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10.3 POWER METHOD FOR APPROXIMATING EIGENVALUES

In Chapter 7 we saw that the eigenvalues af anhn mAtaire obtained by solving its
characteristic equation

D I L N Y > )

For large values afi, polynomial equations like this one are difficult and time-consuming

to solve. Moreover, numerical techniques for approximating roots of polynomial equations
of high degree are sensitive to rounding errors. In this section we look at an alternative
method for approximating eigenvalues. As presented here, the method can be used only to
find the eigenvalue oA that is largest in absolute value—we call this eigenvalue the
dominant eigenvalueof A. Although this restriction may seem severe, dominant eigenval-
ues are of primary interest in many physical applications.

Definition of Dominant Let A, A, ..., and ), be the eigenvalues of arx n mathix\, is called the
Eigenvalue and dominant eigenvalueof A if
Dominant Eigenvector Al > [A], P=2...,n

The eigenvectors correspondingiip  are calledhinant eigenvectorsof A.

Not every matrix has a dominant eigenvalue. For instance, the matrix

1 0
Ao )
(with eigenvalues of\; =1 and, = —1 ) has no dominant eigenvalue. Similarly, the
matrix
2 0 O
A=|0 2 0
0 O 1

(with eigenvalues ok, = 2, A, = 2, andl; = 1 ) has no dominant eigenvalue.

EXAMPLE 1 Finding a Dominant Eigenvalue
Find the dominant eigenvalue and corresponding eigenvectors of the matrix
2 -12
A= .
-
Soluton  From Example 4 of Section 7.1 we know that the characteristic polynomial isf
M+ 30+ 2=(\+ 1)\ + 2. Therefore the eigenvalues @& are A, = —1 and

A, = —2, of which the dominant one 5, = —2. From the same example we know that
the dominant eigenvectors Af(those corresponding to, = —2 ) are of the form

3
=t , t#0.
X H
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The Power Method

Like the Jacobi and Gauss-Seidel methods, the power method for approximating eigenvz:
ues is iterative. First we assume that the ma#rhas a dominant eigenvalue with corre-
sponding dominant eigenvectors. Then we choose an initial approxirrgtion  of one of th
dominant eigevectorsof A. This initial approximation must be ronzerovector inR".
Finally we form the sequence given by

X; = AXg
X, = AX; = A(AXy) = AX,
X3 = AX, = A(A%X,) = A%,

X, = Ax, , = AAKIxg) = A%,

For large powers df, and by properly scaling this sequence, we will see that we obtain
a good approximation of the dominant eigenvectoA.oThis procedure is illustrated in
Example 2.

EXAMPLE 2

Solution

Approximating a Dominant Eigenvector by the Power Method

Complete six iterations of the power method to approximate a dominant eigenvector of
2 —12
A= .
-

We begin with an initial nonzero approximation of

<[]

We then obtain the following approximations.

) Iteratiorl ) Apprciximatif)n
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Theorem 10.2

Determining an Eigenvalue
from an Eigenvector

Proof

Note that the approximations in Example 2 appear to be approaching scalar multiples of

H

which we know from Example 1 is a dominant eigenvector of the matrix

2 —12
A= .
-
In Example 2 the power method was used to approximate a dominant eigenvector of the
matrix A. In that example we already knew that the dominant eigenvalievasx = —2.

For the sake of demonstration, however, let us assume that we do not know the dominant
eigenvalue ofA. The following theorem provides a formula for determining the eigenvalue
corresponding to a given eigenvector. This theorem is credited to the English physicist John
William Rayleigh (1842-1919).

If x is an eigenvector of a matri then its corresponding eigenvalue is given by

AX - X
A= ;
X+ X

This quotient is called thRayleigh quotient.

Sincex is an eigenvector oA, we know thatAx = Ax, and we can write

Ax-x_)\x~x_)\(x-x)_)\
X=X XX XX

In cases for which the power method generates a good approximation of a dominant
eigenvector, the Rayleigh quotient provides a correspondingly good approximation of the
dominant eigenvalue. The use of the Rayleigh quotient is demonstrated in Example 3.

