
10.3 POWER METHOD FOR APPROXIMATING EIGENVALUES
In Chapter 7 we saw that the eigenvalues of an matrix A are obtained by solving its
characteristic equation

For large values of n, polynomial equations like this one are difficult and time-consuming
to solve. Moreover, numerical techniques for approximating roots of polynomial equations
of high degree are sensitive to rounding errors. In this section we look at an alternative
method for approximating eigenvalues. As presented here, the method can be used only to
find the eigenvalue of A that is largest in absolute value—we call this eigenvalue the 
dominant eigenvalueof A. Although this restriction may seem severe, dominant eigenval-
ues are of primary interest in many physical applications.

Not every matrix has a dominant eigenvalue. For instance, the matrix

(with eigenvalues of and ) has no dominant eigenvalue. Similarly, the
matrix

(with eigenvalues of and ) has no dominant eigenvalue.

E X A M P L E  1 Finding a Dominant Eigenvalue

Find the dominant eigenvalue and corresponding eigenvectors of the matrix

Solution From Example 4 of Section 7.1 we know that the characteristic polynomial of A is
Therefore the eigenvalues of A are and

of which the dominant one is From the same example we know that
the dominant eigenvectors of A (those corresponding to ) are of the form

t Þ 0.x 5 t33

14,

l2 5 22
l2 5 22.l2 5 22,
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Definition of Dominant
Eigenvalue and
Dominant Eigenvector

Let and be the eigenvalues of an matrix A. is called the
dominant eigenvalueof A if

The eigenvectors corresponding to are called dominant eigenvectorsof A.l1

i 5 2, . . . , n.|l1| > |li|,

l1n 3 nlnl1, l2, . . . ,



The Power Method
Like the Jacobi and Gauss-Seidel methods, the power method for approximating eigenval-
ues is iterative. First we assume that the matrix A has a dominant eigenvalue with corre-
sponding dominant eigenvectors. Then we choose an initial approximation of one of the
dominant eigenvectorsof A. This initial approximation must be a nonzerovector in Rn.
Finally we form the sequence given by

For large powers of k, and by properly scaling this sequence, we will see that we obtain
a good approximation of the dominant eigenvector of A. This procedure is illustrated in
Example 2.

E X A M P L E  2 Approximating a Dominant Eigenvector by the Power Method

Complete six iterations of the power method to approximate a dominant eigenvector of

.

Solution We begin with an initial nonzero approximation of

We then obtain the following approximations.

Iteration Approximation
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 xk 5 Axk21 5 A(Ak21x0) 5 Akx0.

 x3 5 Ax2 5 A(A2x0) 5 A3x0

 x2 5 Ax1 5 A(Ax0) 5 A2x0

 x1 5 Ax0

x0
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Note that the approximations in Example 2 appear to be approaching scalar multiples of

which we know from Example 1 is a dominant eigenvector of the matrix

In Example 2 the power method was used to approximate a dominant eigenvector of the
matrix A. In that example we already knew that the dominant eigenvalue of A was 
For the sake of demonstration, however, let us assume that we do not know the dominant
eigenvalue of A. The following theorem provides a formula for determining the eigenvalue
corresponding to a given eigenvector. This theorem is credited to the English physicist John
William Rayleigh (1842–1919).

Proof Since x is an eigenvector of A, we know that and we can write

In cases for which the power method generates a good approximation of a dominant
eigenvector, the Rayleigh quotient provides a correspondingly good approximation of the
dominant eigenvalue. The use of the Rayleigh quotient is demonstrated in Example 3.

E X A M P L E  3 Approximating a Dominant Eigenvalue

Use the result of Example 2 to approximate the dominant eigenvalue of the matrix

Solution After the sixth iteration of the power method in Example 2, we had obtained.

With as our approximation of a dominant eigenvector of A, we use the
Rayleigh quotient to obtain an approximation of the dominant eigenvalue of A. First we
compute the product Ax.

x 5 (2.99, 1)

x6 5 3568

1904 < 19032.99

1.004 .
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5 l .
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Theorem 10.2
Determining an Eigenvalue
from an Eigenvector

If x is an eigenvector of a matrix A, then its corresponding eigenvalue is given by

This quotient is called the Rayleigh quotient.

l 5
Ax ? x
x ? x

.



