
Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

An Introduction to (Easy) Git

Elijah Newren

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Trivial changes for most developers
Operations will be faster
Extra robustness
The basics are the same
...unless you make policy decisions otherwise

Trivial changes for most developers

You may often hear that Git requires drastically different
workflows.

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Trivial changes for most developers
Operations will be faster
Extra robustness
The basics are the same
...unless you make policy decisions otherwise

Trivial changes for most developers

You may often hear that Git requires drastically different
workflows.

While Git allows drastically different workflows, and some
people promote them...

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Trivial changes for most developers
Operations will be faster
Extra robustness
The basics are the same
...unless you make policy decisions otherwise

Trivial changes for most developers

You may often hear that Git requires drastically different
workflows.

While Git allows drastically different workflows, and some
people promote them...

The change from Subversion to (Easy) Git can be easier than
the transition from CVS to Subversion.

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Trivial changes for most developers
Operations will be faster
Extra robustness
The basics are the same
...unless you make policy decisions otherwise

Caching more data

Project checkouts contain

CVS: data + metadata

SVN: data + extra copy + metadata
(faster diffs against last revision)

GIT: data + all history + metadata
(most operations faster, new operations possible)

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Trivial changes for most developers
Operations will be faster
Extra robustness
The basics are the same
...unless you make policy decisions otherwise

Caching more data

Project checkouts contain

CVS: data + metadata

SVN: data + extra copy + metadata
(faster diffs against last revision)

GIT: data + all history + metadata
(most operations faster, new operations possible)

Client disk data usage, relative to size of most recent revision:

CVS: 1+ (typical is about 1.2)

SVN: 2+ (typical is about 2.2)

GIT: 1+ (typical is in the range 1.9-2.5)

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Trivial changes for most developers
Operations will be faster
Extra robustness
The basics are the same
...unless you make policy decisions otherwise

Improved data integrity

Git has very strong safeguards against corruption, whether
accidental (e.g. disk/memory/cpu failure) or malicious. It is not
possible to change published revisions without being noticed.

Git achieves this through tracking cryptographic checksums of
files, subtrees, trees, and commits.

Elijah Newren An Introduction to (Easy) Git

http://kerneltrap.org/mailarchive/git/2007/6/9/248730

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Trivial changes for most developers
Operations will be faster
Extra robustness
The basics are the same
...unless you make policy decisions otherwise

The basics are essentially the same

Core commands
svn checkout URL eg clone URL
svn status eg status
svn update eg update
svn diff eg diff
svn add FILE eg add FILE
svn commit eg commit

eg push

Other common commands
svn blame FILE eg blame FILE
svn cat FILE eg cat FILE
svn help [COMMAND] eg help [COMMAND]
svn info eg info
svn mv OLDNAME NEWNAME eg mv OLDNAME NEWNAME
svn resolved PATH... eg resolved PATH...
svn revert PATH... eg revert PATH...
svn rm FILE... eg rm FILE...

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Trivial changes for most developers
Operations will be faster
Extra robustness
The basics are the same
...unless you make policy decisions otherwise

...unless you make policy decisions otherwise

Git has a lot of extra capabilities that you can use without
changing the basic model.

If you want to adopt a linux-like development model, you can.

But most projects don’t adopt such practices, at least not at first
(and often not ever.)

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Trivial changes for most developers
Operations will be faster
Extra robustness
The basics are the same
...unless you make policy decisions otherwise

...unless you make policy decisions otherwise

Git has a lot of extra capabilities that you can use without
changing the basic model.

If you want to adopt a linux-like development model, you can.

But most projects don’t adopt such practices, at least not at first
(and often not ever.)

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Trivial changes for most developers
Operations will be faster
Extra robustness
The basics are the same
...unless you make policy decisions otherwise

...unless you make policy decisions otherwise

Git has a lot of extra capabilities that you can use without
changing the basic model.

If you want to adopt a linux-like development model, you can.

But most projects don’t adopt such practices, at least not at first
(and often not ever.)

