

Properties of Friction

Property 1: If the body does not move, then the static frictional force \vec{f}_s and the component of \vec{F} that is parallel to the surface balance each other.

Property 2: The magnitude of \vec{f}_s has a maximum value $f_{s,max}$ that is given by

 $f_{s,\max} = \mu_s N$

where μ_s is a **coefficient of static friction**, and N is the magnitude of the normal force on the body from the surface

Force of static friction: one must overcome (exceed) it in order to initiate motion of the body along the surface ¹¹

Terminal speed				$v = \sqrt{\frac{2mg}{C\rho A}}$
	object	speed (m/s)	speed (mph)	distance (m) 95%
	shot	145	316	2500
	sky diver	60	130	430
	baseball	42	92	210
	basketball	20	44	47
	raindrop	7	15	6
	parachutist	5	11	3
				18

new concepts

21

Free-body diagram as a powerful tool

Free-body diagrams show all forces acting on a body

$$\vec{F} = \vec{F}_1 + \vec{F}_2 + \dots \vec{F}_n = \sum_i^n \vec{F}_i$$

Key ideas for drawing a free-body diagram:

1. Include: ALL forces acting on the body matter.

2. When a problem includes more than one body - draw a separate free-body diagram for each body.

3. Not to include: any forces that the body exerts on any other body.

4. Not to include: non-existing forces (no object - no force).

<text><text><equation-block><equation-block><equation-block><equation-block>

