoint involution
σh.

Show that a matrix m ∈Mn(K) is symmetric under some involution of the
second kind whose restriction to K is ι if and only if all the invariant factors
of m have coefficients in F .

18. Let q be a nonsingular quadratic form of dimension n over a field F , with n even
if charF = 2, and let a ∈Mn(F ) be a matrix representing q, in the sense that
q(X) = X · a ·Xt. After identifying Mn(F ) with EndF (Fn) by mapping every
matrix m ∈ Mn(F ) to the endomorphism x 7→ m · x, show that the quadratic
pair (σq , fq) on EndF (Fn) associated to the quadratic map q : F n → F is the
same as the quadratic pair (σa, fa) associated to a.

19. Let Q1, Q2 be quaternion algebras with canonical involutions γ1, γ2 over a field
F of arbitrary characteristic. Show that Alt(Q1⊗Q2, γ1⊗γ2) = { q1⊗1−1⊗q2 |
TrdQ1(q1) = TrdQ2(q2) }. If charF = 2, show that f(q1 ⊗ 1 + 1 ⊗ q2) =
TrdQ1(q1) = TrdQ2(q2) for all q1⊗ 1 + 1⊗ q2 ∈ Symd(Q1⊗Q2, γ1⊗ γ2) and for
all quadratic pairs (γ1 ⊗ γ2, f) on Q1 ⊗Q2.

20. The aim of this exercise is to give a description of the variety of quadratic
pairs on a central simple algebra in the spirit of (??). Let σ be a symplectic
involution on a central simple algebra A over a field F of characteristic 2 and
let σ∗ : A⊗A→ EndF (A) be the isomorphism of Exercise ??. Let Iσ ⊂ A⊗A
denote the right ideal corresponding to σ by (??) and let J` ⊂ A⊗A be the left
ideal generated by 1− g, where g is the Goldman element. Denote by A0 ⊂ A
the kernel of the reduced trace: A0 = { a ∈ A | TrdA(a) = 0 }. Show that

σ∗(Iσ) = Hom(A,A0), σ∗(J`) = Hom
(
A/ Sym(A, σ), A

)

and

σ∗(J
0
` ) = Hom

(
A, Sym(A, σ)

)
.
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Let now I ⊂ A⊗A be a left ideal containing J`, so that

σ∗(I) = Hom(A/U,A)

for some vector space U ⊂ Sym(A, σ). Show that σ∗
(
I ·(1+g)

)
= Hom(A/W,A),

where W = { a ∈ A | a+ σ(a) ∈ U }, and deduce that σ∗
(
[I · (1 + g)]0

)
= Iσ if

and only if W = A0, if and only if U ∩ Symd(A, σ) = kerTrpσ .
Observe now that the set of rational points in SB

(
s2(Aop)

)
is in canonical

one-to-one correspondence with the set of left ideals I ⊂ A ⊗ A containing J 0
`

and such that rdim I− rdimJ` = 1. Consider the subset U of such ideals which
satisfy [I · (1 + g)]0⊕ (1⊗A) = A⊗A. Show that the map which carries every
quadratic pair (σ, f) on A to the left ideal σ−1

∗
(
Hom(A/ ker f,A)

)
defines a

bijection from the set of quadratic pairs on A onto U .
Hint : For I ∈ U , the right ideal [I · (1 + g)]0 corresponds by (??) to

some symplectic involution σ. If U ⊂ A is the subspace such that σ∗(I) =
Hom(A/U,A), there is a unique quadratic pair (σ, f) such that U = ker f .

21. Let (V1, b1) and (V2, b2) be vector spaces with nonsingular alternating forms
over an arbitrary field F . Show that there is a unique quadratic form q on
V1 ⊗ V2 whose polar form is b1 ⊗ b2 and such that q(v1 ⊗ v2) = 0 for all
v1 ∈ V1, v2 ∈ V2. Show that the canonical quadratic pair (σb1 ⊗ σb2 , f⊗) on
EndF (V1)⊗ EndF (V2) = EndF (V1 ⊗ V2) is associated with the quadratic form
q.

22. Let (A, σ) be a central simple algebra with involution of the first kind over an
arbitrary field F . Assume σ is symplectic if charF = 2. By (??), there exists
an element ` ∈ A such that `+σ(`) = 1. Define a quadratic form q(A,σ) : A→ F
by

q(A,σ)(x) = TrdA
(
σ(x)`x

)
for x ∈ A.

Show that this quadratic form does not depend on the choice of ` such that
`+σ(`) = 1. Show that the associated quadratic pair on EndF (A) corresponds
to the canonical quadratic pair (σ ⊗ σ, f⊗) on A ⊗ A under the isomorphism
σ∗ : A⊗ A ∼−→ EndF (A) such that σ∗(a⊗ b)(x) = axσ(b) for a, b, x ∈ A.

Notes

§??. Additional references for the material in this section include the classical
books of Albert [?], Deuring [?] and Reiner [?]. For Severi-Brauer varieties, see
Artin’s notes [?]. A self-contained exposition of Severi-Brauer varieties can be
found in Jacobson’s book [?, Chapter 3].

§??. The first systematic investigations of involutions of central simple alge-
bras are due to Albert. His motivation came from the theory of Riemann matrices:
on a Riemann surface of genus g, choose a basis (ωα)1≤α≤g of the space of holo-
morphic differentials and a system of closed curves (γβ)1≤β≤2g which form a basis
of the first homology group, and consider the matrix of periods P = (

∫
γβ
ωα). This

is a complex g × 2g matrix which satisfies Riemann’s period relations : there exists

a nonsingular alternating matrix C ∈ M2g(Q) such that PCP t = 0 and iPCP
t

is
positive definite hermitian. The study of correspondences on the Riemann surface
leads one to consider the matrices M ∈ M2g(Q) for which there exists a matrix
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K ∈ Mg(C) such that KP = PM . Following Weyl’s simpler formulation [?],

one considers the matrix W =

(
P
P

)
∈ M2g(C) and the so-called Riemann matrix

R = W−1

(
−iIg 0

0 iIg

)
W ∈ M2g(R). The matrices M such that KP = PM for

some K ∈ Mg(C) are exactly those which commute with R. They form a subal-
gebra of M2g(Q) known as the multiplication algebra. As observed by Rosati [?],
this algebra admits the involution X 7→ C−1XtC (see Weyl [?]). Albert completely
determined the structure of the multiplication algebra in three papers in the An-

nals of Mathematics in 1934–1935. An improved version, [?], see also [?], laid the
foundations of the theory of simple algebras with involutions.

Corollary (??) was observed independently by several authors: see Tits [?,
Proposition 3], Platonov [?, Proposition 5] and Rowen [?, Proposition 5.3].

The original proof of Albert’s theorem on quaternion algebras with involution
of the second kind (??) is given in [?, Theorem 10.21]. This result will be put in a
broader perspective in §??: the subalgebra Q0 is the discriminant algebra of (Q, σ)
(see (??)).

There is an extensive literature on Lie and Jordan structures in rings with
involution; we refer the reader to Herstein’s monographs [?] and [?]. In particu-
lar, Lemma (??) can be proved by ring-theoretic arguments which do not involve
scalar extension (and therefore hold for more general simple rings): see Herstein [?,
Theorem 2.2, p. 28]. In the same spirit, extension of Lie isomorphisms has been
investigated for more general rings: see11 Martindale [?], Rosen [?] and Beidar-
Martindale-Mikhalev [?].
§??. Part (??) of Theorem (??) is due to Albert [?, Theorem 10.19]. Albert

also proved part (??) for crossed products of a special kind: Albert assumes in [?,
Theorem 10.16] the existence of a splitting field of the form L ⊗F K where L is
Galois over F . Part (??) was stated in full generality by Riehm [?] and proved by
Scharlau [?] (see also [?, §8.9]). In order to see that every central simple algebra
which is Brauer-equivalent to an algebra with involution also has an involution, it
is not essential to use (??): see Albert [?, Theorem 10.12] or Scharlau [?, Corol-
lary 8.8.3]. By combining this result with Exercises ?? and ??, we obtain an
alternate proof of Theorem (??).
§??. If E and E′ are Brauer-equivalent central simple F -algebras, then Morita

theory yields an E-E ′-bimodule P and an E′-E-bimodule Q such that P ⊗E′Q ' E
and Q⊗E P ' E′. If M is a right E-module, then there is a natural isomorphism

EndE(M) = EndE′(M ⊗E P ).

Therefore, if E (hence also E ′) has an involution, (??) yields one-to-one correspon-
dences between hermitian or skew-hermitian forms on M (up to a central factor),
involutions on EndE(M) = EndE′(M⊗EP ) and hermitian or skew-hermitian forms
on M ⊗E P (up to a central factor). The correspondence between hermitian forms
can be made more precise and explicit; it is part of a Morita equivalence between
categories of hermitian modules which is discussed in Knus’ book [?, §1.9].

The notion of involution trace was introduced by Fröhlich and McEvett [?,
§7]. Special cases of the extension theorem (??) have been proved by Rowen [?,
Corollary 5.5] and by Lam-Leep-Tignol [?, Proposition 5.1]. Kneser’s theorem has

11We are indebted to W. S. Martindale III for references to the recent literature.
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been generalized by Held and Scharlau [?] to the case where the subalgebra is
semisimple. (A particular case of this situation had also been considered by Kneser
in [?, p. 37].)

The existence of involutions for which a given element is symmetric or skew-
symmetric is discussed in Shapiro [?], which also contains an extensive discussion
of the literature.
§??. The definition of quadratic pair in (??) is new. While involutions on

arbitrary central simple algebras have been related to hermitian forms in §??, the
relation between quadratic pairs and quadratic forms is described only in the split
case. The nonsplit case requires an extension of the notion of quadratic form.
For quaternion algebras such an extension was given by Seip-Hornix [?]. Tits [?]
defines a (generalized) quadratic form as an element in the factor group A/Alt(A, τ)
(compare with (??)); a more geometric viewpoint which also extends this notion
further, was proposed by Bak [?] (see also for instance Hahn-O’Meara [?, 5.1C],
Knus [?, Ch. 1, §5] or Scharlau [?, Ch. 7, §3]).
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CHAPTER II

Invariants of Involutions

In this chapter, we define various kinds of invariants of central simple algebras
with involution (or with quadratic pair) and we investigate their basic properties.
The invariants considered here are analogues of the classical invariants of quadratic
forms: the Witt index, the discriminant, the Clifford algebra and the signature.
How far the analogy can be pushed depends of course on the nature of the in-
volution: an index is defined for arbitrary central simple algebras with involution
or quadratic pair, but the discriminant is defined only for orthogonal involutions
and quadratic pairs, and the Clifford algebra just for quadratic pairs. The Clifford
algebra construction actually splits into two parts: while it is impossible to define a
full Clifford algebra for quadratic pairs, the even and the odd parts of the Clifford
algebra can be recovered in the form of an algebra and a bimodule. For unitary
involutions, the notion of discriminant turns out to lead to a rich structure: we as-
sociate in §?? a discriminant algebra (with involution) to every unitary involution
on a central simple algebra of even degree. Finally, signatures can be defined for
arbitrary involutions through the associated trace forms. These trace forms also
have relations with the discriminant or discriminant algebra. They yield higher
invariants for algebras with unitary involution of degree 3 in Chapter ?? and for
Jordan algebras in Chapter ??.

The invariants considered in this chapter are produced by various techniques.
The index is derived from a representation of the algebra with involution as the
endomorphism algebra of some hermitian or skew-hermitian space over a division
algebra, while the definitions of discriminant and Clifford algebra are based on
the fact that scalar extension reduces the algebra with quadratic pair to the endo-
morphism algebra of a quadratic space. We show that the discriminant and even
Clifford algebra of the corresponding quadratic form can be defined in terms of
the adjoint quadratic pair, and that the definitions generalize to yield invariants
of arbitrary quadratic pairs. A similar procedure is used to define the discrimi-
nant algebra of a central simple algebra of even degree with unitary involution.
Throughout most of this chapter, our method of investigation is thus based on
scalar extension: after specifying the definitions “rationally” (i.e., over an arbitrary
base field), the main properties are proven by extending scalars to a splitting field.
This method contrasts with Galois descent, where constructions over a separable
closure are shown to be invariant under the action of the absolute Galois group and
are therefore defined over the base field.

§6. The Index

According to (??), every central simple F -algebra with involution (A, σ) can be
represented as

(
EndD(V ), σh

)
for some division algebra D, some D-vector space V

and some nonsingular hermitian form h on V . Since this representation is essentially
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unique, it is not difficult to check that the Witt index w(V, h) of the hermitian space
(V, h), defined as the maximum of the dimensions of totally isotropic subspaces
of V , is an invariant of (A, σ). In this section, we give an alternate definition of this
invariant which does not depend on a representation of (A, σ) as

(
EndD(V ), σh

)
,

and we characterize the involutions which can be represented as adjoint involutions
with respect to a hyperbolic form. We define a slightly more general notion of
index which takes into account the Schur index of the algebra. A (weak) analogue
of Springer’s theorem on odd degree extensions is discussed in the final subsection.

6.A. Isotropic ideals. Let (A, σ) be a central simple algebra with involution
(of any kind) over a field F of arbitrary characteristic.

(6.1) Definition. For every right ideal I in A, the orthogonal ideal I⊥ is defined
by

I⊥ = {x ∈ A | σ(x)y = 0 for y ∈ I }.
It is clearly a right ideal of A, which may alternately be defined as the annihilator
of the left ideal σ(I):

I⊥ = σ(I)0.

(6.2) Proposition. Suppose the center of A is a field. For every right ideal I ⊂ A,

rdim I + rdim I⊥ = degA and I⊥⊥ = I. Moreover, if (A, σ) =
(
EndD(V ), σh

)
and

I = HomD(V,W ) for some subspace W ⊂ V , then

I⊥ = HomD(V,W⊥).

Proof : Since rdimσ(I) = rdim I , the first relation follows from the corresponding
statement for annihilators (??). This first relation implies that rdim I⊥⊥ = rdim I .
Since the inclusion I ⊂ I⊥⊥ is obvious, we get I = I⊥⊥. Finally, suppose I =
HomD(V,W ) for some subspace W ⊂ V . For every f ∈ EndD(V ), g ∈ I we have

g(y) ∈ W and h
(
f(x), g(y)

)
= h

(
x, σ(f) ◦ g(y)

)
for x, y ∈ V .

Therefore, σ(f) ◦ g = 0 if and only if f(x) ∈W⊥, hence

I⊥ = HomD(V,W⊥).

A similar result holds if (A, σ) = (E ×Eop, ε), where E is a central simple F -
algebra and ε is the exchange involution, although the reduced dimension of a right
ideal is not defined in this case. Every right ideal I ⊂ A has the form I = I1 × Iop

2

where I1 (resp. I2) is a right (resp. left) ideal in E, and

(I1 × Iop
2 )⊥ = I0

2 × (I0
1 )op.

Therefore, by (??),

dimF I
⊥ = dimF A− dimF I and I⊥⊥ = I

for every right ideal I ⊂ A.
In view of the proposition above, the following definitions are natural:

(6.3) Definitions. Let (A, σ) be a central simple algebra with involution over a
field F . A right ideal I ⊂ A is called isotropic (with respect to the involution
σ) if I ⊂ I⊥. This inclusion implies rdim I ≤ rdim I⊥, hence (??) shows that
rdim I ≤ 1

2 degA for every isotropic right ideal.
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The algebra with involution (A, σ)—or the involution σ itself—is called isotropic

if A contains a nonzero isotropic ideal.
If the center of A is a field, the index of the algebra with involution (A, σ) is

defined as the set of reduced dimensions of isotropic right ideals:

ind(A, σ) = { rdim I | I ⊂ I⊥ }.
Since the (Schur) index of A divides the reduced dimension of every right ideal,
the index ind(A, σ) is a set of multiples of indA. More precisely, if (A, σ) '(
EndD(V ), σh

)
for some hermitian or skew-hermitian space (V, h) over a division

algebra D and w(V, h) denotes the Witt index of (V, h), then indA = degD and

ind(A, σ) = { ` degD | 0 ≤ ` ≤ w(V, h) }
since (??) shows that the isotropic ideals of EndD(V ) are of the form HomD(V,W )
with W a totally isotropic subspace of V , and rdimHomD(V,W ) = dimDW degD.
Thus, if ind(A, σ) contains at least two elements, the difference between two con-
secutive integers in ind(A, σ) is indA. If ind(A, σ) has only one element, then
ind(A, σ) = {0}, which means that (A, σ) is anisotropic; this is the case for in-
stance when A is a division algebra.

We extend the definition of ind(A, σ) to the case where the center of A is
F × F ; then (A, σ) ' (E × Eop, ε) for some central simple F -algebra E where ε
is the exchange involution, and we define ind(A, σ) as the set of multiples of the
Schur index of E in the interval [0, 1

2 degE]:

ind(A, σ) =

{
` indE

∣∣∣∣ 0 ≤ ` ≤ degE

2 indE

}
.

(Note that degE = deg(A, σ) is not necessarily even).

(6.4) Proposition. For every field extension L/F ,

ind(A, σ) ⊂ ind(AL, σL).

Proof : This is clear if the center of AL = A⊗F L is a field, since scalar extensions
preserve the reduced dimension of ideals and since isotropic ideals remain isotropic
under scalar extension. If the center of A is not a field, the proposition is also clear.
Suppose the center of A is a field K properly containing F and contained in L;
then by (??),

(AL, σL) '
(
(A⊗K L)× (A⊗K L)op, ε

)
.

Since the reduced dimension of every right ideal in A is a multiple of indA and
since ind(A ⊗K L) divides indA, the reduced dimension of every isotropic ideal of
(A, σ) is a multiple of ind(A⊗K L). Moreover, the reduced dimension of isotropic
ideals is bounded by 1

2 degA, hence ind(A, σ) ⊂ ind(AL, σL).

For central simple algebras with a quadratic pair, we define isotropic ideals by
a more restrictive condition.

(6.5) Definition. Let (σ, f) be a quadratic pair on a central simple algebra A over
a field F . A right ideal I ⊂ A is called isotropic with respect to the quadratic pair
(σ, f) if the following two conditions hold:

(1) σ(x)y = 0 for all x, y ∈ I .
(2) f(x) = 0 for all x ∈ I ∩ Sym(A, σ).
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The first condition means that I ⊂ I⊥, hence isotropic ideals for the quadratic
pair (σ, f) are also isotropic for the involution σ. Condition (??) implies that every
x ∈ I∩Sym(A, σ) satisfies x2 = 0, hence also TrdA(x) = 0. If charF 6= 2, the map f
is the restriction of 1

2 TrdA to Sym(A, σ), hence condition (??) follows from (??).
Therefore, in this case the isotropic ideals for (σ, f) are exactly the isotropic ideals
for σ.

The algebra with quadratic pair (A, σ, f)—or the quadratic pair (σ, f) itself—is
called isotropic if A contains a nonzero isotropic ideal for the quadratic pair (σ, f).

(6.6) Example. Let (V, q) be an even-dimensional quadratic space over a field F
of characteristic 2, and let (σq , fq) be the corresponding quadratic pair on EndF (V )
(see (??)). A subspace W ⊂ V is totally isotropic for q if and only if the right ideal
HomF (V,W ) ⊂ EndF (V ) is isotropic for (σq , fq).

Indeed, the standard identification ϕq (see (??)) identifies HomF (V,W ) with
W ⊗F V . The elements in W ⊗ V which are invariant under the switch involution
(which corresponds to σq under ϕq) are spanned by elements of the form w⊗w with
w ∈ W , and (??) shows that fq ◦ ϕq(w ⊗ w) = q(w). Therefore, the subspace W
is totally isotropic with respect to q if and only if fq vanishes on HomF (V,W ) ∩
Sym

(
EndF (V ), σq

)
. Proposition (??) shows that this condition also implies that

HomF (V,W ) is isotropic with respect to the involution σq .

Mimicking (??), we define the index of a central simple algebra with quadratic
pair (A, σ, f) as the set of reduced dimensions of isotropic ideals:

ind(A, σ, f) = { rdim I | I is isotropic with respect to (σ, f) }.
6.B. Hyperbolic involutions. Let E be a central simple algebra with invo-

lution θ (of any kind) and let U be a finitely generated right E-module. As in (??),
we use the involution θ to endow the dual of U with a structure of right E-module
θU∗. For λ = ±1, define

hλ : (θU∗ ⊕ U)× (θU∗ ⊕ U)→ E

by

hλ(
θϕ+ x, θψ + y) = ϕ(y) + λθ

(
ψ(x)

)

for ϕ, ψ ∈ U∗ and x, y ∈ U . Straightforward computations show that h1 (resp.
h−1) is a nonsingular hermitian (resp. alternating) form on θU∗ ⊕ U with respect
to the involution θ on E. The hermitian or alternating module (θU∗ ⊕ U, hλ) is
denoted Hλ(U). A hermitian or alternating module (M,h) over (E, θ) is called
hyperbolic if it is isometric to some Hλ(U).

The following proposition characterizes the adjoint involutions with respect to
hyperbolic forms:

(6.7) Proposition. Let (A, σ) be a central simple algebra with involution (of any

kind) over a field F of arbitrary characteristic. Suppose the center K of A is a

field. The following conditions are equivalent :

(1) for every central simple K-algebra E Brauer-equivalent to A and every involu-

tion θ on E such that θ|K = σ|K , every hermitian or skew-hermitian module (M,h)
over (E, θ) such that (A, σ) '

(
EndE(M), σh

)
is hyperbolic;

(2) there exists a central simple K-algebra E Brauer-equivalent to A, an involution

θ on E such that θ|K = σ|K and a hyperbolic hermitian or skew-hermitian module

(M,h) over (E, θ) such that (A, σ) '
(
EndE(M), σh

)
;
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(3) 1
2 degA ∈ ind(A, σ) and further, if charF = 2, the involution σ is either sym-

plectic or unitary;

(4) there is an idempotent e ∈ A such that σ(e) = 1− e.
Proof : (??) ⇒ (??) This is clear.

(??) ⇒ (??) In the hyperbolic module M = θU∗ ⊕ U , the submodule U is
totally isotropic, hence the same argument as in (??) shows that the right ideal
HomE(M,U) is isotropic in EndE(M). Moreover, since rdimU = 1

2 rdimM , we

have rdim HomE(M,U) = 1
2 deg EndE(M). Therefore, (??) implies that 1

2 degA ∈
ind(A, σ). If charF = 2, the hermitian form h+1 = h−1 is alternating, hence σ is
symplectic if the involution θ on E is of the first kind, and is unitary if θ is of the
second kind.

(??) ⇒ (??) Let I ⊂ A be an isotropic ideal of reduced dimension 1
2 degA.

By (??), there is an idempotent f ∈ A such that I = fA. Since I is isotropic, we
have σ(f)f = 0. We shall modify f into an idempotent e such that I = eA and
σ(e) = 1− e.

The first step is to find u ∈ A such that σ(u) = 1 − u. If charF 6= 2, we
may choose u = 1/2; if charF = 2 and σ is symplectic, the existence of u follows
from (??); if charF = 2 and σ is unitary, we may choose u in the center K of A,
since K/F is a separable quadratic extension and the restriction of σ to K is the
nontrivial automorphism of K/F .

We next set e = f−fuσ(f) and proceed to show that this element satisfies (??).
Since f2 = f and σ(f)f = 0, it is clear that e is an idempotent and σ(e)e = 0.
Moreover, since σ(u) + u = 1,

eσ(e) = fσ(f)− fuσ(f)− fσ(u)σ(f) = 0.

Therefore, e and σ(e) are orthogonal idempotents; it follows that e+σ(e) also is an
idempotent, and

(
e+σ(e)

)
A = eA⊕σ(e)A. To complete the proof of (??), observe

that e ∈ fA and f = ef ∈ eA, hence eA = fA = I . Since rdim I = 1
2 degA,

it follows that dimF eA = dimF σ(e)A = 1
2 dimF A, hence

(
e + σ(e)

)
A = A and

therefore e+ σ(e) = 1.
(??) ⇒ (??) Let E be a central simple K-algebra Brauer-equivalent to A and

θ be an involution on E such that θ|K = σ|K . Let also (M,h) be a hermitian or
skew-hermitian module over (E, θ) such that (A, σ) '

(
EndE(M), σh

)
. Viewing

this isomorphism as an identification, we may find for every idempotent e ∈ A a
pair of complementary submodules U = im e, W = ker e in M such that e is the
projection M → U parallel to W ; then 1 − e is the projection M → W parallel
to U and σ(e) is the projection M →W⊥ parallel to U⊥. Therefore, if σ(e) = 1−e
we have U = U⊥ and W = W⊥. We then define an isomorphism W ∼−→ θU∗ by
mapping w ∈ W to θϕw where ϕw ∈ U∗ is defined by ϕw(u) = h(w, u) for u ∈ U .
This isomorphism extends to an isometry M = W ⊕ U ∼−→ Hλ(U) where λ = +1 if
h is hermitian and λ = −1 if h is skew-hermitian.

(6.8) Definition. A central simple algebra with involution (A, σ) over a field F—
or the involution σ itself—is called hyperbolic if either the center of A is isomorphic
to F × F or the equivalent conditions of (??) hold. If the center is F × F , then
the idempotent e = (1, 0) satisfies σ(e) = 1 − e; therefore, in all cases (A, σ) is
hyperbolic if and only if A contains an idempotent e such that σ(e) = 1− e. This
condition is also equivalent to the existence of an isotropic ideal I of dimension
dimF I = 1

2 dimF A if charF 6= 2, but if charF = 2 the extra assumption that σ is
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symplectic or unitary is also needed. For instance, if A = M2(F ) (with charF = 2)
and σ is the transpose involution, then 1

2 degA ∈ ind(A, σ) since the right ideal

I = {
( x x
y y

)
| x, y ∈ F } is isotropic, but (A, σ) is not hyperbolic since σ is of

orthogonal type.

Note that (A, σ) may be hyperbolic without A being split; indeed we may have
ind(A, σ) = {0, 1

2 degA}, in which case the index of A is 1
2 degA.

From any of the equivalent characterizations in (??), it is clear that hyper-
bolic involutions remain hyperbolic over arbitrary scalar extensions. Characteriza-
tion (??) readily shows that hyperbolic involutions are also preserved by transfer.
Explicitly, consider the situation of §??: Z/F is a finite extension of fields, E is
a central simple Z-algebra and T is a central simple F -algebra contained in E, so
that E = T ⊗F C where C is the centralizer of T in E. Let θ be an involution on E
which preserves T and let s : E → T be an involution trace. Recall from (??) that
for every hermitian or skew-hermitian module (M,h) over (E, θ) there is a transfer(
M, s∗(h)

)
which is a hermitian or skew-hermitian module over (T, θ).

(6.9) Proposition. If h is hyperbolic, then s∗(h) is hyperbolic.

Proof : If h is hyperbolic, (??) yields an idempotent e ∈ EndE(M) such that
σh(e) = 1 − e. By (??), the involution σs∗(h) on EndT (M) extends σh, hence
e also is an idempotent of EndT (M) such that σs∗(h)(e) = 1− e. Therefore, s∗(h)
is hyperbolic.

In the same spirit, we have the following transfer-type result:

(6.10) Corollary. Let (A, σ) be a central simple algebra with involution (of any

kind) over a field F and let L/F be a finite extension of fields. Embed L ↪→
EndF (L) by mapping x ∈ L to multiplication by x, and let ν be an involution on

EndF (L) leaving the image of L elementwise invariant. If (AL, σL) is hyperbolic,

then
(
A⊗F EndF (L), σ ⊗ ν

)
is hyperbolic.

Proof : The embedding L ↪→ EndF (L) induces an embedding

(AL, σL) = (A⊗F L, σ ⊗ IdL) ↪→
(
A⊗F EndF (L), σ ⊗ ν

)
.

The same argument as in the proof of (??) applies. (Indeed, (??) may be regarded
as the special case of (??) where C = Z = L: see ??).

(6.11) Example. Interesting examples of hyperbolic involutions can be obtained
as follows: let (A, σ) be a central simple algebra with involution (of any kind) over a
field F of characteristic different from 2 and let u ∈ Sym(A, σ)∩A× be a symmetric
unit in A. Define an involution νu on M2(A) by

νu

(
a11 a12

a21 a22

)
=

(
σ(a11) −σ(a21)u

−1

−uσ(a12) uσ(a22)u
−1

)

for a11, a12, a21, a22 ∈ A, i.e.,

νu = Int

(
1 0
0 −u

)
◦ (σ ⊗ t)

where t is the transpose involution on M2(F ).

Claim. The involution νu is hyperbolic if and only if u = vσ(v) for some v ∈ A.
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Proof : LetD be a division algebra Brauer-equivalent to A and let θ be an involution
on D of the same type as σ. We may identify (A, σ) =

(
EndD(V ), σh

)
for some

hermitian space (V, h) over (D, σ), by (??). Define a hermitian form h′ on V by

h′(x, y) = h
(
u−1(x), y

)
= h

(
x, u−1(y)

)
for x, y ∈ V .

Under the natural identification M2(A) = EndD(V ⊕ V ), the involution νu is the
adjoint involution with respect to h⊥(−h′). The form h⊥(−h′) is hyperbolic if and
only if (V, h) is isometric to (V, h′). Therefore, by Proposition (??), νu is hyperbolic
if and only if (V, h) is isometric to (V, h′). This condition is also equivalent to the
existence of a ∈ A× such that h′(x, y) = h

(
a(x), a(y)

)
for all x, y ∈ V ; in view of

the definition of h′, this relation holds if and only if u = a−1σ(a−1).

The fact that νu is hyperbolic if u = vσ(v) for some v ∈ A can also be readily
proved by observing that the matrix e = 1

2

(
1 v−1

v 1

)
is an idempotent such that

νu(e) = 1− e.
Hyperbolic quadratic pairs. By mimicking characterization (??) of hyper-

bolic involutions, we may define hyperbolic quadratic pairs as follows:

(6.12) Definition. A quadratic pair (σ, f) on a central simple algebra A of even
degree over a field F of arbitrary characteristic is called hyperbolic if 1

2 degA ∈
ind(A, σ, f) or, in other words, if A contains a right ideal I such that

dimF I = 1
2 dimF A, σ(I)I = {0}, f

(
I ∩ Sym(A, σ)

)
= {0}.

If charF 6= 2, the map f is determined by σ and ind(A, σ, f) = ind(A, σ), hence
(σ, f) is hyperbolic if and only if σ is hyperbolic. If charF = 2, the involution
σ is symplectic and ind(A, σ, f) ⊂ ind(A, σ); therefore, σ is hyperbolic if (σ, f) is
hyperbolic.

We proceed to show that the quadratic pair associated to a quadratic space is
hyperbolic if and only if the quadratic space is hyperbolic.

Recall that a quadratic space over a field F is called hyperbolic if it is isometric
to a space H(U) = (U∗ ⊕ U, qU ) for some vector space U where U ∗ = HomF (U, F )
and

qU (ϕ+ u) = ϕ(u)

for ϕ ∈ U∗ and u ∈ U . The corresponding symmetric bilinear space is thus the
hyperbolic space denoted H1(U) above.

(6.13) Proposition. Let (V, q) be a nonsingular quadratic space of even dimension

over an arbitrary field F . The corresponding quadratic pair (σq , fq) on EndF (V ) is

hyperbolic if and only if the space (V, q) is hyperbolic.

Proof : By (??), the quadratic pair (σq , fq) is hyperbolic if and only if V contains
a totally isotropic subspace U of dimension dimU = 1

2 dimV . This condition is
equivalent to (V, q) ' H(U): see Scharlau [?, p. 12] (if charF 6= 2) and [?, p. 340]
(if charF = 2).

Hyperbolic quadratic pairs can also be characterized by the existence of certain
idempotents:
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(6.14) Proposition. A quadratic pair (σ, f) on a central simple algebra A of even

degree over a field F of arbitrary characteristic is hyperbolic if and only if A contains

an idempotent e such that

f(s) = TrdA(es) for all s ∈ Sym(A, σ).

Proof : If f(s) = TrdA(es) for all s ∈ Sym(A, σ), then σ(e) = 1 − e, by (??),
hence the ideal eA is isotropic for σ and has reduced dimension 1

2 degA if e is
an idempotent. Moreover, for s ∈ eA ∩ Sym(A, σ) there exists x ∈ A such that
s = ex = σ(x)σ(e), hence

f(s) = TrdA
(
eσ(x)σ(e)

)
= TrdA

(
σ(e)eσ(x)

)
= 0.

Therefore the ideal eA is isotropic for (σ, f), and (σ, f) is hyperbolic.
Conversely, suppose that I ⊂ A is an isotropic right ideal of reduced dimension

1
2 degA. By arguing as in (??), we get an idempotent e0 ∈ A such that σ(e0) = 1−e0
and I = e0A. If charF 6= 2, we have e0 − 1

2 ∈ Skew(A, σ) = Alt(A, σ), hence,

by (??), TrdA(e0s) = 1
2 TrdA(s) = f(s) for all s ∈ Sym(A, σ). We may thus set

e = e0 if charF 6= 2, and assume that charF = 2 for the rest of the proof.
For all x ∈ Skew(A, σ), the element e = e0 − e0xσ(e0) also is an idempotent

such that σ(e) = 1 − e. To complete the proof in the case where charF = 2, we
show that e satisfies the required condition for a suitable choice of x. Consider the
linear form ϕ on Sym(A, σ) defined by

ϕ(s) = f(s)− TrdA(e0s) for s ∈ Sym(A, σ).

This form vanishes on Symd(A, σ), since σ(e0) = 1− e0, and also on I ∩ Sym(A, σ)
since for all s ∈ I ∩ Sym(A, σ) we have s2 = 0, hence TrdA(s) = 0. On the other
hand, for all x ∈ e0 Skew(A, σ)σ(e0), the linear form ψx ∈ Sym(A, σ)∗ defined
by ψx(s) = TrdA(xs) also vanishes on Symd(A, σ), because x ∈ Skew(A, σ), and
on I ∩ Sym(A, σ) because σ(e0)e0 = 0. If we show that ϕ = ψx for some x ∈
e0 Skew(A, σ)σ(e0), then we may set e = e0 + x.

We may thus complete the proof by dimension count: if degA = n = 2m, it
can be verified by extending scalars to a splitting field of A that

dim
(
Symd(A, σ) +

(
I ∩ Sym(A, σ)

))
= mn,

hence the dimension of the space of linear forms on Sym(A, σ) which vanish on
Symd(A, σ) and I ∩ Sym(A, σ) is m. On the other hand, by (??), the kernel of
the map which carries x ∈ e0 Skew(A, σ)σ(e0) to ψx ∈ Sym(A, σ)∗ is the space
Alt(A, σ)∩ e0 Skew(A, σ)σ(e0), and we may compute its dimension over a splitting
field:

dim e0 Skew(A, σ)σ(e0) = 1
2m(m+ 1)

and

dim Alt(A, σ) ∩ e0 Skew(A, σ)σ(e0) = 1
2m(m− 1).

Therefore, the space of linear forms on Sym(A, σ) which vanish on the intersection
Symd(A, σ) +

(
I ∩ Sym(A, σ)

)
is {ψx | x ∈ e0 Skew(A, σ)σ(e0) }, hence ϕ = ψx for

a suitable element x ∈ e0 Skew(A, σ)σ(e0).
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6.C. Odd-degree extensions. Using the fact that the torsion in the Witt
group of central simple algebras with involution is 2-primary (Scharlau [?]), we show
in this section that involutions which are not hyperbolic do not become hyperbolic
when tensored with a central simple algebra with involution of odd degree, nor after
an odd-degree scalar extension. This last statement generalizes a weak version of
a theorem of Springer; it is due to Bayer-Fluckiger-Lenstra [?].

Since some of the Witt group arguments do not hold in characteristic 2, we
assume that the characteristic of the base field F is different from 2 throughout
this subsection.

(6.15) Proposition. Let (A, σ) be a central simple algebra with involution (of any

kind) over a field F and let (B, τ) be a central simple algebra of odd degree with

involution of the first kind over F . If (A, σ) ⊗F (B, τ) is hyperbolic, then (A, σ) is

hyperbolic.

Proof : It follows from (??) that the algebra B is split. Let B = EndF (W ) for
some odd-dimensional F -vector space W and let b be a nonsingular symmetric
bilinear form on W such that τ = σb. Similarly, let (A, σ) =

(
EndD(V ), σh

)
for

some hermitian or skew-hermitian space (V, h) over a central division algebra with
involution (D, θ). We then have

(A, σ) ⊗F (B, τ) =
(
EndD(V ⊗W ), σh⊗b

)
,

and it remains to show that (V, h) is hyperbolic if (V ⊗W,h⊗ b) is hyperbolic.
We mimic the proof of Corollary 2.6.5 in Scharlau [?]. Suppose there exists a

non-hyperbolic hermitian or skew-hermitian space (V, h) over (D, θ) which becomes
hyperbolic when tensored by a nonsingular symmetric bilinear space (W, b) of odd
dimension. Among all such examples, choose one where the dimension of W is
minimal. Let dimW = n (≥ 3). We may assume that b has a diagonalization
〈1, a2, . . . , an〉. Since h ⊗ b is hyperbolic, we have in the Witt group W λ(D, θ)
where λ = +1 if h is hermitian and λ = −1 if h is skew-hermitian,

h⊗ 〈a3, . . . , an〉 = h⊗ 〈−1,−a2〉.
Since 〈1,−a2〉⊗〈−1,−a2〉 is hyperbolic, it follows that

(
〈1,−a2〉⊗h

)
⊗〈a3, . . . , an〉

is hyperbolic. By minimality of n, it follows that 〈1,−a2〉 ⊗ h is hyperbolic, hence

h ' h⊗ 〈a2〉.
Similarly, we have h ' h⊗ 〈ai〉 for all i = 2, . . . , n, hence

n · h = h⊗ 〈1, a2, . . . , an〉.
By hypothesis, this form is hyperbolic; therefore, h has odd order in the Witt group
W λ(D, θ), contrary to Scharlau’s result [?, Theorem 5.1].

(6.16) Corollary. Let (A, σ) be a central simple algebra with involution (of any

kind) over a field F of characteristic different from 2 and let L/F be a field extension

of odd degree. If (AL, σL) is hyperbolic, then (A, σ) is hyperbolic.

Proof : Embed L ↪→ EndF (L) by mapping x ∈ L to multiplication by x and let ν
be an involution on EndF (L) leaving the image of L elementwise invariant. (The
existence of such an involution ν follows from (??); explicitly, one may pick any
nonzero F -linear map ` : L→ F and take for ν the adjoint involution with respect
to the bilinear form b(x, y) = `(xy) on L.) If (AL, σL) is hyperbolic, then (??) shows
that (A, σ) ⊗F

(
EndF (L), ν

)
is hyperbolic, hence (A, σ) is hyperbolic by (??).
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(6.17) Corollary. Let (A, σ) be a central simple algebra with involution (of any

kind) over a field F of characteristic different from 2 and let L/F be a field extension

of odd degree. Let u ∈ Sym(A, σ) ∩A× be a symmetric unit. If there exists v ∈ AL
such that u = vσL(v), then there exists w ∈ A such that u = wσ(w).

Proof : Consider the involution νu on M2(A) as in (??). The preceding corollary
shows that

(
M2(A), νu

)
is hyperbolic if

(
M2(A)L, (νu)L

)
is hyperbolic. Therefore,

the corollary follows from (??).

This result has an equivalent formulation in terms of hermitian forms, which is
the way it was originally stated by Bayer-Fluckiger and Lenstra [?, Corollary 1.14]:

(6.18) Corollary (Bayer-Fluckiger-Lenstra). Let h, h′ be nonsingular hermitian

forms on a vector space V over a division F -algebra D, where charF 6= 2. The

forms h, h′ are isometric if they are isometric after an odd-degree scalar extension

of F .

Proof : The forms h and h′ are isometric if and only if h ⊥ −h′ is hyperbolic, so
that the assertion follows from (??).

§7. The Discriminant

The notion of discriminant considered in this section concerns involutions of
orthogonal type and quadratic pairs. The idea is to associate to every orthogonal
involution σ over a central simple F -algebra a square class discσ ∈ F×/F×2, in
such a way that for the adjoint involution σb with respect to a symmetric bilinear
form b, the discriminant discσb is the discriminant of the form b. If charF = 2,
we also associate to every quadratic pair (σ, f) an element disc(σ, f) ∈ F/℘(F ),
generalizing the discriminant (Arf invariant) of quadratic forms.

7.A. The discriminant of orthogonal involutions. Let F be a field of
arbitrary characteristic. Recall that if b is a nonsingular bilinear form on a vector
space V over F , the determinant of b is the square class of the determinant of the
Gram matrix of b with respect to an arbitrary basis (e1, . . . , en) of V :

det b = det
(
b(ei, ej)

)
1≤i,j≤n · F

×2 ∈ F×/F×2.

The discriminant of b is the signed determinant:

disc b = (−1)n(n−1)/2 det b ∈ F×/F×2

where n = dimV .
If dimV is odd, then for α ∈ F× we have disc(αb) = α disc b. Therefore, the

discriminant is an invariant of the equivalence class of b modulo scalar factors if
and only if the dimension is even. Since involutions correspond to such equivalence
classes, the discriminant of an orthogonal involution is defined only for central
simple algebras of even degree.

The definition of the discriminant of an orthogonal involution is based on the
following crucial result:

(7.1) Proposition. Let (A, σ) be a central simple algebra with orthogonal involu-

tion over F . If degA is even, then for any a, b ∈ Alt(A, σ) ∩ A×,

NrdA(a) ≡ NrdA(b) mod F×2.
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Proof : Fix some a, b ∈ Alt(A, σ)∩A×. The involution σ′ = Int(a)◦σ is symplectic
by (??). The same proposition shows that ab ∈ Alt(A, σ′) if charF = 2 and ab ∈
Sym(A, σ′) if charF 6= 2; therefore, it follows from (??) that NrdA(ab) ∈ F×2.

An alternate proof is given in (??) below.
This proposition makes it possible to give the following definition:

(7.2) Definition. Let σ be an orthogonal involution on a central simple algebra A
of even degree n = 2m over a field F . The determinant of σ is the square class of
the reduced norm of any alternating unit:

detσ = NrdA(a) · F×2 ∈ F×/F×2 for a ∈ Alt(A, σ) ∩A×

and the discriminant of σ is the signed determinant:

discσ = (−1)m det σ ∈ F×/F×2.

The following properties follow from the definition:

(7.3) Proposition. Let A be a central simple algebra of even degree over a field F
of arbitrary characteristic.

(1) Suppose σ is an orthogonal involution on A, and let u ∈ A×. If Int(u) ◦ σ is

an orthogonal involution on A, then disc
(
Int(u) ◦ σ

)
= NrdA(u) · discσ.

(2) Suppose σ is a symplectic involution on A, and let u ∈ A×. If Int(u) ◦ σ is an

orthogonal involution on A, then disc
(
Int(u) ◦ σ

)
= NrdA(u).

(3) If A = EndF (V ) and σb is the adjoint involution with respect to some nonsin-

gular symmetric bilinear form b on V , then discσb = disc b.
(4) Suppose σ is an orthogonal involution on A. If (B, τ) is a central simple F -

algebra with orthogonal involution, then

disc(σ ⊗ τ) =

{
discσ if degB is odd,

1 if degB is even.

(5) Suppose σ is a symplectic involution on A. If (B, τ) is a central simple algebra

with symplectic involution and charF 6= 2, then disc(σ ⊗ τ) = 1. (If charF = 2,
(??) shows that σ ⊗ τ is symplectic.)
(6) Suppose σ is an orthogonal involution on A. If σ is hyperbolic, then discσ =
1. (Since hyperbolic involutions in characteristic 2 are symplectic or unitary, the

hypotheses imply charF 6= 2.)

Proof : (??) If Int(u) ◦ σ is an orthogonal involution, then σ(u) = u and

Alt
(
A, Int(u) ◦ σ

)
= u ·Alt(A, σ)

by (??). The property readily follows.
(??) It suffices to show that u ∈ Alt

(
A, Int(u) ◦σ

)
. This is clear if charF 6= 2,

since the condition that σ is symplectic and Int(u) ◦σ is orthogonal implies σ(u) =
−u, by (??). If charF = 2 we have Alt

(
A, Int(u) ◦ σ

)
= u · Alt(A, σ) by (??) and

1 ∈ Alt(A, σ) by (??).
(??) Let n = 2m = dimV and identify A with Mn(F ) by means of a basis e

of V . Let also be ∈ GLn(F ) be the Gram matrix of the bilinear form b with respect
to the chosen basis e. The involution σb is then given by

σb = Int(b−1
e ) ◦ t,
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where t is the transpose involution. It is easily seen that disc t = (−1)m (indeed, it
suffices to find an alternating matrix of determinant 1), hence (??) yields:

discσb = (−1)m det(b−1
e ) · F×2 = disc b.

(??) If a ∈ Alt(A, σ) ∩ A×, then a ⊗ 1 ∈ Alt(A ⊗ B, σ ⊗ τ) ∩ (A ⊗ B)×. The
property follows from the relation

NrdA⊗B(a⊗ 1) = NrdA(a)degB .

(??) Since τ is symplectic, degB is even, by (??). The same argument as
in (??) applies to yield a⊗ 1 ∈ Alt(A⊗B, σ ⊗ τ) satisfying

NrdA⊗B(a⊗ 1) ∈ F×2.

(??) Let degA = 2m and let e ∈ A be an idempotent such that e+ σ(e) = 1.
We have rdim(eA) = m, hence, over a splitting field, e may be represented by a
diagonal matrix

e = diag(1, . . . , 1︸ ︷︷ ︸
m

, 0, . . . , 0︸ ︷︷ ︸
m

).

Since σ(e) = 1− e, we have 2e− 1 ∈ Alt(A, σ); on the other hand, over a splitting
field,

2e− 1 = diag(1, . . . , 1︸ ︷︷ ︸
m

,−1, . . . ,−1︸ ︷︷ ︸
m

),

hence NrdA(2e− 1) = (−1)m and therefore discσ = 1.

(7.4) Example. Let Q be a quaternion algebra with canonical involution γ. By
Proposition (??), every orthogonal involution on Q has the form σ = Int(s) ◦ γ
for some invertible s ∈ Skew(Q, γ) r F . Proposition (??) shows that discσ =
−NrdQ(s) · F×2. Therefore, if two orthogonal involutions σ = Int(s) ◦ γ and
σ′ = Int(s′)◦γ have the same discriminant, then we may assume that s and s′ have
the same reduced norm, hence also the same reduced characteristic polynomial
since TrdQ(s) = 0 = TrdQ(s′). Therefore,

s′ = xsx−1 = NrdQ(x)−1xsγ(x)

for some x ∈ Q×, and it follows that

σ′ = Int(x) ◦ σ ◦ Int(x)−1.

This show that orthogonal involutions on a quaternion algebra are classified up to
conjugation by their discriminant.

Observe also that if σ = Int(s) ◦ γ has trivial discriminant, then s2 ∈ F×2.
Since s 6∈ F , this relation implies that Q splits, hence quaternion division algebras
do not carry any orthogonal involution with trivial discriminant.

The next proposition may be seen as an analogue of the formula for the deter-
minant of an orthogonal sum of two bilinear spaces. Let (A, σ) be a central simple
F -algebra with orthogonal involution and let e1, e2 ∈ A be symmetric idempotents
such that e1 + e2 = 1. Denote A1 = e1Ae1 and A2 = e2Ae2. These algebras are
central simple and Brauer-equivalent to A (see (??)). They are not subalgebras of
A, however, since their unit elements e1 and e2 are not the unit 1 of A. The involu-
tion σ restricts to involutions σ1 and σ2 on A1 and A2. If (A, σ) =

(
EndF (V ), σb

)

for some vector space V and some nonsingular symmetric, nonalternating, bilinear
form b, then e1 and e2 are the orthogonal projections on some subspaces V1, V2
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such that V = V1

⊥
⊕ V2. The algebras A1, A2 may be identified with EndF (V1) and

EndF (V2), and σ1, σ2 are the adjoint involutions with respect to the restrictions of
b to V1 and V2. These restrictions clearly are symmetric, but if charF = 2 one of
them may be alternating. Therefore, in the general case, extension of scalars to a
splitting field of A shows that σ1 and σ2 are both orthogonal if charF 6= 2, but one
of them may be symplectic if charF = 2.

(7.5) Proposition. With the notation above,

detσ = det σ1 detσ2

where we set detσi = 1 if σi is symplectic.

Proof : Let ai ∈ Alt(Ai, σi) for i = 1, 2; then a1 + a2 ∈ Alt(A, σ), and scalar
extension to a splitting field of A shows that

NrdA(a1 + a2) = NrdA1(a1) NrdA2(a2).

This completes the proof, since NrdAi(ai) · F×2 = detσi if σi is orthogonal, and
NrdAi(ai) ∈ F×2 if σi is symplectic, by (??).

7.B. The discriminant of quadratic pairs. Let (σ, f) be a quadratic pair
on a central simple F -algebra of even degree. If charF 6= 2, the involution σ is
orthogonal and the map f is the restriction of 1

2 TrdA to Sym(A, σ); we then set

det(σ, f) = detσ ∈ F×/F×2 and disc(σ, f) = discσ ∈ F×/F×2;

this is consistent with the property that the discriminant of a quadratic form of
even dimension is equal to the discriminant of its polar bilinear form.

For the rest of this subsection, assume charF = 2. Recall that we write
SrdA : A → F for the map which associates to every element in A the coefficient
of XdegA−2 in its reduced characteristic polynomial (see (??)). Recall also that
℘(x) = x2 + x for x ∈ F .

(7.6) Proposition. Let ` ∈ A be such that f(s) = TrdA(`s) for all s ∈ Sym(A, σ)
(see (??)). For all x ∈ A,

SrdA
(
`+ x+ σ(x)

)
= SrdA(`) + ℘

(
TrdA(x)

)
.

Proof : It suffices to prove this formula after scalar extension to a splitting field. We
may therefore assume A = Mn(F ). By (??), we may find an element a ∈ Mn(F )
such that a+ at ∈ GLn(F ) and (σ, f) = (σa, fa). Letting g = a+ at, we then have
f(s) = tr(g−1as) for all s ∈ Sym(A, σ). Since (??) shows that the element ` is
uniquely determined up to the addition of an element in Alt(A, σ), it follows that

` = g−1a+m+ σ(m) for some m ∈ A,

hence

`+ x+ σ(x) = g−1a+ (m+ x) + σ(m+ x).

Since σ = σa = Int(g−1) ◦ t and gt = g, the right side may be rewritten as

g−1a+ g−1y + g−1yt, where y = g(m+ x).

As proved in (??), we have s2(g
−1a + g−1y + g−1yt) = s2(g

−1a) + ℘
(
tr(g−1y)

)
,

hence

s2
(
`+ x+ σ(x)

)
= s2(g

−1a) + ℘
(
tr(m+ x)

)
= s2(g

−1a) + ℘
(
tr(m)

)
+ ℘

(
tr(x)

)
.
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In particular, by letting x = 0 we obtain s2(`) = s2(g
−1a) + ℘

(
tr(m)

)
, hence the

preceding relation yields

s2
(
`+ x+ ℘(x)

)
= s2(`) + ℘

(
tr(x)

)
.

(7.7) Definition. Let (σ, f) be a quadratic pair on a central simple algebra A
over a field F of characteristic 2. By (??), there exists an element ` ∈ A such that
f(s) = TrdA(`s) for all s ∈ Sym(A, σ), and this element is uniquely determined up
to the addition of an element in Alt(A, σ). The preceding proposition shows that
the element SrdA(`) + ℘(F ) ∈ F/℘(F ) does not depend on the choice of `; we may
therefore set

det(σ, f) = SrdA(`) + ℘(F ) ∈ F/℘(F )

and, letting degA = 2m,

disc(σ, f) = det(σ, f) + m(m−1)
2 ∈ F/℘(F ).

The following proposition justifies the definitions above:

(7.8) Proposition. Let (V, q) be a nonsingular quadratic space of even dimension

over an arbitrary field F . For the associated quadratic pair (σq , fq) on EndF (V )
defined in (??),

disc(σq , fq) = disc q.

Proof : If charF 6= 2, the proposition follows from (??). For the rest of the proof
we therefore assume that charF = 2. Let dimV = n = 2m and consider a basis
(e1, . . . , en) of V which is symplectic for the polar form bq, i.e.,

bq(e2i−1, e2i) = 1, bq(e2i, e2i+1) = 0 and bq(ei, ej) = 0 if |i− j| > 1.

As observed in (??), an element ` ∈ EndF (V ) such that fq(s) = Trd(`s) for all
s ∈ Sym

(
EndF (V ), σq

)
is given by

` = ϕq
(∑m

i=1 e2i−1 ⊗ e2i−1q(e2i) + e2i ⊗ e2iq(e2i−1) + e2i−1 ⊗ e2i
)

where ϕq : V ⊗ V ∼−→ EndF (V ) is the standard identification (??) associated to bq.
Furthermore we have, by (??), (??),

s2(`) =
(∑m

i=1 q(e2i−1)q(e2i)
)

+ m(m−1)
2 ,

and therefore

disc(σq , fq) =
m∑

i=1

q(e2i−1)q(e2i) = disc q.

(7.9) Proposition. The discriminant of any hyperbolic quadratic pair is trivial.

Proof : If charF 6= 2, the proposition follows from (??). We may thus assume
that charF = 2. Let (σ, f) be a hyperbolic quadratic pair on a central simple
F -algebra A. By (??), there is an idempotent e such that f(s) = TrdA(es) for all
s ∈ Sym(A, σ); thus

disc(σ, f) = SrdA(e) + m(m−1)
2 + ℘(F )

where m = 1
2 degA. Since e is an idempotent such that rdim(eA) = m, we have

PrdA,e(X) = (X − 1)m, hence SrdA(e) =
(
m
2

)
, and therefore disc(σ, f) = 0.
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The discriminant of the tensor product of a quadratic pair with an involution
is calculated in the next proposition. We consider only the case where charF = 2,
since the case of characteristic different from 2 reduces to the tensor product of
involutions discussed in (??).

(7.10) Proposition. Suppose charF = 2. Let (σ1, f1) be an orthogonal pair on a

central simple F -algebra A1 of degree n1 = 2m1 and let (A2, σ2) be a central simple

F -algebra with involution of the first kind, of degree n2. The determinant and the

discriminant of the orthogonal pair (σ1 ⊗ σ2, f1∗) on A1 ⊗ A2 defined in (??) are

as follows :

det(σ1 ⊗ σ2, f1∗) = n2 det(σ1, f1) +m1

(
n2

2

)
;

disc(σ1 ⊗ σ2, f1∗) = n2 disc(σ1, f1).

In particular, if σ2 is symplectic, the discriminant of the canonical quadratic pair

(σ1 ⊗ σ2, f⊗) on A1 ⊗A2 is trivial since n2 is even.

Proof : Let `1 ∈ A1 be such that f1(s1) = TrdA1(`1s1) for all s1 ∈ Sym(A1, σ1).
We claim that the element ` = `1 ⊗ 1 satisfies f1∗(s) = TrdA1⊗A2(`s) for all s ∈
Sym(A1 ⊗A2, σ1 ⊗ σ2). By (??), we have

Sym(A1 ⊗A2, σ1 ⊗ σ2) = Symd(A1 ⊗A2, σ1 ⊗ σ2) + Sym(A1, σ1)⊗ Sym(A2, σ2),

hence it suffices to show

TrdA1⊗A2

(
`
(
x+ σ1 ⊗ σ2(x)

))
= TrdA1⊗A2(x) for x ∈ A1 ⊗A2(7.11)

and

TrdA1⊗A2(`s1 ⊗ s2) = f1(s1) TrdA2(s2)(7.12)

for s1 ∈ Sym(A1, σ1) and s2 ∈ Sym(A2, σ2). Since `σ1⊗σ2(x) and xσ1⊗σ2(`) have
the same reduced trace, we have

TrdA1⊗A2

(
`
(
x+ σ1 ⊗ σ2(x)

))
= TrdA1⊗A2

((
`+ σ1 ⊗ σ2(`)

)
x
)
.

Now, σ1 ⊗ σ2(`) = σ1(`1) ⊗ 1, hence it follows by (??) that ` + σ1 ⊗ σ2(`) = 1,
proving (??). To prove (??), it suffices to observe

TrdA1⊗A2(`s1 ⊗ s2) = TrdA1(`1s1) TrdA2(s2) = f1(s1) TrdA2(s2),

hence the claim is proved.
The determinant of (σ1⊗σ2, f1∗) is thus represented by SrdA1⊗A2(`) in F/℘(F ).

Since

PrdA1⊗A2,`(X) = NrdA1⊗A2(X − `1 ⊗ 1) = NrdA1(X − `1)n2 = PrdA1,`1(X)n2 ,

we have SrdA1⊗A2(`) = n2 SrdA1(`1) +
(
n2

2

)
TrdA1(`1). The proposition follows,

since TrdA1(`1) = f1(1) and (??) shows that f1(1) = m1.

As for orthogonal involutions (see (??)), quadratic pairs on a quaternion algebra
are classified by their discriminant:

(7.13) Proposition. Let (γ, f1) and (γ, f2) be quadratic pairs on a quaternion

algebra Q over a field F of characteristic 2. If disc(γ, f1) = disc(γ, f2), then there

exists x ∈ Q× such that f2 = f1 ◦ Int(x).
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Proof : For i = 1, 2, let `i ∈ Q be such that fi(s) = TrdQ(`is) for all s ∈ Sym(Q, γ).
We have TrdQ(`i) = fi(1) = 1, by (??), and

disc(γ, fi) = SrdQ(`i) + ℘(F ) = NrdQ(`i) + ℘(F ).

Therefore, the hypothesis yields

NrdQ(`2) = NrdQ(`1) + (α2 + α) = NrdQ(`1 + α)

for some α ∈ F . Since `1 is determined up to the addition of an element in
Alt(Q, γ) = F , we may substitute `1 +α for `1, and assume NrdQ(`2) = NrdQ(`1).
The elements `1, `2 then have the same reduced characteristic polynomial, hence
we may find x ∈ Q× such that `1 = x`2x

−1. For s ∈ Sym(Q, γ), we then have

TrdQ(`2s) = TrdQ(x−1`1xs) = TrdQ(`1xsx
−1),

hence f2(s) = f1(xsx
−1).

Our final result is an analogue of the formula for the discriminant of an orthog-
onal sum of quadratic spaces. Let (σ, f) be a quadratic pair on a central simple
algebra A over a field F of characteristic 2, and let e1, e2 ∈ A be symmetric idem-
potents such that e1 + e2 = 1. As in the preceding section, we let A1 = e1Ae1,
A2 = e2Ae2 and restrict σ to symplectic involutions σ1 and σ2 on A1 and A2. The
degrees of A1 and A2 are therefore even. We have Sym(Ai, σi) = Sym(A, σ) ∩ Ai
for i = 1, 2, hence we may also restrict f to Sym(Ai, σi) and get a quadratic pair
(σi, fi) on Ai.

(7.14) Proposition. With the notation above,

disc(σ, f) = disc(σ1, f1) + disc(σ2, f2).

Proof : For i = 1, 2, let `i ∈ Ai be such that fi(s) = TrdAi(`is) for all s ∈
Sym(Ai, σi). For s ∈ Sym(A, σ), we have

s = e1se1 + e1se2 + σ(e1se2) + e2se2,

hence

f(s) = f1(e1se1) + TrdA(e1se2) + f2(e2se2).

Since TrdA(e1se2) = TrdA(se2e1) and e2e1 = 0, the middle term on the right side
vanishes. Therefore,

f(s) = TrdA1(`1e1se1) + TrdA2(`2e2se2) for all s ∈ Sym(A, σ).

Taking into account the fact that ei`iei = `i for i = 1, 2, we obtain

f(s) = TrdA1(`1s) + TrdA2(`2s) = TrdA
(
(`1 + `2)s

)
for all s ∈ Sym(A, σ).

We may thus compute det(σ, f):

det(σ, f) = SrdA(`1 + `2) + ℘(F ).

Scalar extension to a splitting field of A shows that PrdA,`1+`2 = PrdA1,`1 PrdA2,`2 ,
hence

SrdA(`1 + `2) = SrdA1(`1) + SrdA2(`2) + TrdA1(`1) TrdA2(`2).

Since TrdAi(`i) = fi(`i) = 1
2 degAi, by (??), the preceding relation yields

det(σ, f) = det(σ1, f1) + det(σ2, f2) + 1
4 degA1 degA2.

The formula for disc(σ, f) is then easily checked, using that degA = degA1 +
degA2.
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§8. The Clifford Algebra

Since the Clifford algebra of a quadratic form is not invariant when the quad-
ratic form is multiplied by a scalar, it is not possible to define a corresponding
notion for involutions. However, the even Clifford algebra is indeed an invariant for
quadratic forms up to similarity, and our aim in this section is to generalize its con-
struction to algebras with quadratic pairs. The first definition of the (generalized,
even) Clifford algebra of an algebra with orthogonal involution of characteristic
different from 2 was given by Jacobson [?], using Galois descent. Our approach is
based on Tits’ “rational” definition [?] which includes the characteristic 2 case.

Since our main tool will be scalar extension to a splitting field, we first discuss
the case of a quadratic space.

8.A. The split case. Let (V, q) be a nonsingular quadratic space over a
field F of arbitrary characteristic. The Clifford algebra C(V, q) is the factor of
the tensor algebra T (V ) by the ideal I(q) generated by all the elements of the form
v ⊗ v − q(v) · 1 for v ∈ V . The natural gradation of T (V ) (by natural numbers)
induces a gradation by Z/2Z:

T (V ) = T0(V )⊕ T1(V ) = T (V ⊗ V )⊕
(
V ⊗ T (V ⊗ V )

)
.

Since generators of I(q) are in T0(V ), the Z/2Z gradation of T (V ) induces a gra-
dation of C(V, q):

C(V, q) = C0(V, q)⊕ C1(V, q).

We have dimF C(V, q) = 2dimV and dimF C0(V, q) = 2(dimV )−1: see Knus [?,
Ch. IV, (1.5.2)].

The even Clifford algebra C0(V, q) may also be defined directly as a factor
algebra of T0(V ) = T (V ⊗ V ):

(8.1) Lemma. In the tensor algebra T (V ⊗ V ), consider the following two-sided

ideals :

(1) I1(q) is the ideal generated by all the elements of the form

v ⊗ v − q(v), for v ∈ V .

(2) I2(q) is the ideal generated by all the elements of the form

u⊗ v ⊗ v ⊗ w − q(v)u⊗ w, for u, v, w ∈ V .

Then

C0(V, q) =
T (V ⊗ V )

I1(q) + I2(q)
.

Proof : The inclusion map T (V ⊗ V ) ↪→ T (V ) maps I1(q) and I2(q) into I(q); it
therefore induces a canonical epimorphism

T (V ⊗ V )

I1(q) + I2(q)
→ C0(V, q).

The lemma follows if we show

dimF

(
T (V ⊗ V )

I1(q) + I2(q)

)
≤ dimF C0(V, q).

This inequality is easily established by using an orthogonal decomposition of V
into subspaces of dimension 1 (if charF 6= 2) or of dimension 2 (if charF = 2 and
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dimV is even) or into one subspace of dimension 1 and subspaces of dimension 2
(if charF = 2 and dimV is odd).

Structure of even Clifford algebras. We recall the structure theorem for
even Clifford algebras:

(8.2) Theorem. Let (V, q) be a nonsingular quadratic space over a field F of ar-

bitrary characteristic.

(1) If dimV is odd : dim V = 2m+ 1, then C0(V, q) is central simple F -algebra of

degree 2m.

(2) If dimV is even: dimV = 2m, the center of C0(V, q) is an étale quadratic F -

algebra Z. If Z is a field, then C0(V, q) is a central simple Z-algebra of degree 2m−1;

if Z ' F × F , then C0(V, q) is the direct product of two central simple F -algebras

of degree 2m−1. Moreover, the center Z can be described as follows :
(a) If charF 6= 2, Z ' F [X ]/(X2 − δ) where δ ∈ F× is a representative of the

discriminant : disc q = δ · F×2 ∈ F×/F×2.

(b) If charF = 2, Z ' F [X ]/(X2 +X + δ) where δ ∈ F is a representative of

the discriminant : disc q = δ + ℘(F ) ∈ F/℘(F ).

A proof can be found in Knus [?, Ch. IV] or Lam [?, Ch. 5] (for the case where
charF 6= 2) or Scharlau [?, Ch. 9] (for the cases where charF 6= 2 or charF = 2
and dimV even).

For future reference, we recall an explicit description of the Clifford algebra
of hyperbolic quadratic spaces, from which a proof of the theorem above can be
derived by scalar extension.

Let U be an arbitrary finite dimensional vector space over F and let H(U) =
(U∗ ⊕ U, qU ) be the hyperbolic quadratic space defined by

qU (ϕ+ u) = ϕ(u)

for ϕ ∈ U∗ and u ∈ U , as in §??.
In order to give an explicit description of the Clifford algebra of H(U), consider

the exterior algebra
∧
U . Collecting separately the even and odd exterior powers

of U , we get a Z/2Z-gradation
∧
U =

∧
0 U ⊕

∧
1 U,

where
∧

0 U =
⊕

i≥0

∧2i
U and

∧
1 U =

⊕
i≥0

∧2i+1
U.

For u ∈ U , let `u ∈ EndF (
∧
U) denote (exterior) multiplication on the left by u:

`u(x1 ∧ · · · ∧ xr) = u ∧ x1 ∧ · · · ∧ xr.

For ϕ ∈ U∗, let dϕ ∈ EndF (
∧
U) be the unique derivation of

∧
U extending ϕ

which is explicitly defined by

dϕ(x1 ∧ · · · ∧ xr) =

r∑

i=1

(−1)i+1x1 ∧ · · · ∧ xi−1 ∧ xi+1 ∧ · · · ∧ xrϕ(xi).

It is clear that `u and dϕ interchange the subspaces
∧

0 U and
∧

1 U for all u ∈ U ,
ϕ ∈ U∗.
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(8.3) Proposition. The map which carries ϕ+u ∈ U ∗⊕U to dϕ+`u ∈ EndF (
∧
U)

induces an isomorphism

Θ: C
(
H(U)

) ∼−→ EndF (
∧
U).

The restriction of this isomorphism to the even Clifford algebra is an isomorphism

Θ0 : C0

(
H(U)

) ∼−→ EndF (
∧

0 U)× EndF (
∧

1 U).

Proof : A computation shows that for ξ ∈
∧r

U , η ∈
∧s

U and ϕ ∈ U∗,

dϕ(ξ ∧ η) = dϕ(ξ) ∧ η + (−1)rξ ∧ dϕ(η).

By applying this formula twice in the particular case where r = 1, we obtain

d2
ϕ(u ∧ η) = u ∧ d2

ϕ(η);

by induction on s we conclude that d2
ϕ = 0. Therefore, for η ∈ ∧s

U , u ∈ U and
ϕ ∈ U∗,

(dϕ + `u)
2(η) = dϕ(u ∧ η) + u ∧ dϕ(η) = ηϕ(u).

By the universal property of Clifford algebras, it follows that the map U ∗ ⊕ U →
EndF (

∧
U) which carries ϕ + u to dϕ + `u induces an algebra homomorphism

Θ: C
(
H(U)

)
→ EndF (

∧
U). The fact that Θ is an isomorphism is established

by induction on dimU (see Knus [?, Ch. IV, (2.1.1)]). (Alternately, assuming the
structure theorem for Clifford algebras, injectivity of Θ follows from the fact that
C

(
H(U)

)
is simple, and surjectivity follows by dimension count).

Let Θ0 be the restriction of Θ to C0

(
H(U)

)
. Since dϕ+ `u exchanges

∧
0 U and∧

1 U for all ϕ ∈ U∗ and u ∈ U , the elements in the image of Θ0 preserve
∧

0 U and∧
1 U . Therefore, Θ0 maps C0

(
H(U)

)
into EndF (

∧
0 U)× EndF (

∧
1 U). This map

is onto by dimension count.

The canonical involution. For every quadratic space (V, q), the identity map
on V extends to an involution on the tensor algebra T (V ) which preserves the ideal
I(q). It therefore induces an involution τ on the Clifford algebra C(V, q). This
involution is called the canonical involution of C(V, q); it is the unique involution
which is the identity on (the image of) V . The involution τ clearly restricts to an
involution on C0(V, q) which we denote by τ0 and call the canonical involution of
C0(V, q). The type of this canonical involution is determined as follows:

(8.4) Proposition. (1) If dimV ≡ 2 mod 4, then τ0 is unitary.

(2) If dimV ≡ 0 mod 4, then τ0 is the identity on the center Z of C0(V, q). It

is orthogonal if dimV ≡ 0 mod 8 and charF 6= 2, and symplectic if dimV ≡ 4
mod 8 or charF = 2. (In the case where Z ' F × F , this means that τ0 is of

orthogonal or symplectic type on each factor of C0(V, q).)
(3) If dimV ≡ 1, 7 mod 8, then τ0 is orthogonal if charF 6= 2 and symplectic if

charF = 2.
(4) If dimV ≡ 3, 5 mod 8, then τ0 is symplectic.

Proof : Consider first the case where dimV is even: dimV = 2m. By extending
scalars, we may assume that (V, q) is a hyperbolic quadratic space. Let (V, q) =
H(U) for some m-dimensional vector space U , hence C(V, q) ' EndF (

∧
U) by (??).

Under this isomorphism, the canonical involution τ on C(V, q) corresponds to the
adjoint involution with respect to some bilinear form on

∧
U which we now describe.
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Let :
∧
U → ∧

U be the involution such that u = u for all u ∈ U =
∧1

U
and let s :

∧
U → F be a nonzero linear map which vanishes on

∧r
U for r < m.

Define a bilinear form b :
∧
U ×∧

U → F by

b(ξ, η) = s(ξ ∧ η) for ξ, η ∈
∧
U .

We have b(η, ξ) = s(ξ ∧ η) for ξ, η ∈ ∧
U . Since ζ = (−1)m(m−1)/2ζ for ζ ∈ ∧m U ,

it follows that b is symmetric if m ≡ 0, 1 mod 4, and it is skew-symmetric if
m ≡ 2, 3 mod 4. If charF = 2, then

∧
U is commutative, is the identity on

∧
U

and ξ ∧ ξ = 0 for all ξ ∈ ∧
U , hence b is alternating. In all cases, the form b is

nonsingular.
For u ∈ U and ξ, η ∈

∧
U we have u = u, hence

b(u ∧ ξ, η) = s(ξ ∧ u ∧ η) = b(ξ, u ∧ η).
Similarly, for ϕ ∈ U∗, ξ, η ∈ ∧

U , a simple computation (using the fact that dϕ is
a derivation on

∧
U) shows that

b
(
dϕ(ξ), η

)
= b

(
ξ, dϕ(η)

)
.

Therefore, the adjoint involution σb on EndF (
∧
U) is the identity on all the en-

domorphisms of the form dϕ + `u. It follows that σb corresponds to the canonical
involution τ under the isomorphism Θ of (??). In view of the type of b, the invo-
lution τ is orthogonal if m ≡ 0, 1 mod 4 and charF 6= 2, and it is symplectic in
the other cases.

If m is odd, the complementary subspaces
∧

0 U and
∧

1 U are totally isotropic
for b. Therefore, letting e0 ∈ EndF (

∧
U) (resp. e1 ∈ EndF (

∧
U)) denote the

projection on
∧

0 U (resp.
∧

1 U) parallel to
∧

1 U (resp.
∧

0 U), we have σb(e0) = e1.
It follows that σb exchanges EndF (

∧
0 U) and EndF (

∧
1 U), hence τ0 is unitary.

If m is even, b restricts to nonsingular bilinear forms b0 on
∧

0 U and b1 on
∧

1 U ,
and the restriction of σb to EndF (

∧
0 U)×EndF (

∧
1 U) is σb0×σb1 . Since b0 and b1

have the same type as b, the proof is complete in the case where dimV is even.
If dimV is odd: dimV = 2m + 1, we may extend scalars to assume (V, q)

decomposes as

(V, q) ' [−1]⊥ (V ′, q′)

for some nonsingular quadratic space (V ′, q′) of dimension 2m which may be as-
sumed hyperbolic. Considering this isometry as an identification, and letting e ∈ V
denote a basis element of the subspace [−1] such that q(e) = −1, we get an isomor-
phism C(V ′, q′) ∼−→ C0(V, q) by mapping x ∈ V ′ to e · x ∈ C0(V, q). If charF = 2,
the canonical involution τ0 on C0(V, q) corresponds to the canonical involution τ ′

on C(V ′, q′) under this isomorphism. Therefore, τ0 is symplectic. If charF 6= 2,
the canonical involution τ0 corresponds to Int(ζ) ◦ τ ′ where ζ ∈ C(V ′, q′) is the
product of the elements in an orthogonal basis of V ′. As observed above, τ ′ is
orthogonal if m ≡ 0, 1 mod 4 and is symplectic if m ≡ 2, 3 mod 4. On the other
hand, τ ′(ζ) = (−1)mζ, hence (??) shows that τ0 is orthogonal if m ≡ 0, 3 mod 4
and symplectic if m ≡ 1, 2 mod 4.

(8.5) Proposition. The involutions τ and τ0 are hyperbolic if the quadratic space

(V, q) is isotropic.

Proof : If (V, q) is isotropic, it contains a hyperbolic plane; we may thus find in V
vectors x, y such that q(x) = q(y) = 0 and bq(x, y) = 1. Let e = x · y ∈ C0(V, q) ⊂
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C(V, q). The conditions on x and y imply e2 = e and τ(e) = τ0(e) = 1− e, hence
τ and τ0 are hyperbolic, by (??).

8.B. Definition of the Clifford algebra. Let (σ, f) be a quadratic pair on
a central simple algebra A over a field F of arbitrary characteristic. Our goal is
to define an algebra C(A, σ, f) in such a way that for every nonsingular quadratic
space (V, q) (of even dimension if charF = 2),

C
(
EndF (V ), σq , fq

)
' C0(V, q)

where (σq , fq) is the quadratic pair associated to q by (??). The idea behind the
definition below (in (??)) is that EndF (V ) ' V ⊗ V under the standard iden-
tification ϕq of (??); since C0(V, q) is a factor algebra of T (V ⊗ V ), we define
C

(
EndF (V ), σq , fq

)
as a factor algebra of T

(
EndF (V )

)
.

Let A denote A viewed as an F -vector space. We recall the “sandwich” iso-
morphism

Sand: A⊗A ∼−→ EndF (A)

such that Sand(a⊗ b)(x) = axb for a, b, x ∈ A (see (??)). We use this isomorphism
to define a map

σ2 : A⊗A→ A⊗A
as follows: for fixed u ∈ A ⊗ A the map A → A defined by x 7→ Sand(u)

(
σ(x)

)

is linear and therefore of the form Sand
(
σ2(u)

)
for a certain σ2(u) ∈ A. In other

words, the map σ2 is defined by the condition

Sand
(
σ2(u)

)
(x) = Sand(u)

(
σ(x)

)
for u ∈ A⊗A, x ∈ A.

(8.6) Lemma. Let (V, b) be a nonsingular symmetric bilinear space and let σb be

its adjoint involution on EndF (V ). The map σ2 on EndF (V )⊗ EndF (V ) satisfies

σ2

(
ϕb(x1 ⊗ x2)⊗ ϕb(x3 ⊗ x4)

)
= ϕb(x1 ⊗ x3)⊗ ϕb(x2 ⊗ x4)

for x1, x2, x3, x4 ∈ V where ϕb : V ⊗ V ∼−→ EndF (V ) is the standard identification

of (??).

Proof : It suffices to see that, for x1, x2, x3, x4, v, w ∈ V ,

Sand
(
ϕb(x1 ⊗ x3)⊗ ϕb(x2 ⊗ x4)

)(
ϕb(v ⊗ w)

)
=

Sand
(
ϕb(x1 ⊗ x2)⊗ ϕb(x3 ⊗ x4)

)(
ϕb(w ⊗ v)

)
.

This follows from a straightforward computation: the left side equals

ϕb(x1 ⊗ x3) ◦ ϕb(v ⊗ w) ◦ ϕb(x2 ⊗ x4) = ϕb(x1 ⊗ x4)b(x3, v)b(w, x2)

whereas the right side equals

ϕb(x1 ⊗ x2) ◦ ϕb(w ⊗ v) ◦ ϕb(x3 ⊗ x4) = ϕb(x1 ⊗ x4)b(x2, w)b(v, x3).

Let ` ∈ A be such that f(s) = TrdA(`s) for all s ∈ Sym(A, σ). The existence
of such an element ` is proved in (??), where it is also proved that ` is uniquely
determined up to the addition of an element in Alt(A, σ). If `′ = `+ a− σ(a) for
some a ∈ A, then for all u ∈ A⊗A such that σ2(u) = u we have

Sand(u)(`′) = Sand(u)(`) + Sand(u)(a)− Sand(u)
(
σ(a)

)
.
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The last term on the right side is equal to Sand
(
σ2(u)

)
(a) = Sand(u)(a), hence

Sand(u)(`) = Sand(u)(`′).

Therefore, the following definition does not depend on the choice of `:

(8.7) Definition. The Clifford algebra C(A, σ, f) is defined as a factor of the ten-
sor algebra T (A):

C(A, σ, f) =
T (A)

J1(σ, f) + J2(σ, f)

where

(1) J1(σ, f) is the ideal generated by all the elements of the form s − f(s) · 1, for
s ∈ A such that σ(s) = s;
(2) J2(σ, f) is the ideal generated by all the elements of the form u− Sand(u)(`),
for u ∈ A⊗A such that σ2(u) = u and for ` ∈ A as above.

The following proposition shows that the definition above fulfills our aim:

(8.8) Proposition. Let (V, q) be a nonsingular quadratic space (of even dimen-

sion if charF = 2) and let (σq , fq) be the associated quadratic pair. The standard

identification ϕq : V ⊗ V ∼−→ EndF (V ) of (??) induces an identification

ηq : C0(V, q)
∼−→ C

(
EndF (V ), σq , fq

)
.

Proof : It suffices to show that the isomorphism of tensor algebras

T (ϕq) : T (V ⊗ V ) ∼−→ T
(
EndF (V )

)

maps I1(q) to J1(σq , fq) and I2(q) to J2(σq , fq).
The ideal T (ϕq)

(
I1(q)

)
is generated by all the elements of the form

ϕq(v ⊗ v)− q(v) · 1, for v ∈ V .

Since σq corresponds to the switch map on V ⊗ V , the elements s ∈ EndF (V ) such
that σq(s) = s are spanned by elements of the form ϕq(v ⊗ v). Since moreover
q(v) = fq ◦ ϕq(v ⊗ v) by (??), it follows that J1(σq , fq) = T (ϕq)

(
I1(q)

)
.

Similarly, (??) shows that the elements u ∈ EndF (V ) ⊗ EndF (V ) such that

σ2(u) = u are spanned by elements of the form ϕq(x⊗ y) ⊗ ϕq(y ⊗ z) for x, y,
z ∈ V . Therefore, in order to show that J2(σq , fq) = T (ϕq)

(
I2(q)

)
, it suffices to

prove

Sand
(
ϕq(x⊗ y)⊗ ϕq(y ⊗ z)

)
(`) = q(y)ϕq(x⊗ z) for x, y, z ∈ V .(8.9)

If charF 6= 2 we may choose ` = 1
2 , hence

Sand
(
ϕq(x⊗ y)⊗ ϕq(y ⊗ z)

)
(`) = 1

2ϕq(x ⊗ y) ◦ ϕq(y ⊗ z).
The right side can be evaluated by (??):

1
2ϕq(x⊗ y) ◦ ϕq(y ⊗ z) = 1

2bq(y, y)ϕq(x⊗ z) = q(y)ϕq(x⊗ z),
proving (??) when charF 6= 2.

Suppose next charF = 2, hence dimV is even. We may of course assume y 6= 0
in (??). Let dimV = n = 2m and let (e1, . . . , en) be a symplectic basis of V such
that e1 = y. We thus assume

bq(e2i−1, e2i) = 1, bq(e2i, e2i+1) = 0 and bq(ei, ej) = 0 if |i− j| > 1.
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As observed in (??), we may then choose

` = ϕq(
∑m

i=1 e2i−1 ⊗ e2i−1q(e2i) + e2i ⊗ e2iq(e2i−1) + e2i−1 ⊗ e2i).
By (??) we have

Sand
(
ϕq(x ⊗ e1)⊗ ϕq(e1 ⊗ z)

)(
ϕq(e2i−1 ⊗ e2i−1)

)
=

ϕq(x⊗ e1) ◦ ϕq(e2i−1 ⊗ e2i−1) ◦ ϕq(e1 ⊗ z) = 0

for i = 1, . . . , m, and similarly

Sand
(
ϕq(x⊗ e1)⊗ ϕq(e1 ⊗ z)

)(
ϕq(e2i−1 ⊗ e2i)

)
= 0

for i = 1, . . . , m. Moreover,

Sand
(
ϕq(x ⊗ e1)⊗ ϕq(e1 ⊗ z)

)(
ϕq(e2i ⊗ e2i)

)
=

{
ϕq(x⊗ z) for i = 1,

0 for i > 1,

hence

Sand
(
ϕq(x ⊗ e1)⊗ ϕq(e1 ⊗ z)

)
(`) = q(e1)ϕq(x⊗ z).

If charF 6= 2, the quadratic pair (σ, f) is entirely determined by the involution
σ, since f(s) = 1

2 TrdA(s) for all s ∈ Sym(A, σ). We then simply write C(A, σ, f)

for C(A, σ) Since we may choose ` = 1/2, we have Sand(u)(`) = 1
2µ(u) where

µ : A⊗A→ A is the multiplication map: µ(x⊗ y) = xy for x, y ∈ A.

Examples. Clifford algebras of quadratic pairs on nonsplit central simple al-
gebras are not easy to describe explicitly in general. We have the following results
however:

(a) For algebras of degree 2, it readily follows from (??) below that C(A, σ, f)
is the étale quadratic F -algebra determined by the discriminant disc(σ, f).

(b) For the tensor product of two quaternion algebras Q1, Q2 with canonical
involutions γ1, γ2 it is shown in (??) below that

C(Q1 ⊗Q2, γ1 ⊗ γ2) ' Q1 ×Q2.

More generally, Tao [?] has determined (in characteristic different from 2)
up to Brauer-equivalence the components of the Clifford algebra of a tensor
product of two central simple algebras with involution: see the notes at the
end of this chapter.

(c) Combining (??) and (??), one sees that the Clifford algebra of a hyper-
bolic quadratic pair on a central simple algebra A of degree divisible by 4
decomposes into a direct product of two central simple algebras, of which
one is split and the other is Brauer-equivalent to A.

Besides the structure theorem in (??) below, additional general information on
Clifford algebras of quadratic pairs is given in (??).

Structure of Clifford algebras. Although the degree of A is arbitrary in
the discussion above (when charF 6= 2), the case where degA is odd does not
yield anything beyond the even Clifford algebras of quadratic spaces, since central
simple algebras of odd degree with involutions of the first kind are split (see (??)).
Therefore, we shall discuss the structure of Clifford algebras only in the case where
degA = n = 2m.
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(8.10) Theorem. Let (σ, f) be a quadratic pair on a central simple algebra A
of even degree n = 2m over a field F of arbitrary characteristic. The center of

C(A, σ, f) is an étale quadratic F -algebra Z. If Z is a field, then C(A, σ, f) is a

central simple Z-algebra of degree 2m−1; if Z ' F × F , then C(A, σ, f) is a direct

product of two central simple F -algebras of degree 2m−1. Moreover, the center Z is

as follows :

(1) If charF 6= 2, Z ' F [X ]/(X2 − δ) where δ ∈ F× is a representative of the

discriminant : disc(σ, f) = discσ = δ · F×2 ∈ F×/F×2.

(2) If charF = 2, Z ' F [X ]/(X2 +X + δ) where δ ∈ F is a representative of the

discriminant : disc(σ, f) = δ + ℘(F ) ∈ F/℘(F ).

Proof : Let L be a splitting field of A in which F is algebraically closed (for in-
stance the function field of the Severi-Brauer variety of A). There is a nonsingular
quadratic space (V, q) over L such that

(AL, σL, fL) '
(
EndL(V ), σq , fq

)
,

by (??). Moreover, (??) shows that disc(σL, fL) = disc q (in L×/L×2 if charF 6= 2,
in L/℘(L) if charF = 2). If δ ∈ F is a representative of disc(σ, f), we then have

disc q =

{
δ · L×2 if charF 6= 2,

δ + ℘(L) if charF = 2.

It is clear from the definition that the construction of the Clifford algebra commutes
with scalar extension, hence by (??)

C(A, σ, f) ⊗F L = C(AL, σL, fL) ' C0(V, q).

In particular, it follows that the center Z of C(A, σ, f) is a quadratic étale F -
algebra which under scalar extension to L becomes isomorphic to L[X ]/(X2− δ) if
charF 6= 2 and to L[X ]/(X2 +X+ δ) if charF = 2. Since F is algebraically closed
in L, it follows that Z ' F [X ]/(X2− δ) if charF 6= 2 and Z ' F [X ]/(X2 +X + δ)
if charF = 2. The other statements also follow from the structure theorem for even
Clifford algebras of quadratic spaces: see (??).

Alternate methods of obtaining the description of Z proven above are given
in (??) and (??).

The canonical involution. Let σ : T (A) → T (A) be the involution induced
by σ on the tensor algebra T (A); thus, for a1, . . . , ar ∈ A,

σ(a1 ⊗ · · · ⊗ ar) = σ(ar)⊗ · · · ⊗ σ(a1).

Direct computations show that the ideals J1(σ, f) and J2(σ, f) are preserved un-
der σ. Therefore, σ induces an involution on the factor algebra C(A, σ, f) which
we also denote by σ and call the canonical involution of C(A, σ, f).

The following result justifies this definition:

(8.11) Proposition. Let (V, q) be a nonsingular quadratic space (of even dimen-

sion if charF = 2) and let (σq , fq) be the associated quadratic pair on EndF (V ).
Under the standard identification

ηq : C0(V, q)
∼−→ C

(
EndF (V ), σq , fq

)

of (??), the canonical involution τ0 of C0(V, q) corresponds to the involution σq of

C
(
EndF (V ), σq , fq

)
.
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Proof : The canonical involution τ of C(V, q) is induced by the involution of T (V )
which is the identity on V . Therefore, τ0 is induced by the involution of T (V ⊗ V )
which switches the factors in V ⊗V . Under the standard identification of (??), this
involution corresponds to σq .

By extending scalars to a splitting field of A, we may apply the preceding
proposition and (??) to determine the type of the involution σ on C(A, σ, f). As
in (??), we only consider the case of even degree.

(8.12) Proposition. Let (σ, f) be a quadratic pair on a central simple algebra A
of even degree n = 2m over a field F . The canonical involution σ of C(A, σ, f) is

unitary if m is odd, orthogonal if m ≡ 0 mod 4 and charF 6= 2, and symplectic

if m ≡ 2 mod 4 or charF = 2. (In the case where the center of C(A, σ, f) is

isomorphic to F ×F , this means that σ is of orthogonal or symplectic type on each

factor of C(A, σ, f).)

8.C. Lie algebra structures. We continue with the same notation as in the
preceding section; in particular, (σ, f) is a quadratic pair on a central simple alge-
bra A over a field F of arbitrary characteristic and C(A, σ, f) is the corresponding
Clifford algebra.

Since C(A, σ, f) is defined as a quotient of the tensor algebra T (A), the canon-
ical map A→ A→ T (A) yields a canonical map

c : A→ C(A, σ, f)(8.13)

which is F -linear but not injective (nor an algebra homomorphism), since c(s) =
f(s) for all s ∈ Sym(A, σ). In particular, (??) shows that c(1) = 1

2 degA. We will

show that the subspace c(A) ⊂ C(A, σ, f) is a Lie subalgebra of L
(
C(A, σ, f)

)
, and

relate it to the Lie subalgebra Alt(A, σ) ⊂ L(A).

(8.14) Lemma. The kernel of c is ker c = ker f ⊂ Sym(A, σ), and dim c(A) =
n(n−1)

2 + 1 if degA = n. Moreover, for x1, x2 ∈ A we have
[
c(x1), c(x2)

]
= c

([
x1 − σ(x1), x2

])

where [ , ] are the Lie brackets.

Proof : Since c and f have the same restriction to Sym(A, σ), it is clear that
kerf ⊂ ker c. Dimension count shows that this inclusion is an equality if we show

dim c(A) = n(n−1)
2 + 1.

In order to compute the dimension of c(A), we may extend scalars to a splitting
field of A. Therefore, it suffices to consider the case where A is split: let A =
EndF (V ) and (σ, f) = (σq , fq) for some nonsingular quadratic space (V, q) (of even
dimension if charF = 2). Under the standard identifications ϕq : V ⊗ V ∼−→ A
of (??) and ηq : C0(V, q)

∼−→ C(A, σ, f) of (??), the map c : V ⊗ V → C0(V, q) is
given by the multiplication in C(V, q):

c(v ⊗ w) = v · w ∈ C0(V, q) for v, w ∈ V .

Let (e1, . . . , en) be an arbitrary basis of V . The Poincaré-Birkhoff-Witt theorem
(Knus [?, Ch. IV, (1.5.1)]) shows that the elements 1 and ei · ej for i < j are
linearly independent in C0(V, q). Since these elements span c(V ⊗ V ), it follows

that dim c(V ⊗ V ) = n(n−1)
2 + 1, completing the proof of the first part.

In order to prove the last relation, we may also assume that A is split. As
above, we identify A with V ⊗ V by means of ϕq . Since both sides of the relation
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are bilinear in x1, x2, it suffices to prove it for x1 = v1⊗w1 and x2 = v2⊗w2 with
v1, v2, w1, w2 ∈ V . Then

[
x1 − σ(x1), x2

]
= (v1 ⊗ w1 − w1 ⊗ v1) ◦ (v2 ⊗ w2)

− (v2 ⊗ w2) ◦ (v1 ⊗ w1 − w1 ⊗ v1)
= v1 ⊗ w2bq(w1, v2)− w1 ⊗ w2bq(v1, v2)

− v2 ⊗ w1bq(w2, v1) + v2 ⊗ v1bq(w2, w1),

hence

c
(
[x1 − σ(x1), x2]

)
= v1 · w2bq(w1, v2)− w1 · w2bq(v1, v2)

+ v2 · v1bq(w2, w1)− v2 · w1bq(w2, v1).

For u, v ∈ V , we have u · v + v · u = bq(u, v); therefore, the four terms on the right
side of the last equation can be evaluated as follows:

v1 · w2bq(w1, v2) = v1 · w1 · v2 · w2 + v1 · v2 · w1 · w2

w1 · w2bq(v1, v2) = v1 · v2 · w1 · w2 + v2 · v1 · w1 · w2

v2 · v1bq(w2, w1) = v2 · v1 · w1 · w2 + v2 · v1 · w2 · w1

v2 · w1bq(w2, v1) = v2 · v1 · w2 · w1 + v2 · w2 · v1 · w1.

The alternating sum of the right sides is

v1 · w1 · v2 · w2 − v2 · w2 · v1 · w1 =
[
c(x1), c(x2)

]
.

The lemma shows that c(A) is stable under the Lie brackets, and is therefore a
Lie subalgebra of L

(
C(A, σ, f)

)
. Moreover, it shows that if x, y ∈ A are such that

c(x) = c(y), then x− y ∈ Sym(A, σ), hence x−σ(x) = y−σ(y). We may therefore
define a map

δ : c(A)→ Alt(A, σ)

by

δ
(
c(x)

)
= x− σ(x) for x ∈ A.

(8.15) Proposition. The map δ is a Lie-algebra homomorphism which fits into

an exact sequence

0→ F ↪→ c(A)
δ−→ Alt(A, σ) → 0.

Proof : For x, y ∈ A we have
[
c(x), c(y)

]
= c

([
x− σ(x), y

])
by (??), hence

δ
([
c(x), c(y)

])
=

[
x− σ(x), y

]
− σ

([
x− σ(x), y

])
=

[
x− σ(x), y − σ(y)

]
,

proving that δ is a Lie-algebra homomorphism. This map is surjective by definition.
In order to show F ⊂ ker δ, pick an element a ∈ A such that TrdA(a) = 1; we then
have

c
(
a+ σ(a)

)
= f

(
a+ σ(a)

)
= TrdA(a) = 1,

hence

δ(1) = a+ σ(a)− σ
(
a+ σ(a)

)
= 0.

Therefore, F ⊂ ker δ, and dimension count shows that this inclusion is an equality.
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We proceed to define on c(A) another Lie-algebra homomorphism, using the
canonical involution σ on C(A, σ, f).

(8.16) Lemma. For all x ∈ A,

σ
(
c(x)

)
= c

(
σ(x)

)
and c(x) + σ

(
c(x)

)
= TrdA(x).

In particular, Id + σ maps c(A) onto F . Therefore, c(A) ⊂ g
(
C(A, σ, f), σ

)
.

Proof : The first equation is clear from the definition of σ. The second equation
follows, since c

(
x+ σ(x)

)
= f

(
x+ σ(x)

)
.

Let c(A)0 = c(A) ∩ Skew
(
C(A, σ, f), σ

)
. As an intersection of Lie subalgebras,

c(A)0 is a subalgebra of L
(
C(A, σ, f)

)
.

(8.17) Proposition. The map Id + σ : c(A)→ F is a Lie-algebra homomorphism

which fits into an exact sequence

0→ c(A)0 ↪→ c(A)
Id+σ−−−→ F → 0.

In particular, it follows that dim c(A)0 = n(n−1)
2 if degA = n.

Proof : The definition of c(A)0 shows that this set is the kernel of Id + σ. For x,
y ∈ A, we have

[
c(x), c(y)

]
= c

([
x−σ(x), y

])
by (??). The preceding lemma shows

that the image of this under Id + σ is equal to

TrdA
([
x− σ(x), y

])
= 0,

hence Id + σ is a Lie-algebra homomorphism.

Special features of the case where charF 6= 2 are collected in the following
proposition:

(8.18) Proposition. If charF 6= 2, there is a direct sum decomposition

c(A) = F ⊕ c(A)0.

The restriction of δ to c(A)0 is an isomorphism of Lie algebras

δ : c(A)0
∼−→ Alt(A, σ) = Skew(A, σ).

The inverse isomorphism is 1
2c, mapping x ∈ Skew(A, σ) to 1

2c(x).

Proof : The hypothesis that charF 6= 2 ensures that F ∩c(A)0 = {0}, hence c(A) =
F ⊕ c(A)0. For a ∈ Alt(A, σ), we have

σ
(
c(a)

)
= c

(
σ(a)

)
= −c(a)

by (??), hence c(a) ∈ c(A)0. On the other hand, the definition of δ yields

δ
(
c(a)

)
= a− σ(a) = 2a.

Since c(A)0 and Alt(A, σ) have the same dimension, it follows that δ is bijective
and that its inverse is 1

2c.

(8.19) Example. Suppose A = Q1 ⊗ Q2 is a tensor product of two quaternion
algebras over a field F of arbitrary characteristic, and let σ = γ1⊗ γ2 be the tensor
product of the canonical involutions on Q1 and Q2. Since γ1 and γ2 are symplec-
tic, there is a canonical quadratic pair (σ, f⊗) on Q1 ⊗ Q2: see (??). By (??) (if
charF 6= 2) or (??) (if charF = 2), the discriminant of (σ, f⊗) is trivial, hence (??)
shows that C(A, σ, f⊗) = C+ × C− for some quaternion algebras C+, C−. More-
over, the canonical involution σ is symplectic (see (??)), hence it is the quaternion
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conjugation on C+ and C−. We claim that C+ and C− are isomorphic to Q1

and Q2.
Let

(C+ × C−)′ = { (x+, x−) ∈ C+ × C− | TrdC+(x+) = TrdC−(x−) }
= { ξ ∈ C+ × C− | TrdC+×C−(ξ) ∈ F }

and

(Q1 ×Q2)
′ = { (x1, x2) ∈ Q1 ×Q2 | TrdQ1(x1) = TrdQ2(x2) }.

In view of (??), we have c(A) ⊂ (C+×C−)′, hence c(A) = (C+×C−)′ by dimension
count. On the other hand, we may define a linear map Θ: A→ Q1 ×Q2 by

Θ(x1 ⊗ x2) =
(
TrdQ2(x2)x1,TrdQ1(x1)x2

)
for x1 ∈ Q1, x2 ∈ Q2.

Clearly, im Θ ⊂ (Q1 × Q2)
′; the converse inclusion follows from the following ob-

servation: if (x1, x2) ∈ Q1 ×Q2 and TrdQ1(x1) = TrdQ2(x2) = α, we have

(x1, x2) =

{
Θ(α−1x1 ⊗ x2) if α 6= 0,

Θ(x1 ⊗ `2 + `1 ⊗ x2) if α = 0,

where `i ∈ Qi is an element of reduced trace 1 for i = 1, 2. A computation shows
that Θ vanishes on the kernel of the canonical map c : A→ C(A, σ, f⊗) (see (??)),
hence it induces a surjective linear map c(A)→ (Q1 ×Q2)

′ which we call again Θ.
Since c(A) and (Q1 ×Q2)

′ have the same dimension, this map is bijective:

Θ: (C+ × C−)′ = c(A) ∼−→ (Q1 ×Q2)
′.

Using (??), one can check that this bijection is an isomorphism of Lie algebras. To
complete the proof, we show that this isomorphism extends to an isomorphism of
(associative) F -algebras C+ × C− = C(A, σ, f⊗) ∼−→ Q1 × Q2. Since C+ × C− is
generated by the subspace (C+ ×C−)′, the same argument as in the proof of (??)
shows that it suffices to find an isomorphism extending Θ over an extension of F .
We may thus assume that Q1 and Q2 are split and identify Q1 = Q2 = EndF (V ) for
some 2-dimensional F -vector space V . Let b be a nonsingular alternating form on V
(such a form is uniquely determined up to a scalar factor) and let q be the quadratic
form on V ⊗V whose polar bilinear form is b⊗ b and such that q(v⊗w) = 0 for all
v, w ∈ V (see Exercise ?? of Chapter ??). The canonical quadratic pair (γ⊗γ, f⊗)
on A = EndF (V )⊗EndF (V ) = EndF (V ⊗V ) is then associated with the quadratic
form q, hence the standard identification ϕq induces an F -algebra isomorphism

ηq : C0(V ⊗ V, q) ∼−→ C(A, σ, f⊗)

(see (??)). By definition of the canonical map c, we have

c(A) = ηq
(
(V ⊗ V ) · (V ⊗ V )

)
.

On the other hand, the map i : V ⊗ V →M2

(
EndF (V )

)
defined by

i(v ⊗ w) =

(
0 ϕb(v ⊗ w)

−ϕb(w ⊗ v) 0

)
for v, w ∈ V

induces an F -algebra homomorphism i∗ : C(V ⊗ V, q) → M2

(
EndF (V )

)
by the

universal property of Clifford algebras. This homomorphism is injective because
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C(V ⊗V, q) is simple, hence also surjective by dimension count. Under the isomor-
phism i∗, the natural gradation of the Clifford algebra corresponds to the checker-
board grading of M2

(
EndF (V )

)
, hence i∗ induces an F -algebra isomorphism

i∗ : C0(V ⊗ V, q) ∼−→
(

EndF (V ) 0
0 EndF (V )

)
' EndF (V )× EndF (V ).

For v1, v2, w1, w2 ∈ V , we have ϕq
(
(v1⊗w1)⊗(v2⊗w2)

)
= ϕb(v1⊗v2)⊗ϕb(w1⊗w2),

hence

Θ
(
ηq(v1 ⊗ w1 · v2 ⊗ w2)

)
=

=
(
tr

(
ϕb(w1 ⊗ w2)

)
ϕb(v1 ⊗ v2), tr

(
ϕb(v1 ⊗ v2)

)
ϕb(w1 ⊗ w2)

)

=
(
b(w2, w1)ϕb(v1 ⊗ v2), b(v2, v1)ϕb(w1 ⊗ w2)

)
.

On the other hand,

i∗(v1 ⊗ w1 · v2 ⊗ w2) =

=

(
−ϕb(v1 ⊗ w1) ◦ ϕb(w2 ⊗ v2) 0

0 −ϕb(w1 ⊗ v1) ◦ ϕb(v2 ⊗ w2)

)

=

(
−b(w1, w2)ϕb(v1 ⊗ v2) 0

0 −b(v1, v2)ϕb(w1 ⊗ w2)

)
.

Therefore, i∗ and Θ◦ηq have the same restriction to (V ⊗V ) ·(V ⊗V ), and it follows
that the F -algebra isomorphism i∗ ◦ η−1

q : C(A, σ, f⊗) ∼−→ EndF (V ) × EndF (V ) =
Q1 ×Q2 extends Θ. This completes the proof of the claim.

In conclusion, we have shown:

C(Q1 ⊗Q2, γ1 ⊗ γ2, f⊗) ' Q1 ×Q2.

A more general statement is proved in (??) below.

8.D. The center of the Clifford algebra. The center of the Clifford algebra
C(A, σ, f) of a central simple algebra A with a quadratic pair (σ, f) is described
in (??) as an étale quadratic F -algebra. In this section, we show how elements of
the center can be produced explicitly, thus providing another proof of the second
part of (??).

We set Z(A, σ, f) for the center of C(A, σ, f). If charF 6= 2, the map f is
uniquely determined by σ and we use the shorter notation C(A, σ) for the Clifford
algebra and Z(A, σ) for its center.

As may expected from (??), our methods in characteristic 2 and characteristic
not 2 are completely different. In characteristic different from 2 they rely on an
analogue of the pfaffian, viewed as a map from Skew(A, σ) to Z(A, σ). The case
of characteristic 2 is simpler; it turns out then that Z(A, σ, f) is in the image c(A)
of A in C(A, σ, f) under the canonical map of §??.

Characteristic not 2. Our first result yields a standard form for certain skew-
symmetric elements in split algebras with orthogonal involution.

(8.20) Lemma. Let (V, q) be a nonsingular quadratic space of dimension n = 2m
over a field F of characteristic different from 2 and let a ∈ EndF (V ) satisfy σq(a) =
−a. Assume moreover that the characteristic polynomial of a splits into pairwise

distinct linear factors :

Pca(X) = (X − λ1)(X + λ1) · · · (X − λm)(X + λm)
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for some λ1, . . . , λm ∈ F×. There exists an orthogonal basis (e1, . . . , en) of V such

that the matrix representing a with respect to this basis is



Λ1 0
. . .

0 Λm


 where Λi =

(
0 λi
λi 0

)

Letting αi = q(ei) for i = 1, . . . , n, we have α2i = −α2i−1 for i = 1, . . . , m.

Moreover, with ϕq : V ⊗ V ∼−→ EndF (V ) the standard identification (??), we have

a =

m∑

i=1

λi
2α2i

ϕq(e2i−1 ⊗ e2i − e2i ⊗ e2i−1).

Proof : For i = 1, . . . , m, let Vi ⊂ V be the sum of the eigenspaces of a for
the eigenvalues λi and −λi. The subspace Vi is thus the eigenspace of a2 for the
eigenvalue λ2

i . We have

V = V1 ⊕ · · · ⊕ Vm
and the subspaces V1, . . . , Vm are pairwise orthogonal since, for x ∈ Vi and y ∈ Vj ,

λ2
i bq(x, y) = bq

(
a2(x), y

)
= bq

(
x, a2(y)

)
= λ2

jbq(x, y),

and λ2
i 6= λ2

j for i 6= j. It follows that the subspaces V1, . . . , Vm are nonsingular.

For i = 1, . . . , m, pick an anisotropic vector e2i−1 ∈ Vi and let e2i = λ−1
i a(e2i−1).

Since σq(a) = −a, we have

bq(e2i−1, e2i) = λ−1
i bq

(
e2i−1, a(e2i−1)

)

= −λ−1
i bq

(
a(e2i−1), e2i−1

)
= −bq(e2i, e2i−1),

hence (e2i−1, e2i) is an orthogonal basis of Vi. It follows that (e1, . . . , en) is an
orthogonal basis of V , and the matrix of a with respect to this basis is as stated
above.

The equation a(e2i−1) = λie2i yields

bq
(
a(e2i−1), a(e2i−1)

)
= λ2

i bq(e2i, e2i) = 2λ2
i q(e2i).

On the other hand, since σq(a) = −a and a2(e2i−1) = λ2
i e2i−1, the left side is also

equal to

bq
(
e2i−1,−a2(e2i−1)

)
= −λ2

i bq(e2i−1, e2i−1) = −2λ2
i q(e2i−1),

hence q(e2i) = −q(e2i−1). Finally, for i, j = 1, . . . , m we have

ϕq(e2i−1 ⊗ e2i − e2i ⊗ e2i−1)(e2j−1) =

{
−2q(e2i−1)e2i if i = j,

0 if i 6= j,

and

ϕq(e2i−1 ⊗ e2i − e2i ⊗ e2i−1)(e2j) =

{
2q(e2i)e2i−1 if i = j,

0 if i 6= j.

The last equation in the statement of the lemma follows.

Let (A, σ) be a central simple algebra with orthogonal involution over a field F
of characteristic different from 2. We assume throughout this subsection that the
degree of A is even and let degA = n = 2m. Our first observations also require
the field F to be infinite. Under this hypothesis, we denote by S(A, σ) the set of
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skew-symmetric units in A× whose reduced characteristic polynomials are separable
(i.e., have no repeated root in an algebraic closure). This set is Zariski-open in
Skew(A, σ), since it is defined by the condition that the discriminant of the reduced
characteristic polynomial does not vanish. By scalar extension to a splitting field L
such that (AL, σL) '

(
Mn(L), t

)
, we can see that this open set is not empty, since

S
(
Mn(L), t

)
6= ∅.

Over an algebraic closure, the reduced characteristic polynomial of every a ∈
S(A, σ) splits into a product of pairwise distinct linear factors of the form

Prda(X) = (X − λ1)(X + λ1) · · · (X − λm)(X + λm)

since σ(a) = −a. Therefore, the subalgebra F [a] ⊂ A generated by a has dimen-
sion n and F [a2] = F [a]∩Sym(A, σ) has dimension m. Clearly, F [a]∩Skew(A, σ) =
a · F [a2].

(8.21) Lemma. Let a ∈ S(A, σ). Denote H = F [a] ∩ Skew(A, σ) = a · F [a2] and

E = F [a2]. The bilinear form T : H ×H → F defined by

T (x, y) = TE/F (xy) for x, y ∈ H
is nonsingular. Moreover, the elements in the image c(H) of H in C(A, σ) under

the canonical map c : A→ C(A, σ) commute.

Proof : It suffices to check the lemma over a scalar extension. We may therefore
assume that A and the reduced characteristic polynomial of a are split12. We
identify (A, σ) =

(
EndF (V ), σq

)
for some nonsingular quadratic space (V, q) of

dimension n. By (??), there is an orthogonal basis (e1, . . . , en) of V such that,
letting q(ei) = αi ∈ F×,

a =

m∑

i=1

λi
2α2i

ϕq(e2i−1 ⊗ e2i − e2i ⊗ e2i−1)

(and α2i−1 = −α2i for i = 1, . . . , m). For i = 1, . . . , m, let

hi =
1

2α2i
ϕq(e2i−1 ⊗ e2i − e2i ⊗ e2i−1) ∈ A.

By using the matrix representation with respect to the basis (e1, . . . , en), it is easily
seen that every skew-symmetric element in A which commutes with a is a linear
combination of h1, . . . , hm. In particular, H is contained in the span of h1, . . . , hm.
Since dimH = dimF [a2] = m, it follows that (h1, . . . , hm) is a basis of H .

With the same matrix representation, it is easy to check that h2
1, . . . , h2

m are
primitive orthogonal idempotents in E which form a basis of E and that hihj = 0
for i 6= j. Therefore, the bilinear form T satisfies

T (
∑m
i=1 xihi,

∑m
j=1 yjhj) =

∑m
i=1 xiyi

for x1, . . . , xm, y1, . . . , ym ∈ F . It is therefore nonsingular.
Consider now the subspace c(H) of C(A, σ) spanned by c(h1), . . . , c(hm). For

i = 1, . . . , m we have

c(hi) =
1

2α2i
(e2i−1 · e2i − e2i · e2i−1) =

1

α2i
e2i−1 · e2i.

These elements commute, since (e1, . . . , en) is an orthogonal basis of V .

12In fact, the algebra A splits as soon as the reduced characteristic polynomial of a splits.
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Since the bilinear form T on H is nonsingular, every linear form on H is of the
type x 7→ TE/F (hx) for some h ∈ H . Therefore, every homogeneous polynomial
map P : H → F of degree d has the form

P (x) =
∑

i TE/F (hi1x) · · ·TE/F (hidx)

for some hi1, . . . , hid ∈ H , and in the d-th symmetric power SdH the element∑
i hi1 · · ·hid is uniquely determined by P . In particular, there is a uniquely deter-

mined element ν =
∑

i hi1 · · ·him ∈ SmH such that

NE/F (ax) =
∑

i TE/F (hi1x) · · ·TE/F (himx) for x ∈ H ,

since the map x 7→ NE/F (ax) is a homogeneous polynomial map of degree m on H .
Since the elements in c(H) commute, the canonical map c induces a well-defined

linear map SmH → C(A, σ). We set π(a) for the image under this induced map of
the element ν ∈ SmH defined above.

In summary, the element π(a) ∈ C(A, σ) is defined as follows:

(8.22) Definition. For a ∈ S(A, σ), we let

π(a) =
∑

i c(hi1) · · · c(him)

where hi1, . . . , him ∈ H = a · F [a2] satisfy

NF [a2]/F (ax) =
∑
i TF [a2]/F (hi1x) · · · TF [a2]/F (himx)

for all x ∈ a · F [a2].

(8.23) Lemma. Let ι be the nontrivial automorphism of the center Z(A, σ) of

C(A, σ). For a ∈ S(A, σ) we have π(a) ∈ Z(A, σ), ι
(
π(a)

)
= −π(a) and

π(a)2 = (−1)m NrdA(a).

Proof : It suffices to verify the assertions over a scalar extension. We may thus
assume that A and the reduced characteristic polynomial of a are split, and use the
same notation as in (??). In particular, we let (A, σ) =

(
EndF (V ), σq

)
and choose

an orthogonal basis (e1, . . . , em) of V such that

a =
∑m
i=1 λihi where hi =

1

2α2i
ϕq(e2i−1 ⊗ e2i − e2i ⊗ e2i−1).

As observed in (??), the elements h1, . . . , hm form a basis of H . For x =
∑m
i=1 xihi,

we have

NF [a2]/F (ax) = NF [a2]/F (
∑m

i=1 λixih
2
i ) = λ1 · · ·λmx1 · · ·xm.

On the other hand, TF [a2]/F (hix) = xi, hence ν = h1 . . . hm and

π(a) = λ1 · · ·λmc(h1) · · · c(hm).

It was also seen in (??) that c(hi) = 1
α2i
e2i−1 · e2i where α2i = q(e2i) = −q(e2i−1),

hence

π(a) =
λ1 · · ·λm∏m
i=1 α2i

e1 · · · en.

It is then clear that π(a) ∈ Z(A, σ) and ι
(
π(a)

)
= −π(a).

Since (e1 · · · en)2 = (−1)me21 · · · e2n =
∏m
i=1 α

2
2i and NrdA(a) = (−1)mλ2

1 · · ·λ2
m,

the last equation in the statement of the proposition follows.
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To extend the definition of π to the whole of Skew(A, σ), including also the
case where the base field F is finite (of characteristic different from 2), we adjoin
indeterminates to F and apply π to a generic skew-symmetric element.

Pick a basis (a1, . . . , ad) of Skew(A, σ) where d = m(n− 1) = dim Skew(A, σ),

and let ξ =
∑d
i=1 aixi where x1, . . . , xd are indeterminates over F . We have

ξ ∈ S
(
AF (x1,...,xd), σF (x1,...,xd)

)
and

π(ξ) ∈ Z(AF (x1,...,xd), σF (x1,...,xd)) = Z(A, σ)⊗F F (x1, . . . , xd).

Since π(ξ)2 = Nrd(ξ) is a polynomial in x1, . . . , xd, we have in fact

π(ξ) ∈ Z(A, σ) ⊗ F [x1, . . . , xd].

We may then define π(a) for all a ∈ Skew(A, σ) by specializing the indeterminates.
We call the map π : Skew(A, σ)→ Z(A, σ) thus defined the generalized pfaffian of
(A, σ) in view of Example (??) below.

(8.24) Proposition. The map π : Skew(A, σ) → Z(A, σ) is a homogeneous poly-

nomial map of degree m. Denoting by ι the nontrivial automorphism of Z(A, σ)
over F , we have

ι
(
π(a)

)
= −π(a) and π(a)2 = (−1)mNrdA(a)

for all a ∈ Skew(A, σ). Moreover, for all x ∈ A, a ∈ Skew(A, σ),

π
(
xaσ(x)

)
= NrdA(x)π(a).

Proof : For the generic element ξ we have by (??)

ι
(
π(ξ)

)
= −π(ξ) and π(ξ)2 = (−1)mNrd(ξ).

The same formulas follow for all a ∈ Skew(A, σ) by specialization. Since the reduced
norm is a homogeneous polynomial map of degree n, the second formula shows that
π is a homogeneous polynomial map of degree m. It also shows that an element
a ∈ Skew(A, σ) is invertible if and only if π(a) 6= 0.

In order to prove the last property, fix some element a ∈ Skew(A, σ). If a is
not invertible, then π(a) = π

(
xaσ(x)

)
= 0 for all x ∈ A and the property is clear.

Suppose a ∈ A×. Since the F -vector space of elements z ∈ Z(A, σ) such that
ι(z) = −z has dimension 1, we have for all x ∈ A

π
(
xaσ(x)

)
= P (x)π(a) for some P (x) ∈ F .

The map P : A→ F is polynomial and satisfies

P (x)2 =
π
(
xaσ(x)

)2

π(a)2
=

Nrd
(
xaσ(x)

)

Nrd(a)
= Nrd(x)2.

By adjoining indeterminates to F if necessary, we may assume F is infinite. The
algebra of polynomial maps on A is then a domain, hence the preceding equation
yields the alternative: P (x) = Nrd(x) for all x or P (x) = −Nrd(x) for all x. Since
P (1) = 1, we have P (x) = Nrd(x) for all x ∈ A.

Using the map π, we may give an alternate proof of (??) and of part of (??):

(8.25) Corollary. For all a, b ∈ Skew(A, σ) ∩A×,

NrdA(a) ≡ NrdA(b) mod F×2

and Z(A, σ) ' F [X ]/
(
X2 − (−1)m NrdA(a)

)
.
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Proof : Since the F -vector space of elements z ∈ Z(A, σ) such that ι(z) = −z is 1-
dimensional, we have π(a) ≡ π(b) mod F×. By squaring both sides we obtain the
first equation. The second equation follows from the fact that Z(A, σ) = F

[
π(a)

]
.

(8.26) Example. In the case where A is split, the map π can be described ex-
plicitly in terms of the pfaffian. Let (V, q) be a nonsingular quadratic space of
dimension n = 2m over F . For (A, σ) =

(
EndF (V ), σq

)
, we identify A = V ⊗ V as

in (??) and C(A, σ) = C0(V, q) as in (??). Let (e1, . . . , en) be an orthogonal basis
of V . The elements 1

2 (ei⊗ej−ej⊗ei) for 1 ≤ i < j ≤ n form a basis of Skew(A, σ).

For a =
∑
i<j

aij

2 (ei ⊗ ej − ej ⊗ ei) ∈ Skew(A, σ), define a skew-symmetric matrix

a′ = (a′ij) ∈Mn(F ) by

a′ij =





aij if i < j,

0 if i = j

−aji if i > j.

Claim. The element π(a) ∈ Z(A, σ) is related to the pfaffian pf(a′) as follows:

π(a) = pf(a′)e1 · · · en.

Proof : A computation shows that the matrix representing a with respect to the
basis (e1, . . . , en) is a′ · d where

d =



q(e1) 0

. . .

0 q(en)




Since det a′ = pf(a′)2, it follows that

det a = pf(a′)2q(e1) · · · q(en) = (−1)m
(
pf(a′)e1 · · · en

)2
.

Therefore, π(a) = ± pf(a′)e1 · · · en, since both sides are polynomial maps of de-
gree m whose squares are equal. To prove that the equality holds with the + sign,
it suffices to evaluate both sides on a particular unit in Skew(A, σ). Adjoin inde-
terminates z1, . . . , zm to F and consider

ζ =

m∑

i=1

zi
2

(e2i−1 ⊗ e2i − e2i ⊗ e2i−1) ∈ Skew
(
AF (z1,...,zm), σF (z1,...,zm)

)
.

The same computation as in (??) shows that

π(ζ) = z1 · · · zme1 · · · en.
By setting z1 = · · · = zm = 1, we get for a =

∑m
i=1

1
2 (e2i−1 ⊗ e2i − e2i ⊗ e2i−1):

π(a) = e1 · · · en.
On the other hand, the corresponding matrix a′ is

a′ =



J 0

. . .

0 J


 where J =

(
0 1
−1 0

)
,

hence pf(a′) = 1.
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Characteristic 2. Let (σ, f) be a quadratic pair on a central simple algebra A
over a field F of characteristic 2. We write Z(A, σ, f) for the center of the Clifford
algebra C(A, σ, f) and by ι the nontrivial automorphism of Z(A, σ, f) over F .

Consider the set

Λ = { ` ∈ A | f(s) = TrdA(`s) for s ∈ Sym(A, σ) }.

By (??), this set is nonempty; it is a coset of Alt(A, σ).
The following proposition shows that the canonical map c : A → C(A, σ, f),

restricted to Λ, plays a rôle analogous to the map π in characteristic different
from 2.

(8.27) Proposition. Let degA = n = 2m. For all ` ∈ Λ, we have c(`) ∈
Z(A, σ, f), ι

(
c(`)

)
= c(`) + 1 and

c(`)2 + c(`) = SrdA(`) + m(m−1)
2 .

Proof : It suffices to check the equations above after a scalar extension. We may
therefore assume that A is split. Moreover, it suffices to consider a particular choice
of `; indeed, if `0, ` ∈ Λ, then ` = `0 + x+ σ(x) for some x ∈ A, hence

c(`) = c(`0) + c
(
x+ σ(x)

)
.

Since c and f have the same restriction to Sym(A, σ), the last term on the right
side is f

(
x+ σ(x)

)
= TrdA(x), hence

c(`) = c(`0) + TrdA(x).

Therefore, we have c(`) ∈ Z(A, σ, f) and ι
(
c(`)

)
= c(`)+1 if and only if c(`0) satis-

fies the same conditions. Moreover, (??) yields SrdA(`) = SrdA(`0) + ℘
(
TrdA(x)

)
,

hence ℘
(
c(`)

)
= SrdA(`) + m(m−1)

2 if and only if the same equation holds for `0.
We may thus assume A = EndF (V ) and (σ, f) = (σq , fq) for some nonsingular

quadratic space (V, q), and consider only the case of

`0 = ϕq(
∑m

i=1 e2i−1 ⊗ e2i−1q(e2i) + e2i ⊗ e2iq(e2i−1) + e2i−1 ⊗ e2i)

where (e1, . . . , en) is a symplectic basis of V for the polar form bq :

bq(e2i−1, e2i) = 1, bq(e2i, e2i+1) = 0 and bq(ei, ej) = 0 if |i− j| > 1.

Using the standard identification C(A, σ, f) = C0(V, q) of (??), we then have

c(`0) =
∑m

i=1

(
e22i−1q(e2i) + e22iq(e2i−1) + e2i−1 · e2i

)
=

∑m
i=1 e2i−1 · e2i

and the required equations follow by computation (compare with (??)).

(8.28) Corollary. For any ` ∈ Λ,

Z(A, σ, f) ' F [X ]/
(
X2 +X + SrdA(`) + m(m−1)

2

)
.

Proof : The proposition above shows that Z(A, σ, f) = F
[
c(`)

]
and c(`)2 + c(`) +

SrdA(`) + m(m−1)
2 = 0.
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8.E. The Clifford algebra of a hyperbolic quadratic pair. Let (σ, f) be
a hyperbolic quadratic pair on a central simple algebra A over an arbitrary field F
and let degA = n = 2m. By (??), the discriminant of (σ, f) is trivial, hence (??)
shows that the Clifford algebra C(A, σ, f) decomposes as a direct product of two
central simple algebras of degree 2m−1:

C(A, σ, f) = C+(A, σ, f) × C−(A, σ, f).

Our aim is to show that one of the factors C±(A, σ, f) is split if m is even.
We start with some observations on isotropic ideals in a central simple algebra

with an arbitrary quadratic pair: suppose I ⊂ A is a right ideal of even reduced
dimension rdim I = r = 2s with respect to a quadratic pair (σ, f). Consider the
image c

(
Iσ(I)

)
⊂ C(A, σ, f) of Iσ(I) under the canonical map c : A → C(A, σ, f)

and let

ρ(I) = c
(
Iσ(I)

)s
=

{ ∑
x1 · · ·xs

∣∣ x1, . . . , xs ∈ c
(
Iσ(I)

) }
.

(8.29) Lemma. The elements in c
(
Iσ(I)

)
commute. The F -vector space ρ(I) ⊂

C(A, σ, f) is 1-dimensional; it satisfies σ
(
ρ(I)

)
· ρ(I) = {0} and

dimF ρ(I) · C(A, σ, f) = dimF C(A, σ, f) · ρ(I) = 2n−r−1.

Proof : It suffices to check the lemma over a scalar extension. We may therefore
assume that A is split and identify A = EndF (V ), C(A, σ, f) = C0(V, q) for some
nonsingular quadratic space (V, q) of dimension n, by (??). The ideal I then has the
form I = HomF (V, U) for some m-dimensional totally isotropic subspace U ⊂ V .
Let (u1, . . . , ur) be a basis of U . Under the identification A = V ⊗ V described
in (??), the vector space Iσ(I) is spanned by the elements ui ⊗ uj for i, j = 1,
. . . , r, hence c

(
Iσ(I)

)
is spanned by the elements ui · uj in C0(V, q). Since U is

totally isotropic, we have u2
i = 0 and ui ·uj+uj ·ui = 0 for all i, j = 1, . . . , r, hence

the elements ui · uj commute. Moreover, the space ρ(I) is spanned by u1 · · ·ur.
The dimensions of ρ(I) ·C0(V, q) and C0(V, q) · ρ(I) are then easily computed, and
since σ(u1 · · ·ur) = ur · · ·u1 we have σ(x)x = 0 for all x ∈ ρ(I).

(8.30) Corollary. Let degA = n = 2m and suppose the center Z = Z(A, σ, f) of

C(A, σ, f) is a field. For any even integer r, the relation r ∈ ind(A, σ, f) implies

2m−r−1 ∈ ind
(
C(A, σ, f), σ

)
.

Proof : If r is an even integer in ind(A, σ, f), then A contains an isotropic right
ideal I of even reduced dimension r. The lemma shows that ρ(I) · C(A, σ, f) is an
isotropic ideal for the involution σ. Its reduced dimension is

dimZ ρ(I) · C(A, σ, f)

degC(A, σ, f)
=

1
2 dimF ρ(I) · C(A, σ, f)

2m−1
= 2m−r−1.

We next turn to the case of hyperbolic quadratic pairs:

(8.31) Proposition. Let (σ, f) be a hyperbolic quadratic pair on a central simple

algebra A of degree 2m over an arbitrary field F . If m is even, then one of the

factors C±(A, σ, f) of the Clifford algebra C(A, σ, f) is split.
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Proof : Let I ⊂ A be a right ideal of reduced dimension m which is isotropic with
respect to (σ, f), and consider the 1-dimensional vector space ρ(I) ⊂ C(A, σ, f)
defined above. Multiplication on the left defines an F -algebra homomorphism

λ : C(A, σ, f)→ EndF
(
C(A, σ, f) · ρ(I)

)
.

Dimension count shows that this homomorphism is not injective, hence the kernel
is one of the nontrivial ideals C+(A, σ, f) × {0} or {0} × C−(A, σ, f). Assuming
for instance kerλ = C+(A, σ, f) × {0}, the homomorphism λ factors through an
injective F -algebra homomorphism C−(A, σ, f) → EndF

(
C(A, σ, f) · ρ(I)

)
. This

homomorphism is surjective by dimension count.

§9. The Clifford Bimodule

Although the odd part C1(V, q) of the Clifford algebra of a quadratic space (V, q)
is not invariant under similarities, it turns out that the tensor product V ⊗C1(V, q)
is invariant, and therefore an analogue can be defined for a central simple algebra
with quadratic pair (A, σ, f). The aim of this section is to define such an analogue.
This construction will be used at the end of this section to obtain fundamental
relations between the Clifford algebra C(A, σ, f) and the algebra A (see (??)); it
will also be an indispensable tool in the definition of spin groups in the next chapter.

We first review the basic properties of the vector space V ⊗ C1(V, q) that we
want to generalize.

9.A. The split case. Let (V, q) be a quadratic space over a field F (of arbi-
trary characteristic). Let C1(V, q) be the odd part of the Clifford algebra C(V, q).
Multiplication in C(V, q) endows C1(V, q) with a C0(V, q)-bimodule structure. Since
V is in a natural way a left End(V )-module, the tensor product V ⊗ C1(V, q) is
at the same time a left End(V )-module and a C0(V, q)-bimodule: for f ∈ End(V ),
v ∈ V , c0 ∈ C0(V, q) and c1 ∈ C1(V, q) we set

f · (v ⊗ c1) = f(v)⊗ c1, c0 ∗ (v ⊗ c1) = v ⊗ c0c1, (v ⊗ c1) · c0 = v ⊗ c1c0.
These various actions clearly commute.

We summarize the basic properties of V ⊗C1(V, q) in the following proposition:

(9.1) Proposition. Let dim V = n.

(1) The vector space V ⊗C1(V, q) carries natural structures of left End(V )-module

and C0(V, q)-bimodule, and the various actions commute.

(2) The standard identification End(V ) = V ⊗ V induced by the quadratic form q
(see (??)) and the embedding V ↪→ C1(V, q) define a canonical map

b : End(V )→ V ⊗ C1(V, q)

which is an injective homomorphism of left End(V )-modules.

(3) dimF

(
V ⊗ C1(V, q)

)
= 2n−1n.

The proof follows by straightforward verification.
Until the end of this subsection we assume that the dimension of V is even:

dimV = n = 2m. This is the main case of interest for generalization to central
simple algebras with involution, since central simple algebras of odd degree with
involution of the first kind are split (see (??)). Since dimV is even, the center of
C0(V, q) is an étale quadratic F -algebra which we denote Z. Let ι be the nontrivial
automorphism of Z/F . In the Clifford algebra C(V, q) we have

v · ζ = ι(ζ) · v for v ∈ V , ζ ∈ Z,
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hence

ι(ζ) ∗ (v ⊗ c1) = (v ⊗ c1) · ζ for v ∈ V , c1 ∈ C1(V, q), ζ ∈ Z.(9.2)

In view of this equation, we may consider V ⊗ C1(V, q) as a right module over the
Z-algebra ιC0(V, q)

op ⊗Z C0(V, q): for v ∈ V , c1 ∈ C1(V, q) and c0, c
′
0 ∈ C0(V, q)

we set

(v ⊗ c1) · (ιcop0 ⊗ c′0) = c0 ∗ (v ⊗ c1) · c′0 = v ⊗ c0c1c′0.
On the other hand V ⊗C1(V, q) also is a left module over End(V ); since the actions
of End(V ) and C0(V,Q) commute, there is a natural homomorphism of F -algebras:

ν : ιC0(V, q)
op ⊗Z C0(V, q)→ EndEnd(V )

(
V ⊗ C1(V, q)

)
= EndF

(
C1(V, q)

)
.

This homomorphism is easily seen to be injective: this is obvious if Z is a field,
because then the tensor product on the left is a simple algebra. If Z ' F × F ,
the only nontrivial ideals in the tensor product are generated by elements in Z.
However the restriction of ν to Z is injective, since the condition v · ζ = 0 for all
v ∈ V implies ζ = 0. Therefore, ν is injective.

The image of ν is determined as follows: through ν, the center Z of C0(V, q) acts
on V ⊗ C1(V, q) by End(V )-linear homomorphisms; the set V ⊗ C1(V, q) therefore
has a structure of left End(V ) ⊗ Z-module (where the action of Z is through the
right action of C0(V, q)): for f ∈ End(V ), ζ ∈ Z, v ∈ V and c1 ∈ C1(V, q),

(f ⊗ ζ) · (v ⊗ c1) = f(v)⊗ c1ζ.
The map ν may then be considered as an isomorphism of Z-algebras:

ν : ιC0(V, q)
op ⊗Z C0(V, q)

∼−→ EndEnd(V )⊗Z
(
V ⊗ C1(V, q)

)
= EndZ

(
C1(V, q)

)
.

Equivalently, ν identifies ιC0(V, q)
op⊗Z C0(V, q) with the centralizer of Z (= ν(Z))

in EndEnd(V )

(
V ⊗ C1(V, q)

)
.

9.B. Definition of the Clifford bimodule. In order to define an analogue
of V ⊗ C1(V, q) for a central simple algebra with quadratic pair (A, σ, f), we first
define a canonical representation of the symmetric group S2n on A⊗n.

Representation of the symmetric group. As in §??, we write A for the
underlying vector space of the F -algebra A. For any integer n ≥ 2, we define a
generalized sandwich map

Sandn : A⊗n → HomF (A⊗n−1, A)

by the condition:

Sandn(a1 ⊗ · · · ⊗ an)(b1 ⊗ · · · ⊗ bn−1) = a1b1a2b2 · · · bn−1an.

(Thus, Sand2 is the map denoted simply Sand in §??).

(9.3) Lemma. For any central simple F -algebra A, the map Sandn is an isomor-

phism of vector spaces.

Proof : Since it suffices to prove Sandn is an isomorphism after scalar extension, we
may assume that A = Mn(F ). It suffices to prove injectivity of Sandn, since A⊗n

and HomF (A⊗n−1, A) have the same dimension. Let eij (i, j = 1, . . . , n) be the

matrix units of Mn(F ). Take any nonzero α ∈ A⊗n and write

α =

n∑

i1=1

n∑

j1=1

· · ·
n∑

in=1

n∑

jn=1

ci1j1...injnei1j1 ⊗ · · · ⊗ einjn
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with the ci1j1...injn ∈ F . Some coefficient of α, say cp1q1...pnqn is nonzero. Then,

Sandn(α)(eq1p2 ⊗ eq2p3 ⊗ · · · ⊗ eqipi+1 ⊗ · · · ⊗ eqn−1pn) =
n∑

i1=1

n∑

jn=1

ci1q1p2q2...pnjnei1jn

which is not zero, since its p1qn-entry is not zero.

(9.4) Proposition. Let (A, σ) be a central simple F -algebra with involution of the

first kind. If charF 6= 2, suppose further that σ is orthogonal. For all n ≥ 1 there is

a canonical representation ρn : S2n → GL(A⊗n) of the symmetric group S2n which

is described in the split case as follows : for every nonsingular symmetric bilinear

space (V, b) and v1, . . . , v2n ∈ V ,

ρn(π)
(
ϕb(v1 ⊗ v2)⊗ · · · ⊗ ϕb(v2n−1 ⊗ v2n)

)
=

ϕb
(
vπ−1(1) ⊗ vπ−1(2)

)
⊗ · · · ⊗ ϕb(vπ−1(2n−1) ⊗ vπ−1(2n))

for all π ∈ S2n where ϕb : V ⊗ V ∼−→ EndF (V ) is the standard identification (??).

Proof : We first define the image of the transpositions τ(i) = (i, i + 1) for i = 1,
. . . , 2n− 1.

If i is odd, i = 2`− 1, let

ρn
(
τ(i)

)
= IdA ⊗ · · · ⊗ IdA ⊗ σ ⊗ IdA ⊗ · · · ⊗ IdA,

where σ lies in `-th position. In the split case, σ corresponds to the twist under the
standard identification A = V ⊗ V ; therefore,

ρn
(
τ(2`− 1)

)
(v1 ⊗ · · · ⊗ v2`−1 ⊗ v2` ⊗ · · · ⊗ v2n) =

v1 ⊗ · · · ⊗ v2` ⊗ v2`−1 ⊗ · · · ⊗ v2n.

If i is even, i = 2`, we define ρn
(
τ(i)

)
by the condition:

Sandn
(
ρn

(
τ(i)

)
(u)

)
(x) = Sandn(u)

(
IdA ⊗ · · · ⊗ IdA ⊗ σ ⊗ IdA ⊗ · · · ⊗ IdA(x)

)

for u ∈ A×n and x ∈ A×n−1 where σ lies in `-th position. The same computation
as in (??) shows that ρn

(
τ(2`)

)
satisfies the required condition in the split case.

In order to define ρn(π) for arbitrary π ∈ S2n, we use the fact that τ(1), . . . ,
τ(2n− 1) generate S2n: we fix some factorization

π = τ1 ◦ · · · ◦ τs where τ1, . . . , τs ∈ {τ(1), . . . , τ(2n− 1)}
and define ρn(π) = ρn(τ1) ◦ · · · ◦ ρn(τs). The map ρn(π) thus defined meets the
requirement in the split case, hence ρn is a homomorphism in the split case. By
extending scalars to a splitting field, we see that ρn also is a homomorphism in the
general case. Therefore, the definition of ρn(π) does not actually depend on the
factorization of π.

The definition. Let (σ, f) be a quadratic pair on a central simple F -algebraA.
For all n ≥ 1, let γn = ρn

(
(1, 2, . . . , 2n)−1

)
∈ GL(A⊗n) where ρn is as in (??),

and let γ = ⊕γn : T (A)→ T (A) be the induced linear map. Thus, in the split case
(A, σ, f) =

(
EndF (V ), σq , fq

)
, we have, under the standard identification A = V ⊗V

of (??):

γ(v1 ⊗ · · · ⊗ v2n) = γn(v1 ⊗ · · · ⊗ v2n) = v2 ⊗ · · · ⊗ v2n ⊗ v1
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for v1, . . . , v2n ∈ V .
Let also T+(A) = ⊕n≥1A

⊗n. The vector space T+(A) carries a natural structure
of left and right module over the tensor algebra T (A). We define a new left module
structure ∗ as follows: for u ∈ T (A) and v ∈ T+(A) we set

u ∗ v = γ−1
(
u⊗ γ(v)

)
.

Thus, in the split case A = V ⊗ V , the product ∗ avoids the first factor:

(u1 ⊗ · · · ⊗ u2i) ∗ (v1 ⊗ · · · ⊗ v2j) = v1 ⊗ u1 ⊗ · · · ⊗ u2i ⊗ v2 ⊗ · · · ⊗ v2j
for u1, . . . , u2i, v1, . . . , v2j ∈ V . (Compare with the definition of ∗ in §??).

(9.5) Definition. The Clifford bimodule of (A, σ, f) is defined as

B(A, σ, f) =
T+(A)[

J1(σ, f) ∗ T+(A)
]
+

[
T+(A) · J1(σ, f)

]

where J1(σ, f) is the two-sided ideal of T (A) which appears in the definition of the
Clifford algebra C(A, σ, f) (see (??)).

The map a ∈ A 7→ a ∈ T+(A) induces a canonical F -linear map

b : A→ B(A, σ, f).(9.6)

(9.7) Theorem. Let (A, σ, f) be a central simple F -algebra with a quadratic pair.

(1) The F -vector space B(A, σ, f) carries a natural C(A, σ, f)-bimodule structure

where action on the left is through ∗, and a natural left A-module structure.

(2) In the split case (A, σ, f) =
(
EndF (V ), σq , fq

)
, the standard identification

ϕq : V ⊗ V ∼−→ EndF (V )

induces a standard identification of Clifford bimodules

V ⊗F C1(V, q)
∼−→ B(A, σ, f).

(3) The canonical map b : A → B(A, σ, f) is an injective homomorphism of left13

A-modules.

(4) dimF B(A, σ, f) = 2(degA)−1 degA.

Proof : By extending scalars to split A, it is easy to verify that

J2(σ, f) ∗ T+(A) ⊆ T+(A) · J1(σ, f) and T+(A) · J2(σ, f) ⊆ J1(σ, f) ∗ T+(A).

Therefore, the actions of T (A) on T+(A) on the left through ∗ and on the right
through the usual product induce a C(A, σ, f)-bimodule structure on B(A, σ, f).

We define on T+(A) a left A-module structure by using the multiplication map

A⊗2 → A which carries a⊗b to ab. Explicitly, for a ∈ A and u = u1⊗· · ·⊗ui ∈ A⊗i,
we set

a · u = au1 ⊗ u2 ⊗ · · · ⊗ ui.
Thus, in the split case (A, σ, f) = (EndF (V ), σq , fq), we have, under the standard
identification A = V ⊗ V :

a · (v1 ⊗ · · · ⊗ v2i) = a(v1)⊗ v2 ⊗ · · · ⊗ v2i.
It is then clear that the left action of A on T+(A) commutes with the left and right
actions of T (A). Therefore, the subspace

[
J1(σ, f) ∗ T+(A)

]
+

[
T+(A) · J1(σ, f)

]
is

13Therefore, the image of a ∈ A under b will be written ab.
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preserved under the action of A, and it follows that B(A, σ, f) inherits this action
from T+(A).

In the split case, the standard identification ϕ−1
q : A ∼−→ V ⊗ V induces a sur-

jective linear map from B(A, σ, f) onto V ⊗ C1(V, q). Using an orthogonal decom-
position of (V, q) into 1- or 2-dimensional subspaces, one can show that

dimF B(A, σ, f) ≤ dimF V dimF C1(V, q).

Therefore, the induced map is an isomorphism. This proves (??) and (??), and (??)
follows by dimension count. Statement (??) is clear in the split case (see (??)), and
the theorem follows.

As was observed in the preceding section, there is no significant loss if we
restrict our attention to the case where the degree of A is even, since A is split if
its degree is odd. Until the end of this subsection, we assume degA = n = 2m.
According to (??), the center Z of C(A, σ, f) is then a quadratic étale F -algebra.
Let ι be the non-trivial automorphism of Z/F . By extending scalars to split the
algebra A, we derive from (??):

x · ζ = ι(ζ) ∗ x for x ∈ B(A, σ, f), ζ ∈ Z.(9.8)

Therefore, we may consider B(A, σ, f) as a right module over ιC(A, σ, f)op ⊗Z
C(A, σ, f): for c, c′ ∈ C(A, σ, f) and x ∈ B(A, σ, f), we set

x · (ιcop ⊗ c′) = c ∗ x · c′.
Thus, B(A, σ, f) is anA-ιC(A, σ, f)op⊗ZC(A, σ, f)-bimodule, and there is a natural
homomorphism of F -algebras:

ν : ιC(A, σ, f)op ⊗Z C(A, σ, f)→ EndAB(A, σ, f).

By comparing with the split case, we see that the map ν is injective, and that its
image is the centralizer of Z (= ν(Z)) in EndAB(A, σ, f). Endowing B(A, σ, f)
with a left A⊗F Z-module structure (where the action of Z is through ν), we may
thus view ν as an isomorphism

ν : ιC(A, σ, f)op ⊗Z C(A, σ, f) ∼−→ EndA⊗Z B(A, σ, f);(9.9)

it is defined by xν(
ιcop⊗c′) = c ∗ x · c′ for c, c′ ∈ C(A, σ, f) and x ∈ B(A, σ, f).

The canonical involution. We now use the involution σ on A to define an
involutorial A-module endomorphism ω of B(A, σ, f). As in §??, σ denotes the
involution of C(A, σ, f) induced by σ, and τ is the involution on C(V, q) which is
the identity on V .

(9.10) Proposition. The A-module B(A, σ, f) is endowed with a canonical endo-

morphism14 ω such that for c1, c2 ∈ C(A, σ, f), x ∈ B(A, σ, f) and a ∈ A:

(c1 ∗ x · c2)ω = σ(c2) ∗ xω · σ(c1) and (ab)ω = ab,

where b : A→ B(A, σ, f) is the canonical map. Moreover, in the split case

(A, σ, f) = (EndF (V ), σq , fq)

we have ω = IdV ⊗ τ under the standard identifications A = V ⊗ V , B(A, σ, f) =
V ⊗ C1(V, q).

14Since B(A, σ, f) is a left A-module, ω will be written to the right of its arguments.
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Proof : Let ω̃ = γ−1◦σ : T+(A)→ T+(A) where σ is the involution on T (A) induced
by σ. Thus, in the split case A = V ⊗ V :

ω̃(v1 ⊗ · · · ⊗ v2n) = v1 ⊗ v2n ⊗ v2n−1 ⊗ · · · ⊗ v3 ⊗ v2.
By extending scalars to a splitting field of A, it is easy to check that for a ∈ A, u1,
u2 ∈ T (A) and v ∈ T+(A),

ω̃(u1 ∗ v · u2) = σ(u2) ∗ ω̃(v) · σ(u1), ω̃(a · v) = a · ω̃(v) and ω̃(a) = a.

It follows from the first equation that

ω̃
(
J1(σ, f) ∗ T+(A)

)
= T+(A) · σ

(
J1(σ, f)

)
⊆ T+(A) · J1(σ, f)

and

ω̃
(
T+(A) · J1(σ, f)

)
= σ

(
J1(σ, f)

)
∗ T+(A) ⊆ J1(σ, f) ∗ T+(A),

hence ω̃ induces an involutorial F -linear operator ω on B(A, σ, f) which satisfies
the required conditions.

We thus have ω ∈ EndAB(A, σ, f). Moreover, it follows from the first property
of ω in the proposition above and from (??) that for x ∈ B(A, σ, f) and ζ ∈ Z,

(x · ζ)ω = σ(ζ) ∗ xω = xω ·
[
ι ◦ σ(ζ)

]
.

The restriction of σ to Z is determined in (??): σ is of the first kind if m is even
and of the second kind if m is odd. Therefore, ω is Z-linear if m is odd, hence it
belongs to the image of ιC(A, σ, f)op ⊗Z C(A, σ, f) in EndAB(A, σ, f) under the
natural monomorphism ν. By contrast, when m is even, ω is only ι-semilinear. In
this case, we define an F -algebra

E(A, σ, f) =
[
ιC(A, σ, f) ⊗Z C(A, σ, f)

]
⊕

[
ιC(A, σ, f) ⊗Z C(A, σ, f)

]
· z

where multiplication is defined by the following equations:

z(ιc⊗ c′) = (ιc′ ⊗ c)z for c, c′ ∈ C(A, σ, f), z2 = 1.

We also define a map ν′ : E(A, σ, f)→ EndAB(A, σ, f) by

xν
′(ιc1⊗c2+ιc3⊗c4·z) = σ(c1) ∗ x · c2 +

(
σ(c3) ∗ x · c4

)ω

for x ∈ B(A, σ, f) and c1, c2, c3, c4 ∈ C(A, σ, f). The fact that ν ′ is a well-defined
F -algebra homomorphism follows from the properties of ω in (??), and from the
hypothesis that degA is divisible by 4 which ensures that σ is an involution of the
first kind: see (??).

(9.11) Proposition. If degA ≡ 0 mod 4, the map ν ′ is an isomorphism of F -

algebras.

Proof : Suppose ν′(u + vz) = 0 for some u, v ∈ ιC(A, σ, f) ⊗Z C(A, σ, f). Then
ν′(u) = −ν′(vz); but ν′(u) is Z-linear while ν′(vz) is ι-semilinear. Therefore,
ν′(u) = ν′(vz) = 0. It then follows that u = v = 0 since the natural map ν is
injective. This proves injectivity of ν ′. Surjectivity follows by dimension count:
since dimF B(A, σ, f) = 2degA−1 degA, we have rdimAB(A, σ, f) = 22m−1 hence
deg EndAB(A, σ, f) = 22m−1 by (??). On the other hand,

dimF E(A, σ, f) = 2 dimF
ιC(A, σ, f) ⊗Z C(A, σ, f)

=
[
dimF C(A, σ, f)

]2
= 22(2m−1).
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9.C. The fundamental relations. In this section, A denotes a central simple
F -algebra of even degree n = 2m with a quadratic pair (σ, f). The fundamental
relations between the Brauer class [A] of A and the Brauer class of the Clifford
algebra C(A, σ, f) are the following:

(9.12) Theorem. Let Z be the center of the Clifford algebra C(A, σ, f).

(1) If degA ≡ 0 mod 4 (i.e., if m is even), then
[
C(A, σ, f)

]2
= 1 in Br(Z).(9.13)

NZ/F
[
C(A, σ, f)

]
= [A] in Br(F ).(9.14)

(2) If degA ≡ 2 mod 4 (i.e., if m is odd), then
[
C(A, σ, f)

]2
= [AZ ] in Br(Z).(9.15)

NZ/F
[
C(A, σ, f)

]
= 1 in Br(F ).(9.16)

(If Z = F × F , the norm NZ/F is defined by NF×F/F (C1 × C2) = C1 ⊗F C2: see

the end of §??).

Proof : Equations (??) and (??) follow by (??) from the fact that the canonical
involution σ on C(A, σ, f) is of the first kind when degA ≡ 0 mod 4 and of the
second kind when degA ≡ 2 mod 4.

To prove equations (??) and (??), recall the natural isomorphism (??):

ν : ιC(A, σ, f)op ⊗Z C(A, σ, f) ∼−→ EndA⊗Z B(A, σ, f).

By (??), it follows that AZ = A ⊗F Z is Brauer-equivalent to ιC(A, σ, f)op ⊗Z
C(A, σ, f). If m is odd, the canonical involution σ is of the second kind; it therefore
defines an isomorphism of Z-algebras:

ιC(A, σ, f)op ' C(A, σ, f),

and (??) follows. Note that the arguments above apply also in the case where
Z ' F×F ; then C(A, σ, f) = C+×C− for some central simple F -algebras C+, C−,
and there is a corresponding decomposition of B(A, σ, f) which follows from its Z-
module structure:

B(A, σ) = B+ ×B−.
Then EndA⊗Z B(A, σ, f) = EndAB+×EndAB− and ιC(A, σ, f)op = C−op×C+op,
and the isomorphism ν can be considered as

ν : (C+ ⊗F C−op)× (C− ⊗F C+op) ∼−→ (EndAB+)× (EndAB−).

Therefore, A is Brauer-equivalent to C+ ⊗F C−op and to C− ⊗ C+op. Since σ is
of the second kind when m is odd, we have in this case C−op ' C+, hence A is
Brauer-equivalent to C+⊗2 and to C−⊗2, proving (??).

Similarly, (??) is a consequence of (??), as we proceed to show. Let

B′(A, σ) = B(A, σ)ω

denote the F -subspace of ω-invariant elements in B(A, σ). For the rest of this
section, we assume degA ≡ 0 mod 4. As observed before (??), the involution ω is
ι-semilinear, hence the multiplication map

B′(A, σ) ⊗F Z → B(A, σ)

is an isomorphism of Z-modules. Relation (??) follows from (??) and the following
claim:
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Claim. The isomorphism ν′ of (??) restricts to an F -algebra isomorphism

NZ/FC(A, σ, f) ∼−→ EndAB
′(A, σ, f).

To prove the claim, observe that the subalgebra

EndAB
′(A, σ, f) ⊂ EndAB(A, σ, f)

is the centralizer of Z and ω, hence it is also the F -subalgebra of elements which
commute with ω in EndA⊗Z B(A, σ, f). The isomorphism ν ′ identifies this algebra
with the algebra of switch-invariant elements in ιC(A, σ, f)⊗Z C(A, σ, f), i.e., with
NZ/FC(A, σ, f).

§10. The Discriminant Algebra

A notion of discriminant may be defined for hermitian spaces on the same model
as for symmetric bilinear spaces. If (V, h) is a hermitian space over a field K, with
respect to a nontrivial automorphism ι of K (of order 2), the determinant of the
Gram matrix of h with respect to an arbitrary basis (e1, . . . , en) lies in the subfield
F ⊂ K elementwise fixed under ι and is an invariant of h modulo the norms ofK/F .
We may therefore define the determinant by

deth = det
(
h(ei, ej)

)
1≤i,j≤n ·N(K/F ) ∈ F×/N(K/F )

where N(K/F ) = NK/F (K×) is the group of norms of K/F . The discriminant is
the signed determinant:

disch = (−1)n(n−1)/2 det
(
h(ei, ej)

)
1≤i,j≤n ∈ F

×/N(K/F ).

If δ ∈ F× is a representative of disch, the quaternion algebra K ⊕ Kz where
multiplication is defined by zx = ι(x)z for x ∈ K and z2 = δ does not depend on
the choice of the representative δ. We denote it by (K, disch)F ; thus

(K, disch)F =

{
(α, δ)F if K = F (

√
α) (charF 6= 2),

[α, δ)F if K = F
(
℘−1(α)

)
(charF = 2).

Our aim in this section is to generalize this construction, associating a central
simple algebra D(B, τ) to every central simple algebra with involution of unitary
type (B, τ) of even degree, in such a way that D

(
EndK(V ), σh

)
is Brauer-equivalent

to (K, disch)F (see (??)). In view of this relation with the discriminant, the algebra
D(B, τ) is called the discriminant algebra, a term suggested by A. Wadsworth. This
algebra is endowed with a canonical involution of the first kind.

As preparation for the definition of the discriminant algebra, we introduce in the
first four sections various constructions related to exterior powers of vector spaces.
For every central simple algebra A over an arbitrary field F , and for every positive
integer k ≤ degA, we define a central simple F -algebra λkA which is Brauer-

equivalent to A⊗k and such that in the split case λk EndF (V ) = EndF (
∧k

V ). In
the second section, we show that when the algebra A has even degree n = 2m, the
algebra λmA carries a canonical involution γ of the first kind. In the split case
A = EndF (V ), the involution γ on λmA = EndF (

∧m V ) is the adjoint involution
with respect to the exterior product ∧ :

∧m
V × ∧m

V → ∧n
V ' F . The third

section is more specifically concerned with the case where charF = 2: in this case,
we extend the canonical involution γ on λmA into a canonical quadratic pair (γ, f),
when m ≥ 2. Finally, in §??, we show how an involution on A induces an involution
on λkA for all k ≤ degA.
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10.A. The λ-powers of a central simple algebra. Let A be a central sim-
ple algebra of degree n over an arbitrary field F . Just as for the Clifford bimodule,
the definition of λkA uses a canonical representation of the symmetric group, based
on Goldman elements.

(10.1) Proposition. For all k ≥ 1, there is a canonical homomorphism gk : Sk →(
A⊗k

)×
from the symmetric group Sk to the group of invertible elements in A⊗k,

such that in the split case A = EndF (V ) we have under the identification A⊗k =
EndF (V ⊗k):

gk(π)(v1 ⊗ · · · ⊗ vk) = vπ−1(1) ⊗ · · · ⊗ vπ−1(k)

for all π ∈ Sk and v1, . . . , vk ∈ V .

Proof : We first define the image of the transpositions τ(i) = (i, i + 1) for i = 1,
. . . , k − 1, by setting

gk
(
τ(i)

)
= 1⊗ · · · ⊗ 1︸ ︷︷ ︸

i−1

⊗ g ⊗ 1⊗ · · · ⊗ 1︸ ︷︷ ︸
k−i−1

where g ∈ A ⊗ A is the Goldman element defined in (??). From (??), it follows
that in the split case

gk
(
τ(i)

)
(v1 ⊗ · · · ⊗ vk) = v1 ⊗ · · · ⊗ vi+1 ⊗ vi ⊗ · · · ⊗ vk,

as required.
In order to define gk(π) for arbitrary π ∈ Sk, we fix some factorization

π = τ1 ◦ · · · ◦ τs where τ1, . . . , τs ∈ {τ(1), . . . , τ(k − 1)}
and set gk(π) = gk(τ1) · · · gk(τs). Then, in the split case

gk(π)(v1 ⊗ · · · ⊗ vk) = vπ−1(1) ⊗ · · · ⊗ vπ−1(k),

and it follows that gk is a homomorphism in the split case. It then follows by scalar
extension to a splitting field that gk is also a homomorphism in the general case.
Therefore, the definition of gk does not depend on the factorization of π.

(10.2) Corollary. For all π ∈ Sk and a1, . . . , ak ∈ A,

gk(π) · (a1 ⊗ · · · ⊗ ak) = (aπ−1(1) ⊗ · · · ⊗ aπ−1(k)) · gk(π).

Proof : The equation follows by scalar extension to a splitting field of A from the
description of gk(π) in the split case.

For all k ≥ 2, define

sk =
∑

π∈Sk

sgn(π)gk(π) ∈ A⊗k ,

where sgn(π) = ±1 is the sign of π.

(10.3) Lemma. The reduced dimension of the left ideal A⊗ksk is given by

rdim(A⊗ksk) =

{(
n
k

)
for 2 ≤ k ≤ n = degA,

0 for k > n = degA.

If A is split : A = EndF (V ), A⊗k = EndF (V ⊗k), then there is a natural isomor-

phism of A⊗k-modules :

A⊗ksk = HomF (
∧k

V , V ⊗k).
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Proof : Since the reduced dimension does not change under scalar extension, it
suffices to prove the second part. Under the correspondence between left ideals in
A⊗k = EndF (V ⊗k) and subspaces of V ⊗k (see §??), we have

A⊗ksk = HomF (V ⊗k/ ker sk, V
⊗k).

From the description of gk(π) in the split case, it follows that ker sk contains the
subspace of V ⊗k spanned by the products v1 ⊗ · · · ⊗ vk where vi = vj for some

indices i 6= j. Therefore, there is a natural epimorphism
∧k

V → V ⊗k/ ker sk.
To prove that this epimorphism is injective, pick a basis (e1, . . . , en) of V . For

the various choices of indices i1, . . . , ik such that 1 ≤ i1 < i2 < · · · < ik ≤ n, the
images sk(ei1 ⊗· · ·⊗eik) are linearly independent, since they involve different basis
vectors in V ⊗k. Therefore,

dim(V ⊗k/ ker sk) = dim im sk ≥
(
n
k

)
,

and the epimorphism above is an isomorphism.

(10.4) Definition. Let A be a central simple algebra of degree n over a field F .
For every integer k = 2, . . . , n we define the k-th λ-power of A as

λkA = EndA⊗k(A⊗ksk).

We extend this definition by setting λ1A = A. Note that for k = 2 we recover the
definition of λ2A given in §?? (see (??)).

The following properties follow from the definition, in view of (??), (??) and (??):

(a) λkA is a central simple F -algebra Brauer-equivalent to A⊗k, of degree

degλkA =
(
n
k

)
.

(b) There is a natural isomorphism:

λk EndF (V ) = EndF (
∧k V ).

(10.5) Corollary. If k divides the index indA, then indA⊗k divides (indA)/k.

Proof : By replacing A by a Brauer-equivalent algebra, we may assume that A is
a division algebra. Let n = degA = indA. Arguing by induction on the number
of prime factors of k, it suffices to prove the corollary when k = p is a prime
number. If K is a splitting field of A of degree n, then K also splits λkA, hence
indλpA divides n. On the other hand, indλpA divides degλpA =

(
n
p

)
, and the

greatest common divisor of n and
(
n
p

)
is n/p, hence indλpA divides n/p. Since

λpA is Brauer-equivalent to A⊗p, we have indλpA = indA⊗p, and the proof is
complete.

10.B. The canonical involution. Let V be a vector space of even dimen-
sion n = 2m over a field F of arbitrary characteristic. Since dim

∧n
V = 1, the

composition of the exterior product

∧ :
∧m

V ×∧m
V → ∧n

V

with a vector-space isomorphism
∧n

V ∼−→ F is a bilinear form on
∧m

V , which is
uniquely determined up to a scalar factor.
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(10.6) Lemma. The bilinear map ∧ is nonsingular. It is symmetric if m is even

and skew-symmetric if m is odd. If charF = 2, the map ∧ is alternating for

all m. Moreover, the discriminant of every symmetric bilinear form induced from

∧ through any isomorphism
∧n

V ' F is trivial.

Proof : Let (e1, . . . , en) be a basis of V . For every subset of m indices

S = {i1, . . . , im} ⊂ {1, . . . , n} with i1 < · · · < im

we set eS = ei1 ∧ · · · ∧ eim ∈
∧m

V . As S runs over all the subsets of m indices,
the elements eS form a basis of

∧m
V .

Since eS ∧ eT = 0 when S and T are not disjoint, we have for x =
∑
xSeS

x ∧ eT = ±xT ′e1 ∧ · · · ∧ en,
where T ′ is the complementary subset of T in {1, . . . , n}. Therefore, if x ∧ eT = 0
for all T , then x = 0. This shows that the map ∧ is nonsingular. Moreover, for all
subsets S, T of m indices we have

eS ∧ eT = (−1)m
2

eT ∧ eS ,
hence ∧ is symmetric if m is even and skew-symmetric if m is odd. Since eS∧eS = 0
for all S, the form ∧ is alternating if charF = 2.

Suppose m is even and fix an isomorphism
∧n

V ' F to obtain from ∧ a sym-
metric bilinear form b on

∧m
V . The space

∧m
V decomposes into an orthogonal

direct sum:

∧m V =
⊥⊕

S∈R
ES

where ES is the subspace spanned by the basis vectors eS , eS′ where S ′ is the
complement of S and R is a set of representatives of the equivalence classes of
subsets of m indices under the relation S ≡ T if and only if S = T or S = T ′. (For
instance, one can take R = { S | 1 ∈ S }.)

On basis elements eS , eS′ the matrix of b has the form
(

0 α
α 0

)
for some α ∈ F×.

Therefore, if d = dim
∧m V we have det b = (−1)d/2 · F×2, hence

disc b = 1.

Since ∧ is nonsingular, there is an adjoint involution γ on EndF (
∧m

V ) defined
by

γ(f)(x) ∧ y = x ∧ f(y)

for all f ∈ EndF (
∧m

V ), x, y ∈
∧m

V . The involution γ is of the first kind and its
discriminant is trivial; it is of orthogonal type if m is even and charF 6= 2, and it
is of symplectic type if m is odd or charF = 2. We call γ the canonical involution

on EndF (
∧m

V ).
Until the end of this subsection, A is a central simple F -algebra of degree

n = 2m. Our purpose is to define a canonical involution on λmA in such a way as
to recover the definition above in the split case.

We first prove a technical result concerning the elements sk ∈
(
A⊗k

)×
defined

in the preceding section:
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(10.7) Lemma. Let A be a central simple F -algebra of degree n = 2m. Since

sm ∈ A⊗m, we may consider sm ⊗ sm ∈ A⊗n. Then

sn ∈ A⊗n(sm ⊗ sm).

Proof : In the symmetric group Sn, consider the subgroup Sm,m ' Sm × Sm con-
sisting of the permutations which preserve {1, . . . ,m} (and therefore also the set
{m+ 1, . . . , n}). The split case shows that gn

(
(π1, π2)

)
= gm(π1)⊗ gm(π2) for π1,

π2 ∈ Sm. Therefore,

sm ⊗ sm =
∑

π∈Sm,m
sgn(π)gn(π).

Let R be a set of representatives of the left cosets of Sm,m in Sn, so that each
π ∈ Sn can be written in a unique way as a product π = ρ ◦ π′ for some ρ ∈ R and
some π′ ∈ Sm,m. Since gn is a homomorphism, it follows that

sgn(π)gn(π) = sgn(ρ)gn(ρ) · sgn(π′)gn(π
′),

hence, summing over π ∈ Sn:

sn =
(∑

ρ∈R sgn(ρ)gn(ρ)
)
sm ⊗ sm.

Recall from (??) that λmA = EndA⊗m(A⊗msm). There is therefore a natural
isomorphism:

λmA⊗F λmA = EndA⊗n

(
A⊗n(sm ⊗ sm)

)
.

Since (??) shows that sn ∈ A⊗n(sm ⊗ sm), we may consider

I = { f ∈ EndA⊗n

(
A⊗n(sm ⊗ sm)

)
| sfn = {0} }.(10.8)

This is a right ideal in EndA⊗n

(
A⊗n(sm ⊗ sm)

)
= λmA⊗F λmA.

(10.9) Lemma. If A = EndF (V ), then under the natural isomorphisms

λmA⊗F λmA = EndF (
∧m

V )⊗F EndF (
∧m

V ) = EndF (
∧m

V ⊗
∧m

V )

the ideal I defined above is

I = {ϕ ∈ EndF (
∧m

V ⊗∧m
V ) | ∧ ◦ ϕ = 0 }

where ∧ is the canonical bilinear form on
∧m V , viewed as a linear map

∧ :
∧m

V ⊗∧m
V → ∧n

V .

Proof : As observed in (??), we have A⊗msm = HomF (
∧m

V, V ⊗m), hence

A⊗n(sm ⊗ sm) = HomF (
∧m

V ⊗∧m
V , V ⊗n).

Moreover, we may view sn as a map sn : V ⊗n → V ⊗n which factors through
∧n

V :
there is a commutative diagram:

V ⊗n sn−−−−→ V ⊗n
y ↗ s′n

x
∧m

V ⊗∧m
V

∧−−−−→ ∧n
V

The image of sn ∈ A⊗n(sm ⊗ sm) in HomF (
∧m

V ⊗
∧m

V, V ⊗n) under the
identification above is then the induced map s′n.

By (??) every endomorphism f of the A⊗n-module A⊗n(sm⊗sm) has the form

xf = x ◦ ϕ
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for some uniquely determined ϕ ∈ EndF (
∧m

V ⊗ ∧m
V ). The correspondence

f ↔ ϕ yields the natural isomorphism

λmA⊗ λmA = EndA⊗n

(
A⊗n(sm ⊗ sm)

)
= EndF (

∧m
V ⊗∧m

V ).

Under this correspondence, the elements f ∈ EndA⊗n

(
A⊗n(sm⊗sm)

)
which vanish

on sn correspond to endomorphisms ϕ ∈ EndF (
∧m

V ⊗∧m
V ) such that s′n ◦ ϕ =

0. It is clear from the diagram above that ker s′n = ker∧, hence the conditions
s′n ◦ ϕ = 0 and ∧ ◦ ϕ = 0 are equivalent.

(10.10) Corollary. The right ideal I ⊂ λmA ⊗F λmA defined in (??) above sat-

isfies the following conditions :

(1) λmA⊗F λmA = I ⊕ (1⊗ λmA).

(2) I contains the annihilator
[
(λmA ⊗ λmA) · (1 − g)

]0
, where g is the Goldman

element of λmA ⊗F λmA, if m is odd or charF = 2; it contains 1 − g but not[
(λmA⊗ λmA) · (1− g)

]0
if m is even and charF 6= 2.

Proof : It suffices to check these properties after scalar extension to a splitting field
of A. We may thus assume A = EndF (V ). The description of I in (??) then shows
that I is the right ideal corresponding to the canonical involution γ on EndF (

∧m V )
under the correspondence of (??).

(10.11) Definition. Let A be a central simple F -algebra of degree n = 2m. The
canonical involution γ on λmA is the involution of the first kind corresponding to
the ideal I defined in (??) under the correspondence of (??).

The following properties follow from the definition by (??) and (??), and by
scalar extension to a splitting field in which F is algebraically closed:

(a) If A = EndF (V ), the canonical involution γ on λmA = EndF (
∧m

V ) is the
adjoint involution with respect to the canonical bilinear map ∧ :

∧m
V ×∧m V → ∧n V .

(b) γ is of symplectic type if m is odd or charF = 2; it is of orthogonal type if
m is even and charF 6= 2; in this last case we have disc(γ) = 1.

In particular, if A has degree 2 (i.e., A is a quaternion algebra), then the
canonical involution on A = λ1A has symplectic type, hence it is the quaternion
conjugation.

10.C. The canonical quadratic pair. Let A be a central simple F -algebra
of even degree n = 2m. As observed in (??), the canonical involution γ on λmA
is symplectic for all m if charF = 2. We show in this section that the canonical
involution is actually part of a canonical pair (γ, f) on λmA for all m ≥ 2 if
charF = 2. (If charF 6= 2, a quadratic pair is uniquely determined by its involution;
thus λmA carries a canonical quadratic pair if and only if γ is orthogonal, i.e., if
and only if m is even).

We first examine the split case.

(10.12) Proposition. Assume charF = 2 and let V be an F -vector space of di-

mension n = 2m ≥ 4. There is a unique quadratic map

q :
∧m V → ∧n V

which satisfies the following conditions :

(1) q(v1 ∧ · · · ∧ vm) = 0 for all v1, . . . , vm ∈ V ;
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(2) the polar form bq :
∧m

V × ∧m
V → ∧n

V is the canonical pairing ∧. In

particular, the quadratic map q is nonsingular.

Moreover, the discriminant of q is trivial.

Proof : Uniqueness of q is clear, since decomposable elements v1 ∧ · · · ∧ vm span∧m
V . To prove the existence of q, we use the same notation as in the proof

of (??): we pick a basis (e1, . . . , en) of V and get a basis eS of
∧m

V , where S runs
over the subsets of m indices in {1, . . . , n}. Fix a partition of these subsets into two
classes C, C ′ such that the complement S ′ of every S ∈ C lies in C ′ and conversely.
(For instance, one can take C = { S | 1 ∈ S }, C ′ = { S | 1 /∈ S }.) We may then
define a quadratic form q on

∧m
V by

q
(∑

S xSeS
)

=
(∑

S∈C xSxS′
)
e1 ∧ · · · ∧ en.

The polar form bq satisfies

bq
(∑

S xSeS ,
∑

T yT eT
)

=
(∑

S∈C xSyS′ + xS′yS
)
e1 ∧ · · · ∧ en

=
(∑

S xSyS′
)
e1 ∧ · · · ∧ en.

Since the right side is also equal to (
∑

S xSeS) ∧ (
∑

T yT eT ), the second condition
is satisfied.

It remains to prove that q vanishes on decomposable elements. We show that q

actually vanishes on all the elements of the type v∧η, where v ∈ V and η ∈
∧m−1

V .
Let v =

∑n
i=1 viei and η =

∑
I ηIeI , where I runs over the subsets of m − 1

indices in {1, . . . , n}, so that

v ∧ η =
∑
i,I,i6∈I viηIe{i}∪I =

∑
S
(∑

i∈S viηSr{i}
)
eS .

We thus get

q(v ∧ η) =
∑

S∈C
((∑

i∈S viηSr{i}
)(∑

j∈S′ vjηS′r{j}
))
.

The right side is a sum of terms of the form vivjηIηJ where I , J are subsets of
m − 1 indices such that {i, j} ∪ I ∪ J = {1, . . . , n}. Each of these terms appears
twice: vivjηIηJ appears in the term corresponding to S = {i} ∪ I or S = {j} ∪ J
(depending on which one of these two sets lies in C) and in the term corresponding
to S = {i} ∪ J or {j} ∪ I . Therefore, q(v ∧ η) = 0.

To complete the proof, we compute the discriminant of q. From the definition,
it is clear that q decomposes into an orthogonal sum of 2-dimensional subspaces:

q = ⊥S∈CqS ,
where qS(xSeS +xS′eS′) = xSxS′e1 ∧ · · · ∧ en. It is therefore easily calculated that
disc q = 0.

(10.13) Remark. The quadratic map q may be defined alternately by representing∧m
V as the quotient space F 〈V m〉/W , where F 〈V m〉 is the vector space of formal

linear combinations of m-tuples of vectors in V , and W is the subspace generated
by all the elements of the form

(v1, . . . , vm)

where v1, . . . , vm ∈ V are not all distinct, and

(v1, . . . , viα+ v′iα
′, . . . , vm)− (v1, . . . , vi, . . . , vm)α− (v1, . . . , v

′
i, . . . , vm)α′

where i = 1, . . . , m and v1, . . . , vi, v
′
i, . . . , vm ∈ V , α, α′ ∈ F . Since m-

tuples of vectors in V form a basis of F 〈V m〉, there is a unique quadratic map
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q̃ : F 〈V m〉 → ∧n
V whose polar form bq̃ factors through the canonical pairing ∧

and such that q̃(v) = 0 for all v ∈ V m. It is easy to show that this map q̃ factors
through the quadratic map q.

By composing q with a vector-space isomorphism
∧n V ∼−→ F , we obtain a

quadratic form on
∧m

V which is uniquely determined up to a scalar factor. There-
fore, the corresponding quadratic pair (σq , fq) on EndF (

∧m
V ) is unique. In this

pair, the involution σq is the canonical involution γ, since the polar form bq is the
canonical pairing.

Given an arbitrary central simple F -algebra A of degree n = 2m, we will
construct on λmA a quadratic pair (γ, f) which coincides with the pair (σq , fq) in
the case where A = EndF (V ). The first step is to distinguish the right ideals in
λmA which correspond in the split case to the subspaces spanned by decomposable
elements.

The following construction applies to any central simple algebra A over an
arbitrary field F : if I ⊂ A is a right ideal of reduced dimension k, we define

ψk(I) = { f ∈ λkA = EndA⊗k(A⊗ksk) | sfk ∈ I⊗k · sk } ⊂ λkA.
This set clearly is a right ideal in λkA.

(10.14) Lemma. If A = EndF (V ) and I = Hom(V, U) for some k-dimensional

subspace U ⊂ V , then we may identify ψk(I) = Hom(
∧k

V,
∧k

U). In particular,

rdimψk(I) = 1.

Proof : If I = Hom(V, U), then I⊗k = Hom(V ⊗k, U⊗k) and

I⊗k · sk = Hom(
∧k

V, U⊗k).

Therefore, for f ∈ λkA = EndF (
∧k

V ), we have sfk ∈ I⊗k · sk if and only if the
image of the composite map

∧k
V

f−→ ∧k
V

sk−→ V ⊗k

is contained in U⊗k. Since s−1
k (U⊗k) =

∧k U , this condition is fulfilled if and only

if im f ⊂ ∧k
U . Therefore, we may identify

ψk
(
Hom(V, U)

)
= Hom(

∧k V,
∧k U).

Since dim
∧k

U = 1 if dimU = k, we have rdimψk(I) = 1 for all right ideals I of
reduced dimension k.

In view of the lemma, we have

ψk : SBk(A)→ SB(λkA);

if A = EndF (V ), this map is the Plücker embedding

ψk : Grk(V )→ P(
∧k A)

which maps every k-dimensional subspace U ⊂ V to the 1-dimensional subspace∧k
U ⊂ ∧k

V (see §??).
Suppose now that σ is an involution of the first kind on the central simple

F -algebra A. To every right ideal I ⊂ A, we may associate the set I · σ(I) ⊂ A.

(10.15) Lemma. Suppose σ is orthogonal or charF = 2. If rdim I = 1, then

I · σ(I) is a 1-dimensional subspace in Sym(A, σ).
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Proof : It suffices to prove the lemma in the split case. Suppose therefore that
A = EndF (V ) and σ is the adjoint involution with respect to some nonsingular
bilinear form b on V . Under the standard identification ϕb, we have A = V ⊗ V
and I = v ⊗ V for some nonzero vector v ∈ V , and σ corresponds to the switch
map. Therefore, I · σ(I) = v ⊗ v · F , proving the lemma.

Under the hypothesis of the lemma, we thus get a map

ϕ : SB(A)→ P
(
Sym(A, σ)

)

which carries every right ideal I ⊂ A of reduced dimension 1 to I · σ(I). If A =
EndF (V ), we may identify SB(A) = P(V ) and P

(
Sym(A, σ)

)
= P(W ), where W ⊂

V ⊗V is the subspace of symmetric tensors; the proof above shows that ϕ : P(V )→
P(W ) maps v · F to v ⊗ v · F .

The relevance of this construction to quadratic pairs appears through the fol-
lowing lemma:

(10.16) Lemma. Suppose charF = 2 and σ is symplectic. The map (σ, f) 7→
kerf defines a one-to-one correspondence between quadratic pairs (σ, f) on A and

hyperplanes in Sym(A, σ) whose intersection with Symd(A, σ) is kerTrpσ.

Proof : For every quadratic pair (σ, f), the map f extends Trpσ (this is just condi-
tion (??) of the definition of a quadratic pair, see (??)); therefore

kerf ∩ Symd(A, σ) = kerTrpσ .

If U ⊂ Sym(A, σ) is a hyperplane whose intersection with Symd(A, σ) is kerTrpσ,
then Sym(A, σ) = U+Symd(A, σ), hence there is only one linear form on Sym(A, σ)
with kernel U which extends Trpσ.

Suppose now that A is a central simple algebra of degree n = 2m over a field
F of characteristic 2. We consider the composite map

SBm(A)
ψm−→ SB(λmA)

ϕ−→ P
(
Sym(λmA, γ)

)
,

where γ is the canonical involution on λmA.

(10.17) Proposition. If m ≥ 2, there is a unique hyperplane in Sym(λmA, γ)
which contains the image of ϕ ◦ ψm and whose intersection with Symd(λmA, γ) is

kerTrpσ.

Proof : The proposition can be restated as follows: the subspace of Sym(λmA, γ)
spanned by the image of ϕ ◦ ψm and kerTrpσ is a hyperplane which does not
contain Symd(λmA, γ). Again, it suffices to prove the result in the split case.
We may thus assume A = EndF (V ). From the description of ψm and ϕ in this
case, it follows that the image of ϕ ◦ ψm consists of the 1-dimensional spaces in∧m

V ⊗∧m
V spanned by elements of the form (v1 ∧ · · · ∧ vm) ⊗ (v1 ∧ · · · ∧ vm),

with v1, . . . , vm ∈ V . By (??), hyperplanes whose intersection with Symd(λmA, γ)
coincides with kerTrpγ correspond to quadratic pairs on λmA with involution γ,

hence to quadratic forms on
∧m

V whose polar is the canonical pairing, up to a
scalar factor. Those hyperplanes which contain the image of ϕ ◦ ψm correspond to
nonsingular quadratic forms which vanish on decomposable elements v1 ∧ · · · ∧ vm,
and Proposition (??) shows that there is one and only one such quadratic form up
to a scalar factor.
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(10.18) Definition. Let A be a central simple algebra of degree n = 2m over a
field F of characteristic 2. By (??), Proposition (??) defines a unique quadratic
pair (γ, f) on λmA, which we call the canonical quadratic pair. The proof of (??)
shows that in the case where A = EndF (V ) this quadratic pair is associated with
the canonical map q on

∧m
V defined in (??). Since A may be split by a scalar

extension in which F is algebraically closed, and since the discriminant of the
canonical map q is trivial, by (??), it follows that disc(γ, f) = 0.

If charF 6= 2, the canonical involution γ on λmA is orthogonal if and only if m
is even. Letting f be the restriction of 1

2 TrdA to Sym(λmA, γ), we also call (γ, f)
the canonical quadratic pair in this case. Its discriminant is trivial, as observed
in (??).

10.D. Induced involutions on λ-powers. In this section, ι is an automor-
phism of the base field F such that ι2 = IdF (possibly ι = IdF ). Let V be a (finite
dimensional) vector space over F . Every hermitian15 form h on V with respect to ι
induces for every integer k a hermitian form h⊗k on V ⊗k such that

h⊗k(x1 ⊗ · · · ⊗ xk, y1 ⊗ · · · ⊗ yk) = h(x1, y1) · · ·h(xk, yk)
for x1, . . . , xk, y1, . . . , yk ∈ V . The corresponding linear map

ĥ⊗k : V ⊗k → ι(V ⊗k)∗

(see (??)) is (ĥ)⊗k under the canonical identification ι(V ⊗k)∗ = (ιV ∗)⊗k, hence
h⊗k is nonsingular if h is nonsingular. Moreover, the adjoint involution σh⊗k on
EndF (V ⊗k) = EndF (V )⊗k is the tensor product of k copies of σh:

σh⊗k = (σh)
⊗k.

The hermitian form h also induces a hermitian form h∧k on
∧k

V such that

h∧k(x1 ∧ · · · ∧ xk, y1 ∧ · · · ∧ yk) = det
(
h(xi, yj)

)
1≤i,j≤k

for x1, . . . , xk, y1, . . . , yk ∈ V . The corresponding linear map

ĥ∧k :
∧k

V → ι(
∧k

V )∗

is
∧k ĥ under the canonical isomorphism

∧k(ιV ∗) ∼−→ ι(
∧k V )∗ which maps ιϕ1 ∧

· · · ∧ ιϕk to ιψ where ψ ∈ (
∧k V )∗ is defined by

ψ(x1 ∧ · · · ∧ xk) = det
(
ϕi(xj)

)
1≤i,j≤k ,

for ϕ1, . . . , ϕk ∈ V ∗ and x1, . . . , xk ∈ V . Therefore, h∧k is nonsingular if h is
nonsingular.

We will describe the adjoint involution σh∧k on EndF (
∧k

V ) in a way which
generalizes to the λk-th power of an arbitrary central simple F -algebra with invo-
lution.

We first observe that if ε : V ⊗k →
∧k

V is the canonical epimorphism and
sk : V ⊗k → V ⊗k is the endomorphism considered in §??:

sk(v1 ⊗ · · · ⊗ vk) =
∑

π∈Sk

sgn(π)vπ−1(1) ⊗ · · · ⊗ vπ−1(k),

then for all u, v ∈ V ⊗k we have

h⊗k
(
sk(u), v

)
= h∧k

(
ε(u), ε(v)

)
= h⊗k

(
u, sk(v)

)
.(10.19)

15By convention, a hermitian form with respect to IdF is a symmetric bilinear form.
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In particular, it follows that σ⊗kh (sk) = sk.

(10.20) Definition. Let A be a central simple F -algebra with an involution σ
such that σ(x) = ι(x) for all x ∈ F . Recall from (??) that for k = 2, . . . , degA,

λkA = EndA⊗k(A⊗ksk).

According to (??), every f ∈ λkA has the form f = ρ(usk) for some u ∈ A⊗k, i.e.,
there exists u ∈ A⊗k such that

xf = xusk for x ∈ A⊗ksk.
We then define σ∧k(f) = ρ

(
σ⊗k(u)sk

)
, i.e.,

xσ
∧k(f) = xσ⊗k(u)sk for x ∈ A⊗ksk.

To check that the definition of σ∧k(f) does not depend on the choice of u, observe
first that if f = ρ(usk) = ρ(u′sk), then

sfk = skusk = sku
′sk.

By applying σ⊗k to both sides of this equation, and taking into account the fact
that sk is symmetric under σ⊗k (see (??)), we obtain

skσ
⊗k(u)sk = skσ

⊗k(u′)sk.

Since every x ∈ A⊗ksk has the form x = ysk for some y ∈ A⊗k, it follows that

xσ⊗k(u)sk = yskσ
⊗k(u)sk = yskσ

⊗k(u′)sk = xσ⊗k(u′)sk.

This shows that σ∧k(f) is well-defined. Since σ(x) = ι(x) for all x ∈ F , it is easily
verified that σ∧k also restricts to ι on F .

For k = 1, we have
∧1

A = A and we set σ∧1 = σ.

(10.21) Proposition. If A = EndF (V ) and σ = σh is the adjoint involution

with respect to some nonsingular hermitian form h on V , then under the canonical

isomorphism λkA = EndF (
∧k V ), the involution σ∧k is the adjoint involution with

respect to the hermitian form h∧k on
∧k

V .

Proof : Recall the canonical isomorphism of (??):

A⊗ksk = HomF (
∧k

V, V ⊗k), hence λkA = EndF (
∧k

V ).

For f = ρ(usk) ∈ EndA⊗k(A⊗ksk), the corresponding endomorphism ϕ of
∧k

V is
defined by

ϕ(x1 ∧ · · · ∧ xk) = ε ◦ u ◦ sk(x1 ⊗ · · · ⊗ xk)
or

ϕ ◦ ε = ε ◦ u ◦ sk
where ε : V ⊗k → ∧k

V is the canonical epimorphism. In order to prove the propo-
sition, it suffices, therefore, to show:

h∧k
(
ε(x), ε ◦ u ◦ sk(y)

)
= h∧k

(
ε ◦ σ⊗k(u) ◦ sk(x), ε(y)

)

for all x, y ∈ V ⊗k. From (??) we have

h∧k
(
ε(x), ε ◦ u ◦ sk(y)

)
= h⊗k

(
sk(x), u ◦ sk(y)

)

and

h∧k
(
ε ◦ σ⊗k(u) ◦ sk(x), ε(y)

)
= h⊗k

(
σ⊗k(u) ◦ sk(x), sk(y)

)
.
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The proposition then follows from the fact that σ⊗k is the adjoint involution with
respect to h⊗k.

The next proposition is more specifically concerned with symmetric bilinear
forms b. In the case where dimV = n = 2m, we compare the involution σ∧mb with
the canonical involution γ on EndF (

∧m
V ).

(10.22) Proposition. Let b be a nonsingular symmetric, nonalternating, bilinear

form on an F -vector space V of dimension n = 2m. Let (e1, . . . , en) be an orthog-

onal basis of V and let e = e1 ∧ · · · ∧ en ∈
∧n

V ; let also

δ = (−1)m
n∏

i=1

b(ei, ei),

so that disc b = δ · F×2. There is a map u ∈ EndF (
∧m

V ) such that

b∧m
(
u(x), y

)
e = x ∧ y = (−1)mb∧m

(
x, u(y)

)
e(10.23)

for all x, y ∈ ∧m V , and

u2 = δ−1 · Id∧mV .(10.24)

If σ = σb is the adjoint involution with respect to b, then the involution σ∧m on

EndF (
∧m

V ) is related to the canonical involution γ by

σ∧m = Int(u) ◦ γ.
In particular, the involutions σ∧m and γ commute.

Moreover, if charF = 2 and m ≥ 2, the map u is a similitude of the canonical

quadratic map q :
∧m

V → ∧n
V of (??) with multiplier δ−1, i.e.,

q
(
u(x)

)
= δ−1q(x)

for all x ∈
∧m

V .

Proof : Let ai = b(ei, ei) ∈ F× for i = 1, . . . , n. As in (??), we set

eS = ei1 ∧ · · · ∧ eim ∈
∧m

V and let aS = ai1 · · · aim
for S = {i1, . . . , im} ⊂ {1, . . . , n} with i1 < · · · < im. If S 6= T , the matrix(
b(ei, ej)

)
(i,j)∈S×T has at least one row and one column of 0’s, namely the row corre-

sponding to any index in SrT and the column corresponding to any index in T rS.
Therefore, b∧m(eS , eT ) = 0. On the other hand, the matrix

(
b(ei, ej)

)
(i,j)∈S×S is

diagonal, and b∧m(eS , eS) = aS . Therefore, as S runs over all the subsets of m
indices, the elements eS are anisotropic and form an orthogonal basis of

∧m
V with

respect to the bilinear form b∧m.
On the other hand, if S ′ = {1, . . . , n}r S is the complement of S, we have

eS ∧ eS′ = εSe

for some εS = ±1. Since ∧ is symmetric when m is even and skew-symmetric when
m is odd (see (??)), it follows that

εSεS′ = (−1)m.(10.25)

Define u on the basis elements eS by

u(eS) = εSa
−1
S′ eS′(10.26)
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and extend u to
∧m

V by linearity. We then have

b∧m
(
u(eS), eS′

)
e = εSe = eS ∧ eS′

and

b∧m
(
eS , u(eS′)

)
= εS′e = (−1)meS ∧ eS′ .

Moreover, if T 6= S, then

b
(
u(eS), eT

)
= 0 = eS ∧ eT = b

(
eS , u(eT )

)
.

The equations (??) thus hold when x, y run over the basis (eS); therefore they hold
for all x, y ∈ V by bilinearity.

For all S we have aSaS′ =
∏n
i=1 b(ei, ei), hence (??) follows from (??) and (??).

From (??), it follows that for all f ∈ EndF (V ) and all x, y ∈ V ,

b∧m
(
u(x), f(y)

)
e = x ∧ f(y),

hence

b∧m
(
σ∧m(f) ◦ u(x), y

)
e = γ(f)(x) ∧ y.

The left side also equals

b∧m
(
u ◦ u−1 ◦ σ∧m(f) ◦ u(x), y

)
e =

(
u−1 ◦ σ∧m(f) ◦ u

)
(x) ∧ y,

hence

u−1 ◦ σ∧m(f) ◦ u = γ(f) for f ∈ EndF (V ).

Therefore, σ∧m = Int(u) ◦ γ.
We next show that σ∧m and γ commute. By (??), we have σ∧m(u) = (−1)mu,

hence γ(u) = (−1)mu. Therefore, γ ◦ σ∧m = Int(u−1), while σ∧m ◦ γ = Int(u).
Since u2 ∈ F×, we have Int(u) = Int(u−1), and the claim is proved.

Finally, assume charF = 2 and m ≥ 2. The proof of (??) shows that the quad-
ratic map q may be defined by partitioning the subsets of m indices in {1, . . . , n}
into two classes C, C ′ such that the complement of every subset in C lies in C ′ and
vice versa, and letting

q(x) =
(∑

S∈C xSxS′
)
e

for x =
∑

S xSeS . By definition of u, we have u(x) =
∑

S xS′a
−1
S eS , hence

q
(
u(x)

)
=

(∑
S∈C xS′a

−1
S xSa

−1
S′

)
e.

Since aSaS′ = δ for all S, it follows that q
(
u(x)

)
= δ−1q(x).

10.E. Definition of the discriminant algebra. Let (B, τ) be a central
simple algebra with involution of the second kind over a field F . We assume that
the degree of (B, τ) is even: deg(B, τ) = n = 2m. The center of B is denoted K;
it is a quadratic étale F -algebra with nontrivial automorphism ι. We first consider
the case where K is a field, postponing to the end of the section the case where
K ' F × F . The K-algebra B is thus central simple. The K-algebra λmB has a
canonical involution γ, which is of the first kind, and also has the involution τ∧m

induced by τ , which is of the second kind. The definition of the discriminant algebra
D(B, τ) is based on the following crucial result:
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(10.27) Lemma. The involutions γ and τ∧m on λmB commute. Moreover, if

charF = 2 and m ≥ 2, the canonical quadratic pair (γ, f) on λmB satisfies

f
(
τ∧m(x)

)
= ι

(
f(x)

)

for all x ∈ Sym(λmB, γ).

Proof : We reduce to the split case by a scalar extension. To construct a field
extension L of F such that K ⊗F L is a field and B ⊗F L is split, consider the
division K-algebra D which is Brauer-equivalent to B. By (??), this algebra has
an involution of the second kind θ. We may take for L a maximal subfield of
Sym(D, θ).

We may thus assume B = EndK(V ) for some n-dimensional vector space V
over K and τ = σh for some nonsingular hermitian form h on V . Consider an
orthogonal basis (ei)1≤i≤n of V and let V0 ⊂ V be the F -subspace of V spanned
by e1, . . . , en. Since h(ei, ei) ∈ F× for i = 1, . . . , n, the restriction h0 of h to
V0 is a nonsingular symmetric bilinear form which is not alternating. We have
V = V0 ⊗F K, hence

B = EndF (V0)⊗F K.
Moreover, since τ is the adjoint involution with respect to h,

τ = τ0 ⊗ ι
where τ0 is the adjoint involution with respect to h0 on EndF (V0). Therefore, there
is a canonical isomorphism

λmB = EndF (
∧m

V0)⊗F K
and

τ∧m = τ∧m0 ⊗ ι.
On the other hand, the canonical bilinear map

∧ :
∧m

V ×
∧m

V →
∧n

V

is derived by scalar extension to K from the canonical bilinear map ∧ on
∧m V0,

hence γ = γ0 ⊗ IdK where γ0 is the canonical involution on EndF (
∧m

V0). By
Proposition (??), τ∧m0 and γ0 commute, hence τ∧m and γ also commute.

Suppose now that charF = 2 and m ≥ 2. Let z ∈ KrF . In view of the canon-
ical isomorphism λmB = EndF (

∧m
V0) ⊗F K, every element x ∈ Sym(λmB, γ)

may be written in the form x = x0 ⊗ 1 + x1 ⊗ z for some x0, x1 ∈ EndF (
∧m

V0)
symmetric under γ0. Proposition (??) yields an element u ∈ EndF (

∧m
V0) such

that τ∧m0 = Int(u) ◦ γ0, hence

τ∧m(x) = τ∧m0 (x0)⊗ 1 + τ∧m0 (x1)⊗ ι(z) = (ux0u
−1)⊗ 1 + (ux1u

−1)⊗ ι(z).
To prove f

(
τ∧m(x)

)
= ι

(
f(x)

)
, it now suffices to show that f(uyu−1) = f(y) for

all y ∈ Sym
(
EndF (

∧m
V0), γ0

)
.

Let q :
∧m

V0 → F be the canonical quadratic form uniquely defined (up to a
scalar multiple) by (??). Under the associated standard identification, the elements
in Sym

(
EndF (

∧m
V0), γ0

)
correspond to symmetric tensors in

∧m
V0⊗

∧m
V0, and

we have f(v ⊗ v) = q(v) for all v ∈ ∧m
V0. Since symmetric tensors are spanned

by elements of the form v ⊗ v, it suffices to prove

f
(
u ◦ (v ⊗ v) ◦ u−1

)
= f(v ⊗ v) for all v ∈

∧m
V0.
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The proof of (??) shows that γ0(u) = u and u2 = δ−1 ∈ F×, hence

u ◦ (v ⊗ v) ◦ u−1 = δu ◦ (v ⊗ v) ◦ γ0(u) = δu(v)⊗ u(v);
therefore, by (??),

f
(
u ◦ (v ⊗ v) ◦ u−1

)
= δq

(
u(v)

)
= q(v) = f(v ⊗ v),

and the proof is complete.