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Clone
Commit
Status
Diff
Log

Basic Commands

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Clone
Commit
Status
Diff
Log

Clone

The clone command obtains a copy of a project for you (thus
making it analagous to svn checkout.)

$ eg clone /home/newren/floss/gtk+-git
Initialized empty Git repository in /home/newren/devel/gtk+-git/.git
Checking out files: 100% (2691/2691), done.

Valid URLs are project directory names accessed by various
protocols; examples:

eg clone newren@work-machine:/home/coworker/project

eg clone git://git.samba.org/samba.git

eg clone http://git.gitorious.org/eg/mainline.git eg

eg clone /PATH/TO/PROJECT NEWNAME

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Clone
Commit
Status
Diff
Log

Commit

The commit command records changes locally.

$ eg commit -m "Random change, just for the fun of it"
Created commit 2ebb10a: Random change, just for the fun of it
1 files changed, 1 insertions(+), 0 deletions(-)

To push this commit to the repository you cloned from, run

$ eg push

You can queue multiple commits before pushing, which allows
checkpointing code that is not ready for everyone else in a
more fine-grained fashion.

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Clone
Commit
Status
Diff
Log

Status

The status commands shows which branch is active, and lists
files according to their status (modified, unmerged (“has
conflicts”), deleted, unknown, etc.)

$ eg status

(On branch master)
Changed but not updated ("unstaged"):

modified: doc/how-to-get-focus-right.txt
modified: src/core/window.c
unmerged: NEWS
deleted: src/tools/metacity-message.c

Unknown files:
.gitignore
build/
green-chili-is-yucky
notes.txt

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Clone
Commit
Status
Diff
Log

Diff

The diff command shows changes in patch format.

$ eg diff

diff --git a/src/utils.py b/src/utils.py
index 2ad4d53..c76b540 100644
--- a/src/utils.py
+++ b/src/utils.py
@@ -454,4 +454,5 @@ class Task(object):

return value

def add(self, item, count):
- self.container.insert(item, count)
+ if count:
+ self.container.insert(item, count)

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Clone
Commit
Status
Diff
Log

Log

The log command shows the history of changes.
$ eg log

commit 23dbb9a7643186c1402709e535622595e9b857a1 (master)
Author: Elijah Newren <newren@gmail.com>
Date: Fri Oct 3 20:35:26 2008 -0600

Mark the current version of eg as .93; it’s time to release

If you look at .93 upside down, it kind of looks like E-G. :-)

commit 3f767870a7c70ba518217dac4e5ed6738176c783 (master~1)
Author: Elijah Newren <newren@gmail.com>
Date: Thu Oct 2 21:56:20 2008 -0600

Fix weird bug when sh != bash: caret needs to be quoted on Sun machines

The command
git branch | sed -e s/^..//

was failing which caused some nasty messages and warnings on Sun
machines. I don’t know why sh doesn’t like this command, but quoting
the substitution command avoids the problem.

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Only use what you need

It has been said that few users make use of more than 20% of
the features in a word processor.

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Only use what you need

It has been said that few users make use of more than 20% of
the features in a word processor.

I probably use less than 1%.

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Only use what you need

It has been said that few users make use of more than 20% of
the features in a word processor.

I probably use less than 1%.

But it is nice to know the other features are there.

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Only use what you need

Git has a lot of features.

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Only use what you need

Git has a lot of features.

You don’t need to use or even understand 1% of them.

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Only use what you need

Git has a lot of features.

You don’t need to use or even understand 1% of them.

But here’s a brief introduction to what’s possible...

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Stashing changes away
Staging changes
Bisecting history to find a bad commit
Using branches for different projects
Just stick it under version control

Time savers

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Stashing changes away
Staging changes
Bisecting history to find a bad commit
Using branches for different projects
Just stick it under version control

Stashing

The stash command saves any uncommitted changes in your
project, and returns you to a clean slate. The stash command
can also be used to reapply previously stashed away changes.

$ eg stash
<Do a bunch of other stuff, even including making commits>
$ eg stash apply

You can have multiple stashes and name them, if you like.