Then, since

and

we compute the Rayleigh quotient to be

which is a good approximation of the dominant eigenvalue 

From Example 2 we can see that the power method tends to produce approximations
with large entries. In practice it is best to “scale down” each approximation before pro-
ceeding to the next iteration. One way to accomplish this scaling is to determine the com-
ponent of that has the largest absolute value and multiply the vector by the
reciprocal of this component. The resulting vector will then have components whose
absolute values are less than or equal to 1. (Other scaling techniques are possible. For
examples, see Exercises 27 and 28.

E X A M P L E 4 The Power Method with Scaling

Calculate seven iterations of the power method with scaling to approximate a dominant
eigenvector of the matrix

Use as the initial approximation.

Solution One iteration of the power method produces

and by scaling we obtain the approximation
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x ? x 5 (2.99)(2.99) 1 (1)(1) < 9.94,

Ax ? x 5 (26.02)(2.99) 1 (22.01)(1) < 220.0

Ax 5 32

1

212

254 32.99

1.004 5 326.02

22.014
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A second iteration yields

and

Continuing this process, we obtain the sequence of approximations shown in Table 10.6.

TABLE 10.6

x0 x1 x2 x3 x4 x5 x6 x7

From Table 10.6 we approximate a dominant eigenvector of A to be

Using the Rayleigh quotient, we approximate the dominant eigenvalue of A to be 
(For this example you can check that the approximations of x and l are exact.)

R E M A R K :  Note that the scaling factorsused to obtain the vectors in Table 10.6,

x1 x2 x3 x4 x5 x6 x7

↓ ↓ ↓ ↓ ↓ ↓ ↓

5.00 2.20 2.82 3.13 3.02 2.99 3.00,

are approaching the dominant eigenvalue 

In Example 4 the power method with scaling converges to a dominant eigenvector. The
following theorem tells us that a sufficient condition for convergence of the power method
is that the matrix A be diagonalizable (and have a dominant eigenvalue).
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Theorem 10.3
Convergence of the
Power Method

If A is an diagonalizable matrix with a dominant eigenvalue, then there exists a
nonzero vector such that the sequence of vectors given by

. . . , . . .

approaches a multiple of the dominant eigenvector of A.

Akx0,A4x0,A3x0,A2x0,Ax0,

x0

n 3 n



Proof Since A is diagonalizable, we know from Theorem 7.5 that it has n linearly independent
eigenvectors with corresponding eigenvalues of We
assume that these eigenvalues are ordered so that is the dominant eigenvalue (with a cor-
responding eigenvector of x1). Because the n eigenvectors are linearly
independent, they must form a basis for Rn. For the initial approximation x0, we choose a
nonzero vector such that the linear combination

has nonzero leading coefficients. (If the power method may not converge, and a dif-
ferent must be used as the initial approximation. See Exercises 21 and 22.) Now, multi-
plying both sides of this equation by A produces

Repeated multiplication of both sides of this equation by A produces

which implies that

Now, from our original assumption that is larger in absolute value than the other eigen-
values it follows that each of the fractions

. . . ,

is less than 1 in absolute value. Therefore each of the factors

. . . ,

must approach 0 as k approaches infinity. This implies that the approximation

improves as k increases. Since is a dominant eigenvector, it follows that any scalar
multiple of is also a dominant eigenvector. Thus we have shown that approaches a
multiple of the dominant eigenvector of A.

The proof of Theorem 10.3 provides some insight into the rate of convergence of the
power method. That is, if the eigenvalues of A are ordered so that

|l1| . |l2| $  |l3| $ . . . $ |ln|,
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x0

c1 5 0,
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then the power method will converge quickly if |l2| y |l1| is small, and slowly if 

|l2| y |l1| is close to 1. This principle is illustrated in Example 5.

E X A M P L E  5 The Rate of Convergence of the Power Method

(a) The matrix

has eigenvalues of and Thus the ratio |l2| y |l1| is 0.1. For this
matrix, only four iterations are required to obtain successive approximations that agree
when rounded to three significant digits. (See Table 10.7.)

TABLE 10.7

x0 x1 x2 x3 x4

(b) The matrix

has eigenvalues of and For this matrix, the ratio |l2| y |l1| is 0.9,
and the power method does not produce successive approximations that agree to three
significant digits until sixty-eight iterations have been performed, as shown in Table 10.8.

TABLE 10.8

x0 x1 x2 x66 x67 x68

. . .