The lemma shows that the composite map θ = τ∧m ◦ γ is an automorphism of
order 2 on the F -algebra B. Note that θ(x) = ι(x) for all x ∈ K, since τ∧m is an
involution of the second kind while γ is of the first kind.

(10.28) Definition. The discriminant algebra D(B, τ) of (B, τ) is the F -subal-
gebra of θ-invariant elements in λmB. It is thus a central simple F -algebra of
degree

degD(B, τ) = deg λmB =
(
n
m

)
.

The involutions γ and τ∧m restrict to the same involution of the first kind τ on
D(B, τ):

τ = γ|D(B,τ) = τ∧m|D(B,τ).

Moreover, if charF = 2 and m ≥ 2, the canonical quadratic pair (γ, f) on λmB
restricts to a canonical quadratic pair (τ , fD) on D(B, τ); indeed, for an element
x ∈ Sym

(
D(B, τ), τ

)
we have τ∧m(x) = x, hence, by (??), f(x) = ι

(
f(x)

)
, and

therefore f(x) ∈ F .

The following number-theoretic observation on degD(B, τ) is useful:

(10.29) Lemma. Let m be an integer, m ≥ 1. The binomial coefficient
(
2m
m

)

satisfies

(
2m
m

)
≡

{
2 mod 4 if m is a power of 2;

0 mod 4 if m is not a power of 2.

Proof : For every integer m ≥ 1, let v(m) ∈ N be the exponent of the highest
power of 2 which divides m, i.e., v(m) is the 2-adic valuation of m. The equation

(m+ 1)
(
2(m+1)
m+1

)
= 2(2m+ 1)

(
2m
m

)
yields

v
(
2(m+1)
m+1

)
= v

(
2m
m

)
+ 1− v(m+ 1) for m ≥ 1.

On the other hand, let `(m) = m0 + · · · + mk where the 2-adic expansion of m
is m = m0 + 2m1 + 22m2 + · · · + 2kmk with m0, . . . , mk = 0 or 1. It is easily
seen that the function `(m) satisfies the same recurrence relation as v

(
2m
m

)
and

`(1) = 1 = v
(
2
1

)
, hence `(m) = v

(
2m
m

)
for all m ≥ 1. In particular, v

(
2m
m

)
= 1 if m

is a power of 2, and v
(
2m
m

)
≥ 2 otherwise.

(10.30) Proposition. Multiplication in λmB yields a canonical isomorphism

D(B, τ) ⊗F K = λmB

such that τ ⊗ IdK = γ and τ ⊗ ι = τ∧m. The index indD(B, τ) divides 4, and

indD(B, τ) = 1 or 2 if m is a power of 2.
The involution τ is of symplectic type if m is odd or charF = 2; it is of

orthogonal type if m is even and charF 6= 2.
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Proof : The first part follows from the definition of D(B, τ) and its involution τ . By
(??) we have indλmB = 1 or 2 since λmB and B⊗m are Brauer-equivalent, hence
indD(B, τ) divides 2[K :F ] = 4. However, if m is a power of 2, then indD(B, τ)
cannot be 4 since the preceding lemma shows that degD(B, τ) ≡ 2 mod 4.

Since γ = τ ⊗ IdK , the involutions γ and τ have the same type, hence τ is
orthogonal if and only if m is even and charF 6= 2.

For example, if B is a quaternion algebra, i.e., n = 2, then m = 1 hence λmB =
B and τ∧m = τ . The algebra D(B, τ) is the unique quaternion F -subalgebra of B
such that B = D(B, τ)⊗F K and τ = γ0⊗ ι where γ0 is the canonical (conjugation)
involution on D(B, τ): see (??).

To conclude this section, we examine the case where K = F ×F . We may then
assume B = E × Eop for some central simple F -algebra E of degree n = 2m and
τ = ε is the exchange involution. Note that there is a canonical isomorphism

(λmE)op = EndE⊗m(E⊗msm)op ∼−→ End(Eop)⊗m

(
(Eop)⊗msopm

)
= λm(Eop)

which identifies fop ∈ (λmE)op with the endomorphism of (Eop)⊗msopm which maps
sopm to (sfm)op (thus, (sopm )f

op

= (sfm)op) (see Exercise ?? of Chapter I). Therefore,
the notation λmEop is not ambiguous. We may then set

λmB = λmE × λmEop

and define the canonical involution γ on λmB by means of the canonical involution
γE on λmE:

γ(x, yop) =
(
γE(x), γE(y)op

)
for x, y ∈ λmE.

Similarly, if charF = 2 and m ≥ 2, the canonical pair (γE , fE) on λmE (see (??))
induces a canonical quadratic pair (γ, f) on λmB by

f(x, yop) =
(
fE(x), fE(y)

)
∈ F × F for x, y ∈ Sym(λmE, γ).

We also define the involution ε∧m on λmB as the exchange involution on λmE ×
λmEop:

ε∧m(x, yop) = (y, xop) for x, y ∈ λmE.
The involutions ε∧m and γ thus commute, hence their composite θ = ε∧m ◦ γ is an
F -automorphism of order 2 on λmB. The invariant elements form the F -subalgebra

D(B, ε) = {
(
x, γ(x)op

)
| x ∈ λmE } ' λmE.(10.31)

The involutions ε∧m and γ coincide on this subalgebra and induce an involution
which we denote ε.

The following proposition shows that these definitions are compatible with the
notions defined previously in the case where K is a field:

(10.32) Proposition. Let (B, τ) be a central simple algebra with involution of

the second kind over a field F . Suppose the center K of B is a field. The K-

algebra isomorphism ϕ : (BK , τK) ∼−→ (B × Bop, ε) of (??) which maps x ⊗ k to(
xk,

(
τ(x)k

)op)
induces a K-algebra isomorphism

λmϕ : (λmB)K
∼−→ λmB × λmBop

mapping x ⊗ k to
(
xk,

(
τ∧m(x)k

)op)
. This isomorphism is compatible with the

canonical involution and the canonical quadratic pair (if charF = 2 and m ≥ 2),
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and satisfies λmϕ ◦ τ∧mK = ε∧m ◦ λmϕ. Therefore, λmϕ induces an isomorphism of

K-algebras with involution
(
D(B, τ)K , τK

) ∼−→
(
D(B ×Bop, ε), ε

)

and also, if charF = 2 and m ≥ 2, an isomorphism of K-algebras with quadratic

pair
(
D(B, τ)K , τK , (fD)K

) ∼−→
(
D(B ×Bop, ε), ε, f

)
.

Proof : The fact that λmϕ is compatible with the canonical involution and the
canonical pair follows from (??); the equation λmϕ◦τ∧mK = ε∧m ◦λmϕ is clear from
the definition of λmϕ.

10.F. The Brauer class of the discriminant algebra. An explicit descrip-
tion of the discriminant algebra of a central simple algebra with involution of the
second kind is known only in very few cases: quaternion algebras are discussed after
(??) above, and algebras of degree 4 are considered in §??. Some general results
on the Brauer class of a discriminant algebra are easily obtained however, as we
proceed to show. In particular, we establish the relation between the discriminant
algebra and the discriminant of hermitian forms mentioned in the introduction.

Notation is as in the preceding subsection. Thus, let (B, τ) be a central simple
algebra with involution of the second kind of even degree n = 2m over an arbi-
trary field F , and let K be the center of B. For any element d = δ · N(K/F ) ∈
F×/N(K/F ), we denote by (K, d)F (or (K, δ)F ) the quaternion algebra K ⊕Kz
where multiplication is defined by zx = ι(x)z for x ∈ K and z2 = δ. Thus,

(K, d)F =

{
(α, δ)F if charF 6= 2 and K ' F [X ]/(X2 − α),

[α, δ)F if charF = 2 and K ' F [X ]/(X2 +X + α).

(In particular, (K, d)F splits if K ' F × F ). We write ∼ for Brauer-equivalence.

(10.33) Proposition. Suppose B = B0 ⊗F K and τ = τ0 ⊗ ι for some central

simple F -algebra B0 with involution τ0 of the first kind of orthogonal type; then

D(B, τ) ∼ λmB0 ⊗F (K, disc τ0)F .

Proof : We have λmB = λmB0 ⊗F K, τ∧m = τ∧m0 ⊗ ι and γ = γ0 ⊗ IdK where γ0

is the canonical involution on λmB0, hence also θ = θ0 ⊗ ι where θ0 = τ∧m0 ◦ γ0.
Since θ0 leaves F elementwise invariant and θ2

0 = Id, we have θ0 = Int(t) for some
t ∈ (λmB0)

× such that t2 ∈ F×. After scalar extension to a splitting field L of B0

in which F is algebraically closed, (??) yields t = uξ for some ξ ∈ L× and some
u ∈ (λmB0 ⊗ L)× such that u2 · L×2 = disc τ0. Therefore, letting δ = t2 ∈ F×, we
have δ · L×2 = disc τ0, hence

δ · F×2 = disc τ0,

since F is algebraically closed in L. The proposition then follows from the following
general result:

(10.34) Lemma. Let A = A0 ⊗F K be a central simple K-algebra and let t ∈ A×0
be such that t2 = δ ∈ F×. The F -subalgebra A′ ⊂ A of elements invariant under

Int(t)⊗ ι is Brauer-equivalent to A0 ⊗F (K, δ)F .
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Proof : Let (K, δ)F = K ⊕Kz where zx = ι(x)z for x ∈ K and z2 = δ, and let
A1 = A0 ⊗ (K, δ)F . The centralizer of K ⊂ (K, δ)F , viewed as a subalgebra in A1,
is

CA1K = A0 ⊗F K,
which may be identified with A. The algebra A′ is then identified with the central-
izer of K and tz.

Claim. The subalgebra M ⊂ A1 generated by K and tz is a split quaternion
algebra.

Since t ∈ A×0 , the elements t and z commute, and tzx = ι(x)tz for x ∈ K.
Moreover, t2 = δ = z2, hence (tz)2 = δ2 ∈ F×2. Therefore, M ' (K, δ2)F , proving
the claim.

Since A′ is the centralizer of M in A1, Theorem (??) yields

A1 ' A′ ⊗F M.

The lemma then follows from the claim.

The split case B = EndK(V ) is a particular case of (??):

(10.35) Corollary. For every nonsingular hermitian space (V, h) of even dimen-

sion over K,

D
(
EndK(V ), σh

)
∼ (K, disch)F

where disch is defined in the introduction to this section.

Proof : Let V0 ⊂ V be the F -subspace spanned by an orthogonal K-basis of V .
The hermitian form h restricts to a nonsingular symmetric bilinear form h0 on V0

and we have

EndK(V ) = EndF (V0)⊗F K, σh = σ0 ⊗ ι
where σ0 = σh0 is the adjoint involution with respect to h0. By (??),

D
(
EndK(V ), σh

)
∼ (K, disch0)F .

The corollary follows, since disch = disch0 ·N(K/F ) ∈ F×/N(K/F ).

(10.36) Corollary. For all u ∈ Sym(B, τ) ∩ B×,

D
(
B, Int(u) ◦ τ

)
∼ D(B, τ) ⊗F

(
K,NrdB(u)

)
F
.

Proof : If K ' F ×F , each side is split. We may thus assume K is a field. Suppose
first B = EndK(V ) for some vector space V , and let h be a nonsingular hermitian
form on V such that τ = σh. The involution Int(u) ◦ τ is then adjoint to the
hermitian form h′ defined by

h′(x, y) = h
(
x, u−1(y)

)
for x, y ∈ V .

Since the Gram matrix of h′ is the product of the Gram matrix of h by the matrix
of u−1, it follows that

disch′ = disch detu−1 = disch detu ∈ F×/N(K/F ).

The corollary then follows from (??) by multiplicativity of the quaternion symbol.
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The general case is reduced to the split case by a suitable scalar extension. Let
X = RK/F

(
SB(B)

)
be the Weil transfer (or restriction of scalars) of the Severi-

Brauer variety of B (see Scheiderer [?, §4] for a discussion of the Weil transfer) and
let L = F (X) be the function field of X . We have

B ⊗F L = B ⊗K K
(
SB(B)×K SB(ιB)

)
,

hence BL is split. Therefore, the split case considered above shows that the F -
algebra

A = D(B, τ) ⊗F
(
K,NrdB(u)

)
F
⊗F D

(
B, Int(u) ◦ τ

)op

is split by L. However, the kernel of the scalar extension map Br(F ) → Br(L) is
the image under the norm map of the kernel of the scalar extension map Br(K)→
Br

(
K

(
SB(B)

))
(see Merkurjev-Tignol [?, Corollary 2.12]). The latter is known

to be generated by the Brauer class of B (see for instance Merkurjev-Tignol [?,
Corollary 2.7]), and NK/F (B) splits since B has an involution of the second kind
(see (??)). Therefore, the map Br(F )→ Br(L) is injective, hence A is split.

§11. Trace Form Invariants

The invariants of involutions defined in this section are symmetric bilinear forms
derived from the reduced trace. Let A be a central simple algebra over an arbitrary
field F and let σ be an involution of any kind on A. Our basic object of study is
the form

T(A,σ) : A×A→ F

defined by

T(A,σ)(x, y) = TrdA
(
σ(x)y

)
for x, y ∈ A.

Since σ
(
TrdA

(
σ(y)x

))
= TrdA

(
σ(x)y

)
, by (??) and (??), the form T(A,σ) is sym-

metric bilinear if σ is of the first kind and hermitian with respect to σ|F if σ is
of the second kind. It is nonsingular in each case, since the bilinear trace form
TA(x, y) = TrdA(xy) is nonsingular, as is easily seen after scalar extension to a
splitting field of A.

More generally, for any u ∈ Sym(A, σ) we set

T(A,σ,u)(x, y) = TrdA
(
σ(x)uy

)
for x, y ∈ A.

The form T(A,σ,u) also is symmetric bilinear if σ is of the first kind and hermitian
if σ is of the second kind, and it is nonsingular if and only if u is invertible.

How much information on σ can be derived from the form T(A,σ) is suggested
by the following proposition, which shows that T(A,σ) determines σ ⊗ σ if σ is of
the first kind. To formulate a more general statement, we denote by ι = σ|F the
restriction of σ to F , by ιA = { ιa | a ∈ A } the conjugate algebra of A (see §??)
and by ισ the involution on ιA defined by

ισ(ιa) = ι
(
σ(a)

)
for a ∈ A.

(11.1) Proposition. Under the isomorphism σ∗ : A⊗ ιA ∼−→ EndF (A) such that

σ∗(a⊗ ιb)(x) = axσ(b),

the involution σ ⊗ ισ corresponds to the adjoint involution with respect to the form

T(A,σ). More generally, for all u ∈ Sym(A, σ)∩A×, the involution
(
Int(u−1)◦σ

)
⊗ισ
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corresponds to the adjoint involution with respect to the form T(A,σ,u) under the

isomorphism σ∗.

Proof : The proposition follows by a straightforward computation: for a, b, x, y ∈ A,

T(A,σ,u)

(
σ∗(a⊗ b)(x), y

)
= TrdA

(
bσ(x)σ(a)uy

)

and

T(A,σ,u)

(
x, σ∗

(
Int(u−1) ◦ σ(a) ⊗ σ(b)

)
(y)

)
= TrdA

(
σ(x)u

(
u−1σ(a)u

)
yb

)
.

The equality of these expressions proves the proposition. (Note that the first part
(i.e., the case where u = 1) was already shown in (??)).

On the basis of this proposition, we define below the signature of an involution
σ as the square root of the signature of T(A,σ). We also show how the form T(A,σ)

can be used to determine the discriminant of σ (if σ is of orthogonal type and
charF 6= 2) or the Brauer class of the discriminant algebra of (A, σ) (if σ is of the
second kind).

11.A. Involutions of the first kind. In this section, σ denotes an involution
of the first kind on a central simple algebra A over a field F . We set T+

σ and T−σ
for the restrictions of the bilinear trace form T(A,σ) to Sym(A, σ) and Skew(A, σ)
respectively; thus

T+
σ (x, y) = TrdA

(
σ(x)y

)
= TrdA(xy) for x, y ∈ Sym(A, σ)

T−σ (x, y) = TrdA
(
σ(x)y

)
= −TrdA(xy) for x, y ∈ Skew(A, σ).

Also let TA denote the symmetric bilinear trace form on A:

TA(x, y) = TrdA(xy) for x, y ∈ A,

so that T+
σ (x, y) = TA(x, y) for x, y ∈ Sym(A, σ) and T−σ (x, y) = −TA(x, y) for x,

y ∈ Skew(A, σ).

(11.2) Lemma. Alt(A, σ) is the orthogonal space of Sym(A, σ) in A for each of

the bilinear forms T(A,σ) and TA. Consequently,

(1) if charF = 2, the form T+
σ = T−σ is singular;

(2) if charF 6= 2, the forms T+
σ and T−σ are nonsingular and there are orthogonal

sum decompositions

(
A, T(A,σ)

)
=

(
Sym(A, σ), T+

σ

) ⊥
⊕

(
Skew(A, σ), T−σ

)
,

(
A, TA

)
=

(
Sym(A, σ), T+

σ

) ⊥
⊕

(
Skew(A, σ),−T−σ

)
.

Proof : For x ∈ A and y ∈ Sym(A, σ), we have TrdA
(
σ(x)y

)
= TrdA

(
σ(yx)

)
=

TrdA(xy), hence

TA
(
x− σ(x), y

)
= TrdA(xy)− TrdA

(
σ(x)y

)
= 0.

This shows Alt(A, σ) ⊂ Sym(A, σ)⊥ (the orthogonal space for the form TA); the
equality Alt(A, σ) = Sym(A, σ)⊥ follows by dimension count. Since

T(A,σ)

(
x− σ(x), y

)
= −TA

(
x− σ(x), y

)
for x ∈ A, y ∈ Sym(A, σ),

the same arguments show that Alt(A, σ) is the orthogonal space of Sym(A, σ) for
the form T(A,σ).
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(11.3) Examples. (1) Quaternion algebras. Let Q = (a, b)F be a quaternion al-
gebra with canonical involution γ over a field F of characteristic different from 2.
Let Q0 denote the vector space of pure quaternions, so that Q0 = Skew(Q, γ). A
direct computation shows that the elements i, j, k of the usual quaternion basis
are orthogonal for T(Q,γ), hence T+

γ and T−γ have the following diagonalizations:

T+
γ = 〈2〉 and T−γ = 〈2〉 · 〈−a,−b, ab〉.

Now, let σ = Int(i) ◦ γ. Then Skew(Q, σ) = i · F , and Sym(Q, σ) has 1, j, k as
orthogonal basis. Therefore,

T+
σ = 〈2〉 · 〈1, b,−ab〉 and T−σ = 〈−2a〉.

(2) Biquaternion algebras. Let A = (a1, b1)F ⊗F (a2, b2)F be a tensor product of
two quaternion F -algebras and σ = γ1 ⊗ γ2, the tensor product of the canonical
involutions. Let (1, i1, j1, k1) and (1, i2, j2, k2) denote the usual quaternion bases of
(a1, b1)F and (a2, b2)F respectively. The element 1 and the products ξ ⊗ η where
ξ and η independently range over i1, j1, k1, and i2, j2, k2, respectively, form an
orthogonal basis of Sym(A, σ) for the form T+

σ . Similarly, i1 ⊗ 1, j1 ⊗ 1, k1 ⊗ 1,
1⊗ i2, 1⊗ j2, 1⊗ k2 form an orthogonal basis of Skew(A, σ). Therefore,

T+
σ = 〈1〉 ⊥ 〈a1, b1,−a1b1〉 · 〈a2, b2,−a2b2〉

and

T−σ = 〈−a1,−b1, a1b1,−a2,−b2, a2b2〉.
(Note T−σ is not an Albert form of A as discussed in §??, unless −1 ∈ F×2).

As a further example, consider the split orthogonal case in characteristic dif-
ferent from 2. If b is a nonsingular symmetric bilinear form on a vector space V ,
we consider the forms bS2 and b∧2 defined on the symmetric square S2V and the

exterior square
∧2

V respectively by

bS2(x1 · x2, y1 · y2) = b(x1, y1)b(x2, y2) + b(x1, y2)b(x2, y1),

b∧2(x1 ∧ x2, y1 ∧ y2) = b(x1, y1)b(x2, y2)− b(x1, y2)b(x2, y1)

for x1, x2, y1, y2 ∈ V . (The form b∧2 has already been considered in §??). Assuming

charF 6= 2, we embed S2V and
∧2

V in V ⊗ V by mapping x1 · x2 to 1
2 (x1 ⊗ x2 +

x2 ⊗ x1) and x1 ∧ x2 to 1
2 (x1 ⊗ x2 − x2 ⊗ x1) for x1, x2 ∈ V .

(11.4) Proposition. Suppose charF 6= 2 and let (A, σ) =
(
EndF (V ), σb

)
. The

standard identification ϕb : V ⊗ V ∼−→ A of (??) induces isometries of bilinear

spaces
(
V ⊗ V, b⊗ b

) ∼−→
(
A, T(A,σ)

)
,

(
S2V, 1

2b
S2

) ∼−→
(
Sym(A, σ), T+

σ

)
,

(∧2
V, 1

2b
∧2

) ∼−→
(
Skew(A, σ), T−σ

)
.

Proof : As observed in (??), we have σ
(
ϕb(x1 ⊗ x2)

)
= ϕb(x2 ⊗ x1) and

TrdA
(
ϕb(x1 ⊗ x2)

)
= b(x2, x1) = b(x1, x2) for x1, x2 ∈ V .

Therefore,

T(A,σ)

(
ϕb(x1 ⊗ x2), ϕb(y1 ⊗ y2)

)
= b(x1, y1)b(x2, y2) for x1, x2, y1, y2 ∈ V ,

proving the first isometry. The other isometries follow by similar computations.
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Diagonalizations of bS2 and b∧2 are easily obtained from a diagonalization of b:
if b = 〈α1, . . . , αn〉, then

bS2 = n〈2〉 ⊥ (⊥1≤i<j≤n〈αiαj〉) and b∧2 = ⊥1≤i<j≤n〈αiαj〉.

Therefore, det bS2 = 2n(det b)n−1 and det b∧2 = (det b)n−1.

(11.5) Proposition. Let (A, σ) be a central simple algebra with involution of or-

thogonal type over a field F of characteristic different from 2. If degA is even,

then

detT+
σ = detT−σ = 2degA/2 det σ.

Proof : By extending scalars to a splitting field L in which F is algebraically closed
(so that the induced map F×/F×2 → L×/L×2 is injective), we reduce to considering
the case where A is split. If (A, σ) =

(
EndF (V ), σb

)
, then detσ = det b by (??),

and the computations above, together with (??), show that

detT+
σ = detT−σ = 2−n(n−1)/2(det b)n−1 = 2n/2 det b in F×/F×2,

where n = degA.

As a final example, we compute the form T(A,σ,u) for a quaternion algebra with
orthogonal involution. This example is used in §?? (see (??)). In the following
statement, we denote by WF the Witt ring of nonsingular bilinear forms over F .

(11.6) Proposition. Let Q be a quaternion algebra over a field F of arbitrary

characteristic, let σ be an orthogonal involution on Q and v ∈ Sym(Q, σ) ∩ Q×.

For all s ∈ Q× such that σ(s) = s = −γ(s),

T(Q,σ,v) ' 〈TrdQ(v)〉 · 〈〈NrdQ(vs), discσ〉〉 if TrdQ(v) 6= 0;

T(Q,σ,v) = 〈〈NrdQ(vs), discσ〉〉 = 0 in WF if TrdQ(v) = 0.

Proof : Let γ be the canonical (symplectic) involution onQ and let u ∈ Skew(Q, γ)r
F be such that σ = Int(u) ◦ γ. The discriminant discσ is therefore represented in
F×/F×2 by −NrdQ(u) = u2. Since σ(v) = v, we have v = uγ(v)u−1, hence
TrdQ(vu) = 0. A computation shows that 1, u are orthogonal for the form T(Q,σ,v).
Since further T(Q,σ,v)(1, 1) = TrdQ(v) and T(Q,σ,v)(u, u) = TrdQ(v) NrdQ(u), the
subspace spanned by 1, u is totally isotropic if TrdQ(v) = 0, hence T(Q,σ,v) is
metabolic in this case. If TrdQ(v) 6= 0, a direct calculation shows that for all
s ∈ Q× as above,

(
1, u, γ(v)s, γ(v)su

)
is an orthogonal basis of Q which yields the

diagonalization

T(Q,σ,v) ' 〈TrdQ(v)〉 · 〈1,NrdQ(u),−NrdQ(vs),−NrdQ(vsu)〉.

To complete the proof, we observe that if TrdQ(v) = 0, then v and s both anti-
commute with u, hence vs ∈ F [u] and therefore NrdQ(vs) is a norm from F [u]; it
follows that

〈〈NrdQ(vs), u2〉〉 = 0 in WF.
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The signature of involutions of the first kind. Assume now that the base
field F has an ordering P , so char(F ) = 0. (See Scharlau [?, §2.7] for background
information on ordered fields.) To every nonsingular symmetric bilinear form b
there is classically associated an integer sgnP b called the signature of b at P (or
with respect to P ): it is the difference m+−m− wherem+ (resp.m−) is the number
of positive (resp. negative) entries in any diagonalization of b.

Our goal is to define the signature of an involution in such a way that in the
split case A = EndF (V ), the signature of the adjoint involution with respect to a
symmetric bilinear form b is the absolute value of the signature of b:

sgnP σb = |sgnP b| .
(Note that σb = σ−b and sgnP (−b) = − sgnP b, so sgnP b is not an invariant of σb).

(11.7) Proposition. For any involution σ of the first kind on A, the signature of

the bilinear form T(A,σ) at P is a square in Z. If A is split : A = EndF (V ) and

σ = σb is the adjoint involution with respect to some nonsingular bilinear form b
on V , then

sgnP T(A,σ) =

{
(sgnP b)

2 if σ is orthogonal,

0 if σ is symplectic.

Proof : When A is split and σ is orthogonal, (??) yields an isometry T(A,σ) ' b⊗ b
from which the formula for sgnP T(A,σ) follows. When A is split and σ is symplectic,

we may find an isomorphism (A, σ) '
(
EndF (V ), σb

)
for some vector space V and

some nonsingular skew-symmetric form b on V . The same argument as in (??)
yields an isometry (A, T(A,σ)) ' (V ⊗ V, b ⊗ b). In this case, b ⊗ b is hyperbolic.

Indeed, if U ⊂ V is a maximal isotropic subspace for b, then dimU = 1
2 dim V and

U ⊗ V is an isotropic subspace of V ⊗ V of dimension 1
2 dim(V ⊗ V ). Therefore,

sgnP T(A,σ) = 0.
In the general case, consider a real closure FP of F for the ordering P . Since

the signature at P of a symmetric bilinear form over F does not change under scalar
extension to FP , we may assume F = FP . The Brauer group of F then has order 2,
the nontrivial element being represented by the quaternion algebra Q = (−1,−1)F .
Since the case where A is split has already been considered, we may assume for the
rest of the proof that A is Brauer-equivalent to Q. According to (??), we then have

(A, σ) '
(
EndQ(V ), σh

)

for some (right) vector space V over Q, and some nonsingular form h on V , which
is hermitian with respect to the canonical involution γ on Q if σ is symplectic, and
skew-hermitian with respect to γ if σ is orthogonal.

Let (ei)1≤i≤n be an orthogonal basis of V with respect to h, and let

h(ei, ei) = qi ∈ Q× for i = 1, . . . , n.

Thus qi ∈ F if σ is symplectic and qi is a pure quaternion if σ is orthogonal. For
i, j = 1, . . . , n, write Eij ∈ EndQ(V ) for the endomorphism which maps ej to ei
and maps ek to 0 if k 6= j. Thus Eij corresponds to the matrix unit eij under the
isomorphism EndQ(V ) 'Mn(Q) induced by the choice of the basis (ei)1≤i≤n.

A direct verification shows that for i, j = 1, . . . , n and q ∈ Q,

σ(Eijq) = Ejiq
−1
j γ(q)qi.
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Therefore, for i, j, k, ` = 1, . . . , n and q, q′ ∈ Q,

T(A,σ)(Eijq, Ek`q
′) =

{
0 if i 6= k or j 6= `,

TrdQ
(
q−1
j γ(q)qiq

′) if i = k and j = `.

We thus have an orthogonal decomposition of EndQ(V ) with respect to the form
T(A,σ):

EndQ(V ) = ⊥1≤i,j≤nEij ·Q.(11.8)

Suppose first that σ is orthogonal, so h is skew-hermitian and qi is a pure quaternion
for i = 1, . . . , n. Fix a pair of indices (i, j). If qiqj is a pure quaternion, then
Eij and Eijqi span an isotropic subspace of Eij · Q, so Eij · Q is hyperbolic. If
qiqj is not pure, pick a nonzero pure quaternion h ∈ Q which anticommutes with

qjqiq
−1
j . Since Q = (−1,−1)F and F is real-closed, the square of every nonzero

pure quaternion lies in −F×2. For i = 1, . . . , n, let q2i = −α2
i for some αi ∈ F×;

let also h2 = −β2 with β ∈ F . Then Eij(αjβ + qjh) and Eijqi(αjβ + qjh) span a
2-dimensional isotropic subspace of Eij ·Q, so again Eij ·Q is hyperbolic. We have
thus shown that the form T(A,σ) is hyperbolic on EndQ(V ) when σ is orthogonal,
hence sgnP T(A,σ) = 0 in this case.

If σ is symplectic, then qi ∈ F× for all i = 1, . . . , n, hence

T(A,σ)(Eijq, Eijq) = TrdQ
(
γ(q)q

)
q−1
j qi = 2 NrdQ(q)q−1

j qi

for all i, j = 1, . . . , n. From (??) it follows that

T(A,σ) ' 〈2〉 ·NQ · 〈q1, . . . , qn〉 · 〈q1, . . . , qn〉
whereNQ is the reduced norm form ofQ. SinceQ = (−1,−1)F , we haveNQ ' 4〈1〉,
hence the preceding relation yields

sgnP T(A,σ) = 4
(
sgnP 〈q1, . . . , qn〉

)2
.

(11.9) Remark. In the last case, the signature of the F -quadratic form 〈q1, . . . , qn〉
is an invariant of the hermitian form h on V : indeed, the form h induces a quadratic
form hF on V , regarded as an F -vector space, by

hF (x) = h(x, x) ∈ F,
since h is hermitian. Then

hF ' 4〈q1, . . . , qn〉,
so sgnP hF = 4 sgnP 〈q1, . . . , qn〉. Let

sgnP h = sgnP 〈q1, . . . , qn〉.
The last step in the proof of (??) thus shows that if A = EndQ(V ) and σ = σh for
some hermitian form h on V (with respect to the canonical involution on Q), then

sgnP T(A,σ) = 4(sgnP h)
2.

(11.10) Definition. The signature at P of an involution σ of the first kind on A
is defined by

sgnP σ =
√

sgnP T(A,σ).
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By (??), sgnP σ is an integer. Since sgnP T(A,σ) ≤ dimA and sgnP T(A,σ) ≡
dimT(A,σ) mod 2, we have

0 ≤ sgnP σ ≤ degA and sgnP σ ≡ degA mod 2.

From (??), we further derive:

(11.11) Corollary. Let FP be a real closure of F for the ordering P .

(1) Suppose A is not split by FP ;

(a) if σ is orthogonal, then sgnP σ = 0;
(b) if σ is symplectic and σ ⊗ IdFP = σh for some hermitian form h over the

quaternion division algebra over FP , then sgnP σ = 2 |sgnP h|.
(2) Suppose A is split by FP ;

(a) if σ is orthogonal and σ ⊗ IdFP = σb for some symmetric bilinear form b
over FP , then sgnP σ = |sgnP b|;

(b) if σ is symplectic, then sgnP σ = 0.

11.B. Involutions of the second kind. In this section we consider the case
of central simple algebras with involution of the second kind (B, τ) over an arbitrary
field F . Let K be the center of B and ι the nontrivial automorphism of K over F .
The form T(B,τ) is hermitian with respect to ι. Let Tτ be its restriction to the space
of symmetric elements. Thus,

Tτ : Sym(B, τ) × Sym(B, τ)→ F

is a symmetric bilinear form defined by

Tτ (x, y) = TrdB
(
τ(x)y

)
= TrdB(xy) for x, y ∈ Sym(B, τ).

Since multiplication in B yields a canonical isomorphism of K-vector spaces

B = Sym(B, τ)⊗F K,
the hermitian form T(B,τ) can be recaptured from the bilinear form Tτ :

T(B,τ)

(∑
i xiαi,

∑
j yjβj

)
=

∑
i,j ι(αi)Tτ (xi, yj)βj

for xi, yj ∈ Sym(B, τ) and αi, βj ∈ K. Therefore, the form Tτ is nonsingular.
Moreover, there is no loss of information if we focus on the bilinear form Tτ instead
of the hermitian form T(B,τ).

(11.12) Examples. (1) Quaternion algebras. Suppose charF 6= 2 and let Q0 =
(a, b)F be a quaternion algebra over F , with canonical involution γ0. Define an
involution τ of the second kind on Q = Q0⊗F K by τ = γ0⊗ ι. (According to (??),
every involution of the second kind on a quaternion K-algebra is of this type for a
suitable quaternion F -subalgebra). Let K ' F [X ]/(X2 − α) and let z ∈ K satisfy
z2 = α (and ι(z) = −z). If (1, i, j, k) is the usual quaternion basis of Q0, the
elements 1, iz, jz, kz form an orthogonal basis of Sym(Q, τ) with respect to Tτ ,
hence

Tτ = 〈2〉 · 〈1, aα, bα,−abα〉.
If charF = 2, Q0 = [a, b)F and K = F [X ]/(X2 +X + α), let (1, i, j, k) be the

usual quaternion basis of Q0 and let z ∈ K be an element such that z2 + z = α
and ι(z) = z + 1. A computation shows that the elements z + i, 1 + z + i + j,
1 + z+ i+ kb−1 and 1 + z+ i+ j + kb−1 form an orthogonal basis of Sym(B, τ) for
the form Tτ , with respect to which Tτ has the diagonalization

Tτ = 〈1, 1, 1, 1〉.
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(2) Exchange involution. Suppose (B, τ) = (E × Eop, ε) where ε is the exchange
involution:

ε(x, yop) = (y, xop) for x, y ∈ E.

The space of symmetric elements is canonically isomorphic to E:

Sym(B, τ) = { (x, xop) | x ∈ E } = E

and since TrdB(x, yop) =
(
TrdE(x),TrdE(y)

)
, the form Tτ is canonically isometric

to the reduced trace bilinear form on E:

Tτ
(
(x, xop), (y, yop)

)
= TrdE(xy) = TE(x, y) for x, y ∈ E.

As a further example, we consider the case of split algebras. Let V be a (finite
dimensional) K-vector space with a nonsingular hermitian form h. Define a K-
vector space ιV by

ιV = { ιv | v ∈ V }
with the operations

ιv + ιw = ι(v + w) (ιv)α = ι
(
vι(α)

)
for v, w ∈ V , α ∈ K.

(Compare with §?? and §??). The hermitian form h induces on the vector space
V ⊗K ιV a nonsingular hermitian form h⊗ ιh defined by

(h⊗ ιh)(v1 ⊗ ιv2, w1 ⊗ ιw2) = h(v1, w1)ι
(
h(v2, w2)

)
for v1, v2, w1, w2 ∈ V .

Let s : V ⊗K ιV → V ⊗K ιV be the switch map

s(v1 ⊗ ιv2) = v2 ⊗ ιv1 for v1, v2 ∈ V .

The norm of V is then defined as the F -vector space of s-invariant elements
(see (??)):

NK/F (V ) = {x ∈ V ⊗K ιV | s(x) = x }.
Since (h⊗ ιh)(v2 ⊗ ιv1, w2 ⊗ ιw1) = ι

(
(h⊗ ιh)(v1 ⊗ ιv2, w1 ⊗ ιw2)

)
, it follows that

(h⊗ ιh)
(
s(x), s(y)

)
= ι

(
(h⊗ ιh)(x, y)

)
for x, y ∈ V ⊗K ιV .

Therefore, the restriction of the form h ⊗ ιh to the F -vector space NK/F (V ) is a
symmetric bilinear form

NK/F (h) : NK/F (V )×NK/F (V )→ F.

The following proposition follows by straightforward computation:

(11.13) Proposition. Let z ∈ K r F and let (ei)1≤i≤n be an orthogonal K-basis

of V . For i, j = 1, . . . , n, let Vi = (ei ⊗ ei) · F ⊂ V ⊗K ιV and let

Vij = (ei ⊗ ιej + ej ⊗ ιei) · F ⊕
(
eiz ⊗ ιej + ejι(z)⊗ ιei

)
· F ⊂ V ⊗K ιV.

There is an orthogonal decomposition of NK/F (V ) for the bilinear form NK/F (h):

NK/F (V ) =
( ⊥⊕

1≤i≤n
Vi

) ⊥
⊕

( ⊥⊕

1≤i<j≤n
Vij

)
.

Moreover, Vi ' 〈1〉 for all i. If charF = 2, then Vij is hyperbolic; if charF 6= 2,
then if K ' F [X ]/(X2 − α) we have

Vij '
〈
2h(ei, ei)h(ej , ej)

〉
· 〈1,−α〉.
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Therefore, letting δi = h(ei, ei) for i = 1, . . . , n,

NK/F (h) '
{
n2〈1〉 if charF = 2,

n〈1〉 ⊥ 〈2〉 · 〈1,−α〉 ·
(
⊥1≤i<j≤n〈δiδj〉

)
if charF 6= 2.

Consider now the algebra B = EndK(V ) with the adjoint involution τ = σh
with respect to h.

(11.14) Proposition. The standard identification ϕh : V ⊗K ιV ∼−→ B of (??) is

an isometry of hermitian spaces

(V ⊗F ιV, h⊗ ιh) ∼−→ (B, T(B,τ))

and induces an isometry of bilinear spaces
(
NK/F (V ), NK/F (h)

) ∼−→
(
Sym(B, τ), Tτ

)
.

Proof : For x = ϕh(v1 ⊗ ιv2) and y = ϕh(w1 ⊗ ιw2) ∈ B,

T(B,τ)(x, y) = TrdB
(
ϕh(v2 ⊗ ιv1) ◦ ϕh(w1 ⊗ ιw2)

)
= h(v1, w1)ι

(
h(v2, w2)

)
,

hence

T(B,τ)

(
ϕh(ξ), ϕh(η)

)
= (h⊗ ιh)(ξ, η) for ξ, η ∈ V ⊗ ιV .

Therefore, the standard identification is an isometry

ϕh : (V ⊗ ιV, h⊗ ιh) ∼−→ (B, T(B,τ)).

Since the involution τ corresponds to the switch map s, this isometry restricts to an
isometry between the F -subspaces of invariant elements under s on the one hand
and under τ on the other.

(11.15) Remark. For u ∈ Sym(B, τ)∩B×, the form hu(x, y) = h
(
u(x), y

)
on V is

hermitian with respect to the involution τu = Int(u−1) ◦ τ . The same computation
as above shows that ϕh is an isometry of hermitian spaces

(V ⊗ ιV, hu ⊗ ιh) ∼−→ (B, T(B,τ,u))

where (hu⊗ ιh)(v1⊗ ιv2, w1⊗ ιw2) = hu(v1, w1)ι
(
h(v2, w2)

)
for v1, v2, w1, w2 ∈ V .

In particular, since the Gram matrix of hu with respect to any basis of V is the
product of the Gram matrix of h by the matrix of u, it follows that detT(B,τ,u) =

(detu)dimV det(h⊗ ιh), hence

detT(B,τ,u) = (detu)dimV ·N(K/F ) ∈ F×/N(K/F ).

(11.16) Corollary. Let (B, τ) be a central simple algebra of degree n with involu-

tion of the second kind over F . Let K be the center of B.

(1) The determinant of the bilinear form Tτ is given by

detTτ =

{
1 · F×2 if charF = 2,

(−α)n(n−1)/2 · F×2 if charF 6= 2 and K ' F [X ]/(X2 − α).

(2) For u ∈ Sym(B, τ) ∩ B×, the determinant of the hermitian form T(B,τ,u) is

detT(B,τ,u) = NrdB(u)degB ·N(K/F ) ∈ F×/N(K/F ).
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Proof : (??) As in (??), the idea is to extend scalars to a splitting field L of B in
which F is algebraically closed, and to conclude by (??). The existence of such a
splitting field has already been observed in (??): we may take for L the function
field of the (Weil) transfer of the Severi-Brauer variety of B if K is a field, or the
function field of the Severi-Brauer variety of E if B ' E ×Eop.

(??) For the same splitting field L as above, the extension of scalars map
Br(F )→ Br(L) is injective, by Merkurjev-Tignol [?, Corollary 2.12] (see the proof
of (??)). Therefore, the quaternion algebra

(
K, detT(B,τ,u) NrdB(u)degB

)
F

splits, since Remark (??) shows that it splits over L.

The same reduction to the split case may be used to relate the form Tτ to the
discriminant algebra D(B, τ), which is defined when the degree of B is even. In
the next proposition, we assume charF 6= 2, so that the bilinear form Tτ defines a
nonsingular quadratic form

Qτ : Sym(B, τ)→ F

by

Qτ (x) = Tτ (x, x) for x ∈ Sym(B, τ).

(11.17) Proposition. Let (B, τ) be a central simple algebra with involution of

the second kind over a field F of characteristic different from 2, and let K be

the center of B, say K ' F [X ]/(X2 − α). Assume that the degree of (B, τ) is

even: deg(B, τ) = n = 2m. Then the (full) Clifford algebra of the quadratic space(
Sym(B, τ), Qτ

)
and the discriminant algebra D(B, τ) are related as follows :

C
(
Sym(B, τ), Qτ

)
∼ D(B, τ)⊗F

(
−α, 2m(−1)m(m−1)/2

)
F
,

where ∼ is Brauer-equivalence.

Proof : Suppose first that K is a field. By extending scalars to the function field L
of the transfer of the Severi-Brauer variety of B, we reduce to considering the split
case. For, L splits B and the scalar extension map Br(F ) → Br(L) is injective, as
observed in (??).

We may thus assume that B is split: let B = EndK(V ) and τ = σh for some
nonsingular hermitian form h on V . If (ei)1≤i≤n is an orthogonal basis of V and
h(ei, ei) = δi for i = 1, . . . , n, then (??) yields

D(B, τ) ∼
(
α, (−1)n(n−1)/2d

)
F

=
(
α, (−1)md

)
F

(11.18)

where we have set d = δ1 . . . δn. On the other hand, (??) and (??) yield

Qτ ' n〈1〉 ⊥ 〈2〉 · 〈1,−α〉 · q,
where q = ⊥1≤i<j≤n〈δiδj〉. From known formulas for the Clifford algebra of a direct
sum (see for instance Lam [?, Chapter 5, §2]), it follows that

C(Qτ ) ' C
(
n〈1〉

)
⊗F C

(〈
2(−1)m

〉
· 〈1,−α〉 · q

)
.(11.19)

Let IF be the fundamental ideal of even-dimensional forms in the Witt ring WF
and let InF = (IF )n. Let d′ ∈ F× be a representative of disc(q). Since n = 2m,
we have

d′ ≡ (−1)m(m−1)/2d mod F×2.
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hence

q ≡
{
〈1,−d′〉 mod I2F if m is even,

〈d′〉 mod I2F if m is odd.

Therefore, the form
〈
2(−1)m

〉
· 〈1,−α〉 · q is congruent modulo I3F to

{
〈1,−α〉 · 〈1,−d′〉 if m is even,

〈1,−α〉 · 〈−2d′〉 if m is odd.

Since quadratic forms which are congruent modulo I3F have Brauer-equivalent
Clifford algebras (see Lam [?, Chapter 5, Cor. 3.4]) it follows that

C
(〈

2(−1)m〉 · 〈1,−α〉 · q
)
∼

{
(α, d′)F if m is even,

(α,−2d′)F if m is odd.

On the other hand,

C
(
n〈1〉

)
∼ (−1,−1)

⊗m(m−1)/2
F ,

hence the required equivalence follows from (??) and (??).
To complete the proof, consider the case where K ' F × F . Then, there is a

central simple F -algebraE of degree n = 2m such that (B, τ) ' (E×Eop, ε) where ε
is the exchange involution. As we observed in (??), we then have

(
Sym(B, τ), Qτ

)
'

(E,QE) where QE(x) = TrdE(x2) for x ∈ E. Moreover, D(B, τ) ' λmE ∼ E⊗m.
Since α ∈ F×2 and (−1, 2)F is split, the proposition reduces to

C(E,QE) ∼ E⊗m ⊗F (−1,−1)
⊗m(m−1)/2
F .

This formula has been proved by Saltman (unpublished), Serre [?, Annexe, p. 167],
Lewis-Morales [?] and Tignol [?].

Algebras of odd degree. When the degree of B is odd, no discriminant of
(B, τ) is defined. However, we may use the fact that B is split by a scalar extension
of odd degree, together with Springer’s theorem on the behavior of quadratic forms
under odd-degree extensions, to get some information on the form Tτ . Since the
arguments rely on Springer’s theorem, we need to assume charF 6= 2 in this section.
We may therefore argue in terms of quadratic forms instead of symmetric bilinear
forms, associating to the bilinear form Tτ the quadratic form Qτ (x) = Tτ (x, x).

(11.20) Lemma. Suppose charF 6= 2. Let L/F be a field extension of odd degree

and let q be a quadratic form over F . Let qL be the quadratic form over L derived

from q by extending scalars to L, and let α ∈ F× r F×2. If qL ' 〈1,−α〉 · h for

some quadratic form h over L, of determinant 1, then there is a quadratic form t
of determinant 1 over F such that

q ' 〈1,−α〉 · t.
Proof : Let K = F (

√
α) and M = L · K = L(

√
α). Let qan be an anisotropic

form over F which is Witt-equivalent to q. The form (qan)M is Witt-equivalent
to the form

(
〈1,−α〉 · h

)
M

, hence it is hyperbolic. Since the field extension M/K
has odd degree, Springer’s theorem on the behavior of quadratic forms under field
extensions of odd degree (see Scharlau [?, Theorem 2.5.3]) shows that (qan)K is
hyperbolic, hence, by Scharlau [?, Remark 2.5.11],

qan = 〈1,−α〉 · t0
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for some quadratic form t0 over F . Let dim q = 2d, so that dim h = d, and let w
be the Witt index of q, so that

q ' wH⊥ 〈1,−α〉 · t0,(11.21)

where H is the hyperbolic plane. We then have dim t0 = d− w, hence

det q = (−1)w(−α)d−w · F×2 ∈ F×/F×2.

On the other hand, the relation qL ' 〈1,−α〉 · h yields

det qL = (−α)d · L×2 ∈ L×/L×2.

Therefore, αw ∈ F× becomes a square in L; since the degree of L/F is odd, this
implies that αw ∈ F×2, hence w is even. Letting t1 = w

2 H ⊥ t0, we then derive
from (??):

q ' 〈1,−α〉 · t1.
It remains to prove that we may modify t1 so as to satisfy the determinant condition.
Since dim t1 = d, we have

t1 ≡
{
〈1,−(−1)d(d−1)/2 det t1〉 mod I2F if d is even,

〈(−1)d(d−1)/2 det t1〉 mod I2F if d is odd.

We may use these relations to compute the Clifford algebra of q ' 〈1,−α〉 · t1 (up
to Brauer-equivalence): in each case we get the same quaternion algebra:

C(q) ∼
(
α, (−1)d(d−1)/2 det t1

)
F
.

On the other hand, since deth = 1 we derive from qL ' 〈1,−α〉 · h:
C(qL) ∼

(
α, (−1)d(d−1)/2

)
L
.

It follows that the quaternion algebra (α, det t1)F is split, since it splits over the
extension L/F of odd degree. Therefore, if δ ∈ F× is a representative of det t1 ∈
F×/F×2, we have δ ∈ N(K/F ). Let β ∈ F× be a represented value of t1, so that
t1 ' t2 ⊥ 〈β〉 for some quadratic form t2 over F , and let t = t2 ⊥ 〈δβ〉. Then

det t = δ · det t1 = 1.

On the other hand, since δ is a norm from the extensionK/F we have 〈1,−α〉·〈δβ〉 '
〈1,−α〉 · 〈β〉, hence

〈1,−α〉 · t ' 〈1,−α〉 · t1 ' q.

(11.22) Proposition. Let B be a central simple K-algebra of odd degree n =
2m− 1 with an involution τ of the second kind. Then, there is a quadratic form qτ
of dimension n(n− 1)/2 and determinant 1 over F such that

Qτ ' n〈1〉 ⊥ 〈2〉 · 〈1,−α〉 · qτ .
Proof : Suppose first K = F ×F . We may then assume (B, τ) = (E×Eop, ε) where
ε is the exchange involution. In that case Qτ ' QE where QE(x) = TrdE(x2), as
observed in (??). Since α ∈ F×2, we have to show that this quadratic form is Witt-
equivalent to n〈1〉. By Springer’s theorem, it suffices to prove this relation over an
odd-degree field extension. Since the degree of E is odd, we may therefore assume
E is split: E = Mn(F ). In that case, the relation is easy to check. (Observe that
the upper-triangular matrices with zero diagonal form a totally isotropic subspace).
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For the rest of the proof, we may thus assume K is a field. Let D be a division
K-algebra Brauer-equivalent to B and let θ be an involution of the second kind
on D. Let L be a field contained in Sym(D, θ) and maximal for this property. The
fieldM = L·K is then a maximal subfield ofD, since otherwise the centralizerCDM
contains a symmetric element outside M , contradicting the maximality of L. We
have [L :F ] = [M :K] = degD, hence the degree of L/F is odd, since D is Brauer-
equivalent to the algebra B of odd degree. Moreover, the algebra B⊗F L = B⊗KM
splits, since M is a maximal subfield of D. By (??) and (??) the quadratic form
(Qτ )L obtained from Qτ by scalar extension to L has the form

(Qτ )L ' n〈1〉 ⊥ 〈2〉 · 〈1,−α〉 · h(11.23)

where h = ⊥1≤i<j≤n〈aiaj〉 for some a1, . . . , an ∈ L×. Therefore, the Witt index
of the form (Qτ )L ⊥ n〈−1〉 is at least n:

w
(
(Qτ )L ⊥ n〈−1〉

)
≥ n.

By Springer’s theorem the Witt index of a form does not change under an odd-
degree scalar extension. Therefore,

w
(
Qτ ⊥ n〈−1〉

)
≥ n,

and it follows that Qτ contains a subform isometric to n〈1〉. Let

Qτ ' n〈1〉 ⊥ q
for some quadratic form q over F . Relation (??) shows that

(q)L ' 〈2〉 · 〈1,−α〉 · h.
Since deth = 1, we may apply (??) to the quadratic form 〈2〉 · q, obtaining a
quadratic form qτ over F , of determinant 1, such that 〈2〉 · q ' 〈1,−α〉 · qτ ; hence

Qτ ' n〈1〉 ⊥ 〈2〉 · 〈1,−α〉 · qτ .

In the case where n = 3, we show in Chapter ?? that the form qτ classifies the
involutions τ on a given central simple algebra B.

The signature of involutions of the second kind. Suppose that P is an
ordering of F which does not extend to K; this means that K = F (

√
α) for some

α < 0. If (V, h) is a hermitian space over K (with respect to ι), the signature
sgnP h may be defined just as in the case of quadratic spaces (see Scharlau [?,
Examples 10.1.6]). Indeed, we may view V as an F -vector space and define a
quadratic form h0 : V → F by

h0(x) = h(x, x) for x ∈ V ,

since h is hermitian. If (ei)1≤i≤n is an orthogonal K-basis of V for h and z ∈ F
is such that z2 = α, then (ei, eiz)1≤i≤n is an orthogonal F -basis of V for h0.
Therefore, if h(ei, ei) = δi, then

h0 = 〈1,−α〉 · 〈δ1, . . . , δn〉,
hence the signature of the F -quadratic form 〈δ1, . . . , δn〉 is an invariant for h, equal
to 1

2 sgnP h0. We let

sgnP h = 1
2 sgnP h0.
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Note that if α > 0, then sgnP h0 = 0. This explains why the signature is meaningful
only when α < 0.

(11.24) Proposition. Let (B, τ) be a central simple algebra with involution of the

second kind over F , with center K. Then, the signature of the hermitian form

T(B,τ) on B is the square of an integer. Moreover, if B is split : B = EndK(V ) and

τ = σh for some hermitian form h on V , then

sgnP T(B,τ) = (sgnP h)
2.

Proof : If B is split, (??) yields an isometry

(B, T(B,τ)) ' (V ⊗K ιV, h⊗ ιh)

from which the equation sgnP T(B,τ) = (sgnP h)
2 follows.

In order to prove the first statement, we may extend scalars from F to a real
closure FP since signatures do not change under scalar extension to a real closure.
However, K ⊗ FP is algebraically closed since α < 0, hence B is split over FP .
Therefore, the split case already considered shows that the signature of T(B,τ) is a
square.

(11.25) Definition. For any involution τ of the second kind on B, we set

sgnP τ =
√

sgnP T(B,τ).

The proposition above shows that if FP is a real closure of F for P and if τ⊗IdFP =
σh for some hermitian form h over FP , then

sgnP τ = |sgnP h| .

Exercises

1. Let (A, σ) be a central simple algebra with involution of any kind over a field F .
Show that for any right ideals I , J in A,

(I + J)⊥ = I⊥ ∩ J⊥ and (I ∩ J)⊥ = I⊥ + J⊥.

Use this observation to prove that all the maximal isotropic right ideals in A
have the same reduced dimension.

Hint : If J is an isotropic ideal and I is an arbitrary right ideal, show
that rdim J − rdim(I⊥ ∩ J) ≤ rdim I − rdim(I ∩ J). If I also is isotropic and
rdim I ≤ rdim J , use this relation to show I⊥ ∩ J 6⊂ I , and conclude that
I + (I⊥ ∩ J) is an isotropic ideal which strictly contains I .

2. (Bayer-Fluckiger-Shapiro-Tignol [?]) Let (A, σ) be a central simple algebra with
orthogonal involution over a field F of characteristic different from 2. Show that
(A, σ) is hyperbolic if and only if

(A, σ) '
(
M2(F )⊗A0, σh ⊗ σ0

)

for some central simple algebra with orthogonal involution (A0, σ0), where σh is
the adjoint involution with respect to some hyperbolic 2-dimensional symmetric
bilinear form. Use this result to give examples of central simple algebras with
involution (A, σ), (B, τ), (C, ν) such that (A, σ)⊗ (B, τ) ' (A, σ)⊗ (C, ν) and
(B, τ) 6' (C, ν).
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Let (σ, f) be a quadratic pair on a central simple algebra A over a field F
of characteristic 2. Show that (A, σ, f) is hyperbolic if and only if

(A, σ, f) '
(
M2(F )⊗A0, γh ⊗ σ0, fh∗

)

for some central simple algebra with involution of the first kind (A0, σ0), where
(γh, fh∗) is the quadratic pair on M2(F ) associated with a hyperbolic 2-dimen-
sional quadratic form.

Hint : If e ∈ A is an idempotent such that σ(e) = 1 − e, use (??) to find
a symmetric element t ∈ A× such that tσ(e)t−1 = e, and show that e, etσ(e),
σ(e)te and σ(e) span a subalgebra isomorphic to M2(F ).

3. Let (A, σ) be a central simple F -algebra with involution of orthogonal type
and let K ⊂ A be a subfield containing F . Suppose K consists of symmetric
elements, so that the restriction σ′ = σ|CAK of σ to the centralizer of K in A
is an involution of orthogonal type. Prove that discσ = NK/F (discσ′).

4. Let Q = (a, b)F be a quaternion algebra over a field F of characteristic different
from 2. Show that the set of discriminants of orthogonal involutions on Q is
the set of represented values of the quadratic form 〈a, b,−ab〉.

5. (Tits [?]) Let (A, σ) be a central simple algebra of even degree with involution
of the first kind. Assume that σ is orthogonal if charF 6= 2, and that it is sym-
plectic if charF = 2. For any a ∈ Alt(A, σ) ∩ A× whose reduced characteristic
polynomial is separable, let

H = {x ∈ Alt(A, σ) | xa = ax }.

Show that a−1H is an étale subalgebra of A of dimension degA/2. (The
space H is called a Cartan subspace in Tits [?].)

Hint : See Lemma (??).
6. Let (A, σ) be a central simple algebra with orthogonal involution over a field F

of characteristic different from 2. For brevity, write C for C(A, σ) its Clifford
algebra, Z for Z(A, σ) the center of C and B for B(A, σ) the Clifford bimodule.
Endow A⊗FC with the C-bimodule structure such that c1 ·(a⊗c)·c2 = a⊗c1cc2
for a ∈ A and c, c1, c2 ∈ C.
(a) Show that there is an isomorphism of C-bimodules ψ : B⊗C B → A⊗F C

which in the split case satisfies

ψ
(
(v1 ⊗ c1)⊗ (v2 ⊗ c2)

)
= (v1 ⊗ v2)⊗ c1c2

under the standard identifications A = V ⊗ V , B = V ⊗ C1(V, q) and
C = C0(V, q).

(b) Define a hermitian form H : B ×B → A⊗F Z by

H(x, y) = IdA ⊗ (ι ◦ TrdC)
(
ψ(x⊗ yω)

)
for x, y ∈ B.

Show that the natural isomorphism ν of (??) is an isomorphism of algebras
with involution

ν : (ιCop, ισop)⊗Z (C, σ) ∼−→
(
EndA⊗Z(B), σH

)
.

7. To each permutation π ∈ Sk, associate a permutation π∗ of {0, 1, . . . , k− 1} by
composing the following bijections:

{0, . . . , k − 1} +1−−→ {1, . . . , k} π−1

−−→ {1, . . . , k} −→ {0, . . . , k − 1}
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where the last map carries k to 0 and leaves every i between 1 and k − 1
invariant. Consider the decomposition of π∗ into disjoint cycles (including the
cycles of length 1):

π∗ = (0, α1, . . . , αr)(β1, . . . , βs) · · · (γ1, . . . , γt).

Since the map Sandk : A⊗k → HomF (A⊗k−1, A) is bijective (see (??)), there is
a unique element xπ ∈ A⊗k such that for b1, . . . , bk−1 ∈ A:

Sandk(xπ)(b1 ⊗ · · · ⊗ bk−1) =

bα1 · · · bαr TrdA(bβ1 · · · bβs) · · ·TrdA(bγ1 · · · bγt).

Show that xπ = gk(π).
8. Show that s2k = k! sk.
9. Show by a direct computation that if A is a quaternion algebra, the canonical

involution on A = λ1A is the quaternion conjugation.
10. Let (B, τ) be a central simple F -algebra with unitary involution. Assume that

deg(B, τ) is divisible by 4 and that charF 6= 2, so that the canonical involution
τ on D(B, τ) has orthogonal type. Show that disc τ = 1 if deg(B, τ) is not
a power of 2 and that disc τ = α · F×2 if deg(B, τ) is a power of 2 and K '
F [X ]/(X2 − α).

Hint : Reduce to the split case by scalar extension to some splitting field
of B in which F is algebraically closed (for instance the function field of the
Weil transfer of the Severi-Brauer variety of B). Let deg(B, τ) = n = 2m.
Using the same notation as in (??), define a map v ∈ EndF (

∧m V0) as follows:
consider a partition of the subsets S ⊂ {1, . . . , n} of cardinality m into two
classes C, C ′ such that the complement of every S ∈ C lies in C ′ and vice-
versa; then set v(eS) = eS if S ∈ C, v(eS) = −eS if S ∈ C ′. Show that
v ⊗√α ∈ Skew

(
D(B, τ), τ

)
and use this element to compute disc τ .

11. Let K/F be a quadratic extension with non-trivial automorphism ι, and let
α ∈ F×, β ∈ K×. Assume F contains a primitive 2m-th root of unity ξ and
consider the algebra B of degree 2m over K generated by two elements i, j
subject to the following conditions:

i2m = α j2m = ι(β)/β ji = ξij.

(a) Show that there is a unitary involution τ on B such that τ(i) = i and
τ(j) = j−1.

(b) Show that D(B, τ) ∼
(
α,NK/F (β)

)
F
⊗F

(
K, (−1)mα

)
F
.

Hint : Let X = RK/F
(
SB(B)

)
be the transfer of the Severi-Brauer variety

of B. The algebra B splits over K ⊗F F (X), but the scalar extension map
Br(F ) → Br

(
F (X)

)
is injective (see Merkurjev-Tignol [?]); so it suffices to

prove the claim when B is split.
12. Let V be a vector space of dimension n over a field F . Fix k with 1 ≤ k ≤ n−1,

and let ` = n− k. The canonical pairing ∧ :
∧k

V ×∧`
V → ∧n

V induces an
isomorphism

(
∧k V )∗ → ∧` V

which is uniquely determined up to a factor in F×, hence the pairing also
induces a canonical isomorphism

ψk,` : EndF
(
(
∧k

V )∗
)
→ EndF (

∧`
V ).
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Our aim in this exercise is to define a corresponding isomorphism for non-split
algebras.

Let A be a central simple F -algebra of degree n. For 2 ≤ k ≤ n, set:

sk =
∑

π∈Sk

sgn(π)gk(π) ∈ A⊗k

(as in §??), and extend this definition by setting s1 = 1. Let ` = n− k, where
1 ≤ k ≤ n− 1.
(a) Generalize (??) by showing that sn ∈ A⊗n · (sk ⊗ s`).

We may thus consider the right ideal

I =
{
f ∈ EndA⊗n

(
A⊗n(sk ⊗ s`)

) ∣∣ A⊗nsfn = {0}
}
⊂ λkA⊗ λ`A.

(b) Using exercise ?? of Chapter ??, show that this right ideal defines a canon-
ical isomorphism

ϕk,` : λ
kAop ∼−→ λ`A.

Show that if A = EndF V , then ϕk,` = ψk,` under the canonical identifi-

cations λkAop = EndF
(
(
∧k

V ∗)
)

and λ`A = EndF (
∧`

V ).
13. (Wadsworth, unpublished) The aim of this exercise is to give examples of central

simple algebras with unitary involution whose discriminant algebra has index 4.
Let F0 be an arbitrary field of characteristic different from 2 and let K =

F0(x, y, z) be the field of rational fractions in three independent indeterminates
over F0. Denote by ι the automorphism of K which leaves F0(x, y) elementwise
invariant and maps z to −z, and let F = F0(x, y, z

2) be the invariant subfield.
Consider the quaternion algebrasQ0 = (x, y)F and Q = Q0⊗FK, and define an
involution θ on Q by θ = γ0 ⊗ ι where γ0 is the quaternion conjugation on Q0.
Finally, let B = Mn(Q) for an arbitrary odd integer n > 1, and endow B with
the involution ∗ defined by

(aij)
∗
1≤i,j≤n =

(
θ(aij)

)t
1≤i,j≤n.

(a) Show that D(B, ∗) ∼ D(Q, θ)⊗n ∼ D(Q, θ) ∼ Q0.
Let c1, . . . , cn ∈ Sym(Q, θ)∩Q× and d = diag(c1, . . . , cn) ∈ B. Define another
involution of unitary type on B by τ = Int(d) ◦ ∗.
(a) Show that

D(B, τ) ∼ D(B, ∗)⊗F
(
z2,NrdB(d)

)
F

∼ (x, y)F ⊗
(
z2,NrdQ(c1) · · ·NrdQ(cn)

)
F
.

(b) Show that the algebra D(B, τ) has index 4 if c1 = z2 + zi, c2 = z2 + zj
and c3 = · · · = cn = 1.

14. (Yanchevskĭı [?, Proposition 1.4]) Let σ, σ′ be involutions on a central simple
algebra A over a field F of characteristic different from 2. Show that if σ and
σ′ have the same restriction to the center of A and Sym(A, σ) = Sym(A, σ′),
then σ = σ′.

Hint : If σ and σ′ are of the first kind, use (??).
15. Let (A, σ) be a central simple algebra with involution of the first kind over a

field F of arbitrary characteristic. Show that a nonsingular symmetric bilinear
form on Symd(A, σ) may be defined as follows: for x, y ∈ Symd(A, σ), pick
y′ ∈ A such that y = y′ + σ(y′), and let T (x, y) = TrdA(xy′). Mimic this
construction to define a nonsingular symmetric bilinear form on Alt(A, σ).
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Notes

§??. On the same model as Severi-Brauer varieties, varieties of isotropic ideals,
known as Borel varieties, or homogeneous varieties, or twisted flag varieties, are
associated to an algebra with involution. These varieties can also be defined as va-
rieties of parabolic subgroups of a certain type in the associated simply connected
group: see Borel-Tits [?]; their function fields are the generic splitting fields investi-
gated by Kersten and Rehmann [?]. In particular, the variety of isotropic ideals of
reduced dimension 1 in a central simple algebra with orthogonal involution (A, σ)
of characteristic different from 2 may be regarded as a twisted form of a quadric:
after scalar extension to a splitting field L of A, it yields the quadric q = 0 where q
is a quadratic form whose adjoint involution is σL. These twisted forms of quadrics
are termed involution varieties by Tao [?], who studied their K-groups to obtain
index reduction formulas for their function fields. Tao’s results were generalized
to arbitrary Borel varieties by Merkurjev-Panin-Wadsworth [?], [?]. The Brauer
group of a Borel variety is determined in Merkurjev-Tignol [?].

The notion of index in (??) is inspired by Tits’ definition of index for a semi-
simple linear algebraic group [?, (2.3)]. Hyperbolic involutions are defined in Bayer-
Fluckiger-Shapiro-Tignol [?]. Example (??) is borrowed from Dejaiffe [?] where a
notion of orthogonal sum for algebras with involution is investigated.

§??. The discriminant of an orthogonal involution on a central simple alge-
bra of even degree over a field of characteristic different from 2 first appeared in
Jacobson [?] as the center of the (generalized, even) Clifford algebra. The approach
in Tits [?] applies also in characteristic 2; it is based on generalized quadratic forms
instead of quadratic pairs. For involutions, the more direct definition presented here
is due to Knus-Parimala-Sridharan [?]. Earlier work of Knus-Parimala-Sridharan [?]
used another definition in terms of generalized pfaffian maps.

A short, direct proof of (??) is given in Kersten [?, (3.1)]; the idea is to split
the algebra by a scalar extension in which the base field is algebraically closed.

The set of determinants of orthogonal involutions on a central simple algebra A
of characteristic different from 2 has been investigated by Parimala-Sridharan-
Suresh [?]. It turns out that, except in the case where A is a quaternion algebra
(where the set of determinants is easily determined, see Exercise ??), the set of
determinants is the group of reduced norms of A modulo squares:

⋃

σ

det σ = Nrd(A×) · F×2.

§??. The first definition of Clifford algebra for an algebra with orthogonal
involution of characteristic different from 2 is due to Jacobson [?]; it was obtained
by Galois descent. A variant of Jacobson’s construction was proposed by Seip-
Hornix [?] for the case of central simple algebras of Schur index 2. Her definition
also covers the characteristic 2 case. Our treatment owes much to Tits [?]. In
particular, the description of the center of the Clifford algebra in §?? and the proof
of (??) closely follow Tits’ paper. Other proofs of (??) were given by Allen [?,
Theorem 3] and Van Drooge (thesis, Utrecht, 1967).

If degA is divisible by 8, the canonical involution σ on C(A, σ, f) is part of a
canonical quadratic pair (σ, f). If A is split and the quadratic pair (σ, f) is hyper-

bolic, we may define this canonical pair as follows: representing A = EndF
(
H(U)

)
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we have as in (??)

C(A, σ, f) = C0

(
H(U)

)
' End(

∧
0 U)× End(

∧
1 U) ⊂ End(

∧
U).

Let m = dimU . For ξ ∈
∧
U , let ξ[r] be the component of ξ in

∧r
U . Fix a nonzero

linear form s :
∧
U → F which vanishes on

∧r U for r < m and define a quadratic
form q∧ :

∧
U → F by

q∧(ξ) = s
(∑

r<m/2 ξ
[r] ∧ ξ[m−r] + q(ξ[m/2])

)

where q :
∧m/2

U → ∧m
U is the canonical quadratic map of (??) and is the

involution on
∧
U which is the identity on U (see the proof of (??)). For i = 0,

1, let qi be the restriction of q∧ to
∧
i U . The pair (q0, q1) may be viewed as a

quadratic form

(q0, q1) :
∧

0 U ×
∧

1 U → F × F.
The canonical quadratic pair on End(

∧
0 U)×End(

∧
1 U) is associated to this quad-

ratic form. In the general case, the canonical quadratic pair on C(A, σ, f) can be
defined by Galois descent. The canonical involution on the Clifford algebra of a
central simple algebra with hyperbolic involution (of characteristic different from 2)
has been investigated by Garibaldi [?].

Clifford algebras of tensor products of central simple algebras with involution
have been determined by Tao [?]. Let (A, σ) = (A1, σ1)⊗F (A2, σ2) where A1, A2 are
central simple algebras of even degree over a field F of characteristic different from 2,
and σ1, σ2 are involutions which are either both orthogonal or both symplectic,
so that σ is an orthogonal involution of trivial discriminant, by (??). It follows
from (??) that the Clifford algebra C(A, σ) decomposes into a direct product of
two central simple F -algebras: C(A, σ) = C+(A, σ) × C−(A, σ). Tao proves in [?,
Theorems 4.12, 4.14, 4.16]:

(a) Suppose σ1, σ2 are orthogonal and denote by Q the quaternion algebra
Q = (discσ1, discσ2)F .

(i) If degA1 or degA2 is divisible by 4, then one of the algebrasC±(A, σ)
is Brauer-equivalent to A⊗F Q and the other one to Q.

(ii) If degA1 ≡ degA2 ≡ 2 mod 4, then one of the algebras C±(A, σ) is
Brauer-equivalent to A1 ⊗F Q and the other one to A2 ⊗F Q.

(b) Suppose σ1, σ2 are symplectic.
(i) If degA1 or degA2 is divisible by 4, then one of the algebrasC±(A, σ)

is split and the other one is Brauer-equivalent to A.
(ii) If degA1 ≡ degA2 ≡ 2 mod 4, then one of the algebras C±(A, σ) is

Brauer-equivalent to A1 and the other one to A2.

§??. In characteristic different from 2, the bimodule B(A, σ) is defined by
Galois descent in Merkurjev-Tignol [?]. The fundamental relations in (??) between
a central simple algebra with orthogonal involution and its Clifford algebra have
been observed by several authors: (??) was first proved by Jacobson [?, Theorem 4]
in the case where Z = F ×F . In the same special case, proofs of (??) and (??) have
been given by Tits [?, Proposition 7], [?, 6.2]. In the general case, these relations
have been established by Tamagawa [?] and by Tao [?]. See (??) for a cohomological
proof of the fundamental relations in characteristic different from 2 and Exercise ??
of Chapter ?? for another cohomological proof valid in arbitrary characteristic.
Note that the bimodule B(A, σ) carries a canonical hermitian form which may
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be used to strengthen (??) into an isomorphism of algebras with involution: see
Exercise ??.

§??. The canonical representation of the symmetric group Sk in the group of
invertible elements of A⊗k was observed by Haile [?, Lemma 1.1] and Saltman [?].
Note that if k = indA, (??) shows that A⊗k is split; therefore the exponent of A
divides its index. Indeed, the purpose of Saltman’s paper is to give an easy direct
proof (also valid for Azumaya algebras) of the fact that the Brauer group is torsion.
Another approach to the λ-construction, using Severi-Brauer varieties, is due to
Suslin [?].

The canonical quadratic map on
∧m

V , where V is a 2m-dimensional vector
space over a field of characteristic 2 (see (??)), is due to Papy [?]. It is part of a
general construction of reduced p-th powers in exterior algebras of vector spaces
over fields of characteristic p.

The discriminant algebra D(B, τ) also arises from representations of classical
algebraic groups of type 2An: see Tits [?]. If the characteristic does not divide
2 degB, its Brauer class can be obtained by reduction modulo 2 of a cohomological
invariant t(B, τ) called the Tits class, see (??). This invariant has been investigated
by Quéguiner [?], [?]. In [?, Proposition 11], Quéguiner shows that (??) can be
derived from (??) if charF 6= 2; she also considers the analogue of (??) where
the involution τ0 is symplectic instead of orthogonal, and proves that D(B, τ) is
Brauer-equivalent to B⊗m

0 in this case. (Note that Quéguiner’s “determinant class
modulo 2” differs from the Brauer class of D(B, τ) by the class of the quaternion
algebra (K,−1)F if degB ≡ 2 mod 4.)

§??. The idea to consider the form T(A,σ) as an invariant of the involution
σ dates back to Weil [?]. The relation between the determinant of an orthogonal
involution σ and the determinant of the bilinear form T+

σ (in characteristic different
from 2) was observed by Lewis [?] and Quéguiner [?], who also computed the Hasse
invariant s(Qσ) of the quadratic form Qσ(x) = TrdA

(
σ(x)x

)
associated to T(A,σ).

The result is the following: for an involution σ on a central simple algebra A of
degree n,

s(Qσ) =





n
2 [A] +

[
(−1, detσ)F

]
if n is even and σ is orthogonal,

n
2 [A] + n

2

[
(−1,−1)F

]
if n is even and σ is symplectic,

0 if n is odd.

In Lewis’ paper [?], these relations are obtained by comparing the Hasse invariant
of Qσ and of QA(x) = TrdA(x2) through (??). Quéguiner [?] also gives the com-
putation of the Hasse invariant of the quadratic forms Q+

σ and Q−
σ which are the

restrictions of Qσ to Sym(A, σ) and Skew(A, σ) respectively. Just as for Qσ, the
result only depends on the parity of n and on the type and discriminant of σ.

The signature of an involution of the first kind was first defined by Lewis-
Tignol [?]. The corresponding notion for involutions of the second kind is due to
Quéguiner [?].

Besides the classical invariants considered in this chapter, there are also “higher
cohomological invariants” defined by Rost (to appear) by means of simply connected
algebraic groups, with values in Galois cohomology groups of degree 3. See §?? for
a general discussion of cohomological invariants. Some special cases are considered
in the following chapters: see §?? for the case of symplectic involutions on central
simple algebras of degree 4 and §?? for the case of unitary involutions on central
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simple algebras of degree 3. (In the same spirit, see §?? for an H3-invariant of
Albert algebras.) Another particular instance dates back to Jacobson [?]: if A is a
central simple F -algebra of index 2 whose degree is divisible by 4, we may represent
A = EndQ(V ) for some vector space V of even dimension over a quaternion F -
algebra Q. According to (??), every symplectic involution σ on A is adjoint to
some hermitian form h on V with respect to the canonical involution of Q. Assume
charF 6= 2 and let h = 〈α1, . . . , αn〉 be a diagonalization of h; then α1, . . . , αn ∈ F×
and the element (−1)n/2α1 · · ·αn ·NrdQ(Q×) ∈ F×/NrdQ(Q×) is an invariant of σ.
There is an alternate description of this invariant, which emphasizes the relation
with Rost’s cohomological approach: we may associate to σ the quadratic form
qσ =

〈
1,−(−1)n/2α1 · · ·αn

〉
⊗ nQ ∈ I3F where nQ is the reduced norm form of Q,

or the cup product
(
(−1)n/2α1 · · ·αn

)
∪ [Q] ∈ H3(F, µ2), see (??).



CHAPTER III

Similitudes

In this chapter, we investigate the automorphism groups of central simple alge-
bras with involution. The inner automorphisms which preserve the involution are
induced by elements which we call similitudes, and the automorphism group of a
central simple algebra with involution is the quotient of the group of similitudes by
the multiplicative group of the center. The various groups thus defined are natu-
rally endowed with a structure of linear algebraic group; they may then be seen as
twisted forms of orthogonal, symplectic or unitary groups, depending on the type of
the involution. This point of view will be developed in Chapter ??. Here, however,
we content ourselves with a more elementary viewpoint, considering the groups of
rational points of the corresponding algebraic groups.

After a first section which contains general definitions and results valid for all
types, we then focus on quadratic pairs and unitary involutions, where additional
information can be derived from the algebra invariants defined in Chapter ??. In
the orthogonal case, we also use the Clifford algebra and the Clifford bimodule to
define Clifford groups and spin groups.

§12. General Properties

To motivate our definition of similitude for an algebra with involution, we first
consider the split case, where the algebra consists of endomorphisms of bilinear or
hermitian spaces.

12.A. The split case. We treat separately the cases of bilinear, hermitian
and quadratic spaces, although the basic definitions are the same, to emphasize the
special features of these various cases.

Bilinear spaces. Let (V, b) be a nonsingular symmetric or alternating bilinear
space over an arbitrary field F . A similitude of (V, b) is a linear map g : V → V for
which there exists a constant α ∈ F× such that

b
(
g(v), g(w)

)
= αb(v, w) for v, w ∈ V .(12.1)

The factor α is called the multiplier of the similitude g. A similitude with mul-
tiplier 1 is called an isometry . The similitudes of the bilinear space (V, b) form a
group denoted Sim(V, b) , and the map

µ : Sim(V, b)→ F×

which carries every similitude to its multiplier is a group homomorphism. By
definition, the kernel of this map is the group of isometries of (V, b), which we write
Iso(V, b). We also define the group PSim(V, b) of projective similitudes by

PSim(V, b) = Sim(V, b)/F×.

153
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Specific notations for the groups Sim(V, b), Iso(V, b) and PSim(V, b) are used ac-
cording to the type of b. If b is symmetric nonalternating, we set

O(V, b) = Iso(V, b), GO(V, b) = Sim(V, b) and PGO(V, b) = PSim(V, b);

if b is alternating, we let

Sp(V, b) = Iso(V, b), GSp(V, b) = Sim(V, b) and PGSp(V, b) = PSim(V, b).

Note that condition (??), defining a similitude of (V, b) with multiplier α, can be
rephrased as follows, using the adjoint involution σb:

σb(g) ◦ g = αIdV .(12.2)

By taking the determinant of both sides, we obtain (det g)2 = αn where n = dimV .
It follows that the determinant of an isometry is ±1 and that, if n is even,

det g = ±µ(g)n/2 for g ∈ Sim(V, b).

A first difference between the orthogonal case and the symplectic case shows up in
the following result:

(12.3) Proposition. If b is a nonsingular alternating bilinear form on a vector

space V of dimension n (necessarily even), then

det g = µ(g)n/2 for g ∈ GSp(V, b).

Proof : Let g ∈ GSp(V, b) and let G, B denote the matrices of g and b respectively
with respect to some arbitrary basis of V . The matrix B is alternating and we have

GtBG = µ(g)B.

By taking the pfaffian of both sides, we obtain, by known formulas for pfaffians (see
Artin [?, Theorem 3.28]; compare with (??)):

detG pf B = µ(g)n/2 pf B,

hence det g = µ(g)n/2.

By contrast, if b is symmetric and charF 6= 2, every hyperplane reflection is an
isometry with determinant −1 (see (??)), hence it satisfies det g = −µ(g)n/2.

We set

O+(V, b) = { g ∈ O(V, b) | det g = 1 }.
Of course, O+(V, b) = O(V, b) if charF = 2.

Similarly, if dim V = n is even, we set

GO+(V, b) = { g ∈ GO(V, b) | det g = µ(g)n/2 },

and

PGO+(V, b) = GO+(V, b)/F×.

The elements in GO+(V, b), O+(V, b) are called proper similitudes and proper isome-
tries respectively.

If dimV is odd, there is a close relationship between similitudes and isometries,
as the next proposition shows:

(12.4) Proposition. Suppose that (V, b) is a nonsingular symmetric bilinear space

of odd dimension over an arbitrary field F ; then

GO(V, b) = O+(V, b) · F× ' O+(V, b)× F× and PGO(V, b) ' O+(V, b).
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Proof : If g is a similitude of (V, b) with multiplier α ∈ F×, then by taking the
determinant of both sides of the isometry α · b ' b we get α ∈ F×2. If α = α2

1,
then α−1

1 g is an isometry. Moreover, after changing the sign of α1 if necessary, we
may assume that det(α−1

1 g) = 1. The factorization g = (α−1
1 g) · α1 shows that

GO(V, b) = O+(V, b) · F×, and the other isomorphisms are clear.

Hermitian spaces. Suppose (V, h) is a nonsingular hermitian space over a
quadratic separable field extension K of F (with respect to the nontrivial automor-
phism of K/F ). A similitude of (V, h) is an invertible linear map g : V → V for
which there exists a constant α ∈ F×, called the multiplier of g, such that

h
(
g(v), g(w)

)
= αh(v, w) for v, w ∈ V .(12.5)

As in the case of bilinear spaces, we write Sim(V, h) for the group of similitudes of
(V, h); let

µ : Sim(V, h)→ F×

be the group homomorphism which carries every similitude to its multiplier; write
Iso(V, h) for the kernel of µ, whose elements are called isometries, and let

PSim(V, h) = Sim(V, h)/K×.

We also use the following more specific notation:

U(V, h) = Iso(V, h), GU(V, h) = Sim(V, h), PGU(V, h) = PSim(V, h).

Condition (??) can be rephrased as

σh(g) ◦ g = αIdV .

By taking the determinant of both sides, we obtain

NK/F (det g) = µ(g)n, where n = dimV .

This relation shows that the determinant of every isometry has norm 1. Set

SU(V, h) = { g ∈ U(V, h) | det g = 1 }.
Quadratic spaces. Let (V, q) be a nonsingular quadratic space over an arbi-

trary field F . A similitude of (V, q) is an invertible linear map g : V → V for which
there exists a constant α ∈ F×, called the multiplier of g, such that

q
(
g(v)

)
= αq(v) for v ∈ V .

The groups Sim(V, q), Iso(V, q), PSim(V, q) and the group homomorphism

µ : Sim(V, q)→ F×

are defined as for nonsingular bilinear forms. We also use the notation

O(V, q) = Iso(V, q), GO(V, q) = Sim(V, q), PGO(V, q) = PSim(V, q).

It is clear from the definitions that every similitude of (V, q) is also a similitude of
its polar bilinear space (V, bq), with the same multiplier, hence

GO(V, q) ⊂ Sim(V, b) =

{
GO(V, bq) if charF 6= 2,

GSp(V, bq) if charF = 2,

and the reverse inclusion also holds if charF 6= 2.
For the rest of this section, we assume therefore charF = 2. If dim V is odd,

the same arguments as in (??) yield:
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(12.6) Proposition. Suppose (V, q) is a nonsingular symmetric quadratic space

of odd dimension over a field F of characteristic 2; then

GO(V, q) = O(V, q) · F× ' O(V, q)× F× and PGO(V, q) ' O(V, q).

We omit the proof, since it is exactly the same as for (??), using the determinant
of q defined in (??).

If dimV is even, we may again distinguish proper and improper similitudes, as
we now show.

By using a basis of V , we may represent the quadratic map q by a quadratic
form, which we denote again q. Let M be a matrix such that

q(X) = Xt ·M ·X.
Since q is nonsingular, the matrix W = M +M t is invertible. Let g be a similitude
of V with multiplier α, and let G be its matrix with respect to the chosen basis of V .
The equation q(G ·X) = αq(X) shows that the matrices GtMG and αM represent
the same quadratic form. Therefore, GtMG − αM is an alternating matrix. Let
R ∈Mn(K) be such that

GtMG− αM = R−Rt.

(12.7) Proposition. The element tr(α−1W−1R) ∈ K depends only on the simil-

itude g, and not on the choice of basis of V nor on the choices of matrices M
and R. It equals 0 or 1.

Proof : With a different choice of basis of V , the matrix G is replaced by G′ =
P−1GP for some invertible matrix P ∈ GLn(K), and the matrix M is replaced by

a matrix M ′ = P tMP +U−U t for some matrix U . Then W ′ = M ′+M ′t is related
to W by W ′ = P tWP . Suppose R, R′ are matrices such that

GtMG− αM = R−Rt and G′
t
M ′G′ − αM ′ = R′ −R′t.(12.8)

By adding each side to its transpose, we derive from these equations:

GtWG = αW and G′
t
W ′G′ = αW ′.(12.9)

In order to prove that tr(α−1W−1R) depends only on the similitude g, we have

to show tr(W−1R) = tr(W ′−1
R′). By substituting for M ′ its expression in terms

of M , we derive from (??) that R′ −R′t = R′′ −R′′t, where

R′′ = P tRP + P tGt(P−1)tUP−1GP − αU,(12.10)

hence R′ = R′′ + S for some symmetric matrix S ∈ Mn(K). Since W ′−1
=

W ′−1
M ′W ′−1

+ (W ′−1
M ′W ′−1

)t, it follows that W ′−1
is alternating. By (??),

alternating matrices are orthogonal to symmetric matrices for the trace bilinear

form, hence tr(g′−1
R′) = tr(g′−1

R′′). In view of (??) we have

(12.11) tr(W ′−1
R′′) = tr(P−1W−1RP ) + tr

(
P−1W−1Gt(P−1)tUP−1GP

)

+ α tr
(
P−1W−1(P−1)tU

)
.

By (??), W−1Gt = αG−1W−1, hence the second term on the right side of (??)
equals

α tr
(
P−1G−1W−1(P−1)tUP−1GP

)
= α tr

(
W−1(P−1)tUP−1

)
.
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Therefore, the last two terms on the right side of (??) cancel, and we get

tr(W ′−1
R′) = tr(W ′−1

R′′) = tr(W−1R),

proving that tr(α−1W−1R) depends only on the similitude g.
In order to prove that this element is 0 or 1, we compute s2(W

−1M), the coef-
ficient of Xn−2 in the characteristic polynomial of W−1M (see (??)). By (??), we
have G−1W−1 = α−1W−1Gt, hence G−1W−1MG = α−1W−1GtMG, and there-
fore

s2(W
−1M) = s2(α

−1W−1GtMG).

On the other hand, (??) also yields GtMG = αM +R−Rt, hence by substituting
this in the right side of the preceding equation we get

s2(W
−1M) = s2(W

−1M + α−1W−1R− α−1W−1Rt).

By (??), we may expand the right side to get

s2(W
−1M) = s2(W

−1M) + tr(α−1W−1R) + tr(α−1W−1R)2.

Therefore, tr(α−1W−1R) + tr(α−1W−1R)2 = 0, hence

tr(α−1W−1R) = 0, 1.

(12.12) Definition. Let (V, q) be a nonsingular quadratic space of even dimension
over a field F of characteristic 2. Keep the same notation as above. In view of the
preceding proposition, we set

∆(g) = tr(α−1W−1R) ∈ {0, 1} for g ∈ GO(V, q).

Straightforward verifications show that ∆ is a group homomorphism

∆: GO(V, q)→ Z/2Z,

called the Dickson invariant. We write GO+(V, q) for the kernel of this homomor-
phism. Its elements are called proper similitudes, and the similitudes which are
mapped to 1 under ∆ are called improper. We also let

O+(V, q) = { g ∈ O(V, q) | ∆(g) = 0 } and PGO+(V, q) = GO+(V, q)/F×.

(12.13) Example. Let dimV = n = 2m. For any anisotropic vector v ∈ V , the
hyperplane reflection ρv : V → V is defined in arbitrary characteristic by

ρv(x) = x− vq(v)−1bq(v, x) for x ∈ V .

This map is an isometry of (V, q). We claim that it is improper.
This is clear if charF 6= 2, since the matrix of ρv with respect to an orthogonal

basis whose first vector is v is diagonal with diagonal entries (−1, 1, . . . , 1), hence
det ρv = −1.

If charF = 2, we compute ∆(ρv) by means of a symplectic basis (e1, . . . , en)
of (V, bq) such that e1 = v. With respect to that basis, the quadratic form q is
represented by the matrix

M =



M1 0

. . .

0 Mm


 where Mi =

(
q(e2i−1) 0

1 q(e2i)

)
,
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and the map ρv is represented by

G =



G1 0

. . .

0 Gm


 where G1 =

(
1 q(e1)

−1

0 1

)
, Gi = I , i ≥ 2.

As a matrix R such that GtMG+M = R+Rt we may take

R =



R1 0

. . .

0 Rm


 where R1 =

(
0 1
0 0

)
, Ri = I , i ≥ 2.

It is readily verified that tr(W−1R) = 1, hence ∆(ρv) = 1, proving the claim.

12.B. Similitudes of algebras with involution. In view of the charac-
terization of similitudes of bilinear or hermitian spaces by means of the adjoint
involution (see (??)), the following definition is natural:

(12.14) Definition. Let (A, σ) be a central simple F -algebra with involution. A
similitude of (A, σ) is an element g ∈ A such that

σ(g)g ∈ F×.
The scalar σ(g)g is called the multiplier of g and is denoted µ(g). The set of all
similitudes of (A, σ) is a subgroup of A× which we call Sim(A, σ), and the map µ
is a group homomorphism

µ : Sim(A, σ) → F×.

It is then clear that similitudes of bilinear spaces are similitudes of their endo-
morphism algebras:

Sim
(
EndF (V ), σb

)
= Sim(V, b)

if (V, b) is a nonsingular symmetric or alternating bilinear space. There is a corre-
sponding result for hermitian spaces.

Similitudes can also be characterized in terms of automorphisms of the algebra
with involution. Recall that an automorphism of (A, σ) is an F -algebra automor-
phism which commutes with σ:

AutF (A, σ) = { θ ∈ AutF (A) | σ ◦ θ = θ ◦ σ }.
Let K be the center of A, so that K = F if σ is of the first kind and K is a quadratic
étale F -algebra if σ is of the second kind. Define AutK(A, σ) = AutF (A, σ) ∩
AutK(A).

(12.15) Theorem. With the notation above,

AutK(A, σ) = { Int(g) | g ∈ Sim(A, σ) }.
There is therefore an exact sequence:

1→ K× → Sim(A, σ)
Int−−→ AutK(A, σ)→ 1.

Proof : By the Skolem-Noether theorem, every automorphism of A over K has the
form Int(g) for some g ∈ A×. Since

σ ◦ Int(g) = Int
(
σ(g)−1

)
◦ σ,
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the automorphism Int(g) commutes with σ if and only if σ(g)−1 ≡ g mod K×, i.e.,
σ(g)g ∈ K×. Since σ(g)g is invariant under σ, the latter condition is also equivalent
to σ(g)g ∈ F×.

Let PSim(A, σ) be the group of projective similitudes, defined as

PSim(A, σ) = Sim(A, σ)/K×.

In view of the preceding theorem, the map Int defines a natural isomorphism
PSim(A, σ) ∼−→ AutK(A, σ).

Specific notations for the groups Sim(A, σ) and PSim(A, σ) are used according
to the type of σ, reflecting the notations for similitudes of bilinear or hermitian
spaces:

Sim(A, σ) =





GO(A, σ) if σ is of orthogonal type,

GSp(A, σ) if σ is of symplectic type,

GU(A, σ) if σ is of unitary type,

and

PSim(A, σ) =





PGO(A, σ) if σ is of orthogonal type,

PGSp(A, σ) if σ is of symplectic type,

PGU(A, σ) if σ is of unitary type.

Similitudes with multiplier 1 are isometries ; they make up the group Iso(A, σ):

Iso(A, σ) = { g ∈ A× | σ(g) = g−1 }.
We also use the following notation:

Iso(A, σ) =





O(A, σ) if σ is of orthogonal type,

Sp(A, σ) if σ is of symplectic type,

U(A, σ) if σ is of unitary type.

For quadratic pairs, the corresponding notions are defined as follows:

(12.16) Definition. Let (σ, f) be a quadratic pair on a central simple F -algebraA.
An automorphism of (A, σ, f) is an F -algebra automorphism θ of A such that

σ ◦ θ = θ ◦ σ and f ◦ θ = f.

A similitude of (A, σ, f) is an element g ∈ A× such that σ(g)g ∈ F× and f(gsg−1) =
f(s) for all s ∈ Sym(A, σ). Let GO(A, σ, f) be the group of similitudes of (A, σ, f),
let

PGO(A, σ, f) = GO(A, σ, f)/F×

and write AutF (A, σ, f) for the group of automorphisms of (A, σ, f). The same
arguments as in (??) yield an exact sequence

1→ F× → GO(A, σ, f)
Int−−→ AutF (A, σ, f)→ 1,

hence also an isomorphism

PGO(A, σ, f) ∼−→ AutF (A, σ, f).
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For g ∈ GO(A, σ, f) we set µ(g) = σ(g)g ∈ F×. The element µ(g) is called the
multiplier of g and the map

µ : GO(A, σ, f)→ F×

is a group homomorphism. Its kernel is denoted O(A, σ, f).
It is clear from the definition that GO(A, σ, f) ⊂ Sim(A, σ). If charF 6= 2, the

map f is the restriction of 1
2 TrdA to Sym(A, σ), hence the condition f(gsg−1) =

f(s) for all s ∈ Sym(A, σ) holds for all g ∈ GO(A, σ). Therefore, we have in this
case

GO(A, σ, f) = GO(A, σ), PGO(A, σ, f) = PGO(A, σ) and O(A, σ, f) = O(A, σ).

In particular, if (V, q) is a nonsingular quadratic space over F and (σq , fq) is the
associated quadratic pair on EndF (V ) (see (??)),

GO
(
EndF (V ), σq , fq

)
= GO

(
EndF (V ), σq

)
= GO(V, q).

There is a corresponding result if charF = 2:

(12.17) Example. Let (V, q) be a nonsingular quadratic space of even dimension
over a field F of characteristic 2, and let (σq , fq) be the associated quadratic pair
on EndF (V ). We claim that

GO
(
EndF (V ), σq , fq

)
= GO(V, q),

hence also PGO
(
EndF (V ), σq , fq

)
= PGO(V, q) and O

(
EndF (V ), σq , fq

)
= O(V, q).

In order to prove these equalities, observe first that the standard identification
ϕq of (??) associated with the polar of q satisfies the following property: for all
g ∈ EndF (V ), and for all v, w ∈ V ,

g ◦ ϕq(v ⊗ w) ◦ σq(g) = ϕq
(
g(v)⊗ g(w)

)
.

Therefore, if g ∈ GO
(
EndF (V, σq , fq)

)
and α = µ(g) ∈ F×, the condition

fq
(
g ◦ ϕq(v ⊗ v) ◦ g−1

)
= fq ◦ ϕq(v ⊗ v) for v ∈ V

amounts to

q
(
g(v)

)
= αq(v) for v ∈ V ,

which means that g is a similitude of the quadratic space (V, q), with multiplier α.
This shows GO

(
EndF (V ), σq , fq

)
⊂ GO(V, q).

For the reverse inclusion, observe that if g is a similitude of (V, q) with multiplier
α, then σq(g)g = α since g also is a similitude of the associated bilinear space (V, bq).
Moreover, the same calculation as above shows that

fq
(
g ◦ ϕq(v ⊗ v) ◦ g−1

)
= fq ◦ ϕq(v ⊗ v) for v ∈ V .

Since Sym
(
EndF (V ), σq , fq

)
is spanned by elements of the form ϕq(v⊗v), it follows

that fq(gsg
−1) = fq(s) for all s ∈ Sym(A, σ), hence g ∈ GO

(
EndF (V ), σq , fq

)
. This

proves the claim.

We next determine the groups of similitudes for quaternion algebras.

(12.18) Example. Let Q be a quaternion algebra with canonical (symplectic)
involution γ over an arbitrary field F . Since γ(q)q ∈ F for all q ∈ Q, we have

Sim(Q, γ) = GSp(Q, γ) = Q×.

Therefore, γ commutes with all the inner automorphisms of Q. (This observation
also follows from the fact that γ is the unique symplectic involution of Q: for
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every automorphism θ, the composite θ ◦ γ ◦ θ−1 is a symplectic involution, hence
θ ◦ γ ◦ θ−1 = γ).

Let σ be an orthogonal involution on Q; by (??) we have

σ = Int(u) ◦ γ
for some invertible quaternion u such that γ(u) = −u and u 6∈ F . Since γ commutes
with all automorphisms of Q, an inner automorphism Int(g) commutes with σ if
and only if it commutes with Int(u), i.e., gu ≡ ug mod F×. If λ ∈ F× is such that
gu = λug, then by taking the reduced norm of both sides of this equation we obtain
λ2 = 1, hence gu = ±ug. The group of similitudes of (Q, σ) therefore consists of
the invertible elements which commute or anticommute with u. If charF = 2, we
thus obtain

GO(Q, σ) = F (u)×.

If charF 6= 2, let v be any invertible element which anticommutes with u; then

GO(Q, σ) = F (u)× ∪
(
F (u)× · v

)
.

Finally, we consider the case of quadratic pairs on Q. We assume that charF =
2 since, if the characteristic is different from 2, the similitudes of a quadratic pair
(σ, f) are exactly the similitudes of the orthogonal involution σ. Since charF =
2, every involution which is part of a quadratic pair is symplectic, hence every
quadratic pair on Q has the form (γ, f) for some linear map f : Sym(Q, γ) → F .
Take any ` ∈ Q satisfying

f(s) = TrdQ(`s) for s ∈ Sym(Q, γ)

(see (??)). The element ` is uniquely determined by the quadratic pair (γ, f) up to
the addition of an element in Alt(Q, γ) = F , and it satisfies TrdQ(`) = 1, by (??)
and (??). Therefore, there exists an element v ∈ Q× such that v−1`v = `+ 1. We
claim that

GO(Q, γ, f) = F (`)× ∪
(
F (`)× · v

)
.

Since GSp(Q, γ) = Q×, an element g ∈ Q× is a similitude of (Q, γ, f) if and only
if f(gsg−1) = f(s) for all s ∈ Sym(Q, γ). By definition of `, this condition can be
rephrased as

TrdQ(`gsg−1) = TrdQ(`s) for s ∈ Sym(Q, γ).

Since the left-hand expression equals TrdQ(g−1`gs), this condition is also equivalent
to

TrdQ
(
(`− g−1`g)s

)
= 0 for s ∈ Sym(Q, γ);

that is, ` − g−1`g ∈ F , since F = Alt(Q, γ) is the orthogonal space of Sym(Q, γ)
for the trace bilinear form (see (??)). Suppose that this condition holds and let
λ = ` − g−1`g ∈ F . We proceed to show that λ = 0 or 1. Since TrdQ(`) = 1 we
have NrdQ(`) = `2 + ` and NrdQ(`+ λ) = `2 + `+ λ2 + λ. On the other hand, we
must have NrdQ(`) = NrdQ(`+ λ), since `+ λ = g−1`g. Therefore, λ2 + λ = 0 and
λ = 0 or 1. Therefore,

GO(Q, γ, f) = { g ∈ Q× | g−1`g = ` } ∪ { g ∈ Q× | g−1`g = `+ 1 },
and the claim is proved.
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(12.19) Example. Let A = Q1 ⊗F Q2 be a tensor product of two quaternion
algebras over a field F of characteristic different from 2, and σ = γ1 ⊗ γ2, the
tensor product of the canonical involutions. A direct computation shows that the
Lie algebra Alt(A, σ) decomposes as a direct sum of the (Lie) algebras of pure
quaternions in Q1 and Q2:

Alt(A, σ) = (Q0
1 ⊗ 1)⊕ (1⊗Q0

2).

Since Lie algebras of pure quaternions are simple and since the decomposition of
a semisimple Lie algebra into a direct product of simple subalgebras is unique,
it follows that every automorphism θ ∈ AutF (A, σ) preserves the decomposition
above, hence also the pair of subalgebras {Q1, Q2}. If Q1 6' Q2, then θ must
preserve separately Q1 and Q2; therefore, it restricts to automorphisms of Q1 and
of Q2. Let q1 ∈ Q×

1 , q2 ∈ Q×
2 be such that

θ|Q1 = Int(q1), θ|Q2 = Int(q2).

Then θ = Int(q1 ⊗ q2); so

GO(A, σ) = { q1 ⊗ q2 | q1 ∈ Q×
1 , q2 ∈ Q×

2 }
and the map which carries (q1 ·F×, q2 ·F×) to (q1⊗q2) ·F× induces an isomorphism

(Q×
1 /F

×)× (Q×
2 /F

×) ∼−→ PGO(A, σ).

If Q1 ' Q2, then we may assume for notational convenience that A = Q⊗FQ where
Q is a quaternion algebra isomorphic to Q1 and to Q2. Under the isomorphism
γ∗ : A → EndF (Q) such that γ∗(q1 ⊗ q2)(x) = q1xγ(q2) for q1, q2, x ∈ Q, the
involution σ = γ ⊗ γ corresponds to the adjoint involution with respect to the
reduced norm quadratic form nQ; therefore GO(A, σ) is the group of similitudes of
the quadratic space (Q,nQ):

GO(A, σ) ' GO(Q,nQ).

(These results are generalized in §??).

Multipliers of similitudes. Let (A, σ) be a central simple algebra with invo-
lution of any kind over an arbitrary field F . Let G(A, σ) be the group of multipliers
of similitudes of (A, σ):

G(A, σ) = {µ(g) | g ∈ Sim(A, σ) } ⊂ F×.

If θ is an involution of the same kind as σ on a division algebraD Brauer-equivalent
to A, we may represent A as the endomorphism algebra of some vector space V
over D and σ as the adjoint involution with respect to some nonsingular hermitian
or skew-hermitian form h on V :

(A, σ) =
(
EndD(V ), σh

)
.

As in the split case (where D = F ), the similitudes of (A, σ) are the similitudes
of the hermitian or skew-hermitian space (V, h). It is clear from the definition
that a similitude of (V, h) with multiplier α ∈ F× may be regarded as an isometry
(V, αh) ∼−→ (V, h). Therefore, multipliers of similitudes of (A, σ) can be character-
ized in terms of the Witt group W (D, θ) of hermitian spaces over D with respect
to θ (or of the group W−1(D, θ) of skew-hermitian spaces over D with respect to θ)
(see Scharlau [?, p. 239]). For the next proposition, note that the group W±1(D, θ)
is a module over the Witt ring WF .
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(12.20) Proposition. For (A, σ) '
(
EndD(V ), σh

)
as above,

G(A, σ) = {α ∈ F× | (V, h) ' (V, αh) }
= {α ∈ F× | 〈1,−α〉 · h = 0 in W±1(D, θ) }.

In particular, if A is split and σ is symplectic, then G(A, σ) = F×.

Proof : The first part follows from the description above of similitudes of (A, σ).
The last statement then follows from the fact that W−1(F, IdF ) = 0.

As a sample of application, one can prove the following analogue of Scharlau’s
norm principle for algebras with involution by the same argument as in the classical
case (see Scharlau [?, Theorem 2.8.6]):

(12.21) Proposition. For any finite extension L/F ,

NL/F
(
G(AL, σL)

)
⊂ G(A, σ).

(12.22) Corollary. If σ is symplectic, then

F×2 ·NrdA(A×) ⊂ G(A, σ).

If moreover degA ≡ 2 mod 4, then this inclusion is an equality, and

G(A, σ) = F×2 ·NrdA(A×) = NrdA(A×).

Proof : Let D be the division algebra (which is unique up to a F -isomorphism)
Brauer-equivalent to A. Then, NrdD(D×) = NrdA(A×) by Draxl [?, Theorem 1,
p. 146], hence it suffices to show that NrdD(d) ∈ G(A, σ) for all d ∈ D× to prove
the first part. Let L be a maximal subfield in D containing d. The algebra AL is
then split, hence (??) shows:

G(AL, σL) = L×.

From (??), it follows that

NL/F (d) ∈ G(A, σ).

This completes the proof of the first part, since NL/F (d) = NrdD(d).
Next, assume degA = n = 2m, where m is odd. Since the index of A divides

its degree and its exponent, we have indA = 1 or 2, hence D = F or D is a
quaternion algebra. In each case, NrdD(D×) contains F×2, hence F×2·NrdA(A×) =
NrdA(A×). On the other hand, taking the pfaffian norm of each side of the equation
σ(g)g = µ(g), for g ∈ GSp(A, σ), we obtain NrdA(g) = µ(g)m by (??). Since m is
odd, it follows that

µ(g) =
(
µ(g)−(m−1)/2

)2
NrdA(g) ∈ F×2 · NrdA(A×),

hence G(A, σ) ⊂ F×2 ·NrdA(A×).

12.C. Proper similitudes. Suppose σ is an involution of the first kind on
a central simple F -algebra A of even degree n = 2m. For every similitude g ∈
Sim(A, σ) we have

NrdA(g) = ±µ(g)m,

as can be seen by taking the reduced norm of both sides of the equation σ(g)g =
µ(g).
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(12.23) Proposition. If σ is a symplectic involution on a central simple F -algebra

A of degree n = 2m, then

NrdA(g) = µ(g)m for all g ∈ GSp(A, σ).

Proof : If A is split, the formula is a restatement of (??). The general case follows
by extending scalars to a splitting field of A.

By contrast, if σ is orthogonal, we may distinguish two types of similitudes
according to the sign of NrdA(g)µ(g)−m:

(12.24) Definition. Let σ be an orthogonal involution on a central simple alge-
bra A of even degree n = 2m over an arbitrary field F . A similitude g ∈ GO(A, σ)
is called proper (resp. improper) if NrdA(g) = +µ(g)m (resp. NrdA(g) = −µ(g)m).
(Thus, if charF = 2, every similitude of (A, σ) is proper; however, see (??).)

It is clear that proper similitudes form a subgroup of index at most 2 in the
group of all similitudes; we write GO+(A, σ) for this subgroup. The set of improper
similitudes is a coset of GO+(A, σ), which may be empty.16 We also set:

PGO+(A, σ) = GO+(A, σ)/F×,

and

O+(A, σ) = GO+(A, σ) ∩O(A, σ) = { g ∈ A | σ(g)g = NrdA(g) = 1 }.
The elements in O+(A, σ) are the proper isometries.

(12.25) Example. Let Q be a quaternion algebra with canonical involution γ over
a field F of characteristic different from 2, and let σ = Int(u)◦γ for some invertible
pure quaternion u. Let v ∈ A be an invertible pure quaternion which anticommutes
with u. The group GO(A, σ) has been determined in (??); straightforward norm
computations show that the elements in F (u)× are proper similitudes, whereas
those in F (u)× · v are improper, hence

GO+(Q, σ) = F (u)×.

However, no element in F (u)× · v has norm 1 unless Q is split, so

O+(Q, σ) = O(Q, σ) = { z ∈ F (u) | NF (u)/F (z) = 1 } if Q is not split.

(12.26) Example. Let A = Q1⊗FQ2, a tensor product of two quaternion algebras
over a field F of characteristic different from 2, and σ = γ1 ⊗ γ2 where γ1, γ2 are
the canonical involutions on Q1 and Q2.

If Q1 6' Q2, then we know from (??) that all the similitudes of (A, σ) are of
the form q1 ⊗ q2 for some q1 ∈ Q×

1 , q2 ∈ Q×
2 . We have

µ(q1 ⊗ q2) = γ1(q1)q1 ⊗ γ2(q2)q2 = NrdQ1(q1) ·NrdQ2(q2)

and

NrdA(q1 ⊗ q2) = NrdQ1(q1)
degQ2 ·NrdQ2(q2)

degQ1 = µ(q1 ⊗ q2)2,
so all the similitudes are proper:

GO(A, σ) = GO+(A, σ) and O(A, σ) = O+(A, σ).

16From the viewpoint of linear algebraic groups, one would say rather that this coset may
have no rational point. It has a rational point over a splitting field of A however, since hyperplane
reflections are improper isometries.
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On the other hand, if Q1 ' Q2, then the algebra A is split, hence GO+(A, σ) is a
subgroup of index 2 in GO(A, σ).

Proper similitudes of algebras with quadratic pair. A notion of proper
similitudes can also be defined for quadratic pairs. We consider only the charac-
teristic 2 case, since if the characteristic is different from 2 the similitudes of a
quadratic pair (σ, f) are the similitudes of the orthogonal involution σ.

Thus let (σ, f) be a quadratic pair on a central simple algebra A of even degree
n = 2m over a field F of characteristic 2. Let ` ∈ A be an element such that

f(s) = TrdA(`s) for all s ∈ Sym(A, σ)

(see (??)). For g ∈ GO(A, σ, f), we have f(gsg−1) = f(s) for all s ∈ Sym(A, σ),
hence, as in (??),

TrdA
(
(g−1`g − `)s

)
= 0 for s ∈ Sym(A, σ).

By (??), it follows that

g−1`g − ` ∈ Alt(A, σ).

Therefore, f(g−1`g− `) ∈ F by property (??) of the definition of a quadratic pair.

(12.27) Proposition. The element f(g−1`g−`) depends only on the similitude g,
and not on the choice of `. Moreover, f(g−1`g − `) = 0 or 1.

Proof : As observed in (??), the element ` is uniquely determined by the quadratic
pair (σ, f) up to the addition of an element in Alt(A, σ). If `′ = `+ x+ σ(x), then

g−1`′g − `′ = (g−1`g − `) + (g−1xg − x) + σ(g−1xg − x),
since σ(g) = µ(g)g−1. We have

f
(
g−1xg − x+ σ(g−1xg − x)

)
= TrdA(g−1xg − x) = 0,

hence the preceding equation yields

f(g−1`′g − `′) = f(g−1`g − `),
proving that f(g−1`g − `) does not depend on the choice of `.

We next show that this element is either 0 or 1. By (??), we have σ(`) = `+1,
hence `2 + ` = σ(`)`. It follows that

g−1`2g − `2 = µ(g)−1σ(g)σ(`)`g − σ(`)`+ (g−1`g − `),
hence g−1`2g − `2 ∈ Sym(A, σ). We shall show successively:

f(g−1`g − `)2 = f
(
(g−1`g − `)2

)
,(12.28)

f
(
(g−1`g − `)2

)
= f(g−1`2g − `2),(12.29)

f(g−1`2g − `2) = f(g−1`g − `).(12.30)

By combining these equalities, we obtain

f(g−1`g − `)2 = f(g−1`g − `),
hence f(g−1`g − `) = 0 or 1.

We first show that f(x)2 = f(x2) for all x ∈ Alt(A, σ); equation (??) follows,
since g−1`g − ` ∈ Alt(A, σ). Let x = y + σ(y) for some y ∈ A. Since σ(`) + ` = 1,
we have

σ(y)y = σ(y)`y + σ
(
σ(y)`y

)
,
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hence

f
(
σ(y)y

)
= TrdA

(
σ(y)`y

)
.

The right side also equals

TrdA
(
`yσ(y)

)
= f

(
yσ(y)

)
,

hence f
(
σ(y)y + yσ(y)

)
= 0. It follows that

f(x2) = f
(
y2 + σ(y2)

)
= TrdA(y2).

On the other hand, (??) shows that TrdA(y2) = TrdA(y)2; since f(x) = TrdA(y),
we thus have f(x)2 = f(x2).

To prove (??), it suffices to show

f(g−1`g`+ `g−1`g) = 0,

since (g−1`g − `)2 = (g−1`2g − `2) + (g−1`g`+ `g−1`g). By the definition of `, we
have

f(g−1`g`+ `g−1`g) = TrdA
(
`(g−1`g`+ `g−1`g)

)
;

the right-hand expression vanishes, since TrdA(`g−1`g`) = TrdA(`2g−1`g).
To complete the proof, we show (??): since g is a similitude and `2 + ` =

σ(`)` ∈ Sym(A, σ), we have f
(
g−1(`2 + `)g

)
= f(`2 + `), hence

f(g−1`2g + g−1`g + `2 + `) = 0

and therefore

f(g−1`2g + `2) = f(g−1`g + `).

(12.31) Example. Suppose (V, q) is a nonsingular quadratic space of even dimen-
sion n = 2m and let (σq , fq) be the associated quadratic pair on EndF (V ), so
that

GO
(
EndF (V ), σq , fq

)
= GO(V, q),

as observed in (??). If ` ∈ EndF (V ) is such that fq(s) = tr(`s) for all s ∈
Sym

(
EndF (V ), σq

)
, we claim that for all g ∈ GO(V, q) the Dickson invariant ∆(g),

defined in (??), satisfies

∆(g) = f(g−1`g − `).
Since the right-hand expression does not depend on the choice of `, it suffices to
prove the claim for a particular `. Pick a basis (e1, . . . , en) of V which is symplectic
for the alternating form bq , i.e.,

bq(e2i−1, e2i) = 1, bq(e2i, e2i+1) = 0 and bq(ei, ej) = 0 if |i− j| > 1,

and identify every endomorphism of V with its matrix with respect to that basis.
An element ` ∈ EndF (V ) such that tr(`s) = fq(s) for all s ∈ Sym

(
EndF (V ), σq

)
is

given in (??); the corresponding matrix is (see the proof of (??))

` =



`1 0

. . .

0 `m


 where `i =

(
1 q(e2i)

q(e2i−1) 0

)
.
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On the other hand, for a matrix M representing the quadratic form q, we may
choose

M =



M1 0

. . .

0 Mm


 where Mi =

(
q(e2i−1) 0

1 q(e2i)

)
.

It is readily verified that M = W · ` where W = M + M t. Therefore, for all
invertible g ∈ EndF (V ),

g−1`g + ` = W−1(Wg−1W−1Mg +M).

Since σq(g) = W−1gtW , we have Wg−1W−1 = µ(g)−1gt if g ∈ GO(V, q), hence
the preceding equation may be rewritten as

g−1`g + ` = µ(g)−1W−1
(
gtMg + µ(g)M

)
.

Let R be a matrix such that gtMg + µ(g)M = R+Rt, so that

∆(g) = tr
(
µ(g)−1W−1R

)
.

We then have

g−1`g + ` = µ(g)−1W−1(R +Rt) = µ(g)−1W−1R+ σq
(
µ(g)−1W−1R

)
,

hence

fq(g
−1`g + `) = tr

(
µ(g)−1W−1R

)
,

and the claim is proved.

Note that this result yields an alternate proof of the part of (??) saying that
f(g−1`g+`) = 0 or 1 for all g ∈ GO(A, σ, f). One invokes (??) after scalar extension
to a splitting field.

(12.32) Definition. Let (σ, f) be a quadratic pair on a central simple algebra A
of even degree over a field F of characteristic 2. In view of (??), we may set

∆(g) = f(g−1`g − `) ∈ {0, 1} for g ∈ GO(A, σ, f),

where ` ∈ A is such that f(s) = TrdA(`s) for all s ∈ Sym(A, σ). We call ∆ the
Dickson invariant. By (??), this definition is compatible with (??) when (A, σ, f) =(
EndF (V ), σq , fq

)
.

It is easily verified that the map ∆ is a group homomorphism

∆: GO(A, σ, f)→ Z/2Z.

We set GO+(A, σ, f) for its kernel; its elements are called proper similitudes. We
also set PGO+(A, σ, f) = GO+(A, σ, f)/F×.

(12.33) Example. Let Q be a quaternion algebra with canonical involution γ over
a field F of characteristic 2, and let (γ, f) be a quadratic pair on Q. Choose ` ∈ Q
satisfying f(s) = TrdQ(`s) for all s ∈ Sym(Q, γ). As observed in (??), we have

GO(Q, γ, f) = F (`)× ∪
(
F (`)× · v

)

where v ∈ Q× satisfies v−1`v = `+ 1. For g ∈ F (`)× we have g−1`g+ ` = 0, hence
∆(g) = 0. On the other hand, if g ∈ F (`)× · v, then g−1`g+ ` = 1, hence ∆(g) = 1,
by (??). Therefore (compare with (??))

GO+(Q, γ, f) = F (`)×.
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12.D. Functorial properties. Elaborating on the observation that simili-
tudes of a given bilinear or hermitian space induce automorphisms of its endo-
morphism algebra with adjoint involution (see (??)), we now show how similitudes
between two hermitian spaces induce isomorphisms between their endomorphism
algebras. In the case of quadratic spaces of odd dimension in characteristic dif-
ferent from 2, the relationship with endomorphism algebras takes the form of an
equivalence of categories.

Let D be a division algebra with involution θ over an arbitrary field F . Let
K be the center of D, and assume F is the subfield of θ-invariant elements in K
(so F = K if θ is of the first kind). Hermitian or skew-hermitian spaces (V, h),
(V ′, h′) over D with respect to θ are called similar if there exists a D-linear map
g : V → V ′ and a nonzero element α ∈ F× such that

h′
(
g(x), g(y)

)
= αh(x, y) for x, y ∈ V .

The map g is then called a similitude with multiplier α.
Assuming (V, h), (V ′, h′) nonsingular, let σh, σh′ be their adjoint involutions

on EndD(V ), EndD(V ′) respectively.

(12.34) Proposition. Every similitude g : (V, h) → (V ′, h′) induces a K-isomor-

phism of algebras with involution

g∗ :
(
EndD(V ), σh

)
→

(
EndD(V ′), σh′

)

defined by g∗(f) = g ◦ f ◦ g−1 for f ∈ EndD(V ). Further, every K-isomorphism

of algebras with involution
(
EndD(V ), σh

)
→

(
EndD(V ′), σh′

)
has the form g∗ for

some similitude g : (V, h) → (V ′, h′), which is uniquely determined up to a factor

in K×.

Proof : It is straightforward to check that for every similitude g, the map g∗ is an
isomorphism of algebras with involution. On the other hand, suppose that

Φ:
(
EndD(V ), σh

)
→

(
EndD(V ′), σh′

)

is a K-isomorphism of algebras with involution. We then have dimD V = dimD V
′,

and we use Φ to define on V ′ the structure of a left EndD(V )⊗K Dop-module, by

(f ⊗ dop) ∗ v′ = Φ(f)(v′)d for f ∈ EndD(V ), d ∈ D, v′ ∈ V ′.

The space V also is a left EndD(V )⊗K Dop-module, with the action defined by

(f ⊗ dop) ∗ v = f(v)d for f ∈ EndD(V ), d ∈ D, v ∈ V .

Since dimK V = dimK V
′, it follows from (??) that V and V ′ are isomorphic as

EndD(V )⊗K Dop-modules. Hence, there exists a D-linear bijective map

g : V → V ′

such that f ∗
(
g(v′)

)
= g ◦ f(v′) for all f ∈ EndD(V ), v′ ∈ V ′; this means

Φ(f) ◦ g = g ◦ f for f ∈ EndD(V ).

It remains to show that g is a similitude, and that it is uniquely determined up to
a factor in K×. To prove the first part, define a hermitian form h0 on V by

h0(v, w) = h′
(
g(v), g(w)

)
for v, w ∈ V .

For all f ∈ EndD(V ), we then have

h0

(
v, f(w)

)
= h′

(
g(v),Φ(f) ◦ g(w)

)
.
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Since Φ is an isomorphism of algebras with involution, σh′
(
Φ(f)

)
= Φ

(
σh(f)

)
,

hence the right-hand expression may be rewritten as

h′
(
Φ

(
σh(f)

)
◦ g(v), g(w)

)
= h0

(
σh(f)(v), w

)
.

Therefore, σh is the adjoint involution with respect to h0. By (??), it follows that
h0 = αh for some α ∈ F×, hence g is a similitude with multiplier α, and Φ = g∗.

If g, g′ : (V, h) → (V ′, h′) are similitudes such that g∗ = g′∗, then g−1g′ ∈
EndD(V ) commutes with every f ∈ EndD(V ), hence g ≡ g′ mod K×.

(12.35) Corollary. All hyperbolic involutions of the same type on a central simple

algebra are conjugate. Similarly, all hyperbolic quadratic pairs on a central simple

algebra are conjugate.

Proof : Let A be a central simple algebra, which we represent as EndD(V ) for some
vector space V over a division algebra D, and let σ, σ′ be hyperbolic involutions
of the same type on A. These involutions are adjoint to hyperbolic hermitian or
skew-hermitian forms h, h′ on V , by (??). Since all the hyperbolic forms on V are
isometric, the preceding proposition shows that (A, σ) ' (A, σ′), hence σ and σ′

are conjugate.
Consider next two hyperbolic quadratic pairs (σ, f) and (σ′, f ′) on A. The

involutions σ and σ′ are hyperbolic, hence conjugate, by the first part of the proof.
After a suitable conjugation, we may thus assume σ′ = σ. By (??), there are
idempotents e, e′ ∈ A such that f(s) = TrdA(es) and f ′(s) = TrdA(e′s) for all
s ∈ Sym(A, σ).

Claim. There exists x ∈ A× such that σ(x)x = 1 and e = xe′x−1.

The claim yields

f ′(s) = TrdA(x−1exs) = TrdA(exsx−1) = f(xsx−1) for all s ∈ Sym(A, σ),

hence x conjugates (σ, f) into (σ′, f ′).
To prove the claim, choose a representation of A:

(A, σ) =
(
EndD(V ), σh

)

for some hyperbolic hermitian space (V, h) over a division algebra D. As in the
proof of (??), we may find a pair of complementary totally isotropic subspaces U ,
W (resp. U ′, W ′) in V such that e is the projection on U parallel to W and e′ is the
projection on U ′ parallel to W ′. It is easy to find an isometry of V which maps U ′

to U and W ′ to W ; every such isometry x satisfies σ(x)x = 1 and e = xe′x−1.

There is an analogue to (??) for quadratic pairs:

(12.36) Proposition. Let (V, q) and (V ′, q′) be even-dimensional and nonsingular

quadratic spaces over a field F . Every similitude g : (V, q) → (V ′, q′) induces an

F -isomorphism of algebras with quadratic pair

g∗ :
(
EndF (V ), σq , fq

)
→

(
EndF (V ′), σq′ , fq′

)

defined by

g∗(h) = g ◦ h ◦ g−1 for h ∈ EndF (V ).

Moreover, every F -isomorphism
(
EndF (V ), σq , fq

)
→

(
EndF (V ′), σq′ , fq′

)
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of algebras with quadratic pair is of the form g∗ for some similitude g : (V, q) →
(V ′, q′), which is uniquely determined up to a factor in F×.

Proof : The same arguments as in the proof of (??) apply here. Details are left to
the reader.

Proposition (??) shows that mapping every hermitian or skew-hermitian space
(V, h) to the algebra

(
EndD(V ), σh

)
defines a full functor from the category of

nonsingular hermitian or skew-hermitian spaces over D, where the morphisms are
the similitudes, to the category of central simple algebras with involution where
the morphisms are the isomorphisms. In the particular case where the degree is
odd and the characteristic is different from 2, this functor can be used to set up an
equivalence of categories, as we show in (??) below.

A particular feature of the categories we consider here (and in the next chapter)
is that all the morphisms are invertible (i.e., isomorphisms). A category which has
this property is called a groupoid . Equivalences of groupoids may be described in a
very elementary way, as the next proposition shows. For an arbitrary category X ,
let Isom(X ) be the class17 of isomorphism classes of objects in X . Every functor
S : X → Y induces a map Isom(X )→ Isom(Y ) which we also denote by S.

(12.37) Proposition. Let X , Y be groupoids. A covariant functor S : X → Y

defines an equivalence of categories if and only if the following conditions hold :

(1) the induced map S : Isom(X )→ Isom(Y ) is a bijection;
(2) for each X ∈ X , the induced map AutX (X)→ AutY

(
S(X)

)
is a bijection.

Proof : The conditions are clearly necessary. Suppose that the covariant functor S
satisfies conditions (??) and (??) above. If X , X ′ ∈ X and g : S(X) → S(X ′) is a
morphism in Y , then S(X) and S(X ′) are in the same isomorphism class of Y , hence
(??) implies that X and X ′ are isomorphic. Let f : X → X ′ be an isomorphism.
Then g ◦S(f)−1 ∈ AutY

(
S(X ′)

)
, hence g ◦S(f)−1 = S(h) for some h ∈ AutX (X ′).

It follows that g = S(h ◦ f), showing that the functor S is full. It is also faithful: if
f , g : X → X ′ are morphisms in X , then S(f) = S(g) implies S(f−1 ◦ g) = IdS(X),
hence f = g by (??). Since every object in Y is isomorphic to an object of the form
S(X) with X ∈ X , it follows that S is an equivalence of categories (see Mac Lane [?,
p. 91]).

(12.38) Remarks. (1) The proof above also applies mutatis mutandis to con-
travariant functors, showing that the same conditions as in (??) characterize the
contravariant functors which define anti-equivalence of categories.
(2) The bijection AutX (X) ∼−→ AutY

(
S(X)

)
induced by an equivalence of cat-

egories is a group isomorphism if the same convention is used in X and Y for
mapping composition. It is an anti-isomorphism if opposite conventions are used
in X and Y . By contrast, the bijection induced by an anti-equivalence of categories
is an anti-isomorphism if the same convention is used in X and Y , and it is an
isomorphism if opposite conventions are used.

For the rest of this section F is a field of characteristic different from 2. For
any integer n ≥ 1, let B ′

n denote the groupoid of central simple F -algebras of

17For all the categories we consider in the sequel, this class is a set.
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degree 2n+ 1 with involution of the first kind,18 where the morphisms are the F -
algebra isomorphisms which preserve the involutions. Note that these algebras are
necessarily split, and the involution is necessarily of orthogonal type, by (??).

For any integer n ≥ 1, let Qn be the groupoid of all nonsingular quadratic
spaces of dimension n over the field F , where the morphisms are the isometries,
and let Q1

n be the full subcategory of quadratic spaces with trivial discriminant. For
(V, q) ∈ Qn, let σq denote the adjoint involution on EndF (V ) with respect to (the
polar of) q. If (V, q) ∈ Q2n+1, then

(
EndF (V ), σq

)
∈ B ′

n, and we have a functor

End : Q2n+1 → B ′
n

given by mapping (V, q) to
(
EndF (V ), σq

)
, as observed in (??).

(12.39) Proposition. The functor End defines a bijection between the sets of

isomorphism classes :

End : Isom(Q1
2n+1)

∼−→ Isom(B ′
n).

Proof : By (??), every algebra with involution in B ′
n is isomorphic to an algebra

with involution of the form
(
EndF (V ), σq

)
for some quadratic space (V, q) of dimen-

sion 2n+1. Since the adjoint involution does not change when the quadratic form is
multiplied by a scalar, we may substitute (disc q)q for q and thus assume disc q = 1.
Therefore, the map induced by End on isomorphism classes is surjective.

On the other hand, suppose

Φ:
(
EndF (V ), σq

)
→

(
EndF (V ′), σq′

)

is an isomorphism, for some quadratic spaces (V, q), (V ′, q′) ∈ Q1
2n+1. By (??), we

may find a similitude g : (V, q)→ (V ′, q′) such that Φ = g∗. This similitude may be
regarded as an isometry (V, αq) ∼−→ (V ′, q′) , where α is the multiplier of g. Since
disc q = disc q′ and dimV = dim V ′ is odd, we must have α = 1, hence g is an
isometry (V, q) ∼−→ (V ′, q′).

Even though it defines a bijection between the sets of isomorphism classes, the
functor End is not an equivalence between Q1

2n+1 and B ′
n: this is because the group

of automorphisms of the algebra with involution
(
EndF (V ), σq

)
is

AutF
(
EndF (V ), σq

)
= PGO(V, q) = O+(V, q)

(the second equality follows from (??)), whereas the group of automorphisms of
(V, q) is O(V, q). However, we may define some additional structure on quadratic
spaces to restrict the automorphism group and thereby obtain an equivalence of
categories.

(12.40) Definition. Let (V, q) be a quadratic space of odd dimension and trivial
discriminant over a field F of characteristic different from 2. The center Z of the
Clifford algebra C(V, q) is then an étale quadratic extension of F isomorphic to
F × F . An orientation of (V, q) is an element ζ ∈ Z r F such that ζ2 = 1. Thus,
each quadratic space (V, q) as above has two possible orientations which differ by
a sign. Triples (V, q, ζ) are called oriented quadratic spaces.

18This notation is motivated by the fact that the automorphism group of each object in this
groupoid is a classical group of type Bn: see Chapter ??. However this groupoid is only defined
for fields of characteristic different from 2.
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Every isometry g : (V, q) → (V ′, q′) induces an isomorphism g∗ : C(V, q) ∼−→
C(V ′, q′) which carries an orientation of (V, q) to an orientation of (V ′, q′). The
isometries g : (V, q) → (V, q) which preserve a given orientation form the group
O+(V, q).

Let Bn be the groupoid of oriented quadratic spaces of dimension 2n+1 over F .
The objects of Bn are triples (V, q, ζ) where (V, q) is a quadratic space of dimen-
sion 2n+ 1 over F with trivial discriminant and ζ is an orientation of (V, q), and
the morphisms are the orientation-preserving isometries. For each (V, q, ζ) ∈ Bn,
the map −IdV : V → V defines an isomorphism (V, q, ζ) → (V, q,−ζ), hence two
oriented quadratic spaces are isomorphic if and only if the quadratic spaces are iso-
metric. In other words, the functor which forgets the orientation defines a bijection

Isom(Bn) ∼−→ Isom(Q1
2n+1).

(12.41) Theorem. The functor End which maps every oriented quadratic space

(V, q, ζ) in Bn to the algebra with involution
(
EndF (V ), σq

)
∈ B ′

n defines an equiv-

alence of categories :

Bn ≡ B ′
n.

Proof : Since the isomorphism classes of Bn and Q1
2n+1 coincide, (??) shows that the

functor End defines a bijection Isom(Bn) ∼−→ Isom(B ′
n). Moreover, as we observed

above, for every oriented quadratic space (V, q, ζ) of dimension 2n+ 1 we have

Aut
(
EndF (V ), σq

)
= O+(V, q) = Aut(V, q, ζ).(12.42)

Therefore, (??) shows that End is an equivalence of categories.

§13. Quadratic Pairs

In this section, (σ, f) is a quadratic pair on a central simple algebra A over
an arbitrary field F . If the degree of A is odd, then A is split, charF 6= 2, and
the group of similitudes of (A, σ, f) reduces to the orthogonal group of an F -vector
space (see (??)). We therefore assume throughout this section that the degree is
even, and we set

degA = n = 2m.

Our goal is to obtain additional information on the group GO(A, σ, f) by relating
similitudes of (A, σ, f) to the Clifford algebra C(A, σ, f) and the Clifford bimodule
B(A, σ, f). We use this to define a Clifford group Γ(A, σ, f), which is a twisted ana-
logue of the special Clifford group of a quadratic space, and also define an extended
Clifford group Ω(A, σ, f). These constructions are used to prove an analogue of a
classical theorem of Dieudonné on the multipliers of similitudes.

13.A. Relation with the Clifford structures. Since the Clifford alge-
bra C(A, σ, f) and the Clifford bimodule B(A, σ, f) are canonically associated to
(A, σ, f), every automorphism in AutF (A, σ, f) induces automorphisms of C(A, σ, f)
and B(A, σ, f). Our purpose in this section is to investigate these automorphisms.

The Clifford algebra. Every automorphism θ ∈ AutF (A, σ, f) induces an
automorphism

C(θ) ∈ AutF
(
C(A, σ), σ

)
.

Explicitly, C(θ) can be defined as the unique automorphism of C(A, σ, f) such that

C(θ)
(
c(a)

)
= c

(
θ(a)

)
for a ∈ A,
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where c : A→ C(A, σ, f) is the canonical map (??). We thereby obtain a canonical
group homomorphism

C : AutF (A, σ, f)→ AutF
(
C(A, σ, f), σ

)
.

Slightly abusing notation, we also call C the homomorphism

C : GO(A, σ, f)→ AutF
(
C(A, σ, f), σ

)

obtained by composing the preceding map with the epimorphism

Int: GO(A, σ, f)→ AutF (A, σ, f)

of (??). Thus, for g ∈ GO(A, σ, f) and a ∈ A,

C(g)
(
c(a)

)
= c(gag−1).

(13.1) Proposition. Suppose A is split; let (A, σ, f) =
(
EndF (V ), σq , fq

)
for

some nonsingular quadratic space (V, q). Then, under the standard identifications

GO(A, σ, f) = GO(V, q) (see (??)) and C(A, σ, f) = C0(V, q) (see (??)), the canon-

ical map C : GO(V, q)→ AutF
(
C0(V, q)

)
is defined by

C(g)(v1 · · · v2r) = µ(g)−rg(v1) · · · g(v2r)
for g ∈ GO(V, q) and v1, . . . , v2r ∈ V .

Proof : It suffices to check the formula above on generators v · w of C0(V, q). For
v, w ∈ V , the product v · w in C(V, q) is the image of v ⊗ w under the canonical
map c: we thus have v · w = c(v ⊗ w), hence

C(g)(v · w) = c
(
g ◦ (v ⊗ w) ◦ g−1

)
.

Let α = µ(g) be the multiplier of g; then σ(g)−1 = α−1g, hence, for x ∈ V ,
(
g ◦ (v ⊗ w) ◦ g−1

)
(x) = g(v)bq

(
w, g−1(x)

)
= g(v)bq

(
α−1g(w), x

)
.

Therefore,
(
g ◦ (v ⊗ w) ◦ g−1

)
(x) =

(
α−1g(v)⊗ g(w)

)
(x), which shows

g ◦ (v ⊗ w) ◦ g−1 = α−1g(v)⊗ g(w),

hence c
(
g ◦ (v ⊗ w) ◦ g−1

)
= α−1g(v) · g(w).

Note that, for g ∈ GO(A, σ, f), the automorphism C(g) of C(A, σ, f) is F -linear
but is not necessarily the identity on the center of C(A, σ, f). The behavior of C(g)
on the center in fact determines whether g is proper, as the next proposition shows.

(13.2) Proposition. A similitude g ∈ GO(A, σ, f) is proper if and only if C(g)
restricts to the identity map on the center Z of C(A, σ, f).

Proof : Suppose first that charF = 2. Choose ` ∈ A satisfying f(s) = TrdA(`s) for
all s ∈ Sym(A, σ) (see (??)). By (??), we have Z = F

[
c(`)

]
, hence it suffices to

show

C(g)
(
c(`)

)
= c(`) + ∆(g) for g ∈ GO(A, σ, f).

For g ∈ GO(A, σ, f) we have

∆(g) = f(g−1`g − `);
since g is a similitude, the right side also equals

f
(
g(g−1`g − `)g−1

)
= f(g`g−1 − `).
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On the other hand, since g`g−1 − ` ∈ Sym(A, σ), we have

f(g`g−1 − `) = c(g`g−1 − `),

hence

∆(g) = c(g`g−1)− c(`) = C(g)
(
c(`)

)
− c(`),

proving the proposition when charF = 2.
Suppose now that charF 6= 2. It suffices to check the split case; we may

thus assume (A, σ, f) =
(
EndF (V ), σq , fq

)
for some nonsingular quadratic space

(V, q), and use the standard identifications and the preceding proposition. Let
(e1, . . . , e2m) be an orthogonal basis of (V, q). Recall that e1 · · · e2m ∈ Z r F . For
g ∈ GO(A, σ, f) = GO(V, q), we have

C(g)(e1 · · · e2m) = µ(g)−mg(e1) · · · g(e2m).

On the other hand, a calculation in the Clifford algebra shows that

g(e1) · · · g(e2m) = det(g)e1 · · · e2m;

hence e1 · · · e2m is fixed by C(g) if and only if det(g) = µ(g)m. This proves the
proposition in the case where charF 6= 2.

In view of this proposition, the Dickson invariant ∆: GO(A, σ, f) → Z/2Z
defined in (??) may alternately be defined by

∆(g) =

{
0 if C(g)|Z = IdZ ,

1 if C(g)|Z 6= IdZ .
(13.3)

The image of the canonical map C has been determined by Wonenburger in
characteristic different from 2:

(13.4) Proposition. If degA > 2, the canonical homomorphism

C : PGO(A, σ, f) = AutF (A, σ, f)→ AutF
(
C(A, σ, f), σ

)

is injective. If charF 6= 2, the image of C is the group of those automorphisms

which preserve the image c(A) of A under the canonical map c : A→ C(A, σ, f).

Proof : If θ ∈ AutF (A, σ) lies in the kernel of C, then

c
(
θ(a)

)
= c(a) for a ∈ A,

since the left side is the image of c(a) under C(θ). By applying the map δ of (??),
we obtain

θ
(
a− σ(a)

)
= a− σ(a) for a ∈ A,

hence θ is the identity on Alt(A, σ). Since degA > 2, (??) shows that Alt(A, σ)
generates A, hence θ = IdA, proving the injectivity of C.

It follows from the definition that every automorphism of the form C(θ) maps
c(A) to itself. Conversely, suppose ψ is an automorphism of C(A, σ, f) which pre-
serves c(A), and suppose charF 6= 2. The map f is then uniquely determined by
σ, so we may denote C(A, σ, f) simply by C(A, σ). The restriction of ψ to

c(A)0 = c(A) ∩ Skew
(
C(A, σ), σ

)
= {x ∈ c(A) | Trd(x) = 0 }
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is a Lie algebra automorphism. By (??), the Lie algebra c(A)0 is isomorphic to
Alt(A, σ) via δ, with inverse isomorphism 1

2c; therefore, there is a corresponding
Lie automorphism ψ′ of Alt(A, σ) such that

c
(
ψ′(a)

)
= ψ

(
c(a)

)
for a ∈ Alt(A, σ).

Let L be a splitting field of A. A theorem19 of Wonenburger [?, Theorem 4] shows
that the automorphism ψL = ψ ⊗ IdL of C(A, σ)L = C(AL, σL) is induced by a
similitude g of (AL, σL), hence

ψ′L(a) = gag−1 for a ∈ Alt(AL, σL).

Therefore, the automorphism ψ′L of Alt(AL, σL) extends to an automorphism of
(AL, σL). By (??), ψ′ extends to an automorphism θ of (A, σ), and this au-
tomorphism satisfies C(θ) = ψ since c

(
θ(a)

)
= c

(
ψ′(a)

)
= ψ

(
c(a)

)
for all a ∈

Alt(A, σ).

If degA = 2, then C(A, σ) = Z, so AutF
(
C(A, σ), σ

)
= {Id, ι} and the canon-

ical homomorphism C maps PGO+(A, σ) to Id, so C is not injective.

The Clifford bimodule. The bimodule B(A, σ, f) is canonically associated to
(A, σ, f), just as the Clifford algebra C(A, σ, f) is. Therefore, every automorphism
θ ∈ AutF (A, σ, f) induces a bijective linear map

B(θ) : B(A, σ, f)→ B(A, σ, f).

This map satisfies

B(θ)(ab) = θ(a)b for a ∈ A
(where b : A→ B(A, σ, f) is the canonical map of (??)) and

B(θ)
(
a · (c1 ∗ x · c2)

)
= θ(a) ·

(
C(θ)(c1) ∗B(θ)(x) · C(θ)(c2)

)
(13.5)

for a ∈ A, c1, c2 ∈ C(A, σ, f) and x ∈ B(A, σ, f). Explicitly, B(θ) is induced by
the map θ : T+(A)→ T+(A) such that

θ(a1 ⊗ · · · ⊗ ar) = θ(a1)⊗ · · · ⊗ θ(ar).
As in the previous case, we modify the domain of definition of B to be the group
GO(A, σ, f), by letting B(g) = B

(
Int(g)

)
for g ∈ GO(A, σ, f). We thus obtain a

canonical homomorphism

B : GO(A, σ, f)→ GLF B(A, σ, f).

For g ∈ GO(A, σ, f), we also define a map

β(g) : B(A, σ, f) → B(A, σ, f)(13.6)

by

xβ(g) = g · B(g−1)(x) for x ∈ B(A, σ, f).

The map β(g) is a homomorphism of left A-modules, since for a ∈ A and x ∈
B(A, σ, f),

(a · x)β(g) = g · (g−1ag) · B(g−1)(x) = a · xβ(g).

Moreover, the following equation is a straightforward consequence of the definitions:

(1b)β(g) = gb.(13.7)

19This theorem is proved under the assumption that char F 6= 2. See Exercise ?? for a sketch
of proof.
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Since b is injective, it follows that the map

β : GO(A, σ, f)→ AutA
(
B(A, σ, f)

)

is injective. This map also is a homomorphism of groups; to check this, we compute,
for g, h ∈ GO(A, σ, f) and x ∈ B(A, σ, f):

xβ(g)◦β(h) =
(
g · B(g−1)(x)

)β(h)
.

Since β(h) is a homomorphism of left A-modules, the right-hand expression equals

g ·
(
B(g−1)(x)

)β(h)
= g ·

(
h ·B(h−1) ◦B(g−1)(x)

)

= gh ·B(h−1g−1)(x)

= xβ(gh),

proving the claim.
Let Z be the center of C(A, σ, f). Recall the right ιC(A, σ, f)op ⊗Z C(A, σ, f)-

module structure on B(A, σ, f), which yields the canonical map

ν : ιC(A, σ, f)⊗Z C(A, σ, f)→ EndA⊗Z B(A, σ, f)

of (??). It follows from (??) that the following equation holds in EndAB(A, σ, f):

β(g) ◦ ν(ιcop1 ⊗ c2) = ν
(
ιC(g)(c1)

op ⊗ C(g)(c2)
)
◦ β(g)(13.8)

for all g ∈ GO(A, σ, f), c1, c2 ∈ C(A, σ, f). In particular, it follows by (??) that
β(g) is Z-linear if and only if g is proper.

The following result describes the maps B(g) and β(g) in the split case; it
follows by the same arguments as in (??).

(13.9) Proposition. Suppose A is split; let

(A, σ, f) =
(
EndF (V ), σq , fq

)

for some nonsingular quadratic space (V, q). Under the standard identifications

GO(A, σ, f) = GO(V, q) and B(A, σ, f) = V ⊗ C1(V, q) (see (??)), the maps B
and β are given by

B(g)(v ⊗ w1 · · ·w2r−1) = µ(g)−rg(v)⊗ g(w1) · · · g(w2r−1)

and

(v ⊗ w1 · · ·w2r−1)
β(g) = µ(g)rv ⊗ g−1(w1) · · · g−1(w2r−1)

for g ∈ GO(A, σ, f) and v, w1, . . . , w2r−1 ∈ V .

13.B. Clifford groups. For a nonsingular quadratic space (V, q) over an ar-
bitrary field F , the special Clifford group Γ+(V, q) is defined by

Γ+(V, q) = { c ∈ C0(V, q)
× | c · V · c−1 ⊂ V }

where the product c · V · c−1 is computed in the Clifford algebra C(V, q) (see for
instance Knus [?, Ch. 4, §6], or Scharlau [?, §9.3] for the case where charF 6= 2).

Although there is no analogue of the (full) Clifford algebra for an algebra with
quadratic pair, we show in this section that the Clifford bimodule may be used to
define an analogue of the special Clifford group. We also show that an extended
Clifford group can be defined by substituting the Clifford algebra for the Clifford
bimodule. These constructions are used to define spinor norm homomorphisms on
the groups O+(A, σ, f) and PGO+(A, σ, f).
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The special Clifford group in the split case. Let (V, q) be a nonsingular
quadratic space of even20 dimension over an arbitrary field F , and let Γ+(V, q) be
the special Clifford group defined above. Conjugation by c ∈ Γ+(V, q) in C(V, q)
induces an isometry of (V, q), since

q(c · v · c−1) = (c · v · c−1)2 = v2 = q(v) for v ∈ V .

We set χ(c) for this isometry:

χ(c)(v) = c · v · c−1 for v ∈ V .

The map χ : Γ+(V, q)→ O(V, q) is known as the vector representation of the special
Clifford group. The next proposition shows that its image is in O+(V, q).

(13.10) Proposition. The elements in Γ+(V, q) are similitudes of the even Clif-

ford algebra C0 = C0(V, q) for the canonical involution τ0 (see (??)). More pre-

cisely, τ0(c) · c ∈ F× for all c ∈ Γ+(V, q). The vector representation χ and the

canonical homomorphism C of (??) fit into the following commutative diagram

with exact rows :

1 −−−−→ F× −−−−→ Γ+(V, q)
χ−−−−→ O+(V, q) −−−−→ 1

y
y

yC

1 −−−−→ Z× −−−−→ Sim(C0, τ0)
Int−−−−→ AutZ(C0, τ0) −−−−→ 1

where Z denotes the center of C0.

Proof : Let τ be the canonical involution on C(V, q), whose restriction to (the image
of) V is the identity. For c ∈ Γ+(V, q) and v ∈ V , we have c · v · c−1 ∈ V , hence

c · v · c−1 = τ(c · v · c−1) = τ0(c)
−1 · v · τ0(c).

This shows that the element τ0(c) · c centralizes V ; since V generates C(V, q),
it follows that τ0(c) · c is central in C(V, q), hence τ0(c) · c ∈ F×. This proves
Γ+(V, q) ⊂ Sim(C0, τ0).

The elements in kerχ centralize V , hence the same argument as above shows
kerχ = F×.

Let c ∈ Γ+(V, q). By (??), the automorphism C
(
χ(c)

)
of C0 maps v1 · · · v2r to

χ(c)(v1) · · ·χ(c)(v2r) = c · (v1 · · · v2r) · c−1

for v1, . . . , v2r ∈ V , hence

C
(
χ(c)

)
= Int(c).

This automorphism is the identity on Z, hence (??) shows that χ(c) ∈ O+(V, q).
Moreover, the last equation proves that the diagram commutes. Therefore, it re-
mains only to prove surjectivity of χ onto O+(V, q).

To prove that every proper isometry is in the image of χ, observe that for every
v, x ∈ V with q(v) 6= 0,

v · x · v−1 = v−1bq(v, x) − x = vq(v)−1bq(v, x) − x,
hence the hyperplane reflection ρv : V → V satisfies

ρv(x) = −v · x · v−1 for all x ∈ V .

20Clifford groups are also defined in the odd-dimensional case, where results similar to those
of this section can be established. Since we are interested in the generalization to the nonsplit
case, given below, we consider only the even-dimensional case.
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Therefore, for anisotropic v1, v2 ∈ V , we have v1 · v2 ∈ Γ+(V, q) and

χ(v1 · v2) = ρv1 ◦ ρv2 .
The Cartan-Dieudonné theorem (see Dieudonné [?, pp. 20, 42], or Scharlau [?,
p. 15] for the case where charF 6= 2) shows that the group O(V, q) is generated by
hyperplane reflections, except in the case where F is the field with two elements,
dimV = 4 and q is hyperbolic. Since hyperplane reflections are improper isometries
(see (??)), it follows that every proper isometry has the form

ρv1 ◦ · · · ◦ ρv2r = χ(v1 · · · v2r)
for some anisotropic vectors v1, . . . , v2r ∈ V , in the nonexceptional case.

Direct computations, which we omit, prove that χ is surjective in the excep-
tional case as well.

The proof shows that every element in Γ+(V, q) is a product of an even number
of anisotropic vectors in V , except when (V, q) is the 4-dimensional hyperbolic space
over the field with two elements.

The Clifford group of an algebra with quadratic pair. Let (σ, f) be a
quadratic pair on a central simple algebra A of even degree over an arbitrary field F .
The Clifford group consists of elements in C(A, σ, f) which preserve the image Ab

of A in the bimodule B(A, σ, f) under the canonical map b : A→ B(A, σ, f) of (??):

(13.11) Definition. The Clifford group Γ(A, σ, f) is defined by

Γ(A, σ, f) = { c ∈ C(A, σ, f)× | c−1 ∗Ab · c ⊂ Ab }.
Since the C(A, σ, f)-bimodule actions on B(A, σ, f) commute with the left A-
module action and since the canonical map b is a homomorphism of left A-modules,
the condition defining the Clifford group is equivalent to

c−1 ∗ 1b · c ∈ Ab.
For c ∈ Γ(A, σ, f), define χ(c) ∈ A by the equation

c−1 ∗ 1b · c = χ(c)b.

(The element χ(c) is uniquely determined by this equation, since the canonical
map b is injective: see (??)).

(13.12) Proposition. In the split case (A, σ, f) =
(
EndF (V ), σq , fq

)
, the standard

identifications C(A, σ, f) = C0(V, q), B(A, σ, f) = V ⊗ C1(V, q) of (??), (??),
induce an identification Γ(A, σ, f) = Γ+(V, q), and the map χ defined above is the

vector representation.

Proof : Under the standard identifications, we have A = V ⊗ V and Ab = V ⊗ V ⊂
V ⊗ C1(V, q). Moreover, for c ∈ C(A, σ, f) = C0(V, q) and v, w ∈ V ,

c−1 ∗ (v ⊗ w)b · c = v ⊗ (c−1 · w · c).(13.13)

Therefore, the condition c−1 ∗Ab · c ⊂ Ab amounts to:

v ⊗ (c−1 · w · c) ∈ V ⊗ V for v, w ∈ V ,

or c−1 · V · c ⊂ V . This proves the first assertion.
Suppose now that c−1∗1b ·c = gb. Since b is a homomorphism of left A-modules,

we then get for all v, w ∈ V :

c−1 ∗ (v ⊗ w)b · c = (v ⊗ w) · (c−1 ∗ 1b · c) =
(
(v ⊗ w) ◦ g

)b
.(13.14)
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By evaluating (v ⊗ w) ◦ g at an arbitrary x ∈ V , we obtain

vbq
(
w, g(x)

)
= vbq

(
σ(g)(w), x

)
=

(
v ⊗ σ(g)(w)

)
(x),

hence (v ⊗ w) ◦ g = v ⊗ σ(g)(w). Therefore, (??) yields

c−1 ∗ (v ⊗ w)b · c =
(
v ⊗ σ(g)(w)

)b
.

In view of (??), this shows: σ(g)(w) = c−1 · w · c, so

χ(c) = σ(g)−1 = g.

By extending scalars to a splitting field of A, it follows from the proposition
above and (??) that χ(c) ∈ O+(A, σ, f) for all c ∈ Γ(A, σ, f). The commutative
diagram of (??) has an analogue for algebras with quadratic pairs:

(13.15) Proposition. For brevity, set C(A) = C(A, σ, f). Let Z be the center

of C(A) and let σ denote the canonical involution on C(A). For all c ∈ Γ(A, σ, f) we

have σ(c)c ∈ F×, hence Γ(A, σ, f) ⊂ Sim
(
C(A), σ

)
. The map χ and the restriction

to O+(A, σ, f) of the canonical map

C : GO(A, σ, f)→ AutF
(
C(A), σ

)

fit into a commutative diagram with exact rows :

1 −−−−→ F× −−−−→ Γ(A, σ, f)
χ−−−−→ O+(A, σ, f) −−−−→ 1

y
y

yC

1 −−−−→ Z× −−−−→ Sim
(
C(A), σ

) Int−−−−→ AutZ
(
C(A), σ

)
−−−−→ 1

Proof : All the statements follow by scalar extension to a splitting field of A and
comparison with (??), except for the surjectivity of χ onto O+(A, σ, f).

To prove this last point, recall the isomorphism ν of (??) induced by the C(A)-
bimodule structure on B(A, σ, f):

ν : ιC(A)op ⊗Z C(A) ∼−→ EndA⊗Z
(
B(A, σ, f)

)
.

This isomorphism satisfies

xν(
ιcop1 ⊗c2) = c1 ∗ x · c2 for x ∈ B(A, σ, f), c1, c2 ∈ C(A).

For g ∈ O+(A, σ, f), it follows from (??) that C(g) is the identity on Z, hence β(g)
is an A⊗Z-endomorphism of B(A, σ, f), by (??). Therefore, there exists a unique
element ξ ∈ ιC(A)op ⊗Z C(A) such that ν(ξ) = β(g).

In the split case, (??) shows that ξ = ι(c−1)op ⊗ c, where c ∈ Γ+(V, q) is such
that χ(c) = g. Since the minimal number of terms in a decomposition of an element
of a tensor product is invariant under scalar extension, it follows that ξ = ιcop1 ⊗ c2
for some c1, c2 ∈ C(A). Moreover, if s is the switch map on ιC(A)op ⊗Z C(A),
defined by

s(ιcop ⊗ c′) = ιc′
op ⊗ c for c, c′ ∈ C(A),

then s(ξ)ξ = 1, since ξ = ι(c−1)op⊗ c over a splitting field. Therefore, the elements
c1, c2 ∈ C(A)× satisfy

c1c2 = λ ∈ Z with NZ/F (λ) = 1.
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By Hilbert’s Theorem 90 (??), there exists λ1 ∈ Z such that λ = λ1ι(λ1)
−1.

(Explicitly, we may take λ1 = z + λι(z), where z ∈ Z is such that z + λι(z) is
invertible.) Then ξ = ι(c−1

3 )op ⊗ c3 for c3 = λ−1
1 c2, hence

xβ(g) = c−1
3 ∗ x · c3 for x ∈ B(A, σ, f).

In particular, for x = 1b we obtain by (??):

c−1
3 ∗ 1b · c3 = gb.

This shows that c3 ∈ Γ(A, σ, f) and χ(c3) = g.

(13.16) Corollary. Suppose degA ≥ 4; then

Γ(A, σ, f) ∩ Z = { z ∈ Z× | z2 ∈ F× };
thus Γ(A, σ, f) ∩ Z = F× if charF = 2, and Γ(A, σ, f) ∩ Z = F× ∪ z · F× if

charF 6= 2 and Z = F [z] with z2 ∈ F×.

Proof : Since χ is surjective, it maps Γ(A, σ, f) ∩Z to the center of O+(A, σ, f). It
follows by scalar extension to a splitting field of A that the center of O+(A, σ, f)
is trivial if charF = 2 and is {1,−1} if charF 6= 2 (see Dieudonné [?, pp. 25, 45]).
Therefore, the factor group

(
Γ(A, σ, f)∩Z

)
/F× is trivial if charF = 2 and has two

elements if charF 6= 2, proving the corollary.

(13.17) Example. Suppose Q is a quaternion F -algebra with canonical involution
γ. If charF 6= 2, let σ = Int(u)◦γ for some invertible pure quaternion u. Let F (u)1

be the group of elements of norm 1 in F (u):

F (u)1 = { z ∈ F (u) | zγ(z) = 1 }.
As observed in (??), we have O+(Q, σ) = F (u)1. On the other hand, it follows
from the structure theorem for Clifford algebras (??) that C(Q, σ) is a commutative
algebra isomorphic to F (u). The Clifford group Γ(Q, σ) is the group of invertible
elements in C(Q, σ). It can be identified with F (u)× in such a way that the vector
representation χ maps x ∈ F (u)× to xγ(x)−1 ∈ F (u)1. The upper exact sequence
of the commutative diagram in (??) thus takes the form

1→ F× −→ F (u)×
1−γ−−→ F (u)1 → 1.

Similar results hold if charF = 2. Using the same notation as in (??) and (??),
we have O+(Q, γ, f) = F (`)1, Γ(Q, γ, f) ' F (`)×, and the upper exact sequence of
the commutative diagram in (??) becomes

1→ F× −→ F (`)×
1−γ−−→ F (`)1 → 1.

The extended Clifford group. In this subsection, we define an intermediate
group Ω(A, σ, f) between Γ(A, σ, f) and Sim

(
C(A, σ, f), σ

)
, which covers the group

PGO+(A, σ, f) in the same way as Γ(A, σ, f) covers O+(A, σ, f) by the vector rep-
resentation χ. This construction will enable us to define an analogue of the spinor
norm for the group PGO+(A, σ).

The notation is as above: (σ, f) is a quadratic pair on a central simple algebraA
of even degree over an arbitrary field F . Let Z be the center of the Clifford algebra
C(A, σ, f). Since (??) plays a central rôle almost from the start (we need injectivity
of the canonical map C for the definition of χ′ in (??) below), we exclude the case
of quaternion algebras from our discussion. We thus assume

degA = n = 2m ≥ 4.
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We identify PGO(A, σ, f) with AutF (A, σ, f) by mapping g · F× to Int(g), for
g ∈ GO(A, σ, f). By (??) and (??), the canonical map C induces an injective
homomorphism C : PGO+(A, σ, f) → AutZ

(
C(A, σ, f), σ

)
. Consider the following

diagram:

PGO+(A, σ, f)
yC

Sim
(
C(A, σ, f), σ

) Int−−−−→ AutZ
(
C(A, σ, f), σ

)
.

(13.18) Definition. The extended Clifford group of (A, σ, f) is the inverse image
under Int of the image of the canonical map C:

Ω(A, σ, f) = { c ∈ Sim
(
C(A, σ, f), σ

)
| Int(c) ∈ C

(
PGO+(A, σ, f)

)
}.

Thus, Ω(A, σ, f) ⊂ Sim
(
C(A, σ, f), σ

)
, and there is an exact sequence

1→ Z× → Ω(A, σ, f)
χ′−→ PGO+(A, σ, f)→ 1(13.19)

where the map χ′ is defined by

χ′(c) = g · F× if Int(c) = C(g), with g ∈ GO+(A, σ, f).

If charF 6= 2, the group Ω(A, σ, f) = Ω(A, σ) may alternately be defined by

Ω(A, σ) = { c ∈ C(A, σ)× | c · c(A) · c−1 = c(A) },
since the Z-automorphisms of C(A, σ) which preserve c(A) are exactly those which
are of the form C(g) for some g ∈ GO+(A, σ), by (??). We shall not use this
alternate definition, since we want to keep the characteristic arbitrary.

For c ∈ Γ(A, σ, f), we have Int(c) = C(g) for some g ∈ O+(A, σ, f), by (??),
hence Γ(A, σ, f) ⊂ Ω(A, σ, f). Our first objective in this subsection is to describe
Γ(A, σ, f) as the kernel of a map κ : Ω(A, σ, f)→ Z×/F×.

The multiplier map µ : GO(A, σ, f) → F× induces a map

µ : PGO+(A, σ, f)→ F×/F×2,

since µ(α) = α2 for all α ∈ F×. This map fits into an exact sequence:

O+(A, σ, f)
π−→ PGO+(A, σ, f)

µ−→ F×/F×2.

(13.20) Lemma. The kernel of the map µ ◦ χ′ : Ω(A, σ, f)→ F×/F×2 is the sub-

group Z× · Γ(A, σ, f). In particular, if F is algebraically closed, then, since µ is

trivial, Ω(A, σ, f) = Z× · Γ(A, σ, f).

Proof : For c ∈ Γ(A, σ, f), we have χ′(c) = g · F× for some g ∈ O+(A, σ, f), hence
µ◦χ′(c) = 1. Since kerχ′ = Z×, the inclusion Z×·Γ(A, σ, f) ⊂ ker(µ◦χ′) follows. In
order to prove the reverse inclusion, pick c ∈ ker(µ◦χ′); then χ′(c) = g ·F× for some
g ∈ GO+(A, σ, f) such that µ(g) ∈ F×2. Let µ(g) = α2 for some α ∈ F×. Then
α−1g ∈ O+(A, σ, f), so there is an element γ ∈ Γ(A, σ, f) such that χ(γ) = α−1g.
We then have

Int(γ) = C(α−1g) = C(g) = Int(c),

hence c = z · γ for some z ∈ Z×.
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We now define a map

κ : Ω(A, σ, f)→ Z×/F×

as follows: for ω ∈ Ω(A, σ, f), we pick g ∈ GO+(A, σ, f) such that χ′(ω) = g · F×;
then µ(g)−1g2 ∈ O+(A, σ, f), hence there exists γ ∈ Γ(A, σ, f) such that χ(γ) =
µ(g)−1g2. By (??) it follows that Int(γ) = C(g2) = Int(ω2), hence

ω2 = z · γ for some z ∈ Z×.

We then set

κ(ω) = z · F× ∈ Z×/F×.
To check that κ is well-defined, suppose g′ ∈ GO+(A, σ, f) also satisfies χ′(ω) =

C(g′). We then have g ≡ g′ mod F×, hence µ(g)−1g2 = µ(g′)−1g′2. On the other
hand, the element γ ∈ Γ(A, σ, f) such that χ(γ) = µ(g)−1g2 is uniquely determined
up to a factor in F×, by (??), hence the element z ∈ Z× is uniquely determined
modulo F×.

Note that, if charF 6= 2, the element z is not uniquely determined by the
condition that ω2 = z · γ for some γ ∈ Γ(A, σ, f), since Γ(A, σ, f) ∩ Z× 6= F× (see
(??)).

(13.21) Proposition. The map κ : Ω(A, σ, f) → Z×/F× is a group homomor-

phism and kerκ = Γ(A, σ, f).

Proof : It suffices to prove the proposition over an algebraic closure. We may thus
assume F is algebraically closed; (??) then shows that

Ω(A, σ, f) = Z× · Γ(A, σ, f).

For z ∈ Z× and γ ∈ Γ(A, σ, f) we have κ(z · γ) = z2 · F×, hence κ is a group
homomorphism. Moreover, kerκ consists of the elements z · γ such that z2 ∈
F×. In view of (??), this condition implies that z ∈ Γ(A, σ, f), hence kerκ =
Γ(A, σ, f).

Our next objective is to relate κ(ω) to µ ◦ χ′(ω), for ω ∈ Ω(A, σ, f). We need
the following classical result of Dieudonné, which will be generalized in the next
section:

(13.22) Lemma (Dieudonné). Let (V, q) be a nonsingular even-dimensional quad-

ratic space over an arbitrary field F . Let Z be the center of the even Clifford al-

gebra C0(V, q). For every similitude g ∈ GO(V, q), the multiplier µ(g) is a norm

from Z/F .

Proof : The similitude g may be viewed as an isometry 〈µ(g)〉 · q ' q. Therefore,
the quadratic form q ⊥

〈
− µ(g)

〉
· q is hyperbolic. The Clifford algebra of any

form 〈1,−α〉 · q is Brauer-equivalent to the quaternion algebra21 (Z, α)F (see for
instance [?, (3.22), p. 47]), hence

(
Z, µ(g)

)
F

splits, proving that µ(g) is a norm
from Z/F .

Continuing with the same notation, and assuming dimV ≥ 4, consider ω ∈
Ω

(
EndF (V ), σq , fq

)
⊂ C0(V, q) and g ∈ GO+(V, q) such that χ′(ω) = g · F×. The

preceding lemma yields an element z ∈ Z× such that µ(g) = NZ/F (z) = zι(z),
where ι is the nontrivial automorphism of Z/F .

21We use the same notation as in §??.
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(13.23) Lemma. There exists an element z0 ∈ Z× such that κ(ω) = (zz2
0)
−1 ·F×

and, in C(V, q),

ω · v · ω−1 = ι(z0)z
−1
0 z−1g(v) for v ∈ V .

Proof : For all v ∈ V , we have in C(V, q)
(
z−1g(v)

)2
= z−1ι(z)−1g(v)2 = µ(g)−1q

(
g(v)

)
= q(v),

hence the map v 7→ z−1g(v) extends to an automorphism of C(V, q), by the universal
property of Clifford algebras. By the Skolem-Noether theorem, we may represent
this automorphism as Int(c) for some c ∈ C(V, q)×. For v, ∈ V , we then have

Int(c)(v · w) = z−1g(v) · z−1g(w) = µ(g)−1g(v) · g(w),

hence (??) shows that the restriction of Int(c) to C0(V, q) is C(g). Since g is a proper
similitude, it follows from (??) that Int(c) is the identity on Z, hence c ∈ C0(V, q)

×.
Moreover, Int(c)|C0(V,q) = Int(ω)|C0(V,q) since χ′(ω) = g · F×, hence c = z0ω for
some z0 ∈ Z×. It follows that for all v ∈ V ,

ω · v · ω−1 = z−1
0 c · v · c−1z0 = ι(z0)z

−1
0 z−1g(v).

Observe next that

Int(c2)(v) = z−2g2(v) for v ∈ V ,

since c commutes with z. If γ ∈ Γ+(V, q) satisfies χ(γ) = µ(g)−1g2, then

γ · v · γ−1 = µ(g)−1g2(v) for v ∈ V ,

hence γ−1zc2 centralizes V . Since V generates C(V, q), it follows that

γ ≡ zc2 ≡ zz2
0ω mod F×.

By definition of κ, these congruences yield κ(ω) = (zz2
0)
−1 · F×.

The main result of this subsection is the following:

(13.24) Proposition. The following diagram is commutative with exact rows and

columns :

1 −−−−→ F× −−−−→ Γ(A, σ, f)
χ−−−−→ O+(A, σ, f) −−−−→ 1

y
y

yπ

1 −−−−→ Z× −−−−→ Ω(A, σ, f)
χ′−−−−→ PGO+(A, σ, f) −−−−→ 1

yκ

yµ

Z×/F×
NZ/F−−−−→ F×/F×2.

Proof : In view of (??) and (??), it suffices to prove commutativity of the lower
square. By extending scalars to a splitting field of A in which F is algebraically
closed, we may assume that A is split. Let (V, q) be a nonsingular quadratic space
such that (A, σ, f) =

(
EndF (V ), σq , fq

)
.

Fix some ω ∈ Ω(A, σ, f) and g ∈ GO+(V, q) such that χ′(ω) = g · F×. Let
z ∈ Z× satisfy µ(g) = NZ/F (z). The preceding lemma yields z0 ∈ Z× such that

κ(ω) = (zz2
0)
−1 · F×. Then

NZ/F
(
κ(ω)

)
= NZ/F (zz2

0)
−1 · F×2 = µ(g) · F×2.
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To conclude our discussion of the extended Clifford group, we examine more
closely the case where degA is divisible by 4. In this case, the map κ factors through
the multiplier map, and the homomorphism χ′ factors through a homomorphism
χ0 : Ω(A, σ, f)→ GO+(A, σ, f).

We denote by µ : Ω(A, σ, f)→ Z× the multiplier map, defined by

µ(ω) = σ(ω)ω for ω ∈ Ω(A, σ, f).

The element µ(ω) thus defined belongs to Z× since Ω(A, σ, f) ⊂ Sim
(
C(A, σ, f), σ

)
.

(13.25) Proposition. Suppose degA ≡ 0 mod 4. For all ω ∈ Ω(A, σ, f),

κ(ω) = µ(ω) · F×.
The Clifford group can be characterized as

Γ(A, σ, f) = {ω ∈ Ω(A, σ, f) | µ(ω) ∈ F× }.

Proof : The second part follows from the first, since (??) shows that Γ(A, σ, f) =
kerκ.

To prove the first part, we may extend scalars to an algebraic closure. For
ω ∈ Ω(A, σ, f) we may thus assume, in view of (??), that there exist z ∈ Z× and
γ ∈ Γ(A, σ, f) such that ω = z · γ. We then have κ(ω) = z2 · F×. On the other
hand, since degA ≡ 0 mod 4 the involution σ is of the first kind, by (??), hence
µ(ω) = z2µ(γ). Now, (??) shows that µ(γ) ∈ F×, hence

µ(ω) · F× = z2 · F× = κ(ω).

Another interesting feature of the case where degA ≡ 0 mod 4 is that the
extended Clifford group has an alternate description similar to the definition of the
Clifford group. In the following proposition, we consider the image Ab of A in the
Clifford bimodule B(A, σ, f) under the canonical map b : A→ B(A, σ, f).

(13.26) Proposition. If degA ≡ 0 mod 4, then

Ω(A, σ, f) = {ω ∈ Sim
(
C(A, σ, f), σ

)
| σ(ω) ∗Ab · ω = Ab }.

Proof : Let ω ∈ Sim
(
C(A, σ, f), σ

)
. We have to show that Int(ω) = C(g) for some

g ∈ GO+(A, σ, f) if and only if σ(ω) ∗Ab · ω = Ab.
Assume first that ω ∈ Ω(A, σ, f), i.e., Int(ω) = C(g) for some g ∈ GO+(A, σ, f).

To prove the latter equality, we may reduce by scalar extension to the split case.
Thus, suppose that (V, q) is a nonsingular quadratic space of dimension divisible
by 4 and (A, σ, f) =

(
EndF (V ), σq , fq

)
. Under the standard identifications asso-

ciated to q we have Ab = V ⊗ V ⊂ V ⊗ C1(V, q) (see (??)), hence it suffices to
show

σ(ω) · v · ω ∈ V for v ∈ V .

Let ι be, as usual, the nontrivial automorphism of the center Z of C(A, σ, f) =
C0(V, q) over F , and let z ∈ Z× be such that µ(g) = zι(z). By (??), there is an
element z0 ∈ Z× such that κ(ω) = (zz2

0)
−1 · F× and

ω · v · ω−1 = ι(z0)z
−1
0 z−1g(v) for v ∈ V .
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The canonical involution τ of C(V, q) restricts to σ = τ0 on C0(V, q); by (??)
this involution is the identity on Z. Therefore, by applying τ to each side of the
preceding equation, we obtain

σ(ω)−1 · v · σ(ω) = g(v)ι(z0)z
−1
0 z−1 = z0ι(z0)

−1ι(z)−1g(v) for v ∈ V ,

hence

σ(ω) · v · ω = z−1
0 ι(z0)ι(z)g

−1(v)µ(ω) for v ∈ V .

By (??), we have µ(ω) · F× = κ(ω), hence µ(ω) = α(zz2
0)−1 for some α ∈ F×. By

substituting this in the preceding relation, we get for all v ∈ V
σ(ω) · v · ω = αz−1

0 ι(z0)ι(z)ι(zz
2
0)−1g−1(v) = αNZ/F (z0)

−1g−1(v).

Since the right-hand term lies in V , we have thus shown σ(ω) ∗Ab · ω = Ab.
Suppose conversely that ω ∈ Sim

(
C(A, σ, f), σ

)
satisfies σ(ω) ∗ Ab · ω = Ab.

Since b is injective, there is a unique element g ∈ A such that

σ(ω) ∗ 1b · ω = gb.(13.27)

We claim that g ∈ GO+(A, σ, f) and that Int(ω) = C(g). To prove the claim,
we may extend scalars to a splitting field of A; we may thus assume again that
(A, σ, f) =

(
EndF (V ), σq , fq

)
for some nonsingular quadratic space (V, q) of dimen-

sion divisible by 4, and use the standard identifications A = V ⊗V , Ab = V ⊗ V ⊂
B(A, σ, f) = V ⊗ C1(V, q). Since B(A, σ, f) is a left A-module, we may multiply
each side of (??) by v ⊗ w ∈ V ⊗ V = A; we thus obtain

σ(ω) ∗ (v ⊗ w)b · ω =
(
(v ⊗ w) ◦ g

)b
for v, w ∈ V .

Since (v ⊗ w) ◦ g = v ⊗ σ(g)(w), it follows that, in C(V, q),

σ(ω) · w · ω = σ(g)(w) for w ∈ V .

Since ω is a similitude of C(A, σ, f), by squaring this equation we obtain

NZ/F
(
µ(ω)

)
q(w) = q

(
σ(g)(w)

)
for w ∈ V .

This shows that σ(g) is a similitude, hence g ∈ GO(V, q), and

µ
(
σ(g)

)
= µ(g) = NZ/F

(
µ(ω)

)
.(13.28)

Moreover, for v, ∈ V ,

ω−1 · (v · w) · ω =µ(ω)−1
(
σ(ω) · v · ω

)
µ(ω)−1

(
σ(ω) · w · ω

)

=NZ/F
(
µ(ω)

)−1
σ(g)(v) · σ(g)(w).

By (??) it follows that

ω−1 · (v · w) · ω = µ(g)−1σ(g)(v) · σ(g)(w) for v, w ∈ V ,
hence, by (??),

ω · (v · w) · ω−1 = µ(g)−1g(v) · g(w) = C(g)(v · w) for v, w ∈ V .

This equality shows that Int(ω)|C0(V,q) = C(g), hence g is proper, by (??), and the
proof is complete.



186 III. SIMILITUDES

(13.29) Definition. Suppose degA ≡ 0 mod 4. By using the description of the
extended Clifford group Ω(A, σ, f) in the proposition above, we may define a ho-
momorphism

χ0 : Ω(A, σ, f)→ GO+(A, σ, f)

mapping ω ∈ Ω(A, σ, f) to the element g ∈ GO+(A, σ, f) satisfying (??). Thus, for
ω ∈ Ω(A, σ, f) the similitude χ0(ω) is defined by the relation

σ(ω) ∗ 1b · ω = χ0(ω)b.

The proof above shows that

χ′(ω) = χ0(ω) · F× for ω ∈ Ω(A, σ, f);

moreover, by (??), the following diagram commutes:

Ω(A, σ, f)
χ0−−−−→ GO+(A, σ, f)

µ

y
yµ

Z×
NZ/F−−−−→ F×.

Spinor norms. Let (σ, f) be a quadratic pair on a central simple algebra A
of even degree over an arbitrary field F .

(13.30) Definition. In view of (??), we may define a homomorphism

Sn: O+(A, σ, f)→ F×/F×2

as follows: for g ∈ O+(A, σ, f), pick γ ∈ Γ(A, σ, f) such that χ(γ) = g and let

Sn(g) = σ(γ)γ · F×2 = µ(γ) · F×2.

This square class depends only on g, since γ is uniquely determined up to a factor
in F×. In other words, Sn is the map which makes the following diagram commute:

1 −−−−→ F× −−−−→ Γ(A, σ, f)
χ−−−−→ O+(A, σ, f) −−−−→ 1

y2

yµ
ySn

1 −−−−→ F×2 −−−−→ F× −−−−→ F×/F×2 −−−−→ 1.

We also define the group of spinor norms :

Sn(A, σ, f) = {µ(γ) | γ ∈ Γ(A, σ, f) } ⊂ F×,

so Sn
(
O+(A, σ, f)

)
= Sn(A, σ, f)/F×2, and the spin group:

Spin(A, σ, f) = { γ ∈ Γ(A, σ, f) | µ(γ) = 1 } ⊂ Γ(A, σ, f).

In the split case, if (A, σ, f) =
(
EndF (V ), σq , fq

)
for some nonsingular quadratic

space (V, q) of even dimension, the standard identifications associated to q yield

Spin(A, σ, f) = Spin(V, q) = { c ∈ Γ+(V, q) | τ(c) · c = 1 },
where τ is the canonical involution of C(V, q) which is the identity on V . From
the description of the spinor norm in Scharlau [?, Chap. 9, §3], it follows that the
group of spinor norms Sn(V, q) = Sn(A, σ, f) consists of the products of any even
number of represented values of q.
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The vector representation χ induces by restriction a homomorphism

Spin(A, σ, f)→ O+(A, σ, f)

which we also denote χ.

(13.31) Proposition. The vector representation χ fits into an exact sequence:

1→ {±1} −→ Spin(A, σ, f)
χ−→ O+(A, σ, f)

Sn−→ F×/F×2.

Proof : This follows from the exactness of the top sequence in (??) and the definition
of Sn.

Assume now degA = 2m ≥ 4. We may then use the extended Clifford group
Ω(A, σ, f) to define an analogue of the spinor norm on the group PGO+(A, σ, f), as
we proceed to show. The map S defined below may be obtained as a connecting map
in a cohomology sequence, see §??. Its target group is the first cohomology group of
the absolute Galois group of F with coefficients in the center of the algebraic group
Spin(A, σ, f). The approach we follow in this subsection does not use cohomology,
but since the structure of the center of Spin(A, σ, f) depends on the parity of m,
we divide the construction into two parts, starting with the case where the degree
of A is divisible by 4. As above, we let Z = Z(A, σ, f) be the center of the Clifford
algebra C(A, σ, f).

(13.32) Definition. Assume degA ≡ 0 mod 4. We define a homomorphism

S : PGO+(A, σ, f)→ Z×/Z×2

as follows: for g ·F× ∈ PGO+(A, σ, f), pick ω ∈ Ω(A, σ, f) such that χ′(ω) = g ·F×
and set

S(g · F×) = σ(ω)ω · Z×2 = µ(ω) · Z×2.

Since ω is determined by g · F× up to a factor in Z× and σ is of the first kind, by
(??), the element µ(ω)ω ·Z×2 depends only on g · F×. The map S thus makes the
following diagram commute:

1 −−−−→ Z× −−−−→ Ω(A, σ, f)
χ′−−−−→ PGO+(A, σ, f) −−−−→ 1

y2

yµ
yS

1 −−−−→ Z×2 −−−−→ Z× −−−−→ Z×/Z×2 −−−−→ 1.

Besides the formal analogy between the definition of S and that of the spinor
norm Sn, there is also an explicit relationship demonstrated in the following propo-
sition:

(13.33) Proposition. Assume degA ≡ 0 mod 4. Let

π : O+(A, σ, f)→ PGO+(A, σ, f)

be the canonical map. Then, the following diagram is commutative with exact rows :

O+(A, σ, f)
π−−−−→ PGO+(A, σ, f)

µ−−−−→ F×/F×2

Sn

y
yS

∥∥∥

F×/F×2 −−−−→ Z×/Z×2
NZ/F−−−−→ F×/F×2.
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Proof : Consider g ∈ O+(A, σ, f) and γ ∈ Γ(A, σ, f) such that χ(γ) = g. We then
have Sn(g) = µ(γ) · F×2. On the other hand, we also have χ′(γ) = g · F×, hence

S(g · F×) = µ(γ) · Z×2. This proves that the left square is commutative.

Consider next g · F× ∈ PGO+(A, σ, f) and ω ∈ Ω(A, σ, f) such that χ′(ω) =
g · F×, so that S(g · F×) = µ(ω) ·Z×2. By (??) we have µ(ω) · F× = κ(ω) and, by

(??), NZ/F
(
κ(ω)

)
= µ(g) · F×2. Therefore, NZ/F

(
S(g · F×)

)
= µ(g) · F×2 and the

right square is commutative.
Exactness of the lower sequence is a consequence of Hilbert’s Theorem 90 (??):

if z ∈ Z× is such that zι(z) = x2 for some x ∈ F×, then NZ/F (zx−1) = 1, hence

by (??) there exists some y ∈ Z× such that zx−1 = ι(y)y−1. (Explicitly, we may
take y = t + xz−1ι(t), where t ∈ Z is such that t + xz−1ι(t) is invertible.) Then
zy2 = xNZ/F (y), hence z · Z×2 lies in the image of F×/F×2.

Note that the spin group may also be defined as a subgroup of the extended
Clifford group: for degA ≡ 0 mod 4,

Spin(A, σ, f) = {ω ∈ Ω(A, σ, f) | µ(ω) = 1 }.
Indeed, (??) shows that the right side is contained in Γ(A, σ, f).

The restriction of the homomorphism

χ′ : Ω(A, σ, f)→ PGO+(A, σ, f)

to Spin(A, σ, f), also denoted χ′, fits into an exact sequence:

(13.34) Proposition. Assume degA ≡ 0 mod 4. The sequence

1→ µ2(Z)→ Spin(A, σ, f)
χ′−→ PGO+(A, σ, f)

S−→ Z×/Z×2

is exact, where µ2(Z) = { z ∈ Z | z2 = 1 }.
Proof : Let g · F× be in the kernel of S. Then there exists ω ∈ Ω(A, σ, f), with
σ(ω)ω = z2 for some z ∈ Z×, such that χ′(ω) = g · F×. By replacing ω by ωz−1,
we get ω ∈ Spin(A, σ, f). Exactness at Spin(A, σ, f) follows from the fact that
Z× ∩ Spin(A, σ, f) = µ2(Z) in Ω(A, σ, f).

In the case where degA ≡ 2 mod 4, the involution σ is of the second kind,
hence µ(ω) ∈ F× for all ω ∈ Ω(A, σ, f). The rôle played by µ in the case where
degA ≡ 0 mod 4 is now played by a map which combines µ and κ.

Consider the following subgroup U of F× × Z×:

U = { (α, z) | α4 = NZ/F (z) } ⊂ F× × Z×

and its subgroup U0 = {
(
NZ/F (z), z4

)
| z ∈ Z× }. Let22

H1(F,µ4[Z]) = U/U0,

and let [α, z] be the image of (α, z) ∈ U in H1(F,µ4[Z]).

For ω ∈ Ω(A, σ, f), let k ∈ Z× be a representative of κ(ω) ∈ Z×/F×. The
element kι(k)−1 is independent of the choice of the representative k and we define

µ∗(ω) =
(
µ(ω), kι(k)−1µ(ω)2

)
∈ U.

22It will be seen in Chapter ?? (see (??)) that this factor group may indeed be regarded as
a Galois cohomology group if char F 6= 2. This viewpoint is not needed here, however, and this
definition should be viewed purely as a convenient notation.
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For z ∈ Z×, we have κ(z) = z2 · F× and µ(z) = NZ/F (z), hence

µ∗(z) =
(
NZ/F (z), z4

)
∈ U0.

(13.35) Definition. Assume degA ≡ 2 mod 4. Define a homomorphism

S : PGO+(A, σ, f)→ H1(F,µ4[Z])

as follows: for g ·F× ∈ PGO+(A, σ, f), pick ω ∈ Ω(A, σ, f) such that χ′(ω) = g ·F×
and let S(g · F×) be the image of µ∗(ω) in H1(F,µ4[Z]). Since ω is determined up

to a factor in Z× and µ∗(Z×) ⊂ U0, the definition of S(g ·F×) does not depend on
the choice of ω. In other words, S is the map which makes the following diagram
commute:

1 −−−−→ Z× −−−−→ Ω(A, σ, f)
χ′−−−−→ PGO+(A, σ, f) −−−−→ 1

yµ∗
yµ∗

yS

1 −−−−→ U0 −−−−→ U −−−−→ H1(F,µ4[Z]) −−−−→ 1.

In order to relate the map S to the spinor norm, we define maps i and j which
fit into an exact sequence

F×/F×2 i−→ H1(F,µ4[Z])
j−→ F×/F×2.

For α · F×2 ∈ F×/F×2, we let i(α · F×2) = [α, α2]. For [α, z] ∈ H1(F,µ4[Z]),

we pick z0 ∈ Z× such that α−2z = z0ι(z0)
−1, and let j[α, z] = NZ/F (z0) · F×2 ∈

F×/F×2. If NZ/F (z0) = β2 for some β ∈ F×, then we may find z1 ∈ Z× such that

z0β
−1 = z1ι(z1)

−1. It follows that α−2z = z2
1ι(z1)

−2, hence

(α, z) =
(
αNZ/F (z1)

−1, α2NZ/F (z1)
−2

)
·
(
NZ/F (z1), z

4
1

)
,

and therefore [α, z] = i
(
αNZ/F (z1)

−1 ·F×2
)
. This proves exactness of the sequence

above.

(13.36) Proposition. Assume degA ≡ 2 mod 4. Let

π : O+(A, σ, f)→ PGO+(A, σ, f)

be the canonical map. Then, the following diagram is commutative with exact rows :

O+(A, σ, f)
π−−−−→ PGO+(A, σ, f)

µ−−−−→ F×/F×2

Sn

y
yS

∥∥∥

F×/F×2 i−−−−→ H1(F,µ4[Z])
j−−−−→ F×/F×2.

Proof : Let g ∈ O+(A, σ, f) and let γ ∈ Γ(A, σ, f) be such that χ(γ) = g. We then
have Sn(g) = µ(γ) ·F×2. On the other hand, we also have κ(γ) = 1, by (??), hence

µ∗(γ) =
[
µ(γ), µ(γ)2

]
= i

(
µ(γ) · F×2

)
.

Since χ′(γ) = g · F×, this proves commutativity of the left square.
Consider next g · F× ∈ PGO+(A, σ, f) and ω ∈ Ω(A, σ, f) such that χ′(ω) =

g · F×. We have j ◦S(g · F×) = NZ/F (k) · F×, where k ∈ Z× is a representative of

κ(ω) ∈ Z×/F×. Proposition (??) shows that NZ/F (k) ·F×2 = µ(g ·F×), hence the
right square is commutative. Exactness of the bottom row was proved above.
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As in the preceding case, the spin group may also be defined as a subgroup of
Ω(A, σ, f): we have for degA ≡ 2 mod 4,

Spin(A, σ, f) = {ω ∈ Ω(A, σ, f) | µ∗(ω) = (1, 1) },
since (??) shows that the right-hand group lies in Γ(A, σ, f). Furthermore we have
a sequence corresponding to the sequence (??):

(13.37) Proposition. Assume degA ≡ 2 mod 4 and degA ≥ 4. The sequence

1→ µ4[Z](F )→ Spin(A, σ, f)
χ′−→ PGO+(A, σ, f)

S−→ H1(F,µ4[Z]),

is exact, where µ4[Z](F ) = { z ∈ Z× | z4 = 1 and ι(z)z = 1 }.

Proof : As in the proof of (??) the kernel of S is the image of Spin(A, σ, f) under
χ′. Furthermore we have by (??)

Z× ∩ Spin(A, σ, f) = { z ∈ Z× | z2 ∈ F× and σ(z)z = 1 } = µ4[Z](F )

in Ω(A, σ, f).

13.C. Multipliers of similitudes. This section is devoted to a generalization
of Dieudonné’s theorem on the multipliers of similitudes (??). As in the preceding
sections, let (σ, f) be a quadratic pair on a central simple algebra A of even degree
over an arbitrary field F , and let Z = Z(A, σ, f) be the center of the Clifford algebra
C(A, σ, f). The nontrivial automorphism of Z/F is denoted by ι.

For α ∈ F×, let (Z, α)F be the quaternion algebra Z⊕Zj where multiplication
is defined by jz = ι(z)j for z ∈ Z and j2 = α. In other words,

(Z, α)F =

{
(δ, α)F if charF 6= 2 and Z ' F [X ]/(X2 − δ);
[δ, α)F if charF = 2 and Z ' F [X ]/(X2 +X + δ).

(Compare with §??).

(13.38) Theorem. Let g ∈ GO(A, σ, f) be a similitude of (A, σ, f).

(1) If g is proper, then
(
Z, µ(g)

)
F

splits.

(2) If g is improper, then
(
Z, µ(g)

)
F

is Brauer-equivalent to A.

When A splits, the algebra
(
Z, µ(g)

)
F

splits in each case, so µ(g) is a norm

from Z/F for every similitude g. We thus recover Dieudonné’s theorem (??).
In the case where g is proper, the theorem follows from (??) (or, equivalently,

from (??) and (??)). For the rest of this section, we fix some improper similitude g.
According to (??), the automorphism C(g) of C(A, σ) then restricts to ι on Z,
so C(g) induces a Z-algebra isomorphism C(A, σ, f) ∼−→ ιC(A, σ, f) by mapping
c ∈ C(A, σ, f) to ι

(
C(g)(c)

)
∈ ιC(A, σ, f). When we view C(A, σ, f) as a left

Z-module, we have the canonical isomorphism

C(A, σ, f)op ⊗Z C(A, σ, f) = EndZ C(A, σ, f)

which identifies cop1 ⊗ c2 with the endomorphism defined by

cc
op
1 ⊗c2 = c1cc2 for c, c1, c2 ∈ C(A, σ, f).

We then have Z-algebra isomorphisms:

EndZ C(A, σ, f) = C(A, σ, f)op ⊗Z C(A, σ, f) ' ιC(A, σ, f)op ⊗Z C(A, σ, f).
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The embedding ν of ιC(A, σ, f)op ⊗Z C(A, σ, f) into the endomorphism algebra of
the Clifford bimodule B(A, σ, f) (see (??)) yields an embedding

νg : EndZ C(A, σ, f) ↪→ EndAB(A, σ, f)

defined by

xνg(cop1 ⊗c2) = C(g)(c1) ∗ x · c2 for c1, c2 ∈ C(A, σ, f), x ∈ B(A, σ, f).

Let γg ∈ EndF C(A, σ, f) be the endomorphism C(g−1), i.e.,

cγg = C(g−1)(c) for c ∈ C(A, σ, f).

Since g is improper, γg is not Z-linear, but ι-semilinear. Thus Int(γg), which maps
f ∈ EndZ C(A, σ, f) to γg ◦ f ◦ γ−1

g , is an automorphism of EndZ C(A, σ, f).
Define an F -algebra Eg as follows:

Eg = EndZ C(A, σ, f) ⊕ EndZ C(A, σ, f) · y
where y is subject to the following relations:

yf = (γg ◦ f ◦ γ−1
g )y for f ∈ EndZ C(A, σ, f),

y2 = µ(g)γ2
g .

The algebra Eg is thus a generalized cyclic algebra (see Albert [?, Theorem 11.11],
Jacobson [?, § 1.4]); the same arguments as for the usual cyclic algebras show Eg
is central simple over F .

(13.39) Proposition. The homomorphism νg extends to an isomorphism of F -

algebras :

νg : Eg
∼−→ EndAB(A, σ, f)

by mapping y to the endomorphism β(g) of (??).

Proof : Since Eg and EndAB(A, σ, f) are central simple F -algebras of the same
dimension, it suffices to show that the map defined above is a homomorphism, i.e.,
that β(g) satisfies the same relations as y:

β(g) ◦ νg(f) = νg(γg ◦ f ◦ γ−1
g ) ◦ β(g) for f ∈ EndZ C(A, σ, f),

β(g)2 = µ(g)νg(γ
2
g ).

(13.40)

It suffices to check these relations over an extension of the base field. We may
thus assume that F is algebraically closed and (A, σ, f) =

(
EndF (V ), σq , fq

)
for

some nonsingular quadratic space (V, q). Choose λ ∈ F× satisfying λ2 = µ(g).
Then q

(
λ−1g(v)

)
= q(v) for all v ∈ V , hence there is an automorphism of C(V, q)

which maps v to λ−1g(v) for all v ∈ V . By the Skolem-Noether theorem we may
thus find b ∈ C(V, q)× such that

b · v · b−1 = λ−1g(v) for v ∈ V .

Then C(g) is the restriction of Int(b) to C0(V, q) = C(A, σ, f), hence γg = Int(b−1)
and

γ2
g = (b2)op ⊗ b−2 ∈ C(A, σ, f)op ⊗Z C(A, σ, f).

On the other hand, for v, w1, . . . , w2r−1 ∈ V ,
(
v ⊗ (w1 · · ·w2r−1)

)β(g)
= µ(g)rv ⊗

(
g−1(w1) · · · g−1(w2r−1)

)

= λ
(
v ⊗ b−1 · (w1 · · ·w2r−1) · b

)
.
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The equations (??) then follow by explicit computation.