$ eg stash save Stuff I was doing before customer called
$ eg stash save Crazy idea
$ eg stash apply Stuff I was doing before customer called

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Stashing changes away
Staging changes
Bisecting history to find a bad commit
Using branches for different projects
Just stick it under version control

Staging

In git, you can explicitly mark a subset of your changes as
being ready for commit. You can also make additional changes,
and then just commit the changes that are ready.

$ echo hi > there
$ eg stage there
$ echo "hi again" >> there
$ eg commit --staged -m "New single-line file called there"
Created commit b7e2002: New single-line file called there

1 files changed, 1 insertions(+), 0 deletions(-)
create mode 100644 there

$ eg status
(On branch testing)
Changed but not updated ("unstaged"):

modified: there

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Stashing changes away
Staging changes
Bisecting history to find a bad commit
Using branches for different projects
Just stick it under version control

Bisecting

Git provides a bisect command for finding the commit that
introduced some bug through a binary search of history.

$ eg bisect start BAD_REVISION GOOD_REVISION
<Repeat until done:>

<Compile, link, test, see if given revision is good or bad>
$ eg bisect bad ⇔ $ eg bisect good

You can automate that looping step with a script that compiles,
links, tests, and returns whether the given revision is good:

$ eg bisect run NAME_OF_SCRIPT

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Stashing changes away
Staging changes
Bisecting history to find a bad commit
Using branches for different projects
Just stick it under version control

Branching

Git makes both branching and merging easy, fast, and robust.

$ eg branch newbranch
$ eg switch newbranch
<Work on newbranch>
$ eg switch original-branch
<Work on original-branch>

Then merging another branch into the current one is as simple
as

$ eg merge newbranch

If you want to merge changes back the other way:

$ eg switch newbranch
$ eg merge original-branch

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Stashing changes away
Staging changes
Bisecting history to find a bad commit
Using branches for different projects
Just stick it under version control

Setting up repositories

Git makes it really easy to just stick data under version control.

$ eg init
$ eg add .
$ eg commit
<Make more changes>
$ eg commit

...

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Pulling changes directly from another developer
Grabbing multiple branches at once
Patch review
Working with firewalled developers

Collaboration

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Pulling changes directly from another developer
Grabbing multiple branches at once
Patch review
Working with firewalled developers

Pulling changes

One can pull updates or changes from the original repository
you cloned from

$ eg pull

But it’s just as easy to pull changes directly from another
repository

$ eg pull --branch some-branch URL-OR-PATH-TO-PROJECT

If you pull from the same person often, you can add a nickname
for their repository

$ eg remote add jim URL-OR-PATH-TO-PROJECT
$ eg pull --branch some-branch jim

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Pulling changes directly from another developer
Grabbing multiple branches at once
Patch review
Working with firewalled developers

Fetching multiple branches simultaneously

You can pull the branches in bob’s repository, and stick them in
branches in your repository with the name bob/<branch>

$ eg fetch bob

This assumes you’ve already set up bob as a nickname for his
repository, by running:

$ eg remote add bob URL

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Pulling changes directly from another developer
Grabbing multiple branches at once
Patch review
Working with firewalled developers

Patch review

Git makes it easy to submit patches for review via email.
$ eg format-patch --numbered master..working-branch
$ eg send-email --compose --to maintainer@project.org

It is also easy to apply patches received in email (even some
emails not formatted by git), if you can figure out how to get the
relevant emails saved off into a separate mbox file:
$ eg am mbox-file

(’am’ stands for ’apply [a series of patches from] mail’.)

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Pulling changes directly from another developer
Grabbing multiple branches at once
Patch review
Working with firewalled developers

Creating and Using Bundles

Create a bundle in the file
bundle.file that contains the
whole repository

$ eg bundle create bundle.file

⇒

The collaborator, after
somehow receiving this file,
can run

$ eg clone \
/path/to/bundle.file project

After a while, create a file to
send them updates

$ mv bundle.file old-repo
$ eg bundle create-update \

bundle.file old-repo

⇒

After sending them the new
repo.bundle file, they stick the
file in the same place and run

$ eg pull

They can also send you bundles, and you treat the filename as
a repository URL to pull from.

