Chapter 5

Applying Newton's Laws

Newton's Laws

1st Law: An object at rest or traveling in uniform motion will remain at rest or traveling in uniform motion unless and until an external force is applied

3rd Law: For every Action, there is an equal but opposite Reaction

Part 1

Some particular forces

Some particular forces

In Chapter 5 we deal with following forces
\checkmark Gravitational force F_{g}
\checkmark Normal force N
\checkmark Tension T
\checkmark Frictional force f
\checkmark Centripetal force F_{c}

The Gravitational Force

A gravitational force on a body is a pull that is directed toward a second body.
In chapter 5 we do not discuss the nature of this force, and we usually consider that the second body is Earth
We mean that the gravitational force pulls directly toward the center of Earth - that is, directly down toward the ground

ground

Magnitude: $\quad F_{g}=m g$
Direction: toward the ground

new concepts

The Normal Force

When a body presses against a surface, the surface deforms and pushes on the body with a normal force that is perpendicular to the surface

Tension force

When a cord (a rope, cable, ...) is attached to a body a pulled taut, the cord pulls on the body with force T.
Normally: the cord is considered massless (comparing to the body's mass) and unstretchable (it si only a connection between bodies)
Magnitude: T
Direction: away from the body and along the cord

Part 1b

Frictional forces

Frictional Forces

Just one example

The bad:
About 20\% of the gasoline used in an automobile is needed to counteract friction in the engine and in the drive train.
Then ... air resistance
The good
Without frictional forces we could not get an automobile to go anywhere

Frictional Forces (cont)

Microscopically, friction is a very complicated phenomenon (spikes, cold welding, ...)
Macroscopically, at large-scale level, it

On a microscopic level, even smooth surf
are rough: they tend to catch and cling. is relatively simple

Phenomenologically (empirically), force of friction acting on a body is directly proportional in magnitude to normal force of the surface on the body:
$|\vec{f}| \propto|\vec{N}|$

Properties of Friction

Property 1: If the body does not move, then the static frictional force \vec{f}_{s} and the component of \vec{F} that is parallel to the surface balance each other.
Property 2: The magnitude of \vec{f}_{s} has a maximum value $f_{s, \max }$ that is given by

$$
f_{s, \max }=\mu_{s} N
$$

where μ_{s} is a coefficient of static friction, and N is the magnitude of the normal force on the body from the surface

Force of static friction: one must overcome (exceed) it in order to initiate motion of the body along the surface ${ }^{11}$

Formal derivation

When block is not moving, friction force compensates x-component of gravitational force: $f_{s}=m g^{\star} \sin (\theta)$. However by definition $f_{s}=\mu_{s} N=\mu_{s} m g^{\star} \cos (\theta)$. Then $m g^{\star} \sin (\theta)=\mu_{s} m g^{\star} \cos (\theta)$, and $\mu=\tan (\theta)$

Static Friction

$$
f_{s, \max }=\mu_{s} N
$$

Weak applied force,
box remains at rest
Static friction: $f_{\mathrm{s}}<\mu_{\mathrm{s}} n$

Stronger applied force, box just about to slide. Static friction: $f_{\mathrm{s}}=\mu_{\mathrm{s}} n$

Properties of Friction (more)

Property 3: If the body begins to slide along the surface, the magnitude of the frictional force rapidly decreases to a value f_{k} given by

$$
f_{k}=\mu_{k} N
$$

where μ_{k} is the coefficient of kinetic friction
Force of kinetic friction: acts while the body moves along the surface

Frictional Forces

Direction: parallel to the surface, and is directed opposite the component of an external force.
Magnitude $f_{s}=\mu_{s} N$

Kinetic Friction

Direction: always opposite to direction of velocity
Magnitude $f_{k}=\mu_{k} N$
Frictional force is independent of the area of contact between the body and the surface.

How about motion in fluids

A fluid is anything that can flow - either a gas or liquid When a body moves through the fluid (or the fluid moves past the body), the body experience a drag force that opposes the relative motion.
At low speed: $f=k_{1} v$
At high speed

$$
f=k_{2} v^{2}=D=0.5 C \rho A v^{2}
$$

Terminal speed: when a body falls at constant speed, i.e.

$$
\begin{array}{|l|}
0.5 C \rho A v^{2}=m g \\
v=\sqrt{\frac{2 m g}{C \rho A}}
\end{array} \quad \begin{aligned}
& C-\text { the drag coefficient }(0.2-1.0) \\
& \text { A - effective cross section } \\
& \rho-\text { the air density }
\end{aligned}
$$

Terminal speed

$v=\sqrt{\frac{2 m g}{C \rho A}}$

object	speed $(\mathrm{m} / \mathrm{s})$	speed (mph)	distance $(\mathrm{m}) 95 \%$
shot	145	316	2500
sky diver	60	130	430
baseball	42	92	210
basketball	20	44	47
raindrop	7	15	6
parachutist	5	11	3