To complete the proof of (??) we have to show that the algebra Eg is Brauer-
equivalent to the quaternion algebra

(
Z, µ(g)

)
F

. As pointed out by A. Wadsworth,
this is a consequence of the following proposition:

(13.41) Proposition. Let S be a central simple F -algebra, let Z be a quadratic

Galois field extension of F contained in S, with nontrivial automorphism ι. Let

s ∈ S be such that Int(s)|Z = ι. Let E = CS(Z) and fix t ∈ F×. Let T be the

F -algebra with presentation

T = E ⊕Ey, where yey−1 = ses−1 for all e ∈ E, and y2 = ts2.

Then M2(T ) ' (Z, t)⊗F S.

Proof : Let j be the standard generator of (Z, t) with jzj−1 = ι(z) for all z ∈ Z
and j2 = t. Let R = (Z, t)⊗F S, and let

T ′ = (1⊗E) + (1⊗E)y′ ⊂ R, where y′ = j ⊗ s.
Then T ′ is isomorphic to T , since y′ satisfies the same relations as y. (That is, for

any e ∈ E, y′(1⊗e)y′−1
= 1⊗ (ses−1) and y′2 = 1⊗ ts2.) By the double centralizer

theorem (see (??)) R ' T ′⊗F Q where Q = CR(T ′), and Q is a quaternion algebra
over F by a dimension count. It suffices to show that Q is split. For, then

R ' T ′ ⊗F Q ' T ⊗F M2(F ) 'M2(T ).

Consider Z ⊗F Z ⊂ R; Z ⊗F Z centralizes 1 ⊗ E and Int(y′) restricts to ι ⊗ ι on
Z⊗FZ. Now Z⊗FZ has two primitive idempotents e1 and e2, since Z⊗FZ ' Z⊕Z.
The automorphisms Id⊗ ι and ι⊗ Id permute them, so ι⊗ ι maps each ei to itself.
Hence e1 and e2 lie in Q since they centralize 1⊗E and also y′. Because e1e2 = 0,
Q is not a division algebra, so Q is split, as desired.

(13.42) Remark. We have assumed in the above proposition that Z is a field.
The argument still works, with slight modification, if Z ' F × F .

As a consequence of Theorem (??), we may compare the group G(A, σ, f) of
multipliers of similitudes with the subgroup G+(A, σ, f) of multipliers of proper
similitudes. Since the index of GO+(A, σ, f) in GO(A, σ, f) is 1 or 2, it is clear
that either G(A, σ, f) = G+(A, σ, f) or G+(A, σ, f) is a subgroup of index 2 in
G(A, σ, f). If A is split, then

[GO(A, σ, f) : GO+(A, σ, f)] = [O(A, σ, f) : O+(A, σ, f)] = 2

and

G(A, σ, f) = G+(A, σ, f)

since hyperplane reflections are improper isometries (see (??)). If A is not split, we
deduce from (??):

(13.43) Corollary. Suppose that (σ, f) is a quadratic pair on a central simple

F -algebra A of even degree. If A is not split, then O(A, σ, f) = O+(A, σ, f) and

[GO(A, σ, f) : GO+(A, σ, f)] = [G(A, σ, f) :G+(A, σ, f)].

If G(A, σ, f) 6= G+(A, σ, f), then A is split by Z = Z(A, σ, f).
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Proof : If g ∈ O(A, σ, f) is an improper isometry, then (??) shows that A is Brauer-
equivalent to

(
Z, µ(g)

)
F
, which is split since µ(g) = 1. This contradiction shows

that O(A, σ, f) = O+(A, σ, f).
If [GO(A, σ, f) : GO+(A, σ, f)] 6= [G(A, σ, f) :G+(A, σ, f)], then necessarily

GO(A, σ, f) 6= GO+(A, σ, f) and G(A, σ, f) = G+(A, σ, f).

Therefore, A contains an improper similitude g, and µ(g) = µ(g′) for some proper
similitude g′. It follows that g−1g′ is an improper isometry, contrary to the equality
O(A, σ, f) = O+(A, σ, f).

Finally, if µ is the multiplier of an improper similitude, then (??) shows that
A is Brauer-equivalent to (Z, µ)F , hence it is split by Z.

(13.44) Corollary. If disc(σ, f) is trivial, then G(A, σ, f) = G+(A, σ, f).

Proof : It suffices to consider the case where A is not split. Then, if G(A, σ, f) 6=
G+(A, σ, f), the preceding corollary shows that A is split by Z; this is impossible
if disc(σ, f) is trivial, for then Z ' F × F .

§14. Unitary Involutions

In this section, we let (B, τ) be a central simple algebra with involution of the
second kind over an arbitrary field F . Let K be the center of B and ι the nontrivial
automorphism of K/F .

We will investigate the group GU(B, τ) of similitudes of (B, τ) and the unitary
group U(B, τ), which is the kernel of the multiplier map µ (see §??). The group
GU(B, τ) has different properties depending on the parity of the degree of B. When
degB is even, we relate this group to the group of similitudes of the discriminant
algebra D(B, τ).

14.A. Odd degree.

(14.1) Proposition. If degB is odd, the group G(B, τ) of multipliers of simili-

tudes of (B, τ) is the group of norms of K/F :

G(B, τ) = NK/F (K×).

Moreover, GU(B, τ) = K× ·U(B, τ).

Proof : The inclusion NK/F (K×) ⊂ G(B, τ) is clear, since K× ⊂ GU(B, τ) and

µ(α) = NK/F (α) for α ∈ K×. In order to prove the reverse inclusion, let degB =
2m + 1 and let g ∈ GU(B, τ). By applying the reduced norm to the equation
τ(g)g = µ(g) we obtain

NK/F
(
NrdB(g)

)
= µ(g)2m+1.

Therefore,

µ(g) = NK/F
(
µ(g)−m NrdB(g)

)
∈ NK/F (K×),

hence G(B, τ) ⊂ NK/F (K×). This proves the first assertion.

The preceding equation shows moreover that µ(g)m NrdB(g)−1g ∈ U(B, τ).
Therefore, letting u = µ(g)m NrdB(g)−1g and α = µ(g)−m NrdB(g) ∈ K×, we get
g = αu. Thus, GU(B, τ) = K× ·U(B, τ).

Note that in the decomposition g = αu above, the elements α ∈ K× and
u ∈ U(B, τ) are uniquely determined up to a factor in the group K1 of norm 1
elements, since K× ∩ U(B, τ) = K1.
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14.B. Even degree. Suppose now that degB = 2m and let g ∈ GU(B, τ).
By applying the reduced norm to the equation τ(g)g = µ(g), we obtain

NK/F
(
NrdB(g)

)
= µ(g)2m,

hence µ(g)m NrdB(g)−1 is in the group of elements of norm 1. By Hilbert’s The-
orem 90, there is an element α ∈ K×, uniquely determined up to a factor in F×,
such that

µ(g)−m NrdB(g) = αι(α)−1.

We may therefore define a homomorphism ν : GU(A, σ)→ K×/F× by

ν(g) = α · F×.(14.2)

Let SGU(B, τ) be the kernel of ν, and let SU(B, τ) be the intersection SGU(B, τ)∩
U(B, τ):

SGU(B, τ) = { g ∈ GU(B, τ) | NrdB(g) = µ(g)m }
SU(B, τ) = {u ∈ GU(B, τ) | NrdB(u) = µ(u) = 1 }.

We thus have the following diagram, where all the maps are inclusions:

SU(B, τ) −−−−→ SGU(B, τ)
y

y

U(B, τ) −−−−→ GU(B, τ).

Consider for example the case where K = F×F ; we may then assume B = E×Eop

for some central simple F -algebra E of degree 2m, and τ = ε is the exchange
involution. We then have

GU(B, τ) = {
(
x, α(x−1)op

)
| α ∈ F×, x ∈ E× } ' E× × F×

and the maps µ and ν are defined by

µ
(
x, α(x−1)op

)
= α, ν

(
x, α(x−1)op

)
=

(
NrdE(x), αm

)
· F×.

Therefore,

SGU(B, τ) ' { (x, α) ∈ E× × F× | NrdE(x) = αm },
U(B, τ) ' E×

and the group SU(B, τ) is isomorphic to the group of elements of reduced norm 1
in E, which we write SL(E):

SU(B, τ) ' {x ∈ E× | NrdE(x) = 1 } = SL(E).

14.C. Relation with the discriminant algebra. Our first results in this
direction do not assume the existence of an involution; we formulate them for an
arbitrary central simple F -algebra A:



§14. UNITARY INVOLUTIONS 195

The canonical map λk.

(14.3) Proposition. Let A be any central simple algebra over a field F . For all

integers k such that 1 ≤ k ≤ degA, there is a homogeneous polynomial map of

degree k:

λk : A→ λkA

which restricts to a group homomorphism A× → (λkA)×. If the algebra A is split,

let A = EndF (V ), then under the identification λkA = EndF (
∧k V ) the map λk is

defined by

λk(f) =
∧k

f = f ∧ · · · ∧ f for f ∈ EndF (V ).

Proof : Let gk : Sk → (A⊗k)× be the homomorphism of (??). By (??), it is clear
that for all a ∈ A× the element ⊗ka = a ⊗ · · · ⊗ a commutes with gk(π) for all
π ∈ Sk, hence also with sk =

∑
π∈Sk

sgn(π)gk(π). Multiplication on the right by

⊗ka is therefore an endomorphism of the left A⊗k-module A⊗ksk. We denote this
endomorphism by λka; thus λka ∈ EndA⊗k(A⊗ksk) = λkA is defined by

(
(a1 ⊗ · · · ⊗ ak) · sk

)λka
= (a1 ⊗ · · · ⊗ ak) · sk · ⊗ka = (a1a⊗ · · · ⊗ aka) · sk.

If A = EndF (V ), there is a natural isomorphism (see (??)):

A⊗ksk = HomF (
∧k V , V ⊗k),

under which sk is identified with the map s′k :
∧k

V → V ⊗k defined by

s′k(v1 ∧ · · · ∧ vk) = sk(v1 ⊗ · · · ⊗ vk) for v1, . . . , vk ∈ V .

For f ∈ EndF (V ) we have s′k
λkf

(v1 ∧ · · · ∧ vk) = sk
(
⊗kf(v1 ⊗ · · · ⊗ vk)

)
, hence

s′k
λkf

(v1 ∧ · · · ∧ vk) = s′k
(
f(v1) ∧ · · · ∧ f(vk)

)
.

Therefore, s′k
λkf

= s′k ◦
∧k

f , which means that λk(f) ∈ λk EndF (V ) is identified

with
∧k

f ∈ EndF (
∧k

V ). It is then clear that λk is a homogeneous polynomial map
of degree k, and that its restriction to A× is a group homomorphism to (λkA)×.

For the following result, we assume degA = 2m, so that λmA has a canonical
involution γ of the first kind (see (??)).

(14.4) Proposition. If degA = 2m, then γ(λma)λma = NrdA(a) for all a ∈ A.

In particular, if a ∈ A×, then λma ∈ Sim(λmA, γ) and µ(λma) = NrdA(a).

Proof : It suffices to check the split case. We may thus assume A = EndF (V ),
hence λmA = EndF (

∧m
V ) and the canonical involution γ is the adjoint involution

with respect to the canonical bilinear map ∧ :
∧m

V ×∧m
V → ∧2m

V . Moreover,
λm(f) =

∧m
f for f ∈ EndF (V ). The statement that λm(f) is a similitude for γ

therefore follows from the following identities
∧m

f(v1 ∧ · · · ∧ vm) ∧∧m
f(w1∧ · · · ∧ wm)

= f(v1) ∧ · · · ∧ f(vm) ∧ f(w1) ∧ · · · ∧ f(wm)
= det f · v1 ∧ · · · ∧ vm ∧ w1 ∧ · · · ∧ wm

for v1, . . . , vm, w1, . . . , wm ∈ V .
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The canonical map D. We now return to the case of central simple algebras
with unitary involution (B, τ). We postpone until after Proposition (??) the dis-
cussion of the case where the center K of B is isomorphic to F ×F ; we thus assume
for now that K is a field.

(14.5) Lemma. For k = 1, . . . , degB, let τ∧k be the involution on λkB induced

by τ (see (??)). For all k, the canonical map λk : B → λkB satisfies

τ∧k ◦ λk = λk ◦ τ.

Proof : By extending scalars to a splitting field of B, we reduce to considering
the split case. We may thus assume B = EndK(V ) and τ = σh is the adjoint
involution with respect to some nonsingular hermitian form h on V . According to
(??), the involution τ∧k is the adjoint involution with respect to h∧k. Therefore, for

f ∈ EndK(V ), the element τ∧k ◦ λk(f) ∈ EndK(
∧k V ) is defined by the condition:

h∧k
(
τ∧k ◦ λk(f)(v1 ∧ · · · ∧ vk), w1 ∧ · · · ∧ wk

)
=

h∧k
(
v1 ∧ · · · ∧ vk, λk(f)(w1 ∧ · · · ∧ wk)

)

for v1, . . . , vk, w1, . . . , wk ∈ V . Since λk(f) =
∧k

f , the right-hand expression
equals

det
(
h
(
vi, f(wj)

))
1≤i,j≤k = det

(
h
(
τ(f)(vi), wj

))
1≤i,j≤k

= h∧k
(
λk

(
τ(f)

)
(v1 ∧ · · · ∧ vk), w1 ∧ · · · ∧ wk

)
.

Assume now degB = 2m; we may then define the discriminant algebraD(B, τ)
as the subalgebra of λmB of elements fixed by τ∧m ◦ γ, see (??).

(14.6) Lemma. For g ∈ GU(B, τ), let α ∈ K× be such that ν(g) = α · F×; then

α−1λmg ∈ D(B, τ) and τ (α−1λmg) · α−1λmg = NK/F (α)−1µ(g)m. In particular,

λmg ∈ Sim
(
D(B, τ), τ

)
for all g ∈ SGU(B, τ).

Proof : By (??) we have

γ(λmg) = NrdB(g)λmg−1 = NrdB(g)µ(g)−mλm
(
τ(g)

)
,

hence, by (??),

τ∧m ◦ γ(λmg) = ι
(
NrdB(g)

)
µ(g)−mλmg = α−1ι(α)λmg.

Therefore, α−1λmg ∈ D(B, τ). Since τ is the restriction of γ to D(B, τ), we have

τ (α−1λmg) · α−1λmg = α−2γ(λmg)λmg,

and (??) completes the proof.

The lemma shows that the inner automorphism Int(λmg) = Int(α−1λmg)
of λmB preserves D(B, τ) and induces an automorphism of

(
D(B, τ), τ

)
. Since

this automorphism is also induced by the automorphism Int(g) of (B, τ), by func-
toriality of the discriminant algebra construction, we denote it byD(g). Alternately,
under the identification Aut

(
D(B, τ), τ

)
= PSim

(
D(B, τ), τ

)
of (??), we may set

D(g) = α−1λmg · F×, where α ∈ K× is a representative of ν(g) as above.
The next proposition follows from the definitions and from (??):
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(14.7) Proposition. The following diagram commutes :

SGU(B, τ) −−−−→ GU(B, τ)

λm

y
yD

Sim
(
D(B, τ), τ

) Int−−−−→ AutF
(
D(B, τ), τ

)
.

Moreover, for g ∈ SGU(B, τ), the multipliers of g and λmg are related by

µ(λmg) = µ(g)m = NrdB(g).

Therefore, λm restricts to a group homomorphism SU(B, τ)→ Iso
(
D(B, τ), τ

)
.

We now turn to the case where K ' F × F , which was put aside for the
preceding discussion. In this case, we may assume B = E × Eop for some central
simple F -algebra E of degree 2m and τ = ε is the exchange involution. As observed
in §?? and §??, we may then identify

(
D(B, τ), τ

)
= (λmE, γ) and GU(B, τ) = E× × F×.

The discussion above remains valid without change if we set D(x, α) = Int(λmx) for
(x, α) ∈ E××F× = GU(B, τ), a definition which is compatible with the definitions
above (in the case where K is a field) under scalar extension.

The canonical Lie homomorphism λ̇k. To conclude this section, we derive
from the map λm a Lie homomorphism from the Lie algebra Skew(B, τ)0 of skew-
symmetric elements of reduced trace zero to the Lie algebra Skew

(
D(B, τ), τ

)
. This

Lie homomorphism plays a crucial rôle in §?? (see (??)).
As above, we start with an arbitrary central simple F -algebra A. Let t be an

indeterminate over F . For k = 1, . . . , degA, consider the canonical map

λk : A⊗ F (t)→ λkA⊗ F (t).

Since this map is polynomial of degree k and λk(1) = 1, there is a linear map

λ̇k : A→ λkA such that for all a ∈ A,

λk(t+ a) = tk + λ̇k(a)tk−1 + · · ·+ λk(a).

(14.8) Proposition. The map λ̇k is a Lie-algebra homomorphism

λ̇k : L(A)→ L(λkA).

If A = EndF (V ), then under the identification λkA = EndF (
∧k

V ) we have

λ̇k(f)(v1 ∧ · · · ∧ vk) =
(
f(v1) ∧ v2 ∧ · · · ∧ vk

)
+

(
v1 ∧ f(v2) ∧ · · · ∧ vk

)
+ · · ·+

(
v1 ∧ v2 ∧ · · · ∧ f(vk)

)

for all f ∈ EndF (V ) and v1, . . . , vk ∈ V .

Proof : The description of λ̇k in the split case readily follows from that of λk in
(??). To prove that λ̇k is a Lie homomorphism, we may reduce to the split case by
a scalar extension. The property then follows from an explicit computation: for f ,
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g ∈ EndF (V ) and v1, . . . , vk ∈ V we have

λ̇k(f) ◦ λ̇k(g)(v1 ∧ · · · ∧ vk) =
∑

1≤i<j≤k
v1 ∧ · · · ∧ f(vi) ∧ · · · ∧ g(vj) ∧ · · · ∧ vk

+
∑

1≤i≤k
v1 ∧ · · · ∧ f ◦ g(vi) ∧ · · · ∧ vk

+
∑

1≤j<i≤k
v1 ∧ · · · ∧ g(vj) ∧ · · · ∧ f(vi) ∧ · · · ∧ vk,

hence λ̇k(f) ◦ λ̇k(g)− λ̇k(g) ◦ λ̇k(f) maps v1 ∧ · · · ∧ vk to
∑

1≤i≤k
v1 ∧ · · · ∧ (f ◦ g − g ◦ f)(vi) ∧ · · · ∧ vk = λ̇k

(
[f, g]

)
(v1 ∧ · · · ∧ vk).

This shows
[
λ̇k(f), λ̇k(g)

]
= λ̇k

(
[f, g]

)
.

(14.9) Corollary. Suppose k ≤ degA− 1. If a ∈ A satisfies λ̇ka ∈ F , then a ∈ F
and λ̇ka = ka. In particular, ker λ̇k = { a ∈ F | ka = 0 }.
Proof : It suffices to consider the split case; we may thus assume that A = EndF (V )

for some vector space V . If λ̇ka ∈ F , then for all x1, . . . , xk ∈ V we have
x1 ∧ λ̇ka(x1 ∧ · · · ∧ xk) = 0, hence x1 ∧ a(x1) ∧ x2 ∧ · · · ∧ xk = 0. Since k < dimV ,
this relation shows that a(x1) ∈ x1 · F for all x1 ∈ V , hence a ∈ F . The other
statements are then clear.

In the particular case where k = 1
2 degA, we have:

(14.10) Proposition. Suppose degA = 2m, and let γ be the canonical involution

on λmA. For all a ∈ A,

λ̇ma+ γ(λ̇ma) = TrdA(a).

Proof : By (??), we have

γ
(
λm(t+ a)

)
· λm(t+ a) = Nrd(t+ a).

The proposition follows by comparing the coefficients of t2m−1 on each side.

We now consider a central simple algebra with unitary involution (B, τ) over F ,
and assume that the center K of B is a field. Suppose also that the degree of B is
even: degB = 2m. Since (??) shows that

τ∧m ◦ λm(t+ b) = λm ◦ τ(t + b) for b ∈ B,

it follows that

τ∧m ◦ λ̇m = λ̇m ◦ τ.
It is now easy to determine under which condition λ̇mb ∈ D(B, τ): this holds if and

only if γ(λ̇mb) = τ∧m(λ̇mb), which means that

TrdB(b)− λ̇mb = λ̇mτ(b).

By (??), this equality holds if and only if b+ τ(b) ∈ F and TrdB(b) = m
(
b+ τ(b)

)
.

Let

s(B, τ) = { b ∈ B | b+ τ(b) ∈ F and TrdB(b) = m
(
b+ τ(b)

)
},(14.11)

so s(B, τ) = (λ̇m)−1
(
D(B, τ)

)
. The algebra s(B, τ) is contained in g(B, τ) = { b ∈

B | b + τ(b) ∈ F } (see §??). If µ̇B : g(B, τ) → F is the map which carries
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b ∈ g(B, τ) to b + τ(b), we may describe s(B, τ) as the kernel of the F -linear
map TrdB −mµ̇B : g(B, τ) → K. The image of this map lies in K0 = {x ∈
K | TK/F (x) = 0 }, since taking the reduced trace of both sides of the relation

b+ τ(b) = µ̇(b) yields TK/F
(
TrdB(b)

)
= 2mµ̇B(b). On the other hand, this map is

not trivial: since TrdB is surjective, we may find x ∈ B such that TrdB(x) /∈ F ;
then x− τ(x) ∈ g(B, τ) is not mapped to 0. Therefore,

dimF s(B, τ) = dimF g(B, τ) − 1 = 4m2.

(14.12) Proposition. The homomorphism λ̇m restricts to a Lie algebra homo-

morphism

λ̇m : s(B, τ)→ g
(
D(B, τ), τ

)
.

By denoting by µ̇D : g
(
D(B, τ), τ

)
→ F the map which carries x ∈ D(B, τ) to

x+ τ(x), we have

µ̇D(λ̇mb) = mµ̇B(b) = TrdB(b) for b ∈ s(B, τ).

Therefore, λ̇m restricts to a Lie algebra homomorphism

λ̇m : Skew(B, τ)0 → Skew
(
D(B, τ), τ

)
,

where Skew(B, τ)0 is the Lie algebra of skew-symmetric elements of reduced trace

zero in B.

Proof : Since s(B, τ) = (λ̇m)−1
(
D(B, τ)

)
, it is clear that λ̇m restricts to a homo-

morphism from s(B, τ) to L
(
D(B, τ)

)
. To prove that its image lies in g

(
D(B, τ), τ

)
,

it suffices to prove

λ̇mb+ τ(λ̇mb) = TrdB(b) for b ∈ s(B, τ).

This follows from (??), since τ is the restriction of γ to D(B, τ).

Suppose finally K ' F ×F ; we may then assume B = E×Eop for some central
simple F -algebra E of degree 2m, and τ = ε is the exchange involution. We have

s(B, τ) = { (x, α− xop) | x ∈ E, α ∈ F , and TrdE(x) = mα },
and

(
D(B, τ), τ

)
may be identified with (λmE, γ). The Lie algebra homomorphism

λ̇m : s(B, τ)→ g(λmE, γ) then maps (x, α− xop) to λ̇mx. Identifying Skew(B, τ)0

with the Lie algebra E0 of elements of reduced trace zero (see (??)), we may restrict
this homomorphism to a Lie algebra homomorphism:

λ̇m : E0 → Skew(λmE, γ).

Exercises

1. Let Q be a quaternion algebra with canonical involution γ over a field F of
arbitrary characteristic. On the algebra A = Q ⊗F Q, consider the canonical
quadratic pair (γ ⊗ γ, f) (see (??)). Prove that

GO+(A, γ ⊗ γ, f) = { q1 ⊗ q2 | q1, q2 ∈ Q× }
and determine the group of multipliers µ

(
GO+(A, γ ⊗ γ, f)

)
.

2. Let (A, σ) be a central simple F -algebra with involution of any kind with cen-
terK and let α ∈ AutK(A). Prove that the following statements are equivalent:
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(a) α ∈ AutK(A, σ).
(b) α

(
Sym(A, σ)

)
= Sym(A, σ).

(c) α
(
Alt(A, σ)

)
= Alt(A, σ).

3. Let (A, σ) be a central simple algebra with orthogonal involution and degree
a power of 2 over a field F of characteristic different from 2, and let B ⊂ A
be a proper subalgebra with center F 6= B. Prove that every similitude f ∈
GO(A, σ) such that fBf−1 = B is proper.

4. (Wonenburger [?]) The aim of this exercise is to give a proof of Wonenburger’s
theorem on the image of GO(V, q) in Aut

(
C0(V, q)

)
, see (??).

Let q be a nonsingular quadratic form on an even-dimensional vector space
V over a field F of arbitrary characteristic. Using the canonical identification
ϕq : V ⊗ V ∼−→ EndF (V ), we identify c

(
EndF (V )

)
= V · V ⊂ C0(V, q) and

Alt
(
EndF (V ), σq

)
=

∧2
V . An element x ∈ V · V is called a regular plane

element if x = v · w for some vectors v, w ∈ V which span a nonsingular 2-
dimensional subspace of V . The first goal is to show that the regular plane
elements are preserved by the automorphisms of C0(V, q) which preserve V ·V .

Let ρ :
∧2

V → ∧4
V be the quadratic map which vanishes on elements of

the type v ∧ w and whose polar is the exterior product (compare with (??)),
and let τ be the canonical involution on C(V, q) which is the identity on V .

(a) Show that x ∈
∧2

V has the form x = v∧w for some v, w ∈ V if and only
if ρ(x) = 0.

(b) Show that the Lie homomorphism δ : V · V → ∧2 V maps v · w to v ∧ w.
(c) Let W = {x+ τ(x) | x ∈ V ·V ·V ·V } ⊂ C0(V, q). Show that F ⊂W and

that there is a surjective map ω :
∧4 V →W/F such that

ω(v1 ∧ v2 ∧ v3 ∧ v4) = v1 · v2 · v3 · v4 + v4 · v3 · v2 · v1 + F.

Show that for all x ∈ V · V ,

−ω ◦ ρ ◦ δ(x) = τ(x) · x+ F.

(d) Assume that charF 6= 2. Show that ω is bijective and use the results
above to show that if x ∈ V · V satisfies τ(x) · x ∈ F , then δ(x) = v ∧ w
for some v, w ∈ V .

(e) Assume that (V, q) is a 6-dimensional hyperbolic space over a field F of
characteristic 2, and let (e1, . . . , e6) be a symplectic basis of V consisting
of isotropic vectors. Show that x = e1 · e2 + e3 · e4 + e5 · e6 ∈ V ·V satisfies
τ(x) · x = 0, τ(x) + x = 1, but δ(x) cannot be written in the form v ∧ w
with v, w ∈ V .

(f) For the rest of this exercise, assume that charF 6= 2. Show that x ∈ V · V
is a regular plane element if and only if τ(x) · x ∈ F , τ(x) + x ∈ F and(
τ(x) + x

)2 6= 4τ(x) · x. Conclude that every automorphism of C0(V, q)
which commutes with τ and preserves V · V maps regular plane elements
to regular plane elements.

(g) Show that regular plane elements x, y ∈ V · V anticommute if and only if
x = u · v and y = u ·w for some pairwise orthogonal anisotropic vectors u,
v, w ∈ V .

(h) Let (e1, . . . , en) be an orthogonal basis of V . Let θ ∈ Aut
(
C0(V, q), τ

)
be

an automorphism which preserves V ·V . Show that there is an orthogonal
basis (v′1, v2, . . . , vn) of V such that θ(e1 · ei) = v′1 · vi for i = 2, . . . , n. Let
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α = q(v′1)
−1q(e1). Show that the linear transformation of V which maps

e1 to αv′1 and ei to vi for i = 2, . . . , n is a similitude which induces θ.
5. Let D be a central division algebra with involution over a field F of charac-

teristic different from 2 and let V be a (finite dimensional) right vector space
over D with a nonsingular hermitian form h. Let v ∈ V be an anisotropic
vector and let d ∈ D× be such that

h(v, v) = dh(v, v)d (= h(vd, vd)).

Define τv,d ∈ EndF (V ) by

τv,d(x) = x+ v(d− 1)h(v, v)−1h(v, x).

Prove: τv,d is an isometry of (V, h), NrdEnd(V )(τv,d) = NrdD(d), and show that
the group of isometries of (V, h) is generated by elements of the form τv,d.

Hint : For the last part, see the proof of Witt’s theorem in Scharlau [?,
Theorem 7.9.5].

6. (Notation as in the preceding exercise.) Suppose is of the first kind. Show
that if d ∈ D× is such that dsd = s for some s ∈ D× such that s = ±s, then
NrdD(d) = 1, except if D is split and d = −1.

Hint : If d 6= −1, set e = 1−d
1+d . Show that s−1es = −e and d = 1−e

1+e .

7. Use the preceding two exercises to prove the following special case of (??) due
to Kneser: assuming charF 6= 2, if (A, σ) is a central simple F -algebra with
orthogonal involution which contains an improper isometry, then A is split.

8. (Dieudonné) Let (V, q) be a 4-dimensional hyperbolic quadratic space over the
field F with two elements, and let (e1, . . . , e4) be a basis of V such that q(e1x1+
· · ·+ e4x4) = x1x2 + x3x4. Consider the map τ : V → V such that τ(e1) = e3,
τ(e2) = e4, τ(e3) = e1 and τ(e4) = e2. Show that τ is a proper isometry of
(V, q) which is not a product of hyperplane reflections. Consider the element

γ = e2 · (e1 + e3) + (e1 + e3) · e4 ∈ C0(V, q).

Show that γ ∈ Γ+(V, q), χ(γ) = τ , and that γ is not a product of vectors in V .
9. Let (A, σ) be a central simple algebra with involution (of any type) over a

field F of characteristic different from 2. Let

U = {u ∈ A | σ(u)u = 1 }

denote the group of isometries of (A, σ) and let

U0 = {u ∈ U | 1 + u ∈ A× }.

Let also

Skew(A, σ)0 = { a ∈ A | σ(a) = −a and 1 + a ∈ A× }.

Show that U is generated (as a group) by the set U 0. Show that U0 (resp.
Skew(A, σ)0) is a Zariski-open subset of U (resp. Skew(A, σ)) and that the
map a 7→ 1−a

1+a defines a bijection from Skew(A, σ)0 onto U0. (This bijection is

known as the Cayley parametrization of U .)



202 III. SIMILITUDES

10. Let (A, σ, f) be a central simple algebra of degree 2m with quadratic pair and
let g ∈ GO(A, σ, f). Show that

Sn
(
µ(g)−1g2

)
=





1 if

{
m is odd and g is improper,

m is even and g is proper,

µ(g) · F×2 if

{
m is odd and g is proper,

m is even and g is improper.

and that

Sn
(
O+(A, σ, f)

)
⊃

{
µ
(
GO+(A, σ, f)

)
· F×2 if m is odd,

µ
(
GO−(A, σ, f)

)
· F×2 if m is even,

where GO−(A, σ, f) is the coset of improper similitudes of (A, σ, f).
Hint : Use the arguments of (??).

11. Let (A, σ, f) be a central simple algebra of degree degA ≡ 2 mod 4 with a
quadratic pair. Show that

{ c ∈ Sim
(
C(A, σ, f), σ

)
| σ(c) ∗Ab · c = Ab } = Γ(A, σ, f).

Hint : σ(c)c ∈ F× for all c ∈ Sim(A, σ, f).
12. Let (B, τ) be a central simple F -algebra with unitary involution. Let ι be the

nontrivial automorphism of the center K of B and assume that charF 6= 2.
(a) (Merkurjev [?, Proposition 6.1]) Show that

NrdB
(
U(B, τ)

)
= { zι(z)−1 | z ∈ NrdB(B×) }.

In particular, the subgroup NrdB
(
U(B, τ)

)
⊂ K× depends only on the

Brauer class of B.
Hint : (Suresh [?, Theorem 5.1.3]) For u ∈ U(B, τ), show that there ex-
ists x ∈ K such that v = x + uι(x) is invertible. Then u = vτ(v)−1

and Nrd(u) = zι(z)−1 with z = Nrd(v). To prove the reverse inclu-
sion, let (B, τ) =

(
EndD(V ), σh

)
for some hermitian space (V, h) over a

division algebra D with unitary involution θ. By considering endomor-
phisms which have a diagonal matrix representation with respect to an
orthogonal basis of V , show that NrdD

(
U(D, θ)

)
⊂ NrdB

(
U(B, τ)

)
. Fi-

nally, for d ∈ D×, show by dimension count that d · Sym(D, θ) ∩
(
F +

Skew(D, θ)
)
6= {0}, hence d = (x+ s)t−1 for some x ∈ F , s ∈ Skew(D, θ)

and t ∈ Sym(D, θ). For u = (x + s)(x − s)−1, show that u ∈ U(D, θ) and

NrdD(u) = NrdD(d)ι
(
NrdD(d)

)−1
.

(b) (Suresh [?, Lemma 2.6]) If deg(B, τ) is odd, show that

NrdB
(
U(B, τ)

)
= NrdB(B×) ∩K1.

Hint : Let deg(B, τ) = 2r + 1. If Nrd(b) = ι(y)y−1, then

y = Nrd(ybr)NK/F (y)−r ∈ F× ·Nrd(B×).

13. Let (A, σ) be a central simple algebra with involution (of any type) over a field F
and let L/F be a field extension. Suppose ϕ, ψ : L → A are two embeddings
such that ϕ(L), ψ(L) ⊂ (A, σ)+. The Skolem-Noether theorem shows that
there exists a ∈ A× such that ϕ = Int(a) ◦ ψ. Show that σ(a)a ∈ CAψ(L) and
find a necessary and sufficient condition on this element for the existence of a
similitude g ∈ Sim(A, σ) such that ϕ = Int(g) ◦ ψ.
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Notes

§??. The Dickson invariant ∆ of (??) was originally defined by Dickson [?,
Theorem 205, p. 206] by means of an explicit formula involving the entries of
the matrix. Subsequently, Dieudonné [?] showed that it can also be defined by
considering the action of the similitude on the center of the even Clifford algebra
(see (??)). The presentation given here is new.

A functor M : B ′
n → Bn such that End ◦M ∼= IdB′n

and M ◦End ∼= IdBn

(thus providing an alternate proof of (??)) can be made explicit as follows. Recall
the canonical direct sum decomposition of Clifford algebras (see Wonenburger [?,
Theorem 1]): if (V, q) is a quadratic space of dimension d,

C(V, q) = M0 ⊕M1 ⊕ · · · ⊕Md

where M0 = F , M1 = V and, for k ≥ 2, the space Mk is the linear span of the
elements v ·m− (−1)km · v with v ∈ V and m ∈Mk−1. For k = 1, . . . , d the vector
space Mk is also spanned by the products of k vectors in any orthogonal basis of V .
In particular, the dimension of Mk is given by the binomial coefficient:

dimF Mk =
(
d
k

)
.

Clearly, Mk ⊂ C0(V, q) if and only if k is even; hence

C0(V, q) =
⊕

i even

Mi.

Suppose d is odd and disc q = 1. We then have

Md−1 = ζ · V ⊂ C0(V, q)

for any orientation ζ of (V, q), hence x2 ∈ F for all x ∈ Md−1. Therefore, we may
define a quadratic map

s : Md−1 → F

by s(x) = x2. The embedding Md−1 ↪→ C0(V, q) induces an F -algebra homo-
morphism e : C(Md−1, s) → C0(V, q), which shows that disc s = 1. A canonical
orientation η on (Md−1, s) can be characterized by the condition e(η) = 1.

Since the decomposition of C0(V, q) is canonical, it can be defined for the Clif-
ford algebra of any central simple algebra with orthogonal involution (A, σ), as
Jacobson shows in [?, p. 294]. If the degree of the algebra A is odd: degA =
d = 2n+1, the construction above associates to (A, σ) an oriented quadratic space
(M, s, η) of dimension 2n + 1 (where M ⊂ C(A, σ) and s(x) = x2 for x ∈ M)
and defines a functor M : B ′

n → Bn. We leave it to the reader to check that
End ◦M ∼= IdB′n

and M ◦End ∼= IdBn .

§??. If charF = 0 and degA ≥ 10, Lie algebra techniques can be used to
prove that the Lie-automorphism ψ′ of Alt(A, σ) defined in (??) extends to an
automorphism of (A, σ): see Jacobson [?, p. 307].

The extended Clifford group Ω(A, σ) was first considered by Jacobson [?] in
characteristic different from 2. (Jacobson uses the term “even Clifford group”.)
In the split case, this group has been investigated by Wonenburger [?]. The spin
groups Spin(A, σ, f) were defined by Tits [?] in arbitrary characteristic.
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The original proof of Dieudonné’s theorem on multipliers of similitudes (??)
appears in [?, Théorème 2]. The easy argument presented here is due to Elman-
Lam [?, Lemma 4]. The generalization in (??) is due to Merkurjev-Tignol [?]. An-
other proof of (??), using Galois cohomology, has been found by Bayer-Fluckiger [?]
assuming that charF 6= 2. (This assumption is also made in [?].)

From (??), it follows that every central simple algebra with orthogonal in-
volution which contains an improper isometry is split. In characteristic different
from 2, this statement can be proved directly by elementary arguments; it was first
observed by Kneser [?, Lemma 1.b, p. 42]. (See also Exercise ??; the proof in [?] is
different.)

§??. The canonical Lie homomorphism λ̇k : L(A) → L(λkA) is defined as the

differential of the polynomial map λk . It is of course possible to define λ̇k indepen-
dently of λk : it suffices to mimic (??), substituting in the proof a ⊗ 1 ⊗ · · · ⊗ 1 +

1 ⊗ a ⊗ · · · ⊗ 1 + · · · + 1 ⊗ 1 ⊗ · · · ⊗ a for a⊗k. The properties of λ̇k may also be
proved directly (by mimicking (??) and (??)), but the proof that τ∧k ◦ λ̇k = λ̇k ◦ τ
involves rather tedious computations.



CHAPTER IV

Algebras of Degree Four

Among groups of automorphisms of central simple algebras with involution,
there are certain isomorphisms, known as exceptional isomorphisms, relating alge-
bras of low degree. (The reason why these isomorphisms are indeed exceptional
comes from the fact that in some special low rank cases Dynkin diagrams coincide,
see §??.) Algebras of degree 4 play a central rôle from this viewpoint: their three
types of involutions (orthogonal, symplectic, unitary) are involved with three of the
exceptional isomorphisms, which relate them to quaternion algebras, 5-dimensional
quadratic spaces and orthogonal involutions on algebras of degree 6 respectively.
A correspondence, first considered by Albert [?], between tensor products of two
quaternion algebras and quadratic forms of dimension 6 arises as a special case of
the last isomorphism.

The exceptional isomorphisms provide the motivation for, and can be obtained
as a consequence of, equivalences between certain categories of algebras with invo-
lution which are investigated in the first section. In the second section, we focus on
tensor products of two quaternion algebras, called biquaternion algebras, and their
Albert quadratic forms. The third section yields a quadratic form description of the
reduced Whitehead group of a biquaternion algebra, making use of symplectic in-
volutions. Analogues of the reduced Whitehead group for algebras with involution
are also discussed.

§15. Exceptional Isomorphisms

The exceptional isomorphisms between groups of similitudes of central simple
algebras with involution in characteristic different from 2 are easily derived from
Wonenburger’s theorem (??), as the following proposition shows:

(15.1) Proposition. Let (A, σ) be a central simple algebra with orthogonal invo-

lution over a field F of characteristic different from 2. If 2 < degA ≤ 6, the

canonical homomorphism of (??):

C : PGO(A, σ)→ AutF
(
C(A, σ), σ

)

is an isomorphism.

Proof : Proposition (??) shows that if degA > 2, then C is injective and its image
consists of the automorphisms of

(
C(A, σ), σ

)
which preserve the image c(A) of A

under the canonical map c. Moreover, (??) shows that c(A) = F ⊕ c(A)0 where

c(A)0 = c(A) ∩ Skew
(
C(A, σ), σ

)
.

Therefore, it suffices to show that every automorphism of
(
C(A, σ), σ

)
preserves

c(A)0 if degA ≤ 6.

205
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From (??) (or (??)), it follows that dim c(A)0 = dim Skew(A, σ). Direct com-
putations show that

dimF Skew(A, σ) = dimF Skew
(
C(A, σ), σ

)

if degA = 3, 4, 5; thus c(A)0 = Skew
(
C(A, σ), σ

)
in these cases, and every auto-

morphism of
(
C(A, σ), σ

)
preserves c(A)0.

If degA = 6 we get dimF Skew
(
C(A, σ), σ

)
= 16 while dimF c(A)0 = 15.

However, the involution σ is unitary; if Z is the center of C(A, σ), there is a
canonical decomposition

Skew
(
C(A, σ), σ

)
= Skew(Z, σ)⊕ Skew

(
C(A, σ), σ

)0

where

Skew
(
C(A, σ), σ

)0
= {u ∈ Skew(C(A, σ), σ) | TrdC(A,σ)(u) = 0 }.

Inspection of the split case shows that TrdC(A,σ)(x) = 0 for all x ∈ c(A)0. Therefore,
by dimension count,

c(A)0 = Skew
(
C(A, σ), σ

)0
.

Since Skew
(
C(A, σ), σ

)0
is preserved under every automorphism of

(
C(A, σ), σ

)
,

the proof is complete.

This proposition relates central simple algebras with orthogonal involutions of
degree n = 3, 4, 5, 6 with their Clifford algebra. We thus get relations between:

central simple F -algebras
of degree 3

with orthogonal involution
←→ quaternion F -algebras

with symplectic involution

central simple F -algebras
of degree 4

with orthogonal involution
←→

quaternion algebras with
symplectic involution over an
étale quadratic extension of F

central simple F -algebras
of degree 5

with orthogonal involution
←→

central simple F -algebras
of degree 4

with symplectic involution

central simple F -algebras
of degree 6

with orthogonal involution
←→

central simple algebras
of degree 4

with unitary involution over an
étale quadratic extension of F

In order to formalize these relations,23 we introduce various groupoids whose objects
are the algebras considered above. The groupoid of central simple F -algebras of
degree 2n+1 with orthogonal involution has already been considered in §??, where

23In the cases n = 4 and n = 6, the relation also holds if the étale quadratic extension is
F ×F ; central simple algebras of degree d over F ×F should be understood as products B1 ×B2

of central simple F -algebras of degree d. Similarly, quaternion algebras over F ×F are defined as
products Q1 ×Q2 of quaternion F -algebras.
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it is denoted B ′
n. In order to extend the relations above to the case where charF = 2,

we replace it by the category Bn of oriented quadratic spaces of dimension 2n+ 1:
see (??). If charF = 2, we define an orientation on an odd-dimensional nonsingular
quadratic space (V, q) of trivial discriminant as in the case where charF 6= 2:
an orientation of (V, q) is a central element ζ ∈ C1(V, q) such that ζ2 = 1. If
charF = 2, the orientation is unique, hence the category of oriented quadratic
spaces is isomorphic to the category of quadratic spaces of trivial discriminant.

We thus consider the following categories, for an arbitrary field F :

- A1 is the category of quaternion F -algebras, where the morphisms are the
F -algebra isomorphisms;

- A2
1 is the category of quaternion algebras over an étale quadratic extension

of F , where the morphisms are the F -algebra isomorphisms;
- An, for an arbitrary integer n ≥ 2, is the category of central simple algebras

of degree n + 1 over an étale quadratic extension of F with involution of
the second kind leaving F elementwise invariant, where the morphisms are
the F -algebra isomorphisms which preserve the involutions;

- Bn, for an arbitrary integer n ≥ 1, is the category of oriented quadratic
spaces of dimension 2n+ 1, where the morphisms are the isometries which
preserve the orientation (if charF = 2, every isometry preserves the orien-
tation, since the orientation is unique);

- Cn, for an arbitrary integer n ≥ 1, is the category of central simple F -
algebras of degree 2n with symplectic involution, where the morphisms are
the F -algebra isomorphisms which preserve the involutions;

- Dn, for an arbitrary integer n ≥ 2, is the category of central simple F -
algebras of degree 2n with quadratic pair, where the morphisms are the
F -algebra isomorphisms which preserve the quadratic pairs.

In each case, maps are isomorphisms, hence these categories are groupoids.
Note that there is an isomorphism of groupoids:

A1 = C1

which follows from the fact that each quaternion algebra has a canonical symplectic
involution.

In the next sections, we shall successively establish equivalences of groupoids:

B1 ≡ C1

D2 ≡ A2
1

B2 ≡ C2

D3 ≡ A3.

In each case, it is the Clifford algebra construction which provides the functors
defining these equivalences from the left-hand side to the right-hand side. Not
surprisingly, one will notice deep analogies between the first and the third cases, as
well as between the second and the fourth cases.

Our proofs do not rely on (??), and indeed provide an alternative proof of that
proposition.

15.A. B1 ≡ C1. In view of the isomorphism A1 = C1, it is equivalent to prove
A1 ≡ B1.
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For every quaternion algebra Q ∈ A1, the vector space

Q0 = {x ∈ Q | TrdQ(x) = 0 }
has dimension 3, and the squaring map s : Q0 → F defined by

s(x) = x2 for x ∈ Q0

is a canonical quadratic form of discriminant 1. Moreover, the inclusion Q0 ↪→ Q
induces an orientation π on the quadratic space (Q0, s), as follows: by the universal
property of Clifford algebras, this inclusion induces a homomorphism of F -algebras

hQ : C(Q0, s)→ Q.

Since dimC(Q0, s) = 8, this homomorphism has a nontrivial kernel; in the center of
C(Q0, s), there is a unique element π ∈ C1(Q

0, s) such that π2 = 1 which is mapped
to 1 ∈ Q. This element π is an orientation on (Q0, s). Explicitly, if (1, i, j, k) is a
quaternion basis of Q in characteristic different from 2, the orientation π ∈ C(Q0, s)
is given by π = i · j ·k−1. If (1, u, v, w) is a quaternion basis of Q in characteristic 2,
the orientation is π = 1 (the image of 1 ∈ Q0 in C(Q0, s), not the unit of C(Q0, s)).

We define a functor

P : A1 → B1

by mapping Q ∈ A1 to the oriented quadratic space (Q0, s, π) ∈ B1.
A functor C in the opposite direction is provided by the even Clifford algebra

construction: we define

C : B1 → A1

by mapping every oriented quadratic space (V, q, ζ) ∈ B1 to C0(V, q) ∈ A1.

(15.2) Theorem. The functors P and C define an equivalence of groupoids

A1 ≡ B1.

Proof : For any quaternion algebra Q, the homomorphism hQ : C(Q0, s) → Q in-
duced by the inclusion Q0 ↪→ Q restricts to a canonical isomorphism

hQ : C0(Q
0, s) ∼−→ Q.

We thus have a natural transformation: C ◦P ∼= IdA1 .
For (V, q, ζ) ∈ B1, we define a bijective linear map mζ : V → C0(V, q)

0 by

mζ(v) = vζ for v ∈ V .

Since s(vζ) = (vζ)2 = v2 = q(v), this map is an isometry:

mζ : (V, q) ∼−→
(
C0(V, q)

0, s
)
.

We claim that mζ carries ζ to the canonical orientation π on
(
C0(V, q)

0, s
)
; this

map therefore yields a natural transformation P ◦C ∼= IdB1 which completes the
proof.

To prove the claim, it suffices to consider the case where charF 6= 2, since the
orientation is unique if charF = 2. Therefore, for the rest of the proof we assume
charF 6= 2. The isometry mζ induces an isomorphism

m̃ζ : C(V, q) ∼−→ C
(
C0(V, q)

0, s
)
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which maps ζ to π or −π. Composing this isomorphism with the homomorphism
hC0(V,q) : C

(
C0(V, q)

0, s
)
→ C0(V, q) induced by the inclusion C0(V, q)

0 ↪→ C0(V, q),
we get a homomorphism

hC0(V,q) ◦ m̃ζ : C(V, q)→ C0(V, q)

which carries v ∈ V to vζ ∈ C0(V, q). Since ζ has the form ζ = v1 · v2 · v3 for a
suitable orthogonal basis (v1, v2, v3) of V , we have

hC0(V,q) ◦ m̃ζ(ζ) = (v1ζ)(v2ζ)(v3ζ) = ζ4 = 1.

Since the orientation π on
(
C0(V, q)

0, s
)

is characterized by the condition

hC0(V,q)(π) = 1,

it follows that m̃ζ(ζ) = π.

(15.3) Corollary. For every oriented quadratic space (V, q, ζ) of dimension 3, the

Clifford algebra construction yields a group isomorphism

O+(V, q) = Aut(V, q, ζ) ∼−→ AutF
(
C0(V, q)

)
= PGSp

(
C0(V, q), τ

)

where τ is the canonical involution on C0(V, q).

Proof : Since the functor C defines an equivalence of groupoids, it induces isomor-
phisms between the automorphism groups of corresponding objects.

By combining Theorem (??) with (??) (in characteristic different from 2), we
obtain an equivalence between A1 and B ′

1:

(15.4) Corollary. Suppose charF 6= 2. The functor P : A1 → B ′
1, which maps

every quaternion algebra Q to the algebra with involution
(
EndF (Q0), σs

)
where σs

is the adjoint involution with respect to s, and the functor C : B ′
1 → A1, which maps

every algebra with involution (A, σ) of degree 3 to the quaternion algebra C(A, σ),
define an equivalence of groupoids :

A1 ≡ B ′
1.

In particular, for every central simple algebra with involution (A, σ) of degree 3,
the functor C induces an isomorphism of groups:

O+(A, σ) = PGO(A, σ) = AutF (A, σ) ∼−→ AutF
(
C(A, σ)

)
= PGSp

(
C(A, σ), σ

)
.

We thus recover the first case (degA = 3) of (??).

Indices. Let Q ∈ A1 and (V, q, ζ) ∈ B1 correspond to each other under the
equivalence A1 ≡ B1, so that (V, q) ' (Q0, s) and Q ' C0(V, q). Since Q is
a quaternion algebra, its (Schur) index may be either 1 or 2; for the canonical
involution γ on Q, the index ind(Q, γ) is thus (respectively) either {0, 1} or {0}.
On the other hand, since dimV = 3, the Witt index w(V, q) is 1 whenever q is
isotropic.

The following correspondence between the various cases is well-known:

(15.5) Proposition. The indices of Q, (Q, γ) and (V, q) are related as follows :

indQ = 2 ⇐⇒ ind(Q, γ) = {0} ⇐⇒ w(V, q) = 0;

indQ = 1 ⇐⇒ ind(Q, γ) = {0, 1} ⇐⇒ w(V, q) = 1.

In other words, Q is a division algebra if and only if q is anisotropic, and Q is split

if and only if q is isotropic.
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Proof : If Q is a division algebra, then Q0 does not contain any nonzero nilpotent
elements. Therefore, the quadratic form s, hence also q, is anisotropic. On the
other hand, q is isotropic if Q is split, since M2(F ) contains nonzero matrices
whose square is 0.

15.B. A2
1 ≡ D2. The Clifford algebra construction yields a functor C : D2 →

A2
1. In order to show that this functor defines an equivalence of groupoids, we first

describe a functor N : A2
1 → D2 which arises from the norm construction.

Let Q ∈ A2
1 be a quaternion algebra over some étale quadratic extension K/F .

(If K = F × F , then Q should be understood as a direct product of quaternion
F -algebras.) Let ι be the nontrivial automorphism of K/F . Recall from (??) that
NK/F (Q) is the F -subalgebra of ιQ⊗KQ consisting of elements fixed by the switch
map

s : ιQ⊗K Q→ ιQ⊗K Q.

The tensor product ιγ ⊗ γ of the canonical involutions on ιQ and Q restricts to an
involution NK/F (γ) of the first kind on NK/F (Q). By (??), we have

(
NK/F (Q)K , NK/F (γ)K

)
'

(
ιQ⊗K Q, ιγ ⊗ γ

)
,

hence NK/F (γ) has the same type as ιγ ⊗ γ. Proposition (??) thus shows that
NK/F (γ) is orthogonal if charF 6= 2 and symplectic if charF = 2. Corollary (??)
further yields a quadratic pair (ιγ⊗γ, f⊗) on ιQ⊗Q, which is uniquely determined
by the condition that f⊗ vanishes on Skew(ιQ, ιγ)⊗K Skew(Q, γ). It is readily seen
that (ιγ⊗γ, ι◦f⊗◦s) is a quadratic pair with the same property, hence ι◦f⊗◦s = f
and therefore

f⊗
(
s(x)

)
= ιf⊗(x) for all x ∈ Sym(ιQ⊗Q, ιγ ⊗ γ).

It follows that f⊗(x) ∈ F for all x ∈ Sym
(
NK/F (Q), NK/F (γ)

)
, hence (ιγ ⊗ γ, f⊗)

restricts to a quadratic pair on NK/F (Q). We denote this quadratic pair by(
NK/F (γ), fN

)
. The norm thus defines a functor

N : A2
1 → D2

which maps Q ∈ A2
1 to N(Q) =

(
NK/F (Q), NK/F (γ), fN

)
where K is the center

of Q.
On the other hand, for (A, σ, f) ∈ D2 the Clifford algebra C(A, σ, f) is a quater-

nion algebra over an étale quadratic extension, as the structure theorem (??) shows.
Therefore, the Clifford algebra construction yields a functor

C : D2 → A2
1.

The key tool to show that N and C define an equivalence of categories is the Lie
algebra isomorphism which we define next. For Q ∈ A2

1, consider the F -linear map
ṅ : Q→ NK/F (Q) defined by

ṅ(q) = ιq ⊗ 1 + ι1⊗ q for q ∈ Q.
This map is easily checked to be a Lie algebra homomorphism; it is in fact the
differential of the group homomorphism n : Q× → NK/F (Q)× which maps q ∈ Q×

to ιq⊗ q. We have the nonsingular F -bilinear form TNK/F (Q) on NK/F (Q) and the
nonsingular F -bilinear form on Q which is the transfer of TQ with respect to the
trace TK/F . Using these, we may form the adjoint linear map

ṅ∗ : NK/F (Q)→ Q
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which is explicitly defined as follows: for x ∈ NK/F (Q), the element ṅ∗(x) ∈ Q is
uniquely determined by the condition

TK/F
(
TrdQ

(
ṅ∗(x)y

))
= TrdNK/F (Q)

(
xṅ(y)

)
for all y ∈ Q.

(15.6) Proposition. Let Q′ = {x ∈ Q | TrdQ(x) ∈ F }. The linear map ṅ∗

factors through the canonical map c : NK/F (Q)→ c
(
N(Q)

)
and induces an isomor-

phism of Lie algebras

ṅ∗ : c
(
N(Q)

) ∼−→ Q′.

This isomorphism is the identity on F .

Proof : Suppose first that K ' F × F . We may then assume that Q = Q1 × Q2

for some quaternion F -algebras Q1, Q2, and NK/F (Q) = Q1 ⊗ Q2. Under this
identification, the map ṅ is defined by

ṅ(q1, q2) = q1 ⊗ 1 + 1⊗ q2 for q1 ∈ Q1 and q2 ∈ Q2.

It is readily verified that

ṅ∗(q1 ⊗ q2) =
(
TrdQ2(q2)q1,TrdQ1(q1)q2

)
for q1 ∈ Q1 and q2 ∈ Q2,

hence ṅ∗ is the map Θ of (??). From (??), it follows that ṅ∗ factors through c and
induces an isomorphism of Lie algebras

c
(
N(Q)

)
= c(Q1 ⊗Q2)→ Q′ = { (q1, q2) ∈ Q1 ×Q2 | TrdQ1(q1) = TrdQ2(q2) }.

For i = 1, 2, let `i ∈ Qi be such that TrdQi(`i) = 1. Then TrdQ1⊗Q2(`1 ⊗ `2) = 1,
hence f

(
`1⊗`2 +γ1(`1)⊗γ2(`2)

)
= 1, and therefore c

(
`1⊗`2+γ1(`1)⊗γ2(`2)

)
= 1.

On the other hand,

ṅ∗
(
`1 ⊗ `2 + γ1(`1)⊗ γ2(`2)

)
= (`1, `2) +

(
γ1(`1), γ2(`2)

)
= (1, 1),

hence ṅ∗ maps 1 ∈ c
(
N(Q)

)
to 1 ∈ Q′. The map ṅ∗ thus restricts to the identity

on F , completing the proof in the case where K ' F × F .
In the general case, it suffices to prove the proposition over an extension of the

base field F . Extending scalars to K, we are reduced to the special case considered
above, since K ⊗K ' K ×K.

(15.7) Theorem. The functors N and C define an equivalence of groupoids :

A2
1 ≡ D2.

Moreover, if Q ∈ A2
1 and (A, σ, f) ∈ D2 correspond to each other under this equiv-

alence, then the center Z(Q) of Q satisfies

Z(Q) '
{
F

(√
disc(A, σ, f)

)
if charF 6= 2;

F
(
℘−1

(
disc(A, σ, f)

))
if charF = 2.

Proof : If the first assertion holds, then the quaternion algebra Q corresponding
to (A, σ, f) ∈ D2 is the Clifford algebra C(A, σ, f), hence the description of Z(Q)
follows from the structure theorem for Clifford algebras (??).

In order to prove the first statement, we establish natural transformations
N ◦C ∼= IdD2 and C ◦N ∼= IdA2

1
. Thus, for (A, σ, f) ∈ D2 and for Q ∈ A2

1, we
have to describe canonical isomorphisms

(A, σ, f) '
(
NZ(A,σ,f)/F

(
C(A, σ, f)

)
, NZ(A,σ,f)/F (σ), fN

)
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and

Q ' C
(
NZ(Q)/F (Q), NZ(Q)/F (γ), fN

)

where Z(A, σ, f) is the center of C(A, σ, f).
Observe that the fundamental relation (??) between an algebra with invo-

lution and its Clifford algebra already shows that there is an isomorphism A '
NZ(A,σ,f)/F

(
C(A, σ, f)

)
. However, we need a canonical isomorphism which takes

the quadratic pairs into account.
Our construction is based on (??): we use (??) to define isomorphisms of Lie

algebras and show that these isomorphisms extend to isomorphisms of associative
algebras over an algebraically closed extension, hence also over the base field.

Let (A, σ, f) ∈ D2 and let

C(A, σ, f)′ = {x ∈ C(A, σ, f) | TrdC(A,σ,f)(x) ∈ F }.
Lemma (??) shows that TrdC(A,σ,f)

(
c(a)

)
= TrdA(a) for a ∈ A, hence c(A) ⊂

C(A, σ, f)′, and dimension count shows that this inclusion is an equality. Propo-
sition (??) then yields a Lie algebra isomorphism ṅ∗ : c

(
N

(
C(A, σ, f)

))
→ c(A)

which is the identity on F . By (??), it follows that this isomorphism induces a Lie
algebra isomorphism

n : Alt
(
N

(
C(A, σ, f)

)) ∼−→ Alt(A, σ).

To prove that this isomorphism extends to an isomorphism of algebras with quad-
ratic pairs, it suffices by (??) to consider the split case. We may thus assume that A
is the endomorphism algebra of a hyperbolic quadratic space H(U) of dimension 4.
Thus

A = EndF
(
H(U)

)
= EndF (U∗ ⊕ U)

where U is a 2-dimensional vector space, U ∗ is its dual, and (σ, f) = (σqU , fqU ) is
the quadratic pair associated with the hyperbolic quadratic form on U ∗ ⊕ U :

qU (ϕ+ u) = ϕ(u) for ϕ ∈ U∗, u ∈ U .

In that case, the Clifford algebra C(A, σ, f) can be described as

C(A, σ, f) = C0

(
H(U)

)
= EndF (

∧
0 U)× EndF (

∧
1 U),

where
∧

0 U (resp.
∧

1 U) is the 2-dimensional subspace of even- (resp. odd-) degree
elements in the exterior algebra of U (see (??)):

∧
0 U = F ⊕∧2

U,
∧

1 U = U.

Therefore,

NZ(A,σ,f)/F

(
C(A, σ, f)

)
= EndF (

∧
0 U ⊗

∧
1 U).

On the vector space
∧

0 U ⊗
∧

1 U , we define a quadratic form q as follows: pick

a nonzero element (hence a basis) e ∈ ∧2
U ; for x, y ∈ U , we may then define

q(1⊗ x+ e⊗ y) ∈ F by the equation

eq(1⊗ x+ e⊗ y) = x ∧ y.
The associated quadratic pair (σq , fq) on EndF (

∧
0 U ⊗

∧
1 U) is the canonical

quadratic pair
(
N(σ), fN

)
(see Exercise ?? of Chapter ??). A computation shows

that the map g : H(U)→ ∧
0 U ⊗

∧
1 U defined by

g(ϕ+ u) = 1⊗ x+ e⊗ u,
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where x ∈ U is such that x ∧ y = eϕ(y) for all y ∈ U , is a similitude of quadratic
spaces

g : H(U) ∼−→ (
∧

0 U ⊗
∧

1 U, q).

By (??), this similitude induces an isomorphism of algebras with quadratic pair

g∗ :
(
EndF

(
H(U)

)
, σqU , fqU

) ∼−→
(
EndF (

∧
0 U ⊗

∧
1 U), σq , fq

)
.

We leave it to the reader to check that g−1
∗ extends the Lie algebra homomorphism

n, completing the proof that n induces a natural transformation N ◦C ∼= IdD2 .
We use the same technique to prove that C ◦N ∼= IdA2

1
. For Q ∈ A2

1, Proposi-

tion (??) yields a Lie algebra isomorphism

ṅ∗ : c
(
N(Q)

) ∼−→ Q′.

To prove that ṅ∗ extends to an isomorphism of F -algebras C
(
N(Q)

) ∼−→ Q, we

may extend scalars, since N(Q) is generated as an associative algebra by c
(
N(Q)

)
.

Extending scalars to Z(Q) if this algebra is a field, we may therefore assume that
Z(Q) ' F ×F . In that case Q ' Q1 ×Q2 for some quaternion F -algebras Q1, Q2,
hence NZ(Q)/F (Q) ' Q1 ⊗Q2, and ṅ∗ is the map Θ of (??), defined by

Θ
(
c(x1 ⊗ x2)

)
=

(
TrdQ2(x2)x1,TrdQ1(x1)x2

)
for x1 ∈ Q1, x2 ∈ Q2.

Since it was proven in (??) that Θ extends to an isomorphism of F -algebras
C

(
N(Q)

)
= C(Q1 ⊗Q2, γ1 ⊗ γ2, f⊗) ∼−→ Q1 ×Q2, the proof is complete.

(15.8) Remark. For Q ∈ A2
1, the Lie isomorphism ṅ∗ : c

(
N(Q)

)
→ Q′ restricts to

an isomorphism c
(
N(Q)

)
0

∼−→ Q0. If charF 6= 2, the inverse of this isomorphism

is 1
2c ◦ ṅ (see Exercise ??). Similarly, for (A, σ, f) ∈ D2, the inverse of the Lie

isomorphism n : Alt
(
N

(
C(A, σ, f)

))
→ Alt(A, σ) is ṅ ◦ 1

2c if charF 6= 2.

(15.9) Corollary. For every central simple algebra A of degree 4 with quadratic

pair (σ, f), the functor C induces an isomorphism of groups :

PGO(A, σ, f) = AutF (A, σ, f) ∼−→ AutF
(
C(A, σ, f), σ

)
= AutF

(
C(A, σ, f)

)

which restricts into an isomorphism of groups :

PGO+(A, σ, f) ∼−→ AutZ(A,σ,f)

(
C(A, σ, f), σ

)
=

PGSp
(
C(A, σ, f), σ

)
= C(A, σ, f)×/Z(A, σ, f)×.

Proof : The first isomorphism follows from the fact that C defines an equivalence
of groupoids D2 → A2

1 (see (??)). Under this isomorphism, the proper similitudes
correspond to automorphisms of C(A, σ, f) which restrict to the identity on the
center Z(A, σ, f), by (??).

We thus recover the second case (degA = 4) of (??).

Clifford groups. Let Q ∈ A2
1 and (A, σ, f) ∈ D2. Let Z be the center of Q,

and assume that Q and (A, σ, f) correspond to each other under the groupoid
equivalence A2

1 ≡ D2, so that we may identify Q = C(A, σ, f) and (A, σ, f) =(
NZ/F (Q), NZ/F (γ), fN

)
.

(15.10) Proposition. The extended Clifford group of (A, σ, f) is Ω(A, σ, f) = Q×

and the canonical map χ0 : Q× → GO+(A, σ, f) of (??) is given by χ0(q) = ιq⊗q ∈
NZ/F (Q) = A. For q ∈ Q×, the multiplier of χ0(q) is µ

(
χ0(q)

)
= NZ/F

(
NrdQ(q)

)
.
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The Clifford group of (A, σ, f) is

Γ(A, σ, f) = { q ∈ Q× | NrdQ(q) ∈ F× },
and the vector representation map χ : Γ(A, σ, f)→ O+(A, σ, f) is given by

χ(q) = NrdQ(q)−1ιq ⊗ q = ιq ⊗ γ(q)−1.

The spin group is

Spin(A, σ, f) = SL1(Q) = { q ∈ Q× | NrdQ(q) = 1 }.
Proof : We identify Ω(A, σ, f) by means of (??): the canonical map b : A→ B(A, σ, f)
maps A onto the subspace of invariant elements under the canonical involution ω.
Therefore, the condition σ(x) ∗Ab · x = Ab holds for all x ∈ Q×.

It suffices to check the description of χ0 in the split case, where it follows
from explicit computations. The Clifford group is characterized in (??) by the
condition µ(q) ∈ F×, which here amounts to NrdQ(q) ∈ F×, and the description of
Spin(A, σ, f) follows.

(15.11) Corollary. With the same notation as above, the group of multipliers of

proper similitudes of (A, σ, f) is

G+(A, σ, f) = F×2 ·NZ/F
(
NrdQ(Q×)

)

and the group of spinor norms is

Sn(A, σ, f) = F× ∩ NrdQ(Q×).

Moreover, G+(A, σ, f) 6= G(A, σ, f) if and only if A is nonsplit and splits over Z.

Proof : The description of G+(A, σ, f) follows from (??) and the proposition above,
since χ′(q) = χ0(q) · F× for all q ∈ Ω(A, σ, f). By definition, the group of spinor
norms is Sn(A, σ, f) = µ

(
Γ(A, σ, f)

)
, and the preceding proposition shows that

µ
(
Γ(A, σ, f)

)
= F× ∩ NrdQ(Q×).

If G(A, σ, f) 6= G+(A, σ, f), then (??) shows that A is not split and splits
over Z. In order to prove the converse implication, we use the isomorphism
A ' NZ/F (Q) proved in (??) (and also in (??), see (??)). If A is split by Z,
scalar extension to Z shows that ιQ ⊗Z Q is split, hence Q is isomorphic to
ιQ as a Z-algebra. It follows that AutF (Q) 6= AutZ(Q), hence (??) shows that
PGO(A, σ, f) 6= PGO+(A, σ, f). By (??), it follows that G(A, σ, f) 6= G+(A, σ, f)
if A is not split.

The case of trivial discriminant. If K is a given étale quadratic extension
of F , the equivalence A2

1 ≡ D2 set up in (??) associates quaternion algebras with
center K with algebras with quadratic pair (A, σ, f) such that Z(A, σ, f) = K. In
the particular case whereK = F×F , we are led to consider the full subgroupoid 1A2

1

of A2
1 whose objects are F -algebras of the form Q1×Q2 where Q1, Q2 are quaternion

F -algebras, and the full subgroupoid 1D2 of D2 whose objects are central simple
F -algebras with quadratic pair of trivial discriminant. Theorem (??) specializes to
the following statement:

(15.12) Corollary. The functor N : 1A2
1 → 1D2 which maps the object Q1 × Q2

to (Q1 ⊗ Q2, γ1 ⊗ γ2, f⊗) (where γ1, γ2 are the canonical involutions on Q1, Q2

respectively, and (γ1⊗γ2, f⊗) is the quadratic pair of (??)) and the Clifford algebra

functor C : 1D2 → 1A2
1 define an equivalence of groupoids :

1A2
1 ≡ 1D2.
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In particular, every central simple algebra A of degree 4 with quadratic pair (σ, f)
of trivial discriminant decomposes as a tensor product of quaternion algebras :

(A, σ, f) = (Q1 ⊗Q2, γ1 ⊗ γ2, f⊗).

Proof : For (A, σ, f) ∈ 1D2, we have C(A, σ, f) = Q1 × Q2 for some quaternion
F -algebras Q1, Q2. The isomorphism (A, σ, f) ' N ◦C(A, σ, f) yields:

(A, σ, f) ' (Q1 ⊗Q2, γ1 ⊗ γ2, f⊗).

Note that the algebras Q1, Q2 are uniquely determined by (A, σ, f) up to
isomorphism since C(A, σ, f) = Q1 × Q2. Actually, they are uniquely determined
as subalgebras of A by the relation (A, σ, f) = (Q1⊗Q2, γ1⊗γ2, f⊗). If charF 6= 2,
this property follows from the observation that Skew(A, σ) = Skew(Q1, γ1) ⊗ 1 +
1⊗ Skew(Q2, γ2), since Skew(Q1, γ1)⊗ 1 and 1⊗ Skew(Q2, γ2) are the only simple
Lie ideals of Skew(A, σ). See Exercise ?? for the case where charF = 2.

The results in (??), (??) and (??) can also be specialized to the case where the
discriminant of (σ, f) is trivial. For instance, one has the following description of
the group of similitudes and their multipliers:

(15.13) Corollary. Let (A, σ, f) = (Q1 ⊗Q2, γ1 ⊗ γ2, f⊗) ∈ 1D2. The functor C
induces isomorphisms of groups :

PGO(A, σ, f) ∼−→ AutF (Q1 ×Q2)

and

PGO+(A, σ, f) ∼−→ AutF (Q1)×AutF (Q2) = PGL(Q1)× PGL(Q2).

Similarly, Spin(A, σ, f) ' SL1(Q1)× SL1(Q2). Moreover,

G(A, σ, f) = G+(A, σ, f) = NrdQ1(Q
×
1 ) · NrdQ2(Q

×
2 )

and

Sn(A, σ, f) = NrdQ1(Q
×
1 ) ∩ NrdQ2(Q

×
2 ).

Indices. Let Q ∈ A2
1 and (A, σ, f) ∈ D2 correspond to each other under the

equivalence A2
1 ≡ D2. Since degA = 4, there are four possibilities for ind(A, σ, f):

{0}, {0, 1}, {0, 2}, {0, 1, 2}.

The following proposition describes the corresponding possibilities for the algebra
Q. Let K be the center of Q, so K ' F

(√
disc(A, σ, f)

)
if charF 6= 2 and K '

F
(
℘−1

(
disc(A, σ, f)

))
if charF = 2.

(15.14) Proposition. With the notation above,

(1) ind(A, σ, f) = {0} if and only if either Q is a division algebra (so K is a field)
or Q ' Q1 ×Q2 for some quaternion division F -algebras Q1, Q2 (so K ' F × F );
(2) ind(A, σ, f) = {0, 1} if and only if K is a field and Q 'M2(K);
(3) ind(A, σ, f) = {0, 2} if and only if Q ' M2(F ) × Q0 for some quaternion

division F -algebra Q0;
(4) ind(A, σ, f) = {0, 1, 2} if and only if Q 'M2(F )×M2(F ).
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Proof : If 1 ∈ ind(A, σ, f), then A is split and the quadratic pair (σ, f) is isotropic.
Thus, A ' EndF (V ) for some 4-dimensional F -vector space V , and (σ, f) is
the quadratic pair associated with some isotropic quadratic form q on V . Since
dimV = 4, the quadratic space (V, q) is hyperbolic if and only if its discriminant
is trivial, i.e., K ' F × F . Therefore, if ind(A, σ, f) = {0, 1}, then K is a field;
by (??), the canonical involution on C0(V, q) ' Q is hyperbolic, hence Q is split.
If ind(A, σ, f) = {0, 1, 2}, then (V, q) is hyperbolic and K ' F × F . By (??), it
follows that Q ' M2(F ) ×M2(F ). Conversely, if Q ' M2(K) (and K is either a
field or isomorphic to F × F ), then Q contains a nonzero element q which is not
invertible. The element ιq⊗ q ∈ NK/F (Q) ' A generates an isotropic right ideal of
reduced dimension 1, hence 1 ∈ ind(A, σ, f). This proves (??) and (??).

If 2 ∈ ind(A, σ, f), then (σ, f) is hyperbolic, hence Proposition (??) shows
that Q ' M2(F ) × Q0 for some quaternion F -algebra Q0, since Q ' C(A, σ, f).
Conversely, if Q 'M2(F )×Q0 for some quaternion F -algebra Q0, then

(A, σ, f) '
(
M2(F )⊗Q0, γM ⊗ γ0, f⊗

)
,

where γM and γ0 are the canonical (symplectic) involutions on M2(F ) and Q0

respectively. If x ∈ M2(F ) is a nonzero singular matrix, then x ⊗ 1 generates an
isotropic right ideal of reduced dimension 2 in A, hence 2 ∈ ind(A, σ, f). This
proves (??) and yields an alternate proof of (??).

Since (??), (??), (??) and (??) exhaust all the possibilities for ind(A, σ, f) and
for Q, the proof is complete.

15.C. B2 ≡ C2. The arguments to prove the equivalence of B2 and C2 are
similar to those used in §?? to prove B1 ≡ C1.

For any oriented quadratic space (V, q, ζ) ∈ B2 (of trivial discriminant), the even
Clifford algebra C0(V, q) is central simple of degree 4, and its canonical involution
τ (= σq) is symplectic. We may therefore define a functor

C : B2 → C2

by

C(V, q, ζ) =
(
C0(V, q), τ

)
.

On the other hand, let (A, σ) be a central simple F -algebra of degree 4 with sym-
plectic involution. As observed in (??), the reduced characteristic polynomial of
every symmetrized element is a square; the pfaffian trace Trpσ is a linear form on
V and the pfaffian norm Nrpσ is a quadratic form on V such that

PrdA,a(X) =
(
X2 − Trpσ(a)X + Nrpσ(a)

)2
for a ∈ Symd(A, σ).

In particular, if a ∈ Symd(A, σ) is such that Trpσ(a) = 0, then a2 = −Nrpσ(a) ∈ F .
Let

Symd(A, σ)0 = { a ∈ Symd(A, σ) | Trpσ(a) = 0 }
(
= { a ∈ Sym(A, σ) | TrdA(a) = 0 } if charF 6= 2

)
.

This is a vector space of dimension 5 over F . The map sσ : Symd(A, σ)0 → F
defined by

sσ(a) = a2
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is a quadratic form on Symd(A, σ)0. Inspection of the split case shows that this
form is nonsingular. By the universal property of Clifford algebras, the inclusion
Symd(A, σ) ↪→ A induces an F -algebra homomorphism

hA : C
(
Symd(A, σ)0, sσ

)
→ A,(15.15)

which is not injective since dimF C
(
Symd(A, σ)0, sσ

)
= 25 while dimF A = 24.

Therefore, the Clifford algebra C
(
Symd(A, σ)0, sσ

)
is not simple, hence the dis-

criminant of the quadratic space
(
Symd(A, σ)0, sσ

)
is trivial. Moreover, there is a

unique central element η in C1

(
Symd(A, σ)0, sσ

)
such that η2 = 1 and hA(η) = 1.

We may therefore define a functor

S : C2 → B2

by

S(A, σ) =
(
Symd(A, σ)0, sσ, η

)
.

(15.16) Theorem. The functors C and S define an equivalence of groupoids :

B2 ≡ C2.

Proof : For any (A, σ) ∈ C2, the F -algebra homomorphism hA of (??) restricts to
a canonical isomorphism

hA : C0

(
Symd(A, σ)0, sσ

) ∼−→ A,

and yields a natural transformation C ◦S ∼= IdC2 .
For (V, q, ζ) ∈ B2, we define a linear map mζ : V → C0(V, q) by

mζ(v) = vζ for v ∈ V .

Since sτ (vζ) = (vζ)2 = v2 = q(v), this map is an isometry:

mζ : (V, q) ∼−→
(
Symd

(
C0(V, q), τ

)0
, sτ

)
.

The same argument as in the proof of (??) shows that this isometry carries ζ to the

canonical orientation η on
(
Symd

(
C0(V, q), τ

)0
, sτ

)
; therefore, it defines a natural

transformation S ◦C ∼= IdB2 which completes the proof.

(15.17) Corollary. For every oriented quadratic space (V, q, ζ) of dimension 5,
the Clifford algebra construction yields a group isomorphism

O+(V, q) = Aut(V, q, ζ) ∼−→ AutF
(
C0(V, q), τ

)
= PGSp

(
C0(V, q), τ

)
.

Proof : The functor C defines an isomorphism between automorphism groups of
corresponding objects.

Suppose now that (A, σ) ∈ C2 corresponds to (V, q, ζ) ∈ B2 under the equiv-
alence B2 ≡ C2, so that we may identify (A, σ) =

(
C0(V, q), τ

)
and (V, q, ζ) =(

Symd(A, σ)0, sσ , η
)
.

(15.18) Proposition. The special Clifford group of (V, q) is

Γ+(V, q) = GSp(A, σ).

Under the identification V = Symd(A, σ)0 ⊂ A, the vector representation

χ : GSp(A, σ)→ O+(V, q)

is given by χ(g)(v) = gvg−1 for g ∈ GSp(A, σ) and v ∈ V .
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The spin group is Spin(V, q) = Sp(A, σ) and the group of spinor norms is

Sn(V, q) = G(A, σ).

Proof : By definition, Γ+(V, q) is a subgroup of A×, and it consists of similitudes
of (A, σ). We have a commutative diagram with exact rows:

1 −−−−→ F× −−−−→ Γ+(V, q)
χ−−−−→ O+(V, q) −−−−→ 1

∥∥∥
y

yC

1 −−−−→ F× −−−−→ GSp(A, σ) −−−−→ PGSp(A, σ) −−−−→ 1

(see (??)24). The corollary above shows that the right-hand vertical map is an
isomorphism, hence Γ+(V, q) = GSp(A, σ).

For g ∈ Γ+(V, q), we have χ(g)(v) = g · v · g−1 in C(V, q), by the definition of
the vector representation. Under the identification V = Symd(A, σ)0, every vector
v ∈ V is mapped to vζ ∈ A, hence the action of χ(g) is by conjugation by g, since
ζ is central in C(V, q). The last assertions are clear.

An alternate proof is given in (??) below.
If charF 6= 2, we may combine (??) with the equivalence B2 ≡ B ′

2 of (??) to
get the following relation between groupoids of algebras with involution:

(15.19) Corollary. Suppose charF 6= 2. The functor S : C2 → B ′
2, which maps

every central simple algebra of degree 4 with symplectic involution (A, σ) to the

algebra of degree 5 with orthogonal involution
(
EndF

(
Symd(A, σ)0

)
, σsσ

)
where σsσ

is the adjoint involution with respect to sσ, and the functor C : B ′
2 → C2, which

maps every central simple algebra of degree 5 with orthogonal involution (A′, σ′) to

its Clifford algebra
(
C(A′, σ′), σ′

)
, define an equivalence of groupoids :

C2 ≡ B ′
2.

In particular, for every central simple algebra with involution (A′, σ′) of de-
gree 5, the functor C induces an isomorphism of groups:

O+(A′, σ′) = PGO(A′, σ′) =

AutF (A′, σ′) ∼−→ AutF
(
C(A′, σ′), σ′

)

= PGSp
(
C(A′, σ′), σ′

)
.

We thus recover the third case (degA = 5) of (??).

Indices. Let (A, σ) ∈ C2. In order to relate the index of (A, σ) to the Witt
index of the corresponding 5-dimensional quadratic space

(
Symd(A, σ)0, sσ

)
, we es-

tablish a one-to-one correspondence between isotropic ideals in (A, σ) and isotropic
vectors in Symd(A, σ)0.

(15.20) Proposition. (1) For every right ideal I ⊂ A of reduced dimension 2,
the intersection I ∩ Symd(A, σ) is a 1-dimensional subspace of Symd(A, σ) which

is isotropic for the quadratic form Nrpσ. This subspace is in Symd(A, σ)0 (and

therefore isotropic for the form sσ) if σ(I) · I = {0}.
(2) For every nonzero vector x ∈ Symd(A, σ) such that Nrpσ(x) = 0, the right ideal

xA has reduced dimension 2. This ideal is isotropic for σ if x ∈ Symd(A, σ)0.

24Although (??) is stated for even-dimensional quadratic spaces, the arguments used in the
proof also apply to odd-dimensional spaces.
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Proof : It suffices to prove the proposition over a scalar extension. We may thus
assume that A is split; let (A, σ) =

(
EndF (W ), σb

)
for some 4-dimensional vector

space W with alternating bilinear form b. The bilinear form b induces the standard
identification ϕb : W ⊗W = EndF (W ) under which

σ(x⊗ y) = −y ⊗ x and Trd(x ⊗ y) = b(y, x)

for x, y ∈ W (see (??)). According to (??), every right ideal I ⊂ EndF (W ) of
reduced dimension 2 has the form

I = HomF (W,U) = U ⊗W
for some 2-dimensional subspace U ⊂W uniquely determined by I . If (u1, u2) is a
basis of U , every element in I has a unique expression of the form u1⊗v1+u2⊗v2 for
some v1, v2 ∈ V . Such an element is symmetrized under σ if and only if v1 = u2α
and v2 = −u1α for some α ∈ F . Therefore,

I ∩ Symd(A, σ) = (u1 ⊗ u2 − u2 ⊗ u1) · F,
showing that I ∩ Symd(A, σ) is 1-dimensional. Since the elements in I are not
invertible, it is clear that Nrpσ(x) = 0 for all x ∈ I ∩ Symd(A, σ).

If σ(I) · I = {0}, then σ(u1 ⊗ u2 − u2 ⊗ u1) · (u1 ⊗ u2 − u2 ⊗ u1) = 0. We have

σ(u1 ⊗ u2 − u2 ⊗ u1) · (u1 ⊗ u2 − u2 ⊗ u1) = (u1 ⊗ u2 − u2 ⊗ u1)
2

= (u1 ⊗ u2 − u2 ⊗ u1)b(u2, u1)

and, by (??),

Trpσ(u1 ⊗ u2 − u2 ⊗ u1) = TrdA(u1 ⊗ u2) = b(u2, u1).

Hence the condition σ(I) · I = {0} implies that Trpσ(u1 ⊗ u2 − u2 ⊗ u1) = 0. This
completes the proof of (??).

In order to prove (??), we choose a basis of V to identify

(A, σ) =
(
M4(F ), Int(u) ◦ t

)

for some alternating matrix u ∈ GL4(F ). Under this identification, we have

Symd(A, σ) = u ·Alt
(
M4(F ), t

)
.

Since the rank of every alternating matrix is even, it follows that rdim(xA) = 0,
2, or 4 for every x ∈ Alt(A, σ). If Nrpσ(x) = 0, then x is not invertible, hence
rdim(xA) < 4; on the other hand, if x 6= 0, then rdim(xA) > 0. Therefore,
rdim(xA) = 2 for every nonzero isotropic vector x in

(
Symd(A, σ),Nrpσ

)
. If x ∈

Symd(A, σ)0, then x2 = −Nrpσ(x), hence

σ(xA) · xA = Ax2A = {0}
if x is isotropic.

This proposition shows that the maps I 7→ I ∩ Symd(A, σ) and xF 7→ xA
define a one-to-one correspondence between right ideals of reduced dimension 2 in A
and 1-dimensional isotropic subspaces in

(
Symd(A, σ),Nrpσ

)
. Moreover, under

this bijection isotropic right ideals I for σ correspond to 1-dimensional isotropic
subspaces in

(
Symd(A, σ)0, sσ

)
.

If A is split, then σ is adjoint to an alternating bilinear form, hence it is
hyperbolic. In particular, if 1 ∈ ind(A, σ), then ind(A, σ) = {0, 1, 2}. Thus, the
only possibilities for the index of (A, σ) are

{0}, {0, 2} and {0, 1, 2},
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and the last case occurs if and only if A is split.

(15.21) Proposition. Let (V, q, ζ) ∈ B2 and (A, σ) ∈ C2 correspond to each other

under the equivalence B2 ≡ C2. The index of (A, σ) and the Witt index w(V, q) are

related as follows :

ind(A, σ) = {0} ⇐⇒ w(V, q) = 0;

ind(A, σ) = {0, 2} ⇐⇒ w(V, q) = 1;

ind(A, σ) = {0, 1, 2} ⇐⇒ w(V, q) = 2.

Proof : Proposition (??) shows that 2 ∈ ind(A, σ) if and only if w(V, q) > 0. There-
fore, it suffices to show that A splits if and only if w(V, q) = 2. If the latter
condition holds, then (V, q) has an orthogonal decomposition (V, q) ' H(U) ⊕ uF
for some 4-dimensional hyperbolic space H(U) and some vector u ∈ V such that
q(u) = 1, hence C0(V, q) ' C

(
H(U)

)
. It follows from (??) that C0(V, q), hence also

A, is split. Conversely, suppose (A, σ) =
(
EndF (W ), σb

)
for some 4-dimensional

vector space W with alternating form b. As in (??), we identify A with W ⊗W
under ϕb. If (e1, e2, e3, e4) is a symplectic basis of W , the span of e1 ⊗ e3 − e3 ⊗ e1
and e1 ⊗ e4 − e4 ⊗ e1 is a totally isotropic subspace of

(
Symd(A, σ), sσ

)
, hence

w(V, q) = 2.

15.D. A3 ≡ D3. The equivalence between the groupoid A3 of central simple
algebras of degree 4 with involution of the second kind over a quadratic étale ex-
tension of F and the groupoid D3 of central simple F -algebras of degree 6 with
quadratic pair is given by the Clifford algebra and the discriminant algebra con-
structions. Let

C : D3 → A3

be the functor which maps (A, σ, f) ∈ D3 to its Clifford algebra with canonical
involution

(
C(A, σ, f), σ

)
and let

D : A3 → D3

be the functor which maps (B, τ) ∈ A3 to the discriminant algebra D(B, τ) with
its canonical quadratic pair (τ , fD).

As in §??, the proof that these functors define an equivalence of groupoids is
based on a Lie algebra isomorphism which we now describe.

For (B, τ) ∈ A3, recall from (??) the Lie algebra

s(B, τ) = { b ∈ B | b+ τ(b) ∈ F and TrdB(b) = 2
(
b+ τ(b)

)
}

and from (??) the Lie algebra homomorphism

λ̇2 : B → λ2B.

Endowing B and λ2B with the nonsingular symmetric bilinear forms TB and Tλ2B ,
we may consider the adjoint F -linear map

(λ̇2)∗ : λ2B → B,

which is explicitly defined by the following property: the image (λ̇2)∗(ξ) of ξ ∈ λ2B
is the unique element of B such that

TrdB
(
(λ̇2)∗(ξ)y

)
= Trdλ2B(ξλ̇2y) for all y ∈ B.
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(15.22) Proposition. The map (λ̇2)∗ restricts to a linear map

λ∗ : D(B, τ)→ s(B, τ),

which factors through the canonical map c : D(B, τ) → C
(
D(B, τ), τ , fD

)
and in-

duces a Lie algebra isomorphism

λ∗ : c
(
D(B, τ)

) ∼−→ s(B, τ).

This Lie algebra isomorphism extends to an isomorphism of (associative) F -alge-

bras with involution
(
C

(
D(B, τ), τ , fD

)
, τ

) ∼−→ (B, τ).

Proof : Let γ be the canonical involution on λ2B. For y ∈ B, Proposition (??)

yields γ(λ̇2y) = TrdB(y)− λ̇2y. Therefore, for ξ ∈ λ2B we have

Trdλ2B

(
γ(ξ)λ̇2y

)
= TrdB(y) Trdλ2B(ξ)− Trdλ2B(ξλ̇2y).

By the definition of (λ̇2)∗, this last equality yields (λ̇2)∗
(
γ(ξ)

)
= Trdλ2B(ξ) −

(λ̇2)∗(ξ). Similarly, (λ̇2)∗
(
τ∧2(ξ)

)
= τ

(
(λ̇2)∗(ξ)

)
for ξ ∈ λ2B. Therefore, if ξ ∈

D(B, τ), i.e., τ∧2(ξ) = γ(ξ), then

τ
(
(λ̇2)∗(ξ)

)
+ (λ̇2)∗(ξ) = Trdλ2B(ξ) ∈ F.

Since, by the definition of (λ̇2)∗,

TrdB
(
(λ̇2)∗(ξ)

)
= Trdλ2B(ξλ̇21) = 2 Trdλ2B(ξ),

it follows that (λ̇2)∗(ξ) ∈ s(B, τ) for ξ ∈ D(B, τ), proving the first part.
To prove the rest, we extend scalars to an algebraic closure of F . We may thus

assume that B = EndF (V )×EndF (V ∗) for some 4-dimensional F -vector space V ,
and the involution τ is given by

τ(g, ht) = (h, gt) for g, h ∈ EndF (V ).

We may then identify
(
D(B, τ), τ , fD

)
=

(
EndF (

∧2
V ), σq , fq

)

where (σq , fq) is the quadratic pair associated with the canonical quadratic map

q :
∧2

V → ∧4
V of (??). Let e ∈ ∧4

V be a nonzero element (hence a basis). We

use e to identify
∧4 V = F , hence to view q as a quadratic form on

∧2 V . The

standard identification ϕq :
∧2

V ⊗
∧2

V ∼−→ EndF (
∧2

V ) then yields an identifica-
tion

ηq : C0(
∧2 V, q) ∼−→ C

(
D(B, τ), τ , fD

)

which preserves the canonical involutions.

We next define an isomorphism C0(
∧2

V, q) ∼−→ EndF (V )× EndF (V ∗) = B by

restriction of an isomorphism C(
∧2

V, q) ∼−→ EndF (V ⊕ V ∗).
For ξ ∈ ∧2 V , we define maps `ξ : V → V ∗ and rξ : V ∗ → V by the following

conditions, where 〈 , 〉 is the canonical pairing of a vector space and its dual:

ξ ∧ x ∧ y = e · 〈`ξ(x), y〉 for x, y ∈ V
〈ψ ∧ ϕ, ξ〉 = 〈ψ, rξ(ϕ)〉 for ψ, ϕ ∈ V ∗.
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The map

i :
∧2

V → EndF (V ⊕ V ∗) =

(
End(V ) Hom(V ∗, V )

Hom(V, V ∗) End(V ∗)

)

which carries ξ ∈ ∧2 V to
( 0 rξ

`ξ 0

)
induces an isomorphism

i∗ : C(
∧2 V, q) ∼−→ EndF (V ⊕ V ∗)(15.23)

which restricts to an isomorphism of algebras with involution

i∗ :
(
C0(

∧2 V, q), τ0
) ∼−→

(
EndF (V )× EndF (V ∗), τ

)
.

To complete the proof, it now suffices to show that this isomorphism extends λ∗,
in the sense that

i∗(ξ · η) = λ∗(ξ ⊗ η) for ξ, η ∈
∧2

V.

In view of the definition of λ∗, this amounts to proving

tr(ξ ⊗ η ◦ λ̇2g) = tr(rξ ◦ `η ◦ g) for all g ∈ EndF (V ).

Verification of this formula is left to the reader.

(15.24) Theorem. The functors D and C define an equivalence of groupoids

A3 ≡ D3.

Moreover, if (B, τ) ∈ A3 and (A, σ, f) ∈ D3 correspond to each other under this

equivalence, the center Z(B) of B satisfies

Z(B) '
{
F

(√
disc(A, σ, f)

)
if charF 6= 2;

F
(
℘−1

(
disc(A, σ, f)

))
if charF = 2.

Proof : Once the equivalence of groupoids has been established, then the algebra B
of degree 4 corresponding to (A, σ, f) ∈ D3 is the Clifford algebra C(A, σ, f), hence
the description of Z(B) follows from the structure theorem for Clifford algebras
(??).

In order to prove the first part, we show that for (A, σ, f) ∈ D3 and (B, τ) ∈ A3

there are canonical isomorphisms

(A, σ, f) '
(
D

(
C(A, σ, f), σ

)
, σ, fD

)
and (B, τ) '

(
C

(
D(B, τ), τ , fD

)
, τ

)

which yield natural transformations

D ◦C ∼= IdD3 and C ◦D ∼= IdA3 .

Proposition (??) yields a canonical isomorphism
(
C

(
D(B, τ), τ , fD

)
, τ

) ∼−→ (B, τ).

On the other hand, starting with (A, σ, f) ∈ D3, we may also apply (??) to get a
Lie algebra isomorphism

λ∗ : c
(
D

(
C(A, σ, f), σ

)) ∼−→ s
(
C(A, σ, f), σ

)
.

By (??), one may check that c(A) ⊂ s
(
C(A, σ, f), σ

)
, and dimension count shows

that this inclusion is an equality. Since λ∗ extends to an F -algebra isomorphism,
it is the identity on F . Therefore, by (??) it induces a Lie algebra isomorphism

λ : Alt
(
D

(
C(A, σ, f), σ

)
, σ

) ∼−→ Alt(A, σ).
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We aim to show that this isomorphism extends to an isomorphism of (associative)
F -algebras with quadratic pair

(
D

(
C(A, σ, f), σ

)
, σ, fD

)
→ (A, σ, f).

By (??), it suffices to prove the property over an algebraic closure of F . We may
thus assume that A is the endomorphism algebra of a hyperbolic space, so

A = EndF
(
H(U)

)
= EndF (U∗ ⊕ U)

where U is a 3-dimensional vector space, U ∗ is its dual, and (σ, f) = (σqU , fqU ) is
the quadratic pair associated with the hyperbolic form qU . Recall that qU is defined
by

qU (ϕ+ u) = ϕ(u) = 〈ϕ, u〉 for ϕ ∈ U∗, u ∈ U .

The Clifford algebra of (A, σ, f) may be described as follows:

C(A, σ, f) = EndF (
∧

0 U)× EndF (
∧

1 U),

where
∧

0 U = F ⊕ ∧2
U and

∧
1 U = U ⊕ ∧3

U (see (??)). The involution σ
on C(A, σ) is of the second kind; it interchanges EndF (

∧
0 U) and EndF (

∧
1 U).

Therefore, the discriminant algebra of
(
C(A, σ), σ

)
is

D
(
C(A, σ), σ

)
= EndF

(∧2
(
∧

1 U)
)
,

and its quadratic pair (σ, fD) is associated with the canonical quadratic map

q :
∧2

(
∧

1 U)→ ∧4
(
∧

1 U) ' F.
Since dimU = 3, there are canonical isomorphisms

∧2(
∧

1 U) =
∧2 U ⊕ (

∧3 U ⊗ U) and
∧4(

∧
1 U) =

∧3 U ⊗∧3 U

given by

(u1 + ξ1) ∧ (u2 + ξ2) = u1 ∧ u2 + ξ1 ⊗ u2 − ξ2 ⊗ u1

and

(u1 + ξ1) ∧ (u2 + ξ2) ∧ (u3 + ξ3) ∧ (u4 + ξ4) =

ξ1 ⊗ (u2 ∧ u3 ∧ u4)− ξ2 ⊗ (u1 ∧ u3 ∧ u4)

+ ξ3 ⊗ (u1 ∧ u2 ∧ u4)− ξ4 ⊗ (u1 ∧ u2 ∧ u3)

for u1, . . . , u4 ∈ U and ξ1, . . . , ξ4 ∈
∧3

U . Under these identifications, the canonical

quadratic map q :
∧2

U ⊕ (
∧3

U ⊗ U)→ ∧3
U ⊗∧3

U is given by

q(θ + ξ ⊗ u) = ξ ⊗ (u ∧ θ)
for θ ∈ ∧2

U , ξ ∈ ∧3
U and u ∈ U . Picking a nonzero element ε ∈ ∧3

U , we

identify
∧3

U ⊗ ∧3
U with F by means of the basis ε ⊗ ε; we may thus regard q

as a quadratic form on
∧2 U ⊕ (

∧3 U ⊗U). The discriminant algebra of C(A, σ, f)
then has the alternate description

(
D

(
C(A, σ, f), σ

)
, σ, fD

)
=

(
EndF

(∧2
U ⊕ (

∧3
U ⊗ U)

)
, σq , fq

)
.

In order to define an isomorphism of this algebra with (A, σ, f), it suffices, by (??),
to define a similitude of quadratic spaces

g : (U∗ ⊕ U, qU )→
(∧2

U ⊕ (
∧3

U ⊗ U), q
)
.
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For ϕ ∈ U∗ and u ∈ U , we set

g(ϕ+ u) = θ + ε⊗ u,

where θ ∈ ∧2 U is such that ε · 〈ϕ, x〉 = θ ∧ x for all x ∈ U . We then have

ε⊗ ε · 〈ϕ, u〉 = ε⊗ (u ∧ θ) = q(θ + ε⊗ u),

hence g is an isometry of quadratic spaces. We claim that the inverse of the induced
isomorphism

g∗ :
(
EndF (U∗ ⊕ U), σq

) ∼−→
(
EndF

(∧2
U ⊕ (

∧3
U ⊗ U)

)
, σb

)

extends λ. To prove the claim, we use the identifications

D
(
C(A, σ, f), σ

)
= EndF

(∧2
U ⊕ (

∧3
U ⊗ U)

)

=
(∧2

U ⊕ (
∧3

U ⊗ U)
)
⊗

(∧2
U ⊕ (

∧3
U ⊗ U)

)

and

A = EndF (U∗ ⊕ U) = (U∗ ⊕ U)⊗ (U∗ ⊕ U).

Since c(A) = (U∗ ⊕ U) · (U∗ ⊕ U) ⊂ C0

(
H(U), qU

)
is spanned by elements of the

form (ϕ + u) · (ψ + v) with ϕ, ψ ∈ U∗ and u, v ∈ U , it suffices to show that
the corresponding element (dϕ + `u) ◦ (dψ + `v) ∈ EndF (

∧
0 U) × EndF (

∧
1 U) =

C0

(
H(U), qU

)
(under the isomorphism of (??)) is λ∗

(
g(ϕ + u) ⊗ g(ψ + v)

)
. This

amounts to verifying that

tr
(
h ◦ (dϕ + `u) ◦ (dψ + `v)

)
= tr

(
λ̇2h ◦ g(ϕ+ u)⊗ g(ψ + v)

)

for all h ∈ EndF (
∧

0 U)× EndF (
∧

1 U). Details are left to the reader.

(15.25) Remark. For (B, τ) ∈ A3, the Lie isomorphism λ∗ : c
(
D(B, τ)

)
→ s(B, τ)

restricts to a Lie isomorphism c
(
D(B, τ)

)
0

∼−→ Skew(B, τ)0. The inverse of this

isomorphism is 1
2c◦ λ̇2 if charF 6= 2. Similarly, for (A, σ, f) ∈ D3, the inverse of the

Lie isomorphism λ used in the proof of the theorem above is λ̇2 ◦ 1
2c if charF 6= 2.

(15.26) Corollary. For every central simple algebra A of degree 6 with quadratic

pair (σ, f), the functor C induces an isomorphism of groups

PGO(A, σ, f) = AutF (A, σ, f) ∼−→ AutF
(
C(A, σ, f), σ

)

which restricts into an isomorphism of groups :

PGO+(A, σ, f) ∼−→ AutZ(A,σ,f)

(
C(A, σ, f), σ

)
= PGU

(
C(A, σ, f), σ

)

where Z(A, σ, f) is the center of C(A, σ, f).

Proof : The first isomorphism follows from the fact that C defines an equivalence
of groupoids D3 → A3 (see (??)). Under this isomorphism, the proper similitudes
correspond to automorphisms of C(A, σ, f) which restrict to the identity on the
center Z(A, σ, f), by (??).

We thus recover the fourth case (degA = 6) of (??).
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Clifford groups. Let (A, σ, f) ∈ D3 and (B, τ) ∈ A3. Let K be the center
of (B, τ), and assume that (A, σ, f) and (B, τ) correspond to each other under the
groupoid equivalence A3 ≡ D3, so that we may identify (B, τ) =

(
C(A, σ, f), σ

)
and

(A, σ, f) =
(
D(B, τ), τ , fD

)
. Our goal is to relate the Clifford groups of (A, σ, f) to

groups of similitudes of (B, τ). We write µσ and µτ for the multiplier maps for the
involutions σ and τ respectively.

(15.27) Proposition. The extended Clifford group of (A, σ, f) is the group of

similitudes of (B, τ), i.e.,

Ω(A, σ, f) = GU(B, τ),

and the following diagram commutes :

Ω(A, σ, f)
χ′−−−−→ PGO+(A, σ, f)

∥∥∥
y

GU(B, τ)
D−−−−→ Aut(A, σ, f)

(15.28)

where D is the canonical map of §??. The Clifford group of (A, σ, f) is

Γ(A, σ, f) = SGU(B, τ) = { g ∈ GU(B, τ) | NrdB(g) = µτ (g)
2 }

and the following diagram commutes :

Γ(A, σ, f)
χ−−−−→ O+(A, σ, f)

∥∥∥
y

SGU(B, τ)
λ′−−−−→ O(A, σ, f)

(15.29)

where λ′(g) = µτ (g)
−1λ2g ∈ D(B, τ) = A for g ∈ SGU(B, τ). Moreover,

Spin(A, σ, f) = SU(B, τ) = { g ∈ GU(B, τ) | NrdB(g) = µτ (g) = 1 }.
Proof : Since (??) shows that the canonical map

C : PGO+(A, σ, f)→ AutK(B, τ)

is surjective, it follows from the definition of the extended Clifford group in (??) that
Ω(A, σ, f) = GU(B, τ). By the definition of χ′, the following diagram commutes:

Ω(A, σ, f)
χ′−−−−→ PGO+(A, σ, f)

∥∥∥
yC

GU(B, τ)
Int−−−−→ AutK(B, τ).

The commutativity of (??) follows, since the inverse of

C : PGO+(A, σ, f) ∼−→ AutK(B, τ)

is given by the canonical map D; indeed, the groupoid equivalence A3 ≡ D3 is given
by the Clifford and discriminant algebra constructions.

To identify Γ(A, σ, f), it suffices to prove that the homomorphism

κ : Ω(A, σ, f)→ K×/F×

whose kernel is Γ(A, σ, f) (see (??)) coincides with the homomorphism

ν : GU(B, τ)→ K×/F×
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whose kernel is SGU(B, τ) (see (??)). The description of Spin(A, σ, f) also follows,
since Spin(A, σ, f) = Γ(A, σ, f)∩U(B, τ). The following lemma therefore completes
the proof:

(15.30) Lemma. Diagram (??) and the following diagram are commutative:

Ω(A, σ, f)
κ−−−−→ K×/F×

∥∥∥
∥∥∥

GU(B, τ)
ν−−−−→ K×/F×.

Proof : It suffices to prove commutativity of the diagrams over a scalar extension.
We may thus assume that the base field F is algebraically closed.

Let V be a 4-dimensional vector space over F . Pick a nonzero element e ∈
∧4

V

to identify
∧4

V = F and view the canonical quadratic map q :
∧2

V → ∧4
V

of (??) as a quadratic form. Since F is algebraically closed, we have (A, σ, f) '(
EndF (

∧2
V ), σq , fq

)
where (σq , fq) is the quadratic pair associated with q. We fix

such an isomorphism and use it to identify until the end of the proof

(A, σ, f) =
(
EndF (

∧2
V ), σq , fq

)
.

The map i :
∧2

V → EndF (V ⊕ V ∗) defined in (??) induces an isomorphism

i∗ : C(
∧2

V, q) ∼−→ EndF (V ⊕ V ∗)

which identifies the Clifford algebra B = C(A, σ, f) = C0(
∧2

V, q) with EndF (V )×
EndF (V ∗). The involution τ is then given by

τ(f1, f
t
2) = (f2, f

t
1)

for f1, f2 ∈ EndF (V ). Therefore,

GU(B, τ) = {
(
f, ρ(f−1)t

)
| ρ ∈ F×, f ∈ GL(V ) }.

For g =
(
f, ρ(f−1)t

)
∈ GU(B, τ), we consider

f ∧ f ∈ EndF (
∧2

V ) = A and γ =
(
f2, det f(f−2)t

)
∈ GU(B, τ).

A computation shows that

f ∧ f ∈ GO+(
∧2

V, q) = GO+(A, σ, f), γ ∈ Γ+(
∧2

V, q) = Γ(A, σ, f)

and moreover

Int(g) = C(f ∧ f), χ(γ) = µ(f ∧ f)−1(f ∧ f)2.

Therefore, κ(g) = z ·F× where z =
(
1, ρ2(det f)−1

)
∈ K× = F××F× is such that

g2 = z · γ. On the other hand, we have

µτ (g)
−2 NrdB(g) =

(
ρ−2 det f, ρ2(det f)−1

)
= zι(z)−1,

hence ν(g) = z · F× = κ(g).
It remains only to prove the commutativity of (??). Since ν = κ, we have

Γ(A, σ, f) = SGU(B, τ). Therefore, every element in Γ(A, σ, f) has the form(
f, ρ(f−1)t

)
for some ρ ∈ F× and some f ∈ GL(V ). A computation yields

(
f 0
0 ρ(f−1)t

)
· i∗(ξ) ·

(
f−1 0
0 ρ−1f t

)
= ρ−1i∗

(
f ∧ f(ξ)

)
for ξ ∈

∧2
V ,

hence χ
(
f, ρ(f−1)t

)
= ρ−1f ∧ f and (??) commutes.
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(15.31) Corollary. For (A, σ, f) ∈ D3, the group of multipliers of proper simili-

tudes and the group of spinor norms of (A, σ, f) are given by

G+(A, σ, f) = {NK/F (z) | zι(z)−1 = µτ (g)
−2 NrdB(g) for some g ∈ GU(B, τ) }

and

Sn(A, σ, f) = {µτ (g) | g ∈ SGU(B, τ) }.

Proof : In view of the description of Ω(A, σ, f) and κ above, it follows from (??)
that µσ

(
PGO+(A, σ, f)

)
= NK/F ◦ ν

(
GU(B, τ)

)
, proving the first relation. The

second relation follows from the description of Γ(A, σ, f) in (??).

The case of trivial discriminant. If K/F is a given étale quadratic exten-
sion, the functors D and C of (??) relate algebras with involution (B, τ) ∈ A3 with
center K and algebras with involutions (A, σ, f) ∈ D3 whose Clifford algebra has
center Z(A, σ, f) ' K. In order to make explicit the special case where K = F ×F ,
let 1A3 be the full subgroupoid of A3 whose objects are algebras of degree 4 over
F ×F with involution of the second kind and let 1D3 be the full subgroupoid of D3

whose objects are algebras of degree 6 with quadratic pair of trivial discriminant.
Every (B, τ) ∈ 1A3 is isomorphic to an algebra of the form (E ×Eop, ε) where E is
a central simple F -algebra of degree 4 and ε is the exchange involution, hence 1A3

is also equivalent to the groupoid of algebras of the form (E ×Eop, ε). Since
(
D(E ×Eop, ε), ε, fD

)
= (λ2E, γ, f)

where (γ, f) is the canonical quadratic pair on λ2E (see (??) if charF = 2), the
following is a special case of (??):

(15.32) Corollary. The Clifford algebra functor C : 1D3 → 1A3 and the functor

D : 1A3 → 1D3, which maps
(
E × Eop, ε

)
to (λ2E, γ, f), define an equivalence of

groupoids

1A3 ≡ 1D3.

In particular, for every central simple F -algebra E of degree 4,

C(λ2E, γ, f) ' (E ×Eop, ε).

Observe that the maps in 1A3 are isomorphisms of algebras over F , not over
F × F . In particular,

(
E × Eop, ε

)
and

(
Eop × E, ε

)
are isomorphic in 1A3, under

the map which interchanges the two factors. Therefore, 1A3 is not equivalent to
the groupoid of central simple F -algebras of degree 4 where the maps are the F -
algebra isomorphisms. There is however a correspondence between isomorphism
classes which we now describe.

For (A, σ, f) ∈ 1D3, the Clifford algebra C(A, σ, f) decomposes into a direct
product

C(A, σ, f) = C+(A, σ, f)× C−(A, σ, f)

for some central simple F -algebras C+(A, σ, f), C−(A, σ, f) of degree 4. The
fundamental relations (??) and (??) show that C+(A, σ, f) ' C−(A, σ, f)op and
C+(A, σ, f)⊗2 ' C−(A, σ, f)⊗2 ∼ A.

If (V, q) is a quadratic space of dimension 6 and trivial discriminant, we also
let C±(V, q) denote C±

(
EndF (V ), σq , fq

)
. The algebras C+(V, q) and C−(V, q) are

isomorphic central simple F -algebras of degree 4 and exponent 2.
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(15.33) Corollary. Every central simple F -algebra of degree 4 and exponent 2 is

of the form C±(V, q) for some quadratic space (V, q) of dimension 6 and trivial

discriminant, uniquely determined up to similarity.

Every central simple F -algebra of degree 4 and exponent 4 is of the form

C±(A, σ, f) for some (A, σ, f) ∈ 1D3 such that indA = 2, uniquely determined

up to isomorphism.

Proof : For every central simple F -algebra E of degree 4, we have E × Eop '
C+(λ2E, γ, f)× C−(λ2E, γ, f) by (??), hence

E ' C±(λ2E, γ, f).

Since λ2E is Brauer-equivalent to E⊗2, it is split if E has exponent 2 and has
index 2 if E has exponent 4, by (??). Moreover, if E ' C±(A, σ, f) for some
(A, σ, f) ∈ 1D3, then (E×Eop, ε) '

(
C(A, σ, f), σ

)
since all involutions on E×Eop

are isomorphic to the exchange involution. Therefore, by (??), we have

(A, σ, f) '
(
D(E ×Eop, ε), ε, fD

)
' (λ2E, γ, f).

To complete the proof, observe that when A = EndF (V ) we have (σ, f) = (σq , fq)
for some quadratic form q, and the quadratic space (V, q) is determined up to
similarity by the algebra with quadratic pair (A, σ, f) by (??).

Corollaries (??) and (??), and Proposition (??), can also be specialized to the
case where the discriminant of (A, σ, f) is trivial. In particular, (??) simplifies
remarkably:

(15.34) Corollary. Let (A, σ, f) ∈ 1D3 and let C(A, σ, f) ' E ×Eop. The multi-

pliers of similitudes of (A, σ, f) are given by

G(A, σ, f) = G+(A, σ, f) = F×2 · NrdE(E×)

and the spinor norms of (A, σ, f) by

Sn(A, σ, f) = { ρ ∈ F× | ρ2 ∈ NrdE(E×) }.

Proof : The equality G(A, σ, f) = G+(A, σ, f) follows from the hypothesis that
disc(A, σ, f) is trivial by (??). Since the canonical involution σ on C(A, σ, f) is the
exchange involution, we have under the identification C(A, σ, f) = E ×Eop that

GU
(
C(A, σ, f), σ

)
=

{ (
x, ρ(x−1)op

) ∣∣ ρ ∈ F×, x ∈ E× }
,

and, for g =
(
x, ρ(x−1)op

)
,

µ(g)−2 NrdC(A,σ,f)(g) =
(
ρ−2 NrdE(x), ρ2 NrdE(x)−1

)
= zι(z)−1

with z =
(
NrdE(x), ρ2

)
∈ Z(A, σ, f) = F × F . Since NZ(A,σ,f)/F (z) = ρ2 NrdE(x),

Corollary (??) yields the equality G+(A, σ, f) = F×2 ·NrdE(E×). Finally, we have
by (??):

Γ(A, σ, f) = SGU
(
C(A, σ, f), σ

)

= {
(
x, ρ(x−1)op

)
∈ GU

(
C(A, σ, f), σ

)
| ρ2 = NrdE(x) },

hence

Sn(A, σ, f) = µ
(
SGU

(
C(A, σ, f), σ

))
= { ρ ∈ F× | ρ2 ∈ NrdE(E×) }.
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Examples. In this subsection, we explicitly determine the algebra with invo-
lution (B, τ) ∈ A3 corresponding to (A, σ, f) ∈ D3 when the quadratic pair (σ, f) is
isotropic. Since the correspondence is bijective, our computations also yield infor-
mation on the discriminant algebra of some (B, τ) ∈ A3, which will be crucial for
relating the indices of (A, σ, f) and (B, τ) in (??) and (??) below.

(15.35) Example. Let (A, σ, f) =
(
EndF (V ), σq , fq

)
where (V, q) is a 6-dimen-

sional quadratic space over a field F of characteristic different from 2, and suppose
q is isotropic. Suppose that disc q = α · F×2, so that the center of C0(V, q) is
isomorphic to F [X ]/(X2 − α). Then multiplying q by a suitable scalar, we may
assume that q has a diagonalization of the form

q = 〈1,−1, α,−β,−γ, βγ〉
for some β, γ ∈ F×. Let (e1, . . . , e6) be an orthogonal basis of V which yields
the diagonalization above. In C0(V, q), the elements e1 · e4 and e1 · e5 generate a
quaternion algebra (β, γ)F . The elements e1 · e4 · e5 · e6 and e1 · e4 · e5 · e2 centralize
this algebra and generate a split quaternion algebra

(
(βγ)2,−βγ

)
F
; therefore,

C0(V, q) 'M2

(
(β, γ)F

)
⊗ F [X ]/(X2 − α)

by the double centralizer theorem (see (??)), and Proposition (??) shows that the
canonical involution τ0 on C0(V, q) is hyperbolic.

There is a corresponding result in characteristic 2: if the nonsingular 6-dimen-
sional quadratic space (V, q) is isotropic, we may assume (after scaling) that

q = [0, 0]⊥ [1, α+ β]⊥ 〈γ〉[1, β] = [0, 0]⊥ [1, α+ β]⊥ [γ, βγ−1]

for some α, β ∈ F , γ ∈ F×. Thus, disc q = α+℘(F ), hence the center of C0(V, q) is
isomorphic to F [X ]/(X2 +X+α). Let (e1, . . . , e6) be a basis of V which yields the
decomposition above. In C0(V, q), the elements r = (e1+e2)·e3 and s = (e1+e2)·e4
satisfy r2 = 1, s2 = α+ β and rs + sr = 1, hence they generate a split quaternion
algebra ‖1, α+ β‖F (see §??). The elements (e1+e2) ·e4 and (e1 +e2) ·e5 centralize

this algebra and generate a quaternion algebra
∥∥γ, βγ−1

∥∥
F
' [β, γ)F . Therefore,

C0(V, q) 'M2

(
[β, γ)F

)
⊗ F [X ]/(X2 +X + α).

As above, Proposition (??) shows that the canonical involution τ0 is hyperbolic.

(15.36) Corollary. Let (B, τ) ∈ A3, with τ hyperbolic.

(1) Suppose the center Z(B) is a field, hence B is Brauer-equivalent to a quaternion

algebra (so indB = 1 or 2); then the discriminant algebra D(B, τ) splits and its

canonical quadratic pair (τ , fD) is associated with an isotropic quadratic form q.
The Witt index of q is 1 if indB = 2; it is 2 if indB = 1.
(2) Suppose Z(B) ' F ×F , so that B ' E×Eop for some central simple F -algebra

E of degree 4. If E is Brauer-equivalent to a quaternion algebra, then D(B, τ) splits

and its canonical quadratic pair (τ , fD) is associated with an isotropic quadratic

form q. The Witt index of q is 1 if indE = 2; it is 2 if indE = 1.

Proof : (??) Since B has an involution of the second kind, Proposition (??) shows
that the Brauer-equivalent quaternion algebra has a descent to F . We may thus
assume that

B '
{
M2

(
(β, γ)F

)
⊗ F (

√
α) for some α, β, γ ∈ F× if charF 6= 2,

M2

(
[β, γ)F

)
⊗ F

(
℘−1(α)

)
for some α, β ∈ F , γ ∈ F× if charF = 2,
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hence, by (??), (B, τ) '
(
C0(V, q), τ0

)
where

q '
{
〈1,−1, α,−β,−γ, βγ〉 if charF 6= 2;

[0, 0]⊥ [1, α+ β]⊥ 〈γ〉[1, β] if charF = 2.

If w(V, q) = 2, then Corollary (??) shows that 1 ∈ ind
(
C0(V, q), τ0

)
, hence B is

split. Conversely, if B is split, then we may assume that γ = 1, and it follows that
w(V, q) = 2.

(??) The hypothesis yields

B '
{
M2

(
(β, γ)F

)
⊗ F [X ]/(X2 − 1) for some β, γ ∈ F× if charF 6= 2,

M2

(
[β, γ)F

)
⊗ F [X ]/(X2 −X) for some β ∈ F , γ ∈ F× if charF = 2,

hence (B, τ) '
(
C0(V, q), τ0

)
where

q '
{
〈1,−1, 1,−β,−γ, βγ〉 if charF 6= 2;

[0, 0]⊥ 〈1, γ〉[1, β] if charF = 2.

Since q is the orthogonal sum of a hyperbolic plane and the norm form of the
quaternion algebra Brauer-equivalent to E, we have w(V, q) = 1 if and only if
indE = 2.

We next consider the case where the algebra A is not split. Since degA = 6,
we must have indA = 2, by (??). We write Z(A, σ, f) for the center of the Clifford
algebra C(A, σ, f).

(15.37) Proposition. Let (A, σ, f) ∈ D3 with indA = 2.

(1) If the quadratic pair (σ, f) is isotropic, then Z(A, σ, f) is a splitting field of A.

(2) For each separable quadratic splitting field Z of A, there is, up to conjuga-

tion, a unique quadratic pair (σ, f) on A such that Z(A, σ, f) ' Z. If d ∈ F× is

such that the quaternion algebra Brauer-equivalent to A has the form (Z, d)F , then

C(A, σ, f) 'M4(Z) and the canonical involution σ is the adjoint involution with re-

spect to the 4-dimensional hermitian form on Z with diagonalization 〈1,−1, 1,−d〉.
Proof : (??) Let I ⊂ A be a nonzero isotropic right ideal. We have rdim I ≥
1
2 degA = 3, hence rdim I = 2 since indA divides the reduced dimension of every
right ideal. Let e be an idempotent such that I = eA. As in the proof of (??),
we may assume that eσ(e) = σ(e)e = 0, hence e + σ(e) is an idempotent. Let
e1 = e + σ(e) and e2 = 1 − e1; then e1A = eA ⊕ σ(e)A, hence rdim e1A = 4
and therefore rdim e2A = 2. Let Ai = eiAei and let (σi, fi) be the restriction of
the quadratic pair (σ, f) to Ai for i = 1, 2. By (??), we have degA1 = 4 and
degA2 = 2, hence A2 is a quaternion algebra Brauer-equivalent to A. Moreover,
by (??) (if charF 6= 2) or (??) (if charF = 2),

disc(σ, f) =

{
disc(σ1, f1) disc(σ2, f2) if charF 6= 2,

disc(σ1, f1) + disc(σ2, f2) if charF = 2.

Since eAe1 is an isotropic right ideal of reduced dimension 2 in A1, the quadratic
pair (σ1, f1) is hyperbolic, and Proposition (??) shows that its discriminant is
trivial. Therefore, disc(σ, f) = disc(σ2, f2), hence Z(A, σ, f) ' Z(A2, σ2, f2). If
charF 6= 2, it was observed in (??) that Z(A2, σ2, f2) splits A2, hence Z(A, σ, f)
splits A. To see that the same property holds if charF = 2, pick ` ∈ A2 such
that f2(s) = TrdA2(`s) for all s ∈ Sym(A2, σ2); then TrdA2(`) = 1 and SrdA2(`) =
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NrdA2(`) represents disc(σ2, f2) in F/℘(F ), so Z(A2, σ2, f2) ' F (`). This completes
the proof of (??).

(??) Let Z be a separable quadratic splitting field of A and let d ∈ F× be such
that A is Brauer-equivalent to the quaternion algebra (Z, d)F , which we denote
simply by Q. We then have A ' M3(Q). To prove the existence of an isotropic
quadratic pair (σ, f) on A such that Z(A, σ, f) ' Z, start with a quadratic pair
(θ, f1) on Q such that Z(Q, θ, f1) ' Z, and let (σ, f) = (θ ⊗ ρ, f1∗) on A = Q ⊗
M3(F ), where ρ is the adjoint involution with respect to an isotropic 3-dimensional
bilinear form. We may choose for instance ρ = Int(u) ◦ t where

u =




0 1 0
1 0 0
0 0 1


 ;

the involution σ is then explicitly defined by

σ
(
(xij )1≤i,j≤3

)
=



θ(x22) θ(x12) θ(x32)
θ(x21) θ(x11) θ(x31)
θ(x23) θ(x13) θ(x33)




and the linear form f by

f




x11 s12 x13

s21 θ(x11) x23

θ(x23) θ(x13) s33


 = TrdQ(x11) + f1(s33),

for x11, x13, x23 ∈ Q and s12, s21, s33 ∈ Sym(Q, θ).
It is readily verified that

I =







x1 x2 x3

0 0 0
0 0 0




∣∣∣∣∣∣
x1, x2, x3 ∈ Q





is an isotropic right ideal, and that disc(A, σ, f) = disc(Q, θ, f1), hence Z(A, σ, f) '
Z.

Let (B, τ) =
(
C(A, σ, f), σ

)
. Since rdim I = 2, we have 2 ∈ ind(A, σ, f),

hence Corollary (??) yields 1 ∈ ind(B, τ). This relation shows that B is split,
hence B ' M4(Z), and τ is the adjoint involution with respect to an isotropic
4-dimensional hermitian form h over Z. Multiplying h by a suitable scalar, we may
assume that h has a diagonalization 〈1,−1, 1,−a〉 for some a ∈ F×. Corollary (??)
then shows that D(B, τ) is Brauer-equivalent to the quaternion algebra (Z, a)F .
Since D(B, τ) ' A, we have (Z, d)F ' (Z, a)F , hence a ≡ d mod N(Z/F ) and
therefore

h ' 〈1,−1, 1,−d〉.

The same arguments apply to every isotropic quadratic pair (σ, f) on A such
that Z(A, σ, f) ' Z: for every such quadratic pair, we have

(
C(A, σ, f), σ

)
'(

M4(Z), σh
)

where h ' 〈1,−1, 1,−d〉, hence also

(A, σ, f) '
(
D

(
M4(Z), σh

)
, σh, fD

)
.

This proves uniqueness of the quadratic pair (σ, f) up to conjugation.
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Indices. Let (B, τ) ∈ A3 and (A, σ, f) ∈ D3 correspond to each other un-
der the equivalence A3 ≡ D3. Let K be the center of B, which is isomorphic to
F (

√
disc(σ, f)) if charF 6= 2 and to F

(
℘−1

(
disc(σ, f)

))
if charF = 2. Our goal

is to relate the indices ind(A, σ, f) and ind(B, τ). For clarity, we consider the case
where K ' F × F separately.

(15.38) Proposition. Suppose K ' F ×F , hence (B, τ) ' (E ×Eop, ε) for some

central simple F -algebra E, where ε is the exchange involution. The only possibili-

ties for ind(A, σ, f) are

{0}, {0, 1} and {0, 1, 2, 3}.

Moreover,

ind(A, σ, f) = {0} ⇐⇒ ind(B, τ) = {0} ⇐⇒ indE = 4,

ind(A, σ, f) = {0, 1} ⇐⇒ ind(B, τ) = {0, 2} ⇐⇒ indE = 2,

ind(A, σ, f) = {0, 1, 2, 3} ⇐⇒ ind(B, τ) = {0, 1, 2} ⇐⇒ indE = 1.

Proof : Since degA = 6, we have ind(A, σ, f) ⊂ {0, 1, 2, 3}. If 3 ∈ ind(A, σ, f), then
A splits since indA is a power of 2 which divides all the integers in ind(A, σ, f).
In that case, we have (A, σ, f) '

(
EndF (V ), σq , fq

)
for some hyperbolic quadratic

space (V, q), hence ind(A, σ, f) = {0, 1, 2, 3}.
Since K ' F × F , Proposition (??) shows that ind(A, σ, f) 6= {0, 2}. There-

fore, if 2 ∈ ind(A, σ, f), we must also have 1 or 3 ∈ ind(A, σ, f), hence, as above,
(A, σ, f) '

(
EndF (V ), σq , fq

)
for some quadratic space (V, q) with w(V, q) ≥ 2.

Since disc(σ, f) = disc q is trivial, the inequality w(V, q) ≥ 2 implies q is hyperbolic,
hence ind(A, σ, f) = {0, 1, 2, 3}. Therefore, the only possibilities for ind(A, σ, f) are
those listed above.

The relations between ind(B, τ) and indE readily follow from the definition of
ind(E × Eop, ε), and the equivalences ind(A, σ, f) = {0, 1} ⇐⇒ indE = 2 and
ind(A, σ, f) = {0, 1, 2, 3} ⇐⇒ indE = 1 follow from (??) and (??).

(15.39) Proposition. Suppose K is a field. The only possibilities for ind(A, σ, f)
are

{0}, {0, 1}, {0, 2} and {0, 1, 2}.

Moreover,

ind(A, σ, f) = {0} ⇐⇒ ind(B, τ) = {0},
ind(A, σ, f) = {0, 1} ⇐⇒ ind(B, τ) = {0, 2},
ind(A, σ, f) = {0, 2} ⇐⇒ ind(B, τ) = {0, 1},

ind(A, σ, f) = {0, 1, 2} ⇐⇒ ind(B, τ) = {0, 1, 2}.

Proof : If 3 ∈ ind(A, σ, f), then (σ, f) is hyperbolic, hence its discriminant is trivial,
by (??). This contradicts the hypothesis that K is a field. Therefore, we have
ind(A, σ, f) ⊂ {0, 1, 2}.

To prove the correspondence between ind(A, σ, f) and ind(B, τ), it now suffices
to show that 1 ∈ ind(A, σ, f) if and only if 2 ∈ ind(B, τ) and that 2 ∈ ind(A, σ, f)
if and only if 1 ∈ ind(B, τ).
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If 1 ∈ ind(A, σ, f), then A is split, and Proposition (??) shows that 2 ∈
ind(B, τ). Conversely, if 2 ∈ ind(B, τ), then B is Brauer-equivalent to a quater-
nion algebra and τ is hyperbolic. It follows from (??) that 1 ∈ ind(A, σ, f) in that
case. If 2 ∈ ind(A, σ, f), then Corollary (??) yields 1 ∈ ind(B, τ). Conversely, if
1 ∈ ind(B, τ), then B splits and τ is the adjoint involution with respect to some
isotropic 4-dimensional hermitian form. By (??) (if τ is not hyperbolic) or (??) (if
τ is hyperbolic), it follows that 2 ∈ ind(A, σ, f).

(15.40) Remark. The correspondence between ind(A, σ, f) and ind(B, τ) may be
summarized in the following relations (which hold when K ' F ×F as well as when
K is a field):

1 ∈ ind(A, σ, f) ⇐⇒ 2 ∈ ind(B, τ), 2 ∈ ind(A, σ, f) ⇐⇒ 1 ∈ ind(B, τ),

3 ∈ ind(A, σ, f) ⇐⇒ ind(A, σ, f) = {0, 1, 2, 3}
⇐⇒

(
ind(B, τ) = {0, 1, 2} and K ' F × F

)
.

§16. Biquaternion Algebras

Algebras which are tensor products of two quaternion algebras are called bi-

quaternion algebras. Such algebras are central simple of degree 4 and exponent 2
(or 1). Albert proved the converse:

(16.1) Theorem (Albert [?, p. 369]). Every central simple algebra of degree 4 and

exponent 2 is a biquaternion algebra.

We present three proofs. The first two proofs rely heavily on the results of §??,
whereas the third proof, due to Racine, is more self-contained.

Throughout this section, A is a central simple algebra of degree 4 and exponent
1 or 2 over an arbitrary field F .

First proof (based on A3 ≡ D3): By (??), A ' C±(V, q) for some 6-dimensional
quadratic space (V, q) of trivial discriminant. The result follows from the structure
of Clifford algebras of quadratic spaces.

Explicitly, if charF 6= 2 we may assume (after a suitable scaling) that q has a
diagonalization of the form

q = 〈a1, b1,−a1b1,−a2,−b2, a2b2〉
for some a1, b1, a2, b2 ∈ F×. Let (e1, . . . , e6) be an orthogonal basis of V which
yields that diagonalization. The even Clifford algebra has a decomposition

C0(V, q) = Q1 ⊗F Q2 ⊗F Z
where Q1 is the F -subalgebra generated by e1 ·e2 and e1 ·e3, Q2 is the F -subalgebra
generated by e4 · e5 and e4 · e6, and Z = F · 1 ⊕ F · e1 · e2 · e3 · e4 · e5 · e6 is the
center of C0(V, q). We have Z ' F × F , hence C+(V, q) ' C−(V, q) ' Q1 ⊗ Q2.
Moreover, (1, b−1

1 e2 · e3, a−1
1 e1 · e3, e1 · e2) is a quaternion basis of Q1 which shows

Q1 ' (a1, b1)F , and (1, b−1
2 e5 ·e6, a−1

2 e4 ·e6, e5 ·e6) is a quaternion basis of Q2 which
shows Q2 ' (a2, b2)F . Therefore, C±(V, q) is a biquaternion algebra.

Similar arguments hold when charF = 2. We may then assume

q = [1, a1b1 + a2b2]⊥ [a1, b1]⊥ [a2, b2]

for some a1, b1, a2, b2 ∈ F . Let (e1, . . . , e6) be a basis of V which yields that
decomposition. In C0(V, q), the elements e1 · e3 and e1 · e4 (resp. e1 · e5 and e1 · e6)
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generate a quaternion F -algebra Q1 ' ‖a1, b1‖F (resp. Q2 ' ‖a2, b2‖F ). We have
a decomposition

C0(V, q) = Q1 ⊗F Q2 ⊗F Z
where Z = F · 1 ⊕ F · (e1 · e2 + e3 · e4 + e5 · e6) is the center of C0(V, q). Since
Z ' F × F , it follows that

C+(V, q) ' C−(V, q) ' Q1 ⊗F Q2 ' ‖a1, b1‖F ⊗ ‖a2, b2‖F .

Second proof (based on B2 ≡ C2): By (??) and (??), the algebra A carries an in-
volution σ of symplectic type. In the notation of §??, we have (A, σ) ∈ C2. The
proof of the equivalence B2 ≡ C2 in (??) shows that A is isomorphic to the even
Clifford algebra of some nonsingular 5-dimensional quadratic form:

(A, σ) ' C0

(
Symd(A, σ)0, sσ

)
.

The result follows from the fact that even Clifford algebras of odd-dimensional
quadratic spaces are tensor products of quaternion algebras (Scharlau [?, Theo-
rem 9.2.10]).

Third proof (Racine [?]): If A is not a division algebra, the theorem readily follows
from Wedderburn’s theorem (??), which yields a decomposition:

A 'M2(F )⊗F Q
for some quaternion algebra Q. We may thus assume that A is a division algebra.

Our first aim is to find in A a separable quadratic extension K of F . By (??),
A carries an involution σ. If charF 6= 2, we may start with any nonzero element
u ∈ Skew(A, σ); then u2 ∈ Sym(A, σ), hence F (u2) $ F (u). Since [F (u) :F ] = 4
or 2, we get [F (u2) :F ] = 2 or 1 respectively. We choose K = F (u2) in the
first case and K = F (u) in the second case. In arbitrary characteristic, one may
choose a symplectic involution σ on A and take for K any proper extension of F
in Symd(A, σ) which is not contained in Symd(A, σ)0, by (??).

The theorem then follows from the following proposition, which also holds when
A is not a division algebra. Recall that for every étale quadratic F -algebra K with
nontrivial automorphism ι and for every a ∈ F×, the symbol (K, a)F stays for the
quaternion F -algebra K ⊕ Kz where multiplication is defined by zx = ι(x)z for
x ∈ K and z2 = a.

(16.2) Proposition. Suppose K is an étale quadratic F -algebra contained in a

central simple F -algebra A of degree 4 and exponent 2. There exist an a ∈ F× and

a quaternion F -algebra Q such that

A ' (K, a)F ⊗Q.

Proof : If K is not a field, then A is not a division algebra, hence Wedderburn’s
theorem (??) yields

A ' (K, 1)F ⊗Q
for some quaternion F -algebra Q.

If K is a field, the nontrivial automorphism ι extends to an involution τ on A
by (??). The restriction of τ to the centralizer B of K in A is an involution of
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the second kind. Since B is a quaternion algebra over K, Proposition (??) yields a
quaternion F -algebra Q ⊂ B such that

B = Q⊗F K.
By (??), there is a decomposition

B = Q⊗F CBQ
where CBQ is the centralizer of Q in B. This centralizer is a quaternion algebra
which contains K, hence

CBQ ' (K, a)F

for some a ∈ F×. We thus get the required decomposition.

16.A. Albert forms. Let A be a biquaternion algebra over a field F of ar-
bitrary characteristic. The algebra λ2A is split of degree 6 and carries a canonical
quadratic pair (γ, f) of trivial discriminant (see (??)). Therefore, there are quad-
ratic spaces (V, q) of dimension 6 and trivial discriminant such that

(λ2A, γ, f) '
(
EndF (V ), σq , fq

)

where (σq , fq) is the quadratic pair associated with q.

(16.3) Proposition. For a biquaternion algebra A and a 6-dimensional quadratic

space (V, q) of discriminant 1, the following conditions are equivalent :

(1) (λ2A, γ, f) '
(
EndF (V ), σq , fq

)
;

(2) A×A ' C0(V, q);
(3) M2(A) ' C(V, q).

Moreover, if (V, q) and (V ′, q′) are 6-dimensional quadratic spaces of discriminant 1
which satisfy these conditions for a given biquaternion algebra A, then (V, q) and

(V ′, q′) are similar, i.e., q′ ' 〈λ〉 · q for some λ ∈ F×.

The quadratic forms which satisfy the conditions of this proposition are called
Albert forms of the biquaternion algebra A (and the quadratic space (V, q) is called
an Albert quadratic space of A). As the proposition shows, an Albert form is
determined only up to similarity by A. By contrast, it is clear from condition (??)
or (??) that any quadratic form of dimension 6 and discriminant 1 is an Albert
form for some biquaternion algebra A, uniquely determined up to isomorphism.

Proof : (??) ⇒ (??) Condition (??) implies that C(λ2A, γ, f) ' C0(V, q). Since
(??) shows that C(λ2A, γ, f) ' A×Aop and since A ' Aop, we get (??).

(??)⇒ (??) Since the canonical involution σq on C0(V, q) = C
(
EndF (V ), σq , fq

)

is of the second kind, we derive from (??):
(
C

(
EndF (V ), σq , fq

)
, σq

)
' (A×Aop, ε),

where ε is the exchange involution. By comparing the discriminant algebras of both
sides, we obtain

(
D

(
C

(
EndF (V ), σq , fq

)
, σq

)
, σq , fD

)
' (λ2A, γ, f).

Corollary (??) (or Theorem (??)) shows that there is a natural transformation
D ◦C ∼= IdD3 , hence

(
D

(
C

(
EndF (V ), σq , fq

)
, σq

)
, σq , fD

)
'

(
EndF (V ), σq , fq

)
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and we get (??).
(??) ⇔ (??) This follows from the structure of Clifford algebras of quadratic

forms: see for instance Lam [?, Ch. 5, Theorem 2.5] if charF 6= 2; similar arguments
hold in characteristic 2.

Finally, if (V, q) and (V ′, q′) both satisfy (??), then
(
EndF (V ), σq , fq

)
'

(
EndF (V ′), σq′ , fq′

)
,

hence (V, q) and (V ′, q′) are similar, by (??).

(16.4) Example. Suppose charF 6= 2. For any a1, b1, a2, b2 ∈ F×, the quadratic
form

q = 〈a1, b1,−a1b1,−a2,−b2, a2b2〉
is an Albert form of the biquaternion algebra (a1, b1)F ⊗ (a2, b2)F . This follows
from the computation of the Clifford algebra C(q). (See the first proof of (??); see
also (??) below.)

Similarly, if charF = 2, then for any a1, b1, a2, b2 ∈ F , the quadratic form

[1, a1b1 + a2b2]⊥ [a1, b1]⊥ [a2, b2]

is an Albert form of the biquaternion algebra ‖a1, b1‖F ⊗ ‖a2, b2‖F , and, for a1,
a2 ∈ F , b1, b2 ∈ F×, the quadratic form

[1, a1 + a2]⊥ 〈b1〉[1, a1]⊥ 〈b2〉[1, a2]

is an Albert form of [a1, b1)F ⊗ [a2, b2)F .

Albert’s purpose in associating a quadratic form to a biquaternion algebra
was to obtain a necessary and sufficient quadratic form theoretic criterion for the
biquaternion algebra to be a division algebra.

(16.5) Theorem (Albert [?]). Let A be a biquaternion algebra and let q be an

Albert form of A. The (Schur) index of A, indA, and the Witt index w(q) are

related as follows :

indA = 4 if and only if w(q) = 0;

(in other words, A is a division algebra if and only if q is anisotropic);

indA = 2 if and only if w(q) = 1;

indA = 1 if and only if w(q) = 3;

(in other words, A is split if and only if q is hyperbolic).

Proof : This is a particular case of (??).

Another relation between biquaternion algebras and their Albert forms is the
following:

(16.6) Proposition. The multipliers of similitudes of an Albert form q of a bi-

quaternion algebra A are given by

G(q) = F×2 ·NrdA(A×)

and the spinor norms by

Sn(q) = {λ ∈ F× | λ2 ∈ NrdA(A×) }.
Proof : This is a direct application of (??).
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Even though there is no canonical choice for an Albert quadratic space of a
biquaternion algebra A, when an involution of the first kind σ on A is fixed, an
Albert form may be defined on the vector space Symd(A, σ) of symmetric elements if
σ is symplectic and on the vector space Skew(A, σ) if σ is orthogonal and charF 6= 2.
Moreover, Albert forms may be used to define an invariant of symplectic involutions,
as we now show.

16.B. Albert forms and symplectic involutions. Let σ be a symplectic
involution on the biquaternion F -algebra A. Recall from §?? (see (??)) that the
reduced characteristic polynomial of every symmetrized element is a square:

PrdA,s(X) = Prpσ,s(X)2 =
(
X2 − Trpσ(s)X + Nrpσ(s)

)2
for s ∈ Symd(A, σ).

Since degA = 4, the polynomial map Nrpσ : Symd(A, σ) → F has degree 2. We
show in (??) below that

(
Symd(A, σ),Nrpσ

)
is an Albert quadratic space of A.

A key tool in this proof is the linear endomorphism of Symd(A, σ) defined by

x = Trpσ(x) − x for x ∈ Symd(A, σ).

Since Prpσ,x(x) = 0 for all x ∈ Symd(A, σ), we have

Nrpσ(x) = xx = xx for x ∈ Symd(A, σ).

(16.7) Lemma. For x ∈ Symd(A, σ) and a ∈ A×,

axσ(a) = NrdA(a)σ(a)−1xa−1.

Proof : Since both sides of the equality above are linear in x, it suffices to show that
the equality holds for x in some basis of Symd(A, σ). It is readily seen by scalar
extension to a splitting field that Symd(A, σ) is spanned by invertible elements.
Therefore, it suffices to prove the equality for invertible x. In that case, the property
follows by comparing the equalities

NrdA(a) Nrpσ(x) = Nrpσ
(
axσ(a)

)
= axσ(a) · axσ(a)

and

Nrpσ(x) = axσ(a) · σ(a)−1xa−1.

(16.8) Proposition. The quadratic space
(
Symd(A, σ),Nrpσ

)
is an Albert quad-

ratic space of A.

Proof : For x ∈ Symd(A, σ), let i(x) =
(

0 x
x 0

)
∈M2(A). Since xx = xx = Nrpσ(x),

we have i(x)2 = Nrpσ(x), hence the universal property of Clifford algebras shows
that i induces an F -algebra homomorphism

i∗ : C
(
Sym(A, σ),Nrpσ

)
→M2(A).(16.9)

This homomorphism is injective since C
(
Sym(A, σ),Nrpσ

)
is simple, and it is sur-

jective by dimension count.

(16.10) Remark. Proposition (??) shows that A contains a right ideal of reduced
dimension 2 if and only if the quadratic form Nrpσ is isotropic. Therefore, A is a
division algebra if and only if Nrpσ is anisotropic; in view of (??), this observation
yields an alternate proof of a (substantial) part of Albert’s theorem (??).
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The isomorphism i∗ of (??) may also be used to give an explicit description of
the similitudes of the Albert quadratic space

(
Symd(A, σ),Nrpσ

)
, thus yielding an

alternative proof of the relation between Clifford groups and symplectic similitudes
in (??).

(16.11) Proposition. The proper similitudes of
(
Symd(A, σ),Nrpσ

)
are of the

form

x 7→ λ−1axσ(a)

where λ ∈ F× and a ∈ A×.

The improper similitudes of
(
Symd(A, σ),Nrpσ

)
are of the form

x 7→ λ−1axσ(a)

where λ ∈ F× and a ∈ A×. The multiplier of these similitudes is λ−2 NrdA(a).

Proof : Since Nrpσ(x) = Nrpσ(x) for all x ∈ Sym(A, σ), it follows from (??) that
the maps above are similitudes with multiplier λ−2 NrdA(a) for all λ ∈ F× and
a ∈ A×.

Conversely, let f ∈ GO
(
Symd(A, σ),Nrpσ

)
be a similitude and let α = µ(f)

be its multiplier. The universal property of Clifford algebras shows that there is an
isomorphism

f∗ : C
(
Symd(A, σ),Nrpσ

)
→M2(A)

which maps x ∈ Symd(A, σ) to
(

0 α−1f(x)
f(x) 0

)
. By comparing f∗ with the isomor-

phism i∗ of (??), we get an automorphism f∗◦i−1
∗ of M2(A). Note that the checker-

board grading ofM2(A) corresponds to the canonical Clifford algebra grading under
both f∗ and i∗. Therefore, f∗ ◦ i−1

∗ is a graded automorphism, and f∗ ◦ i−1
∗ = Int(u)

for some u ∈ GL2(A) of the form

u =

(
v 0
0 w

)
or

(
0 v
w 0

)
.

Moreover, inspection shows that the automorphism C(f) of C0

(
Symd(A, σ),Nrpσ

)

induced by f fits in the commutative diagram

C0(Nrpσ)
C(f)−−−−→ C0(Nrpσ)

i∗

y
yi∗

A× A f∗◦i−1
∗−−−−→ A×A

where we view A×A as
(
A 0
0 A

)
⊂M2(A). Therefore, in view of (??), the similitude f

is proper if and only if f∗ ◦ i−1
∗ maps each component of A × A into itself. This

means that f is proper if u =
(
v 0
0 w

)
and improper if u =

(
0 v
w 0

)
.

In particular, if f(x) = λ−1axσ(a) for x ∈ Symd(A, σ), then

f∗ ◦ i−1
∗

(
i(x)

)
=

(
0 λNrdA(a)−1axσ(a)

λ−1axσ(a) 0

)

and (??) shows that the right side is
(
λσ(a)−1 0

0 a

)
·
(

0 x
x 0

)
·
(
λ−1σ(a) 0

0 a−1

)
= Int

(
λσ(a)−1 0

0 a

) (
i(x)

)
.
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Since the matrices of the form i(x), x ∈ Symd(A, σ) generateM2(A) (as Symd(A, σ)
generates C

(
Symd(A, σ),Nrpσ

)
), it follows that

f∗ ◦ i−1
∗ = Int

(
λσ(a)−1 0

0 a

)
,

hence f is proper. Similarly, the same arguments show that the similitudes x 7→
λ−1axσ(a) are improper.

Returning to the case where f is an arbitrary similitude of
(
Symd(A, σ),Nrpσ

)

and f∗ ◦ i−1
∗ = Int(u) with u =

(
v 0
0 w

)
or

(
0 v
w 0

)
, we apply f∗ ◦ i−1

∗ to i(x) for
x ∈ Symd(A, σ) and get

(
0 α−1f(x)

f(x) 0

)
= u

(
0 x
x 0

)
u−1.(16.12)

Comparing the lower left corners yields that

f(x) =

{
wxv−1 if f is proper,

wxv−1 if f is improper.
(16.13)

Let θ be the involution on M2(A) defined by

θ

(
a11 a12

a21 a22

)
=

(
σ(a22) −σ(a12)
−σ(a21) σ(a11)

)
.

Applying θ to both sides of (??), we get
(

0 α−1f(x)
f(x) 0

)
= θ(u)−1

(
0 x
x 0

)
θ(u).

Therefore, θ(u)u commutes with the matrices of the form i(x) for x ∈ Symd(A, σ).
Since these matrices generate M2(A), it follows that θ(u)u ∈ F×, hence

σ(w)v = σ(v)w ∈ F×.
Letting σ(w)v = λ, we derive from (??) that

f(x) =

{
λ−1wxσ(w) if f is proper,

λ−1wxσ(w) if f is improper.

Since the multipliers of the similitudes x 7→ λ−1axσ(a) and x 7→ λ−1axσ(a)
are λ−2 NrdA(a), the multipliers of the Albert form Nrpσ are

G(Nrpσ) = F×2 · NrdA(A×).

We thus get another proof of the first part of (??).

(16.14) Example. Suppose Q is a quaternion algebra over F , with canonical in-
volution γ, and A = M2(Q) with the involution σ defined by σ

(
(qij)1≤i,j≤2

)
=(

γ(qij)
)t
1≤i,j≤2

; then

Symd(A, σ) =

{ (
α11 a12

γ(a12) α22

) ∣∣∣∣ α11, α22 ∈ F , a12 ∈ Q
}
.

For a =
( α11 a12

γ(a12) α22

)
∈ Symd(A, σ), we have Trpσ(a) = α11 + α22, hence a =( α22 −a12

−γ(a12) α11

)
and therefore

Nrpσ(a) = α11α22 −NrdQ(a12).
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This expression is the Moore determinant of the hermitian matrix a (see Jacobson
[?]). This formula shows that the matrices in Symd(A, σ) whose diagonal entries
vanish form a quadratic space isometric to (Q,−NrdQ). On the other hand, the
diagonal matrices form a hyperbolic plane H, and

Nrpσ ' H⊥−NrdQ .

Also, for the involution θ defined by

θ

(
a11 a12

a21 a22

)
=

(
γ(a11) −γ(a21)
−γ(a12) γ(a22)

)
,

we have

Symd(A, θ) =

{ (
α11 a12

−γ(a12) α22

) ∣∣∣∣ α11, α22 ∈ F , a12 ∈ Q
}
.

For a =
( α11 a12

−γ(a12) α22

)
∈ Symd(A, σ), we get

Nrpθ(a) = α11α22 + NrdQ(a12),

hence

Nrpθ ' H⊥NrdQ .

A more general example is given next.

(16.15) Example. Suppose A = Q1 ⊗ Q2 is a tensor product of quaternion al-
gebras Q1, Q2 with canonical (symplectic) involutions γ1, γ2. Let v1 be a unit
in Skew(Q1, γ1) and σ1 = Int(v1) ◦ γ1. The involution σ1 on Q1 is orthogonal,
unless v1 ∈ F×, a case which occurs only if charF = 2. Therefore, the involution
σ = σ1 ⊗ γ2 on A is symplectic in all cases, by (??). Our goal is to compute
explicitly the quadratic form Nrpσ .

As a first step, observe that

Alt(A, γ1 ⊗ γ2) = {x1 ⊗ 1− 1⊗ x2 | TrdQ1(x1) = TrdQ2(x2) },
as pointed out in Exercise ?? of Chapter ??; therefore,

Symd(A, σ) = (v1 ⊗ 1) ·Alt(A, γ1 ⊗ γ2)

= { v1x1 ⊗ 1− v1 ⊗ x2 | TrdQ1(x1) = TrdQ2(x2) }.
For x1 ∈ Q1 and x2 ∈ Q2 such that TrdQ1(x1) = TrdQ2(x2), there exist y1 ∈ Q1,
y2 ∈ Q2 such that x1 = TrdQ2(y2)y1 and x2 = TrdQ1(y1)y2 (see (??)), hence

x1 ⊗ 1− 1⊗ x2 = y1 ⊗ γ2(y2)− γ1(y1)⊗ y2
and therefore

v1x1 ⊗ 1− v1 ⊗ x2 = v1y1 ⊗ γ2(y2) + σ
(
v1y1 ⊗ γ2(y2)

)
.

By (??), it follows that

Trpσ(v1x1 ⊗ 1− v1 ⊗ x2) = TrdA
(
v1y1 ⊗ γ2(y2)

)
= TrdQ1(v1y1) TrdQ2(y2).

Since TrdQ2(y2)y1 = x1, we get

Trpσ(v1x1 ⊗ 1− v1 ⊗ x2) = TrdQ1(v1x1),

hence

v1x1 ⊗ 1− v1 ⊗ x2 = γ1(v1x1)⊗ 1 + v1 ⊗ x2
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and finally

Nrpσ(v1x1 ⊗ 1− v1 ⊗ x2) = NrdQ1(v1)
(
NrdQ1(x1)−NrdQ2(x2)

)
.

This shows that the form Nrpσ on Symd(A, σ) is similar to the quadratic form
qγ1⊗γ2 on Alt(A, γ1 ⊗ γ2) defined by

qγ1⊗γ2(x1 ⊗ 1− 1⊗ x2) = NrdQ1(x1)−NrdQ2(x2)

for x1 ∈ Q1, x2 ∈ Q2 such that TrdQ1(x1) = TrdQ2(x2).
To give a more explicit description of qγ1⊗γ2 , we consider the case where

charF = 2 separately. Suppose first charF 6= 2, and let Q1 = (a1, b1)F , Q2 =
(a2, b2)F with quaternion bases (1, i1, j1, k1) and (1, i2, j2, k2) respectively. Then
(i1 ⊗ 1, j1 ⊗ 1, k1 ⊗ 1, 1⊗ i2, 1⊗ j2, 1⊗ k2) is an orthogonal basis of Alt(A, γ1 ⊗ γ2)
which yields the following diagonalization of qγ1⊗γ2 :

qγ1⊗γ2 = 〈−a1,−b1, a1b1, a2, b2,−a2b2〉
(compare with (??) and (??)); therefore,

Nrpσ ' 〈NrdQ1(v1)〉 · 〈−a1,−b1, a1b1, a2, b2,−a2b2〉.
Suppose next that charF = 2, and let Q1 = [a1, b1)F , Q2 = [a2, b2)F with quater-
nion bases (in characteristic 2) (1, u1, v1, w1) and (1, u2, v2, w2) respectively. A basis
of Alt(A, γ1 ⊗ γ2) is (1, u1⊗ 1 + 1⊗ u2, v1 ⊗ 1, w1⊗ 1, 1⊗ v2, 1⊗w2). With respect
to this basis, the form qγ1⊗γ2 has the following expression:

qγ1⊗γ2 = [1, a1 + a2]⊥ 〈b1〉 · [1, a1]⊥ 〈b2〉 · [1, a2]

(compare with (??)); therefore,

Nrpσ ' 〈NrdQ1(v1)〉 ·
(
[1, a1 + a2]⊥ 〈b1〉 · [1, a1]⊥ 〈b2〉 · [1, a2]

)
.

The following proposition yields a decomposition of the type considered in the
example above for any biquaternion algebra with symplectic involution; it is thus
an explicit version of the second proof of (??). However, for simplicity we restrict to
symplectic involutions which are not hyperbolic.25 In view of (??), this hypothesis
means that the space

Symd(A, σ)0 = {x ∈ Symd(A, σ) | Trpσ(x) = 0 }
does not contain any nonzero vector x such that x2 = 0 or, equivalently, Nrpσ(x) =
0. Therefore, all the nonzero elements in Symd(A, σ)0 are invertible.

(16.16) Proposition. Let (A, σ) be a biquaternion algebra with symplectic invo-

lution over an arbitrary field F . Assume that σ is not hyperbolic, and let V ⊂
Symd(A, σ) be a 3-dimensional subspace such that

F ⊂ V 6⊂ Symd(A, σ)0.

Then there exists a unique quaternion subalgebra Q1 ⊂ A containing V . This

quaternion algebra is stable under σ, and the restriction σ1 = σ|Q1 is orthogonal.

Therefore, for Q2 = CAQ1 the centralizer of Q1, we have

(A, σ) = (Q1, σ1)⊗ (Q2, γ2)

where γ2 is the canonical involution on Q2.

25See Exercise ?? of Chapter ?? for the hyperbolic case.
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Proof : Choose v ∈ V r F such that Trpσ(v) 6= 0; then F [v] = F ⊕ vF is an étale
quadratic F -subalgebra of A, and restricts to the nontrivial automorphism of
F [v]. Pick a nonzero vector u ∈ V ∩ Symd(A, σ)0 which is orthogonal to v for
the polar form bNrpσ

; we then have uv + vu = 0, which means that uv = vu,
since Trpσ(u) = 0. The hypothesis that σ is not hyperbolic ensures that u is
invertible; therefore, u and v generate a quaternion subalgebra Q1 =

(
F [v], u2

)
F
.

This quaternion subalgebra contains V , and is indeed generated by V . Since u and
v are symmetric under σ, it is stable under σ, and Sym(Q1, σ1) = V . Moreover,
Sym(Q1, σ1) contains the element v such that TrdQ1(v) = v + v = Trpσ(v) 6= 0,
hence σ1 is orthogonal. The rest follows from (??) and (??).

The invariant of symplectic involutions. Let σ be a fixed symplectic in-
volution on a biquaternion algebra A. To every other symplectic involution τ on A,
we associate a quadratic form jσ(τ) over F which classifies symplectic involutions
up to conjugation: jσ(τ) ' jσ(τ

′) if and only if τ ′ = Int(a) ◦ τ ◦ Int(a)−1 for some
a ∈ A×.

We first compare the Albert forms Nrpσ and Nrpτ associated with symplectic
involutions σ and τ . Recall from (??) that τ = Int(u) ◦ σ for some unit u ∈
Symd(A, σ). Multiplication on the left by the element u then defines a linear map
Symd(A, σ) ∼−→ Symd(A, τ).

(16.17) Lemma. For all x ∈ Symd(A, σ),

Nrpτ (ux) = Nrpσ(u) Nrpσ(x).

Proof : Both sides of the equation to be established are quadratic forms on the space
Symd(A, σ). These quadratic forms differ at most by a factor −1, since squaring
both sides yields the equality

NrdA(ux) = NrdA(u) NrdA(x).

On the other hand, for x = 1 these quadratic forms take the same nonzero value
since from the fact that PrdA,u = Prp2

σ,u = Prp2
τ,u it follows that Prpσ,u = Prpτ,u,

hence Nrpσ(u) = Nrpτ (u). Therefore, the quadratic forms are equal.

Let WF denote the Witt ring of nonsingular bilinear forms over F and write
WqF for the WF -module of even-dimensional nonsingular quadratic forms. For
every integer k, the k-th power of the fundamental ideal IF of even-dimensional
forms in WF is denoted IkF ; we write IkWqF for the product IkF ·WqF . Thus, if
IkWqF = Ik+1F if charF 6= 2. From the explicit formulas in (??), it is clear that
Albert forms are in IWqF ; indeed, if charF 6= 2,

〈a1, b1,−a1b1,−a2,−b2, a2b2〉 = −〈〈a1, b1〉〉+ 〈〈a2, b2〉〉 in WF,

and, if charF = 2,

[1, a1 + a2]⊥ 〈b1〉 · [1, a1]⊥ 〈b2〉 · [1, a2] = 〈〈b1, a1]] + 〈〈b2, a2]] in WqF.

(16.18) Proposition. Let σ, τ be symplectic involutions on a biquaternion F -

algebra A and let τ = Int(u) ◦ σ for some unit u ∈ Symd(A, σ). In the Witt

group WqF ,

〈〈Nrpσ(u)〉〉 · Nrpσ = Nrpσ −Nrpτ .

There is a 3-fold Pfister form jσ(τ) ∈ I2WqF and a scalar λ ∈ F× such that

〈λ〉 · jσ(τ) = 〈〈Nrpσ(u)〉〉 ·Nrpσ in WqF .
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The Pfister form jσ(τ) is uniquely determined by the condition

jσ(τ) ≡ 〈〈Nrpσ(u)〉〉 · Nrpσ mod I3WqF.

Proof : Lemma (??) shows that multiplication on the left by u is a similitude:
(
Symd(A, σ),Nrpσ

)
→

(
Symd(A, τ),Nrpτ

)

with multiplier Nrpσ(u). Therefore, Nrpτ ' 〈Nrpσ(u)〉 · Nrpσ , hence

Nrpσ −Nrpτ ' 〈〈Nrpσ(u)〉〉 · Nrpσ .

We next show the existence of the 3-fold Pfister form jσ(τ). Since 1 and
u are anisotropic for Nrpσ , there exist nonsingular 3-dimensional subspaces U ⊂
Symd(A, σ) containing 1 and u. Choose such a subspace and let qU be the restriction
of Nrpσ to U . Let q0 be a 4-dimensional form in IWqF containing qU as a subspace:
if charF 6= 2 and qU ' 〈a1, a2, a3〉, we set q0 = 〈a1, a2, a3, a1a2a3〉; if charF = 2
and qU ' [a1, a2] ⊥ [a3], we set q0 = [a1, a2] ⊥ [a3, a1a2a

−1
3 ]. Since the quadratic

forms Nrpσ and q0 have isometric 3-dimensional subspaces, there is a 4-dimensional
quadratic form q1 such that

q0 + q1 = Nrpσ in WqF.

The form q1 lies in IWqF , since q0 and Nrpσ are in this subgroup. Moreover, since
Nrpσ(u) is represented by qU , hence also by q0, we have 〈〈Nrpσ(u)〉〉·q0 = 0 in WqF .
Therefore, multiplying both sides of the equality above by 〈〈Nrpσ(u)〉〉, we get

〈〈Nrpσ(u)〉〉 · q1 = 〈〈Nrpσ(u)〉〉 · Nrpσ in WqF.

The form on the left is a scalar multiple of a 3-fold Pfister form which may be
chosen for jσ(τ). This Pfister form satisfies jσ(τ) ≡ 〈〈Nrpσ(u)〉〉 · q1 mod I3WqF ,
hence also

jσ(τ) ≡ 〈〈Nrpσ(u)〉〉 · Nrpσ mod I3WqF.

It remains only to show that it is uniquely determined by this condition. This
follows from the following general observation: if π, π′ are k-fold Pfister forms such
that

π ≡ π′ mod IkWqF,

then the difference π−π′ is represented by a quadratic form of dimension 2k+1− 2
since π and π′ both represent 1. On the other hand, π − π′ ∈ IkWqF , hence the
Hauptsatz of Arason and Pfister (see26 Lam [?, p. 289] or Scharlau [?, Ch. 4, §5])
shows that π − π′ = 0. Therefore, π ' π′.

We next show that the invariant jσ classifies symplectic involutions up to con-
jugation:

(16.19) Theorem. Let σ, τ , τ ′ be symplectic involutions on a biquaternion algebra

A over an arbitrary field F , and let τ = Int(u) ◦ σ, τ ′ = Int(u′) ◦ σ for some units

u, u′ ∈ Symd(A, σ). The following conditions are equivalent :

(1) τ and τ ′ are conjugate, i.e., there exists a ∈ A× such that τ ′ = Int(a) ◦ τ ◦
Int(a)−1;
(2) Nrpσ(u) Nrpσ(u

′) ∈ F×2 ·Nrd(A×);

26The proofs given there are easily adapted to the characteristic 2 case. The main ingredient
is the Cassels-Pfister subform theorem, of which a characteristic 2 analogue is given in Pfister [?,
Theorem 4.9, Chap. 1].
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(3) Nrpσ(u) Nrpσ(u
′) ∈ G(Nrpσ);

(4) jσ(τ) ' jσ(τ ′);
(5) Nrpτ ' Nrpτ ′ .

Proof : (??)⇒ (??) If there exists some a ∈ A× such that τ ′ = Int(a)◦τ ◦Int(a)−1,
then, since the right-hand side is also equal to Int

(
aτ(a)

)
◦ τ , we get

Int(u′) = Int
(
aτ(a)u

)
= Int

(
auσ(a)

)
,

hence u′ = λ−1auσ(a) for some λ ∈ F×. By (??), it follows that

Nrpσ(u
′) = λ−2 NrdA(a) Nrpσ(u),

proving (??).
(??) ⇐⇒ (??) This readily follows from (??), since Nrpσ is an Albert form

of A.
(??) ⇒ (??) Suppose Nrpσ(u

′) = µNrpσ(u) for some µ ∈ G(Nrpσ). We may
then find a proper similitude g ∈ GO+(Nrpσ) with multiplier µ. Then

Nrpσ
(
g(u)

)
= µNrpσ(u) = Nrpσ(u

′),

hence there is a proper isometry h ∈ O+(Nrpσ) such that h ◦ g(u) = u′. By (??),
we may find an a ∈ A× and a λ ∈ F× such that

h ◦ g(x) = λ−1axσ(a) for all x ∈ Symd(A, σ).

In particular, u′ = λ−1auσ(a), hence Int(a) ◦ τ = τ ′ ◦ Int(a).
(??) ⇐⇒ (??) Since jσ(τ) and jσ(τ

′) are the unique 3-fold Pfister forms which
are equivalent modulo I3WqF to 〈〈Nrpσ(u)〉〉 ·Nrpσ and 〈〈Nrpσ(u

′)〉〉 ·Nrpσ respec-
tively, we have jσ(τ) ' jσ(τ ′) if and only if 〈〈Nrpσ(u)〉〉 ·Nrpσ ≡ 〈〈Nrpσ(u

′)〉〉 ·Nrpσ
mod I3WqF . Using the relation 〈〈Nrpσ(u)〉〉 − 〈〈Nrpσ(u

′)〉〉 ≡ 〈〈Nrpσ(u) Nrpσ(u
′)〉〉

mod I2F , we may rephrase the latter condition as

〈〈Nrpσ(u) Nrpσ(u
′)〉〉 ·Nrpσ ∈ I3WqF.

By the Arason-Pfister Hauptsatz, this relation holds if and only if

〈〈Nrpσ(u) Nrpσ(u
′)〉〉 · Nrpσ = 0,

which means that Nrpσ(u) Nrpσ(u
′) ∈ G(Nrpσ).

(??) ⇐⇒ (??) The relations

jσ(τ) ≡ Nrpσ −Nrpτ mod I3WqF and jσ(τ
′) ≡ Nrpσ −Nrpτ ′ mod I3WqF

show that jσ(τ) ' jσ(τ
′) if and only if Nrpτ −Nrpτ ′ ∈ I3WqF . By the Arason-

Pfister Hauptsatz, this relation holds if and only if Nrpτ −Nrpτ ′ = 0.

(16.20) Remark. Theorem (??) shows that the conditions in (??) are also equiv-
alent to:

(
Symd(A, τ)0, sτ

)
'

(
Symd(A, τ ′)0, sτ ′

)
.

(16.21) Example. As in (??), consider a quaternion F -algebra Q with canonical
involution γ, and A = M2(Q) with the involution σ defined by σ

(
(qij)1≤i,j≤2

)
=(

γ(qij)
)t

. Let τ = Int(u) ◦ σ for some invertible matrix u ∈ Symd(A, σ). As
observed in (??), we have Nrpσ ' H⊥−NrdQ; therefore,

jσ(τ) = 〈〈Nrpσ(u)〉〉 ·NrdQ .
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Since jσ(τ) is an invariant of τ , the image of Nrpσ(u) in F×/NrdQ(Q×) also is an
invariant of τ up to conjugation. In fact, since Nrpσ(u) is the Moore determinant
of u, this image is the Jacobson determinant of the hermitian form

h
(
(x1, x2), (y1, y2)

)
=

(
γ(x1) γ(x2)

)
· u ·

(
y1
y2

)

on the 2-dimensional Q-vector space Q2. (See the notes of Chapter ??.)

Of course, if Q is split, then NrdQ is hyperbolic, hence jσ(τ) = 0 for all sym-
plectic involutions σ, τ . Therefore, all the symplectic involutions are conjugate in
this case. (This is clear a priori, since all the symplectic involutions on a split
algebra are hyperbolic.)

16.C. Albert forms and orthogonal involutions. Let σ be an orthogonal
involution on a biquaternion F -algebraA. Mimicking the construction of the Albert
form associated to a symplectic involution, in this subsection we define a quadratic
form qσ on the space Skew(A, σ) in such a way that

(
Skew(A, σ), qσ

)
is an Albert

quadratic space. By contrast with the symplectic case, the form qσ is only defined
up to a scalar factor, however, and our discussion is restricted to the case where the
characteristic is different from 2. We also show how the form qσ is related to the
norm form of the Clifford algebra C(A, σ) and to the generalized pfaffian defined
in §??.

Throughout this subsection, we assume that charF 6= 2.

(16.22) Proposition. There exists a linear endomorphism

pσ : Skew(A, σ) → Skew(A, σ)

which satisfies the following two conditions :

(1) xpσ(x) = pσ(x)x ∈ F for all x ∈ Skew(A, σ);
(2) an element x ∈ Skew(A, σ) is invertible if and only if xpσ(x) 6= 0.

The endomorphism pσ is uniquely determined up to a factor in F×. More precisely,

if p′σ : Skew(A, σ) → Skew(A, σ) is a linear map such that xp′σ(x) ∈ F for all

x ∈ Skew(A, σ) (or p′σ(x)x ∈ F for all x ∈ Skew(A, σ)), then

p′σ = λpσ

for some λ ∈ F .

Proof : By (??), the intersection Skew(A, σ) ∩ A× is nonempty. Let u be a skew-
symmetric unit and τ = Int(u) ◦ σ. The involution τ is symplectic by (??), and we
have

Sym(A, τ) = u · Skew(A, σ) = Skew(A, σ) · u−1.

Therefore, for x ∈ Skew(A, σ) we may consider ux ∈ Sym(A, τ) where

: Sym(A, τ) → Sym(A, τ)

is as in (??), and set

pσ(x) = uxu ∈ Skew(A, σ) for x ∈ Skew(A, σ).

We have pσ(x)x = uxux = Nrpτ (ux) ∈ F and

xpσ(x) = u−1(uxux)u = u−1 Nrpτ (ux)u = Nrpτ (ux),

hence pσ satisfies (??). It also satisfies (??), since Nrpτ (ux)
2 = NrdA(ux).
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In order to make this subsection independent of §??, we give an alternate proof
of the existence of pσ . Consider an arbitrary decomposition of A into a tensor
product of quaternion subalgebras:

A = Q1 ⊗F Q2

and let θ = γ1⊗γ2 be the tensor product of the canonical (conjugation) involutions
on Q1 and Q2. The involution θ is orthogonal since charF 6= 2, and

Skew(A, θ) = (Q0
1 ⊗ 1)⊕ (1⊗Q0

2),

where Q0
1 and Q0

2 are the spaces of pure quaternions in Q1 and Q2 respectively.
Define a map pθ : Skew(A, θ)→ Skew(A, θ) by

pθ(x1 ⊗ 1 + 1⊗ x2) = x1 ⊗ 1− 1⊗ x2

for x1 ∈ Q0
1 and x2 ∈ Q0

2. For x = x1 ⊗ 1 + 1⊗ x2 ∈ Skew(A, θ) we have

xpθ(x) = pθ(x)x = x2
1 − x2

2 = −NrdQ1(x1) + NrdQ2(x2) ∈ F,
hence (??) holds for pθ. If xpθ(x) 6= 0, then x is clearly invertible. Conversely,
if x is invertible and xpθ(x) = 0, then pθ(x) = 0, hence x = 0, a contradiction.
Therefore, pθ also satisfies (??).

If σ is an arbitrary orthogonal involution on A, we have σ = Int(v)◦ θ for some
v ∈ Sym(A, θ) ∩ A×, by (??). We may then set

pσ(x) = vpθ(xv) for x ∈ Skew(A, σ)

and verify as above that pσ satisfies the required conditions.
We next prove uniqueness of pσ up to a scalar factor. The following arguments

are based on Wadsworth [?]. For simplicity, we assume that F has more than three
elements; the result is easily checked when F = F3.

Let pσ be a map satisfying (??) and (??), and let p′σ : Skew(A, σ) → Skew(A, σ)
be such that xp′σ(x) ∈ F for all x ∈ Skew(A, σ). For x ∈ Skew(A, σ), we let

qσ(x) = xpσ(x) ∈ F and q′σ(x) = xp′σ(x) ∈ F.
Let x ∈ Skew(A, σ) ∩A×; we have pσ(x) = qσ(x)x

−1 and p′σ(x) = q′σ(x)x
−1, hence

p′σ(x) =
q′σ(x)

qσ(x)
pσ(x).

Suppose y is another unit in Skew(A, σ), and that it is not a scalar multiple of x.
We also have pσ(y) = qσ(y)y

−1, hence pσ(y) is not a scalar multiple of pσ(x), and

p′σ(y) =
q′σ(y)
qσ(y)pσ(y). We may find some α ∈ F× such that x + αy ∈ A×, since the

equation in α

qσ(x+ αy) = qσ(x) + αqσ(x, y) + α2qσ(y) = 0

has at most two solutions and F has more than three elements. For this choice
of α, we have

p′σ(x + αy) =
q′σ(x + αy)

qσ(x + αy)
pσ(x + αy).

By linearity of pσ and p′σ, it follows that

p′σ(x) + αp′σ(y) =
q′σ(x+ αy)

qσ(x+ αy)
pσ(x) + α

q′σ(x+ αy)

qσ(x+ αy)
pσ(y).
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On the other hand, we also have

p′σ(x) + αp′σ(y) =
q′σ(x)

qσ(x)
pσ(x) + α

q′σ(y)

qσ(y)
pσ(y),

hence

q′σ(x)

qσ(x)
=
q′σ(x + αy)

qσ(x + αy)
=
q′σ(y)

qσ(y)

since pσ(x) and pσ(y) are linearly independent.
To conclude, observe that Skew(A, σ) has a basis (ei)1≤i≤6 consisting of in-

vertible elements: this is clear if σ is the involution θ defined above, and it follows
for arbitrary σ since Skew(A, σ) = v · Skew(A, θ) if σ = Int(v) ◦ θ. Denoting
λ = q′σ(e1)qσ(e1)

−1, the argument above shows that

λ =
q′σ(ei)

qσ(ei)
for i = 1, . . . , 6,

hence p′σ(ei) = λpσ(ei) for i = 1, . . . , 6. By linearity of pσ and p′σ , it follows that
p′σ(x) = λpσ(x) for all x ∈ Skew(A, σ).

(16.23) Proposition. Let pσ be a non-zero linear endomorphism of Skew(A, σ)
such that xpσ(x) ∈ F for all x ∈ Skew(A, σ), and let

qσ(x) = xpσ(x) ∈ F for x ∈ Skew(A, σ).

The quadratic form qσ is nonsingular; for x ∈ Skew(A, σ) we have qσ(x) = pσ(x)x,
and qσ(x) 6= 0 if and only if x ∈ A×. Moreover,

(
Skew(A, σ), qσ

)
is an Albert

quadratic space of A.

Proof : Proposition (??) shows that pσ is a scalar multiple of an endomorphism
satisfying (??.??) and (??.??); therefore, pσ also satisfies these conditions. It fol-
lows that qσ(x) = pσ(x)x for all x ∈ Skew(A, σ) and qσ(x) 6= 0 if and only if x is
invertible.

In order to show that qσ is nonsingular, we again consider a decomposition of A
into a tensor product of two quaternion subalgebras, so

A = Q1 ⊗F Q2

and set θ = γ1⊗ γ2, which is the tensor product of the canonical involutions on Q1

and Q2. As observed in the proof of (??), we have

Skew(A, σ) = (Q0
1 ⊗ 1)⊕ (1⊗Q0

2),

and we may consider the endomorphism pθ of Skew(A, σ) defined by

pθ(x1 ⊗ 1 + 1⊗ x2) = x1 ⊗ 1− 1⊗ x2

for x1 ∈ Q0
1 and x2 ∈ Q0

2. Denoting qθ = xpθ(x) for x ∈ Skew(A, σ), we then have

qθ(x1 ⊗ 1 + 1⊗ x2) = x2
1 − x2

2 = −NrdQ1(x1) + NrdQ2(x2),

hence qθ is a nonsingular quadratic form.
If v ∈ Sym(A, θ) ∩ A× is such that σ = Int(v) ◦ θ, (??) shows that there exists

λ ∈ F× such that pσ(x) = λvpθ(xv) for all x ∈ Skew(A, σ). Then qσ(x) = λqθ(xv),
hence multiplication on the right by v defines a similitude

(
Skew(A, σ), qσ

) ∼−→
(
Skew(A, θ), qθ

)

with multiplier λ. Since qθ is nonsingular, it follows that qσ is also nonsingular.
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To complete the proof, consider the map

i : Skew(A, σ)→M2(A)

defined by

i(x) =

(
0 pσ(x)
x 0

)
for x ∈ Skew(A, σ).

We have i(x)2 = qσ(x) for all x ∈ Skew(A, σ), hence the universal property of
Clifford algebras shows that i induces an F -algebra homomorphism

i∗ : C
(
Skew(A, σ), qσ

)
→M2(A).

(Compare with (??).) Since qσ is nonsingular, it follows that the Clifford algebra
C

(
Skew(A, σ), qσ

)
is simple, hence i∗ is injective. It is also surjective by dimension

count, hence (??) shows that
(
Skew(A, σ), qσ

)
is an Albert quadratic space of A.

(16.24) Example. Let A = (a1, b1)F ⊗(a2, b2)F . If θ = γ1⊗γ2 is the tensor prod-
uct of the canonical involutions on the quaternion algebras (a1, b1)F and (a2, b2)F ,
the computations in the proof of (??) show that one can take

pθ(x1 ⊗ 1 + 1⊗ x2) = x1 ⊗ 1− 1⊗ x2 and qθ(x1 ⊗ 1 + 1⊗ x2) = x2
1 − x2

2

for xi ∈ (ai, bi)
0
F , i = 1, 2. Therefore, qθ has the following diagonalization:

qθ = 〈a1, b1,−a1b1,−a2,−b2, a2b2〉.
(Compare with (??).)

We now list a few properties of the endomorphism pσ defined in (??).

(16.25) Proposition. Let pσ be a non-zero linear endomorphism of Skew(A, σ)
such that xpσ(x) ∈ F for all x ∈ Skew(A, σ), and let qσ : Skew(A, σ) → F be the

(Albert) quadratic map defined by

qσ(x) = xpσ(x) for x ∈ Skew(A, σ).

(1) For all a ∈ A× and x ∈ Skew(A, σ), we have qσ
(
axσ(a)

)
= NrdA(a)qσ(x) and

pσ
(
axσ(a)

)
= NrdA(a)σ(a)−1pσ(x)a

−1.

(2) There exists some dσ ∈ F× such that

(a) qσ(x)
2 = dσ NrdA(x) for all x ∈ Skew(A, σ);

(b) p2
σ = dσ · IdSkew(A,σ);

(c) dσ · F×2 = discσ;
(d)

[
pσ(x), pσ(y)

]
= dσ [x, y] for all x, y ∈ Skew(A, σ) where [ , ] are the Lie

brackets (i.e., [x, y] = xy − yx).

Proof : Consider θ, pθ, qθ as in (??). The relation

qθ(x)
2 = NrdA(x) for x ∈ Skew(A, σ)

is easily proved: extending scalars to an algebraic closure, it suffices to show that
for any 2× 2 matrices m1, m2 of trace zero,

det(m1 ⊗ 1 + 1⊗m2) =
(
det(m1)− det(m2)

)2
.

This follows by a computation which is left to the reader. It is clear that p2
θ =

IdSkew(A,θ), and (??) shows that disc θ = 1. For x1, y1 ∈ (a1, b1)
0
F and x2, y2 ∈
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(a2, b2)
0
F , we have

[x1 ⊗ 1 + 1⊗ x2, y1 ⊗ 1 + 1⊗ y2] = [x1 ⊗ 1, y1 ⊗ 1] + [1⊗ x2, 1⊗ y2]
= [x1 ⊗ 1− 1⊗ x2, y1 ⊗ 1− 1⊗ y2],

hence
[
pθ(x), pθ(y)

]
= [x, y] for x, y ∈ Skew(A, σ). Therefore, the properties in (??)

hold with dθ = 1. The relations

qθ
(
axθ(a)

)
= NrdA(a)qθ(x) and pθ

(
axθ(a)

)
= NrdA(a)θ(a)−1pθ(x)a

−1

for all a ∈ A× and x ∈ Skew(A, σ) follow by the same arguments as in (??) and
(??). The proposition is thus proved for σ = θ.

For an arbitrary orthogonal involution σ, there exists v ∈ A× such that σ =
Int(v) ◦ θ. The proof of (??) then yields λ ∈ F× such that

pσ(x) = λvpθ(xv) and qσ(x) = λqθ(xv)

for all x ∈ Skew(A, σ). For a ∈ A× and x ∈ Skew(A, σ), we then have

qσ
(
axσ(a)

)
= λqθ

(
axvθ(a)

)
and pσ

(
axσ(a)

)
= λvpθ

(
axvθ(a)

)
.

Since property (??) is already proved for θ, it follows that

qσ
(
axσ(a)

)
= λNrdA(a)qθ(xv) = NrdA(a)qσ(x)

and

pσ
(
axσ(a)

)
= λNrdA(a)vθ(a)−1pθ(xv)a

−1

= λNrdA(a)σ(a)−1vpθ(xv)a
−1

= NrdA(a)σ(a)−1pσ(x)a
−1,

proving(??).
To complete the proof, we show that the properties in (??) hold with dσ =

λ2 NrdA(v).
First, we have for x ∈ Skew(A, σ) that

qσ(x)
2 = λ2qθ(xv)

2 = λ2 NrdA(v) NrdA(x)

and

p2
σ(x) = λvpθ

(
λvpθ(xv)v

)
.

Since θ(v) = v, we may use property(??) for θ to rewrite the right side as

λ2vNrdA(v)v−1p2
θ(xv)v

−1 = λ2 NrdA(v)x.

Therefore, (??) and (??) hold. Since

discσ = NrdA(v) · disc θ = NrdA(v) · F×2,

by (??), we also have (??). Finally, to establish (??), observe that by linearizing
the relations

qσ(x) = xpσ(x) = pσ(x)x

we get

bqσ (x, y) = xpσ(y) + ypσ(x) = pσ(x)y + pσ(y)x for x, y ∈ Skew(A, σ).

In particular,

bqσ

(
pσ(x), y

)
= pσ(x)pσ(y) + yp2

σ(x) = p2
σ(x)y + pσ(y)pσ(x)
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for x, y ∈ Skew(A, σ). In view of (??), it follows that

pσ(x)pσ(y) + dσyx = dσxy + pσ(y)pσ(x),

hence

pσ(x)pσ(y)− pσ(y)pσ(x) = dσ(xy − yx)
for x, y ∈ Skew(A, σ), proving (??).

Alternately, properties (??) and (??) can be established by comparing σ with
a symplectic involution instead of θ (see the proof of (??)), and using (??). Details
are left to the reader.

With the notation of the preceding proposition, we have for all x ∈ Skew(A, σ)

qσ
(
pσ(x)

)
= p2

σ(x)pσ(x) = dσxpσ(x) = dσqσ(x),

hence pσ is a similitude of
(
Skew(A, σ), qσ

)
with multiplier dσ . The group of simil-

itudes of
(
Skew(A, σ), qσ

)
can be described by mimicking (??).

(16.26) Proposition. The proper similitudes of
(
Skew(A, σ), qσ

)
are of the form

x 7→ λ−1axσ(a)

where λ ∈ F× and a ∈ A×.

The improper similitudes of
(
Skew(A, σ), qσ

)
are of the form

x 7→ λ−1apσ(x)σ(a)

where λ ∈ F× and a ∈ A×.

The proof is left to the reader.
We now give another point of view on the linear endomorphism pσ and the

Albert form qσ by relating them to the Clifford algebra C(A, σ).

Let K = F (
√

discσ) and let ι be the nontrivial automorphism of K/F . Recall
from §?? that we may identify

(A, σ) = NK/F (Q, γ)

for some quaternion K-algebra Q with canonical involution γ. The quaternion
algebraQ is canonically isomorphic as an F -algebra to the Clifford algebra C(A, σ).
Recall also that there is a Lie algebra homomorphism ṅ : L(Q)→ L(A) defined by

ṅ(x) = ιx⊗ 1 + ι1⊗ x for x ∈ Q.

This homomorphism restricts to a Lie algebra isomorphism

ṅ : Q0 ∼−→ Skew(A, σ).

(16.27) Proposition. Let α ∈ K× be such that ι(α) = −α. The linear endomor-

phism pσ which makes the following diagram commutative:

Q0 ṅ−−−−→ Skew(A, σ)

α·
y

ypσ

Q0 ṅ−−−−→ Skew(A, σ)

(where α· is multiplication by α) is such that xpσ(x) ∈ F for all x ∈ Skew(A, σ).
The corresponding Albert form qσ satisfies :

qσ
(
ṅ(x)

)
= trK/F (αx2) for x ∈ Q0.
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Let s : Q0 → K be the squaring map defined by s(x) = x2. Then qσ is the Scharlau

transfer of the form 〈α〉 · s with respect to the linear form trK/F : K → F :

qσ = (trK/F )∗
(
〈α〉 · s

)
.

Proof : It suffices to prove that

ṅ(x)ṅ(αx) = trK/F (αx2) for x ∈ Q0.

This follows from a straightforward computation:

ṅ(x)ṅ(αx) = (ιx⊗ 1 + 1⊗ x)
(
ι(αx) ⊗ 1 + 1⊗ αx

)

= ι(αx2) + (αx2) + ι(αx) ⊗ x+ ιx⊗ αx.
Since ι(α) = −α, the last two terms in the last expression cancel.

Continuing with the notation of the proposition above and letting dσ = α2 ∈
F×, we obviously have p2

σ = dσIdSkew(A,σ) and dσ · F×2 = discσ, and also
[
pσ(x), pσ(y)

]
= dσ [x, y] for x, y ∈ Skew(A, σ)

since ṅ is an isomorphism of Lie algebras. We may thus recover the properties
in (??.??).

Conversely, Proposition (??) shows that the linear endomorphism pσ can be
used to endow Skew(A, σ) with a structure of K-module, hence to give an explicit
description of the Clifford algebra C(A, σ).

We may also derive some information on quaternion algebras over quadratic
extensions:

(16.28) Corollary. For a quaternion algebra Q over an étale quadratic exten-

sion K/F , the following conditions are equivalent :

(1) Q is split by some quadratic extension of F ;

(2) Q ' (a, b)K for some a ∈ F× and some b ∈ K×;

(3) indNK/F (Q) = 1 or 2.

Proof : It suffices to prove the equivalence of (??) and (??) for non-split quaternion
algebras Q, since (??) and (??) are clearly equivalent and the three conditions
trivially hold if Q is split. We may thus assume that the squaring map s : Q0 → K
is anisotropic. Condition (??) then holds if and only if the transfer (trK/F )∗

(
〈α〉·s

)

is isotropic where α ∈ K is an arbitrary nonzero element of trace zero. By (??)
and (??), (trK/F )∗

(
〈α〉 · s

)
is an Albert form of NK/F (Q); therefore, by Albert’s

Theorem (??), this form is isotropic if and only if condition (??) holds.

In the special case where K = F × F , the corollary takes the following form:

(16.29) Corollary (Albert [?]). For quaternion algebras Q1, Q2 over F , the fol-

lowing conditions are equivalent :

(1) there is a quadratic extension of F which splits both Q1 and Q2;

(2) Q1 ' (a, b1)F and Q2 ' (a, b2)F for some a, b1, b2 ∈ F×;

(3) ind(Q1 ⊗F Q2) = 1 or 2.

The implication (??) ⇒ (??) may be reformulated as follows:

(16.30) Corollary. Let Q1, Q2, Q3 be quaternion algebras over F . If Q1⊗Q2⊗Q3

is split, then there is a quadratic extension of F which splits Q1, Q2, and Q3.
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Proof : The hypothesis means that Q1 ⊗ Q2 is Brauer-equivalent to Q3, hence its
index is 1 or 2. The preceding corollary yields a quadratic extension of F which
splits Q1 and Q2, hence also Q3.

Finally, we relate the preceding constructions to the generalized pfaffian defined
in §??. Let Z(A, σ) be the center of the Clifford algebra C(A, σ). Let ι be the
nontrivial automorphism of Z(A, σ)/F and let Z(A, σ)0 be the space of elements
of trace zero, so

Z(a, σ)0 = { z ∈ Z(A, σ) | ι(z) = −z }.
By (??), the generalized pfaffian is a quadratic map

π : Skew(A, σ)→ Z(A, σ)0.

Our goal is to show that this map can be regarded as a canonical Albert form
associated to σ.

Let C(A, σ)0 be the space of elements of reduced trace zero in C(A, σ). Since
C(A, σ) is a quaternion algebra over Z(A, σ), we have x2 ∈ Z(A, σ) for x ∈
C(A, σ)0. We may then define a map ϕ : C(A, σ)0 → Z(A, σ)0 by

ϕ(x) =
(
x2 − ι(x2)

)
for x ∈ C(A, σ)0.

(16.31) Lemma. Let c : A→ C(A, σ) be the canonical map. For x ∈ Skew(A, σ),

π(x) = ϕ
(

1
2c(x)

)
.

Proof : We may extend scalars to an algebraic closure, and assume that

(A, σ) =
(
M4(F ), t

)
=

(
EndF (F 4), σq

)

where q(x1, x2, x3, x4) = x2
1+x2

2+x
2
3+x2

4. We use q to identify EndF (F 4) = F 4⊗F 4

as in (??). Let (ei)1≤i≤4 be the standard basis of F 4. A basis of Skew(A, σ) is given
by

hij = 1
2 (ei ⊗ ej − ej ⊗ ei) for 1 ≤ i < j ≤ 4,

and we have, by (??),

π(
∑

1≤i<j≤4 xijhij) = (x12x34 − x13x24 + x14x23)e1 · e2 · e3 · e4
for xij ∈ F . On the other hand,

1
2c(

∑
1≤i<j≤4 xijhij) = 1

2

∑
1≤i<j≤4 xijei · ej ,

and a computation shows that

ϕ(
∑

1≤i<j≤4 xijhij) = (x12x34 − x13x24 + x14x23)e1 · e2 · e3 · e4.

Theorem (??) yields a canonical isomorphism

(A, σ) = NZ(A,σ)/F

(
C(A, σ), σ

)
;

moreover, using the canonical isomorphism as an identification, the map

ṅ : C(A, σ)0 → Skew
(
NZ(A,σ)/F

(
C(A, σ), σ

))

is the inverse of 1
2c : Skew(A, σ) → C(A, σ)0 (see (??)). Therefore, the lemma

yields:

π
(
ṅ(x)

)
= ϕ(x) =

(
x2 − ι(x2)

)
for x ∈ C(A, σ)0.
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Let α ∈ Z(A, σ)0, α 6= 0. According to (??), the map qσ : Skew(A, σ) → F defined
by

qσ
(
ṅ(x)

)
= ṅ(x)ṅ(αx) for x ∈ C(A, σ)0

is an Albert form of A.

(16.32) Proposition. For all a ∈ Skew(A, σ),

qσ(a) = απ(a).

Proof : It suffices to prove that

ṅ(x)ṅ(αx) = α
(
x2 − ι(x2)

)
for x ∈ C(A, σ)0.

The left side has been computed in the proof of (??):

ṅ(x)ṅ(αx) = ι(αx2) + αx2.

§17. Whitehead Groups

For an arbitrary central simple algebra A, we set

SL1(A) = { a ∈ A× | NrdA(a) = 1 }.
This group contains the normal subgroup [A×, A×] generated by commutators
aba−1b−1. The factor group is denoted

SK1(A) = SL1(A)/[A×, A×].

This group is known in algebraic K-theory as the reduced Whitehead group of A.
It is known that SK1(A) = 0 if A is split (and A 6= M2(F2)) or if the index

of A is square-free (a result due to Wang [?], see for example Pierce [?, 16.6] or
the lecture notes [?]). In the first subsection, we consider the next interesting case
where A is a biquaternion algebra. Let F be the center of A, which may be of
arbitrary characteristic. Denote by IkF the k-th power of the fundamental ideal
IF of the Witt ring WF of nonsingular bilinear spaces over F , and let WqF denote
the Witt group of nonsingular even-dimensional quadratic spaces over F , which
is a module over WF . We write IkWqF for IkF ·WqF , so IkWqF = Ik+1F if
charF 6= 2. Our objective is to define a canonical injective homomorphism

α : SK1(A) ↪→ I3WqF/I
4WqF,

from which examples where SK1(A) 6= 0 are easily derived.
In the second subsection, we briefly discuss analogues of the reduced Whitehead

group for algebras with involution in characteristic different from 2.

17.A. SK1 of biquaternion algebras. Although the map α that we will
define is canonical, it is induced by a map ασ whose definition depends on the choice
of a symplectic involution. Therefore, we start with some general observations on
symplectic involutions on biquaternion algebras.

Let A be a biquaternion algebra over a field F of arbitrary characteristic, and
let σ be a symplectic involution on A. Recall from §?? the linear endomorphism
of Symd(A, σ) defined by x = Trpσ(x) − x, and the quadratic form

Nrpσ(x) = xx = xx for x ∈ Symd(A, σ).
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As in §??, we let

Symd(A, σ)0 = {x ∈ Symd(A, σ) | Trpσ(x) = 0 },
and we write Symd(A, σ)× = Symd(A, σ)∩A× for simplicity. For v ∈ Symd(A, σ)×

and x ∈ A, we have σ(x)vx ∈ Symd(A, σ), because if v = w+σ(w), then σ(x)vx =
σ(x)wx + σ

(
σ(x)wx

)
. We may therefore consider the quadratic form Φv : A → F

defined by

Φv(x) = Trpσ
(
σ(x)vx

)
for x ∈ A.