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

There are more useful commands
...and more
...and some that will blow your mind

We’ve just scratched the surface

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

There are more useful commands
...and more
...and some that will blow your mind

Revert

You can revert the uncommitted changes to a set of files or
directories

$ eg revert foo.txt bar.c
$ eg revert src

You can also revert to a prior revision

$ eg revert --since REVISION src

or revert the changes made in a prior revision

$ eg revert --in REVISION src

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

There are more useful commands
...and more
...and some that will blow your mind

High level change statistics

You can get high-level statistics about the number of changes
per file.

$ eg diff --stat

Or the percentage of line changes by directory

$ eg diff --dirstat

or the type of changes to each file (equivalent to cvs update
output)

$ eg diff --name-status

or just the names of the files that have changed

$ eg diff --name-only

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

There are more useful commands
...and more
...and some that will blow your mind

Logs with additional information

You can combine patches (diffs) with logs

$ eg log -p

Or, high level patch statistics

$ eg log --stat
$ eg log --shortstat
$ eg log --dirstat
$ eg log --name-status
$ eg log --name-only

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

There are more useful commands
...and more
...and some that will blow your mind

Shorter change logs

You can get just the summary of each change message

$ eg log --pretty=oneline

Or the one-line summaries grouped by author

$ eg shortlog

You can also easily specify a range for either of these

$ eg shortlog gnome-2-24..master

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

There are more useful commands
...and more
...and some that will blow your mind

Searching for changes

You can look for string or regex matches in currently checked
out files

$ eg grep PATTERN

or in files of a previous revision

$ eg grep PATTERN REVISION

or in the files under a specific directory of a previous revision

$ eg grep PATTERN REVISION -- DIRECTORY

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

There are more useful commands
...and more
...and some that will blow your mind

Searching for changes

You can search for when some text was introduced

$ eg log -S’ FIXME’

Or when some text matching a regular expression was
introduced

$ eg log -S’ \bHACK #[0-9]+: ’ --pickaxe-regex

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

There are more useful commands
...and more
...and some that will blow your mind

Searching for changes

You can search for when some text was introduced

$ eg log -S’ FIXME’

Or when some text matching a regular expression was
introduced

$ eg log -S’ \bHACK #[0-9]+: ’ --pickaxe-regex

(It’s a joke, not a regex that’s supposed to be useful.)

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

There are more useful commands
...and more
...and some that will blow your mind

Cleaning up tags and branches

You can push all the tags in your repository to another

$ eg push --all-tags

Then delete all the tags in your repository

$ eg tag -d v3.14
$ eg tag -d v3.141
$ eg tag -d v3.1415

...

And get all the tags back if you like

$ eg pull --all-tags

You can similarly move branches between repositories.

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

There are more useful commands
...and more
...and some that will blow your mind

More advantages of staging

You can view just the changes that are staged (i.e. were
explictly marked as ready to be committed)

$ eg diff --staged

or the changes that aren’t marked as such

$ eg diff --unstaged

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

There are more useful commands
...and more
...and some that will blow your mind

More advantages of staging

In addition to the ability to stage individual files, you can also
selectively stage individual changes within files (by patch hunk)

$ eg stage -p

You can also split patch hunks and even edit patch hunks
interactively before staging them.

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

There are more useful commands
...and more
...and some that will blow your mind

Forward porting a series of patches

Say you have two branches, side-branch and main-branch, with
side-branch being based on some old revision of main-branch.
You’d like the patches in side-branch to be rewritten as if they
were based on the current revision of main-branch. You can do
so easily:

$ eg switch side-branch
$ eg rebase --against main-branch

This can be useful to keep experimental (or rejected) commits
together in history, while also testing against “mainline”
changes. It also makes it easier to present a completed feature
for review.

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

There are more useful commands
...and more
...and some that will blow your mind

Cleaning up history

You can amend the previous commit to include additional
changes or to modify the log message

$ eg commit --amend

(Though this is typically a bad idea once the commit has been
made public.)