Part 2

Free-Body Diagrams

new concepts

Free-body diagram as a powerful tool
IDEA: replace an actual environment of an object as a set of forces acting on that object

Free-body diagram as a powerful tool

Free-body diagrams show all forces acting on a body

$$
\vec{F}=\vec{F}_{1}+\vec{F}_{2}+\ldots \vec{F}_{n}=\sum_{i}^{n} \vec{F}_{i}
$$

Key ideas for drawing a free-body diagram:

1. Include: ALL forces acting on the body matter.
2. When a problem includes more than one body - draw a separate free-body diagram for each body.
3. Not to include: any forces that the body exerts on any other body.
4. Not to include: non-existing forces (no object - no force).

Part 3

Problems with gravitational, normal and tension forces

Objects in equilibrium

According to Newton's first law for an object in equilibrium (at rest)

$$
\begin{aligned}
& \vec{F}=\vec{F}_{1}+\vec{F}_{2}+\ldots \vec{F}_{n}=\sum_{i}^{n} \vec{F}_{i}=0 \\
& F_{x}=F_{x 1}+F_{x 2}+\ldots F_{x n}=\sum_{i}^{n} F_{x i}=0 \\
& F_{y}=F_{y 1}+F_{y 2}+\ldots F_{y n}=\sum_{i}^{n} F_{y i}=0
\end{aligned}
$$

Objects in motion

According to Newton's second law

$$
\begin{aligned}
& \vec{F}=\vec{F}_{1}+\vec{F}_{2}+\ldots \vec{F}_{n}=\sum_{i}^{n} \vec{F}_{i}=m \vec{a} \\
& F_{x}=F_{x 1}+F_{x 2}+\ldots F_{x n}=\sum_{i}^{n} F_{x i}=m a_{x} \\
& F_{y}=F_{y 1}+F_{y 2}+\ldots F_{y n}=\sum_{i}^{n} F_{y i}=m a_{y}
\end{aligned}
$$

example 1: one object in 1D
an object on a string (equilibrium)
Given: m
Unknown: T
$\vec{F}_{n e t}=\vec{T}+m \vec{g}=0$
$\left\{\begin{array}{l}m a_{x}=0 \\ m a_{y}=T-m g=0\end{array}\right.$
$T=m g$

example 2: two objects in $1 D$

two objects on a string (equilibrium)
Given: m_{1}, m_{2}
Unknown: T_{1}, T_{2}
$\vec{F}_{n e t, 1}=\vec{T}_{1}+\vec{T}_{2}+m_{1} \vec{g}=0$
$\vec{F}_{n e t, 2}=\vec{T}_{2}+m_{2} \vec{g}=0$
$T_{1}-T_{2}-m_{1} g=0$
$T_{2}-m_{2} g=0$

$$
\begin{aligned}
& T_{1}=\left(m_{1}+m_{2}\right) g \\
& T_{2}=m_{2} g
\end{aligned}
$$

example

example 3a: 2D case

one object in equilibrium Given: m, angle

$$
\begin{aligned}
& \vec{F}_{n e t, 1}=\vec{T}_{1}+m \vec{g}=0 \\
& \vec{F}_{n e t, 2}=\vec{T}_{1}+\vec{T}_{2}+\vec{T}_{3}=0
\end{aligned}
$$

Unknown: T_{1}, T_{2}, T_{3}
Objects: the engine \& the ring
$y_{1}: \quad T_{1}-m g=0$
$x_{2}: \quad T_{3} \cos (\alpha)-T_{2}=0$
$y_{2}: \quad T_{3} \sin (\alpha)-T_{1}=0$

$$
\begin{aligned}
& T_{1}=m g \\
& T_{3}=m g / \sin (\alpha) \\
& T_{2}=m g \cos (\alpha) / \sin (\alpha)
\end{aligned}
$$

example 3b: 2D case

Given: m, angles
Unknown: $\mathrm{T}, \mathrm{T}_{2}$
$\vec{F}_{n e t, 1}=\vec{T}_{1}+m \vec{g}=0$
$\vec{F}_{n e t, 2}=\vec{T}+\vec{T}_{2}+\vec{T}_{3}=0$
$y_{1}: \quad T_{1}-m g=0$
$x_{2}: \quad T_{2} \cos (\alpha)-T_{3} \cos (\alpha)=0$
$y_{2}: \quad T_{2} \sin (\alpha)+T_{3} \sin (\alpha)-T_{1}=0$
$T_{1}=m g$
$T_{2}=T_{3}=\frac{m g}{2 \sin (\alpha)}$

example

example 4a: one object in 2D

object in equilibrium
Given: m, angle
Unknown: T, N

$$
\vec{F}_{n e t}=\vec{N}+\vec{T}+m \vec{g}=0
$$

$x: \quad T-m g \sin (\theta)=0$
y : $N-m g \cos (\theta)=0$

$$
\begin{aligned}
& T=m g \sin (\theta) \\
& N=m g \cos (\theta)
\end{aligned}
$$

