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TRANSLATOR’S PREFACE

The present volume is a translation of the second edition of Pro-
fessor Planck’s Waermestrahlung (1913). The profoundly original
ideas introduced by Planck in the endeavor to reconcile the electro-
magnetic theory of radiation with experimental facts have proven to be
of the greatest importance in many parts of physics. Probably no sin-
gle book since the appearance of Clerk Maxwell’s Electricity and
Magnetism has had a deeper influence on the development of phys-
ical theories. The great majority of English-speaking physicists are,
of course, able to read the work in the language in which it was writ-
ten, but I believe that many will welcome the opportunity offered by a
translation to study the ideas set forth by Planck without the difficul-
ties that frequently arise in attempting to follow a new and somewhat
difficult line of reasoning in a foreign language.

Recent developments of physical theories have placed the quantum
of action in the foreground of interest. Questions regarding the bear-
ing of the quantum theory on the law of equipartition of energy, its
application to the theory of specific heats and to photoelectric effects,
attempts to form some concrete idea of the physical significance of the
quantum, that is, to devise a “model” for it, have created within the
last few years a large and ever increasing literature. Professor Planck
has, however, in this book confined himself exclusively to radiation phe-
nomena and it has seemed to me probable that a brief résumé of this
literature might prove useful to the reader who wishes to pursue the
subject further. I have, therefore, with Professor Planck’s permission,
given in an appendix a list of the most important papers on the sub-
jects treated of in this book and others closely related to them. I have
also added a short note on one or two derivations of formulæ where the
treatment in the book seemed too brief or to present some difficulties.
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In preparing the translation I have been under obligation for advice
and helpful suggestions to several friends and colleagues and especially
to Professor A. W. Duff who has read the manuscript and the galley
proof.

Morton Masius.
Worcester, Mass.,
February, 1914.



PREFACE TO SECOND EDITION

Recent advances in physical research have, on the whole, been fa-
vorable to the special theory outlined in this book, in particular to
the hypothesis of an elementary quantity of action. My radiation for-
mula especially has so far stood all tests satisfactorily, including even
the refined systematic measurements which have been carried out in
the Physikalisch-technische Reichsanstalt at Charlottenburg during the
last year. Probably the most direct support for the fundamental idea
of the hypothesis of quanta is supplied by the values of the elemen-
tary quanta of matter and electricity derived from it. When, twelve
years ago, I made my first calculation of the value of the elementary
electric charge and found it to be 4.69 · 10−10 electrostatic units, the
value of this quantity deduced by J. J. Thomson from his ingenious
experiments on the condensation of water vapor on gas ions, namely
6.5 ·10−10 was quite generally regarded as the most reliable value. This
value exceeds the one given by me by 38 per cent. Meanwhile the
experimental methods, improved in an admirable way by the labors of
E. Rutherford, E. Regener, J. Perrin, R. A. Millikan, The Svedberg and
others, have without exception decided in favor of the value deduced
from the theory of radiation which lies between the values of Perrin
and Millikan.

To the two mutually independent confirmations mentioned, there
has been added, as a further strong support of the hypothesis of
quanta, the heat theorem which has been in the meantime announced
by W. Nernst, and which seems to point unmistakably to the fact that,
not only the processes of radiation, but also the molecular processes
take place in accordance with certain elementary quanta of a definite
finite magnitude. For the hypothesis of quanta as well as the heat
theorem of Nernst may be reduced to the simple proposition that the
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thermodynamic probability (Sec. 120) of a physical state is a definite
integral number, or, what amounts to the same thing, that the entropy
of a state has a quite definite, positive value, which, as a minimum,
becomes zero, while in contrast therewith the entropy may, according
to the classical thermodynamics, decrease without limit to minus in-
finity. For the present, I would consider this proposition as the very
quintessence of the hypothesis of quanta.

In spite of the satisfactory agreement of the results mentioned with
one another as well as with experiment, the ideas from which they orig-
inated have met with wide interest but, so far as I am able to judge,
with little general acceptance, the reason probably being that the hy-
pothesis of quanta has not as yet been satisfactorily completed. While
many physicists, through conservatism, reject the ideas developed by
me, or, at any rate, maintain an expectant attitude, a few authors have
attacked them for the opposite reason, namely, as being inadequate,
and have felt compelled to supplement them by assumptions of a still
more radical nature, for example, by the assumption that any radiant
energy whatever, even though it travel freely in a vacuum, consists of
indivisible quanta or cells. Since nothing probably is a greater drawback
to the successful development of a new hypothesis than overstepping
its boundaries, I have always stood for making as close a connection
between the hypothesis of quanta and the classical dynamics as possi-
ble, and for not stepping outside of the boundaries of the latter until
the experimental facts leave no other course open. I have attempted to
keep to this standpoint in the revision of this treatise necessary for a
new edition.

The main fault of the original treatment was that it began with
the classical electrodynamical laws of emission and absorption, whereas
later on it became evident that, in order to meet the demand of exper-
imental measurements, the assumption of finite energy elements must
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be introduced, an assumption which is in direct contradiction to the
fundamental ideas of classical electrodynamics. It is true that this in-
consistency is greatly reduced by the fact that, in reality, only mean
values of energy are taken from classical electrodynamics, while, for the
statistical calculation, the real values are used; nevertheless the treat-
ment must, on the whole, have left the reader with the unsatisfactory
feeling that it was not clearly to be seen, which of the assumptions
made in the beginning could, and which could not, be finally retained.

In contrast thereto I have now attempted to treat the subject from
the very outset in such a way that none of the laws stated need, later
on, be restricted or modified. This presents the advantage that the the-
ory, so far as it is treated here, shows no contradiction in itself, though
certainly I do not mean that it does not seem to call for improvements
in many respects, as regards both its internal structure and its exter-
nal form. To treat of the numerous applications, many of them very
important, which the hypothesis of quanta has already found in other
parts of physics, I have not regarded as part of my task, still less to
discuss all differing opinions.

Thus, while the new edition of this book may not claim to bring the
theory of heat radiation to a conclusion that is satisfactory in all re-
spects, this deficiency will not be of decisive importance in judging the
theory. For any one who would make his attitude concerning the hy-
pothesis of quanta depend on whether the significance of the quantum
of action for the elementary physical processes is made clear in every
respect or may be demonstrated by some simple dynamical model, mis-
understands, I believe, the character and the meaning of the hypothesis
of quanta. It is impossible to express a really new principle in terms of
a model following old laws. And, as regards the final formulation of the
hypothesis, we should not forget that, from the classical point of view,
the physics of the atom really has always remained a very obscure, inac-
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cessible region, into which the introduction of the elementary quantum
of action promises to throw some light.

Hence it follows from the nature of the case that it will require
painstaking experimental and theoretical work for many years to come
to make gradual advances in the new field. Any one who, at present,
devotes his efforts to the hypothesis of quanta, must, for the time being,
be content with the knowledge that the fruits of the labor spent will
probably be gathered by a future generation.

The Author.
Berlin,
November, 1912.



PREFACE TO FIRST EDITION

In this book the main contents of the lectures which I gave at the
University of Berlin during the winter semester 1906–07 are presented.
My original intention was merely to put together in a connected ac-
count the results of my own investigations, begun ten years ago, on the
theory of heat radiation; it soon became evident, however, that it was
desirable to include also the foundation of this theory in the treatment,
starting with Kirchhoff’s Law on emitting and absorbing power; and so
I attempted to write a treatise which should also be capable of serving
as an introduction to the study of the entire theory of radiant heat on
a consistent thermodynamic basis. Accordingly the treatment starts
from the simple known experimental laws of optics and advances, by
gradual extension and by the addition of the results of electrodynamics
and thermodynamics, to the problems of the spectral distribution of en-
ergy and of irreversibility. In doing this I have deviated frequently from
the customary methods of treatment, wherever the matter presented or
considerations regarding the form of presentation seemed to call for it,
especially in deriving Kirchhoff’s laws, in calculating Maxwell’s radia-
tion pressure, in deriving Wien’s displacement law, and in generalizing
it for radiations of any spectral distribution of energy whatever.

I have at the proper place introduced the results of my own inves-
tigations into the treatment. A list of these has been added at the end
of the book to facilitate comparison and examination as regards special
details.

I wish, however, to emphasize here what has been stated more fully
in the last paragraph of this book, namely, that the theory thus devel-
oped does not by any means claim to be perfect or complete, although I
believe that it points out a possible way of accounting for the processes
of radiant energy from the same point of view as for the processes of
molecular motion.
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PART I

FUNDAMENTAL FACTS AND DEFINITIONS



RADIATION OF HEAT

CHAPTER I

GENERAL INTRODUCTION

1. Heat may be propagated in a stationary medium in two entirely
different ways, namely, by conduction and by radiation. Conduction
of heat depends on the temperature of the medium in which it takes
place, or more strictly speaking, on the non-uniform distribution of the
temperature in space, as measured by the temperature gradient. In a
region where the temperature of the medium is the same at all points
there is no trace of heat conduction.

Radiation of heat, however, is in itself entirely independent of the
temperature of the medium through which it passes. It is possible,
for example, to concentrate the solar rays at a focus by passing them
through a converging lens of ice, the latter remaining at a constant
temperature of 0◦, and so to ignite an inflammable body. Generally
speaking, radiation is a far more complicated phenomenon than con-
duction of heat. The reason for this is that the state of the radiation
at a given instant and at a given point of the medium cannot be repre-
sented, as can the flow of heat by conduction, by a single vector (that
is, a single directed quantity). All heat rays which at a given instant
pass through the same point of the medium are perfectly independent
of one another, and in order to specify completely the state of the ra-
diation the intensity of radiation must be known in all the directions,
infinite in number, which pass through the point in question; for this

2
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purpose two opposite directions must be considered as distinct, because
the radiation in one of them is quite independent of the radiation in
the other.

2. Putting aside for the present any special theory of heat radiation,
we shall state for our further use a law supported by a large number
of experimental facts. This law is that, so far as their physical proper-
ties are concerned, heat rays are identical with light rays of the same
wave length. The term “heat radiation,” then, will be applied to all
physical phenomena of the same nature as light rays. Every light ray
is simultaneously a heat ray. We shall also, for the sake of brevity,
occasionally speak of the “color” of a heat ray in order to denote its
wave length or period. As a further consequence of this law we shall
apply to the radiation of heat all the well-known laws of experimental
optics, especially those of reflection and refraction, as well as those re-
lating to the propagation of light. Only the phenomena of diffraction,
so far at least as they take place in space of considerable dimensions,
we shall exclude on account of their rather complicated nature. We
are therefore obliged to introduce right at the start a certain restric-
tion with respect to the size of the parts of space to be considered.
Throughout the following discussion it will be assumed that the lin-
ear dimensions of all parts of space considered, as well as the radii of
curvature of all surfaces under consideration, are large compared with
the wave lengths of the rays considered. With this assumption we may,
without appreciable error, entirely neglect the influence of diffraction
caused by the bounding surfaces, and everywhere apply the ordinary
laws of reflection and refraction of light. To sum up: We distinguish
once for all between two kinds of lengths of entirely different orders
of magnitude—dimensions of bodies and wave lengths. Moreover, even
the differentials of the former, i.e., elements of length, area and volume,
will be regarded as large compared with the corresponding powers of
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wave lengths. The greater, therefore, the wave length of the rays we
wish to consider, the larger must be the parts of space considered. But,
inasmuch as there is no other restriction on our choice of size of the
parts of space to be considered, this assumption will not give rise to
any particular difficulty.

3. Even more essential for the whole theory of heat radiation than
the distinction between large and small lengths, is the distinction be-
tween long and short intervals of time. For the definition of intensity
of a heat ray, as being the energy transmitted by the ray per unit time,
implies the assumption that the unit of time chosen is large compared
with the period of vibration corresponding to the color of the ray. If this
were not so, obviously the value of the intensity of the radiation would,
in general, depend upon the particular phase of vibration at which the
measurement of the energy of the ray was begun, and the intensity of a
ray of constant period and amplitude would not be independent of the
initial phase, unless by chance the unit of time were an integral multiple
of the period. To avoid this difficulty, we are obliged to postulate quite
generally that the unit of time, or rather that element of time used in
defining the intensity, even if it appear in the form of a differential,
must be large compared with the period of all colors contained in the
ray in question.

The last statement leads to an important conclusion as to radiation
of variable intensity. If, using an acoustic analogy, we speak of “beats”
in the case of intensities undergoing periodic changes, the “unit” of time
required for a definition of the instantaneous intensity of radiation must
necessarily be small compared with the period of the beats. Now, since
from the previous statement our unit must be large compared with a
period of vibration, it follows that the period of the beats must be large
compared with that of a vibration. Without this restriction it would be
impossible to distinguish properly between “beats” and simple “vibra-
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tions.” Similarly, in the general case of an arbitrarily variable intensity
of radiation, the vibrations must take place very rapidly as compared
with the relatively slower changes in intensity. These statements imply,
of course, a certain far-reaching restriction as to the generality of the
radiation phenomena to be considered.

It might be added that a very similar and equally essential restric-
tion is made in the kinetic theory of gases by dividing the motions of
a chemically simple gas into two classes: visible, coarse, or molar, and
invisible, fine, or molecular. For, since the velocity of a single molecule
is a perfectly unambiguous quantity, this distinction cannot be drawn
unless the assumption be made that the velocity-components of the
molecules contained in sufficiently small volumes have certain mean
values, independent of the size of the volumes. This in general need
not by any means be the case. If such a mean value, including the
value zero, does not exist, the distinction between motion of the gas as
a whole and random undirected heat motion cannot be made.

Turning now to the investigation of the laws in accordance with
which the phenomena of radiation take place in a medium supposed to
be at rest, the problem may be approached in two ways: We must either
select a certain point in space and investigate the different rays passing
through this one point as time goes on, or we must select one distinct
ray and inquire into its history, that is, into the way in which it was
created, propagated, and finally destroyed. For the following discussion,
it will be advisable to start with the second method of treatment and
to consider first the three processes just mentioned.

4. Emission.—The creation of a heat ray is generally denoted by
the word emission. According to the principle of the conservation of
energy, emission always takes place at the expense of other forms of
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energy (heat,1 chemical or electric energy, etc.) and hence it follows
that only material particles, not geometrical volumes or surfaces, can
emit heat rays. It is true that for the sake of brevity we frequently
speak of the surface of a body as radiating heat to the surroundings,
but this form of expression does not imply that the surface actually
emits heat rays. Strictly speaking, the surface of a body never emits
rays, but rather it allows part of the rays coming from the interior to
pass through. The other part is reflected inward and according as the
fraction transmitted is larger or smaller the surface seems to emit more
or less intense radiations.

We shall now consider the interior of an emitting substance assumed
to be physically homogeneous, and in it we shall select any volume-
element dτ of not too small size. Then the energy which is emitted by
radiation in unit time by all particles in this volume-element will be
proportional to dτ . Should we attempt a closer analysis of the process
of emission and resolve it into its elements, we should undoubtedly meet
very complicated conditions, for then it would be necessary to consider
elements of space of such small size that it would no longer be admis-
sible to think of the substance as homogeneous, and we would have to
allow for the atomic constitution. Hence the finite quantity obtained
by dividing the radiation emitted by a volume-element dτ by this ele-
ment dτ is to be considered only as a certain mean value. Nevertheless,
we shall as a rule be able to treat the phenomenon of emission as if all
points of the volume-element dτ took part in the emission in a uniform
manner, thereby greatly simplifying our calculation. Every point of dτ
will then be the vertex of a pencil of rays diverging in all directions.
Such a pencil coming from one single point of course does not represent

1Here as in the following the German “Körperwärme” will be rendered simply
as “heat.” (Tr.)
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a finite amount of energy, because a finite amount is emitted only by a
finite though possibly small volume, not by a single point.

We shall next assume our substance to be isotropic. Hence the
radiation of the volume-element dτ is emitted uniformly in all directions
of space. Draw a cone in an arbitrary direction, having any point of the
radiating element as vertex, and describe around the vertex as center
a sphere of unit radius. This sphere intersects the cone in what is
known as the solid angle of the cone, and from the isotropy of the
medium it follows that the radiation in any such conical element will
be proportional to its solid angle. This holds for cones of any size. If
we take the solid angle as infinitely small and of size dΩ we may speak
of the radiation emitted in a certain direction, but always in the sense
that for the emission of a finite amount of energy an infinite number of
directions are necessary and these form a finite solid angle.

5. The distribution of energy in the radiation is in general quite
arbitrary; that is, the different colors of a certain radiation may have
quite different intensities. The color of a ray in experimental physics is
usually denoted by its wave length, because this quantity is measured
directly. For the theoretical treatment, however, it is usually preferable
to use the frequency ν instead, since the characteristic of color is not
so much the wave length, which changes from one medium to another,
as the frequency, which remains unchanged in a light or heat ray pass-
ing through stationary media. We shall, therefore, hereafter denote a
certain color by the corresponding value of ν, and a certain interval of
color by the limits of the interval ν and ν ′, where ν ′ > ν. The radiation
lying in a certain interval of color divided by the magnitude ν ′ − ν of
the interval, we shall call the mean radiation in the interval ν to ν ′. We
shall then assume that if, keeping ν constant, we take the interval ν ′−ν
sufficiently small and denote it by dν the value of the mean radiation
approaches a definite limiting value, independent of the size of dν, and
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this we shall briefly call the “radiation of frequency ν.” To produce
a finite intensity of radiation, the frequency interval, though perhaps
small, must also be finite.

We have finally to allow for the polarization of the emitted radiation.
Since the medium was assumed to be isotropic the emitted rays are
unpolarized. Hence every ray has just twice the intensity of one of its
plane polarized components, which could, e.g., be obtained by passing
the ray through a Nicol’s prism.

6. Summing up everything said so far, we may equate the total
energy in a range of frequency from ν to ν + dν emitted in the time dt
in the direction of the conical element dΩ by a volume-element dτ to

dt · dτ · dΩ · dν · 2εν . (1)

The finite quantity εν is called the coefficient of emission of the medium
for the frequency ν. It is a positive function of ν and refers to a plane
polarized ray of definite color and direction. The total emission of the
volume-element dτ may be obtained from this by integrating over all
directions and all frequencies. Since εν is independent of the direction,
and since the integral over all conical elements dΩ is 4π, we get:

dt · dτ · 8π
∫ ∞
0

εν dν. (2)

7. The coefficient of emission ε depends, not only on the frequency ν,
but also on the condition of the emitting substance contained in the
volume-element dτ , and, generally speaking, in a very complicated way,
according to the physical and chemical processes which take place in the
elements of time and volume in question. But the empirical law that
the emission of any volume-element depends entirely on what takes
place inside of this element holds true in all cases (Prevost’s principle).
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A body A at 100◦ C. emits toward a body B at 0◦ C. exactly the same
amount of radiation as toward an equally large and similarly situated
body B′ at 1000◦ C. The fact that the body A is cooled by B and heated
by B′ is due entirely to the fact that B is a weaker, B′ a stronger emitter
than A.

We shall now introduce the further simplifying assumption that the
physical and chemical condition of the emitting substance depends on
but a single variable, namely, on its absolute temperature T . A neces-
sary consequence of this is that the coefficient of emission ε depends,
apart from the frequency ν and the nature of the medium, only on the
temperature T . The last statement excludes from our consideration a
number of radiation phenomena, such as fluorescence, phosphorescence,
electrical and chemical luminosity, to which E. Wiedemann has given
the common name “phenomena of luminescence.” We shall deal with
pure “temperature radiation” exclusively.

A special case of temperature radiation is the case of the chemi-
cal nature of the emitting substance being invariable. In this case the
emission takes place entirely at the expense of the heat of the body.
Nevertheless, it is possible, according to what has been said, to have
temperature radiation while chemical changes are taking place, pro-
vided the chemical condition is completely determined by the temper-
ature.

8. Propagation.—The propagation of the radiation in a medium
assumed to be homogeneous, isotropic, and at rest takes place in
straight lines and with the same velocity in all directions, diffraction
phenomena being entirely excluded. Yet, in general, each ray suffers
during its propagation a certain weakening, because a certain fraction
of its energy is continuously deviated from its original direction and
scattered in all directions. This phenomenon of “scattering,” which
means neither a creation nor a destruction of radiant energy but sim-
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ply a change in distribution, takes place, generally speaking, in all
media differing from an absolute vacuum, even in substances which
are perfectly pure chemically.1 The cause of this is that no substance
is homogeneous in the absolute sense of the word. The smallest el-
ements of space always exhibit some discontinuities on account of
their atomic structure. Small impurities, as, for instance, particles of
dust, increase the influence of scattering without, however, appreciably
affecting its general character. Hence, so-called “turbid” media, i.e.,
such as contain foreign particles, may be quite properly regarded as
optically homogeneous,2 provided only that the linear dimensions of
the foreign particles as well as the distances of neighboring particles
are sufficiently small compared with the wave lengths of the rays con-
sidered. As regards optical phenomena, then, there is no fundamental
distinction between chemically pure substances and the turbid media
just described. No space is optically void in the absolute sense except
a vacuum. Hence a chemically pure substance may be spoken of as a
vacuum made turbid by the presence of molecules.

A typical example of scattering is offered by the behavior of sun-
light in the atmosphere. When, with a clear sky, the sun stands in
the zenith, only about two-thirds of the direct radiation of the sun
reaches the surface of the earth. The remainder is intercepted by the
atmosphere, being partly absorbed and changed into heat of the air,
partly, however, scattered and changed into diffuse skylight. This phe-
nomenon is produced probably not so much by the particles suspended
in the atmosphere as by the air molecules themselves.

Whether the scattering depends on reflection, on diffraction, or on

1See, e.g., Lobry de Bruyn and L. K. Wolff, Rec. des Trav. Chim. des Pays-
Bas 23, p. 155, 1904.

2To restrict the word homogeneous to its absolute sense would mean that it
could not be applied to any material substance.
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a resonance effect on the molecules or particles is a point that we may
leave entirely aside. We only take account of the fact that every ray on
its path through any medium loses a certain fraction of its intensity.
For a very small distance, s, this fraction is proportional to s, say

βνs (3)

where the positive quantity βν is independent of the intensity of radi-
ation and is called the “coefficient of scattering” of the medium. Inas-
much as the medium is assumed to be isotropic, βν is also independent
of the direction of propagation and polarization of the ray. It depends,
however, as indicated by the subscript ν, not only on the physical and
chemical constitution of the body but also to a very marked degree on
the frequency. For certain values of ν, βν may be so large that the
straight-line propagation of the rays is virtually destroyed. For other
values of ν, however, βν may become so small that the scattering can
be entirely neglected. For generality we shall assume a mean value
of βν . In the cases of most importance βν increases quite appreciably
as ν increases, i.e., the scattering is noticeably larger for rays of shorter
wave length;1 hence the blue color of diffuse skylight.

The scattered radiation energy is propagated from the place where
the scattering occurs in a way similar to that in which the emitted
energy is propagated from the place of emission, since it travels in
all directions in space. It does not, however, have the same intensity
in all directions, and moreover is polarized in some special directions,
depending to a large extent on the direction of the original ray. We
need not, however, enter into any further discussion of these questions.

9. While the phenomenon of scattering means a continuous modifi-
cation in the interior of the medium, a discontinuous change in both the

1Lord Rayleigh, Phil. Mag., 47, p. 379, 1899.
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direction and the intensity of a ray occurs when it reaches the boundary
of a medium and meets the surface of a second medium. The latter, like
the former, will be assumed to be homogeneous and isotropic. In this
case, the ray is in general partly reflected and partly transmitted. The
reflection and refraction may be “regular,” there being a single reflected
ray according to the simple law of reflection and a single transmitted
ray, according to Snell’s law of refraction, or, they may be “diffuse,”
which means that from the point of incidence on the surface the radi-
ation spreads out into the two media with intensities that are different
in different directions. We accordingly describe the surface of the sec-
ond medium as “smooth” or “rough” respectively. Diffuse reflection
occurring at a rough surface should be carefully distinguished from re-
flection at a smooth surface of a turbid medium. In both cases part of
the incident ray goes back to the first medium as diffuse radiation. But
in the first case the scattering occurs on the surface, in the second in
more or less thick layers entirely inside of the second medium.

10. When a smooth surface completely reflects all incident rays,
as is approximately the case with many metallic surfaces, it is termed
“reflecting.” When a rough surface reflects all incident rays completely
and uniformly in all directions, it is called “white.” The other extreme,
namely, complete transmission of all incident rays through the surface
never occurs with smooth surfaces, at least if the two contiguous media
are at all optically different. A rough surface having the property of
completely transmitting the incident radiation is described as “black.”

In addition to “black surfaces” the term “black body” is also used.
According to G. Kirchhoff 1 it denotes a body which has the property

1G. Kirchhoff, Pogg. Ann., 109, p. 275, 1860. Gesammelte Abhandlungen, J. A.
Barth, Leipzig, 1882, p. 573. In defining a black body Kirchhoff also assumes that
the absorption of incident rays takes place in a layer “infinitely thin.” We do not
include this in our definition.
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of allowing all incident rays to enter without surface reflection and
not allowing them to leave again. Hence it is seen that a black body
must satisfy three independent conditions. First, the body must have
a black surface in order to allow the incident rays to enter without
reflection. Since, in general, the properties of a surface depend on
both of the bodies which are in contact, this condition shows that the
property of blackness as applied to a body depends not only on the
nature of the body but also on that of the contiguous medium. A
body which is black relatively to air need not be so relatively to glass,
and vice versa. Second, the black body must have a certain minimum
thickness depending on its absorbing power, in order to insure that the
rays after passing into the body shall not be able to leave it again at a
different point of the surface. The more absorbing a body is, the smaller
the value of this minimum thickness, while in the case of bodies with
vanishingly small absorbing power only a layer of infinite thickness may
be regarded as black. Third, the black body must have a vanishingly
small coefficient of scattering (Sec. 8). Otherwise the rays received by it
would be partly scattered in the interior and might leave again through
the surface.1

11. All the distinctions and definitions mentioned in the two pre-
ceding paragraphs refer to rays of one definite color only. It might very
well happen that, e.g., a surface which is rough for a certain kind of rays
must be regarded as smooth for a different kind of rays. It is readily
seen that, in general, a surface shows decreasing degrees of roughness
for increasing wave lengths. Now, since smooth non-reflecting surfaces
do not exist (Sec. 10), it follows that all approximately black surfaces

1For this point see especially A. Schuster, Astrophysical Journal, 21, p. 1, 1905,
who has pointed out that an infinite layer of gas with a black surface need by no
means be a black body.
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which may be realized in practice (lamp black, platinum black) show
appreciable reflection for rays of sufficiently long wave lengths.

12. Absorption.—Heat rays are destroyed by “absorption.” Ac-
cording to the principle of the conservation of energy the energy of heat
radiation is thereby changed into other forms of energy (heat, chem-
ical energy). Thus only material particles can absorb heat rays, not
elements of surfaces, although sometimes for the sake of brevity the
expression absorbing surfaces is used.

Whenever absorption takes place, the heat ray passing through the
medium under consideration is weakened by a certain fraction of its
intensity for every element of path traversed. For a sufficiently small
distance s this fraction is proportional to s, and may be written

ανs. (4)

Here αν is known as the “coefficient of absorption” of the medium for
a ray of frequency ν. We assume this coefficient to be independent of
the intensity; it will, however, depend in general in non-homogeneous
and anisotropic media on the position of s and on the direction of
propagation and polarization of the ray (example: tourmaline). We
shall, however, consider only homogeneous isotropic substances, and
shall therefore suppose that αν has the same value at all points and in all
directions in the medium, and depends on nothing but the frequency ν,
the temperature T , and the nature of the medium.

Whenever αν does not differ from zero except for a limited range
of the spectrum, the medium shows “selective” absorption. For those
colors for which αν = 0 and also the coefficient of scattering βν = 0 the
medium is described as perfectly “transparent” or “diathermanous.”
But the properties of selective absorption and of diathermancy may
for a given medium vary widely with the temperature. In general we
shall assume a mean value for αν . This implies that the absorption
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in a distance equal to a single wave length is very small, because the
distance s, while small, contains many wave lengths (Sec. 2).

13. The foregoing considerations regarding the emission, the propa-
gation, and the absorption of heat rays suffice for a mathematical treat-
ment of the radiation phenomena. The calculation requires a knowledge
of the value of the constants and the initial and boundary conditions,
and yields a full account of the changes the radiation undergoes in a
given time in one or more contiguous media of the kind stated, in-
cluding the temperature changes caused by it. The actual calculation
is usually very complicated. We shall, however, before entering upon
the treatment of special cases discuss the general radiation phenomena
from a different point of view, namely by fixing our attention not on a
definite ray, but on a definite position in space.

14. Let dσ be an arbitrarily chosen, infinitely small element of area
in the interior of a medium through which radiation passes. At a given
instant rays are passing through this element in many different direc-
tions. The energy radiated through it in an element of time dt in a
definite direction is proportional to the area dσ, the length of time dt,
and to the cosine of the angle θ made by the normal of dσ with the
direction of the radiation. If we make dσ sufficiently small, then, al-
though this is only an approximation to the actual state of affairs, we
can think of all points in dσ as being affected by the radiation in the
same way. Then the energy radiated through dσ in a definite direction
must be proportional to the solid angle in which dσ intercepts that
radiation and this solid angle is measured by dσ cos θ. It is readily
seen that, when the direction of the element is varied relatively to the
direction of the radiation, the energy radiated through it vanishes when

θ =
π

2
.

Now in general a pencil of rays is propagated from every point of
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the element dσ in all directions, but with different intensities in differ-
ent directions, and any two pencils emanating from two points of the
element are identical save for differences of higher order. A single one
of these pencils coming from a single point does not represent a finite
quantity of energy, because a finite amount of energy is radiated only
through a finite area. This holds also for the passage of rays through
a so-called focus. For example, when sunlight passes through a con-
verging lens and is concentrated in the focal plane of the lens, the solar
rays do not converge to a single point, but each pencil of parallel rays
forms a separate focus and all these foci together constitute a surface
representing a small but finite image of the sun. A finite amount of
energy does not pass through less than a finite portion of this surface.

15. Let us now consider quite generally the pencil, which is prop-
agated from a point of the element dσ as vertex in all directions of
space and on both sides of dσ. A certain direction may be specified by
the angle θ (between 0 and π), as already used, and by an azimuth φ
(between 0 and 2π). The intensity in this direction is the energy prop-
agated in an infinitely thin cone limited by θ and θ + dθ and φ and
φ+ dφ. The solid angle of this cone is

dΩ = sin θ · dθ · dφ. (5)

Thus the energy radiated in time dt through the element of area dσ in
the direction of the cone dΩ is:

dt dσ cos θ dΩK = K sin θ cos θ dθ dφ dσ dt. (6)

The finite quantity K we shall term the “specific intensity” or the
“brightness,” dΩ the “solid angle” of the pencil emanating from a point
of the element dσ in the direction (θ, φ). K is a positive function of
position, time, and the angles θ and φ. In general the specific intensi-
ties of radiation in different directions are entirely independent of one
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another. For example, on substituting π − θ for θ and π + φ for φ
in the function K, we obtain the specific intensity of radiation in the
diametrically opposite direction, a quantity which in general is quite
different from the preceding one.

For the total radiation through the element of area dσ toward one
side, say the one on which θ is an acute angle, we get, by integrating

with respect to φ from 0 to 2π and with respect to θ from 0 to
π

2∫ 2π

0

dφ

∫ π
2

0

dθK sin θ cos θ dσ dt.

Should the radiation be uniform in all directions and hence K be a
constant, the total radiation on one side will be

πK dσ dt. (7)

16. In speaking of the radiation in a definite direction (θ, φ) one
should always keep in mind that the energy radiated in a cone is not
finite unless the angle of the cone is finite. No finite radiation of light
or heat takes place in one definite direction only, or expressing it differ-
ently, in nature there is no such thing as absolutely parallel light or an
absolutely plane wave front. From a pencil of rays called “parallel” a
finite amount of energy of radiation can only be obtained if the rays or
wave normals of the pencil diverge so as to form a finite though perhaps
exceedingly narrow cone.

17. The specific intensity K of the whole energy radiated in a cer-
tain direction may be further divided into the intensities of the sepa-
rate rays belonging to the different regions of the spectrum which travel
independently of one another. Hence we consider the intensity of ra-
diation within a certain range of frequencies, say from ν to ν ′. If the
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interval ν ′ − ν be taken sufficiently small and be denoted by dν, the
intensity of radiation within the interval is proportional to dν. Such
radiation is called homogeneous or monochromatic.

A last characteristic property of a ray of definite direction, intensity,
and color is its state of polarization. If we break up a ray, which is in any
state of polarization whatsoever and which travels in a definite direction
and has a definite frequency ν, into two plane polarized components,
the sum of the intensities of the components will be just equal to the
intensity of the ray as a whole, independently of the direction of the
two planes, provided the two planes of polarization, which otherwise
may be taken at random, are at right angles to each other. If their
position be denoted by the azimuth ψ of one of the planes of vibration
(plane of the electric vector), then the two components of the intensity
may be written in the form

Kν cos2 ψ + K′ν sin2 ψ

and Kν sin2 ψ + K′ν cos2 ψ.
(8)

Herein K is independent of ψ. These expressions we shall call the “com-
ponents of the specific intensity of radiation of frequency ν.” The sum
is independent of ψ and is always equal to the intensity of the whole ray
Kν +K′ν . At the same time Kν and K′ν represent respectively the largest
and smallest values which either of the components may have, namely,

when ψ = 0 and ψ =
π

2
. Hence we call these values the “principal

values of the intensities,” or the “principal intensities,” and the corre-
sponding planes of vibration we call the “principal planes of vibration”
of the ray. Of course both, in general, vary with the time. Thus we
may write generally

K =

∫ ∞
0

dν (Kν + K′ν) (9)
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where the positive quantities Kν and K′ν , the two principal values of the
specific intensity of the radiation (brightness) of frequency ν, depend
not only on ν but also on their position, the time, and on the angles
θ and φ. By substitution in (6) the energy radiated in the time dt
through the element of area dσ in the direction of the conical element dΩ
assumes the value

dt dσ cos θ dΩ

∫ ∞
0

dν (Kν + K′ν) (10)

and for monochromatic plane polarized radiation of brightness Kν :

dt dσ cos θ dΩKν dν = dt dσ sin θ cos θ dθ dφKν dν. (11)

For unpolarized rays Kν = K′ν , and hence

K = 2

∫ ∞
0

dν Kν , (12)

and the energy of a monochromatic ray of frequency ν will be:

2 dt dσ cos θ dΩKν dν = 2 dt dσ sin θ cos θ dθ dφKν dν. (13)

When, moreover, the radiation is uniformly distributed in all directions,
the total radiation through dσ toward one side may be found from
(7) and (12); it is

2π dσ dt

∫ ∞
0

Kν dν. (14)

18. Since in nature Kν can never be infinitely large, K will not have a
finite value unless Kν differs from zero over a finite range of frequencies.
Hence there exists in nature no absolutely homogeneous or monochro-
matic radiation of light or heat. A finite amount of radiation contains
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always a finite although possibly very narrow range of the spectrum.
This implies a fundamental difference from the corresponding phenom-
ena of acoustics, where a finite intensity of sound may correspond to
a single definite frequency. This difference is, among other things, the
cause of the fact that the second law of thermodynamics has an impor-
tant bearing on light and heat rays, but not on sound waves. This will
be further discussed later on.

19. From equation (9) it is seen that the quantity Kν , the intensity
of radiation of frequency ν, and the quantity K, the intensity of ra-
diation of the whole spectrum, are of different dimensions. Further it
is to be noticed that, on subdividing the spectrum according to wave
lengths λ, instead of frequencies ν, the intensity of radiation Eλ of the
wave lengths λ corresponding to the frequency ν is not obtained simply
by replacing ν in the expression for Kν by the corresponding value of λ
deduced from

ν =
q

λ
(15)

where q is the velocity of propagation. For if dλ and dν refer to the same
interval of the spectrum, we have, not Eλ = Kν , but Eλ dλ = Kν dν. By
differentiating (15) and paying attention to the signs of corresponding
values of dλ and dν the equation

dν =
q dλ

λ2

is obtained. Hence we get by substitution:

Eλ =
qKν
λ2

. (16)

This relation shows among other things that in a certain spectrum the
maxima of Eλ and Kν lie at different points of the spectrum.
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20. When the principal intensities Kν and K′ν of all monochromatic
rays are given at all points of the medium and for all directions, the state
of radiation is known in all respects and all questions regarding it may
be answered. We shall show this by one or two applications to special
cases. Let us first find the amount of energy which is radiated through
any element of area dσ toward any other element dσ′. The distance r
between the two elements may be thought of as large compared with
the linear dimensions of the elements dσ and dσ′ but still so small that
no appreciable amount of radiation is absorbed or scattered along it.
This condition is, of course, superfluous for diathermanous media.

From any definite point of dσ rays pass to all points of dσ′. These
rays form a cone whose vertex lies in dσ and whose solid angle is

dΩ =
dσ′ cos(n′, r)

r2

where n′ denotes the normal of dσ′ and the angle (n′, r) is to be taken
as an acute angle. This value of dΩ is, neglecting small quantities of
higher order, independent of the particular position of the vertex of the
cone on dσ.

If we further denote the normal to dσ by n the angle θ of (14) will be
the angle (n, r) and hence from expression (6) the energy of radiation
required is found to be:

K · dσ dσ
′ cos(n, r) cos(n′, r)

r2
· dt. (17)

For monochromatic plane polarized radiation of frequency ν the energy
will be, according to equation (11),

Kν dν ·
dσ dσ′ cos(n, r) cos(n′, r)

r2
· dt. (18)
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The relative size of the two elements dσ and dσ′ may have any value
whatever. They may be assumed to be of the same or of a different
order of magnitude, provided the condition remains satisfied that r is
large compared with the linear dimensions of each of them. If we choose
dσ small compared with dσ′, the rays diverge from dσ to dσ′, whereas
they converge from dσ to dσ′ if we choose dσ large compared with dσ′.

21. Since every point of dσ is the vertex of a cone spreading out
toward dσ′, the whole pencil of rays here considered, which is defined by
dσ and dσ′, consists of a double infinity of point pencils or of a fourfold
infinity of rays which must all be considered equally for the energy
radiation. Similarly the pencil of rays may be thought of as consisting
of the cones which, emanating from all points of dσ, converge in one
point of dσ′ respectively as a vertex. If we now imagine the whole
pencil of rays to be cut by a plane at any arbitrary distance from the
elements dσ and dσ′ and lying either between them or outside, then
the cross-sections of any two point pencils on this plane will not be
identical, not even approximately. In general they will partly overlap
and partly lie outside of each other, the amount of overlapping being
different for different intersecting planes. Hence it follows that there is
no definite cross-section of the pencil of rays so far as the uniformity
of radiation is concerned. If, however, the intersecting plane coincides
with either dσ or dσ′, then the pencil has a definite cross-section. Thus
these two planes show an exceptional property. We shall call them the
two “focal planes” of the pencil.

In the special case already mentioned above, namely, when one of
the two focal planes is infinitely small compared with the other, the
whole pencil of rays shows the character of a point pencil inasmuch as its
form is approximately that of a cone having its vertex in that focal plane
which is small compared with the other. In that case the “cross-section”
of the whole pencil at a definite point has a definite meaning. Such a
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pencil of rays, which is similar to a cone, we shall call an elementary
pencil, and the small focal plane we shall call the first focal plane of the
elementary pencil. The radiation may be either converging toward the
first focal plane or diverging from the first focal plane. All the pencils of
rays passing through a medium may be considered as consisting of such
elementary pencils, and hence we may base our future considerations
on elementary pencils only, which is a great convenience, owing to their
simple nature.

As quantities necessary to define an elementary pencil with a given
first focal plane dσ, we may choose not the second focal plane dσ′ but
the magnitude of that solid angle dΩ under which dσ′ is seen from dσ.
On the other hand, in the case of an arbitrary pencil, that is, when
the two focal planes are of the same order of magnitude, the second
focal plane in general cannot be replaced by the solid angle dΩ without
the pencil changing markedly in character. For if, instead of dσ′ being
given, the magnitude and direction of dΩ, to be taken as constant for
all points of dσ, is given, then the rays emanating from dσ do not any
longer form the original pencil, but rather an elementary pencil whose
first focal plane is dσ and whose second focal plane lies at an infinite
distance.

22. Since the energy radiation is propagated in the medium with
a finite velocity q, there must be in a finite space a finite amount of
energy. We shall therefore speak of the “space density of radiation,”
meaning thereby the ratio of the total quantity of energy of radiation
contained in a volume-element to the magnitude of the latter. Let us
now calculate the space density of radiation u at any arbitrary point of
the medium. When we consider an infinitely small element of volume v
at the point in question, having any shape whatsoever, we must allow
for all rays passing through the volume-element v. For this purpose we
shall construct about any point O of v as center a sphere of radius r,
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Fig. 1.

r being large compared with the linear dimensions of v but still so small
that no appreciable absorption or scattering of the radiation takes place
in the distance r (Fig. 1). Every ray which reaches v must then come
from some point on the surface of the sphere. If, then, we at first
consider only all the rays that come from the points of an infinitely
small element of area dσ on the surface of the sphere, and reach v, and
then sum up for all elements of the spherical surface, we shall have
accounted for all rays and not taken any one more than once.