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

There are more useful commands
...and more
...and some that will blow your mind

Cleaning up history

You can also reorder, combine, split, or drop prior commits, or
insert new ones

$ eg rebase --interactive --since REVISION

(This is typically a bad idea to do on commits that have been
made public, but can be really nice for changes that are still
private.)

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

There are more useful commands
...and more
...and some that will blow your mind

Cleaning up history

You can undo rebases, merges, or commits by setting the tip of
the branch to a different revision. (You can also redo them the
same way.)

$ eg reset --working-copy REVISION

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

There are more useful commands
...and more
...and some that will blow your mind

Merging independent repositories

You can merge changes from another repository that has no
common history

$ eg pull --branch BRANCH REPOSITORY_URL

This preserves the exact (and separate) history of both projects,
while also reflecting that the two merged at some point.

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Help

Help
Help is readily available
$ eg help

Creating repositories
eg clone Clone a repository into a new directory
eg init Create a new repository

Obtaining information about changes, history, & state
eg diff Show changes to file contents
eg log Show history of recorded changes
eg status Summarize current changes

...

You can also get help on a specific command
$ eg help bundle

bundle: Pack repository updates (or whole repository) into a file

Usage:
eg bundle create FILENAME [REFERENCES]
eg bundle create-update NEWFILENAME OLDFILENAME [REFERENCES]
eg bundle verify FILENAME

Description:
Bundle creates a file which contains a repository, or a subset thereof.
This is useful when two machines cannot be directly connected (thus

...

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Resources

Easy Git

Website: http://www.gnome.org/~newren/eg

Detailed comparison to subversion:
http://www.gnome.org/~newren/eg/git-for-svn-users.html

Core Git

Website: http://git.or.cz

Elijah Newren An Introduction to (Easy) Git

http://www.gnome.org/~newren/eg
http://www.gnome.org/~newren/eg/git-for-svn-users.html
http://git.or.cz

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Cherry picking changes
Finding where certain lines came from
Determining which files have not changed
Pulling changes from multiple locations
...I’m running out of space here

That’s not all that git can do...

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Cherry picking changes
Finding where certain lines came from
Determining which files have not changed
Pulling changes from multiple locations
...I’m running out of space here

Cherry picking a change off another branch

Sometimes, it may not make sense to merge branches. But you
may want to cherry pick a change off another branch and apply
it to the current branch

$ eg cherry-pick REVISION

By default, it’ll make a commit with the same commit message
too.

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Cherry picking changes
Finding where certain lines came from
Determining which files have not changed
Pulling changes from multiple locations
...I’m running out of space here

Finding where certain lines came from

You can find out which revision each line of the Foo constructor
of foo.cc was introduced in

$ eg blame -L ’/^Foo::Foo/,/^}$/’ foo.cc

(The starting and ending lines to report on were specified by a comma-separated and

slash-enclosed pair of regular expressions, i.e. /regex1/,/regex2/ — though the

whole thing was also quoted in order to avoid shell weirdness.)

You can also find out where lines 115 through 120 of bar.c
came from...including which revision they were introduced in
and which file they were in at that time. You can also ignore
whitespace changes when comparing lines to see where they
came from.

$ eg blame -L 115,120 -C -C -w bar.c

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Cherry picking changes
Finding where certain lines came from
Determining which files have not changed
Pulling changes from multiple locations
...I’m running out of space here

Which files have not changed?

You can find out things like which files have not changed in the
last 100 commits
$ comm -13 <(git diff --name-only HEAD~100 | sort) <(git ls-files | sort)

(This command assumes you are using bash and the command ’comm’, part of GNU

coreutils, is available.)

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Cherry picking changes
Finding where certain lines came from
Determining which files have not changed
Pulling changes from multiple locations
...I’m running out of space here

Pull in lots of changes at once

Pull in all the branches from bob’s repository. And from jim’s,
and from alice’s, and...
$ eg remote update

(This assumes you’ve setup remote nicknames for each developer with eg remote

add nickname URL-for-repository)

You can also combine remotes into groups and get updates
from a specific group of developers.