(17.1) Proposition. For each v ∈ Symd(A, σ)×, the quadratic form Φv is a

scalar multiple of a 4-fold Pfister form. This form is hyperbolic if Trpσ(v) = 0.
Moreover, if σ is a hyperbolic symplectic involution, then Φv is hyperbolic for all

v ∈ Symd(A, σ)×.

Proof : Suppose first that σ is hyperbolic. The algebra A then contains an isotropic
right ideal I of reduced dimension 2, i.e., dimF I = 8. For x ∈ I we have σ(x)x = 0,
hence for all v = w + σ(w) ∈ Symd(A, σ)×,

Φv
(
σ(x)

)
= Trpσ

(
xvσ(x)

)
= TrdA

(
xwσ(x)

)
= TrdA

(
wσ(x)x

)
= 0.

Therefore, σ(I) is a totally isotropic subspace of A for the form Φv, hence this form
is hyperbolic.

For the rest of the proof, assume σ is not hyperbolic, and let V ⊂ Symd(A, σ) be
a 3-dimensional subspace containing 1 and v, and not contained in Symd(A, σ)0. By
(??), there is a decomposition of A into a tensor product of quaternion subalgebras,
so that

(A, σ) = (Q1, σ1)⊗F (Q2, γ2)

where σ1 is an orthogonal involution, γ2 is the canonical involution, and v ∈
Sym(Q1, σ1). In view of the computation of the bilinear form T(Q1,σ1,v) in (??), the
following lemma completes the proof:

(17.2) Lemma. Suppose (A, σ) = (Q1, σ1)⊗F (Q2, γ2), where σ1 is an orthogonal

involution and γ2 is the canonical (symplectic) involution. We have Sym(Q1, σ1) ⊂
Symd(A, σ) and, for all v ∈ Sym(Q1, σ1)

×,

Φv = T(Q1,σ1,v) · NrdQ2

where NrdQ2 is the reduced norm quadratic form on Q2.

Proof : Let `2 ∈ Q2 be such that `2 + γ2(`2) = 1. For all s ∈ Sym(Q1, σ1), we have

s⊗ 1 = s⊗ `2 + σ(s⊗ `2),
hence s⊗ 1 ∈ Symd(A, σ) and

Trpσ(s⊗ 1) = TrdA(s⊗ `2) = TrdQ1(s) TrdQ2(`2) = TrdQ1(s).

Let v ∈ Sym(Q1, σ1)
×. For x1 ∈ Q1 and x2 ∈ Q2, we have

σ(x1 ⊗ x2)v(x1 ⊗ x2) = σ1(x1)vx1 ⊗ γ2(x2)x2 =
(
σ1(x1)vx1 ⊗ 1

)
NrdQ2(x2).

Therefore,

Φv(x1 ⊗ x2) = Trpσ
(
σ1(x1)vx1 ⊗ 1

)
NrdQ2(x2) = TrdQ1

(
σ1(x1)vx1

)
NrdQ2(x2),

hence

Φv(x1 ⊗ x2) = T(Q1,σ1,v)(x1, x1) NrdQ2(x2).
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To complete the proof, it remains only to show that the polar form bΦv of Φv is the
tensor product T(Q1,σ1,v) ⊗ bNrdQ2

.
For x, y ∈ A, we have

bΦv (x, y) = Trpσ
(
σ(x)vy + σ

(
σ(x)vy

))
= TrdA

(
σ(x)vy

)
,

hence, for x = x1 ⊗ x2 and y = y1 ⊗ y2,
bΦv(x, y) = TrdQ1

(
σ1(x1)vy1

)
TrdQ2

(
γ2(x2)y2

)
.

Since TrdQ2

(
γ2(x2)y2

)
= bNrdQ2

(x2, y2), the proof is complete.

The definition of ασ uses the following result, which is reminiscent of Hilbert’s
theorem 90:

(17.3) Lemma. Suppose σ is not hyperbolic. For every u ∈ Symd(A, σ) such that

Nrpσ(u) = 1, there exists v ∈ Symd(A, σ)× such that u = vv−1. If u 6= −1, the

element v is uniquely determined up to multiplication by a factor in F×.

Proof : We first prove the existence of v. If u = −1, we may take for v any unit in
Symd(A, σ)0. If u 6= −1, let v = 1 + u. We have

vu = (1 + u)u = u+ Nrpσ(u) = v,

hence v satisfies the required conditions if it is invertible. If v is not invertible, then
vv = 0, since vv = Nrpσ(v) ∈ F . In that case, we also have vvu = 0, hence v2 = 0
since vu = v. It follows that Trpσ(v) = 0, and by (??) we derive a contradiction
with the hypothesis that σ is not hyperbolic. The existence of v is thus proved.

Suppose next that u 6= −1 and v1, v2 ∈ Symd(A, σ)× are such that

u = v1v1
−1 = v2v2

−1.

Then

u+ 1 = (v1 + v1)v1
−1 = (v2 + v2)v2

−1.

Since vi + vi = Trpσ(vi) ∈ F for i = 1, 2, these equations together with the
hypothesis that u 6= −1 show that Trpσ(v1) 6= 0 and Trpσ(v2) 6= 0. They also yield

Trpσ(v1)v2 = Trpσ(v2)v1,

hence v1 and v2 differ by a nonzero factor in F .

Now, consider the following subgroup of F× ×A×:

Γ = { (λ, a) ∈ F× ×A× | λ2 = NrdA(a) }.
For (λ, a) ∈ Γ, we have −λ−1σ(a)a ∈ Symd(A, σ), since 1 ∈ Symd(A, σ), and
Proposition (??) shows that Nrpσ

(
−λ−1σ(a)a

)
= 1. Therefore, if σ is not hyper-

bolic, the preceding lemma yields v ∈ Symd(A, σ)× such that

vv −1 = −λ−1σ(a)a.(17.4)

If λ−1σ(a)a = 1 (i.e., a ∈ GSp(A, σ) and λ = µ(a)), we have v = −v, hence
Trpσ(v) = 0. Proposition (??) then shows that Φv is hyperbolic. If λ−1σ(a)a 6= 1,
the element v is uniquely determined up to a factor in F×. Therefore, the quadratic
form Φv ∈ I3WqF is also uniquely determined up to a factor in F×, and its class
in I3WqF/I

4WqF is uniquely determined.
We may therefore set the following definition:

(17.5) Definition. Let ασ : Γ→ I3WqF/I
4WqF be defined as follows:
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(1) If σ is hyperbolic, let ασ = 0.
(2) If σ is not hyperbolic, let

ασ(λ, a) = Φv + I4WqF

where v ∈ Symd(A, σ)× satisfies (??).

In particular, the observations above show that ασ
(
µ(g), g

)
= 0 for g ∈ GSp(A, σ).

If L is an extension field of F over which σ is hyperbolic, every quadratic form
Φv for v ∈ Symd(A, σ)× becomes hyperbolic over L by (??), hence the definition
above is compatible with scalar extension.

Observe that the group SL1(A) embeds in Γ by mapping a ∈ SL1(A) to (1, a) ∈
Γ. Our goal is to prove the following theorem:

(17.6) Theorem. The map ασ defined above is a homomorphism. Its restriction

to SL1(A) does not depend on the choice of the symplectic involution σ; letting

α : SL1(A) → I3WqF/I
4WqF denote this restriction, we have kerα = [A×, A×],

hence α induces an injective homomorphism

α : SK1(A) ↪→ I3WqF/I
4WqF.

The rest of this subsection consists of the proof, which we break into three
parts: we first show that ασ is a homomorphism, then we investigate the effect of
a change of involution, and finally we determine the kernel of ασ.

ασ is a homomorphism. If σ is hyperbolic, then ασ is clearly a homomor-
phism since we set ασ = 0. Throughout this part of the proof, we may thus assume
that σ is not hyperbolic. Let (λ, a), (λ′, a′) ∈ Γ. In order to show that

ασ(λ, a) + ασ(λ
′, a′) = ασ(λλ

′, aa′),

we first reduce to the case where a, a′ ∈ Symd(A, σ) and λ = Nrpσ(a), λ
′ =

Nrpσ(a
′).

(17.7) Lemma. For (λ, a) ∈ Γ and g ∈ GSp(A, σ),

ασ(λ, a) = ασ
(
µ(g)λ, ga

)
= ασ

(
λµ(g), ag

)
.

Proof : Let v ∈ Symd(A, σ)× be subject to (??); since

λ−1µ(g)−1σ(ga)ga = λ−1σ(a)a,

the quadratic form Φv represents ασ(λ, a) as well as ασ
(
µ(g)λ, ga

)
, hence the first

equation is clear. To prove the second equation, we calculate

−µ(g)−1λ−1σ(ag)ag = g−1vg · g−1v −1g.

By (??), the last factor on the right side is equal to g−1vg
−1

, hence

ασ
(
λµ(g), ag

)
= Φg−1vg + I4WqF ∈ I3WqF/I

4WqF.

For x ∈ A, we have σ(x)g−1vgx = µ(g)−1σ(gx)vgx, hence

Φg−1vg(x) = µ(g)−1Φv(gx).

This equation shows that the quadratic forms Φg−1vg and Φv are similar, hence

ασ
(
λµ(g), ag

)
= ασ(λ, a).

(17.8) Lemma. For all (λ, a) ∈ Γ, there exist a similitude g ∈ GSp(A, σ) and

units u, v ∈ Symd(A, σ)× such that

(λ, a) =
(
µ(g), g

)
·
(
Nrpσ(u), u

)
=

(
Nrpσ(v), v

)
·
(
µ(g), g

)
.
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Proof : By (??), there exists some u ∈ Symd(A, σ)× such that uu−1 = λ−1σ(a)a.
For g = au−1 we have

σ(g)g = u−1σ(a)au−1 = λNrpσ(u)
−1 ∈ F×,

hence g ∈ GSp(A, σ) and µ(g) Nrpσ(u) = λ. We thus get the first decomposition.
In order to get the second, it suffices to choose v = gug−1.

For (λ, a), (λ′, a′) ∈ Γ, we may thus find g, g′ ∈ GSp(A, σ) and u, v ∈
Symd(A, σ)× such that

(λ, a) =
(
µ(g), g

)
·
(
Nrpσ(u), u

)
,

(λ′, a′) =
(
Nrpσ(v), v

)
·
(
µ(g′), g′

)
,

hence also

(λλ′, aa′) =
(
µ(g), g

)
·
(
Nrpσ(u), u

)
·
(
Nrpσ(v), v

)
·
(
µ(g′), g′

)
.

From (??), it follows that

ασ(λ, a) = ασ
(
Nrpσ(u), u

)
, ασ(λ

′, a′) = ασ
(
Nrpσ(v), v

)

and

ασ(λλ
′, aa′) = ασ

(
Nrpσ(u) Nrpσ(v), uv

)
.

Therefore, in order to show that

ασ(λλ
′, aa′) = ασ(λ, a) + ασ(λ

′, a′),

it suffices to show that

ασ
(
Nrpσ(u) Nrpσ(v), uv

)
= ασ

(
Nrpσ(u), u

)
+ ασ

(
Nrpσ(v), v

)
.(17.9)

We have thus achieved the desired reduction.
If u ∈ Symd(A, σ)0, then −Nrpσ(u)

−1σ(u)u = 1, hence

ασ
(
Nrpσ(u), u

)
= Φ1 + I4WqF.

Therefore, if u and v both lie in Symd(A, σ)0, the right side of (??) vanishes. The
left side also vanishes, since uv ∈ GSp(A, σ) and µ(uv) = Nrpσ(u) Nrpσ(v). For
the rest of the proof of (??), we may thus assume that u and v are not both in
Symd(A, σ)0.

Consider a 3-dimensional subspace V ⊂ Symd(A, σ) which contains 1, u and v,
and is therefore not contained in Symd(A, σ)0. By (??), there is a decomposition
of A into a tensor product of quaternion subalgebras, so

(A, σ) = (Q1, σ1)⊗F (Q2, γ2)

where σ1 is an orthogonal involution, γ2 is the canonical involution, and u, v ∈
Sym(Q1, σ1), hence also uv ∈ Q1. For x ∈ Q1, we have Prd2

Q1,x = PrdA,x, hence
Prpσ,x = PrdQ1,x and therefore Nrpσ(x) = NrdQ1(x). To prove (??), it now suffices
to prove the following lemma:

(17.10) Lemma. Suppose A decomposes into a tensor product of quaternion alge-

bras stable under the symplectic involution σ, which may be hyperbolic:

(A, σ) = (Q1, σ1)⊗ (Q2, γ2),

where σ1 is an orthogonal involution and γ2 is the canonical (symplectic) involution.

For all x ∈ Q×
1 ,

ασ
(
NrdQ1(x), x

)
= 〈〈NrdQ1(x), discσ1〉〉 · NrdQ2 .
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Indeed, assuming the lemma and letting θ = 〈〈discσ1〉〉 · NrdQ2 , the left-hand
side of (??) is then 〈〈NrdQ1(uv)〉〉 · θ, while the right-hand side is 〈〈NrdQ1(u)〉〉 · θ+
〈〈NrdQ1(v)〉〉 · θ. The equality follows from the congruence

〈〈NrdQ1(u)〉〉 + 〈〈NrdQ1(v)〉〉 ≡ 〈〈NrdQ1(u) NrdQ1(v)〉〉 mod I2F.

Proof of (??): Suppose first that σ is hyperbolic. We then have to show that
the quadratic form 〈〈NrdQ1(x), discσ1〉〉 · NrdQ2 is hyperbolic for all x ∈ Q1. For
v ∈ Sym(Q1, σ1)

×, Proposition (??) and Lemma (??) show that the quadratic form
T(Q1,σ1,v) ·NrdQ2 is hyperbolic. In view of (??), this means that

〈〈NrdQ1(vs), discσ1〉〉 · NrdQ2 = 0 in WqF

for all v ∈ Sym(Q1, σ1)
× and all s ∈ Q×

1 such that σ1(s) = s = −γ1(s), where γ1

is the canonical involution on Q1. In particular (for v = 1), the quadratic form
〈〈NrdQ1(s), discσ1〉〉 · NrdQ2 is hyperbolic. Adding it to both sides of the equality
above, we get

〈〈NrdQ1(v), discσ1〉〉 ·NrdQ2 = 0 for all v ∈ Sym(Q1, σ1)
×.

To complete the proof in the case where σ is hyperbolic, it now suffices to show
that Sym(Q1, σ1)

× generates Q×
1 . For all x ∈ Q×

1 , the intersection

Sym(Q1, σ1) ∩ x Sym(Q1, σ1)

has dimension at least 2. Since the restriction of NrdQ1 to Sym(Q1, σ1) is a non-
singular quadratic form, this intersection is not totally isotropic for NrdQ1 , hence
it contains an invertible element s1 ∈ Sym(Q1, σ1)

×. We have s1 = xs2 for some
s2 ∈ Sym(Q1, σ1)

×, hence x = s1s
−1
2 is in the group generated by Sym(Q1, σ1)

×.
For the rest of the proof, assume that σ is not hyperbolic. Let σ1 = Int(r) ◦ γ1

for some r ∈ Skew(Q1, γ1) r F ; thus, r2 ∈ F× and discσ1 = r2 · F×2.
If σ(x)x = NrdQ1(x), then x ∈ GSp(A, σ) and µ(x) = NrdQ1(x), hence

ασ
(
NrdQ1(x), x

)
= 0. On the other hand, the condition also implies σ1(x) = γ1(x),

hence x commutes with r. Therefore, x ∈ F [r], and 〈〈NrdQ1(x), discσ1〉〉 is meta-
bolic. The lemma thus holds in this case.

Assume finally that σ(x)x 6= NrdQ1(x), and let

w = 1−NrdQ1(x)
−1σ(x)x = 1− σ(x)γ1(x)

−1 ∈ Q1,

so that w
(
−NrdQ1(x)

−1σ(x)x
)

= w. Since σ is not hyperbolic, the same arguments
as in the proof of (??) show that w is invertible, hence

ασ
(
NrdQ1(x), x

)
= Φw + I4WqF.

By (??), we have Φw ≡ T(Q1,σ1,w)·NrdQ2 mod I4WqF . Moreover, we may compute

T(Q1,σ1,w) by (??): since wγ1(x) = γ1(x)− σ1(x) ∈ Q×
1 satisfies

σ1

(
wγ1(x)

)
= wγ1(x) = −γ1

(
wγ1(x)

)
,

we may substitute wγ1(x) for s in (??) and get

T(Q1,σ1,w) ≡ 〈〈NrdQ1

(
w2γ1(x)

)
, discσ1〉〉 ≡ 〈〈NrdQ1(x), disc σ1〉〉 mod I3F.
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Change of involution. We keep the same notation as above, and allow
the symplectic involution σ to be hyperbolic. For x ∈ Symd(A, σ)0, we have
x2 = −Nrpσ(x) ∈ F . We endow Symd(A, σ)0 with the restriction of Nrpσ or,
equivalently for the next result, with the squaring quadratic form sσ(x) = x2 (see
§??).

(17.11) Proposition. Every proper isometry of Symd(A, σ)0 has the form x 7→
gxg−1 for some g ∈ GSp(A, σ). For every g ∈ GSp(A, σ), one can find two or four

anisotropic vectors v1, . . . , vr ∈ Symd(A, σ)0 such that
(
µ(g), g

)
=

(
Nrpσ(v1), v1

)
· · ·

(
Nrpσ(vr), vr

)
in Γ.

Proof : The proposition readily follows from (??). We may however give a short
direct argument: for all v ∈ Symd(A, σ)0 anisotropic, computation shows that the
hyperplane reflection ρv maps x ∈ Symd(A, σ)0 to −vxv−1. The Cartan-Dieudonné
theorem shows that every proper isometry is a product of an even number of hy-
perplane reflections, and is therefore of the form

x 7→ (v1 · · · vr)x(v−1
r · · · v−1

1 )

for some anisotropic v1, . . . , vr ∈ Symd(A, σ)0. Since

σ(v1 · · · vr) · v1 · · · vr = v2
1 · · · v2

r ∈ F×,
the element v1 · · · vr is in GSp(A, σ), and the first part is proved.

To prove the second part, observe that for g ∈ GSp(A, σ) and x ∈ Symd(A, σ)0

we have gxg−1 = µ(g)−1gxσ(g), hence by (??) and (??),

Nrpσ(gxg
−1) = µ(g)−2 NrdA(g) Nrpσ(x) = Nrpσ(x).

Therefore, the map x 7→ gxg−1 is an isometry of Symd(A, σ)0. If this isometry
is improper, then charF 6= 2 and x 7→ −gxg−1 is proper, hence of the form x 7→
g′xg′−1

for some g′ ∈ GSp(A, σ). In that case g−1g′ anticommutes with every
element in Symd(A, σ)0. However, using a decomposition of (A, σ) as in (??), it
is easily seen that no nonzero element of A anticommutes with Symd(A, σ)0. This
contradiction shows that the isometry x 7→ gxg−1 is proper in all cases. By the
Cartan-Dieudonné theorem, it is a product of an even number r of hyperplane
reflections with r ≤ 5, hence we may find anisotropic v1, . . . , vr ∈ Symd(A, σ)0

such that

gxg−1 = (v1 · · · vr)x(v−1
r · · · v−1

1 ) for x ∈ Symd(A, σ)0.

Since Symd(A, σ)0 generates A, it follows that g−1(v1 · · · vr) ∈ F×. Multiplying v1
by a suitable factor in F×, we get g = v1 · · · vr; then

µ(g) = v2
1 · · · v2

r = Nrpσ(v1) · · ·Nrpσ(vr).

Now, let τ be another symplectic involution on A. Recall from (??) the 3-fold
Pfister form jσ(τ) uniquely determined by the condition

jσ(τ) ≡ Nrpσ −Nrpτ mod I3WqF.

Since jσ(τ) ≡ −jσ(τ) ≡ Nrpτ −Nrpσ mod I3WqF , we have jσ(τ) ' jτ (σ).

(17.12) Proposition. For all (λ, a) ∈ Γ,

ασ(λ, a) + ατ (λ, a) = 〈〈λ〉〉 · jσ(τ) + I4WqF = 〈〈λ〉〉 · jτ (σ) + I4WqF.
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Proof : If σ and τ are hyperbolic, the proposition is clear since ασ = ατ = 0
and jσ(τ) ' jσ(σ) = 0 in WqF by (??), since all the hyperbolic involutions are
conjugate. We may thus assume that at least one of σ, τ is not hyperbolic. Let
us assume for instance that σ is not hyperbolic, and let τ = Int(u) ◦ σ for some
u ∈ Symd(A, σ)×.

We consider two cases: suppose first that Trpσ(u) 6= 0. Lemma (??) and
Proposition (??) show that Γ is generated by elements of the form

(
Nrpσ(v), v

)
,

with v ∈ Sym(A, σ)×. Therefore, it suffices to prove

ασ
(
Nrpσ(v), v

)
+ ατ

(
Nrpσ(v), v

)
= 〈〈Nrpσ(v)〉〉 · jσ(τ) + I4WqF

for all v ∈ Symd(A, σ)×. Let V ⊂ Symd(A, σ) be a 3-dimensional subspace con-
taining 1, u and v. Since Trpσ(u) 6= 0, we have27 V 6⊂ Symd(A, σ)0. By (??), there
is a decomposition

(A, σ) = (Q1, σ1)⊗F (Q2, γ2)

where Q1 is the quaternion subalgebra generated by V and σ1 = σ|Q1 is an orthog-
onal involution. By (??), we have

ασ
(
Nrpσ(v), v

)
= 〈〈Nrpσ(v), discσ1〉〉 ·NrdQ2 +I4WqF.

Since τ = Int(u) ◦ σ and u ∈ Q1, the algebra Q1 is also stable under τ , hence

(A, τ) = (Q1, τ1)⊗F (Q2, γ2)

where τ1 = Int(u) ◦σ1. The involution τ1 is orthogonal, since u ∈ Sym(Q1, σ1) and
TrdQ1(u) = Trpσ(u) 6= 0. Therefore, by (??) again,

ατ
(
Nrpσ(v), v

)
= 〈〈Nrpσ(v), disc τ1〉〉 ·NrdQ2 +I4WqF.

On the other hand, we have disc τ1 = NrdQ1(u) discσ1 by (??), hence

ασ
(
Nrpσ(v), v

)
+ ατ

(
Nrpσ(v), v

)
= 〈〈Nrpσ(v),NrdQ1(u)〉〉 · NrdQ2 +I4WqF.

This completes the proof in the case where Trpσ(u) 6= 0, since the proof of (??)
shows that

〈〈NrdQ1(u)〉〉 · NrdQ2 = 〈〈Nrpσ(u)〉〉 ·NrdQ2 = jσ(τ).

Consider next the case where Trpσ(u) = 0. We then compare ασ and ατ via a
third involution ρ, chosen in such a way that the first case applies to σ and ρ on
one hand, and to ρ and τ on the other hand. Specifically, let t ∈ Symd(A, σ) r
Symd(A, σ)0 be an invertible element which is not orthogonal to u for the polar
form bNrpσ

. Let

ξ = bNrpσ
(u, t) = ut+ tu 6= 0.

Since u = −u, this relation yields tutu−1 = Nrpσ(t) − ξtu−1. Letting s =
ut−1, we have s /∈ F since Trpσ(t) 6= 0 while Trpσ(u) = 0, and s−2 =

(
ξs−1 −

Nrpσ(t)
)
Nrpσ(u)

−1 /∈ F . Let ρ = Int(t) ◦ σ, hence τ = Int(s) ◦ ρ since u = st. We

have s ∈ Symd(A, σ)t−1 = Symd(A, ρ), and Trpρ(s) 6= 0 since s2 /∈ F . Therefore,

27If char F 6= 2, then V 6⊂ Symd(A, σ)0 even if Trpσ(u) = 0, since Trpσ(1) = 2 6= 0. The

arguments in the first case thus yield a complete proof if char F 6= 2.
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we may apply the first case to compare ατ and αρ, and also to compare αρ and ασ,
since t /∈ Symd(A, σ)0. We thus get

ασ(λ, a) + αρ(λ, a) = 〈〈λ〉〉 · jσ(ρ) + I4WqF,

αρ(λ, a) + ατ (λ, a) = 〈〈λ〉〉 · jρ(τ) + I4WqF

for all (λ, a) ∈ Γ. The result follows by adding these relations, since jσ(ρ)+jρ(τ) ≡
jσ(τ) mod I3WqF .

(17.13) Corollary. For all a ∈ SL1(A),

ασ(1, a) = ατ (1, a).

Proof : This readily follows from the proposition, since 〈〈1〉〉 = 0 in WqF .

In view of this corollary, we may define a map α : SL1(A) → I3WqF/I
4WqF

by

α(a) = ασ(1, a) for a ∈ SL1(A),

where σ is an arbitrary symplectic involution on A.

(17.14) Example. Let Q be a quaternion F -algebra with canonical involution γ
and let A = M2(Q) with the involution θ defined by

θ

(
q11 q12
q21 q22

)
=

(
γ(q11) −γ(q21)
−γ(q12) γ(q22)

)
.

This involution is symplectic (see (??)), and it is hyperbolic since

I =

{ (
q11 q12
q11 q12

) ∣∣∣∣ q11, q12 ∈ Q
}

is a right ideal of reduced dimension 2 such that θ(I) · I = {0}. Therefore, αθ = 0
and α = 0.

If τ is another symplectic involution on A, Proposition (??) yields

ατ (λ, a) = 〈〈λ〉〉 · jθ(τ)
for all (λ, a) ∈ Γ. More explicitly, if τ = Int(u) ◦ θ with u ∈ Symd(A, θ)×, it follows
from (??) and (??) that jθ(τ) = 〈〈Nrpθ(u)〉〉 · NrdQ, hence

ατ (λ, a) = 〈〈λ,Nrpθ(u)〉〉 ·NrdQ .

Kernel of α. We continue with the notation above. Our objective is to deter-
mine the kernel of the homomorphism ασ : Γ → I3WqF/I

4WqF ; the kernel of the
induced map α : SL1(A)→ I3WqF/I

4WqF is then easily identified with [A×, A×].

(17.15) Lemma. Suppose the symplectic involution σ is hyperbolic and let U be an

arbitrary 2-dimensional subspace in Symd(A, σ). For every u ∈ Symd(A, σ), there

exists an invertible element x ∈ A× such that TrpA
(
σ(x)ux

)
= 0 and xσ(x) /∈ U .

Note that we do not assume that u is invertible, so the quadratic form x 7→
TrpA

(
σ(x)ux

)
may be singular.

Proof : Since σ is hyperbolic, the index of A is 1 or 2, hence A ' M2(Q) for
some quaternion F -algebra Q. Consider the involution θ on M2(Q) defined as in
(??). Since all the hyperbolic involutions are conjugate by (??), we may identify

(A, σ) =
(
M2(Q), θ

)
. We have Nrpθ

(
Nrpθ(u) 0

0 1

)
= Nrpθ(u), hence Witt’s theorem

on the extension of isometries (see Scharlau [?, Theorem 7.9.1]) shows that there
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is an isometry of
(
Sym

(
M2(Q), θ

)
,Nrpθ

)
which maps u to

(
Nrpθ(u) 0

0 1

)
. Composing

with a suitable hyperplane reflection, we may assume that this isometry is proper.
By (??), it follows that there exist a ∈ A× and λ ∈ F× such that

θ(a)ua = λ

(
Nrpθ(u) 0

0 1

)
.

Let b, c ∈ Q× be such that NrdQ(c) = 1 and c− 1 ∈ Q×, and let x = a
(

1 1
b bc

)
∈ A.

Then

θ(x)ux = λ

(
1 −γ(b)
−1 γ(bc)

)(
Nrpθ(u) 0

0 1

) (
1 1
b bc

)

= λ

(
Nrpθ(u)−NrdQ(b) Nrpθ(u)−NrdQ(b)c

−Nrpθ(u) + NrdQ(b)γ(c) −Nrpθ(u) + NrdQ(b)

)

hence Trpσ
(
θ(x)ux

)
= 0. On the other hand, x is invertible since it is a product of

invertible matrices:

x = a

(
1 0
0 b

) (
1 0
1 1

) (
1 0
0 c−1

) (
1 1
0 1

)
.

Finally, we have xθ(x) = a
( 0 γ(c−1)γ(b)
b(1−c) 0

)
θ(a), hence xθ(x) ∈ U if and only if

(
0 γ(c− 1)γ(b)

b(1− c) 0

)
∈ a−1Uθ(a)−1.

Since b is arbitrary in Q×, it is clear that we can choose b such that this relation
does not hold.

The following result holds for an arbitrary symplectic involution σ:

(17.16) Lemma. If x1, x2 ∈ Symd(A, σ) r F satisfy Trpσ(x1) = Trpσ(x2) and

Nrpσ(x1) = Nrpσ(x2), then there exists some g ∈ GSp(A, σ) such that gx1g
−1 = x2.

Proof : The hypothesis yields

Nrpσ(ξ + ηx1) = Nrpσ(ξ + ηx2) for ξ, η ∈ F,
hence the 2-dimensional subspace of Symd(A, σ) spanned by 1, x1 is isometric to
the subspace spanned by 1, x2. By Witt’s theorem, the isometry which maps 1 to
1 and x1 to x2 extends to an isometry f of

(
Symd(A, σ),Nrpσ

)
, and this isometry

may be assumed to be proper. By (??), there exist λ ∈ F× and g ∈ A× such that
f(x) = λ−1gxσ(g) for all x ∈ Symd(A, σ). Since f(1) = 1, we have g ∈ GSp(A, σ)
and λ = µ(g), hence

x2 = f(x1) = gx1g
−1.

(17.17) Proposition. For all (λ, a) ∈ Γ such that ασ(λ, a) = 0, there exist g ∈
GSp(A, σ) and x, y ∈ A× such that

(λ, a) =
(
µ(g), g

)
· (1, xyx−1y−1).

Proof : Let v = 1 − λ−1σ(a)a ∈ Symd(A, σ). If v = 0, then a ∈ GSp(A, σ) and
λ = µ(a), so we may take g = a and x = y = 1. For the rest of the proof, we may
thus assume that v 6= 0.

Claim. There exists some y ∈ A× such that Trpσ
(
σ(y)vy

)
= 0. Moreover, if σ is

hyperbolic, we may assume that y /∈ GSp(A, σ) and ay /∈ GSp(A, σ).
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This readily follows from (??) if σ is hyperbolic, since we may find y ∈ A× such
that Trpσ

(
σ(y)vy

)
= 0 and assume moreover that yσ(y) does not lie in the subspace

spanned by 1 and a−1σ(a)−1, hence y, ay /∈ GSp(A, σ). If σ is not hyperbolic, then
the proof of (??) shows that v is invertible and satisfies vv−1 = −λ−1σ(a)a, hence
also ασ(λ, a) = Φv + I4WqF . By hypothesis, ασ(λ, a) = 0, hence there exists some
y0 ∈ A such that Φv(y0) = 0. If y0 is invertible, the claim is proved with y = y0.
If y0 is not invertible, then we have Nrpσ

(
σ(y0)vy0

)
= NrdA(y0) Nrpσ(v) = 0

and Trpσ
(
σ(y0)vy0

)
= 0, hence

(
σ(y0)vy0

)2
= −Nrpσ

(
σ(y0)vy0

)
= 0. Since σ is

anisotropic, this relation implies σ(y0)vy0 = 0 by (??), hence also v−1σ(y0)vy0 =
0, showing that the involution Int(v−1) ◦ σ is isotropic. Since this involution is
symplectic, it is then hyperbolic by (??). Therefore, by (??) we may find y1 ∈ A×
such that Trpσ

(
Int(v−1) ◦ σ(y1)v

−1y1
)

= 0, i.e.,

Trpσ
(
v−1σ(y1)y1

)
= 0.

For y = v−1σ(y1) ∈ A×, we then have

Trpσ
(
σ(y)vy

)
= Trpσ

(
y1v

−1σ(y1)
)

= 0

and the claim is proved.
In view of the definition of v, we derive from Trpσ

(
σ(y)uy

)
= 0 that

λTrpσ
(
σ(y)y

)
= Trpσ

(
σ(y)σ(a)ay

)
.(17.18)

On the other hand, we also have

Nrpσ
(
λσ(y)y

)
= λ2 NrdA(y)

and

Nrpσ
(
σ(y)σ(a)ay

)
= NrdA(a) NrdA(y)

by (??), hence

Nrpσ
(
λσ(y)y

)
= Nrpσ

(
σ(y)σ(a)ay

)
.(17.19)

If σ(y)y /∈ F and σ(ay)ay /∈ F (which may be assumed if σ is hyperbolic), we
may then apply (??) to get a similitude g0 ∈ GSp(A, σ) such that

σ(ay)ay = λg0σ(y)yg−1
0 .

Multiplying on the left by σ(y)−1σ(g0) and on the right by g0y
−1, we derive from

the preceding equation

σ(ayg0y
−1)ayg0y

−1 = λµ(g0).

Therefore, the element g1 = ayg0y
−1 is in GSp(A, σ), and µ(g1) = λµ(g0). We then

have

a = (g1g
−1
0 )(g0yg

−1
0 y−1),

which yields the required decomposition with g = g1g
−1
0 and x = g0.

To complete the proof, we examine the cases where σ is not hyperbolic and one
of the inclusions σ(y)y ∈ F or σ(ay)ay ∈ F holds.

If σ(y)y = µ ∈ F×, we derive from (??) and (??):

Trpσ
(
σ(ay)ay

)
= 2λµ and Nrpσ

(
σ(ay)ay

)
= λ2µ2.
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Therefore, the element b = σ(ay)ay − λµ satisfies Trpσ(b) = Nrpσ(b) = 0, hence
b = 0 since σ is not hyperbolic. We thus have σ(ay)ay = λµ and σ(y)y = µ, hence
a ∈ GSp(A, σ) and µ(a) = λ. We may take g = a and x = y = 1 in this case.

Similarly, if σ(ay)ay = ν ∈ F×, then (??) and (??) yield

Trpσ
(
σ(y)y

)
= 2λ−1ν and Nrpσ

(
σ(y)y

)
= λ−2ν2,

and the same argument as above shows that σ(y)y = λ−1ν. Again, we get that
a ∈ GSp(A, σ) and µ(a) = λ, hence we may choose g = a and x = y = 1.

Our next goal is to show that all the elements of the form
(
µ(g), g

)
(1, xyx−1y−1)

with g ∈ GSp(A, σ) and x, y ∈ A× are in the kernel of ασ .

(17.20) Lemma. ασ
(
NrdA(x), x2

)
= 0 for all x ∈ A×.

Proof : If σ is hyperbolic, the result is clear since ασ = 0. For the rest of the proof,
we may thus assume that σ is not hyperbolic. Let v ∈ Symd(A, σ)× be such that
vv−1 = −NrdA(x)−1σ(x)2x2, so that ασ

(
NrdA(x), x2

)
= Φv + I4WqF . We thus

have to show that Φv is hyperbolic.
If NrdA(x)−1σ(x)2x2 = 1, then Trpσ(v) = 0 and the result follows from (??).

If NrdA(x)−1σ(x)2x2 6= 1, the proof of (??) shows that we may assume v = 1 −
NrdA(x)−1σ(x)2x2. We then have

Φv(x
−1) = Trpσ

(
σ(x)−1x−1

)
−NrdA(x)−1 Trpσ

(
σ(x)x

)
.

Since Nrpσ
(
xσ(x)

)
= xσ(x)xσ(x), we get by (??) that

σ(x)−1x−1 = NrdA(x)−1xσ(x),

hence Φv(x
−1) = 0. Since every isotropic Pfister form is hyperbolic, it follows that

Φv + I4WqF = 0.

The main result in this part of the proof of Theorem (??) is the following:

(17.21) Proposition. Embedding GSp(A, σ) and SL1(A) in Γ by mapping g ∈
GSp(A, σ) to

(
µ(g), g

)
and a ∈ SL1(A) to (1, a), we have

kerασ = GSp(A, σ) · [A×, A×].

Proof : In view of (??), it suffices to show that ασ
(
µ(g), g

)
= 0 for all g ∈ GSp(A, σ)

and ασ(1, xyx
−1y−1) = 0 for all x, y ∈ A×.

The first relation is clear, either from the definition of ασ or from (??), since
ασ is a homomorphism. The second relation follows from the preceding lemma and
the equality

(1, xyx−1y−1) =
(
NrdA(xy), (xy)2

)
·
(
NrdA(x)−1, (y−1x−1y)2

)
·
(
NrdA(y)−1, y−2

)
.

We proceed to determine the kernel of the induced map

α : SL1(A)→ I3WqF/I
4WqF.

(17.22) Corollary. kerα = [A×, A×]. More precisely, every element in kerα is a

product of two commutators.
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Proof : The preceding proposition shows that [A×, A×] ⊂ kerα. To derive the
converse inclusion from (??), it suffices to show that every element g ∈ Sp(A, σ)
is a commutator. By (??), there is an involution which leaves g invariant, hence
there exists some x ∈ A× such that xσ(g)x−1 = g. Since σ(g) = g−1, it follows
that x(1 + g)x−1g = 1 + g. Therefore, if 1 + g is invertible, g is a commutator:

g = x(1 + g)−1x−1(1 + g).

If g = −1 and charF 6= 2, we have g = iji−1j−1, where (1, i, j, k) is a quaternion
basis of any quaternion subalgebra of A. The proof is thus complete if A is a division
algebra. If indA = 2, we still have to consider the case where 1 + g generates a
right ideal of reduced dimension 2. Denoting by Q a quaternion division algebra
which is Brauer-equivalent to A, we can find a representation A = M2(Q) such that
either

g =

(
−1 0
0 α

)

for some α ∈ Q such that NrdQ(α) = 1 or

g =

(
−1 β
0 −1

)

for some pure quaternion β 6= 0: see Exercise ??. In the first case, we have
α = α1α2α

−1
1 α−1

2 for some α1, α2 ∈ Q× since every quaternion of reduced norm 1
is a commutator (see Exercise ??); hence g = xyx−1y−1 where

x =

(
i 0
0 α1

)
, y =

(
j 0
0 α2

)
if charF 6= 2,

and

x =

(
1 0
0 α1

)
, y =

(
1 0
0 α2

)
if charF = 2.

In the second case, if charF 6= 2, pick a quaternion γ 6= 0 which anticommutes
with β. Then g has the following expression as a commutator:

g =

(
β −β2/2
0 β

) (
γ 0
0 γ

) (
β−1 1/2
0 β−1

) (
γ−1 0
0 γ−1

)
.

If charF = 2, pick γ ∈ Q× such that 1 + γ−1β 6= 0. Then

g =

(
1 γ
0 1

) (
1 + γ−1β 0

0 1

) (
1 −γ
0 1

) (
(1 + γ−1β)−1 0

0 1

)
.

We leave the case where A is split as an exercise (see Exercise ??).

The proof of Theorem (??) is now complete.

(17.23) Example. Let A = (a, b)F ⊗ (c, d)F be an arbitrary biquaternion algebra
over a field F of characteristic different from 2. Suppose F contains a primitive
fourth root of unity ζ. We then have ζ ∈ SL1(A), and we may compute α(ζ) as
follows.

Let (1, i, j, k) be the quaternion basis of (a, b)F , viewed as a subalgebra of
A, and let σ be the symplectic involution on A which restricts to the canonical
involution on (c, d)F and such that σ(i) = i, σ(j) = j and σ(k) = −k. By definition,
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α(ζ) = ασ(1, ζ) = Φ1 + I5F , since 11
−1

= −σ(ζ)ζ. A diagonalization of the form
Φ1 can be derived from (??):

Φ1 ' 〈〈−a,−b〉〉 · 〈〈c, d〉〉.
Since ζ is a square root of −1 in F , we have −a ≡ a mod F×2 and −b ≡ b mod F×2,
hence

α(ζ) = 〈〈a, b, c, d〉〉+ I5F.

It is then easy to give an example where α(ζ) 6= 0 (hence SK1(A) 6= 0): we may
start with any field F0 of characteristic different from 2 containing a primitive
fourth root of unity and take for F the field of rational fractions in independent
indeterminates a, b, c, d over F0.

17.B. Algebras with involution. The group SK1 discussed in the first sub-
section is based on the linear group SL1. Analogues of the reduced Whitehead
group are defined for other simple algebraic groups (see for instance Platonov-
Yanchevskĭı [?, p. 223]). We give here some basic results for algebras with involution
and refer to [?] and to Yanchevskĭı [?] for further results and detailed references.

We assume throughout that the characteristic of the base field F is different
from 2. For any central simple F -algebra A with involution σ we set Sym(A, σ)× for
the set of symmetric units. The central notion for the definition of analogues of the
reduced Whitehead group is the subgroup Σσ(A) of A× generated by Sym(A, σ)×.
It turns out that this subgroup is normal and depends only on the type of σ, as the
following proposition shows.

(17.24) Proposition. (1) The subgroup Σσ(A) is normal in A×.

(2) If σ, τ are involutions of the same type (orthogonal, symplectic or unitary) on

A, then Σσ(A) = Στ (A). More precisely, any σ-symmetric unit can be written as

the product of two τ -symmetric units and conversely.

(3) If σ is orthogonal, then Σσ(A) = A×. More precisely, every unit in A can be

written as the product of two σ-symmetric units.

Proof : (??) This readily follows from the equation

asa−1 =
(
asσ(a)

)(
σ(a)−1a−1

)

for a ∈ A× and s ∈ Sym(A, σ).
(??) Since σ and τ have the same type, (??) or (??) shows that τ = Int(u) ◦ σ

and Sym(A, τ) = u · Sym(A, σ) for some u ∈ Sym(A, σ)×. The last equation
shows that every element in Sym(A, τ) is a product of two σ-symmetric elements.
Interchanging the rôles of σ and τ shows that every element in Sym(A, σ) is a
product of two τ -symmetric elements.

(??) By (??), every unit x ∈ A× is invariant under some orthogonal involu-
tion τ . Let τ = Int(u) ◦ σ for some u ∈ Sym(A, σ)×; the equation τ(x) = x yields
σ(xu) = xu, hence x = (xu)u−1 is a decomposition of x into a product of two
symmetric units.

If A is a division algebra, we may also prove (??) by the following dimension
count argument due to Dieudonné [?, Theorem 3]: since dimF Sym(A, σ) > 1

2 degA,

we have Sym(A, σ) ∩
(
x Sym(A, σ)

)
6= {0} for all x ∈ A×. If s1, s2 ∈ Sym(A, σ)×

are such that s1 = xs2, then x = s1s
−1
2 , a product of two symmetric units.

The same kind of argument yields the following result for arbitrary involutions:
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(17.25) Proposition (Yanchevskĭı). Let (A, σ) be a central division algebra with

involution over F . Every nonzero element x ∈ A decomposes as x = zs with

s ∈ Sym(A, σ)× and z ∈ A× such that zσ(z) = σ(z)z.

Proof : We have A = Sym(A, σ)⊕Skew(A, σ) and 1 6∈ Skew(A, σ), hence dimension
count shows that

(
x Sym(A, σ)

)
∩

(
F ·1⊕Skew(A, σ)

)
6= {0}. Therefore, one can find

s0 ∈ Sym(A, σ)×, λ ∈ F and z0 ∈ Skew(A, σ) such that xs0 = λ+ z0. The element
z = λ+ z0 commutes with σ(z) = λ− z0, and satisfies x = zs for s = s−1

0 .

To investigate further the group Σσ(A), we now consider separately the cases
where the involution is unitary or symplectic.

Unitary involutions. Let (B, τ) be a central simple algebra with unitary
involution over a field F , and let K be the center of B.

(17.26) Proposition (Platonov-Yanchevskĭı). Suppose B is a division algebra.

Every commutator xyx−1y−1 ∈ [B×, B×] is a product of five symmetric elements.

In particular, [B×, B×] ⊂ Στ (B).

Proof : If x ∈ Sym(B, τ)×, the formula

xyx−1y−1 = x
(
yx−1τ(y)

)(
τ(y)−1y−1

)

shows that xyx−1y−1 is a product of three symmetric elements. For the rest of the
proof, we may thus assume that x 6∈ Sym(B, τ), hence

dimF

(
Sym(B, τ) + F · x

)
= 1 + 1

2 dimF B.

Therefore,
(
Sym(B, τ) + F · x

)
∩

(
Sym(B, τ)y

)
6= {0}, and we may find s1 ∈

Sym(B, τ), λ ∈ F and s2 ∈ Sym(B, τ)× such that

s1 + λx = s2y.

If s1 = 0, then xyx−1y−1 = s2ys
−1
2 y−1, and we are reduced to the case where

x ∈ Sym(B, τ)×. We may thus assume that s1 ∈ B×. A direct computation shows
that xyx−1y−1 is a product of five symmetric elements:

xyx−1y−1 = f1f2f3f4s2

where

f1 = xs−1
2 τ(x), f2 = τ(x)−1s1x

−1, f3 = (1 + λxs−1
1 )s−1

1 τ(1 + λxs−1
1 )

and f4 = τ(1 + λxs−1
1 )−1(1 + λxs−1

1 )−1.

The group

UK1(B) = B×/Στ(B)

is the unitary Whitehead group of B. The preceding proposition shows that this
group is a quotient of K1(B) = B×/[B×, B×]. We may also consider the group

Σ′
τ (B) = {x ∈ B× | NrdB(x) ∈ F× },

which obviously contains Στ (B). The factor group

USK1(B) = Σ′
τ (B)/Στ (B)

is the reduced unitary Whitehead group of B. The following proposition is an
analogue of a theorem of Wang:
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(17.27) Proposition (Yanchevskĭı). If B is a division algebra of prime degree,

USK1(B) = 0.

Proof : We first consider the case where degB is an odd prime p. Let x ∈ Σ′
τ (B)

and NrdB(x) = λ ∈ F×. Then NrdB(λ−1xp) = 1, hence λ−1xp ∈ [B×, B×] since
SK1(B) = 0, by a theorem of Wang [?] (see for example Pierce [?, 16.6]). It then
follows from (??) that xp ∈ Στ (B). On the other hand, we have NrdB

(
τ(x)−1x

)
=

1, hence, by the same theorem of Wang, τ(x)−1x ∈ [B×, B×]. Therefore, x2 =
xτ(x)

(
τ(x)−1x

)
∈ Στ (B). Since p is odd we may find u, v ∈ Z such that 2u+pv = 1;

then

x = (x2)u(xp)v ∈ Στ (B)

and the proposition is proved in the case where degB is odd.
If B is a quaternion algebra, Proposition (??) shows that Σ′

τ (B) is the Clifford
group of NK/F (B, γ), where γ is the canonical involution on B. On the other hand,

by (??) there is a canonical isomorphism NK/F (B) = EndF
(
Sym(B, τ)

)
, hence

Σ′
τ (B) is generated by Sym(B, τ). To make this argument more explicit, consider

the map i : Sym(B, τ)→M2(B) defined by

i(x) =

(
0 γ(x)
x 0

)
for x ∈ Sym(B, τ).

Since i(x)2 = NrdB(x), this map induces an F -algebra homomorphism

i∗ : C
(
Sym(B, τ),NrdB

)
→M2(B)

which is injective since Clifford algebras of even-dimensional nonsingular quadratic
spaces are simple. The image of i∗ is the F -subalgebra of invariant elements under
the automorphism α defined by

α

(
a11 a12

a21 a22

)
=

(
γ ◦ τ(a22) γ ◦ τ(a21)
γ ◦ τ(a12) γ ◦ τ(a11)

)
for aij ∈ B,

since α ◦ i(x) = i(x) for all x ∈ Sym(B, τ). Under i∗, the canonical gradation of
C

(
Sym(B, τ),NrdB

)
corresponds to the checker-board grading, hence i∗ restricts

to an isomorphism

i∗ : C0

(
Sym(B, τ),NrdB

) ∼−→
{ (

γ ◦ τ(b) 0
0 b

) ∣∣∣∣ b ∈ B
}
' B.

Under this isomorphism, the special Clifford group is mapped to Σ′
τ (B). From the

Cartan-Dieudonné theorem, it follows that every element in Γ+
(
Sym(B, τ),NrdB

)

is a product of two or four anisotropic vectors, hence for every b ∈ Σ′
τ (B) there

exist x1, . . . , xr ∈ Sym(B, τ) (with r = 2 or 4) such that
(
γ ◦ τ(b) 0

0 b

)
=

(
0 γ(x1)
x1 0

)
. . .

(
0 γ(xr)
xr 0

)
,

hence

b = x1γ(x2) or b = x1γ(x2)x3γ(x4).

This shows that Σ′
τ (B) = Στ (B), since Sym(B, τ) is stable under γ.
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Symplectic involutions. Let (A, σ) be central simple algebra with symplectic
involution over F . In view of (??), the reduced norm of every element in Sym(A, σ)
is a square. Let

R(A) = { a ∈ A× | NrdA(a) ∈ F×2 };
we thus have Σσ ⊂ R(A) and we define, after Yanchevskĭı [?, p. 437],

K1 Spin(A) = R(A)/Σσ(A)[A×, A×].

Note that R(A) is in general a proper subgroup of A×: this is clear if A is a
quaternion algebra; examples of degree 4 can be obtained as norms of quaternion
algebras by (??), since the equality R(A) = A× implies that the discriminant of
every orthogonal involution on A is trivial.

For every a ∈ A×, Proposition (??) shows that there is an involution Int(g) ◦σ
which leaves a invariant. We then have σ(a) = g−1ag, hence

a2 =
(
aσ(a)

)
(g−1a−1ga) ∈ Σσ(A)[A×, A×].

This shows that K1 Spin(A) is a 2-torsion abelian group.

(17.28) Proposition (Yanchevskĭı). K1 Spin(A) = 0 if degA ≤ 4.

Proof : Suppose first that A is a quaternion algebra. Let a ∈ R(A) and NrdA(a) =
α2 with α ∈ F×; then NrdA(α−1a) = 1. Since SK1(A) = 0 (see Exercise ??), we
have α−1a ∈ [A×, A×], hence

a = α(α−1a) ∈ Σσ(A)[A×, A×].

Suppose next that degA = 4. Recall from (??) the F -algebra isomorphism

i∗ : C
(
Sym(A, σ),Nrpσ

) ∼−→M2(A).

which maps x ∈ Sym(A, σ) to
(

0 x
x 0

)
∈ M2(A). Under this isomorphism, the gra-

dation of the Clifford algebra corresponds to the checker-board grading of M2(A),
and the canonical involution which is the identity on Sym(A, σ) corresponds to the
involution θ on M2(A) defined by

θ

(
a11 a12

a21 a22

)
=

(
σ(a22) −σ(a12)
−σ(a21) σ(a11)

)
.

Moreover, the special Clifford group Γ+
(
Sym(A, σ),Nrpσ

)
is mapped to the group

Γ =

{ (
λσ(a)−1 0

0 a

) ∣∣∣∣ λ ∈ F×, a ∈ A× and NrdA(a) = λ2

}
⊂ GL2(A).

The map Γ→ A× which carries(
λσ(a)−1 0

0 a

)
∈ Γ

to a ∈ A× maps Γ onto R(A). From the Cartan-Dieudonné theorem, it follows that
every element in Γ+

(
Sym(A, σ),Nrpσ

)
is a product of two, four, or six anisotropic

vectors in Sym(A, σ), hence for every
(
λσ(a)−1 0

0 a

)
∈ Γ

one can find x1, . . . , xr ∈ Sym(A, σ)×, with r = 2, 4, or 6, such that
(
λσ(a)−1 0

0 a

)
=

(
0 x1

x1 0

)
· · ·

(
0 xr
xr 0

)
.
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Therefore, every a ∈ R(A) can be written as a = x1x2 . . . xr−1xr for some x1, . . . ,
xr ∈ Sym(A, σ)×.

(17.29) Corollary. Let (D, σ) be a central division F -algebra with involution of

degree 4. Any element of the commutator subgroup [D×, D×] is a product of at

most

(1) two symmetric elements if σ is of orthogonal type,

(2) six symmetric elements if σ is of symplectic type,

(3) four symmetric elements if σ is of unitary type.

Proof : The claim follows from (??) if σ is orthogonal, from (??) if σ is symplectic
and from (??) if σ is unitary.

Exercises

1. Let Q be a quaternion algebra over an étale quadratic extensionK of a field F of
arbitrary characteristic. Show that the inverse of the Lie algebra isomorphism
ṅ∗ : c

(
N(Q)

) ∼−→ Q′ of (??) maps q ∈ Q′ to c
(
ιq⊗q0+ιq0⊗q−TrdQ(q)ιq0⊗q0

)
,

where q0 ∈ Q is an arbitrary quaternion such that TrdQ(q0) = 1.
2. Let Q1, Q2 be quaternion algebras over a field F of characteristic 2, with

canonical involutions γ1, γ2, and let (A, σ, f) = (Q1⊗Q2, γ1⊗γ2, f⊗). Consider
Symd(A, σ)0 = {x ∈ Symd(A, σ) | Trpσ(x) = 0 }. Suppose V1, V2 are 3-
dimensional subspaces such that Symd(A, σ)0 = V1 +V2 and that the products
v1v2 with v1 ∈ V1 and v2 ∈ V2 span the kernel of f . Show that V1 and
V2 are the spaces Q0

1 and Q0
2 of pure quaternions in Q1 and Q2. Conclude

that Q1 and Q2 are uniquely determined as subalgebras of A by the condition
(A, σ, f) = (Q1 ⊗Q2, γ1 ⊗ γ2, f⊗).

Hint : Show that if v1 = q11 + q21 ∈ V1 and v2 = q12 + q22 ∈ V2 with
q11, q12 ∈ Q0

1 and q21, q22 ∈ Q0
2, then v1v2 = v2v1 and f(v1v2) = [q11, q12] =

[q21, q22].
3. (Karpenko-Quéguiner [?]) Let (B, τ) be a central simple algebra with unitary

involution of degree 4. Let K be the center of B. Show that

(B, τ) = (Q1, τ1)⊗K (Q2, τ2)

for some quaternion subalgebras Q1, Q2 if and only if the discriminant algebra
D(B, τ) is split.

Hint : If D(B, τ) is split, use Theorem (??) to represent (B, τ) as the
even Clifford algebra of some quadratic space. For the “only if” part, use
Propositions (??) and (??).

4. Suppose charF 6= 2. Extensions of the form F [X,Y ]/(X2 − a, Y 2 − b) with a,
b ∈ F× are called biquadratic. Show that for every central simple F -algebra
of degree 6 with orthogonal involution σ of trivial discriminant, there exists an
étale biquadratic extension of F over which σ becomes hyperbolic. Deduce that
every central simple F -algebra of degree 4 is split by some étale biquadratic
extension of F . (This result is due to Albert [?, Theorem 11.9].)

5. Let A be a biquaternion F -algebra. Suppose A is split by an étale extension
of the form K1 ⊗K2, where K1, K2 are étale quadratic F -algebras. Show that
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there exist a1, a2 ∈ F× such that

A ' (K1, a1)F ⊗ (K2, a2)F .

Hint : Refine the argument used in the proof of Proposition (??).
6. Let σ, τ be distinct symplectic involutions on a biquaternion F -algebraA. Show

that dimF

(
Symd(A, σ)∩Symd(A, τ)

)
= 2. Show also that there is a quaternion

algebra B ⊂ A over some quadratic extension of F such that σ|B = τ |B is the
conjugation involution, and that the algebra B is uniquely determined by this
condition.

7. Let σ, τ , θ be symplectic involutions on a biquaternion F -algebra A. Show that
the invariants of these involutions are related by jσ(τ) = jτ (σ) and jσ(τ) +
jτ (θ) + jθ(σ) ∈ I3WqF . Use this result to show that if σ and τ are conjugate,
then jσ(θ) = jτ (θ).

8. Let σ be a symplectic involution on a biquaternion F -algebra A. Let

Symd(A, σ)0 = {x ∈ Symd(A, σ) | Trpσ(x) = 0 }
and let sσ : Symd(A, σ)0 → F be the squaring map. Show that ind(A) ≤ 2 if
and only if sσ is a subform of some (uniquely determined) 3-fold Pfister form
πσ . Suppose these conditions hold; then
(a) show that (A, σ) has a decomposition

(A, σ) =
(
M2(F ), σ1

)
⊗F (Q, γ)

for some quaternion algebra Q with canonical involution γ and some or-
thogonal involution σ1 on M2(F ), and that πσ = 〈〈disc σ1〉〉 ·NrdQ;

(b) for θ a hyperbolic involution on A, show that πσ = jθ(σ);
(c) show that G(A, σ) = G(πσ) = Sn(sσ).

Hint : The equality G(A, σ) = Sn(sσ) follows from (??) and G(A, σ) =
G(πσ) follows from (??) and (??).

9. Suppose charF 6= 2. Let K/F be an étale quadratic extension with non-
trivial automorphism ι and let δ ∈ K× be such that ι(δ) = −δ. Let (V, q)
be an odd-dimensional quadratic space over K with trivial discriminant and
let ζ ∈ C(V, q) be an orientation of (V, q). Define an F -linear map i : V →
M2

(
NK/F

(
C0(V, q)

))
by

i(x) =

(
0 −δ

(
ι(x · ζ)⊗ 1− 1⊗ (x · ζ)

)
ι(x · ζ)⊗ 1 + 1⊗ (x · ζ) 0

)

for x ∈ V . Show that the map i induces an F -algebra isomorphism:

i∗ : C
(
V, (trK/F )∗(〈δ〉 · q)

) ∼−→M2

(
NK/F

(
C0(V, q)

))
.

Use this result to give a direct proof of the fact that if Q is a quaternion K-
algebra and s : Q0 → K is the squaring map on the space of pure quaternions,
then

(
Q0, (trK/F )∗(〈δ〉 · s)

)
is an Albert quadratic space of NK/F (Q).

10. Suppose charF 6= 2. Let Q1, Q2 be quaternion F -algebras with canonical in-
volutions γ1, γ2 and let (A, θ) = (Q1, γ1)⊗F (Q2, γ2). Define a linear endomor-
phism p on Skew(A, θ) = (Q0

1⊗1)⊕(1⊗Q0
2) by p(x1⊗1+1⊗x2) = x1⊗1−1⊗x2

and a quadratic form q : Skew(A, θ) → F by q(x) = xp(x). Consider another
pair of quaternion F -algebras Q′

1, Q
′
2 and (A′, θ′) = (Q′

1, γ
′
1) ⊗F (Q′

2, γ
′
2), and

define p′, q′ on Skew(A′, θ′) as p, q were defined on Skew(A, θ). Show that
for every isomorphism f : (A, θ) ∼−→ (A′, θ′) there exists some λ ∈ F× such
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that f−1 ◦ p′ ◦ f = λp, hence f restricts to a similitude (Skew(A, θ), q) ∼−→(
Skew(A′, θ′), q′

)
with multiplier λ.

Hint : Use (??).
This exercise is inspired by Knus-Parimala-Sridharan [?, Theorem 3.4] and

Wadsworth [?]. It shows that the forms q and q′ are similar without using the
fact that they are Albert forms of A and A′.

11. Let σ be a symplectic involution on a biquaternion algebra A. Show that
the invariant jσ of symplectic involutions and the homomorphism ασ : Γ →
I3WqF/I

4WqF are related by

ασ
(
Nrpσ(v), v

)
= jσ

(
Int(v) ◦ σ

)
− 〈〈Nrpσ(v)〉〉 · Nrpσ +I4WqF

for all v ∈ Symd(A, σ)×.
12. Suppose charF 6= 2. Let A be a biquaternion division algebra and let x ∈

SL1(A).
(a) Let σ be an arbitrary symplectic involution and let L = F (

√
a) be a

quadratic extension of F in Sym(A, σ) which contains σ(x)x. Recall from
(??) that one can find b, c, d ∈ F× such that A ' (a, b)F ⊗ (c, d)F . Show
that L contains an element y such that σ(x)x = yy−1 where is the
nontrivial automorphism of L/F , and that

α(x) = 〈〈NL/F (y), b, c, d〉〉+ I5F.

(b) Suppose x is contained in a maximal subfield E ⊂ A which contains an
intermediate quadratic extension L = F (

√
a). Recall from (??) that A '

(a, b)F ⊗ (c, d)F for some b, c, d ∈ F×. Show that L contains an element y
such thatNE/L(x) = yy−1 where is the nontrivial automorphism of L/F ,
and that

α(x) = 〈〈NL/F (y), b, c, d〉〉+ I5F.

13. Let Q be a quaternion F -algebra. Show that every element in SL1(Q) is a
commutator, except if F = F2 (the field with two elements).

Hint : Argue as in (??). If q ∈ SL1(Q) and 1 + q is not invertible and
nonzero, then show that there is an isomorphism Q ∼−→M2(F ) which identifies

q with
(−1 1

0 −1

)
. Then q = xyx−1y−1 with x =

(
1 0
0 −1

)
and y =

(−1/2 1
−1 0

)
if

charF 6= 2, with x =
(
λ+1 0

0 λ

)
and y =

(
1 λ
0 1

)
if charF = 2 and λ 6= 0, 1.

14. Let Q be a quaternion division F -algebra and let (V, h) be a nonsingular her-
mitian space of dimension 2 over Q with respect to the canonical involution,
so that

(
EndQ(V ), σh

)
is a central simple algebra of degree 4 with symplectic

involution. Let g ∈ Sp(V, h) be such that IdV + g is not invertible, and let
v1 ∈ V be a nonzero vector such that g(v1) = −v1.
(a) If v1 is anisotropic, show that for each vector v2 ∈ V which is orthogonal

to v1, there is some α ∈ Q such that g(v2) = v2α and NrdQ(α) = 1.
(b) If v1 is isotropic, show that for each isotropic vector v2 ∈ V such that

h(v1, v2) = 1, there is some β ∈ Q such that g(v2) = v1β − v2 and
TrdQ(β) = 0.

15. Let b be a nonsingular alternating bilinear form on a 4-dimensional F -vector
space V and let g ∈ Sp(V, b) be such that IdV + g is not invertible.
(a) Show that ker(IdV + g) = im(IdV + g)⊥.
(b) If the rank of IdV + g is 1 or 2, show that V = V1 ⊕ V2 for some 2-

dimensional subspaces V1, V2 which are preserved under g, hence g can be
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represented by the matrix

g1 =




−1 1 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


 or g2 =




−1 1 0 0
0 −1 0 0
0 0 −1 1
0 0 0 −1


 .

Use Exercise ?? to conclude that g is a commutator if F 6= F2. If charF =
2, show that g1 = a1b1a

−1
1 b−1

1 and g2 = a2b2a
−1
2 b−1

2 , where

a1 =




1 0 1 0
0 1 0 0
0 0 1 0
0 0 0 1


 , b1 =




1 0 0 0
0 1 0 0
0 1 1 0
0 0 0 1


 ,

a2 =




0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0


 , b2 =




1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1


 .

(c) If IdV + g has rank 3, show that g can be represented by the matrix



−1 1 0 0
0 −1 1 0
0 0 −1 1
0 0 0 −1




(with respect to a suitable basis).
If charF 6= 2, let

y =




−3 −8 22 −12
−3 −9 23 −12
−3 −9 22 −11
−4 −5 16 −8


 .

Show that (x−1)3(x+1) is the minimum and the characteristic polynomial
of both matrices gy and y. Conclude that there is an invertible matrix x
such that gy = xyx−1, hence g is a commutator. If charF = 2, let

z =




0 1 0 0
1 0 0 1
1 0 1 1
1 1 1 0


 .

Show that x4 + x3 + x2 + x + 1 is the minimum and the characteristic
polynomial of both matrices gz and z. As in the preceding case, conclude
that g is a commutator.

16. Let A be a biquaternion F -algebra with symplectic involution σ. Write simply
V = Symd(A, σ), V 0 = Symd(A, σ)0 and q = Nrpσ, and let q0 be the restriction
of q to V 0. Using (??), show that there is a canonical isomorphism SL1(A) '
Spin(V, q) which maps the subgroup [A×, A×] to the subgroup

Spin′(V, q) = Spin(V 0, q0) · [Ω,Γ+(V 0, q0)]

where Ω = Ω
(
EndF (V ), σq , fq

)
is the extended Clifford group. Deduce that

the subgroup Spin′(V, q) ⊂ Spin(V, q) is generated by the subgroups Spin(U)
for all the proper nonsingular subspaces U ⊂ V .
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Hint : Use the proof of (??).
17. Suppose charF 6= 2 and F contains a primitive 4th root of unity ζ. Let A =

(a, b)F ⊗ (c, d)F be a biquaternion division F -algebra.
(a) Show that if A is cyclic (i.e., if A contains a maximal subfield which is

cyclic over F ), then 〈〈a, b, c, d〉〉 is hyperbolic.
(b) (Morandi-Sethuraman [?, Proposition 7.3]) Suppose d is an indeterminate

over some subfield F0 containing a, b, c, and F = F0(d). Show that A is
cyclic if and only if 〈〈a, b, c〉〉 is hyperbolic.
Hint : If 〈〈a, b, c〉〉 is hyperbolic, the following equation has a nontrivial
solution in F0:

a(x2
1 + cx2

2) + b(y2
1 + cy2

2)− ab(z2
1 + cz2

2) = 0.

Let e = 2
√
c(ax1x2 + by1y2− abz1z2) ∈ F0(

√
c). Show that F0(

√
c)(
√
e) is

cyclic over F0 and splits (a, b)F (
√
c), hence also A.

Notes

§??. If charF 6= 2, an alternative way to define the canonical isomorphism
N ◦C(A, σ) ' (A, σ) for (A, σ) ∈ D2 (in (??)) is to refine the fundamental re-
lation (??) by taking the involutions into account. As pointed out in the notes
for Chapter ??, one can define a nonsingular hermitian form H ′ on the left A-
submodule B′(A, σ) ⊂ B(A, σ) of invariant elements under the canonical involution
ω and show that the canonical isomorphism ν ′ of (??) restricts to an isomorphism
of algebras with involution:

NZ/F
(
C(A, σ), σ

) ∼−→
(
EndAB

′(A, σ), σH′
)

where Z is the center of the Clifford algebra C(A, σ). Since degA = 4, dimension
count shows that the canonical map b : A→ B(A, σ) induces an isomorphism of A-
modules A ∼−→ B′(A, σ). Moreover, under this isomorphism, H ′(a1, a2) = 2a1σ(a2)
for a1, a2 ∈ A. Therefore, b induces a canonical isomorphism

(A, σ) ∼−→
(
EndAB

′(A, σ), σH′
)
.

Similarly, in Theorem (??) the canonical isomorphism D ◦C(A, σ) ' (A, σ) for
(A, σ) ∈ D3 can be derived from properties of the bimodule B(A, σ). Define a left
C(A, σ)⊗Z C(A, σ)-module structure on B(A, σ) by

(c1 ⊗ c2) � u = c1 ∗ u · σ(c2) for c1, c2 ∈ C(A, σ), u ∈ B(A, σ).

If g ∈ C(A, σ)⊗Z C(A, σ) is the Goldman element of the Clifford algebra, the map
C(A, σ)⊗Z C(A, σ)→ B(A, σ) which carries ξ to ξ � 1b induces an isomorphism of
left C(A, σ) ⊗Z C(A, σ)-modules

[C(A, σ) ⊗Z C(A, σ)](1 − g) ∼−→ B(A, σ).

We thus get a canonical isomorphism

λ2C(A, σ) ' EndC(A,σ)⊗ZC(A,σ)B(A, σ).

Using (??), we may identify the right-hand side with A⊗F Z and use this identifi-
cation to get a canonical isomorphism D

(
C(A, σ), σ

)
' A.

In the proofs of Theorems (??) and (??), it is not really necessary to consider
the split cases separately if charF = 0; one can instead use results on the extension
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of Lie algebra isomorphisms in Jacobson [?, Ch. 10, §4] to see directly that the

canonical Lie algebra isomorphisms ṅ◦ 1
2c,

1
2c◦ṅ, λ̇2◦ 1

2c and 1
2c◦λ̇2 extend (uniquely)

to isomorphisms of the corresponding algebras with involution (see Remarks (??)
and (??)).

The fact that a central simple algebra of degree 4 with orthogonal involution
decomposes into a tensor product of stable quaternion subalgebras if and only if
the discriminant of the involution is trivial (Corollary (??) and Proposition (??))
was proved by Knus-Parimala-Sridharan [?, Theorem 5.2], [?]. (The paper [?] deals
with Azumaya algebras over rings in which 2 is invertible, whereas [?] focuses on
central simple algebras, including the characteristic 2 case).

The description of groups of similitudes of quadratic spaces of dimension 3, 4,
5 and 6 dates back to Van der Waerden [?] and Dieudonné [?, §3]. The case of
quadratic spaces over rings was treated by Knus [?, §3] and by Knus-Parimala-
Sridharan [?, §6] (see also Knus [?, Ch. 5]). Clifford groups of algebras of degree 4
or 6 with orthogonal involution are determined in Merkurjev-Tignol [?, 1.4.2, 1.4.3].
§??. Albert forms are introduced in Albert [?]. Theorem 3 of that paper yields

the criterion for the biquaternion algebra A = (a, b)F ⊗(c, d)F to be a division alge-
bra in terms of the associated quadratic form q = 〈a, b,−ab,−c,−d, cd〉. (See (??).)
The definition of the form q thus depends on a particular decomposition of the bi-
quaternion algebra A. The fact that quadratic forms associated to different decom-
positions are similar was first proved by Jacobson [?, Theorem 3.12] using Jordan
structures, and later by Knus [?, Proposition 1.14] and Mammone-Shapiro [?] us-
ing the algebraic theory of quadratic forms. (See also Knus-Parimala-Sridharan [?,
Theorem 4.2].) Other proofs of Albert’s Theorem (??) were given by Pfister [?,
p. 124] and Tamagawa [?] (see also Seligman [?, App. C]). A notion of Albert form
in characteristic 2 is discussed in Mammone-Shapiro [?]. Note that the original
version of Jacobson’s paper [?] does not cover the characteristic 2 case adequately;
see the reprinted version in Jacobson’s Collected Mathematical Papers [?], where
the characteristic is assumed to be different from 2.

From the definition of the quadratic form q = 〈a, b,−ab,−c,−d, cd〉 associated
to A = (a, b)F ⊗ (c, d)F , it is clear that q is isotropic if and only if the quaternion
algebras (a, b)F and (c, d)F have a common maximal subfield. Thus Corollary (??)
easily follows from Albert’s Theorem (??). The proof given by Albert in [?] is more
direct and also holds in characteristic 2. Another proof (also valid in characteris-
tic 2) was given by Sah [?]. If the characteristic is 2, the result can be made more
precise: if a tensor product of two quaternion division algebras is not a division
algebra, then the two quaternion algebras have a common maximal subfield which
is a separable extension of the center. This was first shown by Draxl [?]. The proofs
given by Knus [?] and by Tits [?] work in all characteristics, and yield the more
precise result in characteristic 2.

The fact that G(q) = F×2 · NrdA(A×) for an Albert form q of a biquaternion
algebra A is already implicit in Van der Waerden [?, pp. 21–22] and Dieudonné [?,
Nos 28, 30, 34]. Knus-Lam-Shapiro-Tignol [?] gives other characterizations of that
group. In particular, it is shown that this group is also the set of discriminants of
orthogonal involutions on A; see Parimala-Sridharan-Suresh [?] for another proof
of that result.

If σ is a symplectic involution on a biquaternion algebra A, the (Albert) quad-
ratic form Nrpσ defined on the space Symd(A, σ) is the generic norm of Symd(A, σ),
viewed as a Jordan algebra, see Jacobson [?]. This is the point of view from which
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results on Albert forms are derived in Jacobson [?, Ch. 6, §4]. The invariant jσ(τ)
of symplectic involutions is defined in a slightly different fashion in Knus-Lam-
Shapiro-Tignol [?, §3]. See (??) for the relation between jσ(τ) and Rost’s higher
cohomological invariants.

If σ is an orthogonal involution on a biquaternion algebraA, the linear endomor-
phism pσ of Skew(A, σ) was first defined by Knus-Parimala-Sridharan [?], [?] (see
also Knus [?, Ch. 5]), who called it the pfaffian adjoint because of its relation with
the pfaffian. Pfaffian adjoints for algebras of degree greater than 4 are considered
in Knus-Parimala-Sridharan [?]. If degA = 2m, the pfaffian adjoint is a polynomial
map of degree m− 1 from Skew(A, σ) to itself. Knus-Parimala-Sridharan actually
treat orthogonal and symplectic involutions simultaneously (and in the context of
Azumaya algebras): if σ is a symplectic involution on a biquaternion algebra A,
the pfaffian adjoint is the endomorphism of Sym(A, σ) defined in §??.

Further results on Albert forms can be found in Lam-Leep-Tignol [?], where
maximal subfields of a biquaternion algebra are investigated; in particular, neces-
sary and sufficient conditions for the cyclicity of a biquaternion algebra are given
in that paper.

§??. Suppose charF 6= 2. As observed in the proof of (??), the group Γ =
{ (λ, a) ∈ F××A× | λ2 = NrdA(a) }, for A a biquaternion F -algebra, can be viewed
as the special Clifford group of the quadratic space

(
Sym(A, σ),Nrpσ

)
for any

symplectic involution σ. The map ασ : Γ→ I4F/I5F can actually be defined on the
full Clifford group Γ

(
Sym(A, σ),Nrpσ

)
by mapping the generators v ∈ Sym(A, σ)×

to Φv + I5F . Showing that this map is well-defined is the main difficulty of this
approach.

The homomorphism α : SK1(A)→ I4F/I5F (for A a biquaternion algebra) was
originally defined by Rost in terms of Galois cohomology, as a map α′ : SK1(A)→
H4(F, µ2). Rost also proved exactness of the following sequence:

0→ SK1(A)
α′−→ H4(F, µ2)

h−→ H4(F (q), µ2)

where h is induced by scalar extension to the function field of an Albert form
q, see Merkurjev [?, Theorem 4] and Kahn-Rost-Sujatha [?]. The point of view
of quadratic forms developed in §?? is equivalent, in view of the isomorphism
e4 : I4F/I5F ∼−→ H4(F, µ2) proved by Rost (unpublished) and more recently by
Voevodsky, which leads to a commutative diagram

0 −−−−→ SK1(A)
α−−−−→ I4F/I5F

i−−−−→ I4F (q)/I5F (q)
∥∥∥ e4

y e4

y

0 −−−−→ SK1(A)
α′−−−−→ H4(F, µ2)

h−−−−→ H4
(
F (q), µ2

)
.

The fact that the sequences above are zero-sequences readily follows from functo-
riality of α and α′, since SK1(A) = 0 if A is not a division algebra or, equivalently
by (??), if q is isotropic. In order to derive exactness of the sequence above from
exactness of the sequence below, only “elementary” information on the map e4 is
needed: it is sufficient to use the fact that on Pfister forms e4 is well-defined (see
Elman-Lam [?, 3.2]) and injective (see Arason-Elman-Jacob [?, Theorem 1]). In
fact, (??) shows that the image of α consists of 4-fold Pfister forms (modulo I5F )
and, on the other hand, the following proposition also shows that every element in
ker i is represented by a single 4-fold Pfister form:
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(17.30) Proposition. If q is an Albert form which represents 1, then

ker i = {π + I5F | π is a 4-fold Pfister form containing q }.
Proof : By Fitzgerald [?, Corollary 2.3], the kernel of the scalar extension map
WF →WF (q) is an ideal generated by 4-fold and 5-fold Pfister forms. Therefore,
every element in ker i is represented by a sum of 4-fold Pfister forms which become
hyperbolic over F (q). By the Cassels-Pfister subform theorem (see Scharlau [?,
Theorem 4.5.4]) the Pfister forms which satisfy this condition contain a subform
isometric to q. If π1, π2 are two such 4-fold Pfister forms, then the Witt index of
π1 ⊥ −π2 is at least dim q = 6. By Elman-Lam [?, Theorem 4.5] it follows that
there exists a 3-fold Pfister form $ and elements a1, a2 ∈ F× such that

π1 = $ · 〈〈a1〉〉 and π2 = $ · 〈〈a2〉〉.
Therefore,

π1 + π2 ≡ $ · 〈〈a1a2〉〉 mod I5F.

By induction on the number of terms, it follows that every sum of 4-fold Pfister
forms representing an element of ker i is equivalent modulo I5F to a single 4-fold
Pfister form.

The image of the map ασ can be described in a similar way. Since ασ = 0 if σ
is hyperbolic or, equivalently by (??), if the 5-dimensional form sσ is isotropic, it
follows by functoriality of ασ that imασ lies in the kernel of the scalar extension
map to F (sσ). One can use the arguments in the proof of Merkurjev [?, Theorem 4]
to show that this inclusion is an equality, so that the following sequence is exact:

Γσ
ασ−−→ I4F/I5F −→ I4F (sσ)/I

5F (sσ).

Corollary (??) shows that every element in [A×, A×] is a product of two com-
mutators. If A is split, every element in [A×, A×] can actually be written as a single
commutator, as was shown by Thompson [?]. On the other hand, Kursov [?] has
found an example of a biquaternion algebra A such that the group [A×, A×] does
not consist of commutators, hence our lower bound for the number of factors is
sharp, in general.

The first example of a biquaternion algebra A such that SK1(A) 6= 0 is due
to Platonov [?]. For a slightly different relation between the reduced Whitehead
group of division algebras and Galois cohomology of degree 4, see Suslin [?].

Along with the group Σσ(A), the group generated by skew-symmetric units in a
central simple algebra with involution (A, σ) is also discussed in Yanchevskĭı [?]. If
σ is orthogonal, it is not known whether this subgroup is normal in A×. Triviality of
the group USK1(B, τ) can be shown not only for division algebras of prime degree,
but also for division algebras whose degree is square-free; indeed, the exponent of
USK1(B, τ) divides degB/p1 . . . pr, where p1, . . . , pr are the prime factors of degB:
see Yanchevskĭı [?]. Examples where the group K1 Spin(A) is not trivial are given
in Monastyrny̆ı-Yanchevskĭı [?]. See also Yanchevskĭı [?] for the relation between
K1 Spin and decomposability of involutions.
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CHAPTER V

Algebras of Degree Three

The main topic of this chapter is central simple algebras of degree 3 with
involutions of the second kind and their étale (commutative) subalgebras. To every
involution of the second kind on a central simple algebra of degree 3, we attach
a 3-fold Pfister form, and we show that this quadratic form classifies involutions
up to conjugation. Involutions whose associated Pfister form is hyperbolic form
a distinguished conjugacy class; we show that such an involution is present on
every central simple algebra of degree 3 with involution of the second kind, and we
characterize distinguished involutions in terms of étale subalgebras of symmetric
elements.

We start with Galois descent, followed by a general discussion of étale and
Galois algebras. These are tools which will also be used in subsequent chapters.

§18. Étale and Galois Algebras

Throughout this section, let F be an arbitrary base field, let Fsep be a separable
closure of F and let Γ be the absolute Galois group of F :

Γ = Gal(Fsep/F ).

The central theme of this section is a correspondence between étale F -algebras
and Γ-sets, which is set up in the first subsection. This correspondence is then
restricted to Galois algebras and torsors. The final subsection demonstrates the
special features of étale algebras of dimension 3.

The key tool for the correspondence between étale F -algebras and Γ-sets is the
following Galois descent principle. Let V0 be a vector space over F . The left action
of Γ on V = V0 ⊗ Fsep defined by γ ∗ (u⊗ x) = u⊗ γ(x) for u ∈ V0 and x ∈ Fsep is
semilinear with respect to Γ, i.e.,

γ ∗ (vx) = (γ ∗ v)γ(x)

for v ∈ V and x ∈ Fsep; the action is also continuous since for every vector v ∈ V
there is a finite extension M of F in Fsep such that Gal(Fsep/M) acts trivially on v.

The space V0 can be recovered as the set of fixed elements of V under Γ. More
generally:

(18.1) Lemma (Galois descent). Let V be a vector space over Fsep. If Γ acts

continuously on V by semilinear automorphisms, then

V Γ = { v ∈ V | γ ∗ v = v for all γ ∈ Γ }

is an F -vector space and the map V Γ ⊗ Fsep → V , v ⊗ x 7→ vx, is an isomorphism

of Fsep-vector spaces.

279
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Proof : It is clear that V Γ is an F -vector space. To prove surjectivity of the canon-
ical map V Γ ⊗ Fsep → V , consider an arbitrary vector v ∈ V . Since the action of
Γ on V is continuous, we may find a finite Galois extension M of F in Fsep such
that Gal(Fsep/M) acts trivially on v. Let (mi)1≤i≤n be a basis of M over F and
let (γi)1≤i≤n be a set of representatives of the left cosets of Gal(Fsep/M) in Γ, so
that the orbit of v in V consists of γ1 ∗ v, . . . , γn ∗ v, with γ1 ∗ v = v, say. Let

vj =

n∑

i=1

(γi ∗ v)γi(mj) for j = 1, . . . , n.

Since for every γ ∈ Γ and i ∈ {1, . . . , n} there exists ` ∈ {1, . . . , n} and γ ′ ∈
Gal(Fsep/M) such that γγi = γ`γ

′, the action of γ on the right-hand side of the
expression above merely permutes the terms of the sum, hence vj ∈ V Γ for j =
1, . . . , n. On the other hand, the (n × n) matrix

(
γi(mj)

)
1≤i,j≤n with entries in

M is invertible, since γ1, . . . , γn are linearly independent over M in EndF (M)
(Dedekind’s lemma). If (m′

ij)1≤i,j≤n is the inverse matrix, we have

v = γ1 ∗ v =

n∑

i=1

vim
′
i1,

hence v lies in the image of the canonical map V Γ ⊗ Fsep → V .
To prove injectivity of the canonical map, it suffices to show that F -linearly

independent vectors in V Γ are mapped to Fsep-linearly independent vectors in V .
Suppose the contrary; let v1, . . . , vr ∈ V Γ be F -linearly independent vectors for
which there exist nonzero elements m1, . . . , mr ∈ Fsep such that

∑r
i=1 vimi =

0. We may assume r is minimal, r > 1, and m1 = 1. The mi are not all in
F , hence we may assume m2 6∈ F . Choose γ ∈ Γ satisfying γ(m2) 6= m2. By
applying γ to both sides of the linear dependence relation and subtracting, we
obtain

∑r
i=2 vi

(
γ(mi) − mi

)
= 0, a nontrivial relation with fewer terms. This

contradiction proves that the canonical map V Γ ⊗ Fsep → V is injective.

(18.2) Remark. Assume that V in Lemma (??) admits an Fsep-bilinear multipli-
cationm : V ×V → V and that Γ acts on V by (semilinear) algebra automorphisms;
then the restriction of m to V Γ is a multiplication on V Γ, hence V Γ is an F -algebra.

Similarly, if V = V1 ⊃ V2 ⊃ · · · ⊃ Vr is a finite flag in V , i.e., Vi is a subspace
of Vj for i > j, and the action of Γ on V preserves V2, . . . , Vr , then the flag in V
descends to a flag V Γ = V Γ

1 ⊃ V Γ
2 ⊃ · · · ⊃ V Γ

r in V Γ.

18.A. Étale algebras. Let AlgF be the category of unital commutative asso-
ciative F -algebras with F -algebra homomorphisms as morphisms. For every finite
dimensional commutative F -algebra L, let X(L) be the set of F -algebra homomor-
phisms from L to Fsep:

X(L) = HomAlgF
(L, Fsep).

For any field extension K/F , let LK be the K-algebra L ⊗F K. If K ⊂ Fsep,
then Fsep also is a separable closure of K, and every F -algebra homomorphism
L→ Fsep extends in a unique way to a K-algebra homomorphism LK → Fsep; we
may therefore identify:

X(LK) = X(L).

The following proposition characterizes étale F -algebras:
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(18.3) Proposition. For a finite dimensional commutative F -algebra L, the fol-

lowing conditions are equivalent :

(1) for every field extension K/F , the K-algebra LK is reduced, i.e., LK does not

contain any nonzero nilpotent elements;

(2) L ' K1 × · · · ×Kr for some finite separable field extensions K1, . . . , Kr of F ;

(3) LFsep ' Fsep × · · · × Fsep;
(4) the bilinear form T : L× L→ F induced by the trace:

T (x, y) = TL/F (xy) for x, y ∈ L
is nonsingular;

(5) cardX(L) = dimF L;

(6) cardX(L) ≥ dimF L.

If the field F is infinite, the conditions above are also equivalent to:

(7) L ' F [X ]/(f) for some polynomial f ∈ F [X ] which has no multiple root in an

algebraic closure of F .

References : The equivalences (??)⇔ (??)⇔ (??) are proven in Bourbaki [?, Théo-
rème 4, p. V.34] and (??)⇔ (??)⇔ (??) in [?, Corollaire, p. V.29]. The equivalence
of (??) with the other conditions is shown in [?, Proposition 1, p. V.47]. (See also
Waterhouse [?, §6.2] for the equivalence of (??), (??), (??), and (??)). Finally,
to see that (??) characterizes étale algebras over an infinite field, see Bourbaki [?,
Proposition 3, p. V.36 and Proposition 1, p. V.47].

If L ' F [X ]/(f), every F -algebra homomorphism L→ Fsep is uniquely deter-
mined by the image of X , which is a root of f in Fsep. Therefore, the maps in X(L)
are in one-to-one correspondence with the roots of f in Fsep.

A finite dimensional commutative F -algebra satisfying the equivalent condi-
tions above is called étale. From characterizations (??) or (??), it follows that étale
algebras remain étale under scalar extension.

Another characterization of étale algebras is given in Exercise ??.

Étale F -algebras and Γ-sets. If L is an étale F -algebra of dimension n,
Proposition (??) shows that X(L) consists of exactly n elements. The absolute
Galois group Γ = Gal(Fsep/F ) acts on this set as follows:

γξ = γ ◦ ξ for γ ∈ Γ, ξ ∈ X(L).

This action is continuous since it factors through a finite quotient Gal(M/F ) of Γ:
we may take for M any finite extension of F in Fsep which contains ξ(L) for all
ξ ∈ X(L).

The construction of X(L) is functorial, since every F -algebra homomorphism
of étale algebras f : L1 → L2 induces a Γ-equivariant map X(f) : X(L2)→ X(L1)
defined by

ξX(f) = ξ ◦ f for ξ ∈ X(L2).

Therefore, writing EtF for the category of étale F -algebras and SetsΓ for the cate-
gory of finite sets endowed with a continuous left action of Γ, there is a contravariant
functor

X : EtF → SetsΓ

which associates to L ∈ EtF the Γ-set X(L).
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We now define a functor in the opposite direction. For X ∈ SetsΓ, consider
the Fsep-algebra Map(X,Fsep) of all functions X → Fsep. For f ∈ Map(X,Fsep)
and ξ ∈ X , it is convenient to write 〈f, ξ〉 for the image of ξ under f . We define a
semilinear action of Γ on Map(X,Fsep): for γ ∈ Γ and f ∈ Map(X,Fsep), the map
γf is defined by

〈γf, ξ〉 = γ
(
〈f, γ−1

ξ〉
)

for ξ ∈ X.
If γ acts trivially on X and fixes 〈f, ξ〉 for all ξ ∈ X , then γf = f . Therefore, the
action of Γ on Map(X,Fsep) is continuous. Let Map(X,Fsep)Γ be the F -algebra of
Γ-invariant maps. This algebra is étale, since by Lemma (??)

Map(X,Fsep)Γ ⊗F Fsep 'Map(X,Fsep) ' Fsep × · · · × Fsep.

Every equivariant map g : X1 → X2 of Γ-sets induces an F -algebra homomor-
phism

M(g) : Map(X2, Fsep)Γ → Map(X1, Fsep)Γ

defined by
〈
M(g)(f), ξ

〉
= 〈f, ξg〉 for f ∈ Map(X2, Fsep)Γ, ξ ∈ X1,

hence there is a contravariant functor

M : SetsΓ → EtF

which maps X ∈ SetsΓ to Map(X,Fsep)
Γ.

(18.4) Theorem. The functors X and M define an anti-equivalence of categories

EtF ≡ SetsΓ .

Under this anti-equivalence, the dimension for étale F -algebras corresponds to the

cardinality for Γ-sets : if L ∈ EtF corresponds to X ∈ SetsΓ, i.e., X ' X(L) and

L 'M(X), then

dimF L = cardX.

Moreover, the direct product (resp. tensor product) of étale F -algebras corresponds

to the disjoint union (resp. direct product) of Γ-sets : for L1, . . . , Lr étale F -

algebras,

X(L1 × · · · × Lr) = X(L1) q · · · qX(Lr)

(where q is the disjoint union) and

X(L1 ⊗ · · · ⊗ Lr) = X(L1)× · · · ×X(Lr),

where Γ acts diagonally on the right side of the last equality.

Proof : For L ∈ EtF , the canonical F -algebra homomorphism

Φ: L→ Map
(
X(L), Fsep

)Γ

carries ` ∈ L to the map e` defined by

〈e`, ξ〉 = ξ(`) for ξ ∈ X(L).

Since cardX(L) = dimF L, we have dimFsep Map
(
X(L), Fsep

)
= dimF L, hence

dimF Map
(
X(L), Fsep

)Γ
= dimF L
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by Lemma (??). In order to prove that Φ is an isomorphism, it therefore suffices
to show that Φ is injective. Suppose ` ∈ L is in the kernel of Φ. By the definition
of e`, this means that ξ(`) = 0 for every F -algebra homomorphism L → Fsep. It
follows that the isomorphism LFsep ' Fsep × · · · × Fsep of (??) maps ` ⊗ 1 to 0,
hence ` = 0.

For X ∈ SetsΓ, there is a canonical Γ-equivariant map

Ψ: X → X
(
Map(X,Fsep)Γ

)
,

which associates to ξ ∈ X the homomorphism eξ defined by

eξ(f) = 〈f, ξ〉 for f ∈ Map(X,Fsep)Γ.

Since X
(
Map(X,Fsep)Γ

)
= X

(
Map(X,Fsep)ΓFsep

)
= X

(
Map(X,Fsep)

)
, the map Ψ

is easily checked to be bijective. The other equations are clear.

Since direct product decompositions of an étale F -algebra L correspond to
disjoint union decompositions of X(L), it follows that L is a field if and only if
X(L) is indecomposable, which means that Γ acts transitively on X(L). At the
other extreme, L ' F × · · · × F if and only if Γ acts trivially on X(L).

Traces and norms. Let L be an étale F -algebra of dimension n. Besides the
trace TL/F and the norm NL/F , we also consider the quadratic map

SL/F : L→ F

which yields the coefficient of Xn−2 in the generic polynomial (see (??)).

(18.5) Proposition. Let X(L) = {ξ1, . . . , ξn}. For all ` ∈ L,

TL/F (`) =
∑

1≤i≤n
ξi(`), SL/F (`) =

∑

1≤i<j≤n
ξi(`)ξj(`), NL/F (`) = ξ1(`) · · · ξn(`).

Proof : It suffices to check these formulas after scalar extension to Fsep. We may
thus assume L = F ×· · ·×F and ξi(x1, . . . , xn) = xi. With respect to the canonical
basis of L over F , multiplication by (x1, . . . , xn) is given by the diagonal matrix
with entries x1, . . . , xn, hence the formulas are clear.

When the étale algebra L is fixed, we set T and bS for the symmetric bilinear
forms on L defined by

T (x, y) = TL/F (xy) and bS(x, y) = SL/F (x+ y)− SL/F (x)− SL/F (y)(18.6)

for all x, y ∈ L. From (??), it follows that

T (x, y) =
∑

1≤i≤n
ξi(x)ξi(y) and bS(x, y) =

∑

1≤i6=j≤n
ξi(x)ξj(y).

Therefore,

T (x, y) + bS(x, y) = TL/F (x)TL/F (y) for x, y ∈ L.(18.7)

(This formula also follows readily from the general relations among the coefficients
of the characteristic polynomial: see (??).) By putting y = x in this equation, we
obtain:

TL/F (x2) + 2SL/F (x) = TL/F (x)2 for x ∈ L,

hence the quadratic form TL/F (x2) is singular if charF = 2 and n ≥ 2. Proposi-
tion (??) shows however that the bilinear form T is always nonsingular.
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Let L0 be the kernel of the trace map:

L0 = {x ∈ L | TL/F (x) = 0 }

and let S0 : L0 → F be the restriction of SL/F to L0. We write bS0 for the polar

form of S0.

(18.8) Proposition. Suppose L is an étale F -algebra of dimension n.

(1) The bilinear form bS is nonsingular if and only if charF does not divide n− 1.
If charF divides n− 1, then the radical of bS is F .

(2) The bilinear form bS0 is nonsingular if and only if charF does not divide n. If

charF divides n, then the radical of bS0 is F .

(3) If charF = 2, the quadratic form L/F is nonsingular if and only if n 6≡ 1
mod 4; the quadratic form S0 is nonsingular if and only if n 6≡ 0 mod 4.

Proof : (??) It suffices to prove the statements after scalar extension to Fsep. We
may thus assume that L = F × · · · × F , hence

bS
(
(x1, . . . , xn), (y1, . . . , yn)

)
=

∑

1≤i6=j≤n
xiyj

for x1, . . . , xn, y1, . . . , yn ∈ F . The matrix M of bS with respect to the canonical
basis of L satisfies:

M + 1 = (1)1≤i,j≤n.

Therefore, (M + 1)2 = n(M + 1). If charF divides n, it follows that M + 1 is
nilpotent. If charF does not divide n, the matrix n−1(M + 1) is an idempotent of
rank 1. In either case, the characteristic polynomial of M + 1 is Xn−1(X − n), so
that of M is (X + 1)n−1

(
(X + 1)− n

)
; hence,

detM = (−1)n−1(n− 1).

It follows that bS is nonsingular if and only if charF does not divide n− 1.
If charF divides n− 1, then the rank of M is n− 1, hence the radical of bS has

dimension 1. This radical contains F , since (??) shows that for α ∈ F and x ∈ L,

bS(α, x) = TL/F (α)TL/F (x)− TL/F (αx) = (n− 1)αTL/F (x) = 0.

Therefore, the radical of bS is F .
(??) Equation (??) shows that bS0(x, y) = −T (x, y) for all x, y ∈ L0 and that

bS(α, x) = 0 = T (α, x) for α ∈ F and x ∈ L0.
If charF does not divide n, then L = F ⊕L0; the elements in the radical of bS0

then lie also in the radical of T . Since T is nonsingular, it follows that bS0 must
also be nonsingular.

If charF divides n, then F is in the radical of bS0 . On the other hand, the first
part of the proposition shows that bS is nonsingular, hence the radical of bS0 must
have dimension 1; this radical is therefore F .

(??) Assume charF = 2. From (??), it follows that the quadratic form SL/F is
singular if and only if n is odd and SL/F (1) = 0. Similarly, it follows from (??) that

S0 is singular if and only if n is even and SL/F (1) = 0. Since SL/F (1) = 1
2n(n− 1),

the equality SL/F (1) = 0 holds for n odd if and only if n ≡ 1 mod 4; it holds for n
even if and only if n ≡ 0 mod 4.
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The separability idempotent. Let L be an étale F -algebra. Recall from
(??) that we may identify X(L ⊗F L) = X(L) × X(L): for ξ, η ∈ X(L), the
F -algebra homomorphism (ξ, η) : L⊗F L→ Fsep is defined by

(ξ, η)(x ⊗ y) = ξ(x)η(y) for x, y ∈ L.(18.9)

Theorem (??) yields a canonical isomorphism:

L⊗F L ∼−→ Map
(
X(L)×X(L), Fsep

)Γ
.

The characteristic function on the diagonal of X(L)×X(L) is invariant under Γ; the
corresponding element e ∈ L⊗F L is called the separability idempotent of L. This
element is indeed an idempotent since every characteristic function is idempotent.
By definition, e is determined by the following condition: for all ξ, η ∈ X(L),

(ξ, η)(e) =

{
0 if ξ 6= η,

1 if ξ = η.

(18.10) Proposition. Let µ : L ⊗F L → L be the multiplication map. The sepa-

rability idempotent e ∈ L⊗F L is uniquely determined by the following conditions :
µ(e) = 1 and e(x⊗ 1) = e(1⊗ x) for all x ∈ L. The map ε : L→ e(L⊗F L) which

carries x ∈ L to e(x⊗ 1) is an F -algebra isomorphism.

Proof : In view of the canonical isomorphisms

L ∼−→ Map
(
X(L), Fsep

)Γ
and L⊗F L ∼−→ Map

(
X(L)×X(L), Fsep

)Γ
,

the conditions µ(e) = 1 and e(x⊗ 1) = e(1⊗ x) for all x ∈ L are equivalent to

ξ
(
µ(e)

)
= 1 and (ξ, η)

(
e(x⊗ 1)

)
= (ξ, η)

(
e(1⊗ x)

)

for all ξ, η ∈ X(L) and x ∈ L. We have

(ξ, η)
(
e(x⊗ 1)

)
= (ξ, η)(e)ξ(x) and (ξ, η)

(
e(1⊗ x)

)
= (ξ, η)(e)η(x).

Therefore, the second condition holds if and only if (ξ, η)(e) = 0 for ξ 6= η.
On the other hand, ξ

(
µ(e)

)
= (ξ, ξ)(e), hence the first condition is equivalent

to: (ξ, ξ)(e) = 1 for all ξ ∈ X(L). This proves that the separability idempotent is
uniquely determined by the conditions of the proposition.

The map ε is injective since µ◦ε = IdL. It is also surjective since the properties
of e imply:

e(x⊗ y) = e(xy ⊗ 1) = ε(xy)

for all x, y ∈ L.

(18.11) Example. Let L = F [X ]/(f) for some polynomial

f = Xn + an−1X
n−1 + · · ·+ a1X + a0

with no repeated roots in an algebraic closure of F . Let x = X + (f) be the image
of X in L and let

tm =

m−1∑

i=0

xi ⊗ xm−1−i ∈ L⊗F L for m = 1, . . . , n.

(In particular, t1 = 1.) The hypothesis on f implies that its derivative f ′ is rela-
tively prime to f , hence f ′(x) ∈ L is invertible.

We claim that the separability idempotent of L is

e = (tn + an−1tn−1 + · · ·+ a1t1)
(
f ′(x)−1 ⊗ 1

)
.
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Indeed, we have µ(e) = 1 since

µ(tn + an−1tn−1 + · · ·+ a1t1) = nxn−1 + (n− 1)an−1x
n−1 + · · ·+ a1 = f ′(x).

Also, tm(x⊗ 1− 1⊗ x) = xm ⊗ 1− 1⊗ xm, hence

(tn + an−1tn−1 + · · ·+ a1t1)(x⊗ 1− 1⊗ x) =
(
f(x)− a0

)
⊗ 1− 1⊗

(
f(x)− a0

)
= 0.

Therefore, e(x⊗ 1− 1⊗ x) = 0 and, for m = 1, . . . , n− 1,

e(xm ⊗ 1− 1⊗ xm) = e(x⊗ 1− 1⊗ x)tm = 0.

Since (xi)0≤i≤n−1 is a basis of L over F , it follows that e(`⊗ 1− 1⊗ `) = 0 for all
` ∈ L, proving the claim.

An alternate construction of the separability idempotent is given in the follow-
ing proposition:

(18.12) Proposition. Let L be an étale F -algebra of dimension n = dimF L and

let (ui)1≤i≤n be a basis of L. Suppose (vi)1≤i≤n is the dual basis for the bilinear

form T of (??), in the sense that

T (ui, vj) = δij (Kronecker delta) for i, j = 1, . . . , n.

The element e =
∑n

i=1 ui ⊗ vi ∈ L⊗ L is the separability idempotent of L.

Proof : Since (ui)1≤i≤n and (vi)1≤i≤n are dual bases, we have for x ∈ L
x =

∑n
i=1 uiT (vi, x) =

∑n
i=1 viT (ui, x).(18.13)

In particular, vj =
∑

i uiT (vi, vj) and uj =
∑
i viT (ui, uj) for all j = 1, . . . , n,

hence

e =
∑

i,j ui ⊗ ujT (vi, vj) =
∑

i,j vi ⊗ vjT (ui, uj).

Using this last expression for e, we get for all x ∈ L:

e(x⊗ 1) =
∑

i,j vix⊗ vjT (ui, uj).

By (??), we have vix =
∑

k ukT (vix, vk), hence

e(x⊗ 1) =
∑

i,j,k uk ⊗ vjT (ui, uj)T (vix, vk).

Since T (vix, vk) = TL/F (vixvk) = T (vi, vkx), we have
∑

i T (ui, uj)T (vix, vk) = T
(∑

i uiT (vi, vkx), uj
)

= T (vkx, uj),

hence

e(x⊗ 1) =
∑

j,k uk ⊗ vjT (vkx, uj).

Similarly, by using the expression e =
∑
i,j ui ⊗ ujT (vi, vj), we get for all x ∈ L:

e(1⊗ x) =
∑

i,k ui ⊗ vkT (ukx, vi).

It follows that e(x⊗ 1) = e(1⊗ x) since for all α, β = 1, . . . , n,

T (vαx, uβ) = TL/F (vαxuβ) = T (uβx, vα).

By (??) we also have for all x ∈ L and for all j = 1, . . . , n

xuj =
∑
i uiT (vi, xuj) =

∑
i uiTL/F (xujvi),
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hence TL/F (x) =
∑

i TL/F (xuivi). It follows that for all x ∈ L
T (x, 1) = TL/F (x) = TL/F

(∑
i xuivi

)
= T

(
x,

∑
i uivi

)
,

hence
∑

i uivi = 1 since the bilinear form T is nonsingular. This proves that
µ(e) = 1. We have thus shown that e satisfies the conditions of (??).

18.B. Galois algebras. In this subsection, we consider étale F -algebras L
endowed with an action by a finite group G of F -automorphisms. Such algebras are
called G-algebras over F . We write LG for the subalgebra of G-invariant elements:

LG = {x ∈ L | g(x) = x for all g ∈ G }.
In view of the anti-equivalence EtF ≡ SetsΓ, there is a canonical isomorphism of
groups:

AutF (L) = AutSetsΓ

(
X(L)

)

which associates to every automorphism α of the étale algebra L the Γ-equivariant
permutation of X(L) mapping ξ ∈ X(L) to ξα = ξ ◦ α. Therefore, an action of G
on L amounts to an action of G by Γ-equivariant permutations on X(L).

(18.14) Proposition. Let L be a G-algebra over F . Then, LG = F if and only if

G acts transitively on X(L).

Proof : Because of the canonical isomorphism Φ: L ∼−→ Map
(
X(L), Fsep

)Γ
, for x ∈

L the condition x ∈ LG is equivalent to: ξ ◦ g(x) = ξ(x) for all ξ ∈ X(L), g ∈ G.
Since ξ◦g = ξg , this observation shows that Φ carries LG onto the set of Γ-invariant
mapsX(L)→ Fsep which are constant on eachG-orbit ofX(L). On the other hand,
Φ maps F onto the set of Γ-invariant maps which are constant on X(L). Therefore,
if G has only one orbit on X(L), then LG = F .

To prove the converse, it suffices to show that if G has at least two orbits,
then there is a nonconstant Γ-invariant map X(L) → Fsep which is constant on
each G-orbit of X(L). Since G acts by Γ-equivariant permutations on X(L), the
group Γ acts on the G-orbits of X(L). If this action is not transitive, we may find
a disjoint union decomposition of Γ-sets X(L) = X1 q X2 where X1 and X2 are
preserved by G. The map f : X(L)→ Fsep defined by

〈f, ξ〉 =
{

0 if ξ ∈ X1

1 if ξ ∈ X2

is Γ-invariant and constant on each G-orbit of X(L).
For the rest of the proof, we may thus assume that Γ acts transitively on the

G-orbits of X(L). Then, fixing an arbitrary element ξ0 ∈ X(L), we have

X(L) = { γξg0 | γ ∈ Γ, g ∈ G }.
Since G has at least two orbits in X(L), there exists ρ ∈ Γ such that ρξ0 does not
lie in the G-orbit of ξ0. Let a ∈ Fsep satisfy ρ(a) 6= a and γ(a) = a for all γ ∈ Γ
such that γξ0 belongs to the G-orbit of ξ0. We may then define a Γ-invariant map
f : X(L)→ Fsep by

〈f, γξg0 〉 = γ(a) for all γ ∈ Γ, g ∈ G.

The map f is clearly constant on each G-orbit of X(L), but it is not constant since
f(ρξ0) 6= f(ξ0).
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(18.15) Definitions. Let L be a G-algebra over F for which the order of G equals
the dimension of L:

|G| = dimF L.

The G-algebra L is said to be Galois if LG = F . By the preceding proposition, this
condition holds if and only if G acts transitively on X(L). Since |G| = cardX(L),
it then follows that the action of G is simply transitive: for all ξ, η ∈ X(L) there is
a unique g ∈ G such that η = ξg . In particular, the action of G on L and on X(L)
is faithful.

A Γ-set endowed with a simply transitive action of a finite group G is called a
G-torsor (or a principal homogeneous set under G). Thus, a G-algebra L is Galois
if and only if X(L) is a G-torsor. (A more general notion of torsor, allowing a
nontrivial action of Γ on G, will be considered in §??.)

(18.16) Example. Let L be a Galois G-algebra over F . If L is a field, then Galois
theory shows G = AutAlgF

(L). Therefore, a Galois G-algebra structure on a field L
exists if and only if the extension L/F is Galois with Galois group isomorphic to G;
the G-algebra structure is then given by an isomorphism G ∼−→ Gal(L/F ).

If L is not a field, then it may be a Galois G-algebra over F for various non-
isomorphic groups G. For instance, suppose L = K ×K where K is a quadratic
Galois field extension of F with Galois group {Id, α}. We may define an action of
Z/4Z on L by

(1 + 4Z)(k1, k2) =
(
α(k2), k1

)
for k1, k2 ∈ K.

This action gives L the structure of a Galois Z/4Z-algebra over F . On the other
hand, L also is a Galois (Z/2Z)× (Z/2Z)-algebra over F for the action:

(1 + 2Z, 0)(k1, k2) = (k2, k1), (0, 1 + 2Z)(k1, k2) =
(
α(k1), α(k2)

)

—but not for the action

(1 + 2Z, 0)(k1, k2) =
(
α(k1), k2

)
, (0, 1 + 2Z)(k1, k2) =

(
k1, α(k2)

)
,

since LG = F × F .

More generally, if M/F is a Galois extension of fields with Galois group H , the
following proposition shows that one can define on M r = M×· · ·×M a structure of
Galois G-algebra over F for every group G containing H as a subgroup of index r:

(18.17) Proposition. Let G be a finite group and H ⊂ G a subgroup. For every

Galois H-algebra M over F there is a Galois G-algebra IndGHM over F and a

homomorphism π : IndGHM →M such that π
(
h(x)

)
= h

(
π(x)

)
for all x ∈ IndGHM ,

h ∈ H. There is an F -algebra isomorphism:

IndGHM 'M × · · · ×M︸ ︷︷ ︸
[G:H]

.

Moreover, the pair (IndGHM,π) is unique in the sense that if L is another Galois G-

algebra over F and τ : L→M is a homomorphism such that τ
(
h(x)

)
= h

(
τ(x)

)
for

all x ∈ L and h ∈ H, then there is an isomorphism of G-algebras m : L→ IndGHM
such that τ = π ◦m.

Proof : Let

IndGHM = { f ∈ Map(G,M) | 〈f, hg〉 = h
(
〈f, g〉

)
for h ∈ H, g ∈ G },
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which is an F -subalgebra of Map(G,M). If g1, . . . , gr ∈ G are representatives of
the right cosets of H in G, so that

G = Hg1 q · · · qHgr,
then there is an isomorphism of F -algebras: IndGHM → Mr which carries every

map in IndGHM to the r-tuple of its values on g1, . . . , gr. Therefore,

dimF IndGHM = r dimF M = |G|.
The algebra IndGHM carries a natural G-algebra structure: for f ∈ IndGHM and
g ∈ G, the map g(f) is defined by the equation:

〈g(f), g′〉 = 〈f, g′g〉 for g′ ∈ G.

From this definition, it follows that (IndGHM)G = F , proving IndGHM is a Galois G-

algebra over F . There is a homomorphism π : IndGHM → M such that π
(
h(x)

)
=

h
(
π(x)

)
for all x ∈ L, h ∈ H , given by

π(f) = 〈f, 1〉.
If L is a Galois G-algebra and τ : L → M is a homomorphism as above, we may
define an isomorphism m : L→ IndGHM by mapping ` ∈ L to the map m` defined
by

〈m`, g〉 = τ
(
g(`)

)
for g ∈ G.

Details are left to the reader.

It turns out that every Galois G-algebra over F has the form IndGHM for some
Galois field extension M/F with Galois group isomorphic to H :

(18.18) Proposition. Let L be a Galois G-algebra over F and let e ∈ L be a

primitive idempotent, i.e., an idempotent which does not decompose into a sum of

nonzero idempotents. Let H ⊂ G be the stabilizer subgroup of e and let M = eL.

The algebra M is a Galois H-algebra and a field, and there is an isomorphism of

G-algebras :

L ' IndGHM.

Proof : Since e is primitive, the étale algebra M has no idempotent other than 0
and 1, hence (??) shows that M is a field. The action of G on L restricts to an
action of H on M . Let e1, . . . , er be the various images of e under the action of G,
with e = e1, say. Since each ei is a different primitive idempotent, the sum of the
ei is an idempotent in LG = F , hence e1 + · · ·+ er = 1 and therefore

L = e1L× · · · × erL.
Choose g1, . . . , gr ∈ G such that ei = gi(e); then gi(M) = eiL, hence the fields
e1L, . . . , erL are all isomorphic to M and

dimF L = r dimF M.

On the other hand, the coset decomposition G = g1H q · · · q grH shows that
|G| = r |H |, hence

dimF M = |H |.
To complete the proof that M is a Galois H-algebra, we must show that MH = F .
Suppose e` ∈MH , for some ` ∈ L; then

∑r
i=1 gi(e`) ∈ LG = F , hence

e
(∑r

i=1 gi(e`)
)
∈ eF.
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Since g1 ∈ H and egi(e) = e1ei = 0 for i 6= 1, we have

e
(∑r

i=1 gi(e`)
)

= e`,

hence e` ∈ eF and MH = F .
Multiplication by e defines an F -algebra homomorphism τ : L→M such that

τ
(
h(x)

)
= h

(
π(x)

)
for all x ∈ L, hence (??) yields a G-algebra isomorphism L '

IndGHM .

Galois algebras and torsors. Let G–GalF denote the category of Galois G-
algebras over F , where the maps are the G-equivariant homomorphisms, and let
G–TorsΓ be the category of Γ-sets with a G-torsor structure (for an action of G
on the right commuting with the action of Γ on the left) where the maps are Γ-
and G-equivariant functions. As observed in (??), we have X(L) ∈ G–TorsΓ for all
L ∈ G–GalF . This construction defines a contravariant functor

X : G–GalF → G–TorsΓ.

To obtain a functor M : G–TorsΓ → G–GalF , we define a G-algebra structure on the
étale algebra Map(X,Fsep)Γ for X ∈ G–TorsΓ: for g ∈ G and f ∈ Map(X,Fsep),
the map g(f) : X → Fsep is defined by

〈
g(f), ξ

〉
= 〈f, ξg〉 for ξ ∈ X .

Since the actions of Γ and G on X commute, it follows that the actions on the
algebra Map(X,Fsep) also commute, hence the action of G restricts to an action
on Map(X,Fsep)Γ. The induced action on X

(
Map(X,Fsep)Γ

)
coincides with the

action of G on X under the canonical bijection Ψ: X ∼−→ X
(
Map(X,Fsep)Γ

)
, hence

Map(X,Fsep)Γ is a Galois G-algebra over F for X ∈ G–TorsΓ. We let M(X) =
Map(X,Fsep)Γ, with the G-algebra structure defined above.

(18.19) Theorem. The functors X and M define an anti-equivalence of cate-

gories :

G–GalF ≡ G–TorsΓ.

Proof : For L ∈ EtF and X ∈ SetsΓ, canonical isomorphisms are defined in the
proof of (??):

Φ: L ∼−→ Map
(
X(L), Fsep

)Γ
, Ψ: X ∼−→ X

(
Map(X,Fsep)Γ

)
.

To establish the theorem, it suffices to verify that Φ and Ψ are G-equivariant if
L ∈ G–GalF and X ∈ G–TorsΓ, which is easy. (For Ψ, this was already observed
above).

The discriminant of an étale algebra. The Galois closure and the discrim-
inant of an étale F -algebra are defined by a construction involving its associated
Γ-set. For X a Γ-set of n elements, let Σ(X) be the set of all permutations of a list
of the elements of X :

Σ(X) = { (ξ1, . . . , ξn) | ξ1, . . . , ξn ∈ X , ξi 6= ξj for i 6= j }.
This set carries the diagonal action of Γ:

γ(ξ1, . . . , ξn) = (γξ1, . . . ,
γξn) for γ ∈ Γ

and also an action of the symmetric group Sn:

(ξ1, . . . , ξn)
σ = (ξσ(1), . . . , ξσ(n)) for σ ∈ Sn.
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Clearly, Σ(X) is a torsor under Sn:

Σ(X) ∈ Sn–TorsΓ,

and the projections on the various components define Γ-equivariant maps

πi : Σ(X)→ X

for i = 1, . . . , n.
Let ∆(X) be the set of orbits of Σ(X) under the action of the alternating

group An, with the induced action of Γ:

∆(X) = Σ(X)/An ∈ SetsΓ .

This Γ-set has two elements.
The anti-equivalences EtF ≡ SetsΓ and Sn–GalF ≡ Sn–TorsΓ yield correspond-

ing constructions for étale algebras. If L is an étale algebra of dimension n over F ,
we set

Σ(L) = Map
(
Σ

(
X(L)

)
, Fsep

)Γ
,(18.20)

a Galois Sn-algebra over F with n canonical embeddings ε1, . . . , εn : L ↪→ Σ(L)
defined by the relation

〈
εi(`), (ξ1, . . . , ξn)

〉
= ξi(`) for i = 1, . . . , n, ` ∈ L, (ξ1, . . . , ξn) ∈ Σ

(
X(L)

)
.

We also set

∆(L) = Map
(
∆

(
X(L)

)
, Fsep

)Γ
,

a quadratic étale algebra over F which may alternately be defined as

∆(L) = Σ(L)An .

From the definition of ∆
(
X(L)

)
, it follows that an element γ ∈ Γ acts trivially on

this set if and only if the induced permutation ξ 7→ γξ of X(L) is even. Therefore,
the kernel of the action of Γ on ∆

(
X(L)

)
is the subgroup Γ0 ⊂ Γ which acts by

even permutations on X(L), and

∆(L) '
{
F × F if Γ0 = Γ,

(Fsep)Γ0 if Γ0 6= Γ.
(18.21)

The algebra Σ(L) is called the Galois Sn-closure of the étale algebra L and
∆(L) is called the discriminant of L.

(18.22) Example. Suppose L is a field; it is then a separable extension of degree n
of F , by (??). We relate Σ(L) to the (Galois-theoretic) Galois closure of L.

Number the elements of X(L):

X(L) = {ξ1, . . . , ξn}
and let M be the subfield of Fsep generated by ξ1(L), . . . , ξn(L):

M = ξ1(L) · · · ξn(L) ⊂ Fsep.

Galois theory shows M is the Galois closure of each of the fields ξ1(L), . . . , ξn(L).
The action of Γ on X(L) factors through an action of the Galois group Gal(M/F ).
Letting H = Gal(M/F ), we may therefore identify H with a subgroup of Sn: for
h ∈ H and i = 1, . . . , n we define h(i) ∈ {1, . . . , n} by

hξi = h ◦ ξi = ξh(i).
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We claim that

Σ(L) ' IndSn

H M as Sn-algebras.

(In particular, Σ(L) ' M if H = Sn). The existence of such an isomorphism
follows from (??) if we show that there is a homomorphism τ : Σ(L) → M such
that τ

(
h(f)

)
= h

(
τ(f)

)
for all f ∈ Σ(L), h ∈ H .

For f ∈ Σ(L) = Map
(
Σ

(
X(L)

)
, Fsep

)Γ
, set

τ(f) =
〈
f, (ξ1, . . . , ξn)

〉
.

The right side lies in M since γξi = ξi for all γ ∈ Gal(Fsep/M). For h ∈ H and
f ∈ Σ(L), we have

τ
(
h(f)

)
=

〈
h(f), (ξ1, . . . , ξn)

〉
=

〈
f, (ξ1, . . . , ξn)h

〉
=

〈
f, (ξh(1), . . . , ξh(n))

〉
.

On the other hand, since f is invariant under the Γ-action on Map
(
Σ

(
X(L)

)
, Fsep

)
,

h
(
τ(f)

)
= h

(〈
f, (ξ1, . . . , ξn)

〉)
=

〈
f, h(ξ1, . . . , ξn)

〉
.

Since h(ξ1, . . . , ξn) = (hξ1, . . . ,
hξn) = (ξh(1), . . . , ξh(n)), the claim is proved.

(18.23) Example. Suppose L = F [X ]/(f) where f is a polynomial of degree n
with no repeated roots in an algebraic closure of F . We give an explicit description
of ∆(L).

Let x = X + (f) be the image of X in L and let x1, . . . , xn be the roots of f
in Fsep. An F -algebra homomorphism L → Fsep is uniquely determined by the
image of x, which must be one of the xi. Therefore, X(L) = {ξ1, . . . , ξn} where
ξi : L→ Fsep maps x to xi.

If charF 6= 2, an element γ ∈ Γ induces an even permutation of X(L) if and
only if

γ

( ∏

1≤i<j≤n
(xi − xj)

)
=

∏

1≤i<j≤n
(xi − xj),

since ∏

1≤i<j≤n
(xi − xj) =

∏

1≤i<j≤n

(
ξi(x)− ξj(x)

)

and

γ

( ∏

1≤i<j≤n
(xi − xj)

)
=

∏

1≤i<j≤n

(
γξi(x) − γξj(x)

)
.

By (??), it follows that

∆(L) ' F [T ]/(T 2 − d)
where d =

∏
1≤i<j≤n(xi − xj)2 ∈ F .

If charF = 2, the condition that γ induces an even permutation of X(L)
amounts to γ(s) = s, where

s =
∑

1≤i<j≤n

xi
xi + xj

,

hence

∆(L) ' F [T ]/(T 2 + T + d)

where d = s2 + s =
∑

1≤i<j≤n
xixj

x2
i +x2

j
∈ F .
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The following proposition relates the discriminant ∆(L) to the determinant of
the trace forms on L. Recall from (??) that the bilinear form T on L is nonsin-
gular; if charF = 2, Proposition (??) shows that the quadratic form SL/F on L

is nonsingular if dimF L is even and the quadratic form S0 on L0 = kerTL/F is
nonsingular if dimF L is odd.

(18.24) Proposition. Let L be an étale F -algebra of dimension n.
If charF 6= 2,

∆(L) ' F [t]/(t2 − d)
where d ∈ F× represents the determinant of the bilinear form T .

If charF = 2,

∆(L) ' F [t]/(t2 + t+ a)

where a ∈ F represents the determinant of the quadratic form SL/F if n is even

and a+ 1
2 (n− 1) represents the determinant of the quadratic form S0 if n is odd.

Proof : LetX(L) = {ξ1, . . . , ξn} and let Γ0 ⊂ Γ be the subgroup which acts onX(L)
by even permutations, so that ∆(L) is determined up to F -isomorphism by (??).
The idea of the proof is to find an element u ∈ Fsep satisfying the following condi-
tions:

(a) if charF 6= 2:

γ(u) =

{
u if γ ∈ Γ0,

−u if γ ∈ Γ r Γ0,

and u2 ∈ F× represents detT ∈ F×/F×2.
(b) if charF = 2:

γ(u) =

{
u if γ ∈ Γ0,

u+ 1 if γ ∈ Γ r Γ0,

and ℘(u) = u2 + u ∈ F represents detSL/F ∈ F/℘(F ) if n is even, u2 +

u+ 1
2 (n− 1) represents detS0 ∈ F/℘(F ) if n is odd.

The proposition readily follows, since in each case F (u) = (Fsep)Γ0 .
Suppose first that charF 6= 2. Let (ei)1≤i≤n be a basis of L over F . Consider

the matrix

M =
(
ξi(ej)

)
1≤i,j≤n ∈Mn(Fsep)

and

u = detM ∈ Fsep.

For γ ∈ Γ we have γ(u) = det
[(
γξi(ej)

)
1≤i,j≤n

]
. Since an even permutation of the

rows of a matrix does not change its determinant and an odd permutation changes
its sign, it follows that γ(u) = u if γ ∈ Γ0 and γ(u) = −u if γ ∈ Γ r Γ0. Moreover,
by (??) we have:

M t ·M =
(∑n

k=1 ξk(ei)ξk(ej)
)
1≤i,j≤n =

(
T (ei, ej)

)
1≤i,j≤n,

hence u2 represents detT . This completes the proof in the case where charF 6= 2.
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Suppose next that charF = 2 and n is even: n = 2m. Let (ei)1≤i≤n be a
symplectic basis of L for the bilinear form bS , so that the matrix of bS with respect
to this basis is

A =



J 0

. . .

0 J


 where J =

(
0 1
1 0

)
.

Assume moreover that e1 = 1. For i, j = 1, . . . , n, define

bij =

{∑
1≤k<`≤n ξk(ei)ξ`(ej) if i > j,

0 if i ≤ j.
Let B = (bij)1≤i,j≤n ∈Mn(Fsep) and let

u = tr(A−1B) =
∑m

i=1 b2i,2i−1.

Under the transposition permutation of ξ1, . . . , ξn which exchanges ξr and ξr+1

and fixes ξi for i 6= r, r + 1, the element bij is replaced by bij + ξr(ei)ξr+1(ej) +
ξr(ej)ξr+1(ei), hence u becomes u+ ε where

ε =
∑m
i=1

(
ξr(e2i)ξr+1(e2i−1) + ξr(e2i−1)ξr+1(e2i)

)
.

Claim. ε = 1.

Since (ei)1≤i≤n is a symplectic basis of L for the bilinear form bS , it follows
from (??) that TL/F (e2) = 1 and TL/F (ei) = 0 for i 6= 2. The dual basis for the
bilinear form T is then (fi)1≤i≤n where

f1 = e1 + e2, f2 = e1, and f2i−1 = e2i, f2i = e2i−1 for i = 2, . . . , m.

Proposition (??) shows that
∑n

i=1 ei ⊗ fi ∈ L ⊗ L is the separability idempotent
of L. From the definition of this idempotent, it follows that

(ξr, ξr+1)
(∑n

i=1 ei ⊗ fi
)

=
∑n
i=1 ξr(ei)ξr+1(fi) = 0.

(See (??) for the notation.) On the other hand, the formulas above for f1, . . . , fn
show:

∑n
i=1 ei ⊗ fi = e1 ⊗ e1 +

∑m
i=1(e2i ⊗ e2i−1 + e2i−1 ⊗ e2i).

Since e1 = 1, the claim follows.
Since the symmetric group is generated by the transpositions (r, r + 1), the

claim shows that u is transformed into u+ 1 by any odd permutation of ξ1, . . . , ξn
and is fixed by any even permutation. Therefore,

γ(u) =

{
u if γ ∈ Γ0,

u+ 1 if γ ∈ Γ r Γ0.

We proceed to show that u2 + u represents detSL/F ∈ F/℘(F ).

Let C =
(∑

1≤k<`≤n ξk(ei)ξ`(ej)
)
1≤i,j≤n ∈Mn(Fsep) and let

D = C +B +Bt.

We have D = (dij)1≤i,j≤n where

dij =





0 if i > j,∑
1≤k<`≤n ξk(ei)ξ`(ei) = SL/F (ei) if i = j,∑
1≤k<`≤n

(
ξk(ei)ξ`(ej) + ξk(ej)ξ`(ei)

)
= bS(ei, ej) if i < j,
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hence D ∈Mn(F ) is a matrix of the quadratic form SL/F with respect to the basis

(ei)1≤i≤n and D +Dt = A. Therefore, s2(A
−1D) ∈ F represents the determinant

of SL/F . Since D = C +B +Bt, Lemma (??) yields

s2(A
−1D) = s2(A

−1C) + ℘
(
tr(A−1B)

)
= s2(A

−1C) + u2 + u.

To complete the proof, it suffices to show s2(A
−1C) = 0.

Let M =
(
ξi(ej)

)
1≤i,j≤n ∈Mn(Fsep) and let V = (vij)1≤i,j≤n where

vij =

{
0 if i ≥ j,
1 if i < j.

The matrix M is invertible, since M t ·M =
(
T (ei, ej)

)
1≤i,j≤n and T is nonsingular.

Moreover, C = M t · V ·M , hence A = C + Ct = M t(V + V t)M and therefore

s2(A
−1C) = s2

(
(V + V t)−1V

)
.

Observe that (V + V t + 1)2 = 0, hence (V + V t)−1 = V + V t. It follows that

s2
(
(V + V t)−1V

)
= s2

(
(V + V t)V

)
= s2

(
(V + V t + 1)V + V

)
.

Using the relations between coefficients of characteristic polynomials (see (??)), we
may expand the right-hand expression to obtain:

s2
(
(V + V t)−1V

)
= s2

(
(V + V t + 1)V

)
+ s2(V ) +

tr
(
(V + V t + 1)V

)
tr(V ) + tr

(
(V + V t + 1)V 2

)
.

Since V +V t + 1 has rank 1, we have s2
(
(V +V t +1)V

)
= 0. Since V is nilpotent,

we have tr(V ) = s2(V ) = 0. A computation shows that tr
(
(V + V t + 1)V 2

)
= 0,

hence s2
(
(V +V t)−1V

)
= 0 and the proof is complete in the case where charF = 2

and n is even.
Assume finally that charF = 2 and n is odd: n = 2m + 1. Let (ei)1≤i≤n−1

be a symplectic basis of L0 for the bilinear form bS0 . We again denote by A
the matrix of the bilinear form with respect to this basis and define a matrix
B = (bij)1≤i,j≤n−1 ∈Mn−1(Fsep) by

bij =

{∑
1≤k<`≤n ξk(ei)ξ`(ej) if i > j,

0 if i ≤ j.
Let

u = tr(A−1B) =
∑m

i=1 b2i,2i−1.

In order to extend (ei)1≤i≤n−1 to a basis (ei)1≤i≤n of L, define en = 1. Since
bS0(x, y) = T (x, y) for all x, y ∈ L0, by (??), the dual basis (fi)1≤i≤n for the
bilinear form T is given by

f2i−1 = e2i, f2i = e2i−1 for i = 1, . . . , m, fn = en = 1.

Proposition (??) shows that the separability idempotent of L is

e =
∑m

i=1(e2i ⊗ e2i−1 + e2i−1 ⊗ e2i) + en ⊗ en
hence for r = 1, . . . , n− 2,

∑m
i=1

(
ξr(e2i)ξr+1(e2i−1) + ξr(e2i−1)ξr+1(e2i)

)
= ξr(en)ξr+1(en) = 1.
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The same argument as in the preceding case then shows

γ(u) =

{
u if γ ∈ Γ0,

u+ 1 if γ ∈ Γ r Γ0.

Mimicking the preceding case, we let

C =
(∑

1≤k<`≤n ξk(ei)ξ`(ej)
)
1≤i,j≤n−1

∈Mn−1(Fsep)

and

D = C +B +Bt = (dij)1≤i,j≤n−1,

where

dij =





0 if i > j,

S0(ei) if i = j,

bS0(ei, ej) if i < j.

The element s2(A
−1D) represents the determinant detS0 ∈ F/℘(F ) and

s2(A
−1D) = s2(A

−1C) + ℘
(
tr(A−1B)

)
= s2(A

−1C) + u2 + u,

hence it suffices to show s2(A
−1C) = 1

2 (n− 1) to complete the proof.

For j = 1, . . . , n−1 we have e0j ∈ L0, hence ξn(ej) =
∑n−1

`=1 ξ`(ej), and therefore

cij =
∑

1≤k<`≤n−1 ξk(ei)ξ`(ej) +
(∑n−1

k=1 ξk(ei)
)(∑n−1

`=1 ξ`(ej)
)

=
∑

n−1≥k≥`≥1 ξk(ei)ξ`(ej).

The matrix M =
(
ξi(ej)

)
1≤i,j≤n−1

∈Mn−1(Fsep) is invertible since

M t ·M =
(
T (ei, ej)

)
1≤i,j≤n−1

=
(
bS0(ei, ej)

)
1≤i,j≤n−1

and bS0 is nonsingular. Moreover, C = M t ·W ·M where W = (wij)1≤i,j≤n−1 is
defined by

wij =

{
1 if i ≥ j,
0 if i < j,

hence s2(A
−1C) = s2

(
(W + W t)−1W

)
. Computations similar to those of the

preceding case show that s2
(
(W +W t)−1W

)
= 1

2 (n− 1).

18.C. Cubic étale algebras. Cubic étale algebras, i.e., étale algebras of di-
mension 3, have special features with respect to the Galois S3-closure and discrim-
inant: if L is such an algebra, we establish below canonical isomorphisms

L⊗F L ' L× Σ(L) and Σ(L) ' L⊗∆(L).

Moreover, we show that if F is infinite of characteristic different from 3, these
algebras have the form F [X ]/(X3−3X+ t) for some t ∈ F , and we set up an exact
sequence relating the square class group of L to the square class group of F .
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The Galois closure and the discriminant. Let L be a cubic étale F -
algebra. Let Σ(L) be the Galois S3-closure of L and let e ∈ L⊗L be the separability
idempotent of L.

(18.25) Proposition. There are canonical F -algebra isomorphisms

Θ: (1− e) · (L⊗ L) ∼−→ Σ(L) and Θ̂ : L⊗ L ∼−→ L× Σ(L)

related by Θ̂(x⊗ y) =
(
xy,Θ

(
(1− e) · (x ⊗ y)

))
for x, y ∈ L.

Proof : Consider the disjoint union decomposition of Γ-sets

X(L⊗ L) = X(L)×X(L) = D(L)q E(L)

where D(L) is the diagonal of X(L) × X(L) and E(L) is its complement. By
definition, e corresponds to the characteristic function on D(L) under the canonical

isomorphism L⊗ L 'Map
(
X(L⊗ L), Fsep

)Γ
, hence

E(L) = { ξ ∈ X(L⊗ L) | ξ(1− e) = 1 }.
Therefore, we may identify

X
(
(1− e) · (L⊗ L)

)
= E(L),

hence also (1 − e) · (L ⊗ L) = Map
(
E(L), Fsep

)Γ
. On the other hand, there is a

canonical bijection

Σ
(
X(L)

) ∼−→ E(L)

which maps (ξi, ξj , ξk) ∈ Σ
(
X(L)

)
to (ξi, ξj) ∈ E(L). Under the anti-equivalence

EtF ≡ SetsΓ, this bijection induces an isomorphism

Θ: (1− e) · (L⊗ L) ∼−→ Σ(L).

By decomposing L⊗L =
(
e · (L⊗L)

)
⊕

(
(1− e) · (L⊗L)

)
, and combining Θ with

the isomorphism ε−1 : e · (L⊗L) ∼−→ L of (??) which maps e · (x⊗ y) = e · (xy⊗ 1)
to xy, we obtain the isomorphism

Θ̂: L⊗ L ∼−→ L× Σ(L).

Note that there are actually three canonical bijections Σ
(
X(L)

) ∼−→ E(L), since

(ξi, ξj , ξk) ∈ Σ
(
X(L)

)
may alternately be mapped to (ξi, ξk) or (ξj , ξk) instead of

(ξi, ξj); therefore, there are three canonical isomorphisms (1− e) · (L⊗L) ∼−→ Σ(L)
and L⊗ L ∼−→ L× Σ(L).

In view of the proposition above, there is an S3-algebra structure on (1 − e) ·
(L⊗L) and there are three embeddings ε1, ε2, ε3 : L ↪→ (1− e) · (L⊗L), which we
now describe: for ` ∈ L, we set

ε1(`) = (1− e) · (`⊗ 1), ε2(`) = (1− e) · (1⊗ `)
and

ε3(`) = (1− e) ·
(
TL/F (`)1⊗ 1− `⊗ 1− 1⊗ `

)
.(18.26)

These isomorphisms correspond to the maps E(L) → X(L) which carry an
element (ξi, ξj) ∈ E(L) respectively to ξi, ξj and to the element ξk such that
X(L) = {ξi, ξj , ξk}. Indeed, for ` ∈ L,

(ξi, ξj)[(1− e) · (`⊗ 1)] = ξi(`), (ξi, ξj)[(1− e) · (1⊗ `)] = ξj(`)
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and

(ξi, ξj)
[
(1− e) ·

(
TL/F (`)1⊗ 1− `⊗ 1− 1⊗ `

)]
= TL/F (`)− ξi(`)− ξj(`) = ξk(`).

An action of S3 on (1− e) · (L ⊗ L) is defined by permuting the three copies of L
in (1− e) · (L⊗ L), so that σ ◦ εi = εσ(i) for σ ∈ S3.

We now turn to the discriminant algebra ∆(L):

(18.27) Proposition. Let L be a cubic étale algebra. The canonical embeddings

ε1, ε2, ε3 : L ↪→ Σ(L) define isomorphisms :

ε̂1, ε̂2, ε̂3 : ∆(L)⊗F L ∼−→ Σ(L).

Proof : Consider the transpositions in S3:

τ1 = (2, 3) τ2 = (1, 3) τ3 = (1, 2)

and the subgroups of order 2:

Hi = {Id, τi} ⊂ S3 for i = 1, 2, 3.

For i = 1, 2, 3, the canonical map

Σ
(
X(L)

)
→

(
Σ

(
X(L)

)
/A3

)
×

(
Σ

(
X(L)

)
/Hi

)

which carries ζ ∈ Σ
(
X(L)

)
to the pair (ζA3 , ζHi ) consisting of its orbits under A3

and under Hi is a Γ-equivariant bijection, since ζA3 ∩ ζHi = {ζ}. Moreover, pro-
jection on the i-th component πi : Σ

(
X(L)

)
→ X(L) factors through Σ

(
X(L)

)
/Hi;

we thus get three canonical Γ-equivariant bijections:

π̂i : Σ
(
X(L)

) ∼−→ ∆
(
X(L)

)
×X(L).

Under the anti-equivalence EtF ≡ SetsΓ, these bijections yield the required isomor-
phisms ε̂i for i = 1, 2, 3.

Combining (??) and (??), we get:

(18.28) Corollary. For every cubic étale F -algebra L, there are canonical F -

algebra isomorphisms :

(Id× ε̂i−1) ◦ Θ̂: L⊗F L ∼−→ L×
(
∆(L)⊗F L

)
for i = 1, 2, 3.

The isomorphism (Id× ε̂2−1) ◦ Θ̂ is L-linear for the action of L on L⊗F L and on

∆(L)⊗F L by multiplication on the right factor.

Proof : The first assertion follows from (??) and (??). A computation shows that
Θ(1 ⊗ `) maps (ξ1, ξ2, ξ3) ∈ Σ

(
X(L)

)
to ξ2(`), for all ` ∈ L. Similarly, ε̂2(1 ⊗ `)

maps (ξ1, ξ2, ξ3) to ξ2(`), hence ε̂2
−1 ◦Θ is L-linear.

We conclude with two cases where the discriminant algebra can be explicitly
calculated:

(18.29) Proposition. For every quadratic étale F -algebra K,

∆(F ×K) ' K.
Proof : The projection on the first component ξ : F × K → F is an element of
X(F ×K) which is invariant under the action of Γ. If X(K) = {η, ζ}, then X(F ×
K) = {ξ, η, ζ}, and the map which carries η to (ξ, η, ζ)A3 and ζ to (ξ, ζ, η)A3 defines
an isomorphism of Γ-setsX(K) ∼−→ ∆

(
X(F×K)

)
. The isomorphism ∆(F×K) ' K

follows from the anti-equivalence EtF ≡ SetsΓ.
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(18.30) Proposition. A cubic étale F -algebra L can be given an action of the

alternating group A3 which turns it into a Galois A3-algebra over F if and only if

∆(L) ' F × F .

Proof : Suppose ∆(L) ' F × F ; then Proposition (??) yields an isomorphism
Σ(L) ' L×L. The action of A3 on Σ(L) preserves each term and therefore induces
an action on each of them. The induced actions are not the same, but each of them
defines a Galois A3-algebra structure on L since Σ(L) is a Galois S3-algebra.

Conversely, suppose L has a Galois A3-algebra structure; we have to show that
Γ acts by even permutations on X(L). By way of contradiction, suppose γ ∈ Γ
induces an odd permutation on X(L): we may assume X(L) = {ξ1, ξ2, ξ3} and
γξ1 = ξ1,

γξ2 = ξ3,
γξ3 = ξ2. Since L is a Galois A3-algebra, X(L) is an A3-torsor;

we may therefore find σ ∈ A3 such that

ξσ1 = ξ2, ξσ2 = ξ3, ξσ3 = ξ1;

then γ(ξσ1 ) = ξ3 whereas (γξ1)
σ = ξ2, a contradiction. Therefore, Γ acts on X(L)

by even permutations, hence ∆(L) ' F × F .

Reduced equations. Let L be a cubic étale F -algebra. As a first step in
finding a reduced form for L, we relate the quadratic form S0 on the subspace
L0 = {x ∈ L | TL/F (x) = 0 } and the bilinear form T on L to the discriminant

algebra ∆(L). Proposition (??) shows that S0 is nonsingular if charF 6= 3; the
bilinear form T is nonsingular in every characteristic, since L is étale.

(18.31) Lemma. (1) The quadratic form S0 is isometric to the quadratic form Q
on ∆(L) defined by

Q(x) = N∆(L)/F (x)− T∆(L)/F (x)2 for x ∈ ∆(L).

(2) Suppose charF 6= 2 and let δ ∈ F× be such that ∆(L) ' F [t]/(t2 − δ). The

bilinear form T on L has a diagonalization

T ' 〈1, 2, 2δ〉.
Proof : (??) By a theorem of Springer (see Scharlau [?, Corollary 2.5.4], or Baeza
[?, p. 119] if charF = 2), it suffices to check that S0 and Q are isometric over an
odd-degree scalar extension of F . If L is a field, we may therefore extend scalars to
L; then L is replaced by L⊗L, which is isomorphic to L×

(
∆(L)⊗L

)
, by (??). In

all cases, we may thus assume L ' F ×K, where K is a quadratic étale F -algebra.
Proposition (??) shows that we may identify K = ∆(L).

The generic polynomial of (α, x) ∈ F ×K = L is

(X − α)
(
X2 − TK/F (x)X +NK/F (x)

)
=

X3 − TL/F (α, x)X2 + SL/K(α, x)X −NL/F (α, x),

hence

TL/F (α, x) = α+ TK/F (x) and SL/F (α, x) = αTK/F (x) +NK/F (x).

Therefore, the map which carries x ∈ K = ∆(L) to
(
−TK/F (x), x

)
∈ L0 is an

isometry
(
∆(L), Q

) ∼−→ (L0, S0).
(??) As in (??), we may reduce to the case where L = F × K, with K '

∆(L) ' F [t]/(t2 − δ). Let t be the image of t in K. A computation shows that

T
(
(x1, x2 + x3t), (y1, y2 + y3t)

)
= x1y1 + 2(x2y2 + δx3y3),
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hence T has a diagonalization 〈1, 2, 2δ〉 with respect to the basis
(
(1, 0), (0, 1), (0, t)

)
.

(18.32) Proposition. Every cubic étale F -algebra L is isomorphic to an algebra

of the form F [X ]/(f) for some polynomial f , unless F = F2 and L ' F × F × F .

If charF 6= 3 and F is infinite, the polynomial f may be chosen of the form

f = X3 − 3X + a for some a ∈ F , a 6= ±2;

then ∆(L) ' F [t]/
(
t2+3(a2−4)

)
if charF 6= 2 and ∆(L) ' F [t]/(t2+t+1+a−2) if

charF = 2. (Note that X3−3X±2 = (X∓1)2(X±2), hence F [X ]/(X3−3X±2)
is not étale.)

If charF 6= 3 (and cardF is arbitrary), the polynomial f may be chosen of the

form f = X3 − b for some b ∈ F× if and only if ∆(L) ' F [t]/(t2 + t+ 1).
If charF = 3, let δ ∈ F× be such that ∆(L) ' F [t]/(t2 − δ); then f may be

chosen of the form

f = X3 − δX + a for some a ∈ F .

Proof : If L is a field, then it contains a primitive element x (see for instance
Bourbaki [?, p. V.39]); we then have L ' F [X ]/(f) where f is the minimal poly-
nomial of x. Similarly, if L ' F × K for some quadratic field extension K/F ,
then L ' F [X ]/(Xg) where g is the minimal polynomial of any primitive element
of K. If L ' F × F × F and F contains at least three distinct elements a, b, c,
then L ' F [X ]/(f) where f = (X − a)(X − b)(X − c). This completes the proof
of the first assertion. We now show that, under suitable hypotheses, the primitive
element x may be chosen in such a way that its minimal polynomial takes a special
form.

Suppose first that charF 6= 3. The lemma shows that S0 represents −3, since

Q(1) = N∆(L)/F (1)− T∆(L)/F (1)2 = −3.

Let x ∈ L0 be such that S0(x) = −3. Since F 6⊂ L0, the element x is a primitive
element if L is a field, and its minimal polynomial coincides with its generic poly-
nomial, which has the form X3 − 3X + a for some a ∈ F . If L ' F × F × F , the
nonprimitive elements in L0 have the form (x1, x2, x3) where x1 + x2 + x3 = 0 and
two of the xi are equal. The conic S0(X) = −3 is nondegenerate by (??). Therefore
it has only a finite number of intersection points with the lines x1 = x2, x1 = x3

and x2 = x3. If F is infinite we may therefore find a primitive element x such that
S0(x) = −3. Similarly, if L ' F ×K where K is a field, the nonprimitive elements
in L0 have the form (x1, x2) where x1, x2 ∈ F and x1 + 2x2 = 0. Again, the conic
S0(X) = −3 has only a finite number of intersection points with this line, hence
we may find a primitive element x such that S0(x) = −3 if F is infinite.

Example (??) shows how to compute ∆(L) for L = F [X ]/(f). If x1, x2, x3 are
the roots of f in an algebraic closure of F , we have

∆(L) ' F [t]/(t2 − d) with d = (x1 − x2)
2(x1 − x3)

2(x2 − x3)
2 if charF 6= 2,

and

∆(L) ' F [t]/(t2 + t+ d) with d =
x1x2

x2
1 + x2

2

+
x1x3

x2
1 + x2

3

+
x2x3

x2
2 + x2

3

if charF = 2.

If f = X3+pX+q, then x1+x2+x3 = 0, x1x2+x1x3+x2x3 = p and x1x2x3 = −q,
and a computation shows that

(x1 − x2)
2(x1 − x3)

2(x2 − x3)
2 = −4p3 − 27q2.
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Moreover, if charF = 2 we have x2
1 + x2

2 + x2
3 = 0, hence

x1x2

x2
1 + x2

2

+
x1x3

x2
1 + x2

3

+
x2x3

x2
2 + x2

3

=
x3

1x
3
2 + x3

1x
3
3 + x3

2x
3
3

x2
1x

2
2x

2
3

=
p3 + q2

q2
.

Thus,

∆(L) ' F [t]/(t2 + 4p3 + 27q2) if charF 6= 2

and

∆(L) ' F [t]/(t2 + t+ 1 + p3q−2) if charF = 2.

In particular, we have ∆(L) ' F [t]/
(
t2 + 3(a2 − 4)

)
if f = X3 − 3X + a and

charF 6= 2, 3, and ∆(L) ' F [t]/(t2 + t+ 1) if f = X3 − b and charF 6= 3.
Conversely, if ∆(L) ' F [t]/(t2 + t + 1), then the form Q on ∆(L) defined in

(??) is isotropic: for j = t + (t2 + t + 1) ∈ ∆(L) we have T∆(L)/F (j) = −1 and
N∆(L)/F (j) = 1, hence Q(j) = 0. Lemma (??) then shows that there is a nonzero

element x ∈ L0 such that S0(x) = 0. An inspection of the cases where L is not a
field shows that x is primitive in all cases. Therefore, L ' F [X ]/(X3 − b) where
b = x3 = NL/F (x).

Suppose finally that charF = 3, and let δ ∈ F× be such that ∆(L) ' F [t]/(t2−
δ). The element d = t+ (t2 − δ) ∈ ∆(L) then satisfies

N∆(L)/F (d)− T∆(L)/F (d)2 = −δ,
hence (??) shows that there exists x ∈ L0 such that S0(x) = −δ. This element may
be chosen primitive, and its minimal polynomial then has the form

X3 − δX + a for some a ∈ F .

A careful inspection of the argument in the proof above shows that if charF 6= 3
and L ' F × F × F one may find a ∈ F such that L ' F [X ]/(X3 − 3X + a) as
soon as cardF ≥ 8. The same conclusion holds if L ' F ×K for some quadratic
field extension K when cardF ≥ 4.

The group of square classes. Let L be a cubic étale F -algebra. The inclu-
sion F ↪→ L and the norm map NL/F : L → F induce maps on the square class
groups:

i : F×/F×2 → L×/L×2, N : L×/L×2 → F×/F×2.

Since NL/F (x) = x3 for all x ∈ F , the composition N ◦ i is the identity on F×/F×2:

N ◦ i = IdF×/F×2 .

In order to relate L×/L×2 and F×/F×2 by an exact sequence, we define a map
# : L→ L as follows: for ` ∈ L we set

`# = `2 − TL/F (`)`+ SL/F (`) ∈ L,(18.33)

so that

``# −NL/F (`) = 0.

In particular, for ` ∈ L× we have `# = NL/F (`)`−1, hence # defines an endomor-

phism of L×. We also put # for the induced endomorphism of L×/L×2.
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(18.34) Proposition. The following sequence is exact :

1→ F×/F×2 i−→ L×/L×2 #−→ L×/L×2 N−→ F×/F×2 → 1.

Moreover, for x ∈ F×/F×2 and y ∈ L×/L×2,

x = N ◦ i(x) and (y#)# = i ◦N(y) · y.
Proof : It was observed above that N ◦ i is the identity on F×/F×2. Therefore, i
is injective and N is surjective. For ` ∈ L× we have `# = NL/F (`)`−1, hence

y# = i ◦N(y) · y for y ∈ L×/L×2.(18.35)

Taking the image of each side under N , we obtain N(y#) = 1, since N ◦ i ◦N(y) =
N(y). Therefore, substituting y# for y in (??) we get (y#)# = y# = i ◦N(y) · y.
In particular, if y# = 1 we have y = i ◦ N(y), and if N(y) = 1 we have y = y#.
Therefore, the kernel of # is in the image of i, and the kernel of N is in the image
of #. To complete the proof, observe that putting y = i(x) in (??) yields i(x)# = 1
for x ∈ F×/F×2, since N ◦ i(x) = x.

§19. Central Simple Algebras of Degree Three

In this section, we turn to central simple algebras of degree 3. We first prove
Wedderburn’s theorem which shows that these algebras are cyclic, and we next
discuss their involutions of unitary type. It turns out that involutions of unitary
type on a given central simple algebra of degree 3 are classified up to conjugation
by a 3-fold Pfister form. In the final subsection, we relate this invariant to cubic
étale subalgebras and prove a theorem of Albert on the existence of certain cubic
étale subalgebras.

19.A. Cyclic algebras. To simplify the notation, we set C3 = Z/3Z and
ρ = 1 + 3Z ∈ C3.

Given a Galois C3-algebra L over F and an element a ∈ F×, the cyclic algebra

(L, a) is defined as follows:

(L, a) = L⊕ Lz ⊕ Lz2

where z is subject to the relations:

z` = ρ(`)z, z3 = a

for all ` ∈ L.

(19.1) Example. Let L = F × F × F with the C3-structure defined by

ρ(x1, x2, x3) = (x3, x1, x2) for (x1, x2, x3) ∈ L.

We have (L, a) 'M3(F ) for all a ∈ F×. An explicit isomorphism is given by

(x1, x2, x3) 7→



x1

x2

x3


 and z 7→




0 0 a
1 0 0
0 1 0


 .

From this example, it readily follows that (L, a) is a central simple F -algebra
for all Galois C3-algebras L and all a ∈ F×, since (L, a) ⊗F Fsep ' (L ⊗F Fsep, a)
and L ⊗F Fsep ' Fsep × Fsep × Fsep. Of course, this is also easy to prove without
extending scalars: see for instance Draxl [?, p. 49].

The main result of this subsection is the following:
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(19.2) Theorem (Wedderburn). Every central simple F -algebra of degree 3 is

cyclic.

The proof below is due to Haile [?]; it is free from restrictions on the charac-
teristic of F . However, the proof can be somewhat simplified if charF = 3: see
Draxl [?, p. 63] or Jacobson [?, p. 80].

(19.3) Lemma. Let A be a central simple F -algebra of degree 3 and let x ∈ A×.

If Trd(x) = Trd(x−1) = 0, then x3 = Nrd(x).

Proof : If the reduced characteristic polynomial of x is

X3 − Trd(x)X2 + Srd(x)X −Nrd(x),

then the reduced characteristic polynomial of x−1 is

X3 − Srd(x)

Nrd(x)
X2 +

Trd(x)

Nrd(x)
X − 1

Nrd(x)
.

Therefore, Trd(x−1) = Srd(x) Nrd(x−1), and it follows that the reduced character-
istic polynomial of x takes the form X3 −Nrd(x) if Trd(x) = Trd(x−1) = 0.

Proof of Theorem (??): In view of Example (??), it suffices to prove that central
division F -algebras of degree 3 are cyclic. Let D be such a division algebra. We
claim that it suffices to find elements y, z ∈ D such that z 6∈ F , y 6∈ F (z) and
Trd(x) = Trd(x−1) = 0 for x = z, yz, yz2. Indeed, the lemma then shows

z3 = Nrd(z), (yz)3 = Nrd(yz), (yz2)3 = Nrd(yz2);

since Nrd(yz2) = Nrd(yz) Nrd(z) it follows that

(yz2)3 = (yz)3z3

hence, after cancellation,

zyz2y = yzyz2.

By dividing each side by z3 = Nrd(z), we obtain

(zyz−1)y = y(zyz−1),

which shows that zyz−1 ∈ F (y). We have zyz−1 6= y since y 6∈ F (z), hence we may
define a Galois C3-algebra structure on F (y) by letting ρ(y) = zyz−1; then,

D '
(
F (y),Nrd(z)

)
.

We now proceed to construct elements y, z satisfying the required conditions.
Let L ⊂ D be an arbitrary maximal subfield. Considering D as a bilinear

space for the nonsingular bilinear form induced by the reduced trace, pick a nonzero
element u1 ∈ L⊥. Since dim

(
(u−1

1 F )⊥∩L
)
≥ 2, we may find u2 ∈ (u−1

1 F )⊥∩L such

that u2 6∈ u1F . Set z = u1u
−1
2 . We have Trd(z) = 0 because u1 ∈ L⊥ and u−1

2 ∈ L,

and Trd(z−1) = 0 because u2 ∈ (u−1
1 F )⊥. Moreover, z 6∈ F since u2 6∈ u1F .

Next, pick a nonzero element v1 ∈ F (z)⊥rF (z). Since dim(zF + z−1F )⊥ = 7,
we have

v1(zF + z−1F )⊥ ∩ F (z) 6= {0};
we may thus find a nonzero element v2 in this intersection. Set y = v−1

2 v1. Since
v1 6∈ F (z), we have y 6∈ F (z). On the other hand, since v1 ∈ F (z)⊥ and v2 ∈ F (z),
we have

Trd(yz) = Trd(v1zv
−1
2 ) = 0 and Trd(yz2) = Trd(v1z

2v−1
2 ) = 0.
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Since v−1
1 v2 ∈ (zF + z−1F )⊥ and z3 = Nrd(z), we also have

Trd(z−1y−1) = Trd(z−1v−1
1 v2) = 0,

Trd(z−2y−1) = Nrd(z) Trd(zv−1
1 v2) = 0.

The elements y and z thus meet our requirements.

19.B. Classification of involutions of the second kind. Let K be a quad-
ratic étale extension of F , and let B be a central simple28 K-algebra of degree 3
such that NK/F (B) is split. By Theorem (??), this condition is necessary and suffi-
cient for the existence of involutions of the second kind on B which fix the elements
of F .

We aim to classify those involutions up to conjugation, by means of the as-
sociated trace form on Sym(B, τ) (see §??). We therefore assume charF 6= 2
throughout this subsection.

(19.4) Definition. Let τ be an involution of the second kind on B which is the
identity on F . Recall from §?? the quadratic form Qτ on Sym(B, τ) defined by

Qτ (x) = TrdB(x2) for x ∈ Sym(B, τ).

Let α ∈ F be such that K ' F [X ]/(X2 − α). Proposition (??) shows that Qτ has
a diagonalization of the form:

Qτ = 〈1, 1, 1〉 ⊥ 〈2〉 · 〈〈α〉〉 · qτ
where qτ is a 3-dimensional quadratic form of determinant 1. The form

π(τ) = 〈〈α〉〉 · qτ ⊥ 〈〈α〉〉
is uniquely determined by τ up to isometry and is a 3-fold Pfister form since det qτ =
1. We call it the Pfister form of τ . Every F -isomorphism (B, τ) ∼−→ (B′, τ ′) of
algebras with involution induces an isometry of trace forms

(
Sym(B, τ), Qτ

) ∼−→(
Sym(B′, τ ′), Qτ ′

)
, hence also an isometry π(τ) ∼−→ π(τ ′). The Pfister form π(τ) is

therefore an invariant of the conjugacy class of τ . Our main result (Theorem (??))
is that it determines this conjugacy class uniquely.

(19.5) Example. Let V be a 3-dimensional vector space overK with a nonsingular
hermitian form h. Let h = 〈δ1, δ2, δ3〉K be a diagonalization of this form (so that
δ1, δ2, δ3 ∈ F×) and let τ = τh be the adjoint involution on B = EndK(V ) with
respect to h.

Propositions (??) and (??) show that

Qτ ' 〈1, 1, 1〉 ⊥ 〈2〉 · 〈〈α〉〉 · 〈δ1δ2, δ1δ3, δ2δ3〉.
Therefore,

π(τ) = 〈〈α〉〉 · 〈〈−δ1δ2,−δ1δ3〉〉.
(19.6) Theorem. Let B be a central simple K-algebra of degree 3 and let τ , τ ′

be involutions of the second kind on B fixing the elements of F . The following

conditions are equivalent :

(1) τ and τ ′ are conjugate, i.e., there exists u ∈ B× such that

τ ′ = Int(u) ◦ τ ◦ Int(u)−1;

28We allow K ' F × F , in which case B ' A× Aop for some central simple F -algebra A of
degree 3.
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(2) Qτ ' Qτ ′ ;
(3) π(τ) ' π(τ ′).

Proof : (??) ⇒ (??) Conjugation by u defines an isometry from
(
Sym(B, τ), Qτ

)

to
(
Sym(B, τ ′), Qτ ′

)
.

(??) ⇔ (??) This follows by Witt cancellation, in view of the relation between
Qτ and π(τ).

(??) ⇒ (??) If K ' F × F , then all the involutions on B are conjugate to
the exchange involution. We may therefore assume K is a field. If B is split, let
B = EndK(V ) for some 3-dimensional vector space V . The involutions τ and τ ′

are adjoint to nonsingular hermitian forms h, h′ on V . Let

h = 〈δ1, δ2, δ3〉K and h′ = 〈δ′1, δ′2, δ′3〉K
(with δ1, . . . , δ′3 ∈ F×) be diagonalizations of these forms. As we observed in (??),
we have

Qτ ' 〈1, 1, 1〉 ⊥ 〈2〉 · 〈〈α〉〉 · 〈δ1δ2, δ1δ3, δ2δ3〉
and

Qτ ′ ' 〈1, 1, 1〉 ⊥ 〈2〉 · 〈〈α〉〉 · 〈δ′1δ′2, δ′1δ′3, δ′2δ′3〉.
Therefore, condition (??) implies

〈〈α〉〉 · 〈δ1δ2, δ1δ3, δ2δ3〉 ' 〈〈α〉〉 · 〈δ′1δ′2, δ′1δ′3, δ′2δ′3〉.
It follows from a theorem of Jacobson (see Scharlau [?, Theorem 10.1.1]) that the
hermitian forms 〈δ1δ2, δ1δ3, δ2δ3〉K and 〈δ′1δ′2, δ′1δ′3, δ′2δ′3〉K are isometric; then

〈δ1δ2δ3〉 · h ' 〈δ1δ2, δ1δ3, δ2δ3〉K ' 〈δ′1δ′2, δ′1δ′3, δ′2δ′3〉K ' 〈δ′1δ′2δ′3〉 · h′,
hence the hermitian forms h, h′ are similar. The involutions τ , τ ′ are therefore
conjugate. This completes the proof in the case where B is split.

The general case is reduced to the split case by an odd-degree scalar extension.
Suppose B is a division algebra and let τ ′ = Int(v)◦ τ for some v ∈ B×, which may
be assumed symmetric under τ . By substituting Nrd(v)v for v, we may assume
Nrd(v) = µ2 for some µ ∈ F×. Let L/F be a cubic field extension contained in B.
(For example, we may take for L the subfield of B generated by any noncentral
τ -symmetric element.) The algebra BL = B ⊗F L is split, hence the argument
given above shows that τL and τ ′L are conjugate:

τ ′L = Int(u) ◦ τL ◦ Int(u)−1 = Int
(
uτL(u)

)
◦ τL for some u ∈ B×

L ,

hence

v = λuτL(u) for some λ ∈ KL = K ⊗F L.

Since τ(v) = v, we have in fact λ ∈ L×. Let ι be the nontrivial automorphism
of KL/L. Since Nrd(u) = µ2, by taking the reduced norm on each side of the
preceding equality we obtain:

µ2 = λ3 Nrd(u) · ι
(
Nrd(u)

)
,

hence λ =
(
µλ−1 Nrd(u)

)
· ι

(
µλ−1 Nrd(u)

)
and, letting w = µλ−1 Nrd(u)u ∈ B×

L ,

v = wτL(w).

By (??), there exists w′ ∈ B× such that v = w′τ(w′). Therefore,

τ ′ = Int(w′) ◦ τ ◦ Int(w′)−1.
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(19.7) Remark. If (B, τ) and (B′, τ ′) are central simple K-algebras of degree 3
with involutions of the second kind leaving F elementwise invariant, the condition
π(τ) ' π(τ ′) does not imply (B, τ) ' (B′, τ ′). For example, if K ' F × F all the
forms π(τ) are hyperbolic since they contain the factor 〈〈α〉〉, but (B, τ) and (B ′, τ ′)
are not isomorphic if B 6' B′.

(19.8) Definition. An involution of the second kind τ on a central simple K-
algebra B of degree 3 is called distinguished if π(τ) is hyperbolic. Theorem (??)
shows that the distinguished involutions form a conjugacy class. If K ' F ×F , all
involutions are distinguished (see the preceding remark).

(19.9) Example. Consider again the split case B = EndK(V ), as in (??). If
the hermitian form h is isotropic, then we may find a diagonalization of the form
h = 〈1,−1, λ〉K for some λ ∈ F×, hence the computations in (??) show that the
adjoint involution τh is distinguished. Conversely, if h′ is a nonsingular hermitian
form whose adjoint involution τh′ is distinguished, then τh and τh′ are conjugate,
hence h′ is similar to h. Therefore, in the split case the distinguished involutions
are those which are adjoint to isotropic hermitian forms.

We next characterize distinguished involutions by a condition on the Witt index
of the restriction of Qτ to elements of trace zero. This characterization will be used
to prove the existence of distinguished involutions on arbitrary central simple K-
algebras B of degree 3 such that NK/F (B) is split, at least when charF 6= 3.

Let

Sym(B, τ)0 = {x ∈ Sym(B, τ) | TrdB(x) = 0 }
and let Q0

τ be the restriction of the bilinear form Qτ to Sym(B, τ)0. We avoid
the case where charF = 3, since then Q0

τ is singular (with radical F ). Assuming
charF 6= 2, 3, let w(Q0

τ ) be the Witt index of Q0
τ .

(19.10) Proposition. Suppose charF 6= 2, 3. The following conditions are equiv-

alent :

(1) τ is distinguished;

(2) w(Q0
τ ) ≥ 2;

(3) w(Q0
τ ) ≥ 3.

Proof : Let K = F (
√
α). The subspace Sym(B, τ)0 is the orthogonal complement

of F in Sym(B, τ) for the form Qτ ; since Qτ (1) = 3, it follows that Qτ = 〈3〉 ⊥Q0
τ .

Since 〈1, 1, 1〉 ' 〈3, 2, 6〉, it follows from (??) that

Q0
τ ' 〈2〉 ·

(
〈1, 3〉 ⊥ 〈〈α〉〉 · qτ

)
.

Since π(τ) = 〈〈α〉〉 · qτ ⊥ 〈〈α〉〉, we have

Q0
τ = 〈2〉 ·

(
〈3, α〉+ π(τ)

)
in WF .

By comparing dimensions on each side, we obtain

w
(
Q0
τ

)
= w

(
〈3, α〉 ⊥ π(τ)

)
− 1.

Condition (??) implies that w
(
〈3, α〉⊥π(τ)

)
≥ 4, hence the equality above yields (??).

On the other hand, condition (??) shows that w
(
〈3, α〉 ⊥ π(τ)

)
≥ 3, from which

it follows that π(τ) is isotropic, hence hyperbolic. Therefore, (??) ⇒ (??). Since
(??) ⇒ (??) is clear, the proof is complete.
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The relation between TrdB and SrdB (see (??)) shows that for x ∈ Sym(B, τ)0,
the condition that TrdB(x2) = 0 is equivalent to SrdB(x) = 0. Therefore, the totally
isotropic subspaces of Sym(B, τ)0 for the form Q0

τ can be described as the subspaces
consisting of elements x such that x3 = NrdB(x). We may therefore reformulate
the preceding proposition as follows:

(19.11) Corollary. Suppose charF 6= 2, 3. The following conditions are equiva-

lent :

(1) τ is distinguished;

(2) there exists a subspace U ⊂ Sym(B, τ)0 of dimension 2 such that u3 = NrdB(u)
for all u ∈ U ;

(3) there exists a subspace U ⊂ Sym(B, τ)0 of dimension 3 such that u3 = NrdB(u)
for all u ∈ U .

We now prove the existence of distinguished involutions:

(19.12) Proposition. Suppose29 charF 6= 2, 3. Every central simple K-algebra B
such that NK/F (B) is split carries a distinguished involution.

Proof : In view of (??), we may assume that B is a division algebra. Let τ be
an arbitrary involution of the second kind on B which is the identity on F . Let
L ⊂ Sym(B, τ) be a cubic field extension of F and let u be a nonzero element in
the orthogonal complement L⊥ of L for the quadratic form Qτ . We claim that the
involution τ ′ = Int(u) ◦ τ is distinguished.

In order to prove this, consider the F -vector space

U =
(
L ∩ (u−1F )⊥

)
· u−1.

Since Qτ is nonsingular, we have dimU ≥ 2. Moreover, since L ⊂ Sym(B, τ), we
have U ⊂ Sym(B, τ ′). For x ∈ L∩(u−1F )⊥, x 6= 0, we have Trd(xu−1) = 0 because
x ∈ (u−1F )⊥, and Trd(ux−1) = 0 because u ∈ L⊥ and x−1 ∈ L. Therefore, for all
nonzero y ∈ U we have

Trd(y) = Trd(y−1) = 0,

hence also y3 = Nrd(y), by (??). Therefore, Corollary (??) shows that τ ′ is distin-
guished.

(19.13) Remark. If charF = 3, the proof still shows that for every central simple
K-algebra B such that NK/F (B) is split, there exists a unitary involution τ ′ on B

and a 2-dimensional subspace U ⊂ Sym(B, τ ′) such that u3 ∈ F for all u ∈ U .

19.C. Étale subalgebras. As in the preceding subsection, we consider a cen-
tral simple algebra B of degree 3 over a quadratic étale extension K of F such that
NK/F (B) is split. We continue to assume charF 6= 2, 3, and let ι be the nontrivial
automorphism of K/F . Our aim is to obtain information on the cubic étale F -
algebras L contained in B and on the involutions of the second kind which are the
identity on L.

29See (??) for a different proof, which works also if char F = 3.
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Albert’s theorem. The first main result is a theorem of Albert [?] which
asserts the existence of cubic étale F -subalgebras L ⊂ B with discriminant ∆(L)
isomorphic to K. For such an algebra, we have LK ' L⊗∆(L) ' Σ(L), by (??),
hence LK can be endowed with a Galois S3-algebra structure. This structure may
be used to give an explicit description of (B, τ) as a cyclic algebra with involution.

(19.14) Theorem (Albert). Suppose30 charF 6= 2, 3 and let K be a quadratic

étale extension of F . Every central simple K-algebra B such that NK/F (B) is split

contains a cubic étale F -algebra L with discriminant ∆(L) isomorphic to K.

Proof : (after Haile-Knus [?]). We first consider the easy special cases where B is
not a division algebra. If K ' F ×F , then B ' A×Aop for some central simple F -
algebra A of degree 3. Wedderburn’s theorem (??) shows that A contains a Galois
C3-algebra L0 over F . By (??), we have ∆(L0) ' F × F , hence we may set

L = { (`, `0) | ` ∈ L0 }.
If K is a field and B is split, then we may find in B a subalgebra L isomorphic to
F ×K. Identifying B with M3(K), we may then choose

L =







f 0 0
0 k 0
0 0 k




∣∣∣∣∣∣
f ∈ F , k ∈ K



 .

Proposition (??) shows that ∆(L) ' K.
For the rest of the proof, we may thus assume B is a division algebra. Let τ be

a distinguished involution on B. By (??), there exists a subspace U ⊂ Sym(B, τ)
of dimension 2 such that u3 = Nrd(u) for all u ∈ U . Pick a nonzero element u ∈ U .
Since dimU = 2, the linear map U → F which carries x ∈ U to Trd(u−1x) has a
nonzero kernel; we may therefore find a nonzero v ∈ U such that Trd(u−1v) = 0.

Consider the reduced characteristic polynomial of u−1v:

Nrd(X − u−1v) = X3 + Srd(u−1v)X −Nrd(u−1v).

By substituting 1 and −1 for X and multiplying by Nrd(u), we obtain

Nrd(u− v) = Nrd(u) + Nrd(u) Srd(u−1v)−Nrd(v)

and

Nrd(u+ v) = Nrd(u) + Nrd(u) Srd(u−1v) + Nrd(v),

hence

Nrd(u+ v)−Nrd(u− v) = 2 Nrd(v).

On the other hand, since u, v, u+ v, u− v ∈ U and x3 = Nrd(x) for all x ∈ U , we
obtain

Nrd(u+ v) = (u+ v)3

= Nrd(u) + (u2v + uvu+ vu2) + (uv2 + vuv + v2u) + Nrd(v)

and

Nrd(u− v) = (u− v)3

= Nrd(u)− (u2v + uvu+ vu2) + (uv2 + vuv + v2u)−Nrd(v),

30See Exercise ?? for the case where char F = 3.
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hence

Nrd(u+ v)−Nrd(u− v) = 2(u2v + uvu+ vu2) + 2 Nrd(v).

By comparing the expressions above for Nrd(u+ v)−Nrd(u− v), it follows that

u2v + uvu+ vu2 = 0.

Define

t1 = u−1v = Nrd(u)−1u2v,

t2 = u−1t1u = Nrd(u)−1uvu,

t3 = u−1t2u = Nrd(u)−1vu2,

so that

t1 + t2 + t3 = 0

and conjugation by u permutes t1, t2, and t3 cyclically. Moreover, since u and v
are τ -symmetric, we have τ(t2) = t2 and τ(t1) = t3.

Let w = t−1
2 t3. Suppose first that w ∈ K. Since Nrd(t2) = Nrd(t3), we have

Nrd(w) = w3 = 1. If w = 1, then t2 = t3, hence also t3 = t1, a contradiction to
t1 + t2 + t3 = 0. Therefore, w is a primitive cube root of unity. Conjugating each
side of the relation t3 = wt2 by u, we find t2 = wt1; hence K(t1) = K(t2) = K(t3)
and conjugation by u is an automorphism of order 3 of this subfield. Cubing the
equations t2 = wt1 and t3 = wt2, we obtain t31 = t32 = t33, hence this element is
invariant under conjugation by u and therefore t31 = t32 = t33 ∈ K×. Since τ(t2) = t2,
we have in fact t32 ∈ F×, hence Proposition (??) shows that F (t2) is a subfield of B
with discriminant ∆

(
F (t2)

)
' F [X ]/(X2+X+1). On the other hand, by applying

τ to each side of the equation t2 = wt1, we find t2 = t3τ(w). Since t3 = wt2, it
follows that τ(w) = w−1, so that K = F (w) and therefore K ' F [X ]/(X2+X+1).
The theorem is thus proved if w ∈ K, since then ∆

(
F (t2)

)
' K.

Suppose next that w 6∈ K, hence K(w) is a cubic extension of K. Since
t1 + t2 + t3 = 0, we have

Int(u−1)(w) = t−1
3 t1 = −t−1

3 (t2 + t3) = −1− w−1 ∈ K(w),

hence Int(u−1) restricts to a K-automorphism θ of K(w). If θ = Id, then w =
−1 − w−1, hence w is a root of an equation of degree 2 with coefficients in K, a
contradiction. Therefore, θ is nontrivial; it is of order 3 since u3 ∈ F×.

Now consider the action of τ :

τ(w) = t1t
−1
2 = t2(t

−1
2 t1)t

−1
2 = −t2(1 + w)t−1

2 .

This shows that the involution τ ′ = Int(t−1
2 ) ◦ τ satisfies

τ ′(w) = −1− w ∈ K(w).

Therefore, τ ′ defines an automorphism of order 2 of K(w). We claim that θ and τ ′

generate a group of automorphisms of K(w) isomorphic to the symmetric group S3.
Indeed,

τ ′ ◦ θ(w) = −1 + (1 + w)−1 =
−w

1 + w

and

θ2 ◦ τ ′(w) = −(1 + w−1)−1 = τ ′ ◦ θ(w).
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Therefore, K(w)/F is a Galois extension with Galois group S3. Let L = K(w)τ
′

,
the subfield of elements fixed by τ ′. This subfield is a cubic étale extension of F .
Since L/F is not cyclic, we have ∆(L) 6' F × F , by Corollary (??). However,
LK = L⊗K ' K(w) is a cyclic extension of K, hence ∆(LK) ' K×K. Therefore,
∆(L) ' K.

Suppose L ⊂ B is a cubic étale F -algebra with discriminant ∆(L) isomorphic
toK. Let LK = L⊗K ' L⊗∆(L). By (??), we have L⊗∆(L) ' Σ(L), hence L⊗K
can be given a Galois S3-algebra structure over F . Under any of these S3-algebra
structures, the automorphism Id⊗ ι gives the action of some transposition, and K
is the algebra of invariant elements under the action of the alternating group A3. It
follows that LK can be given a Galois C3-algebra structure, since A3 ' C3 = Z/3Z.
We fix such a structure and set ρ = 1 + 3Z ∈ C3, as in §??. Since conjugation by
a transposition yields the nontrivial automorphism of A3, we have

(Id⊗ ι)
(
ρ(x)

)
= ρ2

(
Id⊗ ι(x)

)
for x ∈ LK .

By (??), there exist involutions τ of the second kind on B fixing the elements of
L. We proceed to describe these involutions in terms of the cyclic algebra structure
of B. It will be shown below (see (??)) that these involutions are all distinguished.
(This property also follows from (??)).

(19.15) Proposition. Suppose τ is an involution of the second kind on B such

that L ⊂ Sym(B, τ). The algebra B is a cyclic algebra:

B = LK ⊕ LKz ⊕ LKz2

where z is subject to the relations : τ(z) = z, zx = ρ(x)z for all x ∈ LK and

z3 ∈ F×.

Proof : We first consider the case where B is split. We may then assume B =
EndK(LK) and identify x ∈ LK with the endomorphism of multiplication by x. The
involution τ is the adjoint involution with respect to some nonsingular hermitian
form

h : LK × LK → K.

Since HomK(LK ,K) is a free module of rank 1 over LK , the linear form x 7→ h(1, x)
is of the form x 7→ TLK/K(`x) for some ` ∈ LK . For x, y ∈ LK , we then have

h(x, y) = h
(
1, τ(x)y

)
= TLK/K

(
`τ(x)y

)
.

If ` were not invertible, then we could find x 6= 0 in LK such that `x = 0. It follows
that h

(
τ(x), y

)
= 0 for all y ∈ LK , a contradiction. So, ` ∈ L×K . Moreover, since

h(y, x) = ι
(
h(x, y)

)
for all x, y ∈ LK , we have

TLK/K

(
`τ(y)x

)
= τ

(
TLK/K

(
`τ(x)y

))
for x, y ∈ LK ,

hence τ(`) = ` since the bilinear trace form on LK is nonsingular. Therefore,
` ∈ L×.

Note that the restriction of τ to LK is Id⊗ ι, hence

τ ◦ ρ(x) = ρ2 ◦ τ(x) for x ∈ LK .

Consider β = `−1ρ ∈ EndK(LK). For x, y ∈ LK we have

h
(
β(x), y

)
= TLK/K

(
τ ◦ ρ(x)y

)
= TLK/K

(
ρ2 ◦ τ(x)y

)
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and

h
(
x, β(y)

)
= TLK/K

(
τ(x)ρ(y)

)
.

Since TLK/K

(
ρ2(u)

)
= TLK/K(u) for all u ∈ LK , we also have

h
(
x, β(y)

)
= TLK/K

(
ρ2 ◦ τ(x)y

)
,

hence h(β(x), y) = h
(
x, β(y)

)
for all x, y ∈ LK and therefore τ(β) = β. Clearly,

β ◦ x = ρ(x) ◦ β for x ∈ L, and β3 = `−1ρ(`−1)ρ2(`−1) ∈ F×. Therefore, we may
choose z = β. This proves the proposition in the case where B is split.

If B is not split, consider the F -vector space:

S = { z ∈ Sym(B, τ) | zx = ρ(x)z for x ∈ LK }.
The invertible elements in S form a Zariski-open set. Extension of scalars to a
splitting field of B shows that this open set is not empty. Since B is not split, the
field F is infinite, hence the rational points in S are dense. We may therefore find
an invertible element in S.

If z ∈ S, then z3 centralizes LK , hence z3 ∈ LK . Since z3 commutes with z
and z ∈ Sym(B, τ), we have z3 ∈ F . Therefore, every invertible element z ∈ S
satisfies the required conditions.

Étale subalgebras and the invariant π(τ). We now fix an involution of
the second kind τ on the central simple K-algebra B of degree 3 and a cubic étale
F -algebra L ⊂ Sym(B, τ). We assume throughout that charF 6= 2. We will give a
special expression for the quadratic form Qτ , hence also for the Pfister form π(τ),
taking into account the algebra L (see Theorem (??)). As an application, we prove
the following statements: if an involution is the identity on a cubic étale F -algebra
of discriminant isomorphic to K, then it is distinguished; moreover, every cubic
étale F -subalgebra in B is stabilized by some distinguished involution.

The idea to obtain the special form of Qτ is to consider the orthogonal decom-
position Sym(B, τ) = L ⊥M where M = L⊥ is the orthogonal complement of L
for the quadratic form Qτ :

M = {x ∈ Sym(B, τ) | TrdB(x`) = 0 for ` ∈ L }.
We show that the restriction of Qτ to M is the transfer of some hermitian form
HM on M . This hermitian form is actually defined on the whole of B, with values
in LK ⊗K LK , where LK = L⊗K ⊂ B.

We first make B a right LK⊗LK-module as follows: for b ∈ B and `1, `2 ∈ LK ,
we set:

b ∗ (`1 ⊗ `2) = `1b`2.

(19.16) Lemma. The separability idempotent e ∈ LK ⊗LK satisfies the following

properties relative to ∗:
(1) ` ∗ e = ` for all ` ∈ L, and Trd(x) = Trd(x ∗ e) for all x ∈ B;

(2) (x ∗ e)` = (x`) ∗ e = (`x) ∗ e = `(x ∗ e) for all x ∈ B, ` ∈ LK ;

(3) B ∗ e = LK;

(4) x ∗ e = 0 for all x ∈MK = M ⊗K.

From (??) and (??) it follows that multiplication by e is the orthogonal projection

B → LK for the trace bilinear form.
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Proof : (??) Let e =
∑3

i=1 ui ⊗ vi. Proposition (??) shows that
∑

i uivi = 1; since
LK is commutative, it follows that

` ∗ e =
∑3

i=1 ui`vi = (
∑3

i=1 uivi)` = ` for ` ∈ LK .

Moreover, for x ∈ B we have

Trd(x ∗ e) = Trd(
∑3

i=1 uixvi) = Trd
(
(
∑3

i=1 viui)x
)

= Trd(x).

(??) For x ∈ B and ` ∈ LK ,

(x ∗ e)` = (x ∗ e) ∗ (1⊗ `) = x ∗
(
e(1⊗ `)

)
.

By (??), we have e(1⊗ `) = (1⊗ `)e = (`⊗ 1)e, hence, by substituting this in the
preceding equality:

(x ∗ e)` = (x`) ∗ e = (`x) ∗ e.
Similarly, `(x ∗ e) = (x ∗ e) ∗ (`⊗ 1) = x ∗

(
e(`⊗ 1)

)
and e(`⊗ 1) = (`⊗ 1)e, hence

we also have

`(x ∗ e) = (`x) ∗ e.
(??) Property (??) shows that B ∗ e centralizes LK , hence B ∗ e = LK .
(??) For x ∈MK and ` ∈ LK we have by (??) and (??):

Trd
(
(x ∗ e)`

)
= Trd

(
(x`) ∗ e

)
= Trd(x`) = 0.

From (??), we obtain (x ∗ e) ∈MK ∩ LK = {0}.

(19.17) Example. The split case. Suppose B = EndK(V ) for some 3-dimensional
vector space V and τ = τh is the adjoint involution with respect to some hermitian
form h on V . Suppose also that L ' F × F × F and let e1, e2, e3 ∈ L be the
primitive idempotents. There is a corresponding direct sum decomposition of V
into K-subspaces of dimension 1:

V = V1 ⊕ V2 ⊕ V3

such that ei is the projection onto Vi with kernel Vj ⊕ Vk for {i, j, k} = {1, 2, 3}.
Since e1, e2, e3 are τ -symmetric, we have for x, y ∈ V and i, j = 1, 2, 3, i 6= j:

h
(
ei(x), ej(y)

)
= h

(
x, ei ◦ ej(y)

)
= 0.

Therefore, the subspaces V1, V2, V3 are pairwise orthogonal with respect to h. For
i = 1, 2, 3, pick a nonzero vector vi ∈ Vi and let h(vi, vi) = δi ∈ F×. We may use
the basis (v1, v2, v3) to identify B with M3(K); the involution τ is then given by

τ



x11 x12 x13

x21 x22 x23

x31 x32 x33


 =




ι(x11) δ−1
1 ι(x21)δ2 δ−1

1 ι(x31)δ3
δ−1
2 ι(x12)δ1 ι(x22) δ−1

2 ι(x32)δ3
δ−1
3 ι(x13)δ1 δ−1

3 ι(x23)δ2 ι(x33)


 ,

so that

Sym(B, τ) =








x δ2a δ3b
δ1ι(a) y δ3c
δ1ι(b) δ2ι(c) z




∣∣∣∣∣∣
x, y, z ∈ F , a, b, c ∈ K



 .

Under this identification,

e1 =




1 0 0
0 0 0
0 0 0


 , e2 =




0 0 0
0 1 0
0 0 0


 , e3 =




0 0 0
0 0 0
0 0 1


 ,
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and L is the F -algebra of diagonal matrices in Sym(B, τ). The separability idem-
potent is e = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3. A computation shows that

M =








0 δ2a δ3b
δ1ι(a) 0 δ3c
δ1ι(b) δ2ι(c) 0




∣∣∣∣∣∣
a, b, c ∈ K



 .

The K-algebra LK is the algebra of diagonal matrices in B and MK is the space of
matrices whose diagonal entries are all 0. Let

m =




1 1 1
1 1 1
1 1 1


 ∈ B.

For x = (xij)1≤i,j≤3 ∈ B, we have

m ∗ (
∑3

i,j=1 xijei ⊗ ej) = x,

hence B is a free LK ⊗ LK-module of rank 1.

We now return to the general case, and let θ be theK-automorphism of LK⊗LK
which switches the factors:

θ(`1 ⊗ `2) = `2 ⊗ `1 for `1, `2 ∈ LK .

As in (??), we call e ∈ LK ⊗ LK the separability idempotent of LK . The charac-
terization of e in (??) shows that e is invariant under θ.

(19.18) Proposition. Consider B as a right LK⊗LK-module through the ∗-multi-

plication. The module B is free of rank 1. Moreover, there is a unique hermitian

form

H : B ×B → LK ⊗ LK
with respect to θ such that for all x ∈ B,

H(x, x) = e(x′ ⊗ x′) + (1− e)
(
(x′′

2 ∗ e)⊗ 1 + 1⊗ (x′′
2 ∗ e)− 1

2 Trd(x′′
2
)
)
,

(19.19)

where x′ = x ∗ e and x′′ = x ∗ (1− e). (Note that x′ and x′′2 ∗ e lie in LK , by (??).)

Proof : Since LK ⊗ LK is an étale F -algebra, it decomposes into a direct product
of fields by (??). Let LK ⊗ LK ' L1 × · · · × Ln for some fields L1, . . . , Ln. Then
B ' B1 × · · · ×Bn where Bi is a vector space over Li for i = 1, . . . , n. To see that
B is a free LK ⊗ LK-module of rank 1, it suffices to prove that dimLi Bi = 1 for
i = 1, . . . , n. Since dimF B = dimF (LK ⊗ LK), it actually suffices to show that
dimLi Bi 6= 0 for i = 1, . . . , n, which means that B is a faithful LK ⊗ LK-module.
This property may be checked over a scalar extension of F . Since it holds in the
split case, as was observed in (??), it also holds in the general case. (For a slightly
different proof, see Jacobson [?, p. 44].)

Now, let b ∈ B be a basis of B (as a free LK ⊗ LK-module). We define a
hermitian form H on B by

H(b ∗ λ1, b ∗ λ2) = θ(λ1)H(b, b)λ2 for λ1, λ2 ∈ LK ⊗ LK ,

where H(b, b) is given by formula (??). This is obviously the unique hermitian
form on B for which H(b, b) takes the required value. In order to show that the
hermitian form thus defined satisfies formula (??) for all x ∈ B, we may extend
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scalars to a splitting field of B and L, and assume we are in the split case discussed
in (??). With the same notation as in (??), define:

H ′(x, y) =
3∑

i,j=1

xjiyijei ⊗ ej ∈ LK ⊗ LK(19.20)

for x = (xij)1≤i,j≤3, y = (yij)1≤i,j≤3 ∈ B. Straightforward computations show that
H ′ is hermitian and satisfies formula (??) for all x ∈ B. In particular, H ′(b, b) =
H(b, b), hence H ′ = H . This proves the existence and uniqueness of the hermitian
form H .

The hermitian form H restricts to hermitian forms on Sym(B, τ) and on MK

which we discuss next.
Let ω be the K-semilinear automorphism of LK ⊗ LK defined by

ω
(
(`1 ⊗ k1)⊗ (`2 ⊗ k2)

)
=

(
`2 ⊗ ι(k2)

)
⊗

(
`1 ⊗ ι(k1)

)

for `1, `2 ∈ L and k1, k2 ∈ K. The following property is clear from the definition:

τ(x ∗ λ) = τ(x) ∗ ω(λ) for x ∈ B and λ ∈ LK ⊗ LK .

This shows that Sym(B, τ) is a right module over the algebra (LK ⊗ LK)ω of ω-
invariant elements in LK ⊗ LK . Moreover, by extending scalars to a splitting field
of B and using the explicit description of H = H ′ in (??), one can check that

H
(
τ(x), τ(y)

)
= ω

(
H(x, y)

)
for x, y ∈ B.

Therefore, the hermitian form H restricts to a hermitian form

HS : Sym(B, τ) × Sym(B, τ)→ (LK ⊗ LK)ω.

Now, consider the restriction of H to MK . By (??), we have x ∗ e = 0 for all
x ∈ MK , hence x ∗ (1 − e) = x and the LK ⊗ LK-module action on B restricts to
an action of (1− e) · (LK ⊗ LK) on MK . Moreover, for x, y ∈MK ,

H(x, y) = H
(
x ∗ (1− e), y

)
= (1− e)H(x, y) ∈ (1− e) · (LK ⊗ LK),

hence H restricts to a hermitian form

HMK : MK ×MK → (1− e) · (LK ⊗ LK).

Recall from (??) the embedding ε3 : LK ↪→ (1− e) · (LK ⊗LK). By (??) and (??),
ε3 induces a canonical isomorphism

ε̃3 : LK ⊗∆(LK) ∼−→ (1− e) · (LK ⊗ LK)

which we use to identify (1−e) ·(LK⊗LK) with LK⊗∆(LK). Since the image of ε3
is the subalgebra of (1− e) · (LK ⊗ LK) of elements fixed by θ, the automorphism
of LK ⊗ ∆(LK) corresponding to θ via ε̃3 is the identity on LK and the unique
nontrivial K-automorphism on ∆(LK). We call this automorphism also θ. Thus,
we may consider the restriction of H to MK as a hermitian form with respect to θ:

HMK : MK ×MK → LK ⊗∆(LK).

In particular, HMK (x, x) ∈ LK for all x ∈MK .

(19.21) Lemma. For all x ∈MK,

2TLK/K

(
HMK (x, x)

)
= TrdB(x2)

and

NLK/K

(
HMK (x, x)

)2
= Nε3(LK)/K

(
H

(
x2 ∗ (1− e), x2 ∗ (1− e)

))
.
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For all x ∈MK and ` ∈ LK,

HMK (`x, `x) = `#HMK (x, x),

where # : LK → LK is the quadratic map defined in (??).

Proof : It suffices to verify these formulas when B and L are split. We may thus
assume B and L are as in (??). For

x =




0 x12 x13

x21 0 x23

x31 x32 0


 ∈MK ,

we have, using (??) and (??),

H(x, x) = x12x21(e1 ⊗ e2 + e2 ⊗ e1) + x13x31(e1 ⊗ e3 + e3 ⊗ e1)
+ x23x32(e2 ⊗ e3 + e3 ⊗ e2)

= ε3(x23x32e1 + x13x31e2 + x12x21e3),

hence HMK (x, x) = x23x32e1 + x13x31e2 + x12x21e3 ∈ LK . It follows that

TLK/K

(
HMK (x, x)

)
= x23x32 + x13x31 + x12x21 = 1

2 Trd(x2)

and

NLK/K

(
H(x, x)

)
= x23x32x13x31x12x21.

On the other hand,

x2 ∗ (1− e) =




0 x13x32 x12x23

x23x31 0 x21x13

x32x21 x31x12 0


 ,

hence

Nε3(LK)/K

(
H

(
x2 ∗ (1− e), x2 ∗ (1− e)

))
= (x23x32x13x31x12x21)

2.

For ` = `1e1 + `2e2 + `3e3 ∈ LK , we have

`x =




0 `1x12 `1x13

`2x21 0 `2x23

`3x31 `3x32 0




and

H(`x, `x) = ε3(`2`3e1 + `1`3e2 + `1`2e3)H(x, x),

proving the last formula of the lemma, since `# = `2`3e1 + `1`3e2 + `1`2e3. Alter-
nately, the last formula follows from the fact that `x = x∗(`⊗1), hence H(`x, `x) =
(`⊗ `) ·H(x, x), together with the observation that (`⊗ `)(1− e) = ε3(`

#).
The first formula also follows from the definition of H(x, x) and of ε3, since

(??) shows that TL/F (x2 ∗ e) = Trd(x2).

Finally, we combine the restrictions HS and HMK of H to Sym(B, τ) and to
MK to describe the restriction of H to Sym(B, τ) ∩MK = M . The automorphism
of LK ⊗ ∆(LK) = L ⊗ ∆(L) ⊗ K corresponding to ω under the isomorphism ε̃3
is the identity on L and restricts to the unique nontrivial automorphism of ∆(L)
and of K. The F -subalgebra of elements fixed by ω therefore has the form L⊗E,
where E is the quadratic étale F -subalgebra of ω-invariant elements in ∆(L)⊗K.
If α, δ ∈ F× are such that K ' F [X ]/(X2 − α) and ∆(L) ' F [X ]/(X2 − δ),
then E ' F [X ]/(X2 − αδ). The LK ⊗ ∆(LK)-module structure on MK restricts
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to an L ⊗ E-module structure on M , and the hermitian form HMK restricts to a
hermitian form

HM : M ×M → L⊗E
with respect to (the restriction of) θ. Note that θ on L⊗E is the identity on L and
restricts to the nontrivial automorphism of E, hence HM (x, x) ∈ L for all x ∈M .