(b)

example 4b: one object in 2D

Moving object (no friction)
Given: m, angle

Unknown: a
(a) The situation

$$
\vec{F}_{n e t}=\vec{N}+m \vec{g}=m \vec{a}
$$

$x: m g \sin (\theta)=m a_{x}$
$y: \quad N-m g \cos (\theta)=m a_{y}=0$
$a_{x}=g \sin (\theta)$
$N=m g \cos (\theta)$

example 5: two objects in 2D

Moving objects (no friction)
Given: M, m
Unknown: T, a

$$
\begin{aligned}
& \vec{F}_{n e t, m}=\vec{T}+m \vec{g}=m \vec{a} \\
& \vec{F}_{n e t, M}=\vec{T}=M \vec{a}
\end{aligned}
$$

Sliding

$$
x: \quad T=M a
$$

$$
y: \quad T-m g=-m a
$$

$$
\begin{aligned}
& a=\frac{m}{m+M} g \\
& T=\frac{m M}{m+M} g
\end{aligned}
$$

Hanging block H
example 6: three objects in 1D
Moving objects (no friction)
Given: $T_{3}, m_{1}, m_{2}, m_{3}$
Unknown: $a_{1} T_{1}, T_{2}$

Attention: all blocks have the same acceleration

$$
\begin{aligned}
& T_{1}=m_{1} a \\
& T_{2}-T_{1}=m_{2} a \\
& T_{3}-T_{2}=m_{3} a
\end{aligned}
$$

Part 4

Problems with gravitational, normal, tension forces and frictional forces

example

example: one object in 1 D

The record for the longest skid marks on a public road was recorded in 1960 by a Jaguar on the M1 highway in England - the marks were 290 meters long.
Given: $L=290 \mathrm{~m}$, kinetic friction 0.6
Unknown: v_{0}.
Assume: the car's deceleration was constant during the breaking

example

example: one object in 1D

Given: $L=290 \mathrm{~m}$, kinetic friction 0.6
Unknown: v_{0}.

$v^{2}=v_{0}^{2}+2 a\left(x-x_{0}\right)$	
$\begin{aligned} & -m a=f_{k}=\mu_{k} m g \\ & a=-\mu_{k} g \end{aligned}$	$\mathrm{v}_{0}=58 \mathrm{~m} / \mathrm{s}=130 \mathrm{mph}$ The result does NOT depend on the car's mass!!!
$v_{0}=\sqrt{2 \mu_{k} g\left(x-x_{0}\right)}$	

example: a book against a wall
Given: book 2 kg , static friction 0.4
Unknown: force to keep the book

$$
\begin{aligned}
& m g=f_{s} \\
& f_{s}=\mu N=\mu F \\
& F=m g / \mu_{s}
\end{aligned}
$$

Part 5

Dynamics of Uniform Circular Motion

Dynamics of Uniform Circular Motion

From kinematics of uniform circular motion
$\vec{a}=-r \omega^{2} \hat{\imath}_{r}=\left(-v^{2} / r\right) \hat{\imath}_{r}$
According to $2^{\text {nd }}$ Law
$\vec{F}=m \vec{a}=\left(-m v^{2} / r\right) \hat{\imath}_{r}$

Circular motion is

 possible only if there is an applied forcein radial direction producing required centripetal acceleration

Mass on a string in uniform motion

From $2^{\text {nd }}$ Law
$T \hat{\imath}_{r}=-m r \omega^{2} \hat{\imath}_{r}$
String tension
$T=-m r \omega^{2}=-m \frac{v_{\theta}^{2}}{R}$

Tension causes particle to move in circular path with constant speed

Important:
Force pulls particle toward center, rather than prevents it from moving radially outward

If string breaks, particle would move along tangent to circular path

example: "Dare Devil 1901"

In 1901 circus performance
Given: R, M
Unknown: v

$$
\vec{N}+m \vec{g}=m \vec{a}
$$

$-N-m g=-m \frac{v^{2}}{R}$
$N=m \frac{v^{2}}{R}-m g$
$N=0: \quad v=\sqrt{g R}$

(b)
for $R=2.7 \mathrm{~m} \quad v=5.1 \mathrm{~m} / \mathrm{s}$

Car on circular path with flat roadbed

NOTE: circular motion of car is impossible without friction

Car on circular path with banked roadbed

Centripetal force is provided
by static friction \vec{f}_{s} and normal force \vec{N}