EXAMPLE 3

Solution

Approximating a Dominant Eigenvalue

Use the result of Example 2 to approximate the dominant eigenvalue of the matrix
A= [2 —12].
1 -5
After the sixth iteration of the power method in Example 2, we had obtained.
568 2.99
= = 1 .
Xo [190} 90[1.00]
With x = (2.99, 1) as our approximation of a dominant eigenvectoiApfwe use the

Rayleigh quotient to obtain an approximation of the dominant eigenvalBe Fifst we
compute the produdx.
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S e | Fpe( R
Then, since

AX - X = (—6.02)(2.99) + (—2.01)(1) =~ —20.0
and

XX = (2.99)(2.99) + (1)(1) =~ 9.94,
we compute the Rayleigh quotient to be

Ax-x —20.0
= =~——— = —201,
A X X 9.94

which is a good approximation of the dominant eigenvalee —2.

From Example 2 we can see that the power method tends to produce approximatiol
with large entries. In practice it is best to “scale down” each approximation before pro
ceeding to the next iteration. One way to accomplishsttagngis to determine the com-
ponent of Ax; that has the largest absolute value and multiply the \&gtor by the
reciprocal of this component. The resulting vector will then have components whost
absolute values are less than or equal to 1. (Other scaling techniques are possible. |
examples, see Exercises 27 and 28.

EXAMPLE 4

Solution

The Power Method with Scaling

Calculate seven iterations of the power method w@ling to approximate a dominant
eigenvector of the matrix

1 2 0
A=]|-2 1 2.
1 3 1

Usex, = (1,1,1) as the initial approximation.

One iteration of the power method produces

1 2 0]1 3
Ag=|[-2 1 2||1|=|1],
1 3 1(|1 5
and by scaling we obtain the approximation

3 0.60
=10.20]|.

X, = % 1
5 1.00
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A second iteration yields
1 2 0][0.60 1.00
Ax, =|-2 1 2(]10.20| = | 1.00
1 3 1{]1.00 2.20

and
1.00 0.45
X, = —-——100| = [045].
2.20 2.20 1.00

Continuing this process, we obtain the sequence of approximations shown in Table 10.6.
TABLE 10.6

Xo Xy X5 X3 X4 Xg Xo X7

1.00 0.60 0.45 0.48 0.51 0.50 0.50 0.50
1.00 0.20 0.45 0.55 0.51 0.49 0.50 0.50
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

From Table 10.6 we approximate a dominant eigenvectartofbe
0.50
x =10.50].
1.00

Using the Rayleigh quotient, we approximate the dominant eigenvaliéoobe A = 3.
(For this example you can check that the approximationsaofi A are exact.)

Theorem 10.3

Convergence of the
Power Method

REMARK: Note that thescaling factorsused to obtain the vectors in Table 10.6,
X, Xy X3 X4 Xg Xg X7

5

1 1 l

5.00 2.20 2.82 3.13 3.02 2.99 3.00,
are approaching the dominant eigenvalue 3.
In Example 4 the power method with scaling converges to a dominant eigenvector. The

following theorem tells us that a sufficient condition for convergence of the power method
is that the matriXA be diagonalizable (and have a dominant eigenvalue).

If Ais ann X n diagonalizable matrix with a dominant eigenvalue, then there exists a
nonzero vectok, such that the sequence of vectors given by

Axg, A% A%, A%, ..., A%,

approaches a multiple of the dominant eigenvecta. of
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SinceA is diagonalizable, we know from Theorem 7.5 that it hdigearly independent

eigenvectorsx,, X,, ..., X,  with corresponding eigenvalues AQf A, ..., A, We
assume that these eigenvalues are ordered sp that  is the dominant eigenvalue (with a
responding eigenvector of)). Because tha eigenvectorsx;, X,, ..., X, are linearly

independent, they must form a basis RBr For the initial approximatior,, we choose a
nonzero vector such that the linear combination