(19.22) Proposition. The hermitian form HM satisfies :

TL⊗E/F
(
HM (x, x)

)
= Qτ (x) for x ∈M .

The L⊗E-module M is free of rank 1; it contains a basis vector m such that

NL/F
(
HM (m,m)

)
∈ F×2.

Proof : The first formula readily follows from (??), since

TL⊗E/F
(
HM (x, x)

)
= 2TL/F

(
HM (x, x)

)
.

We claim that every element x ∈M such that HM (x, x) ∈ L× is a basis of the
L⊗F E-module M . Indeed, if λ ∈ L⊗ E satisfies x ∗ λ = 0, then HM (x, x ∗ λ) =
HM (x, x)λ = 0, hence λ = 0. Therefore, x ∗ (L ⊗ E) is a submodule of M which
has the same dimension over F as M . It follows that M = x ∗ (L⊗E), and that x
is a basis of M over L⊗E.

The existence of elements x such that HM (x, x) ∈ L× is clear if F is infinite,
since the proof of (??) shows thatNL/F

(
HM (x, x)

)
is a nonzero polynomial function

of x. It is also easy to establish when F is finite. (Note that in that case the
algebra B is split).

To find a basis element m ∈ M such that NL/F
(
HM (m,m)

)
∈ F×2, pick any

x ∈M such that HM (x, x) ∈ L× and set m = x2 ∗ (1− e). By (??), we have

NL/F
(
HM (m,m)

)
=

[
NL/F

(
HM (x, x)

)]2 ∈ F×2.

Let m ∈ M be a basis of M over L ⊗ E such that NL/F
(
HM (m,m)

)
∈ F×2

and let ` = HM (m,m) ∈ L×. We then have a diagonalization HM = 〈`〉L⊗E,
and Proposition (??) shows that the restriction Qτ |M of Qτ to M is the Scharlau
transfer of the hermitian form 〈`〉L⊗E :

Qτ |M = (TL⊗H/F )∗(〈`〉L⊗H).

We may use transitivity of the trace to represent the right-hand expression as the
transfer of a 2-dimensional quadratic space over L: if K ' F [X ]/(X2 − α) and
∆(L) ' F [X ]/(X2 − δ), so that E ' F [X ]/(X2 − αδ), we have

(TL⊗E/L)∗
(
〈`〉L⊗E

)
' 〈2`,−2αδ`〉L ' 〈2〉 · 〈〈αδ〉〉 · 〈`〉L,

hence

Qτ |M ' 〈2〉 · 〈〈αδ〉〉 · (TL/F )∗
(
〈`〉L

)
.(19.23)

This formula readily yields an expression for the form Qτ , in view of the orthog-
onal decomposition Sym(B, τ) = L⊥M . In order to get another special expression,
we prove a technical result:

(19.24) Lemma. For all ` ∈ L× such that NL/F (`) ∈ F×2, the quadratic form

〈〈δ〉〉 ·
(
(TL/F )∗

(
〈`〉L

)
⊥ 〈−1〉

)

is hyperbolic.
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Proof : By Springer’s theorem on odd-degree extensions, it suffices to prove that
the quadratic form above is hyperbolic after extending scalars from F to L. We
may thus assume L ' F ×∆(L). Let ` = (`0, `1) with `0 ∈ F and `1 ∈ ∆(L); then

(TL/F )∗
(
〈`〉L

)
= 〈`0〉 ⊥ (T∆(L)/F )∗

(
〈`1〉∆(L)

)
.

By Scharlau [?, p. 50], the image of the transfer map from the Witt ring W∆(L)
to WF is killed by 〈〈δ〉〉, hence

〈〈δ〉〉 · (TL/F )∗
(
〈`〉L

)
= 〈〈δ〉〉 · 〈`0〉 in WF .

On the other hand, NL/F (`) = `0N∆(L)/F (`1) ∈ F×2, hence `0 is a norm from ∆(L)
and therefore

〈〈δ〉〉 · 〈`0〉 = 〈〈δ〉〉 in WF .

Here, finally, is the main result of this subsection:

(19.25) Theorem. Let (B, τ) be a central simple K-algebra of degree 3 with in-

volution of the second kind which is the identity on F and let L ⊂ Sym(B, τ) be

a cubic étale F -algebra. Let α, δ ∈ F× be such that K ' F [X ]/(X2 − α) and

∆(L) ' F [X ]/(X2 − δ). Then, the quadratic form Qτ and the invariant π(τ)
satisfy :

Qτ ' 〈1, 2, 2δ〉 ⊥ 〈2〉 · 〈〈αδ〉〉 · (TL/F )∗
(
〈`〉L

)

' 〈1, 1, 1〉 ⊥ 〈2δ〉 · 〈〈α〉〉 · (TL/F )∗
(
〈`〉L

)(19.26)

and

π(τ) ' 〈〈α〉〉 ·
(
〈1〉 ⊥ 〈δ〉 · (TL/F )∗

(
〈`〉L

))
(19.27)

for some ` ∈ L× such that NL/F (`) ∈ F×2.

In particular, π(τ) has a factorization: π(τ) ' 〈〈α〉〉 · ϕ where ϕ is a 2-fold
Pfister form such that

ϕ · 〈〈δ〉〉 = 0 in WF .

Proof : Lemma (??) shows that the restriction of Qτ to L has a diagonalization:

Qτ |L ' 〈1, 2, 2δ〉.
Since Sym(B, τ) = L⊥M , the first formula for Qτ follows from (??).

In WF , we have 〈〈αδ〉〉 = 〈〈α〉〉 · 〈δ〉 + 〈〈δ〉〉. By substituting this in the first
formula for Qτ , we obtain:

Qτ = 〈1, 2, 2δ〉+ 〈2δ〉 · 〈〈α〉〉 · (TL/F )∗
(
〈`〉L

)
+ 〈2〉 · 〈〈δ〉〉 · (TL/F )∗

(
〈`〉L

)
in WF .

Lemma (??) shows that the last term on the right equals 〈2〉 · 〈〈δ〉〉. Since

〈2δ〉+ 〈2〉 · 〈〈δ〉〉 = 〈2〉 and 〈1, 2, 2〉 = 〈1, 1, 1〉,
we find

Qτ = 〈1, 1, 1〉+ 〈2δ〉 · 〈〈α〉〉 · (TL/F )∗
(
〈`〉L

)
in WF .

Since these two quadratic forms have the same dimension, they are isometric, prov-
ing the second formula for Qτ .

The formula for π(τ) readily follows, by the definition of π(τ) in (??).
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According to Scharlau [?, p. 51], we have det(TL/F )∗
(
〈`〉L

)
= δNL/F (`), hence

the form ϕ = 〈1〉⊥〈δ〉 · (TL/F )∗
(
〈`〉L

)
is a 2-fold Pfister form. Finally, Lemma (??)

shows that

〈〈δ〉〉 · ϕ = 〈〈δ〉〉 + 〈δ〉 · 〈〈δ〉〉 = 0 in WF .

(19.28) Corollary. Every unitary involution τ such that Sym(B, τ) contains a

cubic étale F -algebra L with discriminant ∆(L) isomorphic to K is distinguished.

Proof : Theorem (??) yields a factorization π(τ) = 〈〈α〉〉 ·ϕ with ϕ · 〈〈δ〉〉 = 0 in WF .
Therefore, π(τ) = 0 if α = δ.

So far, the involution τ has been fixed, as has been the étale subalgebra
L ⊂ Sym(B, τ). In the next proposition, we compare the quadratic forms Qτ
and Qτ ′ associated to two involutions of the second kind which are the identity
on L. By (??), we then have τ ′ = Int(u) ◦ τ for some u ∈ L×.

(19.29) Proposition. Let δ ∈ F× be such that ∆(L) ' F [X ]/(X2 − δ). Let

u ∈ L× and let τu = Int(u) ◦ τ . For any ` ∈ L× such that

Qτ ' 〈1, 2, 2δ〉 ⊥ 〈2〉 · 〈〈αδ〉〉 · (TL/F )∗
(
〈`〉L

)
,

we have

Qτu ' 〈1, 2, 2δ〉 ⊥ 〈2〉 · 〈〈αδ〉〉 · (TL/F )∗
(
〈u#`〉L

)
.

Proof : Left multiplication by u gives a linear bijection Sym(B, τ) → Sym(B, τu)
which maps L to L and the orthogonal complement M of L in Sym(B, τ) for the
form Qτ to the orthogonal complement Mu of L in Sym(B, τu) for the form Qτu .
Lemma (??) shows that

HMK (ux, ux) = u#HMK (x, x) for x ∈MK ,

hence multiplication by u defines a similitude (M,HM ) ∼−→ (Mu, HMu) with multi-
plier u#.

(19.30) Corollary. Let L be an arbitrary cubic étale F -algebra in B with ∆(L) '
F [X ]/(X2 − δ) for δ ∈ F×.

(1) For every ` ∈ L× such that NL/F (`) ∈ F×2, there exists an involution τ which

is the identity on L and such that Qτ and π(τ) satisfy (??) and (??).
(2) There exists a distinguished involution which is the identity on L.

Proof : (??) By (??), there is an involution of the second kind τ0 such that L ⊂
Sym(B, τ0). Theorem (??) yields

Qτ0 ' 〈1, 1, 1〉 ⊥ 〈2δ〉 · 〈〈α〉〉 · (TL/F )∗
(
〈`0〉L

)

for some `0 ∈ L× with NL/F (`0) ∈ F×2. If ` ∈ L× satisfies NL/F (`) ∈ F×2,

then NL/F (`−1
0 `) ∈ F×2, hence Proposition (??) shows that there exists u ∈ L×

satisfying u# ≡ `−1
0 ` mod L×2. We then have 〈`〉L ' 〈u#`0〉L, hence, by (??), the

involution τ = Int(u) ◦ τ0 satisfies the specified conditions.
(??) Choose `1 ∈ L× satisfying TL/F (`1) = 0 and let ` = `1NL/F (`1)

−1; then

NL/F (`) = NL/F (`1)
−2 ∈ F×2 and TL/F (`) = 0. Part (??) shows that there exists

an involution τ which is the identity on L and satisfies

π(τ) ' 〈〈α〉〉 ·
(
〈1〉 ⊥ 〈δ〉 · (TL/F )∗

(
〈`〉L

))
.
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Since TL/F (`) = 0, the form (TL/F )∗
(
〈`〉L

)
is isotropic. Therefore, π(τ) is isotropic,

hence hyperbolic since it is a Pfister form, and it follows that τ is distinguished.

As another consequence of (??), we obtain some information on the conju-
gacy classes of involutions which leave a given cubic étale F -algebra L elementwise
invariant:

(19.31) Corollary. Let L ⊂ B be an arbitrary cubic étale F -subalgebra and let τ
be an arbitrary involution which is the identity on L. For u, v ∈ L×, the involutions

τu = Int(u)◦τ and τv = Int(v)◦τ are conjugate if uv ∈ NLK/L(L×K)·F×. Therefore,

the map u ∈ L× 7→ τu induces a surjection of pointed sets from L×/NLK/L(L×K)·F×
to the set of conjugacy classes of involutions which are the identity on L, where the

distinguished involution is τ .

Proof : We use the same notation as in (??) and (??); thus

Qτu ' 〈1, 2, 2δ〉 ⊥ 〈2〉 · 〈〈αδ〉〉 · (TL/F )∗
(
〈u#`〉L

)

' 〈1, 1, 1〉 ⊥ 〈2δ〉 · 〈〈α〉〉 · (TL/F )∗
(
〈u#`〉L

)

for some ` ∈ L× such that NL/F (`) ∈ F×2 and, similarly,

Qτv ' 〈1, 1, 1〉 ⊥ 〈2δ〉 · 〈〈α〉〉 · (TL/F )∗
(
〈v#`〉L

)
.

According to (??), the involutions τu and τv are conjugate if and only if Qτu ' Qτv .
In view of the expressions above for Qτu and Qτv , this condition is equivalent to:

〈〈α〉〉 · (TL/F )∗
(
〈u#`,−v#`〉L

)
= 0 in WF,

or, using Frobenius reciprocity, to:

(TL/F )∗
(
〈〈α, (uv)#〉〉L · 〈u#`〉L

)
= 0 in WF.

If uv = NLK/L(λ)µ for some λ ∈ L×K and some µ ∈ F×, then

(uv)# = NLK/L

(
µNLK/K(λ)λ−1

)
,

hence 〈〈α, (uv)#〉〉 is hyperbolic.

Exercises

1. Let L be a finite dimensional commutative algebra over a field F . Let µ : L⊗F
L→ L be the multiplication map. Suppose L⊗F L contains an element e such
that e(x⊗ 1) = e(1⊗ x) for all x ∈ L and µ(e) = 1. Show that L is étale.

Hint : Let (ui)1≤i≤n be a basis of L and e =
∑n

i=1 ui ⊗ vi. Show that
(vi)1≤i≤n is a basis of L and that T (ui, vj) = δij for all i, j = 1, . . . , n, hence
T is nonsingular.

From this exercise and Proposition (??), it follows that L is étale if and
only if L⊗F L contains a separability idempotent of L.

2. Let G = {g1, . . . , gn} be a finite group of order n, and let L be a commutative
algebra of dimension n over a field F , endowed with an action of G by F -algebra
automorphisms. Show that the following conditions are equivalent:
(a) L is a Galois G-algebra;
(b) the map Ψ: L⊗F L = LL → Map(G,L) defined by Ψ(`1⊗`2)(g) = g(`1)`2

is an isomorphism of L-algebras;
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(c) for some basis (ei)1≤i≤n of L, the matrix
(
gi(ej)

)
1≤i,j≤n ∈ Mn(L) is in-

vertible;
(d) for every basis (ei)1≤i≤n of L, the matrix

(
gi(ej)

)
1≤i,j≤n ∈ Mn(L) is

invertible.
3. Suppose L is a Galois G-algebra over a field F . Show that for all field exten-

sions K/F , the algebra LK is a Galois G-algebra over K.
4. Show that every étale algebra of dimension 2 is a Galois (Z/2Z)-algebra.
5. (Saltman) Suppose L is an étale F -algebra of dimension n. For i = 1, . . . , n, let
πi : L→ L⊗n denote the map which carries x ∈ L to 1⊗· · ·⊗1⊗x⊗1⊗· · ·⊗1
(where x is in the i-th position). For i < j, let πij : L⊗F L→ L⊗n be defined
by πij(x ⊗ y) = πi(x)πj(y). Let s =

∏
1≤i<j≤n πij(1 − e) where e is the

separability idempotent of L. Show that s is invariant under the action of the
symmetric group Sn on L⊗n by permutation of the factors, and that there is
an isomorphism of Sn-algebras over F :

Σ(L) ' s · L⊗n.
Hint : If L = F × · · · × F and (ei)1≤i≤n is the canonical basis of L, show

that s =
∑
σ∈Sn

eσ(1) ⊗ · · · ⊗ eσ(n).

6. (Barnard [?]) Let L = F [X ]/(f) where

f = Xn − a1X
n−1 + a2X

n−2 − · · ·+ (−1)nan ∈ F [X ]

is a polynomial with no repeated roots in an algebraic closure of F . For
k = 1, . . . , n, let sk ∈ F [X1, . . . , Xn] be the k-th symmetric polynomial:
sk =

∑
i1<···<ik Xi1 · · ·Xik . Show that the action of Sn by permutation of the

indeterminates X1, . . . , Xn induces an action of Sn on the quotient algebra

R = F [X1, . . . , Xn]/(s1 − a1, s2 − a2, . . . , sn − an).
Establish an isomorphism of Sn-algebras: Σ(L) ' R.

7. (Bergé-Martinet [?]) Suppose L is an étale algebra of odd dimension over a
field F of characteristic 2. Let L′ = L× F and S′ = SL′/F . Show that

∆(L) ' F [t]/(t2 + t+ a)

where a ∈ F is a representative of the determinant of S ′.
8. Let B be a central division algebra of degree 3 over a field K of characteristic 3,

and let u ∈ B r F be such that u3 ∈ F×. Show that there exists x ∈ B× such
that ux = (x+ 1)u and x3 − x ∈ F .

Hint : (Jacobson [?, p. 80]) Let ∂u : B → B map x to ux− xu. Show that
∂3
u = 0. Show that if y ∈ B satisfies ∂u(y) 6= 0 and ∂2

u(y) = 0, then one may
take x = u(∂uy)

−1y.
9. (Albert’s theorem (??) in characteristic 3) Let B be a central division algebra of

degree 3 over a field K of characteristic 3. Suppose K is a quadratic extension
of some field F and NK/F (B) splits. Show that B contains a cubic extension
of K which is Galois over F with Galois group isomorphic to S3.

Hint : (Villa [?]) Let τ be a unitary involution on B as in (??). Pick
u ∈ Sym(B, τ) such that u3 ∈ F , u 6∈ F , and use Exercise ?? to find x ∈ B such

that ux = (x+1)u. Show that x+τ(x) ∈ K(u), hence
(
x+τ(x)

)3 ∈ F . Use this

information to show TrdB
(
xτ(x) + τ(x)x

)
= −1, hence SrdB

(
x− τ(x)

)
= −1.

Conclude by proving that K
(
x− τ(x)

)
is cyclic over K and Galois over F with

Galois group isomorphic to S3.
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Notes

§??. The notion of a separable algebraic field extension first occurs, under the
name of algebraic extension of the first kind, in the fundamental paper of Steinitz [?]
on the algebraic theory of fields. It was B. L. van der Waerden who proposed the
term separable in his Moderne Algebra, Vol. I, [?]. The extension of this notion to
associative (not necessarily commutative) algebras (as algebras which remain semi-
simple over any field extension) is already in Albert’s “Structure of Algebras” [?],
first edition in 1939. The cohomological interpretation (A has dimension 0 or,
equivalently, A is projective as an A ⊗ Aop-module) is due to Hochschild [?]. A
systematic study of separable algebras based on this property is given in Auslander-
Goldman [?]. Commutative separable algebras over rings occur in Serre [?] as un-

ramified coverings, and are called étales by Grothendieck in [?]. Étale algebras over
fields were consecrated as a standard tool by Bourbaki [?].

Galois algebras are considered in Grothendieck (loc. ref.) and Serre (loc. ref.).
A systematic study is given in Auslander-Goldman (loc. ref.). Further developments
may be found in the Memoir of Chase, Harrison and Rosenberg [?] and in the notes
of DeMeyer-Ingraham [?].

The notion of the discriminant of an étale F -algebra, and its relation to the
trace form, are classical in characteristic different from 2. (In this case, the dis-
criminant is usually defined in terms of the trace form, and the relation with per-
mutations of the roots of the minimal polynomial of a primitive element is proved
subsequently.) In characteristic 2, however, this notion is fairly recent. A formula
for the discriminant of polynomials, satisfying the expected relation with the per-
mutation of the roots (see (??)), was first proposed by Berlekamp [?]. For an étale
F -algebra L, Revoy [?] suggested a definition based on the quadratic forms SL/F or

S0, and conjectured the relation, demonstrated in (??), between his definition and
Berlekamp’s. Revoy’s conjecture was independently proved by Bergé-Martinet [?]
and by Wadsworth [?]. Their proofs involve lifting the étale algebra to a discrete
valuation ring of characteristic zero. A different approach, by descent theory, is due
to Waterhouse [?]; this approach also yields a definition of discriminant for étale
algebras over commutative rings. The proof of (??) in characteristic 2 given here
is new.

Reduced equations for cubic étale algebras (see (??)) (as well as for some higher-
dimensional algebras) can be found in Serre [?, p. 657] (in characteristic different
from 2 and 3) and in Bergé-Martinet [?, §4] (in characteristic 2).
§??. The fact that central simple algebras of degree 3 are cyclic is another

fundamental contribution of Wedderburn [?] to the theory of associative algebras.
Albert’s difficult paper [?] seems to be the first significant contribution in the

literature to the theory of algebras of degree 3 with unitary involutions. The classi-
fication of unitary involutions on such an algebra, as well as the related description
of distinguished involutions, comes from Haile-Knus-Rost-Tignol [?]. See (??) and
(??) for the cohomological version of this classification.
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CHAPTER VI

Algebraic Groups

It turns out that most of the groups which have occurred thus far in the book
are groups of points of certain algebraic group schemes. Moreover, many construc-
tions described previously are related to algebraic groups. For instance, the Clifford
algebra and the discriminant algebra are nothing but Tits algebras for certain semi-
simple algebraic groups; the equivalences of categories considered in Chapter ??,
for example of central simple algebras of degree 6 with a quadratic pair and cen-
tral simple algebras of degree 4 with a unitary involution over an étale quadratic
extension (see §??), reflect the fact that certain semisimple groups have the same
Dynkin diagram (D3 ' A3 in this example).

The aim of this chapter is to give the classification of semisimple algebraic
groups of classical type without any field characteristic assumption, and also to
study the Tits algebras of semisimple groups.

In the study of linear algebraic groups (more generally, affine group schemes) we
use a functorial approach equivalent to the study of Hopf algebras. The advantage
of such an approach is that nilpotents in algebras of functions are allowed (and they
really do appear when considering centers of simply connected groups over fields of
positive characteristic); moreover many constructions like kernels, intersections of
subgroups, are very natural. A basic reference for this approach is Waterhouse [?].
The classical view of an algebraic group as a variety with a regular group structure
is equivalent to what we call a smooth algebraic group scheme.

The classical theory (mostly over an algebraically closed field) can be found
in Borel [?], Humphreys [?], or Springer [?]. We also refer to Springer’s survey
article [?]. (The new (1998) edition of [?] will contain the theory of algebraic groups
over non algebraically closed fields.) We use some results in commutative algebra
which can be found in Bourbaki [?], [?], [?], and in the book of Matsumura [?].

The first three sections of the chapter are devoted to the general theory of group
schemes. In §?? we define the families of algebraic groups related to an algebra with
involution, a quadratic form, and an algebra with a quadratic pair. After a short
interlude (root systems, in §??) we come to the classification of split semisimple
groups over an arbitrary field. In fact, this classification does not depend on the
ground field F , and is essentially equivalent to the classification over the algebraic
closure Falg (see Tits [?], Borel-Tits [?]).

The central section of this chapter, §??, gives the classification of adjoint semi-
simple groups over arbitrary fields. It is based on the observation of Weil [?] that
(in characteristic different from 2) a classical adjoint semisimple group is the con-
nected component of the automorphism group of some algebra with involution. In
arbitrary characteristic the notion of orthogonal involution has to be replaced by
the notion of a quadratic pair which has its origin in the fundamental paper [?] of
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Tits. Groups of type G2 and F4 which are related to Cayley algebras (Chapter ??)
and exceptional Jordan algebras (Chapter ??), are also briefly discussed.

In the last section we define and study Tits algebras of semisimple groups. It
turns out that for the classical groups the nontrivial Tits algebras are the λ-powers
of a central simple algebra, the discriminant algebra of a simple algebra with a
unitary involution, and the Clifford algebra of a central simple algebra with an
orthogonal pair—exactly those algebras which have been studied in the book (and
nothing more!).

§20. Hopf Algebras and Group Schemes

This section is mainly expository. We refer to Waterhouse [?] for proofs and
more details.

Hopf algebras. Let F be a field and let A be a commutative (unital, associa-
tive) F -algebra with multiplication m : A ⊗F A → A. Assume we have F -algebra
homomorphisms

c : A→ A⊗F A (comultiplication)

i : A→ A (co-inverse)

u : A→ F (co-unit)

which satisfy the following:

(a) The diagram

A
c−−−−→ A⊗F A

c

y
yc⊗Id

A⊗F A Id⊗c−−−−→ A⊗F A⊗F A
commutes.

(b) The map

A
c−→ A⊗F A u⊗Id−−−→ F ⊗F A = A

equals the identity map Id: A→ A.
(c) The two maps

A
c−→ A⊗F A i⊗Id−−−→ A⊗F A m−→ A

A
u−→ F

·1−→ A

coincide.

An F -algebra A together with maps c, i, and u as above is called a (commutative)
Hopf algebra over F . A Hopf algebra homomorphism f : A → B is an F -algebra
homomorphism preserving c, i, and u, i.e., (f⊗f)◦cA = cB ◦f , f ◦ iA = iB ◦f , and
uA = uB ◦ f . Hopf algebras and homomorphisms of Hopf algebras form a category.

If A is a Hopf algebra over F and L/F is a field extension, then AL together
with cL, iL, uL is a Hopf algebra over L. If A → B and A → C are Hopf algebra
homomorphisms then there is a canonical induced Hopf algebra structure on the
F -algebra B ⊗A C.

Let A be a Hopf algebra over F . An ideal J of A such that

c(J) ⊂ J ⊗F A+A⊗F J, i(J) ⊂ J and u(J) = 0
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is called a Hopf ideal. If J is a Hopf ideal, the algebra A/J admits the structure
of a Hopf algebra and there is a natural surjective Hopf algebra homomorphism
A → A/J . For example, J = ker(u) is a Hopf ideal and A/J = F is the trivial
Hopf F -algebra. The kernel of a Hopf algebra homomorphism f : A→ B is a Hopf
ideal in A and the image of f is a Hopf subalgebra in B.

20.A. Group schemes. Recall that AlgF denotes the category of unital com-
mutative (associative) F -algebras with F -algebra homomorphisms as morphisms.
Let A be a Hopf algebra over F . For any unital commutative associative F -
algebra R one defines a product on the set

GA(R) = HomAlgF
(A,R)

by the formula fg = mR ◦ (f⊗F g)◦c where mR : R⊗F R→ R is the multiplication
in R. The defining properties of Hopf algebras imply that this product is associative,

with a left identity given by the composition A
u−→ F → R and left inverses given

by f−1 = f ◦ i; thus GA(R) is a group.
For any F -algebra homomorphism f : R→ S there is a group homomorphism

GA(f) : GA(R)→ GA(S), g 7→ f ◦ g,
hence we obtain a functor

GA : AlgF → Groups .

Any Hopf algebra homomorphism A → B induces a natural transformation of
functors GB → GA.

(20.1) Remark. Let A be an F -algebra with a comultiplication c : A→ A⊗F A.
Then c yields a binary operation on the set GA(R) for any F -algebra R. If for any R
the set GA(R) is a group with respect to this operation, then A is automatically
a Hopf algebra, that is, the comultiplication determines uniquely the co-inverse i
and the co-unit u.

An (affine) group scheme G over F is a functor G : AlgF → Groups isomorphic
to GA for some Hopf algebra A over F . By Yoneda’s lemma (see for example
Waterhouse [?, p. 6]) the Hopf algebra A is uniquely determined by G (up to
an isomorphism) and is denoted A = F [G]. A group scheme G is said to be
commutative if G(R) is commutative for all R ∈ AlgF .

A group scheme homomorphism ρ : G → H is a natural transformation of
functors. For any R ∈ AlgF , let ρR be the corresponding group homomorphism
G(R) → H(R). By Yoneda’s lemma, ρ is completely determined by the unique
Hopf algebra homomorphism ρ∗ : F [H ] → F [G] (called the comorphism of ρ) such
that ρR(g) = g ◦ ρ∗.

Group schemes over F and group scheme homomorphisms form a category.
We denote the set of group scheme homomorphisms (over F ) ρ : G → H by
HomF (G,H) The functors

Group schemes
over F

←→ Commutative Hopf
algebras over F

G 7→ F [G]
GA ← A
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define an equivalence of categories. Thus, essentially, the theory of group schemes
is equivalent to the theory of (commutative) Hopf algebras.

For a group scheme G over F and for any R ∈ AlgF the group G(R) is called
the group of R-points of G. If f : R→ S is an injective F -algebra homomorphism,
then the homomorphism G(f) : G(R) → G(S) is also injective. If L/E is a Galois
extension of fields containing F , with Galois group ∆ = Gal(L/E), then ∆ acts
naturally on G(L); Galois descent (Lemma (??)) applied to the algebra L[G] shows
that the natural homomorphism G(E) → G(L) identifies G(E) with the subgroup
G(L)∆ of Galois stable elements.

(20.2) Examples. (1) The trivial group 1(R) = 1 is represented by the trivial
Hopf algebra A = F .

(2) Let V be a finite dimensional vector space over F . The functor

V : AlgF → Groups , R 7→ VR = V ⊗F R
(to additive groups) is represented by the symmetric algebra F [V] = S(V ∗) of the
dual space V ∗. Namely one has

HomAlgF

(
S(V ∗), R

)
= HomF (V ∗, R) = V ⊗F R.

for any R ∈ AlgF The comultiplication c is given by c(f) = f ⊗ 1 + 1 ⊗ f , the
co-inverse i by i(f) = −f , and the co-unit u by u(f) = 0 for f ∈ V ∗.

In the particular case V = F we have the additive group, written Ga. One has
Ga(R) = R and F [Ga] = F [t].

(3) Let A be a unital associative F -algebra of dimension n. The functor

GL1(A) : AlgF → Groups, R 7→ (AR)×

is represented by the algebra B = S(A∗)[ 1
N ] where N : A → F is the norm map

considered as an element of Sn(A∗). For,

HomAlgF
(B,R) = { f ∈ HomAlgF

(
S(A∗), R

)
| f(N) ∈ R× }

= { a ∈ AR | N(a) ∈ R× } = (AR)×.

The comultiplication c is induced by the map

A∗ → A∗ ⊗A∗

dual to the multiplication m. In the particular case A = EndF (V ) we set GL(V ) =
GL1(A) (the general linear group), thus GL(V )(R) = GL(VR).

If V = Fn, we write GLn(F ) for GL(V ). Clearly, F [GLn(F )] = F [Xij ,
1

detX ]
where X = (Xij).

If A = F we set Gm = Gm,F = GL1(A) (the multiplicative group). Clearly,
Gm(R) = R×, F [Gm] = F [t, t−1] with comultiplication c(t) = t ⊗ t, co-inverse
i(t) = t−1, and co-unit u(t) = 1.

A group scheme G over F is said to be algebraic if the F -algebra F [G] is finitely
generated. All the examples of group schemes given above are algebraic.

Let G be a group scheme over F and let L/F be a field extension. The functor

GL : AlgL → Groups , GL(R) = G(R)

is represented by F [G]L = F [G]⊗F L, since

HomAlgL
(F [G]L, R) = HomAlgF

(F [G], R) = G(R), R ∈ AlgL.
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The group scheme GL is called the restriction of G to L. For example we have

GL1(A)L = GL1(AL).

Subgroups. Let G be a group scheme over F , let A = F [G], and let J ⊂ A
be a Hopf ideal. Consider the group scheme H represented by A/J and the group
scheme homomorphism ρ : H → G induced by the natural map A→ A/J . Clearly,
for any R ∈ AlgF the homomorphism ρR : H(R)→ G(R) is injective, hence we can
identify H(R) with a subgroup in G(R). H is called a (closed) subgroup of G and
ρ a closed embedding. A subgroup H in G is said to be normal if H(R) is normal
in G(R) for all R ∈ AlgF .

(20.3) Examples. (1) For any group scheme G, the augmentation Hopf ideal I =
ker(u) ⊂ F [G] corresponds to the trivial subgroup 1 since F [G]/I ' F .

(2) Let V be an F -vector space of finite dimension. For v ∈ V , v 6= 0, consider the
functor

Sv(R) = {α ∈ GL(VR) | α(v) = v } ⊂ GL(V )(R).

To show that Sv is a subgroup of GL(V ) (called the stabilizer of v) consider an
F -basis (v1, v2, . . . , vn) of V with v = v1. Then F [GL(V )] = F [Xij ,

1
detX ] and Sv

corresponds to the Hopf ideal in this algebra generated by X11 − 1, X21, . . . , Xn1.

(3) Let U ⊂ V be a subspace. Consider the functor

NU (R) = {α ∈ GL(VR) | α(UR) = UR } ⊂GL(V )(R).

To show that NU is a subgroup in GL(V ) (called the normalizer of U) consider
an F -basis (v1, v2, . . . , vn) of V such that (v1, v2, . . . , vk) is a basis of U . Then NU

corresponds to the Hopf ideal in F [Xij ,
1

detX ] generated by the Xij for i = k + 1,
. . . , n; j = 1, 2, . . . , k.

Let f : G → H be a homomorphism of group schemes, with comorphism
f∗ : F [H ] → F [G]. The ideal J = ker(f∗) is a Hopf ideal in F [H ]. It corre-
sponds to a subgroup in H called the image of f and denoted im(f). Clearly, f
decomposes as

G
f̄−→ im(f)

h−→ H

where h is a closed embedding. A homomorphism f is said to be surjective if f ∗

is injective. Thus the f̄ above is surjective. Note that for a surjective homomor-
phism, the induced homomorphism of groups of points G(R)→ H(R) need not be
surjective. For example, the nth power homomorphism f : Gm → Gm is surjective
since its comorphism f∗ : F [t]→ F [t] given by f∗(t) = tn is injective. However for
R ∈ AlgF the nth power homomorphism fR : R× → R× is not in general surjective.

A character of a group scheme G over F is a group scheme homomorphism
G→ Gm. Characters of G form an abelian group denoted G∗.

A character χ : G → Gm is uniquely determined by the element f = χ∗(t) ∈
F [G]× which satisfies c(f) = f ⊗ f . The elements f ∈ F [G]× satisfying this
condition are called group-like elements. The group-like elements form a subgroup
of G isomorphic to G∗.

Let A be a central simple algebra over F . The reduced norm homomorphism

Nrd: GL1(A)→ Gm

is a character of GL1(A).
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Fiber products, inverse images, and kernels. Let fi : Gi → H , i = 1, 2,
be group scheme homomorphisms. The functor

(G1 ×H G2)(R) = G1(R)×H(R) G2(R)

= { (x, y) ∈ G1(R)×G2(R) | (f1)R(x) = (f2)R(y) }
is called the fiber product of G1 and G2 over H . It is represented by the Hopf
algebra F [G1]⊗F [H] F [G2].

(20.4) Examples. (1) For H = 1, we get the product G1 × G2, represented by
F [G1]⊗F F [G2].

(2) Let f : G → H be a homomorphism of group schemes and let H ′ be the sub-
group of H given by a Hopf ideal J ⊂ F [H ]. Then G ×H H ′ is a subgroup in G
given by the Hopf ideal f∗(J) · F [G] in F [G], called the inverse image of H ′ and
denoted f−1(H ′). Clearly

f−1(H ′)(R) = { g ∈ G(R) | fR(g) ∈ H ′(R) }.
(3) The group f−1(1) in the preceding example is called the kernel of f , ker(f),

ker(f)(R) = { g ∈ G(R) | fR(g) = 1 }.
The kernel of f is the subgroup in G corresponding to the Hopf ideal f ∗(I) · F [G]
where I is the augmentation ideal in F [H ].

(4) If fi : Hi → H are closed embeddings, i = 1, 2, then H1 ×H H2 = f−1
1 (H2) =

f−1
2 (H1) is a subgroup of H1 and of H2, called the intersection H1 ∩ H2 of H1

and H2.

(5) The kernel of the nth power homomorphism Gm → Gm is denoted µn = µn,F
and called the group of nth roots of unity. Clearly,

µn(R) = {x ∈ R× | xn = 1 }
and F [µn] = F [t]/(tn − 1) · F [t].

(6) Let A be a central simple algebra over F . The kernel of the reduced norm
character Nrd : GL1(A)→ Gm is denoted SL1(A). If A = End(V ) we write SL(V )
for SL1(A) and call the corresponding group scheme the special linear group.

(7) Let ρ : G→ GL(V ) be a group scheme homomorphism and let 0 6= v ∈ V . The
inverse image of the stabilizer ρ−1(Sv) is denoted AutG(v),

AutG(v)(R) = { g ∈ G(R) | ρR(g)(v) = v }.
(8) Let A be an F -algebra of finite dimension (not necessarily unital, commutative,
associative). Let V = HomF (A ⊗F A,A) and let v ∈ V be the multiplication map
in A. Consider the group scheme homomorphism

ρ : GL(A)→ GL(V )

given by

ρR(α)(f)(a ⊗ a′) = α
(
f
(
α−1(a)⊗ α−1(a′)

))
.

The group scheme AutGL(A)(v) for this v is denoted Autalg(A). The group of
R-points Autalg(A)(R) coincides with the group AutR(A) of R-automorphisms of
the R-algebra AR.
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The corestriction. Let L/F be a finite separable field extension and let G
be a group scheme over L with A = L[G]. Consider the functor

RL/F (G) : AlgF → Groups, R 7→ G(R ⊗F L).(20.5)

(20.6) Lemma. The functor RL/F (G) is a group scheme.

Proof : Let X = X(L) be the set of all F -algebra homomorphisms τ : L → Fsep.
The Galois group Γ = Gal(Fsep/F ) acts on X by γτ = γ ◦ τ . For any τ ∈ X let
Aτ be the tensor product A⊗L Fsep where Fsep is made an L-algebra via τ , so that
a`⊗ x = a ⊗ τ(`)x for a ∈ A, ` ∈ L and x ∈ Fsep. For any γ ∈ Γ and τ ∈ X the
map

γ̃τ : Aτ → Aγτ , a⊗ x 7→ a⊗ γ(x)
is a ring isomorphism such that γ̃τ (xu) = γ(x) · γ̃τ (u) for x ∈ Fsep, u ∈ Aτ .

Consider the tensor product B̃ = ⊗τ∈XAτ over Fsep. The group Γ acts contin-

uously on B̃ by

γ(⊗aτ ) = ⊗a′τ where a′γτ = γ̃τ (aτ ).

The Fsep-algebra B̃ has a natural Hopf algebra structure arising from the Hopf

algebra structure on A, and the structure on B̃, compatible with the action of Γ.

Hence the F -algebra B = B̃Γ of Γ-stable elements is a Hopf algebra and by Lemma

(??) we get B ⊗F Fsep ' B̃.
We show that the F -algebra B represents the functor RL/F (G). For any F -

algebra R we have a canonical isomorphism

HomAlgF
(B,R) ' HomAlgFsep

(B̃, R⊗F Fsep)Γ.

A Γ-equivariant homomorphism B̃ → R ⊗F Fsep is determined by a collection of
Fsep-algebra homomorphisms {fτ : Aτ → R ⊗F Fsep}τ∈X such that, for all γ ∈ Γ
and τ ∈ X , the diagram

Aτ
fτ−−−−→ R⊗F Fsep

γ̃τ

y
yId⊗γ

Aγτ
fγτ−−−−→ R⊗F Fsep

commutes. For the restrictions gτ = fτ |A : A→ R⊗F Fsep we have

(Id⊗ γ) · gτ = gγτ .

Hence the image of gτ is invariant under Gal(Fsep/τL) ⊂ Γ and im gτ ⊂ R⊗F (τL).
It is clear that the map

h = (Id⊗ τ)−1 ◦ gτ : A→ R⊗F L
is independent of the choice of τ and is an L-algebra homomorphism. Conversely,
any L-algebra homomorphism h : A→ R⊗F L defines a collection of maps fτ by

fτ (a⊗ x) = [(Id⊗ τ)h(a)]x.
Thus, HomAlgF

(B,R) = HomAlgL
(A,R⊗F L) = G(R ⊗F L).

The group scheme RL/F (G) is called the corestriction of G from L to F .
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(20.7) Proposition. The functors restriction and corestriction are adjoint to each

other, i.e., for any group schemes H over F and G over L, there is a natural

bijection

HomF

(
H,RL/F (G)

)
' HomL(HL, G).

Furthermore we have

[RL/F (G)]Fsep '
∏

τ∈X
Gτ ,

where Gτ = GFsep , with Fsep made an L-algebra via τ .

Proof : Both statements follow from the proof of Lemma (??).

(20.8) Example. For a finite dimensional L-vector space V , RL/F (V) = VF

where VF = V considered as an F -vector space.

(20.9) Remark. Sometimes it is convenient to consider group schemes over ar-
bitrary étale F -algebras (not necessarily fields) as follows. An étale F -algebra L
decomposes canonically into a product of separable field extensions,

L = L1 × L2 × · · · × Ln,
(see Proposition (??)) and a group scheme G over L is a collection of group
schemes Gi over Li. One then defines the corestriction RL/F (G) to be the product
of the corestrictions RLi/F (Gi). For example we have

GL1(L) = RL/F (Gm,L)

for an étale F -algebra L. Proposition (??) also holds in this setting.

The connected component. Let A be a finitely generated commutative F -
algebra and let B ⊂ A be an étale F -subalgebra. Since the Fsep-algebra B ⊗F Fsep

is spanned by its idempotents (see Proposition (??)), dimF B is bounded by the
(finite) number of primitive idempotents of A⊗F Fsep. Furthermore, if B1, B2 ⊂ A
are étale F -subalgebras, then B1B2 is also étale in A, being a quotient of the tensor
product B1 ⊗F B2. Hence there exists a unique largest étale F -subalgebra in A,
which we denote π0(A).

(20.10) Proposition. (1) The subalgebra π0(A) contains all idempotents of A.

Hence A is connected (i.e., the affine variety SpecA is connected, resp. A has no

non-trivial idempotents) if and only if π0(A) is a field.

(2) For any field extension L/F , π0(AL) = π0(A)L.

(3) π0(A⊗F B) = π0(A)⊗F π0(B).

Reference: See Waterhouse [?, §6.5].

(20.11) Proposition. Let A be a finitely generated Hopf algebra over F . Then A
is connected if and only if π0(A) = F .

Proof : The “if” implication is part of (??) of Proposition (??). We show the
converse: the co-unit u : A→ F takes the field π0(A) to F , hence π0(A) = F .

We call an algebraic group scheme G over F connected if F [G] is connected
(i.e., F [G] contains no non-trivial idempotents) or, equivalently, if π0(F [G]) = F .

Let G be an algebraic group scheme over F and let A = F [G]. Then c
(
π0(A)

)
,

being an étale F -subalgebra in A⊗FA, is contained in π0(A⊗FA) = π0(A)⊗F π0(A)
(see (??) of Proposition (??)). Similarly, we have i

(
π0(A)

)
⊂ π0(A). Thus, π0(A) is
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a Hopf subalgebra of A. The group scheme represented by π0(A) is denoted π0(G).
There is a natural surjection G → π0(G). Clearly, G is connected if and only if
π0(G) = 1. Propositions (??) and (??) then imply:

(20.12) Proposition. (1) Let L/F be a field extension and let G be an algebraic

group scheme over F . Then π0(GL) = π0(G)L. In particular, GL is connected if

and only if G is connected.

(2) π0(G1 × G2) = π0(G1) × π0(G2). In particular, the Gi are connected if and

only if G1 ×G2 is connected.

Let G be an algebraic group scheme over F and let A = F [G]. The co-unit
homomorphism u maps all but one primitive idempotent of A to 0, so let e be
the primitive idempotent with u(e) = 1. Since π0(A)e is a field, π0(A)e = F and
I0 = π0(A) · (1 − e) is the augmentation ideal in π0(A). Denote the kernel of
G → π0(G) by G0. It is represented by the algebra A/A · I0 = A/A(1 − e) = Ae.
Since Ae is connected, G0 is connected; it is called the connected component of G.
We have (G1 ×G2)

0 = G0
1 ×G0

2 and for any field extension L/F , (GL)0 = (G0)L.

(20.13) Examples. (1) GL1(A) is connected.
(2) For a central simple algebra A, G = SL1(A) is connected since F [G] is is
the quotient of a polynomial ring modulo the ideal generated by the irreducible
polynomial Nrd(X)− 1.
(3) µn is an example of a non-connected group scheme.

(20.14) Lemma (Homogeneity property of Hopf algebras). Let A be a Hopf al-

gebra which is finitely generated over F = Falg. Then for any pair of maximal

ideals M , M ′ ⊂ A there exists an F -algebra automorphism ρ : A → A such that

ρ(M) = M ′.

Proof : We may assume that M ′ is the augmentation ideal in A. Let f be the
canonical projection A→ A/M = F , and set ρ = (IdA⊗f)◦c. One checks that the
map

(
IdA⊗ (f ◦ i)

)
◦ c is inverse to ρ, i.e., ρ ∈ AutF (A). Since (u⊗ IdA) ◦ c = IdA,

it follows that u ◦ ρ = (u ⊗ f) ◦ c = f ◦ (u ⊗ IdA) ◦ c = f and ρ(M) = ρ(ker f) =
keru = M ′.

Let nil(A) be the set of all nilpotent elements of A; it is an ideal of A, and equals
the intersection of all the prime ideals of A. The algebra A/ nil(A) is denoted by
Ared.

(20.15) Proposition. Let G be an algebraic group scheme over F and let A =
F [G]. Then the following conditions are equivalent :

(1) G is connected.

(2) A is connected.

(3) Ared is connected.

(4) Ared is a domain.

Proof : The implications (??) ⇔ (??) ⇔ (??) ⇐ (??) are easy.
For (??) ⇒ (??) we may assume that F = Falg. Since G is an algebraic group

the scheme A is finitely generated. Hence the intersection of all maximal ideals
in A containing a given prime ideal P is P (Bourbaki [?, Ch.V, §3, no. 4, Cor. to
Prop. 8 (ii)]) and there is a maximal ideal containing exactly one minimal prime
ideal. By the Lemma above, each maximal ideal contains exactly one minimal
prime ideal. Hence any two different minimal prime ideals P and P ′ are coprime:



332 VI. ALGEBRAIC GROUPS

P + P ′ = A. Let P1, P2, . . . , Pn be all minimal prime ideals. Since
⋂
Pi = nil(A),

we have Ared = A/ nil(A) ' ∏
A/Pi by the Chinese Remainder Theorem. By

assumption Ared is connected, hence n = 1 and Ared = A/P1 is a domain.

Constant and étale group schemes. Let H be a finite (abstract) group.
Consider the algebra

A = Map(H,F )

of all functions H → F . For h ∈ H , let eh be the characteristic function of {h};
this map is an idempotent in A, and we have A =

∏
h∈H F · eh. A Hopf algebra

structure on A is given by

c(eh) =
∑

xy=h

ex ⊗ ey, i(eh) = eh−1 , u(eh) =

{
1 if h = 1,

0 if h 6= 1.

The group scheme over F represented by A is denotedHconst and called the constant

group scheme associated to H . For any connected F -algebraR ∈ AlgF , Hconst(R) =
H .

A group scheme G over F is said to be étale if F [G] is an étale F -algebra. For
example, constant group schemes are étale and, for any algebraic group scheme G,
the group scheme π0(G) is étale. If G is étale, then G(Fsep) is a finite (discrete)
group with a continuous action of Γ = Gal(Fsep/F ). Conversely, given a finite
groupH with a continuous Γ-action by group automorphisms, we have a Γ-action on
the Fsep-algebra A = Map(H,Fsep). Let Het be the étale group scheme represented
by the (étale) Hopf algebra AΓ. Subgroups of Het are étale and correspond to
Γ-stable subgroups of H .

(20.16) Proposition. The two functors

Étale group schemes
over F

←→ Finite groups with
continuous Γ-action

G 7→ G(Fsep)
Het ← H

are mutually inverse equivalences of categories. In this equivalence constant group

schemes correspond to finite groups with trivial Γ-action.

Proof : This follows from Theorem (??).

Diagonalizable group schemes and group schemes of multiplicative
type. Let H be an (abstract) abelian group, written multiplicatively. We have a
structure of a Hopf algebra on the group algebra F 〈H〉 over F given by c(h) = h⊗h,
i(h) = h−1 and u(h) = 1. The group scheme represented by F 〈H〉 is said to be
diagonalizable and is denoted Hdiag. Clearly,

Hdiag(R) = Hom(H,R×), R ∈ AlgF .

The group-like elements in F 〈H〉 are of the form h ⊗ h for h ∈ H . Hence the
character group (Hdiag)

∗ is naturally isomorphic to H . For example, we have

Zdiag = Gm, (Z/nZ)diag = µn.

A group scheme G over F is said to be of multiplicative type if Gsep(= GFsep) is
diagonalizable. In particular, diagonalizable group schemes are of multiplicative
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type. Let G be of multiplicative type. The character group (Gsep)∗ has a natural
continuous action of Γ = Gal(Fsep/F ). To describe this action we observe that the
group of characters (Gsep)∗ is isomorphic to the group of group-like elements in
Fsep[Gsep]. The action is induced from the natural action on action on Fsep[Gsep].
Conversely, given an abelian group H with a continuous Γ-action, the Hopf alge-
bra of Γ-stable elements in Fsep[Hdiag] = Fsep〈H〉 represents a group scheme of
multiplicative type which we denote Hmult. Clearly,

Hmult(R) = HomΓ

(
H, (R ⊗F Fsep)×

)
.

(20.17) Proposition. The two contravariant functors

Group schemes of
multiplicative type

over F
←→ Abelian groups with

continuous Γ-action

G 7→ (Gsep)∗

Hmult ← H

define an equivalence of categories. Under this equivalence diagonalizable group

schemes correspond to abelian groups with trivial Γ-action.

An algebraic torus is a group scheme of multiplicative type Hmult where H is a
free abelian group of finite rank. A torus T is said to be split if it is a diagonalizable
group scheme, i.e., T = Hdiag ' (Zn)diag = Gm× · · ·×Gm (n factors) is isomorphic
to the group scheme of diagonal matrices in GLn(F ). Any torus T is split over Fsep.

Cartier Duality. Let H be a finite abelian (abstract) group with a continuous
Γ-action and let Γ = Gal(Fsep/F ). One can associate two group schemes to H :
Het and Hmult. We discuss the relation between these group schemes. A group
scheme G over F is called finite if dimF F [G] <∞. The order of G is dimF F [G].
For example an étale group scheme G is finite. Its order is the order of G(Fsep).
Let G be a finite commutative group scheme over F ; then A = F [G] is of finite
dimension. Consider the dual F -vector space A∗ = HomF (A,F ). The duals of
the five structure maps on A, namely the unit map e : F → A, the multiplication
m : A ⊗F A → A and the maps c, i, u defining the Hopf algebra structure on A,
yield five maps which define a Hopf algebra structure on A∗. The associated group
scheme is denoted GD and is called Cartier dual of G. Thus, F [GD] = F [G]∗ and
GDD = G.

Elements of the group (GD)(F ) are represented by F -algebra homomorphisms
F [G]∗ → F which, as is easily seen, are given by group-like elements of F [G].
Hence, GD(F ) ' G∗, the character group of G.

Cartier duality is an involutory contravariant functor D on the category of
finite commutative group schemes over F .

The restriction of D gives an equivalence of categories

Étale commutative
group schemes over F

←→ Finite group schemes of
multiplicative type over F

More precisely, if H is a finite abelian (abstract) group with a continuous Γ-action,
then

(Het)
D = Hmult, (Hmult)

D = Het.
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(20.18) Example.

(Z/nZ)D = µn, µDn = Z/nZ.

(We write Z/nZ for (Z/nZ)const.)

§21. The Lie Algebra and Smoothness

Let M be an A-module. A derivation D of A into M is an F -linear map
D : A→M such that

D(ab) = a ·D(b) + b ·D(a).

We set Der(A,M) for the A-module of all derivations of A into M .

21.A. The Lie algebra of a group scheme. Let G be an algebraic group
scheme over F and let A = F [G]. A derivation D ∈ Der(A,A) is said to be left-

invariant if c ◦D = (id ⊗D) ◦ c. The F -vector space of left-invariant derivations
is denoted Lie(G) and is called the Lie algebra of G. The Lie algebra structure
on Lie(G) is given by [D1, D2] = D1 ◦D2 −D2 ◦D1.

Denote by F [ε] the F -algebra of dual numbers, i.e., F [ε] = F ·1⊕F ·ε with multi-
plication given by ε2 = 0. There is a unique F -algebra homomorphism κ : F [ε]→ F

with κ(ε) = 0. The kernel of G(F [ε])
G(κ)−−−→ G(F ) carries a natural F -vector space

structure: addition is the multiplication in G(F [ε]) and scalar multiplication is de-
fined by the formula a · g = G(`a)(g) for g ∈ G(F [ε]), a ∈ F , where `a : F [ε]→ F [ε]
is the F -algebra homomorphism defined by `a(ε) = aε.

(21.1) Proposition. There exist natural isomorphisms between the following F -

vector spaces :

(1) Lie(G),
(2) Der(A,F ) where F is considered as an A-module via the co-unit map u : A→ F ,

(3) (I/I2)∗ where I ⊂ A is the augmentation ideal,

(4) ker
(
G(F [ε])

G(κ)−−−→ G(F )
)
.

Proof : (??) ⇔ (??) If D ∈ Lie(G), then u ◦ D ∈ Der(A,F ). Conversely, for
d ∈ Der(A,F ) one has D = (Id⊗ d) ◦ c ∈ Lie(G).

(??)⇔ (??) Any derivation d : A→ F satisfies d(I2) = 0, hence the restriction
d|I induces an F -linear form on I/I2. Conversely, if f : I → F is an F -linear map
such that f(I2) = 0, then d : A = F · 1 ⊕ I → F given by d(α + x) = f(x) is a
derivation.

(??)⇔ (??) An element f of kerG(κ) is an F -algebra homomorphism f : A→
F [ε] of the form f(a) = u(a) + d(a) · ε where d ∈ Der(A,F ).

(21.2) Corollary. If G is an algebraic group scheme, then dimF Lie(G) <∞.

Proof : Since A is noetherian, I is a finitely generated ideal, hence I/I2 is finitely
generated over A/I = F .

(21.3) Proposition. Let G be an algebraic group scheme over F and let A = F [G].
Then Der(A,A) is a finitely generated free A-module and

rankA Der(A,A) = dim Lie(G).
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Proof : Let G be an algebraic group scheme over F . The map

Der(A,F ) ' (I/I2)∗ → Der(A,A), d 7→ (id⊗ d) ◦ c
used in the proof of Proposition (??) extends to an isomorphism of A-modules
(Waterhouse [?, 11.3.])

A⊗F (I/I2)∗ ∼−→ Der(A,A).

The Lie algebra structure on Lie(G) can be recovered as follows (see Waterhouse

[?, p. 94]). Consider the commutative F -algebra R = F [ε, ε′] with ε2 = 0 = ε′2.
From d, d′ ∈ Der(A,F ) we build two elements g = u+d·ε and g′ = u+d′·ε′ in G(R).

A computation of the commutator of g and g′ in G(R) yields gg′g−1g′−1
= u+d′′ ·εε′

where d′′ = [d, d′] in Lie(G).
Any homomorphism of group schemes f : G → H induces a commutative dia-

gram

G(F [ε])
fF [ε]−−−−→ H(F [ε])

G(κ)

y
yH(κ)

G(F )
fF−−−−→ H(F )

and hence defines an F -linear map df : Lie(G) → Lie(H), which is a Lie algebra
homomorphism, called the differential of f . If f is a closed embedding (i.e., G is
a subgroup of H) then df is injective and identifies Lie(G) with a Lie subalgebra
of Lie(H).

In the next proposition we collect some properties of the Lie algebra; we assume
that all group schemes appearing here are algebraic.

(21.4) Proposition. (1) For any field extension L/F , Lie(GL) ' Lie(G)⊗F L.

(2) Let fi : Gi → H be group scheme homomorphisms, i = 1, 2. Then

Lie(G1 ×H G2) = Lie(G1)×Lie(H) Lie(G2).

In particular :
(a) For a homomorphism f : G→ H and a subgroup H ′ ⊂ H,

Lie
(
f−1(H ′)

)
' (df)−1

(
Lie(H ′)

)
.

(b) Lie(ker f) = ker(df).
(c) Lie(G1 ×G2) = Lie(G1)× Lie(G2).

(3) For any finite separable field extension L/F and any algebraic group scheme G
over L, Lie

(
RL/F (G)

)
= Lie(G) as F -algebras.

(4) Lie(G) = Lie(G0).

Reference: See Waterhouse [?, Chap. 12].

(21.5) Examples. (1) Let G = V, V a vector space over F . The elements of
kerG(κ) have the form v · ε with v ∈ V arbitrary. Hence Lie(G) = V with the
trivial Lie product. In particular, Lie(Ga) = F .

(2) Let G = GL1(A) where A is a finite dimensional associative F -algebra. El-
ements of kerG(κ) are of the form 1 + a · ε, a ∈ A. Hence Lie

(
GL1(A)

)
= A.

One can compute the Lie algebra structure using R = F [ε, ε′]: the commutator of
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1+a · ε and 1+a′ · ε′ in G(R) is 1+(aa′−a′a) · εε′, hence the Lie algebra structure
on A is given by [a, a′] = aa′ − a′a. In particular,

Lie
(
GL(V )

)
= End(V ), Lie(Gm) = F.

(3) For a central simple algebra A over F , the differential of the reduced norm
homomorphism Nrd: GL1(A) → Gm is the reduced trace Trd: A → F since
Nrd(1 + a · ε) = 1 + Trd(a) · ε. Hence,

Lie
(
SL1(A)

)
= { a ∈ A | Trd(a) = 0 } ⊂ A.

(4) The differential of the nth power homomorphism Gm → Gm is multiplication
by n : F → F since (1 + a · ε)n = 1 + na · ε. Hence

Lie(µn) =

{
0 if charF does not divide n,

F otherwise.

(5) If G is an étale group scheme, then Lie(G) = 0 since Der(A,A) = 0 for any
étale F -algebra A.

(6) Let H be an (abstract) abelian group with a continuous Γ-action and let G =
Hmult. An element in kerG(κ) has the form 1 + f · ε where f ∈ HomΓ(H,Fsep).
Hence,

Lie(G) = HomΓ(H,Fsep) = HomΓ(G∗sep, Fsep).

(7) Let Sv ⊂ GL(V ) be the stabilizer of 0 6= v ∈ V . An element of kerSv(κ) has
the form 1 + α · ε where α ∈ End(V ) and (1 + α · ε)(v) = v, i.e., α(v) = 0. Thus,

Lie(Sv) = {α ∈ End(V ) | α(v) = 0 }.

(8) Let ρ : G→ GL(V ) be a homomorphism, 0 6= v ∈ V . Then

Lie
(
AutG(v)

)
= {x ∈ Lie(G) | (df)(x)(v) = 0 }.

(9) Let G = Autalg(A) where A is a finite dimensional F -algebra and let

ρ : GL(A)→ GL
(
Hom(A⊗F A,A)

)

be as in Example (??), (??). By computing over F [ε], one finds that the differential

dρ : End(A)→ End
(
Hom(A⊗F A,A)

)

is given by the formula

(dρ)(α)(φ)(a ⊗ a′) = α
(
φ(a⊗ a′)

)
− φ

(
α(a) ⊗ a′

)
− φ

(
a⊗ α(a′)

)
,

hence the condition (dρ)(α)(v) = 0, where v is the multiplication map, is equivalent
to α ∈ Der(A,A), i.e.,

Lie
(
Autalg(A)

)
= Der(A,A).

(10) Let NU be the normalizer of a subspace U ⊂ V (see Example (??.??)). Since
the condition (1 + α · ε)(u + u′ · ε) ∈ U + U · ε, for α ∈ End(V ), u, u′ ∈ U , is
equivalent to α(u) ∈ U , we have

Lie(NU ) = {α ∈ End(V ) | α(U) ⊂ U }.
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The dimension. Let G be an algebraic group scheme over F . If G is con-
nected, then F [G]red is a domain (Proposition (??)). The dimension dimG of G
is the transcendence degree over F of the field of fractions of F [G]red. If G is not
connected, we define dimG = dimG0.

(21.6) Examples. (1) dimV = dimF V .
(2) dimGL1(A) = dimF A.
(3) dimSL1(A) = dimF A− 1.
(4) dimGm = dimGa = 1.
(5) dim µn = 0.

The main properties of the dimension are collected in the following

(21.7) Proposition. (1) dimG = dimF [G] (Krull dimension).
(2) G is finite if and only if dimG = 0.
(3) For any field extension L/F , dim(GL) = dimG.

(4) dim(G1 ×G2) = dimG1 + dimG2.

(5) For any separable field extension L/F and any algebraic group scheme G over L,

dimRL/F (G) = [L :F ] · dimG.

(6) Let G be a connected algebraic group scheme with F [G] reduced (i.e., F [G] has

no nilpotent elements) and let H be a proper subgroup of G. Then dimH < dimG.

Proof : (??) follows from Matsumura [?, Th. 5.6]; (??) and (??) are immediate
consequences of the definition.

(??) Set A = F [G]. Since A is noetherian and dimA = 0, A is artinian. But
A is also finitely generated, hence dimF A <∞.

(??) We may assume that the Gi are connected and F = Falg. Let Li be the
field of fractions of F [Gi]red. Since F = Falg, the ring L1⊗FL2 is an integral domain
and the field of fractions of F [G1 ×G2]red is the field of fractions E of L1 ⊗F L2.
Thus, dim(G1×G2) = tr.degF (E) = tr.degF (L1)+tr.degF (L2) = dimG1+dimG2.

(??) With the notation of (??) we have

dimRL/F (G) = dim
(
RL/F (G)sep

)

= dim(
∏

τ∈X
Gτ ) =

∑

τ∈X
dimGτ = [L :F ] · dimG.

Smoothness. Let S be a commutative noetherian local ring with maximal
ideal M and residue field K = S/M . It is known (see Matsumura [?, p. 78]) that

dimK(M/M2) ≥ dimS.

The ring S is said to be regular if equality holds. Recall that regular local rings are
integral domains (Matsumura [?, Th. 19.4]).

(21.8) Lemma. For any algebraic group scheme G over F we have dimF Lie(G) ≥
dimG. Equality holds if and only if the local ring F [G]I is regular where I is the

augmentation ideal of F [G].

Proof : Let A = F [G]. The augmentation ideal I ⊂ A is maximal with A/I = F .
Hence, for the localization S = AI with respect to the maximal ideal M = IS we
have S/M = F and

dimF Lie(G) = dimF (I/I2) = dimF (M/M2) ≥ dimS = dimA = dimG,

proving the lemma.
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(21.9) Proposition. Let G be an algebraic group scheme over F and let A = F [G].
Then the following conditions are equivalent :

(1) AL is reduced for any field extension L/F .

(2) AFalg
is reduced.

(3) dimF

(
Lie(G)

)
= dimG.

If F is perfect, these conditions are also equivalent to

(4) A is reduced.

Proof : (??) ⇒ (??) is trivial.
(??) ⇒ (??) We may assume that F = Falg and that G is connected (since

F [G0] is a direct factor of A and hence is reduced). By (??) A is an integral domain.
Let K be its field of fractions. The K-space of derivations Der(K,K) is isomorphic
to Der(A,A)⊗A K, hence by (??)

dimF

(
Lie(G)

)
= rankA

(
Der(A,A)

)
= dimK Der(K,K).

But the latter is known to equal tr.degF (K) = dimG.
(??) ⇒ (??) We may assume that L = F = Falg. By (??) the ring AI is

regular hence is an integral domain and is therefore reduced. By the homogeneity
property (see (??)) AM is reduced for every maximal ideal M ⊂ A. Hence, A is
reduced.

Finally, assume F is perfect. Since the tensor product of reduced algebras over
a perfect field is reduced (see Bourbaki [?, Ch.V, §15, no. 5, Théorème 3]), it follows
that AFalg

is reduced if A is reduced. The converse is clear.

An algebraic group scheme G is said to be smooth if G satisfies the equivalent
conditions of Proposition (??). Smooth algebraic group schemes are also called
algebraic groups.

(21.10) Proposition. (1) Let G be an algebraic group scheme over F and let L/F
be a field extension. Then GL is smooth if and only if G is smooth.

(2) If G1, G2 are smooth then G1 ×G2 is smooth.

(3) If charF = 0, all algebraic group schemes are smooth.

(4) An algebraic group scheme is smooth if and only if its connected component G0

is smooth.

Proof : (??) and (??) follow from the definition of smoothness and (??) (which is a
result due to Cartier) is given in Waterhouse [?, §11.4]. (??) follows from the proof
of (??).

(21.11) Examples. (1) GL1(A), SL1(A) are smooth for any central simple F -
algebra A.
(2) Étale group schemes are smooth.
(3) Hmult is smooth if and only if H has no p-torsion where p = charF .

Let F be a perfect field (for example F = Falg), let G be an algebraic group
scheme over F and let A = F [G]. Since the ring Ared ⊗F Ared is reduced, the
comultiplication c factors through

cred : Ared → Ared ⊗F Ared,

making Ared a Hopf algebra. The corresponding smooth algebraic group scheme
Gred is called the smooth algebraic group associated to G. ClearlyGred is a subgroup
of G and Gred(R) = G(R) for any reduced algebra R ∈ AlgF .
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(21.12) Remark. The classical notion of an (affine) algebraic group over an al-
gebraically closed field, as an affine variety SpecA endowed with a group structure
corresponds to reduced finitely generated Hopf algebras A, i.e., coincides with the
notion of a smooth algebraic group scheme. This is why we call such group schemes
algebraic groups. Therefore, for any algebraic group scheme G, one associates a
(classical) algebraic group (Galg)red over Falg. The notions of dimension, connected-
ness, Lie algebra, . . . given here then coincide with the classical ones (see Borel [?],
Humphreys [?]).

§22. Factor Groups

22.A. Group scheme homomorphisms.

The injectivity criterion. We will use the following

(22.1) Proposition. Let A ⊂ B be Hopf algebras. Then B is faithfully flat over A.

Reference: See Waterhouse [?, §14.1].

A group scheme homomorphism f : G→ H is said to be injective if ker f = 1,
or equivalently, if fR : G(R)→ H(R) is injective for all R ∈ AlgF .

(22.2) Proposition. Let f : G→ H be a homomorphism of algebraic group sche-

mes. The following conditions are equivalent :

(1) f is injective.

(2) f is a closed embedding (i.e., f ∗ is surjective).
(3) falg : G(Falg)→ H(Falg) is injective and df is injective.

Proof : (??) ⇒ (??) By replacing H by the image of f we may assume that

f∗ : A = F [H ]→ F [G] = B

is injective. The elements in G(B⊗AB) given by the two natural maps B ⇒ B⊗AB
have the same image in H(B ⊗A B), hence they are equal. But B is faithfully flat
over A, hence the equalizer of B ⇒ B ⊗A B is A. Thus, A = B.

The implication (??) ⇒ (??) is clear.
(??) ⇒ (??) Let N = ker f . We have Lie(N) = ker(df) = 0, hence by Lemma

(??) dimN ≤ dim Lie(N) = 0 and N is finite (Proposition (??)). Then it follows
from Proposition (??) that N is smooth and hence étale, N = Het where H =
N(Fsep) (see ??). But N(Fsep) ⊂ N(Falg) = ker(falg) = 1, hence N = 1 and f is
injective.

The surjectivity criterion.

(22.3) Proposition. Let f : G→ H be a homomorphism of algebraic group sche-

mes. If H is smooth, the following conditions are equivalent :

(1) f is surjective (i.e., f∗ is injective).
(2) falg : G(Falg)→ H(Falg) is surjective.

Proof : (??) ⇒ (??) We may assume that F = Falg. Since B = F [G] is faithfully
flat over A = F [H ], any maximal ideal of A is the intersection with A of a maximal
ideal of B (Bourbaki [?, Ch.1, §3, no. 5, Prop. 8 (iv)]), or equivalently, any F -
algebra homomorphism A→ F can be extended to B. (Note that we are not using
the smoothness assumption here.)

(??) ⇒ (??) Assume F = Falg. Any F -algebra homomorphism A→ F factors
through f∗, hence all maximal ideals in A contain ker f . But the intersection of
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all maximal ideals in A is zero since A is reduced, therefore f ∗ is injective and f is
surjective.

(22.4) Proposition. Let f : G → H be a surjective homomorphism of algebraic

group schemes.

(1) If G is connected (resp. smooth), then H is connected (resp. smooth).
(2) Let H ′ be a subgroup of H. Then the restriction of f to f−1(H ′) is a surjective

homomorphism f−1(H ′)→ H ′.

Proof : (??) is clear. For (??), let J ⊂ A = F [H ] be the Hopf ideal corresponding
to H ′. Hence the ideal J ′ = f∗(J) · B ⊂ B = F [G] corresponds to f−1(H ′),
and the homomorphism F [H ′] = A/J → B/J ′ = F [f−1(H ′)] is injective since
(f∗)−1(J ′) = J (see Bourbaki [?, Ch.I, §3, no. 5, Prop. 8 (ii)]).

The isomorphism criterion. Propositions (??) and (??) imply that

(22.5) Proposition. Let f : G→ H be a homomorphism of algebraic group sche-

mes with H smooth. Then the following conditions are equivalent :

(1) f is an isomorphism.

(2) f is injective and surjective.

(3) falg : G(Falg)→ H(Falg) is an isomorphism and df is injective.

(22.6) Example. Let f : Gm → Gm be the pth-power homomorphism where p =
charF . Clearly, falg is an isomorphism, but f is not since df = 0.

Factor group schemes.

(22.7) Proposition. Let f : G→ H be a surjective homomorphism of group sche-

mes with kernel N . Then any group scheme homomorphism f ′ : G→ H ′ vanishing

on N factors uniquely through f .

Proof : Let A = F [H ] and B = F [G]. The two natural homomorphisms B ⇒

B ⊗A B, being elements in G(B ⊗A B), have the same image in H(B ⊗A B) and
hence they are congruent modulo N(B ⊗A B). Hence the two composite maps

F [H ′]
f ′∗−−→ B ⇒ B ⊗A B

coincide. By the faithful flatness of B over A the equalizer of B ⇒ B ⊗A B is A,
thus the image of f ′∗ lies in A.

The proposition shows that a surjective homomorphism f : G→ H is uniquely
determined (up to isomorphism) by G and the normal subgroup N . We write
H = G/N and call H the factor group scheme G modulo N .

(22.8) Proposition. Let G be a group scheme and let N be a normal subgroup

in G. Then there is a surjective homomorphism G → H with the kernel N , i.e.,

the factor group scheme G/N exists.

Reference: See Waterhouse [?, §16.3].
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Exact sequences. A sequence of homomorphisms of group schemes

1→ N
f−→ G

g−→ H → 1(22.9)

is called exact if f induces an isomorphism of N with ker(g) and g is surjective or,
equivalently, f is injective and H ' G/ im(f). For any group scheme homomor-
phism g : G → H we have an exact sequence 1 → ker(g) → G → im(g) → 1, i.e.,
im(g) ' G/ ker(g).

(22.10) Proposition. A sequence as in (??) with H smooth is exact if and only

if

(1) 1→ N(R)
fR−→ G(R)

gR−→ H(R) is exact for every R ∈ AlgF and

(2) galg : G(Falg)→ H(Falg) is surjective.

Proof : It follows from (??) that N = ker(g) and from Proposition (??) that g is
surjective.

(22.11) Proposition. Suppose that (??) is exact. Then

dimG = dimN + dimH.

Proof : We may assume that F = Falg and that G (hence also H) is connected.
Put A = F [H ], B = F [G], C = F [N ]. We have a bijection of represented functors

G×N ∼−→ G×H G, (g, n) 7→ (g, gn).

By Yoneda’s lemma there is an F -algebra isomorphism B ⊗A B ' B ⊗F C. We
compute the Krull dimension of both sides. Denote by Quot(S) the field of fractions
of a domain S; let K = Quot(Ared) and L = Quot(Bred); then

dim(B ⊗A B) = dim(Bred ⊗Ared
Bred) = tr.degF Quot(L⊗K L)red

= 2 · tr.degK(L) + tr.degF (K) = 2 · tr.degF (L)− tr.degF (K)

= 2 · dimG− dimH.

On the other hand

dim(B ⊗F C) = dim(G×N) = dimG+ dimN

by Proposition (??).

(22.12) Corollary. Suppose that in (??) N and H are smooth. Then G is also

smooth.

Proof : By Proposition (??)(b), ker(dg) = Lie(N). Hence

dim Lie(G) = dim ker(dg) + dim im(dg) ≤ dim Lie(N) + dim Lie(H),

= dimN + dimH = dimG,

and therefore, G is smooth.

A surjective homomorphism f : G→ H is said to be separable if the differential
df : Lie(G)→ Lie(H) is surjective.

(22.13) Proposition. A surjective homomorphism f : G→ H of algebraic groups

is separable if and only if ker(f) is smooth.
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Proof : Let N = ker(f). By Propositions (??) and (??),

dim Lie(N) = dim ker(df) = dim Lie(G) − dim im(df),

= dimG− dim im(df) = dimN + dimH − dim im(df),

= dimN + dim Lie(H)− dim im(df).

Hence, N is smooth if and only if dimN = dim Lie(N) if and only if dim Lie(H)−
dim im(df) = 0 if and only if df is surjective.

(22.14) Example. The natural surjection GL1(A)→ GL1(A)/Gm is separable.

(22.15) Proposition. Let 1 → N → G
f−→ H → 1 be an exact sequence of alge-

braic group schemes with Nsmooth. Then the sequence of groups

1→ N(Fsep)→ G(Fsep)→ H(Fsep)→ 1

is exact.

Proof : Since N = ker(f), it suffices to prove only exactness on the right. We may
assume that F = Fsep. Let A = F [H ], B = F [G], (so A ⊂ B) and C = F [N ]. Take
any h ∈ H(F ) and consider the F -algebra D = B ⊗A F where F is made into an
A-algebra via h. For any R ∈ AlgF with structure homomorphism ν : F → R, we
have

HomAlgF
(D,R) = { g ∈ HomAlgF

(B,R) | g|A = ν ◦ h } = f−1
R (ν ◦ h),

i.e., the F -algebra D represents the fiber functor

R 7→ P (R) := f−1
R (ν ◦ h) ⊂ G(R).

If there exists g ∈ G(F ) such that fF (g) = h, i.e. g ∈ P (F ), then there is a bijection
of functors τ : N → P , given by τ(R)(n) = n · (ν ◦ g) ∈ P (R). By Yoneda’s lemma
the F -algebras C and D representing the functors N and P are then isomorphic.

We do not know yet if such an element g ∈ P (F ) exists, but it certainly exists
over E = Falg since HomAlgE

(DE , E) 6= ∅ (a form of Hilbert Nullstellensatz).
Hence the E-algebras CE and DE are isomorphic. In particular, DE is reduced.
Then HomAlgF

(D,F ) 6= ∅ (see Borel [?, AG 13.3]), i.e., P (F ) 6= ∅, so h belongs to
the image of fF , and the described g exists.

Isogenies. A surjective homomorphism f : G→ H of group schemes is called
an isogeny if N=ker(f) is finite, and is called a central isogeny if N(R) is central
in G(R) for every R ∈ AlgF .

(22.16) Example. The nth-power homomorphism Gm → Gm is a central isogeny.

Representations. Let G be a group scheme over F , with A = F [G]. A
representation of G is a group scheme homomorphism ρ : G → GL(V ) where V is
a finite dimensional vector space over F . For any R ∈ AlgF the group G(R) then
acts on VR = V ⊗F R by R-linear automorphisms; we write

g · v=ρR(g)(v), g ∈ G(R), v ∈ VR.
By taking R = A, we obtain an F -linear map

ρ : V → V ⊗F A, ρ(v) = IdA · v
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(where IdA ∈ G(A) is the “generic” element), such that the following diagrams
commute (see Waterhouse [?, §3.2])

V
ρ−−−−→ V ⊗F A

ρ

y
yId⊗c

V ⊗F A
ρ⊗Id−−−−→ V ⊗F A⊗F A,

(22.17)

V
ρ−−−−→ V ⊗F A∥∥∥

yId⊗u

V
∼−−−−→ V ⊗F F.

(22.18)

Conversely, a map ρ for some F -vector space V , such that the diagrams (??)
and (??) commute, yields a representation ρ : G → GL(V ) as follows: given g ∈
G(R), ρ(g) is the R-linear extension of the composite map

V
ρ−→ V ⊗F A

Id⊗g−−−→ V ⊗F R.
A finite dimensional F -vector space V together with a map ρ as above is called an
A-comodule. There is an obvious notion of subcomodules.

A vector v ∈ V is said to be G-invariant if ρ(v) = v ⊗ 1. Denote by V G the
F -subspace of all G-invariant elements. Clearly, G(R) acts trivially on (V G)⊗F R
for any R ∈ AlgF . For a field extension L/F one has (VL)GL ' (V G)L.

A representation ρ : G→ GL(V ) is called irreducible if the A-comodule V has
no nontrivial subcomodules.

(22.19) Examples. (1) If dimV = 1, then GL(V ) = Gm. Hence a 1-dimensional
representation is simply a character.

(2) Let G be an algebraic group scheme over F . For any R ∈ AlgF the group G(R)
acts by conjugation on

ker
(
G(R[ε])→ G(R)

)
= Lie(G)⊗F R.

Hence we get a representation

Ad = AdG : G→ GL
(
Lie(G)

)

called the adjoint representation. When G = GL(V ) the adjoint representation

Ad: GL(V )→ GL
(
End(V )

)

is given by conjugation: Ad(α)(β) = αβα−1.

Representations of diagonalizable groups. Let G = Hdiag be a diagonal-
izable group scheme, A = F [G] = F 〈H〉. Let ρ : V → V ⊗F A be the A-comodule
structure on a finite dimensional vector space V corresponding to some represen-
tation ρ : G→ GL(V ).

Write ρ(v) =
∑
h∈H

fh(v)⊗h for uniquely determined F -linear maps fh : V → V .

The commutativity of diagram (??) is equivalent to the conditions

fh ◦ fh′ =

{
fh if h = h′,

0 if h 6= h′,
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and the commutativity of (??) gives
∑
h∈H

fh(v) = v for all v ∈ V . Hence the maps fh

induce a decomposition

V =
⊕

h∈H
Vh, where Vh = im(fh).(22.20)

A character h ∈ H = G∗ is called a weight of ρ if Vh 6= 0. A representation ρ of
a diagonalizable group is uniquely determined (up to isomorphism) by its weights
and their multiplicities mh = dim Vh.

§23. Automorphism Groups of Algebras

In this section we consider various algebraic group schemes related to algebras
and algebras with involution.

Let A be a separable associative unital F -algebra (i.e., A is a finite product
of algebras which are central simple over finite separable field extensions of F , or

equivalently, AF̃ = A ⊗ F̃ is semisimple for every field extension F̃ of F ). Let L
be the center of A (which is an étale F -algebra). The kernel of the restriction ho-
momorphism Autalg(A)→ Autalg(L) is denoted AutL(A). Since all L-derivations
of A are inner (see for example Knus-Ojanguren [?, p. 73-74]), it follows from
Example (??.??) that

Lie
(
AutL(A)

)
= DerL(A,A) = A/L.

We use the notation ad(a)(x) = [a, x] = ax − xa for the inner derivation ad(a)
associated to a ∈ A. Consider the group scheme homomorphism

Int: GL1(A)→ AutL(A), a 7→ Int(a)

with kernel GL1(L) = RL/F (Gm,L). By Proposition (??) we have:

dimAutL(A) ≥ dim im(Int) = dimGL1(A)− dim GL1(L)

= dimF A− dimF L = dimF Lie
(
AutL(A)

)
.

The group scheme AutL(A) is smooth. This follows from Lemma (??) and
Proposition (??). By the Skolem-Noether theorem the homomorphism IntE is
surjective for any field extension E/F , hence Int is surjective by Proposition (??),
and AutL(A) is connected by Proposition (??). Thus we have an exact sequence
of connected algebraic groups

1→ GL1(L)→ GL1(A)→ AutL(A)→ 1.(23.1)

Assume now that A is a central simple algebra over F , i.e., L = F . We write
PGL1(A) for the group Autalg(A), so that

PGL1(A) ' GL1(A)/Gm, Lie
(
PGL1(A)

)
= A/F,

and

PGL1(A)(R) = AutR(AR), R ∈ AlgF .

We say that an F -algebra R satisfies the SN -condition if for any central simple
algebra A over F all R-algebra automorphisms of AR are inner. Fields and local
rings satisfy the SN -condition (see for example Knus-Ojanguren [?, p. 107]).

If R satisfies the SN -condition then

PGL1(A)(R) = (AR)×/R×.(23.2)
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We set PGL(V ) = PGL1

(
End(V )

)
= GL(V )/Gm and call PGL(V ) the projective

general linear group; we write PGL(V ) = PGLn if V = Fn.

23.A. Involutions. In this part we rediscuss most of the groups introduced
in Chapter ?? from the point of view of group schemes. Let A be a separable F -
algebra with center K and F -involution σ. We define various group schemes over
F related to A. Consider the representation

ρ : GL1(A)→ GL(A), a 7→
(
x 7→ a · x · σ(a)

)
.

The subgroup AutGL1(A)(1) in GL1(A) is denoted Iso(A, σ) and is called the group

scheme of isometries of (A, σ):

Iso(A, σ)(R) = { a ∈ A×R | a · σR(a) = 1 }.
An element 1 + a · ε, a ∈ A lies in ker Iso(A, σ)(κ) if and only if

(1 + a · ε)
(
1 + σ(a) · ε

)
= 1,

or equivalently, a+ σ(a) = 0. Hence,

Lie
(
Iso(A, σ)

)
= Skew(A, σ) ⊂ A.

Consider the adjoint representation

ρ : GL(A)→ GL
(
EndF (A)

)
, α 7→ (β 7→ αβα−1)

and denote the intersection of the subgroups Autalg(A) and AutGL(A)(σ) of GL(A)
by Aut(A, σ):

Aut(A, σ)(R) = {α ∈ AutR(AR) | α ◦ σR = σR ◦ α }.
A derivation x = ad(a) ∈ Der(A,A) = Lie

(
Autalg(A)

)
lies in Lie

(
Aut(A, σ)

)
if

and only if (1 + x · ε) ◦ σ = σ ◦ (1 + x · ε) if and only if x ◦ σ = σ ◦ x if and only if
a+ σ(a) ∈ K. Hence

Lie
(
Aut(A, σ)

)
= { a ∈ A | a+ σ(a) ∈ K }/K.

Denote the intersection of Aut(A, σ) and AutK(A) by AutK(A, σ). If an F -
algebra R satisfies the SN -condition, then

AutK(A, σ)(R) = { a ∈ A×R | a · σR(a) ∈ K×
R }/K×

R .

The inverse image of AutK(A, σ) with respect to the surjection

Int : GL1(A)→ AutK(A)

(see ??) is denoted Sim(A, σ) and called the group scheme of similitudes of (A, σ).
Clearly,

Sim(A, σ)(R) = { a ∈ A×R | a · σ(a) ∈ K×
R }

Lie
(
Sim(A, σ)

)
= { a ∈ A | a+ σ(a) ∈ K }.

By Proposition (??) we have an exact sequence of group schemes

1→ GL1(K)→ Sim(A, σ)→ AutK(A, σ)→ 1.(23.3)

Let E be the F -subalgebra of K consisting of all σ-invariant elements. We have a
group scheme homomorphism

µ : Sim(A, σ)→ GL1(E), a 7→ a · σ(a).
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The map µalg is clearly surjective. Hence, by Proposition (??), we have an exact
sequence

1→ Iso(A, σ)→ Sim(A, σ)
µ−→ GL1(E)→ 1.(23.4)

Unitary involutions. Let K/F be an étale quadratic extension, B be a cen-
tral simple algebra over K of degree n with a unitary F -involution τ . We use the
following notation (and definitions) for group schemes over F :

U(B, τ) = Iso(B, τ) Unitary group

GU(B, τ) = Sim(B, τ) Group of unitary similitudes

PGU(B, τ) = AutK(B, τ) Projective unitary group

Assume first that K is split, K ' F ×F . Then B ' A×Aop and τ is the exchange
involution. Let b = (a1, a

op
2 ) ∈ B. The condition b ·τb = 1 is equivalent to a1a2 = 1.

Hence we have an isomorphism

GL1(A) ∼−→ U(B, τ), a 7→
(
a, (a−1)op

)
.

The homomorphism

Autalg(A)→ PGU(B, τ), φ 7→ (φ, φop)

is clearly an isomorphism. Hence,

PGU(B, τ) ' PGL1(A).

Thus the group schemes U(B, τ) and PGU(B, τ) are smooth and connected. This
also holds when K is not split, as one sees by scalar extension. Furthermore the sur-
jection Aut(B, τ)→ Autalg(K) ' Z/2Z induces an isomorphism π0

(
Aut(B, τ)

)
'

Z/2Z. Hence PGU(B, τ) is the connected component of Aut(B, τ) and is as a sub-
group of index 2.

The kernel of the reduced norm homomorphism Nrd: U(B, τ) → GL1(K) is
denoted SU(B, τ) and called the special unitary group. Clearly,

SU(B, τ)(R) = { b ∈ (B ⊗F R)× | b · τR(b) = 1,NrdR(b) = 1 },
Lie

(
SU(B, τ)

)
= {x ∈ Skew(B, τ) | Trd(x) = 0 }.

The group scheme SU(B, τ) is smooth and connected since, when K is split,
SU(B, τ) = SL1(A) (as the description given above shows). The kernel N of
the composition

f : SU(B, τ) ↪→ U(B, τ) → PGU(B, τ)

satisfies

N(R) = {B ∈ (K ⊗F R)× | b · τR(b) = 1, bn = 1 }.
In other words,

N = ker
(
RK/F (µn,K)

NK/F−−−−→ µn,F
)
,

hence N is a finite group scheme of multiplicative type and is Cartier dual to Z/nZ
where the Galois group Γ acts through Gal(K/F ) as x 7→ −x. Subgroups of N
correspond to (cyclic) subgroups of Z/nZ, which are automatically Γ-invariant.

Since falg is surjective, f is surjective by Proposition (??). Clearly, f is a
central isogeny and

PGU(B, τ) ' SU(B, τ)/N.
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Symplectic involutions. Let A be a central simple algebra of degree n =
2m over F with a symplectic involution σ. We use the following notation (and
definitions):

Sp(A, σ) = Iso(A, σ) Symplectic group

GSp(A, σ) = Sim(A, σ) Group of symplectic similitudes

PGSp(A, σ) = Aut(A, σ) Projective symplectic group

Assume first that A is split, A = EndF (V ), hence σ = σh where h is a nonsingular
alternating bilinear form on V . Then Sp(A, σ) = Sp(V, h), the symplectic group

of (V, h),

Sp(V, h)(R) = {α ∈ GL(VR) | hR
(
α(v), α(v′)

)
= hR(v, v′) for v, v′ ∈ VR }.

The associated classical algebraic group is connected of dimension m(2m + 1)
(Borel [?, 23.3]).

Coming back to the general case, we have

dim Lie
(
Sp(A, σ)

)
= dim Skew(A, σ) = m(2m+ 1) = dimSp(A, σ),

hence Sp(A, σ) is a smooth and connected group. It follows from the exactness of

1→ Sp(A, σ)→ GSp(A, σ)
µ−→ Gm → 1

(see ??) and Corollary (??) that GSp(A, σ) is smooth.
The exactness of

1→ Gm → GSp(A, σ)→ PGSp(A, σ)→ 1

(see ??) implies that PGSp(A, σ) is smooth. Consider the composition

f : Sp(A, σ) ↪→ GSp(A, σ)→ PGSp(A, σ)

whose kernel is µ2. Clearly, falg is surjective, hence f is surjective and PGSp(A, σ)
is connected. Therefore, f is a central isogeny and PGSp(A, σ) ' Sp(A, σ)/µ2.

In the split case the group PGSp(V, h) = PGSp(A, σ) is called the projective

symplectic group of (V, h).

Orthogonal involutions. Let A be a central simple algebra of degree n over F
with an orthogonal involution σ. We use the following notation

O(A, σ) = Iso(A, σ)

GO(A, σ) = Sim(A, σ)

PGO(A, σ) = Aut(A, σ)

Consider the split case A = EndF (V ), σ = σb, where b is a nonsingular symmetric
(non-alternating, if charF = 2) bilinear form. Then

O(A, σ)(R) = {α ∈ GL(VR) | b(αv, αv′) = b(v, v′) for v, v′ ∈ VR }.
The associated classical algebraic group has dimension n(n−1)

2 (Borel [?]). On the
other hand,

dim Lie
(
O(A, σ)

)
= dim Skew(A, σ) =

{
n(n−1)

2 if charF 6= 2,
n(n+1)

2 if charF = 2.

Hence O(A, σ) (and the other groups) are not smooth if charF = 2. To get smooth
groups also in characteristic 2 we use a different context, described in the next two
subsections.
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Orthogonal groups. Let (V, q) be a quadratic form of dimension n over F
and let bq be the polar bilinear form of q on V . We recall that the form q is regular

if bq is a nonsingular bilinear form except for the case n is odd and charF = 2.
In this case bq is symplectic and is degenerate. The radical of q is the space V ⊥

and (in case charF = 2 and dimF V is odd) q is regular if dim rad(bq) = 1, say
rad(q) = F · v, q(v) 6= 0.

We view q as an element of S2(V ∗), the space of degree 2 elements in the
symmetric algebra S2(V ∗). There is a natural representation

ρ : GL(V )→ GL
(
S2(V ∗)

)
.

We set O(V, q) for the group AutGL(V )(q) and call it the orthogonal group of (V, q):

O(V, q)(R) = {α ∈ GL(VR) | qR(αv) = qR(v) for v ∈ VR }.
The associated classical algebraic group has dimension n(n−1)

2 (Borel [?, 23.6]). For
α ∈ End(V ), we have 1 + α · ε ∈ O(V, q) if and only if bq(v, αv) = 0 for all v ∈ V .
Hence

Lie
(
O(V, q)

)
= {α ∈ End(V ) | bq(v, αv) = 0 for v ∈ V } = o(V, q).

The dimensions are:

dim Lie
(
O(V, q)

)
=

{
n(n−1)

2 if n is even or charF 6= 2,
n(n−1)

2 + 1 if n is odd and charF = 2.

Hence, in the first case O(V, q) is a smooth group scheme. We consider now the
following cases:

(a) charF = 2 and n is even: we define

O+(V, q) = ker
(
O(V, q)

∆−→ Z/2Z
)

where ∆ is the Dickson invariant, i.e., ∆(α) = 0 for α ∈ O(V, q)(R) if
α induces the identity automorphism of the center of the Clifford algebra
and ∆(α) = 1 if not (see (??)). The associated classical algebraic group
is known to be connected (Borel [?, 23.6]). Hence, O+(V, q) is a smooth
connected group scheme.

(b) charF 6= 2 or n is odd: we set

O+(V, q) = ker
(
O(V, q)

det−−→ Gm

)

where det is the determinant map. Here also the associated classical alge-
braic group is known to be connected (Borel [?]).

We get in each case

Lie
(
O+(V, q)

)
= {α ∈ End(V ) | tr(α) = 0, bq(v, αv) = 0 for v ∈ V }.

If charF 6= 2 this Lie algebra coincides with Lie
(
O(V, q)

)
and O+(V, q) is the

connected component of O(V, q). If charF = 2, then Lie
(
O+(V, q)

)
$ Lie

(
O(V, q)

)

hence

dim Lie
(
O+(V, q)

)
=
n(n− 1)

2

and O+(V, q) is a smooth connected group scheme. Thus in every case O+(V, q) is
a connected algebraic group. Consider the conjugation homomorphism

GL1

(
C0(V, q)

)
→ GL

(
C(V, q)

)
, x 7→ Int(x)
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where C(V, q) = C0(V, q) ⊕ C1(V, q) is the Clifford algebra. The inverse image of
the normalizer NV of the subspace V ⊂ C(V, q) is Γ+(V, q), the even Clifford group

of (V, q),

Γ+(V, q)(R) = { g ∈ C0(V, q)
×
R | q · VR · g−1 = VR }.

It follows from Example (??.??) that

Lie
(
Γ+(V, q)

)
= {x ∈ C0(V, q) | [x, V ] ⊂ V } = V · V ⊂ C0(V, q).

Let

χ : Γ+(V, q)→ O+(V, q), x 7→ Int(x)|V .
Clearly, kerχ = Gm ⊂ Γ+(V, q). Since χalg is surjective, we have by Proposi-
tion (??) an exact sequence

1→ Gm → Γ+(V, q)
χ−→ O+(V, q)→ 1.

Hence by Corollary (??) Γ+(V, q) is smooth.
The kernel of the spinor norm homomorphism

Sn: Γ+(V, q)→ Gm, x 7→ x · σ(x)

is the spinor group of (V, q) and is denoted Spin(V, q). Thus,

Spin(V, q)(R) = { g ∈ C0(V, q)
×
R | g · VR · g−1 = VR, g · σ(g) = 1 }

The differential d(Sn) is given by

d(Sn)(uv) = uv + σ(uv) = uv + vu = bq(u, v).

In particular, Sn is separable and

Lie
(
Spin(V, q)

)
= {x ∈ V · V ⊂ C0(V, q) | x+ σ(x) = 0 }.

Since Snalg is surjective, we have by Proposition (??) an exact sequence

1→ Spin(V, q)→ Γ+(V, q)
Sn−→ Gm → 1.

Hence by Proposition (??) Spin(V, q) is smooth. The classical algebraic group asso-
ciated to Spin(V, q) is known to be connected (Borel [?, 23.3]), therefore Spin(V, q)
is connected.

The kernel of the composition

f : Spin(V, q) ↪→ Γ+(V, q)
χ−→ O+(V, q)

is µ2. Since falg is surjective, it follows by Proposition (??) that f is surjective.
Hence, f is a central isogeny and

O+(V, q) ' Spin(V, q)/µ2.

(23.5) Remark. The preceding discussion focuses on orthogonal groups of quad-

ratic spaces. Orthogonal groups of symmetric bilinear spaces may be defined in a
similar fashion: every nonsingular symmetric nonalternating bilinear form b on a
vector space V may be viewed as an element of S2(V )∗, and letting GL(V ) act on
S2(V )∗ we may set O(V, b) = AutGL(V )(b).

If charF 6= 2 we may identify S2(V )∗ to S2(V ∗) by mapping every symmetric
bilinear form b to its associated quadratic form qb defined by qb(x) = b(x, x), hence
O(V, b) = O(V, qb). If charF = 2 the group O(V, b) is not smooth, and if F is not
perfect there may be no associated smooth algebraic group, see Exercise ??.
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Suppose F is perfect of characteristic 2. In that case, there is an associated
smooth algebraic group O(V, b)red. If dimV is odd, O(V, b)red turns out to be
isomorphic to the symplectic group of an alternating space of dimension dimV −1,
see Exercise ??. If dim V is even, O(V, b)red contains a nontrivial solvable connected
normal subgroup, see Exercise ??; it is therefore not semisimple (see §?? for the
definition of semisimple group).

23.B. Quadratic pairs. Let A be a central simple algebra of degree n = 2m
over F , and let (σ, f) be a quadratic pair on A. Consider the homomorphism

Aut(A, σ) → GL
(
Sym(A, σ)∗

)
, α 7→ (g 7→ g ◦ α).

The inverse image of the stabilizer Sf of f is denoted PGO(A, σ, f) and is called
the projective orthogonal group:

PGO(A, σ, f)(R) = {α ∈ Aut(A, σ) | fR ◦ α = fR }.
If R satisfies the SN -condition, then, setting (A, σ)+ = Sym(A, σ),

PGO(A, σ, f)(R) =

{ a ∈ A×R | a · σR(a) ∈ R×, f(axa−1) = f(x) for x ∈ (AR, σR)+ }/R×.
In the split case A = End(V ), with q a quadratic form corresponding to the
quadratic pair (σ, f), we write PGO(V, q) for this group. The inverse image of
PGO(A, σ, f) under

Int : GL1(A)→ Autalg(A)

is the group of orthogonal similitudes and is denoted GO(A, σ, f):

GO(A, σ, f)(R) =

{ a ∈ A×R | a · σR(a) ∈ R×, f(axa−1) = f(x) for x ∈ (AR, σR)+ }.
One sees that 1 + a · ε ∈ GO(A, σ, f)(F [ε]) if and only if a + σ(a) ∈ F and
f(ax− xa) = 0 for all symmetric x. Thus

Lie
(
GO(A, σ, f)

)
= { a ∈ A | a+ σ(a) ∈ F , f(ax− xa) = 0 for x ∈ Sym(A, σ) }.

An analogous computation shows that

Lie
(
PGO(A, σ, f)

)
= Lie

(
GO(A, σ, f)

)
/F.

The kernel of the homomorphism

µ : GO(A, σ, f)→ Gm, a 7→ a · σ(a)

is denoted O(A, σ, f) and is called the orthogonal group,

O(A, σ, f)(R) = { a ∈ A×R | a · σ(a) = 1, f(axa−1) = f(x) for x ∈ Sym(A, σ)R }.
Since for a ∈ A with a+ σ(a) = 0 one has f(ax− xa) = f

(
ax+ σ(ax)

)
= Trd(ax),

it follows that the condition f(ax − xa) = 0 for all x ∈ Sym(A, σ) is equivalent
to a ∈ Alt(A, σ). Thus

Lie
(
O(A, σ, f)

)
= Alt(A, σ)

(and does not depend on f !).
In the split case we have O(A, σ, f) = O(V, q), hence by ??, O(A, σ, f) is

smooth.
The sequence

1→ O(A, σ, f)→ GO(A, σ, f)
µ−→ Gm → 1
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is exact by Proposition (??), since µalg is surjective. It follows from Corollary (??)
that GO(A, σ, f) is smooth. By Proposition (??), the natural homomorphism
GO(A, σ, f) → PGO(A, σ, f) is surjective, hence PGO(A, σ, f) is smooth. There
is an exact sequence

1→ Gm → GO(A, σ, f)→ PGO(A, σ, f)→ 1.

The kernel of the composition

g : O(A, σ, f) ↪→ GO(A, σ, f)→ PGO(A, σ, f)

is µ2. Clearly, galg is surjective, hence g is surjective. Therefore, g is a central
isogeny and

PGO(A, σ, f) ' O(A, σ, f)/µ2.

Now comes into play the Clifford algebra C(A, σ, f). By composing the natural
homomorphism

PGO(A, σ, f)→ Autalg

(
C(A, σ, f)

)

with the restriction map

Autalg

(
C(A, σ, f)

)
→ Autalg(Z) = Z/2Z

where Z is the center of C(A, σ, f), we obtain a homomorphism PGO(A, σ, f) →
Z/2Z, the kernel of which we denote PGO+(A, σ, f). The inverse image of this
group in GO(A, σ, f) is denoted GO+(A, σ, f) and the intersection of GO+(A, σ, f)
with O(A, σ, f) by O+(A, σ, f). In the split case O+(A, σ, f) = O+(V, q), hence
O+(A, σ, f) is smooth and connected. In particular it is the connected component
of O(A, σ, f). It follows from the exactness of

1→ µ2 → O+(A, σ, f)→ PGO+(A, σ, f)→ 1

that PGO+(A, σ, f) is also a connected algebraic group, namely the connected
component of PGO(A, σ, f).

Let B(A, σ, f) be the Clifford bimodule. Consider the representation

GL1

(
C(A, σ, f)

)
→ GL

(
B(A, σ, f)

)
, c 7→

(
x 7→ (c ∗ x · c−1)

)
.

Let b : A → B(A, σ, f) be the canonical map. Let Γ(A, σ, f) be the inverse image
of the normalizer Nb(A) of the subspace b(A) ⊂ B(A, σ, f) and call it the Clifford

group of (A, σ, f),

Γ(A, σ, f)(R) = { c ∈ C(A, σ, f)×R | c ∗ b(A)R · c−1 = b(A)R }.
In the split case Γ(A, σ, f) = Γ+(V, q) is a smooth group and

Lie
(
Γ(A, σ, f)

)
= V · V = c(A) ⊂ C(A, σ, f).

Hence Γ(A, σ, f) is a smooth algebraic group and

Lie
(
Γ(A, σ, f)

)
= c(A).

For any g ∈ Γ(A, σ, f)(R) one has g · σ(g) ∈ R×, hence there is a spinor norm

homomorphism

Sn: Γ(A, σ, f)→ Gm, g 7→ g · σ(g).

We denote the kernel of Sn by Spin(A, σ, f) and call it the spinor group of (A, σ, f).
It follows from the split case (where Spin(A, σ, f) = Spin(V, q)) that Spin(A, σ, f)
is a connected algebraic group.
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Let χ : Γ(A, σ, f)→ O+(A, σ, f) be the homomorphism defined by the formula
c−1 ∗ (1)b · c =

(
χ(c)

)
· b, and let g be the composition

Spin(A, σ, f) ↪→ Γ(A, σ, f)
χ−→ O+(A, σ, f).

Clearly, ker g = µ2 and, since galg is surjective, g is surjective, hence g is a central
isogeny and

O+(A, σ, f) ' Spin(A, σ, f)/µ2.

Consider the natural homomorphism

C : PGO+(A, σ, f)→ AutZ
(
C(A, σ, f), σ

)
.

If n = degA with n > 2, then c(A)R generates the R-algebra C(A, σ, f)R for any
R ∈ AlgF . Hence CR is injective and C is a closed embedding by Proposition (??).
By (??), there is an exact sequence

1→ GL1(Z)→ Sim
(
C(A, σ, f), σ

) Int−−→ AutZ
(
C(A, σ, f), σ

)
→ 1.

Let Ω(A, σ, f) be the group Int−1(imC), which we call the extended Clifford group.
Note that Γ(A, σ, f) ⊂ Ω(A, σ, f) ⊂ Sim

(
C(A, σ, f), σ

)
. By Proposition (??) we

have a commutative diagram with exact rows:

1 −−−−→ Gm −−−−→ Γ(A, σ, f) −−−−→ O+(A, σ, f) −−−−→ 1
y

y
y

1 −−−−→ GL1(Z) −−−−→ Ω(A, σ, f) −−−−→ PGO+(A, σ, f) −−−−→ 1.

The first two vertical maps are injective. By Corollary (??), the group Ω(A, σ, f)
is smooth.

(23.6) Remark. If charF 6= 2, the involution σ is orthogonal and f is prescribed.
We then have,

O(A, σ, f) = O(A, σ)

GO(A, σ, f) = GO(A, σ)

PGO(A, σ, f) = PGO(A, σ).

§24. Root Systems

In this section we recall basic results from the theory of root systems and refer
to Bourbaki [?] for details. Let V be an R-vector space of positive finite dimension.
An endomorphism s ∈ End(V ) is called a reflection with respect to α ∈ V , α 6= 0 if

(a) s(α) = −α,
(b) there is a hyperplane W ⊂ V such that s|W = Id.

We will use the natural pairing

V ∗ ⊗ V → R, χ⊗ v 7→ 〈χ, v〉 = χ(v).

A reflection s with respect to α is given by the formula s(v) = v − 〈χ, v〉α for a
uniquely determined linear form χ ∈ V ∗ with χ|W = 0 and 〈χ, α〉 = 2. Note that
a finite set of vectors which spans V is preserved as a set by at most one reflection
with respect to any given α (see Bourbaki [?, Chapter VI, § 1, Lemme 1]).

A finite subset Φ ⊂ V 6= 0 is called a (reduced) root system if

(a) 0 6∈ Φ and Φ spans V .
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(b) If α ∈ Φ and xα ∈ Φ for x ∈ R, then x = ±1.
(c) For each α ∈ Φ there is a reflection sα with respect to α such that sα(Φ) =

Φ.
(d) For each α, β ∈ Φ, sα(β) − β is an integral multiple of α.

The elements of Φ are called roots . The reflection sα in (??) is uniquely determined
by α. For α ∈ Φ, we define α∗ ∈ V ∗ by

sα(v) = v − 〈α∗, v〉 · α.
Such α∗ are called coroots . The set Φ∗ = {α∗ ∈ V } forms the dual root system

in V ∗. Clearly, 〈α∗, β〉 ∈ Z for any α, β ∈ Φ and 〈α∗, α〉 = 2.
An isomorphism of root systems (V,Φ) and (V ′,Φ′) is an isomorphism of vector

spaces f : V → V ′ such that f(Φ) = Φ′. The automorphism group Aut(V,Φ) is a
finite group. The subgroup W (Φ) of Aut(V,Φ) generated by all the reflections sα,
α ∈ Φ, is called the Weyl group of Φ.

Let Φi be a root system in Vi, i = 1, 2, . . . , n, and V = V1 ⊕ V2 ⊕ · · · ⊕ Vn,
Φ = Φ1 ∪ Φ2 ∪ · · · ∪ Φn. Then Φ is a root system in V , called the sum of the Φi.
We write Φ = Φ1 + Φ2 + · · ·+ Φn. A root system Φ is called irreducible if Φ is not
isomorphic to the sum Φ1 +Φ2 of some root systems. Any root system decomposes
uniquely into a sum of irreducible root systems.

Let Φ be a root system in V . Denote by Λr the (additive) subgroup of V
generated by all roots α ∈ Φ; Λr is a lattice in V , called the root lattice. The lattice

Λ = { v ∈ V | 〈α∗, v〉 ∈ Z for α ∈ Φ }
in V , dual to the root lattice generated by Φ∗ ⊂ V ∗, is called the weight lattice.
Clearly, Λr ⊂ Λ and Λ/Λr is a finite group. The group Aut(V,Φ) acts naturally on
Λ, Λr, and Λ/Λr, and W (Φ) acts trivially on Λ/Λr.

A subset Π ⊂ Φ of the root system Φ is a system of simple roots or a base of a

root system if for any α ∈ Φ,

α =
∑

β∈Π

nβ · β

for some uniquely determined nβ ∈ Z and either nβ ≥ 0 for all β ∈ Π or nβ ≤ 0 for
all β ∈ Π. In particular, Π is a basis of V . For a system of simple roots Π ⊂ Φ and
w ∈ W (Φ) the subset w(Π) is also a system of simple roots. Every root system has
a base and the Weyl group W (Φ) acts simply transitively on the set of bases of Φ.

Let Φ be a root system in V and Π ⊂ Φ be a base. We define a graph, called
the Dynkin diagram of Φ, which has Π as its set of vertices. The vertices α and
β are connected by 〈α∗, β〉 · 〈β∗, α〉 edges. If 〈α∗, β〉 > 〈β∗, α〉, then all the edges
between α and β are directed, with α the origin and β the target. This graph does
not depend (up to isomorphism) on the choice of a base Π ⊂ Φ, and is denoted
Dyn(Φ). The group of automorphisms of Dyn(Φ) embeds into Aut(V,Φ), and
Aut(V,Φ) is a semidirect product of W (Φ) (a normal subgroup) and Aut

(
Dyn(Φ)

)
.

In particular, Aut
(
Dyn(Φ)

)
acts naturally on Λ/Λr.

Two root systems are isomorphic if and only if their Dynkin diagrams are iso-
morphic. A root system is irreducible if and only if its Dynkin diagram is connected.
The Dynkin diagram of a sum Φ1 + · · ·+ Φn is the disjoint union of the Dyn(Φi).

Let Π ⊂ Φ be a system of simple roots. The set

Λ+ = {χ ∈ Λ | 〈α∗, χ〉 ≥ 0 for α ∈ Π }
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is the cone of dominant weights in Λ (relative to Π). We introduce a partial ordering
on Λ: χ > χ′ if χ − χ′ is sum of simple roots. For any λ ∈ Λ/Λr there exists a
unique minimal dominant weight χ(λ) ∈ Λ+ in the coset λ. Clearly, χ(0) = 0.

24.A. Classification of irreducible root systems. There are four infinite
families An, Bn, Cn, Dn and five exceptional irreducible root systems E6, E7, E8,
F4, G2. We refer to Bourbaki [?] for the following datas about root systems.

Type An, n ≥ 1. Let V = Rn+1/(e1 + e2 + · · ·+ en+1)R where {e1, . . . , en+1}
is the canonical basis of Rn+1. We denote by ei the class of ei in V .

Root system : Φ = { ei − ej | i 6= j }, n(n+ 1) roots.

Root lattice : Λr = {∑
aiei |

∑
ai = 0 }.

Weight lattice : Λ =
∑
eiZ, Λ/Λr ' Z/(n+ 1)Z.

Simple roots : Π = {e1 − e2, e2 − e3, . . . , en − en+1}.

Dynkin diagram : c

1

c

2

p p p c

n

Aut
(
Dyn(Φ)

)
: {1} if n = 1, {1, τ} if n ≥ 2.

Dominant weights : Λ+ = {∑
ai · ei ∈ Λ | a1 ≥ a2 ≥ · · · ≥ an+1 }.

Minimal weights : e1 + e2 + · · ·+ ei, i = 1, 2, . . . , n+ 1.

Type Bn, n ≥ 1. Let V = Rn with canonical basis {ei}.

Root system : Φ = {±ei,±ei ± ej | i > j }, 2n2 roots.

Root lattice : Λr = Zn.

Weight lattice : Λ = Λr + 1
2 (e1 + e2 + · · ·+ en)Z, Λ/Λr ' Z/2Z.

Simple roots : Π = {e1 − e2, e2 − e3, . . . , en−1 − en, en}.

Dynkin diagram : >c

1

c

2

p p p c

n−1

c

n

Aut
(
Dyn(Φ)

)
: {1}.

Dominant weights : Λ+ = {∑
aiei ∈ Λ | a1 ≥ a2 ≥ · · · ≥ an ≥ 0 }.

Minimal weights : 0, 1
2 (e1 + e2 + · · ·+ en).

Type Cn, n ≥ 1. Let V = Rn with canonical basis {ei}.

Root system : Φ = {±2ei,±ei ± ej | i > j }, 2n2 roots.

Root lattice : Λr = {
∑
aiei | ai ∈ Z,

∑
ai ∈ 2Z }.

Weight lattice : Λ = Zn, Λ/Λr ' Z/2Z.

Simple roots : Π = {e1 − e2, e2 − e3, . . . , en−1 − en, 2en}.

Dynkin diagram : <c

1

c

2

p p p c

n−1

c

n

Aut
(
Dyn(Φ)

)
: {1}.

Dominant weights : Λ+ = {∑
aiei ∈ Λ | a1 ≥ a2 ≥ · · · ≥ an ≥ 0 }.

Minimal weights : 0, e1.
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Type Dn, n ≥ 3. (For n = 2 the definition works but yields A1 + A1.) Let
V = Rn with canonical basis {ei}.

Root system : Φ = {±ei ± ej | i > j }, 2n(n− 1) roots.

Root lattice : Λr = {∑
aiei | ai ∈ Z,

∑
ai ∈ 2Z }.

Weight lattice : Λ = Zn + 1
2 (e1 + e2 + · · ·+ en)Z,

Λ/Λr '
{

Z/2Z⊕ Z/2Z if n is even,

Z/4Z if n is odd.

Simple roots : Π = {e1 − e2, . . . , en−1 − en, en−1 + en}.

Dynkin diagram :

n−1

n

c

1

c

2

p p p c

n−2

c

c

��

@@

Aut
(
Dyn(Φ)

)
: S3 if n = 4, {1, τ} if n = 3 or n > 4.

Dominant weights : Λ+ = {
∑
aiei ∈ Λ | a1 ≥ a2 ≥ · · · ≥ an, an−1 + an ≥ 0 }.

Minimal weights : 0, e1,
1
2 (e1 + e2 + · · ·+ en−1 ± en).

Exceptional types.

E6 : Aut
(
Dyn(Φ)

)
= {1, τ}, Λ/Λr ' Z/3Z.

c c c c c

c

E7 : Aut
(
Dyn(Φ)

)
= {1}, Λ/Λr ' Z/2Z.

c c c c c c

c

E8 : Aut
(
Dyn(Φ)

)
= {1}, Λ/Λr = 0.

c c c c c c c

c

F4 : Aut
(
Dyn(Φ)

)
= {1}, Λ/Λr = 0. >c c c c

G2: Aut
(
Dyn(Φ)

)
= {1}, Λ/Λr = 0. <c c

§25. Split Semisimple Groups

In this section we give the classification of split semisimple groups over an
arbitrary field F . The classification does not depend on the base field and corre-
sponds to the classification over an algebraically closed field. The basic references
are Borel-Tits [?] and Tits [?]. An algebraic group G over F is said to be solvable

if the abstract group G(Falg) is solvable, and semisimple if G 6= 1, G is connected,
and GFalg

has no nontrivial solvable connected normal subgroups.
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A subtorus T ⊂ G is said to be maximal if it is not contained in a larger
subtorus. Maximal subtori remain maximal over arbitrary field extensions and are
conjugate over Falg by an element of G(Falg). A semisimple group is split if it
contains a split maximal torus. Any semisimple group over a separably closed field
is split.

We will classify split semisimple groups over an arbitrary field. Let G be
split semisimple and let T ⊂ G be a split maximal torus. Consider the adjoint
representation (see Example (??.??)):

ad: G→ GL
(
Lie(G)

)
.

By the theory of representations of diagonalizable groups (see (??)) applied to the
restriction of ad to T , we get a decomposition

Lie(G) =
⊕

α

Vα

where the sum is taken over all weights α ∈ T ∗ of the representation ad |T . The
non-zero weights of the representation are called the roots of G (with respect to T ).
The multiplicity of a root is 1, i.e., dimVα = 1 if α 6= 0 (we use additive notation
for T ∗).

(25.1) Theorem. The set Φ(G) of all roots of G is a root system in T ∗⊗Z R.

The root system Φ(G) does not depend (up to isomorphism) on the choice of a
maximal split torus and is called the root system of G. We say that G is of type Φ
if Φ ' Φ(G). The root lattice Λr clearly is contained in T ∗.

(25.2) Proposition. For any α ∈ Φ(G) and χ ∈ T ∗ one has 〈α∗, χ〉 ∈ Z. In

particular Λr ⊂ T ∗ ⊂ Λ.

Consider pairs (Φ, A) where Φ is a root system in some R-vector space V and
A ⊂ V is an (additive) subgroup such that Λr ⊂ A ⊂ Λ. An isomorphism (Φ, A) ∼−→
(Φ′, A′) of pairs is an R-linear isomorphism f : V ∼−→ V ′ such that f(Φ) = Φ′ and
f(A) = A′. To each split semisimple group G with a split maximal torus T ⊂ G
one associates the pair

(
Φ(G), T ∗

)
.

(25.3) Theorem. Let Gi be split semisimple groups with a split maximal torus Ti,
i = 1, 2. Then G1 and G2 are isomorphic if and only if the pairs

(
Φ(G1), T

∗
1

)
and(

Φ(G2), T
∗
2

)
are isomorphic.

When are two pairs (Φ1, A1) and (Φ2, A2) isomorphic? Clearly, a necessary
condition is that Φ1 ' Φ2. Assume that Φ1 = Φ2 = Φ, then Λr ⊂ Ai ⊂ Λ for i = 1,
2.

(25.4) Proposition. (Φ, A1) ' (Φ, A2) if and only if A1/Λr and A2/Λr are con-

jugate under the action of Aut(V,Φ)/W (Φ) ' Aut
(
Dyn(Φ)

)
.

Thus, to every split semisimple group G one associates two invariants: a root
system Φ = Φ(G) and a (finite) subgroup T ∗/Λr ⊂ Λ/Λr modulo the action of
Aut

(
Dyn(Φ)

)
.

(25.5) Theorem. For any root system Φ and any additive group A with Λr ⊂ A ⊂
Λ there exists a split semisimple group G such that

(
Φ(G), T ∗

)
' (Φ, A).

A split semisimple group G is called adjoint if T ∗ = Λr and simply connected

simply connected if T ∗ = Λ. These two types of groups are determined (up to
isomorphism) by their root systems.
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Central isogenies. Let π : G→ G′ be a central isogeny of semisimple groups
and let T ′ ⊂ G′ be a split maximal torus. Then, T = π−1(T ′) is a split maximal
torus in G and the natural homomorphism T ′∗ → T ∗ induces an isomorphism of
root systems Φ(G′) ∼−→ Φ(G).

Let G be a split semisimple group with a split maximal torus T . The kernel
C = C(G) of the adjoint representation adG is a subgroup of T and hence is a diago-
nalizable group (not necessarily smooth!). The restriction map T ∗ → C∗ induces an
isomorphism T ∗/Λr ' C∗. Hence, C is a Cartier dual to the constant group T ∗/Λr.
One can show that C(G) is the center of G in the sense of Waterhouse [?]. The
image of the adjoint representation adG is the adjoint group G, so that G = G/C.

If G is simply connected then C∗ ' Λ/Λr and all other split semisimple groups
with root system isomorphic to Φ(G) are of the form G/N where N is an arbitrary
subgroup of C, Cartier dual to a subgroup in (Λ/Λr)const. Thus, for any split
semisimple G there are central isogenies

G̃
π̃−→ G

π−→ G(25.6)

with G̃ simply connected and G adjoint.

(25.7) Remark. The central isogenies π̃ and π are unique in the following sense:

If π̃′ and π′ is another pair of isogenies then there exist α ∈ Aut(G̃) and β ∈ Aut(G)
such that π̃′ = π̃ ◦ α and π′ = β ◦ π.

25.A. Simple split groups of type A, B, C, D, F , and G. A split semi-
simple group G is said to be simple if Galg has no nontrivial connected normal
subgroups.

(25.8) Proposition. A split semisimple group G is simple if and only if Φ(G)
is an irreducible root system. A simply connected (resp. adjoint) split semisim-

ple group G is the direct product of uniquely determined simple subgroups Gi and

Φ(G) '∑
Φ(Gi).

Type An, n ≥ 1. Let V be an F -vector space of dimension n + 1 and let
G = SL(V ). A choice of a basis in V identifies G with a subgroup in GLn+1(F ).
The subgroup T ⊂ G of diagonal matrices is a split maximal torus in G. Denote
by χi ∈ T ∗ the character

χi
(
diag(t1, t2, . . . , tn+1)

)
= ti, i = 1, 2, . . . , n+ 1.

The character group T ∗ then is identified with Zn/(e1+e2+· · ·+en+1)Z by ēi ↔ χi.
The Lie algebra of G consists of the trace zero matrices. The torus T acts

on Lie(G) by conjugation through the adjoint representation (see (??)). The weight
subspaces in Lie(G) are:

(a) The space of diagonal matrices (trivial weight),
(b) F · Eij for all 1 ≤ i 6= j ≤ n+ 1 with weight χi · χ−1

j .

We get therefore the root system { ēi − ēj | i 6= j } (in additive notation) in the
space T ∗ ⊗Z R, of type An. One can show that SL(V ) is a simple group and since
T ∗ =

∑
Z · ēi = Λ, it is simply connected. The kernel of the adjoint representation

of G is µn+1. Thus:

(25.9) Theorem. A split simply connected simple group of type An is isomorphic

to SL(V ) where V is an F -vector space of dimension n + 1. All other split semi-

simple groups of type An are isomorphic to SL(V )/µk where k divides n+ 1. The

group SL(V )/µn+1 ' PGL(V ) is adjoint.
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Type Bn, n ≥ 1. Let V be an F -vector space of dimension 2n+1 with a regular
quadratic form q and associated polar form bq. Assume that bq is of maximal Witt
index. Choose a basis (v0, v1, . . . , v2n) of V such that bq(v0, vi) = 0 for all i ≥ 1
and

bq(vi, vj) =

{
1 if i = j ± n, with i, j ≥ 1,

0 otherwise.

Consider the group G = O+(V, q) ⊂ GL2n+1(F ). The subgroup T of diagonal
matrices t = diag(1, t1, . . . , tn, t

−1
1 , . . . , t−1

n ) is a split maximal torus of G. Let χi
be the character χi(t) = ti, (1 ≤ i ≤ n), and identify T ∗ with Zn via χi ↔ ei.

The Lie algebra of G consists of all x ∈ End(V ) = M2n+1(F ) such that
bq(v, xv) = 0 for all v ∈ V and tr(x) = 0. The weight subspaces in Lie(G) with
respect to ad |T are:

(a) The space of diagonal matrices in Lie(G) (trivial weight),
(b) F · (Ei,n+j −Ej,n+i) for all 1 ≤ i < j ≤ n with weight χi · χj ,
(c) F · (Ei+n,j −Ej+n,i) for all 1 ≤ i < j ≤ n with weight χ−1

i · χ−1
j ,

(d) F · (Eij −En+j,n+i) for all 1 ≤ i 6= j ≤ n with weight χi · χ−1
j ,

(e) F · (E0i − 2aEn+i,0) where a = q(v0), for all 1 ≤ i ≤ n with weight χ−1
i ,

(f) F · (E0,n+i − 2aEi,0) for all 1 ≤ i ≤ n with weight χi.

We get the root system {±ei,±ei±ej | i > j } in Rn of type Bn. One can show that

O+(V, q) is a simple group, and since T ∗ = Λr, it is adjoint. The corresponding
simply connected group is Spin(V, q). Thus:

(25.10) Theorem. A split simple group of type Bn is isomorphic to Spin(V, q)
(simply connected) or to O+(V, q) (adjoint) where (V, q) is a regular quadratic form

of dimension 2n+ 1 with polar form bq which is hyperbolic on V/ rad(bq).

Type Cn, n ≥ 1. Let V be a F -vector space of dimension 2n with a nonde-
generate alternating form h. Choose a basis (v1, v2, . . . , v2n) of V such that

h(vi, vj) =





1 if j = i+ n,

−1 if j = i− n,

0 otherwise.

Consider the group G = Sp(V, h) ⊂ GL2n(F ). The subgroup T of diagonal
matrices t = diag(t1, . . . , tn, t

−1
1 , . . . t−1

n ) is a split maximal torus in G. Let χi be
the character χi(t) = ti (1 ≤ i ≤ n) and identify T ∗ with Zn via χi ↔ ei.

The Lie algebra of G consists of all x ∈ End(V ) = M2n(F ) such that

h(xv, u) + h(v, xu) = 0

for all v, u ∈ V . The weight subspaces in Lie(G) with respect to ad |T are:

(a) The space of diagonal matrices in Lie(G) (trivial weight),
(b) F · (Ei,n+j +Ej,n+i) for all 1 ≤ i < j ≤ n with weight χi · χj ,
(c) F · (Ei+n,j +Ej+n,i) for all 1 ≤ i < j ≤ n with weight χ−1

i · χ−1
j ,

(d) F · (Eij −En+j,n+i) for all 1 ≤ i 6= j ≤ n with weight χi · χ−1
j ,

(e) F · Ei,n+i for all 1 ≤ i ≤ n with weight χ2
i ,

(f) F · En+i,i for all 1 ≤ i ≤ n with weight χ−2
i .
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We get the root system {±2ei,±ei ± ej | i > j } in Rn of type Cn. One can show
that Sp(V, h) is a simple group, and since T ∗ = Λ, it is simply connected. The
corresponding adjoint group is PGSp(V, h). Thus

(25.11) Theorem. A split simple group of type Cn is isomorphic either to Sp(V, h)
(simply connected) or to PGSp(V, h) (adjoint) where (V, h) is a non-degenerate al-

ternating form of dimension 2n.

Type Dn, n ≥ 2. Let (V, q) be a hyperbolic quadratic space of dimension 2n
over F . Choose a basis (v1, v2, . . . , v2n) in V such that

bq(vi, vj) =

{
1 if i = j ± n,

0 otherwise.

Consider the group G = O+(V, q) ⊂ GL2n(F ). The subgroup T of diagonal
matrices t = diag(t1, . . . , tn, t

−1
1 , . . . , t−1

n ) is a split maximal torus in G. As in the
preceding case we identify T ∗ with Zn.

The Lie algebra of G consists of all x ∈ End(V ) = M2n(F ), such that h(v, xv) =
0 for all v ∈ V .

The weight subspaces in Lie(G) with respect to ad |T are:

(a) The space of diagonal matrices in Lie(G) (trivial weight).
(b) F · (Ei,n+j −Ej,n+i) for all 1 ≤ i < j ≤ n with the weight χi · χj ,
(c) F · (Ei+n,j −Ej+n,i) for all 1 ≤ i < j ≤ n with weight χ−1

i · χ−1
j ,

(d) F · (Eij −Ej+n,i+n) for all 1 ≤ i 6= j ≤ n with weight χi · χ−1
j .

We get the root system {±ei ± ej | i > j } in Rn of type Dn. The group O+(V, q)
is a semisimple group (simple, if n ≥ 3) and Λr $ T ∗ $ Λ. The corresponding

simply connected and adjoint groups are Spin(V, q) and PGO+(V, q), respectively.
If n is odd, then Λ/Λr is cyclic and there are no other split groups of type Dn.
If n is even, there are three proper subgroups in Λ/Λr ' (Z/2Z)2, one of which
corresponds to O+(V, q). The two other groups correspond to the images of the
compositions

Spin(V, q) ↪→ GL1

(
C0(V, q)

)
→ GL1

(
C±(V, q)

)

where C0(V, q) = C+(V, q) ⊕ C−(V, q). We denote these groups by Spin±(V, q).
They are isomorphic under any automorphism of C0(V, q) which interchanges its
two components.

(25.12) Theorem. A split simple group of type Dn is isomorphic to one of the

following groups : Spin(V, q) (simply connected), O+(V, q), PGO+(V, q) (adjoint),
or (if n is even) to Spin±(V, q) where (V, q) is a hyperbolic quadratic space of

dimension 2n.

Type F4 and G2. Split simple groups of type F4 and G2 are related to certain
types of nonassociative algebras:

(25.13) Theorem. A split simple group of type F4 is simply connected and adjoint

and is isomorphic to Autalg(J) where J is a split simple exceptional Jordan algebra

of dimension 27.

Reference: See Chevalley-Schafer [?], Freudenthal [?, Satz 4.11], Springer [?] or [?,
14.27, 14.28]. The proof given in [?] is over R, the proofs in [?] and [?] assume that
F is a field of characteristic different from 2 and 3. Springer’s proof [?] holds for
any field.
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For a simple split group of type G2 we have

(25.14) Theorem. A split simple group of type G2 is simply connected and adjoint

and is isomorphic to Autalg(C) where C is a split Cayley algebra.

Reference: See Jacobson [?], Freudenthal [?] or Springer [?]. The proof in [?] is
over R, the one in [?] assumes that F is a field of characteristic zero and [?] gives
a proof for arbitrary fields.

More on (??), resp. (??) can be found in the notes at the end of Chapter IX,
resp. VIII.

25.B. Automorphisms of split semisimple groups. Let G be a split semi-
simple group over F , let T ⊂ G be a split maximal torus, and Π a system of simple
roots in Φ(G). For any ϕ ∈ Aut(G) there is g ∈ G(F ) such that for ψ = Int(g) ◦ϕ,
one has ψ(T ) = T and ψ(Π) = Π, hence ψ induces an automorphism of Dyn(Φ).
Thus, we obtain a homomorphism Aut(G)→ Aut

(
Dyn(Φ)

)
.

On the other hand, we have a homomorphism Int: G(F ) → Aut(G) taking
g ∈ G(F ) to the inner automorphism Int(gR) of G(R) for any R ∈ AlgF where gR
is the image of g under G(F )→ G(R).

(25.15) Proposition. If G is a split semisimple adjoint group, the sequence

1→ G(F )
Int−−→ Aut(G)→ Aut

(
Dyn(Φ)

)
→ 1

is split exact.

Let G be a split semisimple group (not necessarily adjoint) and let C = C(G)
be the kernel of adG. Then G = G/C is an adjoint group with Φ(G) = Φ(G) and
we have a natural homomorphism Aut(G) → Aut(G). It turns out to be injective
and its image contains Int

(
G(F )

)
.

(25.16) Theorem. Let G be a split semisimple group. Then there is an exact

sequence

1→ G(F )→ Aut(G)→ Aut
(
Dyn(Φ)

)

where the last map is surjective and the sequence splits provided G is simply con-

nected or adjoint.

(25.17) Corollary. Let G be a split simply connected semisimple group. Then the

natural map Aut(G)→ Aut(G) is an isomorphism.

§26. Semisimple Groups over an Arbitrary Field

In this section we give the classification of semisimple groups over an arbitrary
field which do not contain simple components of types D4, E6, E7 or E8. We recall
that a category A is a groupoid if all morphisms in A are isomorphisms. A groupoid
A is connected if all its objects are isomorphic.

Let Γ be a profinite group and let A be a groupoid. A Γ-embedding of A is a

functor i : A→ Ã where Ã is a connected groupoid, such that for every X , Y in A,
there is a continuous Γ-action on the set Hom

Ã
(iX, iY ) with the discrete topology,

compatible with the composition law in Ã, and such that the functor i induces a
bijection

HomA(X,Y ) ∼−→ Hom
Ã
(iX, iY )Γ.

It follows from the definition that a Γ-embedding is a faithful functor.
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(26.1) Examples. (1) Let 1A
′
n = 1A

′
n(F ) be the category of all central simple

algebras over F of degree n+ 1 with morphisms being isomorphisms of F -algebras.
Then for the group Γ = Gal(Fsep/F ) the natural functor

j : 1A
′
n(F )→ 1A

′
n(Fsep), A 7→ Asep = A⊗F Fsep

is a Γ-embedding.

(2) Let G be an algebraic group over a field F and let A = A(F ) be the groupoid
of all twisted forms of G (objects are algebraic groups G′ over F such that G′sep '
Gsep and morphisms are algebraic group isomorphisms over F ). Then for Γ =
Gal(Fsep/F ) the natural functor

j : A(F )→ A(Fsep), G′ 7→ G′sep

is a Γ-embedding.

Let i : A → Ã and let j : B → B̃ be two Γ-embeddings and let S : A → B be a

functor. A Γ-extension of S (with respect to i and j) is a functor S̃ : Ã → B̃ such

that j ◦S = S̃ ◦ i and for all γ ∈ Γ, X , Y ∈ A, and f ∈ Hom
Ã
(iX, iY ) one has

γS̃(f) = S̃(γf).
We call a continuous map γ ∈ Γ 7→ fγ ∈ Aut

Ã
(iX) a 1-cocycle if

fγ ◦ γfρ = fγρ

for all γ, ρ ∈ Γ and, we say that a Γ-embedding i : A → Ã satisfies the descent

condition if for any object X ∈ A and for any 1-cocycle fγ ∈ Aut
Ã
(iX) there exist

an object Y ∈ A and a morphism h : iY → iX in Ã such that

fγ = h ◦ γh−1

for all γ ∈ Γ.

(26.2) Proposition. Let i : A → Ã and j : B → B̃ be two Γ-embeddings and let

S : A → B be a functor having a Γ-extension S̃ : Ã → B̃. Assume that the Γ-

embedding i satisfies the descent condition. If S̃ is an equivalence of categories,

then so is S.

Proof : Since i, j, and S̃ are faithful functors, the functor S is also faithful. Let

g ∈ HomB(SX,SY ) be any morphism for some X and Y in A. Since S̃ is an

equivalence of categories, we can find f ∈ Hom
Ã
(iX, iY ) such that S̃(f) = j(g).

For any γ ∈ Γ one has

S̃(γf) = γS̃(f) = γ
(
j(g)

)
= j(g) = S̃(f),

hence γf = f . By the definition of a Γ-embedding, there exists h ∈ HomA(X,Y )

such that ih = f . The equality j S(h) = S̃ i(h) = S̃(f) = j g shows that S(h) = g,
i.e., S is full as a functor. In view of Maclane [?, p. 91] it remains to check that any
object Z ∈ B is isomorphic to S(Y ) for some Y ∈ A. Take any object X ∈ A. Since

B̃ is a connected groupoid, the objects j S(X) and jZ are isomorphic. Choose any

isomorphism g : j S(X)→ jZ in B̃ and set

gγ = g−1 ◦ γg ∈ Aut
B̃

(
j S(X)

)

for γ ∈ Γ. Clearly, gγ is a 1-cocycle. Since S̃ is bijective on morphisms, there exists
a 1-cocycle

fγ ∈ Aut
Ã
(iX)
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such that S̃(fγ) = gγ for any γ ∈ Γ. By the descent condition for the Γ-embedding i

one can find Y ∈ A and a morphism h : iY → iX in Ã such that fγ = h ◦ γh−1 for
any γ ∈ Γ. Consider the composition

l = g ◦ S̃(h) : j S(Y ) = S̃ i(Y )→ S̃ i(X) = j S(X)→ jZ

in B̃ . For any γ ∈ Γ one has

γl = γg ◦ γS̃(h) = g ◦ gγ ◦ S̃(γh) = g ◦ gγ ◦ S̃(f−1
γ ◦ h) = g ◦ S̃(h) = l.

By the definition of a Γ-embedding, l = j(m) for some isomorphism m : S(Y )→ Z
in B , i.e., Z is isomorphic to S(Y ).

(26.3) Remark. Since Ã and B̃ are connected groupoids, in order to check that a

functor S̃ : Ã → B̃ is an equivalence of categories, it suffices to show that for some

object X ∈ Ã the map

Aut
Ã
(X)→ Aut

B̃

(
S̃(X)

)

is an isomorphism, see Proposition (??).

We now introduce a class of Γ-embeddings satisfying the descent condition. All
Γ-embeddings occurring in the sequel will be in this class.

Let F be a field and Γ = Gal(Fsep/F ). Consider a collection of F -vector spaces

V (1), V (2), . . . , V (n), and W (not necessarily of finite dimension). The group Γ

acts on GL(V
(i)
sep) and GL(Wsep) in a natural way. Let

ρ : H = GL(V (1)
sep )× · · · ×GL(V (n)

sep )→ GL(Wsep)

be a Γ-equivariant group homomorphism.

Fix an element w ∈ W ⊂ Wsep and consider the category Ã = Ã(ρ, w) whose
objects are elements w′ ∈ Wsep such that there exists h ∈ H with ρ(h)(w) = w′

(for example w is always an object of Ã). The set Hom
Ã
(w′, w′′) consists of all

those h ∈ H such that ρ(h)(w′) = w′′. The composition law in Ã is induced by the

multiplication in H . Clearly, Ã is a connected groupoid.

Let A = A(ρ, w) be the subcategory of Ã consisting of all w′ ∈ W which are

objects in Ã. Clearly, for any w′, w′′ ∈ A the set Hom
Ã
(w′, w′′) is Γ-invariant with

respect to the natural action of Γ on H , and we set

HomA(w′, w′′) = Hom
Ã
(w′, w′′)Γ ⊂ HΓ.

Clearly, the embedding functor i : A(ρ, w)→ Ã(ρ, w) is a Γ-embedding.

(26.4) Proposition. The Γ-embedding i : A(ρ, w) → Ã(ρ, w) satisfies the descent

condition.

Proof : Let w′ ∈ W be an object in A and let fγ ∈ Aut
Ã
(w′) ⊂ H be a 1-cocycle.

Let f
(i)
γ be the i-th component of fγ in GL(V

(i)
sep). We introduce a new Γ-action

on each V
(i)
sep by the formula γ ∗ v = f

(i)
γ (γv) where γ ∈ Γ, v ∈ V

(i)
sep. Clearly,

γ ∗ (xv) = γx · (γ ∗ v) for any x ∈ Fsep. Let U (i) be the F -subspace in V
(i)
sep of

Γ-invariant elements with respect to the new action. In view of Lemma (??) the
natural maps

θ(i) : Fsep ⊗F U (i) → V (i)
sep, x⊗ u 7→ xu
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are Fsep-isomorphisms of vector spaces. For any x ∈ Fsep and u ∈ U (i) one has

γu = f
(i)−1

γ (u), hence (with respect to the usual Γ-action)

(f (i)
γ ◦ γ ◦ θ(i))(x ⊗ u) = (f (i)

γ ◦ γ)(xu)
= f (i)

γ (γx · γu) = γx · f (i)
γ

(
f (i)−1

γ (u)
)

= γx · u
= θ(i)(γx⊗ u) =

(
θ(i) ◦ γ

)
(x⊗ u).

In other words, fγ = θ ◦ γθ−1 where γθ = γ ◦ θ ◦ γ−1.

The F -vector spaces U (i) and V (i) have the same dimension and are there-
fore F -isomorphic. Choose any F -isomorphism α(i) : V (i) → U (i) and consider the

composition β(i) = θ(i) ◦ α(i)
sep ∈ GL(V

(i)
sep). Clearly,

fγ = β ◦ γβ−1.(26.5)

Consider the element w′′ = ρ(β−1)(w′) ∈ Wsep. By definition, w′′ is an object

of Ã and β represents a morphism w′′ → w′ in Ã. We show that w′′ ∈ W , i.e.,
w′′ ∈ A. Indeed, for any γ ∈ Γ one has

γ(w′′) = ρ(γβ−1)(w′) = ρ(β−1 ◦ fγ)(w′) = ρ(β−1)(w′) = w′′

since ρ(fγ)(w
′) = w′. Finally, the equation (??) shows that the functor i satisfies

the descent condition.

(26.6) Corollary. The functors j in Examples (??), (??) and (??), (??) satisfy

the descent condition.

Proof : For (??) we consider the F -vector space W = HomF (A ⊗F A,A) where
A = Mn+1(F ) is the split algebra and w = m ∈ W is the multiplication map of A.
For (??), let A = F [G]. Consider the F -vector space

W = HomF (A⊗F A,A)⊕Hom(A,A⊗F A),

the element w = (m, c) ∈ W where m is the multiplication and c is the comultipli-
cation on A. In each case we have a natural representation

ρsep : GL(Asep)→ GL(Wsep)

(see Example (??), (??)).
We now restrict our attention to Example (??),(??), since the argument for

Example (??), (??) is similar (and even simpler). By Proposition (??) there is a
Γ-embedding

i : A(ρsep, w)→ Ã(ρsep, w)

satisfying the descent condition. We have a functor

T : A(ρsep, w)→ A(F )

taking w′ = (m′, c′) ∈ A(ρsep, w) to the F -vector space A with the Hopf algebra
structure given by m′ and comultiplication c′. Clearly A has a Hopf algebra struc-
ture (with some co-inverse map i′ and co-unit u′) since over Fsep it is isomorphic
to the Hopf algebra Asep. A morphism between w′ and w′′, being an element of
GL(A), defines an isomorphism of the corresponding Hopf algebra structures on A.
The functor T has an evident Γ-extension

T̃ : Ã(ρsep, w)→ A(Fsep),
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which is clearly an equivalence of groupoids. Since the functor i satisfies the descent
condition, so does the functor j.

26.A. Basic classification results. Let G be a semisimple algebraic group
over an arbitrary field F . Choose any maximal torus T ⊂ G. Then Tsep is a split
maximal torus in Gsep, hence we have a root system Φ(Gsep), which we call the
root system of G and denote Φ(G). The absolute Galois group Γ = Gal(Fsep/F )
acts naturally on Φ(G) and hence on the Dynkin diagram Dyn

(
Φ(G)

)
.

The group G is said to be simply connected (resp. adjoint) if the split group
Gsep is so.

(26.7) Theorem. For any semisimple group G there exists (up to an isomor-

phism) a unique simply connected group G̃ and a unique adjoint group G such that

there are central isogenies G̃→ G→ G.

Proof : Let C ⊂ G be the kernel of the adjoint representation adG. Then G =
G/C ' im(adG) is an adjoint group with the same root system as G. Denote

by Gd a split twisted form of G and by G̃d its simply connected covering. Consider

the groupoid A(F ) (resp. B(F )) of all twisted forms of Gd (resp. G̃d). The group
G is an object of A(F ). Clearly, the natural functors

i : A(F )→ A(Fsep), j : B(F )→ B(Fsep)

are Γ-embeddings where Γ = Gal(Fsep/F ). The natural functor

S(F ) : B(F )→ A(F ), G′ 7→ G
′
= G′/C(G′)

has the Γ-extension S(Fsep). By Corollary (??) the functor S(Fsep) is an equivalence
of groupoids. By Proposition (??) and Corollary (??) S(F ) is also an equivalence
of groupoids. Hence there exists a unique (up to isomorphism) simply connected

group G̃ such that G̃/C(G̃) ' G.

Let π̃ : G̃ → G and π : G → G be central isogenies. Since Gsep is a split group

there exists a central isogeny ρ : G̃sep → Gsep (see (??)). Remark (??) shows that

after modifying ρ by an automorphism of G̃sep one can assume that πsep ◦ ρ = π̃sep.

Take any γ ∈ Γ. Since γρ : G̃sep → Gsep is a central isogeny, by (??) there exists

α ∈ Aut(G̃sep) such that γρ = ρ ◦ α. Then

π̃sep = γπ̃sep = γ(πsep ◦ ρ) = πsep ◦ γρ = πsep ◦ ρ ◦ α = π̃sep ◦ α,

hence α belongs to the kernel of Aut(G̃sep)→ Aut(Gsep), which is trivial by Corol-

lary (??), i.e., α = Id and γρ = ρ. Then ρ = δsep for a central isogeny δ : G̃→ G.

The group G in Theorem (??) is isomorphic to G̃/N where N is a subgroup of

C = C(G̃). Note that the Galois group Γ acts on T ∗sep, leaving invariant the subset
Φ = Φ(G) ⊂ T ∗sep, and hence acts on the lattices Λ, Λr, and on the group Λ/Λr.

Note that the Γ-action on Λ/Λr factors through the natural action of Aut
(
Dyn(Φ)

)
.

The group C is finite of multiplicative type, Cartier dual to (Λ/Λr)et (see p. ??).
Therefore, the classification problem of semisimple groups reduces to the classi-
fication of simply connected groups and Γ-submodules in Λ/Λr. Note that the
classifications of simply connected and adjoint groups are equivalent.

A semisimple group G is called absolutely simple if Gsep is simple. For example,
a split simple group is absolutely simple.
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(26.8) Theorem. A simply connected (resp. adjoint) semisimple group over F is

isomorphic to the product of groups RL/F (G′) where L/F is a finite separable field

extension and G′ is an absolutely simple simply connected (resp. adjoint) group

over L.

Proof : Let ∆ be the set of connected components of the Dynkin diagram of G.
The absolute Galois group Γ acts in a natural way on ∆ making it a finite Γ-set.
Since G is a simply connected or an adjoint group and Gsep is split, it follows
from Proposition (??) that Gsep is the product of its simple components over Fsep

indexed by the elements of ∆:

Gsep =
∏

δ∈∆

Gδ.

Set Aδ = Fsep[Gδ ], then F [G]sep is the tensor product over Fsep of all Aδ , δ ∈ ∆.
Since Γ permutes the connected components of the Dynkin diagram of G, there

exist F -algebra isomorphisms

γ̃ : Aδ → Aγδ

such that γ̃(xa) = γ(x)γ̃(a) for all x ∈ Fsep and a ∈ Aδ, and the Γ-action on
F [G]sep is given by the formula

γ(⊗aδ) = ⊗a′δ where a′γδ = γ̃(aδ).

Consider the étale F -algebra L = Map(∆, Fsep)Γ corresponding to the finite
Γ-set ∆ (see Theorem (??)). Then ∆ can be identified with the set of all F -algebra
homomorphisms L→ Fsep. In particular,

Lsep = L⊗F Fsep =
∏

δ∈∆

eδLsep

where the eδ are idempotents, and each eδLsep ' Fsep.
We will define a group scheme G′ over L such that G ' RL/F (G′). Let S be

an L-algebra. The structure map α : L→ S gives a decomposition of the identity,
1 =

∑
δ∈∆ fδ where the fδ are the orthogonal idempotents in Ssep = S ⊗F Fsep,

which are the images of the eδ under αsep : Lsep → Ssep; they satisfy γfδ = fγδ for
all γ ∈ Γ. For any δ ∈ ∆ consider the group isomorphism

γ : Gδ(fδSsep)→ Gγδ(fγδSsep)

taking a homomorphism u ∈ HomAlgFsep
(Aδ , fδSsep) to

γ ◦ u ◦ γ̃−1 ∈ HomAlgFsep
(Aγδ , fγδSsep) = Gγδ(fγδSsep).

The collection of γ defines a Γ-action on the product
∏

δ∈∆

Gδ(fδSsep).

We define G′(S) to be the group of Γ-invariant elements in this product. Clearly,
G′ is a contravariant functor AlgL → Groups .

Let S = R⊗F L where R is an F -algebra. Then

Ssep '
∏

δ∈∆

(R⊗F eδLsep) =
∏

δ∈∆

fδSsep
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where each fδ = 1⊗ eδ ∈ S ⊗L Lsep and fδSsep ' Rsep. Hence

G′(R⊗F L) =
(∏

δ∈∆

Gδ(Rsep)
)Γ

= G(Rsep)Γ = G(R),

therefore G = RL/F (G′).
By writing L as a product of fields, L =

∏
Li, we obtain

G '
∏

RLi/F (G′i)

where the G′i are components of G′. By comparing the two sides of this isomorphism
over Fsep, we see that G′i is a semisimple group over Li. A count of the number of
connected components of Dynkin diagrams shows that the G′

i are absolutely simple
groups.

The collection of field extensions Li/F and absolutely simple groups G′
i in The-

orem (??) is uniquely determined by G. Thus the theorem reduces the classification
problem to the classification of absolutely simple simply connected groups. In what
follows we classify such groups of types An, Bn, Cn, Dn (n 6= 4), F4, and G2.

Classification of simple groups of type An. As in Chapter ??, consider
the groupoid An = An(F ), n > 1, of central simple algebras of degree n + 1 over
some étale quadratic extension of F with a unitary involution which is the identity
over F , where the morphisms are the F -algebra isomorphisms which preserve the
involution, consider also the groupoid A1 = A1(F ) of quaternion algebras over F
where morphisms are F -algebra isomorphisms.

Let An = An(F ) (resp. An = An(F )) be the groupoid of simply connected (resp.
adjoint) absolutely simple groups of type An (n ≥ 1) over F , where morphisms are
group isomorphisms. By §?? and Theorem (??) we have functors

Sn : An(F )→ An(F ) and Sn : An(F )→ An(F )

defined by Sn(B, τ) = SU(B, τ), Sn(B, τ) = PGU(B, τ) if n ≥ 2, and Sn(Q) =
SL1(Q), Sn(Q) = PGL1(Q) if n = 1. Observe that if B = A × Aop and τ is the
exchange involution, then SU(B, τ) = SL1(A) and

PGU(B, τ) = PGL1(A).

(26.9) Theorem. The functors Sn : An(F ) → An(F ) and Sn : An(F ) → An(F )
are equivalences of categories.

Proof : Since the natural functor An(F )→ An(F ) is an equivalence (see the proof of
Theorem (??)), it suffices to prove that Sn is an equivalence. Let Γ = Gal(Fsep/F ).
The field extension functor j : An(F ) → An(Fsep) is clearly a Γ-embedding. We
show that j satisfies the descent condition. Assume first that n ≥ 2. Let (B, τ) be
some object in An(F ) (a split object, for example). Consider the F -vector space

W = HomF (B ⊗F B,B)⊕HomF (B,B),

and the element w = (m, τ) ∈W where m is the multiplication on B. The natural
representation

ρ : GL(B)→ GL(W ).

induces a Γ-equivariant homomorphism

ρsep : GL(Bsep)→ GL(Wsep).
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By Proposition (??) the Γ-embedding

i : A(ρsep, w)→ Ã(ρsep, w)

satisfies the descent condition. We have a functor

T = T(F ) : A(ρsep, w)→ An(F )

taking w′ ∈ A(ρsep, w) to the F -vector space B with the algebra structure and
involution defined by w′. A morphism from w′ to w′′ is an element of GL(B)
and it defines an isomorphism of the corresponding algebra structures on B. The
functor T has an evident Γ-extension

T̃ = T(Fsep) : Ã(ρsep, w)→ An(Fsep)

which is clearly an equivalence of groupoids. Since the functor i satisfies the descent
condition, so does the functor j.

Assume now that n = 1. Let Q be a quaternion algebra over F . Consider the
F -vector space

W = HomF (Q⊗F Q,Q),

the multiplication map w ∈W , and the natural representation

ρ : GL(Q)→ GL(W ).

By Proposition (??) there is a Γ-embedding i satisfying the descent condition and a
functor T as above taking w′ ∈ A(ρsep, w) to the F -vector space Q with the algebra
structure defined by w′. The functor T has an evident Γ-extension which is an
equivalence of groupoids. As above, we conclude that the functor j satisfies the
descent condition.

For the rest of the proof we again treat the cases n ≥ 2 and n = 1 separately.
Assume that n ≥ 2. By Remark (??) it suffices to show that for any (B, τ) ∈ An(F )
the functor Sn, for F be separably closed, induces a group isomorphism

AutF (B, τ) → Aut
(
PGU(B, τ)

)
.(26.10)

The restriction of this homomorphism to the subgroup PGU(B, τ) of index 2, is
the conjugation homomorphism. It induces an isomorphism of this group with the
group of inner automorphisms Int

(
PGU(B, τ)

)
, a subgroup of Aut

(
PGU(B, τ)

)
,

which is also of index 2 (Theorem (??)). We may take the split algebra B =
Mn+1(F ) ×Mn+1(F )op and τ the exchange involution. Then (x, yop) 7→ (yt, xt

op
)

is an outer automorphism of (B, τ). Its image in Aut
(
PGU(B, τ)

)
= PGLn+1 is

the class of x 7→ x−t, which is known to be an outer automorphism if (and only if)
n ≥ 2. Hence (??) is an isomorphism.

Finally, consider the case n = 1. As above, it suffices to show that, for a
quaternion algebra Q over a separably closed field F , the natural map

PGL1(Q) = AutF (Q)→ Aut
(
PGL1(Q)

)

is an isomorphism. But this follows from the fact that any automorphism of an
adjoint simple group of type A1 is inner (Theorem (??)).

(26.11) Remark. Let A be a central simple algebra of degree n+1 over F . Then
Sn(A × Aop, ε) = SL1(A), where ε is the exchange involution. In particular, two
groups SL1(A1) and SL1(A2) are isomorphic if and only if

(A1 ×Aop
1 , ε1) ' (A2 ×Aop

2 , ε2),
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i.e. A1 ' A2 or A1 ' Aop
2 .

Let B be a central simple algebra of degree n + 1 over an étale quadratic
extension L/F . The kernel C of the universal covering

SU(B, τ) → PGU(B, τ)

is clearly equal to

ker
(
RL/F (µn+1,L)

NL/F−−−→ µn+1,F

)
.

It is a finite group of multiplicative type, Cartier dual to
(
Z/(n+ 1)Z

)
et

. An abso-

lutely simple group of type An is isomorphic to SU(B, τ)/Nk where k divides n+1
and Nk is the unique subgroup of order k in C.

Classification of simple groups of type Bn. For n ≥ 1, let Bn = Bn(F )
be the groupoid of oriented quadratic spaces of dimension 2n+1, i.e., the groupoid
of triples (V, q, ζ), where (V, q) is a regular quadratic space of trivial discriminant
and ζ ∈ C(V, q) is an orientation (so ζ = 1 if charF = 2). Let Bn = Bn(F ) (resp.
Bn = Bn(F )) be the groupoid of simply connected (resp. adjoint) absolutely simple
groups of type Bn (n ≥ 1) over F . By §?? and Theorem (??) we have functors

Sn : Bn(F )→ Bn(F ) and Sn : Bn(F )→ Bn(F )

defined by Sn(V, q, ζ) = Spin(V, q), Sn(V, q, ζ) = O+(V, q).

(26.12) Theorem. The functors Sn : Bn(F ) → Bn(F ) and Sn : Bn(F ) → Bn(F )
are equivalences of categories.

Proof : Since the natural functor Bn(F ) → Bn(F ) is an equivalence, it suffices to
prove that Sn is an equivalence. Let Γ = Gal(Fsep/F ). The field extension functor
j : Bn(F ) → Bn(Fsep) is clearly a Γ-embedding. We show first that the functor j
satisfies the descent condition. Let (V, q) be some regular quadratic space over F
of trivial discriminant and dimension n+ 1. Consider the F -vector space

W = S2(V ∗)⊕ F,
the element w = (q, 1) ∈W , and the natural representation

ρ : GL(V )→ GL(W ), ρ(g)(x, α) =
(
g(x), det x · α

)

where g(x) is given by the natural action of GL(V ) on S2(V ∗). By Proposition (??)
the Γ-embedding

i : A(ρsep, w)→ Ã(ρsep, w)

satisfies the descent condition. Thus, to prove that j satisfies the descent condition,
it suffices to show that the functors i and j are equivalent. First recall that:

(a) If (q′, λ) ∈ A(ρsep, w), then q′ has trivial discriminant.
(b) (q, λ) ' (q′, λ′) in A(ρsep, w) if and only if q ' q′.
(c) AutA(ρsep,w)(q, λ) = O+(V, q) = AutBn(F )(V, q, ζ) (see (??)).

We construct a functor

T = T(F ) : A(ρsep, w)→ Bn(F )

as follows. If charF = 2 we put T(q′, λ) = (V, q′, 1). Now, assume that the
characteristic of F is not 2. Choose an orthogonal basis (v1, v2, . . . , v2n+1) of V for
the form q, such that the central element ζ = v1 · v2 · . . . · v2n+1 ∈ C(V, q) satisfies
ζ2 = 1, i.e., ζ is an orientation. Take any (q′, λ) ∈ A(ρsep, w) and f ∈ GL(Vsep)



§26. SEMISIMPLE GROUPS OVER AN ARBITRARY FIELD 369

such that q′sep
(
f(v)

)
= qsep(v) for any v ∈ Vsep and det f = λ. Then the central

element

ζ ′ = f(v1) · f(v2) · . . . · f(v2n+1) ∈ C(Vsep, q
′
sep)

satisfies ζ ′2 = 1. In particular, ζ ′ ∈ C(V, q′). It is easy to see that ζ ′ does not
depend on the choice of f . Set T(q′, λ) = (V, q′, ζ ′). It is immediate that T(F ) is
a well-defined equivalence of categories. Thus, the functor j satisfies the descent
condition.

To complete the proof of the theorem, it suffices by Proposition (??) (and Re-
mark (??)) to show that, for any (V, q, ζ) ∈ Bn(F ), the functor Sn over a separably
closed field F induces a group isomorphism

O+(V, q)→ Aut
(
O+(V, q)

)
.

This holds since automorphisms of O+(V, q) are inner (Theorem (??)).

(26.13) Remark. If charF 6= 2, the theorem can be reformulated in terms of
algebras with involution. Namely, the groupoid Bn is naturally equivalent to to the
groupoid B ′

n of central simple algebras over F of degree 2n+ 1 with involution of
the first kind, where morphisms are isomorphisms of algebras which are compatible
with the involutions (see (??)).

Classification of simple groups of type Cn. Consider the groupoid Cn =
Cn(F ), n ≥ 1, of central simple F -algebras of degree 2n with symplectic involu-
tion, where morphisms are F -algebra isomorphisms which are compatible with the
involutions.

Let Cn = Cn(F ) (resp. Cn = Cn(F )) be the groupoid of simply connected
(resp. adjoint) simple groups of type Cn (n ≥ 1) over F , where morphisms are
group isomorphisms. By (??) and Theorem (??) we have functors

Sn : Cn(F )→ Cn(F ) and Sn : Cn(F )→ Cn(F )

defined by Sn(A, σ) = Sp(A, σ), Sn(A, σ) = PGSp(A, σ).

(26.14) Theorem. The functors Sn : Cn(F ) → Cn(F ) and Sn : Cn(F ) → Cn(F )
are equivalences of categories.

Proof : Since the natural functor Cn(F ) → Cn(F ) is an equivalence, it suffices to
prove that Sn is an equivalence. Let Γ = Gal(Fsep/F ). The field extension functor
j : Cn(F ) → Cn(Fsep) is clearly a Γ-embedding. We first show that the functor j
satisfies the descent condition. Let (A, σ) be some object in Cn(F ) (a split one, for
example). Consider the F -vector space

W = HomF (A⊗F A,A)⊕HomF (A,A),

the element w = (m,σ) ∈ W where m is the multiplication on A, and the natural
representation

ρ : GL(A)→ GL(W ).

By Proposition (??) the Γ-embedding

i : A(ρsep, w)→ Ã(ρsep, w)

satisfies the descent condition. We have the functor

T = T(F ) : A(ρsep, w)→ Cn(F )
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taking w′ ∈ A(ρsep, w) to the F -vector space A with the algebra structure and
involution defined by w′. A morphism from w′ to w′′ is an element of GL(A)
and it defines an isomorphism of the corresponding algebra structures on A. The
functor T has an evident Γ-extension

T̃ = T(Fsep) : Ã(ρsep, w)→ Cn(Fsep),

which is clearly an equivalence of groupoids. Since the functor i satisfies the descent
condition, so does the functor j.

To complete the proof of the theorem, it suffices by Remark (??) to show that
for any (A, σ) ∈ Cn(F ) the functor Sn over a separably closed field F induces a
group isomorphism

PGSp(A, σ) = AutF (A, σ) → Aut
(
PGSp(A, σ)

)
.

This follows from the fact that automorphisms of PGSp are inner (Theorem (??)).

Classification of semisimple groups of type Dn, n 6= 4. Consider the
groupoid Dn = Dn(F ), n ≥ 2, of central simple F -algebras of degree 2n with
quadratic pair, where morphisms are F -algebra isomorphisms compatible with the
quadratic pairs.

Denote by Dn = Dn(F ) (resp. Dn = Dn(F )) the groupoid of simply connected
(resp. adjoint) semisimple (simple if n > 2) groups of type Dn (n ≥ 2) over F ,
where morphisms are group isomorphisms. By §?? and Theorem (??) we have
functors

Sn : Dn(F )→ Dn(F ) and Sn : Dn(F )→ Dn(F )

defined by Sn(A, σ, f) = Spin(A, σ, f), Sn(A, σ, f) = PGO+(A, σ, f).

(26.15) Theorem. If n 6= 4, the functors Sn : Dn(F )→ Dn(F ) and Sn : Dn(F )→
Dn(F ) are equivalences of categories.

Proof : Since the natural functor Dn(F ) → Dn(F ) is an equivalence, it suffices to
prove that Sn is an equivalence. Let Γ = Gal(Fsep/F ). The field extension functor
j : Dn(F ) → Dn(Fsep) is clearly a Γ-embedding. We show first that the functor j
satisfies the descent condition. Let (A, σ, f) be some object in Dn(F ) (a split one,
for example). Let A+ be the space Sym(A, σ). Consider the F -vector space

W = HomF (A+, A)⊕HomF (A⊗F A,A) ⊕HomF (A,A)⊕ (A+)∗,

which contains the element w = (i,m, σ, f) where i : A+ ↪→ A is the inclusion and
m is the multiplication on A; we have a natural representation

ρ : GL(A)×GL(A+)→ GL(W ).

ρ(g, h)(λ, x, y, p) =
(
g ◦ λ ◦ h−1, g(x), g(y

)
, p ◦ h−1)

where g(x) and g(y) are obtained by applying the natural action of GL(A) on the
second and third summands of W . By Proposition (??) the Γ-embedding

i : A(ρsep, w)→ Ã(ρsep, w)

satisfies the descent condition. We have the functor

T = T(F ) : A(ρsep, w)→ Dn(F )
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which takes w′ ∈ A(ρsep, w) to the F -vector space A with the algebra structure and
quadratic pair defined by w′. A morphism from w′ to w′′ is an element of GL(A)×
GL(A+) and it defines an isomorphism between the corresponding structures on A.
The functor T has an evident Γ-extension

T̃ = T(Fsep) : Ã(ρsep, w)→ Dn(Fsep),

which is clearly an equivalence of groupoids. Since the functor i satisfies the de-
scent condition, so does the functor j. For the proof of the theorem it suffices by
Proposition (??) (and Remark (??)) to show that for any (A, σ, f) ∈ Dn(F ) the
functor Sn for a separably closed field F induces a group isomorphism

PGO(A, σ, f) = AutF (A, σ, f)→ Aut
(
PGO+(A, σ, f)

)
.(26.16)

The restriction of this homomorphism to the subgroup PGO+(A, σ, f), which is of
index 2, induces an isomorphism of this subgroup with the group of inner auto-
morphisms Int

(
PGO+(A, σ, f)

)
, which is a subgroup in Aut

(
PGO+(A, σ)

)
also of

index 2 (since n 6= 4, see Theorem (??)). A straightforward computation shows that
any element in PGO−(A, σ, f) induces an outer automorphism of PGO+(A, σ, f).
Hence (??) is an isomorphism.

(26.17) Remark. The case of D4 is exceptional, in the sense that the group of
automorphisms of the Dynkin diagram of D4 is S3. Triality is needed and we refer
to Theorem (??) below for an analogue of Theorem (??) for D4.

Let C be the kernel of the adjoint representation of Spin(A, σ, f). If n is even,
then C is the Cartier dual to (Z/2Z⊕ Z/2Z)et, where the absolute Galois group Γ
acts by the permutation of summands. This action factors through Aut

(
Dyn(Dn)

)
.

On the other hand, the Γ-action on the center Z of the Clifford algebra C(A, σ, f)
given by the composition

Γ→ AutFsep

(
C(Asep, σsep, fsep)

)
→ AutFsep(Zsep) ' Z/2Z

also factors through Aut
(
Dyn(Dn)

)
. Hence the Cartier dual to C is isomorphic

to (Z/2Z)[G]et, where G = Gal(Z/F ) and Γ acts by the natural homomorphism
Γ→ G. By Exercise ??,

C = RZ/F (µ2,Z).

If n is odd, then C is the Cartier dual to (Z/4Z)et and Γ acts on M = Z/4Z
through G identified with the automorphism group of Z/4Z. We have an exact
sequence

0→ Z/4Z→ (Z/4Z)[G]→M → 0,

where Z/4Z is considered with the trivial Γ-action. By Cartier duality,

C = ker
(
RZ/F (µ4,Z)

NZ/F−−−→ µ4,F

)
.

If n is odd, then C has only one subgroup of order 2 which corresponds to
O+(A, σ, f). If n is even, then C∗sep ' Z/2Z ⊕ Z/2Z. If σ has nontrivial dis-
criminant (i.e., Z is not split), then Γ acts non-trivially on C∗

sep, hence there is

still only one proper subgroup of C corresponding to GO+(A, σ, f). In the case
where the discriminant is trivial (so Z is split), Γ acts trivially on C∗

sep, and there

are three proper subgroups of C, one of which corresponds again to O+(A, σ, f).
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The two other groups correspond to Spin±(A, σ, f), which are the images of the
compositions

Spin(A, σ, f) ↪→ GL1

(
C(A, σ, f)

)
→ GL1

(
C±(A, σ, f)

)

where C(A, σ, f) = C+(A, σ, f) × C−(A, σ, f).

Classification of simple groups of type F4. Consider the groupoid F4 =
F4(F ) of exceptional Jordan algebras of dimension 27 over F (see §?? below if
charF 6= 2 and §?? if charF = 2), where morphisms are F -algebra isomorphisms.

Denote by F 4 = F 4(F ) the groupoid of simple groups of type F4 over F , where
morphisms are group isomorphisms. By Theorem (??) we have a functor

S : F4(F )→ F 4(F ), S(J) = Autalg(J).

(26.18) Theorem. The functor S : F4(F ) → F 4(F ) is an equivalence of cate-

gories.

Proof : Let Γ = Gal(Fsep/F ). The field extension functor j : F4(F ) → F4(Fsep)
is clearly a Γ-embedding. We first show that the functor j satisfies the descent
condition. Let J be some object in F4(F ) (a split one, for example). If charF 6= 2,
consider the F -vector space

W = HomF (J ⊗F J, J),

the multiplication element w ∈W and the natural representation

ρ : GL(J)→ GL(W ).

By Proposition (??) the Γ-embedding

i : A(ρsep, w)→ Ã(ρsep, w)

satisfies the descent condition. We have the functor

T = T(F ) : A(ρsep, w)→ F4(F )

taking w′ ∈ A(ρsep, w) to the F -vector space J with the Jordan algebra structure
defined by w′. A morphism from w′ to w′′ is an element of GL(J) and it defines an
isomorphism of the corresponding Jordan algebra structures on J . The functor T
has an evident Γ-extension

T̃ = T(Fsep) : Ã(ρsep, w)→ F4(Fsep),

which is clearly an equivalence of groupoids. Since the functor i satisfies the descent
condition, so does the functor j.

For the proof of the theorem it suffices by Proposition (??) to show that for any
J ∈ F4(F ) the functor S for a separably closed field F induces a group isomorphism

Autalg(J)→ Aut
(
Autalg(J)

)
.

This follows from the fact that automorphisms of simple groups of type F4 are inner
(Theorem (??)).

If charF = 2, an exceptional Jordan algebra of dimension 27 is (see §?? below)
a datum (J,N,#, T, 1) consisting of a space J of dimension 27, a cubic formN : J →
F , the adjoint #: J → J of N , which is a quadratic map, a bilinear trace form T ,
and a distinguished element 1, satisfying certain properties (given in §??). In this
case we consider the F -vector space

W = S3(J∗)⊕ S2(J∗)⊗ J ⊕ S2(J∗)⊕ F
and complete the argument as in the preceding cases.
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Classification of simple groups of type G2. Consider the groupoid G2 =
G2(F ) of Cayley algebras over F , where morphisms are F -algebra isomorphisms.

Denote by G 2 = G 2(F ) the groupoid of simple groups of type G2 over F , where
morphisms are group isomorphisms. By Theorem (??) there is a functor

S : G2(F )→ G 2(F ), S(C) = Autalg(C).

(26.19) Theorem. The functor S : G2(F ) → G 2(F ) is an equivalence of cate-

gories.

Proof : Let Γ = Gal(Fsep/F ). The field extension functor j : G2(F ) → G2(Fsep)
is clearly a Γ-embedding. We first show that the functor j satisfies the descent
condition. Let C be some object in G2(F ) (a split one, for example). Consider
the F -vector space W = HomF (C ⊗F C,C), the multiplication element w ∈ W ,
and the natural representation ρ : GL(C) → GL(W ). By Proposition (??) the

Γ-embedding i : A(ρsep, w) → Ã(ρsep, w) satisfies the descent condition. We have a
functor

T = T(F ) : A(ρsep, w)→ G2(F )

which takes w′ ∈ A(ρsep, w) to the F -vector space C with the Cayley algebra
structure defined by w′. A morphism from w′ to w′′ is an element of GL(C) and it
defines an isomorphism between the corresponding Cayley algebra structures on C.
The functor T has an evident Γ-extension

T̃ = T(Fsep) : Ã(ρsep, w)→ G2(Fsep),

which is clearly an equivalence of groupoids. Since the functor i satisfies the descent
condition, so does the functor j.

For the proof of the theorem it suffices by Proposition (??) to show that for any
J ∈ G2(F ) the functor S for a separably closed field F induces a group isomorphism

Autalg(C)→ Aut
(
Autalg(C)

)
.

This follows from the fact that automorphisms of simple groups of type G2 are
inner (Theorem (??)).

26.B. Algebraic groups of small dimension. Some Dynkin diagrams of
small ranks coincide:

A1 = B1 = C1(26.20)

D2 = A1 +A1(26.21)

B2 = C2(26.22)

A3 = D3(26.23)

We describe explicitly the corresponding isomorphisms for adjoint groups (ana-
logues for algebras are in §??):

A1 = B1 = C1. Let (V, q) be a regular quadratic form of dimension 3 over a
field F . Then C0(V, q) is a quaternion algebra over F . The canonical homomor-
phism

O+(V, q)→ PGL1

(
C0(V, q)

)
= PGSp

(
C0(V, q), σq

)

is injective (see §??) and hence is an isomorphism of adjoint simple groups of
types B1, A1 and C1 since by dimension count its image has the same dimension
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as the target group, and since these groups are connected they must coincide, by
Propositions (??) and (??). (We will use this argument several times below.)

Let Q be a quaternion algebra over F and let Q0 = {x ∈ Q | TrdQ(x) = 0 }.
For x ∈ Q0, we have x2 ∈ F , and the squaring map s : Q0 → F is a quadratic form
of discriminant 1 on Q0 (see §??). Consider the conjugation homomorphism

f : GL1(Q)→ O+(Q0, s).

Since Q0 generates Q, ker(f) = Gm and the injection

PGSp(Q, σ) = PGL1(Q)→ O+(Q0, s)

is an isomorphism of adjoint simple groups of types C1, A1, and B1.

D2 = A1 + A1. Let A be a central simple algebra over F of degree 4 with a
quadratic pair (σ, f). Then C(A, σ, f) is a quaternion algebra over a quadratic étale
extension Z of F . We have the canonical injection

PGO+(A, σ, f)→ AutZ
(
C(A, σ, f)

)
= RZ/F

(
PGL1

(
C(A, σ, f)

))

which is an isomorphism between adjoint groups of type D2 and those of type
A1 +A1.

Conversely, let Q be a quaternion algebra over an étale quadratic extension
Z/F . The norm A = NZ/F (Q) is a central simple algebra of degree 4 over F with
a canonical quadratic pair (σ, f) (see §??). We have the natural homomorphism

g : RZ/F
(
GL1(Q)

)
→ GO+(A, σ, f), x ∈ Q×

R 7→ x⊗ x ∈ A×R.

One checks that x⊗x ∈ R× if and only if x ∈ Z×R , hence g−1(Gm) = RZ/F (Gm,Z).
By factoring out these subgroups we obtain an injective homomorphism

RZ/F
(
PGL1(Q)

)
→ PGO+(A, σ, f)

which is actually an isomorphism from an adjoint group of type A1 +A1 to one of
type D2.

B2 = C2. Let (V, q) be a regular quadratic form of dimension 5. Then C0(V, q)
is a central simple algebra of degree 4 with (canonical) symplectic involution τ .
There is a canonical injective homomorphism (see §??)

O+(V, q)→ PGSp
(
C0(V, q), τ

)

which is in fact an isomorphism from an adjoint simple groups of type B2 to one
of type C2.

Conversely, for a central simple algebra A of degree 4 over F with a symplectic
involution σ, the F -vector space

Symd(A, σ)0 = {x ∈ Symd(A, σ) | TrpA(x) = 0 }
admits the quadratic form sσ(x) = x2 ∈ F (see §??). Consider the conjugation
homomorphism

f : GSp(A, σ)→ O+
(
Symd(A, σ)0, sσ

)
, a 7→ Int(a).

Since Symd(A, σ) generates A, one has ker(f) = Gm. Hence, the injection

PGSp(A, σ)→ O+
(
V, q

)

is an isomorphism from an adjoint simple group of type C2 to one of type B2.
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A3 = D3. Let A be a central simple algebra of degree 6 over F with an orthog-
onal pair (σ, f). Then C(A, σ, f) is a central simple algebra of degree 4 over an étale
quadratic extension Z/F with a unitary involution σ. The natural homomorphism

PGO+(A, σ, f)→ PGU
(
C(A, σ, f), σ

)

is injective (see §??) and hence is an isomorphism from an adjoint simple group of
type D3 to one of type A3.

Conversely, let B be a central simple algebra of degree 4 over an étale quadratic
extension Z/F with a unitary involution τ . Then the discriminant algebra D(B, τ)
is a central simple algebra of degree 6 over F with canonical quadratic pair (τ , f).
Consider the natural homomorphism

GU(B, τ)→ GO+
(
D(B, τ), τ , f

)
.

One checks (in the split case) that g−1(Gm) = GL1(Z). By factoring out these
subgroups we obtain an injection

PGU(B, τ) → PGO+
(
D(B, τ), τ , f

)

which is an isomorphism from an adjoint simple group of type A3 to one of type D3.

§27. Tits Algebras of Semisimple Groups

The Clifford algebra, the discriminant algebra, the λ-powers of a central simple
algebra all arise as to be so-called Tits algebras of the appropriate semisimple
groups. In this section we define Tits algebras and classify them for simple groups
of the classical series.

For this we need some results on the classification of representations of split
semisimple groups. Let G be a split semisimple group over F . Choose a split
maximal torus T ⊂ G. Fix a system of simple roots in Φ(G), so we have the
corresponding cone Λ+ ⊂ Λ of dominant weights.

Let ρ : G→ GL(V ) be a representation. By the representation theory of diag-
onalizable groups (??) one can associate to the representation ρ|T a finite number
of weights, elements of T ∗. If ρ is irreducible, among the weights there is a largest
(with respect to the ordering on Λ). It lies in Λ+ and is called the highest weight

of ρ (Humphreys [?]).

(27.1) Theorem. The map

Isomorphism classes of
irreducible representations of G

←→ T ∗ ∩ Λ+

taking the class of a representation ρ to its highest weight, is a bijection.

Reference: Tits [?, Th.2.5]

(27.2) Remark. If G is a simply connected group (i.e., T ∗ = Λ), then T ∗ ∩Λ+ =
Λ+.

(27.3) Remark. The classification of irreducible representations of a split semi-
simple groups does not depend on the base field in the sense that an irreducible
representation remains irreducible over an arbitrary field extension and any irre-
ducible representation over an extension comes from the base field.
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27.A. Definition of the Tits algebras. Let G be a semisimple (not neces-
sarily split) group over F and let T ⊂ G be a maximal torus. Choose a system of
simple roots Π ⊂ Φ = Φ(G). The group Γ acts on T ∗sep and is the identity on Φ, Λ,
Λr (but not Π).

There is another action of Γ on T ∗sep, called the ∗-action, which is defined as
follows. Take any γ ∈ Γ. Since the Weyl group W acts simply transitively on the
set of systems of simple roots and γΠ is clearly a system of simple roots, there is a
unique w ∈ W such that w(γΠ) = Π. We set γ ∗ α = w(γα) ∈ Π for any α ∈ Π.
This action, defined on Π, extends to an action on Λ which is the identity on Π, Φ,
Λr, Λ+. Note that since W acts trivially on Λ/Λr, the ∗-action on Λ/Λr coincides
with the usual one.

Choose a finite Galois extension F ⊂ L ⊂ Fsep splitting T and hence G. The ∗-
action of Γ then factors through Gal(L/F ). Let ρ : GL → GL(V ) be an irreducible
representation over L (so V is an L-vector space) with highest weight λ ∈ Λ+ ∩ T ∗
(see Theorem (??)). For any γ ∈ Γ we can define the L-space γV as V as an abelian
group and with the L-action x ◦ v = γ−1(x) · v, for all x ∈ L, v ∈ V . Then v 7→ v
viewed as a map V → γV is γ-semilinear. Denote it iγ .

Let A = F [G] and let ρ : V → V ⊗L AL be the comodule structure for ρ (see
p. ??). The composite

γV
i−1
γ−−→ V

ρ−→ V ⊗L (L⊗F A)
iγ⊗(γ⊗Id)−−−−−−−→ γV ⊗L (L⊗F A)

gives the comodule structure for some irreducible representation

γρ : GL → GL(γV ).

(Observe that the third map is well-defined because both iγ and γ ⊗ Id are γ-
semilinear.) Clearly, the weights of γρ are obtained from the weights of ρ by ap-
plying γ. Hence, the highest weight of γρ is γ ∗ λ.

Assume now that λ ∈ Λ+ ∩ T ∗ is invariant under the ∗-action. Consider the
conjugation representation

Int(ρ) : G→ GL
(
EndF (V )

)
, g 7→

(
α 7→ ρ(g) ◦ α ◦ ρ(g)−1

)
.

Let EndG(V ) be the subalgebra of G-invariant elements in EndF (V ) under Int(ρ).
Then

EndG(V )⊗F L ' EndGL(V ⊗F L) ' EndGL

(∏
γ∈Gal(L/F )γV

)
(27.4)

since V ⊗F L is L-isomorphic to
∏

γV via v⊗x 7→ (γ−1x · v)γ . Since the represen-
tation γρ is of highest weight γ ∗ λ = λ, it follows from Theorem (??) that γρ ' ρ,
i.e., all the G-modules γV are isomorphic to V . Hence, the algebras in (??) are
isomorphic to

EndGL(V n) = Mn

(
EndGL(V )

)

where n = [L :F ].

(27.5) Lemma. EndGL(V ) ' L.

Proof : Since ρ is irreducible, EndGL(V ) is a division algebra over L by Schur’s
lemma. But ρalg remains irreducible by Remark (??), hence EndGL(V ) ⊗L Falg is
also a division algebra and therefore EndGL(V ) = L.
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It follows from the lemma that EndG(V ) ⊗F L 'Mn(L), hence EndG(V ) is a
central simple algebra over F of degree n. Denote its centralizer in EndF (V ) by
Aλ. This is a central simple algebra over F of degree dimL V . It is clear that Aλ
is independent of the choice of L. The algebra Aλ is called the Tits algebra of the
group G corresponding to the dominant weight λ.

Since the image of ρ commutes with EndG(V ), it actually lies in Aλ. Thus we
obtain a representation

ρ′ : G→ GL1(Aλ).

By the double centralizer theorem (see (??)), the centralizer of EndG(V )⊗F L
in EndF (V )⊗F L is Aλ ⊗F L. On the other hand it contains EndL(V ) (where the
image of ρ lies). By dimension count we have

Aλ ⊗F L = EndL(V )

and hence the representation (ρ′)L is isomorphic to ρ. Thus, ρ′ can be considered
as a descent of ρ from L to F . The restriction of ρ′ to the center C = C(G) ⊂ G
is given by the restriction of λ on C, i.e., is the character of the center C given by
the class of λ in C∗ = T ∗/Λr ⊂ Λ/Λr.

The following lemma shows the uniqueness of the descent ρ′.

(27.6) Lemma. Let µi : G → GL1(Ai), i = 1, 2 be two homomorphisms where

the Ai are central simple algebras over F . Assume that the representations (µi)sep
are isomorphic and irreducible. Then there is an F -algebra isomorphism α : A1 →
A2 such that GL1(α) ◦ µ1 = µ2.

Proof : Choose a finite Galois field extension L/F splitting G and the Ai, Ai⊗F L '
EndL(Vi). An L-isomorphism V1

∼−→ V2 of GL-representations gives rise to an
algebra isomorphism

α : EndF (V1)
∼−→ EndF (V2)

taking EndG(V1) to EndG(V2). Clearly, Ai lies in the centralizer of EndG(Vi) in
EndF (Vi). By dimension count Ai coincides with the centralizer, hence α(A1) =
A2.

Let π : G̃ → G be a central isogeny with G̃ simply connected. Then the Tits

algebra built out of a representation ρ of GL is the Tits algebra of the group G̃L
corresponding to the representation ρ◦πL. Hence, in order to classify Tits algebras
one can restrict to simply connected groups.

Assume that G is a simply connected semisimple group. For any λ ∈ Λ/Λr
consider the corresponding (unique) minimal weight χ(λ) ∈ Λ+. The uniqueness
shows that χ(γλ) = γ ∗ χ(λ) for any γ ∈ Γ. Hence, if λ ∈ (Λ/Λr)

Γ, then clearly
χ(λ) ∈ ΛΓ

+ (with respect to the ∗-action); the Tits algebra Aχ(λ) is called a minimal

Tits algebra and is denoted simply by Aλ. For example, if λ = 0, then Aλ = F .

(27.7) Theorem. The map

β : (Λ/Λr)
Γ → BrF, λ 7→ [Aλ]

is a homomorphism.

Reference: Tits [?, Cor. 3.5].
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If λ ∈ Λ/Λr is not necessarily Γ-invariant, let

Γ0 = { γ ∈ Γ | γ(λ) = λ } ⊂ Γ

and Fλ = (Fsep)Γ0 . Then λ ∈ (Λ/Λr)
Γ0 and one gets a Tits algebra Aλ, which is a

central simple algebra over Fλ, for the group GFλ
. The field Fλ is called the field

of definition of λ.

27.B. Simply connected classical groups. We give here the classification
of the minimal Tits algebras of the absolutely simple simply connected groups of
classical type.

Type An, n ≥ 1. Let first G = SL1(A) where A is a central simple algebra of
degree n+ 1 over F . Then C = µn+1, C

∗ = Z/(n+ 1)Z with the trivial Γ-action.
For any i = 0, 1, . . . , n, consider the natural representation

ρi : G→ GL1(λ
iA).

In the split case ρi is the i-th exterior power representation with the highest weight
e1 + e2 + · · · + ei in the notation of §??, which is a minimal weight. Hence, the
λ-powers λiA, for i = 0, 1, . . . , n, (see §??) are the minimal Tits algebras of G.

Now let G = SU(B, τ) where B is a central simple algebra of degree n+1 with
a unitary involution over a quadratic separable field extension K/F . The group
Γ acts on C∗ = Z/(n + 1)Z by x 7→ −x through Gal(K/F ). The only nontrivial
element in (C∗)Γ is λ = n+1

2 + (n + 1)Z (n should be odd). There is a natural
homomorphism

ρ : G→ GL1

(
D(B, τ)

)

which in the split case is the external n+1
2 -power. Hence, the discriminant algebra

(see §??) D(B, τ) is the minimal Tits algebra corresponding to λ for the group G.
The fields of definition Fµ of the other nontrivial characters µ = i+ (n+ 1)Z ∈

C∗, (i 6= (n+1)
2 ), coincide with K. Hence, by extending the base field to K one sees

that Aµ ' λiB.

Type Bn, n ≥ 1. Let G = Spin(V, q), here (V, q) is a regular quadratic form
of dimension 2n+ 1. Then C = µ2, C

∗ = Z/2Z = {0, λ}. The embedding

G ↪→ GL1

(
C0(V, q)

)

in the split case is the spinor representation with highest weight 1
2 (e1+e2+ · · ·+en)

in the notation of §??, which is a minimal weight. Hence, the even Clifford algebra
C0(V, q) is the minimal Tits algebra Aλ.

Type Cn, n ≥ 1. Let G = Sp(A, σ) where A is a central simple algebra of
degree 2n with a symplectic involution σ. Then C = µ2, C

∗ = Z/2Z = {0, λ}. The
embedding

G ↪→ GL1(A)

in the split case is the representation with highest weight e1 in the notation of §??,
which is a minimal weight. Hence, A is the minimal Tits algebra Aλ.
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Type Dn, n ≥ 2, n 6= 4. Let G = Spin(A, σ, f) where A is a central simple
algebra of degree 2n with a quadratic pair (σ, f), C∗ = {0, λ, λ+, λ−} where λ
factors through O+(A, σ, f). The composition

Spin(A, σ, f)→ GO+(A, σ, f) ↪→ GL1(A)

in the split case is the representation with highest weight e1 in the notation of §??,
which is a minimal weight. Hence, A is the minimal Tits algebra Aλ.

Assume further that the discriminant of σ is trivial (i.e., the center Z of the
Clifford algebra is split). The group Γ then acts trivially on C∗. The natural
compositions

Spin(A, σ, f) ↪→ GL1

(
C(A, σ, f)

)
→ GL1

(
C±(A, σ, f)

)

in the split case are the representations with highest weights 1
2 (e1 + · · ·+en−1±en)

which are minimal weights. Hence, C±(A, σ, f) are the minimal Tits algebras Aλ± .
If disc(σ) is not trivial then Γ interchanges λ+ and λ−, hence the field of

definition of λ± is Z. By extending the base field to Z one sees that Aλ± =
C(A, σ, f). Again, the case of D4 is exceptional, because of triality, and we give on
p. ?? a description of the minimal Tits algebra in this case.

27.C. Quasisplit groups. A semisimple group G is called quasisplit if there
is a maximal torus T ⊂ G and a system Π of simple roots in the root system Φ
of G with respect to T which is Γ-invariant with respect to the natural action, or
equivalently, if the ∗-action on T ∗sep coincides with the natural one. For example,
split groups are quasisplit.

Let G be a quasisplit semisimple group. The natural action of Γ on the
system Π of simple roots, which is invariant under Γ, defines an action of Γ on
Dyn(G) = Dyn(Φ) by automorphisms of the Dynkin diagram. Simply connected
and adjoint split groups are classified by their Dynkin diagrams. The following
statement generalizes this result for quasisplit groups.

(27.8) Proposition. Two quasisplit simply connected (resp. adjoint) semisimple

groups G and G′ are isomorphic if and only if there is a Γ-bijection between Dyn(G)
and Dyn(G′). For any Dynkin diagram D and any (continuous) Γ-action on D
there is a quasisplit simply connected (resp. adjoint) semisimple group G and a

Γ-bijection between Dyn(G) and D.

The Γ-action on Dyn(G) is trivial if and only if Γ acts trivially on T ∗sep, hence T
and G are split. Therefore, if Aut(Dyn(G)) = 1 (i.e., Dyn(G) has only irreducible
components Bn, Cn, E7, E8, F4, G2) and G is quasisplit, then G is actually split.

(27.9) Example. The case An, n > 1. A non-trivial action of the Galois group
Γ on the cyclic group Aut(An) of order two factors through the Galois group of
a quadratic field extension L/F . The corresponding quasisplit simply connected
simple group of type An is isomorphic to SU(V, h), where (V, h) is a non-degenerate
hermitian form over L/F of dimension n+ 1 and maximal Witt index.

(27.10) Example. The caseDn, n > 1, n 6= 4. As in the previous example, to give
a nontrivial Γ-action on Dn is to give a quadratic Galois field extension L/F . The
corresponding quasisplit simply connected simple group of type Dn is isomorphic
to Spin(V, q), where (V, q) is a non-degenerate quadratic form of dimension 2n and
Witt index n− 1 with the discriminant quadratic extension L/F .
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Exercises

1. If L is an étale F -algebra, then Autalg(L) is an étale group scheme correspond-
ing to the finite group AutFsep(Lsep) with the natural Gal(Fsep/F )-action.

2. Let G be an algebraic group scheme. Prove that the following statements are
equivalent:
(a) G is étale,
(b) G0 = 1,
(c) G is smooth and finite,
(d) Lie(G) = 0.

3. Prove that Hdiag is algebraic if and only if H is a finitely generated abelian
group.

4. Let H be a finitely generated abelian group, and let H ′ ⊂ H be the subgroup
of elements of order prime to charF . Prove that (Hdiag)

0 ' (H/H ′)diag and
π0(Hdiag) ' H ′

diag.
5. Prove that an algebraic group scheme G is finite if and only if dimG = 0.
6. Let L/F be a finite Galois field extension with the Galois group G. Show that
RL/F (µn,L) is the Cartier dual to (Z/nZ)[G]et, where the Γ-action is induced
by the natural homomorphism Γ→ G.

7. Let p = charF and αp the kernel of the pth power homomorphism Ga → Ga.
Show that (αp)

D ' αp.
8. Let f : G→ H be an algebraic group scheme homomorphism with G connected.

Prove that if falg is surjective then H is also connected.
9. If N and G/N are connected then G is also connected.

10. Show that F [PGLn(F )] is isomorphic to the subalgebra of F [Xij ,
1

detX ] con-
sisting of all homogeneous rational functions of degree 0.

11. Let B be a quaternion algebra with a unitary involution τ over an étale quad-
ratic extension of F . Prove that SU(B, τ) ' SL1(A) for some quaternion
algebra A over F .

12. Show that Spin+(A, σ, f) and Spin−(A, σ, f) are isomorphic if and only if
GO−(A, σ, f) 6= ∅.

13. Show that the automorphism x 7→ x−t of SL2 is inner.
14. Nrd(X)− 1 is irreducible.
15. Let F be a field of characteristic 2 and α1, α2 ∈ F×. Let G be the algebraic

group scheme of isometries of the bilinear form α1x1y1 + α2x2y2, so that F [G]
is the factor algebra of the polynomial ring F [x11, x12, x21, x22] by the ideal
generated by the entries of

(
x11 x12

x21 x22

)t
·
(
α1 0
0 α2

)
·
(
x11 x12

x21 x22

)
−

(
α1 0
0 α2

)
.

(a) Show that x11x22 + x12x21 + 1 and x11 + x22 are nilpotent in F [G].
(b) Assuming α1α

−1
2 /∈ F×2, show that

F [G]red = F [x11, x21]/(x
2
11 + α2α

−1
1 x2

21 + 1),

and that
(
F [G]red

)
Falg

is not reduced. Therefore, there is no smooth alge-

braic group associated to G.
(c) Assuming α1α

−1
2 ∈ F×2, show that the additive group Ga is the smooth

algebraic group associated to G.
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16. Let F be a perfect field of characteristic 2 and let b be a nonsingular symmetric
nonalternating bilinear form on a vector space V of dimension n.
(a) Show that there is a unique vector e ∈ V such that b(v, v) = b(v, e)2 for all

v ∈ V . Let V ′ = e⊥ be the hyperplane of all vectors which are orthogonal
to e. Show that e ∈ V ′ if and only if n is even, and that the restriction b′

of b to V ′ is an alternating form.
(b) Show that the smooth algebraic group O(V, b)red associated to the orthog-

onal group of the bilinear space (V, b) stabilizes e.
(c) Suppose n is odd. Show that the alternating form b′ is nonsingular and

that the restriction map O(V, b)red → Sp(V ′, b′) is an isomorphism.
(d) Suppose n is even. Show that the radical of b′ is eF . Let V ′′ = V ′/eF

and let b′′ be the nonsingular alternating form on V ′′ induced by b′. Show
that the restriction map ρ : O(V, b)red → Sp(V ′′, b′′) is surjective. Show
that every u ∈ ker ρ induces on V ′ a linear transformation of the form
v′ 7→ v′+ eϕ′(v′) for some linear form ϕ′ ∈ (V ′)∗ such that ϕ′(e) = 0. The
form ϕ′ therefore induces a linear form ϕ′′ ∈ (V ′′)∗; show that the map
j : kerρ → (V ′′)∗ which maps u to ϕ′′ is a homomorphism. Show that
there is an exact sequence

0→ Ga
i−→ kerρ

j−→ (V ′′)∗ → 0

where imaps λ ∈ F to the endomorphism v 7→ v+eλb(v, e) of V . Conclude
that ker ρ is the maximal solvable connected normal subgroup of O(V, b)red.

Notes

§§??–??. Historical comments on the theory of algebraic groups are given by
Springer in his survey article [?] and we restrict to comments closely related to
material given in this chapter. The functorial approach to algebraic groups was
developed in the Séminaire du Bois Marie 62/64, directed by M. Demazure and
A. Grothendieck [?]. The first systematic presentation of this approach is given
in the treatise of Demazure-Gabriel [?]. As mentioned in the introduction to this
chapter, the classical theory (mostly over an algebraically closed field) can be found
for example in Borel [?] and Humphreys [?]. See also the new edition of the book
of Springer [?]. Relations between algebraic structures and exceptional algebraic
groups (at least from the point of view of Lie algebras) are described in the books
of Jacobson [?], Seligman [?] and the survey of Faulkner and Ferrar [?].