In this section we have discussed the use of the power method to approximate the
dominanteigenvalue of a matrix. This method can be modified to approximate other eigen-
values through use of a procedure called deflation. Moreover, the power method is only
one of several techniques that can be used to approximate the eigenvalues of a matrix.
Another popular method is called the QR algorithm.

This is the method used in most computer programs and calculators for finding eigen-
values and eigenvectors. The algorithm uses the QR–factorization of the matrix, as pre-
sented in Chapter 5. Discussions of the deflation method and the QR algorithm can be
found in most texts on numerical methods.
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In Exercises 1–6, use the techniques presented in Chapter 7 to find
the eigenvalues of the given matrix A. If A has a dominant eigen-
value, find a corresponding dominant eigenvector.

1. 2.

3. 4.

5. 6.

In Exercises 7–10, use the Rayleigh quotient to compute the eigen-
value  l of A corresponding to the given eigenvector x.

7. 8.

9.

10.

In Exercises 11–14, use the power method with scaling to approxi-
mate a dominant eigenvector of the matrix A. Start with

and calculate five iterations. Then use x5 to approxi-
mate the dominant eigenvalue of A.

11. 12.

13. 14.

In Exercises 15–18, use the power method with scaling to approxi-
mate a dominant eigenvector of the matrix A. Start with

and calculate four iterations. Then use x4 to approxi-
mate the dominant eigenvalue of A.
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3
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0
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0
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1

0
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0

1
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17. 18.

In Exercises 19 and 20, the given matrix A does not have a domi-
nant eigenvalue. Apply the power method with scaling, starting
with x0 and observe the results of the first four iterations.

19. 20.

21. (a) Find the eigenvalues and corresponding eigenvectors of

21. (b) Calculate two iterations of the power method with scaling,
starting with 

21. (c) Explain why the method does not seem to converge to a
dominant eigenvector.

22. Repeat Exercise 21 using for the matrix

.

23. The matrix

has a dominant eigenvalue of Observe that 
implies that

Apply five iterations of the power method (with scaling) on
to compute the eigenvalue of A with the smallest magni-

tude.

24. Repeat Exercise 23 for the matrix
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2
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0

3
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0

1

2

34.
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l
 x.
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44.
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0
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25. (a) Compute the eigenvalues of

25. (b) Apply four iterations of the power method with scaling to
each matrix in part (a), starting with .

25. (c) Compute the ratios for A and B. For which do you
expect faster convergence?

26. Use the proof of Theorem 10.3 to show that

for large values of k. That is, show that the scale factors 
obtained in the power method approach the dominant eigen-
value.

AsAkx0d  < l1sAkx0d

l2yl1

x0 5 s21, 2d

A 5 32

1

1

24   and   B 5 32

1

3

44.

In Exercises 27 and 28, apply four iterations of the power method
(with scaling) to approximate the dominant eigenvalue of the given
matrix. After each iteration, scale the approximation by dividing by
its length so that the resulting approximation will be a unit vector.

27. 28. A 5 3
7

16

8

24
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24

2

6

54A 5 35

4

6

34

10.4 APPLICATIONS OF NUMERICAL METHODS

Applications of Gaussian Elimination with Pivoting
In Section 2.5 we used least squares regression analysis to find linear mathematical models
that best fit a set of n points in the plane. This procedure can be extended to cover poly-
nomial models of any degree as follows.

Note that if this system of equations reduces to

 sS xida0 1 sS xi
2da1 5 S xiyi ,

 na0 1 2sS xida1 5 S yi

m 5 1

Regression Analysis
for Polynomials

The least squares regression polynomial of degree m for the points {(x1, y1), (x2, y2), 
. . . , (xn, yn)} is given by

where the coefficients are determined by the following system of linear equa-
tions.

 sS xi
mda0 1   sS xi

m11da1 1  sS xi
m12da2 1 . . . 1     sS xi

2mdam 5 S xi
myi

 sS xi
2da0 1      sS xi

3da1 1     sS xi
4da2 1 .. . . 1   sS xi

m12dam 5 S xi
2yi

 sS xida0 1      sS xi
2da1 1    sS xi

3da2 1 . . . 1   sS xi
m11dam 5 S xiyi

 na0 1      sS xida1   1    sS xi
2da2 1 . . . 1        sS xi

mdam 5 S yi

m 1 1

y 5 amxm 1 am21x
m21 1 . . . 1 a2x

2 1 a1x 1 a0,

.

.

.
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