Xo = CiXy + CX, + = + CX,
has nonzero leading coefficients.¢Jf= 0, the power method may not converge, and a di
ferentx, must be used as the initial approximation. See Exercises 21 and 22.) Now, mul
plying both sides of this equation Byproduces
AXy = AlCiX; + CX, + - + CXp)
= C(AXy) + Cx(AXp) + -+ + C(AXy)
= C(AXy) + C(AX)) + o+ Cy(AXy).
Repeated multiplication of both sides of this equatior [pyoduces
A% = C(A%)) + (M%) + -+ CA%),
which implies that

k. k /\Zk /\nk
A%y = A c1x1+cz/\— x2+---+cn)\— Xn |-
1 1

Now, from our original assumption that is larger in absolute value than the other eiger
values it follows that each of the fractions

A g An

AAY N
is less than 1 in absolute value. Therefore each of the factors

b G G

AT\ IRV

must approach 0 dsapproaches infinity. This implies that the approximation
A%y =~ Afex, ¢ #0

improves ask increases. Sincg, is a dominant eigenvector, it follows that any scalar
multiple ofx, is also a dominant eigenvector. Thus we have showA'that approaches
multiple of the dominant eigenvector Af

The proof of Theorem 10.3 provides some insight into the rate of convergence of th
power method. That is, if the eigenvaluedAdadre ordered so that

Ml > 0 = A == ),
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then the power method will converge quickly [i,| / All is small, and slowly if
|/\2| / |A1| is close to 1. This principle is illustrated in Example 5.

EXAMPLE 5 The Rate of Convergence of the Power Method
(&) The matrix
4 5
A =
s
has eigenvalues of, = 10 ang = —1.  Thus the rgig) / |Al| is 0.1. For this

matrix, only four iterations are required to obtain successive approximations that agree
when rounded to three significant digits. (See Table 10.7.)

TABLE 10.7

Xo Xy X, X3 X,
[1.000] [0.818] [0.835] [0.833] [0.833]
1.000| [1.000f |1.000] [1.000] [1.000
(b) The matrix
-4 10
A=
=
has eigenvalues of, = 10 and = —9.  For this matrix, the rgtip / [A,] is 0.9,

and the power method does not produce successive approximations that agree to three
significant digits until sixty-eight iterations have been performed, as shown in Table 10.8.

TABLE 10.8
Xo X1 X2 Xe6 Xe7 Xe8
1.000 0.500] [0.941 B 0.715 0.714 0.714
1.000| [1.000{ |1.000 s 1.000 1.000| |[1.000

In this section we have discussed the use of the power method to approximate the
dominanteigenvalue of a matrix. This method can be modified to approximate other eigen-
values through use of a procedure catleflation. Moreover, the power method is only
one of several techniques that can be used to approximate the eigenvalues of a matrix.
Another popular method is called tQdR algorithm.

This is the method used in most computer programs and calculators for finding eigen-
values and eigenvectors. The algorithm usesQRefactorization of the matrix, as pre-
sented in Chapter 5. Discussions of the deflation method an@Rha&lgorithm can be
found in most texts on numerical methods.
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SECTION 10.3 [ | EXERCISES