§??. In his commentary (Collected Papers, Vol. II, [?, pp. 548–549]) to [?],
Weil makes interesting historical remarks on the relations between classical groups
and algebras with involution. In particular he attributes the idea to view classical
algebraic groups as groups of automorphisms of algebras with involution to Siegel.

§??. Most of this comes from Weil [?] (see also the Tata notes of Kneser [?]
and the book of Platonov-Rapinchuk [?]). One difference is that we use ideas from
Tits [?], to give a characteristic free presentation, and that we also consider types
G2 and F4 (see the paper [?] of Hijikata). For type D4 (also excluded by Weil), we
need the theory developed in Chapter ??. The use of groupoids (categories with
isomorphisms as morphisms) permits one to avoid the explicit use of non-abelian
Galois cohomology, which will not be introduced until the following chapter.
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§??. A discussion of the maximal possible indexes of Tits algebras can be found
in Merkurjev-Panin-Wadsworth [?], [?] and Merkurjev [?].



CHAPTER VII

Galois Cohomology

In the preceding chapters, we have met groupoids M = M(F ) of “algebraic
objects” over a base field F , for example finite dimensional F -algebras or algebraic
groups of a certain type. If over a separable closure Fsep of F the groupoid M(Fsep)
is connected, i.e., all objects over Fsep are isomorphic, then in many cases the objects
of M are classified up to isomorphism by a cohomology set H1

(
Gal(Fsep/F ), A

)
,

where A is the automorphism group of a fixed object of M(Fsep). The aim of this
chapter is to develop the general theory of such cohomology sets, to reinterpret
some earlier results in this setting and to give techniques (like twisting) which will
be used in later parts of this book.

There are four sections. The basic techniques are explained in §??, and §??
gives an explicit description of the cohomology sets of various algebraic groups in
terms of algebras with involution. In §?? we focus on the cohomology groups of µn,
which are used in §?? to reinterpret various invariants of algebras with involution
or of algebraic groups, and to define higher cohomological invariants.

§28. Cohomology of Profinite Groups

In this chapter, we let Γ denote a profinite group, i.e., a group which is the
inverse limit of a system of finite groups. For instance, Γ may be the absolute
Galois group of a field (this is the main case of interest for the applications in
§§??–??), or a finite group (with the discrete topology). An action of Γ on the left
on a discrete topological space is called continuous if the stabilizer of each point is
an open subgroup of Γ; discrete topological spaces with a continuous left action of
Γ are called Γ-sets. (Compare with §??, where only finite Γ-sets are considered.) A
group A which is also a Γ-set is called a Γ-group if Γ acts by group homomorphisms,
i.e.,

σ(a1 · a2) = σa1 · σa2 for σ ∈ Γ, a1, a2 ∈ A.

A Γ-group which is commutative is called a Γ-module.
In this section, we review some general constructions of nonabelian cohomology:

in the first subsection, we define cohomology sets H i(Γ, A) for i = 0 if A is a Γ-set,
for i = 0, 1 if A is a Γ-group and for i = 0, 1, 2, . . . if A is a Γ-module, and
we relate these cohomology sets by exact sequences in the second subsection. The
third subsection discusses the process of twisting, and the fourth subsection gives
an interpretation of H1(Γ, A) in terms of torsors.

28.A. Cohomology sets. For any Γ-set A, we set

H0(Γ, A) = AΓ = { a ∈ A | σa = a for σ ∈ Γ }.
If A is a Γ-group, the subset H0(Γ, A) is a subgroup of A.

383
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Let A be a Γ-group. A 1-cocycle of Γ with values in A is a continuous map
α : Γ→ A such that, denoting by ασ the image of σ ∈ Γ in A,

αστ = ασ · σατ for σ, τ ∈ Γ.

We denote by Z1(Γ, A) the set of all 1-cocycles of Γ with values in A. The constant
map ασ = 1 is a distinguished element in Z1(Γ, A), which is called the trivial 1-
cocycle. Two 1-cocycles α, α′ ∈ Z1(Γ, A) are said to be cohomologous or equivalent

if there exists a ∈ A satisfying

α′σ = a · ασ · σa−1 for all σ ∈ Γ.

Let H1(Γ, A) be the set of equivalence classes of 1-cocycles. It is a pointed set
whose distinguished element (or base point) is the cohomology class of the trivial
1-cocycle.

For instance, if the action of Γ on A is trivial, then Z1(Γ, A) is the set of all
continuous group homomorphisms from Γ to A; two homomorphisms α, α′ are
cohomologous if and only if α′ = Int(a) ◦ α for some a ∈ A.

If A is a Γ-module the set Z1(Γ, A) is an abelian group for the operation
(αβ)σ = ασ · βσ. This operation is compatible with the equivalence relation on
1-cocycles, hence it induces an abelian group structure on H1(Γ, A).

Now, let A be a Γ-module. A 2-cocycle of Γ with values in A is a continuous
map α : Γ× Γ→ A satisfying

σατ,ρ · ασ,τρ = αστ,ρασ,τ for σ, τ , ρ ∈ Γ.

The set of 2-cocycles of Γ with values in A is denoted by Z2(Γ, A). This set is an
abelian group for the operation (αβ)σ,τ = ασ,τ ·βσ,τ . Two 2-cocycles α, α′ are said
to be cohomologous or equivalent if there exists a continuous map ϕ : Γ → A such
that

α′σ,τ = σϕτ · ϕ−1
στ · ϕσ · ασ,τ for all σ, τ ∈ Γ.

The equivalence classes of 2-cocycles form an abelian group denoted H2(Γ, A).
Higher cohomology groups H i(Γ, A) (for i ≥ 3) will be used less frequently in the
sequel; we refer to Brown [?] for their definition.

Functorial properties. Let f : A → B be a homomorphism of Γ-sets, i.e., a
map such that f(σa) = σf(a) for σ ∈ Γ and a ∈ A. If a ∈ A is fixed by Γ, then so
is f(a) ∈ B. Therefore, f restricts to a map

f0 : H0(Γ, A)→ H0(Γ, B).

If A, B are Γ-groups and f is a group homomorphism, then f 0 is a group
homomorphism. Moreover, there is an induced map

f1 : H1(Γ, A)→ H1(Γ, B)

which carries the cohomology class of any 1-cocycle α to the cohomology class of the
1-cocycle f1(α) defined by f1(α)σ = f(ασ). In particular, f1 is a homomorphism
of pointed sets, in the sense that f 1 maps the distinguished element of H1(Γ, A) to
the distinguished element of H1(Γ, B).

If A, B are Γ-modules, then f1 is a group homomorphism. Moreover, f induces
homomorphisms

f i : H i(Γ, A)→ H i(Γ, B)

for all i ≥ 0.
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Besides those functorial properties in A, the sets H i(Γ, A) also have functorial
properties in Γ. We just consider the case of subgroups: let Γ0 ⊂ Γ be a closed
subgroup and let A be a Γ-group. The action of Γ restricts to a continuous action
of Γ0. The obvious inclusion AΓ ⊂ AΓ0 is called restriction:

res: H0(Γ, A)→ H0(Γ0, A).

If A is a Γ-group, the restriction of a 1-cocycle α ∈ Z1(Γ, A) to Γ0 is a 1-cocycle
of Γ0 with values in A. Thus, there is a restriction map of pointed sets

res: H1(Γ, A)→ H1(Γ0, A).

Similarly, if A is a Γ-module, there is for all i ≥ 2 a restriction map

res : H i(Γ, A)→ H i(Γ0, A).

28.B. Cohomology sequences. By definition, the kernel ker(µ) of a map of
pointed sets µ : N → P is the subset of all n ∈ N such that µ(n) is the base point
of P . A sequence of maps of pointed sets

M
ρ−→ N

µ−→ P

is said to be exact if im(ρ) = ker(µ). Thus, the sequence M
ρ−→ N → 1 is exact if

and only if ρ is surjective. The sequence 1 → N
µ−→ P is exact if and only if the

base point of N is the only element mapped by µ to the base point of P . Note that
this condition does not imply that µ is injective.

The exact sequence associated to a subgroup. Let B be a Γ-group and
let A ⊂ B be a Γ-subgroup (i.e., σa ∈ A for all σ ∈ Γ, a ∈ A). Let B/A be the
Γ-set of left cosets of A in B, i.e.,

B/A = { b · A | b ∈ B }.
The natural projection of B onto B/A induces a map of pointed sets BΓ → (B/A)Γ.
Let b · A ∈ (B/A)Γ, i.e., σb · A = b · A for all σ ∈ Γ. The map α : Γ → A defined
by ασ = b−1 · σb ∈ A is a 1-cocycle with values in A, whose class [α] in H1(Γ, A) is
independent of the choice of b in b · A. Hence we have a map of pointed sets

δ0 : (B/A)Γ → H1(Γ, A), b ·A 7→ [α] where ασ = b−1 · σb.

(28.1) Proposition. The sequence

1→ AΓ → BΓ → (B/A)Γ
δ0−→ H1(Γ, A)→ H1(Γ, B)

is exact.

Proof : For exactness at (B/A)Γ, suppose that the 1-cocycle ασ = b−1 · σb ∈ A is
trivial in H1(Γ, A) i.e., ασ = a−1 · σa for some a ∈ A. Then ba−1 ∈ BΓ and the
coset b ·A = ba−1 · A in B/A is equal to the image of ba−1 ∈ BΓ.

If α ∈ Z1(Γ, A) satisfies ασ = b−1 ·σb for some b ∈ B, then b ·A ∈ (B/A)Γ and
[α] = δ0(b · A).

The group BΓ acts naturally (by left multiplication) on the pointed set (B/A)Γ.

(28.2) Corollary. There is a natural bijection between ker
(
H1(Γ, A)→ H1(Γ, B)

)

and the orbit set of the group BΓ in (B/A)Γ.
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Proof : A coset b ·A ∈ (B/A)Γ determines the element

δ0(b ·A) = [b−1 · σb] ∈ ker
(
H1(Γ, A)→ H1(Γ, B)

)
.

One checks easily that δ0(b ·A) = δ0(b′ ·A) if and only if the cosets b ·A and b′ ·A
lie in the same BΓ-orbit in (B/A)Γ.

The exact sequence associated to a normal subgroup. Assume for the
rest of this subsection that the Γ-subgroup A of B is normal in B, and set C = B/A.
It is a Γ-group.

(28.3) Proposition. The sequence

1→ AΓ → BΓ → CΓ δ0−→ H1(Γ, A)→ H1(Γ, B)→ H1(Γ, C)

is exact.

Proof : Let β ∈ Z1(Γ, B) where [β] lies in the kernel of the last map. Then βσ ·A =
b−1 · σb ·A = b−1 ·A · σb for some b ∈ B. Hence βσ = b−1 · ασ · σb for α ∈ Z1(Γ, A)
and [β] is the image of [α] in H1(Γ, B).

The group CΓ acts on H1(Γ, A) as follows: for c = b ·A ∈ CΓ and α ∈ Z1(Γ, A),
set c[α] = [β] where βσ = b · ασ · σb−1.

(28.4) Corollary. There is a natural bijection between ker
(
H1(Γ, B)→ H1(Γ, C)

)

and the orbit set of the group CΓ in H1(Γ, A).

The exact sequence associated to a central subgroup. Now, assume
that A lies in the center of B. Then A is an abelian group and one can define a
map of pointed sets

δ1 : H1(Γ, C)→ H2(Γ, A)

as follows. Given any γ ∈ Z1(Γ, C), choose a map β : Γ → B such that βσ maps
to γσ for all σ ∈ Γ. Consider the function α : Γ× Γ→ A given by

ασ,τ = βσ · σβτ · β−1
στ .

One can check that α ∈ Z2(Γ, A) and that its class in H2(Γ, A) does not depend
on the choices of γ ∈ [γ] and β. We define δ1

(
[γ]

)
= [α].

(28.5) Proposition. The sequence

1→ AΓ → BΓ → CΓ δ0−→ H1(Γ, A)→ H1(Γ, B)→ H1(Γ, C)
δ1−→ H2(Γ, A)

is exact.

Proof : Assume that for γ ∈ Z1(Γ, C) and β, α as above we have

ασ,τ = βσ · σβτ · β−1
στ = aσ · σaτ · a−1

στ

for some aσ ∈ A. Then β′σ = βσ · a−1
σ is a 1-cocycle in Z1(Γ, B) and γ is the image

of β′.

The group H1(Γ, A) acts naturally on H1(Γ, B) by (α · β)σ = ασ · βσ.
(28.6) Corollary. There is a natural bijection between the kernel of the connecting

map δ1 : H1(Γ, C)→ H2(Γ, A) and the orbit set of the group H1(Γ, A) in H1(Γ, B).

Proof : Two elements of H1(Γ, B) have the same image in H1(Γ, C) if and only if
they are in the same orbit under the action of H1(Γ, A).
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(28.7) Remark. If the exact sequence of Γ-homomorphisms

1→ A→ B → C → 1

is split by a Γ-map C → B, then the connecting maps δ0 and δ1 are trivial.

28.C. Twisting. Let A be a Γ-group. We let Γ act on the group AutA of
automorphisms of A by

σf(a) = σ
(
f(σ−1a)

)
for σ ∈ Γ, a ∈ A and f ∈ AutA.

(Compare with §??.) The subgroup (AutA)Γ of AutA consists of all Γ-automor-
phisms of A.

For a fixed 1-cocycle α ∈ Z1(Γ,AutA) we define a new action of Γ on A by

σ ∗ a = ασ(σa), for σ ∈ Γ and a ∈ A.

The group A with this new Γ-action is denoted by Aα. We say that Aα is obtained
by twisting A by the 1-cocycle α.

If 1-cocycles α, α′ ∈ Z1(Γ,AutA) are related by α′σ = f ◦ ασ ◦ σf−1 for some
f ∈ AutA, then f defines an isomorphism of Γ-groups Aα

∼−→ Aα′ . Therefore,
cohomologous cocycles define isomorphic twisted Γ-groups. However, the isomor-
phism Aα

∼−→ Aα′ is not canonical, hence we cannot define a twisted group A[α] for

[α] ∈ H1(Γ, A).
Now, let α ∈ Z1(Γ, A) and let α be the image of α in Z1(Γ,AutA) under the

map Int: A → AutA. We also write Aα for the twist Aα of A. By definition we
then have

σ ∗ a = ασ · σa · α−1
σ , for a ∈ Aα and σ ∈ Γ.

(28.8) Proposition. Let A be a Γ-group and α ∈ Z1(Γ, A). Then the map

θα : H1(Γ, Aα)→ H1(Γ, A) given by (γσ) 7→ (γσ · ασ)
is a well-defined bijection which takes the trivial cocycle of H1(Γ, Aα) to [α].

Proof : Let γ be a cocycle with values in Aα. We have γστ = γσασσ(γτ )α
−1
σ , hence

γστ · αστ = γσ · ασ · σ(γτατ )

and γα ∈ Z1(Γ, A). If γ′ ∈ Z1(Γ, Aα) is cohomologous to γ, let a ∈ A satisfy
γ′σ = a · γσ · (σ ∗ a−1). Then γ′σασ = a · γσασ · σa−1, hence γ′α is cohomologous
to γα. This shows that θα is a well-defined map. To prove that θα is a bijection,
observe that the map σ 7→ α−1

σ is a 1-cocycle in Z1(Γ, Aα). The induced map
θα−1 : H1(Γ, A)→ H1(Γ, Aα) is the inverse of θα.

(28.9) Remark. If A is abelian, we have A = Aα for α ∈ Z1(Γ, A), and θα is
translation by [α].

Functoriality. Let f : A → B be a Γ-homomorphism and let β = f 1(α) ∈
Z1(Γ, B) for α ∈ Z1(Γ, A). Then the map f , considered as a map fα : Aα → Bβ , is
a Γ-homomorphism, and the following diagram commutes:

H1(Γ, Aα)
θα−−−−→ H1(Γ, A)

f1
α

y
yf1

H1(Γ, Bβ)
θβ−−−−→ H1(Γ, B).

In particular, θα induces a bijection between ker f 1
α and the fiber (f1)−1([β]).
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Let A be a Γ-subgroup of a Γ-group B, let α ∈ Z1(Γ, A), and let β ∈ Z1(Γ, B)
be the image of α. Corollary (??) implies:

(28.10) Proposition. There is a natural bijection between the fiber of H1(Γ, A)→
H1(Γ, B) over [β] and the orbit set of the group (Bβ)

Γ in (Bβ/Aα)Γ.

Now, assume that A is a normal Γ-subgroup of B and let C = B/A. Let
β ∈ Z1(Γ, B) and let γ ∈ Z1(Γ, C) be the image of β. The conjugation map
B → AutA associates to β a 1-cocycle α ∈ Z1(Γ,AutA). Corollary (??) implies:

(28.11) Proposition. There is a natural bijection between the fiber of H1(Γ, B)→
H1(Γ, C) over [γ] and the orbit set of the group (Cγ)

Γ in H1(Γ, Aα).

Assume further that A lies in the center of B and let γ ∈ Z1(Γ, C), where
C = B/A. The conjugation map C → AutB induces a 1-cocycle β ∈ Z1(Γ,AutB).
Let ε be the image of [γ] under the map δ1 : H1(Γ, C)→ H2(Γ, A).

(28.12) Proposition. The following diagram

H1(Γ, Cγ)
θγ−−−−→ H1(Γ, C)

δ1γ

y
yδ1

H2(Γ, A)
g−−−−→ H2(Γ, A)

commutes, where δ1γ is the connecting map with respect to the exact sequence

1→ A→ Bβ → Cγ → 1

and g is multiplication by ε.

Proof : Let α ∈ Z1(Γ, Cγ). Choose xσ ∈ ασ and yσ ∈ γσ . Then

εσ,τ = yσ · σyτ · y−1
στ

and

δ1
(
θγ(α)

)
σ,τ

= xσyσ · σ(xτyτ ) · y−1
στ x

−1
στ = xσyσ · σxτ · y−1

σ · εσ,τ · x−1
στ

= xσ · (σ ◦ xτ ) · x−1
στ · εσ,τ = δ1γ(x)σ,τ · εσ,τ ,

hence δ1
(
θγ(α)

)
= δ1γ(α) · ε = g

(
δ1γ(α)

)
.

As in Corollary (??), one obtains:

(28.13) Corollary. There is a natural bijection between the fiber over ε of the map

δ1 : H1(Γ, C)→ H2(Γ, A) and the orbit set of the group H1(Γ, A) in H1(Γ, Bβ).

28.D. Torsors. Let A be a Γ-group and let P be a nonempty Γ-set on which
A acts on the right. Suppose that

σ(xa) = σ(x)σa for σ ∈ Γ, x ∈ P and a ∈ A.

We say that P is an A-torsor (or a principal homogeneous set under A) if the action
of A on P is simply transitive, i.e., for any pair x, y of elements of P there exists
exactly one a ∈ A such that y = xa. (Compare with (??), where the Γ-group A
(denoted there by G) is finite and carries the trivial action of Γ.) We let A–TorsΓ

denote the category of A-torsors, where the maps are the A- and Γ-equivariant
functions. This category is a groupoid, since the maps are isomorphisms.
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To construct examples of A-torsors, we may proceed as follows: for α ∈
Z1(Γ, A), let Pα be the set A with the Γ- and A-actions

σ ? x = ασσx and xa = xa for σ ∈ Γ and x, a ∈ A.

It turns out that every A-torsor is isomorphic to some Pα:

(28.14) Proposition. The map α 7→ Pα induces a bijection

H1(Γ, A) ∼−→ Isom(A–TorsΓ).

Proof : If α, α′ ∈ Z1(Γ, A) are cohomologous, let a ∈ A satisfy α′σ = a ·ασ ·σa−1 for
all σ ∈ Γ. Multiplication on the left by a is an isomorphism of torsors Pα

∼−→ Pα′ .
We thus have a well-defined map H1(Γ, A) → Isom(A–TorsΓ). The inverse map is
given as follows: Let P ∈ A–TorsΓ. For a fixed x ∈ P , the map α : Γ → A defined
by

σ(x) = xασ for σ ∈ Γ

is a 1-cocycle. Replacing x with xa changes ασ into the cohomologous cocycle
a−1ασσa.

(28.15) Example. Let Γ be the absolute Galois group of a field F , and let G be
a finite group which we endow with the trivial action of Γ. By combining (??) with
(??), we obtain a canonical bijection

H1(Γ, G) ∼−→ Isom(G–GalF ),

hence H1(Γ, G) classifies the Galois G-algebras over F up to isomorphism.

Functoriality. Let f : A → B be a Γ-homomorphism of Γ-groups. We define
a functor

f∗ : A–TorsΓ → B–TorsΓ

as follows: for P ∈ A–TorsΓ, consider the product P ×B with the diagonal action
of Γ. The groups A and B act on P ×B by

(p, b)a =
(
pa, f(a−1)b

)
and (p, b) � b′ = (p, bb′)

for p ∈ P , a ∈ A and b, b′ ∈ B, and these two actions commute. Hence there is an
induced right action of B on the set of A-orbits f∗(P ) = (P ×B)/A, making f∗(P )
a B-torsor.

(28.16) Proposition. The following diagram commutes :

H1(Γ, A)
f1

−−−−→ H1(Γ, B)
y

y

Isom(A–TorsΓ)
f∗−−−−→ Isom(B–TorsΓ),

where the vertical maps are the natural bijections of (??).

Proof : Let α ∈ Z1(Γ, A). Every A-orbit in (Pα × B)/A can be represented by a
unique element of the form (1, b) with b ∈ B. The map which takes the orbit (1, b)A

to b ∈ Pf1(α) is an isomorphism of B-torsors (Pα ×B)/A ∼−→ Pf1(α).
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Induced torsors. Let Γ0 be a closed subgroup of Γ and let A0 be a Γ0-
group. The induced Γ-group IndΓ

Γ0
A0 is defined as the group of all continuous

maps f : Γ→ A0 such that f(γ0γ) = γ0f(γ) for all γ0 ∈ Γ0, γ ∈ Γ:

IndΓ
Γ0
A0 = { f ∈ Map(Γ, A0) | f(γ0γ) = γ0f(γ) for γ0 ∈ Γ0, γ ∈ Γ }.

The Γ-action on IndΓ
Γ0
A0 is given by σf(γ) = f(γσ) for σ, γ ∈ Γ. We let

π : IndΓ
Γ0
A0 → A0 be the map which takes f ∈ IndΓ

Γ0
A0 to f(1). This map satisfies

π(σf) = σ
(
π(f)

)
for all σ ∈ Γ0, f ∈ IndΓ

Γ0
A0. It is therefore a Γ0-homomorphism.

(Compare with (??).)

By applying this construction to A0-torsors, we obtain (IndΓ
Γ0
A0)-torsors: for

P0 ∈ A0–TorsΓ0 , the Γ-group IndΓ
Γ0
P0 carries a right action of IndΓ

Γ0
A0 defined by

pf (γ) = p(γ)f(γ) for p ∈ IndΓ
Γ0
P0, f ∈ IndΓ

Γ0
A0 and γ ∈ Γ.

This action makes IndΓ
Γ0
P0 an (IndΓ

Γ0
A0)-torsor, called the induced torsor. We

thus have a functor

IndΓ
Γ0

: A0–TorsΓ0 → (IndΓ
Γ0
A0)–TorsΓ.

On the other hand, the Γ0-homomorphism π : IndΓ
Γ0
A0 → A0 yields a functor

π∗ : (IndΓ
Γ0
A0)–TorsΓ → A0–TorsΓ0 ,

as explained above.

(28.17) Proposition. Let Γ0 be a closed subgroup of the profinite group Γ, let A0

be a Γ0-group and A = IndΓ
Γ0
A0. The functors IndΓ

Γ0
and π∗ define an equivalence

of categories

A0–TorsΓ0 ≡ A–TorsΓ.

Proof : Let P0 ∈ A0–TorsΓ0 and let P = IndΓ
Γ0
P0 be the induced A-torsor. Consider

the map

g : P ×A0 → P0 given by g(p, a0) = p(1)a0 .

For any a ∈ A one has

g
(
(p, a0)

a
)

= g
(
pa, π(a−1)a0

)
= g

(
pa, a(1)−1a0

)
= p(1)a0 = g(p, a0),

i.e., g is compatible with the right A-action on P × A0 and hence factors through
a map on the orbit space

g : π∗(P ) = (P × A0)/A→ P0.

It is straightforward to check that g is a homomorphism of A0-torsors and hence is
necessarily an isomorphism. Thus, π∗ ◦ IndΓ

Γ0
is naturally equivalent to the identity

on A0–TorsΓ0 .
On the other hand, let P ∈ A–TorsΓ. We denote the orbit in π∗(P ) = (P ×

A0)/A of a pair (p, a0) by (p, a0)
A. Consider the map

h : P → IndΓ
Γ0

(
π∗(P )

)

which carries p ∈ P to the map hp defined by hp(σ) = (σp, 1)A. For any a ∈ A one
has

hpa(σ) =
(
σ(pa), 1

)A
=

(
σ(p)σa, 1

)A
for σ ∈ Γ.
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Since
(
σ(p)σa, 1

)
=

(
σ(p), σa(1)

)σa
, the A-orbits of

(
σ(p)σa, 1

)
and

(
σ(p), σa(1)

)

coincide. We have
(
σ(p), σa(1)

)
=

(
σ(p), 1) � σa(1), hence

hpa(σ) = hp(σ) � σa(1) = hap(σ).

Thus h is a homomorphism (hence an isomorphism) of A-torsors, showing that

IndΓ
Γ0
◦π∗ is naturally equivalent to the identity on A–TorsΓ.

By combining the preceding proposition with (??), we obtain:

(28.18) Corollary. With the same notation as in (??), there is a natural bijection

of pointed sets between H1(Γ0, A0) and H1(Γ, A).

(28.19) Remark. If A0 is a Γ-group (not just a Γ0-group), there is a simpler

description of the Γ-group IndΓ
Γ0
A0: let Γ/Γ0 denote the set of left cosets of Γ0

in Γ. On the group Map(Γ/Γ0, A0) of continuous maps Γ/Γ0 → A0, consider the
Γ-action given by σf(x) = σf(σ−1x). The Γ-group Map(Γ/Γ0, A0) is naturally

isomorphic to IndΓ
Γ0
A0. For, there are mutually inverse isomorphisms

α : IndΓ
Γ0
A0 → Map(Γ/Γ0, A0) given by α(a)(σ · Γ0) = σa(σ−1)

and

β : Map(Γ/Γ0, A0)→ IndΓ
Γ0
A0 given by β(f)(σ) = σf(σ−1 · Γ0).

(28.20) Example. Let A be a Γ-group and n be an integer, n ≥ 1. We let the
symmetric group Sn act by permutations on the product An of n copies of A, and
we let Γ act trivially on Sn. Any continuous homomorphism ρ : Γ → Sn is a 1-
cocycle in Z1(Γ, Sn). It yields a 1-cocycle α : Γ → AutAn via the action of Sn on
An, and we may consider the twisted group (An)α.

Assume that Γ acts transitively via ρ on the set X = {1, 2, . . . , n}. Let Γ0 ⊂
Γ be the stabilizer of 1 ∈ X . The set X is then identified with Γ/Γ0. It is

straightforward to check that (An)α is identified with Map(Γ/Γ0, A) = IndΓ
Γ0
A.

Consider the semidirect product An o Sn and the exact sequence

1→ An → An o Sn → Sn → 1.

By (??) and (??), there is a canonical bijection between the fiber of the map
H1(Γ, An o Sn) → H1(Γ, Sn) over [ρ] and the orbit set in H1(Γ0, A) of the group
(Sn)

Γ
ρ , which is the centralizer of the image of ρ in Sn.

§29. Galois Cohomology of Algebraic Groups

In this section, the profinite group Γ is the absolute Galois group of a field F ,
i.e., Γ = Gal(Fsep/F ) where Fsep is a separable closure of F . If A is a discrete
Γ-group, we write H i(F,A) for H i(Γ, A).

Let G be a group scheme over F . The Galois group Γ acts continuously on
the discrete group G(Fsep). Hence H i

(
F,G(Fsep)

)
is defined for i = 0, 1, and it is

defined for all i ≥ 2 if G is a commutative group scheme. We use the notation

H i(F,G) = H i
(
F,G(Fsep)

)
.

In particular, H0(F,G) = G(F ).
Every group scheme homomorphism f : G → H induces a Γ-homomorphism

G(Fsep)→ H(Fsep) and hence a homomorphism of groups (resp. of pointed sets)

f i : H i(F,G) → H i(F,H)
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for i = 0 (resp. i = 1). If 1 → N → G → S → 1 is an exact sequence of algebraic
group schemes such that the induced sequence of Γ-homomorphisms

1→ N(Fsep)→ G(Fsep)→ S(Fsep)→ 1

is exact (this is always the case if N is smooth, see (??)), we have a connecting
map δ0 : S(F ) → H1(F,N), and also, if N lies in the center of G, a connecting
map δ1 : H1(F, S) → H2(F,N). We may thus apply the techniques developed in
the preceding section.

Our main goal is to give a description of the pointed set H1(F,G) for various
algebraic groups G. We first explain the main technical tool.

Let G be a group scheme over F and let ρ : G → GL(W ) be a representation
with W a finite dimensional F -space. Fix an element w ∈W , and identify W with
an F -subspace of Wsep = W ⊗F Fsep. An element w′ ∈ Wsep is called a twisted ρ-
form of w if w′ = ρsep(g)(w) for some g ∈ G(Fsep). As in §??, consider the category

Ã(ρ, w) whose objects are the twisted ρ-forms of w and whose maps w′ → w′′ are
the elements g ∈ G(Fsep) such that ρsep(g)(w′) = w′′. This category is a connected
groupoid. On the other hand, let A(ρ, w) denote the groupoid whose objects are the
twisted ρ-forms of w which lie in W , and whose maps w′ → w′′ are the elements
g ∈ G(F ) such that ρ(g)(w′) = w′′. Thus, if X denotes the Γ-set of objects of

Ã(ρ, w), the set XΓ = H0(Γ, X) is the set of objects of A(ρ, w). Moreover, the set
of orbits of G(F ) in XΓ is the set of isomorphism classes Isom

(
A(ρ, w)

)
. It is a

pointed set with the isomorphism class of w as base point.
Let AutG(w) denote the stabilizer of w; it is a subgroup of the group scheme

G. Since G(Fsep) acts transitively on X , the Γ-set X is identified with the set of left
cosets of G(Fsep) modulo AutG(w)(Fsep). Corollary (??) yields a natural bijection
of pointed sets between the kernel of H1

(
F,AutG(w)

)
→ H1(F,G) and the orbit

set XΓ/G(F ). We thus obtain:

(29.1) Proposition. If H1(F,G) = 1, there is a natural bijection of pointed sets

Isom
(
A(ρ, w)

) ∼−→ H1
(
F,AutG(w)

)

which maps the isomorphism class of w to the base point of H1
(
F,AutG(w)

)
.

The bijection is given by the following rule: for w′ ∈ A(ρ, w), choose g ∈
G(Fsep) such that ρsep(g)(w) = w′, and let ασ = g−1 · σ(g). The map α : Γ →
AutG(w)(Fsep) is a 1-cocycle corresponding to w′. On the other hand, since
H1(F,G) = 1, any 1-cocycle α ∈ Z1

(
F,AutG(w)

)
is cohomologous to the base

point in Z1(F,G), hence ασ = g−1 · σ(g) for some g ∈ G(Fsep). The corresponding
object in A(ρ, w) is ρsep(g)(w).

In order to apply the proposition above, we need examples of group schemes
G for which H1(F,G) = 1. Hilbert’s Theorem 90, which is discussed in the next
subsection, provides such examples. We then apply (??) to give descriptions of the
first cohomology set for various algebraic groups.

29.A. Hilbert’s Theorem 90 and Shapiro’s lemma.

(29.2) Theorem (Hilbert’s Theorem 90). For any separable associative F -algebra

A,

H1
(
F,GL1(A)

)
= 1.

In particular H1(F,Gm) = 1.
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Proof : Let α ∈ Z1(Γ, A×sep). We define a new action of Γ on Asep by putting

γ ∗ a = αγ · γ(a) for γ ∈ Γ and a ∈ Asep.

This action is continuous and semilinear, i.e. γ ∗ (ax) = (γ ∗ a)γ(x) for γ ∈ Γ,
a ∈ Asep and x ∈ Fsep. Therefore, we may apply the Galois descent Lemma (??):
if

U = { a ∈ Asep | γ ∗ a = a for all γ ∈ Γ },
the map

f : U ⊗F Fsep → Asep given by f(u⊗ x) = ux

is an isomorphism of Fsep-vector spaces. For γ ∈ Γ, a ∈ Asep and a0 ∈ A we have

γ ∗ (aa0) = (γ ∗ a)a0

since γ(a0) = a0. Therefore, U is a right A-submodule of Asep, hence U ⊗ Fsep is a
right Asep-module, and f is an isomorphism of right Asep-modules.

Since A is separable, we have A = A1 × · · · × Am for some finite dimensional
simple F -algebras A1, . . . , Am, and the A-module U decomposes as U = U1×· · ·×
Um where each Ui is a right Ai-module. Since modules over simple algebras are
classified by their reduced dimension (see (??)), and since U⊗Fsep ' Asep, we have
Ui ' Ai for i = 1, . . . , m, hence the right A-modules U and A are isomorphic.
Choose an A-module isomorphism g : A → U . The composition f ◦ (g ⊗ IdFsep) is
an Asep-module automorphism of Asep and is therefore left multiplication by the
invertible element a = g(1) ∈ A×sep. Since a ∈ U we have

a = γ ∗ a = αγ · γ(a) for all γ ∈ Γ,

hence αγ = a · γ(a)−1, showing that α is a trivial cocycle.

(29.3) Remark. It follows from (??) that H1
(
Gal(L/F ),GLn(L)

)
= 1 for any

finite Galois field extension L/F , a result due to Speiser [?] (and applied by Speiser
to irreducible representations of finite groups). Suppose further that L is cyclic
Galois over F , with θ a generator of the Galois group G = Gal(L/F ). Let c be
a cocycle with values in Gm(L) = L×. Since cθi = cθ · . . . · θi−1(cθ), the cocycle
is determined by its value on θ, and NL/F (cθ) = 1. Conversely any ` ∈ L× with

NL/F (`) = 1 defines a cocycle such that cθ = `. Thus, by (??), any ` ∈ L× such

that NL/F (`) = 1 is of the form ` = aθ(a)−1. This is the classical Theorem 90 of
Hilbert (see [?, §54]).

(29.4) Corollary. Suppose A is a central simple F -algebra. The connecting map

in the cohomology sequence associated to the exact sequence

1→ SL1(A)→ GL1(A)
Nrd−−→ Gm → 1

induces a canonical bijection of pointed sets

H1
(
F,SL1(A)

)
' F×/Nrd(A×).

Let V be a finite dimensional F -vector space. It follows from (??) thatH1
(
F,GL(V )

)
=

1 since GL1(A) = GL(V ) for A = EndF (V ). A similar result holds for flags:

(29.5) Corollary. Let F : V = V0 ⊃ V1 ⊃ · · · ⊃ Vk be a flag of finite dimensional

F -vector spaces and let G be its group scheme of automorphisms over F . Then

H1(F,G) = 1.
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Proof : Let α ∈ Z1
(
Γ, G(Fsep)

)
. We define a new action of Γ on Vsep by

γ ∗ v = αγ(γv) for γ ∈ Γ and v ∈ Vsep.

This action is continuous and semilinear, hence we are in the situation of Galois
descent. Moreover, the action preserves (Vi)sep for i = 0, . . . , k. Let

V ′
i = { v ∈ (Vi)sep | γ ∗ v = v for all γ ∈ Γ }.

Each V ′
i is an F -vector space and we may identify (V ′

i )sep = (Vi)sep by (??). Clearly,
F ′ : V ′ = V ′

0 ⊃ V ′
1 ⊃ · · · ⊃ V ′

k is a flag (see (??)). Let f : F ∼−→ F ′ be an
isomorphism of flags, i.e., an isomorphism of F -vector spaces V ∼−→ V ′ such that
f(Vi) = V ′

i for all i. Extend f by linearity to an isomorphism of Fsep-vector
spaces Vsep

∼−→ V ′
sep = Vsep, and write also f for this extension. Then f is an

automorphism of Fsep, hence f ∈ G(Fsep). Moreover, for v ∈ V we have f(v) ∈ V ′,
hence σ

(
f(v)

)
= α−1

σ

(
f(v)

)
. Therefore,

σf(v) = σ
(
f(σ−1v)

)
= α−1

σ

(
f(v)

)
for all σ ∈ Γ.

It follows that ασ = f ◦ σf−1 for all σ ∈ Γ, hence α is cohomologous to the trivial
cocycle.

Corollary (??) also follows from the fact that, if H is a parabolic subgroup of a
connected reductive group G, then the map H1(F,H)→ H1(F,G) is injective (see
Serre [?, III, 2.1, Exercice 1]).

The next result is classical and independently due to Eckmann, Faddeev, and
Shapiro. It determines the cohomology sets with coefficients in a corestriction
RL/F (G).

Let L/F be a finite separable extension of fields and let G be a group scheme
defined over L. By fixing an embedding L ↪→ Fsep, we consider L as a subfield of
Fsep. Let Γ0 = Gal(Fsep/L) ⊂ Γ and let A = L[G], so that

RL/F (G)(Fsep) = G(L⊗F Fsep) = HomAlgL
(A,L⊗ Fsep).

For h ∈ HomAlgL
(A,L ⊗ Fsep), define ϕh : Γ → HomAlgL

(A,Fsep) = G(Fsep) by
ϕh(γ) = γ ◦ h, where γ(` ⊗ x) = `γ(x) for γ ∈ Γ, ` ∈ L and x ∈ Fsep. The map
ϕh is continuous and satisfies ϕh(γ0 ◦ γ) = γ0 ◦ϕh(γ) for γ0 ∈ Γ0 and γ ∈ Γ, hence

ϕh ∈ IndΓ
Γ0
G(Fsep). Since L⊗F Fsep ' Map(Γ/Γ0, Fsep) by (??), the map h 7→ ϕh

defines an isomorphism of Γ-groups

RL/F (G)(Fsep) ∼−→ IndΓ
Γ0
G(Fsep).

The following result readily follows by (??):

(29.6) Lemma (Eckmann, Faddeev, Shapiro). Let L/F be a finite separable ex-

tension of fields and let G be a group scheme defined over L. There is a natural

bijection of pointed sets

H1
(
F,RL/F (G)

) ∼−→ H1(L,G).

The same result clearly holds for H0-groups, since

H0
(
F,RL/F (G)

)
= RL/F (G)(F ) = G(L) = H0(L,G).

If G is a commutative group scheme, there is a group isomorphism

H i
(
F,RL/F (G)

) ∼−→ H i(L,G)
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for all i ≥ 0. (See Brown [?, Chapter 3, Proposition (6.2)].) It is the composition

H i
(
F,RL/F (G)

) res−−→ H i
(
L,RL/F (G)L

) f i

−→ H i(L,G)

where f : RL/F (G)L → G is the group scheme homomorphism corresponding to the
identity on RL/F (G) under the bijection

HomF

(
RL/F (G), RL/F (G)

) ∼−→ HomL

(
RL/F (G)L, G

)

of (??).

(29.7) Remark. If L/F is an étale algebra (not necessarily a field), one defines
the pointed set H1(L,G) as the product of the H1(Li, G) where the Li are the field
extensions of F such that L =

∏
Li. Lemma (??) remains valid in this setting (see

Remark (??) for the definition of RL/F ).

29.B. Classification of algebras. We now apply Proposition (??) and Hilbert’s
Theorem 90 to show how étale and central simple algebras are classified by H1-
cohomology sets.

Let A be a finite dimensional algebra over F . Multiplication in A yields a linear
map w : A⊗F A→ A. Let W = HomF (A⊗A,A) and G = GL(A), the linear group
of A where A is viewed as an F -vector space. Consider the representation

ρ : G→ GL(W )

given by the formula

ρ(g)(ϕ)(x ⊗ y) = g ◦ ϕ
(
g−1(x) ⊗ g−1(y)

)

for g ∈ G, ϕ ∈ W and x, y ∈ A. A linear map g ∈ G is an algebra automorphism
of A if and only if ρ(g)(w) = w, hence the group scheme AutG(w) coincides with
the group scheme Autalg(A) of all algebra automorphisms of A. A twisted ρ-form
of w is an algebra structure A′ on the F -vector space A such that the Fsep-algebras
A′sep and Asep are isomorphic. Thus, by Proposition (??) there is a bijection

F -isomorphism classes of F -algebras A′

such that the Fsep-algebras
A′sep and Asep are isomorphic

←→ H1
(
F,Autalg(A)

)
.(29.8)

The bijection is given explicitly as follows: if β : Asep
∼−→ A′sep is an Fsep-isomor-

phism, the corresponding cocycle is αγ = β−1 ◦ (Id⊗γ)◦β ◦ (Id⊗γ−1). Conversely,
given a cocycle α ∈ Z1

(
Γ,Autalg(A)

)
, we set

A′ = {x ∈ Asep | αγ ◦ (Id⊗ γ)(x) = x for all γ ∈ Γ }.
We next apply this general principle to étale algebras and to central simple

algebras.

Étale algebras. The F -algebra A = F × · · · × F (n copies) is étale of dimen-
sion n. If { ei | i = 1, . . . , n } is the set of primitive idempotents of A, any F -algebra
automorphism of A is determined by the images of the ei. Thus Autalg(A) is the
constant symmetric group Sn. Proposition (??) shows that the étale F -algebras of
dimension n are exactly the twisted forms of A. Therefore, the preceding discussion
with A = F × · · · × F yields a natural bijection

F -isomorphism classes of
étale F -algebras of degree n

←→ H1(F, Sn).(29.9)
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Since the Γ-action on Sn is trivial, the pointed set H1(F, Sn) coincides with the
set of conjugacy classes of continuous maps Γ → Sn and hence also classifies iso-
morphism classes of Γ-sets X consisting of n elements (see (??)). The cocycle
γ : Γ → Sn corresponds to the étale algebra L = Map(X,Fsep)Γ where Γ acts on
the set X via γ.

The sign map sgn: Sn → {±1} = S2 induces a map in cohomology

sgn1 : H1(F, Sn)→ H1(F, S2).

In view of (??) this map sends (the isomorphism class of) an étale algebra L to
(the isomorphism class of) its discriminant ∆(L).

Another interpretation of H1(F, Sn) is given in Example (??):

H1(Γ, Sn) ' Isom(Sn–GalF ).

In fact, we may associate to any étale F -algebra L of dimension n its Galois Sn-
closure Σ(L) (see (??)). This construction induces a canonical bijection between
the isomorphism classes of étale algebras of dimension n and isomorphism classes
of Galois Sn-algebras. Note however that Σ is not a functor: an F -algebra ho-
momorphism L1 → L2 which is not injective does not induce any homomorphism
Σ(L1)→ Σ(L2).

Central simple algebras. Let A = Mn(F ), the matrix algebra of degree n.
Since every central simple F -algebra is split by Fsep, and since every F -algebra A′

such that A′sep 'Mn(Fsep) is central simple (see (??)), the twisted forms of A are
exactly the central simple F -algebras of degree n. The Skolem-Noether theorem
(??) shows that every automorphism of A is inner, hence Autalg(A) = PGLn.
Therefore, as in (??), there is a natural bijection

F -isomorphism classes of
central simple F -algebras of degree n

←→ H1(F,PGLn).

Consider the exact sequence:

1→ Gm → GLn → PGLn → 1.(29.10)

By twisting all the groups by a cocycle in H1(F,PGLn) corresponding to a central
simple F -algebra B of degree n, we get the exact sequence

1→ Gm → GL1(B)→ PGL1(B)→ 1.

Since H1
(
F,GL1(B)

)
= 1 by Hilbert’s Theorem 90, it follows from Corollary (??)

that the connecting map

δ1 : H1(F,PGLn)→ H2(F,Gm)

with respect to (??) is injective. The map δ1 is defined here as follows: if αγ ∈
AutFsep

(
Mn(Fsep)

)
is a 1-cocycle, choose cγ ∈ GLn(Fsep) such that αγ = Int(cγ)

(by Skolem-Noether). Then

cγ,γ′ = cγ · γcγ′ · c−1
γγ′ ∈ Z2(F,Gm)

is the corresponding 2-cocycle. The δ1 for different n’s fit together to induce an
injective homomorphism Br(F ) → H2(F,Gm). To prove that this homomorphism
is surjective, we may reduce to the case of finite Galois extensions, since for every
2-cocycle cγ,γ′ with values in Gm there is a finite Galois extension L/F such that
c : Γ × Γ → F×sep factors through a 2-cocycle in Z2

(
Gal(L/F ), L×

)
. Thus, the

following proposition completes the proof that Br(F ) ' H2(F,Gm):
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(29.11) Proposition. Let L/F be a finite Galois extension of fields of degree n,
and let G = Gal(L/F ). The map

δ1 : H1
(
G,PGLn(L)

)
→ H2(G,L×)

is bijective.

Proof : Injectivity follows by the same argument as for the connecting map with
respect to (??). To prove surjectivity, choose c ∈ Z2(G,L×) and let V be the
n-dimensional L-vector space

V =
⊕

σ∈G
eσL.

Numbering the elements of G, we may identify V = Ln, hence EndL(V ) = Mn(L)
and Aut

(
EndL(V )

)
= PGLn(L). For σ ∈ G, let aσ ∈ EndL(V ) be defined by

aσ(eτ ) = eστ cσ,τ .

We have

aσ ◦ σ(aτ )(eν) = eστνcσ,τνσ(cτ,ν) = eστνcστ,νcσ,τ = aστ (eν)cσ,τ

for all σ, τ , ν ∈ G, hence Int(aσ) ∈ Aut
(
EndL(V )

)
is a 1-cocycle whose image

under δ1 is represented by the cocycle cσ,τ .

With the same notation as in the proof above, a central simple F -algebra Ac
corresponding to the 2-cocycle c ∈ Z2(G,L×) is given by

Ac = { f ∈ EndL(V ) | aσ ◦ σ(f) = f ◦ aσ for all σ ∈ G }.

This construction is closely related to the crossed product construction, which we
briefly recall: on the L-vector space

C =
⊕

σ∈G
Lzσ

with basis (zσ)σ∈G, define multiplication by

zσ` = σ(`)zσ and zσzτ = cσ,τzστ

for σ, τ ∈ G and ` ∈ L. The cocycle condition ensures that C is an associative
algebra, and it can be checked that C is central simple of degree n over F (see, e.g.,
Pierce [?, 14.1]).

For σ ∈ G and for ` ∈ L, define yσ, u` ∈ EndL(V ) by

yσ(eτ ) = eτσcτ,σ and u`(eτ ) = eττ(`) for τ ∈ G.

Computations show that yσ , u` ∈ Ac, and

u` ◦ yσ = yσ ◦ uσ(`), yσ ◦ yτ = yτσ ◦ ucτ,σ .

Therefore, the map C → Aop
c which sends

∑
`σzσ to

∑
uop
`σ
◦ yop

σ is an F -algebra
homomorphism, hence an isomorphism since C and Aop

c are central simple of de-
gree n. Thus, C ' Aop

c , showing that the isomorphism Br(F ) ' H2(F,Gm) defined
by the crossed product construction is the opposite of the isomorphism induced by
δ1.
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29.C. Algebras with a distinguished subalgebra. The same idea as in
§?? applies to pairs (A,L) consisting of an F -algebra A and a subalgebra L ⊂ A.
An isomorphism of pairs (A′, L′) ∼−→ (A,L) is an F -isomorphism A′ ∼−→ A which
restricts to an isomorphism L′ ∼−→ L. Let G ⊂ GL(B) be the group scheme of
automorphisms of the flag of vector spaces A ⊃ L. The group G acts on the space
HomF (A⊗FA,A) as in §?? and the group scheme AutG(m) wherem : A⊗FA→ A
is the multiplication map coincides with the group scheme Autalg(A,L) of all F -
algebra automorphisms of the pair (A,L). Since H1(F,G) = 1 by (??), there is by
Proposition (??) a bijection

F -isomorphism classes of pairs
of F -algebras (A′, L′)

such that (A′, L′)sep ' (A,L)sep

←→ H1
(
F,Autalg(A,L)

)
.(29.12)

The map H1
(
F,Autalg(A,L)

)
→ H1

(
F,Autalg(A)

)
induced by the inclusion of

Aut(A,L) in Aut(A) maps the isomorphism class of a pair (A′, L′) to the isomor-
phism class of A′. On the other hand, the map

H1
(
F,Aut(A,L)

)
→ H1(F,Autalg(L)

)

induced by the restriction map Aut(A,L) → Aut(L) takes the isomorphism class
of (A′, L′) to the isomorphism class of L′.

Let AutL(A) be the kernel of the restriction map Aut(A,L) → Autalg(L).
In order to describe the set H1

(
F,AutL(A)

)
as a set of isomorphism classes as

in (??), let

W = HomF (A⊗F A,A)⊕HomF (L,A).

The group G = GL(A) acts on W as follows:

ρ(g)(ψ, ϕ)(x ⊗ y, z) =
(
g ◦ ψ

(
g−1(x)⊗ g−1(y)

)
, g ◦ ϕ(z)

)

for g ∈ G, ψ ∈ HomF (A ⊗F A,A), ϕ ∈ HomF (L,A), x, y ∈ A and z ∈ L. The
multiplication map m : A⊗F A→ A and the inclusion i : L→ A define an element
w = (m, i) ∈ W , and the group AutG(w) coincides with AutL(A). A twisted
form of w is a pair (A′, ϕ) where A′ is an F -algebra isomorphic to A over Fsep and
ϕ : L → A′ is an F -algebra embedding of L in A′. By Proposition (??) there is a
natural bijection

F -isomorphism classes of
pairs (A′, ϕ) isomorphic to
the pair (A, i)sep over Fsep

←→ H1
(
F,AutL(A)

)
.(29.13)

The canonical map H1
(
F,AutL(A)

)
→ H1

(
F,Aut(A,L)

)
takes the isomorphism

class of a pair (A′, ϕ) to the isomorphism class of the pair
(
A′, ϕ(L)

)
.

The preceding discussion applies in particular to separable F -algebras. If B is
a separable F -algebra with center Z, the restriction homomorphism

Autalg(B) = Autalg(B,Z)→ Autalg(Z)

gives rise to the map of pointed sets

H1
(
F,Autalg(B)

)
→ H1

(
F,Autalg(Z)

)
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which takes the class of a twisted form B′ of B to the class of its center Z ′.
On the other hand, the natural isomorphism AutZ(B) ' RZ/F

(
PGL1(B)

)
and

Lemma (??) give a bijection of pointed sets

H1
(
F,AutZ(B)

)
' H1

(
F,RZ/F

(
PGL1(B)

))
' H1

(
Z,PGL1(B)

)

which takes the class of a pair (B′, ϕ) to the class of the Z-algebra B′⊗Z′ Z (where
the tensor product is taken with respect to ϕ).

29.D. Algebras with involution. Let (A, σ) be a central simple algebra
with involution (of any kind) over a field F . In this section, we give interpretations
for the cohomology sets

H1
(
F,Aut(A, σ)

)
, H1

(
F,Sim(A, σ)

)
, H1

(
F, Iso(A, σ)

)
.

We shall discuss separately the unitary, the symplectic and the orthogonal case,
but we first outline the general principles.

Let W = HomF (A⊗A,A)⊕ EndF (A) and G = GL(A), the linear group of A
where A is viewed as an F -vector space. Consider the representation

ρ : G→ GL(W )

defined by

ρ(g)(ϕ, ψ)(x ⊗ y, z) =
(
g ◦ ϕ

(
g−1(x)⊗ g−1(y)

)
, g ◦ ψ ◦ g−1(z)

)

for g ∈ G, ϕ ∈ HomF (A ⊗ A,A), ψ ∈ EndF (A) and x, y, z ∈ A. Let w =
(m,σ) ∈ W , where m is the multiplication map of A. The subgroup AutG(w)
of G coincides with the group scheme Aut(A, σ) of F -algebra automorphisms of
A commuting with σ. A twisted form of w is the structure of an algebra with
involution isomorphic over Fsep to (Asep, σsep). Hence, by Proposition (??) there is
a natural bijection

F -isomorphism classes of
F -algebras with involution (A′, σ′)
isomorphic to (Asep, σsep) over Fsep

←→ H1
(
F,Aut(A, σ)

)
.(29.14)

Next, let W ′ = EndF (A) and G′ = GL1(A), the linear group of A (i.e., the
group of invertible elements in A). Consider the representation

ρ′ : G′ → GL(W ′)

defined by

ρ′(a)(ψ) = Int(a) ◦ ψ ◦ Int(a)−1,

for a ∈ G′ and ψ ∈ EndF (A). The subgroup AutG′(σ) of G′ coincides with the
group scheme Sim(A, σ) of similitudes of (A, σ). A twisted ρ′-form of σ is an invo-
lution of A which, over Fsep, is conjugate to σsep = σ⊗ IdFsep . By Proposition (??)
and Hilbert’s Theorem 90 (see (??)), we get a bijection

conjugacy classes of involutions
on A which over Fsep are

conjugate to σsep

←→ H1
(
F,Sim(A, σ)

)
.(29.15)

The canonical homomorphism Int: Sim(A, σ)→ Aut(A, σ) induces a map

Int1 : H1
(
F,Sim(A, σ)

)
→ H1

(
F,Aut(A, σ)

)
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which maps the conjugacy class of an involution σ′ to the isomorphism class of
(A, σ′).

Finally, recall from §?? that the group scheme Iso(A, σ) is defined as the
stabilizer of 1 ∈ A under the action of GL1(A) on A given by

ρ′′(a)(x) = a · x · σ(a)

for a ∈ GL1(A) and x ∈ A. Twisted ρ′′-forms of 1 are elements s ∈ A for which
there exists a ∈ A×sep such that s = a · σ(a). We write Sym(A, σ)′ for the set of
these elements,

Sym(A, σ)′ = { s ∈ A | s = a · σ(a) for some a ∈ A×sep } ⊂ Sym(A, σ) ∩ A×,
and define an equivalence relation on Sym(A, σ)′ by

s ∼ s′ if and only if s′ = a · s · σ(a) for some a ∈ A×.

The equivalence classes are exactly the ρ′′-isomorphism classes of twisted forms of
1, hence Proposition (??) yields a canonical bijection

Sym(A, σ)′/∼ ←→ H1
(
F, Iso(A, σ)

)
.(29.16)

The inclusion i : Iso(A, σ)→ Sim(A, σ) induces a map

i1 : H1
(
F, Iso(A, σ)

)
→ H1

(
F,Sim(A, σ)

)

which maps the equivalence class of s ∈ Sym(A, σ)′ to the conjugacy class of the
involution Int(s) ◦ σ.

We now examine the various types of involutions separately.

Unitary involutions. Let (B, τ) be a central simple F -algebra with unitary
involution. Let K be the center of B, which is a quadratic étale F -algebra, and let
n = deg(B, τ). (The algebra B is thus central simple of degree n if K is a field, and
it is a direct product of two central simple F -algebras of degree n if K ' F × F .)

From (??), we readily derive a canonical bijection

F -isomorphism classes of
central simple F -algebras

with unitary involution of degree n
←→ H1

(
F,Aut(B, τ)

)
.

We have an exact sequence of group schemes

1→ PGU(B, τ)→ Aut(B, τ)
f−→ S2 → 1

where f is the restriction homomorphism to Autalg(K) = S2. We may view the
group PGU(B, τ) as the automorphism group of the pair (B, τ) over K. As in
Proposition (??) (see also (??)) we obtain a natural bijection

F -isomorphism classes of triples (B′, τ ′, ϕ)
consisting of a central simple F -algebra

with unitary involution (B′, τ ′) of degree n
and an F -algebra isomorphism ϕ : Z(B′) ∼−→ K

←→ H1
(
F,PGU(B, τ)

)
.

By Proposition (??) the group Autalg(K) acts transitively on each fiber of the
map

H1
(
F,PGU(B, τ)

)
→ H1

(
F,Aut(B, τ)

)
.
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The fiber over a pair (B′, τ ′) consists of the triples (B′, τ ′, IdK) and (B′, τ ′, ι), where
ι is the nontrivial automorphism of K/F . These triples are isomorphic if and only
if PGU(B′, τ ′) $ AutF (B′, τ ′).

After scalar extension to Fsep, we have Bsep 'Mn(Fsep)×Mn(Fsep)op, and all
the unitary involutions on Bsep are conjugate to the exchange involution ε by (??).
Therefore, (??) specializes to a bijection

conjugacy classes of
unitary involutions on B

which are the identity on F
←→ H1

(
F,GU(B, τ)

)
.

The exact sequence

1→ RK/F (Gm,K)→ GU(B, τ) → PGU(B, τ)→ 1

induces a connecting map in cohomology

δ1 : H1
(
F,PGU(B, τ)

)
→ H2

(
F,RK/F (Gm,K)

)
= H2(K,Gm,K) = Br(K)

where the identificationH2
(
F,RK/F (Gm,K)

)
= H2(K,Gm,K) is given by Shapiro’s

lemma and the identification H2(K,Gm,K) = Br(K) by the connecting map in the
cohomology sequence associated to

1→ Gm,K → GLn,K → PGLn,K → 1,

see §??. Under δ1, the class of a triple (B′, τ ′, ϕ) is mapped to the Brauer class
[B′ ⊗K′ K] · [B]−1, where the tensor product is taken with respect to ϕ.

Our next goal is to give a description of H1
(
F,U(B, τ)

)
. Every symmetric

element s ∈ Sym
(
Mn(Fsep)×Mn(Fsep)op, ε

)
has the form

s = (m,mop) = (m, 1op) · ε(m, 1op)

for some m ∈ Mn(Fsep). Therefore, the set Sym(B, τ)′ of (??) is the set of sym-
metric units,

Sym(B, τ)′ = Sym(B, τ)× (= Sym(B, τ) ∩ B×),

and (??) yields a canonical bijection

Sym(B, τ)×/∼ ←→ H1
(
F,U(B, τ)

)
.(29.17)

By associating with every symmetric unit u ∈ Sym(B, τ)× the hermitian form

〈u−1〉 : B ×B → B

defined by 〈u−1〉(x, y) = τ(x)u−1y, it follows that H1
(
F,U(B, τ)

)
classifies her-

mitian forms on B-modules of rank 1 up to isometry.
In order to describe the set H1

(
F,SU(B, τ)

)
, consider the representation

ρ : GL1(B)→ GL(B ⊕K)

given by

ρ(b)(x, y) =
(
b · x · τ(b),Nrd(b)y

)

for b ∈ GL1(B), x ∈ B and y ∈ K. Let w = (1, 1) ∈ B ⊕K. The group AutG(w)
coincides with SU(B, τ). Clearly, twisted forms of w are contained in the set31

SSym(B, τ)× = { (s, z) ∈ Sym(B, τ)× ×K× | NrdB(s) = NK/F (z) }.

31This set plays an essential rôle in the Tits construction of exceptional simple Jordan alge-
bras (see §??).
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Over Fsep, we have Bsep 'Mn(Fsep)×Mn(Fsep)op and we may identify τsep to the
exchange involution ε. Thus, for every (s, z) ∈ SSym(Bsep, τsep)×, there are m ∈
Mn(Fsep) and z1, z2 ∈ F×sep such that s = (m,mop), z = (z1, z2) and detm = z1z2.

Let m1 ∈ GLn(Fsep) be any matrix such that detm1 = z1, and let m2 = m−1
1 m.

Then

s = (m1,m
op
2 ) · ε(m1,m

op
2 ) and z = Nrd(m1,m

op
2 ),

hence (s, z) = ρsep(m1,m
op
2 )(w). Therefore, SSym(B, τ)× is the set of twisted

ρ-forms of w.
Define an equivalence relation ≈ on SSym(B, τ)× by

(s, z) ≈ (s′, z′) if and only if s′ = b · s · τ(b) and z′ = NrdB(b)z for some b ∈ B×

so that the equivalence classes under ≈ are exactly the ρ-isomorphism classes of
twisted forms. Proposition (??) yields a canonical bijection

SSym(B, τ)×/≈ ←→ H1
(
F,SU(B, τ)

)
.(29.18)

The natural map of pointed sets

H1
(
F,SU(B, τ)

)
→ H1

(
F,U(B, τ)

)

takes the class of (s, z) ∈ SSym(B, τ)× to the class of s ∈ Sym(B, τ)×.
There is an exact sequence

1→ SU(B, τ)→ U(B, τ)
Nrd−−→ G1

m,K → 1

where

G1
m,K = ker

(
RK/F (Gm,K)

NK/F−−−−→ Gm,F

)

(hence G1
m,K(F ) = K1 is the group of norm 1 elements in K). The connecting map

G1
m,K(F )→ H1

(
F,SU(B, τ)

)

takes x ∈ G1
m,K(F ) ⊂ K× to the class of the pair (1, x).

(29.19) Example. Suppose K is a field and let (V, h) be a hermitian space overK
(with respect to the nontrivial automorphism ι of K/F ). We write simply U(V, h)
for U

(
EndK(V ), σh

)
and SU(V, h) for SU

(
EndK(V ), σh

)
. As in (??) and (??), we

have canonical bijections

Sym
(
EndK(V ), σh

)×
/∼ ←→ H1

(
F,U(V, h)

)
,

SSym
(
EndK(V ), σh

)×
/≈ ←→ H1

(
F,SU(V, h)

)
.

The set Sym
(
EndK(V ), σh

)×
/∼ is also in one-to-one correspondence correspon-

dence with the set of isometry classes of nonsingular hermitian forms on V , by

mapping s ∈ Sym
(
EndK(V ), σh

)×
to the hermitian form hs : V × V → K defined

by

hs(x, y) = h
(
s−1(x), y

)
= h

(
x, s−1(y)

)

for x, y ∈ V . Therefore, we have a canonical bijection of pointed sets

isometry classes of
nonsingular hermitian

forms on V
←→ H1

(
F,U(V, h)

)
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where the base point of H1
(
F,U(V, h)

)
corresponds to the isometry class of h.

To give a similar interpretation of H1
(
F,SU(V, h)

)
, observe that for every

unitary involution τ on EndK(V ) and every y ∈ K× such that NK/F (y) = 1 there

exists u ∈ U
(
EndK(V ), τ

)
such that det(u) = y. Indeed, τ is the adjoint involution

with respect to some hermitian form h′. If (e1, . . . , en) is an orthogonal basis of V
for h′, we may take for u the endomorphism which leaves ei invariant for i = 1, . . . ,
n−1 and maps en to eny. From this observation, it follows that the canonical map

SSym
(
EndK(V ), σh

)×
/≈ → Sym

(
EndK(V ), σh

)×
/∼

given by (s, z) 7→ s is injective. For, suppose (s, z), (s′, z′) ∈ SSym
(
EndK(V ), σh

)×
are such that s ∼ s′, and let b ∈ EndK(V )× satisfy

s′ = b · s · σh(b).
Since det(s) = NK/F (z) and det(s′) = NK/F (z′), it follows that

NK/F (z′) = NK/F
(
z det(b)

)
.

Choose u ∈ U
(
EndK(V ), Int(s′) ◦ σh

)
such that det(u) = z′z−1 det(b)−1. Then

s′ = u · s′ · σh(u) = ub · s · σh(ub) and z′ = z det(ub),

hence (s′, z′) ≈ (s, z).
As a consequence, the canonical map H1

(
F,SU(V, h)

)
→ H1

(
F,U(V, h)

)
is

injective, and we may identify H1
(
F,SU(V, h)

)
to a set of isometry classes of

hermitian forms on V . For s ∈ Sym
(
EndK(V ), σh

)×
, we have

dischs = disch · det s−1 in F×/N(K/F ),

hence there exists z ∈ K× such that det s = NK/F (z) if and only if dischs = disch.
Therefore, we have a canonical bijection of pointed sets

isometry classes of nonsingular
hermitian forms h′ on V

with disch′ = disch
←→ H1

(
F,SU(V, h)

)
.

(29.20) Example. Consider B = Mn(F ) ×Mn(F )op, with ε the exchange invo-
lution (a, bop) 7→ (b, aop). We have

U(B, ε) = {
(
u, (u−1)op

)
| u ∈ GLn(F ) },

hence SU(B, τ) = SLn(F ) and PGU(B, τ) = PGLn(F ). Therefore, by Hilbert’s
Theorem 90 (??) and (??),

H1
(
F,U(B, ε)

)
= H1

(
F,SU(B, ε)

)
= 1.

The map (a, bop) 7→
(
bt, (at)op

)
is an outer automorphism of order 2 of (B, ε), and

we may identify

Aut
(
Mn(F )×Mn(F )op, ε

)
= PGLn oS2

where the nontrivial element of S2 acts on PGLn by mapping a ·F× to (at)−1 ·F×.
The exact sequence

1→ PGLn → PGLn oS2 → S2 → 1

induces the following exact sequence in cohomology:

H1(F,PGLn)→ H1(F,PGLn oS2)→ H1(F, S2).
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This cohomology sequence corresponds to

central simple
F -algebras of

degree n
→

central simple F -algebras
with unitary involution

of degree n
→

quadratic
étale

F -algebras

A 7→ (A×Aop, ε) B 7→ Z(B)

where ε is the exchange involution. Observe that S2 acts on H1(F,PGLn) by send-
ing a central simple algebra A to the opposite algebra Aop, and that the algebras
with involution (A×Aop, ε) and (Aop ×A, ε) are isomorphic over F .

(29.21) Remark. Let Z be a quadratic étale F -algebra. The cohomology set
H1

(
F, (PGLn)[Z]

)
, where the action of Γ is twisted through the cocycle defin-

ing [Z], classifies triples (B′, τ ′, φ) where (B′, τ ′) is a central simple F -algebra with
unitary involution of degree n and φ is an isomorphism Z(B′) ∼−→ Z.

Symplectic involutions. Let A be a central simple F -algebra of degree 2n
with a symplectic involution σ. The group Aut(A, σ) coincides with PGSp(A, σ).
Moreover, since all the nonsingular alternating bilinear forms of dimension 2n are
isometric, all the symplectic involutions on a split algebra of degree 2n are conju-
gate, hence (??) and (??) yield bijections of pointed sets

F -isomorphism classes of
central simple F -algebras of degree 2n

with symplectic involution
←→ H1

(
F,PGSp(A, σ)

)

(29.22)

conjugacy classes of
symplectic involutions

on A
←→ H1

(
F,GSp(A, σ)

)
.(29.23)

The exact sequence

1→ Gm → GSp(A, σ)→ PGSp(A, σ)→ 1

yields a connecting map in cohomology

δ1 : H1
(
F,PGSp(A, σ)

)
→ H2(F,Gm) = Br(F ).

The commutative diagram

1 −→ Gm −→ GSp(A, σ) −→ PGSp(A, σ) −→ 1
∥∥∥

y
y

1 −→ Gm −→ GL1(A) −→ PGL1(A) −→ 1

and Proposition (??) show that δ1 maps the class of (A′, σ′) to the Brauer class
[A′] · [A]−1.

We now consider the group of isometries Sp(A, σ). Our first goal is to describe
the set Sym(A, σ)′. By identifying Asep = M2n(Fsep), we have σsep = Int(u) ◦ t for
some unit u ∈ Alt

(
M2n(Fsep), t

)
, where t is the transpose involution. For x ∈ Asep,

we have

x+ σ(x) =
(
xu− (xu)t

)
u−1.
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If x + σ(x) is invertible, then xu− (xu)t is an invertible alternating matrix. Since
all the nonsingular alternating forms of dimension 2n are isometric, we may find
a ∈ GL2n(Fsep) such that xu− (xu)t = auat. Then

x+ σ(x) = a · σ(a),

proving that every unit in Symd(A, σ) is in Sym(A, σ)′. On the other hand, since
σ is symplectic we have 1 = y + σ(y) for some y ∈ A, hence for all a ∈ Asep

a · σ(a) = a
(
y + σ(y)

)
σ(a) = ay + σ(ay).

Therefore, Sym(A, σ)′ is the set of all symmetrized units in A, i.e.,

Sym(A, σ)′ = Symd(A, σ)×,

and (??) yields a bijection of pointed sets

Symd(A, σ)×/∼ ←→ H1
(
F,Sp(A, σ)

)
.(29.24)

(29.25) Example. Let a be a nonsingular alternating bilinear form on an F -
vector space V . To simplify notation, write GSp(V, a) for GSp

(
EndF (V ), σa

)

and Sp(V, a) for Sp
(
EndF (V ), σa

)
. Since all the nonsingular alternating bilinear

forms on V are isometric to a, we have

H1
(
F,GSp(V, a)

)
= H1

(
F,Sp(V, a)

)
= 1.

Orthogonal involutions. Let A be a central simple F -algebra of degree n
with an orthogonal involution σ. We have Aut(A, σ) = PGO(A, σ). Assume
that charF 6= 2 or that F is perfect of characteristic 2. Then Fsep is quadrati-
cally closed, hence all the nonsingular symmetric nonalternating bilinear forms of
dimension n over Fsep are isometric. Therefore, all the orthogonal involutions on
Asep 'Mn(Fsep) are conjugate, and the following bijections of pointed sets readily
follow from (??) and (??):

F -isomorphism classes of
central simple F -algebras of degree n

with orthogonal involution
←→ H1

(
F,PGO(A, σ)

)

conjugacy classes of
orthogonal involutions

on A
←→ H1

(
F,GO(A, σ)

)
.

The same arguments as in the case of symplectic involutions show that the
connecting map

δ1 : H1
(
F,PGO(A, σ)

)
→ H2(F,Gm) = Br(F )

in the cohomology sequence arising from the exact sequence

1→ Gm → GO(A, σ)→ PGO(A, σ) → 1

takes the class of (A′, σ′) to the Brauer class [A′] · [A]−1.
In order to give a description of H1

(
F,O(A, σ)

)
, we next determine the set

Sym(A, σ)′. We still assume that charF 6= 2 or that F is perfect. By identifying
Asep = Mn(Fsep), we have σsep = Int(u) ◦ t for some symmetric nonalternating
matrix u ∈ GLn(Fsep). For s ∈ Sym(A, σ), we have su ∈ Sym

(
Mn(Fsep), t

)
. If

su = x−xt for some x ∈Mn(Fsep), then s = xu−1−σ(xu−1). Therefore, su is not
alternating if s /∈ Alt(A, σ). Since all the nonsingular symmetric nonalternating



406 VII. GALOIS COHOMOLOGY

bilinear forms of dimension n over Fsep are isometric, we then have su = vuvt for
some v ∈ GLn(Fsep), hence s = vσ(v). This proves

Sym(A, σ)′ ⊂ Sym(A, σ)× r Alt(A, σ).

To prove the reverse inclusion, observe that if aσ(a) = x − σ(x) for some a ∈
GLn(Fsep), then

1 = a−1xσ(a)−1 − σ
(
a−1xσ(a)−1

)
∈ Alt(Asep, σ).

This is impossible since σ is orthogonal (see (??)).
By (??), we have a bijection of pointed sets

(
Sym(A, σ)× r Alt(A, σ)

)
/∼ ←→ H1

(
F,O(A, σ)

)

where the base point in the left set is the equivalence class of 1. Of course, if
charF 6= 2, then Sym(A, σ) ∩ Alt(A, σ) = {0} hence the bijection above takes the
form

Sym(A, σ)×/∼ ←→ H1
(
F,O(A, σ)

)
.(29.26)

Assuming charF 6= 2, let

SSym(A, σ)× = { (s, z) ∈ Sym(A, σ)× × F× | NrdA(s) = z2 }
and define an equivalence relation ≈ on this set by

(s, z) ≈ (s′, z′) if and only if s′ = a · s · σ(a) and z′ = NrdA(a)z for some a ∈ A×.
The same arguments as in the proof of (??) yield a canonical bijection of pointed
sets

SSym(A, σ)×/≈ ←→ H1
(
F,O+(A, σ)

)
.(29.27)

29.E. Quadratic spaces. Let (V, q) be a nonsingular quadratic space of di-
mension n over an arbitrary field F . Let W = S2(V ∗), the second symmetric power
of the dual space of V . Consider the representation

ρ : G = GL(V )→ GL(W )

defined by

ρ(α)(f)(x) = f
(
α−1(x)

)

for α ∈ G, f ∈ W and x ∈ V (viewing S2(V ∗) as a space of polynomial maps on
V ). The group scheme AutG(q) is the orthogonal group O(V, q).

We postpone until the end of this subsection the discussion of the case where
n is odd and charF = 2. Assume thus that n is even or that charF 6= 2. Then,
all the nonsingular quadratic spaces of dimension n over Fsep are isometric, hence
Proposition (??) yields a canonical bijection

isometry classes of
n-dimensional nonsingular
quadratic spaces over F

←→ H1
(
F,O(V, q)

)
.(29.28)

To describe the pointed set H1
(
F,O+(V, q)

)
, we first give another description

of H1
(
F,O(V, q)

)
. Consider the representation

ρ : G = GL(V )×GL
(
C(V, q)

)
→ GL(W )
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where

W = S2(V ∗)⊕HomF

(
V,C(V, q)

)
⊕HomF

(
C(V, q) ⊗ C(V, q), C(V, q)

)

and

ρ(α, β)(f, g, h) =
(
fα−1, βgα−1, αh(α−1 ⊗ α−1)

)
.

Set w = (q, i,m), where i : V → C(V, q) is the canonical map and m is the mul-
tiplication of C(V, q). Then, we obviously also have AutG(w) = O(V, q) since
automorphisms of (C, q) which map V to V are in O(V, q). If n is even, let Z be
the center of the even Clifford algebra C0(V, q); if n is odd, let Z be the center of
the full Clifford algebra C(V, q). The group G also acts on

W+ = W ⊕ EndF (Z)

where the action of G on EndF (Z) is given by ρ(α, β)(j) = jβ|−1
Z . If we set

w+ = (w, IdZ), with w as above, we obtain AutG(w+) = O+(V, q). By Proposi-
tion (??) the set H1

(
F,O+(V, q)

)
classifies triples (V ′, q′, ϕ) where ϕ : Z ′ ∼−→ Z is

an isomorphism from the center of C(V ′, q′) to Z. We claim that in fact we have a
bijection

isometry classes of
n-dimensional nonsingular

quadratic spaces (V ′, q′) over F
such that disc q′ = disc q

←→ H1
(
F,O+(V, q)

)
.(29.29)

Since the F -algebra Z is determined up to isomorphism by disc q (see (??) when
n is even), the set on the left corresponds to the image of H1

(
F,O+(V, q)

)
in

H1
(
F,O(V, q)

)
. Hence we have to show that the canonical map

H1
(
F,O+(V, q)

)
→ H1

(
F,O(V, q)

)

is injective. If charF = 2 (and n is even), consider the exact sequence

1→ O+(V, q)→ O(V, q)
∆−→ Z/2Z→ 0(29.30)

where ∆ is the Dickson invariant, and the induced cohomology sequence

O(V, q)→ Z/2Z→ H1
(
F,O+(V, q)

)
→ H1

(
F,O(V, q)

)
.

Since ∆: O(V, q) → Z/2Z is surjective, we have the needed injectivity at the base
point. To get injectivity at a class [x], we twist the sequence (??) by a cocycle x
representing [x] = [(V ′, q′)]; then [x] is the new base point and the claim follows
from O(V, q)x = O(V ′, q′).

If charF 6= 2 (regardless of the parity of n), the arguments are the same,
substituting for (??) the exact sequence

1→ O+(V, q)→ O(V, q)
det−−→ µ2 → 1.

We now turn to the case where charF = 2 and n is odd, which was put
aside for the preceding discussion. Nonsingular quadratic spaces of dimension n
become isometric over Fsep if and only if they have the same discriminant, hence
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Proposition (??) yields a bijection

isometry classes of
n-dimensional nonsingular

quadratic spaces (V ′, q′) over F
such that disc q′ = disc q

←→ H1
(
F,O(V, q)

)
.

The description of H1
(
F,O+(V, q)

)
by triples (V ′, q′, ϕ) where ϕ : Z ′ → Z is an

isomorphism of the centers of the full Clifford algebras C(V ′, q′), C(V, q) still holds,
but in this case Z ′ = F (

√
disc q′), Z = F (

√
disc q) are purely inseparable quadratic

F -algebras, hence the isomorphism ϕ : Z ′ → Z is unique when it exists, i.e., when
disc q′ = disc q. Therefore, we have

H1
(
F,O+(V, q)

)
= H1

(
F,O(V, q)

)
.

This equality also follows from the fact that O+(V, q) is the smooth algebraic group
associated to O(V, q), hence the groups of points of O+(V, q) and of O(V, q) over
Fsep (as over any reduced F -algebra) coincide.

29.F. Quadratic pairs. Let A be a central simple F -algebra of degree 2n
with a quadratic pair (σ, f). Consider the representation already used in the proof
of (??):

ρ : G = GL(A)×GL
(
Sym(A, σ)

)
→ GL(W )

where

W = HomF

(
Sym(A, σ), A

)
⊕HomF (A⊗F A,A)⊕ EndF (A) ⊕ Sym(A, σ)∗,

with ρ given by

ρ(g, h)(λ, ψ, ϕ, p) =
(
g ◦ λ ◦ h−1, g(ψ), g ◦ ϕ ◦ g−1, p ◦ h

)

where g(ψ) arises from the natural action of GL(A) on HomF (A⊗A,A). Consider
also the element w = (i,m, σ, f) ∈ W where i : Sym(A, σ) → A is the inclusion.
The group AutG(w) coincides with PGO(A, σ, f) (see §??).

Every twisted ρ-form (λ, ψ, ϕ, p) of w defines a central simple F -algebra with
quadratic pair (A′, σ′, f ′) as follows: on the set A′ = {x′ | x ∈ A }, we define
the multiplication by x′y′ = ψ(x ⊗ y)′ and the involution by σ′(x′) = ϕ(x)′.
Then Sym(A′, σ′) = {λ(s)′ | s ∈ Sym(A, σ) }, and we define f ′ by the condition
f ′

(
λ(s)′

)
= p(s) for s ∈ Sym(A, σ).

Conversely, to every central simple F -algebra with quadratic pair (A′, σ′, f ′) of
degree 2n, we associate an element (λ, ψ, ϕ, p) ∈W as follows: we choose arbitrary
bijective F -linear maps ν : A ∼−→ A′ and λ : Sym(A, σ) ∼−→ ν−1

(
Sym(A′, σ′)

)
, and

define ψ, ϕ, p by

ψ(x ⊗ y) = ν−1
(
ν(x)ν(y)

)
for x, y ∈ A,

ϕ = ν−1 ◦ σ′ ◦ ν and p = f ′ ◦ ν ◦ λ.
Over Fsep, all the algebras with quadratic pairs of degree 2n become isomorphic
to the split algebra with the quadratic pair associated to the hyperbolic quadratic
form. If

θ : (Asep, σsep, fsep)
∼−→ (A′sep, σ

′
sep, f

′
sep)
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is an isomorphism, then we let g = ν−1 ◦ θ ∈ GL(Asep) and define

h : Sym(Asep, σsep)→ Asep by ν ◦ λ ◦ h = θ ◦ i.
Then ρ(g, h)(i,m, σ, f) = (λ, ψ, ϕ, p), proving that (λ, ψ, ϕ, p) is a twisted ρ-form of
w. Thus, twisted ρ-forms of w are in one-to-one correspondence with isomorphism
classes of central simple F -algebras with quadratic pair of degree 2n. By (??) there
is a canonical bijection

F -isomorphism classes of
central simple F -algebras with

quadratic pair of degree 2n
←→ H1

(
F,PGO(A, σ, f)

)
.

The center Z of the Clifford algebra C(A, σ, f) is a quadratic étale F -algebra
which we call the discriminant quadratic extension. The class [Z] of Z in H1(F, S2)
is the discriminant class of (σ, f). We have an exact sequence of group schemes

1→ PGO+(A, σ, f)→ PGO(A, σ, f)
d−→ S2 → 1

where d is the natural homomorphism

PGO(A, σ, f)→ Autalg(Z) ' S2.

Thus the map

H1
(
F,PGO(A, σ, f)

)
→ H1(F, S2)

takes (A′, σ′, f ′) to [Z ′]− [Z] where Z ′ is the center of C(A′, σ′, f ′). As in (??), we
obtain a natural bijection

F -isomorphism classes of 4-tuples (A′, σ′, f ′, ϕ)
with a central simple F -algebra A′

of degree 2n, a quadratic pair (σ′, f ′)
and an F -algebra isomorphism ϕ : Z ′ → Z of

the centers of the Clifford algebras

←→ H1
(
F,PGO+(A, σ, f)

)
.

(29.31) Remark. In particular, if Z ' F × F , the choice of ϕ amounts to a
designation of the two components C+(A, σ, f), C−(A, σ, f) of C(A, σ, f).

In order to obtain similar descriptions for the cohomology sets of GO(A, σ, f)
and GO+(A, σ, f), it suffices to let GL1(A)×GL

(
Sym(A, σ)

)
act on W via ρ and

the map GL1(A) → GL(A) which takes x ∈ A× to Int(x). As in (??), we obtain
bijections

conjugacy classes of
quadratic pairs on A

←→ H1
(
F,GO(A, σ, f)

)
,

conjugacy classes of triples (σ′, f ′, ϕ)
where (σ′, f ′) is a quadratic pair on A
and ϕ : Z ′ → Z is an isomorphism of
the centers of the Clifford algebras

←→ H1
(
F,GO+(A, σ, f)

)
.

If charF 6= 2, the quadratic pair (σ, f) is completely determined by the orthog-
onal involution σ, hence O(A, σ, f) = O(A, σ) and we refer to §?? for a description
of H1

(
F,O(A, σ)

)
and H1

(
F,O+(A, σ)

)
. For the rest of this subsection, we assume
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charF = 2. As a preparation for the description of H1
(
F,O(A, σ, f)

)
, we make an

observation on involutions on algebras over separably closed fields.

(29.32) Lemma. Suppose that charF = 2. Let σ be an involution of the first kind

on A = M2n(Fsep). For all a, b ∈ A such that a+ σ(a) and b+ σ(b) are invertible,

there exists g ∈ A× and x ∈ A such that

b = gaσ(g) + x+ σ(x).

Moreover, if Srd
((
a + σ(a)

)−1
a
)

= Srd
((
b + σ(b)

)−1
b
)
, then we may assume

Trd
((
b+ σ(b)

)−1
x
)

= 0.

Proof : Let u ∈ A× satisfy σ = Int(u) ◦ t, where t is the transpose involution. Then
u = ut and a + σ(a) = u

(
u−1a + (u−1a)t

)
, hence u−1a + (u−1a)t is invertible.

Therefore, the quadratic form q(X) = Xu−1aXt, where X = (x1, . . . , x2n), is
nonsingular. Similarly, the quadratic form Xu−1bXt is nonsingular. Since all
the nonsingular quadratic forms of dimension 2n over a separably closed field are
isometric, we may find g0 ∈ A× such that

u−1b ≡ g0u−1agt0 mod Alt(A, σ)

hence

b ≡ g1aσ(g1) mod Alt(A, σ)

for g1 = ug0u
−1. This proves the first part.

To prove the second part, choose g1 ∈ A× as above and x1 ∈ A such that

b = g1aσ(g1) + x1 + σ(x1).

Let g0 = u−1g1u and x0 = u−1x1, so that

u−1b = g0u
−1agt0 + x0 + xt0.(29.33)

Let also v = u−1b+(u−1b)t. We have b+σ(b) = uv and, by the preceding equation,

v = g0
(
u−1a+ (u−1a)t

)
gt0.

From (??), we derive

s2(v
−1u−1b) = s2(v

−1g0u
−1agt0) + ℘

(
tr(v−1x0)

)
.(29.34)

The left side is Srd
((
b+ σ(b)

)−1
b
)
. On the other hand, v−1g0u

−1agt0 is conjugate
to

(
u−1a+ (u−1a)t

)
u−1a =

(
a+ σ(a)

)−1
a.

Therefore, if Srd
((
b+σ(b)

)−1
b
)

= Srd
((
a+σ(a)

)−1
a
)
, equation (??) yields ℘

(
tr(v−1x0)

)
=

0, hence tr(v−1x0) = 0 or 1. In the former case, we are finished since v−1x0 =(
b+ σ(b)

)−1
x1. In the latter case, let g2 be an improper isometry of the quadratic

form Xg0u
−1agt0X

t (for instance a hyperplane reflection, see (??)). We have

g0u
−1agt0 = g2g0u

−1agt0g
t
2 + x2 + xt2

for some x2 ∈ A such that tr(v−1x2) = 1, by definition of the Dickson invariant
in (??), and by substituting in (??),

u−1b = g2g0u
−1agt0g

t
2 + (x0 + x2) + (x0 + x2)

t.

Now, tr
(
v−1(x0+x2)

)
= 0, hence we may set g = ug2g0u

−1 and x = u(x0+x2).
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Now, let (A, σ, f) be a central simple algebra with quadratic pair over a field F
of characteristic 2. Let G = GL1(A) act on the vector space W = A/Alt(A, σ) by

ρ(g)
(
a+ Alt(A, σ)

)
= gaσ(g) + Alt(A, σ)

for g ∈ G and a ∈ A. Let ` ∈ A satisfy f(s) = TrdA(`s) for all s ∈ Sym(A, σ)
(see (??)). We next determine the stabilizer AutG

(
`+Alt(A, σ)

)
. For every rational

point g of this stabilizer we have

g`σ(g) = `+ x+ σ(x) for some x ∈ A.

Applying σ and using `+ σ(`) = 1 (see (??)), it follows that gσ(g) = 1. Moreover,
since Alt(A, σ) is orthogonal to Sym(A, σ) for the bilinear form TA (see (??)) we
have

TrdA
(
g`σ(g)s

)
= TrdA(`s) for all s ∈ Sym(A, σ)

hence

f
(
σ(g)sg

)
= f(s) for all s ∈ Sym(A, σ).

Therefore, g ∈ O(A, σ, f). Conversely, if g ∈ O(A, σ, f) then f
(
σ(g)sg

)
= f(s) for

all s ∈ Sym(A, σ), hence TrdA
(
g`σ(g)s

)
= TrdA(`s) for all s ∈ Sym(A, σ), and it

follows that g`σ(g) ≡ ` mod Alt(A, σ). Therefore,

AutG
(
`+ Alt(A, σ)

)
= O(A, σ, f).(29.35)

On the other hand, Lemma (??) shows that the twisted ρ-forms of ` + Alt(A, σ)
are the elements a+ Alt(A, σ) such that a+ σ(a) ∈ A×. Let

Q(A, σ) = { a+ Alt(A, σ) | a+ σ(a) ∈ A× } ⊂ A/Alt(A, σ)

and define an equivalence relation ∼ on Q(A, σ) by a+ Alt(A, σ) ∼ a′ + Alt(A, σ)
if and only if a′ ≡ gaσ(g) mod Alt(A, σ) for some g ∈ A×. Proposition (??) and
Hilbert’s Theorem 90 yield a bijection

Q(A, σ)/∼ ←→ H1
(
F,O(A, σ, f)

)
(29.36)

which maps the base point of H1
(
F,O(A, σ, f)

)
to the equivalence class of ` +

Alt(A, σ). (Compare with (??) and (??).) Note that if A = EndF (V ) the set
Q(A, σ) is in one-to-one correspondence with the set of nonsingular quadratic forms
on V , see §??.

In order to give a similar description of the set H1
(
F,O+(A, σ, f)

)
(still as-

suming charF = 2), we consider the set

Q0(A, σ, `) = { a ∈ A | a+ σ(a) ∈ A× and SrdA
((
a+ σ(a)

)−1
a
)

= SrdA(`) }
and the set of equivalence classes

Q+(A, σ, `) = { [a] | a ∈ Q0(A, σ, `) }
where [a] = [a′] if and only if a′ = a+ x+ σ(x) for some x ∈ A such that

TrdA
((
a+ σ(a)

)−1
x
)

= 0.

We thus have a natural map Q+(A, σ, `)→ Q(A, σ) which maps [a] to a+Alt(A, σ).
For simplicity of notation, we set

Q+(A, σ, `)sep = Q+(Asep, σsep, `) and O(A, σ, f)sep = O(Asep, σsep, fsep).
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Since Q+(A, σ, `) is not contained in a vector space, we cannot apply the general
principle (??). Nevertheless, we may let A×sep act on Q+(A, σ, `)sep by

g[a] = [gaσ(g)] for g ∈ A×sep and a ∈ Q0(A, σ, `)sep.

As observed in (??), for g ∈ A×sep we have g`σ(g) = ` + x + σ(x) for some
x ∈ Asep if and only if g ∈ O(A, σ, f)sep. Moreover the definition of the Dickson
invariant in (??) yields ∆(g) = Trd(x), hence we have g[`] = [`] if and only if
g ∈ O+(A, σ, f)sep. On the other hand, Lemma (??) shows that the A×sep-orbit of

[`] is Q+(A, σ, `)sep, hence the action on ` yields a bijection

A×sep/O+(A, σ, f)sep ←→ Q+(A, σ, `)sep.(29.37)

Therefore, by (??) and Hilbert’s Theorem 90 we obtain a bijection between the
pointed set H1

(
F,O+(A, σ, f)

)
and the orbit set of A× in Q+(A, σ, `)Γsep, with the

orbit of [`] as base point.

Claim. Q+(A, σ, `)Γsep = Q+(A, σ, `).

Let a ∈ A satisfy γ[a] = [a] for all γ ∈ Γ. This means that for all γ ∈ Γ there
exists xγ ∈ Asep such that

γ(a) = a+ xγ + σ(xγ) and Trd
((
a+ σ(a)

)−1
xγ

)
= 0.

The map γ 7→ γ(a) − a is a 1-cocycle of Γ in Alt(A, σ)sep. For any finite Ga-
lois extension L/F , the normal basis theorem (see Bourbaki [?, §10]) shows that
Alt(A, σ)⊗F L is an induced Γ-module, hence H1

(
Γ,Alt(A, σ)sep

)
= 0. Therefore,

there exists y ∈ Alt(A, σ)sep such that

γ(a)− a = xγ + σ(xγ) = y − γ(y) for all γ ∈ Γ.

Choose z0 ∈ Asep such that y = z0 + σ(z0). Then a+ z0 + σ(z0) is invariant under
Γ, hence a+ z0 + σ(z0) ∈ A. Moreover, xγ + z0 + γ(z0) ∈ Sym(A, σ)sep, hence the

condition Trd
((
a+ σ(a)

)−1
xγ

)
= 0 implies

γ
(
Trd

((
a+ σ(a)

)−1
z0

))
= Trd

((
a+ σ(a)

)−1
z0

)
,

i.e., Trd
((
a+ σ(a)

)−1
z0

)
∈ F . Let z1 ∈ A satisfy

Trd
((
a+ σ(a)

)−1
z0

)
= Trd

((
a+ σ(a)

)−1
z1

)
.

Then
(
a+ z0 + σ(z0)

)
+ z1 + σ(z1) ∈ A and

[a] =
[
a+ (z0 + z1) + σ(z0 + z1)

]
∈ Q+(A, σ, `),

proving the claim.
In conclusion, we obtain from (??) via (??) and Hilbert’s Theorem 90 a canon-

ical bijection

Q+(A, σ, `)/∼ ←→ H1
(
F,O+(A, σ, f)

)
(29.38)

where the equivalence relation ∼ is defined by the action of A×, i.e.,

[a] ∼ [a′] if and only if [a′] =
[
gaσ(g)

]
for some g ∈ A×.
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§30. Galois Cohomology of Roots of Unity

Let F be an arbitrary field. As in the preceding section, let Γ = Gal(Fsep/F )
be the absolute Galois group of F . Let n be an integer which is not divisible by
charF . The Kummer sequence is the exact sequence of group schemes

1→ µn → Gm
( )n

−−−→ Gm → 1.(30.1)

Since H1(F,Gm) = 1 by Hilbert’s Theorem 90, the induced long exact sequence in
cohomology yields isomorphisms

H1(F,µn) ' F×/F×n and H2(F,µn) ' nH
2(F,Gm),

where, for any abelian group H , nH denotes the n-torsion subgroup of H . Since
H2(F,Gm) ' Br(F ) (see (??)), we also have

H2(F,µn) ' nBr(F ).

This isomorphism suggests deep relations between central simple algebras and the
cohomology of µn, which are formalized through the cyclic algebra construction in
§??.

If charF 6= 2, we may identify µ2⊗µ2 with µ2 through the map (−1)a⊗(−1)b 7→
(−1)ab and define a cup product

∪ : H i(F,µ2)×Hj(F,µ2)→ H i+j(F,µ2).

For α ∈ F×, we set (α) ∈ H1(F,µ2) for the image of α ·F×2 under the isomorphism
H1(F,µ2) ' F×/F×2.

The following theorem shows that the Galois cohomology of µ2 also has a
far-reaching relationship with quadratic forms:

(30.2) Theorem. Let F be a field of characteristic different from 2. For α1, . . . ,

αn ∈ F×, the cup product (α1) ∪ · · · ∪ (αn) ∈ Hn(F,µ2) depends only on the

isometry class of the Pfister form 〈〈α1, . . . , αn〉〉. We may therefore define a map

en on the set of isometry classes of n-fold Pfister forms by setting

en
(
〈〈α1, . . . , αn〉〉

)
= (α1) ∪ · · · ∪ (αn).

Moreover, the map en is injective: n-fold Pfister forms π, π′ are isometric if and

only if en(π) = en(π
′).

Reference: The first assertion appears in Elman-Lam [?, (3.2)], the second in
Arason-Elman-Jacob [?, Theorem 1] for n ≤ 4 (see also Lam-Leep-Tignol [?, The-
orem A5] for n = 3). The second assertion was proved by Rost (unpublished) for
n ≤ 6, and a proof for all n was announced by Voevodsky in 1996. (In this book,
the statement above is not used for n > 3.)

By combining the interpretations of Galois cohomology in terms of algebras
and in terms of quadratic forms, we translate the results of §?? to obtain in §?? a
complete set of cohomological invariants for central simple F -algebras with unitary
involution of degree 3. We also give a cohomological classification of cubic étale
F -algebras. The cohomological invariants discussed in §?? use cohomology groups
with twisted coefficients which are introduced in §??. Cohomological invariants
will be discussed in greater generality in §??.
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Before carrying out this programme, we observe that there is an analogue of the
Kummer sequence in characteristic p. If charF = p, the Artin-Schreier sequence is
the exact sequence of group schemes

0→ Z/pZ→ Ga
℘−→ Ga → 0

where ℘(x) = xp−x. The normal basis theorem (Bourbaki [?, §10]) shows that the
additive group of any finite Galois extension L/F is an induced Gal(L/F )-module,
hence H`

(
Gal(L/F ), L

)
= 0 for all ` > 0. Therefore,

H`(F,Ga) = 0 for all ` > 0

and the cohomology sequence induced by the Artin-Schreier exact sequence yields

H1(F,Z/pZ) ' F/℘(F ) and H`(F,Z/pZ) = 0 for ` ≥ 2.(30.3)

30.A. Cyclic algebras. The construction of cyclic algebras, already intro-
duced in §?? in the particular case of degree 3, has a close relation with Galois
cohomology which is described next.

Let n be an arbitrary integer and let L be a Galois (Z/nZ)-algebra over F . We
set ρ = 1 + nZ ∈ Z/nZ. For a ∈ F×, the cyclic algebra (L, a) is

(L, a) = L⊕ Lz ⊕ · · · ⊕ Lzn−1

where zn = a and z` = ρ(`)z for ` ∈ L. Every cyclic algebra (L, a) is central
simple of degree n over F . Moreover, it is easy to check, using the Skolem-Noether
theorem, that every central simple F -algebra of degree n which contains L has the
form (L, a) for some a ∈ F× (see Albert [?, Chapter 7, §1]).

We now give a cohomological interpretation of this construction. Let [L] ∈
H1(F,Z/nZ) be the cohomology class corresponding to L by (??). Since the Γ-
action on Z/nZ is trivial, we have

H1(F,Z/nZ) = Z1(F,Z/nZ) = Hom(Γ,Z/nZ),

so [L] is a continuous homomorphism Γ→ Z/nZ. If L is a field (viewed as a subfield
of Fsep), this homomorphism is surjective and its kernel is the absolute Galois group
of L. For σ ∈ Γ, define f(σ) ∈ {0, 1, . . . , n− 1} by the condition

[L](σ) = f(σ) + nZ ∈ Z/nZ.

Since [L] is a homomorphism, we have f(στ) ≡ f(σ) + f(τ) mod n.
Now, assume that n is not divisible by charF . We may then use the Kummer

sequence to identify F×/F×n = H1(F,µn) and nBr(F ) = H2(F,µn). For this last
identification, we actually have two canonical (and opposite) choices (see §??); we
choose the identification afforded by the crossed product construction. Thus, the
image in H2(F,Gm) of the class

[
(L, a)

]
∈ H2(F,µn) corresponding to (L, a) is

represented by the cocycle h : Γ× Γ→ F×
sep defined as follows:

h(σ, τ) = zf(σ) · zf(τ) · z−f(στ) = a

(
f(σ)+f(τ)−f(στ)

)
/n.

(See Pierce [?, p. 277] for the case where L is a field.)
The bilinear pairing (Z/nZ)×µn(Fsep)→ µn(Fsep) which maps (i+ nZ, ζ) to

ζi induces a cup product

∪ : H1(F,Z/nZ)×H1(F,µn)→ H2(F,µn).
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(30.4) Proposition. The homomorphism [L] ∈ H1(F,Z/nZ), the class (a) ∈
H1(F,µn) corresponding to a ·F×n under the identification H1(F,µn) = F×/F×n

and the class
[
(L, a)

]
∈ H2(F,µn) corresponding to (L, a) by the crossed product

construction are related by
[
(L, a)

]
= [L] ∪ (a).

Proof : Since the canonical map H2(F,µn)→ H2(F,Gm) is injective, it suffices to
compare the images of [L] ∪ (a) and of

[
(L, a)

]
in H2(F,Gm). Let ξ ∈ Fsep satisfy

ξn = a. The class (a) is then represented by the cocycle σ 7→ σ(ξ)ξ−1, and the cup
product [L] ∪ (a) by the cocycle g : Γ× Γ→ F×

sep defined by

g(σ, τ) = σ
(
τ(ξ)ξ−1

)[L](σ)
= σ

(
τ(ξ)ξ−1

)f(σ)
for σ, τ ∈ Γ.

Consider the function c : Γ→ F×sep given by cσ = σ(ξ)f(σ). We have

g(σ, τ)cσσ(cτ )c(στ)
−1 = στ(ξ)f(σ)+f(τ)−f(στ) = a

(
f(σ)+f(τ)−f(στ)

)
/n.

Therefore, the cocyles g and h are cohomologous in H2(F,Gm).

(30.5) Corollary. For a, b ∈ F×,
[
(L, a)⊗ (L, b)

]
=

[
(L, ab)

]
in H2(F,µn).

In order to determine when two cyclic algebras (L, a), (L, b) are isomorphic, we
first give a criterion for a cyclic algebra to be split:

(30.6) Proposition. Let L be a Galois (Z/nZ)-algebra over F and a ∈ F×. The

cyclic algebra (L, a) is split if and only if a ∈ NL/F (L×).

Proof : A direct proof (without using cohomology) can be found in Albert [?, Theo-
rem 7.6] or (when L is a field) in Pierce [?, p. 278]. We next sketch a cohomological
proof. Let A = EndF L. We embed L into A by identifying ` ∈ L with the map
x 7→ `x. Let ρ ∈ A be given by the action of ρ = 1 + nZ ∈ Z/nZ on L. From
Dedekind’s lemma on the independence of automorphisms, we have

A = L⊕ Lρ⊕ · · · ⊕ Lρn−1

(so that A is a cyclic algebra A = (L, 1)). Let L1 = {u ∈ L | NL/F (u) = 1 }. For

u ∈ L1, define ψ(u) ∈ Aut(A) by

ψ(u)(
∑

i `iρ
i) =

∑
i `iu

iρi for `0, . . . `n−1 ∈ L.
Clearly, ψ(u) is the identity on L, hence ψ(u) ∈ Aut(A,L). In fact, every auto-
morphism of A which preserves L has the form ψ(u) for some u ∈ L1, and the
restriction map Aut(A,L)→ Aut(L) is surjective by the Skolem-Noether theorem,
hence there is an exact sequence

1→ L1 ψ−→ Aut(A,L)→ Aut(L)→ 1.

More generally, there is an exact sequence of group schemes

1→ G1
m,L

ψ−→ Aut(A,L)→ Aut(L)→ 1,

where G1
m,L is the kernel of the norm map NL/F : RL/F (Gm,L) → Gm,L. Since

the restriction map Aut(A,L) → Aut(L) is surjective, the induced cohomology
sequence shows that the map ψ1 : H1(F,G1

m,L) → H1
(
F,Aut(A,L)

)
has trivial
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kernel. On the other hand, by Shapiro’s lemma and Hilbert’s Theorem 90, the
cohomology sequence induced by the exact sequence

1→ G1
m,L → RL/F (Gm,L)

NL/F−−−→ Gm → 1

yields an isomorphism H1(F,G1
m,L) ' F×/NL/F (L×).

Recall from (??) that H1
(
F,Aut(A,L)

)
is in one-to-one correspondence with

the set of isomorphism classes of pairs (A′, L′) where A′ is a central simple F -
algebra of degree n and L′ is an étale F -subalgebra of A′ of dimension n. The
map ψ1 associates to a ·NL/F (L×) ∈ F×/NL/F (L×) the isomorphism class of the

pair
(
(L, a), L

)
. The algebra (L, a) is split if and only if this isomorphism class is

the base point in H1
(
F,Aut(A,L)

)
. Since ψ1 has trivial kernel, the proposition

follows.

(30.7) Corollary. Two cyclic algebras (L, a) and (L, b) are isomorphic if and only

if a/b ∈ NL/F (L×).

Proof : This readily follows from (??) and (??).

30.B. Twisted coefficients. The automorphism group of Z is the group S2

of two elements, generated by the automorphism x 7→ −x. We may use cocycles in
Z1(F, S2) = H1(F, S2) to twist the (trivial) action of Γ = Gal(Fsep/F ) on Z, hence
also on every Γ-module. Since H1(F, S2) is in one-to-one correspondence with the
isomorphism classes of quadratic étale F -algebras by (??), we write Z[K] for the
module Z with the action of Γ twisted by the cocycle corresponding to a quadratic
étale F -algebra K. Thus, Z[F×F ] = Z and, if K is a field with absolute Galois
group Γ0 ⊂ Γ, the Γ-action on Z[K] is given by

σx =

{
x if σ ∈ Γ0

−x if σ ∈ Γ r Γ0.

We may similarly twist the Γ-action of any Γ-module M . We write M[K] for the
twisted module; thus

M[K] = Z[K] ⊗Z M.

Clearly, M[K] = M if 2M = 0.

Since S2 is commutative, there is a group structure on the set H1(F, S2), which
can be transported to the set of isomorphism classes of quadratic étale F -algebras.
ForK, K ′ quadratic étale F -algebras, the sum [K]+[K ′] is the class of the quadratic
étale F -algebra

K ∗K ′ = {x ∈ K ⊗K ′ | (ιK ⊗ ιK′)(x) = x }(30.8)

where ιK , ιK′ are the nontrivial automorphisms of K and K ′ respectively. We say
that K ∗K ′ is the product algebra of K and K ′. If charF 6= 2, we have

H1(F, S2) = H1(F,µ2) ' F×/F×2.

To any α ∈ F×, the corresponding quadratic étale algebra is

F (
√
α) = F [X ]/(X2 − α).

In this case

F (
√
α) ∗ F (

√
α′) = F (

√
αα′).
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If charF = 2, we have

H1(F, S2) = H1(F,Z/2Z) ' F/℘(F ).

To any α ∈ F , the corresponding quadratic étale algebra is

F
(
℘−1(α)

)
= F [X ]/(X2 +X + α).

In this case

F
(
℘−1(α)

)
∗ F

(
℘−1(α′)

)
= F

(
℘−1(α+ α′)

)
.

A direct computation shows:

(30.9) Proposition. Let K, K ′ be quadratic étale F -algebras. For any Γ-module

M ,

M[K][K′] = M[K∗K′].

In particular, M[K][K] = M .

Now, let K be a quadratic étale F -algebra which is a field and let Γ0 ⊂ Γ be the
absolute Galois group of K. Let M be a Γ-module. Recall from §?? the induced
Γ-module IndΓ

Γ0
M , which in this case can be defined as

IndΓ
Γ0
M = Map(Γ/Γ0,M)

(see (??)). The map ε : IndΓ
Γ0
M → M which takes f to

∑
x∈Γ/Γ0

f(x) is a Γ-

module homomorphism. Its kernel can be identified to M[K] by mapping m ∈M[K]

to the map i(m) which carries the trivial coset to m and the nontrivial coset to
−m. Thus, we have an exact sequence of Γ-modules

0→M[K]
i−→ IndΓ

Γ0
M

ε−→M → 0.

For ` ≥ 0, Shapiro’s lemma yields a canonical isomorphism H `(F, IndΓ
Γ0
M) =

H`(K,M). Under this isomorphism, the map induced by i (resp. ε) is the restric-
tion (resp. corestriction) homomorphism (see Brown [?, p. 81]). The cohomology
sequence associated to the sequence above therefore takes the form

0→ H0(F,M[K])
res−−→H0(K,M)

cor−−→ H0(F,M)
δ0−→ . . .

. . .

. . .
δ`−1

−−−→ H`(F,M[K])
res−−→H`(K,M)

cor−−→ H`(F,M)
δ`

−→ . . . .

(30.10)

By substituting M[K] for M in this sequence, we obtain the exact sequence

0→ H0(F,M)
res−−→H0(K,M)

cor−−→ H0(F,M[K])
δ0−→ . . .

. . .

. . .
δ`−1

−−−→ H`(F,M)
res−−→H`(K,M)

cor−−→ H`(F,M[K])
δ`

−→ . . .

since M[K][K] = M by (??) and since M = M[K] as Γ0-module.

(30.11) Proposition. Assume K is a field. Then

H1(F,Z[K]) ' Z/2Z.

Moreover, for all ` ≥ 0, the connecting map δ` : H`(F,M) → H`+1(F,M[K]) in

(??) is the cup product with the nontrivial element ζK of H1(F,Z[K]), i.e.,

δ`(ξ) = ζK ∪ ξ for ξ ∈ H`(F,M).
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Proof : The first part follows from the long exact sequence (??) with M = Z. The
second part is verified by an explicit cochain calculation.

A cocycle representing the nontrivial element ζK ∈ H1(F,Z[K]) is given by the
map

σ 7→
{

0 if σ ∈ Γ0,

1 if σ ∈ Γ r Γ0.

Therefore, the map H1(F,Z[K])→ H1(F,Z/2Z) = H1(F, S2) induced by reduction
modulo 2 carries ζK to the cocycle associated to K.

(30.12) Corollary. Assume K is a field. Write [K] for the cocycle in H1(F, S2)
associated to K.

(1) For any Γ-module M such that 2M = 0, there is a long exact sequence

0→ H0(F,M)
res−−→H0(K,M)

cor−−→ H0(F,M)
[K]∪−−−→ . . .

. . .

. . .
[K]∪−−−→ H`(F,M)

res−−→H`(K,M)
cor−−→ H`(F,M)

[K]∪−−−→ . . . .

(2) Suppose M is a Γ-module for which multiplication by 2 is an isomorphism. For

all ` ≥ 0, there is a split exact sequence

0→ H`(F,M[K])
res−−→ H`(K,M)

cor−−→ H`(F,M)→ 0.

The splitting maps are 1
2 cor: H`(K,M) → H`(F,M[K]) and 1

2 res: H`(F,M) →
H`(K,M).

Proof : (??) follows from (??) and the description of ζK above.
(??) follows from cor ◦ res = [K :F ] = 2 (see Brown [?, Chapter 3, Proposi-

tion (9.5)]), since multiplication by 2 is an isomorphism.

For the sequel, the case where M = µn(Fsep) is particularly relevant. The
Γ-module µn(Fsep)[K] can be viewed as the module of Fsep-points of the group
scheme

µn[K] = ker
(
RK/F (µn,K)

NK/F−−−−→ µn
)
.

We next give an explicit description of the group H1(F,µn[K]).

(30.13) Proposition. Let F be an arbitrary field and let n be an integer which is

not divisible by charF . For any étale quadratic F -algebra K, there is a canonical

isomorphism

H1(F,µn[K]) '
{ (x, y) ∈ F× ×K× | xn = NK/F (y) }

{ (NK/F (z), zn) | z ∈ K× } .

Proof : Assume first K = F ×F . Then H1(F,µn[K]) = H1(F,µn) ' F×/F×n. On

the other hand, the map
(
x, (y1, y2)

)
7→ y2 induces an isomorphism from the factor

group on the right side to F×/F×n, and the proof is complete.
Assume next that K is a field. Define a group scheme T over F as the kernel

of the map Gm×RK/F (Gm,K)→ Gm given by (x, y) 7→ xnNK/F (y)−1 and define

θ : RK/F (Gm,K)→ T
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by θ(z) =
(
NK/F (z), zn

)
. The kernel of θ is µn[K], and we have an exact sequence

1→ µn[K] → RK/F (Gm,K)
θ−→ T→ 1.

By Hilbert’s Theorem 90 and Shapiro’s lemma (??) and (??), we have

H1
(
F,RK/F (Gm,K)

)
= 1,

hence the induced cohomology sequence yields an exact sequence

K× θ−→ T(F )→ H1(F,µn[K])→ 1.

If K is a field with absolute Galois group Γ0 ⊂ Γ, an explicit description of the
isomorphism

{ (x, y) ∈ F× ×K× | xn = NK/F (y) }
{

(
NK/F (z), zn

)
| z ∈ K× }

∼−→ H1(F,µn[K])

is given as follows: for (x, y) ∈ F× ×K× such that xn = NK/F (y), choose ξ ∈ F×sep
such that ξn = y. A cocycle representing the image of (x, y) in H1(F,µn[K]) is
given by

σ 7→
{
σ(ξ)ξ−1 if σ ∈ Γ0,

x
(
σ(ξ)ξ

)−1
if σ ∈ Γ r Γ0.

Similarly, if K = F × F , the isomorphism

F×/F×n ∼−→ H1(F,µn)

associates to x ∈ F× the cohomology class of the cocycle σ 7→ σ(ξ)ξ−1, where
ξ ∈ F×sep is such that ξn = x.

(30.14) Corollary. Suppose K is a quadratic separable field extension of F . Let

K1 = {x ∈ K× | NK/F (x) = 1 }. For every odd integer n which is not divisible by

charF , there is a canonical isomorphism

H1(F,µn[K]) ' K1/(K1)n.

Proof : For (x, y) ∈ F× ×K× such that xn = NK/F (y), let

ψ(x, y) = y · (xn−1
2 y−1)n ∈ K1.

A computation shows that ψ induces an isomorphism

{ (x, y) ∈ F× ×K× | xn = NK/F (y) }
{ (NK/F (z), zn) | z ∈ K× }

∼−→ K1/(K1)n.

The corollary follows from (??). (An alternate proof can be derived from (??).)

Finally, we use Corollary (??) to relate H2(F,µn[K]) to central simple F -
algebras with unitary involution with center K.

(30.15) Proposition. Suppose K is a quadratic separable field extension of F .

Let n be an odd integer which is not divisible by charF . There is a natural bijection

between the group H2(F,µn[K]) and the set of Brauer classes of central simple K-

algebras of exponent dividing n which can be endowed with a unitary involution

whose restriction to F is the identity.
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Proof : The norm map NK/F : n Br(K)→ n Br(F ) corresponds to the corestriction

map cor: H2(K,µn)→ H2(F,µn) under any of the canonical (opposite) identifica-
tions n Br(K) = H2(K,µn) (see Riehm [?]). Therefore, by Theorem (??), Brauer
classes of central simple K-algebras which can be endowed with a unitary involu-
tion whose restriction to F is the identity are in one-to-one correspondence with
the kernel of the corestriction map. Since n is odd, Corollary (??) shows that this
kernel can be identified with H2(F,µn[K]).

(30.16) Definition. Let K be a quadratic separable field extension of F and let n
be an odd integer which is not divisible by charF . For any central simple F -algebra
with unitary involution (B, τ) of degree n with center K, we denote by g2(B, τ) the
cohomology class in H2(F,µn[K]) corresponding to the Brauer class of B under the

bijection of the proposition above, identifying n Br(K) to H2(K,µn) by the crossed
product construction. This cohomology class is given by

g2(B, τ) = 1
2 cor[B] ∈ H2(F,µn[K]),

where cor: H2(K,µn) → H2(F,µn[K]) is the corestriction32 map; it is uniquely
determined by the condition

res
(
g2(B, τ)

)
= [B] ∈ H2(K,µn),

where res: H2(F,µn[K])→ H2(K,µn) is the restriction map.

From the definition, it is clear that for (B, τ), (B′, τ ′) central simple F -algebras
with unitary involution of degree n with the same center K, we have

g2(B, τ) = g2(B
′, τ ′) if and only if B ' B′ as K-algebras.

Thus, g2(B, τ) does not yield any information on the involution τ .
Note that g2(B, τ) is the opposite of the Tits class t(B, τ) defined in a more

general situation in (??), because we are using here the identification H2(K,µn) =

n Br(K) afforded by the crossed product construction instead of the identification
given by the connecting map of (??).

If the center K of B is not a field, then (B, τ) ' (E ×Eop, ε) for some central
simple F -algebra E of degree n, where ε is the exchange involution. In this case,
we define a class g2(B, τ) ∈ H2(F,µn[K]) = H2(F,µn) by

g2(B, τ) = [E],

the cohomology class corresponding to the Brauer class of E by the crossed product
construction.

30.C. Cohomological invariants of algebras of degree three. As a first
illustration of Galois cohomology techniques, we combine the preceding results with
those of Chapter ?? to obtain cohomological invariants for cubic étale algebras and
for central simple algebras with unitary involution of degree 3. Cohomological
invariants will be discussed from a more general viewpoint in §??.

32By contrast, observe that [B] is in the kernel of the corestriction map cor : H2(K,�n) →

H2(F,�n), by Theorem (??).
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Étale algebras of degree 3. Cubic étale algebras, i.e., étale algebras of di-
mension 3, are classified by H1(F, S3) (see (??)). Let L be a cubic étale F -algebra
and let φ : Γ→ S3 be a cocycle defining L. Since the Γ-action on S3 is trivial, the
map φ is a homomorphism which is uniquely determined by L up to conjugation.
We say that L is of type iS3 (for i = 1, 2, 3 or 6) if imφ ⊂ S3 is a subgroup of
order i. Thus,

L is of type 1S3 if and only if L ' F × F × F ,

L is of type 2S3 if and only if L ' F×K for some quadratic separable
field extension K of F ,

L is of type 3S3 if and only if L is a cyclic field extension of F ,

L is of type 6S3 if and only if L is a field extension of F which is not Galois.

Let A3 be the alternating group on 3 elements. The group S3 is the semidirect
product A3 o S2, so the exact sequence

1→ A3
i−→ S3

sgn−−→ S2 → 1(30.17)

is split. In the induced sequence in cohomology

1→ H1(F,A3)
i1−→ H1(F, S3)

sgn1

−−−→ H1(F, S2)→ 1

the map sgn1 associates to an algebraL its discriminant algebra ∆(L). The (unique)
section of sgn1 is given by [K] 7→ [F ×K], for any quadratic étale algebra K. The
set H1(F,A3) classifies Galois A3-algebras (see (??)); it follows from the sequence
above (by an argument similar to the one used for H1

(
F,AutZ(B)

)
in (??)) that

they can as well be viewed as pairs (L,ψ) where L is cubic étale over F and ψ is an
isomorphism ∆(L) ∼−→ F×F . The group S2 acts on H1(F,A3) by (L, φ) 7→ (L, ι◦φ)
where ι is the exchange map. Let K be a quadratic étale F -algebra. We use the
associated cocycle Γ → S2 to twist the action of Γ on the sequence (??). In the
corresponding sequence in cohomology:

1→ H1(F,A3[K])
i1−→ H1(F, S3[K])

sgn1

−−−→ H1(F, S2)→ 1

the distinguished element of H1(F, S3[K]) is the class of F × K and the pointed

set H1(F,A3[K]) classifies pairs (L,ψ) with ψ an isomorphism ∆(L) ∼−→ K. Note

that, again, S2 operates on H1(F,A3[K]). We now define two cohomological invari-

ants for cubic étale F -algebras: f1(L) ∈ H1(F, S2) is the class of the discriminant
algebra ∆(L) of L, and g1(L) is the class of L in the orbit spaceH1

(
F,A3[∆(L)]

)
/S2.

(30.18) Proposition. Cubic étale algebras are classified by the cohomological in-

variants f1(L) and g1(L). In particular L is of type 1S3 if g1(L) = 0 and f1(L) = 0,
of type 2S3 if g1(L) = 0 and f1(L) 6= 0, of type 3S3 if g1(L) 6= 0 and f1(L) = 0,
and of type 6S3 if g1(L) 6= 0 and f1(L) 6= 0.

Proof : The fact that cubic étale algebras are classified by the cohomological invari-
ants f1(L) and g1(L) follows from the exact sequence above. In particular L is a
field if and only if g1(L) 6= 0 and is a cyclic algebra if and only if f1(L) = 0.

Let F be a field of characteristic not 3 and let F (ω) = F [X ]/(X2+X+1), where
ω is the image of X in the factor ring. (Thus, F (ω) ' F (

√
−3) if charF 6= 2.) We

have µ3 = A3[F (ω)] so that H1(F,µ3) classifies pairs (L,ψ) where L is a cubic étale

F -algebra and ψ is an isomorphism ∆(L) ∼−→ F (ω). The action of S2 interchanges
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the pairs (L,ψ) and (L, ιF (ω) ◦ψ). In particular H1(F,µ3) modulo the action of S2

classifies cubic étale F -algebras with discriminant algebra F (ω).

(30.19) Proposition. Let K be a quadratic étale F -algebra and let x ∈ K1 be an

element of norm 1 in K. Let K( 3
√
x) = K[t]/(t3 − x) and let ξ = 3

√
x be the image

of t in K( 3
√
x). Extend the nontrivial automorphism ιK to an automorphism ι of

K( 3
√
x) by setting ι(ξ) = ξ−1. Then, the F -algebra L = {u ∈ K( 3

√
x) | ι(u) = u }

is a cubic étale F -algebra with discriminant algebra K ∗F (ω). Conversely, suppose

L is a cubic étale F -algebra with discriminant ∆(L), and let K = F (ω) ∗ ∆(L).
Then, there exists x ∈ K1 such that

L ' {u ∈ K( 3
√
x) | ι(u) = u }.

Proof : If x = ±1, then K( 3
√
x) ' K × K(ω) and L ' F ×

(
K ∗ F (ω)

)
, hence

the first assertion is clear. Suppose x 6= ±1. Since every element in K( 3
√
x) has a

unique expression of the form a+ bξ + cξ−1 with a, b, c ∈ K, it is easily seen that
L = F (η) with η = ξ + ξ−1. We have

η3 − 3η = x+ x−1

with x + x−1 6= ±2, hence Proposition (??) shows that ∆(L) ' K ∗ F (ω). This
completes the proof of the first assertion.

To prove the second assertion, we use the fact that cubic étale F -algebras
with discriminant ∆(L) are in one-to-one correspondence with the orbit space
H1(F,A3[∆(L)])/S2. For K = F (ω) ∗∆(L), we have A3[∆(L)] = µ3[K], hence Corol-

lary (??) yields a bijection H1(F,A3[∆(L)]) ' K1/(K1)3. If x ∈ K1 corresponds to

the isomorphism class of L, then L ' {u ∈ K( 3
√
x) | ι(u) = u }.

Central simple algebras with unitary involution. To every central simple
F -algebra with unitary involution (B, τ) we may associate the cocycle [K] of its
center K. We let

f1(B, τ) = [K] ∈ H1(F, S2).

Now, assume charF 6= 2, 3 and let (B, τ) be a central simple F -algebra with
unitary involution of degree 3. Let K be the center of B. A secondary invariant
g2(B, τ) ∈ H2(F,µ3[K]) is defined in (??). The results in §?? show that g2(B, τ)
has a special form:

(30.20) Proposition. For any central simple F -algebra with unitary involution

(B, τ) of degree 3 with center K, there exist α ∈ H1(F,Z/3Z[K]) and β ∈ H1(F,µ3)
such that

g2(B, τ) = α ∪ β.

Proof : Suppose first that K ' F × F . Then (B, τ) ' (E × Eop, ε) for some
central simple F -algebra E of degree 3, where ε is the exchange involution, and
g2(B, τ) = [E]. Wedderburn’s theorem on central simple algebras of degree 3 (see
(??)) shows that E is cyclic, hence Proposition (??) yields the required decompo-
sition of g2(B, τ).

Suppose next that K is a field. Albert’s theorem on central simple algebras of
degree 3 with unitary involution (see (??)) shows that B contains a cubic étale F -
algebra L with discriminant isomorphic toK. By (??), we may find a corresponding



§31. COHOMOLOGICAL INVARIANTS 423

cocycle α ∈ H1(F,Z/3Z[K]) = H1(F,A3[K]) (whose orbit under S2 is g1(L)). The
K-algebra LK = L⊗F K is cyclic and splits B, hence by (??)

[B] = res(α) ∪ (b) ∈ H2(K,µ3)

for some (b) ∈ H1(K,µ3), where res: H1(F,Z/3Z[K]) → H1(K,Z/3Z) is the
restriction map. By taking the image of each side under the corestriction map
cor: H2(K,µ3)→ H2(F,µ3[K]), we obtain by the projection (or transfer) formula

(see Brown [?, (3.8), p. 112])

cor[B] = α ∪ cor(b)

hence g2(B, τ) = α ∪ β with β = 1
2 cor(b). (Here, cor(b) =

(
NK/F (b)

)
is the image

of (b) under the corestriction map cor: H1(K,µ3)→ H1(F,µ3).)

The 3-fold Pfister form π(τ) of (??) yields a third cohomological invariant of
(B, τ) via the map e3 of (??). We set

f3(B, τ) = e3
(
π(τ)

)
∈ H3(F,µ2).

This is a Rost invariant in the sense of §??, see (??).
Since the form π(τ) classifies the unitary involutions on B up to isomorphism

by (??), we have a complete set of cohomological invariants for central simple F -
algebras with unitary involution of degree 3:

(30.21) Theorem. Let F be a field of characteristic different from 2, 3. Triples

(B,K, τ), where K is a quadratic separable field extension of F and (B, τ) is a cen-

tral simple F -algebra with unitary involution of degree 3 with center K, are classified

over F by the three cohomological invariants f1(B, τ), g2(B, τ) and f3(B, τ).

§31. Cohomological Invariants

In this section, we show how cohomology can be used to define various canonical
maps and to attach invariants to algebraic groups. In §??, we use cohomology
sequences to relate multipliers and spinor norms to connecting homomorphisms.
We also define the Tits class of a simply connected semisimple group; it is an
invariant of the group in the second cohomology group of its center. In §??, we
take a systematic approach to the definition of cohomological invariants of algebraic
groups and define invariants of dimension 3.

Unless explicitly mentioned, the base field F is arbitrary throughout this sec-
tion. However, when using the cohomology of µn, we will need to assume that
charF does not divide n.

31.A. Connecting homomorphisms. Let G be a simply connected semi-
simple group with center C and let G = G/C. The exact sequence

1→ C → G→ G→ 1

yields connecting maps in cohomology

δ0 : H0(F,G)→ H1(F,C) and δ1 : H1(F,G)→ H2(F,C).

We will give an explicit description of δ0 for each type of classical group and use
δ1 to define the Tits class of G.
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Unitary groups. Let (B, τ) be a central simple F -algebra with unitary invo-
lution of degree n, and let K be the center of B. As observed in §??, we have an
exact sequence of group schemes

1→ µn[K] → SU(B, τ)→ PGU(B, τ)→ 1(31.1)

since the kernel N of the norm map RK/F (µn,K)→ µn,F is µn[K].

Suppose charF does not divide n, so that µn[K] is smooth. By Proposition (??),

we derive from (??) an exact sequence of Galois modules. The connecting map

δ0 : PGU(B, τ)→ H1(F,µn[K])

can be described as follows: for g ∈ GU(B, τ),

δ0(g ·K×) =
[
µ(g),NrdB(g)

]

where µ(g) = τ(g)g ∈ F× is the multiplier of g, and [x, y] is the image of (x, y) ∈
F× ×K× in the factor group

{ (x, y) ∈ F× ×K× | xn = NK/F (y) }
{

(
NK/F (z), zn

)
| z ∈ K× } ' H1(F,µn[K])

(see (??)).
If K ' F × F , then (B, τ) ' (A×Aop, ε) for some central simple F -algebra A

of degree n, where ε is the exchange involution. We have PGU(B, τ) ' PGL1(A)
and SU(B, τ) ' SL1(A), and the exact sequence (??) takes the form

1→ µn → SL1(A)→ PGL1(A)→ 1.

The connecting map δ0 : PGL1(A) → H1(F,µn) = F×/F×n is given by the re-
duced norm map.

Orthogonal groups. Let (V, q) be a quadratic space of odd dimension. There
is an exact sequence of group schemes

1→ µ2 → Spin(V, q)→ O+(V, q)→ 1

(see §??). If charF 6= 2, the connecting map δ0 : O+(V, q)→ H1(F,µ2) = F×/F×2

is the spinor norm.
Let (A, σ, f) be a central simple F -algebra of even degree 2n with quadratic

pair. The center C of the spin group Spin(A, σ, f) is determined in §??: if Z is
the center of the Clifford algebra C(A, σ, f), we have

C =

{
RZ/F (µ2) if n is even,

µ4[Z] if n is odd.

Therefore, we have exact sequences of group schemes

1→ RZ/F (µ2)→ Spin(A, σ, f)→ PGO+(A, σ, f)→ 1 if n is even,

1→ µ4[Z] → Spin(A, σ, f)→ PGO+(A, σ, f)→ 1 if n is odd.

Suppose charF 6= 2. The connecting maps δ0 in the associated cohomology
sequences are determined in §??. If n is even, the map

δ0 : PGO+(A, σ, f)→ H1
(
F,RZ/F (µ2)

)
= H1(Z,µ2) = Z×/Z×2

coincides with the map S of (??), see Proposition (??). If n is odd, the map

δ0 : PGO+(A, σ, f)→ H1(F,µ4[Z])
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is defined in (??), see Proposition (??). Note that the discussion in §?? does not

use the hypothesis that charF 6= 2. This hypothesis is needed here because we
apply (??) to derive exact sequences of Galois modules from the exact sequences
of group schemes above.

Symplectic groups. Let (A, σ) be a central simple F -algebra with symplectic
involution. We have an exact sequence of group schemes

1→ µ2 → Sp(A, σ)→ PGSp(A, σ) → 1

(see §??). If charF 6= 2, the connecting homomorphism

δ0 : PGSp(A, σ)→ H1(F,µ2) = F×/F×2

is induced by the multiplier map: it takes g · F× ∈ PGSp(A, σ) to µ(g) · F×2.

The Tits class. Let G be a split simply connected or adjoint semisimple group
over F , let T ⊂ G be a split maximal torus, Π a system of simple roots in the root
system of G with respect to T . By (??) and (??), the homomorphism

Aut(G)→ Aut(Dyn(G))(31.2)

is a split surjection. A splitting i : Aut
(
Dyn(G)

)
→ Aut(G) can be chosen in such a

way that any automorphism in the image of i leaves the torus T invariant. Assume
that the Galois group Γ acts on the Dynkin diagram Dyn(G), or equivalently,
consider a continuous homomorphism

ϕ ∈ Hom
(
Γ,Aut

(
Dyn(G)

))
= H1

(
F,Aut

(
Dyn(G)

))
.

Denote by γ a cocycle representing the image of ϕ in H1
(
F,Aut(Gsep)

)
under the

map induced by the splitting i. Since γ normalizes T , the twisted groupGγ contains
the maximal torus Tγ . Moreover, the natural action of Γ on Tγ leaves Π invariant,
hence Gγ is a quasisplit group. In fact, up to isomorphism Gγ is the unique simply
connected quasisplit group with Dynkin diagram Dyn(G) and with the given action
of Γ on Dyn(G) (see (??)). Twisting G in (??) by γ, we obtain:

(31.3) Proposition. Let G be a quasisplit simply connected group. Then the nat-

ural homomorphism Aut(G)→ Aut(Dyn(G)) is surjective.

Let G be semisimple group over F . By §?? a twisted form G′ of G corresponds
to an element ξ ∈ H1

(
F,Aut(Gsep)

)
. We say that G′ is an inner form of G if ξ

belongs to the image of the map

αG : H1(F,G) −→ H1
(
F,Aut(Gsep)

)

induced by the homomorphism Int : G = G/C → Aut(G), where C is the center of
G. Since G acts trivially on C, the centers of G and G′ are isomorphic (as group
schemes of multiplicative type).

(31.4) Proposition. Any semisimple group is an inner twisted form of a unique

quasisplit group up to isomorphism.

Proof : Since the centers of inner twisted forms are isomorphic and all the groups
which are isogenous to a simply connected group correspond to subgroups in its
center, we may assume that the given group G is simply connected. Denote by
Gd the split twisted form of G, so that G corresponds to some element ρ ∈
H1

(
F,Aut(Gdsep)

)
. Denote by γ ∈ H1

(
F,Aut(Gdsep)

)
the image of ρ under the



426 VII. GALOIS COHOMOLOGY

composition induced by Aut(Gd)→ Aut Dyn(Gd)
i→ Aut(Gd), where i is the split-

ting considered above. We prove that the quasisplit group Gdγ is an inner twisted

form of G = Gdρ. By (??), there is a bijection

θρ : H1
(
F,Aut(Gsep)

) ∼−→ H1
(
F,Aut(Gdsep)

)

taking the trivial cocycle to ρ. Denote by γ0 the element in H1
(
F,Aut(Gsep)

)
such

that θ(γ0) = γ. Since ρ and γ have the same image in H1
(
F,Aut Dyn(Gdsep)

)
,

the trivial cocycle and γ0 have the same images in H1
(
F,Aut Dyn(Gsep)

)
, hence

Theorem (??) shows that γ0 belongs to the image ofH1(F,G)→ H1
(
F,Aut(Gsep)

)
,

i.e., the group Gγ0 ' Gdγ is a quasisplit inner twisted form of G.

Until the end of the subsection we shall assume that G is a simply connected
semisimple group. Denote by ξG the element in H1

(
F,Aut(Gsep)

)
corresponding

to the (unique) quasisplit inner twisted form of G. In general, the map αG is not
injective. Nevertheless, we have

(31.5) Proposition. There is only one element νG ∈ H1(F,G) such that

αG(νG) = ξG.

Proof : Denote Gq the quasisplit inner twisted form of G. By (??), there is a
bijection between α−1

G (ξG) and the factor group of Aut Dyn(Gq) by the image of
Aut(Gq)→ Aut

(
Dyn(Gq)

)
. But the latter map is surjective (see (??)).

Let C be the center of G. The exact sequence 1 → C → G → G → 1 induces
the connecting map

δ1 : H1(F,G) −→ H2(F,C).

The Tits class of G is the element tG = −δ1(νG) ∈ H2(F,C).

(31.6) Proposition. Let χ ∈ C∗ be a character. Denote by Fχ the field of defini-

tion of χ and by Aχ its minimal Tits algebra. The image of the Tits class tG under

the composite map

H2(F,C)
res−−→ H2(Fχ, C)

χ∗−→ H2(Fχ,Gm) = Br(Fχ)

is [Aχ]. (We use the canonical identification H2(Fχ,Gm) = Br(Fχ) given by the

connecting map of (??), which is the opposite of the identification given by the

crossed product construction.)

Proof : There is a commutative diagram (see §??)

1 −→ CFχ −→ GFχ −→ GFχ −→ 1

χ

y
y

y

1 −→ Gm −→ GL1(A) −→ PGL1(A) −→ 1

where A = Aχ. Therefore, it suffices to prove that the image of res(νG) under the
composite map

H1(Fχ, GFχ)→ H1
(
Fχ,PGL1(A)

)
→ H2(Fχ,Gm) = Br(Fχ)

is −[A]. The twist of the algebra A by a cocycle representing res(νG) is the Tits
algebra of the quasisplit group (GνG)Fχ , hence it is trivial. Therefore the image
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γ of res(νG) in H1
(
Fχ,PGL1(A)

)
corresponds to the split form PGLn(Fχ) of

PGL1(A), where n = deg(A). By (??), there is a commutative square

H1
(
Fχ,PGLn(Fχ)

)
−−−−→ Br(Fχ)

θγ

y
yg

H1
(
Fχ,PGL1(A)

)
−−−−→ Br(Fχ)

where g(v) = v+u and u is the image of γ in Br(Fχ). Pick ε ∈ Z1
(
Fχ,PGLn(Fχ)

)

such that the twisting of PGLn(Fχ) by ε equals PGL1(A). In other words, θγ(ε) =
1 and the image of ε in Br(Fχ) equals [A]. The commutativity of the diagram then
implies that u = −[A].

(31.7) Example. Let G = SU(B, τ) where (B, τ) is a central simple F -algebra
with unitary involution of degree n. Assume that charF does not divide n and let
K be the center of B. Since the center C of SU(B, τ) is µn[K], the Tits class tG
belongs to H2(F,µn[K]). Abusing terminology, we call it the Tits class of (B, τ)

and denote it by t(B, τ), i.e.,

t(B, τ) = tSU(B,τ) ∈ H2(F,µn[K]).

Suppose K is a field. For χ = 1 + nZ ∈ Z/nZ = C∗, the field of definition of χ is
K and the minimal Tits algebra is B, see §??. Therefore, Proposition (??) yields

resK/F
(
t(B, τ)

)
= [B] ∈ Br(K).

If n is odd, it follows from Corollary (??) that

t(B, τ) = 1
2 cor[B].

On the other hand, if n is even we may consider the character λ = n
2 + nZ ∈ C∗ of

raising to the power n
2 . The corresponding minimal Tits algebra is the discriminant

algebra D(B, τ), see §??. By (??) we obtain

λ∗
(
t(B, τ)

)
=

[
D(B, τ)

]
∈ Br(F ).

If K ' F × F we have (B, τ) = (A×Aop, ε) for some central simple F -algebra
A of degree n, where ε is the exchange involution. The commutative diagram with
exact rows

1 −−−−→ µn −−−−→ SLn −−−−→ PGLn −−−−→ 1
y

y
∥∥∥

1 −−−−→ Gm −−−−→ GLn −−−−→ PGLn −−−−→ 1

shows that t(B, τ) = [A] ∈ H2(F,µn) = nBr(F ).

(31.8) Example. Let G = Spin(V, q), where (V, q) is a quadratic space of odd
dimension. Suppose charF 6= 2. The center of G is µ2 and the Tits class tG ∈
H2(F,µ2) = 2Br(F ) is the Brauer class of the even Clifford algebra C0(V, q), since
the minimal Tits algebra for the nontrivial character is C0(V, q), see §??.

(31.9) Example. Let G = Sp(A, σ), where (A, σ) is a central simple F -algebra
with symplectic involution. Suppose charF 6= 2. The center of G is µ2 and the
Tits class tG ∈ H2(F,µ2) = 2Br(F ) is the Brauer class of the algebra A, see §??.
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(31.10) Example. Let G = Spin(A, σ, f), where (A, σ, f) is a central simple F -
algebra of even degree 2n with quadratic pair. Let Z be the center of the Clifford
algebra C(A, σ, f) and assume that charF 6= 2.

Suppose first that n is even. Then the center of G is RZ/F (µ2), hence

tG ∈ H2
(
F,RZ/F (µ2)

)
= H2(Z,µ2) = 2Br(Z).

The minimal Tits algebra corresponding to the norm character

λ : RZ/F (µ2)→ µ2 ↪→ Gm

is A, hence

corZ/F (tG) = [A] ∈ H2(F,µ2) = 2Br(F ).(31.11)

On the other hand, the minimal Tits algebras for the two other nontrivial characters
λ± are C(A, σ, f) (see §??), hence

tG =
[
C(A, σ, f)

]
∈ H2(Z,µ2) = 2Br(Z).(31.12)

Now, assume that n is odd. Then the center of G is µ4[Z], hence

tG ∈ H2(F,µ4[Z]).

By applying Proposition (??), we can compute the image of tG under the squaring
map

λ∗ : H2(F,µ4[Z])→ H2(F,µ2) = 2Br(F )

and under the restriction map

res : H2(F,µ4[Z])→ H2(Z,µ4) = 4Br(Z)

(or, equivalently, under the map H2(F,µ4[Z]) → H2
(
F,RZ/F (Gm,Z)

)
= Br(Z)

induced by the inclusion µ4[Z] ↪→ RZ/F (Gm,Z)). We obtain

λ∗(tG) = [A] and res(tG) =
[
C(A, σ, f)

]
.

Note that the fundamental relations (??) of Clifford algebras readily follow
from the computations above (under the hypothesis that charF 6= 2). If n is even,

(??) shows that
[
C(A, σ, f)

]2
= 1 in Br(Z) and (??) (together with (??)) implies

[
NZ/FC(A, σ, f)

]
= [A].

If n is odd we have

[AZ ] = res ◦λ∗(tG) = res(tG)2 =
[
C(A, σ, f)

]2

and

[
NZ/FC(A, σ, f)

]
= cor ◦ res(tG) = 0,

by (??). (See Exercise ?? for a cohomological proof of the fundamental relations
without restriction on charF .)
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31.B. Cohomological invariants of algebraic groups. Let G be an alge-
braic group over a field F . For any field extension E of F we consider the pointed
set

H1(E,G) = H1(E,GE)

of GE-torsors over E. A homomorphism E → L of fields over F induces a map of
pointed sets

H1(E,G)→ H1(L,G).

Thus, H1(?, G) is a functor from the category of field extensions of F (with mor-
phisms being field homomorphisms over F ) to the category of pointed sets.

Let M be a torsion discrete Galois module over F , i.e., a discrete module over
the absolute Galois group Γ = Gal(Fsep/F ). For a field extension E of F , M
can be endowed with a structure of a Galois module over E and hence the ordinary
cohomology groupsHd(E,M) are defined. Thus, for any d ≥ 0, we obtain a functor
Hd(?,M) from the category of field extensions of F to the category of pointed sets
(actually, the category of abelian groups). A cohomological invariant of the group G
of dimension d with coefficients in M is a natural transformation of functors

a : H1(?, G)→ Hd(?,M).

In other words, the cohomological invariant a assigns to any field extension E of F
a map of pointed sets

aE : H1(E,G)→ Hd(E,M),

such that for any field F -homomorphism E → L the following diagram commutes

H1(E,G)
aE−−−−→ Hd(E,M)

y
y

H1(L,G)
aL−−−−→ Hd(L,M).

The set Invd(G,M) of all cohomological invariants of the group G of dimension d
with coefficients in M forms an abelian group in a natural way.

(31.13) Example. Let G = GL(V ) or SL(V ). By Hilbert’s Theorem 90 (see
(??) and (??)) we have H1(E,G) = 1 for any field extension L of F . Hence

Invd(G,M) = 0 for any d and any Galois module M .

A group homomorphism α : G→ G′ over F induces a natural homomorphism

α∗ : Invd(G′,M)→ Invd(G,M).

A homomorphism of Galois modules g : M →M ′ yields a group homomorphism

g∗ : Invd(G,M)→ Invd(G,M ′).

For a field extension L of F there is a natural restriction homomorphism

res : Invd(G,M)→ Invd(GL,M).

Let L be a finite separable extension of F . If G is an algebraic group over L and M
is a Galois module over F , then the corestriction homomorphism for cohomology
groups and Shapiro’s lemma yield the corestriction homomorphism

cor: Invd(G,M)→ Invd
(
RL/F (G),M

)
.
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Invariants of dimension 1. Let G be an algebraic group over a field F . As
in §??, write π0(G) for the factor group of G modulo the connected component
of G. It is an étale group scheme over F .

Let M be a discrete Galois module over F and let

g : π0(Gsep)→M

be a Γ-homomorphism. For any field extension E of F we then have the following
composition

agE : H1(E,G)→ H1
(
E, π0(G)

)
→ H1(E,M)

where the first map is induced by the canonical surjection G → π0(G) and the
second one by g. We can view ag as an invariant of dimension 1 of the group G
with coefficients in M .

(31.14) Proposition. The map

HomΓ

(
π0(Gsep),M

)
→ Inv1(G,M) given by g 7→ ag

is an isomorphism.

In particular, a connected group has no nonzero invariants of dimension 1.

(31.15) Example. Let (A, σ, f) be a central simple F -algebra with quadratic pair
of degree 2n and let G = PGO(A, σ, f) be the corresponding projective orthog-
onal group. The set H1(F,G) classifies triples (A′, σ′, f ′) with a central simple
F -algebra A′ of degree 2n with an quadratic pair (σ′, f ′) (see §??). We have
π0(G) ' Z/2Z and the group Inv1(G,Z/2Z) is isomorphic to Z/2Z. The nontrivial
invariant

H1(F,G)→ H1(F,Z/2Z)

associates to any triple (A′, σ′, f ′) the sum [Z ′]+ [Z] of corresponding classes of the
discriminant quadratic extensions.

(31.16) Example. Let K be a quadratic étale F -algebra, let (B, τ) be a central
simple K-algebra of degree n with a unitary involution and set G = Aut(B, τ).
The set H1(F,G) classifies algebras of degree n with a unitary involution (see (??)).
Then π0(G) ' Z/2Z and, as in the previous example, the group Inv1(G,Z/2Z) is
isomorphic to Z/2Z. The nontrivial invariant

H1(F,G)→ H1(F,Z/2Z)

associates to any central simple F -algebra with unitary involution (B ′, τ ′) with
center K ′ the class [K ′] + [K].

Invariants of dimension 2. For any natural numbers i and n let µ⊗in (F ) be
the i-th tensor power of the group µn(F ). If n divides m, there is a natural injection

µ⊗in (F )→ µ⊗im (F ).

The groups µ⊗in (F ) form an injective system with respect to the family of injections
defined above. We denote the direct limit of this system, for all n prime to the
characteristic of F , by Q/Z(i)(F ). For example, Q/Z(1)(F ) is the group of all
roots of unity in F .

The group Q/Z(i)(Fsep) is endowed in a natural way with a structure of a
Galois module. We set

Hd
(
F,Q/Z(i)

)
= Hd

(
F,Q/Z(i)(Fsep)

)
.
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In the case where charF = p > 0, this group can be modified by adding an
appropriate p-component. In particular, the group H2

(
F,Q/Z(1)

)
is canonically

isomorphic to Br(F ), while before the modification it equals lim−→H2
(
F, µn(Fsep)

)

which is the subgroup of elements in Br(F ) of exponent prime to p.
Let G be a connected algebraic group over a field F . Assume that we are given

an exact sequence of algebraic groups

1→ Gm,F → G′ → G→ 1.(31.17)

For any field extension E of F , this sequence induces a connecting mapH1(E,G)→
H2(E,Gm,F ) which, when composed with the identifications

H2(E,Gm,F ) = Br(E) = H2
(
E,Q/Z(1)

)
,

provides an invariant aE of dimension 2 of the group G. On the other hand, the
sequence (??) defines an element of the Picard group Pic(G). It turns out that the
invariant a depends only on the element of the Picard group and we have a well
defined group homomorphism

β : Pic(G)→ Inv2
(
G,Q/Z(1)

)
.

(31.18) Proposition. The map β is an isomorphism.

Since the n-torsion part of Q/Z(1) equals µn, we have

(31.19) Corollary. If n is not divisible by charF , then

Inv2
(
G,µn(Fsep)

)
' nPic(G).

(31.20) Example. Let G be a semisimple algebraic group, let π : G̃ → G be a
universal covering and set Z = ker(π). There is a natural isomorphism

Z∗ ∼−→ Pic(G) ∼−→ Inv2
(
G,Q/Z(1)

)
.

Hence attached to each character χ ∈ Z∗ is an invariant which we denote by aχ.

The construction is as follows. Consider the group G′ = (G̃×Gm,F )/Z where Z is
embedded into the product canonically on the first factor and by the character χ
on the second. There is an exact sequence

1→ Gm,F → G′ → G→ 1.

We define aχ to be the invariant associated to this exact sequence as above.
The conjugation homomorphism G→ Aut(G) induces the map

H1(F,G)→ H1
(
F,Aut(Gsep)

)
.

Hence, associated to each γ ∈ H1(F,G) is a twisted form Gγ of G (called an inner
form of G). If we choose γ such that Gγ is quasisplit (i.e., Gγ contains a Borel
subgroup defined over F ), then

aχF (γ) = [Aχ] ∈ Br(F )

where Aχ is the Tits algebra associated to the character χ (see §??).

(31.21) Example. Let T be an algebraic torus over F . Then

Pic(T ) ∼−→ H1
(
F, T ∗(Fsep)

)
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and all the cohomological invariants of dimension 2 of T with coefficients in Q/Z(1)
are given by the cup product

H1(F, T )⊗H1
(
F, T ∗(Fsep)

)
→ H2(F, F×sep) = H2

(
F,Q/Z(1)

)

associated to the natural pairing

T (Fsep)⊗ T ∗(Fsep)→ F×sep.

Invariants of dimension 3. Let G be an algebraic group over a field F .
Assume first that F is separably closed. A loop in G is a group homomorphism
Gm,F → G over F . Write G∗ for the set of all loops in G. In general there is no
group structure on G∗, but if f and h are two loops with commuting images, then
the pointwise product fh is also a loop. In particular, for any integer n and any
loop f the nth power fn is defined. For any g ∈ G(F ) and any loop f , write gf for
the loop

Gm,F
f−→ G

Int(g)−−−→ G.

Consider the set Q(G) of all functions q : G∗ → Z, such that

(a) q(gf) = q(f) for all g ∈ G(F ) and f ∈ G∗,
(b) for any two loops f and h with commuting images, the function

Z× Z→ Z, (k,m) 7→ q(fkhm)

is a quadratic form.

There is a natural abelian group structure on Q(G).
Assume now that F is an arbitrary field. There is a natural action of the

absolute Galois group Γ on the set of loops in Gsep and hence on Q(Gsep). We set

Q(G) = Q(Gsep)Γ.

(31.22) Example. Let T be an algebraic torus. Then T∗(Fsep) is the group of
cocharacters of T and

Q(T ) = S2
(
T ∗(Fsep)

)Γ

is the group of Galois invariant integral quadratic forms on T∗(Fsep).

(31.23) Example. Let G = GL(V ) and f ∈ G∗(Fsep) be a loop. We can view f as
a representation of Gm,F . By the theory of representations of diagonalizable groups
(see §??), f is uniquely determined by its weights χai , i = 1, 2, . . . , n = dim(V )
where χ is the canonical character of Gm,F . The function qV on G∗(Fsep) defined
by

qV (f) =

n∑

i=1

a2
i

clearly belongs to Q(G).

A group homomorphism G→ G′ over F induces a map of loop sets G∗(Fsep)→
G′∗(Fsep) and hence a group homomorphism

Q(G′)→ Q(G),

making Q a contravariant functor from the category of algebraic groups over F to
the category of abelian groups.
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Let G and G′ be two algebraic groups over F . The natural embeddings of G
and G′ in G×G′ and both projections from the product G×G′ to its factors induce
a natural isomorphism of Q(G)⊕Q(G′) with a direct summand of Q(G×G′).

(31.24) Lemma. If G∗(Fsep) 6= 1, then Q(G) 6= 0.

Proof : Choose an embedding G ↪→ GL(V ). Since G∗(Fsep) 6= 1, the restriction of
the positive function qV (see Example (??)) on this set is nonzero.

Assume now that G is a semisimple algebraic group over F .

(31.25) Lemma. Q(G) is a free abelian group of rank at most the number of

simple factors of Gsep.

Proof : We may assume that F is separably closed. Let T be a maximal torus in G
defined over F . Since any loop in G is conjugate to a loop with values in T , the
restriction homomorphism Q(G)→ Q(T ) is injective. By Example (??), the group
Q(T ) is free abelian of finite rank, hence so is Q(G).

The Weyl group W acts naturally on Q(T ) and the image of the restriction ho-
momorphism belongs to Q(T )W . Hence any element in Q(G) defines a W -invariant
quadratic form on T∗ and hence on the Q-vector space T∗⊗Z Q. This space decom-
poses as a direct sum of subspaces according to the decomposition of G into the
product of simple factors and such a quadratic form (with values in Q) is known to
be unique (up to a scalar) on each component. Hence, the rank of Q(G) is at most
the number of simple components.

From Lemma (??) and the proof of Lemma (??) we obtain

(31.26) Corollary. If G is an absolutely simple algebraic group, then Q(G) is an

infinite cyclic group with a canonical generator which is a positive function.

(31.27) Corollary. Under the hypotheses of the previous corollary the homomor-

phism Q(G)→ Q(GL) is an isomorphism for any field extension L of F .

Proof : It suffices to consider the case L = Fsep. Since the group Q(G) is nontrivial,
the Galois action on the infinite cyclic group Q(GL) must be trivial, and hence
Q(G) = Q(GL)Γ = Q(GL).

(31.28) Example. Let G = SL(V ). As in Example (??), for i = 1, . . . , n =
dimV , one associates integers ai to a loop f . In our case the sum of all the ai is
even (in fact, zero), hence the sum of the squares of the ai is even. Therefore

q′V = 1
2qV ∈ Q(G).

It is easy to show that q′V is the canonical generator of Q(G).

(31.29) Corollary. If F is separably closed, then the rank of Q(G) equals the

number of simple factors of G.

Proof : Let G = G1 × · · · ×Gm where the Gi are simple groups. By Lemma (??),
rank

(
Q(G)

)
≤ m. On the other hand, the group Q(G) contains the direct sum of

the Q(Gi) which is a free group of rank m by Corollary (??).

(31.30) Proposition. Let G and G′ be semisimple algebraic groups. Then

Q(G×G′) = Q(G)⊕Q(G′).
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Proof : Clearly, we may assume that F is separably closed. The group Q(G) ⊕
Q(G′) is a direct summand of the free group Q(G×G′) and has the same rank by
Corollary (??), hence the claim.

Let L be a finite separable field extension of F and let G be a semisimple group
over L. Then the transfer RL/F (G) is a semisimple group over F .

(31.31) Proposition. There is a natural isomorphism Q(G) ∼−→ Q
(
RL/F (G)

)
.

Proof : Choose an embedding ρ : L→ Fsep and set

Γ′ = Gal
(
Fsep/ρ(L)

)
⊂ Γ.

The group RL/F (G)sep is isomorphic to the direct product of groups Gτ as τ varies
over the set X of all F -embeddings of L into Fsep (see Proposition (??)). Hence,
by Proposition (??),

Q
(
RL/F (G)sep

)
=

⊕

τ∈X
Q(Gτ ).

The Galois group Γ acts naturally on the direct sum, transitively permuting com-
ponents. Hence it is the induced Γ-module from the Γ′-module Q(Gρ). The propo-
sition then follows from the fact that for any Γ′-module M there is a natural
isomorphism between the group of Γ′-invariant elements in M and the group of
Γ-invariant elements in the induced module MapΓ′(Γ,M).

By Theorem (??), a simply connected semisimple group over F is isomorphic
to a product of groups of the form RL/F (G′) where L is a finite separable field
extension of F and G′ is an absolutely simple simply connected group over L.
Hence, Corollary (??) and Propositions (??), (??) yield the computation of Q(G)
for any simply connected semisimple group G.

A relation between Q(G) and cohomological invariants of dimension 3 of simply
connected semisimple groups is given by the following

(31.32) Theorem. Let G be a simply connected semisimple algebraic group over

a field F . Then there is a natural surjective homomorphism

γ(G) : Q(G)→ Inv3
(
G,Q/Z(2)

)
.

The naturality of γ in the theorem means, first of all, that for any group
homomorphism α : G→ G′ the following diagram commutes:

Q(G′)
γ(G′)−−−−→ Inv3

(
G′,Q/Z(2)

)
y

yα∗

Q(G)
γ(G)−−−−→ Inv3

(
G,Q/Z(2)

)
.

(31.33)

For any field extension L of F the following diagram also commutes:

Q(G)
γ(G)−−−−→ Inv3

(
G,Q/Z(2)

)
y

yres

Q(GL)
γ(GL)−−−−→ Inv3

(
GL,Q/Z(2)

)
.

(31.34)
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In addition, for a finite separable extension L of F and an algebraic group G over L
the following diagram is also commutative:

Q(G)
γ(G)−−−−→ Inv3

(
G,Q/Z(2)

)

o
y

ycor

Q
(
RL/F (G)

) γ
(
RL/F (G)

)
−−−−−−−−→ Inv3

(
RL/F (G),Q/Z(2)

)
.

(31.35)

Let G be an absolutely simple simply connected group over F . By Corol-
lary (??) and Theorem (??), the group Inv3

(
G,Q/Z(2)

)
is cyclic, generated by a

canonical element which we denote i(G) and call the Rost invariant of the group G.
The commutativity of diagram (??) and Corollary (??) show that for any field
extension L of F ,

resL/F
(
i(G)

)
= i(GL).

Let L be a finite separable field extension of F and let G be an absolutely
simple simply connected group over L. It follows from the commutativity of (??)
and Proposition (??) that the group Inv3

(
RL/F (G),Q/Z(2)

)
is cyclic and generated

by corL/F
(
i(G)

)
.

Let G be a simply connected semisimple group over F and let ρ : G → SL(V )
be a representation. The triviality of the right-hand group in the top row of the
following commutative diagram (see Example (??)):

Q
(
SL(V )

)
−−−−→ Inv3

(
SL(V ),Q/Z(2)

)
y

y

Q(G) −−−−→ Inv3
(
G,Q/Z(2)

)

shows that the image of Q
(
SL(V )

)
→ Q(G) belongs to the kernel of

γ : Q(G)→ Inv3
(
G,Q/Z(2)

)
.

One can prove that all the elements in the kernel are obtained in this way.

(31.36) Theorem. The kernel of γ : Q(G)→ Inv3
(
G,Q/Z(2)

)
is generated by the

images of Q
(
SL(V )

)
→ Q(G) for all representations of G.

(31.37) Corollary. Let G and G′ be simply connected semisimple groups over F .

Then

Inv3
(
G×G′,Q/Z(2)

)
= Inv3

(
G,Q/Z(2)

)
⊕ Inv3

(
G′,Q/Z(2)

)
.

(31.38) Corollary. Let L/F be a finite separable field extension, G be a simply

connected semisimple group over L. Then the corestriction map

cor: Inv3
(
G,Q/Z(2)

)
→ Inv3

(
RL/F (G),Q/Z(2)

)

is an isomorphism.

These two corollaries reduce the study of the group Inv3
(
G,Q/Z(2)

)
to the

case of an absolutely simple simply connected group G.
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Let α : G → G′ be a homomorphism of absolutely simple simply connected
groups over F . There is a unique integer nα such that the following diagram
commutes:

Z =−−−−→ Q(G′)

nα

y
yQ(α)

Z =−−−−→ Q(G).

If we have another homomorphism β : G′ → G′′, then clearly nβα = nβnα. Assume
that G′′ = GL(V ). It follows from the proof of Lemma (??) that nβ > 0 and
nβα > 0, hence nα is a natural number for any group homomorphism α.

Let ρ : G → SL(V ) be a representation. As we observed above, nρ · iG =
0. Denote nG the greatest common divisor of nρ for all representations ρ of the
group G. Clearly, nG · i(G) = 0. Theorem (??) then implies

(31.39) Proposition. Let G be an absolutely simple simply connected group. Then

Inv3
(
G,Q/Z(2)

)
is a finite cyclic group of order nG.

Let n be any natural number prime to charF . The exact sequence

1→ µ⊗2
n → Q/Z(2)

n−→ Q/Z(2)→ 1

yields the following exact sequence of cohomology groups

H2
(
F,Q/Z(2)

) n−→ H2
(
F,Q/Z(2)

)
→ H3(F, µ⊗2

n )→
→ H3

(
F,Q/Z(2)

) n−→ H3
(
F,Q/Z(2)

)
.

Since the group H2
(
F,Q/Z(2)

)
is n-divisible (see Merkurjev-Suslin [?]), the group

H3(F, µ⊗2
n ) is identified with the subgroup of elements of exponent n inH3

(
F,Q/Z(2)

)
.

Now let G be an absolutely simple simply connected group over F . By Propo-
sition (??), the values of the invariant i(G) lie in H3(F, µ⊗2

nG
), so that

Inv3
(
G,Q/Z(2)

)
= Inv3(G,µ⊗2

nG
).

In the following sections we give the numbers nG for all absolutely simple simply
connected groups. In some cases we construct the Rost invariant directly.

Spin groups of quadratic forms. Let F be a field of characteristic different
from 2. Let WF be the Witt ring of F and let IF be the fundamental ideal of
even-dimensional forms. The nth power InF of this ideal is generated by the classes
of n-fold Pfister forms.

To any 3-fold Pfister form 〈〈a, b, c〉〉 the Arason invariant associates the class

(a) ∪ (b) ∪ (c) ∈ H3(F,Z/2Z) = H3(F, µ⊗2
2 ),

see (??). The Arason invariant extends to a group homomorphism

e3 : I3F → H3(F,Z/2Z)

(see Arason [?]). Note that I3F consists precisely of the classes [q] of quadratic
forms q having even dimension, trivial discriminant, and trivial Hasse-Witt invari-
ant (see Merkurjev [?]).

Let q be a non-degenerate quadratic form over F . The group G = Spin(q)
is a simply connected semisimple group if dim q ≥ 3 and is absolutely simple if
dim q 6= 4. It is a group of type Bn if dim q = 2n+ 1 and of type Dn if dim q = 2n.
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Conversely, any absolutely simple simply connected group of type Bn is isomorphic
to Spin(q) for some q. (The same property does not hold for Dn.)

The exact sequence

1→ µ2 → Spin(q)
π−→ O+(q)→ 1(31.40)

gives the following exact sequence of pointed sets

H1
(
F,Spin(q)

) π∗−→ H1
(
F,O+(q)

) δ1−→ H2(F,µ2) = 2Br(F ).

The set H1
(
F,O+(q)

)
classifies quadratic forms of the same dimension and discrim-

inant as q, see (??). The connecting map δ1 takes such a form q′ to the Hasse-Witt
invariant e2

(
[q′]− [q]

)
∈ Br(F ). Thus, the image of π∗ consists of classes of forms

having the same dimension, discriminant, and Hasse-Witt invariant as q. Therefore,
π∗(u)− [q] ∈ I3F for any u ∈ H1

(
F,Spin(q)

)
.

The map

i
(
Spin(q)

)
: H1

(
F,Spin(q)

)
→ H3(F, µ⊗2

2 )(31.41)

defined by u 7→ e3
(
π∗(u) − [q]

)
gives rise to an invariant of Spin(q). It turns out

that this is the Rost invariant if dim q ≥ 5. If dim q = 5 or 6 and q is of maximal
Witt index, the anisotropic form representing π∗(u)− [q] is of dimension less than 8
and hence is trivial by the Arason-Pfister Hauptsatz. In these cases the invariant
is trivial and nG = 1. Otherwise the invariant is not trivial and nG = 2.

In the case where dim q = 4 the group G is a product of two groups of type A1

if disc q is trivial and otherwise is isomorphic to RL/F
(
SL1(C0)

)
where L/F is the

discriminant field extension and C0 = C0(q) (see (??) and §??). In the latter case
the group Inv3

(
G,Q/Z(2)

)
is cyclic and generated by the invariant described above.

This invariant is trivial if and only if the even Clifford algebra C0 is split.
If dim q = 3, then the described invariant is trivial since it is twice the Rost

invariant. In this case G = SL1(C0) is a group of type A1 and the Rost invariant
is described below.

Type An.
Inner forms. Let G be an absolutely simple simply connected group of inner

type An over F , so that G = SL1(A) for a central simple F -algebra of degree n+1.
It turns out that nG = e = exp(A), and the Rost invariant

i(G) : H1(F,G) = F×/Nrd(A×)→ H3(F, µ⊗2
e )

is given by the formula

i(G)
(
a ·Nrd(A×)

)
= (a) ∪ [A]

where (a) ∈ H1(F, µe) = F×/F×e is the class of a ∈ F× and [A] ∈ H2(F, µe) =

eBr(F ) is the class of the algebra A.
Outer forms. Let G be an absolutely simple simply connected group of outer

type An over F with n ≥ 2, so that G = SU(B, τ) where (B, τ) is a central
simple F -algebra with unitary involution of degree n + 1 and the center K of B
is a quadratic separable field extension of F . If n is odd, let D = D(B, τ) be the
discriminant algebra (see §??).

(31.42) Proposition. The number nG equals either exp(B) or 2 exp(B). The first

case occurs if and only if (n+ 1) is a 2-power and either

(1) exp(B) = n+ 1 or
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(2) exp(B) = n+1
2 and D is split.

An element of the set H1
(
F,SU(B, τ)

)
is represented by a pair (s, z) where s ∈

Sym(B, τ)× and z ∈ K× satisfy Nrd(s) = NK/F (z) (see (??)). Since SU(B, τ)K '
SL1(B), it follows from the description of the Rost invariant in the inner case that

i(G)
(
(s, z)/≈

)
K

= (z) ∪ [B] ∈ H3
(
K,Q/Z(2)

)
.

(31.43) Example. Assume that charF 6= 2 and B is split, i.e., B = EndK(V ) for
some vector space V of dimension n+1 over K. The involution τ is adjoint to some
hermitian form h on V over K (Theorem (??)). Considering V as a vector space
over F we have a quadratic form q on V given by q(v) = h(v, v) ∈ F for v ∈ V .
Any isometry of h is also an isometry of q, hence we have the embedding

U(B, τ) ↪→ O+(V, q).

Since SU(B, τ) is simply connected, the restriction of this embedding lifts to a
group homomorphism

α : SU(B, τ)→ Spin(V, q)

(see Borel-Tits [?, Proposition 2.24(i), p. 262]). One can show that nα = 1, so that
i(G) is the composition

H1
(
F,SU(B, τ)

)
→ H1

(
F,Spin(V, q)

)
→ H3

(
F,Q/Z(2)

)

where the latter map is the Rost invariant of Spin(V, q) which was described in (??).
An element of the first set in the composition is represented by a pair (s, z) ∈
Sym(B, τ)× ×K× such that Nrd(s) = NK/F (z). The symmetric element s defines
another hermitian form hs on V by

hs(u, v) = h
(
s−1(u), v

)

which in turn defines, as described above, a quadratic form qs on V considered as
a vector space over F . The condition on the reduced norm of s shows that the
discriminants of hs and h are equal, see (??), hence [qs]− [q] ∈ I3F . It follows from
the description of the Rost invariant for the group Spin(V, q) (see (??)) that the
invariant of the group G is given by the formula

i(G)
(
(s, z)/≈

)
= e3

(
[qs]− [q]

)
.

If dimV is odd (i.e., n is even), the canonical map

H1
(
F,SU(B, τ)

)
→ H1

(
F,GU(B, τ)

)

is surjective, since every unitary involution τ ′ = Int(u) ◦ τ on B may be written as

τ ′ = Int
(
uNrdB(u)

)
◦ τ,

showing that the conjugacy class of τ ′ is the image of
(
uNrdB(u),NrdB(u)(n/2)+1

)
.

The invariant i(G) induces an invariant

i
(
GU(B, τ)

)
: H1

(
F,GU(B, τ)

)
→ H3(F, µ⊗2

2 )

which can be explicitly described as follows: given a unitary involution τ ′ on B,
represent τ ′ as the adjoint involution with respect to some hermitian form h′ with
disch′ = disch, and set

i
(
GU(B, τ)

)
(τ ′) = e3

(
[q′]− [q]

)

where q′ is the quadratic form on V defined by q′(v) = h′(v, v). Alternately,
consider the quadratic trace form Qτ ′(x) = TrdB(x2) on Sym(B, τ ′). If h′ has a



§31. COHOMOLOGICAL INVARIANTS 439

diagonalization 〈δ′1, . . . , δ′n+1〉 and K ' F [X ]/(X2−α), Propositions (??) and (??)
show that

Qτ ′ = (n+ 1)〈1〉 ⊥ 〈2〉 · 〈〈α〉〉 ·
(
⊥1≤i<j≤n+1〈δ′iδ′j〉

)
.

On the other hand,

q′ = 〈〈α〉〉 · 〈δ′1, . . . , δ′n+1〉.

Since disch = disch′, we may find a diagonalization h = 〈δ1, . . . , δn+1〉 such that
δ1 . . . δn+1 = δ′1 . . . δ

′
n+1. Using the formulas for the Hasse-Witt invariant of a sum

in Lam [?, p. 121], we may show that

e2
([
⊥1≤i<j≤n+1〈δ′iδ′j〉

]
−

[
⊥1≤i<j≤n+1〈δiδj〉

])
=

e2
([
〈δ′1, . . . , δ′n+1〉

]
−

[
〈δ1, . . . , δn+1〉

])
,

hence

i
(
GU(B, τ)

)
(τ ′) = e3

(
[q′]− [q]

)
= e3

(
[Qτ ′ ]− [Qτ ]

)
.

(31.44) Example. Assume that (n + 1) is odd and B has exponent e. Assume
also that charF does not divide 2e. For G = SU(B, τ) we have nG = 2e. Since e
is odd we have µ⊗2

2e = µ⊗2
2 × µ⊗2

e , hence the Rost invariant i(G) may be viewed as
a pair of invariants

(
i1(G), i2(G)

)
: H1

(
F,SU(B, τ)

)
→ H3(F, µ⊗2

2 )×H3(F, µ⊗2
e ).

Since B is split by a scalar extension of odd degree, we may use (??) to determine
i1(G):

i1(G)
(
(s, z)/≈

)
= e3

(
[QInt(s)◦τ ]− [Qτ ]

)
∈ H3(F, µ⊗2

2 ).

(By (??), it is easily seen that [QInt(s)◦τ ]− [Qτ ] ∈ I3F .)
On the other hand, we have SU(B, τ)K ' SL1(B) hence we may use the

invariant of SL1 and Corollary (??) to determine i2(G):

i2(G)
(
(s, z)/≈

)
= 1

2 corK/F
(
(s) ∪ [B]

)
∈ H3(F, µ⊗2

e ).

Note that the canonical map H1
(
F,SU(B, τ)

)
→ H1

(
F,GU(B, τ)

)
is sur-

jective, as in the split case (Example (??)), and the invariant i1(G) induces an
invariant

i
(
GU(B, τ)

)
: H1

(
F,GU(B, τ)

)
→ H3(F, µ⊗2

2 )

which maps the conjugacy class of any unitary involution τ ′ to e3
(
[Qτ ′ ]− [Qτ ]

)
.

In the particular case where deg(B, τ) = 3, we also have a Pfister form π(τ)
defined in (??) and a cohomological invariant f3(B, τ) = e3

(
π(τ)

)
, see (??). From

the relation between π(τ) and Qτ , it follows that

[Qτ ′ ]− [Qτ ] = [〈2〉] ·
([
π(τ ′)

]
−

[
π(τ)

])
,

hence

i
(
GU(B, τ)

)
(τ ′) = e3

([
π(τ ′)

]
−

[
π(τ)

])
= f3(B, τ

′)− f3(B, τ).
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Type Cn. Let G be an absolutely simple simply connected group of type Cn
over F , so that G = Sp(A, σ) where A is a central simple algebra of degree 2n
over F with a symplectic involution σ.

Assume first that the algebraA is split, i.e., G = Sp2n. Since all the nonsingular
alternating forms are pairwise isomorphic, the set H1(E,G) is trivial for any field
extension E of F . Hence nG = 1 and the invariant i(G) is trivial.

Assume now that A is nonsplit, so that exp(A) = 2. Consider the natural
embedding α : G ↪→ SL1(A). One can check that nα = 1, hence the Rost invari-
ant of G is given by the composition of α and the invariant of SL1(A), so that
nG = 2. By (??), we have H1(F,G) = Symd(A, σ)×/∼, and the following diagram
commutes:

H1(F,G)
α1

−−−−→ H1
(
F,SL1(A)

)
∥∥∥

∥∥∥

Symd(A, σ)×/∼ Nrpσ−−−−→ F×/Nrd(A×),

(where Nrpσ is the pfaffian norm). Hence the invariant

i(G) : H1(F,G) → H3(F, µ⊗2
2 )

is given by the formula

i(G)(u/∼) =
(
Nrpσ(u)

)
∪ [A].

The exact sequence

1→ Sp(A, σ)→ GSp(A, σ)
µ−→ Gm → 1,

where µ is the multiplier map, induces the following exact sequence in cohomology:

H1
(
F,Sp(A, σ)

)
→ H1

(
F,GSp(A, σ)

)
→ 1

since H1(F,Gm) = 1 by Hilbert’s Theorem 90. If degA is divisible by 4, it turns
out that the invariant i(G) induces an invariant

i
(
GSp(A, σ)

)
: H1

(
F,GSp(A, σ)

)
→ H3(F, µ⊗2

2 ).

Indeed, viewing H1
(
F,GSp(A, σ)

)
as the set of conjugacy classes of symplectic

involutions on A (see (??)), the canonical map

Symd(A, σ)×/∼ = H1
(
F,Sp(A, σ)

)
→ H1

(
F,GSp(A, σ)

)

takes u/∼ to the conjugacy class of Int(u) ◦ σ. For z ∈ F× and u ∈ Symd(A, σ)×

we have Nrpσ(zu) = zdegA/2 Nrpσ(u), hence
(
Nrpσ(zu)

)
=

(
Nrpσ(u)

)
in H1(F, µ2)

if degA is divisible by 4. Therefore, in this case we may set

i
(
GSp(A, σ)

)(
Int(u) ◦ σ

)
= i

(
Sp(A, σ)

)
(u/∼) =

(
Nrpσ(u)

)
∪ [A].

(31.45) Example. Consider the particular case where degA = 4. Since the quad-
ratic form Nrpσ is an Albert form of A by (??), its Hasse-Witt invariant is [A].
Therefore,

(
Nrpσ(u)

)
∪ [A] = e3

(
〈〈Nrpσ(u)〉〉 ·Nrpσ

)

and it follows by (??) that

i
(
GSp(A, σ)

)
(τ) = e3

(
jσ(τ)

)

for every symplectic involution τ on A.
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(31.46) Example. Let A = EndQ(V ) where V is a vector space of even dimen-
sion over a quaternion division algebra Q, and let σ be a hyperbolic involution
on A. For every nonsingular hermitian form h on V (with respect to the conju-
gation involution on Q), the invariant i

(
GSp(A, σ)

)
(σh) of the adjoint involution

σh is the cohomological version of the Jacobson discriminant of h, see the notes to
Chapter ??. Indeed, if h has a diagonalization 〈α1, . . . , αn〉, then we may assume
σh = Int(u) ◦ σ where u is the diagonal matrix

u = diag(α1,−α2, . . . , αn−1,−αn).
Then Nrpσ(u) = (−1)n/2α1 . . . αn, hence

i
(
GSp(A, σ)

)
(σh) =

(
(−1)n/2α1 . . . αn

)
∪ [Q].

Type Dn. Assume that charF 6= 2. Let G be an absolutely simple simply
connected group of type Dn (n ≥ 5) over F , so that G = Spin(A, σ) where A
is a central simple algebra of degree 2n over F with an orthogonal involution σ.
The case where A is split, i.e., G = Spin(q) for some quadratic form q, has been
considered in (??).

Assume that the algebra A is not split. In this case nG = 4. The exact sequence
similar to (??) yields a map

i1 : F×/F×2 = H1(F,µ2)→ H1
(
F,Spin(A, σ)

)
.

The image i1(a ·F×2) for a ∈ F× corresponds to the torsor Xa given in the Clifford
group Γ(A, σ) by the equation σ(x)x = a. The Rost invariant i(G) on Xa is given
by the formula

i(G)(Xa) = (a) ∪ [A]

and therefore it is in general nontrivial. Hence the invariant does not factor through
the image of

H1
(
F,Spin(A, σ)

)
→ H1

(
F,O+(A, σ)

)

as is the case when A is split.

Exceptional types.
G2. Let G be an absolutely simple simply connected group of type G2 over F ,

so that G = Aut(C) where C is a Cayley algebra over F . The set H1(F,G) classifies
Cayley algebras over F . One has nG = 2 and the Rost invariant

i(G) : H1(F,G) → H3(F, µ⊗2
2 )

is given by the formula

i(G)(C′) = e3(nC′) + e3(nC)

where nC is the norm form of the Cayley algebra C (which is a 3-fold Pfister form)
and e3 is the Arason invariant.

D4. An absolutely simple simply connected algebraic group of type D4 over F
is isomorphic to Spin(T ) where T = (E,L, σ, α) is a trialitarian algebra (see §??).
Here E is a central simple algebra with an orthogonal involution σ over a cubic
étale extension L of F .

Assume first that L splits completely, i.e., L = F × F × F . Then E = A1 ×
A2 ×A3 where the Ai are central simple algebras of degree 8 over F . In this case
nG = 2 or 4. The first case occurs if and only if at least one of the algebras Ai is
split.
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Assume now that L is not a field but does not split completely, i.e., L = F ×K
where K is a quadratic field extension of F , hence E = A× C where A and C are
central simple algebras of degree 8 over F and K respectively (see §??). In this
case also nG = 2 or 4 and the first case takes place if and only if A is split.

Finally assume that L is a field (this is the trialitarian case). In this case
nG = 6 or 12. The first case occurs if and only if E is split.

F4. nG = 6. The set H1(F,G) classifies absolutely simple groups of type F4

and also exceptional Jordan algebras. The cohomological invariant is discussed in
Chapter ??.

E6. nG = 6 (when G is split).Isn’t the

statement for E6

and E7 true

whenever the Tits

algebras of G
are split and G
is inner ? (Skip

G.)

E7. nG = 12 (when G is split).
E8. nG = 60.

Exercises

1. Let G be a profinite group and let A be a (continuous) G-group. Show that
there is a natural bijection between the pointed set H1(G,A) and the direct
limit of H1(G/U,AU ) where U ranges over all open normal subgroups in G.

2. Let Ẑ be the inverse limit of Z/nZ, n ∈ N, and A be a Ẑ-group such that any
element of A has a finite order. Show that there is a natural bijection between

the pointed set H1(Ẑ, A) and the set of equivalence classes of A where the
equivalence relation is given by a ∼ a′ if there is b ∈ A such that a′ = b−1 ·a·σ(b)

(σ is the canonical topological generator of Ẑ).
3. Show that Aut(GL2) = Aut(SL2)×Z/2Z. Describe the twisted forms of GL2.
4. Let Sn act on (Z/2Z)n through permutations and let G = (Z/2Z)noSn. Let F

be an arbitrary field. Show that H1(F,G) classifies towers F ⊂ L ⊂ E with
L/F étale of dimension n and E/L quadratic étale.

5. Let G = GLn /µ2. Show that there is a natural bijection between H1(F,G)
and the set of isomorphism classes of triples (A, V, ρ) where A is a central
simple F -algebra of degree n, V is an F -vector space of dimension n2 and
ρ : A⊗F A→ EndF (V ) is an isomorphism of F -algebras.

Hint : For an n-dimensional F -vector space U there is an associated triple
(AU , VU , ρU ) where AU = EndF (U), VU = U⊗2 and where

ρ : EndF (U)⊗F EndF (U)→ EndF (U⊗2)

is the natural map. If F is separably closed, then any triple (A, V, ρ) is isomor-
phic to (AU , VU , ρU ). Moreover the homomorphism

GL(U)→ { (α, β) ∈ AutF (AU )×GL(VU ) | ρ ◦ (α⊗ α) = Ad(β) ◦ µ }
given by γ 7→

(
Ad(γ), γ⊗2

)
is surjective with kernel µ2.

6. Let G be as in Exercise ??. Show that the sequence

H1(F,G)
λ−→ H1(F,PGLn)

2δ1−−→ H2(F,Gm)

is exact. Here λ is induced from the natural map GLn → PGLn and δ1 is the
connecting homomorphism for (??).

Using this result one may restate Albert’s theorem on the existence of
involutions of the first kind (Theorem (??)) by saying that the natural inclusion
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PGOn → G induces a surjection

H1(F,PGOn)→ H1(F,G).

The construction of Exercise ?? in Chapter ?? can be interpreted in terms
of Galois cohomology via the natural homomorphism GL(U) → PGO

(
H(U)

)

where U is an n-dimensional vector space and H(U) is the hyperbolic quadratic
space defined in §??.

7. Let K/F be separable quadratic extension of fields. Taking transfers, the exact
sequence (??) induces an exact sequence

1→ RK/F (Gm)→ RK/F (GLn)→ RK/F (PGLn)→ 1.

Let N : RK/F (Gm)→ Gm be the transfer map and set

G = RK/F (GLn)/ kerN.

Show that there is a natural bijection between H1(F,G) and the set of iso-
morphism classes of triples (A, V, ρ) where A is a central simple K-algebra of
degree n, V is an F -vector space of dimension n2 and

ρ : NK/F (A)→ EndF (V )

is an isomorphism of F -algebras. Moreover show that the sequence

H1(F,G)
λ−→ H1(K,PGLn)

corK/F ◦δ1−−−−−−−→ H2(F,Gm)

is exact. Here δ1 is the connecting homomorphism for the sequence (??) and
λ is given by

H1(F,G) → H1
(
F,RK/F (PGLn)

)
= H1(K,PGLn).

Using this result one may restate the theorem on the existence of involutions of
the second kind (Theorem (??)) by saying that the natural inclusion PGUn =
SUn / kerN → G induces a surjection

H1(F,PGUn)→ H1(F,G).

The construction of Exercise ?? in Chapter ?? can be interpreted in terms of
Galois cohomology via the natural homomorphism GL(UK)→ PGU

(
H1(UK)

)

where U is an n-dimensional F -vector space and H1(UK) is the hyperbolic
hermitian space defined in §??.

8. Let (A, σ, f) be a central simple F -algebra with quadratic pair. Let GL1(A)
act on the vector space Symd(A, σ) ⊕ Sym(A, σ)∗ by

ρ(a)(x, g) =
(
axσ(a), ag

)
,

where ag(y) = g
(
σ(a)ya

)
for y ∈ Sym(A, σ). Show that the stabilizer of (1, f)

is O(A, σ, f) and that the twisted ρ-forms of (1, f) are the pairs (x, g) such that
x ∈ A× and g

(
y + σ(y)

)
= TrdA(y) for all y ∈ A. Use these results to give

an alternate description of H1
(
F,O(A, σ, f)

)
, and describe the canonical map

induced by the inclusion O(A, σ, f) ↪→ GO(A, σ, f).
9. Let L be a Galois Z/nZ-algebra over a field F of arbitrary characteristic. Using

the exact sequence 0→ Z→ Q→ Q/Z→ 0, associate to L a cohomology class
[L] in H2(F,Z) and show that the class

[
(L, a)

]
∈ H2(F,Gm) corresponding

to the cyclic algebra (L, a) under the crossed product construction is the cup
product [L] ∪ a, for a ∈ F× = H0(F,Gm).
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10. Let K/F be a separable quadratic extension of fields with nontrivial auto-
morphism ι, and let n be an integer which is not divisible by charF . Use
Proposition (??) to identify H1(F,µn[K]) to the factor group

{ (x, y) ∈ F× ×K× | xn = NK/F (y) }
{ (NK/F (z), zn) | z ∈ K× } .

For (x, y) ∈ F× ×K× such that xn = NK/F (y), let [x, y] ∈ H1(F,µ[K]) be the
corresponding cohomology class.
(a) Suppose n = 2. Since µ2[K] = µ2, there is a canonical isomorphism

H1(F,µ2[K]) ' F×/F×2. Show that this isomorphism takes [x, y] to

NK/F (z) · F×2, where z ∈ K× is such that x−1y = zι(z)−1.
(b) Suppose n = rs for some integers r, s. Consider the exact sequence

1→ µr[K]
i−→ µn[K]

j−→ µs[K] → 1.

Show that the induced maps

H1(F,µr[K])
i1−→ H1(F,µn[K])

j1−→ H1(F,µs[K])

can be described as follows:

i1[x, y] = [x, ys] and j1[x, y] = [xr, y].

(Compare with (??).)
(c) Show that the restriction map

res: H1(F,µn[K])→ H1(K,µn) = K×/K×n

takes [x, y] to y ·K×n and the corestriction map

cor: H1(K,µn)→ H1(F,µn[K])

takes z ·K×n to [1, zι(z)−1].
11. Show that for n dividing 24, µn ⊗ µn and Z/nZ are isomorphic as Galois

modules.
12. Let (A, σ) be a central simple algebra over F with a symplectic involution σ.

Show that the map

Symd(A, σ)×/∼ = H1
(
F,Sp(A, σ)

)
→ H1

(
F,SL1(A)

)
= F×/Nrd(A×)

induced by the inclusion Sp(A, σ) ↪→ SL1(A) takes a ∈ Sym(A, σ)× to its
pfaffian norm NrpA(a) modulo Nrd(A×).

13. Let A be a central simple algebra over F . For any c ∈ F× write Xc for the set
of all x ∈ A×sep such that Nrd(x) = c. Prove that
(a) Xc is a SL1(Asep)-torsor.
(b) Any SL1(Asep)-torsor is isomorphic to Xc for some c.
(c) Xc ' Xd if and only if cd−1 ∈ Nrd(A×).

14. Describe H1
(
F,Spin(V, q)

)
in terms of twisted forms of tensors.

15. Let (A, σ, f) be a central simple F -algebra with quadratic pair of even degree 2n
over an arbitrary field F . Let Z be the center of the Clifford algebra C(A, σ, f)
and let Ω(A, σ, f) be the extended Clifford group.
(a) Show that the connecting map

δ1 : H1
(
F,PGO+(A, σ, f)

)
→ H2

(
F,RZ/F (Gm,Z)

)
= Br(Z)
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in the cohomology sequence associated to

1→ RZ/F (Gm,Z)→ Ω(A, σ, f)
χ′−→ PGO+(A, σ, f)→ 1

maps the 4-tuple (A′, σ′, f ′, ϕ) to
[
C(A′, σ′, f ′)⊗Z′Z

][
C(A, σ, f)

]−1
, where

the tensor product is taken with respect to ϕ.
(b) Show that the multiplication homomorphism

Spin(A, σ, f)×RZ/F (Gm,Z)→ Ω(A, σ, f)

induces an isomorphism

Ω(A, σ, f) '
(
Spin(A, σ, f) ×RZ/F (Gm,Z)

)
/C

where C is isomorphic to the center of Spin(A, σ, f). Similarly, show that

GO+(A, σ, f) '
(
O+(A, σ, f)×Gm

)
/µ2

where µ2 is embedded diagonally in the product.
(c) Assume that n is even. Let α : Ω(A, σ, f) → GO+(A, σ, f) be the ho-

momorphism which, under the isomorphism in (??), is the vector rep-
resentation χ on Spin(A, σ, f) and the norm map on RZ/F (Gm,Z). By
relating via α the exact sequence in (??) to a similar exact sequence for
GO+(A, σ, f), show that for all 4-tuple (A′, σ′, f ′, ϕ) representing an ele-
ment of H1

(
F,PGO+(A, σ, f)

)
,

NZ/F
([
C(A′, σ′, f ′)⊗Z′ Z

][
C(A, σ, f)

]−1)
= [A′][A]−1 in Br(F ).

In particular, NZ/F
([
C(A, σ, f)

])
= [A].

Similarly, using the homomorphism Ω(A, σ, f) → RZ/F (Gm,Z) which is
trivial on Spin(A, σ, f) and the squaring map on RZ/F (Gm,Z), show that

([
C(A′, σ′, f ′)⊗Z′ Z

][
C(A, σ, f)

]−1)2
= 1.

In particular,
[
C(A, σ, f)

]2
= 1. (Compare with (??).)

(d) Assume that n is odd. Let G =
(
O+(A, σ, f) × RZ/F (Gm,Z)

)
/µ2. Using

the homomorphism α : Ω(A, σ, f) → G which is the vector representation
χ on Spin(A, σ, f) and the squaring map on RZ/F (Gm,Z), show that for all

4-tuple (A′, σ′, f ′, ϕ) representing an element of H1
(
F,PGO+(A, σ, f)

)
,

([
C(A′, σ′, f ′)⊗Z′ Z

][
C(A, σ, f)

]−1)2
= [A′Z ][AZ ]−1 in Br(Z).

In particular,
[
C(A, σ, f)

]2
= [AZ ].

Using the character of Ω(A, σ, f) which is trivial on Spin(A, σ, f) and is
the norm on RZ/F (Gm,Z), show that

NZ/F
([
C(A′, σ′, f ′)⊗Z′ Z

][
C(A, σ, f)

]−1)
= 1.

In particular, NZ/F
[
C(A, σ, f)

]
= 1. (Compare with (??).)

16. (Quéguiner [?]) Let (B, τ) be a central simple F -algebra with unitary involution
of degree n. Let K be the center of B and let τ ′ = Int(u) ◦ τ for some unit u ∈
Sym(B, τ). Assume that charF does not divide n. Show that the Tits classes
t(B, τ) and t(B, τ ′) in H2(F,µn[K]) are related by t(B, τ ′) = t(B, τ) + ζK ∪(
NrdB(u)

)
where ζK is the nontrivial element of H1(F,Z[K]) and

(
NrdB(u)

)
=

NrdB(u) · F×n ∈ F×/F×n = H1(F,µn). (Compare with (??).)
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Notes

§??. The concept of a nonabelian cohomology set H1(Γ, A) has its origin in the
theory of principal homogeneous spaces (or torsors) due to Grothendieck [?], see
also Frenkel [?] and Serre [?]. The first steps in the theory of principal homogeneous
spaces attached to an algebraic group (in fact a commutative group variety) are
found in Weil [?].

Galois descent was implicitly used by Châtelet [?], in the case where A is an
elliptic curve (see also [?]). An explicit formulation (and proof) of Galois descent
in algebraic geometry was first given by Weil [?]. The idea of twisting the action
of the Galois group using automorphisms appears also in this paper, see Weil’s
commentaries in [?, pp. 543–544].

No Galois cohomology appears in the paper [?] on principal homogeneous spaces
mentioned above. The fact that Weil’s group of classes of principal homogeneous
spaces for a commutative group variety A over a field F stands in bijection with
the Galois 1-cohomology set H1(F,A) was noticed by Serre; details are given in
Lang and Tate [?], see also Tate’s Bourbaki talk [?].

The first systematic treatment of Galois descent, including nonabelian cases
(linear groups, in particular PGLn with application to the Brauer group), appeared
in Serre’s book “Corps locaux” [?], which was based on a course at the Collège de
France in 1958/59. Twisted forms of algebraic structures viewed as tensors are
mentioned as examples. Applications to quadratic forms are given in Springer [?].
Another early application is the realization by Weil [?], following an observation of
“un amateur de cocycles très connu”33, of Siegel’s idea that classical groups can be
described as automorphism groups of algebras with involution (Weil [?, pp. 548–
549]).

Since then this simple but very useful formalism found many applications. See
the latest revised and completed edition of the Lecture Notes of Serre [?] and his
Bourbaki talk [?] for more information and numerous references. A far-reaching
generalization of nonabelian Galois cohomology, which goes beyond Galois exten-
sions and applies in the setting of schemes, was given by Grothendieck [?].

Our presentation in this section owes much to Serre’s Lecture Notes [?] and to
the paper [?] of Borel and Serre. The technique of changing base points by twisting
coefficients in cohomology, which we use systematically, was first developed there.
Note that the term “co-induced module” is used by Serre [?] and by Brown [?] for
the modules which we call “induced”, following Serre [?].
§??. Lemma (??), the so-called “Shapiro lemma”, was independently proved

by Eckmann [?, Theorem 4], D. K. Faddeev [?], and Arnold Shapiro. Shapiro’s
proof appears in Hochschild-Nakayama [?, Lemma 1.1].

Besides algebras and quadratic forms, Severi-Brauer varieties also have a nice
interpretation in terms of Galois cohomology: the group scheme PGLn occurs not
only as the automorphism group of a split central simple algebra of degree n, but
also as the automorphism group of the projective space Pn−1. The Severi-Brauer
variety SB(A) attached to a central simple algebra A is a twisted form of the
projective space, given by the cocycle of A (see Artin [?]).

For any quadratic space (V, q) of even dimension 2n, the Clifford functor defines
a homomorphism C : PGO(V, q)→ Autalg

(
C0(V, q)

)
(see (??)). The induced map

in cohomology C1 : H1
(
F,PGO(V, q)

)
→ H1

(
F,Autalg

(
C0(V, q)

))
associates to

33also referred to as “Mr. P. (the famous winner of many cocycle races)”
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every central simple F -algebra with quadratic pair of degree 2n a separable F -
algebra of dimension 22n−1; this is the definition of the Clifford algebra of a central
simple algebra with quadratic pair by Galois descent.

§??. Although the cyclic algebra construction is classical, the case considered
here, where L is an arbitrary Galois Z/nZ-algebra, is not so common in the lit-
erature. It can be found however in Albert [?, Chapter VII]. Note that if L is a
field, its Galois Z/nZ-algebra structure designates a generator of the Galois group
Gal(L/F ).