Let us then calculate first the amount of energy which is contributed
to the energy contained in v by the radiation sent from such an ele-
ment dσ to v. We choose dσ so that its linear dimensions are small
compared with those of v and consider the cone of rays which, starting
at a point of dσ, meets the volume v. This cone consists of an infi-
nite number of conical elements with the common vertex at P , a point
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of dσ, each cutting out of the volume v a certain element of length,

say s. The solid angle of such a conical element is
f

r2
where f denotes

the area of cross-section normal to the axis of the cone at a distance r
from the vertex. The time required for the radiation to pass through
the distance s is:

τ =
s

q
.

From expression (6) we may find the energy radiated through a certain

element of area. In the present case dΩ =
f

r2
and θ = 0; hence the

energy is:

τ dσ
f

r2
K =

fs

r2q
·K dσ. (19)

This energy enters the conical element in v and spreads out into the
volume fs. Summing up over all conical elements that start from dσ
and enter v we have

K dσ

r2q

∑
fs =

K dσ

r2q
v.

This represents the entire energy of radiation contained in the volume v,
so far as it is caused by radiation through the element dσ. In order to
obtain the total energy of radiation contained in v we must integrate
over all elements dσ contained in the surface of the sphere. Denoting

by dΩ the solid angle
dσ

r2
of a cone which has its center in O and

intersects in dσ the surface of the sphere, we get for the whole energy:

v

q

∫
K dΩ.
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The volume density of radiation required is found from this by dividing
by v. It is

u =
1

q

∫
K dΩ. (20)

Since in this expression r has disappeared, we can think of K as the
intensity of radiation at the point O itself. In integrating, it is to be
noted that K in general depends on the direction (θ, φ). For radiation
that is uniform in all directions K is a constant and on integration we
get:

u =
4πK

q
. (21)

23. A meaning similar to that of the volume density of the total
radiation u is attached to the volume density of radiation of a definite
frequency uν . Summing up for all parts of the spectrum we get:

u =

∫ ∞
0

uν dν. (22)

Further by combining equations (9) and (20) we have:

uν =
1

q

∫
(Kν + K′ν) dΩ, (23)

and finally for unpolarized radiation uniformly distributed in all direc-
tions:

uν =
8πKν
q

. (24)



CHAPTER II

RADIATION AT THERMODYNAMIC EQUILIBRIUM.
KIRCHHOFF’S LAW. BLACK RADIATION

24. We shall now apply the laws enunciated in the last chapter to
the special case of thermodynamic equilibrium, and hence we begin our
consideration by stating a certain consequence of the second principle
of thermodynamics: A system of bodies of arbitrary nature, shape, and
position which is at rest and is surrounded by a rigid cover impermeable
to heat will, no matter what its initial state may be, pass in the course
of time into a permanent state, in which the temperature of all bodies of
the system is the same. This is the state of thermodynamic equilibrium,
in which the entropy of the system has the maximum value compatible
with the total energy of the system as fixed by the initial conditions.
This state being reached, no further increase in entropy is possible.

In certain cases it may happen that, under the given conditions, the
entropy can assume not only one but several maxima, of which one is the
absolute one, the others having only a relative significance.1 In these
cases every state corresponding to a maximum value of the entropy
represents a state of thermodynamic equilibrium of the system. But
only one of them, the one corresponding to the absolute maximum of
entropy, represents the absolutely stable equilibrium. All the others
are in a certain sense unstable, inasmuch as a suitable, however small,
disturbance may produce in the system a permanent change in the
equilibrium in the direction of the absolutely stable equilibrium. An
example of this is offered by supersaturated steam enclosed in a rigid

1See, e.g., M. Planck, Vorlesungen über Thermodynamik, Leipzig, Veit and
Comp., 1911 (or English Translation, Longmans Green & Co.), Secs. 165 and 189,
et seq.

27
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vessel or by any explosive substance. We shall also meet such unstable
equilibria in the case of radiation phenomena (Sec. 52).

25. We shall now, as in the previous chapter, assume that we are
dealing with homogeneous isotropic media whose condition depends
only on the temperature, and we shall inquire what laws the radiation
phenomena in them must obey in order to be consistent with the de-
duction from the second principle mentioned in the preceding section.
The means of answering this inquiry is supplied by the investigation of
the state of thermodynamic equilibrium of one or more of such media,
this investigation to be conducted by applying the conceptions and laws
established in the last chapter.

We shall begin with the simplest case, that of a single medium
extending very far in all directions of space, and, like all systems we
shall here consider, being surrounded by a rigid cover impermeable
to heat. For the present we shall assume that the medium has finite
coefficients of absorption, emission, and scattering.

Let us consider, first, points of the medium that are far away from
the surface. At such points the influence of the surface is, of course,
vanishingly small and from the homogeneity and the isotropy of the
medium it will follow that in a state of thermodynamic equilibrium the
radiation of heat has everywhere and in all directions the same prop-
erties. Then Kν , the specific intensity of radiation of a plane polarized
ray of frequency ν (Sec. 17), must be independent of the azimuth of
the plane of polarization as well as of position and direction of the ray.
Hence to each pencil of rays starting at an element of area dσ and
diverging within a conical element dΩ corresponds an exactly equal
pencil of opposite direction converging within the same conical element
toward the element of area.

Now the condition of thermodynamic equilibrium requires that the
temperature shall be everywhere the same and shall not vary in time.
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Therefore in any given arbitrary time just as much radiant heat must
be absorbed as is emitted in each volume-element of the medium. For
the heat of the body depends only on the heat radiation, since, on
account of the uniformity in temperature, no conduction of heat takes
place. This condition is not influenced by the phenomenon of scattering,
because scattering refers only to a change in direction of the energy
radiated, not to a creation or destruction of it. We shall, therefore,
calculate the energy emitted and absorbed in the time dt by a volume-
element v.

According to equation (2) the energy emitted has the value

dt v · 8π
∫ ∞
0

εν dν

where εν , the coefficient of emission of the medium, depends only on
the frequency ν and on the temperature in addition to the chemical
nature of the medium.

26. For the calculation of the energy absorbed we shall employ the
same reasoning as was illustrated by Fig. 1 (Sec. 22) and shall retain
the notation there used. The radiant energy absorbed by the volume-
element v in the time dt is found by considering the intensities of all the
rays passing through the element v and taking that fraction of each of
these rays which is absorbed in v. Now, according to (19), the conical
element that starts from dσ and cuts out of the volume v a part equal
to fs has the intensity (energy radiated per unit time)

dσ · f
r2
·K

or, according to (12), by considering the different parts of the spectrum
separately:

2 dσ
f

r2

∫ ∞
0

Kν dν.
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Hence the intensity of a monochromatic ray is:

2 dσ
f

r2
Kν dν.

The amount of energy of this ray absorbed in the distance s in the
time dt is, according to (4),

dt ανs 2 dσ
f

r2
Kν dν.

Hence the absorbed part of the energy of this small cone of rays, as
found by integrating over all frequencies, is:

dt 2 dσ
fs

r2

∫ ∞
0

ανKν dν.

When this expression is summed up over all the different cross-
sections f of the conical elements starting at dσ and passing through v,
it is evident that

∑
fs = v, and when we sum up over all elements dσ

of the spherical surface of radius r we have∫
dσ

r2
= 4π.

Thus for the total radiant energy absorbed in the time dt by the volume-
element v the following expression is found:

dt v 8π

∫ ∞
0

ανKν dν. (25)

By equating the emitted and absorbed energy we obtain:∫ ∞
0

εν dν =

∫ ∞
0

ανKν dν.
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A similar relation may be obtained for the separate parts of the
spectrum. For the energy emitted and the energy absorbed in the state
of thermodynamic equilibrium are equal, not only for the entire radia-
tion of the whole spectrum, but also for each monochromatic radiation.
This is readily seen from the following. The magnitudes of εν , αν ,
and Kν are independent of position. Hence, if for any single color the
absorbed were not equal to the emitted energy, there would be every-
where in the whole medium a continuous increase or decrease of the
energy radiation of that particular color at the expense of the other
colors. This would be contradictory to the condition that Kν for each
separate frequency does not change with the time. We have therefore
for each frequency the relation:

εν = ανKν , or (26)

Kν =
εν
αν
, (27)

i.e.: in the interior of a medium in a state of thermodynamic equilib-
rium the specific intensity of radiation of a certain frequency is equal
to the coefficient of emission divided by the coefficient of absorption of
the medium for this frequency.

27. Since εν and αν depend only on the nature of the medium, the
temperature, and the frequency ν, the intensity of radiation of a definite
color in the state of thermodynamic equilibrium is completely defined
by the nature of the medium and the temperature. An exceptional case
is when αν = 0, that is, when the medium does not at all absorb the
color in question. Since Kν cannot become infinitely large, a first con-
sequence of this is that in that case εν = 0 also, that is, a medium does
not emit any color which it does not absorb. A second consequence is
that if εν and αν both vanish, equation (26) is satisfied by every value
of Kν . In a medium which is diathermanous for a certain color thermo-
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dynamic equilibrium can exist for any intensity of radiation whatever
of that color.

This supplies an immediate illustration of the cases spoken of be-
fore (Sec. 24), where, for a given value of the total energy of a system
enclosed by a rigid cover impermeable to heat, several states of equilib-
rium can exist, corresponding to several relative maxima of the entropy.
That is to say, since the intensity of radiation of the particular color
in the state of thermodynamic equilibrium is quite independent of the
temperature of a medium which is diathermanous for this color, the
given total energy may be arbitrarily distributed between radiation of
that color and the heat of the body, without making thermodynamic
equilibrium impossible. Among all these distributions there is one par-
ticular one, corresponding to the absolute maximum of entropy, which
represents absolutely stable equilibrium. This one, unlike all the oth-
ers, which are in a certain sense unstable, has the property of not being
appreciably affected by a small disturbance. Indeed we shall see later
(Sec. 48) that among the infinite number of values, which the quotient
εν
αν

can have, if numerator and denominator both vanish, there exists

one particular one which depends in a definite way on the nature of the
medium, the frequency ν, and the temperature. This distinct value of
the fraction is accordingly called the stable intensity of radiation Kν ,
in the medium, which at the temperature in question is diathermanous
for rays of the frequency ν.

Everything that has just been said of a medium which is diather-
manous for a certain kind of rays holds true for an absolute vacuum,
which is a medium diathermanous for rays of all kinds, the only differ-
ence being that one cannot speak of the heat and the temperature of
an absolute vacuum in any definite sense.

For the present we again shall put the special case of diathermancy
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aside and assume that all the media considered have a finite coefficient
of absorption.

28. Let us now consider briefly the phenomenon of scattering at
thermodynamic equilibrium. Every ray meeting the volume-element v
suffers there, apart from absorption, a certain weakening of its inten-
sity because a certain fraction of its energy is diverted in different di-
rections. The value of the total energy of scattered radiation received
and diverted, in the time dt by the volume-element v in all directions,
may be calculated from expression (3) in exactly the same way as the
value of the absorbed energy was calculated in Sec. 26. Hence we get
an expression similar to (25), namely,

dt v 8π

∫ ∞
0

βνKν dν. (28)

The question as to what becomes of this energy is readily answered. On
account of the isotropy of the medium, the energy scattered in v and
given by (28) is radiated uniformly in all directions just as in the case of
the energy entering v. Hence that part of the scattered energy received
in v which is radiated out in a cone of solid angle dΩ is obtained by

multiplying the last expression by
dΩ

4π
. This gives

2 dt v dΩ

∫ ∞
0

βνKν dν,

and, for monochromatic plane polarized radiation,

dt v dΩ βνKν dν. (29)

Here it must be carefully kept in mind that this uniformity of ra-
diation in all directions holds only for all rays striking the element v
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taken together; a single ray, even in an isotropic medium, is scattered
in different directions with different intensities and different directions
of polarization. (See end of Sec. 8.)

It is thus found that, when thermodynamic equilibrium of radiation
exists inside of the medium, the process of scattering produces, on
the whole, no effect. The radiation falling on a volume-element from
all sides and scattered from it in all directions behaves exactly as if
it had passed directly through the volume-element without the least
modification. Every ray loses by scattering just as much energy as it
regains by the scattering of other rays.

Fig. 2.

29. We shall now consider from a different point of view
the radiation phenomena in the interior of a very extended
homogeneous isotropic medium which is in thermodynamic
equilibrium. That is to say, we shall confine our attention,
not to a definite volume-element, but to a definite pencil,
and in fact to an elementary pencil (Sec. 21). Let this
pencil be specified by the infinitely small focal plane dσ
at the point O (Fig. 2), perpendicular to the axis of the
pencil, and by the solid angle dΩ, and let the radiation
take place toward the focal plane in the direction of the
arrow. We shall consider exclusively rays which belong to
this pencil.

The energy of monochromatic plane polarized radiation
of the pencil considered passing in unit time through dσ
is represented, according to (11), since in this case dt = 1,
θ = 0, by

dσ dΩKν dν. (30)

The same value holds for any other cross-section of the pencil. For
first, Kν dν has everywhere the same magnitude (Sec. 25), and second,
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the product of any right section of the pencil and the solid angle at
which the focal plane dσ is seen from this section has the constant
value dσ dΩ, since the magnitude of the cross-section increases with
the distance from the vertex O of the pencil in the proportion in which
the solid angle decreases. Hence the radiation inside of the pencil takes
place just as if the medium were perfectly diathermanous.

On the other hand, the radiation is continuously modified along its
path by the effect of emission, absorption, and scattering. We shall
consider the magnitude of these effects separately.

30. Let a certain volume-element of the pencil be bounded by two
cross-sections at distances equal to r0 (of arbitrary length) and r0 +dr0
respectively from the vertex O. The volume will be represented by
dr0 · r20 dΩ. It emits in unit time toward the focal plane dσ at O a cer-
tain quantity E of energy of monochromatic plane polarized radiation.
E may be obtained from (1) by putting

dt = 1, dτ = dr0 r
2
0 dΩ, dΩ =

dσ

r20

and omitting the numerical factor 2. We thus get

E = dr0 · dΩ dσ εν dν. (31)

Of the energy E, however, only a fraction E0 reaches O, since in
every infinitesimal element of distance s which it traverses before reach-
ing O the fraction (αν + βν)s is lost by absorption and scattering. Let
Er represent that part of E which reaches a cross-section at a distance r
(< r0) from O. Then for a small distance s = dr we have

Er+dr − Er = Er(αν + βν) dr,

or,
dEr
dr

= Er(αν + βν),
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and, by integration,
Er = Ee(αν+βν)(r−r0)

since, for r = r0, Er = E is given by equation (31). From this, by
putting r = 0, the energy emitted by the volume-element at r0 which
reaches O is found to be

E0 = Ee−(αν+βν)r0 = dr0 dΩ dσ ενe
−(αν+βν)r0 dν. (32)

All volume-elements of the pencils combined produce by their emission
an amount of energy reaching dσ equal to

dΩ dσ dν εν

∫ ∞
0

dr0 e
−(αν+βν)r0 = dΩ dσ

εν
αν + βν

dν. (33)

31. If the scattering did not affect the radiation, the total energy
reaching dσ would necessarily consist of the quantities of energy emitted
by the different volume-elements of the pencil, allowance being made,
however, for the losses due to absorption on the way. For βν = 0
expressions (33) and (30) are identical, as may be seen by comparison
with (27). Generally, however, (30) is larger than (33) because the
energy reaching dσ contains also some rays which were not at all emitted
from elements inside of the pencil, but somewhere else, and have entered
later on by scattering. In fact, the volume-elements of the pencil do
not merely scatter outward the radiation which is being transmitted
inside the pencil, but they also collect into the pencil rays coming from
without. The radiation E ′ thus collected by the volume-element at r0
is found, by putting in (29),

dt = 1, ν = dr0 dΩ r20, dΩ =
dσ

r20
,
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to be
E ′ = dr0 dΩ dσ βνKν dν.

This energy is to be added to the energy E emitted by the volume-
element, which we have calculated in (31). Thus for the total energy
contributed to the pencil in the volume-element at r0 we find:

E + E ′ = dr0 dΩ dσ (εν + βνKν) dν.

The part of this reaching O is, similar to (32):

dr0 dΩ dσ (εν + βνKν) dν e
−r0(αν+βν).

Making due allowance for emission and collection of scattered rays en-
tering on the way, as well as for losses by absorption and scattering, all
volume-elements of the pencil combined give for the energy ultimately
reaching dσ

dΩ dσ (εν + βνKν) dν

∫ ∞
0

dr0 e
−r0(αν+βν) = dΩ dσ

εν + βνKν
αν + βν

dν,

and this expression is really exactly equal to that given by (30), as may
be seen by comparison with (26).

32. The laws just derived for the state of radiation of a homoge-
neous isotropic medium when it is in thermodynamic equilibrium hold,
so far as we have seen, only for parts of the medium which lie very far
away from the surface, because for such parts only may the radiation
be considered, by symmetry, as independent of position and direction.
A simple consideration, however, shows that the value of Kν , which
was already calculated and given by (27), and which depends only on
the temperature and the nature of the medium, gives the correct value
of the intensity of radiation of the frequency considered for all direc-
tions up to points directly below the surface of the medium. For in
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the state of thermodynamic equilibrium every ray must have just the
same intensity as the one travelling in an exactly opposite direction,
since otherwise the radiation would cause a unidirectional transport of
energy. Consider then any ray coming from the surface of the medium
and directed inward; it must have the same intensity as the opposite
ray, coming from the interior. A further immediate consequence of this
is that the total state of radiation of the medium is the same on the
surface as in the interior.

33. While the radiation that starts from a surface element and is
directed toward the interior of the medium is in every respect equal to
that emanating from an equally large parallel element of area in the
interior, it nevertheless has a different history. That is to say, since
the surface of the medium was assumed to be impermeable to heat, it
is produced only by reflection at the surface of radiation coming from
the interior. So far as special details are concerned, this can happen in
very different ways, depending on whether the surface is assumed to be
smooth, i.e., in this case reflecting, or rough, e.g., white (Sec. 10). In
the first case there corresponds to each pencil which strikes the surface
another perfectly definite pencil, symmetrically situated and having
the same intensity, while in the second case every incident pencil is
broken up into an infinite number of reflected pencils, each having a
different direction, intensity, and polarization. While this is the case,
nevertheless the rays that strike a surface-element from all different
directions with the same intensity Kν also produce, all taken together, a
uniform radiation of the same intensity Kν , directed toward the interior
of the medium.

34. Hereafter there will not be the slightest difficulty in dispensing
with the assumption made in Sec. 25 that the medium in question
extends very far in all directions. For after thermodynamic equilibrium
has been everywhere established in our medium, the equilibrium is,
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according to the results of the last paragraph, in no way disturbed,
if we assume any number of rigid surfaces impermeable to heat and
rough or smooth to be inserted in the medium. By means of these the
whole system is divided into an arbitrary number of perfectly closed
separate systems, each of which may be chosen as small as the general
restrictions stated in Sec. 2 permit. It follows from this that the value
of the specific intensity of radiation Kν given in (27) remains valid for
the thermodynamic equilibrium of a substance enclosed in a space as
small as we please and of any shape whatever.

35. From the consideration of a system consisting of a single ho-
mogeneous isotropic substance we now pass on to the treatment of a
system consisting of two different homogeneous isotropic substances
contiguous to each other, the system being, as before, enclosed by a
rigid cover impermeable to heat. We consider the state of radiation
when thermodynamic equilibrium exists, at first, as before, with the
assumption that the media are of considerable extent. Since the equi-
librium is nowise disturbed, if we think of the surface separating the
two media as being replaced for an instant by an area entirely imper-
meable to heat radiation, the laws of the last paragraphs must hold
for each of the two substances separately. Let the specific intensity of
radiation of frequency ν polarized in an arbitrary plane be Kν in the
first substance (the upper one in Fig. 3), and K′ν in the second, and, in
general, let all quantities referring to the second substance be indicated
by the addition of an accent. Both of the quantities Kν and K′ν depend,
according to equation (27), only on the temperature, the frequency ν,
and the nature of the two substances, and these values of the intensities
of radiation hold up to very small distances from the bounding surface
of the substances, and hence are entirely independent of the properties
of this surface.

36. We shall now suppose, to begin with, that the bounding surface



FUNDAMENTAL FACTS AND DEFINITIONS 40

of the media is smooth (Sec. 9). Then every ray coming from the
first medium and falling on the bounding surface is divided into two
rays, the reflected and the transmitted ray. The directions of these
two rays vary with the angle of incidence and the color of the incident
ray; the intensity also varies with its polarization. Let us denote by ρ
(coefficient of reflection) the fraction of the energy reflected, then the
fraction transmitted is (1− ρ), ρ depending on the angle of incidence,
the frequency, and the polarization of the incident ray. Similar remarks
apply to ρ′ the coefficient of reflection of a ray coming from the second
medium and falling on the bounding surface.

Now according to (11) we have for the monochromatic plane po-
larized radiation of frequency ν, emitted in time dt toward the first
medium (in the direction of the feathered arrow upper left hand in
Fig. 3), from an element dσ of the bounding surface and contained in
the conical element dΩ,

dt dσ cos θ dΩKν dν, (34)

where
dΩ = sin θ dθ dφ. (35)

This energy is supplied by the two rays which come from the first and
the second medium and are respectively reflected from or transmitted
by the element dσ in the corresponding direction (the unfeathered ar-
rows). (Of the element dσ only the one point O is indicated.) The first
ray, according to the law of reflection, continues in the symmetrically
situated conical element dΩ, the second in the conical element

dΩ′ = sin θ′ dθ′ dφ′ (36)

where, according to the law of refraction,

φ′ = φ and
sin θ

sin θ′
=
q

q′
. (37)
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Fig. 3.

If we now assume the radiation (34) to be polarized either in the
plane of incidence or at right angles thereto, the same will be true for
the two radiations of which it consists, and the radiation coming from
the first medium and reflected from dσ contributes the part

ρ dt dσ cos θ dΩKν dν (38)

while the radiation coming from the second medium and transmitted
through dσ contributes the part

(1− ρ′) dt dσ cos θ′ dΩ′ K′ν dν. (39)

The quantities dt, dσ, ν and dν are written without the accent, because
they have the same values in both media.
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By adding (38) and (39) and equating their sum to the expres-
sion (34) we find

ρ cos θ dΩKν + (1− ρ′) cos θ′ dΩ′ K′ν = cos θ dΩKν .

Now from (37) we have

cos θ dθ

q
=

cos θ′ dθ′

q′

and further by (35) and (36)

dΩ′ cos θ′ =
dΩ cos θ q′2

q2
.

Therefore we find

ρKν + (1− ρ′)q
′2

q2
K′ν = K

or
Kν
K′ν
· q

2

q′2
=

1− ρ′

1− ρ
.

37. In the last equation the quantity on the left side is independent
of the angle of incidence θ and of the particular kind of polarization;
hence the same must be true for the right side. Hence, whenever the
value of this quantity is known for a single angle of incidence and any
definite kind of polarization, this value will remain valid for all angles
of incidence and all kinds of polarization. Now in the special case when
the rays are polarized at right angles to the plane of incidence and strike
the bounding surface at the angle of polarization, ρ = 0, and ρ′ = 0.
The expression on the right side of the last equation then becomes 1;
hence it must always be 1 and we have the general relations:

ρ = ρ′ (40)
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and
q2Kν = q′2K′ν . (41)

38. The first of these two relations, which states that the coefficient
of reflection of the bounding surface is the same on both sides, is a
special case of a general law of reciprocity first stated by Helmholtz.1

According to this law the loss of intensity which a ray of definite color
and polarization suffers on its way through any media by reflection,
refraction, absorption, and scattering is exactly equal to the loss suf-
fered by a ray of the same intensity, color, and polarization pursuing an
exactly opposite path. An immediate consequence of this law is that
the radiation striking the bounding surface of any two media is always
transmitted as well as reflected equally on both sides, for every color,
direction, and polarization.

39. The second formula (41) establishes a relation between the in-
tensities of radiation in the two media, for it states that, when ther-
modynamic equilibrium exists, the specific intensities of radiation of a
certain frequency in the two media are in the inverse ratio of the squares
of the velocities of propagation or in the direct ratio of the squares of
the indices of refraction.2

By substituting for Kν its value from (27) we obtain the following
theorem: The quantity

q2Kν = q2
εν
αν

(42)

1H. v. Helmholtz, Handbuch d. physiologischen Optik 1. Lieferung, Leipzig,
Leop. Voss, 1856, p. 169. See also Helmholtz, Vorlesungen über die Theorie der
Wärme herausgegeben von F. Richarz, Leipzig, J. A. Barth, 1903, p. 161. The
restrictions of the law of reciprocity made there do not bear on our problems, since
we are concerned with temperature radiation only (Sec. 7).

2G. Kirchhoff, Gesammelte Abhandlungen, Leipzig, J. A. Barth, 1882, p. 594.
R. Clausius, Pogg. Ann. 121, p. 1, 1864.
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does not depend on the nature of the substance, and is, therefore, a
universal function of the temperature T and the frequency ν alone.

The great importance of this law lies evidently in the fact that it
states a property of radiation which is the same for all bodies in nature,
and which need be known only for a single arbitrarily chosen body, in
order to be stated quite generally for all bodies. We shall later on take
advantage of the opportunity offered by this statement in order actually
to calculate this universal function (Sec. 165).

40. We now consider the other case, that in which the bounding
surface of the two media is rough. This case is much more general than
the one previously treated, inasmuch as the energy of a pencil directed
from an element of the bounding surface into the first medium is no
longer supplied by two definite pencils, but by an arbitrary number,
which come from both media and strike the surface. Here the actual
conditions may be very complicated according to the peculiarities of
the bounding surface, which moreover may vary in any way from one
element to another. However, according to Sec. 35, the values of the
specific intensities of radiation Kν and K′ν remain always the same in
all directions in both media, just as in the case of a smooth bounding
surface. That this condition, necessary for thermodynamic equilibrium,
is satisfied is readily seen from Helmholtz’s law of reciprocity, according
to which, in the case of stationary radiation, for each ray striking the
bounding surface and diffusely reflected from it on both sides, there
is a corresponding ray at the same point, of the same intensity and
opposite direction, produced by the inverse process at the same point
on the bounding surface, namely by the gathering of diffusely incident
rays into a definite direction, just as is the case in the interior of each
of the two media.

41. We shall now further generalize the laws obtained. First, just
as in Sec. 34, the assumption made above, namely, that the two media
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extend to a great distance, may be abandoned since we may introduce
an arbitrary number of bounding surfaces without disturbing the ther-
modynamic equilibrium. Thereby we are placed in a position enabling
us to pass at once to the case of any number of substances of any size
and shape. For when a system consisting of an arbitrary number of
contiguous substances is in the state of thermodynamic equilibrium,
the equilibrium is in no way disturbed, if we assume one or more of
the surfaces of contact to be wholly or partly impermeable to heat.
Thereby we can always reduce the case of any number of substances
to that of two substances in an enclosure impermeable to heat, and,
therefore, the law may be stated quite generally, that, when any arbi-
trary system is in the state of thermodynamic equilibrium, the specific
intensity of radiation Kν is determined in each separate substance by
the universal function (42).

42. We shall now consider a system in a state of thermodynamic
equilibrium, contained within an enclosure impermeable to heat and
consisting of n emitting and absorbing adjacent bodies of any size
and shape whatever. As in Sec. 36, we again confine our attention
to a monochromatic plane polarized pencil which proceeds from an el-
ement dσ of the bounding surface of the two media in the direction
toward the first medium (Fig. 3, feathered arrow) within the conical
element dΩ. Then, as in (34), the energy supplied by the pencil in unit
time is

dσ cos θ dΩKν dν = I. (43)

This energy of radiation I consists of a part coming from the first
medium by regular or diffuse reflection at the bounding surface and of
a second part coming through the bounding surface from the second
medium. We shall, however, not stop at this mode of division, but shall
further subdivide I according to that one of the n media from which
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the separate parts of the radiation I have been emitted. This point
of view is distinctly different from the preceding, since, e.g., the rays
transmitted from the second medium through the bounding surface
into the pencil considered have not necessarily been emitted in the
second medium, but may, according to circumstances, have traversed
a long and very complicated path through different media and may
have undergone therein the effect of refraction, reflection, scattering,
and partial absorption any number of times. Similarly the rays of the
pencil, which coming from the first medium are reflected at dσ, were
not necessarily all emitted in the first medium. It may even happen
that a ray emitted from a certain medium, after passing on its way
through other media, returns to the original one and is there either
absorbed or emerges from this medium a second time.

We shall now, considering all these possibilities, denote that part
of I which has been emitted by volume-elements of the first medium
by I1 no matter what paths the different constituents have pursued,
that which has been emitted by volume-elements of the second medium
by I2, etc. Then since every part of I must have been emitted by an
element of some body, the following equation must hold,

I = I1 + I2 + I3 + . . . In. (44)

43. The most adequate method of acquiring more detailed informa-
tion as to the origin and the paths of the different rays of which the
radiations I1, I2, I3, . . . In consist, is to pursue the opposite course and
to inquire into the future fate of that pencil, which travels exactly in
the opposite direction to the pencil I and which therefore comes from
the first medium in the cone dΩ and falls on the surface element dσ of
the second medium. For since every optical path may also be traversed
in the opposite direction, we may obtain by this consideration all paths
along which rays can pass into the pencil I, however complicated they
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may otherwise be. Let J represent the intensity of this inverse pencil,
which is directed toward the bounding surface and is in the same state
of polarization. Then, according to Sec. 40,

J = I. (45)

At the bounding surface dσ the rays of the pencil J are partly
reflected and partly transmitted regularly or diffusely, and thereafter,
travelling in both media, are partly absorbed, partly scattered, partly
again reflected or transmitted to different media, etc., according to
the configuration of the system. But finally the whole pencil J after
splitting into many separate rays will be completely absorbed in the
n media. Let us denote that part of J which is finally absorbed in
the first medium by J1, that which is finally absorbed in the second
medium by J2, etc., then we shall have

J = J1 + J2 + J3 + · · ·+ Jn.

Now the volume-elements of the n media, in which the absorption
of the rays of the pencil J takes place, are precisely the same as those
in which takes place the emission of the rays constituting the pencil I,
the first one considered above. For, according to Helmholtz’s law of
reciprocity, no appreciable radiation of the pencil J can enter a volume-
element which contributes no appreciable radiation to the pencil I and
vice versa.

Let us further keep in mind that the absorption of each volume-
element is, according to (42), proportional to its emission and that,
according to Helmholtz’s law of reciprocity, the decrease which the en-
ergy of a ray suffers on any path is always equal to the decrease suffered
by the energy of a ray pursuing the opposite path. It will then be clear
that the volume-elements considered absorb the rays of the pencil J in
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just the same ratio as they contribute by their emission to the energy
of the opposite pencil I. Since, moreover, the sum I of the energies
given off by emission by all volume-elements is equal to the sum J of
the energies absorbed by all elements, the quantity of energy absorbed
by each separate volume-element from the pencil J must be equal to
the quantity of energy emitted by the same element into the pencil I.
In other words: the part of a pencil I which has been emitted from a
certain volume of any medium is equal to the part of the pencil J (= I)
oppositely directed, which is absorbed in the same volume.

Hence not only are the sums I and J equal, but their constituents
are also separately equal or

J1 = I1, J2 = I2, . . . Jn = In. (46)

44. Following G. Kirchhoff 1 we call the quantity I2, i.e., the in-
tensity of the pencil emitted from the second medium into the first,
the emissive power E of the second medium, while we call the ratio of
J2 to J , i.e., that fraction of a pencil incident on the second medium
which is absorbed in this medium, the absorbing power A of the second
medium. Therefore

E = I2 (5 I), A =
J2
J

(5 1). (47)

The quantities E and A depend (a) on the nature of the two me-
dia, (b) on the temperature, the frequency ν, and the direction and
the polarization of the radiation considered, (c) on the nature of the
bounding surface and on the magnitude of the surface element dσ and
that of the solid angle dΩ, (d) on the geometrical extent and the shape
of the total surface of the two media, (e) on the nature and form of all

1G. Kirchhoff, Gesammelte Abhandlungen, 1882, p. 574.
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other bodies of the system. For a ray may pass from the first into the
second medium, be partly transmitted by the latter, and then, after
reflection somewhere else, may return to the second medium and may
be there entirely absorbed.

With these assumptions, according to equations (46), (45), and (43),
Kirchhoff’s law holds,

E

A
= I = dσ cos θ dΩKν dν, (48)

i.e., the ratio of the emissive power to the absorbing power of any body
is independent of the nature of the body. For this ratio is equal to
the intensity of the pencil passing through the first medium, which,
according to equation (27), does not depend on the second medium at
all. The value of this ratio does, however, depend on the nature of the
first medium, inasmuch as, according to (42), it is not the quantity Kν
but the quantity q2Kν , which is a universal function of the temperature
and frequency. The proof of this law given by G. Kirchhoff l. c. was
later greatly simplified by E. Pringsheim.1

45. When in particular the second medium is a black body (Sec. 10)
it absorbs all the incident radiation. Hence in that case J2 = J , A = 1,
and E = I, i.e., the emissive power of a black body is independent of its
nature. Its emissive power is larger than that of any other body at the
same temperature and, in fact, is just equal to the intensity of radiation
in the contiguous medium.

46. We shall now add, without further proof, another general law
of reciprocity, which is closely connected with that stated at the end
of Sec. 43 and which may be stated thus: When any emitting and
absorbing bodies are in the state of thermodynamic equilibrium, the part

1E. Pringsheim, Verhandlungen der Deutschen Physikalischen Gesellschaft, 3,
p. 81, 1901.
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of the energy of definite color emitted by a body A, which is absorbed
by another body B, is equal to the part of the energy of the same color
emitted by B which is absorbed by A. Since a quantity of energy emitted
causes a decrease of the heat of the body, and a quantity of energy
absorbed an increase of the heat of the body, it is evident that, when
thermodynamic equilibrium exists, any two bodies or elements of bodies
selected at random exchange by radiation equal amounts of heat with
each other. Here, of course, care must be taken to distinguish between
the radiation emitted and the total radiation which reaches one body
from the other.

47. The law holding for the quantity (42) can be expressed in a
different form, by introducing, by means of (24), the volume density uν
of monochromatic radiation instead of the intensity of radiation Kν .
We then obtain the law that, for radiation in a state of thermodynamic
equilibrium, the quantity

uνq
3 (49)

is a function of the temperature T and the frequency ν, and is the same
for all substances.1 This law becomes clearer if we consider that the
quantity

uν dν
q3

ν3
(50)

also is a universal function of T , ν, and ν + dν, and that the product
uν dν is, according to (22), the volume density of the radiation whose

frequency lies between ν and ν+dν, while the quotient
q

ν
represents the

wave length of a ray of frequency ν in the medium in question. The law
then takes the following simple form: When any bodies whatever are in

1In this law it is assumed that the quantity q in (24) is the same as in (37). This
does not hold for strongly dispersing or absorbing substances. For the generalization
applying to such cases see M. Laue, Annalen d. Physik 32, p. 1085, 1910.
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thermodynamic equilibrium, the energy of monochromatic radiation of
a definite frequency, contained in a cubical element of side equal to the
wave length, is the same for all bodies.

48. We shall finally take up the case of diathermanous (Sec. 12)
media, which has so far not been considered. In Sec. 27 we saw that, in
a medium which is diathermanous for a given color and is surrounded
by an enclosure impermeable to heat, there can be thermodynamic
equilibrium for any intensity of radiation of this color. There must,
however, among all possible intensities of radiation be a definite one,
corresponding to the absolute maximum of the total entropy of the
system, which designates the absolutely stable equilibrium of radia-
tion. In fact, in equation (27) the intensity of radiation Kν for αν = 0

and εν = 0 assumes the value
0

0
, and hence cannot be calculated from

this equation. But we see also that this indeterminateness is removed
by equation (41), which states that in the case of thermodynamic equi-
librium the product q2Kν has the same value for all substances. From
this we find immediately a definite value of Kν which is thereby dis-
tinguished from all other values. Furthermore the physical significance
of this value is immediately seen by considering the way in which that
equation was obtained. It is that intensity of radiation which exists in a
diathermanous medium, if it is in thermodynamic equilibrium when in
contact with an arbitrary absorbing and emitting medium. The volume
and the form of the second medium do not matter in the least, in partic-
ular the volume may be taken as small as we please. Hence we can for-
mulate the following law: Although generally speaking thermodynamic
equilibrium can exist in a diathermanous medium for any intensity of
radiation whatever, nevertheless there exists in every diathermanous
medium for a definite frequency at a definite temperature an intensity
of radiation defined by the universal function (42). This may be called
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the stable intensity, inasmuch as it will always be established, when the
medium is exchanging stationary radiation with an arbitrary emitting
and absorbing substance.

49. According to the law stated in Sec. 45, the intensity of a pencil,
when a state of stable heat radiation exists in a diathermanous medium,
is equal to the emissive power E of a black body in contact with the
medium. On this fact is based the possibility of measuring the emissive
power of a black body, although absolutely black bodies do not exist
in nature.1 A diathermanous cavity is enclosed by strongly emitting
walls2 and the walls kept at a certain constant temperature T . Then
the radiation in the cavity, when thermodynamic equilibrium is estab-
lished for every frequency ν, assumes the intensity corresponding to
the velocity of propagation q in the diathermanous medium, according
to the universal function (42). Then any element of area of the walls
radiates into the cavity just as if the wall were a black body of tem-
perature T . The amount lacking in the intensity of the rays actually
emitted by the walls as compared with the emission of a black body is
supplied by rays which fall on the wall and are reflected there. Similarly
every element of area of a wall receives the same radiation.

In fact, the radiation I starting from an element of area of a wall
consists of the radiation E emitted by the element of area and of the
radiation reflected from the element of area from the incident radia-
tion I, i.e., the radiation which is not absorbed (1 − A)I. We have,
therefore, in agreement with Kirchhoff’s law (48),

I = E + (1− A)I.

1W. Wien and O. Lummer, Wied. Annalen, 56, p. 451, 1895.
2The strength of the emission influences only the time required to establish

stationary radiation, but not its character. It is essential, however, that the walls
transmit no radiation to the exterior.
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If we now make a hole in one of the walls of a size dσ, so small that
the intensity of the radiation directed toward the hole is not changed
thereby, then radiation passes through the hole to the exterior where
we shall suppose there is the same diathermanous medium as within.
This radiation has exactly the same properties as if dσ were the surface
of a black body, and this radiation may be measured for every color
together with the temperature T .

50. Thus far all the laws derived in the preceding sections for
diathermanous media hold for a definite frequency, and it is to be kept
in mind that a substance may be diathermanous for one color and
adiathermanous for another. Hence the radiation of a medium com-
pletely enclosed by absolutely reflecting walls is, when thermodynamic
equilibrium has been established for all colors for which the medium
has a finite coefficient of absorption, always the stable radiation cor-
responding to the temperature of the medium such as is represented
by the emission of a black body. Hence this is briefly called “black”
radiation.1 On the other hand, the intensity of colors for which the
medium is diathermanous is not necessarily the stable black radiation,
unless the medium is in a state of stationary exchange of radiation with
an absorbing substance.

There is but one medium that is diathermanous for all kinds of
rays, namely, the absolute vacuum, which to be sure cannot be pro-
duced in nature except approximately. However, most gases, e.g., the
air of the atmosphere, have, at least if they are not too dense, to a suf-
ficient approximation the optical properties of a vacuum with respect
to waves of not too short length. So far as this is the case the velocity

1M. Thiesen, Verhandlungen d. Deutschen Physikal. Gesellschaft, 2, p. 65, 1900.
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of propagation q may be taken as the same for all frequencies, namely,

c = 3× 1010 cm

sec
. (51)

51. Hence in a vacuum bounded by totally reflecting walls any state
of radiation may persist. But as soon as an arbitrarily small quantity of
matter is introduced into the vacuum, a stationary state of radiation is
gradually established. In this the radiation of every color which is ap-
preciably absorbed by the substance has the intensity Kν corresponding
to the temperature of the substance and determined by the universal
function (42) for q = c, the intensity of radiation of the other colors
remaining indeterminate. If the substance introduced is not diather-
manous for any color, e.g., a piece of carbon however small, there exists
at the stationary state of radiation in the whole vacuum for all colors
the intensity Kν of black radiation corresponding to the temperature of
the substance. The magnitude of Kν regarded as a function of ν gives
the spectral distribution of black radiation in a vacuum, or the so-called
normal energy spectrum, which depends on nothing but the tempera-
ture. In the normal spectrum, since it is the spectrum of emission of a
black body, the intensity of radiation of every color is the largest which
a body can emit at that temperature at all.

52. It is therefore possible to change a perfectly arbitrary radia-
tion, which exists at the start in the evacuated cavity with perfectly
reflecting walls under consideration, into black radiation by the intro-
duction of a minute particle of carbon. The characteristic feature of
this process is that the heat of the carbon particle may be just as small
as we please, compared with the energy of radiation contained in the
cavity of arbitrary magnitude. Hence, according to the principle of the
conservation of energy, the total energy of radiation remains essentially
constant during the change that takes place, because the changes in
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the heat of the carbon particle may be entirely neglected, even if its
changes in temperature should be finite. Herein the carbon particle
exerts only a releasing (auslösend) action. Thereafter the intensities of
the pencils of different frequencies originally present and having differ-
ent frequencies, directions, and different states of polarization change
at the expense of one another, corresponding to the passage of the sys-
tem from a less to a more stable state of radiation or from a state of
smaller to a state of larger entropy. From a thermodynamic point of
view this process is perfectly analogous, since the time necessary for
the process is not essential, to the change produced by a minute spark
in a quantity of oxy-hydrogen gas or by a small drop of liquid in a
quantity of supersaturated vapor. In all these cases the magnitude of
the disturbance is exceedingly small and cannot be compared with the
magnitude of the energies undergoing the resultant changes, so that in
applying the two principles of thermodynamics the cause of the distur-
bance of equilibrium, viz. the carbon particle, the spark, or the drop,
need not be considered. It is always a case of a system passing from
a more or less unstable into a more stable state, wherein, according
to the first principle of thermodynamics, the energy of the system re-
mains constant, and, according to the second principle, the entropy of
the system increases.