In Exercises 1-6, use the techniques presented in Chapter 7 to find -1 -6 0 0 6 0
the eigenvalues of the given matAx If A has a dominant eigen- 17.A=| 2 7 0 18 A=/0 -4 0
value, find a corresponding dominant eigenvector. 1 2 1 2 1 1
2 1 -3 0
1A= 0 - ] 2.A= [ 1 3] In Exercises 19 and 20, the given matixloes not have a domi-
B nant eigenvalue. Apply the power method with scaling, starting
3 A= 1 —5] 4A— [4 —5] with x, = (1, 1, 1), and observe the results of the first four iterations.
-3 I 1 1 0] 1 2 -2
(2 3 1 -5 0 0 19.A=|3 -1 0 200A=|-2 5 -2
5A=|0 -1 2 6.A=| 3 7 0 0 0 —2] —6 6 -3
0 0 3 4 -2 3 B> o1 (a) Find the eigenvalues and corresponding eigenvectors of
In Exercises 7-10, use the Rayleigh quotient to compute the eigen- A= 3 -1
value \ of A corresponding to the given eigenvector -2 4|
7 A= 4 -5] [5 8 A= 2 3] _[-3 (b) Calculate two iterations of the power method with scaling,
U2 =3t |2 SR I TR (R | starting withx, = (1, 1).
1 2 -2 1 (c) Explain why the method does not seem to converge to a
9. A=|-2 5 —2|x=|1 dominant eigenvector.
-6 6 -3 3 B> Repeat Exercise 21 using = (1,1,1), for the matrix
3 2 -3 3 -3 o0 2
10.A=|-3 -4 9,x=10 A=| 0 -1 0.
-1 -2 5 1 0 1 -2

In Exercises 11-14, use the power method with scaling to appnﬂ 23. The matrix
mate a dominant eigenvector of the matdx Start with

X, = (1,1) and calculate five iterations. Then usgto approxi- A= |? _12]
mate the dominant eigenvalue Af 11 -5
2 1 -1 0 has a dominant eigenvalue of= —2.  Observe fat= Ax
1L A= [0 _7] 12.A= [ 1 6] implies that
1
- _ Al ="x.
13.A=[ ! 4] 14.A=[ 0 3] A
—2 8 -2 1 Apply five iterations of the power method (with scaling) on

A 1to compute the eigenvalue Afwith the smallest magni-

In Exercises 15-18, use the power method with scaling to approxi- q
tude.

mate a dominant eigenvector of the matx Start with
Xo = (1,1, 1) and calculate four iterations. Then ugeo approxi- 24. Repeat Exercise 23 for the matrix
mate the dominant eigenvalue Af

2 3 1
3 0 O 1 2 0 A=[0 -1 2|
15A=|1 -1 0 16.A=|0 -7 1 0O 0 3

o 2 8 0O 0 O
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25. (a) Compute the eigenvalues of

26.

In Exercises 27 and 28, apply four iterations of the power method

(with scaling) to approximate the dominant eigenvalue of the given

2 1 2 3 matrix. After each iteration, scale the approximation by dividing by

A= [1 2] and B = [1 4]- its length so that the resulting approximation will be a unit vector.
(b) Apply four iterations of the power method with scaling to 5 6 7 -4 2
each matrix in part (a), starting with = (—1,2) . 27. A= {4 3] 28.A=|16 -9 6
(c) Compute the ratios,/A, fdkandB. For which do you 8 —4 5

expect faster convergence?
Use the proof of Theorem 10.3 to show that
A(AK,) = A (A%)

for large values ofk. That is, show that the scale factors
obtained in the power method approach the dominant eigen-
value.

10.4 APPLICATIONS OF NUMERICAL METHODS

Avpplications of Gaussian Elimination with Pivoting

In Section 2.5 we used least squares regression analysis lindsrdmathematical models
that best fit a set afi points in the plane. This procedure can be extended to cover poly-

nomial models of any degree as follows.

Regression Analysis The least squares regression polynomial of degréer the points {k;, y;), (%, ¥2),

e, K is ai b
for Polynomials . Y} is given by

y=ax"+a, X"+ -+ ax+ ax+ a,

where the coefficients are determined by the following system ©f 1 linear equa-
tions.
ng,+ Cx)a + Sxda, +--+  SxMa,=3y
Exa+ Ex)a + Exda, +-+ Ex"Ha, = xy,
Exa+  Exda + Cxha, + o+ Ex"a, = 25,
(X3 + (X" Hay + (EX™M g+ et (ExMa = TR,

Note that ifm = 1 this system of equations reduces to

na, + (2x)a, = 2y,
(Ex)a + (X x93 = 2 xy,