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Cherry picking changes
Finding where certain lines came from
Determining which files have not changed
Pulling changes from multiple locations
...I’m running out of space here

Extra bisect options

When bisecting history to find the commit that introduced a bug,
you can get a history of commits you’ve marked as good/bad
$ eg bisect log

and replay parts of this history if you realize you made a
mistake
$ eg bisect replay file-with-edited-output-of-bisect-log

or see the remaining commits that need to be checked
$ eg bisect visualize

or skip unbuildable commits
$ eg bisect skip

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Cherry picking changes
Finding where certain lines came from
Determining which files have not changed
Pulling changes from multiple locations
...I’m running out of space here

Rewriting lots of history

Git provides a filter-branch command for when you need
fine-grained control of rewriting lots of history. While the result
is incompatible with the original repository, this can be handy
when fixing up imports of history from other version control
systems. Example types of operations that can be performed:

Change author and commiter names or email addresses.

Remove any trace of a certain file having been in the repository.

Change the “beginning” of history by grafting the “initial” commit on top of
another commit(s). Or adding another “beginning” of history.

Remove all commits made by a certain author

Make the history of a coworker’s repository cyclic when they forget to lock their
screen. Teach them a really tough lesson.

Make a certain subdirectory become the toplevel directory of the repository,
throwing away all files and directories that were not originally underneath it.

For each commit, run a script that will rewrite multiple files in that commit.

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Cherry picking changes
Finding where certain lines came from
Determining which files have not changed
Pulling changes from multiple locations
...I’m running out of space here

And that’s not all either...

The 2008 Git user’s survey included 65 commands and
variations thereof, which featured high-level functionality of Git.
The survey asked whether (and how often) users used the
various commands.

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Cherry picking changes
Finding where certain lines came from
Determining which files have not changed
Pulling changes from multiple locations
...I’m running out of space here

And that’s not all either...

The 2008 Git user’s survey included 65 commands and
variations thereof, which featured high-level functionality of Git.
The survey asked whether (and how often) users used the
various commands.

If you used everything in this presentation, you could check
about half the boxes.

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Cherry picking changes
Finding where certain lines came from
Determining which files have not changed
Pulling changes from multiple locations
...I’m running out of space here

And that’s not all either...

The 2008 Git user’s survey included 65 commands and
variations thereof, which featured high-level functionality of Git.
The survey asked whether (and how often) users used the
various commands.

If you used everything in this presentation, you could check
about half the boxes.

...but those boxes don’t cover all existing capabilities either.

Elijah Newren An Introduction to (Easy) Git

Changes, or lack thereof
Basic Commands

Time savers
Collaboration

Additional Features

Cherry picking changes
Finding where certain lines came from
Determining which files have not changed
Pulling changes from multiple locations
...I’m running out of space here

And that’s not all either...

The 2008 Git user’s survey included 65 commands and
variations thereof, which featured high-level functionality of Git.
The survey asked whether (and how often) users used the
various commands.

If you used everything in this presentation, you could check
about half the boxes.

...but those boxes don’t cover all existing capabilities either.

...let alone the features being developed.

Elijah Newren An Introduction to (Easy) Git

	Changes, or lack thereof
	Trivial changes for most developers
	Operations will be faster
	Extra robustness
	The basics are the same
	...unless you make policy decisions otherwise

	Basic Commands
	Clone
	Commit
	Status
	Diff
	Log

	
	Only use what you need

	Time savers
	Stashing changes away
	Staging changes
	Bisecting history to find a bad commit
	Using branches for different projects
	Just stick it under version control

	Collaboration
	Pulling changes directly from another developer
	Grabbing multiple branches at once
	Patch review
	Working with firewalled developers

	Additional Features
	There are more useful commands
	...and more
	...and some that will blow your mind

	
	Help

	
	
	Cherry picking changes
	Finding where certain lines came from
	Determining which files have not changed
	Pulling changes from multiple locations
	...I'm running out of space here