PART II

DEDUCTIONS FROM ELECTRODYNAMICS
AND THERMODYNAMICS



CHAPTER I

MAXWELL’S RADIATION PRESSURE

53. While in the preceding part the phenomena of radiation have
been presented with the assumption of only well known elementary
laws of optics summarized in Sec. 2, which are common to all optical
theories, we shall hereafter make use of the electromagnetic theory of
light and shall begin by deducing a consequence characteristic of that
theory. We shall, namely, calculate the magnitude of the mechanical
force, which is exerted by a light or heat ray passing through a vacuum
on striking a reflecting (Sec. 10) surface assumed to be at rest.

For this purpose we begin by stating Maxwell’s general equations
for an electromagnetic process in a vacuum. Let the vector E denote
the electric field-strength (intensity of the electric field) in electric units
and the vector H the magnetic field-strength in magnetic units. Then
the equations are, in the abbreviated notation of the vector calculus,

Ė = c curlH Ḣ = −c curlE

div.E = 0 div.H = 0.
(52)

Should the reader be unfamiliar with the symbols of this notation,
he may readily deduce their meaning by working backward from the
subsequent equations (53).

54. In order to pass to the case of a plane wave in any direction
we assume that all the quantities that fix the state depend only on
the time t and on one of the coordinates x′, y′, z′, of an orthogonal
right-handed system of coordinates, say on x′. Then the equations (52)

57
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reduce to
∂Ex′

∂t
= 0

∂Hx′

∂t
= 0

∂Ey′

∂t
= −c∂Hz

′

∂x′
∂Hy′

∂t
= c

∂Ez′

∂x′

∂Ex′

∂t
= c

∂Hy′

∂x′
∂Hz′

∂t
= −c∂Ey

′

∂x′

∂Ex′

∂x′
= 0

∂Hx′

∂x′
= 0.

(53)

Hence the most general expression for a plane wave passing through a
vacuum in the direction of the positive x′-axis is

Ex′ = 0 Hx′ = 0

Ey′ = f

(
t− x′

c

)
Hy′ = −g

(
t− x′

c

)
Ez′ = g

(
t− x′

c

)
Hz′ = f

(
t− x′

c

) (54)

where f and g represent two arbitrary functions of the same argument.
55. Suppose now that this wave strikes a reflecting surface, e.g., the

surface of an absolute conductor (metal) of infinitely large conductiv-
ity. In such a conductor even an infinitely small electric field-strength
produces a finite conduction current; hence the electric field-strength E
in it must be always and everywhere infinitely small. For simplicity we
also suppose the conductor to be non-magnetizable, i.e., we assume the
magnetic induction B in it to be equal to the magnetic field-strength H,
just as is the case in a vacuum.

If we place the x-axis of a right-handed coordinate system (xyz)
along the normal of the surface directed toward the interior of the con-
ductor, the x-axis is the normal of incidence. We place the (x′y′) plane
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Fig. 4.

in the plane of incidence and take this as the plane of the figure (Fig. 4).
Moreover, we can also, without any restriction of generality, place the
y-axis in the plane of the figure, so that the z-axis coincides with the
z′-axis (directed from the figure toward the observer). Let the common
origin O of the two coordinate systems lie in the surface. If finally
θ represents the angle of incidence, the coordinates with and without
accent are related to each other by the following equations:

x = x′ cos θ − y′ sin θ x′ = x cos θ + y sin θ

y = x′ sin θ + y′ cos θ y′ = −x sin θ + y cos θ

z = z′ z′ = z.
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By the same transformation we may pass from the components of
the electric or magnetic field-strength in the first coordinate system to
their components in the second system. Performing this transforma-
tion the following values are obtained from (54) for the components
of the electric and magnetic field-strengths of the incident wave in the
coordinate system without accent,

Ex = − sin θ · f Hx = sin θ · g
Ey = cos θ · f Hy = − cos θ · g
Ez = g Hz = f.

(55)

Herein the argument of the functions f and g is

t− x′

c
= t− x cos θ + y sin θ

c
. (56)

56. In the surface of separation of the two media x = 0. According
to the general electromagnetic boundary conditions the components of
the field-strengths in the surface of separation, i.e., the four quantities
Ey, Ez, Hy, Hz must be equal to each other on the two sides of the
surface of separation for this value of x. In the conductor the electric
field-strength E is infinitely small in accordance with the assumption
made above. Hence Ey and Ez must vanish also in the vacuum for
x = 0. This condition cannot be satisfied unless we assume in the
vacuum, besides the incident, also a reflected wave superposed on the
former in such a way that the components of the electric field of the
two waves in the y and z direction just cancel at every instant and at
every point in the surface of separation. By this assumption and the
condition that the reflected wave is a plane wave returning into the
interior of the vacuum, the other four components of the reflected wave
are also completely determined. They are all functions of the single
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argument

t− −x cos θ + y sin θ

c
. (57)

The actual calculation yields as components of the total electromagnetic
field produced in the vacuum by the superposition of the two waves,
the following expressions valid for points of the surface of separation
x = 0,

Ex = − sin θ · f − sin θ · f = −2 sin θ · f
Ey = cos θ · f − cos θ · f = 0

Ez = g − g = 0

Hx = sin θ · g − sin θ · g = 0

Hy = − cos θ · g − cos θ · g = −2 cos θ · g
Hz = f + f = 2f.

(58)

In these equations the argument of the functions f and g is, according
to (56) and (57),

t− y sin θ

c
.

From these values the electric and magnetic field-strength within the
conductor in the immediate neighborhood of the separating surface
x = 0 is obtained:

Ex = 0 Hx = 0

Ey = 0 Hy = −2 cos θ · g
Ez = 0 Hz = 2f

(59)

where again the argument t−y sin θ

c
is to be substituted in the functions

f and g. For the components of E all vanish in an absolute conductor
and the components Hx, Hy, Hz are all continuous at the separating
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surface, the two latter since they are tangential components of the field-
strength, the former since it is the normal component of the magnetic
induction B (Sec. 55), which likewise remains continuous on passing
through any surface of separation.

On the other hand, the normal component of the electric field-
strength Ex is seen to be discontinuous; the discontinuity shows the
existence of an electric charge on the surface, the surface density of
which is given in magnitude and sign as follows:

1

4π
2 sin θ · f =

1

2π
sin θ · f. (60)

In the interior of the conductor at a finite distance from the bounding
surface, i.e., for x > 0, all six field components are infinitely small.
Hence, on increasing x, the values of Hy and Hz, which are finite for
x = 0, approach the value 0 at an infinitely rapid rate.

57. A certain mechanical force is exerted on the substance of the
conductor by the electromagnetic field considered. We shall calculate
the component of this force normal to the surface. It is partly of elec-
tric, partly of magnetic, origin. Let us first consider the former, Fe.
Since the electric charge existing on the surface of the conductor is in
an electric field, a mechanical force equal to the product of the charge
and the field-strength is exerted on it. Since, however, the field-strength
is discontinuous, having the value −2 sin θf on the side of the vacuum
and 0 on the side of the conductor, from a well-known law of electro-
statics the magnitude of the mechanical force Fe acting on an element
of surface dσ of the conductor is obtained by multiplying the electric
charge of the element of area calculated in (60) by the arithmetic mean
of the electric field-strength on the two sides. Hence

Fe =
sin θ

2π
f dσ (− sin θf) = −sin2 θ

2π
f 2 dσ.
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This force acts in the direction toward the vacuum and therefore exerts
a tension.

58. We shall now calculate the mechanical force of magnetic ori-
gin Fm. In the interior of the conducting substance there are certain
conduction currents, whose intensity and direction are determined by
the vector I of the current density

I =
c

4π
curlH. (61)

A mechanical force acts on every element of space dτ of the conductor
through which a conduction current flows, and is given by the vector
product

dτ

c
[I× H]. (62)

Hence the component of this force normal to the surface of the conduc-
tor x = 0 is equal to

dτ

c
(IyHz − IzHy).

On substituting the values of Iy and Iz from (61) we obtain

dτ

4π

[
Hz

(
∂Hx
∂z
− ∂Hz

∂x

)
− Hy

(
∂Hy
∂x
− ∂Hx

∂y

)]
.

In this expression the differential coefficients with respect to y and z
are negligibly small in comparison to those with respect to x, according
to the remark at the end of Sec. 56; hence the expression reduces to

−dτ
4π

(
Hy
∂Hy
∂x

+ Hz
∂Hz
∂x

)
.

Let us now consider a cylinder cut out of the conductor perpendicular
to the surface with the cross-section dσ, and extending from x = 0 to
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x = ∞. The entire mechanical force of magnetic origin acting on this
cylinder in the direction of the x-axis, since dτ = dσ x, is given by

Fm = −dσ
4π

∫ ∞
0

dx

(
Hy
∂Hy
∂x

+ Hz
∂Hz
∂x

)
.

On integration, since H vanishes for x =∞, we obtain

Fm =
dσ

8π

(
H2
y + H2

z

)
x=0

or by equation (59)

Fm =
dσ

2π
(cos2 θ · g2 + f 2).

By adding Fe and Fm the total mechanical force acting on the cylin-
der in question in the direction of the x-axis is found to be

F =
dσ

2π
cos2 θ(f 2 + g2). (63)

This force exerts on the surface of the conductor a pressure, which acts
in a direction normal to the surface toward the interior and is called
“Maxwell’s radiation pressure.” The existence and the magnitude of
the radiation pressure as predicted by the theory was first found by
delicate measurements with the radiometer by P. Lebedew.1

59. We shall now establish a relation between the radiation pressure
and the energy of radiation I dt falling on the surface element dσ of the
conductor in a time element dt. The latter from Poynting’s law of
energy flow is

I dt =
c

4π
(EyHz − EzHy) dσ dt,

1P. Lebedew, Annalen d. Phys. 6, p. 433, 1901. See also E. F. Nichols and G. F.
Hull, Annalen d. Phys. 12, p. 225, 1903.
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hence from (55)

I dt =
c

4π
cos θ(f 2 + g2) dσ dt.

By comparison with (63) we obtain

F =
2 cos θ

c
I. (64)

From this we finally calculate the total pressure p, i.e., that mechan-
ical force, which an arbitrary radiation proceeding from the vacuum and
totally reflected upon incidence on the conductor exerts in a normal di-
rection on a unit surface of the conductor. The energy radiated in the
conical element

dΩ = sin θ dθ dφ

in the time dt on the element of area dσ is, according to (6),

I dt = K cos θ dΩ dσ dt,

where K represents the specific intensity of the radiation in the direc-
tion dΩ toward the reflector. On substituting this in (64) and integrat-
ing over dΩ we obtain for the total pressure of all pencils which fall on
the surface and are reflected by it

p =
2

c

∫
K cos2 θ dΩ, (65)

the integration with respect to φ extending from 0 to 2π and with

respect to θ from 0 to
π

2
.

In case K is independent of direction as in the case of black radia-
tion, we obtain for the radiation pressure

p =
2K

c

∫ 2π

0

dφ

∫ π
2

0

dθ cos2 θ sin θ =
4πK

3c
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or, if we introduce instead of K the volume density of radiation u
from (21)

p =
u

3
. (66)

This value of the radiation pressure holds only when the reflection
of the radiation occurs at the surface of an absolute non-magnetizable
conductor. Therefore we shall in the thermodynamic deductions of
the next chapter make use of it only in such cases. Nevertheless it
will be shown later on (Sec. 66) that equation (66) gives the pressure
of uniform radiation against any totally reflecting surface, no matter
whether it reflects uniformly or diffusely.

60. In view of the extraordinarily simple and close relation between
the radiation pressure and the energy of radiation, the question might
be raised whether this relation is really a special consequence of the
electromagnetic theory, or whether it might not, perhaps, be founded
on more general energetic or thermodynamic considerations. To decide
this question we shall calculate the radiation pressure that would fol-
low by Newtonian mechanics from Newton’s (emission) theory of light,
a theory which, in itself, is quite consistent with the energy princi-
ple. According to it the energy radiated onto a surface by a light ray
passing through a vacuum is equal to the kinetic energy of the light
particles striking the surface, all moving with the constant velocity c.
The decrease in intensity of the energy radiation with the distance is
then explained simply by the decrease of the volume density of the light
particles.

Let us denote by n the number of the light particles contained in
a unit volume and by m the mass of a particle. Then for a beam of
parallel light the number of particles impinging in unit time on the
element dσ of a reflecting surface at the angle of incidence θ is

nc cos θ dσ. (67)
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Their kinetic energy is given according to Newtonian mechanics by

I = nc cos θ dσ
mc2

2
= nm cos θ

c3

2
dσ. (68)

Now, in order to determine the normal pressure of these particles on
the surface, we may note that the normal component of the velocity
c cos θ of every particle is changed on reflection into a component of
opposite direction. Hence the normal component of the momentum
of every particle (impulse-coordinate) is changed through reflection by
−2mc cos θ. Then the change in momentum for all particles considered
will be, according to (67),

−2nm cos2 θ c2 dσ. (69)

Should the reflecting body be free to move in the direction of the
normal of the reflecting surface and should there be no force acting on
it except the impact of the light particles, it would be set into motion
by the impacts. According to the law of action and reaction the ensuing
motion would be such that the momentum acquired in a certain interval
of time would be equal and opposite to the change in momentum of all
the light particles reflected from it in the same time interval. But if
we allow a separate constant force to act from outside on the reflector,
there is to be added to the change in momenta of the light particles
the impulse of the external force, i.e., the product of the force and the
time interval in question.

Therefore the reflector will remain continuously at rest, whenever
the constant external force exerted on it is so chosen that its impulse for
any time is just equal to the change in momentum of all the particles
reflected from the reflector in the same time. Thus it follows that the
force F itself which the particles exert by their impact on the surface
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element dσ is equal and opposite to the change of their momentum in
unit time as expressed in (69)

F = 2nm cos2 θ c2 dσ

and by making use of (68),

F =
4 cos θ

c
I.

On comparing this relation with equation (64) in which all symbols
have the same physical significance, it is seen that Newton’s radiation
pressure is twice as large as Maxwell’s for the same energy radiation.
A necessary consequence of this is that the magnitude of Maxwell’s
radiation pressure cannot be deduced from general energetic consider-
ations, but is a special feature of the electromagnetic theory and hence
all deductions from Maxwell’s radiation pressure are to be regarded as
consequences of the electromagnetic theory of light and all confirma-
tions of them are confirmations of this special theory.



CHAPTER II

STEFAN-BOLTZMANN LAW OF RADIATION

61. For the following we imagine a perfectly evacuated hollow cylin-
der with an absolutely tight-fitting piston free to move in a vertical
direction with no friction. A part of the walls of the cylinder, say the
rigid bottom, should consist of a black body, whose temperature T may
be regulated arbitrarily from the outside. The rest of the walls includ-
ing the inner surface of the piston may be assumed as totally reflecting.
Then, if the piston remains stationary and the temperature, T , con-
stant, the radiation in the vacuum will, after a certain time, assume
the character of black radiation (Sec. 50) uniform in all directions. The
specific intensity, K, and the volume density, u, depend only on the
temperature, T , and are independent of the volume, V , of the vacuum
and hence of the position of the piston.

If now the piston is moved downward, the radiation is compressed
into a smaller space; if it is moved upward the radiation expands into
a larger space. At the same time the temperature of the black body
forming the bottom may be arbitrarily changed by adding or removing
heat from the outside. This always causes certain disturbances of the
stationary state. If, however, the arbitrary changes in V and T are
made sufficiently slowly, the departure from the conditions of a sta-
tionary state may always be kept just as small as we please. Hence the
state of radiation in the vacuum may, without appreciable error, be re-
garded as a state of thermodynamic equilibrium, just as is done in the
thermodynamics of ordinary matter in the case of so-called infinitely
slow processes, where, at any instant, the divergence from the state of
equilibrium may be neglected, compared with the changes which the
total system considered undergoes as a result of the entire process.

69
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If, e.g., we keep the temperature T of the black body forming the
bottom constant, as can be done by a suitable connection between
it and a heat reservoir of large capacity, then, on raising the piston,
the black body will emit more than it absorbs, until the newly made
space is filled with the same density of radiation as was the original
one. Vice versa, on lowering the piston the black body will absorb the
superfluous radiation until the original radiation corresponding to the
temperature T is again established. Similarly, on raising the temper-
ature T of the black body, as can be done by heat conduction from
a heat reservoir which is slightly warmer, the density of radiation in
the vacuum will be correspondingly increased by a larger emission, etc.
To accelerate the establishment of radiation equilibrium the reflecting
mantle of the hollow cylinder may be assumed white (Sec. 10), since
by diffuse reflection the predominant directions of radiation that may,
perhaps, be produced by the direction of the motion of the piston, are
more quickly neutralized. The reflecting surface of the piston, how-
ever, should be chosen for the present as a perfect metallic reflector, to
make sure that the radiation pressure (66) on the piston is Maxwell’s.
Then, in order to produce mechanical equilibrium, the piston must be
loaded by a weight equal to the product of the radiation pressure p and
the cross-section of the piston. An exceedingly small difference of the
loading weight will then produce a correspondingly slow motion of the
piston in one or the other direction.

Since the effects produced from the outside on the system in ques-
tion, the cavity through which the radiation travels, during the pro-
cesses we are considering, are partly of a mechanical nature (displace-
ment of the loaded piston), partly of a thermal nature (heat conduction
away from and toward the reservoir), they show a certain similarity to
the processes usually considered in thermodynamics, with the differ-
ence that the system here considered is not a material system, e.g., a
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gas, but a purely energetic one. If, however, the principles of thermody-
namics hold quite generally in nature, as indeed we shall assume, then
they must also hold for the system under consideration. That is to say,
in the case of any change occurring in nature the energy of all systems
taking part in the change must remain constant (first principle), and,
moreover, the entropy of all systems taking part in the change must
increase, or in the limiting case of reversible processes must remain
constant (second principle).

62. Let us first establish the equation of the first principle for an
infinitesimal change of the system in question. That the cavity en-
closing the radiation has a certain energy we have already (Sec. 22)
deduced from the fact that the energy radiation is propagated with a
finite velocity. We shall denote the energy by U . Then we have

U = V u, (70)

where u the volume density of radiation depends only on the tempera-
ture T of the black body at the bottom.

The work done by the system, when the volume V of the cavity
increases by dV against the external forces of pressure (weight of the
loaded piston), is p dV , where p represents Maxwell’s radiation pres-
sure (66). This amount of mechanical energy is therefore gained by the
surroundings of the system, since the weight is raised. The error made
by using the radiation pressure on a stationary surface, whereas the re-
flecting surface moves during the volume change, is evidently negligible,
since the motion may be thought of as taking place with an arbitrarily
small velocity.

If, moreover, Q denotes the infinitesimal quantity of heat in me-
chanical units, which, owing to increased emission, passes from the
black body at the bottom to the cavity containing the radiation, the
bottom or the heat reservoir connected to it loses this heat Q, and
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its internal energy is decreased by that amount. Hence, according to
the first principle of thermodynamics, since the sum of the energy of
radiation and the energy of the material bodies remains constant, we
have

dU + p dV −Q = 0. (71)

According to the second principle of thermodynamics the cavity
containing the radiation also has a definite entropy. For when the
heat Q passes from the heat reservoir into the cavity, the entropy of
the reservoir decreases, the change being

−Q
T
.

Therefore, since no changes occur in the other bodies—inasmuch
as the rigid absolutely reflecting piston with the weight on it does not
change its internal condition with the motion—there must somewhere

in nature occur a compensation of entropy having at least the value
Q

T
,

by which the above diminution is compensated, and this can be nowhere
except in the entropy of the cavity containing the radiation. Let the
entropy of the latter be denoted by S.

Now, since the processes described consist entirely of states of equi-
librium, they are perfectly reversible and hence there is no increase in
entropy. Then we have

dS − Q

T
= 0, (72)

or from (71)

dS =
dU + p dV

T
. (73)

In this equation the quantities U , p, V , S represent certain proper-
ties of the heat radiation, which are completely defined by the instanta-
neous state of the radiation. Therefore the quantity T is also a certain
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property of the state of the radiation, i.e., the black radiation in the
cavity has a certain temperature T and this temperature is that of a
body which is in heat equilibrium with the radiation.

63. We shall now deduce from the last equation a consequence which
is based on the fact that the state of the system considered, and there-
fore also its entropy, is determined by the values of two independent
variables. As the first variable we shall take V , as the second either
T , u, or p may be chosen. Of these three quantities any two are de-
termined by the third together with V . We shall take the volume V
and the temperature T as independent variables. Then by substituting
from (66) and (70) in (73) we have

dS =
V

T

du

dT
dT +

4u

3T
dV. (74)

From this we obtain(
∂S

∂T

)
V

=
V

T

du

dT

(
∂S

∂V

)
T

=
4u

3T
.

On partial differentiation of these equations, the first with respect to V ,
the second with respect to T , we find

∂2S

∂T ∂V
=

1

T

du

dT
=

4

3T

du

dT
− 4u

3T 2

or
du

dT
=

4u

T
and on integration

u = aT 4 (75)

and from (21) for the specific intensity of black radiation

K =
c

4π
· u =

ac

4π
T 4. (76)
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Moreover for the pressure of black radiation

p =
a

3
T 4, (77)

and for the total radiant energy

U = aT 4 · V. (78)

This law, which states that the volume density and the specific in-
tensity of black radiation are proportional to the fourth power of the
absolute temperature, was first established by J. Stefan1 on a basis of
rather rough measurements. It was later deduced by L. Boltzmann2

on a thermodynamic basis from Maxwell’s radiation pressure and has
been more recently confirmed by O. Lummer and E. Pringsheim3 by
exact measurements between 100◦ and 1300◦ C., the temperature be-
ing defined by the gas thermometer. In ranges of temperature and
for requirements of precision for which the readings of the different
gas thermometers no longer agree sufficiently or cannot be obtained at
all, the Stefan-Boltzmann law of radiation can be used for an absolute
definition of temperature independent of all substances.

64. The numerical value of the constant a is obtained from measure-
ments made by F. Kurlbaum.4 According to them, if we denote by St
the total energy radiated in one second into air by a square centimeter
of a black body at a temperature of t◦ C., the following equation holds

S100 − S0 = 0.0731
watt

cm2
= 7.31× 105 erg

cm2 sec
. (79)

1J. Stefan, Wien. Berichte, 79, p. 391, 1879.
2L. Boltzmann, Wied. Annalen, 22, p. 291, 1884.
3O. Lummer und E. Pringsheim, Wied. Annalen, 63, p. 395, 1897. Annalen d.

Physik 3, p. 159, 1900.
4F. Kurlbaum, Wied. Annalen, 65, p. 759, 1898.
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Now, since the radiation in air is approximately identical with the ra-
diation into a vacuum, we may according to (7) and (76) put

St = πK =
ac

4
(273 + t)4

and from this
S100 − S0 =

ac

4
(3734 − 2734),

therefore

a =
4× 7.31× 105

3× 1010 × (3734 − 2734)
= 7.061× 10−15

erg

cm3 degree4
.

Recently Kurlbaum has increased the value measured by him by
2.5 per cent.,1 on account of the bolometer used being not perfectly
black, whence it follows that a = 7.24 · 10−15.

Meanwhile the radiation constant has been made the object of as
accurate measurements as possible in various places. Thus it was mea-
sured by Féry, Bauer and Moulin, Valentiner, Féry and Drecq, Shake-
spear, Gerlach, with in some cases very divergent results, so that a
mean value may hardly be formed.

For later computations we shall use the most recent determination
made in the physical laboratory of the University of Berlin2

ac

4
= σ = 5.46 · 10−12

watt

cm2 degree4
.

1F. Kurlbaum, Verhandlungen d. Deutsch. physikal. Gesellschaft, 14, p. 580,
1912.

2According to private information kindly furnished by my colleague H. Rubens
(July, 1912). (These results have since been published. See W. H. Westphal, Ver-
handlungen d. Deutsch. physikal. Gesellschaft, 14, p. 987, 1912, Tr.)
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From this a is found to be

a =
4 · 5.46 · 10−12 · 107

3 · 1010
= 7.28 · 10−15

erg

cm3 degree4

which agrees rather closely with Kurlbaum’s corrected value.
65. The magnitude of the entropy S of black radiation found by

integration of the differential equation (73) is

S =
4

3
aT 3V. (80)

In this equation the additive constant is determined by a choice
that readily suggests itself, so that at the zero of the absolute scale of
temperature, that is to say, when u vanishes, S shall become zero. From
this the entropy of unit volume or the volume density of the entropy of
black radiation is obtained,

S

V
= s =

4

3
aT 3. (81)

66. We shall now remove a restricting assumption made in order to
enable us to apply the value of Maxwell’s radiation pressure, calculated
in the preceding chapter. Up to now we have assumed the cylinder to be
fixed and only the piston to be free to move. We shall now think of the
whole of the vessel, consisting of the cylinder, the black bottom, and
the piston, the latter attached to the walls in a definite height above the
bottom, as being free to move in space. Then, according to the principle
of action and reaction, the vessel as a whole must remain constantly at
rest, since no external force acts on it. This is the conclusion to which
we must necessarily come, even without, in this case, admitting a priori
the validity of the principle of action and reaction. For if the vessel
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should begin to move, the kinetic energy of this motion could originate
only at the expense of the heat of the body forming the bottom or the
energy of radiation, as there exists in the system enclosed in a rigid cover
no other available energy; and together with the decrease of energy the
entropy of the body or the radiation would also decrease, an event which
would contradict the second principle, since no other changes of entropy
occur in nature. Hence the vessel as a whole is in a state of mechanical
equilibrium. An immediate consequence of this is that the pressure
of the radiation on the black bottom is just as large as the oppositely
directed pressure of the radiation on the reflecting piston. Hence the
pressure of black radiation is the same on a black as on a reflecting body
of the same temperature and the same may be readily proven for any
completely reflecting surface whatsoever, which we may assume to be at
the bottom of the cylinder without in the least disturbing the stationary
state of radiation. Hence we may also in all the foregoing considerations
replace the reflecting metal by any completely reflecting or black body
whatsoever, at the same temperature as the body forming the bottom,
and it may be stated as a quite general law that the radiation pressure
depends only on the properties of the radiation passing to and fro, not
on the properties of the enclosing substance.

67. If, on raising the piston, the temperature of the black body
forming the bottom is kept constant by a corresponding addition of
heat from the heat reservoir, the process takes place isothermally. Then,
along with the temperature T of the black body, the energy density u,
the radiation pressure p, and the density of the entropy s also remain
constant; hence the total energy of radiation increases from U = uV to
U ′ = uV ′, the entropy from S = sV to S ′ = sV ′ and the heat supplied
from the heat reservoir is obtained by integrating (72) at constant T ,

Q = T (S ′ − S) = Ts(V ′ − V )
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or, according to (81) and (75),

Q =
4

3
aT 4(V ′ − V ) =

4

3
(U ′ − U).

Thus it is seen that the heat furnished from the outside exceeds the
increase in energy of radiation (U ′ − U) by 1

3
(U ′ − U). This excess in

the added heat is necessary to do the external work accompanying the
increase in the volume of radiation.

68. Let us also consider a reversible adiabatic process. For this it
is necessary not merely that the piston and the mantle but also that
the bottom of the cylinder be assumed as completely reflecting, e.g., as
white. Then the heat furnished on compression or expansion of the
volume of radiation is Q = 0 and the energy of radiation changes only
by the value p dV of the external work. To insure, however, that in a
finite adiabatic process the radiation shall be perfectly stable at every
instant, i.e., shall have the character of black radiation, we may assume
that inside the evacuated cavity there is a carbon particle of minute size.
This particle, which may be assumed to possess an absorbing power
differing from zero for all kinds of rays, serves merely to produce stable
equilibrium of the radiation in the cavity (Sec. 51 et seq.) and thereby
to insure the reversibility of the process, while its heat contents may
be taken as so small compared with the energy of radiation, U , that
the addition of heat required for an appreciable temperature change of
the particle is perfectly negligible. Then at every instant in the process
there exists absolutely stable equilibrium of radiation and the radiation
has the temperature of the particle in the cavity. The volume, energy,
and entropy of the particle may be entirely neglected.

On a reversible adiabatic change, according to (72), the entropy S
of the system remains constant. Hence from (80) we have as a condition
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for such a process
T 3V = const.,

or, according to (77),

pV
4
3 = const.,

i.e., on an adiabatic compression the temperature and the pressure of
the radiation increase in a manner that may be definitely stated. The
energy of the radiation, U , in such a case varies according to the law

U

T
=

3

4
S = const.,

i.e., it increases in proportion to the absolute temperature, although
the volume becomes smaller.

69. Let us finally, as a further example, consider a simple case of an
irreversible process. Let the cavity of volume V , which is everywhere
enclosed by absolutely reflecting walls, be uniformly filled with black
radiation. Now let us make a small hole through any part of the walls,
e.g., by opening a stopcock, so that the radiation may escape into
another completely evacuated space, which may also be surrounded
by rigid, absolutely reflecting walls. The radiation will at first be of
a very irregular character; after some time, however, it will assume a
stationary condition and will fill both communicating spaces uniformly,
its total volume being, say, V ′. The presence of a carbon particle will
cause all conditions of black radiation to be satisfied in the new state.
Then, since there is neither external work nor addition of heat from the
outside, the energy of the new state is, according to the first principle,
equal to that of the original one, or U ′ = U and hence from (78)

T ′4V ′ = T 4V

T ′

T
=

4

√
V

V ′
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which defines completely the new state of equilibrium. Since V ′ > V
the temperature of the radiation has been lowered by the process.

According to the second principle of thermodynamics the entropy
of the system must have increased, since no external changes have oc-
curred; in fact we have from (80)

S ′

S
=
T ′3V ′

T 3V
=

4

√
V ′

V
> 1. (82)

70. If the process of irreversible adiabatic expansion of the radiation
from the volume V to the volume V ′ takes place as just described with
the single difference that there is no carbon particle present in the
vacuum, after the stationary state of radiation is established, as will
be the case after a certain time on account of the diffuse reflection
from the walls of the cavity, the radiation in the new volume V ′ will
not any longer have the character of black radiation, and hence no
definite temperature. Nevertheless the radiation, like every system in
a definite physical state, has a definite entropy, which, according to
the second principle, is larger than the original S, but not as large as
the S ′ given in (82). The calculation cannot be performed without the
use of laws to be taken up later (see Sec. 103). If a carbon particle is
afterward introduced into the vacuum, absolutely stable equilibrium is
established by a second irreversible process, and, the total energy as
well as the total volume remaining constant, the radiation assumes the
normal energy distribution of black radiation and the entropy increases
to the maximum value S ′ given by (82).



CHAPTER III

WIEN’S DISPLACEMENT LAW

71. Though the manner in which the volume density u and the
specific intensity K of black radiation depend on the temperature is
determined by the Stefan-Boltzmann law, this law is of comparatively
little use in finding the volume density uν corresponding to a definite
frequency ν, and the specific intensity of radiation Kν of monochro-
matic radiation, which are related to each other by equation (24) and
to u and K by equations (22) and (12). There remains as one of the
principal problems of the theory of heat radiation the problem of de-
termining the quantities uν and Kν for black radiation in a vacuum
and hence, according to (42), in any medium whatever, as functions of
ν and T , or, in other words, to find the distribution of energy in the
normal spectrum for any arbitrary temperature. An essential step in
the solution of this problem is contained in the so-called “displacement
law” stated by W. Wien,1 the importance of which lies in the fact that
it reduces the functions uν and Kν of the two arguments ν and T to a
function of a single argument.

The starting point of Wien’s displacement law is the following the-
orem. If the black radiation contained in a perfectly evacuated cavity
with absolutely reflecting walls is compressed or expanded adiabatically
and infinitely slowly, as described above in Sec. 68, the radiation always
retains the character of black radiation, even without the presence of a

1W. Wien, Sitzungsberichte d. Akad. d. Wissensch. Berlin, Febr. 9, 1893, p. 55.
Wiedemann’s Annal., 52, p. 132, 1894. See also among others M. Thiesen, Ver-
handl. d. Deutsch. phys. Gesellsch., 2, p. 65, 1900. H. A. Lorentz, Akad. d. Wis-
sensch. Amsterdam, May 18, 1901, p. 607. M. Abraham, Annal. d. Physik 14,
p. 236, 1904.

81
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carbon particle. Hence the process takes place in an absolute vacuum
just as was calculated in Sec. 68 and the introduction, as a precaution,
of a carbon particle is shown to be superfluous. But this is true only
in this special case, not at all in the case described in Sec. 70.

The truth of the proposition stated may be shown as follows: Let
the completely evacuated hollow cylinder, which is at the start filled
with black radiation, be compressed adiabatically and infinitely slowly
to a finite fraction of the original volume. If, now, the compression
being completed, the radiation were no longer black, there would be
no stable thermodynamic equilibrium of the radiation (Sec. 51). It
would then be possible to produce a finite change at constant volume
and constant total energy of radiation, namely, the change to the ab-
solutely stable state of radiation, which would cause a finite increase
of entropy. This change could be brought about by the introduction of
a carbon particle, containing a negligible amount of heat as compared
with the energy of radiation. This change, of course, refers only to the
spectral density of radiation uν , whereas the total density of energy u
remains constant. After this has been accomplished, we could, leaving
the carbon particle in the space, allow the hollow cylinder to return adi-
abatically and infinitely slowly to its original volume and then remove
the carbon particle. The system will then have passed through a cycle
without any external changes remaining. For heat has been neither
added nor removed, and the mechanical work done on compression has
been regained on expansion, because the latter, like the radiation pres-
sure, depends only on the total density u of the energy of radiation, not
on its spectral distribution. Therefore, according to the first principle
of thermodynamics, the total energy of radiation is at the end just the
same as at the beginning, and hence also the temperature of the black
radiation is again the same. The carbon particle and its changes do
not enter into the calculation, for its energy and entropy are vanish-
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ingly small compared with the corresponding quantities of the system.
The process has therefore been reversed in all details; it may be re-
peated any number of times without any permanent change occurring
in nature. This contradicts the assumption, made above, that a finite
increase in entropy occurs; for such a finite increase, once having taken
place, cannot in any way be completely reversed. Therefore no finite
increase in entropy can have been produced by the introduction of the
carbon particle in the space of radiation, but the radiation was, before
the introduction and always, in the state of stable equilibrium.

72. In order to bring out more clearly the essential part of this
important proof, let us point out an analogous and more or less obvious
consideration. Let a cavity containing originally a vapor in a state of
saturation be compressed adiabatically and infinitely slowly.

“Then on an arbitrary adiabatic compression the vapor remains al-
ways just in the state of saturation. For let us suppose that it becomes
supersaturated on compression. After the compression to an apprecia-
ble fraction of the original volume has taken place, condensation of a
finite amount of vapor and thereby a change into a more stable state,
and hence a finite increase of entropy of the system, would be produced
at constant volume and constant total energy by the introduction of a
minute drop of liquid, which has no appreciable mass or heat capacity.
After this has been done, the volume could again be increased adia-
batically and infinitely slowly until again all liquid is evaporated and
thereby the process completely reversed, which contradicts the assumed
increase of entropy.”

Such a method of proof would be erroneous, because, by the process
described, the change that originally took place is not at all completely
reversed. For since the mechanical work expended on the compression
of the supersaturated steam is not equal to the amount gained on ex-
panding the saturated steam, there corresponds to a definite volume of
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the system when it is being compressed an amount of energy different
from the one during expansion and therefore the volume at which all
liquid is just vaporized cannot be equal to the original volume. The
supposed analogy therefore breaks down and the statement made above
in quotation marks is incorrect.

73. We shall now again suppose the reversible adiabatic process de-
scribed in Sec. 68 to be carried out with the black radiation contained
in the evacuated cavity with white walls and white bottom, by allow-
ing the piston, which consists of absolutely reflecting metal, to move
downward infinitely slowly, with the single difference that now there
shall be no carbon particle in the cylinder. The process will, as we now
know, take place exactly as there described, and, since no absorption
or emission of radiation takes place, we can now give an account of the
changes of color and intensity which the separate pencils of the system
undergo. Such changes will of course occur only on reflection from the
moving metallic reflector, not on reflection from the stationary walls
and the stationary bottom of the cylinder.

If the reflecting piston moves down with the constant, infinitely
small, velocity v, the monochromatic pencils striking it during the mo-
tion will suffer on reflection a change of color, intensity, and direction.
Let us consider these different influences in order.1

74. To begin with, we consider the change of color which a
monochromatic ray suffers by reflection from the reflector, which is
moving with an infinitely small velocity. For this purpose we consider
first the case of a ray which falls normally from below on the reflector

1The complete solution of the problem of reflection of a pencil from a moving
absolutely reflecting surface including the case of an arbitrarily large velocity of the
surface may be found in the paper by M. Abraham quoted in Sec. 71. See also
the text-book by the same author. Electromagnetische Theorie der Strahlung, 1908
(Leipzig, B. G. Teubner).
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Fig. 5.

and hence is reflected normally downward. Let the plane A (Fig. 5)
represent the position of the reflector at the time t, the plane A′ the
position at the time t + δt, where the distance AA′ equals v δt, v de-
noting the velocity of the reflector. Let us now suppose a stationary
plane B to be placed parallel to A at a suitable distance and let us
denote by λ the wave length of the ray incident on the reflector and
by λ′ the wave length of the ray reflected from it. Then at a time t
there are in the interval AB in the vacuum containing the radiation
AB

λ
waves of the incident and

AB

λ′
waves of the reflected ray, as can

be seen, e.g., by thinking of the electric field-strength as being drawn
at the different points of each of the two rays at the time t in the form
of a sine curve. Reckoning both incident and reflected ray there are at
the time t

AB

(
1

λ
+

1

λ′

)
waves in the interval between A and B. Since this is a large number,
it is immaterial whether the number is an integer or not.
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Similarly at the time t+ δt, when the reflector is at A′, there are

A′B

(
1

λ
+

1

λ′

)
waves in the interval between A′ and B all told.

The latter number will be smaller than the former, since in the
shorter distance A′B there is room for fewer waves of both kinds than in
the longer distance AB. The remaining waves must have been expelled
in the time δt from the space between the stationary plane B and the
moving reflector, and this must have taken place through the plane B
downward; for in no other way could a wave disappear from the space
considered.

Now ν δt waves pass in the time δt through the stationary plane B
in an upward direction and ν ′ δt waves in a downward direction; hence
we have for the difference

(ν ′ − ν) δt = (AB − A′B)

(
1

λ
+

1

λ′

)
or, since

AB − A′B = v δt,

and

λ =
c

ν
λ′ =

c

ν ′

ν ′ =
c+ v

c− v
ν

or, since v is infinitely small compared with c,

ν ′ = ν

(
1 +

2v

c

)
.
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75. When the radiation does not fall on the reflector normally but at
an acute angle of incidence θ, it is possible to pursue a very similar line
of reasoning, with the difference that then A, the point of intersection
of a definite ray BA with the reflector at the time t, has not the same
position on the reflector as the point of intersection, A′, of the same ray
with the reflector at the time t+δt (Fig. 6). The number of waves which

lie in the interval BA at the time t is
BA

λ
. Similarly, at the time t the

number of waves in the interval AC representing the distance of the
point A from a wave plane CC ′, belonging to the reflected ray and

stationary in the vacuum, is
AC

λ′
.

Hence there are, all told, at the time t in the interval BAC

BA

λ
+
AC

λ′

waves of the ray under consideration. We may further note that the
angle of reflection θ′ is not exactly equal to the angle of incidence, but
is a little smaller as can be shown by a simple geometric consideration
based on Huyghens’ principle. The difference of θ and θ′, however, will
be shown to be non-essential for our calculation. Moreover there are at
the time t+ δt, when the reflector passes through A′,

BA′

λ
+
A′C ′

λ′

waves in the distance BA′C ′. The latter number is smaller than the
former and the difference must equal the total number of waves which
are expelled in the time δt from the space which is bounded by the
stationary planes BB′ and CC ′.

Now ν δt waves enter into the space through the plane BB′ in the
time δt and ν ′ δt waves leave the space through the plane CC ′. Hence
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Fig. 6.

we have

(ν ′ − ν) δt =

(
BA

λ
+
AC

λ′

)
−
(
BA′

λ
+
A′C ′

λ′

)
but

BA−BA′ = AA′ =
v δt

cos θ
AC − A′C ′ = AA′ cos(θ + θ′)

λ =
c

ν
, λ′ =

c

ν ′
.

Hence

ν ′ =
c cos θ + v

c cos θ − v cos(θ + θ′)
ν.

This relation holds for any velocity v of the moving reflector. Now,
since in our case v is infinitely small compared with c, we have the
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simpler expression

ν ′ = ν(1 +
v

c cos θ
[1 + cos(θ + θ′)]).