The exact sequence (??) was observed by Arason-Elman [?, Appendix] and by
Serre [?, Chapter I, §2, Exercise 2]. (This exercise is not in the 1973 edition.) The
special case where M = µ2(Fsep) (Corollary (??)) plays a crucial rôle in Arason [?].

The cohomological invariants f1, g2, f3 for central simple F -algebras with
unitary involution of degree 3 are discussed in Haile-Knus-Rost-Tignol [?, Corol-
lary 32]. It is also shown in [?] that these invariants are not independent and that
the invariant g2(B, τ) gives information on the étale F -subalgebras of B. To state
precise results, recall from (??) that cubic étale F -algebras with discriminant ∆
are classified by the orbit set H1(F,A3[∆])/S2. Suppose charF 6= 2, 3 and let

F (ω) = F [X ]/(X2 +X + 1), so that µ3 = A3[F (ω)]. Let (B, τ) be a central simple
F -algebra with unitary involution of degree 3 and let L be a cubic étale F -algebra
with discriminant ∆. Let K be the center of B and let cL ∈ H1(F,A3[∆]) be a co-
homology class representing L. The algebra B contains a subalgebra isomorphic to
L if and only if g2(B, τ) = cL∪d for some d ∈ H1(F,A3[K∗F (ω)∗∆]). (Compare with
Proposition (??).) If this condition holds, then B also contains an étale subalgebra
L′ with associated cohomology class d (hence with discriminant K ∗ F (ω) ∗ ∆).
Moreover, there exists an involution τ ′ such that Sym(B, τ ′) contains L and L′.
See [?, Proposition 31].

§??. Let (A, σ) be a central simple algebra with orthogonal involution of even
degree over a field F of characteristic different from 2. The connecting homomor-
phism

δ1 : H1
(
F,O+(A, σ)

)
→ H2(F,µ2) = 2Br(F )

in the cohomology sequence associated to the exact sequence

1→ µ2 → Spin(A, σ)→ O+(A, σ) → 1

is described in Garibaldi-Tignol-Wadsworth [?]. Recall from (??) the bijection

H1
(
F,O+(A, σ)

)
' SSym(A, σ)×/≈.

For (s, z) ∈ SSym(A, σ)×, consider the algebra A′ = M2(A) ' EndA(A2) with the
involution σ′ adjoint to the hermitian form 〈1,−s−1〉, i.e.,

σ′
(
a b
c d

)
=

(
σ(a) −σ(c)s−1

−sσ(b) sσ(d)s−1

)
for a, b, c, d ∈ A.

Let s′ =

(
0 1
s 0

)
∈ A′. We have s′ ∈ Skew(A′, σ′) and NrdA′(s

′) = NrdA(s) = z2.

Therefore, letting Z be the center of the Clifford algebra C(A′, σ′) and

π : Skew(A′, σ′)→ Z
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the generalized pfaffian of (A′, σ′) (see (??)), we have π(s′)2 = z2. It follows that
1
2

(
1 + z−1π(s′)

)
is a nonzero central idempotent of C(A′, σ′). Set

E(s, z) =
(
1 + z−1π(s′)

)
· C(A′, σ′),

a central simple F -algebra with involution of the first kind of degree 2degA−1. We
have

C(A′, σ′) = E(s, z)×E(s,−z)
and it is shown in Garibaldi-Tignol-Wadsworth [?, Proposition 4.6] that

δ1
(
(s, z)/≈

)
=

[
E(s, z)

]
∈ 2Br(F ).

In particular, the images under δ1 of (s, z) and (s,−z) are the two components of
C(A′, σ′). By (??), it follows that

[
E(s, z)

][
E(s,−z)

]
= [A], hence the Brauer class[

E(s, z)
]

is uniquely determined by s ∈ Sym(A, σ)× up to a factor [A]. This is the
invariant of hermitian forms defined by Bartels [?]. Explicitly, let D be a division
F -algebra with involution of the first kind and let h be a nonsingular hermitian or
skew-hermitian form on a D-vector space V such that the adjoint involution σ = σh
on A = EndD(V ) is orthogonal. Let S = {1, [D]} ⊂ Br(F ). To every nonsingular
form h′ on V of the same type and discriminant as h, Bartels attaches an invariant
c(h, h′) in the factor group Br(F )/S as follows: since h and h′ are nonsingular and
of the same type, there exists s ∈ Sym(A, σ)× such that

h′(x, y) = h
(
s−1(x), y

)
for all x, y ∈ V .

We have NrdA(s) ∈ F×2 since h and h′ have the same discriminant. We may then
set

c(h, h′) =
[
E(s, z)

]
+ S =

[
E(s,−z)

]
+ S ∈ Br(F )/S

where z ∈ F× is such that z2 = NrdA(s).
The Tits class t(B, τ) ∈ H2(F,µn[K]) for (B, τ) a central simple F -algebra with

unitary involution of degree n with centerK was defined by Quéguiner [?, §3.5.2], [?,
§2.2], who called it the determinant class. (Actually, Quéguiner’s determinant class
differs from the Tits class by a factor which depends only on n.)

All the material in §?? is based on unpublished notes of Rost (to appear). See
Serre’s Bourbaki talk [?].

Finally, we note that getting information for special fields F on the setH1(F,G),
for G an algebraic group, gives rise to many important questions which are not ad-
dressed here. Suppose that G is semisimple and simply connected. If F is a p-adic
field, then H1(F,G) is trivial, as was shown by Kneser [?]. If F is a number field,
the “Hasse principle” due to Kneser, Springer, Harder and Chernousov shows that
the natural map H1(F,G) →∏

vH
1(Fv , G) is injective, where v runs over the real

places of F and Fv is the completion of F at v. We refer to Platonov-Rapinchuk
[?, Chap. 6] for a general survey. If F is a perfect field of cohomological dimension
at most 2 and G is of classical type, Bayer-Fluckiger and Parimala [?] have shown
that H1(F,G) is trivial, proving Serre’s “Conjecture II” [?, Chap. III, §3] for clas-
sical groups. Analogues of the Hasse principle for fields of virtual cohomological
dimension 1 or 2 were obtained by Ducros [?], Scheiderer [?] and Bayer-Fluckiger-
Parimala [?].



CHAPTER VIII

Composition and Triality

The main topic of this chapter is composition algebras. Of special interest from
the algebraic group point of view are symmetric compositions. In dimension 8 there
are two such types: Okubo algebras, related to algebras of degree 3 with unitary in-
volutions (type A2), and para-Cayley algebras related to Cayley algebras (type G2).
The existence of these two types is due to the existence of inequivalent outer actions
of the group Z/3Z on split simply connected simple groups of type D4 (“triality”
for Spin8), for which the fixed elements define groups of type A2, resp. G2. Triality
is defined here through an explicit computation of the Clifford algebra of the norm
of an 8-dimensional symmetric composition. As a step towards exceptional simple
Jordan algebras, we introduce in the last section twisted compositions, generaliz-
ing a construction of Springer. The corresponding group of automorphisms is the
semidirect product Spin8 oS3.

§32. Nonassociative Algebras

In this and the following chapter, by an F -algebra A we mean (unless further
specified) a finite dimensional vector space over F equipped with an F -bilinear mul-
tiplication m : A× A→ A. We shall use different notations for the multiplication:
m(x, y) = xy = x � y = x ? y. We do not assume in general that the multiplication
has an identity. An algebra with identity 1 is unital. An ideal of A is a subspace M
such that ma ∈ M and am ∈ M for all m ∈ M , a ∈ A. The algebra A is simple

if the multiplication on A is not trivial (i.e., there are elements a, b of A such that
ab 6= 0) and 0, A are the only ideals of A. The multiplication algebra M(A) is the
subalgebra of EndF (A) generated by left and right multiplications with elements
of A. The centroid Z(A) is the centralizer of M(A) in EndF (A):

Z(A) = { f ∈ EndF (A) | f(ab) = f(a)b = af(b) for a, b ∈ A }
and A is central if F ·1 = Z(A). If Z(A) is a field, the algebra A is central over Z(A).
Observe that a commutative algebra may be central if it is not associative.

The algebra A is strictly power-associative if, for every R ∈ AlgF , the R-
subalgebra of AR generated by one element is associative. We then write an for
nth-power of a ∈ A, independently of the notation used for the multiplication of
A. Examples are associative algebras, Lie algebras (trivially), alternative algebras,
i.e., such that

x(xy) = (xx)y and (yx)x = y(xx)

for all x, y ∈ A, and Jordan algebras in characteristic different from 2 (see Chap-
ter ??). Let A be strictly power-associative and unital. Fixing a basis (ui)1≤i≤r
of A and taking indeterminates {x1, . . . , xr} we have a generic element

x =
∑

xiui ∈ A⊗ F (x1, . . . , xr)

449
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and there is a unique monic polynomial

PA,x(X) = Xm − s1(x)Xm−1 + · · ·+ (−1)msm(x) · 1

of least degree which has x as a root. This is the generic minimal polynomial of A.
The coefficients si are homogeneous polynomials in the xi’s, s1 = TA is the generic

trace, sm = NA the generic norm and m is the degree of A. It is convenient to
view F as an algebra of degree n for any n such that charF does not divide n; the
corresponding polynomial is PF,x(X) = (X · 1 − x)n. In view of McCrimmon [?,
Theorem 4, p. 535] we have

NA(X · 1− x) = PA,x(X)

for a strictly power-associative algebra A. For any element a ∈ A we can special-
ize the generic minimal polynomial PA,x(X) to a polynomial PA,a(X) ∈ F [X ] by
writing a =

∑
i aiui and substituting ai for xi. Let α : A ∼−→ A′ be an isomor-

phism of unital algebras. Uniqueness of the generic minimal polynomial implies
that PA′,α(x) = PA,x, in particular TA′

(
α(x)

)
= TA(x) and NA′

(
α(x)

)
= NA(x).

(32.1) Examples. (1) We have PA×B,(x,y) = PA,x · PB,y for a product algebra
A×B.

(2) For a central simple associative algebra A the generic minimal polynomial is
the reduced characteristic polynomial and for a commutative associative algebra it
is the characteristic polynomial.

(3) For a central simple algebra with involution we have a generic minimal poly-
nomial on the Jordan algebra of symmetric elements depending on the type of
involution:

An: If J = H(B, τ), where (B, τ) is central simple of degree n + 1 with a
unitary involution over a quadratic étale F -algebra K, PJ,a(X) is the restriction of
the reduced characteristic polynomial of B to H(B, τ). The coefficients of PJ,a(X),
a priori in K, actually lie in F since they are invariant under ι. The degree of J is
the degree of B.

Bn and Dn: For J = H(A, σ), A central simple over F with an orthogonal
involution of degree 2n+1, or 2n, PJ,a(X) is the reduced characteristic polynomial,
so that the degree of J is the degree of A.

Cn: For J = H(A, σ), A central simple of degree 2n over F with a symplec-
tic involution, PJ,a(X) is the polynomial Prpσ,a of (??). Here the degree of J

is 1
2 deg(A).

We now describe an invariance property of the coefficients si(x). Let s ∈ S(A∗)
be a polynomial function on A, let d : A → A be an F -linear transformation, and
let F [ε] be the F -algebra of dual numbers. We say that s is Lie invariant under d
if

s
(
a+ εd(a)

)
= s(a)

holds in A[ε] = A⊗ F [ε] for all a ∈ A. The following result is due to Tits [?]:

(32.2) Proposition. The coefficients si(x) of the generic minimal polynomial of

a strictly power-associative F -algebra A are Lie invariant under all derivations d
of A.
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Proof : Let F ′ be an arbitrary field extension of F . The extensions of the forms
si and d to AF ′ will be denoted by the same symbols si and d. We define forms
{a, b}i and µi(a, b) by

(a+ εb)i = ai + ε{a, b}i and si(a+ εb) = si(a) + εµi(a, b).

It is easy to see (for example by induction) that d(ai) = {a, d(a)}i for any deriva-
tion d. We obtain

0 = PA[ε],a+εb(a+ εb)

= an + ε{a, b}n +
n∑

i=1

(−1)i
(
si(a) + εµi(a, b)

)(
an−i + ε{a, b}n−i

)
,

where n is the degree of the generic minimal polynomial, so that

(1) {a, b}n +

n∑

i=1

(−1)isi(a){a, b}n−i +
n∑

i=1

(−1)iµi(a, b)a
n−i = 0.

On the other hand we have

(2) d
(
PA,a(a)

)
= {a, d(a)}n +

n∑

i=1

(−1)isi(a){a, d(a)}n−i = 0.

Setting b = d(a) in (??) and subtracting (??) gives

n∑

i=1

(−1)iµi
(
a, d(a)

)
an−i = 0.

If a is generic over F , it does not satisfy any polynomial identity of degree n− 1.
Thus µi

(
a, d(a)

)
= 0. This is the Lie invariance of the si under the derivation d.

(32.3) Corollary. The identity s1(a ·b) = s1(b ·a) holds for any associative algebra

and the identity s1
(
a q (b q c)

)
= s1

(
(a q b) q c

)
holds for any Jordan algebra over a

field of characteristic not 2.

Proof : The maps da(b) = a · b − b · a, resp. db,c(a) = a q (b q c) − (a q b) q c are
derivations of the corresponding algebras (see for example Schafer [?, p. 92] for the
last claim).

An algebra A is separable if A⊗ F̃ is a direct sum of simple ideals for every field

extension F̃ of F . The following criterion (??) for separability is quite useful; it
applies to associative algebras and Jordan algebras in view of Corollary (??) and to
alternative algebras (see McCrimmon [?, Theorem 2.8]). For alternative algebras
of degree 2 and 3, which are the cases we shall consider, the lemma also follows
from (??) and Proposition (??). We first give a definition: a symmetric bilinear
form T on an algebra A is called associative or invariant if

T (xy, z) = T (x, yz) for x, y, z ∈ A.

(32.4) Lemma (Dieudonné). Let A be a strictly power-associative algebra with

generic trace TA. If the bilinear form T : (x, y) 7→ TA(xy) is symmetric, nonsingular

and associative, then A is separable.
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Proof : This is a special case of a theorem attributed to Dieudonné, see for example
Schafer [?, p. 24]. Let I be an ideal. The orthogonal complement I⊥ of I (with
respect to the bilinear form T ) is an ideal since T is associative. For x, y ∈ J = I∩I⊥
and z ∈ A, we have T (xy, z) = T (x, yz) = 0, hence J2 = 0 and elements of J
are nilpotent. Nilpotent elements have generic trace 0 (see Jacobson [?, p. 226,
Cor. 1(2)]); thus T (x, z) = TA(xz) = 0 for all z ∈ A and x ∈ J . This implies J = 0

and A = I ⊕ I⊥. It then follows that A (and A⊗ F̃ for all field extensions F̃ /F ) is
a direct sum of simple ideals, hence separable.

A converse of Lemma (??) also holds for associative algebras, alternative alge-
bras and Jordan algebras; a proof can be obtained by using Theorems (??) and (??).

Alternative algebras. The structure of finite dimensional separable alterna-
tive algebras is similar to that of finite dimensional separable associative algebras:

(32.5) Theorem. (1) Any separable alternative F -algebra is the product of simple

alternative algebras whose centers are separable field extensions of F .

(2) A central simple separable alternative algebra is either associative central simple

or is a Cayley algebra.

Reference: A reference for (??) is Schafer [?, p. 58]; (??) is a result due to Zorn,
see for example Schafer [?, p. 56]. We shall only use Theorem (??) for algebras of
degree 3. A description of Cayley algebras is given in the next section.

For nonassociative algebras the associator

(x, y, z) = (xy)z − x(yz)

is a useful notion. Alternative algebras are defined by the identities

(x, x, y) = 0 = (x, y, y).

Linearizing we obtain

(x, y, z) + (y, x, z) = 0 = (x, y, z) + (x, z, y),(32.6)

i.e., in an alternative algebra the associator is an alternating function of the three
variables. The following result is essential for the study of alternative algebras:

(32.7) Theorem (E. Artin). Any subalgebra of an alternative algebra A generated

by two elements is associative.

Reference: See for example Schafer [?, p. 29] or Zorn [?].

Thus we have NA(xy) = NA(x)NA(y) and TA(xy) = TA(yx) for x, y ∈ A, A a
alternative algebra, since both are true for an associative algebra (see Jacobson [?,
Theorem 3, p. 235]). The symmetric bilinear form T (x, y) = TA(xy) is the bilinear

trace form of A.
In the next two sections separable alternative F -algebras of degree 2 and 3

are studied in detail. We set Sepaltn(m) for the groupoid of separable alternative
F -algebras of dimension n and degree m with isomorphisms as morphisms.
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§33. Composition Algebras

33.A. Multiplicative quadratic forms. Let C be an F -algebra with multi-
plication (x, y) 7→ x�y (but not necessarily with identity). We say that a quadratic
form q on C is multiplicative if

q(x � y) = q(x)q(y)(33.1)

for all x, y ∈ C. Let bq(x, y) = q(x+ y)− q(x)− q(y) be the polar of q and let

C⊥ = { z ∈ C | bq(z, C) = 0 }.
(33.2) Proposition. The space C⊥ is an ideal in C.

Proof : This is clear if q = 0. So let x ∈ C be such that q(x) 6= 0. Linearizing (??)
we have

bq(x � y, x � z) = q(x)bq(y, z).

Thus x � y ∈ C⊥ implies y ∈ C⊥. It follows that the kernel of the composed map
(of F -spaces)

φx : C
`x−→ C

p−→ C/C⊥,

where `x(y) = x � y and p is the projection, is contained in C⊥. By dimension
count it must be equal to C⊥, so x � C⊥ ⊂ C⊥ and similarly C⊥ � x ⊂ C⊥. Since
C⊥ ⊗ L = (C ⊗ L)⊥ for any field extension L/F , the claim now follows from the
next lemma.

(33.3) Lemma. Let q : V → F be a nontrivial quadratic form. There exists a field

extension L/F such that V ⊗ L is generated as an L-linear space by anisotropic

vectors.

Proof : Let n = dimF V and let L = F (t1, . . . , tn). Taking n generic vectors in
V ⊗ L gives a set of anisotropic generators of V ⊗ L.

Let

R(C) = { z ∈ C⊥ | q(z) = 0 }.
(33.4) Proposition. If (C, q) is a multiplicative quadratic form, then either C⊥ =
R(C) or charF = 2 and C = C⊥.

Proof : We show that q|C⊥ 6= 0 implies that charF = 2 and C = C⊥. If charF 6= 2,
then q(x) = 1

2bq(x, x) = 0 for x ∈ C⊥, hence q|C⊥ 6= 0 already implies charF =

2. To show that C = C⊥ we may assume that F is algebraically closed. Since
charF = 2 the set R(C) is a linear subspace of C⊥; by replacing C by C/R(C)
we may assume that R(C) = 0. Then q : C⊥ → F is injective and semilinear with
respect to the isomorphism F ∼−→ F , x 7→ x2. It follows that dimF C

⊥ = 1; let
u ∈ C⊥ be a generator, so that q(u) 6= 0. For x ∈ C we have x � u ∈ C⊥ by
Proposition (??) and we define a linear form f : C → F by x � u = f(x)u. Since

q(x)q(u) = q(x � u) = q
(
f(x)u

)
= f(x)2q(u)

q(x) = f(x)2 and the polar bq(x, y) is identically zero. This implies C = C⊥, hence
the claim.

(33.5) Example. Let (C, q) be multiplicative and regular of odd rank (defined
on p. ??) over a field of characteristic 2. Since dimF C

⊥ = 1 and R(C) = 0,
Proposition (??) implies that C = C⊥ and C is of dimension 1.
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(33.6) Corollary. The set R(C) is always an ideal of C and q induces a multi-

plicative form q on C = C/R(C) such that either

(1) (C, q) is regular, or

(2) charF = 2 and C is a purely inseparable field extension of F of exponent 1 of

dimension 2n for some n and q(x) = x2.

Proof : If R(C) = C⊥, R(C) is an ideal in C by Proposition (??) and the polar of q
is nonsingular. Then (??) follows from Corollary (??) except when dimF C = 1 in
characteristic 2. If R(C) 6= C⊥, then charF = 2 and C = C⊥ by Proposition (??).
It follows that the polar bq(x, y) is identically zero, q : C → F is a homomorphism

and R(C) is again an ideal. For the description of the induced form q : C → F
we follow Kaplansky [?, p. 95]: the map q : C → F is an injective homomorphism,
thus C is a commutative associative integral domain. Moreover, for x such that
q(x) 6= 0, x2/q(x) is an identity element 1 with q(1) = 1 and C is even a field. Since
q(λ · 1) = λ2 · 1 for all λ ∈ F , we have

q(x2) = q
(
q(x) · 1

)
(33.7)

for all x ∈ C. Let C0 = q(C), let x0 = q(x), and let �0 be the induced multiplication.
It follows from (??) that

x0 �0 x0 = q(x) · 1.
If dimF C = 1 we have the part of assertion (??) in characteristic 2 which was
left over. If dimF C > 1, then C is a purely inseparable field extension of F of
exponent 1, as claimed in (??).

(33.8) Remark. In case (??) of (??) C has dimension 1, 2, 4 or 8 in view of the
later Corollary (??).

33.B. Unital composition algebras. Let C be an F -algebra with identity
and multiplication (x, y) 7→ x�y and let n be a regular multiplicative quadratic form
on C. We call the triple (C, �, n) a composition algebra. In view of Example (??),
the form 〈1〉 is the unique regular multiplicative quadratic form of odd dimension.
Thus it suffices to consider composition algebras with nonsingular forms in even
dimension ≥ 2. We then have the following equivalent properties:

(33.9) Proposition. Let (C, �) be a unital F -algebra with dimF C ≥ 2. The fol-

lowing properties are equivalent :

(1) There exists a nonsingular multiplicative quadratic form n on C.

(2) C is alternative separable of degree 2.
(3) C is alternative and has an involution π : x 7→ x such that

x+ x ∈ F · 1, n(x) = x � x ∈ F · 1,
and n is a nonsingular quadratic form on C.

Moreover, the quadratic form n in (??) and the involution π in (??) are uniquely

determined by (C, �).
Proof : (??) ⇒ (??) Let (C, �, n) be a composition algebra. To show that C is
alternative we reproduce the proof of van der Blij and Springer [?], which is valid
for any characteristic. Let

bn(x, y) = n(x+ y)− n(x)− n(y)
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be the polar of n. The following formulas are deduced from n(x � y) = n(x)n(y) by
linearization:

bn(x � y, x � z) = n(x)bn(y, z)

bn(x � y, u � y) = n(y)bn(x, u)

and

bn(x � z, u � y) + bn(x � y, u � z) = bn(x, u)bn(y, z).(33.10)

We have n(1) = 1. By putting z = x and y = 1 in (??), we obtain

bn
(
x2 − bn(1, x)x + n(x) · 1, u

)
= 0

for all u ∈ C. Since n is nonsingular any x ∈ C satisfy the quadratic equation

x2 − bn(1, x)x+ n(x) · 1 = 0.(33.11)

Hence C is of degree 2 and C is strictly power-associative. Furthermore bn(1, x)
is the trace TC(x) and n is the norm NC of C (as an algebra of degree 2). Let
x = TC(x) · 1− x. It follows from (??) that

x � x = x � x = n(x) · 1
and it is straightforward to check that

x = x and 1 = 1.

Hence x 7→ x is bijective. We claim that

bn(x � y, z) = bn(y, x � z) = bn(x, z � y).(33.12)

The first formula follows from

bn(x � y, z) + bn(y, x � z) = bn(x, 1)bn(z, y) = TC(x)bn(z, y),

which is a special case of (??), and the proof of the second is similar. We further
need the formulas

x � (x � y) = n(x)y and (y � x) � x = n(x)y.

For the proof of the first one, we have

bn
(
x � (x � y), z

)
= bn(x � y, x � z) = bn

(
n(x)y, z

)
for z ∈ C.

The proof of the other one is similar. It follows that x � (x � y) = (x � x) � y.
Therefore

x � (x � y) = x �
(
TC(x)y − x � y

)
=

(
TC(x)x − x � x

)
� y = (x � x) � y

and similarly (y � x) � x = y � (x � x). This shows that C is an alternative algebra.
To check that the bilinear trace form T (x, y) = TC(x � y) is nonsingular, we first
verify that π satisfies π(x � y) = π(y) � π(x), so that π is an involution of C. By
linearizing the generic polynomial (??) we obtain

x � y + y � x−
(
TC(y)x+ TC(x)y

)
+ bn(x, y)1 = 0.(33.13)

On the other hand, putting u = z = 1 in (??) we obtain

bn(x, y) = TC(x)TC(y)− TC(x � y)
(which shows that T (x, y) = TC(x�y) is a symmetric bilinear form). By substituting
this in (??), we find that

(
TC(x)− x

)
�

(
TC(y)− y

)
= TC(y � x)− y � x,
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thus π(x � y) = π(y) � π(x). It now follows that

TC(x � y) = x � y + x � y = y � x+ x � y = x � y + y � x = bn(x, y),

hence the bilinear form T is nonsingular if n is nonsingular. Furthermore TC(x�y) =
bn(x, y) and (??) imply that

T (x � y, z) = T (x, y � z) for x, y, z ∈ C,(33.14)

hence, by Lemma (??), C is separable.
(??) ⇒ (??) Let

X2 − TC(x)X +NC(x) · 1
be the generic minimal polynomial of C. We define π(x) = TC(x) − x and we put
n = NC ; then

x � π(x) = π(x) � x = n(x) · 1 ∈ F · 1
follows from x2 −

(
x + π(x)

)
� x + n(x) · 1 = 0. Since bn(x, y) = T (x, y) and C is

separable, n is nonsingular. The fact that π is an involution follows as in the proof
of (??) ⇒ (??).

(??) ⇒ (??) The existence of an involution with the properties given in (??)
implies that C admits a generic minimal polynomial as given in (??). Since C is
alternative we have

x � (x � y) = n(x)y = (y � x) � x
Using that the associator (x, y, z) is an alternating function we obtain

n(x � y) = (x � y) � (x � y) = (x � y) � (y � x)
=

(
(x � y) � y

)
� x− (x � y, y, x) = n(x)n(y)− (x, x � y, y)

= n(x)n(y) −
(
x � (x � y)

)
� y + x �

(
(x � y) � y

)

= n(x)n(y) − n(x)n(y) + n(x)n(y) = n(x)n(y)

so that n is multiplicative.
The fact that n and π are uniquely determined by (C, �) follows from the

uniqueness of the generic minimal polynomial.

Let Compm be the groupoid of composition algebras of dimension m with iso-
morphisms as morphisms and let Comp+

m be the groupoid of unital composition
algebras with isomorphisms as morphisms.

(33.15) Corollary. The identity map C 7→ C induces an isomorphism of groupoids

Comp+
m ≡ Sepaltm(2) for m ≥ 2.

33.C. Hurwitz algebras. Let (B, π) be a unital F -algebra of dimension m
with an involution π such that

x+ π(x) ∈ F · 1 and x � π(x) = π(x) � x ∈ F · 1
for all x ∈ B. Assume further that the quadratic form n(x) = x�π(x) is nonsingular.
Let λ ∈ F×. The Cayley-Dickson algebra CD(B, λ) associated to (B, π) and λ is
the vector space

CD(B, λ) = B ⊕ vB
where v is a new symbol, endowed with the multiplication

(a+ vb) � (a′ + vb′) = a � a′ + λb′ � π(b) + v
(
π(a) � b′ + a′ � b

)
,
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for a, a′, b and b′ ∈ A. In particular CD(B, λ) contains B as a subalgebra and
v2 = λ.

Further we set

n(a+ vb) = n(a)− λn(b) and π(a+ vb) = π(a) − vb.
(33.16) Lemma. The algebra C = CD(B, λ) is an algebra with identity 1 + v0
and π is an involution such that

TC(x) = x+ π(x) ∈ F · 1, NC(x) = n(x) = x � π(x) = π(x) � x ∈ F · 1.
The algebra B is contained in CD(B, λ) as a subalgebra and

(1) C is alternative if and only if B associative,

(2) C is associative if and only if B is commutative,

(3) C is commutative if and only if B = F .

Proof : The fact that C = CD(B, λ) is an algebra follows immediately from the
definition of C. Identifying v with v1 we have vB = v � B and we view v as an
element of C. We leave the “if” directions as an exercise. The assertions about TC
and NC are easy to check, so that elements of C satisfy

x2 − TC(x)x +NC(x)1 = 0

and C is of degree 2. Thus, if C is alternative, n = NC is multiplicative by
Proposition (??). We have

n
(
(a+ v � b) � (c+ v � d)

)
= n

(
a � c+ λd � b+ v � (c � b+ a � d)

)

= n(a � c+ λd � b)− λn(c � b+ a � d),
on the other hand,

n
(
(a+ v � b) � (c+ v � d)

)
= n(a+ v � b)n(c+ v � d)
=

(
n(a)− λn(b)

)(
n(c)− λn(d)

)
.

Comparing both expressions and using once more that n is multiplicative, we obtain

bn(a � c, λd � b) + n(v)bn(c � b, a � d) = 0

or, since n(v) = −λ,
bn(a � c, d � b) = bn(a � d, c � b)

so that

bn
(
(a � c) � b, d

)
= bn

(
a � (c � b), d

)

for all a, b, c, d ∈ B by (??). Thus we obtain (a � c) � b = a � (c � b) and B is
associative. If C is associative, we have (v � a) � b = v � (a � b) = v(b � a) and
b � a = a � b. Therefore B is commutative. Claim (??) is evident.

The passage from B to CD(B, λ) is sometimes called a Cayley-Dickson process.
A quadratic étale algebra K satisfies the conditions of Lemma (??) and the corre-
sponding Cayley-Dickson algebra Q = CD(K,λ) is a quaternion algebra over F for
any λ ∈ F×. Repeating the process leads to an alternative algebra CD(Q,µ). A
Cayley algebra is a unital F -algebra isomorphic to an algebra of the type CD(Q,µ)
for some quaternion algebra Q over F and some µ ∈ F×.

In view of Lemma (??) and Proposition (??), the Cayley-Dickson process ap-
plied to a Cayley algebra does not yield a composition algebra. We now come to
the well-known classification of unital composition algebras:
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(33.17) Theorem. Composition algebras with identity element over F are ei-

ther F , quadratic étale F -algebras, quaternion algebras over F , or Cayley algebras

over F .

Proof : As already observed, all algebras in the list are unital composition algebras.
Conversely, let C be a composition algebra with identity element over F . If C 6= F ,
let c ∈ C be such that {1, c} generates a nonsingular quadratic subspace of (C, n):
choose c ∈ 1⊥ if charF 6= 2 and c such that bn(1, c) = 1 if charF = 2. Then
B = F · 1⊕F · c is a quadratic étale subalgebra of C. Thus we may assume that C
contains a unital composition algebra with nonsingular norm and it suffices to show
that if B 6= C, then C contains a Cayley-Dickson process B+vB. If B 6= C, we have
C = B⊕B⊥, B⊥ is nonsingular and there exists v ∈ B⊥ such that n(v) = −λ 6= 0.
We claim that B⊕v�B is a subalgebra of C obtained by a Cayley-Dickson process,
i.e., that

(v � a) � b = v � (b � a), a � (v � b) = v � (a � b)
and

(v � a) � (v � b) = λb � a
for a, b ∈ B. We only check the first formula. The proofs of the others are similar.
We have v = −v, since bn(v, 1) = 0, and 0 = bn(v, a) ·1 = v�a+a�v = −v�a+a�v,
thus v � a = a � v = −a � v for a ∈ B. Further

bn
(
(v � b) � a, z

)
= bn(v � b, z � a) = bn(b � v, z � a) = −bn(b � a, z � v).

The last equality follows from formula (??), putting x = b, u = z, y = a, z = v,
and using that bn(v, a) = 0 for a ∈ B. On the other hand we have

−bn(b � a, z � v) = −bn
(
(b � a) � v, z

)
= bn

(
v � (a � b), z

)

where the last equality follows from the fact that v � a = −a � v for all a ∈ B. This
holds for all z ∈ C, hence (v � b) � a = v � (a � b) as claimed. The formulas for the
norm and the involution are easy and we do not check them.

The classification of composition algebras with identity is known as the The-
orem of Hurwitz and the algebras occurring in Theorem (??) are called Hurwitz

algebras.
From now on we set Comp+

m = Hurwm for m = 1, 2, 4, and 8. If Sm, A1,
resp. G2, are the groupoids of étale algebras of dimension m, quaternion algebras,
resp. Cayley algebras over F , then Hurw 2 = S2, Hurw4 = A1, and Hurw8 = G2.

Hurwitz algebras are related to Pfister forms. Let PQm be the groupoid of
Pfister quadratic forms of dimension m with isometries as morphisms.

(33.18) Proposition. (1) Norms of Hurwitz algebras are 0-, 1-, 2-, or 3-fold
Pfister quadratic forms and conversely, all 0-, 1-, 2- or 3-fold Pfister quadratic

forms occur as norms of Hurwitz algebras.

(2) For any Hurwitz algebra (C,NC) the space

(C,NC)0 = {x ∈ C | TC(x) = 0 },
where TC is the trace, is regular.

Proof : (??) This is clear for quadratic étale algebras. The higher cases follow from
the Cayley-Dickson construction.
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Similarly, (??) is true for quadratic étale algebras, hence for Hurwitz algebras
of higher dimension by the Cayley-Dickson construction.

(33.19) Theorem. Let C, C ′ be Hurwitz algebras. The following claims are equiv-

alent :

(1) The algebras C and C ′ are isomorphic.

(2) The norms NC and NC′ are isometric.

(3) The norms NC and NC′ are similar.

Proof : (??) ⇒ (??) follows from the uniqueness of the generic minimal polynomial
and (??) ⇒ (??) is obvious. Let now α : (C,NC) ∼−→ (C ′, NC′) be a similitude with
factor λ. Since NC′

(
α(1C)

)
= λN(1C) = λ, λ is represented by NC′ . Since NC′ is

a Pfister quadratic form, λNC′ is isometric to NC′ (Baeza [?, p. 95, Theorem 2.4]).
Thus we may assume that α is an isometry. Let dimF C ≥ 2 and let B1 be a
quadratic étale subalgebra of C such that its norm is of the form [1, b] = X2 +
XY +bY 2 with respect to the basis (1, u) for some u ∈ B1. Let α(1) = e, α(u) = w,
and let `e be the left multiplication with e. Then u′ = `e(w) generates a quadratic
étale subalgebra B′

1 of C ′ and β = `e ◦α is an isometry NC
∼−→ NC′ which restricts

to an isomorphism B1
∼−→ B′

1. Thus we may assume that the isometry α restricts
to an isomorphism on a pair of quadratic étale algebras B1 and B′

1. Then α is

an isometry NB1

∼−→ NB′1 , hence induces an isometry B⊥
1

∼−→ B′
1
⊥

. If B1 6= C,

choose v ∈ B⊥
1 such that N(v) 6= 0 and put v′ = α(v). By the Cayley-Dickson

construction (??) we may define an isomorphism

α0 : B2 = B1 ⊕ v �B1
∼−→ B′

2 = B′
1 ⊕ v′ �B′

1

by putting α0(a + v � b) = α(a) + v′ � α(b) (which is not necessarily equal to
α(a+ v � b)!). Assume that B2 6= C. Since α0 is an isometry, it can be extended by
Witt’s Theorem to an isometry C ∼−→ C ′. We now conclude by repeating the last
step.

(33.20) Corollary. There is a natural bijection between the isomorphism classes

of Hurwm and the isomorphism classes of PQm for m = 1, 2, 4, and 8.

Proof : By (??) and (??).

The following “Skolem-Noether” type of result is an immediate consequence of
the proof of the implication (??) ⇒ (??) of (??):

(33.21) Corollary. Let C1, C2 be separable subalgebras of a Hurwitz algebra C.

Any isomorphism φ : C1
∼−→ C2 extends to an isomorphism or an anti-isomorphism

of C.

(33.22) Remark. It follows from the proof of Theorem (??) that an isometry
of a quadratic or quaternion algebra which maps 1 to 1 is an isomorphism or an
anti-isomorphism (“A1 ≡ B1”). This is not true for Cayley algebras (“G2 6≡ B3”).

(33.23) Proposition. If the norm of a Hurwitz algebra is isotropic, it is hyper-

bolic.

Proof : This is true in general for Pfister quadratic forms (Baeza [?, Corollary 3.2,
p. 105]), but we still give a proof, since it is an easy consequence of the Cayley-
Dickson process. We may assume that dimF C ≥ 2. If the norm of a Hurwitz
algebra C is isotropic, it contains a hyperbolic plane and we may assume that 1C
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lies in this plane. Hence C contains the split separable F -algebra B = F × F . But
then any B ⊕ vB obtained by the Cayley-Dickson process is a quaternion algebra
with zero divisors, hence a matrix algebra, and its norm is hyperbolic. Applying
once more the Cayley-Dickson process if necessary shows that the norm must be
hyperbolic if dimF C = 8.

It follows from Theorem (??) and Proposition (??) that in each possible dimen-
sion there is only one isomorphism class of Hurwitz algebras with isotropic norms.
For Cayley algebras a model is the Cayley algebra

Cs = CD
(
M2(F ),−1

)
.

We call it the split Cayley algebra. Its norm is the hyperbolic space of dimen-
sion 8. The group of F -automorphisms of the split Cayley algebra Cs over F is an
exceptional simple split group G of type G2 (see Theorem (??)).

(33.24) Proposition. Let G be a simple split algebraic group of type G2. Cayley

algebras over a field F are classified by the pointed set H1(F,G).

Proof : Since all Cayley algebras over a separable closure Fs of F are split, any
Cayley algebra over F is a form of the split algebra Cs. Thus we are in the situation
of (??), hence the claim.

If the characteristic of F is different from 2, norms of Hurwitz algebras corre-
spond to n-fold (bilinear) Pfister forms for n = 0, 1, 2, and 3. We recall that for
any n-fold Pfister form qn = 〈〈a1, . . . , an〉〉 the element fn(qn) = (α1)∪ · · · ∪ (αn) ∈
Hn(F,µ2) is an invariant of the isometry class of qn and classifies the form. (see
Theorem (??)). Thus in characteristic not 2, the cohomological invariant fi(NC)
of the norm NC of a Hurwitz algebra C of dimension 2i ≥ 2 is an invariant of the
algebra. We denote it by fi(C) ∈ H i(F ).

(33.25) Corollary. Let C, C ′ be Hurwitz algebras of dimension 2i, i ≥ 1. The

following conditions are equivalent :

(1) The algebras C and C ′ are isomorphic.

(2) fi(C) = fi(C
′).

Proof : By Theorem (??) and Theorem (??).

(33.26) Remark. There is also a cohomological invariant for Pfister quadratic
forms in characteristic 2 (see for example Serre [?]). For this invariant, Theo-
rem (??) holds, hence, accordingly, Corollary (??) also.

33.D. Composition algebras without identity. We recall here some gen-
eral facts about composition algebras without identity, as well as consequences of
previous results for such algebras.

The norm n of a composition algebra is determined by the multiplication even
if C does not have an identity:

(33.27) Proposition. (1) Let (C, ?, n) be a composition algebra with multiplica-

tion (x, y) 7→ x ? y, not necessarily with identity. Then there exists a multiplication

(x, y) 7→ x � y on C such that (C, �, n) is a unital composition algebra with respect

to the new multiplication.

(2) Let (C, ?, n), (C ′, ?′, n′) be composition algebras (not necessarily with identity).
Any isomorphism of algebras α : (C, ?) ∼−→ (C ′, ?′) is an isometry (C, n) ∼−→ (C ′, n′).
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Proof : (??) (Kaplansky [?]) Let a ∈ C be such that n(a) 6= 0 and let u = n(a)−1a2,
so that n(u) = 1. The linear maps `u : x→ u ? x and ru : x→ x ? u are isometries,
hence bijective. We claim that v = u2 is an identity for the multiplication

x � y = (r−1
u x) ? (`−1

u y).

We have r−1
u v = `−1

u v = u, hence x � v = (r−1
u x) ? (`−1

u v) = ru(r
−1
u x) = x and

similarly v � x = x. Furthermore,

n(x � y) = n
(
(r−1
u x) ? (`−1

u y)
)

= n(r−1
u x)n(`−1

u y) = n(x)n(y).

(??) (Petersson [?]) The claim follows from the uniqueness of the degree two
generic minimal polynomial if α is an isomorphism of unital algebras. In particular
n is uniquely determined by ? if there is a multiplication with identity. Assume now
that C and C ′ do not have identity elements. We use α to transport n′ to C, so that
we have one multiplication ? on C which admits two multiplicative norms n, n′.
If there exists some a ∈ C with n(a) = n′(a) = 1, we modify the multiplication
as in (??) to obtain a multiplication � with 1 which admits n and n′, so n = n′.
To find a, let u ∈ C be such that n(u) = 1 (such an element exists by (??)). The
map `u : x → u ? x is then an isometry of (C, n), and in particular it is bijective.
This implies that n′(u) 6= 0. The element a such u ? a = u has the desired property
n(a) = n′(a) = 1.

(33.28) Corollary. The possible dimensions for composition algebras (not neces-

sarily unital) are 1, 2, 4 or 8.

Proof : The claim follows from Theorem (??) for unital algebras and hence from
Proposition (??) in general.

(33.29) Corollary. Associating a unital composition algebra (C, �, n) to a compo-

sition algebra (C, ?, n) defines a natural map to the isomorphism classes of Hurwm

from the isomorphism classes of Compm.

Proof : By Proposition (??) we have a unital multiplication on (C, n) which, by
Theorem (??), is determined up to isomorphism.

(33.30) Remark. As observed in Remark (??) an isometry of unital composition
algebras which maps 1 to 1 is not necessarily an isomorphism, however isometric
unital composition algebras are isomorphic. This is not necessarily the case for
algebras without identity (see Remark (??)).

§34. Symmetric Compositions

In this section we discuss a special class of composition algebras without iden-
tity, independently considered by Petersson [?], Okubo [?], Faulkner [?] and re-
cently by Elduque-Myung [?], Elduque-Pérez [?]. Let (S, n) be a finite dimensional
F -algebra with a quadratic form n : S → F . Let bn(x, y) = n(x+y)−n(x)−n(y) for
x, y ∈ S and let (x, y) 7→ x ? y be the multiplication of S. We recall that the quad-
ratic form n is called associative or invariant with respect to the multiplication ?
if

bn(x ? y, z) = bn(x, y ? z)

holds for all x, y, z ∈ S.

(34.1) Lemma. Assume that n is nonsingular. The following conditions are equiv-

alent :
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(1) n is multiplicative and associative.

(2) n satisfies the relations x ? (y ? x) = n(x)y = (x ? y) ? x for x, y ∈ S.

Proof : (Okubo-Osborn [?, Lemma II.2.3]) Assume (??). Linearizing n(x ? y) =
n(x)n(y), we obtain

bn(x ? y, x ? z) = bn(y ? x, z ? x) = n(x)bn(y, z).

Since n is associative, this yields

0 = bn
(
(x ? y) ? x− n(x)y, z

)
= bn

(
y, x ? (z ? x)− n(x)z

)
,

hence (??), n being nonsingular.
Conversely, if (??) holds, linearizing gives

x ? (y ? z) + z ? (y ? x) = bn(x, z)y = (x ? y) ? z + (z ? y) ? x.(34.2)

By substituting x?y for x in the first equation and y?z for z in the second equation,
we obtain

(x ? y) ? (y ? z) = bn(x ? y, z)y − z ? (y ? x ? y) = bn(x, y ? z)y − (y ? z ? y) ? x

= bn(x ? y, z)y − n(y)z ? x = bn(x, y ? z)y − n(y)z ? x,

hence bn(x ? y, z)y = bn(x, y ? z)y and bn(x, y) is associative. Finally, we have

n(x ? y)y = (x ? y) ? [y ? (x ? y)] = (x ? y) ?
(
n(y)x

)
= n(y)n(x)y

and the form n is multiplicative. If 2 6= 0, we can also argue as follows:

n(x ? y) = 1
2bn(x ? y, x ? y) = 1

2bn
(
x, y ? (x ? y)

)
= 1

2bn(x, x)n(y) = n(x)n(y).

We call a composition algebra with an associative norm a symmetric compo-

sition algebra and denote the full subcategory of Compm consisting of symmetric
composition algebras by Scompm. A symmetric composition algebra is cubic, be-
cause

x ? (x ? x) = (x ? x) ? x = n(x)x,

however it is not power-associative in general, since

(x ? x) ? (x ? x) = bn(x, x ? x)x − x ?
(
x ? (x ? x)

)
(34.3)

by (??) and

x ?
(
x ? (x ? x)

)
= n(x)x ? x.

A complete list of power-associative symmetric composition algebras is given in Ex-
ercise ?? of this chapter.

The field F is a symmetric composition algebra with identity. However it can
be shown that a symmetric composition algebra of dimension ≥ 2 never admits an
identity.
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34.A. Para-Hurwitz algebras. Let (C, �, n) be a Hurwitz algebra. The
multiplication

(x, y) 7→ x ? y = x � y
also permits composition and it follows from bn(x�y, z) = bn(x, z�y) (see (??)) that
the norm n is associative with respect to ? (but not with respect to � if C 6= F ).
Thus (C, ?, n) is a symmetric composition algebra. We say that (C, ?, n) is the
para-Hurwitz algebra associated with (C, �, n) (resp. the para-quadratic algebra, the
para-quaternion algebra or the para-Cayley algebra). We denote the corresponding
full subcategories of Scomp by Hurw , resp. S2, A1, and G2.

Observe that the unital composition algebra associated with (C, ?) by the con-
struction given in the proof of Proposition (??) is the Hurwitz algebra (C, �) if we
set a = 1.

(34.4) Proposition. Let (C1, �, n1) and (C2, �, n2) be Hurwitz algebras and let

α : C1
∼−→ C2

be an isomorphism of vector spaces such that α(1C1) = 1C2 . Then α is an isomor-

phism (C1, �) ∼−→ (C2, �) of algebras if and only if it is an isomorphism (C1, ?)
∼−→

(C2, ?) of para-Hurwitz algebras. Moreover

(1) Any isomorphism of algebras (C1, �) ∼−→ (C2, �) is an isomorphism of the cor-

responding para-Hurwitz algebras.

(2) If dimC1 ≥ 4, then an isomorphism (C1, ?)
∼−→ (C2, ?) of para-Hurwitz algebras

is an isomorphism of the corresponding Hurwitz algebras.

Proof : Let α : C1 → C2 be an isomorphism of algebras. By uniqueness of the
quadratic generic polynomial we have α(x) = α(x) and α is an isomorphism of
para-Hurwitz algebras. Conversely, an isomorphism of para-Hurwitz algebras is an
isometry by Proposition (??) (or since x?(y?x) = n(x)y), and we have TC2

(
α(x)

)
=

TC1(x), since TC1(x) = b
C1

(1, x) and α(1C1) = 1C2 . As above it follows that

α(x) = α(x) and α is an isomorphism of Hurwitz algebras.
Claim (??) obviously follows from the first part and claim (??) will also follow

from the first part if we show that α(1C1) = 1C2 . We use Okubo-Osborn [?, p. 1238]:
we have 1 ? x = −x for x ∈ 1⊥ and the claim follows if we show that there exists
exactly one element u ∈ C1 such that u ? x = −x for x ∈ u⊥. Let u be such an
element. Since by Corollary (??.??), 1⊥ is nondegenerate, the maximal dimension
of a subspace of 1⊥ on which the form is trivial is 1

2 (dimF C1− 2). If dimF C1 ≥ 4,

there exists some x ∈ 1⊥ ∩ u⊥ with n1(x) 6= 0. For this element x we have

n1(x)1 = x ? (1 ? x) = x ? (−x) = x ? (u ? x) = n1(x)u,

so that, as claimed, 1 = u.

For quadratic algebras the following nice result holds:

(34.5) Proposition. Let C1, C2 be quadratic algebras and assume that there exists

an isomorphism of para-quadratic algebras α : (C1, ?)
∼−→ (C2, ?), which is not an

isomorphism of algebras. Then u = α(1) 6∈ F · 1 is such that u3 = 1 and β(x) =
α(x)u2 is an algebra isomorphism C1

∼−→ C2. Conversely, if β : C1
∼−→ C2 is an

isomorphism of algebras, then, for any u ∈ C2 such that u3 = 1, the map α defined

by α(x) = β(x)u is an isomorphism (C1, ?)
∼−→ (C2, ?) of para-quadratic algebras.

In particular an isomorphism C1
∼−→ C2 of para-Hurwitz algebras which is not an
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isomorphism of algebras can only occur if C1 ' F [X ]/(X2 + X + 1), i.e., C1 is

isomorphic to F (u) with u3 = 1.

Proof : The proof of (??) shows that u = α(1) 6∈ F . We show that u3 = 1. We have
u ? u = u2 = u. Thus multiplying by u and conjugating gives u3 = uu = n2(u) =
n2

(
α(1)

)
= n1(1) = 1 by Proposition (??). It then follows that C2 ' F (u). The

condition α(x) ? α(y) = α(x ? y) with y = 1 gives α(x)u = α(x) and, replacing x
by xy,

α(xy)u = α(xy) = α(x)α(y).

By conjugating and multiplying both sides with u4 = u we obtain

[α(x)u2][α(y)u2] = α(xy)u2,

so that the map β : C1 → C2 defined by β(x) = α(x)u2 is an isomorphism of
algebras. Conversely, if C1 ' C2 = F (u) with u3 = 1 and if β : C1

∼−→ C2 is
an isomorphism, then α : C1 → C2 defined by α(x) = β(x)u is an isomorphism
(C1, ?)

∼−→ (C2, ?).

Observe that ru : x 7→ x ? u is an automorphism of
(
F (u), ?

)
of order 3. In

fact we have AutF
(
F (u), ?

)
= S3, generated by the conjugation and ru. This is in

contrast with the quadratic algebra
(
F (u), ·

)
for which AutF

(
F (u)

)
= Z/2Z.

(34.6) Corollary. The map P : (C, �) 7→ (C, ?) is an equivalence Hurwm ≡ Hurwm

of groupoids if m = 4, 8, and P is bijective on isomorphism classes if m = 2.

In view of Corollary (??) we call a n-dimensional para-Hurwitz composition
algebra of type A1 if n = 4 and of type G2 if n = 8.

(34.7) Remark. It follows from Corollary (??) that

AutF (C, �) = AutF (C, ?)

for any Hurwitz algebra C of dimension ≥ 4. Thus the classification of twisted
forms of para-Hurwitz algebras is equivalent to the classification of Hurwitz alge-
bras in dimensions ≥ 4. In particular any twisted form of a para-Hurwitz algebra of
dimension ≥ 4 is again a para-Hurwitz algebra. The situation is different in dimen-
sion 2: There exist forms of para-quadratic algebras which are not para-quadratic
algebras (see Theorem (??)).

The identity 1 of a Hurwitz algebra C plays a special role also for the associated
para-Hurwitz algebra: it is an idempotent and satisfies 1 ? x = x ? 1 = −x for all
x ∈ C such that bnC (x, 1) = 0. Let (S, ?, n) be a symmetric composition algebra.
An idempotent e of S (i.e., an element such that e ? e = e) is called a para-unit if

e ? x = x ? e = −x for x ∈ S, bn(e, x) = 0.

(34.8) Lemma. A symmetric composition algebra is para-Hurwitz if and only if

it admits a para-unit.

Proof : If (S, ?) is para-Hurwitz, then 1 ∈ S is a para-unit. Conversely, for any
para-unit e in a symmetric composition algebra (S, ?, n), we have n(e) = 1 and

x � y = (e ? x) ? (y ? e)

defines a multiplication with identity element e on S. We have x ? y = x � y where
x = bn(e, x)e− x.
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34.B. Petersson algebras. Let (C, �, n) be a Hurwitz algebra and let ϕ be
an F -automorphism of C such that ϕ3 = 1. Following Petersson [?] we define a
new multiplication on C by

x ? y = ϕ(x) � ϕ2(y).

This algebra, denoted Cϕ, is a composition algebra for the same norm n and we
call it a Petersson algebra. It is straightforward to check that

(x ? y) ? x = n(x)y = x ? (y ? x)

so that Petersson algebras are symmetric composition algebras. Observe that ϕ is
automatically an automorphism of (C, ?). For ϕ = 1, (C, ?) is para-Hurwitz.

Conversely, symmetric composition algebras with nontrivial idempotents are
Petersson algebras (Petersson [?, Satz 2.1], or Elduque-Pérez [?, Theorem 2.5]):

(34.9) Proposition. Let (S, ?, n) be a symmetric composition algebra and let e ∈
S be a nontrivial idempotent.

(1) The product x � y = (e ? x) ? (y ? e) gives S the structure of a Hurwitz algebra

with identity e, norm n, and conjugation x 7→ x = bn(x, e)e− x.
(2) The map

ϕ(x) = e ? (e ? x) = bn(e, x)e− x ? e = x ? e

is an automorphism of (S, �) (and (S, ?)) of order ≤ 3 and (S, ?) = Sϕ is a Petersson

algebra with respect to ϕ.

Proof : (??) is easy and left as an exercise.
(??) Replacing x by e ? x and z by e in the identity (??):

bn(x, z)y = x ? (y ? z) + z ? (y ? x)

gives

x � y = bn(e, x)y − e ?
(
y ? (e ? x)

)

hence

(x � y) ? e = y ?
(
bn(x, e)e− e ? x

)
=

(
e ? (y ? e)

)
?

(
(x ? e) ? e

)
= (y ? e) � (x ? e).

Thus ϕ is an automorphism of (S, �), ϕ3(x) = x = x, x ? y = ϕ(x) � ϕ2(y) and
(S, ?) = Sϕ as claimed.

In general a symmetric composition may not contain an idempotent. However:

(34.10) Lemma. Let (S, ?, n) be a symmetric composition algebra.

(1) If the cubic form bn(x ? x, x) is isotropic on S, then (S, ?) contains an idempo-

tent. In particular there always exists a field extension L/F of degree 3 such that

(S, ?)L contains an idempotent e.
(2) For any nontrivial idempotent e ∈ S we have n(e) = 1.

Proof : (??) It suffices to find f 6= 0 with f ? f = λf , λ ∈ F× so that e = fλ−1

then is an idempotent. Let x 6= 0 be such that bn(x ? x, x) = 0. We have

(x ? x) ? (x ? x) = −n(x)(x ? x)

by (??), so we take f = x ? x if n(x) 6= 0. If n(x) = 0, we may also assume that
x ? x = 0: if x ? x 6= 0 we replace x by x ? x and use again (??). Since x is isotropic



466 VIII. COMPOSITION AND TRIALITY

and n is nonsingular, there exists some y ∈ S such that n(y) = 0 and bn(x, y) = −1.
A straightforward computation using (??) shows that

(x ? y + y ? x) ? (x ? y + y ? x) = (x ? y + y ? x) + 3bn(y, y ? x)x,

and

e = x ? y + y ? x+ bn(y, y ? x)x

is an idempotent and is nonzero since

e ? x = (y ? x) ? x = bn(x, y)x = −x.
(??) Since e = (e ? e) ? e = n(e)e, we have n(e) = 1.

(34.11) Remark. Lemma (??.??) is in fact a special case of Theorem (??) and
its proof is copied from the proof of implication (??) ⇒ (??) of (??).

Assume that charF 6= 3 and that F contains a primitive cube root of unity ω.
The existence of an automorphism of order 3 on a Hurwitz algebra C is equivalent
with the existence of a Z/3Z-grading:

(34.12) Lemma. Suppose that F contains a primitive cube root of unity ω.

(1) If ϕ is an automorphism of C of order 3, then C (or Cϕ) admits a decomposition

C = Cϕ = S0 ⊕ S1 ⊕ S2,

with

Si = {x ∈ C | ϕ(x) = ωix }
and such that

(a) Si � Sj ⊂ Si+j (resp. Si ? Sj ⊂ Si+j), with subscripts taken modulo 3,
(b) bn(Si, Sj) = 0 unless i+ j ≡ 0 mod 3.

In particular (S0, ?, n) ⊂ Cϕ is a para-Hurwitz algebra of even dimension and S1

(resp. S2) is a maximal isotropic subspace of S1 ⊕ S2.

(2) Conversely, any Z/3Z-grading of C defines an automorphism ϕ of order 3 of C,

hence a Petersson algebra Cϕ.

Proof : Claim (??) follows easily from the fact that ωi, i = 0, 1, 2, are the eigen-
values of the automorphism ϕ. For (??) we take the identity on degree 0 elements,
multiplication by ω on degree 1 elements and multiplication by ω2 on degree 2
elements.

If ϕ 6= 1, S0 in Lemma (??) must have dimension 2 or 4 (being a para-Hurwitz
algebra). We show next that Cϕ is para-Hurwitz if dimS0 = 2. The case dimS0 = 4
and dimCϕ = 8 corresponds to a different type of symmetric composition, discussed
in the next subsection.

(34.13) Proposition (Elduque-Pérez). Let F be a field of characteristic not 3, let

C be a Hurwitz algebra over F , let ϕ be an F -automorphism of C of order 3. Then

S0 = {x ∈ C | ϕ(x) = x }
is a para-Hurwitz algebra of dimension 2 or 4. The Petersson algebra Cϕ is iso-

morphic to a para-Hurwitz algebra if and only if dimS0 = 2.
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Proof : The first claim is clear. For the second claim we use an argument in Elduque-
Pérez [?, proof of Proposition 3.4]. If dimC = 2 there is nothing to prove. Thus
by Remark (??) we may assume that F contains a primitive cube root of unity. To
simplify notations we denote the multiplication in C by (x, y) 7→ xy and we put
n = NC for the norm of C. Let xi ∈ Si, i = 1, 2; we have x2

i = n(xi) = 0 by
Lemma (??), so that

bn(x1x2, x2x1) = bn(x1, x2)
2

by (??). Furthermore (x1x2)(x2x1) = x1(x2x2)x1 = 0 (by Artin’s theorem, see (??))
and

(x1x2)
2 − bn(x1x2, 1)x1x2 + n(x1x2) · 1 = 0

implies that (x1x2)
2 = −bn(x1, x2)x1x2. Choosing x1, x2 such that bn(x1, x2) =

−1, we see that e1 = x1x2 is an idempotent of C and it is easily seen that e2 =
1− e1 = x2x1. We claim that if dimS0 = 2, then e1 = y1y2 for any pair (y1, y2) ∈
S1 × S2 such that bn(y1, y2) = −1. We have S0 = F · e1 ⊕ F · e2 if dimS0 = 2, so
that the claim will follow if we can show that bn(e1, y1y2) = 0. Let y1 = λx1 + x′1
with bn(x

′
1, x2) = 0. By using (??) and the fact that n(Si) = 0 for i = 1, 2, we

deduce

bn(e1, y1y2) = bn
(
x1x2, (λx1 + x′1)y2

)

= n(x1)bn(x2, λy2) + bn(x1x2, x
′
1y2)

= −bn(x1y2, x
′
1x2).

However x′1x2 satisfies

(x′1x2)
2 − bn(x′1x2, 1)x′1x2 + n(x′1x2) = 0

hence (x′1x2)
2 = 0, since bn(x

′
1x2, 1) = −bn(x′1, x2) = 0. Since the algebra S0 is

étale, we must have x′1x2 = 0 and, as claimed, bn(e1, y1y2) = 0. Similarly we have
e2 = y2y1 for (y1, y2) ∈ S1 × S2 such that bn(y1, y2) = −1. It follows that

e1y1 = (1− e2)y1 = (1− y2y1)y1 = y1,

y1e1 = y1(y1y2) = 0 = e2y1,

y1e2 = y1, e2y2 = y2 = y2e1 and e1y2 = 0 = y2e2,

so that

S1 = {x ∈ C | e1x = x = xe2 }

and

S2 = {x ∈ C | e2x = x = xe1 }.
The element

e = ω2e1 + ωe2

is a para-unit of Cϕ, since

e ? x = (ω2e1 + ωe2)(ω
2ix) = −(ωe1 + ω2e2)ω

2ix = −x
for x ∈ Si and since

e ? (ωe1 − ω2e2) = (ω2e1 + ωe2)(−ω2e1 + ω2e2) = (−ωe1 + ω2e2)

for ωe1 − ω2e2 ∈ e⊥ ⊂ S0. The claim then follows from Lemma (??).
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34.C. Cubic separable alternative algebras. Following Faulkner [?] we
now give another approach to symmetric composition algebras over fields of char-
acteristic not 3. We first recall some useful identities holding in cubic alternative
algebras. Let A be a finite dimensional unital separable alternative F -algebra of
degree 3 and let

PA,a(X) = X3 − TA(a)X2 + SA(a)X −NA(a)1

be its generic minimal polynomial. The trace TA is linear, the form SA is quadratic
and the norm NA is cubic. As was observed in the introduction to this chapter we
have

NA(X − a · 1) = PA,a(X), NA(xy) = NA(x)NA(y), and TA(xy) = TA(yx).

Let

bSA(x, y) = SA(x + y)− SA(x)− SA(y),

x# = x2 − TA(x)x + SA(x) · 1

and

x× y = (x + y)# − x# − y#.

Note that

NA(x) = xx# = x#x.

Observe that the #-operation and the ×-product are defined for any cubic
algebra. They will be systematically used in Chapter IX for cubic Jordan algebras.

(34.14) Lemma. (1) NA(1) = 1, SA(1) = TA(1) = 3, 1# = 1, 1× 1 = 2,
(2) (xy)# = y#x#,

(3) SA(x) = TA(x#), SA(x#) = TA(x)NA(x), NA(x#) = NA(x)2,
(4) bSA(x, y) = TA(x× y).
(5) NA(x + λy) = λ3NA(y) + λ2TA(x · y#) + λTA(x# · y) + NA(x) for x, y ∈ A,

and λ ∈ F .

(6) The coefficient of αβγ in NA(αx+βy+ γz) is TA
(
x(y× z)

)
and TA

(
x(y× z)

)

is symmetric in x, y, and z.
(7) bSA(x, 1) = 2TA(x),
(8) x× 1 = TA(x) · 1− x,
(9) TA(xy) = TA(x)TA(y)− bSA(x, y),
(10) TA

(
(xz)y

)
= TA

(
x(zy)

)
.

Proof : We may assume that F is infinite and identify polynomials through their
coefficients. NA(1) = 1 follows from the multiplicativity of NA, so that 1# = 1
and 1 × 1 = 2. Putting a = 1 in NA(X − a · 1) = PA,a(X) gives PA,1(X) =
(X − 1)3NA(1) = (X − 1)3, hence SA(1) = TA(1) = 3.

By density it suffices to prove (??) for x, y such that NA(x) 6= 0 6= NA(y).
Then (xy)# = (xy)−1NA(xy) = y−1NA(y)x−1NA(x) = y#x#.

Again by density, it suffices to prove (??) for x such that NA(x) 6= 0. We then
have NA(x−λ) = NA(1−λx−1)NA(x). Comparing the coefficients of λ gives (??),
and (??) follows by linearizing (??).

(??) follows by computing NA(x+ λy) = NA(xy−1 + λ)NA(y).
The first claim of (??) follows by computing the coefficient of αβγ in NA

(
αx+

(βy + γz)
)

(and using (??)). The last claim of (??) then is clear by symmetry.
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(??) follows from (??), since

bSA(x, 1) = TA(x× 1) = TA
(
x(1× 1)

)
= 2TA(x)

and (??) implies (??).
For (??) we have

bSA(x, y) = TA
(
(x× y)1

)
= TA

(
(x× 1)y

)

= TA
((
TA(x) · 1− x

)
y
)

= TA(x)TA(y)− TA(xy).

Finally, by linearizing

TA
(
x(yx)

)
= TA

(
(xy)x

)
= TA(yx2) = TA

(
y
(
x# + xTA(x) − SA(x)1

))
,

we obtain

TA
(
x(yz)

)
+ TA

(
z(yx)

)
= TA

(
(xy)z

)
+ TA

(
(zy)x

)

= TA
(
y(x× z)

)
+ TA(yx)TA(z) + TA(yz)TA(x)

− TA(y)bSA(x, z)

= TA
(
y(x× z)

)
+ TA(yx)TA(z) + TA(yz)TA(x)

+ TA(xz)TA(y)− TA(x)TA(y)TA(z),

so that by (??) TA
(
x(yz)

)
+ TA

(
z(yx)

)
= TA

(
(xy)z

)
+ TA

(
(zy)x

)
is symmetric in

x, y and z. It follows that

TA
(
x(yz)

)
+ TA

(
z(yx)

)
= TA

(
y(xz)

)
+ TA

(
z(xy)

)

and TA
(
(xz)y

)
= TA

(
x(zy)

)
, as claimed.

(34.15) Proposition. A cubic alternative algebra is separable if and only if the

bilinear trace form T (x, y) = TA(xy) is nonsingular.

Proof : By (??) T is associative, hence the claim follows from Dieudonné’s Theo-
rem (??).

We recall:

(34.16) Proposition. For any isomorphism α : A ∼−→ A′ of cubic unital alterna-

tive algebras we have

TA′
(
α(x)

)
= TA(x), SA′

(
α(x)

)
= SA(x), NA′

(
α(x)

)
= NA(x).

Proof : The polynomial pA′,α(a)(X) is a minimal generic polynomial for A, hence
the claim by uniqueness.

(34.17) Theorem. Let A be a cubic separable unital alternative algebra over F of

dimension > 1. Then either :

(1) A ' L, for some unique (up to isomorphism) cubic étale algebra L over F ,

(2) A ' F×Q where Q is a unique (up to isomorphism) quaternion algebra over F ,

(3) A ' F × C where C is a unique (up to isomorphism) Cayley algebra over F ,

(4) A is isomorphic to a unique (up to isomorphism) central simple associative

algebra of degree 3.

In particular such an algebra has dimension 3, 5 or 9. In case (??) the generic

minimal polynomial is the characteristic polynomial, in case (??) and (??) the

product of the generic minimal polynomial pF,a(X) = X − a of F with the generic

minimal polynomial pC,c(X) = X2 − TC(c)X +NC(c) · 1 of C = Q or C = C and

in case (??) the reduced characteristic polynomial.
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Proof : The claim is a special case of Theorem (??).

Let 1A′n denote the category of central simple algebras of degree n + 1 over
F . Let I : Sepaltm−1(2) → Sepaltm(3) be the functor C 7→ F × C. Theorem

(??) gives equivalences of groupoids Sepalt3(3) ≡ S3, Sepalt5(3) ≡ I(1A
′
1), and

Sepalt9(3) ' I(G2) t 1A
′
2.

We assume from now on (and till the end of the section) that F is a field of
characteristic different from 3. Let A be cubic alternative separable over F and let

A0 = {x ∈ A | TA(x) = 0 }.
Since x = 1

3TA(x) · 1 + x − 1
3TA(x) · 1 and TA

(
x − 1

3TA(x)
)

= 0 we have A =

F · 1⊕A0 and the bilinear trace form T : (x, y) 7→ TA(xy) is nonsingular on A0. By
Lemma (??) the polar of the quadratic form SA on A0 is −T . Thus the restriction
of SA to A0 is a nonsingular quadratic form.

We further assume that F contains a primitive cube root of unity ω and set
µ = 1−ω

3 . We define a multiplication ? on A0 by

x ? y = µxy + (1− µ)yx− 1
3TA(yx)1.(34.18)

This type of multiplication was first considered by Okubo [?] for matrix algebras
and by Faulkner [?] for cubic alternative algebras.

(34.19) Proposition. The algebra (A0, ?) is a symmetric composition algebra with

norm n(x) = − 1
3SA(x).

Proof : The form n is nonsingular, since SA is nonsingular. We check that

(x ? y) ? x = x ? (y ? x) = − 1
3SA(x)y = n(x)y.

Lemma (??) will then imply that (A0, ?) is a symmetric composition algebra. We
have 3µ(1− µ) = 1. It follows that

(x ? y) ? x = x ? (y ? x) = µ2xyx+ (1− µ)2xyx+ µ(1− µ)(yx2 + x2y)

− 1
3TA(xy)x− 1

3µTA(xyx)1− 1
3 (1− µ)TA(xyx)1

= [1− 2µ(1− µ)]xyx + µ(1− µ)(yx2 + x2y)

− 1
3TA(xy)x− 1

3TA(xyx)1

= 1
3 (xyx + yx2 + x2y)− 1

3TA(xy)x − 1
3TA(xyx)1.

(34.20)

By evaluating TA on the generic polynomial, we obtain 3NA(x) = TA(x3) for ele-
ments in A0. Thus

x3 + SA(x)x − 1
3TA(x3)1 = 0(34.21)

holds for all x ∈ A0. Since it suffices to prove (??) over a field extension, we may
assume that F is infinite. Replacing x by x+ λy in (??), the coefficient of λ must
then be zero. Hence we are lead to the identity

xyx+ yx2 + x2y − TA(xy)x + SA(x)y − TA(xyx)1 = 0

for all x, y ∈ A0, taking into account that bSA(x, y) = −TA(xy) on A0. Combining
this with equation (??) shows that

(x ? y) ? x = x ? (y ? x) = − 1
3SA(x)y = n(x)y

as claimed.
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Hence we have a functor 1C : Sepaltm+1(3) → Scompm for m = 2, 4 and 8
given by A 7→ (A0, n). We now construct a functor 1A in opposite direction; a
straightforward computation shows that (??) is equivalent to

xy = (1 + ω)x ? y − ωy ? x+ bn(x, y) · 1(34.22)

for the multiplication in A0 ⊂ A. Thus, given a symmetric composition (S, ?), it is
natural to define a multiplication (x, y) 7→ x · y = xy on A = F ⊕ S by (??) for x,
y ∈ S, and by 1 · x = x = x · 1. Let 1A be the functor (S, ?) 7→ (F ⊕ S, ·).

(34.23) Theorem (Elduque-Myung). The functors 1C and 1A define an equiva-

lence of groupoids

Sepaltm+1(3) ≡ Scompm

for m = 2, 4 and 8.

Proof : We first show that A = 1A(S) = F ⊕S is a separable alternative algebra of
degree 3: Let x = α1 + a, α ∈ F and a ∈ S. We have

x2 =
(
α2 + bn(a, a)

)
1 + 2αa+ a ? a

and

xx2 = x2x = [α3 + 3αbn(a, a) + bn(a ? a, a)]1 + [3α2 + 3n(a)]a+ 3α(a ? a).

It follows that

x3 − 3αx2 +
(
3α2 − 3n(a)

)
x = [α3 − 3n(a)α+ bn(a ? a, a)]1

so that elements of A satisfy a polynomial condition of degree 3

pA,x(X) = X3 − TA(x)X2 + SA(x)X −NA(x)1 = 0

with

TA(x) = 3α, SA(x) = 3α2 − 3n(a)

and

NA(x) = α3 − 3αn(a) + bn(a ? a, a)

for x = α1 + a. To show that A is of degree 3 we may assume that the ground
field F is infinite and we need an element x ∈ A such that the set {1, x, x2} is
linearly independent. Because x2 = x ? x + (x, x)1 for x ∈ S, it suffices to have
x ∈ S such that {1, x, x ? x} is linearly independent. Since TA(1) = 3, while
TA(x) = 0 = TA(x ? x), the only possible linear dependence is between x and x ? x.
If {x, x ? x} is linearly dependent for all x ∈ S, there is a map f : S → F such
that x ? x = f(x)x for x ∈ S. By the following Lemma (??) f is linear. Since
x ? x ? x = n(x)x we get n(x) = f(x)2. This is only possible if dimF S = 1. We
next check that A is alternative. It suffices to verify that

a2b = a(ab) and ba2 = (ba)a for a, b ∈ S.

We have

a2b = [a ? a+ (a, a)]b = (1 + ω)(a ? a) ? b− ωb ? (a ? a) + bn(a ? a, b)



472 VIII. COMPOSITION AND TRIALITY

and

a(ab) = a[(1 + ω)a ? b− ωb ? a+ bn(a, b)]

= (1 + ω)[a ? (a ? b)− ω(a ? b) ? a+ bn(a, a ? b)]

− ω[(1 + ω)a ? (b ? a)− ω(b ? a) ? a+ bn(a, b ? a)] + bn(a, b)a.

By (??) we have

(a ? a) ? b+ (b ? a) ? a = bn(a, b)a = b ? (a ? a) + a ? (a ? b).

This, together with the identities

bn(a, a ? b) = bn(a ? a, b) = bn(b, a ? a) = bn(b ? a, a) = bn(a, b ? a)

which follow from the associativity of n, implies that a2b = a(ab). The proof of
ba2 = (ba)a is similar. Thus A is alternative of degree 3. We next check that A is
separable. We have for x = α+ a, y = β + b,

xy = αβ + βa+ αb+ (1 + ω)a ? b− ωb ? a+ bn(a, b)

so that

T (x, y) = TA(xy) = 3αβ + 3bn(a, b)

is a nonsingular bilinear form. Since the trace form of a cubic alternative algebra is
associative (Lemma (??)), A is separable by Dieudonné’s Theorem (??). We finally
have an equivalence of groupoids since

(F ⊕ S)0 = S and F ⊕A0 = A

and since formulas (??) and (??) are equivalent.

(34.24) Lemma. Let F be an infinite field and let (S, ?) be an F -algebra. If there

exists a map f : S → F such that x ? x = f(x)x for all x ∈ S, then f is linear.

Proof : (Elduque) If S is 1-dimensional, the claim is clear. So let (e1, . . . , en) be a
basis of S. For x =

∑
xiei and ei ? ej =

∑
k a

k
ijek, we have

∑
i,j a

k
ijxixj = f(x)xk

for any k. Thus f(x) = gk(x)x
−1
k for some quadratic homogeneous polynomial

gk(x) and k = 1, . . . , n in the Zariski open set

D(xk) = {x ∈ S | xk 6= 0 }.

For any pair i, j we have gi(x)xj = gj(x)xi in D(xi) ∩ D(xj), so by density
gi(x)xj = gj(x)xi holds for any x ∈ S. Unique factorization over the polyno-
mial ring F [x1, . . . xn] shows that there exists a linear map φ : S → F such that
gi(x) = xiφ(x). It is clear that f = φ.

(34.25) Remark. Let A be central simple of degree 3 over F and assume that F
has characteristic different from 3 and that F contains a primitive cube root of
unity. The form n from (??) is then hyperbolic on A0: by Springer’s Theorem
(see [?, p. 119]) we may assume that A is split, and in that case the claim is easy
to check directly. Hence, if A and A′ are of degree 3 and are not isomorphic, the

compositions (A0, ?) and (A′0, ?) are nonisomorphic (by (??)) but have isometric
norms. This is in contrast with Cayley (or para-Cayley) composition algebras.
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(34.26) Remark. The polar of a cubic form N is

N(x, y, z) = N(x+ y + z)−N(x+ y)−N(x+ z)−N(y + z)

+N(x) +N(y) +N(z)

and N is nonsingular if its polar is nonsingular, i.e., if N(x, y, z) = 0 for all x, y im-
plies that z = 0. Let A be an F -algebra. If charF 6= 2, 3 a necessary and sufficient
condition for A to admit a nonsingular cubic formN which admits composition (i.e.,
such that N(xy) = N(x)N(y)) is that A is cubic separable alternative and N ' NA

(see Schafer [?, Theorem 3]). Thus, putting x = α · 1 + a ∈ F · 1⊕ A0, the multi-
plicativity of NA(x) = α3 − 3αn(a) + bn(a ? a, a) for the multiplication (x, y) 7→ xy
of A is equivalent by Proposition (??) to the multiplicativity of n = − 1

3SA for the

multiplication (a, b) 7→ a ? b of A0. It would be nice to have a direct proof!

A symmetric composition algebra isomorphic to a composition (A0, ?) for A
central simple of degree 3 is called an Okubo composition algebra or a composition

algebra of type 1A2 since its automorphism group is a simple adjoint algebraic group
of type 1A2. Twisted forms of Okubo algebras are again Okubo algebras. The
groupoid of Okubo composition algebras over a field F containing a primitive cube

root of unity is denoted 1Oku. We have an equivalence of groupoids 1Oku ≡ 1A
′
2 (if

F contains a primitive cube root of unity).
For para-Hurwitz compositions of dimension 4 or 8 we have the following situ-

ation:

(34.27) Proposition. Let I : Hurwm → Sepaltm+1(3) be the functor C 7→ F ×C,

P : Hurwm → Hurwm the para-Hurwitz functor and J : Hurwm → Scompm the

inclusion. Then the map

ηC : C → (F × C)0 given by z 7→
(
TC(z), ωz + ω2z

)

is a natural transformation between the functors 1C ◦ I and J ◦P, i.e., the diagram

Sepaltm+1(3)
1
C−−−−→ Scompm

I

x
xJ

Hurwm
P−−−−→ Hurwm

commutes up to ηC .

Proof : It suffices to check that ηC is an isomorphism of the para-Hurwitz algebra
(C, ?) with the symmetric composition algebra

(
(F × C)0, ?

)
. We shall use that

TA(x) = ξ + TC(c), SA(x) = NC(c) + ξTC(c) and NA(x) = ξNC(c) for A = F ×C,
ξ ∈ F , c ∈ C and TC the trace and NC the norm of C. If charF 6= 2, we decompose
C = F · 1⊕ C0 and set u = (2,−1) ∈ A0. We then have

ηC(βe+ x) = βu+ (1 + 2ω)x.

The element u satisfies u ? u = u and (0, x) ? u = u ? (0, x) = (0,−x) for x ∈ C0.
Thus it suffices to check the multiplicativity of ηC on products of elements in C0,
in which case the claim follows by a tedious but straightforward computation. If
charF = 2, we choose v ∈ C with TC(v) = 1, to have C = F · v ⊕ C0. We then
have

ηC(βv + x) = (β, βv + x+ ω2β)
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and the proof is reduced to checking the assertion for the products v ? v, v ?x, x? v
and x ? x, where it is easy.

For symmetric compositions of dimension 2, we do not have to assume in Propo-
sition (??) that F contains a contains a primitive cube root of unity since a sepa-
rable alternative algebra A of degree 3 and dimension 3 is étale commutative and
the multiplication ? reduces to a ? b = ab− 1

3TA(ab). Thus (??) and (??) imply:

(34.28) Proposition. Let F be a field of characteristic different from 3 and let

(S, ?, n) be a symmetric composition algebra over F of dimension 2. Then S '
(L0, ?) for a unique cubic étale F -algebra L. The algebra S is para-quadratic if and

only if L is not a field.

To obtain a complete description of symmetric compositions in dimension 4
and 8 we may take the Structure Theorem (??) for cubic alternative algebras into
account:

(34.29) Theorem (Elduque-Myung). Let F be field with char 6= 3 which contains

a primitive cube root of unity. There exist equivalences of groupoids

Scomp4 ≡ Hurw4 ≡ Hurw4 ≡ A′1

and

Scomp8 ≡ Hurw8 t 1Oku ≡ G2 t 1A
′
2.

However we did not prove (??) and we shall give an alternate proof of these
equivalences. Observe that this will yield, in turn, a proof of Theorem (??)!

We postpone the proof of (??) and begin with an example:

(34.30) Example. Let V be a 2-dimensional vector space over F . We view ele-
ments of EndF (V ⊕ F ) of trace zero as block matrices

(
φ v
f − tr(φ)

)
∈

(
End(V ) V
V ∗ F

)

The product of such two blocks is given by(
φ v
f − tr(φ)

)
·
(
φ′ v′

f ′ − tr(φ′)

)
=

(
φ ◦ φ′ + v ◦ f ′ φ(v′)− tr(φ′)v
f ◦ φ′ − tr(φ)f ′ f(v′) + tr(φ) tr(φ′)

)

where (v ◦ f ′)(x) = vf ′(x). With the multiplication (x, y) 7→ x ? y defined in (??)
and the quadratic form n = − 1

3SEndF (V⊕F ),

SV = 1C
(
EndF (V ⊕ F )

)
=

(
EndF (V ⊕ F )0, ?

)

is a symmetric composition algebra and

e =

(
−1V 0

0 2

)
∈

(
End(V ) V
V ∗ F

)

is a nontrivial idempotent. By Proposition (??), (??), the map

ϕ(x) = e ? (e ? x) = bn(e, x)e− x ? e
is an automorphism of

(
SV , ?

)
of order 3, such that

(
SV , ?

)
reduces to the Petersson

algebra SV ϕ. The corresponding Z/3Z-grading is

S0 = EndF (V ), S1 = V, S2 = V ∗.

In particular we have dimF S0 = 4. The converse also holds (Elduque-Pérez [?,
Theorem 3.5]) in view of the following:
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(34.31) Proposition. Let F be a field of characteristic not 3 which contains a

primitive cube root of unity ω. Let (S, ?, n) be a symmetric composition algebra

of dimension 8 with a nontrivial idempotent e. Let ϕ(x) = e ? (e ? x) and let

S = S0 ⊕ S1 ⊕ S2 be the Z/3Z-grading of (S, ?, n) defined by ϕ (see (??)). If

dimF S0 = 4, there exists a 2-dimensional vector space V such that (S, ?) ' SV ϕ =
1C

(
End(V ⊕ F )

)
.

Proof : Since dimF S0 = 4 we must have dimF S1 = dimF S2 = 2, and S1, S2 are
maximal isotropic direct summands of S by Lemma (??). Let (x1, x2) be a basis
of S1 and let (f1, f2) be a basis of S2 such that bn(xi, fj) = δij . Since

(xi + fi) ?
(
u ? (xi + fi)

)
=

(
(xi + fi) ? u

)
? (xi + fi) = u

holds for all u we have

(1) xi ? (u ? xi) = 0 = (xi ? u) ? xi

(2) fj ? (u ? fj) = 0 = (fj ? u) ? fj

and

(3) xi ? (u ? fi) + fi ? (u ? xi) = u

for all u ∈ S0. Thus, by choosing u = e and using that

x = −ωe ? x = −ω2x ? e, f = −ωf ? e = −ω2e ? f

for x ∈ S1, resp. f ∈ S2, we see that xi ? xi = 0 = fj ? fj . Moreover x1 ? x2 =
0 = x2 ? x1 and f1 ? f2 = 0 = f2 ? f1, so S1 ? S1 = 0 = S2 ? S2. Since u ? xi ∈ Si,
u ? fj ∈ S2 for u ∈ S0, (??) implies that

(f1 ? x1, f1 ? x2, x1 ? f1, x1 ? f2)

generates S0, hence is a basis of S0 and S1 ? S2 = S0 = S2 ? S1. We now define an
F -linear map ψ : S →M3(F ) on basis elements by

x1 7→




0 0 1
0 0 0
0 0 0


, x2 7→




0 0 0
0 0 1
0 0 0


, f1 7→




0 0 0
0 0 0
3 0 0


, f2 7→




0 0 0
0 0 0
0 3 0




and

xi ? fj 7→ µxifj + (1− µ)fjxi − 1
3 tr(xifj),

fj ? xi 7→ µfjxi + (1− µ)xifj − 1
3 tr(xifj)

where multiplication on the right is in M3(F ) and µ = 1−ω
3 . We leave it as a

(lengthy) exercise to check that ψ is an isomorphism of composition algebras S ∼−→
1C

(
M3(F )

)
= SV with V = F 2.

Proof of Theorem (??): Let (S, ?, n) be a symmetric composition algebra. Since
twisted forms of Okubo algebras are Okubo and twisted forms of para-Hurwitz
algebras of dimension ≥ 4 are para-Hurwitz, we may assume by Lemma (??) that
S contains a nontrivial idempotent. Let S = S0 ⊕ S1 ⊕ S2 be the grading given
by Lemma (??). Assume first that dimS = 4. If dimS0 = 4, then S = S0

is para-Hurwitz; and if dimS0 = 2, S is para-Hurwitz by Proposition (??). If
dimS = 8 and dimS0 = 2, S is para-Hurwitz by Proposition (??); if dimS = 8
and dimS0 = 4, S is Okubo by Proposition (??).
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34.D. Alternative algebras with unitary involutions. To overcome the
condition on the existence of a primitive cube root of unity in F , one considers
separable cubic alternative algebras B over the quadratic extension K = F (ω) =
F [X ]/(X2 +X + 1) which admit a unitary involution τ .

(34.32) Proposition. Let K be a quadratic separable field extension of F with

conjugation ι. Cubic separable unital alternative K-algebras with a unitary involu-

tion τ are of the following types :

(1) L = K ⊗ L0 for L0 cubic étale over F and τ = ι⊗ 1.
(2) Central simple associative algebras of degree 3 over K with a unitary involution.

(3) Products K×(K⊗C) where C is a Hurwitz algebra of dimension 4 or 8 over F
and τ = (ι, ι ⊗ π) where π is the conjugation of the Hurwitz algebra C.

Proof : A cubic separable unital K-algebra is of the types described in Theorem
(??). (??) then follows by Galois descent and (??) follows from Proposition (??)
(the case of a Cayley algebra being proved as the quaternion case).

Assume that F has characteristic different from 3 and that K = F (ω) is a
field. Let 2Sepaltm(3) be the groupoid of alternative F -algebras (B, τ) which are
separable cubic of dimension m over K and have unitary involutions. The generic
polynomial of degree 3 on B with coefficients in K restricts to a polynomial function
on Sym(B, τ) with coefficients in F . Let

Sym(B, τ)0 = {x ∈ Sym(B, τ) | TB(x) = 0 }.

We define a multiplication ? on Sym(B, τ)0 as in (??):

x ? y = µxy + (1− µ)yx− 1
3TB(yx)1.(34.33)

The element x ? y lies in Sym(B, τ)0 since ι(µ) = 1− µ. Let n(x) = − 1
3TB(x2).

A description of Sym(B, τ) (and of ?) in cases (??) and (??) is obvious, however
less obvious in case (??).

(34.34) Lemma. Let C be a Hurwitz algebra over F , let K be a quadratic étale

F -algebra, and let B be the alternative K-algebra B = K × (K ⊗ C) with unitary

involution τ = (ι, ι ⊗ π). Then:

(1)

Sym(B, τ)0 =
{ (
TC(z), ξ ⊗ z + ι(ξ)⊗ π(z)

) ∣∣ z ∈ C
}

where ξ is a (fixed) generator of K such that TK(ξ) = −1.
(2) If K = F (ω) where ω is a primitive cube root of unity, the map z 7→ ω ⊗ z +
ι(ω)⊗ π(z) is an isomorphism (C, ?) ∼−→

(
Sym(B, τ)0, ?

)
.

Proof : (??) We obviously have

Sym(B, τ)0 ⊃
{ (
TC(z), ξ ⊗ z + ι(ξ) ⊗ π(z)

) ∣∣ z ∈ C
}
,

hence the claim by dimension count, since the map

Sym(B, τ)0 →
{ (
TC(z), ξ ⊗ z + ι(ξ)⊗ π(z)

) ∣∣ z ∈ C
}

given by z 7→ ξ ⊗ z + ι(ξ) ⊗ π(z) is an isomorphism of vector spaces.
(??) follows from (??) and Proposition (??).
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(34.35) Theorem. Let F be a field of characteristic not 3 which does not contain

a primitive cube root of unity ω and let K = F (ω). For any cubic separable alterna-

tive K-algebra with a unitary involution τ , the F -vector space
(
Sym(B, τ)0, ?

)
is a

symmetric composition algebra. Conversely, for any symmetric composition algebra

(S, ?), the unital alternative K-algebra B = K · 1⊕ (K ⊗S) with the multiplication

xy = (1 + ω)x ? y − ωy ? x+ bn(x, y) · 1, x · 1 = 1 · x = x

for x, y ∈ B0, admits the unitary involution (ι, ι⊗ 1S) and the functors

2C : (B, τ) 7→
(
Sym(B, τ)0, ?

)
,

2A : (S, ?) 7→
(
B = K · 1⊕ (K ⊗ S), (ι, ι⊗ 1)

)

define an equivalence of groupoids

2Sepaltm+1(3) ≡ Scompm

for m = 2, 4 and 8.

Proof : To check that
(
Sym(B, τ)0, ?

)
is a symmetric composition algebra over F ,

we may assume that K = F × F . Then B is of the form (A,Aop) and τ(a, bop) =
(b, aop) for A separable alternative of degree 3 as in the associative case (see (??)).
By projecting on the first factor, we obtain an isomorphism

Sym(B, τ)0 ' A0 = {x ∈ A | TA(x) = 0 },
and the product ? on A0 is as in (??). Thus the composition

(
Sym(B, τ)0, ?

)
is

isomorphic to (A0, ?) and hence is a symmetric composition.
Conversely, if (S, ?) is a symmetric composition algebra over F , then (S, ?)⊗K

is a symmetric composition algebra over K and (K ·1⊕K⊗S, ·) is a K-alternative
algebra by Theorem (??). The fact that (ι, ι ⊗ 1) is a unitary involution on B
follows from the definition of the multiplication of B. That 2C and 2A define an
equivalence of groupoids then follows as in (??).

(34.36) Corollary. Let (S, ?) be a symmetric composition algebra with norm n.
The following conditions are equivalent :

(1) S contains a nontrivial idempotent.

(2) the cubic form N(x) = bn(x ? x, x) is isotropic.

(3) the alternative algebra 1A(S) (if F contains a primitive cube root of unity,

otherwise 2A(S)) has zero divisors.

Proof : (??) ⇒ (??) By Proposition (??) the map ϕ(x) = e ? (e ? x) is an auto-
morphism of (S, ?) of order ≤ 3 and the corresponding subalgebra S0 (see Lemma
(??)) has dimension at least 2. For every nonzero x ∈ S0 with bn(x, e) = 0 we have
x ? e = e ? x = −x, so that bn(x ? x, x) = −bn(x ? x, e ? x) = n(x)bn(x, e) = 0.

The implication (??) ⇒ (??) is Lemma (??).
We check that (??) ⇔ (??): If S is Okubo, then 2A(S) is central simple with

zero divisors and NrdB(x) = bn(x ? x, x) for x ∈ Sym(B, τ)0, hence the claim in
this case. Since K ×K ⊗ S always has zero divisors we are left with showing that
N is always isotropic on a para-Hurwitz algebra. Take x 6= 0 with bn(x, 1) = 0;
then bn(x ? x, x) = bn

(
−n(x)1, x

)
= 0.

In the following classification of Elduque-Myung [?, p. 2487] “unique” always
means up to isomorphism:
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(34.37) Theorem (Classification of symmetric compositions). Let F be a field of

characteristic 6= 3 and let (S, ?) be a symmetric composition algebra over F .

(1) If dimF S = 2, then S ' (L0, ?) for a unique cubic étale F -algebra L. The

algebra S is para-quadratic if and only if L is not a field.

(2) If dimF S = 4, then S is isomorphic to a para-quaternion algebra (Q, ?) for a

unique quaternion algebra Q.

(3) If dimF S = 8, then S is either isomorphic to

(a) a para-Cayley algebra (C, ?) for a unique Cayley algebra C,

(b) an algebra of the form (A0, ?) for a unique central simple F -algebra A of

degree 3 if F contains a primitive cube root of unity, or

(c) S is of the form
(
Sym(B, τ)0, ?

)
for a unique central simple F (ω)-algebra

B of degree 3 with an involution of the second kind if F does not contain a

primitive cube root of unity ω.

Proof : (??) was already proved in Proposition (??). Let K = F (ω). By Theo-
rem (??) we have (S, ?) '

(
Sym(B, τ)0, ?

)
for some alternative K-algebra B with

a unitary involution τ . By Proposition (??) cases (??.??) and (??.??) occur if B
is central simple over K, and cases (??) and (??.??) occur when B ' K ⊕K ⊗ C ′

for some Hurwitz algebra C ′ of dimension 4 or 8. In view of Lemma (??), we must
have in the two last cases (S, ?) ' (C ′, ?) so that (S, ?) is a para-Hurwitz algebra,
as asserted.

We call symmetric composition algebras as in (??.??) or (??.??) Okubo algebras

(the case where ω lies in F is not new!), we denote the corresponding groupoids
by 1Oku (when K = F × F ), 2Oku (when ω 6∈ F ) and we set Oku = 1Oku t
2Oku. Assume that F does not contain a primitive cube root of unity ω and
let 2A2 be the full subgroupoid of A2 whose objects are algebras of degree 3 over
F (ω) with involution of the second kind. Since we have equivalences of groupoids
1Oku ≡ 1A

′
2 and 2Oku ≡ 2A

′
2, we also call symmetric composition in iOku symmetric

compositions of type iA′2.

(34.38) Corollary. Let F be field of characteristic different from 3. There exist

equivalences of groupoids

Scomp4 ≡ Hurw4 ≡ Hurw4 ≡ A′1

and

Scomp8 ≡ Hurw8 t Oku ≡ G2 t 1A
′
2 t 2A

′
2.

34.E. Cohomological invariants of symmetric compositions. Three co-
homological invariants classify central simple algebras (B, τ) of degree 3 with uni-
tary involutions τ (see Theorem (??)): f1 ∈ H1(F, µ2) (which determines the cen-
terK), g2 ∈ H2

(
F, (µ3[K]

)
(which determines the K-algebraB) and f3 ∈ H3(F, µ2)

(which determines the involution). We have a corresponding classification for sym-
metric compositions:

(34.39) Proposition. Let F be a field of characteristic not 2, 3. Dimension 8
symmetric compositions of

(1) type G2 are classified by one cohomological invariant f3 ∈ H3(F, µ2).
(2) type 1A′2 (if ω ∈ F ) by one invariant g2 ∈ H2(F, µ3).
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(3) type 2A′2 by two cohomological invariants g2 ∈ H2(F,Z/3Z) and f3 ∈ H3(F, µ2).

Proof : The claims follow from Theorem (??) and the corresponding classifications
of Cayley algebras, resp. central simple algebras. For (??), one also has to observe
that if K = F (ω), then the action on µ3 twisted by a cocycle γ defining K is the
usual action of the Galois group. Thus (µ3)γ = Z/3Z.

Observe that a symmetric composition algebra S of type 1A2 with g2 6= 0
comes from a division algebra A over F . However, its norm is always hyperbolic
(see Example (??)), hence f3(S) = 0. On the other hand, in view of the following
example, there exist composition algebras of type 2A2 with invariants g2(S) = 0
and f3(S) 6= 0.

(34.40) Example. Over R there are no compositions of type 1A2 but there exist
compositions of type 2A2 with K = C and B = M3(C). There are two classes of
involutions of the second type on M3(C), the standard involution x 7→ τ(x) where
τ(x) is the hermitian conjugate, and the involution Int(d) ◦ τ : x 7→ dτ(x)d−1,
with d = diag(−1, 1, 1), which is distinguished. Since tr(x2) > 0 for any nonzero
hermitian 3 × 3 matrix x, the norm on Sym(B, τ)0 is anisotropic. The restriction
of the norm to Sym

(
B, Int(d)◦ τ

)
0 is hyperbolic. Observe that f3

(
Sym(B, τ)0

)
6= 0

and f3
(
Sym

(
B, Int(d) ◦ τ

)
0
)

= 0.

§35. Clifford Algebras and Triality

35.A. The Clifford algebra. Let (S, ?) be a symmetric composition algebra
of dimension 8 over F with norm n. Let C(n) be the Clifford algebra and C0(n)
the even Clifford algebra of (S, n). Let τ be the involution of C(n) which is the
identity on V . Let rx(y) = y ? x and `x(y) = x ? y.

(35.1) Proposition. For any λ ∈ F×, the map S → EndF (S ⊕ S) given by

x 7→
(

0 λ`x
rx 0

)

induces isomorphisms

αS :
(
C(λn), τ

) ∼−→
(
EndF (S ⊕ S), σn⊥n

)

and

αS :
(
C0(λn), τ

) ∼−→
(
EndF (S), σn

)
×

(
EndF (S), σn

)
,

of algebras with involution.

Proof : We have rx ◦ `x(y) = `x ◦ rx(y) = λn(x) · y by Lemma (??). Thus the
existence of the map αS follows from the universal property of the Clifford algebra.
The fact that αS is compatible with involutions is equivalent to

bn
(
x ? (z ? y), u

)
= bn

(
z, y ? (u ? x)

)

for all x, y, z, u in S. This formula follows from the associativity of n, since

bn
(
x ? (z ? y), u

)
= bn(u ? x, z ? y) = bn

(
z, y ? (u ? x)

)
.

The map αS is an isomorphism by dimension count, since C(n) is central simple.
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Let (V, q) be a quadratic space of even dimension. We call the class of the
Clifford algebra [C(V, q)] ∈ Br(F ) the Clifford invariant of (V, q). It follows from
Proposition (??) that, for any symmetric composition (S, ?, n) of dimension 8, the
discriminant and the Clifford invariant of (S, λn) are trivial. Conversely, a quadratic
form of dimension 8 with trivial discriminant and trivial Clifford invariant is, by the
following Proposition, similar to the norm n of a Cayley (or para-Cayley) algebra C:

(35.2) Proposition. Let (V, q) be a quadratic space of dimension 8. The following

condition are equivalent :

(1) (V, q) has trivial discriminant and trivial Clifford invariant,

(2) (V, q) is similar to the norm n of a Cayley algebra C.

Proof : This is a classical result of the theory of quadratic forms, due to A. Pfister
(see for example Scharlau [?, p. 90]). As we already pointed out, the implication
(??) ⇒ (??) follows from Proposition (??). We include a proof of the converse
which is much in the spirit of this chapter, however we assume that charF 6= 2.
The idea is to construct a Cayley algebra structure on V such that the corresponding
norm is a multiple of q. This construction is similar to the construction given in
Chevalley [?, Chap. IV] for forms of maximal index. Let

α :
(
C(q), τ

) ∼−→
(
EndF (U), σk

)

be an isomorphism of algebras with involution where τ is the involution of C(V, q)
which is the identity on V . Let ε be a nontrivial idempotent generating the center
of C0(q). By putting U1 = α(ε)U and U2 = α(1− ε)U , we obtain a decomposition

(U, k) = (U1, q1)⊥ (U2, q2)

such that α is an isomorphism of graded algebras where EndF (U1⊕U2) is “checker-
board” graded. For any x ∈ V , let

α(x) =

(
0 ρx
λx 0

)
∈ EndF (U1 ⊕ U2)

so that λx ∈ HomF (U2, U1) and ρx ∈ HomF (U1, U2) are such that λx◦ρx = q(x)·1U1

and ρx◦λx = q(x)·1U2 . Let b̂i : Ui
∼−→ U∗

i be the adjoints of qi, i.e., the isomorphisms
induced by bi = bqi . We have

(
b̂1 0

0 b̂2

)−1 (
0 ρx
λx 0

)t (
b̂1 0

0 b̂2

)
=

(
0 ρx
λx 0

)

hence

b̂1 ◦ ρx = λtx ◦ b̂2 and b̂2 ◦ λx = ρtx ◦ b̂1
or, putting ρx(u2) = ρ(x, u2) and λx(u1) = λ(x, u1), we obtain maps

λ : V × U1 → U2 and ρ : V × U2 → U1

such that

b1
(
ρ(x, u2), u1

)
= b2

(
u2, λ(x, u1)

)
.

If we set u2 = λ(x, u1) we then have

b2
(
λ(x, u1), λ(x, u1)

)
= b1

(
bq(x)u1, u1

)

so that, since we are assuming that charF 6= 2,

q2
(
λ(x, u1)

)
= q(x)q1(u1)
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for x ∈ V and u1 ∈ U1. Similarly the equation q1
(
ρ(x, u2)

)
= q(x)q2(u2) holds for

x ∈ V and u2 ∈ U2. By linearizing the first formula, we obtain

b2
(
λ(x, u1), λ(x, v1)

)
= q(x)b1(u1, v1)

and

b2
(
λ(x, u), λ(y, u)

)
= bq(x, y)q1(u)

for x, y ∈ V and u1, v1 ∈ U1. By replacing q by a multiple, we may assume that
q represents 1, say q(e) = 1. We may do the same for q1, say q1(e1) = 1. We then
have q2(e2) = 1 for e2 = λ(e, e1). We claim that ρ(e, e2) = e1. For any u1 ∈ U1, we
have

b1
(
ρ(e, e2), u1

)
= b2

(
e2, µ(e, u1)

)

= b2
(
λ(e, e1), λ(e, u1)

)

= b1(e1, u1)q(e) = b1(e1, u1).

Since q1 is nonsingular, ρ(e, e2) equals e1 as claimed. The maps s1 : V → U1 and
s2 : V → U2 given by s1(x) = ρ(x, e2) and s2(y) = λ(y, e1) are clearly isometries.
Let

x � y = s−1
2

(
λ
(
x, s1(y)

))
for x, y ∈ V .

We have

q(x � y) = q2
(
λ
(
x, s1(y)

))
= q(x)q1

(
s1(y)

)
= q(x)q(y),

x � e = s−1
2

(
λ
(
x, s1(e)

))
= s−1

2

(
λ(x, e1)

)
= x

and

bq(v, e � y) = b2
(
λ(v, e1), µ(x, e1)

)
= bq(v, e)

for all v ∈ V , so that e � y = y. Thus V is a composition algebra with identity
element e. By Theorem (??) (V, �) is a Cayley algebra.

As an application we give another proof of a classical result of the theory of
quadratic forms (see for example Scharlau [?, p. 89]).

(35.3) Corollary. Let (V, q) be an 8-dimensional quadratic space with trivial dis-

criminant and trivial Clifford invariant. Then (V, q) is hyperbolic if and only if it

is isotropic.

Proof : By Proposition (??), q is similar to the norm of a Cayley algebra, so that
the claim follows from Proposition (??).

35.B. Similitudes and triality. Let (S, ?, n) be a symmetric composition
algebra of dimension 8 over F . In view of Proposition (??) any similitude t of n
induces an automorphism C0(t) of C0(n) and t is proper, resp. improper if C0(t) re-
stricts to the identity of the center Z of C0(n), resp. the nontrivial F -automorphism
ι of Z. Let GO+(n) be the group scheme of proper similitudes of n and GO−(n)
the set of improper similitudes. The “triality principle” for similitudes of (S, n) is
the following result:
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(35.4) Proposition. Let t be a proper similitude of (S, n) with multiplier µ(t).
There exist proper similitudes t+, t− of (S, n) such that

(1) µ(t+)−1t+(x ? y) = t(x) ? t−(y),

(2) µ(t)−1t(x ? y) = t−(x) ? t+(y)

and

(3) µ(t−)−1t−(x ? y) = t+(x) ? t(y).

Let t be an improper similitude with multiplier µ(t). There exist improper simili-

tudes t+, t− such that

(4) µ(t+)−1t+(x ? y) = t(y) ? t−(x),

(5) µ(t)−1t(x ? y) = t−(y) ? t+(x)

and

(6) µ(t−)−1t−(x ? y) = t+(y) ? t(x).

The pair (t+, t−) is determined by t up to a factor (µ, µ−1), µ ∈ F×, and we have

µ(t+)µ(t)µ(t−) = 1.

Furthermore, any of the formulas (??) to (??) (resp. (??) to (??)) implies the

others. If t is in O+(n), the spinor norm Sn(t) of t is the class in F×/F×2 of the

multiplier of t+ (or t−).

Proof : Let t be a proper similitude with multiplier µ(t). The map S → EndF (S⊕S)
given by

ϕ(t) : x 7→
(

0 `t(x)
µ(t)−1rt(x) 0

)
=

(
1 0
0 µ(t)−1

)
αS

(
t(x)

)

is such that (ϕ(t)(x))2 = µ(t)−1n
(
t(x)

)
= n(x), and so it induces a homomorphism

ϕ̃(t) : C(n) ∼−→ EndF (S ⊕ S).

By dimension count ϕ̃(t) is an isomorphism. By the Skolem-Noether Theorem, the
automorphism ϕ̃(t) ◦ α−1

S of EndF (S ⊕ S) is inner. Let ϕ̃(t) ◦ α−1
S = Int

(
s0 s1
s3 s2

)
.

Computing α−1
S ◦ ϕ̃(t) on a product xy for x, y ∈ S shows that α−1

S ◦ ϕ̃(t)|C0 =
C0(t). Since t is proper, C0(t) is Z-linear. Again by Skolem-Noether we may write

αS ◦C0(t)◦α−1
S = Int

( s′0 0

0 s′2

)
. This implies s1 = s3 = 0 and we may choose s′0 = s0,

s′2 = s2. We deduce from ϕ(t)(x) = Int
(
s0 0
0 s2

)
◦

(
αS(x)

)
that

`t(x) = s0`xs
−1
2 and µ(t)−1rt(x) = s2rxs

−1
0

or

s0(x ? y) = t(x) ? s2(y) and s2(y ? x) = µ(t)−1s0(y) ? t(x), x, y ∈ S.

The fact that C0(t) commutes with the involution τ of C0(n) implies that s0, s2 are
similitudes and we have µ(s0) = µ(t)µ(s2). Putting t+ = µ(s0)

−1s0 and t− = s2
gives (??) and (??).

To obtain (??), we replace x by y ? x in (??). We have

µ(t+)−1n(y)t+(x) = t(y ? x) ? t−(y).

Multiplying with t−(y) on the left gives

µ(t+)−1n(y)t−(y) ? t+(x) = t(y ? x)µ(t−)n(y).
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By viewing y as “generic”(apply (??)), we may divide both sides by n(y). This
gives (??).

If t is improper, then C0(t) switches the two factors of Z = F ×F and, given t,
we get t+, t− such that µ(t+)t+(x ? y) = t(y) ? t−(x).

Formulas (??) and (??) follow similarly.
Conversely, if t satisfies (??), then C0(t) switches the two factors of Z = F ×F ,

hence is not proper. This remark and the above formulas then show that t+, t− are
proper if t is proper. To show uniqueness of t+, t− up to a unit, we first observe
that t+, t− are unique up to a pair (r+, r−) of scalars, since

αSC0(t)α
−1
S = Int

(
t+ 0
0 t−

)
.

Replacing (t+, t−) by (r+t+, r−t−) gives

µ(t+)(r+)−1t+(x ? y) = r−t−(x) ? t(y) = µ(t+)−1r−t+(x ? y).

This implies r+
−1

= r−. We finally check that Sn(t) is the multiplier of t+ (or t−)
for t ∈ O+(n). The transpose of a linear map t is denoted by t∗. Putting αS(c) =

(t+, t−) and writing b̂ : S → S∗ for the isomorphism induced by bn, we have

αS
(
cτ(c)

)
= (t+b̂−1t+

∗
b̂, t−b̂−1t−

∗
b̂) = (b̂−1t+

∗
b̂t+, b̂−1t−

∗
b̂t−)

(since cτ(c) ∈ F ). Then the claim follows from t+
∗
b̂t+ = µ(t+)b̂ and t−

∗
b̂t− =

µ(t−)b̂, since Sn(t) = Sn(t−1) = cτ(c)F×2 ∈ F×/F×2. The other claims can be
checked by similar computations.

(35.5) Corollary. For any pair λ, λ+ ∈ D(n), the set of values represented by n,
there exists a triple of similitudes t, t+, t− such that Proposition (??) holds and

such that λ, λ+ are the multipliers of t, resp. t+.

Proof : Given λ ∈ D(n), let t be a similitude with multiplier λ, for example t(x) =
u ? x with n(u) = λ, and let t+, t− be given by triality. If t is replaced by ts
with s ∈ O+(n), the multiplier of t will not be changed and the multiplier of t+

will be multiplied by the multiplier µ(s+) of s+. By Proposition (??) we have
µ(s+)F×2 = Sn(s). Since n is multiplicative, Sn

(
O+(n)

)
≡ D(n) mod F×2 and

we can choose s (as a product of reflections) such that Sn(s) =
(
λ+µ(t+)−1

)
F×2,

hence the claim.

Using triality we define an action of A3 on PGO+(n)(F ) = PGO+(n): Let
[t] be the class of t ∈ GO+(n)(F ) modulo the center. We put θ+([t]) = [t+] and
θ−([t]) = [t−] where t+, t− are as in Proposition (??).

(35.6) Proposition. The maps θ+ and θ− are outer automorphisms of the group

PGO+(n). They satisfy (θ+)3 = 1 and θ+θ− = 1, and they generate a subgroup of

Aut
(
PGO+(n)

)
isomorphic to A3.

Proof : It follows from the multiplicativity of the formulas in Proposition (??) that
the maps θ+ and θ− are group homomorphisms. The relations among them also
follow from (??). Hence they are automorphisms and generate a homomorphic
image of A3. The fact that θ+ is not inner follows from Proposition (??).

We shall see that the action of A3 is, in fact, defined on the group scheme
PGO+(n) = GO+(n)/Gm. For this we need triality for Spin(n).
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35.C. The group Spin and triality. The group scheme Spin(S, n) is de-
fined as

Spin(S, n)(R) = { c ∈ C0(n)×R | cSRc−1 ⊂ SR and cτ(c) = 1 }
for all R ∈ AlgF . The isomorphism αS of (??) can be used to give a nice description
of Spin(S, n) = Spin(S, n)(F ).

(35.7) Proposition. Assume that charF 6= 2. There is an isomorphism

Spin(S, n) ' { (t, t+, t−) | t, t+, t− ∈ O+(S, n), t(x ? y) = t−(x) ? t+(y) }
such that the vector representation χ : Spin(S, n) → O+(S, n) corresponds to the

map (t, t+, t−) 7→ t. The other projections (t, t+, t−) 7→ t+ and (t, t+, t−) 7→ t−

correspond to the half-spin representations χpm of Spin(S, n).

Proof : Let c ∈ Spin(n) and let αS(c) =
(
t+ 0
0 t−

)
. The condition cxc−1 = χc(x) ∈ S

for all x ∈ S is equivalent to the condition t+(x ? y) = χc(x) ? t
−(y) or, by Propo-

sition (??), to χc(x ? y) = t−(x) ? t+(y) for all x, y ∈ S. Since by Proposition (??)
we have

αSτ(c) =

(
b̂−1t+

∗
b̂ 0

0 b̂−1t−
∗
b̂

)

where b̂ : S ∼−→ S∗ is the adjoint of bn, the condition cτ(c) = 1 is equivalent to

t+
∗
b̂t+ = b̂ and t−

∗
b̂t− = b̂, i.e., the t± are isometries of b = bn, hence of n since

charF 6= 2. They are proper by Proposition (??). Thus, putting

T (S, n) = { (t, t+, t−) | t+, t, t− ∈ O+(S, n), t(x ? y) = t−(x) ? t+(y) },
c 7→ (χc, t

+, t−) defines an injective group homomorphism φ : Spin(S, n)→ T (S, n).
It is also surjective, since, given (t, t+, t−) ∈ T (S, n), we have (t, t+, t−) = φ(c) for

αS(c) =
(
t+ 0
0 t−

)
.

From now on we assume that charF 6= 2. The isomorphism (??) can be defined
on the level of group schemes: let G be the group scheme

G(R) =
{

(t, t+, t−)
∣∣ t, t+, t− ∈ O+(S, n)(R), t(x ? y) = t−(x) ? t+(y)

}
.

(35.8) Proposition. There exists an isomorphism β : G ∼−→ Spin(S, n) of group

schemes.

Proof : By definition we have

(αS ⊗ 1R)−1
(
t+ 0
0 t−

)
= c ∈ Spin(S, n)(R),

so that αS induces a morphism

β : G→ Spin(S, n).

Proposition (??) implies that β(Falg) is an isomorphism. Thus, in view of Propo-
sition (??), it suffices to check that dβ is injective. It is easy to check that

Lie(G) = { (λ, λ+, λ−) ∈ o(n)× o(n)× o(n) | λ(x ? y) = λ−(x) ? y + x ? λ+(y) }.
On the other hand we have (see §??)

Lie
(
Spin(S, n)

)
= {x ∈ S · S ⊂ C0(S, n) | x+ σ(x) = 0 } = [S, S]

where multiplication is in C0(S, n) (recall that we are assuming that charF 6= 2
here) and the proof of Proposition (??) shows that that dβ is an isomorphism.



§35. CLIFFORD ALGEBRAS AND TRIALITY 485

Identifying Spin(S, n) with G through β we may define an action of A3 on
Spin(n):

(35.9) Proposition. The transformations θ+, resp. θ− induced by

(t, t+, t−) 7→ (t+, t−, t), resp. (t, t+, t−) 7→ (t−, t, t+)

are outer automorphisms of Spin(S, n) and satisfy the relations θ+3
= 1 and

θ+
−1

= θ−. They generate a subgroup of Aut
(
Spin(S, n)

)
isomorphic to A3. Fur-

thermore Spin(S, n)A3 is isomorphic to Autalg(C), if S is a para-Cayley algebra C,

and isomorphic to Autalg(A), resp. to Autalg(B, τ), for a central simple algebra A
of degree 3, resp. a central simple algebra (B, τ) of degree 3 with an involution of

second kind over K = F [X ]/(X2 +X+1), if (S, ?) is of type 1A2, resp. of type 2A2.

Proof : Let R be an F -algebra. It follows from the multiplicativity of the formulas
of Proposition (??) that the maps θ+

R and θ−R are automorphisms of Spin(S, n)(R).
The relations among them also follow from (??). They are outer automorphisms
since they permute the vector and the two half-spin representations of the group
Spin(S, n)(R) (since charF 6= 2, this also follows from the fact that they act non-
trivially on the center C, see Lemma (??)). Now let (t, t+, t−) ∈ Spin(S, n)A3(R).
We have t = t+ = t− and t is an automorphism of SR. Conversely, any auto-
morphism of (S, n)R is an isometry and, since α(x � y) = α(x) � α(y), α is proper
by (??).

Let Spin8 = Spin(V, q) where V is 8-dimensional and q is hyperbolic.

(35.10) Corollary. (1) There exists an action of A3 on Spin8 such that SpinA3
8

is split of type G2.

(2) There exists an action of A3 on Spin8 such that SpinA3
8 = PGU3(K) where

K = F [X ]/(X2+X+1). In particular, if F contains a primitive cube root of unity,

there exists an action of A3 on Spin8 such that SpinA3
8 = PGL3.

Proof : Take A = F × Cs, resp. A = M3(K) in Proposition (??).

As we shall see in Proposition (??), the actions described in (??) and (??) of
Corollary (??) are (up to isomorphism) the only possible ones over Fsep.

Let again (S, n) be a symmetric composition of dimension 8 and norm n. In
view of (??) (and (??)) the group scheme Spin(S, n) fits into the exact sequence

1→ µ2 → Spin(S, n)
χ−→ O+(n)→ 1

where χ is the vector representation, i.e.,

(χc)R(x) = cxc−1 for x ∈ SR, c ∈ Spin(S, n)(R).

Let χ′ : Spin(S, n)→ PGO+(n) be the composition of the vector representation χ
with the canonical map O+(n) → PGO+(n). The kernel C of χ′ is the center
of Spin(n) and is isomorphic to µ2 ×µ2. The action of A3 on Spin(S, n) restricts
to an action of A3 on µ2 × µ2. We recall that we are still assuming charF 6= 2.

(35.11) Lemma. The action of A3 on C ' µ2 × µ2 is described by the exact

sequence

1→ C → µ2 × µ2 × µ2 → µ2 → 1

where A3 acts on µ2×µ2×µ2 through permutations and the map µ2×µ2×µ2 → µ2

is the multiplication map.
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Proof : In fact we have

CR = {(1, 1, 1), ε0 = (1,−1,−1), ε1 = (−1, 1,−1), ε2 = ε0ε1 = (−1,−1, 1)},
(35.12)

hence the description of C through the exact sequence. For the claim on the action
of A3, note that θ+ = (θ−)−1 maps εi to εi+1 with subscripts taken modulo 3.
Observe that the full group S3 acts on C and that Aut(C) = S3.

In view of (??) (and (??)) we have an exact sequence

1→ C → Spin(S, n)
χ′−→ PGO+(n)→ 1.(35.13)

(35.14) Proposition. There is an outer action of A3 on PGO+(n) such that the

maps in the exact sequence (??) above are A3-equivariant.

Proof : The existence of the A3 action follows from Proposition (??), Lemma (??)
and the universal property (??) of factor group schemes. The action is outer, since
it is outer on Spin(S, n). Observe that for F -valued points the action is the one
defined in Proposition (??).

Let (C, ?, n) be a para-Cayley algebra over F . The conjugation map π : x 7→
x can be used to extend the action of A3 to an action of S3 = A3 o Z/2Z
on Spin(n) and PGO+(n): Let αC : C(C, n) ∼−→

(
EndF (C ⊕ C), σn⊥ n

)
be the iso-

morphism of Proposition (??). The conjugation map x 7→ x is an isometry and
since αCC(π)α−1

C
= Int

(
0 π
π 0

)
, π is improper. For any similitude t with multiplier

µ(t), t̂ = µ(t)−1πtπ is a similitude with multiplier µ(t)−1 and is proper if and only
if t is proper. Proposition (??) implies that

(1) µ(t̂)−1t̂(x ? y) = t̂+(x) ? t̂−(y)

(2) µ(t̂−)−1t̂−(x ? y) = t̂(x) ? t̂+(y)

(3) µ(t̂+)−1t̂+(x ? y) = t̂−(x) ? t̂(y)

hold in (C, ?) if t is proper. Let θ+ and θ− be as defined in (??) and (??). We

further define for R an F -algebra, θ([t]) = [t̂] for [t] ∈ PGO+(n)(R), θ(t, t+, t−) =

(t̂, t̂−, t̂+) for (t, t+, t−) ∈ G(R) ' Spin(n)(R) and θ(ε0) = ε0, θ(ε1) = ε2, θ(ε2) = ε1
for εi as in (??).

(35.15) Proposition. (1) Let G be Spin(n) or PGO+(n). The maps θ, θ+

and θ− are outer automorphisms of G. They satisfy the relations

θ+
3

= 1, θ+
−1

= θ− and θ+θ = θθ−,

and they generate a subgroup of Aut(G) isomorphic to S3. In particular Out(G) '
S3 and Aut(G) ' PGO+(n) o S3.

(2) The exact sequence

1→ C → Spin(C, n)
χ′−→ PGO+(C, n)→ 1

is S3-equivariant.

Proof : The proof is similar to the proof of Proposition (??) using the above formu-
las (??) to (??). In (??) the action of S3 on C is as defined in (??). The fact that
S3 is the full group Out(G) follows from the fact that the group of automorphisms
of the Dynkin diagram of Spin(C, n), which is of type D4, is S3 (see §??).
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Observe that for the given action of S3 on Spin(C, n) we have

Spin(C, n)S3 = Spin(C, n)A3 = Autalg(C).(35.16)

The action of S3 on Spin8 induces an action on H1(F,Spin8). We now describe the
objects classified byH1(F,Spin8) and the action of S3 onH1(F,Spin8). A triple of
quadratic spaces (Vi, qi), i = 1, 2, 3, together with a bilinear map β : V0 × V1 → V2

such that q2
(
β(v0, v1)

)
= q0(v0)q1(v1) for vi ∈ Vi is a composition of quadratic

spaces. Examples are given by Vi = C, C a Cayley algebra, β(x, y) = x � y, and by
Vi = C, β(x, y) = x ? y. An isometry ψ : (V0, V1, V2)

∼−→ (V ′
0 , V

′
1 , V

′
2) is a triple of

isometries (ψi : Vi
∼−→ V ′

i ) such that β′ ◦ (ψ0, ψ1) = ψ2 ◦ β. The triple (π, π, 1C) is
an isometry

(
Vi, β(x, y) = x � y

) ∼−→
(
Vi, β(x, y) = x ? y

)
.(35.17)

A similitude (ψi : Vi
∼−→ V ′

i ), with multiplier (λ0, λ1, λ2) is defined in a similar way.
Observe that the equation λ2 = λ0λ1 holds for a similitude. The main steps in the
proof of Proposition (??) were to associate to a quadratic space (V, q) of rank 8,
with trivial discriminant and trivial Clifford invariant, a composition of quadratic
spaces V × U1 → U2 similar to a composition of type C× C→ C.

(35.18) Proposition. (1) Compositions of quadratic spaces of dimension 8 are

classified by H1(F,Spin8).
(2) Let β012 : V0×V1 → V2 be a fixed composition of quadratic spaces of dimension 8.
The action of S3 on the set H1(F,Spin8) is given by βijk 7→ βs(i)s(j)s(j) where the

βijk are defined by

bq0
(
v0, β120(v1, v2)

)
= bq2

(
β012(v0, v1), v2

)
= bq1

(
β201(v2, v0), v2

)

and

β102(v1, v0) = β012(v0, v1), β021(v0, v2) = β201(v2, v0).

Proof : By the proof of Proposition (??), any composition of 8-dimensional quad-
ratic spaces is isometric over a separable closure of F to the composition

(
Cs,Cs,Cs, β(x, y) = x � y

)

where Cs is the split Cayley algebra. By Proposition (??), Spin8 is the group of
automorphisms of the composition

(
Cs,Cs,Cs, β(x, y) = x � y

)
'

(
Cs,Cs,Cs, β(x, y) = x ? y

)
.

Consider the representation

ρ : G = GL(Cs)×GL(Cs)×GL(Cs)→ GL(W )

where

W = S2(C∗s)⊕ S2(C∗s)⊕ S2(C∗s)⊕HomF (Cs ⊗F Cs,Cs),

given by the formula

ρ(α0, α1, α2)(f, g, h, φ) =
(
f ◦ α−1

0 , g ◦ α−1
1 , h ◦ α−1

2 , α2 ◦ φ ◦ (α−1
0 ⊗ α−1

1 )
)
.

Let w = (n, n, n,m) where m : Cs ⊗ Cs → Cs is the product m(x, y) = x ? y in
the para-Cayley algebra Cs. The group scheme AutG(w) coincides with the group
scheme Spin(S, n) in view of Proposition (??). (Observe that by (??) elements t,
t+, t− ∈ O(Cs, ns) such that t(x ? y) = t−(x) ? t+(y) are already in O+(Cs, ns).)
Thus (??) follows from (??). Claim (??) follows from Proposition (??).
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§36. Twisted Compositions

Let L be a cubic étale F -algebra with norm NL, trace TL, and let # : L→ L be
the quadratic map such that ``# = NL(`) for ` ∈ L. Let (V,Q) be a nonsingular
quadratic space over L, let bQ(x, y) = Q(x + y)−Q(x) −Q(y), and let β : V → V
be a quadratic map such that

(1) β(`v) = `#β(v)

(2) Q
(
β(v)

)
= Q(v)#

for all v ∈ V , ` ∈ L. We define N(v) = bQ
(
v, β(v)

)
and further require that

(3) N(v) ∈ F
for all v ∈ V . We call the datum Γ = (V, L,Q, β) a twisted composition over

L with quadratic norm Q, quadratic map β, and cubic norm N . A morphism
φ : (V, L,Q, β)→ (V ′, L′, Q′, β′) is a pair (t, φ), t : V ∼−→ V ′, φ : L ∼−→ L′, with φ an
F -algebra isomorphism, t φ-semilinear, and such that tβ = β′t and φQ = Q′t.

(36.1) Lemma. Let Γ = (V, L,Q, β) be a twisted composition. Then for any λ ∈
L×,

Γλ = (V, L, λ#Q, λβ)

is again a twisted composition and, conversely, if (V, L, µQ, λβ) is a twisted com-

position, then µ = λ#.

Proof : The first claim is straightforward. If (V, L, µQ, λβ) is a twisted composition,
the equality λ2µ = µ# follows from (??), (??). Since (µ#)# = µ#µ2, it follows
that (λ#)2 = µ2, thus µ = ±λ#. Since λ2µ = µ#, multiplying both sides by µ and
using that (λ#)2 = µ2 shows that NL/F (λ#) = NL/F (µ). Since L is cubic over F ,

µ = λ#.

Observe that the map v 7→ λv is an isomorphism Γλ
∼−→ Γ if λ ∈ F×. A

morphism

ϕ = (t, φ) : (V, L, λ#Q, λβ) ∼−→ (V ′, L′, Q′, β′)

is a similitude with multiplier λ# of (V, L,Q, β) with (V ′, L′, Q′, β′). For any field
extension K of F and any twisted composition Γ over F , we have a canonical
twisted composition Γ⊗K over K.

Examples of twisted compositions arise from symmetric composition algebras:

(36.2) Examples. (1) Let (S, ?, n) be a symmetric composition algebra. Let L =
F×F×F , let V = S⊗L = S×S×S and let Q = (n, n, n). We have (x0, x1, x2)

# =
(x1x2, x0x2, x0x1) and putting

βS(v0, v1, v2) = (v1 ? v2, v2 ? v0, v0 ? v1)

gives a twisted composition S̃ = (S⊗L,L,Q, βS). Condition (??) of the definition of
a twisted composition is equivalent with the associativity of the norm. In particular

βC(v0, v1, v2) = (v1 � v2, v2 � v0, v0 � v1)

defines a twisted composition associated with the Cayley algebra (C, �). We call C̃

a twisted Cayley composition. A twisted Cayley composition with L and C split is
a split twisted composition of rank 8.
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(2) Let
(
(V0, V1, V2), β012

)
be a composition of quadratic spaces as in Proposi-

tion (??). If we view V0 ⊕ V1 ⊕ V2 as a module V over L = F × F × F and
group the βijk to a quadratic map β : V → V we obtain a twisted composition over
F × F × F ; any twisted composition over F × F × F is of this form:

(36.3) Proposition. A twisted composition over F × F × F is of the form V0 ⊕
V1 ⊕ V2 as in (??.??) and is similar to a twisted composition C̃ for some Hurwitz

algebra (C, n).

Proof : Let V0 = (1, 0, 0)V , V1 = (0, 1, 0)V , V2 = (0, 0, 1)V , so that V = V0⊕V1⊕V2.
We first construct a multiplication on V0. We use the notations x = (x0, x1, x2) for
x ∈ L and v = (v0, v1, v2) for v ∈ V . We have x# = (x1x2, x2x0, x0x1). Let

β(v) =
(
β0(v), β1(v), β2(v)

)
.

It follows from

β
(
(0, 1, 1)(v0, v1, v2)

)
= (1, 0, 0)β(v0, v1, v2)

that

β0(v0, v1, v2) = β(0, v1, v2)

β1(v0, v1, v2) = β(v0, 0, v2)

β2(v0, v1, v2) = β(v0, v1, 0).

Furthermore, the F -bilinearity of

β(x, y) = β(x + y)− β(x) − β(y)

implies that β(0, v1, v2) = β
(
(0, v1, 0), (0, 0, v2)

)
is F -bilinear in the variables v1

and v2. Thus there are three F -linear maps βi : Vi+1⊗Vi+2 → Vi where i, i+1, i+2
are taken mod 3, such that

β0(v1 ⊗ v2) = β(0, v1, v2)

β1(v2 ⊗ v0) = β(v0, 0, v2)

β2(v0 ⊗ v1) = β(v0, v1, 0)

and such that

β(v) =
(
β0(v1 ⊗ v2), β1(v2 ⊗ v0), β2(v0 ⊗ v1)

)
.

Since Q is F × F × F -linear, we may write Q(v) =
(
q0(v0), q1(v1), q2(v2)

)
. Condi-

tion (??) of the definition of a twisted composition reads

q0
(
β0(v1 ⊗ v2)

)
= q1(v1)q2(v2), q1

(
β1(v2 ⊗ v0)

)
= q2(v2)q0(v0)

and q2
(
β2(v0 ⊗ v1)

)
= q0(v0)q1(v1). This is the first claim. Linearizing gives

bq0
(
β0(v1 ⊗ v2), β0(w1 ⊗ v2)

)
= q2(v2)bq1(v1, w1)

bq1
(
β1(v2 ⊗ v0), β1(w2 ⊗ v0)

)
= q0(v0)bq2(v2, w2)

bq2
(
β2(v0 ⊗ v1), β2(w0 ⊗ v1)

)
= q1(v1)bq0(v0, w0).

Similarly, Condition (??) reduces to

bq0
(
v0, β0(v1 ⊗ v2)

)
= bq1

(
v1, β1(v2 ⊗ v0)

)
= bq2

(
v2, β2(v0 ⊗ v1)

)
.

If ν1, ν2 ∈ F× and e1 ∈ V1, e2 ∈ V2 are such that ν1q1(e1) = 1 and ν2q2(e2) = 1,
then ν1ν2q0(e0) = 1 for e0 = β0(e1 ⊗ e2). Replacing β by (1, ν2, ν1)β and Q by
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(ν1ν2, ν1, ν2)Q, we may assume that there exists an element e = (e0, e1, e2) such
that Q(e) = 1. We claim that

β1(e2 ⊗ e0) = e1 and β2(e0 ⊗ e1) = e2.

We have for all (v0, v1, v2) ∈ V
bq1

(
v1, β1(e2 ⊗ e0)

)
= bq0

(
e0, β0(v1 ⊗ e2)

)

= bq0
(
β0(e1 ⊗ e2), β0(v1 ⊗ e2)

)

= bq1(v1, e1)q2(e2) = bq1(v1, e1)

Since bq1(x, y) is nonsingular, we must have β1(e2⊗e0) = e1. A similar computation
shows that β2(e0 ⊗ e1) = e2. We define isometries α1 : (V0, q0)

∼−→ (V1, q1) and
α2 : (V0, q0)

∼−→ (V2, q2) by α1(v0) = β1(e2⊗v0) and α2(v0) = β2(v0⊗e1) and define
a multiplication � on V0 by

x � y = β0

(
α1(x)⊗ α2(y)

)
.

We have q0(x � y) = q1
(
α1(x)

)
q2

(
α2(y)

)
= q0(x)q0(y) and, for all y ∈ V0,

bq0(y, x � e0) = bq0
(
y, β0

(
β1(e2 ⊗ x)⊗ e2

))

= bq1
(
β1(e2 ⊗ x), β1(e2 ⊗ y)

)

= q2(e2)bq0(x, y) = bq0(x, y)

Thus x � e0 = x, e0 is an identity for � and V0 is, by Theorem (??), a Hurwitz
algebra with multiplication �, identity e0 and norm q0. We call it (C, n). Let

C̃ = C × C × C be the associated twisted composition over F × F × F . We check

finally that C̃ ' V via the map (IC , α1π, α2π) where π is the conjugation in C. It
suffices to verify that

β0(α1πx⊗ α2πy) = x � y
β1(α2πx⊗ y) = α1π(x � y)
β2(x⊗ α1πy) = α2π(x � y).

The first formula follows from the definition of �. For the second we have

bq1
(
β1(α2πx⊗ y), α1πz

)
= bq0

(
y, β0(α1πz ⊗ α2πx)

)

= bq0(y, z � x)
= bq0(y � x, z)
= bq1

(
α1π(x � y), α1πz

)

hence the claim. The proof of the third one is similar.

(36.4) Corollary. For any twisted composition (V, L,Q, β) we have dimL V = 1,
2, 4 or 8.

We observe that the construction of the multiplication in the proof of Propo-
sition (??) is similar to the construction in Proposition (??) or to the construction
given by Chevalley [?, Chap. IV] for forms of dimension 8 of maximal index.

(36.5) Proposition. Let C be a Cayley algebra over F with norm n. The group

scheme Aut(C̃) of F -automorphisms of the twisted composition C̃ is isomorphic to

the semidirect product Spin(C, n)oS3. In particular the group scheme of automor-

phisms of a split twisted composition of rank 8 is isomorphic to Spin8 oS3.
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Proof : Let R be an F -algebra such that L⊗ R = R × R × R (the other cases are
let as exercises). Let

p : Aut(C̃)(R)→ Autalg(L)(R)

be the restriction map. Since Autalg(L)(R) = S3, we have to check that p has a
section and that ker p = Spin(n). The permutations ρ : (x0, x1, x2) 7→ (x1, x2, x0)
and ε : (x0, x1, x2) 7→ (x0, x2, x1) generate S3. A section is given by ρ 7→ ρ̃,
ρ̃(v0, v1, v2) = (v1, v2, v0), and ε 7→ ε̃, ε̃(v0, v1, v2) = (v2, v1, v0). Now let t ∈
Aut(C̃)(R) be such that p(t) = 1, i.e., t is L-linear. Putting t = (t0, t1, t2), the ti
are isometries of n and the condition tβC = βCt is equivalent to

t0(v1v2) = t̂1(v1)t̂2(v2)

t1(v2v0) = t̂2(v2)t̂0(v0)

t2(v0v1) = t̂0(v0)t̂1(v1).

In fact any of these three conditions is equivalent to the two others (see Proposi-
tion (??)). By (??) the ti are proper, so that ti ∈ O+(n)(R) and by Proposition (??)
we have t = (t0, t1, t2) ∈ Spin(n)(R).

The split exact sequence

1→ Spin8 → Spin8 oS3
p−→ S3 → 1(36.6)

induces a sequence in cohomology

→ H1(F,Spin8)→ H1(F,Spin8 oS3)
p1−→ H1(F, S3).

(36.7) Proposition. (1) Twisted compositions of dimension 8 over F are classi-

fied by the pointed set H1(F,Spin8 oS3).
(2) The map H1(F,Spin8) → H1(F,Spin8 oS3) is induced by β012 7→ (V, β) with

V = V0 ⊕ V1 ⊕ V2 and β = (β120, β201, β012) (with the notations of (??)).
(3) For any class γ = [L] ∈ H1(F, S3) the fiber (p1)−1([L]) is in bijection with the

orbits of (S3)
Gal(Fsep/F )
γ in H1

(
F, (Spin8)γ

)
.

Proof : In view of Proposition (??) any twisted composition over Fsep is a twisted

composition C̃s for the split Cayley algebra Cs. Thus (??) will follow from Propo-

sition (??) and Proposition (??) if we may identify Aut(C̃) with AutG(w) for
some tensor w and some representation ρ : G → GL(W ) where H1(F,G) = 0, Let

C̃s = (V, L,Q, β), let W be the F -space

W = S2
L(V ∗)⊕ S2

L(V ∗)⊗ V ⊕HomF (L⊗ L,L)

and let G = RL/F
(
GLL(V )

)
×GL(L)

)
. Then G acts on W as

ρ(α, φ)(f, g, h) = φ ◦ f ◦ α−1, α ◦ g ◦ α−1, φ ◦ h ◦ (α−1 ⊗ α−1).

We have H1
(
F,RL/F

(
GLL(V )

))
= H1

(
L,GLL(V )

)
by (??), hence H1(F,G) = 0

by Hilbert 90. We now choose w = (Q, β,m), where m is the multiplication of L,

getting Aut(C̃) = AutG(w) and (??) is proved.
(??) follows from the description of H1(F,Spin8) given in Proposition (??)

and (??) is an example of twisting in cohomology (see Proposition (??)).
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36.A. Multipliers of similitudes of twisted compositions. We assume
in this section that charF 6= 2, 3. Let Γ = (V, L,Q, β) be a twisted composition
over F and let

G = Aut(V, L,Q, β)0 = AutL(V, L,Q, β)

be the connected component of Aut(V, L,Q, β). If L is split and V is of split
Cayley type, the proof of Proposition (??) shows that G = Spin8, hence G is
always a twisted form of Spin8 and we write G = Spin(V, L,Q, β). If L = F ×K
for K quadratic étale, and accordingly (V,Q) = (V1, Q1) ⊕ (V2, Q2) for (V1, Q1)
a quadratic space over F and (V2, Q2) a quadratic space over K, the projection
(V,Q) → (V1, Q1) induces an isomorphism Spin(V, L,Q, β) ∼−→ Spin(V1, Q1) by
Propositions (??) and (??).

The pointed set H1(F,G) classifies twisted compositions (V ′, L,Q′, β′) with
fixed L. Let γ : Gal(Fsep/F ) → S3 be a cocycle defining L. By twisting the exact

sequence (??) we see that G = (Spin8)γ . Let C̃ be the center of G; the center C
of Spin8 fits into the exact sequence

1→ C → µ2 × µ2 × µ2
m−→ µ2 → 1

(see Lemma (??)) hence, twisting with γ gives an exact sequence

1→ C̃ → RL/F (µ2,L)
NL/F−−−→ µ2,F → 1.

Thus

H1(F, C̃) = ker
(
L×/L×2 NL/F−−−→ F×/F×2

)

and the exact sequence (??)

1→ F×/F×2 → L×/L×2
#

−→ L×/L×2 NL/F−−−→ F×/F×2 → 1

gives the identification

H1(F, C̃) = L×/F× · L×2.

The group H1(F, C̃) acts on H1(F,G) through the rule

λ · (V, L,Q, β) = (V, L, λ#Q, λβ), λ ∈ L×,(36.8)

hence by Proposition (??), (V, L, λ#Q, λβ) ' (V, L,Q, β) if and only if the class
λ · F× · L×2 ∈ H1(F,C) belongs to the image of the connecting homomorphism

δF = δ : G(F )→ H1(F,C)

associated to the exact sequence (recall that charF 6= 2)

1→ C̃ → G→ G→ 1.

We would like to compute the image of δ. For this we first consider the case L =

F ×K; then H1(F, C̃) = K×/K×2 and, since G = Spin(V1, Q1), G = PGO+(Q1)
and δ is the map

S : PGO+(Q1)(F )→ K×/K×2

defined in (??). The composition of S with the norm map NK/F : K×/K×2 →
F×/F×2 gives the multiplier map (Proposition (??)). If L is a field, let ∆ be the
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discriminant of L, so that L⊗L = L× L⊗∆ (see Corollary (??)). We would like
to compare the images of δF and δL. Since [L :F ] = 3, we have

im δF = NL/F ◦ resF/L(im δF ) ⊂ NL/F (im δL).

By Gille’s norm principle (see the following Remark) we have

NL/F (im δL) ⊂ im δF ,

hence

im δF = NL/F (im δL).

The group scheme GL is isomorphic to PGO+(Q), so that

im δL = imS ⊂ (L⊗∆)×/(L⊗∆)×2 = H1(L, C̃)

(since L⊗ L = L× L⊗∆). One can check that the diagram

H1(L, C̃)
N1

L/F−−−−→ H1(F, C̃)
∥∥∥

∥∥∥

(L⊗∆)×/(L⊗∆)×2
(NL/F )∗−−−−−→ L×/F× · L×2

commutes. It follows that

im δF = NL/F (im δL) = NL⊗K/L(imS)

is the image of the group of multipliers G(Q) in L×/F× · L×2. We have proved:

(36.9) Theorem. There exists an L-isomorphism (V, L, λ#Q, λβ) ' (V, L,Q, β)
if and only if λ ∈ F× ·G(Q).

(36.10) Remark. The condition λ ∈ F× · G(Q) does not depend on β. One can
show that the condition is also equivalent to the fact that the quadratic forms
λ# ·Q and Q are isomorphic over L. The theorem says that this isomorphism can
be chosen in such a way that it takes λ · β to β. This is the hardest part of the
theorem, where we use Gille’s result [?]: it says that the norm NL/F takes R-trivial

elements in im δL ⊂ H1(L, C̃) to R-trivial elements of im δF ⊂ H1(F, C̃). So it
suffices to prove that the image of S in (L ⊗∆)×/(L⊗∆)×2 consists of R-trivial
elements. In facts the following weaker statement is enough: for any element x in
the image of S there is another element y in this image such that y is R-trivial and
the norms of x and y in L×/F× · L×2 are equal. For the proof of this statement
note first that Q is “almost” a Pfister form, i.e., there exists a 3-fold Pfister form q
over L and a ∈ L× such that Q = q + 〈a,−ad〉 ∈ W (L) where d ∈ F× is such that

∆ = F (
√
d). By the theorem (??) of Dieudonné,

G(Q) = G(q) ∩NL⊗∆/L

(
(L⊗∆)×

)
= G(〈a,−ad〉),

hence G(Q) = G(q)∩NL⊗∆/L

(
(L⊗∆)×

)
. An element in the intersection is a norm

from (L⊗∆)×, i.e., a norm from a quadratic extension of L which splits q, hence
is (up to a square) a norm of a biquadratic composite. Thus

G(Q) = G(q) ∩NL⊗∆/L

(
(L⊗∆)×

)
= NL⊗∆/L

(
G(q∆)

)
.

We start with x ∈ imS ⊂ (L ⊗ ∆)×/(L⊗∆)×2. Write z = NL⊗∆/L(x) ∈
L×/F× · L×2. We would like to find y as described above. Since z ∈ G(Q) =
NL⊗∆/L

(
G(q∆)

)
and G(q∆) = D

(
G(q∆)

)
, we can find a rational function z(t) ∈
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QL(t) such that z(0) = 1 and z(1) = z (this means that the elements of G(Q) are
R-trivial). Now take any y(t) in the image of

S : PGO+
(
QL(t)

)
→

(
L⊗∆(t)

)×
/
(
L⊗∆(t)

)×2

such that NL⊗∆(t)/L(t)

(
y(t)

)
= z(t). The element y = y(1)y(0)−1 is by definition

an R-trivial element, is in the image of S and NL⊗∆/∆(y) = z.

36.B. Cyclic compositions. Twisted compositions of dimension 8 over cyclic
cubic extensions were introduced in Springer [?]. We first recall Springer’s defini-
tion. Let (L/F, ρ) be a cyclic F -algebra of degree 3 with ρ a generator of the
group Gal(L/F ) = A3. A cyclic composition is a nonsingular quadratic space
(V,Q) over L, together with an F -bilinear multiplication (x, y) 7→ x ∗ y, which is
ρ-semilinear in x and ρ2-semilinear in y, and such that

(1) Q(x ∗ y) = ρ
(
Q(x)

)
· ρ2

(
Q(y)

)
,

(2) bQ(x ∗ y, z) = ρ
(
bQ(y ∗ z, x)

)
= ρ2

(
bQ(z ∗ x, y)

)

where bQ(x, y) = Q(x+y)−Q(x)−Q(y). Observe that the choice of a generator ρ of
the group Gal(L/F ) is part of the datum defining a cyclic composition. Morphisms
of cyclic compositions are defined accordingly.

Linearizing (??) gives

(3) bQ(x ∗ z, x ∗ y) = ρ
(
Q(x)

)
ρ2

(
bQ(z, y)

)
,

(4) bQ(x ∗ z, y ∗ z) = ρ
(
bQ(x, y)

)
ρ2

(
Q(x)

)
.

It then follows that

bQ
(
(x ∗ y) ∗ x, z

)
= ρ

(
bQ(x ∗ z, x ∗ y)

)

= ρ2
(
Q(x)

)
bQ(y, z)

= bQ
(
ρ2

(
Q(x)

)
y, z

)

so that

(5) (x ∗ y) ∗ x = ρ2
(
Q(x)

)
y

and similarly

(6) x ∗ (y ∗ x) = ρ
(
Q(x)

)
y.

Linearizing conditions (??) and (??) gives

(7) (x ∗ y) ∗ z + (z ∗ y) ∗ x = ρ2
(
bQ(x, z)

)
y,

(8) x ∗ (y ∗ z) + z ∗ (y ∗ x) = ρ
(
bQ(x, z)

)
y.

By (??) we have bQ(x ∗ x, x) ∈ F , thus (V, L, β,Q) with β(x) = x ∗ x is a twisted
composition. Conversely, we shall see in Proposition (??) that any twisted compo-
sition over a cyclic cubic extension comes from a cyclic composition.

(36.11) Example. Let (S, ?, n) be a symmetric composition algebra over F and
let L be a cyclic cubic algebra. Let ρ be a generator of Gal(L/F ). It is easy to
check that V = SL = S ⊗ L, with the product

x ∗ y = (1⊗ ρ)(x) ? (1⊗ ρ2)(y)

and the norm Q(x) = (n ⊗ 1)(x), is cyclic. Thus, by putting β(x) = x ? x, we
may associate to any symmetric composition algebra (S, ?, n) and any cubic cyclic
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extension L a twisted composition Γ(S, ?, L). If, furthermore, L = F × F × F and
ρ1(ξ0, ξ1, ξ2) = (ξ1, ξ2, ξ0), we have a product

β1(x, y) = x ∗1 y = (x1 ? y2, x2 ? y0, x0 ? y1)

for x = (x0, x1, x2) and y = (y0, y1, y2) in SF×F×F = S × S × S such that

β1(x, x) = β(x0, x1, x2) = (x1 ? x2, x2 ? x0, x0 ? x1)

and we obtain a twisted composition as defined in Example (??). By taking ρ2 = ρ2
1

as generator of Gal(F × F × F/F ), we have another product

β2(x, y) = x ∗2 y = (y1 ? x2, y2 ? x0, y0 ? x1)

such that β2(x, x) = β(x). Observe that β1(x, y) = β2(y, x).

(36.12) Proposition. Let L/F be a cyclic cubic algebra, let ρ1, ρ2 be different

generators of the group Gal(L/F ) = A3 and let (V, L,Q, β) be a twisted composition

over L. There is a unique pair of cyclic compositions βi(x, y) = x ∗i y over V ,

i = 1, 2, with βi ρi-semilinear with respect to the first variable, such that βi(x, x) =
β(x). Furthermore we have β1(x, y) = β2(y, x).

Proof : There exists at most one F -bilinear map β1 : V ⊗ V → V which is ρ1-
semilinear with respect to the first variable and ρ2-semilinear with respect to the

second variable and such that β1(x, x) = β(x) for all x ∈ V : the difference β̂ of

two such maps would be such that β̂(x, x) = 0, hence β̂(x, y) = −β̂(y, x). This

is incompatible with the semilinearity properties of β̂. Over a separable closure
Fsep of F such a map exists, since L ⊗ Fsep is split and, by Proposition (??),
VFsep is of Cayley type. Thus, by descent, such a β1 resp. β2 exists. Furthermore
x ∗i y = βi(x ⊗ y) satisfies the identities of a cyclic composition, since it does
over Fsep. The last claim follows from Example (??).

It follows from Proposition (??) that the twisted composition (S ⊗ L,L,Q, β)
is independent of the choice of a generator of Gal(L/F ).

(36.13) Proposition. Cyclic compositions over F are classified by the pointed set

H1(F,Spin8 oZ/3Z).

Proof : In view of Propositions (??) and (??) any cyclic composition over a sepa-
rable closure Fsep of F is isomorphic to a Cayley composition with multiplication ∗
as described in Example (??) and ρ either given by (x0, x1, x2) 7→ (x1, x2, x0) or
(x0, x1, x2) 7→ (x2, x0, x1). It then follows as in the proof of Proposition (??) that
the group of automorphisms of the cyclic composition

(
C⊗ (F × F × F ), n⊥ n⊥ n, F × F × F, ρ, ∗

)
R

is isomorphic to Spin(ns)(R) o Z/3Z. The claim then follows by constructing a
representation G→ GL(W ) such that Spin(ns)oZ/3Z = AutG(w) as in the proof
of (??), (??). We let this construction as an exercise.

Let (V, L,Q, ρ, ∗) be a cyclic composition. We have a homomorphism

p : Aut(V, L, ρ, ∗)→ Aut(L) = A3

induced by restriction. Assume that p is surjective and has a section s. Then s
defines an action of A3 on (V, L,Q, ρ, ∗).
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(36.14) Proposition. Let F be a field of characteristic not equal to 3. For any

faithful ρ-semilinear action of A3 on (V, L,Q, ρ, ∗), V0 = V A3 carries the structure

of a symmetric composition algebra and V = V0 ⊗L. In particular, if dimL V = 8,
then p has only two possible sections (up to isomorphism) over Fsep.

Proof : The first claim follows by Galois descent and the second from the fact
that over Fsep we have only two types of symmetric composition algebras (The-
orem (??)).

(36.15) Corollary. Datas
(
(V, L,Q, ρ, ∗), p, s

)
where (V, L,Q, ρ, ∗) is a cyclic com-

position, are classified either by H1(F,G × A3) where G is of type G2, if the sec-

tion s defines a para-Hurwitz composition, or by H1
(
F,PGU3(K) × A3

)
where

K = F [X ]/(X2 +X + 1).

Proof : This corresponds to the two possible structures of symmetric composition
algebras over Fsep.

Let (V, L, ρ, ∗) be a cyclic composition of dimension 8. We write ρV for the
L-space V with the action of L twisted through ρ and put ρQ(x) = ρ

(
Q(x)

)
. Let

`x(y) = x ∗ y and rx(y) = y ∗ x.

(36.16) Proposition. The map

x 7→
(

0 `x
rx 0

)
∈ EndL(ρV ⊕ ρ2V ), x ∈ V

extends to an isomorphism of algebras with involution

αV :
(
C(V,Q), τ

) ∼−→
(
EndL(ρV ⊕ ρ2V ), σQ̃

)

where σQ̃ is the involution associated with the quadratic form Q̃ = ρQ ⊥ ρ2Q. In

particular αV restricts to an isomorphism
(
C0(V,Q), τ

) ∼−→
(
EndL(ρV ), σρQ

)
×

(
EndL(ρ

2

V ), σρ2Q

)
.

Proof : The existence of αV follows from the universal property of the Clifford

algebra, taking the identities (x ∗ y) ∗ x = ρQ(x)y and x ∗ (y ∗ x) = ρ2Q(x)y into
account. It is an isomorphism because C(V,Q) is central simple over F . The
fact that α is compatible with involutions is a consequence of the formula (??)
above.

Proposition (??) is a twisted version of Proposition (??) and can be used to
deduce analogues of Propositions (??) and (??). The proofs of the following two
results will only be sketched.

(36.17) Proposition. Let t be a proper similitude of (V,Q), with multiplier µ(t).
There exist proper similitudes u, v of (V,Q) such that

µ(v)−1v(x ∗ y) = u(x) ∗ t(y),
µ(u)−1u(x ∗ y) = t(x) ∗ v(y),
µ(t)−1t(x ∗ y) = v(x) ∗ u(y)

for all x, y ∈ V . If t ∈ RL/F
(
O+(V,Q)

)
(F ) is such that Sn(t) = 1, then u, v can

be chosen in RL/F (O+(V,Q))(F ).
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Proof : We identify C(V,Q) with
(
EndL(ρV ⊕ ρ2V ), σQ̃

)
through αV . The map

x 7→
(

0 `tx
µ(t)−1rtx 0

)
∈ EndL(ρV ⊕ ρ2V )

extends to an automorphism t̃ of C(V,Q) whose restriction to C0(V,Q) is C0(t).

Thus we may write t̃ = Int
(
u′ 0
0 v′

)
where u′, v′ are similitudes of Q and

(
u′ 0
0 v′

) (
0 `x
rx 0

) (
u′ 0
0 v′

)−1

=

(
0 `tx

µ(t)−1rtx 0

)

or

u′(x ∗ y) = t(x) ∗ v′(y) and v′(y ∗ x) = u′(y) ∗ t(x)µ(t)−1.

Putting u = u′µ(u′)−1 and v = v′ and using that

µ(u)−1 = µ(u′) = ρµ(t) ρ
2

µ(v)

gives the first two formulas. The third formula follows by replacing x by y ∗ x in
the first one (compare with the proof of Proposition (??)).

(36.18) Proposition. Assume that charF 6= 2. For R ∈ AlgF we have

RL/F
(
Spin(V,Q)

)
(R) '
{ (v, u, t) ∈

(
RL/F

(
O+(V )

)
(R)

)3 | v(x ∗ y) = u(x) ∗ t(y) },

the group A3 operates on Spin(V,Q), and Spin(V,Q)A3 is a group scheme over F
such that RL/F

(
[Spin(V,Q)A3 ]L

)
= Spin(V,Q).

Proof : Proposition (??) follows from Proposition (??) as Proposition (??) follows
from Proposition (??).

The computation given above of the Clifford algebra of a cyclic composition can
be used to compute the even Clifford algebra of an arbitrary twisted composition:

(36.19) Proposition. Let Γ = (V, L,Q, β) be a twisted composition. There exists

an isomorphism

αV : C0(V,Q) = C
(
EndL(V ), σQ

)
→ ρ

(
EndL(V )⊗∆

)

where ∆(L) is the discriminant algebra of L and ρ is a generator of the group

Gal
(
L⊗∆(L)/L

)
' A3.

Proof : By Proposition (??) there exists exactly one cyclic composition (with re-
spect to ρ) on (V, L,Q, β)⊗∆ and by Proposition (??) we then have an isomorphism

αV⊗∆ : C0(V,Q)⊗∆ ∼−→ EndL⊗∆

(
ρ(V ⊗∆)

)
× EndL⊗∆

(
ρ2(V ⊗∆)

)

of L⊗∆-algebras with involution. By composing with the canonical map

C0(V,Q)→ C0(V,Q)⊗∆

and the projection ρ
(
EndL(V ) ⊗ ∆

)
× ρ2

(
EndL(V ) ⊗ ∆

)
→ ρ

(
EndL(V ) ⊗ ∆

)
we

obtain a homomorphism of central simple algebras

αV : C0(V,Q) = C
(
EndL(V ), σQ

)
→ ρ

(
EndL(V )⊗∆

)

which is an isomorphism by dimension count.
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36.C. Twisted Hurwitz compositions. In this section we first extend the
construction of a twisted composition C ⊗L given in Example (??) for L cyclic to
an arbitrary cubic étale algebra L and a para-Hurwitz algebra (C, ?, n). We refer
to ?? for details on cubic étale algebras.

Let ∆ be the discriminant (as a quadratic étale algebra) of L, let ι be the
generator of Gal(∆/F ) and let C be a Hurwitz algebra over F . Since L ⊗ ∆ is
cyclic over ∆, by Proposition (??) there exists a cyclic composition (x, y) 7→ x ∗ y
on C⊗L⊗∆ for each choice of a generator ρ of Gal(L⊗∆/∆). The automorphism
ι̃ = π⊗1⊗ ι of C⊗L⊗∆ is ι-semilinear and satisfies ι̃2 = 1 and ι̃(x∗y) = ι̃(y)∗ ι̃(x)
for x, y ∈ C ⊗ L⊗∆. Let

V = {x ∈ C ⊗ L⊗∆ | ι̃(x) = x }
be the corresponding descent (from L⊗∆ to L). Since ι̃(x∗y) = ι̃(y)∗ ι̃(x), the map
β(x) = x∗x restricts to a quadratic map β on V . The restriction Q of n⊗1⊗1 to V
takes values in L and is nonsingular. Thus (V, L,Q, β) is a twisted composition.
We write it Γ(C,L). A twisted composition similar to a composition Γ(C,L) is
called a twisted Hurwitz composition over L. If C is a Cayley algebra we also say
that Γ(C,L) is a twisted composition of type G2. The underlying quadratic space
(V,Q) of Γ(C,L) is extended from the quadratic space (V0, Q0) over F with

V0 = {x ∈ C ⊗∆ | π ⊗ ι(x) = x }
and Q0 is the restriction of Q to V0. The space (V0, Q0) is called the ∆-associate
of (C, n) by Petersson-Racine [?] (see also Loos [?]) and is denoted by (C,N)∆. In
[?] a K-associate (U, q)K is attached to any pointed quadratic space (U, q, e) and
any étale quadratic algebra K:

(U, q)K = {x ∈ U ⊗K | π ⊗ ιK(x) = x }
where π is the reflection with respect to the point e. For any pair of quadratic étale
algebras K1, K2 with norms n1, n2, (K1, n1)K2 = (K2, n2)K1 is the étale quadratic
algebra

K1 ∗K2 = {x ∈ K1 ⊗K2 | (ι1 ⊗ ι2)(x) = x }.
Recall that K ∗K ' F × F .

(36.20) Lemma. Let (U, p) be a pointed quadratic space. There are canonical

isomorphisms
(
(U, p)K1

)
K2
' (U, p)K1∗K2 and (U, p)F×F ' (U, p).

Reference: See Loos [?].

In what follows we use the notation [a] for the 1-dimensional regular quadratic
form q(x) = ax2 (and, as usual, 〈a〉 for the bilinear form b(x, y) = axy, a ∈ F×).

(36.21) Lemma. Let (C, n) be a Hurwitz algebra (with unit 1) and let (C0, n0) =
1⊥ be the subspace of (C, n) of elements of trace zero. We have, with the above

notations, (V0, Q0) = (C, n)∆ and :

(1) If charF 6= 2, V0 = F · 1⊕ C0, Q0 = [1]⊥ 〈δ〉 ⊗ (C0, n0).
(2) If charF = 2, let u ∈ C, ξ ∈ ∆ with TC(u) = 1 = T∆(ξ) and let w =
u⊗ 1 + 1⊗ ξ. Then V0 = F · w ⊕C0, Q0(w) = n(u) + ξ2 + ξ, bQ0(w, x) = bn(x, u)
and Q0(x) = n(x) for x ∈ C0.
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Proof : Claims (??) and (??) can be checked directly. The first claim then follows
easily.

(36.22) Proposition. Two twisted Hurwitz compositions Γ(C1, L1) and Γ(C2, L2)
are isomorphic if and only if L1 ' L2 and C1 ' C2.

Proof : The if direction is clear. We show the converse. If the compositions
Γ(C1, L1) and Γ(C2, L2) are isomorphic, we have by definition an isomorphism
L1

∼−→ L2 and replacing the L2-action by the L1-action through this isomorphism,
we may assume that L1 = L2 = L. In particular the quadratic forms Q1 and Q2

are then isometric as quadratic spaces over L. By Springer’s theorem there exists
an isometry (C1, n1)∆ ' (C2, n2)∆. Since ∆ ∗ ∆ ' F × F , (C1, n1) ' (C2, n2)
follows from Lemma (??), hence C1 ' C2 by Theorem (??).

Let G be the automorphism group of the split Cayley algebra. Since G =
SpinS3

8 (see ??), we have a homomorphism

G× S3 → Spin8 oS3.

(36.23) Proposition. Twisted compositions of type G2 are classified by the image

of H1(F,G × S3) in H1(F,Spin8 oS3).

Proof : A pair (φ, ψ) where φ is an automorphism of C and ψ is an automorphism
of L defines an automorphism Γ(φ, ψ) of Γ(C, L). The map

H1(F,G × S3) = H1(F,G) ×H1(F, S3)→ H1(F,Spin8 oS3)

corresponds to [C]× [L]→ [Γ(C, L)].

The following result is due to Springer [?] for L cyclic and V of dimension 8.

(36.24) Theorem. Let (V, L,Q, β) be a twisted composition and let N be the cubic

form N(x) = Q
(
x, β(x)

)
, x ∈ V . The following conditions are equivalent :

(1) The twisted composition (V, L,Q, β) is similar to a twisted Hurwitz composition.

(2) The cubic form N(x) is isotropic.

(3) There exists e ∈ V with β(e) = λe, λ 6= 0, and Q(e) = λ#.

Proof of (??) ⇒ (??): We may assume that (V, L,Q, β) is a Hurwitz composition.
The element x = c ⊗ 1 ⊗ ξ ∈ C ⊗ L ⊗∆ lies in V if tC(c) = 0 = t∆(ξ). For such
an element we have β(x) = c2 ⊗ 1 ⊗ ξ2 ∈ L. Since tC(c) = 0, c2 = nC(c) and so
N(x) = 0 if charF 6= 2. If charF = 2, x = 1 ⊗ 1 ⊗ 1 lies in V , β(x) = x, and
N(x) = bQ(x, x) = 0.

For the proof of (??) ⇒ (??) we need the following lemma:

(36.25) Lemma. Any element x of a twisted composition (V, L,Q, β) satisfies the

identity

β2(x) +Q(x)β(x) = N(x)x.

Proof : Since over the separable closure Fsep any composition is cyclic, it suffices to
prove the formula for a cyclic composition and for β(x) = x∗x. In view of Formulas
(??) and (??) (p. ??), we have

(x ∗ x) ∗ (x ∗ x) +
(
(x ∗ x) ∗ x

)
∗ x = ρ

(
bQ(x ∗ x, x)

)
x

hence the assertion, since (x∗x)∗x =
(
ρ2

(
Q(x)

))
x (and the product ∗ is ρ-semilinear

with respect to the first variable).
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Proof of (??) ⇒ (??): First let x 6= 0 be such that β(x) 6= 0 and N(x) = 0. If
Q(x) 6= 0 we take e = β(x) and apply Lemma (??). If Q(x) = 0, we replace x by
β(x) and apply (??) to see that our new x satisfies Q(x) = 0 and β(x) = 0. Thus
we may assume that Q(x) = 0 and β(x) = 0. Let y ∈ V be such that Q(y) = 0 and
bQ(x, y) = −1. Let

β(u, v) = β(u+ v)− β(u)− β(v).

We claim that

β
(
β(x, y)

)
= β(x, y) + f · x(36.26)

for some f ∈ F . We extend scalars to L ⊗∆ and so assume that β(x) = x ∗ x is
cyclic. It suffices to check that f ∈ ∆ ∩ L. Since β(x, y) = x ∗ y + y ∗ x, we have

β
(
β(x, y)

)
= (x ∗ y + y ∗ x) ∗ (x ∗ y + y ∗ x).

Applying formulas (??) and (??) (p. ??), we first obtain

(y ∗ x) ∗ x+ (x ∗ x) ∗ y = (y ∗ x) ∗ x = −x
x ∗ (x ∗ y) + y ∗ (x ∗ x) = x ∗ (x ∗ y) = −x

since β(x) = x ∗ x = 0 and bQ(x, y) = −1. Applying again formulas (??) and (??)
then give

(x ∗ y) ∗ (x ∗ y) = ρ
(
bQ(x ∗ y, y)

)
x+ y ∗ x

(x ∗ y) ∗ (y ∗ x) = 0

(y ∗ x) ∗ (x ∗ y) = ρ
(
bQ(y ∗ x, y)

)
x

(y ∗ x) ∗ (y ∗ x) = ρ2
(
bQ(y, y ∗ x)

)
x+ x ∗ y

and

β
(
β(x, y)

)
= β(x, y) + f · x

with

f = ρ
(
bQ(x ∗ y, y)

)
+ ρ

(
bQ(y ∗ x, y)

)
+ ρ2

(
bQ(y, y ∗ x)

)

= ρ2
(
bQ

(
β(y), x

))
+ bQ

(
β(y), x

)
+ ρ

(
bQ

(
β(y), x

))
= TL⊗∆/∆

(
bQ

(
β(y), x

))

hence f ∈ ∆∩L. Let µ ∈ L be such that TL(µ) = f ; we claim that e = µx+β(x, y)
satisfies β(e) = e:

β(e) = β(µx) + β
(
β(x, y)

)
+ β

(
µx, β(x, y)

)

= β(x, y) + f · x+ β
(
µx, β(x, y)

)
.

To compute β
(
µx, β(x, y)

)
we assume that β(x) = x ∗ x is cyclic. We have:

β
(
µx, β(x, y)

)
= (µx) ∗ (x ∗ y + y ∗ x) + (x ∗ y + y ∗ x) ∗ (µx)

= ρ(µ)[x ∗ (x ∗ y + y ∗ x)] + ρ2(µ)[(x ∗ y + y ∗ x) ∗ x]
= −ρ(µ)x− ρ2(µ)x = (µ− f)x.

This implies that β(e) = β(x, y) + µx = e. The relation λ# = Q(e) follows from
β(e) = λe and Lemma (??), since replacing β(e) by λe we see that λ#λe+Q(e)λe =
2Q(e)λe.
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Proof of (??) ⇒ (??): We first construct the Hurwitz algebra C. Replacing β by
the similar composition λ−1β, we may assume that β(e) = e. This implies that
Q(e) = 1. Let ∆ be the discriminant algebra of L. We also call β the extension
β ⊗ 1 of β to L ⊗ ∆. Let ρ1, ρ2 be the generators of Gal(L ⊗∆/∆) and let ι be
the generator of Gal(∆/F ), so that (putting ι = 1 ⊗ ι on L ⊗∆ and V ⊗ ∆), we
have ρ2

i = ρi+1 and ιρi = ρi+1ι. Let βi(x, y) = x ∗i y be the two unique extensions
of β to L ⊗ ∆ as cyclic compositions with respect to ρi. By uniqueness we have
(see Examples (??) and (??))

β1(x, y) = β2(y, x) and ιβ1(x, y) = β2(ιx, ιy).

Let π : V → V be the hyperplane reflection

π(x) = x = −x+ bQ(e, x)e

as well as its extension to V ⊗∆ and let ϕi : V ⊗∆ ∼−→ V ⊗∆ be the ρi-semilinear
map given by ϕi(x) = βi(x, e).

(36.27) Lemma. The following identities hold for the maps ϕi:

(1) ϕiπ = πϕi

(2) ϕ2
i = ϕi+1

(3) ιϕiι = ϕi+1

Proof : (??) We have β1(x, e) = −β1(x, e) + ρ1

(
bQ(e, x)

)
e so that

β1(x, e) = β1(x, e)− bQ
(
e, β1(x, e)

)
e

− ρ1

(
bQ(e, x)

)
e+ bQ

(
e, ρ1

(
bQ(e, x)

)
e
)
e = β1(x, e)

(??) By (??)

β1

(
β1(x, e), e

)
= β1

(
β1(x, e), e

)
= ρ2

(
bQ(e, x)

)
e− β1(e, x) = β1(e, x)

using that β1

(
β1(x, y), z

)
+β1

(
β1(z, y), x

)
= ρ2

(
bQ(x, z)

)
y, a formula which follows

from (??) (p. ??).
(??) follows from ιβ1(x, y) = β2(ιx, ιy).

We next define a multiplication γ1 on V ⊗∆ by

γ1(x, y) = β1

(
ϕ2(x), ϕ1(y)

)
.

(36.28) Lemma. The multiplication γ1 satisfies the following properties :

(1) Q
(
γ1(x, y)

)
= Q(x)Q(y)

(2) γ1(x, e) = γ1(e, x) = x

(3) γ1(x, y) = γ1(y, x)

(4) ιγ1(x, y) = γ1(ιy, ιx)

(5) γ1

(
ϕ1(x), ϕ1(y)

)
= ϕ1

(
γ1(x, y)

)

Proof : (??) We have

Q
(
γ1(x, y)

)
= Q

(
β1

(
ϕ2(x), ϕ1(y)

))
= ρ1

(
Q

(
ϕ2(x)

))
ρ2

(
Q

(
ϕ1(y)

))

= ρ1ρ2

(
Q(x)

)
ρ2ρ1

(
Q(y)

)
= Q(x)Q(y)

(??) We have γ1(x, e) = β1

(
β2(x, e), e

)
= x and similarly γ1(e, x) = x.
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(??) In view of (??) and (??) γ1 is a Hurwitz multiplication with conjugation
x 7→ x and (??) holds for any multiplication of a Hurwitz algebra, see (??).

(??) We have

ιγ1(x, y) = ιβ1

(
ϕ2(x), ϕ1(y)

)
= β2

(
ιϕ2(x), ιϕ1(y)

)

= β2

(
ϕ1ι(x), ϕ2ι(y)

)
= β1

(
ϕ2ι(y), ϕ1ι(x)

)
= γ1(ιy, ιx)

(??) Using (??) we have

ϕ1

(
γ1(x, y)

)
= β1

(
γ1(y, x), e

)
= β1

(
β1

(
ϕ2(y), ϕ1(x)

)
, e

)

= ρ2

(
bQ

(
ϕ2(y), e

))
ϕ1(x)− β1

(
β1

(
e, ϕ1(x)

)
, ϕ2(y)

)

= β1

(
β1

(
e, ϕ1(x)

)
, bQ

(
ϕ2(y), e

)
e
)
− β1

(
β1

(
e, ϕ1(x)

)
, ϕ2(y)

)

= β1

(
β1

(
e, ϕ1(x)

)
, ϕ2(y)

)
= β1

(
ϕ2ϕ1(x), ϕ2(y)

)

= γ1

(
ϕ1(x), ϕ1(y)

)

We go back to the proof of Theorem (??). It follows from Lemma (??) that

γ1

(
ιπ(x), ιπ(y)

)
= ιπ

(
γ1(x, y)

)

Since ιπϕ1 = ϕ2
1ιπ, the automorphisms {ϕ1, ιπ} of V ⊗ ∆ define a Galois action

of the group Gal(L ⊗ ∆/F ) = S3 on the Hurwitz algebra V ⊗ ∆. Let C be the
descended Hurwitz algebra over F , so that

V ⊗∆ = C ⊗ L⊗∆

Observe that V on the left is the subspace of elements of V ⊗∆ fixed by IdV ⊗ ι
and that C ⊗ L on the right is the subspace of elements of C ⊗ L⊗∆ fixed by ιπ.
We only consider the case where charF 6= 2 and leave the case charF = 2 as an
exercise. Let V = Le ⊥ V 0, V 0 = e⊥, and let d ∈ L ⊗ ∆ be a generator of the
discriminant algebra ∆ such that (1⊗ ι)(d) = −d. The map

φ : V ⊗∆→ C ⊗ L⊗∆

given by φ
(
(`e+ v′)⊗ s

)
= 1⊗ `⊗ s+ v′ ⊗ ds is such that φ ◦ ι = (π⊗ ι) ◦ φ. Thus

the image of V in C ⊗ L ⊗∆ can be identified with L⊗ 1 ⊥ C0 ⊗ L ⊗ 1 and β is
the restriction of the twisted Hurwitz composition on C ⊗L⊗∆. This shows that
(??) implies (??).

(36.29) Corollary. If L is not a field, any twisted composition over L is similar

to a twisted Hurwitz composition Γ(C,L).

Proof : The claim for compositions over F ×F ×F follows from Proposition (??) (a
result used in the proof of Theorem (??)). Let (V, L,Q, β) be a twisted composition
over L = F × ∆, ∆ a quadratic field extension of F . We have to check that
(V, L,Q, β) is similar to a composition with an element e such that β(e) = e.
By decomposing V = (V0, V1), Q = (Q0, Q1) and β = (β0, β1) according to the
decomposition F×∆, we see (compare with the proof of (??)) that β0 is a quadratic
map V1 → V0 such that Q0β0(v1) = nK/F

(
Q1(v1)

)
and β1 is a ∆-linear map

ιV1 ⊗ V0 → V1 such that Q1β1(v1 ⊗ v0) = ι
(
Q1(v1)

)
Q0(v0). Let bQ1(x, y) be

the ∆-bilinear polar of Q1 and let bQ0(x, y) be F -bilinear polar of Q0 as well as its
extension to V0⊗∆ as a ∆-bilinear form. By an argument similar to the argument in

the proof of proposition (??), there exists a unique extension β̂0 : V1⊗∆
ιV1 → V0⊗∆
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of β0 as a ∆-hermitian map. Property (??) of the definition of a twisted composition
implies that

bQ0

(
v0, β0(v1)

)
= bQ1

(
v1, β1(v1 ⊗ v0)

)
for v0 ∈ V0, v1 ∈ V1.(36.30)

For v = (v0, 0), v0 6= 0 in V0 we have bQ
(
v, β(v)

)
= 0, so that the claim follows

from Theorem (??).

(36.31) Remark. In the next section we give examples of twisted compositions
of dimension 8 over a field L which are not induced by Cayley algebras.

(36.32) Remark. Let Γ = (V, L,Q, β) be a twisted composition. Since L⊗ L '
L×L⊗∆ (where the first projection is multiplication), Γ⊗L is similar to a Hurwitz
twisted composition Γ(C,L ⊗ L) for some unique Hurwitz algebra C(Γ) over L.
The algebra C(Γ) over L is in fact extended from a Hurwitz algebra C over F .
In dimension 8, the algebra C is determined by a cohomological invariant f3 (See
Proposition (??)).

36.D. Twisted compositions of type A′2. We finish this chapter by showing
how to associate twisted compositions to symmetric compositions arising from cen-
tral simple algebras of degree 3 or cubic étale algebras. We assume that charF 6= 3
and first suppose that F contains a primitive cube root of unity ω. Let λ ∈ F× and
let L = F [X ]/(X3−λ) = F ( 3

√
λ) where 3

√
λ is the class of X modulo (X3−λ). Since

charF 6= 3 and µ3 ⊂ F×, F ( 3
√
λ) is a cyclic cubic F -algebra and u 7→ ωu defines a

generator of Gal(L/F ). Let A be a central simple F -algebra of degree three or a
cubic étale algebra and let (A0, n, ?) be the corresponding composition algebra as
defined in Proposition (??). As in Example (??) we define a cyclic composition on
A0 ⊗ L by

x ∗ y = [(1⊗ ρ)(x)] ? [(1⊗ ρ2)(y)]

and Q(x) = (n⊗ 1)(x). Let v = 3
√
λ. Taking (1, v, v−1) as a basis of L over F , we

can write any element of A0 ⊗L as a sum x = a+ bv+ cv−1 with a, b, c ∈ A0, and
we have, (using that µω2 + ω(1− µ) = 0 and µω + ω2(1− µ) = −1),

β(x) = x ∗ x = (a+ bω2v + cωv−1) ?⊗1(a+ bωv + cω2v−1)

= a2 − 1
3TA(a2)− bc+ 1

3TA(bc)

+ v[λ−1
(
c2 − 1

3TA(c2)
)
− ab+ 1

3TA(ab)]

+ v−1[λ
(
b2 − 1

3TA(b2)
)
− ca+ 1

3TA(ca)]

= a ? a− (bc)0 + vλ−1[c ? c− (ba)0] + v−1λ[b ? b− (ca)0]

where x0 = x− 1
3TA(x) for x ∈ A. The form Q is given by

Q(a+ bv + cv−1) = − 1
3SA⊗L(a+ bv + cv−1)

= − 1
3 [SA(a) + SA(c)λ−1v + SA(b2)λv−1]

+ 1
3 [TA(bc) + TA(ab)v + TA(ca)v−1]
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and the norm N by

N(a+ bv + cv−1) = bQ
(
a+ bv + cv−1, β(a+ bv + cv−1)

)

= bn(a, a ? a) + λbn(b, b ? b) + λ−1bn(c, c ? c)

+ 1
3 [bSA

(
a, (bc)0

)
+ bSA

(
b, (ca)0

)
+ bSA

(
c, (ab)0

)
]

= NA(a) + λNA(b) + λ−1NA(c)− TA(abc)

since bn(a, a ? a) = NA(a) and BSA

(
a, (bc)0

)
= −T

(
a, (bc)0

)
= −TA(abc).

Assume now that F does not necessarily contain a primitive cube root of unity
ω. Replacing F by F (ω) = F [X ]/(X2 +X+1), we may define ∗ on A0⊗F (ω)⊗L.
However, since ω does not explicitly appear in the above formulas for β and Q
restricted toA0⊗L, we obtain for any algebraA of degree 3 over F of characteristic 3
and for any λ ∈ F× a twisted composition Γ(A, λ) = (A0 ⊗ L,L,Q, β) over L =

F ( 3
√
λ). A twisted composition Γ similar to a composition Γ(A, λ) for A associative

central simple and λ ∈ F× is said to be a composition of type 1A
′
2.

Any pair (φ, ψ) ∈ AutF (A) × AutF (L) induces an automorphism of Γ(A,L).
Thus we have a morphism of group schemes PGL3×µ3 → Spin8 oS3 and:

(36.33) Proposition. Twisted compositions Γ(A, λ) of type 1A
′
2 are classified by

the image of H1(F,PGL3×µ3) in H1(F,Spin8 oS3).

(36.34) Remark. If F contains a primitive cube root of unity, µ3 = A3 and
the image under the morphism PGL3×µ3 → Spin8 oS3 of the group PGL3 =

Spin8
A3 is contained in Spin8.

Let now (B, τ) be central simple of degree 3 over a quadratic étale F -algebraK,
with a unitary involution τ . For ν ∈ K× we have a twisted K-composition Γ(B, ν)
over K( 3

√
ν) which we would like (under certain conditions) to descent to a twisted

F -composition.

(36.35) Proposition. If NK(ν) = 1, then:

(1) There is an ι-semilinear automorphism ι′ of K( 3
√
ν) of order 2 which maps ν

to ν−1; its set of fixed elements is a cubic étale F -algebra L with disc(L) ' K∗F (ω)
(where ω is a primitive cube root of unity).
(2) There is an ι-semilinear automorphism of order 2 of the twisted K-composi-

tion Γ(B, τ) such that its set of fixed elements is a twisted F -composition Γ(B, τ, ν)
over L with Γ(B, τ, ν) ' Sym(B, τ)0 ⊕ B0; under this isomorphism we have, for

z = (x, y) ∈ Sym(B, τ)0 ⊕B0 and v = 3
√
ν ∈ K( 3

√
ν) = L⊗K,

Q(z) = 1
3

[
SB(x) + TL⊗K/L

(
SB(y)λv−1 + TB(xy)v

)
+ TB

(
yτ(y)

)]
,

β(z) = x2 − 1
3TB(x2)− yτ(y) + 1

3TB
(
yτ(y)

)

+ ν[τ(y)2 − 1
3TB

(
τ(y)2

)
]− xy + 1

3TB(xy),

N(z) = NB(x) + νNB(y) + ν−1NB
(
τ(y)

)
− TB

(
xyτ(y)

)
.

Proof : (??) This is Proposition (??).
(??) We have Γ(B, ν) = B0 ⊗K K( 3

√
ν) and take as our τ -semilinear automor-

phism the map τ = τ ⊗ τ ′. We write B0 ⊗K K( 3
√
ν) = B0 ⊕ B0v ⊕ B0v−1. The

isomorphism Sym(B, τ)0⊕B0 ' Γ(B, τ, ν) is then given by (x, y) 7→ x+yv+τ(y)v−1

and it is easy to check that its image lies in the descended object Γ(B, τ, ν). The

formulas for Q, β, and N follow from the corresponding formulas for type 1A
′
2.
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(36.36) Example. If K = F (ω), ω a primitive cubic root of 1, then the L given
by Proposition (??) is cyclic and the twisted composition Γ(B, τ, ν) is the twisted
composition associated to the cyclic composition Sym(B, τ)0 ⊗ L.

A twisted composition isomorphic to a composition Γ(B, τ, ν) is said to be of
type 2A2. We have a homomorphism

GU3(K)× (µ3)γ → Spin8 oS3

where γ is a cocycle defining K and the analogue of Proposition (??) is:

(36.37) Proposition. Twisted compositions Γ(B, τ, ν) of type 2A2 are classified

by the image of H1
(
F,PGU3(K)× (µ3)γ

)
in H1(F,Spin8 oS3).

36.E. The dimension 2 case. If (V, L,Q, β) is a twisted composition with
rankL V = 2, then V admits, in fact, more structure:

(36.38) Proposition. Let (V, L,Q, β) be a twisted composition with dimL V = 2.
There exists a quadratic étale F -algebra K which operates on V and a nonsingular

L ⊗ K-hermitian form h : V × V → L ⊗ K of rank 1 such that Q(x) = h(x, x),
x ∈ V . Hence Q ' NK ⊗ 〈λ〉 where λ can be chosen such that NL/F (λ) ∈ F×2.

Furthermore the algebra K is split if Q is isotropic.

Proof : For generic v ∈ V , we may assume that Q(v) = λ ∈ L×, bQ
(
v, β(v)

)
=

a ∈ F×, and that {v, β(v)} are linearly independent over L (see also the following
Remark). Then v1 = v, v2 = λβ(v) is an L-basis of V , and

Q(x1v1 + x2v2) =
(
x2

1 + ax1x2 + nL/F (λ)x2
2

)
· λ

Thus 4NL/F (λ)− a2 = detLQ is nonzero and the quadratic F -algebra

K = F [x]/
(
x2 + ax+NL/F (λ)

)

is étale. Let ιK be the conjugation map of K. Let ξ = x+
(
x2+ax+NL/F (λ)

)
∈ K.

We define a K-module structure on V by putting

ξv1 = v2 and ξv2 = −av1 −NL/F (λ)v2.

Thus v = v1 is a basis element for the L⊗K-module V . We then define

h(η1v, η2v) = η1λη̄2

for η1, η2 ∈ L ⊗ K, and η̄1 = (1 ⊗ ιK)(η1). In particular we have λ = h(v, v)
for the chosen element v. The fact that Q(x) = h(x, x), x ∈ V , follows from the
formula Q(x1v1 + x2v2) =

(
x2

1 + ax1x2 +NL/F (λ)x2
2

)
· λ. The last claim, i.e., that

NL/F (λ) ∈ F×2, follows by choosing v of the form v = β(u). If Q is isotropic, Q
is hyperbolic by Proposition (??) and Corollary (??), hence Q ' NK ⊗〈1〉 and the
claim follows from Springer’s theorem.

(36.39) Remark. If bQ
(
v, β(v)

)
= 0 for v 6= 0 or if {v, β(v)} is linearly dependent

over L, the twisted composition is induced from a Hurwitz algebra (see Theo-
rem (??)).
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Exercises

1. Let C be a separable alternative algebra of degree 2 over F . Show that π : x 7→ x
is the unique F -linear automorphism of C such that x + π(x) ∈ F · 1 for all
x ∈ C.

2. Let (C,N), (C ′, N ′) be Hurwitz algebras of dimension ≤ 4. Show that an
isometry N ∼−→ N ′ which maps 1 to 1 is either an isomorphism or an anti-
isomorphism. Give an example where this is not the case for Cayley algebras.

3. A symmetric composition algebra with identity is 1-dimensional.
4. (Petersson [?]) Let K be quadratic étale with norm N = NK and conjugation
x 7→ x. Composition algebras (K, ?) are either K (as a Hurwitz algebra) or—up
to isomorphism—of the form
(a) x ? y = xy,
(b) x ? y = xy, or
(c) x ? y = uxy for some u ∈ K such that N(u) = 1.

Compositions of type (??) are symmetric.
5. The split Cayley algebra over F can be regarded as the set of all matrices (Zorn

matrices)
( α a
b β

)
with α, β ∈ F and a, b ∈ F 3, with multiplication

(
α a
b β

) (
γ c
d δ

)
=

(
αγ + a · d αc+ δa− (b ∧ d)

γb+ βd+ (a ∧ c) βδ + b · c

)

where a · d is the standard scalar product in F 3 and b ∧ d the standard vector
product (cross product). The conjugation is given by

π

(
α a
b β

)
=

(
β −a
−b α

)

and the norm by

n

(
α a
b β

)
= αβ − a · b.

6. LetK be a quadratic étale F -algebra and let (V, h) be a ternary hermitian space
over K with trivial (hermitian) discriminant, i.e., there exists an isomorphism
φ : ∧3 (V, h) ∼−→ 〈1〉. For any v, w ∈ V , let v × w ∈ V be determined by the
condition h(u, v × w) = φ(u ∧ v ∧ w).
(a) Show that the vector space C(K,V ) = K ⊕ V is a Cayley algebra under

the multiplication

(a, v) � (b, w) =
(
ab− h(v, w), aw + bv + v × w

)

and the norm n
(
(a, v)

)
= NK/F (a) + h(v, v).

(b) Conversely, if C is a Cayley algebra and K is a quadratic étale subalgebra,
then V = K⊥ admits the structure of a hermitian space over K and
C ' C(K,V ).

(c) AutF (C,K) = SU3(K).
(d) There exists a monomorphism SL3 oZ/2Z→ G where G is split simple of

type G2 (i.e., “ A2 ⊂ G2 ” ) such that H1(F,SL3 oZ/2Z)→ H1(F,G) is
surjective.

7. (a) Let Q be a quaternion algebra and let C = C(Q, a) be the Cayley algebra
Q⊕ vQ with v2 = a. Let AutF (C, Q) be the subgroup of automorphisms
of AutF (C) which map Q to Q. Show that there is an exact sequence

1→ SL1(Q)
φ−→ AutF (C, Q)→ AutF (Q)→ 1
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where φ(y)(a+ vb) = a+ (vy)b for y ∈ SL1(Q).
(b) The map SL1(Q)× SL1(Q)→ AutF (C) induced by

(u, x) 7→
[
(a+ vb) 7→

(
uau+ (vx)(ubu)

)]

is a group homomorphism (i.e., “A2 ×A2 ⊂ G2”).
8. (Elduque) Let S = (F4, ?) be the unique para-quadratic F2-algebra. Show

that 1-dimensional algebras and S are the only examples of power-associative
symmetric composition algebras.

9. Let F be a field of characteristic not 3. Let A be a central simple F -algebra
of degree 3. Compute the quadratic forms TA(x2) and SA(x) on A and on A0,
and determine their discriminants and their Clifford invariants.

10. Let λ ∈ F× and let (Q,n) be a quaternion algebra. Construct an isomorphism(
C(λQ, n), σ

)
'

(
M2(Q), σn⊥n

)
.

Hint : Argue as in the proof of (??).
11. Let (C, �, n) be a Cayley algebra and let (C, ?) be the associated para-Cayley

algebra, with multiplication x ? y = x � y. Show that

(x ? a) ? (a ? y) = a ?
(
a ? (x ? y)

)
.

(By using the Theorem of Cartan-Chevalley this gives another approach to
triality.)

12. (Elduque) Let C be a Cayley algebra, let (C, ?) be the associated para-Cayley
algebra, and let (Cϕ, ?) be a Petersson algebra. Let t be a proper similitude
of (C, n), with multiplier µ(t).
(a) If t+, t− are such that µ(t)−1t(x ? y) = t−(x) ? t+(y), show that

µ(t)−1t(x?y) = ϕ−1t−ϕ(x)?ϕt+ϕ−1(y).

(b) If θ+ is the automorphism of Spin(C, n) as defined in Proposition (??)
and if θ̄+ is the corresponding automorphism with respect to ∗̄, show that
θ̄+ = C(ϕ)θ+ = θ+C(ϕ).

13. Compute Spin(C, n) for (C, n) a symmetric composition algebra of dimension 2,
resp. 4.

14. Let C̃ be a twisted Hurwitz composition over F × F × F .
(a) If C is a quaternion algebra, show that

AutF (C̃) =
(
(C× × C× × C×)Det/F×

)
o S3

where

(C× × C× × C×)Det = { (a, b, c) ∈ C× | NC(a) = NC(b) = NC(c) }

and S3 acts by permuting the factors.
(b) If C is quadratic,

AutF (C̃) =
(
SU1(C) × SU1(C)

)
o (Z/2Z× S3)

where Z/2Z operates on SU1(C)× SU1(C) through (a, b) 7→ (a, b) and S3

operates on SU1(C)× SU1(C) as in Lemma (??).
15. Describe the action of S3 (triality) on the Weyl group (Z/2Z)3 o S4 of a split

simple group of type D4.
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Notes

§??. The notion of a generic polynomial, which is classical for associative alge-
bras, was extended to strictly power-associative algebras by Jacobson. A systematic
treatment is given in Chap. IV of [?], see also McCrimmon [?].

§??. Octonions (or the algebra of octaves) were discovered by Graves in 1843
and described in letters to Hamilton (see Hamilton [?, Vol. 3, Editor’s Appendix 3,
p. 648]); however Graves did not publish his result and octonions were rediscovered
by Cayley in 1845 [?, I, p. 127, XI, p. 368–371]. Their description as pairs of
quaternions (the “Cayley-Dickson process”) can be found in Dickson [?, p. 15].
Dickson was also the first to notice that octonions with positive definite norm
function form a division algebra [?, p. 72].

The observation that x(xa) = (xx)a = (ax)x holds in an octonion algebra dates
back to Kirmse [?, p. 76]. The fact that Cayley algebras satisfy the alternative law
was conjectured by E. Artin and proved by Artin’s student Max Zorn in [?]. Artin’s
theorem (that a subalgebra of an alternative algebra generated by two elements is
associative) and the structure theorem (??) first appeared in [?]. The description of
split octonions as “vector matrices”, as well as the abstract Cayley-Dickson process,
are given in a later paper [?] of Zorn. The fact that the Lie algebra of derivations
of a Cayley algebra is of type G2 and the fact that the group of automorphisms
of the Lie algebra of derivations of a Cayley algebra is isomorphic to the group of
automorphisms of the Cayley algebra if F is a field of characteristic zero, is given
in Jacobson [?]. In this connection we observe that the Lie algebra of derivations of
the split Cayley algebra over a field of characteristic 3 has an ideal of dimension 7,
hence is not simple. The fact that the group of automorphisms of a Cayley algebra
is of type G2 is already mentioned without proof by E. Cartan [?, p. 298] [?, p. 433].
Other proofs are found in Freudenthal [?], done by computing the root system, or
in Springer [?], done by computing the dimension of the group and applying the
classification of simple algebraic groups. In [?] no assumption on the characteristic
of the base field is made.

Interesting historical information on octonions can be found in the papers of van
der Blij [?] and Veldkamp [?], see also the book of van der Waerden [?, Chap. 10].
The problem of determining all composition algebras has been treated by many
authors (see Jacobson [?] for references). Hurwitz [?] showed that the equation

(x2
1 + · · ·+ x2

n)(y2
1 + · · ·+ y2

n) = z2
1 + · · ·+ z2

n

has a solution given by bilinear forms z1, . . . , zn in the variables x = (x1, . . . , xn),
y = (y1, . . . , yn) exactly for n = 1, 2, 4, and 8. The determination of all composition
algebras with identity over a field of characteristic not 2 is due to Jacobson [?]. We
used here the proof of van der Blij-Springer [?], which is also valid in characteristic 2.
A complete classification of composition algebras (even those without an identity)
is known in dimensions 2 (Petersson [?]) and 4 (Stampfli-Rollier [?]).

§??. Compositions algebras with associative norms were considered indepen-
dently by Petersson [?], Okubo [?], and Faulkner [?]. We suggest calling them
symmetric composition algebras in view of their very nice (and symmetric) proper-
ties. Applications of these algebras in physics can be found in a recent book [?] by
S. Okubo.

Petersson showed that over an algebraically closed field symmetric composi-
tions are either para-Hurwitz or, as we call them, Petersson compositions. Okubo



NOTES 509

described para-Cayley Algebras and “split Okubo algebras” as examples of sym-
metric composition algebras. In the paper [?] of Okubo-Osborn it is shown that
over an algebraically closed field these two types are the only examples of symmetric
composition algebras.