Apply $2^{\text {nd }}$ Law:
$-m \frac{v_{\theta}^{2}}{R} \hat{\imath}_{r}=\vec{N}+\vec{f}_{s}+\vec{W}$
In terms of unit vectors:

$$
\begin{aligned}
-m \frac{v_{\theta}^{2}}{R} \hat{\imath}_{r} & =\hat{k} N \cos \theta-\hat{\imath}_{r} N \sin \theta \\
& -\hat{\imath}_{r} f_{s} \cos \theta-\hat{k} f_{s} \sin \theta \\
& -\hat{k} m g
\end{aligned}
$$

In component form:
$m \frac{v_{\theta}^{2}}{R}=N \sin \theta+f_{s} \cos \theta$
$0=N \cos \theta-f_{s} \sin \theta-m g$

NOTE: circular motion of car is possible without friction

Car on frictionless ramp

When $\overrightarrow{f_{s}}=0$, centripetal force
is provided by normal force \vec{N} ony

Set of equations:

$$
\begin{array}{r}
N \sin \theta=m \frac{v_{\theta}^{2}}{R} \\
N \cos \theta=m g
\end{array}
$$

For given radius R and ramp angle θ,

Combining
equations:
$\tan \theta=v_{\theta}^{2} / g R$
or
$v_{\theta}=\sqrt{g R \tan \theta}$
there is a speed $v_{\theta}=\sqrt{g R \tan \theta}$ at which car can hold frictionless ramp

For given speed v and ramp angle θ, there is a radius $R=v^{2} \cot \theta / g$ at which car can hold frictionless ramp

Car on ramp with friction

Returning to general case:
$m \frac{v_{\theta}^{2}}{R}=N \sin \theta+f_{s} \cos \theta$
$N \cos \theta=f_{s} \sin \theta+m g$

Adding static friction increases centripetal force
\Rightarrow car can travel ramp at higher speed
Maximum speed is reached when
friction is raised to its maximum value $f_{s}=\mu_{s} N$

Set of equations:
$m \frac{\left(v_{\theta}\right)_{\mathrm{MAX}}^{2}}{R}=N \sin \theta+\mu_{s} N \cos \theta$ $0=N \cos \theta-\mu_{s} N \sin \theta-m g$

Solution

Set of equations:

$$
\begin{gathered}
m \frac{\left(v_{\theta}\right)_{\mathrm{MAX}}^{2}}{R}=N \sin \theta+\mu_{s} N \cos \theta \\
m g=N \cos \theta-\mu_{s} N \sin \theta
\end{gathered}
$$

Eliminating N :

$$
\frac{\left(v_{\theta}\right)_{\mathrm{MAX}}^{2}}{g R}=\frac{\sin \theta+\mu_{s} \cos \theta}{\cos \theta-\mu_{s} \sin \theta}
$$

Recall that
$\mu_{s}=\tan \theta_{\max }=\frac{\sin \theta_{\max }}{\cos \theta_{\max }}$

Trig algebra exercise:
$\frac{\left(v_{\theta}\right)_{\mathrm{MAX}}^{2}}{g R}=\frac{\sin \theta \cos \theta_{\max }+\sin \theta_{\max } \cos \theta}{\cos \theta \cos \theta_{\max }-\sin \theta_{\max } \sin \theta}$

Maximal speed:
$\left(v_{\theta}\right)_{\text {MAX }}=$ $\left[g R \tan \left(\theta+\theta_{\max }\right)\right]^{1 / 2}$
$=\frac{\sin \left(\theta+\theta_{\max }\right)}{\cos \left(\theta+\theta_{\max }\right)}=\tan \left(\theta+\theta_{\max }\right)$

Summary of ramp experience

No speed: $\begin{aligned} & \theta \leq \theta_{\max } \\ & \tan \theta_{\max }=\mu_{s} \end{aligned}$	If car has zero velocity, $v_{\theta}=0$, it would not slide down the ramp when angle θ of the ramp is smaller than the critical angle $\theta_{\text {max }}$
No friction: $v_{\theta}=[g R \tan \theta]^{1 / 2}$	If car moves along a frictionless ramp then its velocity v_{θ} should be strongly correlated with the ramp radius R and angle θ
Maximal speed: $\begin{aligned} & \left(v_{\theta}\right)_{\mathrm{MAX}}= \\ & {\left[g R \tan \left(\theta+\theta_{\max }\right)\right]^{1 / 2}} \end{aligned}$	If car moves along ramp with friction coefficient $\mu_{s}=\tan \theta_{\max }$, then maximal velocity $\left(v_{\theta}\right)_{\mathrm{MAX}}$ is determined by ramp radius R, its angle θ and $\theta_{\text {max }}$