The difference between the two angles θ and θ′ is in any case of the

order of magnitude
v

c
; hence we may without appreciable error replace

θ′ by θ, thereby obtaining the following expression for the frequency of
the reflected ray for oblique incidence

ν ′ = ν

(
1 +

2v cos θ

c

)
. (83)

76. From the foregoing it is seen that the frequency of all rays
which strike the moving reflector are increased on reflection, when the
reflector moves toward the radiation, and decreased, when the reflector
moves in the direction of the incident rays (v < 0). However, the total
radiation of a definite frequency ν striking the moving reflector is by no
means reflected as monochromatic radiation but the change in color on
reflection depends also essentially on the angle of incidence θ. Hence
we may not speak of a certain spectral “displacement” of color except
in the case of a single pencil of rays of definite direction, whereas in the
case of the entire monochromatic radiation we must refer to a spectral
“dispersion.” The change in color is the largest for normal incidence
and vanishes entirely for grazing incidence.

77. Secondly, let us calculate the change in energy, which the mov-
ing reflector produces in the incident radiation, and let us consider from
the outset the general case of oblique incidence. Let a monochromatic,
infinitely thin, unpolarized pencil of rays, which falls on a surface ele-
ment of the reflector at the angle of incidence θ, transmit the energy I δt
to the reflector in the time δt. Then, ignoring vanishingly small quan-
tities, the mechanical pressure of the pencil of rays normally to the
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reflector is, according to equation (64),

F =
2 cos θ

c
I,

and to the same degree of approximation the work done from the outside
on the incident radiation in the time δt is

Fv δt =
2v cos θ

c
I δt. (84)

According to the principle of the conservation of energy this amount
of work must reappear in the energy of the reflected radiation. Hence
the reflected pencil has a larger intensity than the incident one. It
produces, namely, in the time δt the energy1

I δt+ Fv δt = I

(
1 +

2v cos θ

c

)
δt = I ′ δt. (85)

Hence we may summarize as follows: By the reflection of a monochro-
matic unpolarized pencil, incident at an angle θ on a reflector moving
toward the radiation with the infinitely small velocity v, the radiant
energy I δt, whose frequencies extend from ν to ν+dν, is in the time δt
changed into the radiant energy I ′ δt with the interval of frequency
(ν ′, ν ′+ dν ′), where I ′ is given by (85), ν ′ by (83), and accordingly dν ′,
the spectral breadth of the reflected pencil, by

dν ′ = dν

(
1 +

2v cos θ

c

)
. (86)

1It is clear that the change in intensity of the reflected radiation caused by
the motion of the reflector can also be derived from purely electrodynamical con-
siderations, since electrodynamics are consistent with the energy principle. This
method is somewhat lengthy, but it affords a deeper insight into the details of the
phenomenon of reflection.



WIEN’S DISPLACEMENT LAW 91

A comparison of these values shows that

I ′

I
=
ν ′

ν
=
dν ′

dν
. (87)

The absolute value of the radiant energy which has disappeared in this
change is, from equation (13),

I δt = 2Kν dσ cos θ dΩ dν δt, (88)

and hence the absolute value of the radiant energy which has been
formed is, according to (85),

I ′ δt = 2Kν dσ cos θ dΩ dν

(
1 +

2v cos θ

c

)
δt. (89)

Strictly speaking these last two expressions would require an in-
finitely small correction, since the quantity I from equation (88) repre-
sents the energy radiation on a stationary element of area dσ, while, in
reality, the incident radiation is slightly increased by the motion of dσ
toward the incident pencil. The corresponding additional terms may,
however, be omitted here without appreciable error, since the correc-
tion caused by them would consist merely of the addition to the energy
change here calculated of a comparatively infinitesimal energy change of
the same kind with an external work that is infinitesimal of the second
order.

78. As regards finally the changes in direction, which are imparted
to the incident ray by reflection from the moving reflector, we need not
calculate them at all at this stage. For if the motion of the reflector
takes place sufficiently slowly, all irregularities in the direction of the
radiation are at once equalized by further reflection from the walls of
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the vessel. We may, indeed, think of the whole process as being accom-
plished in a very large number of short intervals, in such a way that the
piston, after it has moved a very small distance with very small veloc-
ity, is kept at rest for a while, namely, until all irregularities produced
in the directions of the radiation have disappeared as the result of the
reflection from the white walls of the hollow cylinder. If this procedure
be carried on sufficiently long, the compression of the radiation may be
continued to an arbitrarily small fraction of the original volume, and
while this is being done, the radiation may be always regarded as uni-
form in all directions. This continuous process of equalization refers, of
course, only to difference in the direction of the radiation; for changes
in the color or intensity of the radiation of however small size, hav-
ing once occurred, can evidently never be equalized by reflection from
totally reflecting stationary walls but continue to exist forever.

79. With the aid of the theorems established we are now in a po-
sition to calculate the change of the density of radiation for every fre-
quency for the case of infinitely slow adiabatic compression of the per-
fectly evacuated hollow cylinder, which is filled with uniform radiation.
For this purpose we consider the radiation at the time t in a definite
infinitely small interval of frequencies, from ν to ν + dν, and inquire
into the change which the total energy of radiation contained in this
definite constant interval suffers in the time δt.

At the time t this radiant energy is, according to Sec. 23, V u dν; at
the time t+ δt it is

(
V u+ δ(V u)

)
dν, hence the change to be calculated

is
δ(V u) dν. (90)

In this the density of monochromatic radiation u is to be regarded as a
function of the mutually independent variables ν and t, the differentials
of which are distinguished by the symbols d and δ.
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The change of the energy of monochromatic radiation is produced
only by the reflection from the moving reflector, that is to say, firstly by
certain rays, which at the time t belong to the interval (ν, dν), leaving
this interval on account of the change in color suffered by reflection,
and secondly by certain rays, which at the time t do not belong to
the interval (ν, dν), coming into this interval on account of the change
in color suffered on reflection. Let us calculate these influences in or-
der. The calculation is greatly simplified by taking the width of this
interval dν so small that

dν is small compared with
v

c
ν, (91)

a condition which can always be satisfied, since dν and v are mutually
independent.

80. The rays which at the time t belong to the interval (ν, dν)
and leave this interval in the time δt on account of reflection from the
moving reflector, are simply those rays which strike the moving reflector
in the time δt. For the change in color which such a ray undergoes is,
from (83) and (91), large compared with dν, the width of the whole
interval. Hence we need only calculate the energy, which in the time δt
is transmitted to the reflector by the rays in the interval (ν, dν).

For an elementary pencil, which falls on the element dσ of the re-
flecting surface at the angle of incidence θ, this energy is, according to
(88) and (5),

I δt = 2Kν dσ cos θ dΩ dν δt = 2Kν dσ sin θ cos θ dθ dφ dν δt.

Hence we obtain for the total monochromatic radiation, which falls on
the whole surface F of the reflector, by integration with respect to φ

from 0 to 2π, with respect to θ from 0 to
π

2
, and with respect to dσ
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from 0 to F ,
2πFKν dν δt. (92)

Thus this radiant energy leaves, in the time δt, the interval of frequen-
cies (ν, dν) considered.

81. In calculating the radiant energy which enters the interval
(ν, dν) in the time δt on account of reflection from the moving reflec-
tor, the rays falling on the reflector at different angles of incidence must
be considered separately. Since in the case of a positive v, the frequency
is increased by the reflection, the rays which must be considered have,
at the time t, the frequency ν1 < ν. If we now consider at the time t
a monochromatic pencil of frequency (ν1, dν1), falling on the reflector
at an angle of incidence θ, a necessary and sufficient condition for its
entrance, by reflection, into the interval (ν, dν) is

ν = ν1

(
1 +

2v cos θ

c

)
and dν = dν1

(
1 +

2v cos θ

c

)
.

These relations are obtained by substituting ν1 and ν respectively in
the equations (83) and (86) in place of the frequencies before and after
reflection ν and ν ′.

The energy which this pencil carries into the interval (ν1, dν) in the
time δt is obtained from (89), likewise by substituting ν1 for ν. It is

2Kν1 dσ cos θ dΩ dν1

(
1 +

2v cos θ

c

)
δt = 2Kν1 dσ cos θ dΩ dν δt.

Now we have

Kν1 = Kν + (ν1 − ν)
∂K

∂ν
+ . . .

where we shall assume
∂K

∂ν
to be finite.
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Hence, neglecting small quantities of higher order,

Kν1 = Kν −
2νv cos θ

c

∂K

∂ν
.

Thus the energy required becomes

2 dσ

(
Kν −

2νv cos θ

c

∂K

∂ν

)
sin θ cos θ dθ dφ dν δt,

and, integrating this expression as above, with respect to dσ, φ, and θ,
the total radiant energy which enters into the interval (ν, dν) in the
time δt becomes

2πF

(
Kν −

4

3

νv

c

∂K

∂ν

)
dν δt. (93)

82. The difference of the two expressions (93) and (92) is equal to
the whole change (90), hence

−8π

3
F
νv

c

∂K

∂ν
δt = δ(V u),

or, according to (24),

−1

3
Fνv

∂u

∂ν
δt = δ(V u),

or, finally, since Fv δt is equal to the decrease of the volume V ,

1

3
ν
∂u

∂ν
δV = δ(V u) = u δV + V δu, (94)

whence it follows that

δu =

(
ν

3

∂u

∂ν
− u

)
δV

V
. (95)
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This equation gives the change of the energy density of any definite
frequency ν, which occurs on an infinitely slow adiabatic compression of
the radiation. It holds, moreover, not only for black radiation, but also
for radiation originally of a perfectly arbitrary distribution of energy, as
is shown by the method of derivation.

Since the changes taking place in the state of the radiation in the
time δt are proportional to the infinitely small velocity v and are re-
versed on changing the sign of the latter, this equation holds for any
sign of δV ; hence the process is reversible.

83. Before passing on to the general integration of equation (95) let
us examine it in the manner which most easily suggests itself. According
to the energy principle, the change in the radiant energy

U = V u = V

∫ ∞
0

u dν,

occurring on adiabatic compression, must be equal to the external work
done against the radiation pressure

−p δV = −u
3
δV = −δV

3

∫ ∞
0

u dν. (96)

Now from (94) the change in the total energy is found to be

δU =

∫ ∞
0

dν δ(V u) =
δV

3

∫ ∞
0

ν
∂u

∂ν
dν,

or, by partial integration,

δU =
δV

3

(
[νu]

∞
0 −

∫ ∞
0

u dν
)
,

and this expression is, in fact, identical with (96), since the product νu
vanishes for ν = 0 as well as for ν =∞. The latter might at first seem
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doubtful; but it is easily seen that, if νu for ν =∞ had a value different
from zero, the integral of u with respect to ν taken from 0 to ∞ could
not have a finite value, which, however, certainly is the case.

84. We have already emphasized (Sec. 79) that u must be regarded
as a function of two independent variables, of which we have taken as
the first the frequency ν and as the second the time t. Since, now, in
equation (95) the time t does not explicitly appear, it is more appropri-
ate to introduce the volume V , which depends only on t, as the second
variable instead of t itself. Then equation (95) may be written as a
partial differential equation as follows:

V
∂u

∂V
=
ν

3

∂u

∂ν
− u. (97)

From this equation, if, for a definite value of V , u is known as a function
of ν, it may be calculated for all other values of V as a function of ν.
The general integral of this differential equation, as may be readily seen
by substitution, is

u =
1

V
φ(ν3V ), (98)

where φ denotes an arbitrary function of the single argument ν3V .
Instead of this we may, on substituting ν3V φ(ν3V ) for φ(ν3V ), write

u = ν3φ(ν3V ). (99)

Either of the last two equations is the general expression of Wien’s
displacement law.

If for a definitely given volume V the spectral distribution of energy
is known (i.e., u as a function of ν), it is possible to deduce therefrom
the dependence of the function φ on its argument, and thence the dis-
tribution of energy for any other volume V ′, into which the radiation
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filling the hollow cylinder may be brought by a reversible adiabatic
process.

84a. The characteristic feature of this new distribution of energy
may be stated as follows: If we denote all quantities referring to the
new state by the addition of an accent, we have the following equation
in addition to (99)

u′ = ν ′3φ(ν ′3V ′).

Therefore, if we put
ν ′3V ′ = ν3V, (99a)

we shall also have

u′

ν ′3
=

u

ν3
and u′V ′ = uV, (99b)

i.e., if we coordinate with every frequency ν in the original state that
frequency ν ′ which is to ν in the inverse ratio of the cube roots of the
respective volumes, the corresponding energy densities u′ and u will be
in the inverse ratio of the volumes.

The meaning of these relations will be more clearly seen, if we write

V ′

λ′3
=
V

λ3
.

This is the number of the cubes of the wave lengths, which correspond
to the frequency ν and are contained in the volume of the radiation.
Moreover u dν V = U dν denotes the radiant energy lying between the
frequencies ν and ν + dν, which is contained in the volume V . Now
since, according to (99a),

3
√
V ′ dν ′ =

3
√
V dν or

dν ′

ν ′
=
dν

ν
(99c)
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we have, taking account of (99b),

U′
dν ′

ν ′
= U

dν

ν
.

These results may be summarized thus: On an infinitely slow reversible
adiabatic change in volume of radiation contained in a cavity and uni-
form in all directions, the frequencies change in such a way that the
number of cubes of wave lengths of every frequency contained in the
total volume remains unchanged, and the radiant energy of every in-
finitely small spectral interval changes in proportion to the frequency.
These laws hold for any original distribution of energy whatever; hence,
e.g., an originally monochromatic radiation remains monochromatic
during the process described, its color changing in the way stated.

85. Returning now to the discussion of Sec. 73 we introduce the
assumption that at first the spectral distribution of energy is the normal
one, corresponding to black radiation. Then, according to the law there
proven, the radiation retains this property without change during a
reversible adiabatic change of volume and the laws derived in Sec. 68
hold for the process. The radiation then possesses in every state a
definite temperature T , which depends on the volume V according to
the equation derived in that paragraph,

T 3V = const. = T ′3V ′. (100)

Hence we may now write equation (99) as follows:

u = ν3φ

(
ν3

T 3

)
or

u = ν3φ

(
T

ν

)
.
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Therefore, if for a single temperature the spectral distribution of black
radiation, i.e., u as a function of ν, is known, the dependence of the
function φ on its argument, and hence the spectral distribution for any
other temperature, may be deduced therefrom.

If we also take into account the law proved in Sec. 47, that, for the
black radiation of a definite temperature, the product uq3 has for all
media the same value, we may also write

u =
ν3

c3
F

(
T

ν

)
(101)

where now the function F no longer contains the velocity of propaga-
tion.

86. For the total radiation density in space of the black radiation
in the vacuum we find

u =

∫ ∞
0

u dν =
1

c3

∫ ∞
0

ν3F

(
T

ν

)
dν, (102)

or, on introducing
T

ν
= x as the variable of integration instead of ν,

u =
T 4

c3

∫ ∞
0

F (x)

x5
dx. (103)

If we let the absolute constant

1

c3

∫ ∞
0

F (x)

x5
dx = a (104)

the equation reduces to the form of the Stefan-Boltzmann law of radi-
ation expressed in equation (75).
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87. If we combine equation (100) with equation (99a) we obtain

ν ′

T ′
=
ν

T
. (105)

Hence the laws derived at the end of Sec. 84a assume the following
form: On infinitely slow reversible adiabatic change in volume of black
radiation contained in a cavity, the temperature T varies in the inverse
ratio of the cube root of the volume V , the frequencies ν vary in pro-
portion to the temperature, and the radiant energy U dν of an infinitely
small spectral interval varies in the same ratio. Hence the total radiant
energy U as the sum of the energies of all spectral intervals varies also
in proportion to the temperature, a statement which agrees with the
conclusion arrived at already at the end of Sec. 68, while the space

density of radiation, u =
U

V
, varies in proportion to the fourth power

of the temperature, in agreement with the Stefan-Boltzmann law.
88. Wien’s displacement law may also in the case of black radiation

be stated for the specific intensity of radiation Kν of a plane polarized
monochromatic ray. In this form it reads according to (24)

Kν =
ν3

c2
F

(
T

ν

)
. (106)

If, as is usually done in experimental physics, the radiation intensity is
referred to wave lengths λ instead of frequencies ν, according to (16),
namely

Eλ =
cKν
λ2

,

equation (106) takes the following form:

Eλ =
c2

λ5
F

(
λT

c

)
. (107)
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This form of Wien’s displacement law has usually been the starting-
point for an experimental test, the result of which has in all cases been
a fairly accurate verification of the law.1

89. Since Eλ vanishes for λ = 0 as well as for λ =∞, Eλ must have
a maximum with respect to λ, which is found from the equation

dEλ
dλ

= 0 = − 5

λ6
F

(
λT

c

)
+

1

λ5
T

c
Ḟ

(
λT

c

)
where Ḟ denotes the differential coefficient of F with respect to its
argument. Or

λT

c
Ḟ

(
λT

c

)
− 5F

(
λT

c

)
= 0. (108)

This equation furnishes a definite value for the argument
λT

c
, so that

for the wave length λm corresponding to the maximum of the radiation
intensity Eλ the relation holds

λmT = b. (109)

With increasing temperature the maximum of radiation is therefore
displaced in the direction of the shorter wave lengths.

The numerical value of the constant b as determined by Lummer
and Pringsheim2 is

b = 0.294 cm degree. (110)

Paschen3 has found a slightly smaller value, about 0.292.

1E.g., F. Paschen, Sitzungsber. d. Akad. d. Wissensch. Berlin, pp. 405 and 959,
1899. O. Lummer und E. Pringsheim, Verhandlungen d. Deutschen physikalischen
Gesellschaft 1, pp. 23 and 215, 1899. Annal. d. Physik 6, p. 192, 1901.

2O. Lummer und E. Pringsheim, l. c.
3F. Paschen, Annal. d. Physik 6, p. 657, 1901.
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We may emphasize again at this point that, according to Sec. 19,
the maximum of Eλ does not by any means occur at the same point in
the spectrum as the maximum of Kν and that hence the significance of
the constant b is essentially dependent on the fact that the intensity of
monochromatic radiation is referred to wave lengths, not to frequencies.

90. The value also of the maximum of Eλ is found from (107) by
putting λ = λm. Allowing for (109) we obtain

Emax = const. T 5, (111)

i.e., the value of the maximum of radiation in the spectrum of the black
radiation is proportional to the fifth power of the absolute temperature.

Should we measure the intensity of monochromatic radiation not
by Eλ but by Kν , we would obtain for the value of the radiation maxi-
mum a quite different law, namely,

Kmax = const. T 3. (112)



CHAPTER IV

RADIATION OF ANY ARBITRARY SPECTRAL
DISTRIBUTION OF ENERGY. ENTROPY AND

TEMPERATURE OF MONOCHROMATIC
RADIATION

91. We have so far applied Wien’s displacement law only to the case
of black radiation; it has, however, a much more general importance.
For equation (95), as has already been stated, gives, for any original
spectral distribution of the energy radiation contained in the evacuated
cavity and radiated uniformly in all directions, the change of this energy
distribution accompanying a reversible adiabatic change of the total
volume. Every state of radiation brought about by such a process is
perfectly stationary and can continue infinitely long, subject, however,
to the condition that no trace of an emitting or absorbing substance
exists in the radiation space. For otherwise, according to Sec. 51, the
distribution of energy would, in the course of time, change through the
releasing action of the substance irreversibly, i.e., with an increase of
the total entropy, into the stable distribution corresponding to black
radiation.

The difference of this general case from the special one dealt with in
the preceding chapter is that we can no longer, as in the case of black
radiation, speak of a definite temperature of the radiation. Neverthe-
less, since the second principle of thermodynamics is supposed to hold
quite generally, the radiation, like every physical system which is in a
definite state, has a definite entropy, S = V s. This entropy consists
of the entropies of the monochromatic radiations, and, since the sepa-
rate kinds of rays are independent of one another, may be obtained by

104
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addition. Hence

s =

∫ ∞
0

s dν, S = V

∫ ∞
0

s dν, (113)

where s dν denotes the entropy of the radiation of frequencies between
ν and ν + dν contained in unit volume. s is a definite function of the
two independent variables ν and u and in the following will always be
treated as such.

92. If the analytical expression of the function s were known, the
law of energy distribution in the normal spectrum could immediately
be deduced from it; for the normal spectral distribution of energy or
that of black radiation is distinguished from all others by the fact that
it has the maximum of the entropy of radiation S.

Suppose then we take s to be a known function of ν and u. Then
as a condition for black radiation we have

δS = 0, (114)

for any variations of energy distribution, which are possible with a con-
stant total volume V and constant total energy of radiation U . Let the
variation of energy distribution be characterized by making an infinitely
small change δu in the energy u of every separate definite frequency ν.
Then we have as fixed conditions

δV = 0 and

∫ ∞
0

δu dν = 0. (115)

The changes d and δ are of course quite independent of each other.
Now since δV = 0, we have from (114) and (113)∫ ∞

0

δs dν = 0,
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or, since ν remains unvaried∫ ∞
0

∂s

∂u
δu dν = 0,

and, by allowing for (115), the validity of this equation for all values of
δu whatever requires that

∂s

∂u
= const. (116)

for all different frequencies. This equation states the law of energy
distribution in the case of black radiation.

93. The constant of equation (116) bears a simple relation to the
temperature of black radiation. For if the black radiation, by conduc-
tion into it of a certain amount of heat at constant volume V , under-
goes an infinitely small change in energy δU , then, according to (73),
its change in entropy is

δS =
δU

T
.

However, from (113) and (116),

δS = V

∫ ∞
0

∂s

∂u
δu dν =

∂s

∂u
V

∫ ∞
0

δu dν =
∂s

∂u
δU

hence
∂s

∂u
=

1

T
(117)

and the above quantity, which was found to be the same for all frequen-
cies in the case of black radiation, is shown to be the reciprocal of the
temperature of black radiation.
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Through this law the concept of temperature gains significance also
for radiation of a quite arbitrary distribution of energy. For since s de-
pends only on u and ν, monochromatic radiation, which is uniform in
all directions and has a definite energy density u, has also a definite
temperature given by (117), and, among all conceivable distributions of
energy, the normal one is characterized by the fact that the radiations
of all frequencies have the same temperature.

Any change in the energy distribution consists of a passage of energy
from one monochromatic radiation into another, and, if the tempera-
ture of the first radiation is higher, the energy transformation causes
an increase of the total entropy and is hence possible in nature without
compensation; on the other hand, if the temperature of the second radi-
ation is higher, the total entropy decreases and therefore the change is
impossible in nature, unless compensation occurs simultaneously, just
as is the case with the transfer of heat between two bodies of different
temperatures.

94. Let us now investigate Wien’s displacement law with regard
to the dependence of the quantity s on the variables u and ν. From
equation (101) it follows, on solving for T and substituting the value
given in (117), that

1

T
=

1

ν
F

(
c3u

ν3

)
=
∂s

∂u
(118)

where again F represents a function of a single argument and the con-
stants do not contain the velocity of propagation c. On integration with
respect to the argument we obtain

s =
ν2

c3
F1

(
c3u

ν3

)
(119)

the notation remaining the same. In this form Wien’s displacement
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law has a significance for every separate monochromatic radiation and
hence also for radiations of any arbitrary energy distribution.

95. According to the second principle of thermodynamics, the to-
tal entropy of radiation of quite arbitrary distribution of energy must
remain constant on adiabatic reversible compression. We are now able
to give a direct proof of this proposition on the basis of equation (119).
For such a process, according to equation (113), the relation holds:

δS =

∫ ∞
0

dν (V δs + s δV )

=

∫ ∞
0

dν (V
∂s

∂u
δu + s δV ). (120)

Here, as everywhere, s should be regarded as a function of u and ν, and
δν = 0.

Now for a reversible adiabatic change of state the relation (95) holds.
Let us take from the latter the value of δu and substitute. Then we
have

δS = δV

∫ ∞
0

dν

{
∂s

∂u

(
ν du

3 dν
− u

)
+ s

}
.

In this equation the differential coefficient of u with respect to ν refers
to the spectral distribution of energy originally assigned arbitrarily and
is therefore, in contrast to the partial differential coefficients, denoted
by the letter d.

Now the complete differential is:

ds

dν
=
∂s

∂u

du

dν
+
∂s

∂ν
.

Hence by substitution:

δS = δV

∫ ∞
0

dν

{
ν

3

(
ds

dν
− ∂s

∂ν

)
− u

∂s

∂u
+ s

}
. (121)
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But from equation (119) we obtain by differentiation

∂s

∂u
=

1

ν
Ḟ

(
c3u

ν3

)
and

∂s

∂ν
=

2ν

c3
F

(
c3u

ν3

)
− 3u

ν2
Ḟ

(
c3u

ν3

)
. (122)

Hence

ν
∂s

∂ν
= 2s− 3u

∂s

∂u
. (123)

On substituting this in (121), we obtain

δS = δV

∫ ∞
0

dν

(
ν

3

ds

dν
+

1

3
s

)
(124)

or,

δS =
δV

3
[νs]

∞
0 = 0,

as it should be. That the product νs vanishes also for ν = ∞ may be
shown just as was done in Sec. 83 for the product νu.

96. By means of equations (118) and (119) it is possible to give
to the laws of reversible adiabatic compression a form in which their
meaning is more clearly seen and which is the generalization of the laws
stated in Sec. 87 for black radiation and a supplement to them. It is,
namely, possible to derive (105) again from (118) and (99b). Hence the
laws deduced in Sec. 87 for the change of frequency and temperature of
the monochromatic radiation energy remain valid for a radiation of an
originally quite arbitrary distribution of energy. The only difference as
compared with the black radiation consists in the fact that now every
frequency has its own distinct temperature.

Moreover it follows from (119) and (99b) that

s′

ν ′2
=

s

ν2
. (125)
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Now s dν V = S dν denotes the radiation entropy between the frequen-
cies ν and ν + dν contained in the volume V . Hence on account of
(125), (99a), and (99c)

S′ dν ′ = S dν, (126)

i.e., the radiation entropy of an infinitely small spectral interval remains
constant. This is another statement of the fact that the total entropy
of radiation, taken as the sum of the entropies of all monochromatic
radiations contained therein, remains constant.

97. We may go one step further, and, from the entropy s and the
temperature T of an unpolarized monochromatic radiation which is uni-
form in all directions, draw a certain conclusion regarding the entropy
and temperature of a single, plane polarized, monochromatic pencil.
That every separate pencil also has a certain entropy follows by the
second principle of thermodynamics from the phenomenon of emission.
For since, by the act of emission, heat is changed into radiant heat,
the entropy of the emitting body decreases during emission, and, along
with this decrease, there must be, according to the principle of increase
of the total entropy, an increase in a different form of entropy as a com-
pensation. This can only be due to the energy of the emitted radiation.
Hence every separate, plane polarized, monochromatic pencil has its
definite entropy, which can depend only on its energy and frequency
and which is propagated and spreads into space with it. We thus gain
the idea of entropy radiation, which is measured, as in the analogous
case of energy radiation, by the amount of entropy which passes in unit
time through unit area in a definite direction. Hence statements, ex-
actly similar to those made in Sec. 14 regarding energy radiation, will
hold for the radiation of entropy, inasmuch as every pencil possesses
and conveys, not only its energy, but also its entropy. Referring the
reader to the discussions of Sec. 14, we shall, for the present, merely
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enumerate the most important laws for future use.
98. In a space filled with any radiation whatever the entropy radi-

ated in the time dt through an element of area dσ in the direction of
the conical element dΩ is given by an expression of the form

dt dσ cos θ dΩL = L sin θ cos θ dθ dφ dσ dt. (127)

The positive quantity L we shall call the “specific intensity of entropy
radiation” at the position of the element of area dσ in the direction of
the solid angle dΩ. L is, in general, a function of position, time, and
direction.

The total radiation of entropy through the element of area dσ to-
ward one side, say the one where θ is an acute angle, is obtained by
integration with respect to φ from 0 to 2π and with respect to θ from

0 to
π

2
. It is

dσ dt

∫ 2π

0

dφ

∫ π
2

0

dθ L sin θ cos θ.

When the radiation is uniform in all directions, and hence L constant,
the entropy radiation through dσ toward one side is

πLdσ dt. (128)

The specific intensity L of the entropy radiation in every direction
consists further of the intensities of the separate rays belonging to the
different regions of the spectrum, which are propagated independently
of one another. Finally for a ray of definite color and intensity the
nature of its polarization is characteristic. When a monochromatic
ray of frequency ν consists of two mutually independent1 components,

1“Independent” in the sense of “non-coherent.” If, e.g., a ray with the principal
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polarized at right angles to each other, with the principal intensities of
energy radiation (Sec. 17) Kν and K′ν , the specific intensity of entropy
radiation is of the form

L =

∫ ∞
0

dν (Lν + L′ν). (129)

The positive quantities Lν and L′ν in this expression, the principal
intensities of entropy radiation of frequency ν, are determined by the
values of Kν and K′ν . By substitution in (127), this gives for the entropy
which is radiated in the time dt through the element of area dσ in the
direction of the conical element dΩ the expression

dt dσ cos θ dΩ

∫ ∞
0

dν (Lν + L′ν),

and, for monochromatic plane polarized radiation,

dt dσ cos θ dΩ Lν dν = Lν dν sin θ cos θ dθ dφ dσ dt. (130)

For unpolarized rays Lν = L′ν and (129) becomes

L = 2

∫ ∞
0

Lν dν.

For radiation which is uniform in all directions the total entropy radi-
ation toward one side is, according to (128),

2π dσ dt

∫ ∞
0

Lν dν.

intensities K and K′ is elliptically polarized, its entropy is not equal to L + L′, but
equal to the entropy of a plane polarized ray of intensity K+K′. For an elliptically
polarized ray may be transformed at once into a plane polarized one, e.g., by total
reflection. For the entropy of a ray with coherent components see below Sec. 104,
et seq.
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99. From the intensity of the propagated entropy radiation the ex-
pression for the space density of the radiant entropy may also be ob-
tained, just as the space density of the radiant energy follows from the
intensity of the propagated radiant energy. (Compare Sec. 22.) In fact,
in analogy with equation (20), the space density, s, of the entropy of
radiation at any point in a vacuum is

s =
1

c

∫
LdΩ, (131)

where the integration is to be extended over the conical elements which
spread out from the point in question in all directions. L is constant
for uniform radiation and we obtain

s =
4πL

c
. (132)

By spectral resolution of the quantity L, according to equation (129), we
obtain from (131) also the space density of the monochromatic radiation
entropy:

s =
1

c

∫
(L + L′) dΩ,

and for unpolarized radiation, which is uniform in all directions

s =
8πL

c
. (133)

100. As to how the entropy radiation L depends on the energy radia-
tion K Wien’s displacement law in the form of (119) affords immediate
information. It follows, namely, from it, considering (133) and (24),
that

L =
ν2

c2
F

(
c2K

ν3

)
(134)
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and, moreover, on taking into account (118),

∂L

∂K
=
∂s

∂u
=

1

T
. (135)

Hence also

T = νF1

(
c2K

ν3

)
(136)

or

K =
ν3

c2
F2

(
T

ν

)
. (137)

It is true that these relations, like the equations (118) and (119),
were originally derived for radiation which is unpolarized and uniform in
all directions. They hold, however, generally in the case of any radiation
whatever for each separate monochromatic plane polarized ray. For,
since the separate rays behave and are propagated quite independently
of one another, the intensity, L, of the entropy radiation of a ray can
depend only on the intensity of the energy radiation, K, of the same ray.
Hence every separate monochromatic ray has not only its energy but
also its entropy defined by (134) and its temperature defined by (136).

101. The extension of the conception of temperature to a single
monochromatic ray, just discussed, implies that at the same point in a
medium, through which any rays whatever pass, there exist in general
an infinite number of temperatures, since every ray passing through
the point has its separate temperature, and, moreover, even the rays of
different color traveling in the same direction show temperatures that
differ according to the spectral distribution of energy. In addition to
all these temperatures there is finally the temperature of the medium
itself, which at the outset is entirely independent of the temperature
of the radiation. This complicated method of consideration lies in the
nature of the case and corresponds to the complexity of the physical
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processes in a medium through which radiation travels in such a way.
It is only in the case of stable thermodynamic equilibrium that there is
but one temperature, which then is common to the medium itself and
to all rays of whatever color crossing it in different directions.

In practical physics also the necessity of separating the conception
of radiation temperature from that of body temperature has made itself
felt to a continually increasing degree. Thus it has for some time past
been found advantageous to speak, not only of the real temperature of
the sun, but also of an “apparent” or “effective” temperature of the
sun, i.e., that temperature which the sun would need to have in order
to send to the earth the heat radiation actually observed, if it radiated
like a black body. Now the apparent temperature of the sun is obvi-
ously nothing but the actual temperature of the solar rays,1 depending
entirely on the nature of the rays, and hence a property of the rays
and not a property of the sun itself. Therefore it would be, not only
more convenient, but also more correct, to apply this notation directly,
instead of speaking of a fictitious temperature of the sun, which can
be made to have a meaning only by the introduction of an assumption
that does not hold in reality.

Measurements of the brightness of monochromatic light have re-
cently led L. Holborn and F. Kurlbaum2 to the introduction of the
concept of “black” temperature of a radiating surface. The black tem-
perature of a radiating surface is measured by the brightness of the
rays which it emits. It is in general a separate one for each ray of defi-
nite color, direction, and polarization, which the surface emits, and, in
fact, merely represents the temperature of such a ray. It is, according

1On the average, since the solar rays of different color do not have exactly the
same temperature.

2L. Holborn und F. Kurlbaum, Annal. d. Physik 10, p. 229, 1903.
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to equation (136), determined by its brightness (specific intensity), K,
and its frequency, ν, without any reference to its origin and previous
states. The definite numerical form of this equation will be given below
in Sec. 166. Since a black body has the maximum emissive power, the
temperature of an emitted ray can never be higher than that of the
emitting body.

102. Let us make one more simple application of the laws just found
to the special case of black radiation. For this, according to (81), the
total space density of entropy is

s =
4

3
a3T. (138)

Hence, according to (132), the specific intensity of the total entropy
radiation in any direction is

L =
c

3π
aT 3, (139)

and the total entropy radiation through an element of area dσ toward
one side is, according to (128),

c

3
aT 3 dσ dt. (140)

As a special example we shall now apply the two principles of thermody-
namics to the case in which the surface of a black body of temperature T
and of infinitely large heat capacity is struck by black radiation of tem-
perature T ′ coming from all directions. Then, according to (7) and (76),
the black body emits per unit area and unit time the energy

πK =
ac

4
T 4,
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and, according to (140), the entropy

ac

3
T 3.

On the other hand, it absorbs the energy

ac

4
T ′4

and the entropy
ac

3
T ′3.

Hence, according to the first principle, the total heat added to the body,
positive or negative according as T ′ is larger or smaller than T , is

Q =
ac

4
T ′4 − ac

4
T 4 =

ac

4
(T ′4 − T 4),

and, according to the second principle, the change of the entire entropy

is positive or zero. Now the entropy of the body changes by
Q

T
, the

entropy of the radiation in the vacuum by

ac

3
(T 3 − T ′3).

Hence the change per unit time and unit area of the entire entropy of
the system considered is

ac

4

T ′4 − T 4

T
+
ac

3
(T 3 − T ′3) = 0.

In fact this relation is satisfied for all values of T and T ′. The minimum
value of the expression on the left side is zero; this value is reached when
T = T ′. In that case the process is reversible. If, however, T differs



DEDUCTIONS FROM ELECTRODYNAMICS 118

from T ′, we have an appreciable increase of entropy; hence the process
is irreversible. In particular we find that if T = 0 the increase in en-
tropy is ∞, i.e., the absorption of heat radiation by a black body of
vanishingly small temperature is accompanied by an infinite increase in
entropy and cannot therefore be reversed by any finite compensation.
On the other hand for T ′ = 0, the increase in entropy is only equal

to
ac

12
T 3, i.e., the emission of a black body of temperature T without

simultaneous absorption of heat radiation is irreversible without com-
pensation, but can be reversed by a compensation of at least the stated
finite amount. For example, if we let the rays emitted by the body fall
back on it, say by suitable reflection, the body, while again absorbing
these rays, will necessarily be at the same time emitting new rays, and
this is the compensation required by the second principle.

Generally we may say: Emission without simultaneous absorption
is irreversible, while the opposite process, absorption without emission,
is impossible in nature.

103. A further example of the application of the two principles of
thermodynamics is afforded by the irreversible expansion of originally
black radiation of volume V and temperature T to the larger volume V ′

as considered above in Sec. 70, but in the absence of any absorbing or
emitting substance whatever. Then not only the total energy but also
the energy of every separate frequency ν remains constant; hence, when
on account of diffuse reflection from the walls the radiation has again
become uniform in all directions, uνV = u′νV

′; moreover by this re-
lation, according to (118), the temperature Tν ’ of the monochromatic
radiation of frequency ν in the final state is determined. The actual
calculation, however, can be performed only with the help of equa-
tion (275) (see below). The total entropy of radiation, i.e., the sum of
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the entropies of the radiations of all frequencies,

V ′
∫ ∞
0

s′ν dν,

must, according to the second principle, be larger in the final state
than in the original state. Since T ′ν has different values for the different
frequencies ν, the final radiation is no longer black. Hence, on subse-
quent introduction of a carbon particle into the cavity, a finite change of
the distribution of energy is obtained, and simultaneously the entropy
increases further to the value S ′ calculated in (82).

104. In Sec. 98 we have found the intensity of entropy radiation
of a definite frequency in a definite direction by adding the entropy
radiations of the two independent components K and K′, polarized at
right angles to each other, or

L(K) + L(K′), (141)

where L denotes the function of K given in equation (134). This method
of procedure is based on the general law that the entropy of two mutu-
ally independent physical systems is equal to the sum of the entropies
of the separate systems.

If, however, the two components of a ray, polarized at right angles
to each other, are not independent of each other, this method of pro-
cedure no longer remains correct. This may be seen, e.g., on resolving
the radiation intensity, not with reference to the two principal planes of
polarization with the principal intensities K and K′, but with reference
to any other two planes at right angles to each other, where, accord-
ing to equation (8), the intensities of the two components assume the
following values

K cos2 ψ + K′ sin2 ψ = K′′

K sin2 ψ + K′ cos2 ψ = K′′′.
(142)
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In that case, of course, the entropy radiation is not equal to L(K′′) +
L(K′′′).

Thus, while the energy radiation is always obtained by the sum-
mation of any two components which are polarized at right angles to
each other, no matter according to which azimuth the resolution is
performed, since always

K′′ + K′′′ = K + K′, (143)

a corresponding equation does not hold in general for the entropy ra-
diation. The cause of this is that the two components, the intensities
of which we have denoted by K′′ and K′′′, are, unlike K and K′, not
independent or non-coherent in the optic sense. In such a case

L(K′′) + L(K′′′) > L(K) + L(K′), (144)

as is shown by the following consideration.
Since in the state of thermodynamic equilibrium all rays of the

same frequency have the same intensity of radiation, the intensities of
radiation of any two plane polarized rays will tend to become equal,
i.e., the passage of energy between them will be accompanied by an
increase of entropy, when it takes place in the direction from the ray
of greater intensity toward that of smaller intensity. Now the left side
of the inequality (144) represents the entropy radiation of two non-
coherent plane polarized rays with the intensities K′′ and K′′′, and the
right side the entropy radiation of two non-coherent plane polarized
rays with the intensities K and K′. But, according to (142), the values
of K′′ and K′′′ lie between K and K′; therefore the inequality (144) holds.

At the same time it is apparent that the error committed, when
the entropy of two coherent rays is calculated as if they were non-
coherent, is always in such a sense that the entropy found is too large.
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The radiations K′′ and K′′′ are called “partially coherent,” since they
have some terms in common. In the special case when one of the two
principal intensities K and K′ vanishes entirely, the radiations K′′ and K′′′

are said to be “completely coherent,” since in that case the expression
for one radiation may be completely reduced to that for the other. The
entropy of two completely coherent plane polarized rays is equal to the
entropy of a single plane polarized ray, the energy of which is equal to
the sum of the two separate energies.

105. Let us for future use solve also the more general problem of
calculating the entropy radiation of a ray consisting of an arbitrary
number of plane polarized non-coherent components K1, K2, K3, . . . ,
the planes of vibration (planes of the electric vector) of which are given
by the azimuths ψ1, ψ2, ψ3, . . . . This problem amounts to finding the
principal intensities K0 and K′0 of the whole ray; for the ray behaves in
every physical respect as if it consisted of the non-coherent components
K0 and K′0. For this purpose we begin by establishing the value Kψ of
the component of the ray for an azimuth ψ taken arbitrarily. Denoting
by f the electric vector of the ray in the direction ψ, we obtain this
value Kψ from the equation

f = f1 cos(ψ1 − ψ) + f2 cos(ψ2 − ψ) + f3 cos(ψ3 − ψ) + . . . ,

where the terms on the right side denote the projections of the vectors of
the separate components in the direction ψ, by squaring and averaging
and taking into account the fact that f1, f2, f3, . . . are non-coherent

Kψ = K1 cos2(ψ1 − ψ) + K2 cos2(ψ2 − ψ) + . . .

or Kψ = A cos2 ψ +B sin2 ψ + C sinψ cosψ

where A = K1 cos2 ψ1 + K2 cos2 ψ2 + . . .

B = K1 sin2 ψ1 + K2 sin2 ψ2 + . . .

C = 2(K1 sinψ1 cosψ1 + K2 sinψ2 cosψ2 + . . . ).