The fact that the trace zero elements in a cubic separable alternative algebra
carry the structure of a symmetric algebra was noticed by Faulkner [?]. The clas-
sification of symmetric compositions, as given in Theorem (??), is due to Elduque-
Myung [?]. However they applied the Zorn Structure Theorem for separable alter-
native algebras, instead of invoking (as we do) the eigenspace decomposition of the
operator `e for e an idempotent. The idea to consider such eigenspaces goes back
to Petersson [?]. A similar decomposition for the operator ade is used by Elduque-
Myung in [?]. Connections between the different constructions of symmetric alge-
bras are clearly described in Elduque-Pérez [?]. We take the opportunity to thank
A. Elduque, who detected an error in our first draft and who communicated [?] to
us before its publication.

Let (A0, ?) be a composition of type 1A2. It follows from Theorem (??) that
AutF (A0, ?) ' AutF (A). This can also be viewed in terms of Lie algebras: Since

x?y−y?x = µ(xy−yx), any isomorphism of compositions α : (A0, ?) ∼−→ (A′0, ?) also

induces a Lie algebra isomorphism L(A0) ∼−→ L(A′0). Conversely, (and assuming

that F has characteristic 0) any isomorphism of Lie algebras L(A0) ∼−→ L(A′0)
extends to an algebra isomorphism A ∼−→ A′ or the negative of an anti-isomorphism
of algebras A ∼−→ A′ (Jacobson [?, Chap. X, Theorem 10]). However the negative of
an anti-isomorphism of algebras cannot restrict to an isomorphism of composition
algebras. In particular we see that AutF (A0, ?) is isomorphic to the connected
component AutF

(
L(A0)

)
0 of AutF

(
L(A0)

)
.

§??. We introduce triality using symmetric composition algebras of dimen-
sion 8 and their Clifford algebras. Most of the results for compositions of type G2

can already be found in van der Blij-Springer [?], Springer [?], Wonenburger [?], or
Jacobson [?, p. 78], [?]. However the presentation through Clifford algebras given
here, which goes back to [?], is different. The use of symmetric compositions also
has the advantage of giving very symmetric formulas for triality. The isomorphism
of algebras C(S, n) ∼−→ EndF (S ⊕ S) for symmetric compositions of dimension 8
can already be found in the paper [?] of Okubo and Myung. A different approach
to triality can be found in the book of Chevalley [?].

Triality in relation to Lie groups is discussed briefly by E. Cartan [?, Vol. II,
§139] as an operation permuting the vector and the 1

2 -spinor representations of D4.
The first systematic treatment is given in Freudenthal [?], where local triality (for
Lie algebras) and global triality is discussed.

There is also an (older) geometric notion of triality between points and spaces of
two kinds on a (complex) 6-dimensional quadric in P7. These spaces correspond to
maximal isotropic spaces of the quadric given by the norm of octonions. Geometric
triality goes back to Study [?] and E. Cartan [?, pp. 369-370], see also [?, I, pp. 563–
565]; A systematic study of geometric triality is given in Vaney [?], Weiss [?], see
also Kuiper [?]. Geometric applications can be found in the book on “Punktreihen-
geometrie” of Weiss [?].

The connection between triality and octonions, already noticed by Cartan,
is used systematically by Vaney and Weiss. The existence of triality is, in fact,
“responsible” for the existence of Cayley algebras (see Tits [?]). A systematic
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description of triality in projective geometry in relation to the theory of groups is
given in Tits [?].

The paper of van der Blij-Springer [?] gives a very nice introduction to triality
in algebra and geometry. There is also another survey article, by Adams [?].
§??. The notion of a twisted composition (due to Rost) was suggested by the

construction of cyclic compositions, due to Springer [?]. Many results of this section,
for example Theorem (??), were inspired by the notes [?].



CHAPTER IX

Cubic Jordan Algebras

The set of symmetric elements in an associative algebra with involution admits
the structure of a Jordan algebra. One aim of this chapter is to give some insight
into the relationship between involutions on central simple algebras and Jordan
algebras. After a short survey on central simple Jordan algebras in §??, we spe-
cialize to Jordan algebras of degree 3 in §??; in particular, we discuss extensively
“Freudenthal algebras,” a class of Jordan algebras connected with Hurwitz algebras
and we describe the Springer construction, which ties twisted compositions with cu-
bic Jordan algebras. On the other hand, cubic Jordan algebras are also related to
cubic associative algebras through the Tits constructions (§??). Of special interest,
and the main object of study of this chapter, are the exceptional simple Jordan al-
gebras of dimension 27, whose automorphism groups are of type F4. The different
constructions mentioned above are related to interesting subgroups of F4. For ex-
ample, the automorphism group of a split twisted composition is a subgroup of F4

and outer actions on Spin8 (triality!) become inner over F4. Tits constructions
are related to the action of the cyclic group Z/3Z on Spin8 which yields invariant
subgroups of classical type A2, and Freudenthal algebras are related to the action
of the group S3 on Spin8 which yields invariant subgroups of exceptional type G2.

Cohomological invariants of exceptional simple Jordan algebras are discussed
in the last section.

§37. Jordan algebras

We assume in this section that F is a field of characteristic different from 2. A
Jordan algebra J is a commutative finite dimensional unitary F -algebra such that
the multiplication (a, b) 7→ a q b satisfies

(
(a q a) q b

)
q a = (a q a)(b q a)(37.1)

for all a, b ∈ J . For any associative algebra A, the product

a q b = 1
2 (ab+ ba)

gives A the structure of a Jordan algebra, which we write A+. If B is an associative
algebra with involution τ , the set Sym(B, τ) of symmetric elements is a Jordan
subalgebra of B+ which we denote H(B, τ).

Observe that A+ ' H(B, τ) if B = A× Aop and τ is the exchange involution.
A Jordan algebra A is special if there exists an injective homomorphism A →

D+ for some associative algebra D and is exceptional otherwise.
A Jordan algebra is strictly power-associative and we write an for the nth power

of an element a. Hence it admits a generic minimal polynomial

PJ,x(X) = Xm − s1(x)Xm−1 + · · ·+ (−1)msm(x)1,

511
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where TJ = s1 is the generic trace and NJ = sm the generic norm. The bilinear
trace form T (x, y) = TJ(xy) is associative (see Corollary (??)). By Dieudonné’s
theorem (??), a Jordan algebra is separable if T is nonsingular. The converse is a
consequence of the following structure theorem:

(37.2) Theorem. (1) Any separable Jordan F -algebra is the product of simple

Jordan algebras whose centers are separable field extensions of F .

(2) A central simple Jordan algebra is either

(a) the Jordan algebra of a nondegenerate quadratic space of dimension ≥ 2,
(b) a Jordan algebra H(B, τ) where B is associative and K-central simple as

an algebra with involution τ , and where K is either quadratic étale and τ
is unitary with respect to K or K = F and τ is F -linear, or

(c) an exceptional Jordan algebra of dimension 27.

Reference: (??) is [?, Theorem 4, p. 239], and (??) (which goes back to Albert [?])
follows from [?, Corollary 2, p. 204] and [?, Theorem 11, p. 210]. We define and
discuss the different types occurring in (??) in the following sections.

Let Sepjordn(m) be the groupoid of separable Jordan F -algebras of dimension n
and degree m with isomorphisms as morphisms.

37.A. Jordan algebras of quadratic forms. Let (V, q) be a nonsingular
finite dimensional quadratic space with polar bq(x, y) = q(x+ y)− q(x)− q(y). We
define a multiplication on J(V, q) = F ⊕ V by setting

(λ, v) q (µ,w) =
(
λµ+ 1

2bq(v, w), λw + µv
)

for v, w ∈ V and λ, µ ∈ F . The element (1, 0) is an identity and the canonical
embedding of J(V, q) = F q1⊕V into the Clifford algebra C(V, q) shows that J(V, q)
is a Jordan algebra (and is special). The generic minimal polynomial of J(V, q) is

PJ,a(X) = X2 − 2ξX +
(
ξ2 − q(v)

)
1

where a = (ξ, v) ∈ F q 1 ⊕ V , hence J(V, q) has degree 2, the trace is given by
TJ(ξ, v) = 2ξ and the norm by NJ (ξ, v) = ξ2 − q(v). Thus NJ is a nonsingular
quadratic form. The bilinear trace form T : (x, y) 7→ TJ(x q y) is isomorphic to
〈2〉 ⊥ bq , furthermore T is associative, hence by (??) J is separable if and only if
q is nonsingular. We set J : Qn → Sepjordn+1(2) for the functor (V, q) 7→ J(V, q).
Let J be a separable Jordan algebra of degree 2, with generic minimal polynomial

PJ,a(X) = X2 − TJ(a)X +NJ(a)1.

Linearizing and taking traces shows that

2TJ(x q y)− 2TJ(x)TJ (y) + 2bNJ (x, y) = 0,

with bNJ the polar of NJ ; hence

bNJ (x, y) = TJ(x)TJ(y)− TJ(x q y).(37.3)

For J0 = {x ∈ J | TJ(x) = 0 }, we have an orthogonal decomposition

J = F q 1⊥ J0

with respect to the bilinear trace form T as well as with respect to NJ and, in view
of (??), NJ is nonsingular on J0 if and only if T is nonsingular on J0 if and only
if J is separable. Let

Q : Sepjordn+1(2)→ Qn
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be the functor given by J 7→ (J0,−NJ).

(37.4) Proposition. The functors J and Q define an equivalence of groupoids

Qn ≡ Sepjordn+1(2).

In particular we have Autalg

(
J(V, q)

)
= O(V, q), so that Jordan algebras of type

Sepjordn+1(2) are classified by H1(F,On).

Proof : The claim follows easily from the explicit definitions of J and Q.

(37.5) Remark. If dimV ≥ 2, J(V, q) is a simple Jordan algebra. If dimV = 1,

J(V, q) is isomorphic to the quadratic algebra F (
√
λ) = F (X)/(X2 − λ) where

q ' 〈λ〉.

We next consider Jordan algebras of degree ≥ 3 and begin with Jordan algebras
associated to central simple algebras with involution.

37.B. Jordan algebras of classical type. Let K be an étale quadratic
algebra over F with conjugation ι or let K = F and ι = 1. Let (B, τ) be a
K-central simple algebra with τ an ι-linear involution. As in Chapter ?? we denote
the groupoids corresponding to different types of involutions by An, Bn, Cn, and Dn.
We set A+

n , B+
n , C+

n , resp. D+
n for the groupoids of Jordan algebras whose objects

are sets of symmetric elements H(B, τ) for (B, τ) ∈ A, B , C , resp. D. For each of
these categories A, B , C , D, we have functors S : A → A+, . . . , D → D+ induced
by (B, τ) 7→ H(B, τ).

(37.6) Proposition. Let B, B′ be K-central simple with involutions τ , τ ′, of de-

gree ≥ 3. Any isomorphism H(B, τ) ∼−→ H(B′, τ ′) of Jordan algebras extends to a

unique isomorphism (B, τ) ∼−→ (B′, τ ′) of K-algebras with involution. In particular

H(B, τ) and H(B′, τ ′) are isomorphic Jordan algebras if and only if (B, τ) and

(B′, τ ′) are isomorphic as K-algebras with involution and the functor S induces an

isomorphism of corresponding groupoids.

Reference: See Jacobson [?, Chap. V, Theorem 11, p. 210].

Thus, in view of Theorem (??), the classification of special central simple
Jordan algebras of degree ≥ 3 is equivalent to the classification of central simple
associative algebras with involution of degree ≥ 3.

If (B, τ) is a central simple algebra with a unitary involution over K, we have
an exact sequence of group schemes

1→ AutK(B, τ)→ Aut(B, τ)→ Autalg(K)(' Z/2Z)→ 1

Thus there is a sequence

1→ AutK(B, τ)→ Aut
(
H(B, τ)

)
→ Z/2Z→ 1.

If B = A×Aop and τ is the exchange involution, we obtain

1→ Aut(A)→ Aut(A+)→ Z/2Z→ 1(37.7)

and the sequence splits if A admits an anti-automorphism. The group scheme
Aut

(
H(B, τ)

)
is smooth in view of Proposition (??), (??), since its connected

component PGU(B, τ) = AutK(B, τ) is smooth. Thus Aut(A+) is smooth too.
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37.C. Freudenthal algebras. Let C be a Hurwitz algebra with norm NC

and trace TC over a field F of characteristic not 2 and let

Mn(C) = Mn(F )⊗ C.
For X = (cij) ∈ Mn(C), let X = (cij) where c 7→ c̄, c ∈ C, is conjugation. Let
α = diag(α1, α2, . . . , αn) ∈ GLn(F ). Let

Hn(C,α) = {X ∈Mn(C) | α−1X
t
α = X }.

Let n ≥ 3. If C is associative, Hn(C,α) and twisted forms of Hn(C,α) are Jordan
algebras of classical type for the product X q Y = 1

2 (XY + Y X) where XY is the
usual matrix product. In particular they are special. If n = 3 and C = C is a Cayley
algebra, H3(C, α) (and twisted forms of H3(C, α)) are Jordan algebras for the same
multiplication (see for example Jacobson [?, Chap. III, Theorem 1, p. 127]). For
n = 2 we still get Jordan algebras since H2(C, α) can be viewed as a subalgebra
of H3(C, α) with respect to a Peirce decomposition ([?, Chap. III, Sect. 1]) relative
to the idempotent diag(1, 0, 0). In fact, H2(C,α) is, for any Hurwitz algebra C,
separable of degree 2 hence special (see Exercise 3). However the algebra H3(C, α)
and twisted forms of H3(C, α) are exceptional Jordan algebras (Albert [?]). In fact
they are not even homomorphic images of special Jordan algebras (Albert-Paige
[?] or Jacobson [?, Chap. I, Sect. 11, Theorem 11]). Conversely, any central simple
exceptional Jordan algebra is a twisted form of H3(C, α) for some Cayley algebra
C (Albert [?, Theorem 17]).

The elements of J = H3(C,α) can be represented as matrices

a =




ξ1 c3 α−1
1 α3c̄2

α−1
2 α1c̄3 ξ2 c1
c2 α−1

3 α2c̄1 ξ3


 , ci ∈ C, ξi ∈ F(37.8)

and the generic minimal polynomial is (Jacobson [?, p. 233]):

PJ,a(X) = X3 − TJ(a)X2 + SJ (a)X −NJ(a)1

where

TJ(a) = ξ1 + ξ2 + ξ3,

SJ(a) = ξ1ξ2 + ξ2ξ3 + ξ1ξ3 − α−1
3 α2NC(c1)− α−1

1 α3NC(c2)− α−1
2 α1NC(c3),

NJ(a) = ξ1ξ2ξ3 − α−1
3 α2ξ1NC(c1)− α−1

1 α3ξ2NC(c2)− α−1
2 α1ξ3NC(c3)

+ TC(c3c1c2).

Let

b =




η1 d3 α−1
1 α3d̄2

α−1
2 α1d̄3 η2 d1

d2 α−1
3 α2d̄1 η3


 , di ∈ C, ηi ∈ F.

Let bC be the polar of NC . The bilinear trace form T : (a, b) 7→ TJ(a qb) is given by

T (a, b) =

ξ1η1 + ξ2η2 + ξ3η3 + α−1
3 α2bC(c1, d1) + α−1

1 α3bC(c2, d2) + α−1
2 α1bC(c3, d3)

or

T = 〈1, 1, 1〉 ⊥ bC ⊗ 〈α−1
3 α2, α

−1
1 α3, α

−1
2 α1〉,(37.9)
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Thus T is nonsingular. The quadratic form SJ is the quadratic trace which is a
regular quadratic form. Furthermore one can check that

bSJ (a, b) = TJ(a)TJ (b)− TJ(a q b).(37.10)

We have T (1, 1) = 3; hence there exists an orthogonal decomposition

H3(C,α) = F · 1⊥H3(C,α)0, H3(C,α)0 = {x ∈ H3(C,α) | TJ(x) = 0 }
if charF 6= 3.

We call Jordan algebras isomorphic to algebras H3(C,α), for some Hurwitz
algebra C, reduced Freudenthal algebras and we call twisted forms of H3(C,α)
Freudenthal algebras . If we allow C to be 0 in H3(C,α), the split cubic étale algebra
F × F × F can also be viewed as a special case of a reduced Freudenthal algebra.
Hence cubic étale algebras are Freudenthal algebras of dimension 3. Furthermore, if
charF 6= 3, it is convenient to view F as a Freudenthal algebra with norm NF (x) =
x3. Freudenthal algebras H3(C, s), with C = 0 or C a split Hurwitz algebra and
s = diag(1,−1, 1) are called split. A Freudenthal algebra can have dimension 1, 3,
6, 9, 15, or 27. In dimension 3 Freudenthal algebras are commutative cubic étale F -
algebras and in dimension greater than 3 central simple Jordan algebras of degree 3
over F . The group scheme G of F -automorphisms of the split Freudenthal algebra
of dimension 27 is simple exceptional split of type F4 (see Theorem (??)). Since
the field extension functor j : F4(F ) → F4(Fsep) is a Γ-embedding (see the proof of
Theorem (??)) Freudenthal algebras of dimension 27 (which are also called Albert

algebras) are classified by H1(F,G):

(37.11) Proposition. Let G be a simple split group of type F4. Albert algebras (=
simple exceptional Jordan algebras of dimension 27) are classified by H 1(F,G).

It is convenient to distinguish between Freudenthal algebras with zero divisors
and Freudenthal algebras without zero divisors (“division algebras”).

(37.12) Theorem. Let J be a Freudenthal algebra.

(1) If J has zero divisors, then J ' F × K, K a quadratic étale F -algebra, if

dimF J = 3, and J ' H3(C,α) for some Hurwitz algebra C, i.e., J is reduced if

dimF J > 3. Moreover, a Freudenthal algebra J of degree > 3 is reduced if and

only if J contains a split étale algebra L = F × F × F . More precisely, if ei,
i = 1, 2, 3, are primitive idempotents generating L, then there exist a Hurwitz

algebra C, a diagonal matrix α = diag(α1, α2, α3) ∈ GL3(F ) and an isomorphism

φ : J ∼−→ H3(C,α) such that φ(ei) = Eii.
(2) If J does not have zero divisors, then either J = F+ (if charF 6= 3), J = L+ for

a cubic (separable) field extension L of F , J = D+ for a central division algebra D,

J = H(B, τ) for a central division algebra B of degree 3 over a quadratic field

extension K of F and τ a unitary involution or J is an exceptional Jordan division

algebra of dimension 27 over F .

Reference: The first part of (??) and the last claim of (??) follow from the clas-
sification theorem (??) and the fact, due to Schafer [?], that Albert algebras with
zero divisors are of the form H3(C,α). The last claim in (??) is a special case of
the coordinatization theorem of Jacobson [?, Theorem 5.4.2].

In view of a deep result of Springer [?, Theorem 1, p. 421], the bilinear trace
form is an important invariant for reduced Freudenthal algebras. The result was
generalized by Serre [?, Théorème 10] and Rost as follows:
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(37.13) Theorem. Let F be a field of characteristic not 2. Let J , J ′ be reduced

Freudenthal algebras. Let T , resp. T ′, be the corresponding bilinear trace forms.

The following conditions are equivalent :

(1) J and J ′ are isomorphic.

(2) T and T ′ are isometric.

Furthermore, if (??) (or (??)) holds, J ' H3(C,α) and J ′ ' H3(C
′, α′), then C

and C ′ are isomorphic.

Proof : We may assume that J = H3(C,α) and J ′ = H3(C
′, α′) with C, C ′ 6= 0.

(??) implies (??) by uniqueness of the generic minimal polynomial. Assume now
that T and T ′ are isometric. The bilinear trace of H3(C,α) is of the form

T = 〈1, 1, 1〉 ⊥ bC ⊗ 〈α−1
3 α2, α

−1
1 α3, α

−1
2 α1〉

and a similar formula holds for T ′. Thus

bC ⊗ 〈α−1
3 α2, α

−1
1 α3, α

−1
2 α1〉 ' bC′ ⊗ 〈α′3

−1
α′2, α

′
1
−1
α′3, α

′
2
−1
α′1〉.(37.14)

We show in the following Lemma (??) that (??) implies NC ' NC′ , hence C '
C ′ holds by Proposition (??), and we may identify C and C ′. Assume next
that C is associative. By Jacobson [?], (??) implies that the C-hermitian forms

〈α−1
3 α2, α

−1
1 α3, α

−1
2 α1〉C and 〈α′3

−1
α′2, α

′
1
−1
α′3, α

′
2
−1
α′1〉C are isometric. They are

similar to 〈α1, α2, α3〉C , resp. 〈α′1, α′2, α′3〉C . Thus α, α′ define isomorphic unitary
involutions on M3(C) and the Jordan algebras H3(C,α) and H3(C,α

′) are isomor-
phic. If C is a Cayley algebra, the claim is much deeper and we need Springer’s
result, which says that H3(C,α) and H3(C,α

′) are isomorphic if their trace forms
are isometric (Springer [?, Theorem 1, p. 421]), to finish the proof.

For any Pfister form ϕ, let ϕ′ = 1⊥.

(37.15) Lemma. Let φn, ψn be n-Pfister bilinear forms and χp, ϕp p-Pfister bi-

linear forms for p ≥ 2. If φn⊗χ′p ' ψn⊗ϕ′p, then φn ' ψn and φn⊗χp ' ψn⊗ϕp.
Proof : We make computations in the Witt ring WF and use the same notation
for a quadratic form and its class in WF . Let q = φn ⊗ χ′p = ψn ⊗ ϕ′p. Adding

φn, resp. ψn on both sides , we get that q + φn and q + ψn lie in In+pF , so that
ψn − φn ∈ In+pF . Since ψn − φn can be represented by a form of rank 2n+1 − 2,
it follows from the Arason-Pfister Hauptsatz (Lam [?, Theorem 3.1, p. 289]), that
ψn − φn = 0.

(37.16) Corollary. Let T = 〈1, 1, 1〉 ⊥ bNC ⊗ 〈−b,−c, bc〉 be the trace form of

J = H3(C,α) and let q be the bilinear Pfister form bNC ⊗ 〈〈b, c〉〉. The isometry

class of T determines the isometry classes of NC and q. Conversely, the classes of

NC and q determine the class of T .

Proof : The claim is a special case of Lemma (??).

(37.17) Remark. Theorem (??) holds more generally for separable Jordan alge-
bras of degree 3: In view of the structure theorem (??) the only cases left are
algebras of the type F × J(V, q), where the claim follows from Proposition (??),
and étale algebras of dimension 3 with zero divisors. Here the claim follows from
the fact that quadratic étale algebras are isomorphic if and only if their norms are
isomorphic (see Proposition (??)).

An immediate consequence of Theorem (??) is:
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(37.18) Corollary. H3(C, α) is split for any α if C is split.

(37.19) Remark. Conditions on α, α′ so that H3(C, α) and H3(C, α
′) are isomor-

phic for a Cayley division algebra C are given in Albert-Jacobson [?, Theorem 5].

We conclude this section with a useful “Skolem-Noether” theorem for Albert
algebras:

(37.20) Proposition. Let I, I ′ be reduced simple Freudenthal subalgebras of de-

gree 3 of a reduced Albert algebra J . Any isomorphism φ : I ∼−→ I ′ can be extended

to an automorphism of J .

Reference: See Jacobson [?, Theorem 3, p. 370].

However, for example, split cubic étale subalgebras of a reduced Albert al-
gebra J are not necessarily conjugate by an automorphism of J . Necessary and
sufficient conditions are given in Albert-Jacobson [?, Theorem 9]. It would be in-
teresting to have a corresponding result for a pair of arbitrary isomorphic cubic
étale subalgebras.

Another Skolem-Noether type of theorem for Albert algebras is given in (??).

§38. Cubic Jordan Algebras

A separable Jordan algebra of degree 3 is either a Freudenthal algebra or is of
the form F+ × J(V, q) where J(V, q) is the Jordan algebra of a quadratic space of
dimension ≥ 2 (see the structure theorem (??)); if J is a Freudenthal algebra, then
J is of the form F+ (assuming charF 6= 3), L+ for L cubic étale, classical of type
A2, B1, C3 or exceptional of dimension 27. Let

PJ,a(X) = X3 − TJ(a)X2 + SJ (a)X −NJ(a)1

be the generic minimal polynomial of a separable Jordan algebra J of degree 3.
The element

x# = x2 − TJ(x)x + SJ (x)1 ∈ J
obviously satisfies x q x# = NJ(x)1. It is the (Freudenthal) adjoint of x and the
linearization of the quadratic map x 7→ x#

x× y = (x + y)# − x# − y#

= 2x q y − TJ(x)y − TJ(y)x+ bSJ (x, y)1

is the Freudenthal “×”-product.34 Let T (x, y) = TJ(x q y) be the bilinear trace
form. The datum (J,NJ ,#, T, 1) has the following properties (see McCrimmon [?,
Section 1]):

(a) the formNJ : J → F is cubic, the adjoint #: J → J , x 7→ x#, is a quadratic
map such that x## = N(x)x and 1 ∈ J is a base point such that 1# = 1;

(b) the nonsingular bilinear trace form T is such that

NJ(x+ λy) = λ3NJ(y) + λ2T (x#, y) + λT (x, y#) +NJ(x)

and T (x, 1)1 = 1× x+ x for x, y ∈ J and λ ∈ F .

34The ×-product is sometimes defined as 1
2

�
(x + y)# − x# − y#

�
.
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These properties are characteristic-free. Following McCrimmon [?] and Petersson-
Racine [?] (see also Jacobson [?, 2.4]), we define a cubic norm structure over any
field F (even if charF = 2) as a datum (J,N,#, T, 1) with properties (??) and (??).
An isomorphism

φ : (J,N,#, T, 1) ∼−→ (J ′, N ′,#, T ′, 1′)

is an F -isomorphism J ∼−→ J ′ of vector spaces which is an isometry (J,N, T ) ∼−→
(J ′, N ′, T ′), such that φ(1) = 1′ and φ(x#) = φ(x)# for all x ∈ J . We write Cubjord

for the groupoid of cubic norm structures with isomorphisms as morphisms.

(38.1) Examples. Forgetting the Jordan multiplication and just considering ge-
neric minimal polynomials, we get cubic norm structures on J = H3(C,α) and on
twisted forms of these. If J = L is cubic étale over F , NL = NL/F , TL = TL/F ,
and T is the trace form. If J is of classical type A, B , or D, then NJ is the
reduced norm and TJ is the reduced trace. If J is of classical type C , then NJ
is the reduced pfaffian and TJ is the reduced pfaffian trace. We also have cu-
bic structures associated to quadratic forms, as in the case of the Jordan algebra
J = F+ × J(V, q). More generally, let J ′ = (V ′, q′, 1′) be a pointed quadratic

space, i.e., 1′ ∈ V ′ is such that q′(1′) = 1, and let b′ be the polar of q′. On
J = F ⊕ J ′ we define NJ(x, v) = xq′(v), 1 = (1, 1′), TJ(x, v) = x + b′(1′, v),
T

(
(x, v), (y, w)

)
= xy+b′(v, w) where w = b′(1′, w)1′−w and (x, v)# =

(
q′(v), xv

)
.

Conversely, any cubic norm structure is of one of the types described above, see
for example Petersson-Racine [?, Theorem 1.1]. We refer to cubic norm structures
associated with Freudenthal algebras as Freudenthal algebras (even if they do not
necessarily admit a multiplication!). Cubic norm structures of the form H3(C,α)
for arbitrary C and α are called reduced Freudenthal algebras.

(38.2) Lemma. Let (J,N,#, T, 1) be a cubic norm structure and set

x2 = T (x, 1)x− x# × 1 and x3 = T (x, x)x− x# × x.

(1) Any element x ∈ J satisfies the cubic equation

P (x) = x3 − TJ(x)x2 + SJ(x)x −NJ(x)1 = 0

where TJ(x) = T (x, 1) and SJ(x) = TJ(x#). Furthermore we have

x# = x2 − TJ(x)x+ SJ (x)1.

In particular any element x ∈ J generates a commutative associative cubic unital

algebra F [x] ⊂ J .

(2) There is a Zariski-open, non-empty subset U of J such that F [x] is étale for

x ∈ U .

(3) The identities

(a) SJ(1) = TJ(1) = 3, NJ(1) = 1, 1# = 1,
(b) SJ(x) = TJ(x#), bSJ (x, y) = TJ(x× y),
(c) bSJ (x, 1) = 2TJ(x),
(d) 2SJ(x) = TJ(x)2 − TJ(x2),
(e) TJ(x× y) = TJ(x)TJ (y)− T (x, y),
(f) x## = NJ(x)x,
(g) T (x× y, z) = T (x, y × z)

hold in J .



§38. CUBIC JORDAN ALGEBRAS 519

Proof : (??) can be directly checked. For (??) we observe that F [x] is étale if and
only if the generic minimal polynomial PJ,x of x has pairwise distinct roots (in an
algebraic closure) i.e., the discriminant of PJ,x (as a function of x) is not zero. This
defines the open set U . It can be explicitely shown that the set U is non-empty
if J is reduced, i.e., is not a division algebra. Thus we may assume that J is a
division algebra. Then, by the following lemma (??), F is infinite. Again by (??)
J is reduced over an algebraic closure Falg of F . The set U being non-empty over
Falg and F being infinite, it follows that U is non-empty. We refer to [?] or [?]
for (??). A proof for cubic alternative algebras is in (??).

An element x ∈ J is invertible if it is invertible in the algebra F [x] ⊂ J .
We say that a cubic norm structure is a division cubic norm structure if every
nonzero element has an inverse. Such structures are (non-reduced) Freudenthal
algebras and can only exist in dimensions 1, 3, 9, and 27. In dimension 3 we get
separable field extensions and in dimension 9 central associative division algebras of
degree 3 or symmetric elements in central associative division algebras of degree 3
over quadratic separable field extensions, with unitary involutions. Corresponding
examples in dimension 27 will be given later using Tits constructions.

(38.3) Lemma. An element x ∈ J is invertible if and only if NJ(x) 6= 0 in F . In

that case we have x−1 = NJ(x)−1x#. Thus a cubic norm structure J is a division

cubic norm structure if and only if NJ(x) 6= 0 for x 6= 0 in J , i.e., NJ is anisotropic.

In particular a cubic norm structure J of dimension > 3 is reduced (i.e., is not a

division algebra) if F is finite or algebraically closed.

Proof : If NJ(x) = 0 for x 6= 0, we have by Lemma (??) x## = NJ(x)x = 0 hence
either u = x# or u = x satisfies u# = 0 and u 6= 0. We then have SJ(u) =
TJ(u

#) = 0 so that u satisfies

0 = u# = u2 − TJ(u)u = 0.

If TJ(u) = 0 we have u2 = 0; if TJ(u) 6= 0 we may assume that TJ(u) = 1 and
u2 = u, however u 6= 1. Thus in both cases u is not invertible (see also Exercise ??
of this chapter). The claim for F finite or algebraically closed follows from the fact
that such a field is Ci, i ≤ 1 (see for example the book of Greenberg [?, Chap. 2]
or Scharlau [?, § 2.15]). Thus NJ , which is a form of degree 3 in 9 or 27 variables
cannot be anisotropic over a finite field or an algebraically closed field.

(38.4) Proposition. If charF 6= 2, the categories Cubjord and Sepjord(3) are

isomorphic.

Proof : Any separable cubic Jordan algebra determines a cubic norm structure and
an isomorphism of separable cubic Jordan algebras is an isomorphism of the corre-
sponding structures. Conversely,

x q y = 1
2 [(x+ y)2 − x2 − y2]

defines on the underlying vector space J of a cubic norm structure J a Jordan
multiplication and an isomorphism of cubic norm structures is an isomorphism for
this multiplication.
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38.A. The Springer Decomposition. Let L = F [x] be a cubic étale subal-
gebra of a Freudenthal algebra J (in the new sense). Since L is étale, the bilinear
trace form TJ |L is nonsingular and there is an orthogonal decomposition

J = L⊥ V with V = L⊥ ⊂ J0 = {x ∈ J | TJ(x) = 0 }.
We have TJ(`) = T (`, 1) = TL/F (`) and NJ(`) = NL/F (`) for ` ∈ L. It follows from
T (`1× `2, v) = T (`1, `2 × v) = 0 for v ∈ V that `× v ∈ V for ` ∈ L and v ∈ V . We
define

` ◦ v = −`× v,
so that ` ◦ v ∈ V for ` ∈ L and v ∈ V . Further, let Q : V → L and β : V → V be
the quadratic maps defined by setting

v# =
(
−Q(v), β(v)

)
∈ L⊕ V,

so that

(`, v)# =
(
`# −Q(v), β(v) − ` ◦ v

)
.

We have

SJ (v) = TJ(v#) = −TL/F
(
Q(v)

)

since T
(
β(v)

)
= 0. Furthermore, putting β(v, w) = β(v+w)−β(v)−β(w), we get

v × w =
(
−bQ(v, w), β(v, w)

)
.

(38.5) Example. Let J = H3(C, 1) be a reduced Freudenthal algebra and let
L = F × F × F ⊂ J be the set of diagonal elements. Then V is the space of
matrices

v =




0 c̄3 c2
c3 0 c̄1
c̄2 c1 0


 , ci ∈ C

and the “◦”-action of L on V is given by

(λ1, λ2, λ3) ◦




0 c̄3 c2
c3 0 c̄1
c̄2 c1 0


 =




0 λ3c̄3 λ2c2
λ3c3 0 λ1c̄1
λ2c̄2 λ1c1 0




Identifying C ⊕ C ⊕ C with V through the map

v = (c1, c2, c3) 7→




0 c̄3 c2
c3 0 c̄1
c̄2 c1 0




the action of L on V is diagonal, hence V is an L-module. We have

Q(v) = (c1c1, c2c2, c3c3)

for v = (c1, c2, c3), so that (V,Q) is a quadratic space over L. Furthermore we get

β(v) = (c2c3, c3c1, c1c2),

hence β(` ◦ v) = `# ◦ β(v), Q
(
β(v)

)
= Q(v)#, and bQ

(
v, β(v)

)
= NJ(v) ∈ F . Thus

(V, L,Q, β) is a twisted composition.

The properties of the “◦”-action described in Example (??) hold in general:
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(38.6) Theorem. (1) Let (J,N,#, T, 1) be a cubic Freudenthal algebra, let L be a

cubic étale subalgebra of dimension 3 and let V = L⊥ for the bilinear trace form T .

The operation L×V → V given by (`, v) 7→ `◦v defines the structure of an L-module

on V such that (L,Q) is a quadratic space and (V, L,Q, β) is a twisted composition.

(2) For any twisted composition (V, L,Q, β), the cubic structure (J,N,#, T, 1) on

the vector space J(L, V ) = L⊕ V given by

N(`, v) = NL/F (`) + bQ
(
v, β(v)

)
− TL

(
`Q(v)

)
,

(`, v)# =
(
`# −Q(v), β(v) − ` ◦ v

)
∈ L⊕ V

T
(
(`1, v1), (`2, v2)

)
= TL/F (`1`2) + TL/F

(
bQ(v1, v2)

)

is a Freudenthal algebra. Furthermore we have

SJ(`, v) = TJ
(
(`, v)#

)
= TJ(`

#)− TJ
(
Q(v)

)
.

Proof : (??) It suffices to check that V is an L-module over a separable closure,
and there we may assume by (??) (which also holds for Freudenthal algebras in
the new sense) that L = F × F × F is diagonal in some H3(C,α). The claim
then follows from Example (??). Claim (??) can also be checked rationally, see
Petersson-Racine [?, Proposition 2.1] (or Springer [?], if charF 6= 2).

(??) If L is split and V = C ⊕ C ⊕ C, we may identify J(V, L) with H3(C, 1)
as in Example (??). The general case then follows by descent.

We say that the Freudenthal algebra J(V, L) is the Springer construction asso-
ciated with the twisted composition (V, L,Q, β). This construction was introduced
by Springer for cyclic compositions of dimension 8, in relation to exceptional Jordan
algebras. Conversely, given L ⊂ J étale of dimension 3, we get a Springer decom-

position J = L ⊕ V . Springer decompositions for arbitrary cubic structures were
first considered by Petersson-Racine [?, Section 2]. Any Freudenthal algebra is (in
many ways) a Springer construction.

Let Γs = (V, L,Q, β) be a split twisted composition of dimension 8. Its associ-
ated algebraic group of automorphisms is Spin8 o S3 (see (??)). The corresponding
Freudenthal algebra Js = J(V, L) is split; we recall that by Theorem (??) its auto-
morphism group defines a simple split algebraic group G of type F4.

(38.7) Corollary. The map Γs 7→ Js induces an injective group homomorphism

Spin8 o S3 → G. The corresponding map in cohomology H1(F, Spin8 oS3) →
H1(F,G), which associates the class of J(V, L) to a twisted composition (V, L,Q, β),
is surjective.

Proof : Let (V, L,Q, β) be a twisted split composition of dimension 8. Clearly any
automorphism of (V, L,Q, β) extends to an automorphism of J(L, V ) and conversely
any automorphism of J(L, V ) which maps L to L restricts to an automorphism of
(V, L,Q, β). This shows the injectivity of Spin8 o S3 → G. The second claim follows
from the facts that H1(F, Spin8 oS3) classifies twisted compositions of dimension 8
(Proposition (??)), that H1(F,G) classifies Albert algebras (Proposition (??)) and
that any Albert algebra admits a Springer decomposition.

(38.8) Theorem. Let J(V, L) be the Springer construction associated with a twis-

ted composition (V, L,Q, β). Then J(V, L) has zero divisors if and only if the

twisted composition (V, L,Q, β) is similar to a Hurwitz composition Γ(C,L) for

some Hurwitz algebra C. Furthermore, we have J(V, L) ' H3(C,α) for some α
(and the same Hurwitz algebra C).
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Proof : By Theorem (??) the composition (V, L,Q, β) is similar to a Hurwitz compo-
sition Γ(C,L) if and only if there exists v ∈ V such that β(v) = λv and N(v) = λ#

for some λ 6= 0 ∈ L; we then have (v, λ)# = 0 in J(V, L). By Exercise ?? of this
chapter, this is equivalent with the existence of zero divisors in J(V, L) (see also the
proof of (??)). Hence Theorem (??) implies that J(V, L) is a reduced Freudenthal
algebraH3(C

′, α) for some Hurwitz algebraC ′. It remains to be shown that C ' C ′.
We consider the case where F has characteristic different from 2 (and leave the other
case as an exercise). For any bilinear form (x, y) 7→ b(x, y) over L, let (TL/F )∗(b)
be its transfer to F , i.e.,

(TL/F )∗(b)(x, y) = TL/F
(
b(x, y)

)
.

The bilinear trace form of J(V, L) is the bilinear form:

T = (TL/F )∗(〈1〉L)⊥ (TL/F )∗(bQ)

and bQ is extended from the bilinear form bQ0 = 〈2〉L ⊥ δbN0
C

over F (see Lemma

(??)). Let bNC = bC and bN0
C

= b0C . By Frobenius reciprocity (see Scharlau [?,

Theorem 5.6, p. 48]) we get

T ' (TL/F )∗(〈1〉L)⊥ (TL/F )∗(〈1〉L)⊗ (〈2〉L ⊥ δb0C).

Since (TL/F )∗(〈1〉L) = 〈1, 2, 2δ〉 (see (??), (??)), it follows that

T ' 〈1, 2, 2δ〉 ⊥ δb0C ⊗ 〈1, 2, 2δ〉 ⊥ 〈2, 1, δ〉
' 〈1, 2, 2〉 ⊥ bC ⊗ 〈2, δ, 2δ〉
' 〈1, 1, 1〉 ⊥ bC ⊗ 〈2, δ, 2δ〉.

Thus

bC ⊗ 〈2, δ, 2δ〉 ' bC′ ⊗ 〈α1, α2, α3〉,
since an isomorphism J(V, L) ' H3(C

′, α) implies that the corresponding trace
forms are isomorphic. The last claim then follows from Lemma (??) and Theo-
rem (??).

§39. The Tits Construction

Let K be a quadratic étale algebra with conjugation ι and let B be an associa-
tive separable algebra of degree 3 over K with a unitary involution τ (according to
an earlier convention, we also view K as a cubic separable K-algebra if charF 6= 3).
The generic norm NB of B defines a cubic structure on B (as a K-algebra) and
restricts to a cubic structure on H(B, τ). Let (u, ν) ∈ H(B, τ)×K× be such that

NB(u) = ντ(ν).

One can take for example (u, ν) = (1, 1). On the set

J(B, τ, u, ν) = H(B, τ)⊕B,
let 1 = (1, 0) and

N(a, b) = NB(a) + TK/F
(
νNB(b)

)
− TB

(
abuτ(b)

)

(a, b)# =
(
a# − buτ(b), τ(ν)τ(b)#u−1 − ab

)

for (a, b) ∈ H(B, τ) ⊕B. Further let

T
(
(a1, b1), (a2, b2)

)
= TB(a1a2) + TK/F

(
TB

(
b1uτ(b2)

))
.



§39. THE TITS CONSTRUCTION 523

(39.1) Theorem. The space J(B, τ, u, ν) admits a Freudenthal cubic structure

with 1 as unit, N as norm, # as Freudenthal adjoint and T as bilinear trace form.

Furthermore we have SJ
(
(a, b)

)
= SB(a)− TB

(
buτ(b)

)
for the quadratic trace SJ .

Reference: A characteristic-free proof is in Petersson-Racine [?, Theorem 3.4], see
also McCrimmon [?, Theorem 7]. The claim is also a consequence of Proposi-
tion (??) (see Corollary (??)) if charF 6= 3. The last claim follows from SJ(x) =
TJ(x

#) and TJ(x) = T (x, 1).

If charF 6= 2, the Jordan product of J(B, τ, u, ν) is given by (see p. ??):

a1 b1

a2
1
2 (a1a2 + a2a1) (a2b1)∗

b2 (a1b2)∗
(
b1ντ(b2) + b2ντ(b1)

)
+ 1

2

(
τ(u)

(
τ(b1)× τ(b2)

)
ν−1

)
∗

where x = 1
2

(
TrdB(x) − x

)
and x∗ denotes x as an element of the second com-

ponent B. The cubic structure J(B, τ, u, ν) described in Theorem (??) is a Tits

construction or a Tits process and the pair (u, ν) is called an admissible pair for
(B, τ). The following lemma describe some useful allowed changes for admissible
pairs.

(39.2) Lemma. (1) Let (u, v) be an admissible pair for (B, τ). For any w ∈
B×,

(
wuτ(w), νNB(w)

)
is an admissible pair for (B, τ) and (a, b) 7→ (a, bw) is an

isomorphism

J(B, τ, u, ν) ∼−→ J
(
B, τ, wuτ(w), νNB(w)

)
.

(2) For any Tits construction J(B, τ, u, ν), there is an isomorphic Tits construction

J(B, τ, u′, ν′) with NB(u′) = 1 = ν′τ(ν′).

Proof : The first claim reduces to a tedious computation, which we leave as an
exercise (see also Theorem (??)). For the second, we take w = ν−1u in (??).

An exceptional Jordan algebra of dimension 27 of the form J(B, τ, u, ν) where
B is a central simple algebra over a quadratic field extension K of F , is classically
called a second Tits construction. The case where K is not a field also has to be
considered. Let J(B, τ, u, ν) be a Tits process with K = F ×F , B = A×Aop where
A is either central simple or cubic étale over F and τ is the exchange involution.
By Lemma (??) we may assume that the admissible pair (u, ν) is of the form(
1, (λ, λ−1)

)
, λ ∈ F×. Projecting B onto the first factor A induces an isomorphism

of vector spaces

J(B, τ, u, ν) ' A⊕A⊕A,
the norm is given by NJ(a, b, c) = NA(a) + λNA(b) + λ−1NA(c)− TA(abc) and the
Freudenthal adjoint on A⊕A⊕A reduces to

(a, b, c)# = (a# − bc, λ−1c# − ab, λb# − ca)
where a 7→ a# is the Freudenthal adjoint of A+ (which is a cubic algebra!); thus
we have SJ (a, b, c) = SA(a)− TA(bc) and the bilinear trace form is given by

TJ
(
(a1, b1, c1), (a2, b2, c2)

)
= TA(a1b1) + TA(a2b3) + TA(a3b2).
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If charF 6= 2, the Jordan product is

(a1, b1, c1) q (a2, b2, c2) =
(
a1

q a2 + b1c2 + b2c1, ā1b2 + a2b1 + (2λ)−1(c1 × c2), c2ā1 + c1a2 + 1
2λ(b1 × b2)

)
,

where

ā = 1
2a× 1 = 1

2TA(a) · 1− 1
2a.

Conversely we can associate to a pair (A, λ), A central simple of degree 3 or cubic
étale over F and λ ∈ F×, a Freudenthal algebra J(A, λ) = A⊕A⊕A, with norm,
Freudenthal product and trace as given above. The algebra J(A, λ) is (classically)
a first Tits construction if A is central simple. Any first Tits construction J(A, λ)
extends to a Tits process J

(
A × Aop, σ, 1, (λ, λ−1)

)
over F × F . According to the

classical definitions, we shall say that J(B, τ, u, ν) is a second Tits process if K is
a field and that J(A, λ) is a first Tits process.

(39.3) Remark. (See [?, p. 308].) Let (A, λ) = A⊕A⊕A be a first Tits process.
To distinguish the three copies of A in J(A, λ), we write

J(A, λ) = A+ ⊕A1 ⊕A2

and denote a ∈ A as a, a1, resp. a2 if we consider it as an element of A+, A1, or A2.
The first copy admits the structure of an associative algebra, A1 (resp. A2) can be
characterized by the fact that it is a subspace of (A+)⊥ (for the bilinear trace form)
such that a q a1 = −a × a1 (resp. a2

q a = −a × a2) defines the structure of a left
A-module on A1 (resp. right A-module on A2).

(39.4) Proposition. For any second Tits process J(B, τ, u, ν) over F , B a K-

algebra, J(B, τ, u, ν) ⊗ K is isomorphic to the first Tits process J(B, ν) over K.

Conversely, any second Tits process J(B, τ, u, ν) over F is the Galois descent of

the first Tits process (B, ν) over K under the ι-semilinear automorphism

(a, b, c) 7→
(
τ(a), τ(c)u−1, uτ(b)

)
.

Proof : An isomorphism

J(B, τ, u, ν)⊗K ∼−→ J(B, ν)

is induced by (a, b) 7→
(
a, b, uτ(b)

)
. The last claim follows by straightforward

computations.

(39.5) Examples. Assume that charF 6= 3.

(1) Any cubic étale F -algebra L can be viewed as a Tits construction over F ; if

L = F ( 3
√
λ), then L is isomorphic to the first Tits construction (F, λ). In general

there exist a quadratic étale F -algebraK and some element ν ∈ K with NK(ν) = 1
such that L ⊗K ' K( 3

√
ν) and L is the second Tits construction (K, ι, 1, ν) (see

Proposition (??)).

(2) Let A be central simple of degree 3 over F . We write A as a crossed product
A = L⊕Lz⊕Lz2 with L cyclic and z3 = λ ∈ F×, z` = ρ(`)z and ρ a generator of
Gal(L/F ); the map A→ L⊕L⊕L given by a+ bz + cz2 7→

(
a, ρ(b), λρ2(c)

)
is an

isomorphism of A+ with the first Tits construction (L, λ).
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(3) Let (B, τ) be central simple of degree 3 with a distinguished unitary involution
τ over K. In view of Proposition (??) and Corollary (??), there exists a cubic étale
F -algebra L with discriminant ∆(L) ' K such that

B = L⊗K ⊕ (L⊗K)z ⊕ (L⊗K)z2 with z3 = λ ∈ F×, τ(z) = z.

The K-algebra L⊗K is cyclic over K; let ρ ∈ Gal(L⊗K/K) be such that zξz−1 =
ρ(ξ) for ξ ∈ L⊗K. We have

L1 = { ξ ∈ L⊗K | ρ ◦ (1⊗ ι)(ξ) = ξ } ' L,
L2 = { ξ ∈ L⊗K | ρ2 ◦ (1⊗ ι)(ξ) = ξ } ' L

and (1⊗ ι)(L1) = L2, so that

H(B, τ) = L⊕ L1 ⊕ L2 ' L⊕ L⊕ L
and a check shows this is an isomorphism of H(B, τ) with the first Tits construction
(L, λ). Since the exchange involution on A × Aop is distinguished, we see that
H(B, τ) is a first Tits construction if and only if τ is distinguished, if and only if
SB |H(B,τ)0 has Witt index at least 3 (see Proposition (??) for the last equivalence).

(4) Let (B, τ) be central simple with a unitary involution over K and assume that
H(B, τ) contains a cyclic étale algebra L over F . By Albert [?, Theorem 1] we may
write B as a crossed product

B = L⊗K ⊕ (L⊗K)z ⊕ (L⊗K)z2(39.6)

with z3 = ν ∈ K× such that NK(ν) = 1; furthermore the involution τ is determined
by τ(z) = uz−1 with u ∈ L such that NB(u) = 1. In this case H(B, τ) is isomorphic
to the second Tits process (L⊗K, 1⊗ ιK , u, ν).
(5) A Tits construction J = J(L ⊗ K, 1 ⊗ ιK , u, ν) with L cubic étale is of di-
mension 9, hence by Theorem (??) it is of the form H(B, τ) for a central simple
algebra B of degree 3 over an étale quadratic F -algebraK1 and a unitary involution
τ . We may describe (B, τ) more explicitly: if L is cyclic, K1 = K, and B is as
in (??). If L is not cyclic, we replace L by L2 = L ⊗ ∆(L), where ∆(L) is the
discriminant of L, and obtain (B2, τ2) over ∆(L) from (??). Let φ be the descent

on B2 given by φ = 1⊗ ι∆(L)⊗ ιK on L⊗∆(L)⊗K and φ(z) = z−1. Then B = Bφ2
and K1 = ∆(L) ∗ K. In particular we have (B, τ) ' (A × Aop, exchange) if and
only if ∆(L) ' K.

(6) Let J be a Freudenthal algebra of dimension 9 over F and let L be a cubic étale
subalgebra of J . We may describe J as a Tits construction J(L⊗K, 1⊗ ιK , u, ν)
as follows. Let J = L⊕ V be the Springer decomposition induced by L. Then V is
a twisted composition (V, L,Q, β) and V is of dimension 2 over L; by Proposition
(??) V admits the structure of a hermitian L ⊗K-space for some quadratic étale
F -algebra K. Let V = (L⊗K)v; let u = Q(v) ∈ L× and let β(v) = xv, x ∈ L⊗K.
It follows from bQ

(
v, β(v)

)
∈ F that (x+x)u ∈ F , where x 7→ x is the extension of

the conjugation ιK of K to L ⊗K. Similarly Q
(
β(v)

)
= u# implies that xxu2 =

NL/F (u) ∈ F×. Both imply that xu (or xu) lies in K and NK/F (xu) = nL/F (u).
Let J ′ be the Tits construction J(L⊗K, 1⊗ ιK , u, xu). The map J ′ → J given by
(a, b) 7→ (a, bv) is an isomorphism of Jordan algebras.

(7) A first Tits construction J(A, 1) with A cubic étale or central simple of de-
gree 3 is always a split Freudenthal algebra: this is clear for cubic étale algebras
by Example (??). So let A be central simple. Taking a ∈ A such that a3 ∈ F×,
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we see that a# = a2, so that (a, a, a)# = 0 and, by Exercise ?? of this chapter
J(A, 1) is reduced. Theorem (??) then implies that J(A, 1) ' H3(C, α). Let L1

be a cubic extension which splits A. By Theorem (??) C ⊗ L1 is split, hence by
Springer’s theorem for quadratic forms, C is split. The claim then follows from
Corollary (??).

39.A. Symmetric compositions and Tits constructions. In this section,
we assume that charF 6= 3. The aim is to show that Tits constructions with admis-
sible pairs (1, ν) are also Springer constructions. We start with a first Tits construc-
tion (A, λ); let L = F [X ]/(X3−λ) be the cubic Kummer extension associated with
λ ∈ F×, set, as usual, A0 = {x ∈ A | TA(x) = 0 } and let Γ(A, λ) = (A0⊗L,L,N, β)
be the twisted composition of type 1A2 induced by A and λ (see (??)). Let

J
(
Γ(A, λ)

)
= L⊕ Γ(A, λ) = L⊕A0 ⊗ L = L⊗A

be the Freudenthal algebra obtained from Γ(A, λ) by the Springer construction. If
v is the class of X modulo (X3 − λ) in L, (1, v, v−1) is a basis of L as vector space
over F and we write elements of L⊗A as linear combinations a+ v ⊗ b+ v−1 ⊗ c,
with a, b, c ∈ A.

(39.7) Proposition. The isomorphism φ : J
(
Γ(A, λ)

) ∼−→ J(A, λ) = A ⊕ A ⊕ A
given by

a+ v ⊗ b+ v−1 ⊗ c 7→ (a, b, c) for a, b, c ∈ A
is an isomorphism of Freudenthal algebras.

Proof : We use the map φ to identify L as an étale subalgebra of J(A, λ) and get a
corresponding Springer decomposition

J(A, λ) = L⊕ L⊗A0.

It follows from Theorem (??) and from the description of a twisted composition
Γ(A, λ) of type 1A2 given in § ?? that φ restricts to an isomorphism of twisted
compositions Γ(A, λ) ∼−→ L⊗A0, hence the claim.

(39.8) Corollary. Tits constructions are Freudenthal algebras.

Proof : We assume charF 6= 3. By descent we are reduced to first Tits construc-
tions, hence the claim follows from Proposition (??).

(39.9) Corollary. Let G be a split simple group scheme of type F4. Jordan alge-

bras which are first Tits constructions are classified by the image of the pointed

set H1(F,PGL3×µ3) in H1(F,G) under the map PGL3×µ3 → G induced by

(A, λ) 7→ J(A, λ).

Not all exceptional Jordan algebras are first Tits construction (see Petersson-
Racine [?] or Proposition (??)). Thus the cohomology map in (??) is in general
not surjective (see also Proposition (??)).

We now show that the Springer construction associated with a twisted composi-
tion of type 2A2 is always a second Tits construction. Let (B, τ) be a central simple
algebra with a unitary involution over a quadratic étale F -algebra K. Let ν ∈ K
be such that NK(ν) = 1; let L be as in Proposition (??), (??), and let Γ(B, τ, ν)
be the corresponding twisted composition, as given in Proposition (??), (??).

(39.10) Proposition. There exists an isomorphism L⊕Γ(B, τ, ν) ∼−→ J(B, τ, 1, ν).
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Proof : The twisted composition Γ(B, τ, ν) over F is defined by descent from the
twisted composition Γ(B, ν) over K (see Proposition (??)); similarly J(B, τ, 1, ν) is
defined by descent from J(B, ν) (see Proposition (??)). The descents are compatible
with the isomorphism given in Proposition (??), hence the claim.

39.B. Automorphisms of Tits constructions. If J is a vector space over F
with some algebraic structure and A is a substructure of J , we write AutF (J,A)
for the group of F -automorphisms of J which maps A to A and by AutF (J/A) the
group of automorphisms of J which restrict to the identity on A. The corresponding
group schemes are denoted Aut(J,A) and Aut(J/A).

(39.11) Proposition (Ferrar-Petersson, [?]). Let A be central simple of degree 3
and let J0 = J(A, λ0) be a first Tits construction. The sequence of group schemes

1→ SL1(A)
γ−→ Aut(J0, A

+)
ρ−→ Aut(A+)→ 1

where γ(u)(a, a1, a2) = (a, a1u
−1, ua2) for u ∈ SL1(A)(R), R ∈ AlgF , and ρ is the

restriction map, is exact.

Proof : Let R ∈ AlgF ; exactness on the left (over R) and ρR ◦ γR = 1 is obvious.
Let J0 = A+⊕A1⊕A2 and let η be an automorphism of J0R which restricts to the
identity on A+

R. It follows from Remark (??) that η stabilizes A1R and A2R, so there

exist linear bijections ηi : AiR → AiR such that η(a, a1, a2) =
(
a, η1(a1), η2(a2)

)
.

Expanding η
(
a× (0, a1, a2)

)
in two different ways shows that

η1(aa1) = aη1(a1) and η2(a2a) = η2(a2)a.

Hence there are u, v ∈ A×R such that η1(a1) = a1v and η2(a2) = ua2. Comparing the

first components of η
(
(0, 1, 1)#

)
=

(
η(0, 1, 1)

)
# yields v = u−1. Since η preserves

the norm we have u ∈ SL1(A)(R). To conclude, since Aut(A+) is smooth (see
the comments after the exact sequence (??)), it suffices to check by (??) that ρalg

is surjective. In fact ρ is already surjective: let φ ∈ Aut(A+), hence, by the
exact sequence (??), φ is either an automorphism or an anti-automorphism of A.

In the first case, φ̃(a, a1, a2) =
(
φ(a), φ(a1), φ(a2)

)
extends φ to an element of

Aut(J0, A
+). In the second case, A is split, so some u ∈ A× has NA(u) ∈ F×2 and

φ̃(a, a1, a2) =
(
φ(a), φ(a2)u

−1, uφ(a1)
)

extends φ.

Now, let L = F ( 3
√
λ). We embed L = F (v), v = 3

√
λ, in J(A, λ) = A ⊕ A ⊕ A

through v 7→ (0, 1, 0) and v−1 7→ (0, 0, 1). Furthermore we set

(A× ×A×)Det = { (f, g) ∈ A× ×A× | NrdA(f) = NrdA(g) }.
(39.12) Corollary. (1) We have AutF

(
J(A, λ), A+

)
= (A××A×)Det/F×, where

F× operates diagonally, if A is a division algebra and

AutF
(
J(A, λ), A+

)
=

(
GL3(F )×GL3(F )

)Det
/F× o Z/2Z

if A = M3(F ). The action of Z/2Z on a pair (f, g) is given by

(f, g) 7→
(
(f−1)t, (g−1)t

)
.

The action of (f, g) on J(A, λ) is given by

(f, g)(a, b, c) = (faf−1, fbg−1, gcf−1)

and the action of Z/2Z by τ(a, b, c) = (at, ct, bt).
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(2) We have AutF
(
J(A, λ), A+, L

)
' AutF (A)/F× × µ3 if A is a division algebra

and

AutF
(
J(A, λ), A+, L

)
'

(
PGL3(F )× µ3

)
o Z/2Z

where the action of Z/2Z is given by τ(f, µ) = ([f t]−1, µ−1) if A = M3(F ).

Proof : (??) If φ ∈ AutF
(
J(A, λ), A+

)
restricts to an automorphism φ′ of A, we

write φ′ = Int(f) and (??) follows from Proposition (??). If φ restricts to an
anti-automorphism φ′ of A, we replace φ by φ ◦ τ and apply the preceding case.

(??) We assume that A = M3(F ). By (??) we can write any element φ of
AutF

(
J(A, λ), A+, L

)
as [f, g] with f , g ∈ GL3(F ). Since φ restricts to an auto-

morphism of L, we must have φ(u) = ρu±1, ρ ∈ F×. Since τ(u) = u−1, we may
assume that φ(u) = ρu (replace φ by φτ). It follows that ρ3 = 1 and ρ ∈ µ3(F ).
Since φ

(
(0, 1, 0)

)
= (0, fg−1, 0) = (0, ρ−1, 0) we get g = ρf with ρ ∈ µ3(F ). The

map (f, ρ) 7→ (f, ρf) then induces the desired isomorphism.

(39.13) Remark. If F contains a primitive cubic root of unity, we may identify
µ3 with A3 (as Galois-modules) and

(
PGL3(F )×µ3

)
o Z/2Z with PGL3(F )oS3

where S3 operates through its projection on Z/2Z. In particular we get for the split
Jordan algebra Js

AutF
(
Js,M3(F )+, F × F × F

)
= PGL3(F ) o S3.

On the other hand we have

AutF (Js, F × F × F ) = Spin8(F ) o S3

(see Corollary (??)), so that

PGL3(F ) o S3 =
(
GL3(F )×GL3(F )

)Det
/F× o Z/2Z ∩ Spin8(F ) o S3 ⊂ G(F )

where G = Aut(Js) is a simple split group scheme of type F4.

(39.14) Theorem. (1) (Ferrar-Petersson) Let J0 = J(A, λ0) be a first Tits con-

struction with A a central simple associative algebra of degree 3. The cohomology

set H1
(
F,Aut(J0, A

+)
)

classifies pairs (J ′, I ′) with J ′ an Albert algebra over F
and I ′ is a central simple Jordan algebra of dimension 9 over F . The cohomology

set H1
(
F,Aut(A+)

)
classifies central simple Jordan algebra of dimension 9 over F .

The sequence of pointed sets

1→ F×/NA(A×)
ψ−→ H1

(
F,Aut(J0, A

+)
) ρ1−→ H1

(
F,Aut(A+)

)

is exact and ψ([λ]) = [J(A, λλ0), A
+], ρ1([J ′, A′]) = [A′].

(2) Let J be an Albert algebra containing a subalgebra A+ for A central simple of

degree 3. There exist λ ∈ F× and an isomorphism φ : J ∼−→ J(A, λ) which restricts

to the identity on A+.

(3) J(A, λ) is a division algebra if and only if λ is not the reduced norm of an

element from A.

Proof : We follow Ferrar-Petersson [?]. (??) We assume for simplicity that F is a
field of characteristic not 2, so that J0 is an F -algebra with a multiplication m.
Let F be the flag A+ ⊂ J0 and let W = HomF (J0 ⊗ J0, J0). We let G = AutF (F)
act on F ⊕ W through the natural action. Let w = (0,m). Since AutG(w) =
Aut(J0, A

+) and since (J0, A
+)Fsep ' (J ′, I ′)Fsep (' (Js,M

+
3 )Fsep), the first claim

follows from (??) and from Corollary (??). The fact thatH1
(
F,Aut(A+)

)
classifies

central simple Jordan algebra of dimension 9 over F then is clear.
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The exact sequence is the cohomology exact sequence associated with the se-
quence (??), where the identification (??) of F×/NA(A×) with H1

(
F,SL1(A)

)

is as follows: let λ ∈ F× and let v ∈ A×sep be such that NAsep(v) = λ. Then

α : Gal(Fsep/F ) → SL1(A)(Fsep) such that α(g) = v−1g(v) is the cocycle induced
by λ. The image of the class of λ ∈ F× in H1

(
F,Aut(J0, A

+)
)

is the class of the

cocycle β given by β(g)(a, a1, a2) =
(
a, a1g(v

−1)v, v−1g(v)a2

)
. Let γ ∈ GL

(
(J0)sep

)

be given by

γ(a, a1, a2) = (a, a1v
−1, va2),

then β(g) = g(γ−1)γ, and, setting J = J(A, λλ0), one can check that

γ : (J0, A
+)Fsep

∼−→ (J,A+)Fsep

is an isomorphism, hence (J,A+) is the F -form of (J0, A
+) given by the image of λ.

(??) We set λ0 = 1 in (??). Let J ′ be a reduced Freudenthal algebra. By
Theorem (??), we have (J,A+)Fsep ' (J0, A

+)Fsep . Therefore (J,A+) is a form of

(J0, A
+) and its class in H1

(
F,Aut(J0, A

+)
)

belongs to the kernel of ρ1, hence

in the image of ψ. Thus by (??) there exists λ ∈ F× such that
(
J(A, λ), A+

)
'

(J,A+), as claimed.
(??), similarly, follows from (??), since J(A, 1) is split (see Example (??),

(??)).

(39.15) Remark. By (??.??), J(A, λ) is a division algebra if and only if A is a
division algebra and λ is not a reduced norm of A. Examples can be given over
a purely transcendental extension of degree 1: Let F0 be a field which admits a
division algebra A0 of degree 3 and let A = A0 ⊗ F0(t). Then the Albert algebra
J(A, t) is a division algebra (see Jacobson, [?, p. 417]).

The analogue of Proposition (??) for second Tits constructions is

(39.16) Proposition. Let J0 = J(B, τ, u0, ν0) be a second Tits construction and

let τ ′ = Int(u0) ◦ τ . The sequence

1→ SU(B, τ ′)
γ−→ Aut

(
J0,H(B, τ)

) ρ−→ Aut
(
H(B, τ)

)
→ 1,

where γR(u)(a, b)R = (a, bu−1)R and ρR is restriction, is exact.

Proof : (??) follows from (??) by descent, using Proposition (??).

To get a result corresponding to Theorem (??) for second Tits constructions, we
recall that the pointed set H1

(
F,SU(B, τ)

)
classifies pairs (u, ν) ∈ Sym(B, τ)× ×

K× with NB(u) = NK(ν) under the equivalence ≈, where

(u, ν) ≈ (u′, ν′) if and only if u′ = buτ(b) and ν′ = ν ·NB(b) for some b ∈ B×
(39.17)

(see (??)). As in (??) we set

SSym(B, τ)× = { (u, ν) ∈ H(B, τ)×K× | NB(u) = NK(ν) }.
(39.18) Theorem. Let J0 = J(B, τ, u0, ν0).

(1) The sequence of pointed sets

1→ SSym(B, τ)×/≈ ψ−→

H1
(
F,Aut

(
J0,H(B, τ)

)) ρ1−→ H1
(
F,Aut

(
H(B, τ)

))
,
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where ψ([u, ν]) = [J(B, τ, uu0, νν0),H(B, τ)] and ρ1([J ′, A′]) = [A′], is exact.

(2) Let J be a Freudenthal algebra of dimension 27 containing a subalgebra H(B, τ)
for (B, τ) central simple of degree 3 with a unitary involution. There exist an

admissible pair (u, ν) ∈ SSym(B, τ)× and an isomorphism φ : J ∼−→ J(B, τ, u, ν)
which restricts to the identity on H(B, τ).
(3) J(B, τ, u, ν) is a division algebra if and only if u is not the reduced norm of an

element from B×.

Proof : The proof of (??) is similar to the one of Theorem (??) and we skip it.

Any Hurwitz algebra can be obtained by successive applications of the Cayley-
Dickson process, starting with F . The next result, which is a special case of a
theorem of Petersson-Racine [?, Theorem 3.1], shows that a similar result holds
for Freudenthal algebras of dimension 3, 9 and 27 if Cayley-Dickson processes are
replaced by Tits processes:

(39.19) Theorem (Petersson-Racine). Assume that charF 6= 3. Any Freudenthal

algebra of dimension 3, 9 or 27 can be obtained by successive applications of the

Tits process. In particular any exceptional Jordan algebra of dimension 27 is of the

form H(B, τ) ⊕ B where B is a central simple of degree 3 over a quadratic étale

F -algebra K with a unitary involution.

Proof : A Freudenthal algebra of dimension 3 is a cubic étale algebra, hence the
claim follows from Example (??), (??), if dim J = 3. The case dim J = 9 is
covered by Example (??), (??). If J has dimension 27 and J contains a Freudenthal
subalgebra of dimension 9 of the type H(B, τ), then by Theorem (??), there exists
a pair (u, ν) such that J ' (B, τ, u, ν). Thus we are reduced to showing that J
contains some H(B, τ). If J is reduced this is clear, hence we may assume that J
is not reduced. Then (see the proof of (??)) F is an infinite field. Let L be a cubic
étale F -subalgebra of J and let J = L⊕ V , V = (V, L,Q, β), be the corresponding
Springer decomposition. For some v ∈ V , the set {v, β(v)} is linearly independent
over L since Q

(
v, β(v)

)
is anisotropic and by a density argument (F is infinite) we

may also assume that Q restricted to U = Lv ⊕ Lβ(v) is L-nonsingular. Thus J
contains a Springer construction J1 = J(L,U) of dimension 9. In view of the 9-
dimensional case J1 is a Tits construction and by Example (??), (??), J1 ' H(B, τ)
for some central simple algebra (B, τ) of degree 3 with unitary involution, hence
the claim.

Jordan algebras of the form L+ (L cubic étale of dimension 3), A+ (A central
simple of degree 3), or H(B, τ) (B central simple of degree 3 with an involution
of the second type) are “generic subalgebras ” of Albert algebras in the following
sense:

(39.20) Proposition. Let J be an Albert algebra.

(1) There is a Zariski-open subset U of J such that the subalgebra generated by x
is étale for all x ∈ U .

(2) There is a Zariski-open subset U ′ of J such that the subalgebra generated by

x ∈ U and y ∈ U ′ is of the form A+, for A central simple of degree 3 over F , or of

the form H(B, τ) for B central simple over a quadratic separable field extension K
and τ a unitary involution.

Proof : The first claim is already in (??), (??). The second follows from the proof
of (??).
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(39.21) Remark. The element v in the proof of (??) is such that v and β(v) are
linearly independent over L (see Proposition (??)). If v is such that β(v) = λv for
λ in L, then J is reduced by Theorem (??) and (L, v) generates a 6-dimensional
subalgebra of J of the form H3(F, α) (Soda [?, Theorem 2]). Such an algebra is
not “generic”.

(39.22) Remark. If charF = 3, the only Freudenthal algebras which cannot be
obtained by iterated Tits constructions are separable field extensions of degree 3
(see [?, Theorem 3.1]). We note that Petersson and Racine consider the more
general case of simple cubic Jordan structures (not just Freudenthal algebras) in
[?, Theorem 3.1].

The Albert algebra Js = J
(
M3(F ), 1

)
is split, thus G = Aut

(
J
(
M3(F ), 1

))
is

a simple split group scheme of type F4.

(39.23) Proposition. The pointed set H1
(
F, (GL3×GL3)

Det/Gm oZ/2Z
)

clas-

sifies pairs (J,H
(
B, τ)

)
where J is an Albert algebra, B ⊂ J is central simple with

unitary involution τ over a quadratic étale algebra K. The map

H1
(
F, (GL3×GL3)

Det/Gm oZ/2Z
)
→ H1(F,G),

induced by AutF
(
J
(
M3(F ), 1

)
,M3(F )+

)
→ AutF

(
J
(
M3(F ), 1

))
and which asso-

ciates the class of J to the class of
(
J,H(B, τ)

)
is surjective.

Proof : The first claim follows from Corollary (??) and Theorem (??), the second
then is a consequence of Theorem (??).

(39.24) Remark. Let J be an Albert algebra. We know that J ' J(B, τ, u, β)
for some datum (B, τ, u, ν). The datum can be reconstructed cohomologically as
follows. Let [α] ∈ H1

(
F, (GL3×GL3)

Det/Gm oZ/2Z
)

be a class mapping to [J ].

The image [γ] ∈ H1(F,Z/2Z) of [α] under the map in cohomology induced by
the projection (GL3×GL3)

Det/Gm oZ/2Z → Z/2Z defines the quadratic exten-
sion K. Pairs (J,H

(
B, τ)

)
with fixed K are classified by

H1
(
F,

(
(GL3×GL3)

Det/Gm

)
γ

)

and the projection on the first factor gives an element of H1
(
F, (PGL3)γ

)
, hence

by Remark (??) a central simple K-algebra B with unitary involution τ . We finally
get (u, ν) from the exact sequence (??.??).

§40. Cohomological Invariants

In this section we assume that F is a field of characteristic not 2. Let J =
H3(C,α) be a reduced Freudenthal algebra of dimension > 3. Its bilinear trace
form is given by

T = 〈1, 1, 1〉 ⊥ bC ⊗ 〈−b,−c, bc〉
where bC is the polar of NC . As known from Corollary (??) and Theorem (??),
the Pfister forms bC and bC ⊗ 〈〈b, c〉〉 determine the isomorphism class of J . Let
dimF C = 2i, let fi(J) ∈ H i(F,Z/2Z) be the cohomological invariant of the
Pfister form bC and let fi+2(J) ∈ H i+2(F,Z/2Z) be the cohomological invariant
of bC ⊗ 〈〈b, c〉〉. These two invariants determine J up to isomorphism. Observe
that Freudenthal algebras of dimension 3 with zero divisors are also classified by a
cohomological invariant: Such an algebra is of the form F+ ×K+ and is classified
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by the class of K f1(K) ∈ H1(F, S2). We now define the invariants f3(J) and
f5(J) for division algebras J of dimension 27 (and refer to Proposition (??), resp.
Theorem (??) for the corresponding invariants of algebras of dimension 3, resp. 9).
We first compute the bilinear trace form of J .

(40.1) Lemma. (1) Let (B, τ) be a central simple algebra of degree 3 over a quad-

ratic étale F -algebra K with a unitary involution and let Tτ be the bilinear trace

form of the Jordan algebra H(B, τ). Then

Tτ ' 〈1, 1, 1〉 ⊥ bK/F ⊗ 〈−b,−c, bc〉 for b, c ∈ F×

where bK/F stands for the polar of the norm of K.

(2) Let J be a Freudenthal algebra of dimension 27 and let T be the bilinear trace

form of J . There exist a, b, c, e, f ∈ F× such that

T ' 〈1, 1, 1〉 ⊥ 〈2〉 ⊗ 〈〈a, e, f〉〉 ⊗ 〈−b,−c, bc〉.

Proof : (??) follows from Proposition (??).
(??) By Theorem (??) we may assume that J is a second Tits construction

J(B, τ, u, µ), so that

T
(
(x, y), (x′, y′)

)
= Tτ (x, x

′) + TK/F
(
TrdB

(
yuτ(y′)

))

for x, x′ ∈ H(B, τ) and y, y′ ∈ B. By Lemma (??), (??), we may assume that
NrdB(u) = 1. Let τ ′ = Int(u−1) ◦ τ . By (??) the trace form of H(B, τ ′) is of the
form

Tτ ′ = 〈1, 1, 1〉 ⊥ bK/F ⊗ 〈−e,−f, ef〉

for e, f ∈ F×. Let Tτ,τ ′(x, y) = TK/F
(
TrdB

(
xuτ(y)

))
for x, y ∈ B. We claim that

Tτ,τ ′ ' bK/F ⊗ 〈−b,−c, bc〉 ⊗ 〈−e,−f, ef〉.

The involution τ is an isometry of the bilinear form Tτ,τ ′ with the bilinear form
(TK/F )∗(TB,τ,u) where TB,τ,u(x, y) = TrdB

(
τ(x)uy

)
. Thus it suffices to have an

isomorphism of hermitian forms

TB,τ,u ' 〈−b,−c, bc〉K ⊗K 〈−e,−f, ef〉K
since

(TK/F )∗
(
〈α1, . . . αn〉K

)
= bK/F ⊗ 〈α1, . . . αn〉.

In view of Proposition (??) the unitary involution τ ′ ⊗ τ on B ⊗K ιB corre-
sponds to the adjoint involution on EndK(B) of the hermitian form T(B,τ,u) under
the isomorphism τ∗ : B ⊗K ιB → EndK(B). By the Bayer-Lenstra extension (??)
of Springer’s theorem, we may now assume that B = M3(K) is split, so that by
Example (??) τ is the adjoint involution of 〈−b,−c, bc〉K and τ ′ is the adjoint invo-
lution of 〈−e,−f, ef〉K. This shows that TB,τ,u and 〈−b,−c, bc〉K⊗K 〈−e,−f, ef〉K
are similar hermitian forms and it suffices to show that they have the same deter-
minant. By Corollary (??) the form T(B,τ,u) has determinant the class of Nrd(u),
which, by the choice of u, is 1. Thus we get

T ' Tτ ⊥ Tτ,τ ′ ' 〈1, 1, 1〉 ⊥ 〈2〉 ⊗ 〈〈a, e, f〉〉 ⊗ 〈−b,−c, bc〉

where K = F (
√
a).
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(40.2) Theorem. (1) Let F be a field of characteristic not 2. For any Freudenthal

algebra J of dimension 3 + 3 · 2i, 1 ≤ i ≤ 3, there exist cohomological invariants

fi(J) ∈ H i(F,Z/2Z) and fi+2(J) ∈ H i+2(F,Z/2Z) which coincide with the invari-

ants defined above if J is reduced.

(2) If J = J(B, τ, u, ν) is a second Tits construction of dimension 27, then f3(J)
is the f3-invariant of the involution τ ′ = Int(u) ◦ τ of B.

Proof : (??) LetK = F (
√
a). With the notations of Lemma (??), the invariants are

given by the cohomological invariants of the Pfister forms 〈〈a〉〉, resp. 〈〈a, b, c〉〉 if J
has dimension 9 and the cohomological invariants of 〈〈a, e, f〉〉, resp. 〈〈a, e, f〉〉⊗〈〈b, c〉〉
if J has dimension 27. The fact that these are fi-, resp. fi+2-invariants of J follows
as in Corollary (??).

Claim (??) follows from the computation of Tτ ′ .

(40.3) Corollary. If two second Tits constructions J(B, τ, u1, ν1), J(B, τ, u2, ν2)
of dimension 27 corresponding to different admissible pairs (u1, ν1), (u2, ν2) are

isomorphic, then there exist w ∈ B× and λ ∈ F× such that λu2 = wu1τ(w). If

furthermore Nrd(u1) = Nrd(u2), then w can be chosen such that u2 = wu1τ(w).

Proof : Let τi = Int(ui) ◦ τ , i = 1, 2. In view of Theorem (??), (??), and
Theorem (??), the involutions τ1 and τ2 of B are isomorphic, hence the first
claim. Taking reduced norms on both sides of λu2 = wu1τ(w) we get λ3 =

NrdB(w) NrdB
(
τ(w)

)
and λ is of the form λ′λ′. Replacing w by wλ′−1

, we get
the second claim.

(40.4) Remark. Corollary (??) is due to Parimala, Sridharan and Thakur [?].
As we shall see in Theorem (??) (which is due to the same authors) w can in fact
be chosen such that u2 = wu1τ(w) and ν2 = ν1 NrdB(w) so that the converse of
Lemma (??) holds.

For an Albert algebra J with invariants f3(J) and f5(J), the condition f3(J) =
0 obviously implies f5(J) = 0. More interesting are the following two propositions:

(40.5) Proposition. Let J be an Albert algebra. The following conditions are

equivalent :

(1) J is a first Tits construction, J = J(A, λ).
(2) There exists a cubic extension L/F such that JL splits over L.

(3) The Witt index w(T ) of the bilinear trace form T of J is at least 12.
(4) f3(J) = 0.
(5) For any Springer decomposition J = J(V, L) with corresponding twisted com-

position Γ = (V, L,Q, β), we have wL(Q) ≥ 3.

Proof : (??) ⇒ (??) Choose L which splits A.
(??)⇒ (??) By Springer’s Theorem we may assume that J is split. The claim

then follows from the explicit computation of the bilinear trace form given in (??).
(??) ⇒ (??) We have

T ' 〈1, 1, 1〉 ⊥ 〈〈a, e, f〉〉 ⊗ 〈−b,−c, bc〉.
Thus, if w(T ) ≥ 12, the anisotropic part ban of 〈〈a, e, f〉〉 ⊗ 〈−b,−c, bc〉 has at most
dimension 6; since ban ∈ I3F , the theorem of Arason-Pfister (see Lam [?, p. 289])
shows that ban = 0 in WF . Lemma (??) then implies that 〈〈a, e, f〉〉 is hyperbolic,
hence f3(J) = 0.
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(??) ⇒ (??) Let J = J(V, L) be a Springer decomposition of J for a twisted
composition Γ = (V, L,Q, β). To check (??), we may assume that L is not a field:
if L is a field we may replace L by L ⊗ L. Then (V,Q) is similar to a Cayley
composition (V0, Q0) with

Q0 = 〈1〉 ⊥ 〈δ〉 ⊗ (C, n)0

(see Theorem (??) and Lemma (??)). Since f3(J) is the cohomological invariant of
the norm of C, we get (??).

(??) ⇒ (??) We may assume that J is a division algebra. (??) also implies
(??) and a reduced algebra with f3 = 0 is split. Let x ∈ V with Q(x) = 0. We
have Q

(
β(x)

)
= 0 and Q

(
x, β(x)

)
6= 0 (by Proposition (??) and Theorem (??),

since J is a division algebra). Thus U = Lx ⊕ Lβ(x) is a 2-dimensional twisted
composition. By Proposition (??), Q|U is the trace of a hermitian 1-form over L⊗K
for some quadratic étale F -algebra K. Furthermore K is split if Q|U is isotropic.
Now the Springer construction J1 = L⊕ U is a 9-dimensional Freudenthal algebra
and the Witt index of the bilinear trace form of J1 is at least 2. As shown in
Example (??), (??), J1 is a second Tits construction J1 = J(L⊗K, 1⊗ ιK , u1, ν1)
and by Example (??), (??), J1 ' H(B1, τ1) where B1 is central simple of degree 3
with a unitary involution τ1. Moreover the center K1 of B1 is the discriminant
algebra ∆(L) (since K as above is split). Since the trace on H(B1, τ1) is of Witt
index ≥ 2, τ1 is distinguished (Proposition (??)). Furthermore, by Theorem (??),
J is a second Tits construction J = J(B1, τ1, u, ν) for the given (B1, τ1). We
have f3

(
Int(u) ◦ τ1

)
= f3(J) and since (??) implies (??), τ ′ = Int(u) ◦ τ1 is also

distinguished. By Theorem (??) τ ′ ' τ and there exist λ ∈ F× and w ∈ B× such
that u = λwτ(w). By Lemma (??) we may assume that u = λ ∈ F×. Then the
Tits construction J2 = J(L⊗K1, 1⊗ιK1 , λ, ν) is a subalgebra of J = J(B1, τ1, u, ν).
By Example (??) of (??), J2 ' H(B2, τ2) and the center of B2 is K1 ∗∆(L). Since
K1 ' ∆(L), J2 ' (A×Aop, exchange) and we conclude using Theorem (??).

(40.6) Remark. The equivalence of (??) and (??) in (??) is due to Petersson-
Racine [?, Theorem 4.7] if F contains a primitive cube root of unity. The trace
form then has maximal Witt index.

(40.7) Proposition. Let J be an Albert algebra. The following conditions are

equivalent :

(1) J = J(B, τ, u, ν) is a second Tits construction with τ a distinguished unitary

involution of B.

(2) The Witt index w(T ) of the bilinear trace form T of J is at least 8.
(3) f5(J) = 0.

Proof : We use the notations of the proof of Lemma (??).
(??)⇒ (??) The bilinear form bK/F ⊗〈〈b, c〉〉 is hyperbolic if τ is distinguished.

Thus Tτ,τ ′ has Witt index at least 6. By Proposition (??), Tτ has Witt index at
least 2, hence the claim.

(??) ⇒ (??) If w(T ) ≥ 8, 〈〈a, e, f〉〉 is isotropic, hence f5(J) = 0.
The proof of (??) ⇒ (??) goes along the same lines.
(??) ⇒ (??) We assume that J is a division algebra. Let J = L ⊕ V be a

Springer decomposition of J ; since (??) ⇒ (??) holds, we get that T |V is isotropic.
We may choose x ∈ V such that T (x, x) = 0 and such that U = Lx ⊕ β(x) is a 2-
dimensional twisted composition. Then J1 = L⊕U is a Freudenthal subalgebra of J
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of dimension 9, hence of the form H(B, τ). Since w(T |J1) ≥ 2, τ is distinguished.
The claim then follows from Theorem (??).

We now indicate how one can associate a third cohomological invariant g3(J)
to an Albert algebra J . We refer to Rost [?], for more information (see also the Reference

missing: connect

to H3

paper [?] of Petersson and Racine for an elementary approach). By Theorem (??),
we may assume that J = J(B, τ, u, ν) is a second Tits process and by Lemma (??)
that NrdB(u) = νι(ν) = 1. Let Lν be the descent of K( 3

√
ν) under the action given

by ιK on K and ξ 7→ ξ−1 for ξ = 3
√
ν. Then Lν defines a class in H1(F,µ3[K])

by Proposition (??). On the other hand, the algebra with involution (B, τ) de-
termines a class g2(B, τ) ∈ H2(F,µ3[K]) by Proposition(??). Since there exists a

canonical isomorphism of Galois modules µ3[K]⊗µ3[K] = Z/3Z (with trivial Galois

action on Z/3Z), the cup product g2(B, τ) ∪ [ν] defines a cohomology class g3 in
H3(F,Z/3Z). If K = F ×F , B = A×Aop and ν = (λ, λ)−1, then [A] ∈ H2(F,µ3),
[λ] ∈ H1(F,µ3) and we have g3 = [A] ∪ [λ] ∈ H3(F,Z/3Z). The following result is
due to Rost [?]:

(40.8) Theorem. (1) The cohomology class g3 ∈ H3(F,Z/3Z) is an invariant of

the Albert algebra J = J(B, τ, u, ν), denoted g3(J).
(2) We have g3(J) = 0 if and only if J has zero divisors.

(40.9) Remark. By definition we have g3 = g2(B, τ)∪ [ν] and by Proposition (??)
we know that g2(B, τ) = α ∪ β with α ∈ H1(F,Z/3Z[K]) and β ∈ H1(F,µ3); thus

g3 ∈ H1(F,Z/3Z[K]) ∪H1(F,µ3) ∪H1(F,µ3[K])

is a decomposable class.

It is conjectured that the three invariants f3(J), f5(J) and g3(J) classify
Freudenthal algebras of dimension 27. This is the case if g3 = 0; then J is re-
duced, J ' H3(C, α), f3(J) = f3(C) determines C, f3(J), f5(J) determine the trace
and the claim follows from Theorem (??).

Theorem (??) allows to prove another part of the converse to Lemma (??)
which is due to Petersson-Racine [?, p. 204]:

(40.10) Proposition. If J(B, τ, u, ν) ' J(B, τ, u′, ν′) then ν′ = ν Nrd(w) for

some w ∈ B×.

Proof : The claim is clear if B is not a division algebra, since then the reduced
norm map is surjective. Assume now that J = J(B, τ, u, ν) ' J ′ = J(B, τ, u′, ν′).
By (??), (??), we may assume that NK/F (ν) = 1 = NK/F (ν′). Let L, resp. L′, be
the cubic extensions of F determined by ν, resp. ν ′, as in Proposition (??). We have
[B]∪ [L] = g3(J) = g3(J

′) = [B]∪ [L′], hence [B]∪ ([L′][L]−1) = 0 in H3(F,Z/3Z).
The class [L′][L]−1 comes from ν′ν−1. Since (u, ν′ν−1) is obviously admissible we
have a Tits construction J ′′ = J(B, τ, u, ν′ν−1) whose invariant g3(J

′′) is zero. By
Theorem (??), (??), J ′′ has zero divisors and by Theorem (??) ν ′ν−1 is a norm
of B.

Let J(A, λ) be a first Tits construction. Since an admissible pair for this
construction can be assumed to be of the form

(
1, (λ, λ−1)

)
we get

(40.11) Corollary. Let A be a central division algebra of degree 3 and let λ, λ′ ∈
F×. The Albert algebras J(A, λ) and J(A, λ′) are isomorphic if and only if λ′λ−1 ∈
NrdA(A×).
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We now prove the result of Parimala, Sridharan and Thakur [?] quoted in
Remark (??).

(40.12) Theorem. Let (B, τ) be a degree 3 central simple K-algebra with a unitary

involution. Then J(B, τ, u1, ν1) ' J(B, τ, u2, ν2) if and only if there exists some

w ∈ B× such that u2 = wu1τ(w) and ν2 = ν1 NrdB(w).

Proof : Let (u1, ν1), (u2, ν2) be admissible pairs. Recall from (??) the equiva-
lence relation ≡ on admissible pairs. Assume that J(B, τ, u1, ν1) ' J(B, τ, u2, ν2).
By (??), we have some u3 such that (u1, ν1) ≡ (u3, ν2) and by (??) (u3, ν2) ≡(
u2,NrdB(w)−1ν2

)
for some w ∈ B× such that u2 = wu3τ(w). One has NrdB(u3) =

ν2ν2 = NrdB(u3) since (u3, ν2) and (u2, ν2) are admissible pairs, thus λλ = 1 for
λ = NrdB(w). Let τ2 = Int(u2) ◦ τ . By the next lemma applied to τ2, there exists
w′ ∈ B× such that w′τ2(w′) = 1 and λ = NrdB(w′). It follows from w′τ2(w′) = 1
that w′u2τ(w

′) = u2, hence
(
u2,NrdB(w)−1ν2

)
≡

(
u2,NrdB(w′) NrdB(w)−1ν2

)
= (u2, ν2)

and (u1, ν1) ≡ (u2, ν2) as claimed. The converse is (??), (??).

(40.13) Lemma (Rost). Let (B, τ) be a degree 3 central simple K-algebra with a

unitary involution. Let w ∈ B× be such that λ = NrdB(w) ∈ K satisfies λλ = 1.
Then there exists w′ ∈ B× such that w′τ(w′) = 1 and λ = NrdB(w′).

Proof : Assume that an element w′ as desired exists and assume that M = K[w′] ⊂
B is a field. We have τ(M) = M , so let H = M τ be the subfield of fixed elements
under τ . The extension M/H is of degree 2 and by Hilbert’s Theorem 90 (??) we
may write w′ = uτ(u)−1. Since M = H ⊗K and K = F (

√
a) for some a ∈ F×, we

may choose u of the form u = h+
√
a with h ∈ H . Then

λ = Nrd(w′) = NrdB(h+
√
a) NrdB(h−

√
a)−1.

On the other hand λ = yτ(y)−1 by Hilbert’s Theorem 90 (??), so that h ∈ H(B, τ)
is a zero of

ϕ(h) =
(
yNrdB(h−

√
a)− yNrdB(h+

√
a)

)√
a
−1
.

(the factor
√
a
−1

is to get an F -valued function on H(B, τ)). Reversing the argu-
ment, if ϕ is isotropic on H(B, τ), then w′ = (h+

√
a)(h−√a)−1 is as desired. The

function ϕ is polynomial of degree 3 and it is easily seen that ϕ is isotropic over K.
It follows that ϕ is isotropic over F (see Exercise ?? of this chapter).

(40.14) Remark. Suresh has extended Lemma (??) to algebras of odd degree
with unitary involution (see [?], see also Exercise 12, (b), in Chapter III).

Theorem (??) has a nice Skolem-Noether type application, which is also due
to Parimala, Sridharan and Thakur [?]:

(40.15) Corollary. Let (B1, τ1), (B2, τ2) be degree 3 central simple algebras over K
with unitary involutions. Suppose that H(B1, τ1) and H(B2, τ2) are subalgebras of

an Albert algebra J and that α : H(B1, τ1) ' H(B2, τ2) is an isomorphism of Jordan

algebras. Then α extends to an automorphism of J .

Proof : In view of Theorem (??), (??), we have isomorphisms

ψ1 : J(B1, τ1, u1, ν1)
∼−→ J, ψ2 : J(B2, τ2, u2, ν2)

∼−→ J.
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By Proposition (??) α extends to an isomorphism α̃ : (B1, τ1)
∼−→ (B2, τ2), thus we

get an isomorphism of Jordan algebras

J(α) : J(B1, τ1, u1, ν1)
∼−→ J

(
B2, τ2, α(u1), ν1

)
.

But J
(
B2, τ2, α(u1), ν1

)
' J(B2, τ2, u2, ν2), since both are isomorphic to J . By The-

orem (??), there exists w ∈ B×
2 such that u2 = wα(u1)τ2(w) and ν2 = NrdB(w)ν1.

Let

φ : J
(
B2, τ2, α(u1), ν1

) ∼−→ J(B2, τ2, u2, ν2)

be given by (a, b) 7→ (a, bw). Then φ restricts to the identity on H(B2, τ2) and

ψ = ψ2 ◦ φ ◦ J(α) ◦ ψ−1
1

is an automorphism of J extending α.

40.A. Invariants of twisted compositions. Let F be a field of character-
istic not 2. To a twisted composition (V, L,Q, β) we may associate the following
cohomological invariants:

(a) a class f1 = [δ] ∈ H1(F, µ2), which determines the discriminant ∆ of L;
(b) a class g1 ∈ H1

(
F, (Z/3Z)δ

)
which determines L (with the fixed discrimi-

nant ∆ given by the cocycle δ);
(c) invariants f3 ∈ H3(F, µ2), f5 ∈ H5(F, µ2), and g3 ∈ H3(F,Z/3Z) which

are the cohomological invariants associated with the Freudenthal algebra
J(L, V ) (see Theorem (??)).

As for Freudenthal algebras, it is unknown if these invariants classify twisted com-
positions, however:

(40.16) Proposition. The invariant g3 of a twisted composition (V, L,Q, β) is

trivial if and only if (V, L,Q, β) is similar to a composition Γ(C, L) of type G2, in

which case (V, L,Q, β) is classified up to similarity by f1 and g1 (which determine L)
and by f3 (which determines C).

Proof : By Theorem (??) J(V, L) has zero divisors if and only if (V, L,Q, β) is
similar to a composition of type G2, hence the claim by Theorem (??).

§41. Exceptional Simple Lie Algebras

There exists a very explicit construction, due to Tits [?], of models for all
exceptional simple Lie algebras. This construction is based on alternative algebras
of degree 2 or 1 and Jordan algebras of degree 3 or 1. We sketch it and refer to
[?], to the book of Schafer [?] or to the notes of Jacobson [?] for more details. We
assume throughout that the characteristic of F is different from 2 and 3. Let A,
B be Hurwitz algebras over F and let J = H3(B,α) be the Freudenthal algebra
associated to B and α = diag(α1, α2, α3). As usual we write A0, resp. J0 for the
trace zero elements in A, resp. J . We define a bilinear product ∗ in A0 by

a ∗ b = ab− 1
2T (a, b)

where T (a, b) = TA(ab), a, b ∈ A, is the bilinear trace form of A. Let `a, resp. ra ∈
EndF (A) be the left multiplication map `a(x) = ax, resp. the right multiplication
map ra(x) = xa. For f , g ∈ EndF (A) we put [f, g] = f ◦ g − g ◦ f for the Lie
product in EndF (A). It can be checked that in any alternative algebra A

Da,b = [`a, `b] + [`a, rb] + [ra, rb]
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is a derivation. Similarly we may define a product on J0:

x ∗ y = xy − 1
3T (x, y)

where T (x, y) = TJ(xy). We now define a bilinear and skew-symmetric product
[ , ] on the direct sum of F -vector spaces

L(A, J) = Der(A,A) ⊕A0 ⊗ J0 ⊕Der(J, J)

as follows:

(1) [ , ] is the usual Lie product in Der(A,A) and Der(J, J) and satisfies [D,D′] = 0
for D ∈ Der(A,A) and D′ ∈ Der(J, J),
(2) [a⊗ x,D+D′] = D(a)⊗ x+ a⊗D′(x) for a ∈ A0, x ∈ J0, D ∈ Der(A,A) and
D′ ∈ Der(J, J),
(3) [a⊗ x, b⊗ y] = 1

12T (x, y)Da,b + (a ∗ b)⊗ (x ∗ y) + 1
2T (a, b)[rx, ry] for a, b ∈ B0

and x, y ∈ J0.

With this product L(A, J) is a Lie algebra. As A and B vary over the possible
composition algebras the types of L(A, J) can be displayed in a table, whose last
four columns are known as Freudenthal’s “magic square”:

dimA F F × F × F H3(F, α) H3(K,α) H3(Q,α) H3(C, α)
1 0 0 A1 A2 C3 F4

2 0 U A2 A2 ⊕A2 A5 E6

4 A1 A1 ⊕A1 ⊕A1 C3 A5 D6 E7

8 G2 D4 F4 E6 E7 E8

Here K stands for a quadratic étale algebra, Q for a quaternion algebra and C for a
Cayley algebra; U is a 2-dimensional abelian Lie algebra. The fact that D4 appears
in the last row is one more argument for considering D4 as exceptional.

Exercises

1. (Springer [?, p. 63]) A cubic form over a field is isotropic if and only if it is
isotropic over a quadratic extension.

2. For any alternative algebra A over a field of characteristic not 2, A+ is a special
Jordan algebra.

3. Show that in all cases considered in §??, §??, and §?? the generic norm
NJ(

∑
i xiui) is irreducible in F [x1, . . . , xn].

4. Let C be a Hurwitz algebra. Show that H2(C, α) is the Jordan algebra of a
quadratic form.

5. Show that a Jordan division algebra of degree 2 is the Jordan algebra J(V, q)
of a quadratic form (V, q) such that bq(x, x) 6= 1 for all x ∈ V .

6. Let J be a cubic Jordan structure. The following conditions are equivalent:
(a) J contains an idempotent (i.e an element e with e2 = e) such that SJ (e) =

1.
(b) J contains a nontrivial idempotent e.
(c) J contains nontrivial zero divisors.
(d) There is some nonzero a ∈ J such that NJ (a) = 0.
(e) There is some nonzero a ∈ J such that a# = 0.

7. (a) Let A be a cubic separable alternative algebra and let λ ∈ F×. Check that
the norm NA induces a cubic structure J(A, λ) on A⊕ A⊕A.
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(b) Show that J(A, λ) ' H3(C,α) for some α if A = F ×C, with C a Hurwitz
algebra over F .

8. (Rost) Let A be central simple of degree 3, λ ∈ F×, and J = J(A, λ) the
corresponding first Tits construction. Put:

V (J) = { [ξ] ∈ P26
F | ξ ∈ J, ξ# = 0 }

PGL1(A) = {x ∈ P(A) = P8
F | NrdA(x) 6= 0 }

SL1(A)λ = {x ∈ A | NrdA(x) = λ }.

Show that
(a) V (J) is the projective variety with coordinates [a, b, c] ∈ P(A⊕A⊕A) and

equations

a# = bc, b# = λ−1ca, c# = λab

and V (J) is smooth.
(b) The open subvariety U of V (J) given by

NrdA(a) NrdA(b) NrdA(c) 6= 0

is parametrized by coordinates

[a, b] ∈ P(A⊕A)

with NrdA(a) = λNrdA(b) and NrdA(a) NrdA(b) 6= 0.
(c) SL1(A)λ × PGL1(A) is an open subset of V (J).
(d) SL1(A)×PGL1(A) and SL3(F )×PGL3(F ) are birationally equivalent (and

rational). Hint : Use that J(A, 1) ' J
(
M3(F ), 1

)
.

9. Show that a special Jordan central division algebra over R is either isomor-
phic to R or to to the Jordan algebra of a negative definite quadratic form of
dimension ≥ 2 over R.

10. Let J be an Albert algebra over F . Show that:
(a) J is split if F is finite or p-adic.
(b) J is reduced if F = R or if F is a field of algebraic numbers (Albert-

Jacobson [?]).
11. Let Ca be the nonsplit Cayley algebra over R. Show that the Albert algebras
H3(Ca, 1), H3

(
Ca, diag(1,−1, 1)

)
, and H3

(
Cs, diag(1,−1, 1)

)
are up to isomor-

phism all Albert algebras over R.
12. Let F be a field of characteristic not 2 and J = H3(C, 1), J1 = H3(Q, 1),

J2 = H3(K, 1) and J3 = H3(F, 1) for C a Cayley algebra, Q a quaternion
algebra, and K = F (i), i2 = a, a quadratic étale algebra. Show that
(a) AutF (J/J1) ' SL1(Q).
(b) AutF (J/J2) ' SU(M,h) where M = K⊥ ⊂ C (with respect to the norm)

and

h(x, y) = NC(x, y) + a−1iNC(ix, y).

In particular AutF (J/J2) ' SL3(F ) if K = F × F .
(c) AutF (J/J3) ' AutF (C).
(d) AutF (J1)× SL1(Q) ↪→ AutF (J) (“C3 ×A1 ⊂ F4”).
(e) AutF (J2)× SU(M,h) ↪→ AutF (J) (“A2 ×A2 ⊂ F4”).
(f) AutF (J3)× SL2(F ) ↪→ AutF (J) (“G2 ×A1 ⊂ F4”).
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(g) Let

V =








0 0 0
0 x c
0 c −x




∣∣∣∣∣∣
x ∈ F , c ∈ C



 ⊂ J.

Show that AutF (J/F ·E11) ' Spin9(V, T |V ). (“B4 ⊂ F4”).
(h) AutF (J/F ·E11 ⊕ F ·E22 ⊕ F ·E33) ' Spin(C, n).
Observe that (??), (??), and (??) give the possible types of maximal subgroups
of maximal rank for F4.

13. (Parimala, Sridharan, Thakur) Let J = J(B, τ, uν) be a second Tits construc-
tion with B = M3(K) and u ∈ B such that NrdB(u) = 1. Let 〈u〉K be the
hermitian form of rank 3 over K determined by u and let C = C(〈u〉K ,K) be
the corresponding Cayley algebra, as given in Exercise ?? of Chapter ??. Show
that the class of C is the f3-invariant of J .

Notes

§??. The article of Paige [?] provides a nice introduction to the theory of
Jordan algebras. Jacobson’s treatise [?] gives a systematic presentation of the
theory over fields of characteristic not 2. Another important source is the book
of Braun-Koecher [?] and a forthcoming source is a book by McCrimmon [?]. If
2 is not invertible the Jordan identity (??) is unsuitable and a completely new
characteristic-free approach was initiated by McCrimmon [?]. The idea is to ax-
iomatize the quadratic product aba instead of the Jordan product a qb = 1

2 (ab+ba).
McCrimmon’s theory is described for example in Jacobson’s lecture notes [?] and
[?]. Another approach to Jordan algebras based on an axiomatization of the notion
of inverse is provided in the book of Springer [?]. The treatment in degree 3 is
similar to that given by McCrimmon for exceptional Jordan algebras (see [?, §5]).
A short history of Jordan algebras can be found in Jacobson’s obituary of Albert
[?], and a survey for non-experts is given in the paper by McCrimmon [?]. For
more recent developments by the Russian School, especially on infinite dimensional
Jordan algebras, see McCrimmon [?].

A complete classification of finite dimensional simple formally real Jordan al-
gebras over R appears already in Jordan, von Neumann and Wigner [?]35. They
conjectured that H3(C, 1) is exceptional and proposed it as a problem to Albert.
Albert’s solution appeared as a sequel [?] to their paper. Much later, Albert again
took up the theory of Jordan algebras; in [?] he described the structure of simple
Jordan algebras over algebraically closed fields of characteristic not 2, assuming
that the algebras admit an idempotent different from the identity. (The existence
of an identity in a simple finite dimensional Jordan algebra was showed by Albert
in [?].) The gap was filled by Jacobson in [?]. In [?] Schafer showed that reduced
exceptional Jordan algebras of dimension 27 are all of the form H3(C, α). A system-
atic study of algebras H3(C, α) is given in Freudenthal’s long paper [?], for example
the fact that they are of degree 3. In the same paper Freudenthal showed that
the automorphism group of a reduced simple exceptional Jordan algebra over R is
of type F4 by computing the root system explicitly. In a different way, Springer

35A Jordan algebra is said to be formally real if
∑

a2
i

= 0 implies every ai = 0.
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[?, Theorem 3] or [?], showed that the automorphism group is simply connected
of dimension 52, assuming that F is a field of characteristic different from 2 and
3, and deduced its type using the classification of simple algebraic groups. The
fact that the derivation algebra of an exceptional Jordan algebra is a Lie algebra
of type F4 can already be found in Chevalley-Schafer [?]. Here also it was assumed
that the base field has characteristic different from 2 and 3. Observe that this Lie
algebra is not simple in characteristic 3. Split simple groups of type E6 also occur in
connection with simple split exceptional Jordan algebras, namely as automorphism
groups of the cubic form N , see for example Chevalley-Schafer [?], Freudenthal [?]
and Jacobson [?].

The structure of algebras H3(C, α) over fields of characteristic not 2, 3 was sys-
tematically studied by Springer in a series of papers ([?], [?], [?], and [?]). Some of
the main results are the fact that the bilinear trace form and C determine H3(C, α)
(Theorem (??), see [?, Theorem 1, p. 421]) and the fact that the cubic norm deter-
mines C (see [?, Theorem 1]). Thus the cubic norm and the trace form determine
the algebra. The fact that the trace form alone determines the algebra was only
recently noticed by Serre and Rost (see [?, § 9.2]). The fact that the isomorphism
class of C is determined by the isomorphism class of H3(C, α) is a result due to
Albert-Jacobson [?]. For this reason C is usually called the coordinate algebra of
H3(C, α). A recent survey of the theory of Albert algebras has been given by
Petersson and Racine [?].

It is unknown if a division Albert algebra J always contains a cyclic cubic
field extension (as does an associative central simple algebra of degree 3). However
this is true (Petersson-Racine [?, Theorem 4]) if charF 6= 3 and F contains a
primitive cube root of unity: it suffices to show that J contains a Kummer extension
F [X ]/(X3− λ), hence that SJ restricted to J0 = {x ∈ J | TJ(x) = 0 } is isotropic.
In view of Springer’s theorem, we may replace J by J ⊗L where L is a cubic étale
subalgebra of J . But then J is reduced and then SJ |J0 is isotropic.

§??. There are a number of characterizations of cubic Jordan algebras. One
is due to Springer [?], assuming that charF 6= 2, 3: Let J be a finite dimensional
F -algebra with 1, equipped with a quadratic form Q such that

(a) Q(x)2 = Q(x2) if bQ(x, 1) = 0,
(b) bQ(xy, z) = bQ(x, yz),
(c) Q(1) = 3

2 .

Then J is a cubic Jordan algebra and Q(x) = 1
2TJ(x2).

The characterization we use in §?? was first suggested by Freudenthal [?] and
was established by Springer [?] for fields of characteristic not 2 and 3. We follow the
description of McCrimmon [?], which is systematically used by Petersson-Racine
in their study of cubic Jordan algebras (see for example [?] and [?]). The Springer
decomposition is given in the Göttinger notes of Springer [?]. Applications were
given by Walde [?] to the construction of exceptional Lie algebras. The construction
was formalized and applied to cubic forms by Petersson and Racine (see for example
[?]).

§??. Tits constructions for fields of characteristic not 2 first appeared in print
in Jacobson’s book [?], as did the fact, also due to Tits, that any Albert algebra is a
first or second Tits construction. These results were announced by Tits in a talk at



542 IX. CUBIC JORDAN ALGEBRAS

the Oberwolfach meeting “Jordan-Algebren und nicht-assoziativen Algebren, 17–
26.8.1967”. With the kind permission of J. Tits and the Research Institute in
Oberwolfach, we reproduce Tits’ Résumé:

Exceptional simple Jordan Algebras

(I) Denote by k a field of characteristic not 2, by A a central simple algebra of
degree 3 over k, by n : A → A, tr : A → A the reduced norm and reduced trace,
and by × : A×A → A the symmetric bilinear product defined by (x×x)x = n(x).
For x ∈ A, set x = 1

2
(tr(x)− x). Let c ∈ k∗. In the sum A0 + A1 + A2 of three

copies of A, introduce the following product:

x0 y1 z2

x′0
1
2
(xx′ + x′x)0 (x′y)1 (zx′)2

y′1 (xy′)1 c(y × y′)2 (y′z)0

z′2 (z′x)2 (yz′)0
1
c
(z × z′)1

(II) Denote by ` a quadratic extension of k, by B a central simple algebra of
degree 3 over `, and by σ : B → B an involution of the second kind kind such
that k = {x ∈ ` | xσ = x }. Set BSym = {x ∈ B | xσ = x }. Let b ∈ BSym and
c ∈ l∗ be such that n(b) = cσc. In the sum BSym + B∗ of BSym and a copy B∗

of B, define a product by

x y

x′ 1
2
(xx′ + x′x) (x′y)∗

y′ (xy′)∗ (yby′σ + y′byσ)+
�

cσ(yσ × y′
σ
)b−1

�

∗

Theorem 1. The 27-dimensional algebras described under (I) and (II) are ex-

ceptional simple Jordan algebras over k. Every such algebra is thus obtained.

Theorem 2. The algebra (I) is split if c ∈ n(A) and division otherwise. The

algebra (II) is reduced if c ∈ n(B) and division otherwise.

Theorem 3. There exists an algebra of type (II) which does not split over any

cyclic extension of degree 2 or 3 of k. (Notice that such an algebra is necessarily
division and is not of type (I)).

(For more details, cf. N. Jacobson. Jordan algebras, a forthcoming book).

J. Tits

Observe that the ×-product used by Tits is our ×-product divided by 2. The
extension of Tits constructions to cubic structures was carried out by McCrimmon
[?]. Tits constructions were systematically used by Petersson and Racine, see for
example [?] and [?]. Petersson and Racine showed in particular that (with a few
exceptions) simple cubic Jordan structures can be constructed by iteration of the
Tits process ([?], Theorem 3.1). The result can be viewed as a cubic analog to the
theorem of Hurwitz, proved by iterating the Cayley-Dickson process.

Tits constructions can be used to give simple examples of exceptional division
Jordan algebras of dimension 27. The first examples of such division algebras were
constructed by Albert [?]. They were significantly more complicated than those
through Tits constructions. Assertions (??) and (??) of Theorem (??) and (??) are
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due to Tits. The nice cohomological proof given here is due to Ferrar and Petersson
[?] (for first Tits constructions).
§??. The existence of the invariants f3 and f5 was first noticed by Serre (see

for example [?]). The direct computation of the trace form given here, as well as
Propositions (??) and (??) are due to Rost. Serre suggested the existence of the
invariant g3. Its definition is due to Rost [?]. An elementary approach to that
invariant can be found in Petersson-Racine [?] and a description in characteristic 3
can be found in Petersson-Racine [?].
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CHAPTER X

Trialitarian Central Simple Algebras

We assume in this chapter that F is a field of characteristic not 2. Triality
for PGO+

8 , i.e., the action of S3 on PGO+
8 and its consequences, is the subject of

this chapter. In the first section we describe the induced action on H1(F,PGO+
8 ).

This cohomology set classifies ordered triples (A,B,C) of central simple algebras of
degree 8 with involutions of orthogonal type such that

(
C(A, σA), σ

) ∼−→ (B, σB)×
(C, σC). Triality implies that this property is symmetric in A, B and C, and the
induced action of S3 onH1(F,PGO+

8 ) permutes A, B, and C. As an application we
give a criterion for an orthogonal involution on an algebra of degree 8 to decompose
as a tensor product of three involutions.

We may view a triple (A,B,C) as above as an algebra over the split étale
algebra F × F × F with orthogonal involution (σA, σB , σC) and some additional
structure (the fact that

(
C(A, σA), σ

) ∼−→ (B, σB)× (C, σC)). Forms of such “alge-

bras”, called trialitarian algebras, are classified by H1(F,PGO+
8 oS3). Trialitarian

algebras are central simple algebras with orthogonal involution of degree 8 over cu-
bic étale F -algebras with a condition relating the central simple algebra and its
Clifford algebra. Connected components of automorphism groups of such trialitar-
ian algebras give the outer forms of simple adjoint groups of type D4.

Trialitarian algebras also occur in the construction of Lie algebras of type D4.
Some indications in this direction are in the last section.

§42. Algebras of Degree 8

42.A. Trialitarian triples. The pointed set H1(F,PGO8) classifies central
simple algebras of degree 8 over F with an involution of orthogonal type and
the image of the pointed set H1(F,PGO+

8 ) in H1(F,PGO8) classifies central
simple algebras of degree 8 over F with an involution of orthogonal type hav-
ing trivial discriminant (see Remark (??)). More precisely, each cocycle x in
H1(F,PGO+

8 ) determines a central simple F -algebra A(x) of degree 8 with an
orthogonal involution σA(x) having trivial discriminant, together with a designa-

tion of the two components C+
(
A(x), σA(x)

)
and C−

(
A(x), σA(x)

)
of the Clifford

algebra C
(
A(x), σA(x)

)
. Thus, putting

(
B(x), σB(x)

)
=

(
C+

(
A(x), σA(x)

)
, σ

)
and(

C(x), σC(x)

)
=

(
C−

(
A(x), σA(x)

)
, σ

)
, x determines an ordered triple

[(
A(x), σA(x)

)
,
(
B(x), σB(x)

)
,
(
C(x), σC(x)

)]

of central simple F -algebras of degree 8 with orthogonal involution. The two com-
ponents of the Clifford algebra C

(
A(x), σA(x)

)
are determined by a nontrivial cen-

tral idempotent e, say B(x) = C
(
A(x), σA(x)

)
e and C(x) = C

(
A(x), σA(x)

)
(1 −

e). Thus two triples [(A, σA), (B, σB), (C, σC )] and [(A′, σA′), (B′, σB′), (C ′, σC′)],
where B = C(A, σA)e and C = C(A, σA)(1 − e), resp. B′ = C(A′, σA))e

′ and

545
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C = C(A′, σA′)(1 − e′), determine the same class in H1(F,PGO+
8 ) if there exists

an isomorphism φ : (A, σA) → (A′, σA′) such that C(φ)(e) = e′. Now let (A,B,C)
be an ordered triple of central simple algebras of degree 8 with orthogonal involution
such that there exists an isomorphism

αA :
(
C(A, σA), σ

) ∼−→ (B, σB)× (C, σC).

The element e = α−1
A

(
(0, 1)

)
is a central idempotent of (A, σA), hence determines

a designation of the two components of C(A, σA). Moreover this designation is
independent of the particular choice of αA, since it depends only on the ordering of
the triple. We call two triples (A,B,C) and (A′, B′, C ′) isomorphic if there exist
isomorphisms of algebras with involution

(φ1 : A ∼−→ A′, φ2 : B ∼−→ B′, φ3 : C ∼−→ C ′)

and isomorphisms αA, resp. αA′ as above, such that

αA′ ◦ C(φ1) = (φ2, φ3) ◦ αA.
Thus:

(42.1) Lemma. The set H1(F,PGO+
8 ) classifies isomorphism classes of ordered

triples (A,B,C) of central simple Falgebras of degree 8 with involutions of orthog-

onal type and trivial discriminant.

Observe that the ordered triples (A,B,C) and (A,C,B) determine in general
different objects in H1(F,PGO+

8 ) since they correspond to different designations
of the components of C(A, σA). In fact the action of S2 on H1(F,PGO+

8 ) induced
by the exact sequence of group schemes

1→ PGO+(A, σ)→ PGO(A, σ)
d−→ S2 → 1

permutes the classes of (A,B,C) and (A,C,B).

(42.2) Example. Let A1 = EndF (C) and σ1 = σn where C is a split Cayley
algebra with norm n. In view of proposition (??) we have a canonical isomorphism

αC :
(
C(A1, σ1), σ

)
→ (A2, σ2)× (A3, σ3)

where (A2, σ2) and (A3, σ3) are copies of the split algebra (A1, σ1). Thus the ordered
triple (A1, A2, A3) determines a class in H1(F,PGO+

8 ). Since n is hyperbolic, it
corresponds to the trivial class.

The group S3 acts as outer automorphisms on the group scheme PGO+
8 (see

Proposition (??)). It follows that S3 acts on H1(F,PGO+
8 ).

(42.3) Proposition. The action of S3 on H1(F,PGO+
8 ) induced by the action

of S3 on PGO+
8 is by permutations on the triples (A,B,C). More precisely, the

choice of an isomorphism

αA :
(
C(A, σA), σ

) ∼−→ (B, σB)× (C, σC)

determines isomorphisms

αB :
(
C(B, σB), σ

) ∼−→ (C, σC)× (A, σA),

αC :
(
C(C, σC), σ

) ∼−→ (A, σA)× (B, σB).

Moreover any one of the three αA, αB or αC determines the two others.
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Proof : We have PGO+
8 (Fsep) = PGO+(Cs, ns)(Fsep) and we can use the de-

scription of the action of S3 on PGO+(Cs, ns)(Fsep) given in Proposition (??).

Let θ and θ± be the automorphisms of PGO+(Cs, ns) as defined in (??). Let
x = (γg)g∈Gal(Fsep/F ) with γg = [tg ], tg ∈ O+

8 (Fsep), be a cocycle in H1(F,PGO+
8 )

which defines (A, σA). By definition of (θ+, θ−) the map (θ+, θ−) : PGO+ →
PGO+×PGO+ factors through Autalg

(
C+

0 (n), σ
)
× Autalg

(
C−0 (n), σ

)
. Hence

the cocycle θ+x = θ+([tg ]) defines the triple (B, σB , αB) and θ−x = θ−([tg ]) de-
fines (C, σC , αC). The last assertion follows by triality.

(42.4) Example. In the situation of Example (??), where A1 = A2 = A3 =
EndF (C) and αA1 = αC we obtain αA2 = αA3 = αC since the trivial cocycle
represents the triple (A1, A2, A3).

We call an ordered triple (A,B,C) of central simple algebras of degree 8 such
that there exists an isomorphism αA :

(
C(A, σA), σ

) ∼−→ (B, σB)× (C, σC) a triali-

tarian triple. For any φ ∈ S3, we write the map α induced from αA by the action

of S3 as αφA. For example we have αθ
+

A = αB .

(42.5) Proposition. Let (A,B,C) be a trialitarian triple. Triality induces iso-

morphisms

Spin(A, σA) ' Spin(B, σB) ' Spin(C, σC),

PGO+(A, σA) ' PGO+(B, σB) ' PGO+(C, σC ).

Proof : Let γ = γg = [tg], tg ∈ GO+
8 (Fsep), be a 1-cocycle defining (A, σA, αA) so

that γ+ = θ+γ defines (B, σB , αB). Since Int
(
PGO+

8 (Fsep)
)

= PGO+
8 (Fsep) we

may use γ to twist the Galois action on PGO+
8 . The isomorphism

θ+ : PGO+
8 → (PGO+

8 )γ

then is a Galois equivariant map, which descends to an isomorphism

PGO+(A, σA) ∼−→ PGO+(B, σB).

The existence of an isomorphism between corresponding simply connected groups
then follows from Theorem (??).

(42.6) Remark. If (A, σ) is central simple of degree 2n with an orthogonal invo-
lution, the space

L(A, σ) = {x ∈ A | σ(x) = −x }
of skew-symmetric elements is a Lie algebra of type Dn under the product [x, y] =
xy − yx (since it is true over a separable closure of F , see [?, Theorem 9, p. 302]).
In fact L(A, σ) is the Lie algebra of the groups Spin(A, σ) or PGO+(A, σ) (see
??), so that Proposition (??) implies that

L(A, σA) ' L(B, σB) ' L(C, σC)

if A is of degree 8 and C(A, σA) ∼−→ (B, σB)× (C, σC ). An explicit example where
(A, σA) 6' (B, σB), but L(A, σA) ' L(B, σB) is in Jacobson [?, Exercise 3, p. 316].

(42.7) Proposition. Let (A,B,C) be a trialitarian triple. We have

(1) [A][B][C] = 1 in Br(F ).
(2) A ' EndF (V ) if and only if B ' C.
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(3) A ' B ' C if and only if (A, σA) '
(
EndF (C), σn

)
for some Cayley algebra C

with norm n.

Proof : (??) is a special case of Theorem (??), see also Example (??), and (??) is
an immediate consequence of (??).

The “if” direction of (??) is a special case of Proposition (??). For the converse,
it follows from [A] = [B] = [C] = 1 in Br(F ) that (A, σA) =

(
EndF (V ), σq

)

and that (V, q) has trivial discriminant and trivial Clifford invariant. In view of
Proposition (??) (V, q) is similar to the norm n of a Cayley algebra C over F . This
implies (A, σA) '

(
EndF (C), σn

)
.

(42.8) Remark. As observed by A. Wadsworth [?], there exist examples of tri-
alitarian triples (A,B,C) such that all algebras A, B, C are division algebras:
Since there exist trialitarian triples

(
EndF (V ), B,B

)
with B a division algebra (see

Dherte [?], Tao [?], or Yanchevskĭı [?]), taking B to be generic with an involution
of orthogonal type and trivial discriminant (see Saltman [?]) will give such triples.

42.B. Decomposable involutions. We consider central simple F -algebras
of degree 8 with involutions of orthogonal type which decompose as a tensor prod-
uct of three involutions. In view of Proposition (??) such involutions have trivial
discriminant.

(42.9) Proposition. Let A be a central simple F -algebra of degree 8 with an in-

volution σ of orthogonal type. Then (A, σ) ' (A1, σ1)⊗ (A2, σ2)⊗ (A3, σ3) with Ai,
i = 1, 2, 3, quaternion algebras and σi an involution of the first kind on Ai, if and

only if (A, σ) is isomorphic to
(
C(q0), τ

′) where C(q0) is the Clifford algebra of a

quadratic space (V0, q0) of rank 6 and τ ′ is the involution which is −Id on V0.

Proof : We first check that the Clifford algebra C(q0) admits such a decomposition.
Let q0 = q4 ⊥ q2 be an orthogonal decomposition of q0 with q4 of rank 4 and q2 of
rank 2. Accordingly, we have a decomposition C(q0) = C(q4) ⊗̂ C(q2) where ⊗̂ is
the Z/2Z-graded tensor product (see for example Scharlau [?, p. 328]). Let z be a
generator of the center of C0(q4) such that z2 = δ4 ∈ F×. The map

φ(x ⊗̂ 1 + 1 ⊗̂ y) = x⊗ 1 + z ⊗ y
induces an isomorphism

C(q0) = C(q4) ⊗̂ C(q2)
∼−→ C(δ4q4)⊗ C(q2)

by the universal property of the Clifford algebra. The canonical involution of C(q0)
is transported by φ to the tensor product of the two canonical involutions, since z
is invariant by the canonical involution of C(q4). Similarly, we may decompose q4
as q4 = q′ ⊥ q′′ and write

C(q4) = C(q′) ⊗̂ C(q′′) ∼−→ C(q′)⊗ C(δ′q′′)

where δ′ is the discriminant of q′. In this case the canonical involution of C(q′)
maps a generator z′ of the center of C0(q

′) such that z′2 = δ′ ∈ F× to −z′. We
then have to replace the canonical involution of C(q′′) (which is of orthogonal type)
by the “second” involution of C(q′′), i.e., the involution τ ′ such that τ ′(x) = −x
on V ′′. This involution is of symplectic type. Conversely, let

(A, σ) ' (A1, σ1)⊗ (A2, σ2)⊗ (A3, σ3).

Renumbering the algebras if necessary, we may assume that σ1 is of orthogonal type
and that there exists a quadratic space (V1, q1) such that (A1, σ1) '

(
C(q1), τ1

)
with
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τ1 the canonical involution of C(q1). We may next assume that σ2 and σ3 are of
symplectic type: if σ2 and σ3 are both of orthogonal type, σ2 ⊗ σ3 is of orthogonal
type and has trivial discriminant by Proposition (??). Corollary (??) implies that

(A2, σ2)⊗ (A3, σ3) ' (B, σB)⊗ (C, σC )

where σB , σC are the canonical involutions of the quaternion algebras B, C, and
we replace (A2, σ2) by (B, σB), (A3, σ3) by (C, σC). Then there exist quadratic
forms q2, q3 such that (A2, σ2) '

(
C(q2), τ2

)
and (A3, σ3) '

(
C(q3), τ3

)
, with τ2,

τ3 “second involutions”, as described above. Let δi be the discriminant of qi and
let q0 = q3 ⊥ δ3q2 ⊥ δ3δ2q1, then (A, σ) '

(
C(q0), τ

′).

Algebras
(
C(q0), τ

′) occur as factors in special trialitarian triples:

(42.10) Proposition. A triple
(
EndF (V ), B,B

)
is trialitarian if and only if

(B, σB) '
(
C(V0, q0), τ

′),
where τ ′ is the involution of C(q0) which is −Id on V0, for some quadratic space

(V0, q0) of dimension 6.

Proof : Let (A, σ) =
(
EndF (V ), σq

)
be split of degree 8, so that C(A, σ) = C0(q),

and assume that q has trivial discriminant. Replacing q by λq for some λ ∈ F×,
if necessary, we may assume that q represents 1. Putting q = 〈1〉 ⊥ q1, we define
an isomorphism ρ : C(−q1) ∼−→ C0(q) by ρ(x) = xv1 where v1 is a generator of 〈1〉.
Since the center Z of C0(q) splits and since C(−q1) ' Z ⊗ C0(−q1), we may
view ρ−1 as an isomorphism C0(q)

∼−→ C0(−q1) × C0(−q1). The center of C0(q) is
fixed under the canonical involution of C0(q) since 8 ≡ 0 mod 4. Thus, with the
canonical involution on all three algebras, ρ−1 is an isomorphism of algebras with
involution and the triple

(
EndF (V ), C0(−q1), C0(−q1)

)

is a trialitarian triple. Let −q1 = 〈a〉⊥ q2 with q2 of rank 6 and let q0 = −aq2, then
C0(−q1) ' C(q0) as algebras with involution where the involution on C(q0) is the
“second involution”. Thus the triple

(
EndF (V ), C(q0), C(q0)

)
is trialitarian.

We now characterize fully decomposable involutions on algebras of degree 8:

(42.11) Theorem. Let A be a central simple F -algebra of degree 8 and σ an in-

volution of orthogonal type on A. The following conditions are equivalent :

(1) (A, σ) ' (A1, σ1)⊗ (A2, σ2)⊗ (A3, σ3) for some quaternion algebras with invo-

lution (Ai, σi), i = 1, 2, 3.
(2) The involution σ has trivial discriminant and there exists a trialitarian triple(
EndF (V ), A,A

)
.

(3) The involution σ has trivial discriminant and one of the factors of C(A, σ)
splits.

Proof : The algebra (A, σ) decomposes if and only if (A, σ) ' C(q0) by Lemma
(??). Thus the equivalence of (??) and (??) follows from (??).

The equivalence of (??) and (??) follows from the fact that S3 operates through
permutations on trialitarian triples.

(42.12) Remark. (Parimala) It follows from Theorem (??) that the condition

[A][B][C] = 1 ∈ Br(F )
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for a trialitarian triple is necessary but not sufficient. In fact, there exist a field F
and a central division algebra B of degree 8 with an orthogonal involution over F
which is not a tensor product of three quaternion algebras (see Amitsur-Rowen-
Tignol [?]). That such an algebra always admits an orthogonal involution with
trivial discriminant follows from Parimala-Sridharan-Suresh [?]. Thus, by Theo-
rem (??) there are no orthogonal involutions on B such that

(
M8(F ), B,B

)
is a

trialitarian triple.

(42.13) Remark. If (A, σ) is central simple with an orthogonal involution which
is hyperbolic, then disc(σ) is trivial and one of the factors of the Clifford algebra
C(A, σ) splits (see (??)). These conditions are also sufficient for A to have an
orthogonal hyperbolic involution if A has degree 4 (see Proposition (??)) but they
are not sufficient if A has degree 8 by Theorem (??).

§43. Trialitarian Algebras

43.A. A definition and some properties. Let L be a cubic étale F -algebra.
We call an L-algebra D such that D ⊗ F ′ ' A′ × B′ × C ′ with A′, B′, C ′ central
simple over F ′ for every field extension F ′/F which splits L a central simple L-

algebra. For example any trialitarian triple (A,B,C) is a central simple L-algebra
with an involution of orthogonal type over the split cubic algebra L = F × F × F .
Conversely, let L be a cubic étale F -algebra and let E be a central simple algebra of
degree 8 with an involution of orthogonal type over L. We want to give conditions
on E/L such that E defines a trialitarian triple over any extension which splits L.
Such a structure will be called a trialitarian algebra. In view of the decomposition
L⊗L ' L×L⊗∆ where ∆ is the discriminant algebra of L (see (??)), we obtain
a decomposition

(E, σ)⊗ L ' (E, σ) × (E2, σ2)

and (E2, σ2) is an (L⊗∆)-central simple algebra with involution of degree 8 over
L⊗∆, in particular is an L-algebra through the canonical map L→ L⊗∆, ` 7→ `⊗1.
As a first condition we require the existence of an isomorphism of L-algebras with
involution

αE :
(
C(E, σ), σ

) ∼−→ (E2, σ2).

Fixing a generator ρ ∈ Gal(L⊗∆/∆), this is equivalent by Corollary (??) to giving
an isomorphism of L-algebras with involution

αE :
(
C(E, σ), σ

) ∼−→ ρ(E ⊗∆, σ ⊗ 1)

where ρ(E ⊗ ∆, σ ⊗ 1) denotes (E ⊗ ∆, σ ⊗ 1) with the action of L ⊗ ∆ twisted
through ρ. An isomorphism

Φ: T = (E,L, σ, αE) ∼−→ T ′ = (E′, L′, σ′, αE′)

of such “data” is a pair (φ, ψ) where ψ : L ∼−→ L′ is an isomorphism of F -algebras,
∆(ψ) : ∆(L) ∼−→ ∆(L′) is the induced map of discriminant algebras and φ : E ∼−→ E′

is ψ-semilinear, such that

φ ◦ σ′ = σ ◦ φ and
(
φ⊗∆(ψ)

)
◦ αE = αE′ ◦ C(φ).



§43. TRIALITARIAN ALGEBRAS 551

(43.1) Remark. The definition of αE depends on the choice of a generator ρ of
the group Gal(L ⊗ ∆/∆) and such a choice is in fact part of the structure of T .
Since 1⊗ ι is an isomorphism

ρ(E ⊗∆) ∼−→ ρ2(E ⊗∆),

there is a canonical way to change generators.

If L = F × F × F is split, then

(E, σ) = (A, σA)× (B, σB)× (C, σC)

with (A, σA), (B, σB), (C, σC ) algebras over F of degree 8 with orthogonal involu-
tions and

ρ
(
E ⊗∆(L)

) ∼−→
{

(B × C,C ×A,A×B) or

(C ×B,A× C,B ×A),

respectively, according to the choice of ρ. Thus an isomorphism αE is a triple of
isomorphisms

(αA, αB , αC) :
(
C(A, σA), C(B, σB), C(C, σC)

) ∼−→
{

(B × C,C ×A,A×B) or

(C ×B,A× C,B ×A),

respectively. Given one of the isomorphisms αA, αB , or αC , there is by Propo-
sition (??) a “canonical” way to obtain the two others, hence to extend it to an
isomorphism αE . We write such an induced isomorphism as α(A,B,C) and we say
that a datum

T ′ = (A′ × B′ × C ′, F × F × F, σ′, α′)
isomorphic to

T =
(
A×B × C,F × F × F, (σA, σB , σC), α(A,B,C)

)

is a trialitarian F -algebra over F × F × F or that α = α(A,B,C) is a trialitarian

isomorphism. If L is not necessarily split, T = (E,L, σ, α) is a trialitarian algebra

over L if over any field extension F̃ /F which splits L, i.e., L ⊗ F̃ ' F̃ × F̃ × F̃ ,

T ⊗ F̃ is isomorphic to a trialitarian algebra over F̃ × F̃ × F̃ .

(43.2) Example. Let (C, n) be a Cayley algebra over F and let A = EndF (C). By
Proposition (??), we have an isomorphism

αC : C0(C, n) = C(A, σn) ∼−→ (A, σn)× (A, σn),

which, by Proposition (??), extends to define a trialitarian structure

T = (A×A× A,F × F×, σn × σn × σn, αC̃
)

on the product A × A × A. More precisely, if αC(x) = (x+, x−) ∈ A × A, we may
take

α
C̃
(x, y, z) =

(
(y+, z−), (z+, x−), (x+, y−)

)
(43.3)

as a trialitarian isomorphism, in view of Example (??). It corresponds to the action
ρ on (F × F )3 given by (xi, yi) 7→ (xi+1, yi+2), i = 1, 2, 3 (mod 3). We say that

such a trialitarian algebra T is of type G2 and write it End(C̃). If C = Cs is split,
T = Ts is the split trialitarian algebra. Triality induces an action of S3 on Ts.
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Assume that L/F is cyclic with generator ρ of the Galois group. The isomor-
phism

L⊗ L ∼−→ L× L× L, x⊗ y 7→
(
xy, xρ(y), xρ2(y)

)

induces an isomorphism ∆ ∼−→ L × L and any αE : C(E, σ) ∼−→ ρ(E ⊗ ∆) can be
viewed as an isomorphism

αE : C(E, σ) ∼−→ ρE × ρ2E.

Thus (E, ρE, ρ
2

E) is a trialitarian triple over L×L×L and by Proposition (??) αE
determines an isomorphism

αρE : C(ρE, σ) ∼−→ ρ2E ×E.
The isomorphism αρE is (tautologically) also an isomorphism

C(E, σ) ∼−→ ρE × ρ2E.

We denote it by ρ−1

αρE .

(43.4) Proposition. The isomorphism αE is trialitarian if and only if ρ
−1

αρE =
αE.

Proof : It suffices to check the claim for a trialitarian triple (A,B,C), where it is
straightforward.

For trialitarian algebras over arbitrary cubic étale algebras L we have:

(43.5) Corollary. An isomorphism αE : C(E, σ) ∼−→ ρ(E ⊗∆) extends to an iso-

morphism

αE⊗∆ : C(E ⊗∆, σ ⊗ 1) ∼−→ ρ(E ⊗∆)× ρ2(E ⊗∆)

and αE is trialitarian if and only if ρ
−1

αρ(E⊗∆) = αE⊗∆.

The norm map

NL/F : Br(L)→ Br(F ),

defined for finite separable field extensions L/F can be extended to étale F -algebras
L: if L = L1 × · · · × Lr where Li/F , i = 1, . . . , r, are separable field extensions
and if A = A1 × . . . Ar is L-central simple (i.e., Ai is central simple over Li), then,
for [A] ∈ Br(L) = Br(L1)× · · · × Br(Lr), we define

NL/F ([A]) = [A1] · . . . · [Ar] ∈ Br(F ).

(43.6) Proposition. For any trialitarian algebra T = (E,L, σ, αE) the central

simple L-algebra E satisfies NL/F ([E]) = 1 ∈ Br(F ).

Proof : The algebra C(E, σ) is L⊗∆-central simple and L⊗∆ is étale. We compute
the class of NL⊗∆/F

(
C(E, σ)

)
in the Brauer group Br(F ) in two different ways: on

one hand, by using that [NL⊗∆/L

(
C(E, σ)

)
] = [E] in Br(L) (see Theorem (??) or

Example (??)), we see that

[NL⊗∆/F

(
C(E, σ)

)
] = [NL/F ◦NL⊗∆/L

(
C(E, σ)

)
]

= [NL/F (E)]
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and on the other hand we have

[NL⊗∆/F

(
C(E, σ)

)
] = [N∆/F

(
NL⊗∆/∆

(
C(E, σ)

))
]

= [N∆/F

(
NL⊗∆/∆

(
ρ(E ⊗∆)

))
]

= [N∆/F

(
NL/F (E)⊗∆

)
]

= [NL/F (E)]2,

so that, as claimed [NL/F (E)] = 1.

(43.7) Example. A trialitarian algebra can be associated to any twisted compo-
sition Γ = (V, L,Q, β): Let ρ be a fixed generator of the cyclic algebra L ⊗∆/∆,
∆ the discriminant of L. By Proposition (??) there exists exactly one cyclic com-
position (with respect to ρ) on (V, L,Q, β)⊗∆. By Proposition (??) we then have
an isomorphism

αV : C0(V,Q) = C
(
EndL(V ), σQ

) ∼−→ ρ
(
EndL(V )⊗∆

)
.

We claim that the datum
(
EndL(V ), L, σQ, αV

)
is a trialitarian algebra. By

descent it suffices to consider the case where Γ = C̃ is of type G2. Then the claim
follows from Example (??).

We set End(Γ) for the trialitarian algebra associated to the twisted composition
Γ.

43.B. Quaternionic trialitarian algebras. The proof of Proposition (??)
shows that the sole existence of a map αE implies that NL/F ([E]) = 1. In fact,
the condition NL/F ([E]) = 1 is necessary for E to admit a trialitarian structure,
but not sufficient, even if L is split, see Remark (??). We now give examples where
the condition NL/F ([E]) = 1 is sufficient for the existence of a trialitarian structure
on E.

(43.8) Theorem. Let Q be a quaternion algebra over a cubic étale algebra L.

Then M4(Q) admits a trialitarian structure T (Q) if and only if NL/F ([Q]) = 1 in

Br(F ).

Before proving Theorem (??) we observe that over number fields any central
simple algebra which admits an involution of the first kind is of the form Mn(Q)
for some quaternion algebra Q (Albert, [?, Theorem 20, p. 161]). Thus, for such
fields, the condition NL/F ([E]) = 1 is necessary and sufficient for E to admit a
trialitarian structure (see Allison [?] and the notes at the end of the chapter).

The first step in the proof of Theorem (??) is the following reduction:

(43.9) Proposition. Let L/F be a cubic étale algebra and let Q be a quaternion

algebra over L. The following conditions are equivalent :

(1) NL/F ([Q]) = 1.

(2) Q ' (a, b)L with b ∈ F× and NL(a) = 1.

Proof : (??) ⇒ (??) follows from the projection (or transfer) formula (see for ex-
ample Brown [?, V, (3.8)]). For the proof of (??) ⇒ (??) it suffices to show
that Q ' (a, b)L with b ∈ F×: The condition NL/F ([Q]) = 1 then implies

NL(a) = NF (
√
b)(z) for some z ∈ F (

√
b), again by the projection formula. Replac-

ing a by a3NF (
√
b)(z)

−1 gives a as wanted. We first consider the case L = F ×K, K

quadratic étale. Let Q1×Q2 be the corresponding decomposition of Q. The condi-
tion NL/F ([Q]) = 1 is equivalent with NK/F ([Q2]) = [Q1] or NK/F (Q2) 'M2(Q1).
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In this case the claim follows from Corollary (??). Let now Q = (α, β)L, for L a
field. We have to check that the L-quadratic form q = 〈α, β,−αβ〉 represents a
nonzero element of F . Let L = F (θ) and q(x) = q1(x) + q2(x)θ + q3(x)θ

2 with qi
quadratic forms over F . In view of the case L = F ×K, q2 and q3 have a nontrivial
common zero over L, hence the claim by Springer’s theorem for pairs of quadratic
forms (see Pfister [?, Corollary 1.1, Chap. 9]).

(43.10) Remark. Proposition (??) in the split case L = F × F × F reduces to
the classical result of Albert that the condition [Q1][Q2][Q3] = 1 for quaternions
algebras Qi over F is equivalent to the existence of a, b, c such that [Q1] = (a, b)F ,
[Q2] = (a, c)F , [Q3] = (a, bc)F . In particular, the algebras Qi have a common
quadratic subalgebra (see Corollary (??)). Thus (??) can be viewed as a “twisted”
version of Albert’s result.

Theorem (??) now is a consequence of the following:

(43.11) Proposition. Let K/F be quadratic étale, let L/F be cubic étale and let

a ∈ L× be such that NL(a) = 1. Let Q be the quaternion algebra (K ⊗ L/L, a)L
and let E(a) = M4(Q). There exists a trialitarian structure T =

(
E(a), L, σ, α

)

on E(a).

The main step in the construction of T is a result of Allen and Ferrar [?]. To
describe it we need some notations. Let (C, n) be the split Cayley algebra with
norm n. The vector space C has a basis (u1, . . . , u8) (use Exercise 5 of Chapter ??)
such that

(a) the multiplication table of C is

u1 u2 u3 u4 u5 u6 u7 u8

u1 0 u7 −u6 u1 −u8 0 0 0
u2 −u7 0 u5 u2 0 −u8 0 0
u3 u6 −u5 0 u3 0 0 −u8 0
u4 0 0 0 u4 u5 u6 u7 0
u5 −u4 0 0 0 0 u3 −u2 u5

u6 0 −u4 0 0 −u3 0 u1 u6

u7 0 0 −u4 0 u2 −u1 0 u7

u8 u1 u2 u3 0 0 0 0 u8

(b) 1 = u4 +u8 and the conjugation map π is given by π(ui) = −ui for i 6= 4, 8
and π(u4) = u8.

(c) bn(ui, uj) = δi+4,j , i+ 4 being taken mod 8, in particular {u1, . . . , u4} and
{u5, . . . , u8} span complementary totally isotropic subspaces of C.

(43.12) Lemma. Let a1, a2, a3 ∈ F× be such that a1a2a3 = 1, let

Ai = diag(ai, ai, ai, a
−1
i+2), Bi = diag(1, 1, 1, a−1

i+1)

in M4(F ) and let ti =
(

0 Ai

Bi 0

)
∈M8(F ), i = 1, 2, 3. Also, write ti for the F -vector

space automorphism of C induced by ti with respect to the basis (u1, . . . , u8). Then

ti is a similitude of (C, n) with multiplier ai such that

(1) a1t1(x?y) = t2(x)?t3(y) where ? is the multiplication in the para-Cayley algebra

C.

(2) ti ∈ Sym
(
End(C), σn

)
, in particular t2i = ai · 1, i = 1, 2, 3.

Proof : A lengthy computation! See Allen-Ferrar [?, p. 480-481].
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Proof of (??): Let ∆ = ∆(L) be the discriminant algebra of L. The F -algebra
P = L⊗∆⊗K is a G-Galois algebra where G = S3×Z/2Z, S3 acts on the Galois
S3-closure L⊗∆ and Z/2Z acts on K. We have L⊗P ' P×P×P and we may view
L⊗P as a Galois G-algebra over L. The group S3 acts through permutations of the
factors. Let ιK be a generator of Gal(K/F ) and ρ be a generator of Gal(L⊗∆/∆).
Let σ = ρ⊗ ιK , so that σ generates a cyclic subgroup of S3 × Z/2Z of order 6 and
G is generated by σ and 1⊗ ι∆⊗ 1. Let (Cs, ns) be the split Cayley algebra over F
and (C, n) = (Cs, ns) ⊗ P . As in §??, let (x, y) 7→ x ? y = x � y be the symmetric
composition on C. The trialitarian structure on E(a) over L is constructed by
Galois descent from the split trialitarian structure End(C)×End(C)×End(C) over
P × P × P :

(43.13) Lemma. Let a ∈ L× be such that NL/F (a) = 1. There exist similitudes

t, t+, t− of (C, n) with multipliers a, σ(a), σ2(a), respectively, such that :

(1) at(x ? y) = t+(x) ? t−(y).
(2) t, t+, t− ∈ Sym

(
EndP (C), σn

)
, and (t, t+, t−)2 =

(
a, σ(a), σ2(a)

)
.

(3) σt = t+σ, σt+ = t−σ, σt− = tσ.
(4) One has

(π ⊗ ι∆ ⊗ 1)t = t(π ⊗ ι∆ ⊗ 1),

(π ⊗ ι∆ ⊗ 1)t+ = t−(π ⊗ ι∆ ⊗ 1),

(π ⊗ ι∆ ⊗ 1)t− = t+(π ⊗ ι∆ ⊗ 1),

(π ⊗ ι∆ ⊗ 1)(1⊗ σ) = (1⊗ σ2)(π ⊗ ι∆ ⊗ 1).

Proof : Lemma (??) applied over P to a1 = a, a2 = σ(a), a3 = σ2(a) gives (??)
and (??).

(??) and (??) can easily be verified using the explicit form of t, t+, and t−

given in Lemma (??).

We now describe the descent defining E(a). Let t̃, σ̃ and π̃ be the automor-

phisms of C× C× C given by t̃ = (t, t−, t+), σ̃(x, y, z) = (σy, σz, σx), and

π̃(x, y, z) =
(
π ⊗ ι∆ ⊗ 1(x), π ⊗ ι∆ ⊗ 1(z), π ⊗ ι∆ ⊗ 1(y)

)
.

It follows from the description of (t, t−, t+) that t̃σ̃ = σ̃t̃, t̃π̃ = π̃t̃, and σ̃π̃ = π̃σ̃2.

Further t̃σ̃ is σ-linear, t̃π̃ is ι-linear and, by (??) of Lemma (??), Int(t̃) is an
automorphism of the trialitarian algebra End(C)×End(C)×End(C) over P×P×P .

Thus {Int(t̃σ̃), Int(t̃π̃)} gives a G-Galois action on End(C)×End(C)×End(C). By
Galois descent we obtain a trialitarian algebra E(a) = (E,L, σ, α) over L. We claim
that E 'M4

(
(K ⊗ L/L, a)

)
. Since L/F is cubic, it suffices to check that

E ⊗ L 'M4

(
(K ⊗ L/L, a)

)
×E2

for some L⊗∆-algebra E2. Let E ⊗ L = E1 × E2. The (L⊗ L)-algebra E ⊗ L is

the descent of End(C̃) under {Int(t̃σ̃)3, Int(t̃π̃)}. Since [t̃σ̃3]2 = a ∈ L, we have

[E ⊗ L] =
(
[(K ⊗ L/L, a)], [E2]

)
∈ Br(L× L⊗∆),

hence the claim.

For fixed extensionsK and L over F , the trialitarian algebrasE(a) are classified
by L×/NK⊗L/L

(
(K ⊗ L)×

)
:
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(43.14) Proposition. The following conditions are equivalent :

(1) E(a1) ' E(a2) as trialitarian algebras.

(2) E(a1) ' E(a2) as L-algebras (without involutions).
(3) a1a

−1
2 ∈ NK⊗L/L

(
(K ⊗ L)×

)
.

Proof : (??) implies (??) and the equivalence of (??) and (??) is classical for cyclic
algebras, see for example Corollary (??).

We show that (??) implies (??) following [?]. Assume that a1 = a2 · λιK(λ)
for λ ∈ L ⊗ K. We have λιK(λ) = λσ3(λ) ∈ P×. It follows from NL/F (a1) =

1 = NL/F (a2) that NP/F (λ) = 1, so that, by choosing µ = a2

(
σ4(λ)σ5(λ)

)−1,

we deduce µσ2(µ)σ4(µ) = 1. Now let t = (t1, t2, t3) be given by Lemma (??) for

a1 = µ, a2 = σ2(µ), and a3 = σ4(µ). Let c(ai) be the map t̃σ̃ as used in the descent
defining E(a) for a = ai, i = 1, 2. A straightforward computation shows that

T−1c(a1)T = c(a2)
(
σ(λ)σ2(λ), σ3(λ)σ4(λ), σ5(λ)λ

)
.

This implies (by descent) that E(a1) ' E(a2).

43.C. Trialitarian algebras of type 2D4. We say that a trialitarian algebra
T = (E,L,∆, σ, αi) of type 1D4 if L is split, 2D4 if L = F ×K for K a quadratic
separable field extension over F isomorphic to ∆, 3D4 if L is a cyclic field extension
of F and 6D4 if L⊗∆ is a Galois field extension with group S3 over F .

We now describe trialitarian algebras over an algebra L = F × ∆ where ∆
is quadratic (and is the discriminant algebra of L), i.e., is of type 1D4 or 2D4.
The results of this section were obtained in collaboration with R. Parimala and R.
Sridharan.

(43.15) Proposition. Let (A, σ) be a central simple F -algebra of degree 8 with an

orthogonal involution and let Z be the center of C(A, σ).

(1) The central simple algebra with involution (A, σ) ×
(
C(A, σ), σ

)
over F × Z

admits the structure of a trialitarian algebra T (A, σ) and is functorial in (A, σ).
(2) If T = (A × B,F × ∆, σA × σB , α) is a trialitarian algebra over L = F × ∆
for ∆ a quadratic étale F -algebra, then there exists, after fixing a generator ρ of

Gal(L⊗∆/∆), a unique isomorphism φ : T ∼−→ T (A, σ) of trialitarian algebras such

that φ|A = 1|A.

Proof : (??) Let ι be the conjugation on Z. The isomorphism Z ⊗ Z ∼−→ Z × Z
given by x⊗ y 7→

(
xy, xι(y)

)
induces an isomorphism

α1 : C(A⊗ Z) ∼−→ C(A, σ) × ιC(A, σ).

Thus
(
A⊗Z,C(A, σ), ιC(A, σ)

)
is a trialitarian triple over Z. By triality α1 induces

a Z-isomorphism

α2 = θ+α1 : C
(
C(A, σ), σ

) ∼−→ ιC(A, σ)×A⊗ Z,
so that α = (1, α2) is an (F × Z)-isomorphism

α : C
(
A× C(A, σ)

) ∼−→ C(A, σ) × ιC(A, σ) ×A⊗ Z.
On the other hand we have

C(A, σ) × ιC(A, σ) ×A⊗ Z ∼−→ ρ
(
A⊗ Z × C(A, σ) × ιC(A, σ)

)

∼−→ ρ
((
A× C(A, σ)

)
⊗ Z

)
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for ρ ∈ AutZ(Z×Z×Z) = Gal
(
(F ×Z)⊗Z/Z

)
given by ρ(z0, z1, z2) = (z1, z2, z0).

Thus α can be viewed as an isomorphism

α : C
(
A× C(A, σ)

) ∼−→ ρ
((
A× C(A, σ)

)
⊗ Z

)
.

It is easy to check that α is trialitarian by splitting Z.
(??) Let

β : C(A×B) ∼−→ ρ
(
(A×B)⊗ Z

)

be a trialitarian structure for (A×B, σA × σB). Then β is an L⊗ Z isomorphism

β : C(A) × C(B) ∼−→ B × ιB ×A⊗ Z
and splits as (β1, β2) where β1 : C(A) ∼−→ B and β2 is determined by β1 through
triality. Then

β̃ = (1, β1) : A× C(A) ∼−→ A×B
is an isomorphism of T (A, σ) with (A × B, σA × σB , β). This follows from the
fact that a trialitarian algebra over a product F × Z is determined by the first
component.

(43.16) Corollary. Let (E, σ) be such that there exists an isomorphism

α : C(E, σ) ∼−→ ρ(E ⊗∆)

(not necessarily trialitarian). If L is not a field, then there exists a trialitarian

isomorphism αE : C(E, σ) ∼−→ ρ(E ⊗∆).

Proof : Let E = A× B and write L = F ×K = Z(A) × Z(B). Then α = (α1, α2)
with α1 : C(A, σA) ∼−→ (B, σB) and α2 : C(B, σB) ∼−→ ιB × A ⊗ K. On the other
hand

α1 ⊗ 1K : C(A ⊗K,σ ⊗ 1) ∼−→ (B, σB)⊗K = (B, σB)× ι(B, σB)

induces by triality an isomorphism

α̃2 : C(B, σB) ∼−→ ιB ×A⊗K.
The pair αE = (α1, α̃2) is trialitarian.

(43.17) Corollary. Let A, A′ be central simple F -algebras of degree 8 with or-

thogonal involutions σ, σ′ and let Z, Z ′ be the centers of C(A, σ), resp. C(A′, σ′).
Then the F -algebras

(
C(A, σ), σ

)
and

(
C(A′, σ′), σ′

)
are isomorphic (as algebras

with involution) if and only if (A, σ) ⊗ Z and (A′, σ′) ⊗ Z ′ are isomorphic (as
F -algebras).

Proof : Any isomorphism φ : C(A, σ) ∼−→ C(A′, σ′) induces an isomorphism

ιC(A, σ) ×A⊗ Z ∼−→ C
(
C(A, σ), σ

) ∼−→ C
(
C(A′, σ′), σ

) ∼−→ ιC(A′, σ′)×A′ ⊗ Z ′.
Looking at all possible components of C(φ) and taking in account that by as-
sumption C(A, σ) ∼−→ C(A′, σ′) gives an isomorphism (A, σ) ⊗ Z ∼−→ (A′, σ′) ⊗ Z ′.
Conversely, any isomorphism (A, σ) ⊗ Z ∼−→ (A′, σ′) ⊗ Z ′ induces an isomorphism
C(A, σ)⊗Z ∼−→ C(A′, σ′)⊗Z ′. Since C(A, σ)⊗Z ∼−→ C(A, σ)×ι C(A, σ), compos-
ing with the inclusion C(A, σ)→ C(A, σ)⊗Z and the projection C(A′, σ′)⊗Z ′ →
C(A′, σ′) gives a homomorphism C(A, σ) → C(A′, σ′) of algebras with involution.
This must be an isomorphism since C(A, σ) is central simple over Z.
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(43.18) Corollary ([?]). Let (V, q) and (V ′, q′) be quadratic spaces of rank 8 and

let Z, Z ′ be the centers of C(V, q), resp. C(V ′, q′). Then C0(V, q) and C0(V
′, q′)

are isomorphic (as algebras over F with involution) if and only if (V, q) ⊗ Z and

(V ′, q′)⊗ Z ′ are similar.

Proof : Since any isomorphism
(
EndF (V ), σq

) ∼−→
(
EndF (V ′), σq′

)
is induced by a

similitude (V, q) ∼−→ (V ′, q′) and vice versa the result follows from Corollary (??).

§44. Classification of Algebras and Groups of Type D4

Let (C, n) be a Cayley algebra with norm n over F , let C̃ = C⊗ (F ×F ×F ) be

the induced twisted composition and let End(C̃) be the induced trialitarian algebra
(see Example (??)). Since S3 acts by triality on PGO(C, n), we have a split exact
sequence

1→ PGO(C, n)→ PGO(C, n) o S3
p−→ S3 → 1(44.1)

where p is the projection.

(44.2) Proposition. We have

AutF
(
End(C̃)

)
' PGO+(C, n)(F ) o S3.

Proof : One shows as in the proof of Proposition (??) that the restriction map

ρ : AutF
(
End(C̃)

)
→ AutF (F × F × F ) = S3

has a section. Thus it suffices to check that ker ρ = PGO+(C, n)(F ). Any β in kerρ
is of the form Int(t) where t = (t0, t1, t2) is a (F × F × F )-similitude of C× C× C

with multiplier λ = (λ0, λ1, λ2), such that

α
C̃
◦ C0(t) =

(
Int(t)⊗ 1

)
◦ α

C̃
.

It follows from the explicit description of α
C̃

given in (??) that

λ−1t(x) ∗
(
z ∗ t(y)

)
= t

(
x ∗

(
t−1(z) ∗ y

))
(44.3)

for all x, y, z ∈ C, where x ∗ y = (x̄1ȳ2, x̄2ȳ0, x̄0ȳ1) for x = (x0, x1, x2), y =
(y0, y1, y2), multiplication is in the Cayley algebra and x 7→ x̄ is conjugation. Con-
dition (??) gives three relations for (t0, t1, t2):

ti
(
x̄i+1(yi+1zi)

)
= λ−1

i ti+1(xi+1)
(
ti+1(yi+1)ti(zi)

)
, i = 0, 1, 2.(44.4)

We claim that the group homomorphism

Int(t) ∈ ker ρ 7→ [t0] ∈ PGO+(C, n)(F )

is an isomorphism. It is surjective since, by triality, there exist t1 = (t0)
−, t2 = (t0)

+

such that t = (t0, t1, t2) (see Proposition (??)). We check that it is injective: let
[t0] = 1, so that t0 = µ0 · 1C for some µ0 ∈ F×. It follows from Equation (??)
(for i = 2) that

t2
(
x(yz)

)
= λ−1

2 µ2
0x

(
yt2(z)

)

holds for all x, y, z ∈ C. By putting y = z = 1 we obtain t2(x) = λ−1
2 µ2

0xt2(1).
This implies, with a = t2(1), that

(
x(yz)

)
a = x

(
x(za)

)
. Hence a = t2(1) is central

in C and the class of t2 in PGO+(C, n)(F ) is trivial. One shows similarly that the
class of t1 is trivial and, as claimed, ker ρ ' PGO+(C, n)(F ).
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(44.5) Corollary. The pointed set H1(F,PGO+
8 oS3) classifies trialitarian F -

algebras up to isomorphism. In the exact sequence

H1(F,PGO+
8 )→ H1(F,PGO+

8 oS3)→ H1(F, S3)

induced by the exact sequence (??), the first map associates the trialitarian algebra

T =
(
A×B × C,F × F × F, (σA, σB , σC), α(A,B,C)

)

where α(A,B,C) is determined as in Proposition (??), to the triple (A,B,C). The

second map associates the class of L to the trialitarian algebra T = (E,L, σ, α).

Proof : Over a separable closure of F , L and E split, hence the trialitarian algebra
is isomorphic to a split trialitarian algebra Ts. We let it as an exercise to identify
Aut(Ts) with AutG(w) for some tensor w ∈ W and some representation G →
GL(W ) such that H1(F,G) = 0 (see the proof of Theorem (??)). Then (??)
follows from Proposition (??).

44.A. Groups of trialitarian type D4. Let T = (E,L, σ, α) be a trialitarian
F -algebra. The group scheme AutL(T ) of automorphisms of T which are the
identity on L is the connected component of the identity of AutF (T ). We have,
for R ∈ AlgF ,

AutL(T )(R) = {φ ∈ RL/F
(
PGO+(E, σ)

)
(R) | αE ◦ C(φ) = (φ⊗ 1) ◦ αE }

and we set PGO+(T ) = AutL(T ). Similarly we set

GO+(T )(R) =

{x ∈ RL/F
(
GO+(E, σ)

)
(R) | αER ◦ C

(
Int(x)

)
=

(
Int(x) ⊗ 1

)
◦ αER },

so that PGO+(T ) = GO+(T )/Gm, and

Spin(T )(R) = {x ∈ RL/F
(
Spin(E, σ)

)
(R) | αER(x) = χ(x) ⊗ 1 }.

(44.6) Lemma. For the split trialitarian algebra Ts we have

Spin(Ts) ' Spin(Cs, ns) and PGO+(Ts) ' PGO+(Cs, ns).

Proof : Let Ts = (E,F × F × F, σ, αE) with E = A × A × A, A = EndF (C) the
split trialitarian algebra. For x ∈ Spin(E, σ)(R), we have αER(x) = χ(x) ⊗ 1 if
and only if x = (t, t1, t2) and t1(x ? y) = t(x) ? t2(y), hence the claim for Spin(Ts).
The claim for PGO+(Ts) follows along similar lines.

Since Spin(Ts) ' Spin(Cs, ns), Spin(T ) is simply connected of type D4 and
the vector representation induces a homomorphism

χ′ : Spin(T )→ PGO+(T )

which is a surjection of algebraic group schemes. Thus Spin(T ) is the simply
connected cover of PGO+(T ). Let γ be a cocycle in H1(F,PGO+

8 oS3) defining
the trialitarian algebra T . Since

PGO+
8 oS3 = Aut(Spin8) = Aut(PGO+

8 ),

we may use γ to twist the Galois action on Spin8 or PGO+
8 and we have

(Spin8)γ(F ) ' Spin(T ) and (PGO+
8 )γ(F ) ' PGO+(T ).

(44.7) Remark. IfG is of type 1D4 or 2D4, i.e., if L = F×Z, then E = A×C(A, σ)
and PGO+(T ) ' PGO+(A), Spin(T ) ' Spin(A).
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Classification of simple groups of type D4. Consider the groupoid D4 =
D4(F ), of trialitarian F -algebras. Denote by D4 = D4(F ) (resp. D4 = D4(F )) the
groupoid of simply connected (resp. adjoint) simple groups of type D4 over F where
morphisms are group isomorphisms. We have functors

S4 : D4(F )→ D4(F ) and S4 : D4(F )→ D4(F )

defined by S4(T ) = Spin(T ), S4(T ) = PGO+(T ).

(44.8) Theorem. The functors S4 : D4(F ) → D4(F ) and S4 : D4(F ) → D4(F )
are equivalences of categories.

Proof : Since the natural functor D4(F ) → D4(F ) is an equivalence by Theorem
(??), it suffices to prove that S4 is an equivalence. Let Γ = Gal(Fsep/F ). The
field extension functor j : D4(F ) → D4(Fsep) is clearly a Γ-embedding. We show
first that the functor j satisfies the descent condition. Let T = (E,L, σ, α) be some
object in D4(F ) (split, for example). Consider the F -space

W = HomF (E ⊗F E,E)⊕HomF (E,E)⊕HomF

(
C(E, σ), E ⊗F ∆(L)

)
,

the element w = (m,σ, α) ∈ W where m is the multiplication in E, and the
representation

ρ : GL(E)×GL
(
C(E, σ)

)
→ GL(W )

given by

ρ(g, h)(x, y, p) =
(
g(x), g(y), h ◦ p ◦ (g ⊗ 1)−1

)

where g(x) and g(y) is the result of the natural action of GL(E) on the first and
second summands. By Proposition (??) the Γ-embedding

i : A(ρsep, w)→ Ã(ρsep, w)

satisfies the descent condition. We have a functor

T = T(F ) : A(ρsep, w)→ D4(F )

taking w′ ∈ A(ρsep, w) to the F -space E with the trialitarian structure defined
by w′. A morphism between w′ and w′′ defines an isomorphism of the corresponding
structures on D. The functor T has an evident Γ-extension

T̃ = T(Fsep) : Ã(ρsep, w)→ D4(Fsep),

which is clearly an equivalence of groupoids. Since the functor i satisfies the descent
condition, so does the functor j.

For the proof of the theorem it suffices by Proposition (??) (and the following
Remark (??)) to show that for some T ∈ Dn(F ) the functor T(F ) for a separably
closed field F induces a group isomorphism

PGO(T ) = AutD4(F )(T )→ Aut
(
PGO+(T )

)
.(44.9)

The restriction of this homomorphism to the subgroup PGO+(T ), which is of in-
dex 6, induces an isomorphism of this subgroup with the group of inner auto-
morphisms Int

(
PGO+(A, σ, f)

)
, which is a subgroup in Aut

(
PGO+(A, σ)

)
also

of index 6 (see Theorem (??)). A straightforward computation shows that the
elements θ, θ+ in PGO−(A, σ, f) induce outer automorphisms of PGO+(A, σ, f)
and (??) is an isomorphism.
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Tits algebras. If (A, σ) is a degree 8 algebra with an orthogonal involution,
the description of the Tits algebra of G = Spin(A, σ) is given in (??). Now let
T = (E,L, σ, α) be a trialitarian algebra with L is a cubic field extension and let
G = Spin(T ). The Galois group Γ acts on C∗ through Gal(L⊗Z/F ). There exists
some χ ∈ C∗ such that Fχ = L is the field of definition of χ. Since GL ' Spin(E, σ)
by Remark (??), we have Aχ = E for the corresponding Tits algebra.

44.B. The Clifford invariant. The exact sequence (??) of group schemes

1→ C → Spin8
χ′−→ PGO+

8 → 1

where C is the center of Spin8, induces an exact sequence

1→ C → Spin8 oS3
χ′o1−−−→ PGO+

8 oS3 → 1

which leads to an exact sequence in cohomology

→ H1(F,C) → H1(F,Spin8 oS3)
(χ′o1)1−−−−−→ H1(F,PGO+

8 oS3).(44.10)

Since C is not central in Spin8 oS3, there is no connecting homomorphism from
the pointed set H1(F,PGO+

8 o S3) to H2(F,C). However we can obtain a con-
necting homomorphism over a fixed cubic extension L0 by “twisting” the action of
Gal(Fsep/F ) on each term of the exact sequence (??) through the cocycle δ : Gal(Fsep/F )→
S3 defining L0. We have a sequence of Galois modules

1→ (C)δ → (Spin8)δ
χ′δ−→ (PGO+

8 )δ → 1.(44.11)

In turn (??) leads to a sequence in cohomology

H1(F,Cδ)→ H1
(
F, (Spin8)δ

) χ′1δ−−→ H1
(
F, (PGO+

8 )δ
) Sn1

−−→ H2(F,Cδ).(44.12)

The set H1
(
F, (PGO+

8 )δ
)

classifies pairs (T, φ : L ∼−→ L0) where T = (E,L, σ, α)
is a trialitarian algebra. Moreover the group AutF (L0) acts on the pointed set
H1

(
F, (PGO+

8 )δ
)

and H1
(
F, (PGO+

8 )δ
)
/AutF (L0) classifies trialitarian algebras

(E,L, σ, α) with L ' L0.
The map H1

(
F, (PGO+

8 )δ
)
→ H1(F,PGO+

8 oS3), [T, φ : L ∼−→ L0] 7→ [T ] has

(p1)−1([L0]) as image where

p1 : H1(F,PGO+
8 oS3)→ H1(F, S3)

maps the class of a trialitarian algebra (E,L, σ, αE) to the class of the cubic ex-
tension L. Corresponding results hold for (Spin8)δ ; in particular H1

(
F, (Spin8)δ

)

classifies pairs
(
Γ = (V, L,Q, β), φ : L ∼−→ L0

)

where Γ = (V, L,Q, β) is a twisted composition. The map

H1
(
F, (Spin8)δ

)
→ H1

(
F, (PGO+

8 )δ
)

associates to (Γ, φ) the pair
(
End(Γ), φ

)
. (See Example (??) for the definition of

End(Γ).)
We call the class Sn1([T, φ]) ∈ H2(F,Cδ) the Clifford invariant of T and denote

it by c(T ). Observe that it depends on the choice of a fixed L0-structure on E.

(44.13) Proposition. If L = F × Z and T = T (A, σ) =
(
(A, σ) × C(A, σ), σ

)
,

then c(T ) = [C(A, σ)] ∈ Br(Z).



562 X. TRIALITARIAN CENTRAL SIMPLE ALGEBRAS

Proof : The image of the homomorphism δ : Gal(Fsep/F ) → S3 is a subgroup of
order 2 and

C(Fsep) = µ2 × µ2

(see Proposition (??)). Therefore we have H2
(
F,Cδ

)
= H2(Z, µ2) and it follows

from the long exact sequence (??) that c(T ) = [C(A, σ)] in Br(Z).

The exact sequence (??)

1→ C → µ2 × µ2 × µ2
m−→ µ2 → 1

was used to define the action of S3 on C. As above, if L0 is a fixed cubic étale
F -algebra and δ : Gal(Fsep/F ) → S3 is a cocycle which defines L0, we may use δ
to twist the action of Gal(Fsep/F ) on the above sequence and consider the induced
sequence in cohomology:

(44.14) Lemma. For i ≥ 1, there exists a commutative diagram

H i(F,Cδ) −−−−→ H i
(
F, (µ2 × µ2 × µ2)δ

)
−−−−→ H i(F, µ2)y '

y
∥∥∥

H i
(
L⊗∆(L), µ2

) NL⊗∆/L−−−−−→ H i(L, µ2)
Ni

L/F−−−−→ H i(F, µ2)

where the first row is exact, the first vertical map is injective and the second is an

isomorphism. In particular we have

H i(F,Cδ) ' ker[N i
L/F : H i(L, µ2)→ H i(F, µ2)].

Proof : The first vertical map is the composition of the restriction homomorphism

H i(F,Cδ)→ H i(L,Cδ),

which is injective since [L :F ] = 3, with the isomorphism

ϕi : H
i(L,Cδ) = H i

(
L,RL⊗∆/L(µ2)

) ∼−→ H i(L⊗∆, µ2)

(see Lemma (??) and Remark (??)). The map µ2(L) → µ2(L ⊗ Fsep) yields an
isomorphism

RL/F (µ2)
∼−→ (µ2 × µ2 × µ2)δ

so that, by Lemma (??), we have an isomorphism

H i
(
F, (µ2 × µ2 × µ2)δ

) ∼−→ H i(L, µ2).

Commutativity follows from the definition of the corestriction.

By Lemma (??) we have maps

ν1 : H2(F,Cδ) ↪→ H2(L,Cδ)
∼−→ H2

(
L⊗∆(L), µ2

)
,

ν2 : H2(F,Cδ)→ H2
(
F, (µ2 × µ2 × µ2)δ

) ∼−→ H2(L, µ2),

(44.15) Proposition. The image of the Clifford invariant c(T ) under ν1 is the

class [C(E, σ)] ∈ Br(L⊗∆) and its image under ν2 is the class [E] ∈ Br(L).

Proof : The claim follows from Proposition (??) if L is not a field and the general
case follows by tensoring with L.
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Twisted compositions and trialitarian algebras. We conclude this section
with a characterization of trialitarian algebras T = (E,L, σ, αE) such that [E] =
1 ∈ Br(L).

(44.16) Proposition. (1) If T = (E,L, σ, αE) is a trialitarian algebra such that

[E] = 1 ∈ Br(L), then there exists a twisted composition Γ = (V, L,N, β) such that

T = End(Γ).
(2) Γ, Γ′ are twisted compositions such that End(Γ) ' End(Γ′) if and only if there

exists λ ∈ L× such that Γ′ ' Γλ.

Proof : (??) The trialitarian algebra (E,L, σ, α) is of the form End(Γ) if and only
if its class is in the image of the map (χ′ o 1)1 of sequence (??). Thus, in view
of (??), the assertion will follow if we can show that the condition [E] = 1 in Br(L)
implies Sn1([x]) = 0 for [x] = [T, φ] = [(E,L, σ, α), φ] ∈ H1

(
F, (PGO+

8 )δ
)
. We first

consider the case where L = F ×∆, so that E =
(
A,C(A)

)
(see Proposition (??)).

The homomorphism δ factors through S2 and the action on C = µ2 × µ2 in the
sequence (??) is the twist. Thus C = µ2 × µ2 is a permutation module. By
Lemma (??) and Remark (??) , we have

H2(F,Cδ) ' H2(∆, µ2)

and Sn1([x]) = [C(A, σ)] (see Proposition (??)). Thus [E] = 1 implies Sn1([x]) = 1
as wanted. If L is a field, we extend scalars from F to L. Since L is a cubic extension,
the restriction mapH2(F,Cδ)→ H2(L,Cδ) is injective and, since L⊗L ' L×L⊗∆,
we are reduced to the case L = F ×∆.

(??) The group H1(F,Cδ) operates transitively on the fibers of (χ′o1)1; recall
that by (??)

H1(F,Cδ) = ker[N1
L/F : L×/L×2 → F×/F×2].

On the other hand we have an exact sequence

1→ F×/F×2 → L×/L×2 #−→ L×/L×2
N1

L/F−−−→ F×/F×2

by Proposition (??), hence H1(F,Cδ) ' im(#) ⊂ L×/L×2. One can then check
that, for [λ#] ∈ H1(F,Cδ), [λ#] acts on [Γ, φ] as [λ#] · [Γ, φ] = [Γλ, φ].

Now let Γ, Γ′ be such that End(Γ) ' End(Γ′). We may assume that Γ, Γ′ are
defined over the same étale algebra L. Furthermore, since the action of AutF (L)
is equivariant with respect to the map (χ′)1δ of sequence (??), we may assume that
we have pairs (Γ, φ), (Γ′, φ′) such that

(
End(Γ), φ

)
'

(
End(Γ′), φ′

)
. Then (Γ, φ),

(Γ′, φ′) are in the same fiber and the claim follows from the definition of the action
of H1(F,Cδ) on this fiber.

§45. Lie Algebras and Triality

In this section we describe how trialitarian algebras are related to Lie algebras
of type D4. Most of the proofs will only be sketched. We still assume that charF 6=
2. We write o8 for the Lie algebra of the orthogonal group O(V, q) where q is a
hyperbolic quadratic form of rank 8. As for the groups Spin8 and PGO+

8 , there
exists an S3-action on the Lie algebra o8, which is known as “local triality”. Its
description will again use Clifford algebras. For any quadratic space (V, q) we have

o(V, q) = { f ∈ EndF (V ) | bq(fx, y) + bq(x, fy) = 0 for all x, y ∈ V }.
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It turns out that this Lie algebra can be identified with a (Lie) subalgebra of the
Clifford algebra C(V, q), as we now show. (Compare Jacobson [?, pp. 231–232].)

(45.1) Lemma. For x, y, z ∈ V we have in C(V, q):

[[x, y], z] = 2
(
xbq(y, z)− ybq(x, z)

)
∈ V.

Proof : This is a direct computation based on the fact that for v, w ∈ V , bq(v, w) =
vw + wv in C(V, q): For x, y, z ∈ V , we compute:

[[x, y], z] = (xyz + xzy + yzx+ zyx)

− (yxz + yzx+ xzy + zxy)

= 2
(
xbq(y, z)− ybq(x, z)

)
∈ V.

Let [V, V ] ⊂ C(V, q) be the subspace spanned by the brackets [x, y] = xy − yx
for x, y ∈ V . In view of (??) we may define a linear map

ad: [V, V ]→ EndF (V )

by: adξ(z) = [ξ, z] for ξ ∈ [V, V ] and z ∈ V . Lemma (??) yields:

ad[x,y] = 2
(
x⊗ b̂q(y)− y ⊗ b̂q(x)

)
for x, y ∈ V .(45.2)

(45.3) Lemma. (1) The following diagram is commutative:

[V, V ] −−−−→ C0(V, q)

ad

y
yηq

EndF (V ) −−−−→
1
2 c

C(EndF (V ), σq)

where c is the canonical map and ηq is the canonical identification of Proposi-

tion (??).
(2) The subspace [V, V ] is a Lie subalgebra of L

(
C0(V, q)

)
, and ad induces an iso-

morphism of Lie algebras :

ad: [V, V ] ∼−→ o(V, q).

(3) The restriction of the canonical map c to o(V, q) yields an injective Lie algebra

homomorphism:

1
2c : o(V, q) ↪→ L

(
C(End(V ), σq)

)
.

Proof : (??) follows from (??) and from the definitions of c and ηq.
(??) Jacobi’s identity yields for x, y, u, v ∈ V :

[[u, v], [x, y]] = [[[x, y], v], u]− [[[x, y], u], v].

Since Lemma (??) shows that [[x, y], z] ∈ V for all x, y, z ∈ V , it follows that

[[u, v], [x, y]] ∈ [V, V ].

Therefore, [V, V ] is a Lie subalgebra of L
(
C0(V, q)

)
. Jacobi’s identity also yields:

ad[ξ,ζ] = [adξ, adζ ] for ξ, ζ ∈ [V, V ],
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hence ad is a Lie algebra homomorphism. From (??) it follows for x, y, u, v ∈ V
that:

bq
(
ad[x,y](u), v

)
= 2(bq(x, v)bq(y, u)− bq(y, v)bq(x, u))
= −bq

(
u, ad[x,y](v)

)
,

hence ad[x,y] ∈ o(V, q). Therefore, we may consider ad as a map:

ad: [V, V ]→ o(V, q).

It only remains to prove that this map is bijective. Let n = dimV . Using an
orthogonal basis of V , it is easily verified that dim[V, V ] = n(n−1)/2 = dim o(V, q).
On the other hand, since ηq is an isomorphism, (??) shows that ad is injective; it
is therefore also surjective.

(??) Using ηq to identify [V, V ] with a Lie subalgebra of C(End(V ), σq), we
derive from (??) and (??) that the restriction of 1

2c to o(V, q) is the inverse of ad.

Therefore, 1
2c is injective on o(V, q) and is a Lie algebra homomorphism.

We have more in dimension 8:

(45.4) Lemma. Let Z be the center of the even Clifford algebra C0(q). If V has

dimension 8, the embedding [V, V ] ⊂ L
(
C0(q), τ

)
induces a canonical isomorphism

of Lie Z-algebras [V, V ]⊗Z ∼−→ L
(
C0(q), τ

)
. Thus the adjoint representation induces

an isomorphism ad: L
(
C0(q), τ

) ∼−→ o(q)⊗ Z.

Proof : Fixing an orthogonal basis of V , it is easy to check that [V, V ] and Z are
linearly disjoint over F in C0(q), so that the canonical map is injective. It is
surjective by dimension count.

45.A. Local triality. Let (S, ?) be a symmetric composition algebra with
norm n. The following proposition is known as the “triality principle” for the Lie
algebra o(n) or as “local triality”.

(45.5) Proposition. For any λ ∈ o(n), there exist unique elements λ+, λ− ∈ o(n)
such that

(1) λ+(x ? y) = λ(x) ? y + x ? λ−(y),

(2) λ−(x ? y) = λ+(x) ? y + x ? λ(y),

(3) λ(x ? y) = λ−(x) ? y + x ? λ+(y)

for all x, y ∈ o(n).

Proof : Let λ = adξ |S for ξ ∈ [S, S], so that adξ extends to an inner derivation
of C0(n), also written adξ . Let αS : C0(n) ∼−→ EndF (S)×EndF (S) be as in Propo-

sition (??). The derivation αS ◦ adξ ◦α−1
S is equal to adα(ξ); we write α(ξ) as

(λ+, λ−) and, since adξ commutes with τ , we see that λ+, λ− ∈ o(n). For any
x ∈ S we have(

0 `λx
rλx 0

)
=

(
λ+ 0
0 λ−

) (
0 `x
rx 0

)
−

(
0 `x
rx 0

) (
λ+ 0
0 λ−

)

by definition of αS , or

λ+(x ? y)− x ? λ−(y) = λ(x) ? y

λ−(y ? x)− λ+(y) ? x = y ? λ(x).
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This gives formulas (??) and (??).
From (??) we obtain

bn
(
λ+(x ? y), z

)
= bn

(
λ(x) ? y, z

)
+ bn

(
x ? λ−(y), z

)
.

Since bn(x ? y, z) = bn(x, y ? z) and since λ−, λ and λ+ are in o(n), this implies

−bn
(
x, y ? λ+(z)

)
= −bn

(
x, λ(y ? z)

)
+ bn

(
x, λ−(y) ? z

)

for all x, y, and z in o(n), hence (??). We leave uniqueness as an exercise.

Proposition (??) is a Lie analogue of Proposition (??). We have obvious Lie
analogues of (??) and (??). Let θ+(λ) = λ+, θ−(λ) = λ−.

(45.6) Corollary. For all x, y ∈ o(n) we have

o(n) '
{

(λ, λ+, λ−) ∈ o(n)× o(n)× o(n)
∣∣ λ(x ? y) = λ−(x) ? y + x ? λ+(y)

}

and the projections ρ, ρ+, ρ− : (λ, λ+, λ−) 7→ λ, λ+, λ− give the three irreducible

representations of o(n) of degree 8. The maps θ+, θ− permute the representa-

tions ρ+, ρ, ρ−, hence are outer automorphisms of o(n). They generate a group

isomorphic to A3 and o(n)A3 is the Lie algebra of derivations of the composition

algebra S.

Proof : The projection ρ is the natural representation of o(n) and ρ± correspond
to the half-spin representations. These are the three non-equivalent irreducible
representations of o(n) of degree 8 (see Jacobson [?]). Since θ+, θ− permute these
representations, they are outer automorphisms.

(45.7) Remark. The Lie algebra of derivations of a symmetric composition S is
a simple Lie algebra of type A2 if S is of type A2 or is of type G2 if S is of type G2.

If the composition algebra (S, ?, n) is a para-Cayley algebra (C, ?, n) with con-
jugation π : x 7→ x̄, we have, as in the case of Spin(C, n), not only an action of A3,
but of S3. For any λ ∈ o(n) the element θ(λ) = πλπ belongs to o(n). The auto-
morphisms θ, θ+ and θ− of o(n) generate a group isomorphic to S3.

(45.8) Theorem ([?, Theorem 5, p. 26]). The group of F -automorphisms of the

Lie algebra o(n) is isomorphic to the semidirect product PGO+(n) o S3 where

PGO+ operates through inner automorphisms and S3 operates through θ+, θ−

and θ.

Proof : Let ϕ be an automorphism of o(n) and let ρi, i = 1, 2, 3, be the three
irreducible representations of degree 8. Then ρi ◦ ϕ is again an irreducible repre-
sentation of degree 8. By Jacobson [?, Chap. 9], there exist ψ ∈ GL(C) and π ∈ S3

such that

ρi ◦ ϕ = Int(ψ) ◦ ρπ(i).

By Corollary (??) there exists some π̃ ∈ Aut
(
o(n)

)
such that ρπ(i) = ρi ◦ π̃. Hence

we obtain

ρi ◦ ϕ = Int(ψ) ◦ ρi ◦ π̃.
It follows in particular for the natural representation o(n) ↪→ EndF (C) that ϕ =
Int(ψ) ◦ π̃. It remains to show that Int(ψ) ∈ PGO+(n) or that ψ ∈ GO+(n). For
any x ∈ o(n), we have Int(ψ)(x) ∈ o(n), hence

b̂−1
n (ψxψ−1)∗b̂n = b̂−1

n ψ∗−1x∗ψ∗b̂n = −ψxψ−1 = −b̂−1
n ψ∗−1b̂nxb̂

−1
n ψ∗b̂n,
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so that ψ∗b̂nψb̂−1
n is central in EndF (C). Thus there exists some λ ∈ F× such that

ψ∗b̂nψ = λb̂n and ψ is a similitude. The fact that ψ is proper follows from the fact
that Int(ψ) does not switch the two half-spin representations.

A Lie algebra L is of type D4 if L⊗Fsep ' o8. In particular o(n) is of type D4.

(45.9) Corollary. The pointed set H1(F,PGO+
8 oS3) classifies Lie algebras of

type D4 over F .

Proof : If F is separably closed, we have PGO+(n) = PGO+
8 , so that Corol-

lary (??) follows from Theorem (??) and (??).

45.B. Derivations of twisted compositions. Let Γ = (V, L,Q, β) be a
twisted composition and let β(x, y) = β(x + y) − β(x) − β(y) for x, y ∈ V . An
L-linear map d : V → V such that d ∈ o(Q) and

d
(
β(x, y)

)
= β(dx, y) + β(x, dy)(45.10)

is a derivation of Γ. The set Der(Γ) = Der(V, L,Q, β) of all derivations of Γ is a
Lie algebra under the operation [x, y] = x ◦ y − y ◦ x. In fact we have

Der(Γ) = Lie
(
Spin(V, L,Q, β)

)

where Spin(V, L,Q, β) is as in §??.
If L/F is cyclic with ρ a generator of Gal(L/F ) and β(x) = x ∗ x, comparing

the ρ-semilinear parts on both sides of (??) shows that (??) is equivalent with

d(x ∗ y) = x ∗ dy + dx ∗ y. If Γ = C̃ for C a Cayley algebra, the formula d(x ∗ y) =

x ∗ dy + dx ∗ y and Corollary (??) implies that Der(C̃) ' o(n). Hence, by descent,
Der(Γ) is always a Lie algebra of type D4.

Let J be an Albert algebra over a field F of characteristic 6= 2, 3. The F -
vector space Der(J) is a Lie algebra of type F4 (see Chevalley-Schafer [?] or Schafer
[?, Theorem 4.9, p. 112]). Let L be a cubic étale subalgebra of J and let J =
J(V, L) = L ⊕ V be the corresponding Springer decomposition. Let Der(J/L) be
the F -subspace of Der(J) of derivations which are zero on L. We have an obvious
isomorphism

Der(Γ) ' Der(J/L)

obtained by extending any derivation of Γ to a derivation of J by mapping L to
zero. Thus Der(J/L) is a Lie algebra of type D4. Such a Lie algebra is said of
Jordan type. We have thus shown the following:

(45.11) Proposition. Every Lie algebra of Jordan type is isomorphic to Der(Γ)
for some twisted composition Γ.

45.C. Lie algebras and trialitarian algebras. We may also associate a Lie
algebra L(T ) to a trialitarian algebra T = (E,L, σ, α):

L(T ) = {x ∈ L(E, σ) | α(x) = x⊗ 1 }
where L(E, σ) is the Lie algebra of skew-symmetric elements in (E, σ) and can be

identified with a Lie subalgebra of C(E, σ) in view of Lemma (??). For T = End(C̃)
we obtain

L(T ) ' L
(
EndF (C), σn

)
' o(n)

by (??), hence L(T ) is of type D4. We shall see that any simple Lie algebra of
type D4 is of the form L(T ) for some trialitarian algebra T .
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(45.12) Proposition. The restriction map induces an isomorphism of algebraic

group schemes

Autalg

(
End(C̃)

) ∼−→ Autalg

(
o(n)

)
.

Proof : The restriction map induces a group homomorphism

AutF
(
End(C̃)

)
→ AutF

(
o(n)

)
.

Since o(n) generates C0(n) over F it generates C0(n)(F×F×F ) over F × F × F and
the map is injective. To prove surjectivity, we show that any automorphism of o(n)

extends to an automorphism of End(C̃). The group AutF
(
o(n)

)
is the semidirect

product of the group of inner automorphisms with the group S3 where S3 acts as
in Corollary (??). An inner automorphism is of the form Int(f) where f is a direct
similitude of (C, n) with multiplier λ. By Equation (??) we see that in C(C, n)

λ−1 ad[f(x),f(y)] z = 2λ−1
(
f(x)bn

(
f(y), z

)
− f(y)bn

(
f(x), z

))

= f
(
ad[x,y]

(
f−1(z)

))
.

Thus

ad ◦C0(f) = Int(f) ◦ ad

holds in the Lie algebra [C,C] ⊂ C0(C, n). Since [C,C] generates C0(C, n), the

automorphism
(
C0(f), Int(f)

)
of End(C̃) extends Int(f). We now extend the auto-

morphisms θ± of o(n) to automorphisms of End(C̃). Let ν : o(n)→ C0(n)(F×F×F ),

ξ 7→
(
ξ, ρ1(ξ), ρ2(ξ)

)
be the canonical embedding. Since ρ1ν = νθ+ and ρ2ν = νθ−,

the extension of θ+ is (ρ1, ρ1) and the extension of θ− is (ρ2, ρ2). Let ρε(x0, x1, x2) =
(x0, x2, x1). The fact that ε ∈ AutF

(
o(n)

)
extends follows from νε = Int(π)ρεν.

(45.13) Corollary. Any Lie algebra L of type D4 over F is of the form L(T ) for

some trialitarian algebra T which is uniquely determined up to isomorphism by L.

Proof : By (??) trialitarian algebras and Lie algebras of type D4 are classified by
the same pointed set H1(F,PGO+

8 oS3) and, in view of (??), the same descent
datum associated to a cohomology class gives the trialitarian algebra T and its Lie
subalgebra L(T ).

(45.14) Remark. We denote the trialitarian algebra T = (E,L, σ, α) correspond-
ing to the Lie algebra L by T (L) =

(
E(L), L(L), σ, α

)
. The semisimple F -algebra

E(L) (and its center L(L)) was already defined by Jacobson [?] and Allen [?]
through Galois descent for any Lie algebra L of type D4. More precisely, if L

is a Lie algebra of type D4, then Ls = L⊗ Fsep can be identified with

o(ns) ' S(ns) ⊂ EndFs(Cs)× EndFs(Cs)× EndFs(Cs)

where

S(ns) =
{

(λ, λ+, λ−) ∈ o(ns)× o(ns)× o(ns)
∣∣ λ(x ? y) = λ−(x) ? y + x ? λ+(y)

}

(see (??)) and E(L) is the associative F -subalgebra of EndFs(Cs) × EndFs(Cs) ×
EndFs(Cs) generated by the image of L. The algebra E(L) is called the Allen

invariant of L in Allison [?].

In particular:
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(45.15) Proposition (Jacobson [?, §4]). For (A, σ) a central simple algebra of de-

gree 8 over F with orthogonal involution,

L
(
T (A, σ)

)
' L(A, σ)

where T (A, σ) is as in (??). In particular any Lie algebra L of type 1D4 or 2D4 is

of the form L(A, σ). The algebra L is of type 1D4 if and only if the discriminant

of the involution σ is trivial.

We conclude with a result of Allen [?, Theorem I, p. 258]:

(45.16) Proposition (Allen). The Allen invariant of a Lie algebra L of type D4

is a full matrix ring over its center if and only if the algebra is a Lie algebra of

Jordan type.

Proof : Let L be of type D4. If [E(L)] = 1 in Br(L) then by Proposition (??)
T (L) ' End(Γ) for some twisted composition Γ. Then L ' L

(
End(Γ)

)
, which is

isomorphic to Der(Γ), and the assertion follows by Proposition (??) Conversely, if
L is of Jordan type, we have L ' L(T ) for T ' End(Γ), Γ a twisted composition,
hence the claim.

Exercises

1. Let L/F be a cubic field extension and let charF 6= 2. Show that the map
K1 F ⊗K1 L→ K2 L given by symbols is surjective. Hint : Let L = F (ξ); show
that any λ ∈ L is of the form λ = (αξ + β)(γξ + δ)−1 for α, β, γ, and δ ∈ F .
Thus K2 L is generated by symbols of the form {ξ + β;−ξ + β′}.

2. Describe real and p-adic trialitarian algebras. Reference

missing: Add

some more

exercises!

3.

Notes

The notion of a trialitarian algebra defined here seems to be new, and our
definition may be not the final one. The main reason for assuming characteristic
different from 2, is that in characteristic 2 we need to work with quadratic pairs.
The involution σ of C(A, σ, f) is part of a quadratic pair if A has degree 8 (see
the notes of Chapter II). Thus, if C(A, σ, f) ∼−→ (B, σB)× (C, σC) σB and σC will
also be parts of quadratic pairs (as it should be by triality!). However we did not
succeed in giving a rational definition of the quadratic pair on C(A, σ, f).

It may be still useful to explain how we came to the concept of trialitarian
algebras, out of three different situations:

(I) Having the notion of a twisted composition Γ = (V, L,Q, β), which is in
particular a quadratic space (V,Q) over a cubic étale algebra L, it is tempting
to consider the algebra with involution

(
EndL(V ), σL

)
and to try to describe the

structure induced from the existence of β.
(II) In the study of outer forms of Lie algebras of type D4 Jacobson [?] intro-

duced the semisimple algebra E(L), as defined in Remark (??), and studied the
cases 1D4 and 2D4; in particular he proved Proposition (??). The techniques of
Jacobson were then applied by Allen [?] to arbitrary outer forms. Allen proved
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in particular that NL/F
(
E(L)

)
= 1 (see Proposition (??)) and associated a coho-

mological invariant in H2(L,Gm) to the Lie algebra L. In fact this invariant is
just the image in H2(L,Gm) of our Clifford invariant. It is used by Allen in his
proof of Proposition (??). As an application, Allen obtained the classification of
Lie algebras of type D4 over finite and p-adic fields. In [?] Allison used the algebra
E(L) (which he called the Allen algebra) to construct all Lie algebras of type D4

over a number field. One step in his proof is Proposition (??) in the special case of
number fields (see [?, Proposition 6.1]).

(III) For any central simple algebra (A, σ) of degree 8 with an orthogonal
involution having trivial discriminant, we have C(A, σ) ' B × C, with B, C of
degree 8 with an orthogonal involution having trivial discriminant. At this stage
one can easily suspect that triality permutes A, B and C. In connection with (I)
and (II), the next step is to view the triple A, B, C as an algebra over F ×F ×F ,
and this explains how the Clifford algebra comes into the picture.

Quaternionic trialitarian algebras (see §??) were recently used by Garibaldi
[?] to construct all isotropic algebraic groups of type 3D4 and 6D4 over a field of
characteristic not 2.