(145)
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The principal intensities K0 and K′0 of the ray follow from this ex-
pression as the maximum and the minimum value of Kψ according to
the equation

dKψ
dψ

= 0 or, tan 2ψ =
C

A−B
.

Hence it follows that the principal intensities are

K0

K′0

}
= 1

2
(A+B ±

√
(A−B)2 + C2), (146)

or, by taking (145) into account,

K0

K′0

}
=

1

2

(
K1 + K2 + . . .

±

√
(K1 cos 2ψ1 + K2 cos 2ψ2 + . . . )2

+ (K1 sin 2ψ1 + K2 sin 2ψ2 + . . . )2

)
. (147)

Then the entropy radiation required becomes:

L(K0) + L(K′0). (148)

106. When two ray components K and K′, polarized at right an-
gles to each other, are non-coherent, K and K′ are also the principal
intensities, and the entropy radiation is given by (141). The converse
proposition, however, does not hold in general, that is to say, the two
components of a ray polarized at right angles to each other, which cor-
respond to the principal intensities K and K′, are not necessarily non-
coherent, and hence the entropy radiation is not always given by (141).

This is true, e.g., in the case of elliptically polarized light. There
the radiations K and K′ are completely coherent and their entropy is
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equal to L(K + K′). This is caused by the fact that it is possible to
give the two ray components an arbitrary displacement of phase in
a reversible manner, say by total reflection. Thereby it is possible to
change elliptically polarized light to plane polarized light and vice versa.

The entropy of completely or partially coherent rays has been in-
vestigated most thoroughly by M. Laue.1 For the significance of optical
coherence for thermodynamic probability see the next part, Sec. 119.

1M. Laue, Annalen d. Phys. 23, p. 1, 1907.



CHAPTER V

ELECTRODYNAMICAL PROCESSES IN A
STATIONARY FIELD OF RADIATION

107. We shall now consider from the standpoint of pure electrody-
namics the processes that take place in a vacuum, which is bounded
on all sides by reflecting walls and through which heat radiation passes
uniformly in all directions, and shall then inquire into the relations
between the electrodynamical and the thermodynamic quantities.

The electrodynamical state of the field of radiation is determined
at every instant by the values of the electric field-strength E and the
magnetic field-strength H at every point in the field, and the changes
in time of these two vectors are completely determined by Maxwell’s
field equations (52), which we have already used in Sec. 53, together
with the boundary conditions, which hold at the reflecting walls. In the
present case, however, we have to deal with a solution of these equa-
tions of much greater complexity than that expressed by (54), which
corresponds to a plane wave. For a plane wave, even though it be peri-
odic with a wave length lying within the optical or thermal spectrum,
can never be interpreted as heat radiation. For, according to Sec. 16,
a finite intensity K of heat radiation requires a finite solid angle of the
rays and, according to Sec. 18, a spectral interval of finite width. But
an absolutely plane, absolutely periodic wave has a zero solid angle and
a zero spectral width. Hence in the case of a plane periodic wave there
can be no question of either entropy or temperature of the radiation.

108. Let us proceed in a perfectly general way to consider the com-
ponents of the field-strengths E and H as functions of the time at a
definite point, which we may think of as the origin of the coordinate
system. Of these components, which are produced by all rays passing

124
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through the origin, there are six; we select one of them, say Ez, for
closer consideration. However complicated it may be, it may under
all circumstances be written as a Fourier’s series for a limited time
interval, say from t = 0 to t = T; thus

Ez =
n=∞∑
n=1

Cn cos

(
2πnt

T
− θn

)
(149)

where the summation is to extend over all positive integers n, while the
constants Cn (positive) and θn may vary arbitrarily from term to term.
The time interval T, the fundamental period of the Fourier’s series, we
shall choose so large that all times t which we shall consider hereafter
are included in this time interval, so that 0 < t < T. Then we may
regard Ez as identical in all respects with the Fourier’s series, i.e., we
may regard Ez as consisting of “partial vibrations,” which are strictly
periodic and of frequencies given by

ν =
n

T
.

Since, according to Sec. 3, the time differential dt required for the
definition of the intensity of a heat ray is necessarily large compared
with the periods of vibration of all colors contained in the ray, a sin-
gle time differential dt contains a large number of vibrations, i.e., the
product ν dt is a large number. Then it follows a fortiori that νt and,
still more,

νT = n is enormously large (150)

for all values of ν entering into consideration. From this we must con-
clude that all amplitudes Cn with a moderately large value for the
ordinal number n do not appear at all in the Fourier’s series, that is
to say, they are negligibly small.
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109. Though we have no detailed special information about the
function Ez, nevertheless its relation to the radiation of heat affords
some important information as to a few of its general properties.
Firstly, for the space density of radiation in a vacuum we have, accord-
ing to Maxwell’s theory,

u =
1

8π
(E2

x + E2
y + E2

z + H2
x + H2

y + H2
z).

Now the radiation is uniform in all directions and in the stationary
state, hence the six mean values named are all equal to one another,
and it follows that

u =
3

4π
E2
z. (151)

Let us substitute in this equation the value of Ez as given by (149).
Squaring the latter and integrating term by term through a time in-
terval, from 0 to t, assumed large in comparison with all periods of

vibration
1

ν
but otherwise arbitrary, and then dividing by t, we obtain,

since the radiation is perfectly stationary,

u =
3

8π

∑
C2
n. (152)

From this relation we may at once draw an important conclusion as
to the nature of Ez as a function of time. Namely, since the Fourier’s
series (149) consists, as we have seen, of a great many terms, the
squares, C2

n, of the separate amplitudes of vibration the sum of which
gives the space density of radiation, must have exceedingly small val-
ues. Moreover in the integral of the square of the Fourier’s series the
terms which depend on the time t and contain the products of any two
different amplitudes all cancel; hence the amplitudes Cn and the phase-
constants θn must vary from one ordinal number to another in a quite
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irregular manner. We may express this fact by saying that the separate
partial vibrations of the series are very small and in a “chaotic”1 state.

For the specific intensity of the radiation travelling in any direction
whatever we obtain from (21)

K =
cu

4π
=

3c

32π2

∑
C2
n. (153)

110. Let us now perform the spectral resolution of the last two
equations. To begin with we have from (22):

u =

∫ ∞
0

uν dν =
3

8π

∞∑
1

C2
n. (154)

On the right side of the equation the sum
∑

consists of separate terms,
every one of which corresponds to a separate ordinal number n and to
a simple periodic partial vibration. Strictly speaking this sum does
not represent a continuous sequence of frequencies ν, since n is an in-
tegral number. But n is, according to (150), so enormously large for
all frequencies which need be considered that the frequencies ν corre-
sponding to the successive values of n lie very close together. Hence
the interval dν, though infinitesimal compared with ν, still contains a
large number of partial vibrations, say n′, where

dν =
n′

T
. (155)

If now in (154) we equate, instead of the total energy densities, the
energy densities corresponding to the interval dν only, which are inde-
pendent of those of the other spectral regions, we obtain

uν dν =
3

8π

n+n′∑
n

C2
n,

1Compare footnote to page 137 (Tr.).
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or, according to (155),

uν =
3T

8π
· 1

n′

n+n′∑
n

C2
n =

3T

8π
· C2

n, (156)

where we denote by C2
n the average value of C2

n in the interval from
n to n + n′. The existence of such an average value, the magnitude
of which is independent of n, provided n′ be taken small compared
with n, is, of course, not self-evident at the outset, but is due to a
special property of the function Ez which is peculiar to stationary heat
radiation. On the other hand, since many terms contribute to the mean
value, nothing can be said either about the magnitude of a separate
term C2

n, or about the connection of two consecutive terms, but they
are to be regarded as perfectly independent of each other.

In a very similar manner, by making use of (24), we find for the
specific intensity of a monochromatic plane polarized ray, travelling in
any direction whatever,

Kν =
3cT

64π2
C2
n. (157)

From this it is apparent, among other things, that, according to the
electromagnetic theory of radiation, a monochromatic light or heat ray
is represented, not by a simple periodic wave, but by a superposition
of a large number of simple periodic waves, the mean value of which
constitutes the intensity of the ray. In accord with this is the fact,
known from optics, that two rays of the same color and intensity but
of different origin never interfere with each other, as they would, of
necessity, if every ray were a simple periodic one.

Finally we shall also perform the spectral resolution of the mean
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value of E2
z, by writing

E2
z = J =

∫ ∞
0

Jν dν. (158)

Then by comparison with (151), (154), and (156) we find

Jν =
4π

3
uν =

T

2
C2
n. (159)

According to (157), Jν is related to Kν , the specific intensity of radiation
of a plane polarized ray, as follows:

Kν =
3c

32π2
Jν . (160)

111. Black radiation is frequently said to consist of a large num-
ber of regular periodic vibrations. This method of expression is per-
fectly justified, inasmuch as it refers to the resolution of the total vi-
bration in a Fourier’s series, according to equation (149), and often is
exceedingly well adapted for convenience and clearness of discussion. It
should, however, not mislead us into believing that such a “regularity”
is caused by a special physical property of the elementary processes of
vibration. For the resolvability into a Fourier’s series is mathemati-
cally self-evident and hence, in a physical sense, tells us nothing new.
In fact, it is even always possible to regard a vibration which is damped
to an arbitrary extent as consisting of a sum of regular periodic par-
tial vibrations with constant amplitudes and constant phases. On the
contrary, it may just as correctly be said that in all nature there is
no process more complicated than the vibrations of black radiation. In
particular, these vibrations do not depend in any characteristic manner
on the special processes that take place in the centers of emission of
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the rays, say on the period or the damping of the emitting particles;
for the normal spectrum is distinguished from all other spectra by the
very fact that all individual differences caused by the special nature of
the emitting substances are perfectly equalized and effaced. Therefore
to attempt to draw conclusions concerning the special properties of the
particles emitting the rays from the elementary vibrations in the rays
of the normal spectrum would be a hopeless undertaking.

In fact, black radiation may just as well be regarded as consisting,
not of regular periodic vibrations, but of absolutely irregular separate
impulses. The special regularities, which we observe in monochromatic
light resolved spectrally, are caused merely by the special properties of
the spectral apparatus used, e.g., the dispersing prism (natural periods
of the molecules), or the diffraction grating (width of the slits). Hence
it is also incorrect to find a characteristic difference between light rays
and Roentgen rays (the latter assumed as an electromagnetic process
in a vacuum) in the circumstance that in the former the vibrations
take place with greater regularity. Roentgen rays may, under certain
conditions, possess more selective properties than light rays. The re-
solvability into a Fourier’s series of partial vibrations with constant
amplitudes and constant phases exists for both kinds of rays in pre-
cisely the same manner. What especially distinguishes light vibrations
from Roentgen vibrations is the much smaller frequency of the partial
vibrations of the former. To this is due the possibility of their spectral
resolution, and probably also the far greater regularity of the changes
of the radiation intensity in every region of the spectrum in the course
of time, which, however, is not caused by a special property of the el-
ementary processes of vibration, but merely by the constancy of the
mean values.

112. The elementary processes of radiation exhibit regularities only
when the vibrations are restricted to a narrow spectral region, that is
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to say in the case of spectroscopically resolved light, and especially in
the case of the natural spectral lines. If, e.g., the amplitudes Cn of the
Fourier’s series (149) differ from zero only between the ordinal numbers

n = n0 and n = n1, where
n1 − n0

n0

is small, we may write

Ez = C0 cos

(
2πn0t

T
− θ0

)
, (161)

where

C0 cos θ0 =

n1∑
n0

Cn cos

(
2π(n− n0)t

T
− θn

)

C0 sin θ0 = −
n1∑
n0

Cn sin

(
2π(n− n0)t

T
− θn

)
and Ez may be regarded as a single approximately periodic vibration

of frequency ν0 =
n0

T
with an amplitude C0 and a phase-constant θ0

which vary slowly and irregularly.
The smaller the spectral region, and accordingly the smaller

n1 − n0

n0

, the slower are the fluctuations (“Schwankungen”) of C0 and θ0,

and the more regular is the resulting vibration and also the larger is
the difference of path for which radiation can interfere with itself. If
a spectral line were absolutely sharp, the radiation would have the
property of being capable of interfering with itself for differences of
path of any size whatever. This case, however, according to Sec. 18, is
an ideal abstraction, never occurring in reality.



PART III

ENTROPY AND PROBABILITY



CHAPTER I

FUNDAMENTAL DEFINITIONS AND LAWS.
HYPOTHESIS OF QUANTA

113. Since a wholly new element, entirely unrelated to the funda-
mental principles of electrodynamics, enters into the range of investi-
gation with the introduction of probability considerations into the elec-
trodynamic theory of heat radiation, the question arises at the outset,
whether such considerations are justifiable and necessary. At first sight
we might, in fact, be inclined to think that in a purely electrodynam-
ical theory there would be no room at all for probability calculations.
For since, as is well known, the electrodynamic equations of the field
together with the initial and boundary conditions determine uniquely
the way in which an electrodynamical process takes place, in the course
of time, considerations which lie outside of the equations of the field
would seem, theoretically speaking, to be uncalled for and in any case
dispensable. For either they lead to the same results as the fundamen-
tal equations of electrodynamics and then they are superfluous, or they
lead to different results and in this case they are wrong.

In spite of this apparently unavoidable dilemma, there is a flaw
in the reasoning. For on closer consideration it is seen that what is
understood in electrodynamics by “initial and boundary” conditions,
as well as by the “way in which a process takes place in the course
of time,” is entirely different from what is denoted by the same words
in thermodynamics. In order to make this evident, let us consider the
case of radiation in vacuo, uniform in all directions, which was treated
in the last chapter.

From the standpoint of thermodynamics the state of radiation is
completely determined, when the intensity of monochromatic radia-

133
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tion Kν is given for all frequencies ν. The electrodynamical observer,
however, has gained very little by this single statement; because for him
a knowledge of the state requires that every one of the six components
of the electric and magnetic field-strength be given at all points of the
space; and, while from the thermodynamic point of view the question
as to the way in which the process takes place in time is settled by the
constancy of the intensity of radiation Kν , from the electrodynamical
point of view it would be necessary to know the six components of
the field at every point as functions of the time, and hence the ampli-
tudes Cn and the phase-constants θn of all the several partial vibrations
contained in the radiation would have to be calculated. This, however,
is a problem whose solution is quite impossible, for the data obtainable
from the measurements are by no means sufficient. The thermody-
namically measurable quantities, looked at from the electrodynamical
standpoint, represent only certain mean values, as we saw in the special
case of stationary radiation in the last chapter.

We might now think that, since in thermodynamic measurements we
are always concerned with mean values only, we need consider nothing
beyond these mean values, and, therefore, need not take any account
of the particular values at all. This method is, however, impractica-
ble, because frequently and that too just in the most important cases,
namely, in the cases of the processes of emission and absorption, we
have to deal with mean values which cannot be calculated unambigu-
ously by electrodynamical methods from the measured mean values.
For example, the mean value of Cn cannot be calculated from the mean
value of C2

n, if no special information as to the particular values of Cn
is available.

Thus we see that the electrodynamical state is not by any means
determined by the thermodynamic data and that in cases where, ac-
cording to the laws of thermodynamics and according to all experience,
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an unambiguous result is to be expected, a purely electrodynamical the-
ory fails entirely, since it admits not one definite result, but an infinite
number of different results.

114. Before entering on a further discussion of this fact and of
the difficulty to which it leads in the electrodynamical theory of heat
radiation, it may be pointed out that exactly the same case and the
same difficulty are met with in the mechanical theory of heat, especially
in the kinetic theory of gases. For when, for example, in the case of a gas
flowing out of an opening at the time t = 0, the velocity, the density, and
the temperature are given at every point, and the boundary conditions
are completely known, we should expect, according to all experience,
that these data would suffice for a unique determination of the way in
which the process takes place in time. This, however, from a purely
mechanical point of view is not the case at all; for the positions and
velocities of all the separate molecules are not at all given by the visible
velocity, density, and temperature of the gas, and they would have to be
known exactly, if the way in which the process takes place in time had to
be completely calculated from the equations of motion. In fact, it is easy
to show that, with given initial values of the visible velocity, density,
and temperature, an infinite number of entirely different processes is
mechanically possible, some of which are in direct contradiction to the
principles of thermodynamics, especially the second principle.

115. From these considerations we see that, if we wish to calculate
the way in which a thermodynamic process takes place in time, such a
formulation of initial and boundary conditions as is perfectly sufficient
for a unique determination of the process in thermodynamics, does not
suffice for the mechanical theory of heat or for the electrodynamical
theory of heat radiation. On the contrary, from the standpoint of pure
mechanics or electrodynamics the solutions of the problem are infinite
in number. Hence, unless we wish to renounce entirely the possibility
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of representing the thermodynamic processes mechanically or electro-
dynamically, there remains only one way out of the difficulty, namely,
to supplement the initial and boundary conditions by special hypothe-
ses of such a nature that the mechanical or electrodynamical equations
will lead to an unambiguous result in agreement with experience. As
to how such an hypothesis is to be formulated, no hint can naturally be
obtained from the principles of mechanics or electrodynamics, for they
leave the question entirely open. Just on that account any mechanical
or electrodynamical hypothesis containing some further specialization
of the given initial and boundary conditions, which cannot be tested
by direct measurement, is admissible a priori. What hypothesis is to
be preferred can be decided only by testing the results to which it leads
in the light of the thermodynamic principles based on experience.

116. Although, according to the statement just made, a decisive
test of the different admissible hypotheses can be made only a posteri-
ori, it is nevertheless worth while noticing that it is possible to obtain
a priori, without relying in any way on thermodynamics, a definite
hint as to the nature of an admissible hypothesis. Let us again con-
sider a flowing gas as an illustration (Sec. 114). The mechanical state
of all the separate gas molecules is not at all completely defined by
the thermodynamic state of the gas, as has previously been pointed
out. If, however, we consider all conceivable positions and velocities
of the separate gas molecules, consistent with the given values of the
visible velocity, density, and temperature, and calculate for every com-
bination of them the mechanical process, assuming some simple law
for the impact of two molecules, we shall arrive at processes, the vast
majority of which agree completely in the mean values, though per-
haps not in all details. Those cases, on the other hand, which show
appreciable deviations, are vanishingly few, and only occur when cer-
tain very special and far-reaching conditions between the coordinates



FUNDAMENTAL DEFINITIONS AND LAWS 137

and velocity-components of the molecules are satisfied. Hence, if the
assumption be made that such special conditions do not exist, however
different the mechanical details may be in other respects, a form of flow
of gas will be found, which may be called quite definite with respect
to all measurable mean values—and they are the only ones which can
be tested experimentally—although it will not, of course, be quite def-
inite in all details. And the remarkable feature of this is that it is just
the motion obtained in this manner that satisfies the postulates of the
second principle of thermodynamics.

117. From these considerations it is evident that the hypotheses
whose introduction was proven above to be necessary completely answer
their purpose, if they state nothing more than that exceptional cases,
corresponding to special conditions which exist between the separate
quantities determining the state and which cannot be tested directly,
do not occur in nature. In mechanics this is done by the hypothesis1

that the heat motion is a “molecular chaos”;2 in electrodynamics the
same thing is accomplished by the hypothesis of “natural radiation,”
which states that there exist between the numerous different partial
vibrations (149) of a ray no other relations than those caused by the
measurable mean values (compare below, Sec. 148). If, for brevity, we
denote any condition or process for which such an hypothesis holds as
an “elemental chaos,” the principle, that in nature any state or any
process containing numerous elements not in themselves measurable is
an elemental chaos, furnishes the necessary condition for a unique de-
termination of the measurable processes in mechanics as well as in elec-

1L. Boltzmann, Vorlesungen über Gastheorie 1, p. 21, 1896. Wiener Sitzungs-
berichte 78, Juni, 1878, at the end. Compare also S. H. Burbury, Nature, 51, p. 78,
1894.

2Hereafter Boltzmann’s “Unordnung” will be rendered by chaos, “ungeordnet”
by chaotic (Tr.).
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trodynamics and also for the validity of the second principle of thermo-
dynamics. This must also serve as a mechanical or electrodynamical
explanation of the conception of entropy, which is characteristic of the
second law and of the closely allied concept of temperature.1 It also
follows from this that the significance of entropy and temperature is,
according to their nature, connected with the condition of an elemental
chaos. The terms entropy and temperature do not apply to a purely pe-
riodic, perfectly plane wave, since all the quantities in such a wave are
in themselves measurable, and hence cannot be an elemental chaos any
more than a single rigid atom in motion can. The necessary condition
for the hypothesis of an elemental chaos and with it for the existence
of entropy and temperature can consist only in the irregular simulta-
neous effect of very many partial vibrations of different periods, which
are propagated in the different directions in space independent of one
another, or in the irregular flight of a multitude of atoms.

118. But what mechanical or electrodynamical quantity represents
the entropy of a state? It is evident that this quantity depends in
some way on the “probability” of the state. For since an elemental
chaos and the absence of a record of any individual element forms an
essential feature of entropy, the tendency to neutralize any existing
temperature differences, which is connected with an increase of entropy,
can mean nothing for the mechanical or electrodynamical observer but
that uniform distribution of elements in a chaotic state is more probable
than any other distribution.

Now since the concept of entropy as well as the second principle of

1To avoid misunderstanding I must emphasize that the question, whether the
hypothesis of elemental chaos is really everywhere satisfied in nature, is not touched
upon by the preceding considerations. I intended only to show at this point that,
wherever this hypothesis does not hold, the natural processes, if viewed from the
thermodynamic (macroscopic) point of view, do not take place unambiguously.
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thermodynamics are of universal application, and since on the other
hand the laws of probability have no less universal validity, it is to be
expected that the connection between entropy and probability should
be very close. Hence we make the following proposition the foundation
of our further discussion: The entropy of a physical system in a definite
state depends solely on the probability of this state. The fertility of this
law will be seen later in several cases. We shall not, however, attempt
to give a strict general proof of it at this point. In fact, such an at-
tempt evidently would have no meaning at this point. For, so long as
the “probability” of a state is not numerically defined, the correctness
of the proposition cannot be quantitatively tested. One might, in fact,
suspect at first sight that on this account the proposition has no definite
physical meaning. It may, however, be shown by a simple deduction
that it is possible by means of this fundamental proposition to deter-
mine quite generally the way in which entropy depends on probability,
without any further discussion of the probability of a state.

119. For let S be the entropy, W the probability of a physical system
in a definite state; then the proposition states that

S = f(W ) (162)

where f(W ) represents a universal function of the argument W . In
whatever way W may be defined, it can be safely inferred from the
mathematical concept of probability that the probability of a system
which consists of two entirely independent1 systems is equal to the
product of the probabilities of these two systems separately. If we

1It is well known that the condition that the two systems be independent of
each other is essential for the validity of the expression (163). That it is also a
necessary condition for the additive combination of the entropy was proven first by
M. Laue in the case of optically coherent rays. Annalen d. Physik 20, p. 365, 1906.
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think, e.g., of the first system as any body whatever on the earth and
of the second system as a cavity containing radiation on Sirius, then
the probability that the terrestrial body be in a certain state 1 and that
simultaneously the radiation in the cavity in a definite state 2 is

W = W1W2, (163)

where W1 and W2 are the probabilities that the systems involved are
in the states in question.

If now S1 and S2 are the entropies of the separate systems in the
two states, then, according to (162), we have

S1 = f(W1) S2 = f(W2).

But, according to the second principle of thermodynamics, the total
entropy of the two systems, which are independent (see preceding foot-
note) of each other, is S = S1 + S2 and hence from (162) and (163)

f(W1W2) = f(W1) + f(W2).

From this functional equation f can be determined. For on differ-
entiating both sides with respect to W1, W2 remaining constant, we
obtain

W2ḟ(W1W2) = ḟ(W1).

On further differentiating with respect to W2, W1 now remaining con-
stant, we get

ḟ(W1W2) +W1W2f̈(W1W2) = 0

or
ḟ(W ) +Wf̈(W ) = 0.
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The general integral of this differential equation of the second order is

f(W ) = k logW + const.

Hence from (162) we get

S = k logW + const., (164)

an equation which determines the general way in which the entropy
depends on the probability. The universal constant of integration k is
the same for a terrestrial as for a cosmic system, and its value, having
been determined for the former, will remain valid for the latter. The
second additive constant of integration may, without any restriction as
regards generality, be included as a constant multiplier in the quan-
tity W , which here has not yet been completely defined, so that the
equation reduces to

S = k logW.

120. The logarithmic connection between entropy and probability
was first stated by L. Boltzmann1 in his kinetic theory of gases. Never-
theless our equation (164) differs in its meaning from the corresponding
one of Boltzmann in two essential points.

Firstly, Boltzmann’s equation lacks the factor k, which is due to the
fact that Boltzmann always used gram-molecules, not the molecules
themselves, in his calculations. Secondly, and this is of greater con-
sequence, Boltzmann leaves an additive constant undetermined in the
entropy S as is done in the whole of classical thermodynamics, and
accordingly there is a constant factor of proportionality, which remains
undetermined in the value of the probability W .

1L. Boltzmann, Vorlesungen über Gastheorie, 1, Sec. 6.
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In contrast with this we assign a definite absolute value to the en-
tropy S. This is a step of fundamental importance, which can be jus-
tified only by its consequences. As we shall see later, this step leads
necessarily to the “hypothesis of quanta” and moreover it also leads,
as regards radiant heat, to a definite law of distribution of energy of
black radiation, and, as regards heat energy of bodies, to Nernst’s heat
theorem.

From (164) it follows that with the entropy S the probability W
is, of course, also determined in the absolute sense. We shall designate
the quantity W thus defined as the “thermodynamic probability,” in
contrast to the “mathematical probability,” to which it is proportional
but not equal. For, while the mathematical probability is a proper
fraction, the thermodynamic probability is, as we shall see, always an
integer.

121. The relation (164) contains a general method for calculating
the entropy S by probability considerations. This, however, is of no
practical value, unless the thermodynamic probability W of a system
in a given state can be expressed numerically. The problem of finding
the most general and most precise definition of this quantity is among
the most important problems in the mechanical or electrodynamical
theory of heat. It makes it necessary to discuss more fully what we
mean by the “state” of a physical system.

By the state of a physical system at a certain time we mean the ag-
gregate of all those mutually independent quantities, which determine
uniquely the way in which the processes in the system take place in
the course of time for given boundary conditions. Hence a knowledge
of the state is precisely equivalent to a knowledge of the “initial con-
ditions.” If we now take into account the considerations stated above
in Sec. 113, it is evident that we must distinguish in the theoretical
treatment two entirely different kinds of states, which we may denote
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as “microscopic” and “macroscopic” states. The microscopic state is
the state as described by a mechanical or electrodynamical observer;
it contains the separate values of all coordinates, velocities, and field-
strengths. The microscopic processes, according to the laws of mechan-
ics and electrodynamics, take place in a perfectly unambiguous way;
for them entropy and the second principle of thermodynamics have no
significance. The macroscopic state, however, is the state as observed
by a thermodynamic observer; any macroscopic state contains a large
number of microscopic ones, which it unites in a mean value. Macro-
scopic processes take place in an unambiguous way in the sense of the
second principle, when, and only when, the hypothesis of the elemental
chaos (Sec. 117) is satisfied.

122. If now the calculation of the probability W of a state is in
question, it is evident that the state is to be thought of in the macro-
scopic sense. The first and most important question is now: How is a
macroscopic state defined? An answer to it will dispose of the main
features of the whole problem.

For the sake of simplicity, let us first consider a special case, that of
a very large number, N , of simple similar molecules. Let the problem
be solely the distribution of these molecules in space within a given
volume, V , irrespective of their velocities, and further the definition of
a certain macroscopic distribution in space. The latter cannot consist
of a statement of the coordinates of all the separate molecules, for that
would be a definite microscopic distribution. We must, on the contrary,
leave the positions of the molecules undetermined to a certain extent,
and that can be done only by thinking of the whole volume V as being
divided into a number of small but finite space elements, G, each con-
taining a specified number of molecules. By any such statement a defi-
nite macroscopic distribution in space is defined. The manner in which
the molecules are distributed within every separate space element is im-
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material, for here the hypothesis of elemental chaos (Sec. 117) provides
a supplement, which insures the unambiguity of the macroscopic state,
in spite of the microscopic indefiniteness. If we distinguish the space
elements in order by the numbers 1, 2, 3, . . . and, for any particular
macroscopic distribution in space, denote the number of the molecules
lying in the separate space elements by N1, N2, N3 . . . , then to every
definite system of values N1, N2, N3 . . . , there corresponds a definite
macroscopic distribution in space. We have of course always:

N1 +N2 +N3 + · · · = N (165)

or if

N1

N
= w1,

N2

N
= w2, . . . (166)

w1 + w2 + w3 + · · · = 1. (167)

The quantity wi may be called the density of distribution of the
molecules, or the mathematical probability that any molecule selected
at random lies in the ith space element.

If we now had, e.g., only 10 molecules and 7 space elements, a
definite space distribution would be represented by the values:

N1 = 1, N2 = 2, N3 = 0, N4 = 0, N5 = 1, N6 = 4, N7 = 2, (168)

which state that in the seven space elements there lie respectively 1, 2,
0, 0, 1, 4, 2 molecules.

123. The definition of a macroscopic distribution in space may now
be followed immediately by that of its thermodynamic probability W .
The latter is founded on the consideration that a certain distribution in
space may be realized in many different ways, namely, by many differ-
ent individual coordinations or “complexions,” according as a certain
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molecule considered will happen to lie in one or the other space ele-
ment. For, with a given distribution of space, it is of consequence only
how many, not which, molecules lie in every space element.

The number of all complexions which are possible with a given dis-
tribution in space we equate to the thermodynamic probability W of
the space distribution.

In order to form a definite conception of a certain complexion, we
can give the molecules numbers, write these numbers in order from
1 to N , and place below the number of every molecule the number
of that space element to which the molecule in question belongs in
that particular complexion. Thus the following table represents one
particular complexion, selected at random, for the distribution in the
preceding illustration

1 2 3 4 5 6 7 8 9 10
6 1 7 5 6 2 2 6 6 7

(169)

By this the fact is exhibited that the
Molecule 2 lies in space element 1.
Molecules 6 and 7 lie in space element 2.
Molecule 4 lies in space element 5.
Molecules 1, 5, 8, and 9 lie in space element 6.
Molecules 3 and 10 lie in space element 7.
As becomes evident on comparison with (168), this complexion does,

in fact, correspond in every respect to the space distribution given
above, and in a similar manner it is easy to exhibit many other com-
plexions, which also belong to the same space distribution. The number
of all possible complexions required is now easily found by inspecting
the lower of the two lines of figures in (169). For, since the number of
the molecules is given, this line of figures contains a definite number
of places. Since, moreover, the distribution in space is also given, the
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number of times that every figure (i.e., every space element) appears in
the line is equal to the number of molecules which lie in that particular
space element. But every change in the table gives a new particular
coordination between molecules and space elements and hence a new
complexion. Hence the number of the possible complexions, or the ther-
modynamic probability, W , of the given space distribution, is equal to
the number of “permutations with repetition” possible under the given
conditions. In the simple numerical example chosen, we get for W ,
according to a well-known formula, the expression

10!

1! 2! 0! 0! 1! 4! 2!
= 37, 800.

The form of this expression is so chosen that it may be applied easily
to the general case. The numerator is equal to factorial N , N being the
total number of molecules considered, and the denominator is equal to
the product of the factorials of the numbers, N1, N2, N3, . . . of the
molecules, which lie in every separate space element and which, in the
general case, must be thought of as large numbers. Hence we obtain
for the required probability of the given space distribution

W =
N !

N1!N2!N3! . . .
. (170)

Since all the N ’s are large numbers, we may apply to their factorials
Stirling’s formula, which for a large number may be abridged1 to2

n! =
(n
e

)n
. (171)

1Abridged in the sense that factors which in the logarithmic expression (173)
would give rise to small additive terms have been omitted at the outset. A brief
derivation of equation (173) may be found on p. 258 (Tr.).

2See for example E. Czuber, Wahrscheinlichkeitsrechnung (Leipzig, B. G. Teub-
ner) p. 22, 1903; H. Poincaré, Calcul des Probabilités (Paris, Gauthier-Villars),
p. 85, 1912.
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Hence, by taking account of (165), we obtain

W =

(
N

N1

)N1
(
N

N2

)N2
(
N

N3

)N3

. . . . (172)

124. Exactly the same method as in the case of the space dis-
tribution just considered may be used for the definition of a macro-
scopic state and of the thermodynamic probability in the general case,
where not only the coordinates but also the velocities, the electric mo-
ments, etc., of the molecules are to be dealt with. Every thermodynamic
state of a system of N molecules is, in the macroscopic sense, defined
by the statement of the number of molecules, N1, N2, N3, . . . , which
are contained in the region elements 1, 2, 3, . . . of the “state space.”
This state space, however, is not the ordinary three-dimensional space,
but an ideal space of as many dimensions as there are variables for
every molecule. In other respects the definition and the calculation of
the thermodynamic probability W are exactly the same as above and
the entropy of the state is accordingly found from (164), taking (166)
also into account, to be

S = −kN
∑

w1 logw1, (173)

where the sum
∑

is to be taken over all region elements. It is obvious
from this expression that the entropy is in every case a positive quantity.

125. By the preceding developments the calculation of the entropy
of a system of N molecules in a given thermodynamic state is, in gen-
eral, reduced to the single problem of finding the magnitude G of the
region elements in the state space. That such a definite finite quantity
really exists is a characteristic feature of the theory we are developing,
as contrasted with that due to Boltzmann, and forms the content of the
so-called hypothesis of quanta. As is readily seen, this is an immediate
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consequence of the proposition of Sec. 120 that the entropy S has an
absolute, not merely a relative, value; for this, according to (164), neces-
sitates also an absolute value for the magnitude of the thermodynamic
probability W , which, in turn, according to Sec. 123, is dependent on
the number of complexions, and hence also on the number and size
of the region elements which are used. Since all different complexions
contribute uniformly to the value of the probability W , the region el-
ements of the state space represent also regions of equal probability. If
this were not so, the complexions would not be all equally probable.

However, not only the magnitude, but also the shape and position
of the region elements must be perfectly definite. For since, in general,
the distribution density w is apt to vary appreciably from one region
element to another, a change in the shape of a region element, the mag-
nitude remaining unchanged, would, in general, lead to a change in the
value of w and hence to a change in S. We shall see that only in special
cases, namely, when the distribution densities w are very small, may the
absolute magnitude of the region elements become physically unimpor-
tant, inasmuch as it enters into the entropy only through an additive
constant. This happens, e.g., at high temperatures, large volumes, slow
vibrations (state of an ideal gas, Sec. 132, Rayleigh’s radiation law,
Sec. 159). Hence it is permissible for such limiting cases to assume,
without appreciable error, that G is infinitely small in the macroscopic
sense, as has hitherto been the practice in statistical mechanics. As
soon, however, as the distribution densities w assume appreciable val-
ues, the classical statistical mechanics fail.

126. If now the problem be to determine the magnitude G of the
region elements of equal probability, the laws of the classical statistical
mechanics afford a certain hint, since in certain limiting cases they lead
to correct results.

Let φ1, φ2, φ3, . . . be the “generalized coordinates,” ψ1, ψ2, ψ3, . . .
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the corresponding “impulse coordinates” or “moments,” which deter-
mine the microscopic state of a certain molecule; then the state space
contains as many dimensions as there are coordinates φ and moments ψ
for every molecule. Now the region element of probability, according
to classical statistical mechanics, is identical with the infinitely small
element of the state space (in the macroscopic sense)1

dφ1 dφ2 dφ3 . . . dψ1 dψ2 dψ3 . . . . (174)

According to the hypothesis of quanta, on the other hand, every
region element of probability has a definite finite magnitude

G =

∫
dφ1 dφ2 dφ3 . . . dψ1 dψ2 dψ3 . . . (175)

whose value is the same for all different region elements and, moreover,
depends on the nature of the system of molecules considered. The
shape and position of the separate region elements are determined by
the limits of the integral and must be determined anew in every separate
case.

1Compare, for example, L. Boltzmann, Gastheorie, 2, p. 62 et seq., 1898, or
J. W. Gibbs, Elementary principles in statistical mechanics, Chapter I, 1902.



CHAPTER II

IDEAL MONATOMIC GASES

127. In the preceding chapter it was proven that the introduction
of probability considerations into the mechanical and electrodynamical
theory of heat is justifiable and necessary, and from the general con-
nection between entropy S and probability W , as expressed in equa-
tion (164), a method was derived for calculating the entropy of a phys-
ical system in a given state. Before we apply this method to the deter-
mination of the entropy of radiant heat we shall in this chapter make
use of it for calculating the entropy of an ideal monatomic gas in an ar-
bitrarily given state. The essential parts of this calculation are already
contained in the investigations of L. Boltzmann1 on the mechanical
theory of heat; it will, however, be advisable to discuss this simple case
in full, firstly to enable us to compare more readily the method of cal-
culation and physical significance of mechanical entropy with that of
radiation entropy, and secondly, what is more important, to set forth
clearly the differences as compared with Boltzmann’s treatment, that
is, to discuss the meaning of the universal constant k and of the finite
region elements G. For this purpose the treatment of a special case is
sufficient.

128. Let us then take N similar monatomic gas molecules in an ar-
bitrarily given thermodynamic state and try to find the corresponding
entropy. The state space is six-dimensional, with the three coordi-
nates x, y, z, and the three corresponding moments mξ, mη, mζ, of a
molecule, where we denote the mass by m and velocity components by
ξ, η, ζ. Hence these quantities are to be substituted for the φ and ψ in

1L. Boltzmann, Sitzungsber. d. Akad. d. Wissensch. zu Wien (II) 76, p. 373,
1877. Compare also Gastheorie, 1, p. 38, 1896.
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Sec. 126. We thus obtain for the size of a region element G the sextuple
integral

G = m3

∫
dσ, (176)

where, for brevity
dx dy dz dξ dη dζ = dσ. (177)

If the region elements are known, then, since the macroscopic state
of the system of molecules was assumed as known, the numbers N1, N2,
N3, . . . of the molecules which lie in the separate region elements are
also known, and hence the distribution densities w1, w2, w3, . . . (166)
are given and the entropy of the state follows at once from (173).

129. The theoretical determination of G is a problem as difficult as
it is important. Hence we shall at this point restrict ourselves from the
very outset to the special case in which the distribution density varies
but slightly from one region element to the next—the characteristic
feature of the state of an ideal gas. Then the summation over all region
elements may be replaced by the integral over the whole state space.
Thus we have from (176) and (167)∑

w1 =
∑

w1
m3

G

∫
dσ =

m3

G

∫
w dσ = 1, (178)

in which w is no longer thought of as a discontinuous function of the
ordinal number, i, of the region element, where i = 1, 2, 3, . . . n, but
as a continuous function of the variables, x, y, z, ξ, η, ζ, of the state
space. Since the whole state region contains very many region elements,
it follows, according to (167) and from the fact that the distribution
density w changes slowly, that w has everywhere a small value.

Similarly we find for the entropy of the gas from (173):

S = −kN
∑

w1 logw1 = −kNm3

G

∫
w logw dσ. (179)
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Of course the whole energy E of the gas is also determined by the dis-
tribution densities w. If w is sufficiently small in every region element,
the molecules contained in any one region element are, on the average,
so far apart that their energy depends only on the velocities. Hence:

E =
∑

N1
1

2
m(ξ21 + η21 + ζ21 ) + E0

= N
∑

w1
1

2
m(ξ21 + η21 + ζ21 ) + E0, (180)

where ξ1 η1 ζ1 denotes any velocity lying within the region element 1
and E0 denotes the internal energy of the stationary molecules, which
is assumed constant. In place of the latter expression we may write,
again according to (176),

E =
m4N

2G

∫
(ξ2 + η2 + ζ2)w dσ + E0. (181)

130. Let us consider the state of thermodynamic equilibrium. Ac-
cording to the second principle of thermodynamics this state is distin-
guished from all others by the fact that, for a given volume V and a
given energy E of the gas, the entropy S is a maximum. Let us then
regard the volume

V =

∫∫∫
dx dy dz (182)

and the energy E of the gas as given. The condition for equilibrium is
δS = 0, or, according to (179),∑

(logw1 + 1) δw1 = 0,

and this holds for any variations of the distribution densities whatever,
provided that, according to (167) and (180), they satisfy the conditions∑

δw1 = 0 and
∑

(ξ21 + η21 + ζ21 ) δw1 = 0.
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This gives us as the necessary and sufficient condition for thermody-
namic equilibrium for every separate distribution density w:

logw + β(ξ2 + η2 + ζ2) + const. = 0

or
w = αe−β(ξ

2+η2+ζ2), (183)

where α and β are constants. Hence in the state of equilibrium the
distribution of the molecules in space is independent of x, y, z, that
is, macroscopically uniform, and the distribution of velocities is the
well-known one of Maxwell.

131. The values of the constants α and β may be found from those
of V and E. For, on substituting the value of w just found in (178) and
taking account of (177) and (182), we get

G

m3
= αV

∫∫∫ ∞
−∞

e−β(ξ
2+η2+ζ2) dξ dη dζ = αV

(
π

β

)3
2

,

and on substituting w in (181) we get

E = E0 +
αm4NV

2G

∫∫∫ ∞
−∞

(ξ2 + η2 + ζ2)e−β(ξ
2+η2+ζ2) dξ dη dζ,

or

E = E0 +
3αm4NV

4G

1

β

(
π

β

)3
2

.

Solving for α and β we have

α =
G

V

(
3N

4πm(E − E0)

)3
2

(184)

β =
3

4

Nm

E − E0

. (185)
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From this finally we find, as an expression for the entropy S of the gas
in the state of equilibrium with given values of N , V , and E,

S = kN log

VG
(

4πem(E − E0)

3N

)3
2

 . (186)

132. This determination of the entropy of an ideal monatomic gas is
based solely on the general connection between entropy and probability
as expressed in equation (164); in particular, we have at no stage of our
calculation made use of any special law of the theory of gases. It is,
therefore, of importance to see how the entire thermodynamic behavior
of a monatomic gas, especially the equation of state and the values of
the specific heats, may be deduced from the expression found for the
entropy directly by means of the principles of thermodynamics. From
the general thermodynamic equation defining the entropy, namely,

dS =
dE + p dV

T
, (187)

the partial differential coefficients of S with respect to E and V are
found to be (

∂S

∂E

)
V

=
1

T
,

(
∂S

∂V

)
E

=
p

T
.

Hence, by using (186), we get for our gas(
∂S

∂E

)
V

=
3

2

kN

E − E0

=
1

T
(188)

and (
∂S

∂V

)
E

=
kN

V
=
p

T
. (189)
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The second of these equations

p =
kNT

V
(190)

contains the laws of Boyle, Gay Lussac, and Avogadro, the last named
because the pressure depends only on the number N , not on the nature
of the molecules. If we write it in the customary form:

p =
RnT

V
, (191)

where n denotes the number of gram molecules or mols of the gas,
referred to O2 = 32 gr., and R represents the absolute gas constant

R = 831× 105 erg

degree
, (192)

we obtain by comparison

k =
Rn

N
. (193)

If we now call the ratio of the number of mols to the number of
molecules ω, or, what is the same thing, the ratio of the mass of a

molecule to that of a mol, ω =
n

N
, we shall have

k = ωR. (194)

From this the universal constant k may be calculated, when ω is given,
and vice versa. According to (190) this constant k is nothing but the
absolute gas constant, if it is referred to molecules instead of mols.

From equation (188)

E − E0 = 3
2
kNT. (195)
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Now, since the energy of an ideal gas is also given by

E = AncvT + E0 (196)

where cv is the heat capacity of a mol at constant volume in calories
and A is the mechanical equivalent of heat:

A = 419× 105 erg

cal
(197)

it follows that

cv =
3

2

kN

An
and further, by taking account of (193)

cv =
3

2

R

A
=

3

2
· 831× 105

419× 105
= 3.0 (198)

as an expression for the heat capacity per mol of any monatomic gas
at constant volume in calories.1

For the heat capacity per mol at constant pressure, cp, we have as
a consequence of the first principle of thermodynamics:

cp − cv =
R

A

and hence by (198)

cp =
5

2

R

A
,

cp
cv

=
5

3
, (199)

as is known to be the case for monatomic gases. It follows from (195)
that the kinetic energy L of the gas molecules is equal to

L = E − E0 = 3
2
NkT. (200)

1Compare F. Richarz, Wiedemann’s Annal., 67, p. 705, 1899.
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133. The preceding relations, obtained simply by identifying the
mechanical expression of the entropy (186) with its thermodynamic ex-
pression (187), show the usefulness of the theory developed. In them
an additive constant in the expression for the entropy is immaterial and
hence the size G of the region element of probability does not matter.
The hypothesis of quanta, however, goes further, since it fixes the ab-
solute value of the entropy and thus leads to the same conclusion as the
heat theorem of Nernst. According to this theorem the “characteristic
function” of an ideal gas1 is in our notation

Φ = S − E + pV

T
= n

(
Acp log T −R log p+ a− b

T

)
,

where a denotes Nernst’s chemical constant, and b the energy constant.
On the other hand, the preceding formulæ (186), (188), and (189)

give for the same function Φ the following expression:

Φ = N

(
5

2
k log T − k log p+ a′

)
− E0

T

where for brevity a′ is put for:

a′ = k log

{
kN

eG
(2πmk)

3
2

}
.

From a comparison of the two expressions for Φ it is seen, by taking
account of (199) and (193), that they agree completely, provided

a =
N

n
a′ = R log

Nk
5
2

eG
(2πm)

3
2

 , b =
E0

n
. (201)

1E.g., M. Planck, Vorlesungen über Thermodynamik, Leipzig, Veit und Comp.,
1911, Sec. 287, equation 267.
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This expresses the relation between the chemical constant a of the gas
and the region element G of the probability.1

It is seen that G is proportional to the total number, N , of the
molecules. Hence, if we put G = Ng, we see that g, the molecular
region element, depends only on the chemical nature of the gas.

Obviously the quantity g must be closely connected with the law,
so far unknown, according to which the molecules act microscopically
on one another. Whether the value of g varies with the nature of the
molecules or whether it is the same for all kinds of molecules, may be
left undecided for the present.

If g were known, Nernst’s chemical constant, a, of the gas could
be calculated from (201) and the theory could thus be tested. For the
present the reverse only is feasible, namely, to calculate g from a. For
it is known that a may be measured directly by the tension of the
saturated vapor, which at sufficiently low temperatures satisfies the
simple equation2

log p =
5

2
log T − Ar0

RT
+
a

R
(202)

(where r0 is the heat of vaporization of a mol at 0◦ in calories). When
a has been found by measurement, the size g of the molecular region
element is found from (201) to be

g = (2πm)
3
2k

5
2 e−

a
R
−1. (203)

Let us consider the dimensions of g.
According to (176) g is of the dimensions [erg3 sec3]. The same

follows from the present equation, when we consider that the dimension

1Compare also O. Sackur, Annal. d. Physik 36, p. 958, 1911, Nernst-Festschrift,
p. 405, 1912, and H. Tetrode, Annal. d. Physik 38, p. 434, 1912.

2M. Planck, l. c., Sec. 288, equation 271.
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of the chemical constant a is not, as might at first be thought, that of R,

but, according to (202), that of R log
p

T
5
2

.

134. To this we may at once add another quantitative relation.
All the preceding calculations rest on the assumption that the dis-
tribution density w and hence also the constant α in (183) are small
(Sec. 129). Hence, if we take the value of α from (184) and take account
of (188), (189) and (201), it follows that

p

T
5
2

e−
a
R
−1 must be small.

When this relation is not satisfied, the gas cannot be in the ideal state.

For the saturated vapor it follows then from (202) that e−
Ar0
RT is small.

In order, then, that a saturated vapor may be assumed to be in the

state of an ideal gas, the temperature T must certainly be less than
A

R
r0

or
r0
2

. Such a restriction is unknown to the classical thermodynamics.



CHAPTER III

IDEAL LINEAR OSCILLATORS

135. The main problem of the theory of heat radiation is to deter-
mine the energy distribution in the normal spectrum of black radiation,
or, what amounts to the same thing, to find the function which has
been left undetermined in the general expression of Wien’s displace-
ment law (119), the function which connects the entropy of a certain
radiation with its energy. The purpose of this chapter is to develop
some preliminary theorems leading to this solution. Now since, as we
have seen in Sec. 48, the normal energy distribution in a diathermanous
medium cannot be established unless the medium exchanges radiation
with an emitting and absorbing substance, it will be necessary for the
treatment of this problem to consider more closely the processes which
cause the creation and the destruction of heat rays, that is, the pro-
cesses of emission and absorption. In view of the complexity of these
processes and the difficulty of acquiring knowledge of any definite de-
tails regarding them, it would indeed be quite hopeless to expect to
gain any certain results in this way, if it were not possible to use as
a reliable guide in this obscure region the law of Kirchhoff derived in
Sec. 51. This law states that a vacuum completely enclosed by reflect-
ing walls, in which any emitting and absorbing bodies are scattered in
any arrangement whatever, assumes in the course of time the stationary
state of black radiation, which is completely determined by one param-
eter only, namely, the temperature, and in particular does not depend
on the number, the nature, and the arrangement of the material bodies
present. Hence, for the investigation of the properties of the state of
black radiation the nature of the bodies which are assumed to be in
the vacuum is perfectly immaterial. In fact, it does not even matter

160
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whether such bodies really exist somewhere in nature, provided their
existence and their properties are consistent with the laws of thermo-
dynamics and electrodynamics. If, for any special arbitrary assumption
regarding the nature and arrangement of emitting and absorbing sys-
tems, we can find a state of radiation in the surrounding vacuum which
is distinguished by absolute stability, this state can be no other than
that of black radiation.

Since, according to this law, we are free to choose any system what-
ever, we now select from all possible emitting and absorbing systems
the simplest conceivable one, namely, one consisting of a large num-
ber N of similar stationary oscillators, each consisting of two poles,
charged with equal quantities of electricity of opposite sign, which may
move relatively to each other on a fixed straight line, the axis of the
oscillator.

It is true that it would be more general and in closer accord with the
conditions in nature to assume the vibrations to be those of an oscillator
consisting of two poles, each of which has three degrees of freedom of
motion instead of one, i.e., to assume the vibrations as taking place in
space instead of in a straight line only. Nevertheless we may, according
to the fundamental principle stated above, restrict ourselves from the
beginning to the treatment of one single component, without fear of
any essential loss of generality of the conclusions we have in view.

It might, however, be questioned as a matter of principle, whether
it is really permissible to think of the centers of mass of the oscillators
as stationary, since, according to the kinetic theory of gases, all mate-
rial particles which are contained in substances of finite temperature
and free to move possess a certain finite mean kinetic energy of trans-
latory motion. This objection, however, may also be removed by the
consideration that the velocity is not fixed by the kinetic energy alone.
We need only think of an oscillator as being loaded, say at its positive
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pole, with a comparatively large inert mass, which is perfectly neutral
electrodynamically, in order to decrease its velocity for a given kinetic
energy below any preassigned value whatever. Of course this consid-
eration remains valid also, if, as is now frequently done, all inertia is
reduced to electrodynamic action. For this action is at any rate of a
kind quite different from the one to be considered in the following, and
hence cannot influence it.

Let the state of such an oscillator be completely determined by its
moment f(t), that is, by the product of the electric charge of the pole
situated on the positive side of the axis and the pole distance, and by
the derivative of f with respect to the time or

df(t)

dt
= ḟ(t). (204)

Let the energy of the oscillator be of the following simple form:

U = 1
2
Kf 2 + 1

2
Lḟ 2, (205)

where K and L denote positive constants, which depend on the nature
of the oscillator in some way that need not be discussed at this point.

If during its vibration an oscillator neither absorbed nor emitted
any energy, its energy of vibration, U , would remain constant, and we
would have:

dU = Kf df + Lḟ dḟ = 0, (205a)

or, on account of (204),

Kf(t) + Lf̈(t) = 0. (206)

The general solution of this differential equation is found to be a purely
periodical vibration:

f = C cos(2πνt− θ) (207)
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where C and θ denote the integration constants and ν the number of
vibrations per unit time:

ν =
1

2π

√
K

L
. (208)

136. If now the assumed system of oscillators is in a space traversed
by heat rays, the energy of vibration, U , of an oscillator will not in
general remain constant, but will be always changing by absorption
and emission of energy. Without, for the present, considering in detail
the laws to which these processes are subject, let us consider any one
arbitrarily given thermodynamic state of the oscillators and calculate
its entropy, irrespective of the surrounding field of radiation. In doing
this we proceed entirely according to the principle advanced in the two
preceding chapters, allowing, however, at every stage for the conditions
caused by the peculiarities of the case in question.

The first question is: What determines the thermodynamic state
of the system considered? For this purpose, according to Sec. 124,
the numbers N1, N2, N3, . . . of the oscillators, which lie in the region
elements 1, 2, 3, . . . of the “state space” must be given. The state
space of an oscillator contains those coordinates which determine the
microscopic state of an oscillator. In the case in question these are
only two in number, namely, the moment f and the rate at which it
varies, ḟ , or instead of the latter the quantity

ψ = Lḟ, (209)

which is of the dimensions of an impulse. The region element of the
state plane is, according to the hypothesis of quanta (Sec. 126), the
double integral ∫∫

df dψ = h. (210)
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The quantity h is the same for all region elements. A priori, it might,
however, depend also on the nature of the system considered, for ex-
ample, on the frequency of the oscillators. The following simple con-
sideration, however, leads to the assumption that h is a universal con-
stant. We know from the generalized displacement law of Wien (equa-
tion (119)) that in the universal function, which gives the entropy ra-
diation as dependent on the energy radiation, there must appear a

universal constant of the dimension
c3u

ν3
and this is of the dimension

of a quantity of action1 (erg sec.). Now, according to (210), the quan-
tity h has precisely this dimension, on which account we may denote it
as “element of action” or “quantity element of action.” Hence, unless
a second constant also enters, h cannot depend on any other physical
quantities.

137. The principal difference, compared with the calculations for
an ideal gas in the preceding chapter, lies in the fact that we do not
now assume the distribution densities w1, w2, w3 . . . of the oscillators
among the separate region elements to vary but little from region to
region as was assumed in Sec. 129. Accordingly the w’s are not small,
but finite proper fractions, and the summation over the region elements
cannot be written as an integration.

In the first place, as regards the shape of the region elements, the
fact that in the case of undisturbed vibrations of an oscillator the phase
is always changing, whereas the amplitude remains constant, leads to
the conclusion that, for the macroscopic state of the oscillators, the
amplitudes only, not the phases, must be considered, or in other words
the region elements in the fψ plane are bounded by the curves C =

1The quantity from which the principle of least action takes its name. (Tr.)
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const., that is, by ellipses, since from (207) and (209)(
f

C

)2

+

(
ψ

2πνLC

)2

= 1. (211)

The semi-axes of such an ellipse are:

a = C and b = 2πνLC. (212)

Accordingly the region elements 1, 2, 3, . . . n . . . are the concentric,
similar, and similarly situated elliptic rings, which are determined by
the increasing values of C:

0, C1, C2, C3, . . . Cn−1, Cn . . . . (213)

The nth region element is that which is bounded by the ellipses
C = Cn−1 and C = Cn. The first region element is the full ellipse C1.
All these rings have the same area h, which is found by subtracting
the area of the full ellipse Cn−1 from that of the full ellipse Cn; hence

h = (anbn − an−1bn−1)π

or, according to (212),

h = (C2
n − C2

n−1)2π
2νL,

where n = 1, 2, 3, . . . .
From the additional fact that C0 = 0, it follows that:

C2
n =

nh

2π2νL
. (214)

Thus the semi-axes of the bounding ellipses are in the ratio of the square
roots of the integral numbers.
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138. The thermodynamic state of the system of oscillators is fixed
by the fact that the values of the distribution densities w1, w2, w3, . . .
of the oscillators among the separate region elements are given. Within
a region element the distribution of the oscillators is according to the
law of elemental chaos (Sec. 122), i.e., it is approximately uniform.

These data suffice for calculating the entropy S as well as the en-
ergy E of the system in the given state, the former quantity directly
from (173), the latter by the aid of (205). It must be kept in mind
in the calculation that, since the energy varies appreciably within a
region element, the energy En of all those oscillators which lie in the
nth region element is to be found by an integration. Then the whole
energy E of the system is:

E = E1 + E2 + . . . En + . . . . (215)

En may be calculated with the help of the law that within every re-
gion element the oscillators are uniformly distributed. If the nth region

element contains, all told, Nn oscillators, there are per unit area
Nn

h
os-

cillators and hence
Nn

h
df · dψ per element of area. Hence we have:

En =
Nn

h

∫∫
U df dψ.

In performing the integration, instead of f and ψ we take C and φ, as
new variables, and since according to (211),

f = C cosφ ψ = 2πνLC sinφ (216)

we get:

En = 2πνL
Nn

h

∫∫
UC dC dφ
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to be integrated with respect to φ from 0 to 2π and with respect to C
from Cn−1 to Cn. If we substitute from (205), (209) and (216)

U = 1
2
KC2, (217)

we obtain by integration

En =
π2

2
νLK

Nn

h
(C4

n − C4
n−1)

and from (214) and (208):

En = Nn(n− 1
2
)hν = Nwn(n− 1

2
)hν, (218)

that is, the mean energy of an oscillator in the nth region element
is (n − 1

2
)hν. This is exactly the arithmetic mean of the energies

(n− 1)hν and nhν which correspond to the two ellipses C = Cn−1 and
C = Cn bounding the region, as may be seen from (217), if the values
of Cn−1 and Cn are therein substituted from (214).

The total energy E is, according to (215),

E = Nhν
n=∞∑
n=1

(n− 1
2
)wn. (219)

139. Let us now consider the state of thermodynamic equilibrium of
the oscillators. According to the second principle of thermodynamics,
the entropy S is in that case a maximum for a given energy E. Hence
we assume E in (219) as given. Then from (179) we have for the state
of equilibrium:

δS = 0 =
∞∑
1

(logwn + 1) δwn,
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where according to (167) and (219)

∞∑
1

δwn = 0 and
∞∑
1

(n− 1
2
) δwn = 0.

From these relations we find:

logwn + βn+ const. = 0

or
wn = αγn. (220)

The values of the constants α and γ follow from equations (167)
and (219):

α =
2Nhν

2E −Nhν
γ =

2E −Nhν
2E +Nhν

. (221)

Since wn is essentially positive it follows that equilibrium is not possible
in the system of oscillators considered unless the total energy E has a

greater value than
Nhν

2
, that is unless the mean energy of the oscilla-

tors is at least
hν

2
. This, according to (218), is the mean energy of the

oscillators lying in the first region element. In fact, in this extreme case
all N oscillators lie in the first region element, the region of smallest
energy; within this element they are arranged uniformly.

The entropy S of the system, which is in thermodynamic equilib-
rium, is found by combining (173) with (220) and (221)

S = kN

{(
E

Nhν
+

1

2

)
log

(
E

Nhν
+

1

2

)
−
(

E

Nhν
− 1

2

)
log

(
E

Nhν
− 1

2

)}
. (222)
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140. The connection between energy and entropy just obtained al-
lows furthermore a certain conclusion as regards the temperature. For

from the equation of the second principle of thermodynamics, dS =
dE

T
and from differentiation of (222) with respect to E it follows that

E = N
hν

2

1 + e−
hν
kT

1− e−
hν
kT

= Nhν

(
1

2
+

1

e
hν
kT − 1

)
. (223)

Hence, for the zero point of the absolute temperature E becomes, not 0,

but N
hν

2
. This is the extreme case discussed in the preceding para-

graph, which just allows thermodynamic equilibrium to exist. That the
oscillators are said to perform vibrations even at the temperature zero,

the mean energy of which is as large as
hν

2
and hence may become

quite large for rapid vibrations, may at first sight seem strange. It
seems to me, however, that certain facts point to the existence, inside
the atoms, of vibrations independent of the temperature and supplied
with appreciable energy, which need only a small suitable excitation
to become evident externally. For example, the velocity, sometimes
very large, of secondary cathode rays produced by Roentgen rays, and
that of electrons liberated by photoelectric effect are independent of the
temperature of the metal and of the intensity of the exciting radiation.
Moreover the radioactive energies are also independent of the tempera-
ture. It is also well known that the close connection between the inertia
of matter and its energy as postulated by the relativity principle leads
to the assumption of very appreciable quantities of intra-atomic energy
even at the zero of absolute temperature.

For the extreme case, T =∞, we find from (223) that

E = NkT, (224)
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i.e., the energy is proportional to the temperature and independent of
the size of the quantum of action, h, and of the nature of the oscillators.
It is of interest to compare this value of the energy of vibration E of
the system of oscillators, which holds at high temperatures, with the
kinetic energy L of the molecular motion of an ideal monatomic gas at
the same temperature as calculated in (200). From the comparison it
follows that

E = 2
3
L. (225)

This simple relation is caused by the fact that for high temperatures
the contents of the hypothesis of quanta coincide with those of the
classical statistical mechanics. Then the absolute magnitude of the
region element, G or h respectively, becomes physically unimportant
(compare Sec. 125) and we have the simple law of equipartition of
the energy among all variables in question (see below Sec. 169). The
factor 2

3
in equation (225) is due to the fact that the kinetic energy of

a moving molecule depends on three variables (ξ, η, ζ,) and the energy
of a vibrating oscillator on only two (f , ψ).

The heat capacity of the system of oscillators in question is,
from (223),

dE

dT
= Nk

(
hν

kT

)2
e
hν
kT

(e
hν
kT − 1)2

. (226)

It vanishes for T = 0 and becomes equal to Nk for T =∞. A. Einstein1

has made an important application of this equation to the heat capacity
of solid bodies, but a closer discussion of this would be beyond the scope
of the investigations to be made in this book.

1A. Einstein, Ann. d. Phys. 22, p. 180, 1907. Compare also M. Born und Th.
von Kárman, Phys. Zeitschr. 13, p. 297, 1912.
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For the constants α and γ in the expression (220) for the distribution
density w we find from (221):

α = e
hν
kT − 1 γ = e−

hν
kT (227)

and finally for the entropy S of our system as a function of temperature:

S = kN


hν

kT

e
hν
kT
−1
− log

(
1− e−

hν
kT

) . (228)



CHAPTER IV

DIRECT CALCULATION OF THE ENTROPY IN THE
CASE OF THERMODYNAMIC EQUILIBRIUM

141. In the calculation of the entropy of an ideal gas and of a system
of resonators, as carried out in the preceding chapters, we proceeded
in both cases, by first determining the entropy for an arbitrarily given
state, then introducing the special condition of thermodynamic equi-
librium, i.e., of the maximum of entropy, and then deducing for this
special case an expression for the entropy.

If the problem is only the determination of the entropy in the case
of thermodynamic equilibrium, this method is a roundabout one, inas-
much as it requires a number of calculations, namely, the determination
of the separate distribution densities w1, w2, w3, . . . which do not enter
separately into the final result. It is therefore useful to have a method
which leads directly to the expression for the entropy of a system in the
state of thermodynamic equilibrium, without requiring any considera-
tion of the state of thermodynamic equilibrium. This method is based
on an important general property of the thermodynamic probability of
a state of equilibrium.

We know that there exists between the entropy S and the thermody-
namic probability W in any state whatever the general relation (164).
In the state of thermodynamic equilibrium both quantities have max-
imum values; hence, if we denote the maximum values by a suitable
index:

Sm = k logWm. (229)

It follows from the two equations that:

Wm

W
= e

Sm−S
k .

172



DIRECT CALCULATION OF THE ENTROPY 173

Now, when the deviation from thermodynamic equilibrium is at all ap-

preciable,
Sm − S

k
is certainly a very large number. Accordingly Wm is

not only large but of a very high order large, compared with W , that
is to say: The thermodynamic probability of the state of equilibrium is
enormously large compared with the thermodynamic probability of all
states which, in the course of time, change into the state of equilibrium.

This proposition leads to the possibility of calculating Wm with an
accuracy quite sufficient for the determination of Sm, without the ne-
cessity of introducing the special condition of equilibrium. According
to Sec. 123, et seq., Wm is equal to the number of all different complex-
ions possible in the state of thermodynamic equilibrium. This number
is so enormously large compared with the number of complexions of all
states deviating from equilibrium that we commit no appreciable error
if we think of the number of complexions of all states, which as time
goes on change into the state of equilibrium, i.e., all states which are
at all possible under the given external conditions, as being included in
this number. The total number of all possible complexions may be cal-
culated much more readily and directly than the number of complexions
referring to the state of equilibrium only.

142. We shall now use the method just formulated to calculate
the entropy, in the state of equilibrium, of the system of ideal linear
oscillators considered in the last chapter, when the total energy E is
given. The notation remains the same as above.

We put then Wm equal to the number of complexions of all stages
which are at all possible with the given energy E of the system. Then
according to (219) we have the condition:

E = hν
∞∑
n=1

(n− 1
2
)Nn. (230)
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Whereas we have so far been dealing with the number of complexions
with given Nn, now the Nn are also to be varied in all ways consistent
with the condition (230).

The total number of all complexions is obtained in a simple way by
the following consideration. We write, according to (165), the condi-
tion (230) in the following form:

E

hν
− N

2
=
∞∑
n=1

(n− 1)Nn

or

0 ·N1 + 1 ·N2 + 2 ·N3 + · · ·+ (n− 1)Nn + · · · = E

hν
− N

2
= P. (231)

P is a given large positive number, which may, without restricting the
generality, be taken as an integer.

According to Sec. 123 a complexion is a definite assignment of every
individual oscillator to a definite region element 1, 2, 3, . . . of the
state plane (f, ψ). Hence we may characterize a certain complexion by
thinking of the N oscillators as being numbered from 1 to N and, when
an oscillator is assigned to the nth region element, writing down the
number of the oscillator (n−1) times. If in any complexion an oscillator
is assigned to the first region element its number is not put down at all.
Thus every complexion gives a certain row of figures, and vice versa
to every row of figures there corresponds a certain complexion. The
position of the figures in the row is immaterial.

What makes this form of representation useful is the fact that ac-
cording to (231) the number of figures in such a row is always equal
to P . Hence we have “combinations with repetitions of N elements
taken P at a time,” whose total number is

N(N + 1)(N + 2) . . . (N + P − 1)

1 2 3 . . . P
=

(N + P − 1)!

(N − 1)!P !
. (232)
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If for example we had N = 3 and P = 4 all possible complexions would
be represented by the rows of figures:

1111 1133 2222
1112 1222 2223
1113 1223 2233
1122 1233 2333
1123 1333 3333

The first row denotes that complexion in which the first oscillator
lies in the 5th region element and the two others in the first. The
number of complexions in this case is 15, in agreement with the formula.

143. For the entropy S of the system of oscillators which is in the
state of thermodynamic equilibrium we thus obtain from equation (229)
since N and P are large numbers:

S = k log
(N + P )!

N !P !

and by making use of Stirling’s formula (171)1

S = kN

{(
P

N
+ 1

)
log

(
P

N
+ 1

)
− P

N
log

P

N

}
.

If we now replace P by E from (231) we find for the entropy exactly
the same value as given by (222) and thus we have demonstrated in a
special case both the admissibility and the practical usefulness of the
method employed.2

1Compare footnote to page 146. See also page 258.
2A complete mathematical discussion of the subject of this chapter has been

given by H. A. Lorentz. Compare, e.g., Nature, 92, p. 305, Nov. 6, 1913. (Tr.)



PART IV

A SYSTEM OF OSCILLATORS IN A
STATIONARY FIELD OF RADIATION



CHAPTER I

THE ELEMENTARY DYNAMICAL LAW FOR THE
VIBRATIONS OF AN IDEAL OSCILLATOR.
HYPOTHESIS OF EMISSION OF QUANTA

144. All that precedes has been by way of preparation. Before tak-
ing the final step, which will lead to the law of distribution of energy in
the spectrum of black radiation, let us briefly put together the essentials
of the problem still to be solved. As we have already seen in Sec. 93,
the whole problem amounts to the determination of the temperature
corresponding to a monochromatic radiation of given intensity. For
among all conceivable distributions of energy the normal one, that is,
the one peculiar to black radiation, is characterized by the fact that in
it the rays of all frequencies have the same temperature. But the tem-
perature of a radiation cannot be determined unless it be brought into
thermodynamic equilibrium with a system of molecules or oscillators,
the temperature of which is known from other sources. For if we did
not consider any emitting and absorbing matter there would be no pos-
sibility of defining the entropy and temperature of the radiation, and
the simple propagation of free radiation would be a reversible process,
in which the entropy and temperature of the separate pencils would
not undergo any change. (Compare below Sec. 166.)

Now we have deduced in the preceding section all the characteristic
properties of the thermodynamic equilibrium of a system of ideal oscil-
lators. Hence, if we succeed in indicating a state of radiation which is
in thermodynamic equilibrium with the system of oscillators, the tem-
perature of the radiation can be no other than that of the oscillators,
and therewith the problem is solved.
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145. Accordingly we now return to the considerations of Sec. 135
and assume a system of ideal linear oscillators in a stationary field of
radiation. In order to make progress along the line proposed, it is nec-
essary to know the elementary dynamical law, according to which the
mutual action between an oscillator and the incident radiation takes
place, and it is moreover easy to see that this law cannot be the same
as the one which the classical electrodynamical theory postulates for
the vibrations of a linear Hertzian oscillator. For, according to this law,
all the oscillators, when placed in a stationary field of radiation, would,
since their properties are exactly similar, assume the same energy of
vibration, if we disregard certain irregular variations, which, however,
will be smaller, the smaller we assume the damping constant of the os-
cillators, that is, the more pronounced their natural vibration is. This,
however, is in direct contradiction to the definite discrete values of the
distribution densities w1, w2, w3, . . . which we have found in Sec. 139
for the stationary state of the system of oscillators. The latter allows
us to conclude with certainty that in the dynamical law to be estab-
lished the quantity element of action h must play a characteristic part.
Of what nature this will be cannot be predicted a priori ; this much,
however, is certain, that the only type of dynamical law admissible is
one that will give for the stationary state of the oscillators exactly the
distribution densities w calculated previously. It is in this problem that
the question of the dynamical significance of the quantum of action h
stands for the first time in the foreground, a question the answer to
which was unnecessary for the calculations of the preceding sections,
and this is the principal reason why in our treatment the preceding
section was taken up first.

146. In establishing the dynamical law, it will be rational to proceed
in such a way as to make the deviation from the laws of classical elec-
trodynamics, which was recognized as necessary, as slight as possible.
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Hence, as regards the influence of the field of radiation on an oscillator,
we follow that theory closely. If the oscillator vibrates under the influ-
ence of any external electromagnetic field whatever, its energy U will
not in general remain constant, but the energy equation (205a) must be
extended to include the work which the external electromagnetic field
does on the oscillator, and, if the axis of the electric doublet coincides
with the z-axis, this work is expressed by the term Ez df = Ezḟ dt. Here
Ez denotes the z component of the external electric field-strength at
the position of the oscillator, that is, that electric field-strength which
would exist at the position of the oscillator, if the latter were not there
at all. The other components of the external field have no influence on
the vibrations of the oscillator.

Hence the complete energy equation reads:

Kf df + Lḟ dḟ = Ez df

or:
Kf + Lf̈ = Ez, (233)

and the energy absorbed by the oscillator during the time element dt
is:

Ezḟ dt. (234)

147. While the oscillator is absorbing it must also be emitting, for
otherwise a stationary state would be impossible. Now, since in the
law of absorption just assumed the hypothesis of quanta has as yet
found no room, it follows that it must come into play in some way or
other in the emission of the oscillator, and this is provided for by the
introduction of the hypothesis of emission of quanta. That is to say,
we shall assume that the emission does not take place continuously, as
does the absorption, but that it occurs only at certain definite times,
suddenly, in pulses, and in particular we assume that an oscillator can
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emit energy only at the moment when its energy of vibration, U , is
an integral multiple n of the quantum of energy, ε = hν. Whether it
then really emits or whether its energy of vibration increases further
by absorption will be regarded as a matter of chance. This will not
be regarded as implying that there is no causality for emission; but
the processes which cause the emission will be assumed to be of such a
concealed nature that for the present their laws cannot be obtained by
any but statistical methods. Such an assumption is not at all foreign to
physics; it is, e.g., made in the atomistic theory of chemical reactions
and the disintegration theory of radioactive substances.

It will be assumed, however, that if emission does take place, the
entire energy of vibration, U , is emitted, so that the vibration of the os-
cillator decreases to zero and then increases again by further absorption
of radiant energy.

It now remains to fix the law which gives the probability that an
oscillator will or will not emit at an instant when its energy has reached
an integral multiple of ε. For it is evident that the statistical state of
equilibrium, established in the system of oscillators by the assumed
alternations of absorption and emission will depend on this law; and
evidently the mean energy U of the oscillators will be larger, the larger
the probability that in such a critical state no emission takes place.
On the other hand, since the mean energy U will be larger, the larger
the intensity of the field of radiation surrounding the oscillators, we
shall state the law of emission as follows: The ratio of the probability
that no emission takes place to the probability that emission does take
place is proportional to the intensity I of the vibration which excites the
oscillator and which was defined in equation (158). The value of the
constant of proportionality we shall determine later on by the applica-
tion of the theory to the special case in which the energy of vibration
is very large. For in this case, as we know, the familiar formulæ of the
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classical dynamics hold for any period of the oscillator whatever, since
the quantity element of action h may then, without any appreciable
error, be regarded as infinitely small.

These statements define completely the way in which the radiation
processes considered take place, as time goes on, and the properties of
the stationary state. We shall now, in the first place, consider in the
second chapter the absorption, and, then, in the third chapter the emis-
sion and the stationary distribution of energy, and, lastly, in the fourth
chapter we shall compare the stationary state of the system of oscilla-
tors thus found with the thermodynamic state of equilibrium which was
derived directly from the hypothesis of quanta in the preceding part.
If we find them to agree, the hypothesis of emission of quanta may be
regarded as admissible.

It is true that we shall not thereby prove that this hypothesis rep-
resents the only possible or even the most adequate expression of the
elementary dynamical law of the vibrations of the oscillators. On the
contrary I think it very probable that it may be greatly improved as
regards form and contents. There is, however, no method of testing
its admissibility except by the investigation of its consequences, and as
long as no contradiction in itself or with experiment is discovered in it,
and as long as no more adequate hypothesis can be advanced to replace
it, it may justly claim a certain importance.



CHAPTER II

ABSORBED ENERGY

148. Let us consider an oscillator which has just completed an emis-
sion and which has, accordingly, lost all its energy of vibration. If we
reckon the time t from this instant then for t = 0 we have f = 0 and
df

dt
= 0, and the vibration takes place according to equation (233). Let

us write Ez as in (149) in the form of a Fourier’s series:

Ez =
n=∞∑
n=1

[
An cos

2πnt

T
+Bn sin

2πnt

T

]
, (235)

where T may be chosen very large, so that for all times t considered
t < T. Since we assume the radiation to be stationary, the constant
coefficients An and Bn depend on the ordinal numbers n in a wholly ir-
regular way, according to the hypothesis of natural radiation (Sec. 117).
The partial vibration with the ordinal number n has the frequency ν,
where

ω = 2πν =
2πn

T
, (236)

while for the frequency ν0 of the natural period of the oscillator

ω0 = 2πν0 =

√
K

L
.

Taking the initial condition into account, we now obtain as the
solution of the differential equation (233) the expression

f =
∞∑
1

[an(cosωt− cosω0t) + bn(sinωt− ω

ω0

sinω0t)], (237)
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where

an =
An

L(ω2
0 − ω2)

, bn =
Bn

L(ω2
0 − ω2)

. (238)

This represents the vibration of the oscillator up to the instant when
the next emission occurs.

The coefficients an and bn attain their largest values when ω is nearly
equal to ω0. (The case ω = ω0 may be excluded by assuming at the
outset that ν0T is not an integer.)

149. Let us now calculate the total energy which is absorbed by the
oscillator in the time from t = 0 to t = τ , where

ω0τ is large. (239)

According to equation (234), it is given by the integral∫ τ

0

Ez
df

dt
dt, (240)

the value of which may be obtained from the known expression for Ez
(235) and from

df

dt
=
∞∑
1

[an(−ω sinωt+ ω0 sinω0t) + bn(ω cosωt− ω cosω0t)]. (241)

By multiplying out, substituting for an and bn their values from (238),
and leaving off all terms resulting from the multiplication of two con-
stants An and Bn, this gives for the absorbed energy the following
value:

1

L

∫ τ

0

dt
∞∑
1

[
A2
n

ω2
0 − ω2

cosωt(−ω sinωt+ ω0 sinω0t)

+
B2
n

ω2
0 − ω2

sinωt(ω cosωt− ω cosω0t)

]
. (241a)
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In this expression the integration with respect to t may be performed
term by term. Substituting the limits τ and 0 it gives

1

L

∞∑
1

A2
n

ω2
0 − ω2

−sin2 ωτ

2
+ ω0

sin2 ω0 + ω

2
τ

ω0 + ω
+

sin2 ω0 − ω
2

τ

ω0 − ω




+
1

L

∞∑
1

B2
n

ω2
0 − ω2

 sin2 ωτ

2
− ω

sin2 ω0 + ω

2
τ

ω0 + ω
−

sin2 ω0 − ω
2

τ

ω0 − ω


 .

In order to separate the terms of different order of magnitude, this
expression is to be transformed in such a way that the difference ω0−ω
will appear in all terms of the sum. This gives

1

L

∞∑
1

A2
n

ω2
0 − ω2

[
ω0 − ω

2(ω0 + ω)
sin2 ωτ +

ω0

ω0 + ω
sin

ω0 − ω
2

τ · sin ω0 + 3ω

2
τ

+
ω0

ω0 − ω
sin2 ω0 − ω

2
τ

]
+

1

L

∞∑
1

B2
n

ω2
0 − ω2

[
ω0 − ω

2(ω0 + ω)
sin2 ωτ− ω

ω0 + ω
sin

ω0 − ω
2

τ ·sin ω0 + 3ω

2
τ

+
ω

ω0 − ω
sin2 ω0 − ω

2
τ

]
.

The summation with respect to the ordinal numbers n of the Fourier’s
series may now be performed. Since the fundamental period T of the
series is extremely large, there corresponds to the difference of two
consecutive ordinal numbers, ∆n = 1 only a very small difference of
the corresponding values of ω, dω, namely, according to (236),

∆n = 1 = T dν =
T dω

2π
, (242)
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and the summation with respect to n becomes an integration with
respect to ω.

The last summation with respect to An may be rearranged as the
sum of three series, whose orders of magnitude we shall first compare.
So long as only the order is under discussion we may disregard the
variability of the A2

n and need only compare the three integrals∫ ∞
0

dω
sin2 ωτ

2(ω0 + ω)2
= J1,∫ ∞

0

dω
ω0

(ω0 + ω)2(ω0 − ω)
sin

ω0 − ω
2

τ · sin ω0 + 3ω

2
τ = J2,

and ∫ ∞
0

dω
ω0

(ω0 + ω)(ω0 − ω)2
sin2 ω0 − ω

2
τ = J3.

The evaluation of these integrals is greatly simplified by the fact that,
according to (239), ω0τ and therefore also ωτ are large numbers, at least
for all values of ω which have to be considered. Hence it is possible to
replace the expression sin2 ωτ in the integral J1 by its mean value 1

2

and thus we obtain:

J1 =
1

4ω0

.

It is readily seen that, on account of the last factor, we obtain

J2 = 0

for the second integral.
In order finally to calculate the third integral J3 we shall lay off in

the series of values of ω on both sides of ω0 an interval extending from
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ω1 (< ω0) to ω2 (> ω0) such that

ω0 − ω1

ω0

and
ω2 − ω0

ω0

are small, (243)

and simultaneously

(ω0 − ω1)τ and (ω2 − ω0)τ are large. (244)

This can always be done, since ω0τ is large. If we now break up the
integral J3 into three parts, as follows:

J3 =

∫ ∞
0

=

∫ ω1

0

+

∫ ω2

ω1

+

∫ ∞
ω2

,

it is seen that in the first and third partial integral the expression

sin2 ω0 − ω
2

τ may, because of the condition (244), be replaced by its

mean value 1
2
. Then the two partial integrals become:∫ ω1

0

ω0 dω

2(ω0 + ω)(ω0 − ω)2
and

∫ ∞
ω2

ω0 dω

2(ω0 + ω)(ω0 − ω)2
. (245)

These are certainly smaller than the integrals:∫ ω1

0

dω

2(ω0 − ω)2
and

∫ ∞
ω2

dω

2(ω0 − ω)2

which have the values

1

2

ω1

ω0(ω0 − ω1)
and

1

2(ω2 − ω0)
(246)

respectively. We must now consider the middle one of the three partial
integrals: ∫ ω2

ω1

dω
ω0

(ω0 + ω)(ω0 − ω)2
· sin2 ω0 − ω

2
τ.
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Because of condition (243) we may write instead of this:

∫ ω2

ω1

dω ·
sin2 ω0 − ω

2
τ

2(ω0 − ω)2

and by introducing the variable of integration x, where

x =
ω − ω0

2
τ

and taking account of condition (244) for the limits of the integral, we
get:

τ

4

∫ +∞

−∞

sin2 x dx

x2
=
τ

4
π.

This expression is of a higher order of magnitude than the expres-
sions (246) and hence of still higher order than the partial inte-
grals (245) and the integrals J1 and J2 given above. Thus for our
calculation only those values of ω will contribute an appreciable part
which lie in the interval between ω1 and ω2, and hence we may, because
of (243), replace the separate coefficients A2

n and B2
n in the expression

for the total absorbed energy by their mean values A2
0 and B2

0 in the
neighborhood of ω0 and thus, by taking account of (242), we shall fi-
nally obtain for the total value of the energy absorbed by the oscillator
in the time τ :

1

L

τ

8
(A2

0 +B2
0)T. (247)

If we now, as in (158), define I, the “intensity of the vibration exciting
the oscillator,” by spectral resolution of the mean value of the square
of the exciting field-strength Ez:

E2
z =

∫ ∞
0

Iν dν (248)
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we obtain from (235) and (242):

E2
z = 1

2

∞∑
1

(A2
n +B2

n) = 1
2

∫ ∞
0

(A2
n +B2

n)T dν,

and by comparison with (248):

I = 1
2
(A2

0 +B2
0)T.

Accordingly from (247) the energy absorbed in the time τ becomes:

I

4L
τ,

that is, in the time between two successive emissions, the energy U of
the oscillator increases uniformly with the time, according to the law

dU

dt
=

I

4L
= a. (249)

Hence the energy absorbed by all N oscillators in the time dt is:

N I

4L
dt = Nadt. (250)



CHAPTER III

EMITTED ENERGY. STATIONARY STATE

150. Whereas the absorption of radiation by an oscillator takes
place in a perfectly continuous way, so that the energy of the oscillator
increases continuously and at a constant rate, for its emission we have,
in accordance with Sec. 147, the following law: The oscillator emits in
irregular intervals, subject to the laws of chance; it emits, however, only
at a moment when its energy of vibration is just equal to an integral
multiple n of the elementary quantum ε = hν, and then it always emits
its whole energy of vibration nε.

We may represent the whole process by the following figure in which
the abscissæ represent the time t and the ordinates the energy

U = nε+ ρ, (ρ < ε) (251)

of a definite oscillator under consideration. The oblique parallel lines
indicate the continuous increase of energy at a constant rate

dU

dt
=
dρ

dt
= a, (252)

which is, according to (249), caused by absorption at a constant rate.
Whenever this straight line intersects one of the parallels to the axis
of abscissæ U = ε, U = 2ε, . . . emission may possibly take place, in
which case the curve drops down to zero at that point and immediately
begins to rise again.

151. Let us now calculate the most important properties of the state
of statistical equilibrium thus produced. Of the N oscillators situated
in the field of radiation the number of those whose energy at the time t

189
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Fig. 7.

lies in the interval between U = nε+ ρ and U + dU = nε+ ρ+ dρ may
be represented by

NRn,ρ dρ, (253)

where R depends in a definite way on the integer n and the quantity ρ
which varies continuously between 0 and ε.

After a time dt =
dρ

a
all the oscillators will have their energy in-

creased by dρ and hence they will all now lie outside of the energy
interval considered. On the other hand, during the same time dt, all
oscillators whose energy at the time t was between nε+ρ−dρ and nε+ρ
will have entered that interval. The number of all these oscillators is,
according to the notation used above,

NRn,ρ−dρ dρ. (254)

Hence this expression gives the number of oscillators which are at the
time t+ dt in the interval considered.
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Now, since we assume our system to be in a state of statistical
equilibrium, the distribution of energy is independent of the time and
hence the expressions (253) and (254) are equal, i.e.,

Rn,ρ−dρ = Rn,ρ = Rn. (255)

Thus Rn does not depend on ρ.
This consideration must, however, be modified for the special case

in which ρ = 0. For, in that case, of the oscillators, N = Rn−1 dρ in
number, whose energy at the time t was between nε and nε−dρ, during

the time dt =
dρ

a
some enter into the energy interval (from U = nε to

U +dU = nε+dρ) considered; but all of them do not necessarily enter,
for an oscillator may possibly emit all its energy on passing through the
value U = nε. If the probability that emission takes place be denoted
by η (< 1) the number of oscillators which pass through the critical
value without emitting will be

NRn−1(1− η) dρ, (256)

and by equating (256) and (253) it follows that

Rn = Rn−1(1− η),

and hence, by successive reduction,

Rn = R0(1− η)n. (257)

To calculate R0 we repeat the above process for the special case when
n = 0 and ρ = 0. In this case the energy interval in question extends

from U = 0 to dU = dρ. Into this interval enter in the time dt =
dρ

a
all the oscillators which perform an emission during this time, namely,
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those whose energy at the time t was between ε−dρ and ε, 2ε−dρ and 2ε,
3ε− dρ and 3ε . . . . The numbers of these oscillators are respectively

NR0 dρ, NR1 dρ, NR2 dρ,

hence their sum multiplied by η gives the desired number of emitting
oscillators, namely,

Nη(R0 +R1 +R2 + . . . ) dρ, (258)

and this number is equal to that of the oscillators in the energy interval
between 0 and dρ at the time t+ dt, which is NR0 dρ. Hence it follows
that

R0 = η(R0 +R1 +R2 + . . . ). (259)

Now, according to (253), the whole number of all the oscillators is
obtained by integrating with respect to ρ from 0 to ε, and summing up
with respect to n from 0 to ∞. Thus

N = N

n=∞∑
n=0

∫ ε

0

Rn,ρ dρ = N
∑

Rnε (260)

and ∑
Rn =

1

ε
. (261)

Hence we get from (257) and (259)

R0 =
η

ε
, Rn =

η

ε
(1− η)n. (262)

152. The total energy emitted in the time element dt =
dρ

a
is found

from (258) by considering that every emitting oscillator expends all its
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energy of vibration and is

Nη dρ (R0 + 2R1 + 3R2 + . . . )ε

=Nη dρ η(1 + 2(1− η) + 3(1− η)2 + . . . )

=N dρ = Nadt.

It is therefore equal to the energy absorbed in the same time by all
oscillators (250), as is necessary, since the state is one of statistical
equilibrium.

Let us now consider the mean energy U of an oscillator. It is evi-
dently given by the following relation, which is derived in the same way
as (260):

NU = N
∞∑
0

∫ ε

0

(nε+ ρ)Rn dρ. (263)

From this it follows by means of (262), that

U =

(
1

η
− 1

2

)
ε =

(
1

η
− 1

2

)
hν. (264)

Since η < 1, U lies between
hν

2
and ∞. Indeed, it is immediately

evident that U can never become less than
hν

2
since the energy of

every oscillator, however small it may be, will assume the value ε = hν
within a time limit, which can be definitely stated.

153. The probability constant η contained in the formulæ for the
stationary state is determined by the law of emission enunciated in
Sec. 147. According to this, the ratio of the probability that no emis-
sion takes place to the probability that emission does take place is
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proportional to the intensity I of the vibration exciting the oscillator,
and hence

1− η
η

= pI (265)

where the constant of proportionality is to be determined in such a way
that for very large energies of vibration the familiar formulæ of classical
dynamics shall hold.

Now, according to (264), η becomes small for large values of U and
for this special case the equations (264) and (265) give

U = phνI,

and the energy emitted or absorbed respectively in the time dt by all
N oscillators becomes, according to (250),

N I

4L
dt =

NU

4Lphν
dt. (266)

On the other hand, H. Hertz has already calculated from Maxwell’s
theory the energy emitted by a linear oscillator vibrating periodically.
For the energy emitted in the time of one-half of one vibration he gives
the expression1

π4E2l2

3λ3

where λ denotes half the wave length, and the product El (the C of
our notation) denotes the amplitude of the moment f (Sec. 135) of the
vibrations. This gives for the energy emitted in the time of a whole
vibration

16π4C2

3λ3

1H. Hertz, Wied. Ann. 36, p. 12, 1889.
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where λ denotes the whole wave length, and for the energy emitted by
N similar oscillators in the time dt

N
16π4C2ν4

3c3
dt

since λ =
c

ν
. On introducing into this expression the energy U of an

oscillator from (205), (207), and (208), namely

U = 2π2ν2LC2,

we have for the energy emitted by the system of oscillators

N
8π2ν2U

3c3L
dt (267)

and by equating the expressions (266) and (267) we find for the factor
of proportionality p

p =
3c3

32π2hν3
. (268)

154. By the determination of p the question regarding the prop-
erties of the state of statistical equilibrium between the system of the
oscillators and the vibration exciting them receives a general answer.
For from (265) we get

η =
1

1 + pI

and further from (262)

Rn =
1

ε

(pI)n

(1 + pI)n+1
. (269)
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Hence in the state of stationary equilibrium the number of oscillators
whose energy lies between nhν and (n+ 1)hν is, from equation (253),

N

∫ ε

0

Rn dρ = NRnε = N
(pI)n

(1 + pI)n+1
(270)

where n = 0, 1, 2, 3, . . . .



CHAPTER IV

THE LAW OF THE NORMAL DISTRIBUTION OF
ENERGY. ELEMENTARY QUANTA OF MATTER

AND ELECTRICITY

155. In the preceding chapter we have made ourselves familiar with
all the details of a system of oscillators exposed to uniform radiation.
We may now develop the idea put forth at the end of Sec. 144. That is
to say, we may identify the stationary state of the oscillators just found
with the state of maximum entropy of the system of oscillators which
was derived directly from the hypothesis of quanta in the preceding
part, and we may then equate the temperature of the radiation to
the temperature of the oscillators. It is, in fact, possible to obtain
perfect agreement of the two states by a suitable coordination of their
corresponding quantities.

According to Sec. 139, the “distribution density” w of the oscillators
in the state of statistical equilibrium changes abruptly from one region
element to another, while, according to Sec. 138, the distribution within
a single region element is uniform. The region elements of the state
plane (fψ) are bounded by concentric similar and similarly situated
ellipses which correspond to those values of the energy U of an oscillator
which are integral multiples of hν. We have found exactly the same
thing for the stationary state of the oscillators when they are exposed
to uniform radiation, and the distribution density wn in the nth region
element may be found from (270), if we remember that the nth region
element contains the energies between (n− 1)hν and nhν. Hence:

wn =
(pI)n−1

(1 + pI)n
=

1

pI

(
pI

1 + pI

)n
. (271)

197
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This is in perfect agreement with the previous value (220) of wn if we
put

α =
1

pI
and γ =

pI

1 + pI
,

and each of these two equations leads, according to (221), to the fol-
lowing relation between the intensity of the exciting vibration I and the
total energy E of the N oscillators:

pI =
E

Nhν
− 1

2
. (272)

156. If we finally introduce the temperature T from (223), we get
from the last equation, by taking account of the value (268) of the
factor of proportionality p,

I =
32π2hν3

3c3
1

e
hν
kT − 1

. (273)

Moreover the specific intensity K of a monochromatic plane polarized
ray of frequency ν is, according to equation (160),

K =
hν3

c2
1

e
hν
kT − 1

(274)

and the space density of energy of uniform monochromatic unpolarized
radiation of frequency ν is, from (159),

u =
8πhν3

c3
1

e
hν
kT − 1

. (275)

Since, among all the forms of radiation of differing constitutions, black
radiation is distinguished by the fact that all monochromatic rays con-
tained in it have the same temperature (Sec. 93) these equations also
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give the law of distribution of energy in the normal spectrum, i.e., in
the emission spectrum of a body which is black with respect to the
vacuum.

If we refer the specific intensity of a monochromatic ray not to the
frequency ν but, as is usually done in experimental physics, to the wave
length λ, by making use of (15) and (16) we obtain the expression

Eλ =
c2h

λ5
1

e
ch
kλT − 1

=
c1
λ5

1

e
c2
λT − 1

. (276)

This is the specific intensity of a monochromatic plane polarized ray
of the wave length λ which is emitted from a black body at the tem-
perature T into a vacuum in a direction perpendicular to the surface.
The corresponding space density of unpolarized radiation is obtained

by multiplying Eλ by
8π

c
.

Experimental tests have so far confirmed equation (276).1 Ac-
cording to the most recent measurements made in the Physikalisch-
technische Reichsanstalt2 the value of the second radiation constant c2
is approximately

c2 =
ch

k
= 1.436 cm degree. (277)

More detailed information regarding the history of the equation of
radiation is to be found in the original papers and in the first edition

1See among others H. Rubens und F. Kurlbaum, Sitz. Ber. d. Akad. d. Wiss. zu
Berlin vom 25. Okt., 1900, p. 929. Ann. d. Phys. 4, p. 649, 1901. F. Paschen, Ann.
d. Phys. 4, p. 277, 1901. O. Lummer und E. Pringsheim, Ann. d. Phys. 6, p. 210,
1901. Tätigkeitsbericht der Phys.-Techn. Reichsanstalt vom J. 1911, Zeitschr. f.
Instrumentenkunde, 1912, April, p. 134 ff.

2According to private information kindly furnished by the president, Mr. War-
burg.
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of this book. At this point it may merely be added that equation (276)
was not simply extrapolated from radiation measurements, but was
originally found in a search after a connection between the entropy and
the energy of an oscillator vibrating in a field, a connection which would
be as simple as possible and consistent with known measurements.

157. The entropy of a ray is, of course, also determined by its tem-
perature. In fact, by combining equations (138) and (274) we readily
obtain as an expression for the entropy radiation L of a monochromatic
plane polarized ray of the specific intensity of radiation K and the fre-
quency ν,

L =
kν2

c2

{(
1 +

c2K

hν3

)
log

(
1 +

c2K

hν3

)
− c2K

hν3
log

c2K

hν3

}
(278)

which is a more definite statement of equation (134) for Wien’s dis-
placement law.

Moreover it follows from (135), by taking account of (273), that the
space density of the entropy s of uniform monochromatic unpolarized
radiation as a function of the space density of energy u is

s =
8πkν2

c3

{(
1 +

c3u

8πhν3

)
log

(
1 +

c3u

8πhν3

)
− c3u

8πhν3
log

c3u

8πhν3

}
. (279)

This is a more definite statement of equation (119).
158. For small values of λT (i.e., small compared with the constant

ch

k
) equation (276) becomes

Eλ =
c2h

λ5
e−

ch
kλT (280)

an equation which expresses Wien’s1 law of energy distribution.

1W. Wien, Wied. Ann. 58, p. 662, 1896.
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The specific intensity of radiation K then becomes, according
to (274),

K =
hν3

c2
e−

hν
kT (281)

and the space density of energy u is, from (275),

u =
8πhν3

c3
e−

hν
kT . (282)

159. On the other hand, for large values of λT (276) becomes

Eλ =
ckT

λ4
, (283)

a relation which was established first by Lord Rayleigh1 and which we
may, therefore, call “Rayleigh’s law of radiation.”

We then find for the specific intensity of radiation K from (274)

K =
kν2T

c2
(284)

and from (275) for the space density of monochromatic radiation we
get

u =
8πkν2T

c3
. (285)

Rayleigh’s law of radiation is of very great theoretical interest, since
it represents that distribution of energy which is obtained for radiation
in statistical equilibrium with material molecules by means of the classi-
cal dynamics, and without introducing the hypothesis of quanta.2 This

1Lord Rayleigh, Phil. Mag. 49, p. 539, 1900.
2J. H. Jeans, Phil. Mag. Febr., 1909, p. 229, H. A. Lorentz, Nuovo Cimento V,

vol. 16, 1908.



A SYSTEM OF OSCILLATORS 202

may also be seen from the fact that for a vanishingly small value of the
quantity element of action, h, the general formula (276) degenerates
into Rayleigh’s formula (283). See also below, Sec. 168 et seq.

160. For the total space density, u, of black radiation at any tem-
perature T we obtain, from (275),

u =

∫ ∞
0

u dν =
8πh

c3

∫ ∞
0

ν3 dν

e
hν
kT − 1

or

u =
8πh

c3

∫ ∞
0

(
e−

hν
kT + e−

2hν
kT + e−

3hν
kT + . . .

)
ν3 dν

and, integrating term by term,

u =
48πh

c3

(
kT

h

)4

α (286)

where α is an abbreviation for

α = 1 +
1

24
+

1

34
+

1

44
+ · · · = 1.0823. (287)

This relation expresses the Stefan-Boltzmann law (75) and it also
tells us that the constant of this law is given by

a =
48παk4

c3h3
. (288)

161. For that wave length λm the maximum of the intensity of radi-
ation corresponds in the spectrum of black radiation, we find from (276)(

dEλ
dλ

)
λ=λm

= 0.
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On performing the differentiation and putting as an abbreviation

ch

kλmT
= β,

we get

e−β +
β

5
− 1 = 0.

The root of this transcendental equation is

β = 4.9651, (289)

and accordingly λmT =
ch

βk
, and this is a constant, as demanded by

Wien’s displacement law. By comparison with (109) we find the mean-
ing of the constant b, namely,

b =
ch

βk
, (290)

and, from (277),

b =
c2
β

=
1.436

4.9651
= 0.289 cm degree, (291)

while Lummer and Pringsheim found by measurements 0.294 and
Paschen 0.292.

162. By means of the measured values1 of a and c2 the univer-
sal constants h and k may be readily calculated. For it follows from

1Here as well as later on the value given above (79) has been replaced by a =

7.39·10−15, obtained from σ =
ac

4
= 5.54·10−5. This is the final result of the newest

measurements made by W. Westphal, according to information kindly furnished by
him and Mr. H. Rubens. (Nov., 1912). [Compare p. 75, footnote. Tr.]
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equations (277) and (288) that

h =
ac42

48παc
k =

ac32
48πα

. (292)

Substituting the values of the constants a, c2, α, c, we get

h = 6.415 · 10−27 erg sec., k = 1.34 · 10−16
erg

degree
. (293)

163. To ascertain the full physical significance of the quantity el-
ement of action, h, much further research work will be required. On
the other hand, the value obtained for k enables us readily to state
numerically in the C. G. S. system the general connection between the
entropy S and the thermodynamic probability W as expressed by the
universal equation (164). The general expression for the entropy of a
physical system is

S = 1.34 · 10−16 logW
erg

degree
. (294)

This equation may be regarded as the most general definition of en-
tropy. Herein the thermodynamic probability W is an integral number,
which is completely defined by the macroscopic state of the system.
Applying the result expressed in (293) to the kinetic theory of gases,
we obtain from equation (194) for the ratio of the mass of a molecule
to that of a mol,

ω =
k

R
=

1.34× 10−16

831× 105
= 1.61× 10−24, (295)

that is to say, there are in one mol

1

ω
= 6.20× 1023
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molecules, where the mol of oxygen, O2, is always assumed as 32 gr.
Hence, for example, the absolute mass of a hydrogen atom (1

2
H2 =

1.008) equals 1.62× 10−24 gr. With these numerical values the number
of molecules contained in 1 cm3 of an ideal gas at 0◦ C. and 1 atmosphere
pressure becomes

N =
76 · 13.6 · 981

831 · 105 · 273ω
= 2.77 · 1019. (296)

The mean kinetic energy of translatory motion of a molecule at the ab-
solute temperature T = 1 is, in the absolute C. G. S. system, according
to (200),

3
2
k = 2.01 · 10−16. (297)

In general the mean kinetic energy of translatory motion of a molecule
is expressed by the product of this number and the absolute tempera-
ture T .

The elementary quantity of electricity or the free charge of a mono-
valent ion or electron is, in electrostatic units,

e = ω · 9654 · 3 · 1010 = 4.67 · 10−10. (298)

Since absolute accuracy is claimed for the formulæ here employed, the
degree of approximation to which these numbers represent the corre-
sponding physical constants depends only on the accuracy of the mea-
surements of the two radiation constants a and c2.

164. Natural Units.—All the systems of units which have hith-
erto been employed, including the so-called absolute C. G. S. system,
owe their origin to the coincidence of accidental circumstances, inas-
much as the choice of the units lying at the base of every system has
been made, not according to general points of view which would neces-
sarily retain their importance for all places and all times, but essentially
with reference to the special needs of our terrestrial civilization.
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Thus the units of length and time were derived from the present
dimensions and motion of our planet, and the units of mass and tem-
perature from the density and the most important temperature points
of water, as being the liquid which plays the most important part on
the surface of the earth, under a pressure which corresponds to the
mean properties of the atmosphere surrounding us. It would be no
less arbitrary if, let us say, the invariable wave length of Na-light were
taken as unit of length. For, again, the particular choice of Na from
among the many chemical elements could be justified only, perhaps, by
its common occurrence on the earth, or by its double line, which is in
the range of our vision, but is by no means the only one of its kind.
Hence it is quite conceivable that at some other time, under changed
external conditions, every one of the systems of units which have so far
been adopted for use might lose, in part or wholly, its original natural
significance.

In contrast with this it might be of interest to note that, with the
aid of the two constants h and k which appear in the universal law
of radiation, we have the means of establishing units of length, mass,
time, and temperature, which are independent of special bodies or sub-
stances, which necessarily retain their significance for all times and for
all environments, terrestrial and human or otherwise, and which may,
therefore, be described as “natural units.”

The means of determining the four units of length, mass, time,
and temperature, are given by the two constants h and k mentioned,
together with the magnitude of the velocity of propagation of light in
a vacuum, c, and that of the constant of gravitation, f . Referred to
centimeter, gram, second, and degrees Centigrade, the numerical values
of these four constants are as follows:

h = 6.415 · 10−27
gr cm2

sec
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k = 1.34 · 10−16
gr cm2

sec2 degree

c = 3 · 1010 cm

sec

f = 6.685 · 10−8
cm3

gr sec2
.1

If we now choose the natural units so that in the new system of mea-
surement each of the four preceding constants assumes the value 1, we
obtain, as unit of length, the quantity√

fh

c3
= 3.99 · 10−33 cm,

as unit of mass √
ch

f
= 5.37 · 10−5 gr,

as unit of time √
fh

c5
= 1.33 · 10−43 sec,

as unit of temperature

1

k

√
c5h

f
= 3.60 · 1032 degree.

These quantities retain their natural significance as long as the law of
gravitation and that of the propagation of light in a vacuum and the
two principles of thermodynamics remain valid; they therefore must be

1F. Richarz and O. Krigar-Menzel, Wied. Ann. 66, p. 190, 1898.
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found always the same, when measured by the most widely differing
intelligences according to the most widely differing methods.

165. The relations between the intensity of radiation and the tem-
perature expressed in Sec. 156 hold for radiation in a pure vacuum. If
the radiation is in a medium of refractive index n, the way in which the
intensity of radiation depends on the frequency and the temperature is
given by the proposition of Sec. 39, namely, the product of the specific
intensity of radiation Kν and the square of the velocity of propagation
of the radiation has the same value for all substances. The form of this
universal function (42) follows directly from (274)

Kq2 =
εν
αν
q2 =

hν3

e
hν
kT − 1

. (299)

Now, since the refractive index n is inversely proportional to the velocity
of propagation, equation (274) is, in the case of a medium with the index
of refraction n, replaced by the more general relation

Kν =
hν3n2

c2
1

e
hν
kT − 1

(300)

and, similarly, in place of (275) we have the more general relation

u =
8πhν3n3

c3

1

e
hν
kT − 1

. (301)

These expressions hold, of course, also for the emission of a body which
is black with respect to a medium with an index of refraction n.

166. We shall now use the laws of radiation we have obtained to
calculate the temperature of a monochromatic unpolarized radiation
of given intensity in the following case. Let the light pass normally
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through a small area (slit) and let it fall on an arbitrary system of
diathermanous media separated by spherical surfaces, the centers of
which lie on the same line, the axis of the system. Such radiation
consists of homocentric pencils and hence forms behind every refracting
surface a real or virtual image of the emitting surface, the image being
likewise normal to the axis. To begin with, we assume the last as well
as the first medium to be a pure vacuum. Then, for the determination
of the temperature of the radiation according to equation (274), we
need calculate only the specific intensity of radiation Kν in the last
medium, and this is given by the total intensity of the monochromatic
radiation Iν , the size of the area of the image F , and the solid angle Ω of
the cone of rays passing through a point of the image. For the specific
intensity of radiation Kν is, according to (13), determined by the fact
that an amount

2Kν dσ dΩ dν dt

of energy of unpolarized light corresponding to the interval of frequen-
cies from ν to ν + dν is, in the time dt, radiated in a normal direction
through an element of area dσ within the conical element dΩ. If now
dσ denotes an element of the area of the surface image in the last
medium, then the total monochromatic radiation falling on the image
has the intensity

Iν = 2Kν

∫
dσ

∫
dΩ.

Iν is of the dimensions of energy, since the product dν dt is a mere
number. The first integral is the whole area, F , of the image, the
second is the solid angle, Ω, of the cone of rays passing through a point
of the surface of the image. Hence we get

Iν = 2KνFΩ, (302)
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and, by making use of (274), for the temperature of the radiation

T =
hν

k
· 1

log

(
2hν3FΩ

c2Iν
+ 1

) . (303)

If the diathermanous medium considered is not a vacuum but has an in-
dex of refraction n, (274) is replaced by the more general relation (300),
and, instead of the last equation, we obtain

T =
hν

k

1

log

(
2hν3FΩn2

c2Iν
+ 1

) (304)

or, on substituting the numerical values of c, h, and k,

T =
0.479 · 10−10ν

log

(
1.43 · 10−47ν3FΩn2

Iν
+ 1

) degree Centigrade.

In this formula the natural logarithm is to be taken, and Iν is to be
expressed in ergs, ν in “reciprocal seconds,” i.e., (seconds)−1, F in
square centimeters. In the case of visible rays the second term, 1, in
the denominator may usually be omitted.

The temperature thus calculated is retained by the radiation con-
sidered, so long as it is propagated without any disturbing influence
in the diathermanous medium, however great the distance to which it
is propagated or the space in which it spreads. For, while at larger
distances an ever decreasing amount of energy is radiated through an
element of area of given size, this is contained in a cone of rays start-
ing from the element, the angle of the cone continually decreasing in
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such a way that the value of K remains entirely unchanged. Hence the
free expansion of radiation is a perfectly reversible process. (Compare
above, Sec. 144.) It may actually be reversed by the aid of a suitable
concave mirror or a converging lens.

Let us next consider the temperature of the radiation in the other
media, which lie between the separate refracting or reflecting spherical
surfaces. In every one of these media the radiation has a definite tem-
perature, which is given by the last formula when referred to the real
or virtual image formed by the radiation in that medium.

The frequency ν of the monochromatic radiation is, of course, the
same in all media; moreover, according to the laws of geometrical optics,
the product n2FΩ is the same for all media. Hence, if, in addition, the
total intensity of radiation Iν remains constant on refraction (or reflec-
tion), T also remains constant, or in other words: The temperature of
a homocentric pencil is not changed by regular refraction or reflection,
unless a loss in energy of radiation occurs. Any weakening, however,
of the total intensity Iν by a subdivision of the radiation, whether into
two or into many different directions, as in the case of diffuse reflection,
leads to a lowering of the temperature of the pencil. In fact, a certain
loss of energy by refraction or reflection does occur, in general, on a
refraction or reflection, and hence also a lowering of the temperature
takes place. In these cases a fundamental difference appears, depending
on whether the radiation is weakened merely by free expansion or by
subdivision or absorption. In the first case the temperature remains
constant, in the second it decreases.1

1Nevertheless regular refraction and reflection are not irreversible processes; for
the refracted and the reflected rays are coherent and the entropy of two coherent
rays is not equal to the sum of the entropies of the separate rays. (Compare above,
Sec. 104.) On the other hand, diffraction is an irreversible process. M. Laue, Ann.
d. Phys. 31, p. 547, 1910.
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167. The laws of emission of a black body having been determined,
it is possible to calculate, with the aid of Kirchhoff’s law (48), the
emissive power E of any body whatever, when its absorbing power A
or its reflecting power 1 − A is known. In the case of metals this
calculation becomes especially simple for long waves, since E. Hagen
and H. Rubens1 have shown experimentally that the reflecting power
and, in fact, the entire optical behavior of the metals in the spectral
region mentioned is represented by the simple equations of Maxwell
for an electromagnetic field with homogeneous conductors and hence
depends only on the specific conductivity for steady electric currents.
Accordingly, it is possible to express completely the emissive power of
a metal for long waves by its electric conductivity combined with the
formulæ for black radiation.2

168. There is, however, also a method, applicable to the case of long
waves, for the direct theoretical determination of the electric conduc-
tivity and, with it, of the absorbing power, A, as well as the emissive
power, E, of metals. This is based on the ideas of the electron theory,
as they have been developed for the thermal and electrical processes in
metals by E. Riecke3 and especially by P. Drude.4 According to these,
all such processes are based on the rapid irregular motions of the nega-
tive electrons, which fly back and forth between the positively charged
molecules of matter (here of the metal) and rebound on impact with
them as well as with one another, like gas molecules when they strike a
rigid obstacle or one another. The velocity of the heat motions of the
material molecules may be neglected compared with that of the elec-
trons, since in the stationary state the mean kinetic energy of motion

1E. Hagen und H. Rubens, Ann. d. Phys. 11, p. 873, 1903.
2E. Aschkinass, Ann. d. Phys. 17, p. 960, 1905.
3E. Riecke, Wied. Ann. 66, p. 353, 1898.
4P. Drude, Ann. d. Phys. 1, p. 566, 1900.
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of a material molecule is equal to that of an electron, and since the
mass of a material molecule is more than a thousand times as large as
that of an electron. Now, if there is an electric field in the interior of
the metal, the oppositely charged particles are driven in opposite direc-
tions with average velocities depending on the mean free path, among
other factors, and this explains the conductivity of the metal for the
electric current. On the other hand, the emissive power of the metal
for the radiant heat follows from the calculation of the impacts of the
electrons. For, so long as an electron flies with constant speed in a
constant direction, its kinetic energy remains constant and there is no
radiation of energy; but, whenever it suffers by impact a change of its
velocity components, a certain amount of energy, which may be cal-
culated from electrodynamics and which may always be represented in
the form of a Fourier’s series, is radiated into the surrounding space,
just as we think of Roentgen rays as being caused by the impact on
the anticathode of the electrons ejected from the cathode. From the
standpoint of the hypothesis of quanta this calculation cannot, for the
present, be carried out without ambiguity except under the assump-
tion that, during the time of a partial vibration of the Fourier series,
a large number of impacts of electrons occurs, i.e., for comparatively
long waves, for then the fundamental law of impact does not essentially
matter.

Now this method may evidently be used to derive the laws of black
radiation in a new way, entirely independent of that previously em-
ployed. For if the emissive power, E, of the metal, thus calculated,
is divided by the absorbing power, A, of the same metal, determined
by means of its electric conductivity, then, according to Kirchhoff’s
law (48), the result must be the emissive power of a black body, ir-
respective of the special substance used in the determination. In this
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manner H. A. Lorentz 1 has, in a profound investigation, derived the
law of radiation of a black body and has obtained a result the contents
of which agree exactly with equation (283), and where also the con-
stant k is related to the gas constant R by equation (193). It is true
that this method of establishing the laws of radiation is, as already said,
restricted to the range of long waves, but it affords a deeper and very
important insight into the mechanism of the motions of the electrons
and the radiation phenomena in metals caused by them. At the same
time the point of view described above in Sec. 111, according to which
the normal spectrum may be regarded as consisting of a large number
of quite irregular processes as elements, is expressly confirmed.

169. A further interesting confirmation of the law of radiation of
black bodies for long waves and of the connection of the radiation con-
stant k with the absolute mass of the material molecules was found by
J. H. Jeans2 by a method previously used by Lord Rayleigh,3 which
differs essentially from the one pursued here, in the fact that it en-
tirely avoids making use of any special mutual action between mat-
ter (molecules, oscillators) and the ether and considers essentially only
the processes in the vacuum through which the radiation passes. The
starting point for this method of treatment is given by the following
proposition of statistical mechanics. (Compare above, Sec. 140.) When
irreversible processes take place in a system, which satisfies Hamilton’s
equations of motion, and whose state is determined by a large number
of independent variables and whose total energy is found by addition
of different parts depending on the squares of the variables of state,
they do so, on the average, in such a sense that the partial energies

1H. A. Lorentz, Proc. Kon. Akad. v. Wet. Amsterdam, 1903, p. 666.
2J. H. Jeans, Phil. Mag. 10, p. 91, 1905.
3Lord Rayleigh, Nature 72, p. 54 and p. 243, 1905.
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corresponding to the separate independent variables of state tend to
equality, so that finally, on reaching statistical equilibrium, their mean
values have become equal. From this proposition the stationary distri-
bution of energy in such a system may be found, when the independent
variables which determine the state are known.

Let us now imagine a perfect vacuum, cubical in form, of edge l, and
with metallically reflecting sides. If we take the origin of coordinates at
one corner of the cube and let the axes of coordinates coincide with the
adjoining edges, an electromagnetic process which may occur in this
cavity is represented by the following system of equations:

Ex = cos
aπx

l
sin

bπy

l
sin

cπz

l
(e1 cos 2πνt+ e′1 sin 2πνt),

Ey = sin
aπx

l
cos

bπy

l
sin

cπz

l
(e2 cos 2πνt+ e′2 sin 2πνt),

Ez = sin
aπx

l
sin

bπy

l
cos

cπz

l
(e3 cos 2πνt+ e′3 sin 2πνt),

Hx = sin
aπx

l
cos

bπy

l
cos

cπz

l
(h1 sin 2πνt− h′1 cos 2πνt),

Hy = cos
aπx

l
sin

bπy

l
cos

cπz

l
(h2 sin 2πνt− h′2 cos 2πνt),

Hz = cos
aπx

l
cos

bπy

l
sin

cπz

l
(h3 sin 2πνt− h′3 cos 2πνt),

(305)

where a, b, c represent any three positive integral numbers. The bound-
ary conditions in these expressions are satisfied by the fact that for the
six bounding surfaces x = 0, x = l, y = 0, y = l, z = 0, z = l the
tangential components of the electric field-strength E vanish. Maxwell’s
equations of the field (52) are also satisfied, as may be seen on substi-
tution, provided there exist certain conditions between the constants
which may be stated in a single proposition as follows: Let a be a



A SYSTEM OF OSCILLATORS 216

certain positive constant, then there exist between the nine quantities
written in the following square:

ac

2lν

bc

2lν

cc

2lν

h1
a

h2
a

h3
a

e1
a

e2
a

e3
a

all the relations which are satisfied by the nine so-called “direction
cosines” of two orthogonal right-handed coordinate systems, i.e., the
cosines of the angles of any two axes of the systems.

Hence the sum of the squares of the terms of any horizontal or
vertical row equals 1, for example,

c2

4l2
ν2(a2 + b2 + c2) = 1

h21 + h22 + h23 = a2 = e21 + e22 + e23.

(306)

Moreover the sum of the products of corresponding terms in any two
parallel rows is equal to zero, for example,

ae1 + be2 + ce3 = 0

ah1 + bh2 + ch3 = 0.
(307)

Moreover there are relations of the following form:

h1
a

=
e2
a
· cc

2lν
− e3
a

bc

2lν
,

and hence
h1 =

c

2lν
(ce2 − be3), etc. (308)
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If the integral numbers a, b, c are given, then the frequency ν is imme-
diately determined by means of (306). Then among the six quantities
e1, e2, e3, h1, h2, h3, only two may be chosen arbitrarily, the others
then being uniquely determined by them by linear homogeneous re-
lations. If, for example, we assume e1 and e2 arbitrarily, e3 follows
from (307) and the values of h1, h2, h3 are then found by relations of
the form (308). Between the quantities with accent e′1, e

′
2, e
′
3, h

′
1, h

′
2, h

′
3

there exist exactly the same relations as between those without accent,
of which they are entirely independent. Hence two also of them, say h′1
and h′2, may be chosen arbitrarily so that in the equations given above
for given values of a, b, c four constants remain undetermined. If we
now form, for all values of a b c whatever, expressions of the type (305)
and add the corresponding field components, we again obtain a solu-
tion for Maxwell’s equations of the field and the boundary conditions,
which, however, is now so general that it is capable of representing any
electromagnetic process possible in the hollow cube considered. For it is
always possible to dispose of the constants e1, e2, h

′
1, h

′
2 which have re-

mained undetermined in the separate particular solutions in such a way
that the process may be adapted to any initial state (t = 0) whatever.

If now, as we have assumed so far, the cavity is entirely void of mat-
ter, the process of radiation with a given initial state is uniquely deter-
mined in all its details. It consists of a set of stationary vibrations, every
one of which is represented by one of the particular solutions consid-
ered, and which take place entirely independent of one another. Hence
in this case there can be no question of irreversibility and hence also
none of any tendency to equality of the partial energies corresponding
to the separate partial vibrations. As soon, however, as we assume the
presence in the cavity of only the slightest trace of matter which can in-
fluence the electrodynamic vibrations, e.g., a few gas molecules, which
emit or absorb radiation, the process becomes chaotic and a passage
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from less to more probable states will take place, though perhaps slowly.
Without considering any further details of the electromagnetic consti-
tution of the molecules, we may from the law of statistical mechanics
quoted above draw the conclusion that, among all possible processes,
that one in which the energy is distributed uniformly among all the
independent variables of the state has the stationary character.

From this let us determine these independent variables. In the first
place there are the velocity components of the gas molecules. In the
stationary state to every one of the three mutually independent velocity
components of a molecule there corresponds on the average the energy
1
3
L where L represents the mean energy of a molecule and is given

by (200). Hence the partial energy, which on the average corresponds
to any one of the independent variables of the electromagnetic system,
is just as large.

Now, according to the above discussion, the electromagnetic state of
the whole cavity for every stationary vibration corresponding to any one
system of values of the numbers a b c is determined, at any instant, by
four mutually independent quantities. Hence for the radiation processes
the number of independent variables of state is four times as large as
the number of the possible systems of values of the positive integers a,
b, c.

We shall now calculate the number of the possible systems of values
a, b, c, which correspond to the vibrations within a certain small range
of the spectrum, say between the frequencies ν and ν + dν. According
to (306), these systems of values satisfy the inequalities(

2lν

c

)2

< a2 + b2 + c2 <

(
2l(ν + dν)

c

)2

, (309)

where not only
2lν

c
but also

2l dν

c
is to be thought of as a large number.
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If we now represent every system of values of a, b, c graphically by a
point, taking a, b, c as coordinates in an orthogonal coordinate system,
the points thus obtained occupy one octant of the space of infinite
extent, and condition (309) is equivalent to requiring that the distance
of any one of these points from the origin of the coordinates shall lie

between
2lν

c
and

2l(ν + dν)

c
. Hence the required number is equal to the

number of points which lie between the two spherical surface-octants

corresponding to the radii
2lν

c
and

2l(ν + dν)

c
. Now since to every

point there corresponds a cube of volume 1 and vice versa, that number
is simply equal to the space between the two spheres mentioned, and
hence equal to

1

8
4π

(
2lν

c

)2
2l dν

c
,

and the number of the independent variables of state is four times as
large or

16πl3ν2 dν

c3
.

Since, moreover, the partial energy
L

3
corresponds on the average

to every independent variable of state in the state of equilibrium, the
total energy falling in the interval from ν to ν + dν becomes

16πl3ν2 dν

3c3
L.

Since the volume of the cavity is l3, this gives for the space density of
the energy of frequency ν

u dν =
16πν2 dν

3c3
L,
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and, by substitution of the value of L =
L

N
from (200),

u =
8πν2kT

c3
, (310)

which is in perfect agreement with Rayleigh’s formula (285).
If the law of the equipartition of energy held true in all cases,

Rayleigh’s law of radiation would, in consequence, hold for all wave
lengths and temperatures. But since this possibility is excluded by the
measurements at hand, the only possible conclusion is that the law of
the equipartition of energy and, with it, the system of Hamilton’s equa-
tions of motion does not possess the general importance attributed to it
in classical dynamics. Therein lies the strongest proof of the necessity
of a fundamental modification of the latter.



PART V

IRREVERSIBLE RADIATION PROCESSES



CHAPTER I

FIELDS OF RADIATION IN GENERAL

170. According to the theory developed in the preceding section,
the nature of heat radiation within an isotropic medium, when the
state is one of stable thermodynamic equilibrium, may be regarded as
known in every respect. The intensity of the radiation, uniform in all
directions, depends for all wave lengths only on the temperature and
the velocity of propagation, according to equation (300), which applies
to black radiation in any medium whatever. But there remains another
problem to be solved by the theory. It is still necessary to explain
how and by what processes the radiation which is originally present in
the medium and which may be assigned in any way whatever, passes
gradually, when the medium is bounded by walls impermeable to heat,
into the stable state of black radiation, corresponding to the maximum
of entropy, just as a gas which is enclosed in a rigid vessel and in which
there are originally currents and temperature differences assigned in
any way whatever gradually passes into the state of rest and of uniform
distribution of temperature.

To this much more difficult question only a partial answer can, at
present, be given. In the first place, it is evident from the extensive
discussion in the first chapter of the third part that, since irreversible
processes are to be dealt with, the principles of pure electrodynamics
alone will not suffice. For the second principle of thermodynamics or
the principle of increase of entropy is foreign to the contents of pure
electrodynamics as well as of pure mechanics. This is most immediately
shown by the fact that the fundamental equations of mechanics as well
as those of electrodynamics allow the direct reversal of every process as
regards time, which contradicts the principle of increase of entropy. Of

222
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course all kinds of friction and of electric conduction of currents must
be assumed to be excluded; for these processes, since they are always
connected with the production of heat, do not belong to mechanics or
electrodynamics proper.

This assumption being made, the time t occurs in the fundamental
equations of mechanics only in the components of acceleration; that is,
in the form of the square of its differential. Hence, if instead of t the
quantity −t is introduced as time variable in the equations of motion,
they retain their form without change, and hence it follows that if in
any motion of a system of material points whatever the velocity com-
ponents of all points are suddenly reversed at any instant, the process
must take place in the reverse direction. For the electrodynamic pro-
cesses in a homogeneous non-conducting medium a similar statement
holds. If in Maxwell’s equations of the electrodynamic field −t is writ-
ten everywhere instead of t, and if, moreover, the sign of the magnetic
field-strength H is reversed, the equations remain unchanged, as can be
readily seen, and hence it follows that if in any electrodynamic process
whatever the magnetic field-strength is everywhere suddenly reversed
at a certain instant, while the electric field-strength keeps its value, the
whole process must take place in the opposite sense.

If we now consider any radiation processes whatever, taking place
in a perfect vacuum enclosed by reflecting walls, it is found that, since
they are completely determined by the principles of classical electro-
dynamics, there can be in their case no question of irreversibility of
any kind. This is seen most clearly by considering the perfectly gen-
eral formulæ (305), which hold for a cubical cavity and which evidently
have a periodic, i.e., reversible character. Accordingly we have fre-
quently (Sec. 144 and 166) pointed out that the simple propagation of
free radiation represents a reversible process. An irreversible element
is introduced by the addition of emitting and absorbing substance.
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171. Let us now try to define for the general case the state of ra-
diation in the thermodynamic-macroscopic sense as we did above in
Sec. 107, et seq., for a stationary radiation. Every one of the three
components of the electric field-strength, e.g., Ez may, for the long time
interval from t = 0 to t = T, be represented at every point, e.g., at the
origin of coordinates, by a Fourier’s integral, which in the present case
is somewhat more convenient than the Fourier’s series (149):

Ez =

∫ ∞
0

dν Cν cos(2πνt− θν), (311)

where Cν (positive) and θν denote certain functions of the positive
variable of integration ν. The values of these functions are not wholly
determined by the behavior of Ez in the time interval mentioned, but
depend also on the manner in which Ez varies as a function of the time
beyond both ends of that interval. Hence the quantities Cν and θν pos-
sess separately no definite physical significance, and it would be quite
incorrect to think of the vibration Ez as, say, a continuous spectrum
of periodic vibrations with the constant amplitudes Cν . This may, by
the way, be seen at once from the fact that the character of the vibra-
tion Ez may vary with the time in any way whatever. How the spectral
resolution of the vibration Ez is to be performed and to what results it
leads will be shown below (Sec. 174).

172. We shall, as heretofore (158), define J , the “intensity of the
exciting vibration,”1 as a function of the time to be the mean value
of E2

z in the time interval from t to t + τ , where τ is taken as large

compared with the time
1

ν
, which is the duration of one of the periodic

partial vibrations contained in the radiation, but as small as possible

1Not to be confused with the “field intensity” (field-strength) Ez of the exciting
vibration.
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compared with the time T. In this statement there is a certain indef-
initeness, from which results the fact that J will, in general, depend
not only on t but also on τ . If this is the case one cannot speak of the
intensity of the exciting vibration at all. For it is an essential feature
of the conception of the intensity of a vibration that its value should
change but unappreciably within the time required for a single vibra-
tion. (Compare above, Sec. 3.) Hence we shall consider in future only
those processes for which, under the conditions mentioned, there exists
a mean value of E2

z depending only on t. We are then obliged to assume
that the quantities Cν in (311) are negligible for all values of ν which

are of the same order of magnitude as
1

τ
or smaller, i.e.,

ντ is large. (312)

In order to calculate J we now form from (311) the value of E2
z

and determine the mean value E2
z of this quantity by integrating with

respect to t from t to t+ τ , then dividing by τ and passing to the limit
by decreasing τ sufficiently. Thus we get

E2
z =

∫ ∞
0

∫ ∞
0

dν ′ dν Cν′Cν cos(2πν ′t− θν′) cos(2πνt− θν).

If we now exchange the values of ν and ν ′, the function under the sign
of integration does not change; hence we assume

ν ′ > ν

and write:

E2
z = 2

∫∫
dν ′ dν Cν′Cν cos(2πν ′t− θν′) cos(2πνt− θν),
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or

E2
z =

∫∫
dν ′ dν Cν′Cν{cos[2π(ν ′ − ν)t− θν′ + θν ]

+ cos[2π(ν ′ + ν)t− θν′ − θν ]}.

And hence

J = E2
z =

1

τ

∫ t+τ

t

E2
z dt

=

∫∫
dν ′ dν Cν′Cν

{
sin π(ν ′ − ν)τ · cos[π(ν ′ − ν)(2t+ τ)− θν′ + θν ]

π(ν ′ − ν)τ

+
sin π(ν ′ + ν)τ · cos[π(ν ′ + ν)(2t+ τ)− θν′ − θν ]

π(ν ′ + ν)τ

}
.

If we now let τ become smaller and smaller, since ντ remains large,
the denominator (ν ′ + ν)τ of the second fraction remains large under
all circumstances, while that of the first fraction (ν ′−ν)τ may decrease
with decreasing value of τ to less than any finite value. Hence for
sufficiently small values of (ν ′ − ν) the integral reduces to∫∫

dν ′ dν Cν′Cν cos[2π(ν ′ − ν)t− θν′ + θν ]

which is in fact independent of τ . The remaining terms of the double
integral, which correspond to larger values of ν ′− ν, i.e., to more rapid
changes with the time, depend in general on τ and therefore must
vanish, if the intensity J is not to depend on τ . Hence in our case on
introducing as a second variable of integration instead of ν

µ = ν ′ − ν (> 0)
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we have

J =

∫∫
dµ dν Cν+µCν cos(2πµt− θν+µ + θν) (313)

or

J =

∫
dµ (Aµ cos 2πµt+Bµ sin 2πµt)

where Aµ =

∫
dν Cν+µCν cos(θν+µ − θν) (314)

Bµ =

∫
dν Cν+µCν sin(θν+µ − θν).

By this expression the intensity J of the exciting vibration, if it
exists at all, is expressed by a function of the time in the form of a
Fourier’s integral.

173. The conception of the intensity of vibration J necessarily con-
tains the assumption that this quantity varies much more slowly with
the time t than the vibration Ez itself. The same follows from the calcu-
lation of J in the preceding paragraph. For there, according to (312),
ντ and ν ′τ are large, but (ν ′ − ν)τ is small for all pairs of values
Cν and Cν′ that come into consideration; hence, a fortiori,

ν ′ − ν
ν

=
µ

ν
is small, (315)

and accordingly the Fourier’s integrals Ez in (311) and J in (314) vary
with the time in entirely different ways. Hence in the following we
shall have to distinguish, as regards dependence on time, two kinds of
quantities, which vary in different ways: Rapidly varying quantities,
as Ez, and slowly varying quantities as J and I the spectral intensity
of the exciting vibration, whose value we shall calculate in the next
paragraph. Nevertheless this difference in the variability with respect
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to time of the quantities named is only relative, since the absolute value
of the differential coefficient of J with respect to time depends on the
value of the unit of time and may, by a suitable choice of this unit,
be made as large as we please. It is, therefore, not proper to speak of
J(t) simply as a slowly varying function of t. If, in the following, we
nevertheless employ this mode of expression for the sake of brevity, it
will always be in the relative sense, namely, with respect to the different
behavior of the function Ez(t).

On the other hand, as regards the dependence of the phase con-
stant θν on its index ν it necessarily possesses the property of rapid
variability in the absolute sense. For, although µ is small compared
with ν, nevertheless the difference θν+µ− θν is in general not small, for
if it were, the quantities Aµ and Bµ in (314) would have too special

values and hence it follows that
∂θν
∂ν
· ν must be large. This is not es-

sentially modified by changing the unit of time or by shifting the origin
of time.

Hence the rapid variability of the quantities θν and also Cν with ν
is, in the absolute sense, a necessary condition for the existence of a
definite intensity of vibration J , or, in other words, for the possibility
of dividing the quantities depending on the time into those which vary
rapidly and those which vary slowly—a distinction which is also made in
other physical theories and upon which all the following investigations
are based.

174. The distinction between rapidly variable and slowly variable
quantities introduced in the preceding section has, at the present stage,
an important physical aspect, because in the following we shall assume
that only slow variability with time is capable of direct measurement.
On this assumption we approach conditions as they actually exist in
optics and heat radiation. Our problem will then be to establish re-
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lations between slowly variable quantities exclusively; for these only
can be compared with the results of experience. Hence we shall now
determine the most important one of the slowly variable quantities to
be considered here, namely, the “spectral intensity” I of the exciting
vibration. This is effected as in (158) by means of the equation

J =

∫ ∞
0

I dν.

By comparison with (313) we obtain:
I =

∫
dµ (Aµ cos 2πµt+ Bµ sin 2πµt)

where Aµ = Cν+µCν cos(θν+µ − θν)

Bµ = Cν+µCν sin(θν+µ − θν).

(316)

By this expression the spectral intensity, I, of the exciting vibration
at a point in the spectrum is expressed as a slowly variable function
of the time t in the form of a Fourier’s integral. The dashes over the
expressions on the right side denote the mean values extended over a
narrow spectral range for a given value of µ. If such mean values do
not exist, there is no definite spectral intensity.



CHAPTER II

ONE OSCILLATOR IN THE FIELD OF RADIATION

175. If in any field of radiation whatever we have an ideal oscillator
of the kind assumed above (Sec. 135), there will take place between it
and the radiation falling on it certain mutual actions, for which we shall
again assume the validity of the elementary dynamical law introduced
in the preceding section. The question is then, how the processes of
emission and absorption will take place in the case now under consid-
eration.

In the first place, as regards the emission of radiant energy by the
oscillator, this takes place, as before, according to the hypothesis of
emission of quanta (Sec. 147), where the probability quantity η again
depends on the corresponding spectral intensity I through the rela-
tion (265).

On the other hand, the absorption is calculated, exactly as above,
from (234), where the vibrations of the oscillator also take place ac-
cording to the equation (233). In this way, by calculations analogous
to those performed in the second chapter of the preceding part, with the
difference only that instead of the Fourier’s series (235) the Fourier’s in-
tegral (311) is used, we obtain for the energy absorbed by the oscillator
in the time τ the expression

τ

4L

∫
dµ (Aµ cos 2πµt+ Bµ sin 2πµt),

where the constants Aµ and Bµ denote the mean values expressed
in (316), taken for the spectral region in the neighborhood of the nat-
ural frequency ν0 of the oscillator. Hence the law of absorption will
again be given by equation (249), which now holds also for an intensity
of vibration I varying with the time.

230
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176. There now remains the problem of deriving the expression for I,
the spectral intensity of the vibration exciting the oscillator, when the
thermodynamic state of the field of radiation at the oscillator is given
in accordance with the statements made in Sec. 17.

Let us first calculate the total intensity J = E2
z of the vibration

exciting an oscillator, from the intensities of the heat rays striking the
oscillator from all directions.

For this purpose we must also allow for the polarization of the
monochromatic rays which strike the oscillator. Let us begin by con-
sidering a pencil which strikes the oscillator within a conical element
whose vertex lies in the oscillator and whose solid angle, dΩ, is given
by (5), where the angles θ and φ, polar coordinates, designate the direc-
tion of the propagation of the rays. The whole pencil consists of a set
of monochromatic pencils, one of which may have the principal values
of intensity K and K′ (Sec. 17). If we now denote the angle which the
plane of vibration belonging to the principal intensity K makes with
the plane through the direction of the ray and the z-axis (the axis of
the oscillator) by ψ, no matter in which quadrant it lies, then, accord-
ing to (8), the specific intensity of the monochromatic pencil may be
resolved into the two plane polarized components at right angles with
each other,

K cos2 ψ + K′ sin2 ψ

K sin2 ψ + K′ cos2 ψ,

the first of which vibrates in a plane passing through the z-axis and
the second in a plane perpendicular thereto.

The latter component does not contribute anything to the value
of E2

z, since its electric field-strength is perpendicular to the axis of the
oscillator. Hence there remains only the first component whose electric
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field-strength makes the angle
π

2
− θ with the z-axis. Now according

to Poynting’s law the intensity of a plane polarized ray in a vacuum is

equal to the product of
c

4π
and the mean square of the electric field-

strength. Hence the mean square of the electric field-strength of the
pencil here considered is

4π

c
(K cos2 ψ + K′ sin2 ψ) dν dΩ,

and the mean square of its component in the direction of the z-axis is

4π

c
(K cos2 ψ + K′ sin2 ψ) sin2 θ dν dΩ. (317)

By integration over all frequencies and all solid angles we then obtain
the value required

E2
z =

4π

c

∫
sin2 θ dΩ

∫
dν (Kν cos2 ψ + K′ν sin2 ψ) = J. (318)

The space density u of the electromagnetic energy at a point of the
field is

u =
1

8π
(E2

x + E2
y + E2

z + H2
x + H2

y + H2
z),

where E2
x, E

2
y, E

2
z, H

2
x, H

2
y, H

2
z denote the squares of the field-strengths,

regarded as “slowly variable” quantities, and are hence supplied with
the dash to denote their mean value. Since for every separate ray the
mean electric and magnetic energies are equal, we may always write

u =
1

4π
= (E2

x + E2
y + E2

z). (319)
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If, in particular, all rays are unpolarized and if the intensity of radiation
is constant in all directions, Kν = K′ν and, since∫

sin2 θ dΩ =

∫∫
sin3 θ dθ dφ =

8π

3

E2
z =

32π2

3c

∫
Kν dν = E2

x = E2
y

(319a)

and, by substitution in (319),

u =
8π

c

∫
Kν dν,

which agrees with (22) and (24).
177. Let us perform the spectral resolution of the intensity J ac-

cording to Sec. 174; namely,

J =

∫
Iν dν.

Then, by comparison with (318), we find for the intensity of a definite
frequency ν contained in the exciting vibration the value

I =
4π

c

∫
sin2 θ dΩ (Kν cos2 ψ + K′ν sin2 ψ). (320)

For radiation which is unpolarized and uniform in all directions we
obtain again, in agreement with (160),

I =
32π2

3c
K.

178. With the value (320) obtained for I the total energy absorbed
by the oscillator in an element of time dt from the radiation falling on
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it is found from (249) to be

π dt

cL

∫
sin2 θ dΩ (K cos2 ψ + K′ sin2 ψ).

Hence the oscillator absorbs in the time dt from the pencil striking it
within the conical element dΩ an amount of energy equal to

π dt

cL
sin2 θ(K cos2 ψ + K′ sin2 ψ) dΩ. (321)



CHAPTER III

A SYSTEM OF OSCILLATORS

179. Let us suppose that a large numberN of similar oscillators with
parallel axes, acting quite independently of one another, are distributed
irregularly in a volume-element of the field of radiation, the dimensions
of which are so small that within it the intensities of radiation K do not
vary appreciably. We shall investigate the mutual action between the
oscillators and the radiation which is propagated freely in space.

As before, the state of the field of radiation may be given by the
magnitude and the azimuth of vibration ψ of the principal intensities
Kν and K′ν of the pencils which strike the system of oscillators, where
Kν and K′ν depend in an arbitrary way on the direction angles θ and φ.
On the other hand, let the state of the system of oscillators be given
by the densities of distribution w1, w2, w3, . . . (166), with which the
oscillators are distributed among the different region elements, w1, w2,
w3, . . . being any proper fractions whose sum is 1. Herein, as always,
the nth region element is supposed to contain the oscillators with en-
ergies between (n− 1)hν and nhν.

The energy absorbed by the system in the time dt within the conical
element dΩ is, according to (321),

πN dt

cL
sin2 θ(K cos2 ψ + K′ sin2 ψ) dΩ. (322)

Let us now calculate also the energy emitted within the same conical
element.

180. The total energy emitted in the time element dt by all N oscil-
lators is found from the consideration that a single oscillator, according

235
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to (249), takes up an energy element hν during the time

4hνL

I
= τ, (323)

and hence has a chance to emit once, the probability being η. We shall
assume that the intensity I of the exciting vibration does not change
appreciably in the time τ . Of the Nwn oscillators which at the time t
are in the nth region element a number Nwnη will emit during the
time τ , the energy emitted by each being nhν. From (323) we see that
the energy emitted by all oscillators during the time element dt is∑

Nwn η nhν
dt

τ
=
NηI dt

4L

∑
nwn,

or, according to (265),

N(1− η) dt

4pL

∑
nwn. (324)

From this the energy emitted within the conical element dΩ may be
calculated by considering that, in the state of thermodynamic equilib-
rium, the energy emitted in every conical element is equal to the energy
absorbed and that, in the general case, the energy emitted in a certain
direction is independent of the energy simultaneously absorbed. For
the stationary state we have from (160) and (265)

K = K′ =
3c

32π2
I =

3c

32π2

1− η
pη

(325)

and further from (271) and (265)

wn =
1

pI

(
pI

1 + pI

)n
= η(1− η)n−1, (326)
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and hence ∑
nwn = η

∑
n(1− η)n−1 =

1

η
. (327)

Thus the energy emitted (324) becomes

N(1− η) dt

4Lpη
. (328)

This is, in fact, equal to the total energy absorbed, as may be found
by integrating the expression (322) over all conical elements dΩ and
taking account of (325).

Within the conical element dΩ the energy emitted or absorbed will
then be

πN dt

c
sin2 θK dΩ,

or, from (325), (327) and (268),

πhν3(1− η)N

c3L

∑
nwn sin2 θ dΩ dt, (329)

and this is the general expression for the energy emitted by the system
of oscillators in the time element dt within the conical element dΩ, as
is seen by comparison with (324).

181. Let us now, as a preparation for the following deductions,
consider more closely the properties of the different pencils passing
the system of oscillators. From all directions rays strike the volume-
element that contains the oscillators; if we again consider those which
come toward it in the direction (θ, φ) within the conical element dΩ,
the vertex of which lies in the volume-element, we may in the first place
think of them as being resolved into their monochromatic constituents,
and then we need consider further only that one of these constituents
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which corresponds to the frequency ν of the oscillators; for all other rays
simply pass the oscillators without influencing them or being influenced
by them. The specific intensity of a monochromatic ray of frequency ν
is

K + K′

where K and K′ represent the principal intensities which we assume as
non-coherent. This ray is now resolved into two components according
to the directions of its principal planes of vibration (Sec. 176).

The first component,

K sin2 ψ + K′ cos2 ψ,

passes by the oscillators and emerges on the other side with no change
whatever. Hence it gives a plane polarized ray, which starts from the
system of oscillators in the direction (θ, φ) within the solid angle dΩ
and whose vibrations are perpendicular to the axis of the oscillators
and whose intensity is

K sin2 ψ + K′ cos2 ψ = K ′′. (330)

The second component,

K cos2 ψ + K′ sin2 ψ,

polarized at right angles to the first consists again, according to
Sec. 176, of two parts

(K cos2 ψ + K′ sin2 ψ) cos2 θ (331)

and (K cos2 ψ + K′ sin2 ψ) sin2 θ, (332)

of which the first passes by the system without any change, since its
direction of vibration is at right angles to the axes of the oscillators,
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while the second is weakened by absorption, say by the small fraction β.
Hence on emergence this component has only the intensity

(1− β)(K cos2 ψ +K ′ sin2 ψ) sin2 θ. (333)

It is, however, strengthened by the radiation emitted by the system of
oscillators (329), which has the value

β′(1− η)
∑

nwn sin2 θ, (334)

where β′ denotes a certain other constant, which depends only on the
nature of the system and whose value is obtained at once from the
condition that, in the state of thermodynamic equilibrium, the loss is
just compensated by the gain.

For this purpose we make use of the relations (325) and (327) cor-
responding to the stationary state, and thus find that the sum of the
expressions (333) and (334) becomes just equal to (332); and thus for
the constant β′ the following value is found:

β′ = β
3c

32π2p
= β

hν3

c2
.

Then by addition of (331), (333) and (334) the total specific intensity
of the radiation which emanates from the system of oscillators within
the conical element dΩ, and whose plane of vibration is parallel to the
axes of the oscillators, is found to be

K′′′ = K cos2 ψ + K′ sin2 ψ + β sin2 θ
(
Ke − (K cos2 ψ + K′ sin2 ψ)

)
(335)

where for the sake of brevity the term referring to the emission is written

hν3

c2
(1− η)

∑
nwn = Ke. (336)
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Thus we finally have a ray starting from the system of oscillators in
the direction (θ, φ) within the conical element dΩ and consisting of two
components K′′ and K′′′ polarized perpendicularly to each other, the
first component vibrating at right angles to the axes of the oscillators.

In the state of thermodynamic equilibrium

K = K′ = K′′ = K′′′ = Ke,

a result which follows in several ways from the last equations.
182. The constant β introduced above, a small positive number, is

determined by the spacial and spectral limits of the radiation influenced
by the system of oscillators. If q denotes the cross-section at right angles
to the direction of the ray, ∆ν the spectral width of the pencil cut out of
the total incident radiation by the system, the energy which is capable
of absorption and which is brought to the system of oscillators within
the conical element dΩ in the time dt is, according to (332) and (11),

q∆ν (K cos2 ψ + K′ sin2 ψ) sin2 θ dΩ dt. (337)

Hence the energy actually absorbed is the fraction β of this value.
Comparing this with (322) we get

β =
πN

q ·∆ν · cL
. (338)



CHAPTER IV

CONSERVATION OF ENERGY AND INCREASE OF
ENTROPY. CONCLUSION

183. It is now easy to state the relation of the two principles of
thermodynamics to the irreversible processes here considered. Let us
consider first the conservation of energy. If there is no oscillator in the
field, every one of the elementary pencils, infinite in number, retains,
during its rectilinear propagation, both its specific intensity K and its
energy without change, even though it be reflected at the surface, as-
sumed as plane and reflecting, which bounds the field (Sec. 166). The
system of oscillators, on the other hand, produces a change in the in-
cident pencils and hence also a change in the energy of the radiation
propagated in the field. To calculate this we need consider only those
monochromatic rays which lie close to the natural frequency ν of the
oscillators, since the rest are not altered at all by the system.

The system is struck in the direction (θ, φ) within the conical ele-
ment dΩ which converges toward the system of oscillators by a pencil
polarized in some arbitrary way, the intensity of which is given by the
sum of the two principal intensities K and K’. This pencil, according
to Sec. 182, conveys the energy

q∆ν (K + K′) dΩ dt

to the system in the time dt; hence this energy is taken from the field of
radiation on the side of the rays arriving within dΩ. As a compensation
there emerges from the system on the other side in the same direction
(θ, φ) a pencil polarized in some definite way, the intensity of which is
given by the sum of the two components K′′ and K′′′. By it an amount

241



IRREVERSIBLE RADIATION PROCESSES 242

of energy
q∆ν (K′′ + K′′′) dΩ dt,

is added to the field of radiation. Hence, all told, the change in energy
of the field of radiation in the time dt is obtained by subtracting the
first expression from the second and by integrating with respect to dΩ.
Thus we get

dt∆ν

∫
(K′′ + K′′′ − K− K′)q dΩ,

or by taking account of (330), (335), and (338)

πN dt

cL

∫
dΩ sin2 θ

(
Ke − (K cos2 ψ + K′ sin2 ψ)

)
. (339)

184. Let us now calculate the change in energy of the system of os-
cillators which has taken place in the same time dt. According to (219),
this energy at the time t is

E = Nhν
∞∑
1

(n− 1
2
)wn,

where the quantities wn whose total sum is equal to 1 represent the
densities of distribution characteristic of the state. Hence the energy
change in the time dt is

dE = Nhν
∞∑
1

(n− 1
2
) dwn = Nhν

∞∑
1

n dwn. (340)

To calculate dwn we consider the nth region element. All of the os-
cillators which lie in this region at the time t have, after the lapse of
time τ , given by (323), left this region; they have either passed into the
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(n + 1)st region, or they have performed an emission at the boundary
of the two regions. In compensation there have entered (1− η)Nwn−1
oscillators during the time τ , that is, all oscillators which, at the time t,
were in the (n− 1)st region element, excepting such as have lost their
energy by emission. Thus we obtain for the required change in the
time dt

N dwn =
dt

τ
N
(
(1− η)wn−1 − wn

)
. (341)

A separate discussion is required for the first region element n = 1.
For into this region there enter in the time τ all those oscillators which
have performed an emission in this time. Their number is

η(w1 + w2 + w3 + . . . )N = ηN.

Hence we have

N dw1 =
dt

τ
N(η − w1).

We may include this equation in the general one (341) if we introduce
as a new expression

w0 =
η

1− η
. (342)

Then (341) gives, substituting τ from (323),

dwn =
I dt

4hνL

(
(1− η)wn−1 − wn

)
, (343)

and the energy change (340) of the system of oscillators becomes

dE =
N I dt

4L

∞∑
1

n
(
(1− η)wn−1 − wn

)
.
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The sum
∑

may be simplified by recalling that

∞∑
1

nwn−1 =
∞∑
1

(n− 1)wn−1 +
∞∑
1

wn−1

=
∞∑
1

nwn + w0 + 1 =
∞∑
1

nwn +
1

1− η
.

Then we have

dE =
N I dt

4L
(1− η

∞∑
1

nwn). (344)

This expression may be obtained more readily by considering that dE is
the difference of the total energy absorbed and the total energy emitted.
The former is found from (250), the latter from (324), by taking account
of (265).

The principle of the conservation of energy demands that the sum
of the energy change (339) of the field of radiation and the energy
change (344) of the system of oscillators shall be zero, which, in fact, is
quite generally the case, as is seen from the relations (320) and (336).

185. We now turn to the discussion of the second principle, the
principle of the increase of entropy, and follow closely the above dis-
cussion regarding the energy. When there is no oscillator in the field,
every one of the elementary pencils, infinite in number, retains during
rectilinear propagation both its specific intensity and its entropy with-
out change, even when reflected at the surface, assumed as plane and
reflecting, which bounds the field. The system of oscillators, however,
produces a change in the incident pencils and hence also a change in
the entropy of the radiation propagated in the field. For the calculation
of this change we need to investigate only those monochromatic rays
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which lie close to the natural frequency ν of the oscillators, since the
rest are not altered at all by the system.

The system of oscillators is struck in the direction (θ, φ) within the
conical element dΩ converging toward the system by a pencil polarized
in some arbitrary way, the spectral intensity of which is given by the
sum of the two principal intensities K and K′ with the azimuth of vibra-

tion ψ and
π

2
+ ψ respectively, which are assumed to be non-coherent.

According to (141) and Sec. 182 this pencil conveys the entropy

q∆ν [L(K) + L(K′)] dΩ dt (345)

to the system of oscillators in the time dt, where the function L(K) is
given by (278). Hence this amount of entropy is taken from the field of
radiation on the side of the rays arriving within dΩ. In compensation
a pencil starts from the system on the other side in the same direction
(θ, φ) within dΩ having the components K′′ and K′′′ with the azimuth

of vibration
π

2
and 0 respectively, but its entropy radiation is not rep-

resented by L(K′′) + L(K′′′), since K′′ and K′′′ are not non-coherent, but
by

L(K0) + L(K′0) (346)

where K0 and K′0 represent the principal intensities of the pencil.
For the calculation of K0 and K′0 we make use of the fact that,

according to (330) and (335), the radiation K′′ and K′′′, of which the
component K′′′ vibrates in the azimuth 0, consists of the following three
components, non-coherent with one another:

K1 = K sin2 ψ + K cos2 ψ(1− β sin2 θ) = K(1− β sin2 θ cos2 ψ)

with the azimuth of vibration tg2 ψ1 =
tg2 ψ

1− β sin2 θ
,

K2 = K′ cos2 ψ + K′ sin2 ψ(1− β sin2 θ) = K′(1− β sin2 θ sin2 ψ)



IRREVERSIBLE RADIATION PROCESSES 246

with the azimuth of vibration tg2 ψ2 =
cot2 ψ

1− β sin2 θ
, and,

K3 = β sin2 θKe

with the azimuth of vibration tgψ3 = 0.
According to (147) these values give the principal intensities

K0 and K′0 required and hence the entropy radiation (346). Thereby
the amount of entropy

q∆ν [L(K0) + L(K′0)] dΩ dt (347)

is added to the field of radiation in the time dt. All told, the entropy
change of the field of radiation in the time dt, as given by subtraction
of the expression (345) from (347) and integration with respect to dΩ,
is

dt∆ν

∫
q dΩ [L(K0) + L(K′0)− L(K)− L(K′)]. (348)

Let us now calculate the entropy change of the system of oscillators
which has taken place in the same time dt. According to (173) the
entropy at the time t is

S = −kN
∞∑
1

wn logwn.

Hence the entropy change in the time dt is

dS = −kN
∞∑
1

logwn dwn,

and, by taking account of (343), we have:

dS =
NkI dt

4hνL

∞∑
1

(
wn − (1− η)wn−1

)
logwn. (349)
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186. The principle of increase of entropy requires that the sum
of the entropy change (348) of the field of radiation and the entropy
change (349) of the system of oscillators be always positive, or zero
in the limiting case. That this condition is in fact satisfied we shall
prove only for the special case when all rays falling on the oscillators
are unpolarized, i.e., when K′ = K.

In this case we have from (147) and Sec. 185.

K0

K′0

}
= 1

2
{2K + β sin2 θ(Ke − K)± β sin2 θ(Ke − K)},

and hence
K0 = K + β sin2 θ(Ke − K), K′0 = K.

The entropy change (348) of the field of radiation becomes

dt∆ν

∫
q dΩ {L(Ko)− L(K)} = dt∆ν

∫
q dΩ β sin2 θ(Ke − K)

dL(K)

dK

or, by (338) and (278),

=
πkN dt

hcνL

∫
dΩ sin2 θ(Ke − K) log

(
1 +

hν3

c2K

)
.

On adding to this the entropy change (349) of the system of oscil-
lators and taking account of (320), the total increase in entropy in the
time dt is found to be equal to the expression

πkN dt

chνL

∫
dΩ sin2 θ

{
K
∞∑
1

(wn − ζwn−1) logwn + (Ke − K) log

(
1 +

hν3

c2K

)}
where

ζ = 1− η. (350)
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We now must prove that the expression

F =

∫
dΩ sin2 θ

{
K
∞∑
1

(wn − ζwn−1) logwn

+ (Ke − K) log

(
1 +

hν3

c2K

)}
(351)

is always positive and for that purpose we set down once more the
meaning of the quantities involved. K is an arbitrary positive function
of the polar angles θ and φ. The positive proper fraction ζ is according
to (350), (265), and (320) given by

ζ

1− ζ
=

3c2

8πhν3

∫
K sin2 θ dΩ. (352)

The quantities w1, w2, w3, . . . are any positive proper fractions what-
ever which, according to (167), satisfy the condition

∞∑
1

wn = 1 (353)

while, according to (342),

w0 =
1− ζ
ζ

. (354)

Finally we have from (336)

Ke =
hν3ζ

c2

∞∑
1

nwn. (355)
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187. To give the proof required we shall show that the least value
which the function F can assume is positive or zero. For this purpose
we consider first that positive function, K, of θ and φ, which, with fixed
values of ζ, w1, w2, w3, . . . and Ke, will make F a minimum. The
necessary condition for this is δF = 0, where according to (352)∫

δK sin2 θ dΩ = 0.

This gives, by considering that the quantities w and ζ do not depend
on θ and φ, as a necessary condition for the minimum,

δF = 0 =

∫
dΩ sin2 θ δK

− log

(
1 +

hν3

c2K

)
− Ke − K

c2K

hν3
+ 1

· 1

K


and it follows, therefore, that the quantity in brackets, and hence also
K itself is independent of θ and φ. That in this case F really has a
minimum value is readily seen by forming the second variation

δ2F =

∫
dΩ sin2 θ δK δ

− log

(
1 +

hν3

c2K

)
− Ke − K

c2K

hν3
+ 1

· 1

K


which may by direct computation be seen to be positive under all cir-
cumstances.

In order to form the minimum value of F we calculate the value
of K, which, from (352), is independent of θ and φ. Then it follows, by
taking account of (319a), that

K =
hν3

c2
ζ

1− ζ
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and, by also substituting Ke from (355),

F =
8πhν3

3c2
ζ

1− ζ

∞∑
1

(wn − ζwn−1) logwn − [(1− ζ)n− 1]wn log ζ.

188. It now remains to prove that the sum

Φ =
∞∑
1

(wn − ζwn−1) logwn − [(1− ζ)n− 1]wn log ζ, (356)

where the quantities wn are subject only to the restrictions that
(353) and (354) can never become negative. For this purpose we
determine that system of values of the w’s which, with a fixed value
of ζ, makes the sum Φ a minimum. In this case δΦ = 0, or

∞∑
1

(δwn − ζ δwn−1) logwn + (wn − ζwn−1)
δwn
wn

− [(1− ζ)n− 1] δwn log ζ = 0, (357)

where, according to (353) and (354),

∞∑
1

δwn = 0 and δw0 = 0. (358)

If we suppose all the separate terms of the sum to be written out, the
equation may be put into the following form:

∞∑
1

δwn{logwn − ζ logwn+1 +
wn − ζwn−1

wn
− [(1− ζ)n− 1] log ζ} = 0.

(359)
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From this, by taking account of (358), we get as the condition for a
minimum, that

logwn − ζ logwn+1 +
wn − ζwn−1

wn
− [(1− ζ)n− 1] log ζ (360)

must be independent of n.
The solution of this functional equation is

wn = (1− ζ)ζn−1 (361)

for it satisfies (360) as well as (353) and (354). With this value (356) be-
comes

Φ = 0. (362)

189. In order to show finally that the value (362) of Φ is really the
minimum value, we form from (357) the second variation

δ2Φ =
∞∑
1

(δwn − ζ δwn−1)
δwn
wn
− ζ δwn−1

wn
δwn +

ζwn−1
w2
n

δw2
n,

where all terms containing the second variation δ2wn have been omitted
since their coefficients are, by (360), independent of n and since

∞∑
1

δ2wn = 0.

This gives, taking account of (361),

δ2Φ =
∞∑
1

2δw2
n

(1− ζ)ζn−1
− 2ζ δwn−1 δwn

(1− ζ)ζn−1
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or

δ2Φ =
2ζ

1− ζ

∞∑
1

δw2
n

ζn
− δwn−1 δwn

ζn−1
.

That the sum which occurs here, namely,

δw2
1

ζ
− δw1 δw2

ζ
+
δw2

2

ζ2
− δw2 δw3

ζ2
+
δw2

3

ζ3
− δw3 δw4

ζ3
+ . . . (363)

is essentially positive may be seen by resolving it into a sum of squares.
For this purpose we write it in the form

∞∑
1

1− αn
ζn

δw2
n −

δwn δwn+1

ζn
+
αn+1

ζn+1
δw2

n+1,

which is identical with (363) provided α1 = 0. Now the α’s may be
so determined that every term of the last sum is a perfect square, i.e.,
that

4 · 1− αn
ζn

· αn+1

ζn+1
=

(
1

ζn

)2

or

αn+1 =
ζ

4(1− αn)
. (364)

By means of this formula the α’s may be readily calculated. The first
values are:

α1 = 0, α2 =
ζ

4
, α3 =

ζ

4− ζ
, . . . .

Continuing the procedure αn remains always positive and less
than α′ = 1

2

(
1−
√

1− ζ
)
. To prove the correctness of this statement

we show that, if it holds for αn, it holds also for αn+1. We assume,
therefore, that αn is positive and < α′. Then from (364) αn+1 is positive
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and <
ζ

4(1− α′)
. But

ζ

4(1− α′)
= α′. Hence αn+1 < α′. Now, since

the assumption made does actually hold for n = 1, it holds in general.
The sum (363) is thus essentially positive and hence the value (362)
of Φ really is a minimum, so that the increase of entropy is proven
generally.

The limiting case (361), in which the increase of entropy vanishes,
corresponds, of course, to the case of thermodynamic equilibrium be-
tween radiation and oscillators, as may also be seen directly by com-
parison of (361) with (271), (265), and (360).

190. Conclusion.—The theory of irreversible radiation processes
here developed explains how, with an arbitrarily assumed initial state, a
stationary state is, in the course of time, established in a cavity through
which radiation passes and which contains oscillators of all kinds of nat-
ural vibrations, by the intensities and polarizations of all rays equalizing
one another as regards magnitude and direction. But the theory is still
incomplete in an important respect. For it deals only with the mutual
actions of rays and vibrations of oscillators of the same period. For a
definite frequency the increase of entropy in every time element until
the maximum value is attained, as demanded by the second principle
of thermodynamics, has been proven directly. But, for all frequencies
taken together, the maximum thus attained does not yet represent the
absolute maximum of the entropy of the system and the corresponding
state of radiation does not, in general, represent the absolutely stable
equilibrium (compare Sec. 27). For the theory gives no information as
to the way in which the intensities of radiation corresponding to dif-
ferent frequencies equalize one another, that is to say, how from any
arbitrary initial spectral distribution of energy the normal energy dis-
tribution corresponding to black radiation is, in the course of time,
developed. For the oscillators on which the consideration was based
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influence only the intensities of rays which correspond to their natural
vibration, but they are not capable of changing their frequencies, so
long as they exert or suffer no other action than emitting or absorbing
radiant energy.1

To get an insight into those processes by which the exchange of en-
ergy between rays of different frequencies takes place in nature would
require also an investigation of the influence which the motion of the os-
cillators and of the electrons flying back and forth between them exerts
on the radiation phenomena. For, if the oscillators and electrons are
in motion, there will be impacts between them, and, at every impact,
actions must come into play which influence the energy of vibration of
the oscillators in a quite different and much more radical way than the
simple emission and absorption of radiant energy. It is true that the
final result of all such impact actions may be anticipated by the aid
of the probability considerations discussed in the third section, but to
show in detail how and in what time intervals this result is arrived at
will be the problem of a future theory. It is certain that, from such
a theory, further information may be expected as to the nature of the
oscillators which really exist in nature, for the very reason that it must
give a closer explanation of the physical significance of the universal ele-
mentary quantity of action, a significance which is certainly not second
in importance to that of the elementary quantity of electricity.

1Compare P. Ehrenfest, Wien. Ber. 114 [2a], p. 1301, 1905. Ann. d. Phys. 36,
p. 91, 1911. H. A. Lorentz, Phys. Zeitschr. 11, p. 1244, 1910. H. Poincaré, Journ.
de Phys. (5) 2, p. 5, p. 347, 1912.
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APPENDIX I

On Deductions from Stirling’s Formula

The formula is

lim
n=∞

n!

nne−n
√

2πn
= 1, (a)

or, to an approximation quite sufficient for all practical purposes, pro-
vided that n is larger than 7

n! =
(n
e

)n√
2πn. (b)

For a proof of this relation and a discussion of its limits of accuracy
a treatise on probability must be consulted.

On substitution in (170) this gives

W =

(
N

e

)N
(
N1

e

)N1

·
(
N2

e

)N2

. . .

·
√

2πN√
2πN1 ·

√
2πN2 . . .

.

On account of (165) this reduces at once to

NN

NN1
1 NN2

2 . . .
·

√
2πN√

2πN1 ·
√

2πN2 . . .
.

Passing now to the logarithmic expression we get

S = k logW = k[N logN −N1 logN1 −N2 logN2 − . . .
+ log

√
2πN − log

√
2πN1 − log

√
2πN2 − . . . ],
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or,

S = k logW = k[(N logN + log
√

2πN)

− (N1 logN1 + log
√

2πN1)− (N2 logN2 + log
√

2πN2)− . . . ].

Now, for a large value of Ni, the term Ni logNi is very much
larger than log

√
2πNi, as is seen by writing the latter in the

form 1
2

log 2π + 1
2

logNi. Hence the last expression will, with a fair
approximation, reduce to

S = k logW = k[N logN −N1 logN1 −N2 logN2 − . . . ].

Introducing now the values of the densities of distribution w by means
of the relation

Ni = wiN

we obtain

S = k logW = kN [logN − w1 logN1 − w2 logN2 − . . . ],

or, since
w1 + w2 + w3 + · · · = 1,

and hence
(w1 + w2 + w3 + . . . ) logN = logN,

and

logN − logN1 = log
N

N1

= log
1

w1

= − logw1,

we obtain by substitution, after one or two simple transformations

S = k logW = −kN
∑

w1 logw1,
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a relation which is identical with (173).
The statements of Sec. 143 may be proven in a similar manner.

From (232) we get at once

S = k logWm = k log
(N + P − 1)!

(N − 1)!P !

Now
log(N − 1)! = logN !− logN,

and, for large values of N , logN is negligible compared with logN !.
Applying the same reasoning to the numerator we may without appre-
ciable error write

S = k logWm = k log
(N + P )!

N !P !
.

Substituting now for (N + P )!, N !, and P ! their values from (b) and
omitting, as was previously shown to be approximately correct, the
terms arising from the

√
2π(N + P ) etc., we get, since the terms con-

taining e cancel out

S = k[(N + P ) log(N + P )−N logN − P logP ]

= k[(N + P ) log
N + P

N
+ P logN − P logP ]

= kN

[(
P

N
+ 1

)
log

(
P

N
+ 1

)
− P

N
log

P

N

]
.

This is the relation of Sec. 143.
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Sur la Théorie des Quanta, Journal de Physique (5), 2, p. 1, 1912)
reached the conclusion that whatever the law of radiation may be, it
must always, if the total radiation is assumed as finite, lead to a func-
tion presenting similar discontinuities as the one obtained from the
hypothesis of quanta.

While most authorities have accepted the quantum theory for good
(see J. H. Jeans and H. A. Lorentz in 2), a few still entertain doubts as
to the general validity of Poincaré’s conclusion (see above C. Benedicks
and R. A. Millikan 3). Others still reject the quantum theory on ac-
count of the fact that the experimental evidence in favor of Planck’s
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law is not absolutely conclusive (see R. A. Millikan 3); among these is
A. E. H. Love (2), who suggests that Korn’s (A. Korn, Neue Mech-
anische Vorstellungen über die schwarze Strahlung und eine sich aus
denselben ergebende Modification des Planckschen Verteilungsgesetzes,
Phys. Zeitschr., 14, p. 632) radiation formula fits the facts as well as
that of Planck.

H. A. Callendar, Note on Radiation and Specific Heat, Phil. Mag.,
26, p. 787, has also suggested a radiation formula that fits the data well.
Both Korn’s and Callendar’s formulæ conform to Wien’s displacement
law and degenerate for large values of λT into the Rayleigh-Jeans, and
for small values of λT into Wien’s radiation law. Whether Planck’s
law or one of these is the correct law, and whether, if either of the
others should prove to be right, it would eliminate the necessity of the
adoption of the quantum theory, are questions as yet undecided. Both
Korn and Callendar have promised in their papers to follow them by
further ones.
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